RSX-11M/M-PLUS

and Micro/RSX

Task Builder Manual
Order No. AA-AB46A-TC

RSX-11M/M-PLUS
and Micro/RSX

Task Builder Manual
Order No. AA-AB46A-TC

RSX-11M Version 4.1
RSX-11M-PLUS Version 2.1
Micro/RSX Version 1.0

digital equipment corporation - maynard, massachusetts

First Printing, December 1983

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be wused or copied only in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on

equipment that is not supplied by Digital Equipment Corporation or its
affiliated companies.

Copyright (:) 1983 by Digital Equipment Corporation
All Rights Reserved.

Printed in U.S.A.

The postpaid USER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future.
documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL RSTS
DEC/CMS EduSystem RSX
DEC/MMS , IAS UNIBUS
DECnet MASSBUS VAX
DECsystem-10 MICRO/PDP-11 VMS

DECSYSTEM-20 Micro/RSX VT
DECU PDP
DECwiiter PDT Eﬂ@ﬂuau

ZK2414

' HOW TO ORDER ADDITIONAL DOCUMENTATION

In Continental USA and Puerto Rico call 800-258-1710 DIRECT MAIL ORDERS (CANADA)
In New Hampshire, Alaska, and Hawaii call 603-884-6660 Digital Equipment of Canada Ltd.
940 Belfast Road
In Canada call 613-234-7726 (Ottawa-Hull) Ottawa, Ontario K1G 4C2
800-267-6146 (all other Canadian) Attn: A&SG Business Manager

DIRECT MAIL ORDERS (USA & PUERTO RICO)* DIRECT MAIL ORDERS (INTERNATIONAL)

Digital Equipment Corporation Digital Equipment Corporation

P.O. Box CS2008 A&SG Business Manager

Nashua, New Hampshire 03061 c/o Digital's local subsidiary or

approved distributor

*Any prepaid order from Puerto Rico must be placed
with the local Digital subsidiary (809-754-7575)

Internal orders should be placed through the Software Distribution Center (SDC), Digital Equipment
Corporation, Northboro, Massachusetts 01532

CONTENTS
Page

 PREFACE | U S c xvii
SUMMARY OF TECHNICAL CHANGES o) L xxi

»CHAPTER 1 ‘ INTRODUCTICN'AND'COMMAND SPECIFICATIONS

TASK COMMAND LINE e e e e el e e e el e e e e e
The MCR Command Line for the Task Builder . . .
Printing the Map File ' v v v o v v e e e e e
Omitting Specific Output Files
The DCL LINK Command Line for the Task Bullder .
The LINK Command Input File v
The LINK-Command Task File . + « &« « « « + .+ .
The LINK. Command Map File ". . .« « « « « . .
The LINK Command Symbol Definition File . . .
Printing the .MAP File When Using the LINK
Command , « '« o o o ¢ 0 e e e s e e e e e e 4
MULTILINE. INPUT e e e e e e 6 e e e e e e e e
Multiline Input Using the TKB Command . « .« « =
© 'Multiline Input Using the LINK Command
Abbreviated Qualifiers in LINK e e e e e e e e
TASK BUILDER OPTIONS + &« ¢ ¢ o ¢ s o o o o o o «
‘Entering Task Builder Optlons in TKB . . . + « ..
Entering Task Builder Options in LINK
Entering the Option Line + . . . 1
MULTIPLE TASK SPECIFICATIONS T I £
INDIRECT COMMAND FILES « ¢« ¢ ¢ o o ¢ ¢ o o o« o « -1=11
COMMENTS IN INDIRECT COMMAND FILE LINES : . « . . 1-14
FILE SPECIFICATIONS "+ v v o o o« o o o o o . 1-15
SUMMARY OF SYNTAX RULES . ¢ ¢ v &« v7e o o & « « 1-16

!

NN NN DN
A
1

.
N =
|

..
[B e R g
11 1

gD W N+

.

H e e
o e e e

.
.

[|

P
NN -
o
=

1

.«
WN =
[}

DN NP WWWWNN NN

. .

.« .
I R e e
-] i

e el e el i

CHAPTER TASK BUILDER‘FUNCTIONS o

'LINKING OBJECT MODULES . « + « & & o o o o o o o
1 ‘Allocating Program Sections . « .« e 4 e e . .
1.1 Access-code and Allocatiori-code v « « « . . .
1.2 ~Type-Code and Scope-Code e et e e e e e e e e
2 Resolv1ng Global, SYymbols + « « o ¢ « o o o & o

.« .
|

1

1

1

1

1

2 THE TASK STRUCTURE e e ee e e e e e e Y e e e
3 OVERLAYS P T T S S PR A
4 -ADDRESSING CONCEPTS e e e e e e e e e e
4

4

4

4

5

5

NNDNDDND NN
| I
WNNDNODOIIUIN -

)

2
1 " Physical,. Vlrtual, and Logical Addresses . . . 2=
2 Unmapped Systems . . « &+ ¢ o v o o o o o & o o 2
<3 Mapped Systems . .« « v v & v+ 4 e 4 4w . . 2-14
4 - Regions . ¢ v v v o e v v o v 0 e 0 e 00 oo 2=17
© TASK MAPPING AND WINDOWS e i e e e e e e e e e 2=19

iii

CONTENTS

CHAPTER 3 OVERLAY CAPABILITY
3.1 OVERLAY STRUCTURES . . ¢ ¢ ¢ &« & o o o« o o o & o« « 3-1
3.1.1 Disk-Resident Overlay Structures « 3-2
3.1.2 Memory-Resident Overlay Structures (Not
Supported on RSX-11S) . . . + « &« ¢ &« « « « « « 3-5
3.2 OVERLAY TREE . & ¢« ¢ ¢ ¢ & o o o o o o o o o o & 3-15
3.2.1 Loading Mechanism « ¢« ¢« ¢ « « « « « « 3-16
3.2.2 Resolution of Global Symbols in a Multisegment
TAask « ¢« o o ¢« o & o o« o o o o o o o« o o« o« « « 3-16
3.2.3 Resolution of Global Symbols from the Default
Library « ¢ « o o o o o o o o o o & o s « « « 3-18
3.2.4 Allocation of Program Sections in a
Multisegment Task . . . « + « « &« &« &« « « o+ « 3-18
3.3 OVERLAY DATA STRUCTURES AND RUN-TIME ROUTINES . 3-19
3.3 i
3. |
3.4.1 .ROOT and .END Directives « 3-24
3.4.2 .FCTR Directive . . + ¢« ¢ ¢ ¢ « « & &« o« & « « 3=25
3.4.3 Arguments for the .FCTR and .ROOT Directives . 3-26
3.4.3.1 Named Input File + +« « ¢« « « « « 3-26
3.4.3.2 Specific Library Modules . « + + « + « « « . 3-26
3.4.3.3 A Library to Resolve References Not
Previously Resolved « . +« + « « . . 3-26
3.4.3.4 A Section Name Used in a .PSECT Directive . 3-26
3.4.3.5 A Segment Name Used in a .NAME Directive . . 3-27
3.4.4 Exclamation Point Operator « 3=27"
3.4.5 .NAME Directive e+ e e+ « o e« s . . 3=-28
3.4.5.1 Example of The Use of The .NAME Directive . 3-29
3.4.6 +PSECT Directive « .« ¢« « ¢« ¢ ¢ « « « « 3-29
3.4.7 Indirect Command Files . . . « « . « +. « « « « 3-30
3.5 MULTIPLE-TREE STRUCTURES . . +« ¢« ¢« « + « « « « « 3=-30
3.5.1 Defining a Multiple-Tree Structure 3=31
3.5.1.1 Defining Co-trees With a Null Root by Using
NAME 0 0 0 6 b i v e e e e e e e e e e e . 3=31
3.5.2 Multiple-Tree Example 3-31
3.6 CREATING AN ODL FILE FROM A VIRTUAL ADDRESS SPACE
ALLOCATION DIAGRAM . . « + ¢ ¢ o « s o o« « o« « » 3-35
3.6.1 Creating a .ROOT Statement by Using a Virtual
Address Space Allocation Diagram 3=37
3.6.2 Creating a .FCTR Statement by Using a Vlrtual
Address Space Allocation Diagram 3-38
3.6.3 Creating an ODL Statement for a Co-Tree by
Using a Virtual Address Space Diagram 3-39
3.7 OVERLAYING PROGRAMS WRITTEN IN A HIGH-LEVEL
LANGUAGE e+ o o s+ & s & e s+ e e e e s e e o « 3=40
3.8 EXAMPLE 3-1: BUILDING AN OVERIAY « « . 3-41
3.9 WINDOW BLOCKS IN OVERLAYS . . . ¢« « « ¢« « « « o 3-48
3.10 SUMMARY OF THE OVERLAY DESCRIPTION LANGUAGE . . 3-49
CHAPTER 4 OVERLAY LOADING METHODS
4.1 AUTOLOAD &« &« ¢ ¢ ¢ o o o o o =
4.1.1 Autoload Indicator
4.1.2 Path Loading . « . . « . . .
4.1.3 Autoload Vectors
4.1.4 Autoloadable Data Segments .
4.2 MANUAL LOAD . . « « « « .
4.2 1 Load Callln

iv

/ N,

CONTENTS

4.3 ERROR HANDLING . &« « &« &« o ¢« o o o o o o o:s o o« 4-11
4.4 GLOBAL CROSS-REFERENCE OF AN OVERLAID TASK . . . 4-12
4.5 USE AND SIZE OF OVERLAY RUNTIME ROUTINES 4-14
CHAPTER 5 SHARED REGION CONCEPTS AND EXAMPLES
5.1 SHARED REGIONS DEFINED . . ¢« « ¢ &« &« & o« « o« o« o« & 5-1
5.1.1 The Symbol Definition File 5-4
5.1.2 Position-Independent Shared Regions 5-6
5.1.2.1 Position-Independent Shared Region Mapping . . 5-6
5.1.2.2 Specifying a Position-Independent Region . . . 5-7
5.1.3 Absolute Shared Regions . . ¢« ¢« « ¢« « « « « « » 5-8
5.1.3.1 Absolute Shared Region Mapping 5-8
5.1.3.2 Specifying an Absolute Shared Region 5-10
5.1.3.3 Absolute Shared Region .STB File 5-10
5.1.4 Shared Regions with Memory-Resident Overlays . 5-10
5.1.4.1 Considerations About Building an Overlaid
' Shared Region . . + « « « « « ¢« &+ &« « « « « 5-10
5.1.4.2 Example of Building a Memory-Resident
Overlaid Shared Region e e e e s e s e e . . 5-11
5.1.4.3 Options for Use in Overlaid Shared Regions 5-12
5.1.4.4 Autoload Vectors and .STB Files for Overlald
Shared Regions « . « « « +« « .+ . 5-13
5.1.5 Run-Time Support for Overlaid Shared Regions . 5-14
5.1.6 Linking to a Shared Region 5-15
5.1.7 Number and Size of Shared Regions 5-18
5.1.8 Example 5-1: Building and Linking to a Common
in MACRO-11 . . . « + & « &« o« & « o« s s « « « 5-18
5.1.9 Linking Shared Regions Together 5-26
5.1.10 Example 5-2: Building and Linking to a Device
, Common in MACRO-11 « « « + . 5-28
5.1.11 Example 5-3: Building and Llnklng to a Resident
Library in MACRO-11 . . . +« +« « « &« & &« « + . 5=33
5.1.11.1 - Resolving Program Section Names in a
Shared Region . . « ¢« ¢« « « ¢« ¢ « o« « « « « 5=39
5.1.12 Example 5-4: Building a Task That Creates a
Dynamic Region .« « . ¢« « « ¢ « ¢« ¢« ¢ v ¢« « « . 5-40
5.2 CLUSTER LIBRARIES . . ¢ ¢ ¢ « o « o o« o « o« o« o« 5-44
5.2.1 Building the Libraries e« o« o o o« o« 5=45
5.2.1.1 Summary of Rules for Building the Libraries 5-45
5.2.1.2 Rule 1: All Libraries but the First Require
Resident OverlaysS .« + « « o« o « « o+ o« « « o« 5-45
5.2.1.3 Rule 2: User Task Vectors Indirectly Resolve
All Interlibrary References 5-46
5.2.1.4 Rule 3: Revectored Entry Point Symbols Must
Not Appear in the "Upstream" .STB File . . . 5-47
5.2.1.5 Rule 4: A Called Library Procedure Must Not
Require Parameters on the Stack 5-48
5.2.1.6 Rule 5: All the Libraries Must be PIC or
Built for the Same Address« 5-48
5.2.1.7 Rule 6: Trap or Asynchronous Entry Into a
Library is not Permitted 5-48
5.2.2 Building Your Task . . +. « « ¢« « + « &« &« &+ « o+ 5-49
5.2.3 Examples ¢« « ¢ « ¢ ¢ ¢ o e e e e e e . . 5-49
’ 5.2.3.1 F77CLS -- Build the Default Library for the
FORTRAN=77 OTS . « « « ¢ « o o o o o o o« o« o« 5=49
5.2.3.2 FDVRES -- Build an FMS-11/RSX V1.0 Shareable
Library « « ¢ ¢ ¢« ¢ ¢ ¢« 4 s+ o o o o o« & « o B5=51
5.2.3.3 FDVRESBLD.ODL =-- Overlay Description for
FMS-11/RSX V1.0 Cluster Library 5=52
5.2.3.4 FCSRES Library Build 5-=53
5.2.3.5 F77TST.CMD -- File to Build the FMS ll/RSX
V1.0 FORDEM Test Task . « « « « « « « « « o« 5-53
5.2.4 Overlay Run-Time Support Requirements 5-=53

CONTENTS

5.3 TASK-BUILDING AN F4PRES, FORRES, OR FMSRES

LIBRARY WITH OR WITHOUT FCSRES . . . «. «. « . . . 5-55
5.3.1 FCSRES -- The Types of FCS Resident Libraries 5-55
5.3.1.1 Building a Memory-Resident Overlaid FCSRES . 5-55
5.3.1.2 Building a Non-Memory-Resident FCSRES . . . 5-56
5.3.1.3 Building F4PRES . . . +« ¢ « « &+ & o « « « « 5=56
5.3.1.4 Options and Tradeoffs b5=57
5.4 VIRTUAL PROGRAM SECTIONS . « « « « + « « &« « « « 5-60
5.4.1 FORTRAN Run-Time Support for Virtual Program

Sections . . « « .+« . ¢ ¢ ¢ 4 4 4 4 e e« 4 W« . 5-61
5.4.2 Example 5-5: Building a Program that Uses a
Virtual Program Section . . . +. « +« « &+ . . . 5-65
CHAPTER 6 PRIVILEGED TASKS

6.1 INTRODUCTION .« &« ¢ &« « o « o o s o o o o o o o o « 6=1
6.2 PRIVILEGED AND NONPRIVILEGED TASK DISTINCTION . . 6-1
6.3 PRIVILEGED TASK HAZARDS « &+ &« « &« &« o o« o o o« &+ « ©6=1
6.4 SPECIFYING A TASK AS PRIVILEGED « « . . . 6=2
6.5 PRIVILEGED TASK MAPPING . &« &« « & o & o« o« « o« o« o 6=2
6.6 PRIVILEGE O TASK ¢ « ¢ ¢ « o 4 o o o« o o o o o« « o+ 6-4
6.7 PRIVILEGE 4 TASK &« &+« &« « « ¢ « o« o o « o« o« o o« « « 6=5
6.8 PRIVILEGE 5 TASK . &+ ¢ ¢ ¢ + ¢ « o & o o o o o« « « 6=5
6.9 EXAMPLE 6-1: BUILDING A PRIVILEGED TASK TO

EXAMINE UNIT CONTROL BLOCKS . . « . ¢« « « +« « « o+ 6-6

vi

CONTENTS

CHAPTER 10 TKB SWITCHES

10.1 TKB SWITCHES . + « « « o o o o o o o o o o« « « « 1l0-1
10.1.1 Filespec Syntax . « « « ¢ « ¢ o« o o« o« o o« « o« 10-1
10.1.2 Switch Designation ¢« « « + « . . . 10-1
10.1.3 Overriding Switches « « « + . . . 10-1
10.1. 4 Switch Summary Table . e e e e e e« e« e« « 10-2
10.2 /AC[:N] -- ANCILLARY CONTROL PROCESSOR 1l0-5
10.3 /AL -- ALLOCATE CHECKPOINT SPACE « . . . 10-6
10.4 /CC —- CONCATENATED OBJECT MODULES 10-7
10.5 /CM -- COMPATIBILITY MODE OVERLAY STRUCTURE . . 1l0-8
10.6 =~ /CO -- BUILD A COMMON BLOCK SHARED REGION . . . 10-9
10.7 /CP —- CHECKPOINTABLE . « « « &« « « o« « « « «» .+ 10-10
10.8 /CR —— CROSS-REFERENCE . . « +« + +« « &« « « « « » 10-11
10.9 /DA —— DEBUGGING AID +. « + « « o« « « + « « « « . 10-14
10.10 /DL -— DEFAULT LIBRARY . . « + « o « « &« « « « . 10-15
10.11 /EA —-- EXTENDED ARITHMETIC ELEMENT 10-16
10.12 /EL —— EXTEND LIBRARY . + « &« « & « o + « &« o« o 10-17
10.13 /FP == FLOATING POINT . « « « « o« &« « « « « « o 10-18
10.14 /FU == FULL SEARCH . + « « « &+ « &« « « « o « « o 10-19

10.15 HEADER & ¢ ¢ ¢ & o o o o o o o o . .

/1P TASK MAPS I/O PAGE « « « « o o o o o o o
10.18 /LB -- LIBRARY FILE . . . e+ 4 + 4 4+ « + . 10-23
10.19 /LI -- BUILD A LIBRARY SHARED REGION 10-25
10.20 /MA -- MAP CONTENTS OF FILE 10-26
10.21 /MM[:N] -- MEMORY MANAGEMENT . . « +. « « &« + « . 10-27

MP -- OVERLAY DESCRIPTION . . .

10.24 /NM -- NO DIAGNOSTIC MESSAGES

10-30

10.25 /PI -~ POSITION INDEPENDENT« .« . 10-31
10.26 /PM —— POSTMORTEM DUMP . . « « &« & « o« « + o« « » 10-32
10.27 /PR[:N] == PRIVILEGED . . . « « « + « « « « « « 10-33
10.28 /RO —— RESIDENT OVERLAY . « + &+ « « « o« o« o« « « 10-34
10.29 /SE == SEND + +« « & o« o o o & e « « « « « « « 10-35
10.30 /SG -- SEGREGATE PROGRAM SECTIONS e + « « « « . 10-36

vii

CONTENTS

10.31 JSH == SHORT MAP . . + &« + o« o « « o« o o« « « « o 10-37
10.32 JSL == SLAVE . &+ &« ¢ « &+ o & &« « o« o o « o« + « + 10-45
10.33 /SP —— SPOOL MAP OUTPUT .« + « « « « + « « « « o 10-46
10.34 /SQ == SEQUENTIAL . + « « ¢ « + o o+ o o « o « « 10-47
10.35 /SS -= SELECTIVE SEARCH . « + + « ¢« « « « « . . 10-48
10.36 JTR == TRACEABLE . . . + &« + « & « o« o o« o« « o« » 10-51
10.37 /WI -- WIDE LISTING FORMAT 10—52‘g

10.39 /XT[:N] -- EXIT ON DIAGNOSTIC . . . « . « . . . 10-54

CHAPTER 11 LINK QUALIFIERS
11.1 LINK QUALIFIERS ¢« ¢ « o ¢ o o o o o o o o o o
11.1.1 LINK Command Line SyntaX . « « « &« ¢ « o« « + &
11.1.2 Qualifier Designation
11.1.3 Overriding Qualifiers « « ¢« « « o«
11.1.4 Qualifier Summary Table « « « + + + .
11.2 QUALIFIER DESCRIPTIONS « ¢« &+ ¢ ¢ o ¢ o o o o o o«
11.3 /ANCILLARY PROCESSOR[:n]
11.4 /BASIC « &+ ¢ v o o o o« o o o o 4 o e e e e e e
11.5 /INOICHECKPOINT[:SYS] . « +« + ¢ « & & &« o & « &

11.6 /[NOJCHECKPOINT[: TAS]

11.8 /CODE: [EAE] .
11.9 JCODE:[FPP] '+ « ¢ v v v v v o o o o o o o o o
11.10 JCODE:[PIC] e e e e e e e e e s
11.11 /CODE : [POSITION INDEPENDENT] e e e e e e e e e
11.12 JCOMPATIBLE + &+ & « « + o o o« o o o o o o o o«
11.13 /INOJCONCATENATE « « « o o o o o o o o o o o o .
11.14 JCROSS REFERENCE . v v v ¢ &« ¢ o« ¢ o o o« o« o o «
11.15 /DEBUGT : filespec] « v + ¢« v v v v e v v v o o
11.16 /DEFAULT LIBRARY &+ &« « « o o o o o o o o o o o
11.17 /ERROR LIMIT[:n] . .
11.18 /[N%]EXECUTABLE[flles

. . .

Kh. i
11.20 JPAST v v v v v ¢ o s o o o 4 4 e a0
11.21 /FULL SEARCH . . « « « &« & « « « o « .
11.22 JINOJGLOBALS + « &« « &+ o o« « o o o« o
11.23 /INOJHEADER e e e e e e e e e
11.24 /INCLUDE: (modulell, module2,...
11.25 JINOJIO PAGE .« + « +v « & v & v & v v o v o & o
11.26 JLIBRARY « & v v v v o o o o o o o v o o o o o
11.27 JLONG ¢« v v v v v v o o o o v e e e e e e e e
11.28 /MAP[:filespec]
11.29 /I[NOIJMEMORY MANAGEMENT[:n] . . . « « « ¢ « « « .
11.30 JOPTION[:fiTespec] . . .
11.31 /OVERLAY DESCRIPTION . + &« &« « « & « o« & o o o« &
11.32 /POSTMORTEM + « &« « « o o o o o o o o o o« o o
11.33 ° /INOJPRINTER + + + + &+ o o o o o o o o « o+ o o
11.34 /PRIVILEGED[:n] . « ¢ « v ¢ v ¢ o o o o o« o« o
11.35 /I[NO]IRECEIVE e e
11.36 /[NO]RESIDENT OVERLAYS e e
11.37 JSAVE + © « U 4 v e e e e b e e e e e e e e e
11.38 /INOJSEGREGATE . . + .« « .+ .
11.39 /SELECTIVE SEARCH« « . « « « « « « « . .
11.40 /SEQUENTIAL .+ + &« & o & o o o o o o o o o o o &«
11.41 /SHAREABLE[:COMMON] . ¢ ¢ « v + & &« o o« o o o
11.42 /SHAREABLE[:LIBRARY] + « & « « & o o o o o o o

3
o
Q
c
-
o
=
[N

.

11.44 /SLAVE + v « + 4 -t o o o o « o« o o« s« o o« o« & « « 11-68
11.45 JSLOW « v v « o o o . e e e e 4 4 e e e+ e« « 11-69
11.46 /SYMBOL TABLE[: fllespec] T B 4
11.47 /[NO]SYSTEM LIBRARY DISPLAY 11-71

viii

11.48
11.49
11.50
11.51
11.52

CHAPTER 12

12.1.10
12.1.11
12.1.12
12.1.13
12.1.14
12.1.15
12.1.16
12.1.17
12.1.18
12.1.19
12.1.20
12.1.21
12.1.22
12.1.23

12

4

12.1.29
12.1.30
12.1.31
12.1.32
12.1.33

12.1.34
12.1.35

APPENDIX A

.
.

.

OIS WN

.
.

'>:P3’>'?:P3’>'?
e e e

CONTENTS

/INO]TASK[:filespec] « « « « « + « + .
JTKB & v v v v v 4 o 6 4 e e e e e e
JTRACE « v v v & o o o o o o o o« o« o
JINOJWARNINGS « &+« & &+ o & o o o o o
JINOIWIDE .« .« v v & v v o v o o o o &

OPTIONS

OPTIONS &« ¢ ¢ ¢ ¢ ¢ o o o o o oo o o o o o«
ABORT -- Abort the Task-Build
ABSPAT -- Absolute Patch . . . « « « « + &
ACTFIL -- Number of Active Files
ASG -- Device Assignment . . . o e e e e
CLSTR -- System-Owned Cluster of Resident

Lib

or System-Owned Resident Library .

- A ¥ = o
EXTSCT -- Program Section %xtension

.

EXTTSK -- Extend Task Memory
FMTBUF -- Format Buffer Size
GBLDEF -- Global Symbol Definition . .
GBLINC -- Include Global Symbols . . .
GBLPAT -- Global Relative Patch . . .
GBLREF -- Global Symbol Reference . .
GBLXCL =-- Exclude Global Symbols . . .
IDENT -- Task Identification
LIBR -- System-Owned Library . . N
MAXBUF -- Maximum Record Buffer Slze .
ODTV -- ODT SST Vector . . . « « « .« .
PAR -- Partition o ¢ ¢ & . .
PRI -- Priority . . « « « ¢« o« « « o« + &
RESCOM or RESLIB -- Resident Common or
Resident Library . . « « « o « o « +

-- Resident Library . -.

Task Name « « « & « « o« « .

TASK .
TSKV -- Task SST Vector
UIC -- User Identification Code . . .
UNITS -- Logical Unit Usage
VARRAY ~- Virtual Array Specification
USAge « ¢ ¢ o o o o o o o o s o o o .
VSECT -- Virtual Program Section . . .
WNDWS -- Number of Address Windows . .

TASK BUILDER INPUT DATA FORMATS

DECLARE GLOBAL SYMBOL DIRECTORY RECORD .
Module Name (Type 0) . « + « « + « « .
Control Section Name (Type 1)
Internal Symbol Name (Type 2)
Transfer Address (Type 3 e e e e e
Global Symbol Name (Type 4)
Program Section Name (Type 5)
Program Version Identification (Type 6)

Mapped Array Declaration (Type 7) .

ix

R é Qﬁi
COMMON or LIBR -- System-Owned Resident Common

11-72
11-74
11-75
11-76
11-77

12-38
12-39
12-40
12-41

12-42
12-44
12-45

T:P%’T o
coNoOoOU LA N

i
o

'

CONTENTS

A.l1.9 Completion Routine Definition (Type 10) . . . A-11
A.2 END OF GLOBAL SYMBOL DIRECTORY RECORD A-1l1l
A.3 TEXT INFORMATION RECORD . . +. ¢« « « & « o & « « A-11
A.4 RELOCATION DIRECTORY RECORD . . . ¢ « « o « « o« A=12
A.4.1 Internal Relocation (Type 1) A-14
A.4.2 Global Relocation (Type 2)« « « « A-15"
A.4.3 Internal Displaced Relocation (Type 3) « « « « A-15
A.4.4 Global Displaced Relocation (Type 4) A-16
A.4.5 Global Additive Relocation (Type 5) A-16
A.4.6 Global Additive Displaced Relocation (Type 6) A-17
A.4.7 ~Location Counter Definition (Type 7) A-17
A.4.8 Location Counter Modification (Type 10) . . . A-18
A.4.9 Program Limits (Type 11) « . . . A-18
A.4.10 Program Section Relocation (Type 12) A-19
A.4.11 Program Section Displaced Relocation (Type 14) A-19
A.4.12 Program Section Additive Relocation (Type 15) A-20
A.4.13 Program Section Additive Displaced Relocation
(Type 16) « +« « & o« « o o o o o o s « s « o« « A=21
A.4.14 Complex Relocation (Type 17) . . . e+ o « A=22
A.4.15 Resident Library Relocation (Type 20) . « « . A-23
A.5 INTERNAL SYMBOL DIRECTORY RECORD . . . « A=-24
A.5.1 Overall Record Format « « .« « « « . A=24
A.5.2 TKB Generated Records (Type 1) « . + «. « . . . A=25
A.5.2.1 Start-of-Segment Item Type (1) A-=25
A.5.2.2 Task Identification Item Type (2) . . . A-26
A.5.2.3 ?u?oloadable Library Entry Point Item Type
3 e e e s s e e e e e e e e s .« « « « A-26
A.5.3 Relocatable/Relocated Records (Type 2) e« « o A=27
A.5.3.1 Module Name Item Type (1) + « . . A=27
A.5.3.2 Global Symbol Item Type (2) A-28
A.5.3.3 PSECT Item Type (3) . . . « ¢« + ¢ « « « « +» A=29
A.5.3.4 Line-Number or PC Correlation Item Type (4) A-29
A.5.3.5 Internal Symbol Name Item Type (5) A-=-30
A.5.4 Literal Records (Type 4) « « + « « « « A=30
A.6 END OF MODULE RECORD . . « &+ + « « o « s« « « « « A=30
APPENDIX B DETAILED TASK IMAGE FILE STRUCTURE
B.1l LABEL BLOCK GROUP . . « « ¢ ¢ & & o o & o« 2 & o« « B=1
B.2 CHECKPOINT AREA . . &+ + o+ « s s o o o o s s « o« « B=9
B.3 HEADER « « ¢ « ¢ ¢ « o o s s o s s s« ¢« o« o« « « « B=10
B.3.1 Low-Memory Context . « « « « ¢« « ¢« « « « « « o B=10
B.3.2 Logical Unit Table Entry . . . + . . . «. . . . B-14
B.4 TASK IMAGE . . &+ ¢ « ¢ o o« o o s s o o o« o« « « « B=14
B.4.1 Autoload Vectors for Conventional Tasks . . . B-17
B.4.3 Segment Descriptor ¢« . ¢« B-18
B.4.4 Window Descriptor« . « . . . B=20
B.4.5 Region Descriptor . . « « « ¢ &« ¢« & o« o« « « o B=21
APPENDIX C . HOST AND TARGET SYSTEMS
Cc.1 INTRODUCTION . . « &« « o o o o o o o s o o o o« o« o C-1
C.2 . EXAMPLE C-1: TRANSFERRING A TASK FROM A HOST TO A
TARGET SYSTEM . . &+ ¢ ¢ ¢ ¢ 4 o & o s s s o o o« « C=2
APPENDIX D MEMORY DUMPS
D.1 POSTMORTEM DUMPS . « « &+ ¢ « ¢ « « o o« o« o« « o o« o« D=1
D.2 SNAPSHOT DUMPS . . « ©+ o o o s o s s o o o o o s o« D=2
D.2.1 Format of the SNPBKS$ Macro . « « « « s+ o« o« « « o« D=6
D.2.2 Format of the SNAPS Macro . . « + « « « « « o+ « D-8
D.2.3 Example of a Snapshot Dump « « « « . . . D=9

APPENDIX

APPENDIX

APPENDIX

APPENDIX

GLOSSARY

INDEX

EXAMPLES

E

F

Lo e e e B B
WN
W

G

H

U'IU1U1(J10101({1U'IU10'InhDJUJ

ol 1
HEOUOMMWWW WNDNNMNHFRFEMFEEFEFENDF

oaoounututunonutn
|

10-1

10-2 .

11-1
11-2
12-1

c-1

CONTENTS

RESERVED SYMBOLS

IMPROVING TASK BUILDER PERFORMANCE

EVALUATING AND IMPROVING TASK BUILDER THROUGHPUT
Table Storage « « ¢ « o o o o o o o o o o o
Input File Processing . « .+ + ¢ ¢ « + « o « &
SUMMAYY ¢ ¢ o o o o o o o o o o o o e o o o

MODIFYING COMMAND SWITCH DEFAULT e e e e e e s

THE SLOW TASK BUILDER . « ¢ o« ¢ o o o o s o o o

THE FAST TASK BUILDER

ERROR MESSAGES

Map File for OVR.TSK . « « o« o &« o« o o o o o o o
Map File for RESOVR.TSK+ « « « ¢ ¢ o « &
Cross-Reference Listing of Overlaid Task
Part 1 Common Area Source File in MACRO-11 . . .
Part 2 Builder Map for MACCOM.TSK« . .
Part 3 MACRO-11 Source Listing for MCOM1
Part 4 MACRO-11 Source Listing for MCOM2
Part 5 Task Builder Map for MCOM1.TSK
Part 1 Assembly Listing for TTCOM
Part 2 Task Builder Map for TTCOM
Part 3 Assembly Listing for TEST e e e e e e e
Part 4 Memory Allocation Map for TEST
Part 1 Source Listing for Resident Library
LIB.MAC &« ¢ ¢ ¢« ¢ o o o o o o o o o s s s o o
Part 2 Task Builder Map for LIB.TS o e s e e e
Part 3 Source Listing for MAIN.MAC e e e e e e
Part 4 Task Builder Map for MAIN.TSK e ete o e
Part 1 Source Listing for DYNAMIC.MAC
Part 2 Task Builder Map for DYNAMIC.TSK
Part 1 Source Listing for VSECT.FTN« .
Part 2 Task Builder Map for VSECT.TSK
Part 1 Source Code for PRIVEX . . « « « + + . &
Part 2 Task Builder Map for PRIVEX

Cross-Reference Listing for OVR.TSK
Memory Allocation File (Map) Example
Cross-Reference Listing for OVR.TSK
Memory Allocation File (Map) Example
A Task Using a Virtual Array With the OVR

Attribute
Part 1 Task Builder Map for LIB.TS o o s & e e

xi

10-12
10-37
11-23
11-42

12-42

FIGURES

]
[l el [00] ~ OuUlLhd W -

DD DN
|

N
I

CONTENTS

Part 2 Task Builder Map for MAIN.TSK e e o e« .« . C-4
Sample Postmortem Dump (Truncated) D=3
Sample Program That Calls for Snapshot Dumps . . D-10

Sample Snapshot Dump (in Word Octal and Radix-50) D-11
Sample Snapshot Dump (in Byte Octal and ASCII) . D-13

Relocatable Object Modules . « « ¢ o « o o o o o o 2=2
Modules Linked for Mapped and Unmapped Systems . . 2-3
Allocation of Task Memory . « « « « « « o o o o« o« 2=6
Disk Image of the Task . . . « ¢« « ¢« « « « « « « . 2-8
Memory Image e e . . . « . 2-9
Simple 2-Segment, Dlsk Re51dent Overlay Calllng
Sequence . .« ¢ .+ ¢ . 0 e e e . e . . - 2-10
Simple 2-Segment, Memory- Re31dent Overlay Call
Sequence .« « ¢ ¢« ¢ e e e e e e e e e e e e e e+ 2=11
Virtual and Logical Address Space Coincidence

in an Unmapped System « & + « + + « . . 2-14
Memory Layout for Unmapped System 2-15
Task Relocation in a Mapped System 2-16
Memory Management Unit's Division of Vlrtual

Address SpPace .« « « ¢ ¢ o o e e s e e s e e s . 2=-17
Mapping for 4K-Word and 6K-Word Tasks 2-18
Window Block O « + « « ¢ ¢« « & « « o o« « o« « « o 2=20
Virtual to Lo icaleﬁgdress Space Translation . . 2-22

uilt As gﬁglngle-Segment Task « ¢« o o o o o &
TK1 Built As a Multisegment Task « . . 3=5
TK1 Built with Additional Overlay Defined 3-=7
TK2 Built As a Single-Segment Task . . . «3-8
TK2 Built As a Memory-Resident Overlay 3-9

Relationship Between Virtual Address Space and
Physical Memory -=- Time 1 . . . « « ¢« « « « .+ o 3-11
Relationship Between Virtual Address Space and

" Physical Memory -- Time 2 . .« « + « &« « o« « o« + 3=12
Relationship Between Virtual Address Space and
Physical Memory =- Time 3 . . ¢ ¢ « ¢ ¢ o o o & 3-13
Relationship Between Virtual Address Space and
Physical Memory -- Time 4 3-14
Overlay Tree for TKL . . ¢« ¢ « ¢ « ¢« « o« o« « « « 3=15
Resolution of Global Symbols in a Multisegment
TASK &« + o o o o s o o o o o o o o o o o o o o o 3=17
Resolution of Program Sections for TK1 3-19

Typical Overlay Root Segment Struc&ure . . 3-20
o e 2

Tree and Virtual Address Space Diagram 3-24
Overlay Tree for Modified TK1 « .« « . 3-=32
Virtual Address Space and Physical Memory for

Modified TKL . &« « & ¢ « « o « o s o o o o o o« « 3=33
,Overlay Co-Tree for Modified TK1 3-34
Virtual Address Space and Physical Memory for TKl

As @ CO-Tree . « « « o + o o o« o o o o o o & « « 3=35
Virtual Address Space Allocation Diagram 3-36
Virtual Address Space Allocation for a Main Tree

and Its CO-Tree . « « « o« + o o o o o o o o « o 3-40

Overlay Tree of Virtual Address Space for OVR.TSK 3-43
Allocation of Virtual Address Space for OVR.TSK 3-45

xii

TN

CONTENTS

3-22 Allocation of Virtual Address Space for

RESOVR.TSK e s e s s e s e o s
4-1 Details of Segment C of TKl e e e e e e e e e e e
4-2 Path-Loading Example . « « « ¢« ¢ ¢ ¢ o o o o o o =«
4-3 i

Autoload Overlay Tree Example . . . « « « .« . .
Typical Resident Common . .« « « o« « o o o o o s &
Typical Resident Library . « « «. ¢ ¢ ¢ o ¢ o o « =«
Interaction of the /LI, /CO, and /PI Switches . .
Interaction of the /SHAREABLE:LIBRARY, :
/SHAREABLE:COMMON, and /CODE:PIC Qualifiers . . .
Specifying APRs for a Position-Independent Shared
Region « « v v v ¢ ¢ o o o o o o o o o o s e e e
Mapping for an Absolute Shared Region
Windows for Shared Region and Referencing Task .
Allocation Diagram for MACCOM.TSK . . « « « .« .
Assigning Symbolic References within a Common .

0 Allocation of Virtual Address Space for MAIN.TSK

1 Example Library and Task Structure . . . o s e

2 Example of an Unbalanced Tree with Null Segment

3 Example of an Overlay Cluster Library Structure

4

5

I
S wN +=Oo

Example of a Vectored Call Between Libraries . .
VSECT Option Usage . « « « « o« « o o
Privileged Task Mapping
Mapping for /PR:4 and /PR:5

mmmmmmmmm?mm a aau o
1
NHHHEREHRHREROONO O

A-1 General Object Module Format

A-2 Global Symbol Directory Record Format A-4
A-3 Module Name Entry Format . « « ¢« ¢« « ¢« « « « « « « A-4
A-4 Control Section Name Entry Format A-5
A-5 Internal Symbol Name Entry Format « . . . A=5
A-6 Transfer Address Entry Format . . . « « « « « o« . A-6
A-7 Global Symbol Name Entry Format . . . « « «. « . . A-6
A-8 Program Section Name Entry Format A-8
A-9

Program Version Identification Entry Format . . A-10

xiii

TABLES

“A-10

A-11

A-12
A-13.

A-14
A-15
A-16

A-17
A-18
A-19

A-20
A-21
A-22
A-23
A-24
A-25
A-26

A-27

A-28

A-29
A-30
A-31
A-32
A-33

A-34

B-17
B-18
D-1

'Task-Resident Overlay Data Base for a -

CONTENTS

Mapped ArraymDeclaration Entry Formatv . « <« « .« A-10

Completion Routine Entry Format . . +« . ¢ A-1l1
End of Global Symbol Directory Record Format . . A-=11
Text Informatlon Record Format « . . « . A-12
Relocation Directory Record Format A-14
‘Internal Relocation Entry Format . . « . « . . . A-15
Global Relocation Entry Format . . « . « « . . . A-15
‘Internal Displaced Relocation Entry Format <« « A-16
Global Displaced Relocation Entry Format A-16
‘Global Additive Relocation Entry Format . . . A-17
Global Additive Displaced Relocation Entry Format A-17 .
- Location Counter Definition Entry Format A-18
Location Counter Modification Entry Format . . . A-18
Program Limits Entry Format A-19
Program Section Relocation Entry Format A-19

Program Section Displaced Relocation Entry Format A-20
Program Section Additive Relocation. Entry Format A-21
Program Section Additive Displaced Relocation

Entry Format . « « %« « o« « o o 4 v 0 v 4 e eo4 . A=21
Complex Relocatlon Entry Format . « & + « « o . ~A=23
Resident Library Relocation Entry Format e «.e o« A-23
‘General Format of All ISD Records . « A=25
General Format of a TKB, Generated Record « e« « o« A=25

Format of TKB Generated Start-of-Segment Item. (l) A-26
Format of TKB Generated Task Identlflcatlon Item

T(2) i Y e e e e e e e e e e e e e e e e e e ' A-26
Format of an Autoloadable lerary Entry Point

Ttem (3) + o ¢ o e o o o ¥ % & s.s e o 4 s e s o A=27
Format of a Module Name Item Type (1) Bn-28
Format of a Global Symbol Item Type (2). A-28
Format of a PSECT Item Type (3) . . .« <« « « . . A=29
-Format of a Llne—Number or PC Correlation Item

Type (4) « « o o v o it e e d . . A-30
Format of an Internal Symbol Name Item Type (5) A-31
Format of a Literal Record Type . « « « « .« « .. A=31
End-of-Module Record Format . . « '« .o« © o+ ... A-31

Image on Dlsk of Non-Overlaid Conventional Task . B=-2
Image on’ 'Disk of Conventional Non-Overlaid Task

Linked to Overlaid Library . . « .« « « « +. ¢« + « o B=2
Image on Disk of Conventional Overlaid Task . . . B-3

Label Blocks 1 and 2 == Table of LUN A551gnments . B-9

Label Block 3, -- Segment Load ListB-9
Task Header, Fixed Part . . . « + o« « « o'v.v . B-11
‘Task Header, Variable Part, . o . « +. ¢ « « « « o B=12
Vector Exteénsion Area Format '« . . . « o« + o« « . B-13
Logical Unit Table Entry .*. + . . B-14

Conventional Overlaid ‘Task o e . B-15

Segment Descriptor .

‘Window' Descriptor . v o v o o s o o, e o« v & B=21
Reglon Descriptor e e e o B-21
-Snapshot Dump Control Block Format e e o o « +s o D=6
Program Section Attributes 2-4
Program Sections for Modules. IN1, 'IN2, and IN3 ... 2-6
Individual Program Section Allocations 2-6

2-7

Resolution of Global Symbols for:IN1, IN2, and IN3

xiv

/ \v

CONTENTS

TABLES
2-1 Program Section Attributes ¢« . +o . 2-4
2-2 Program Sections for Modules IN1l, IN2, and IN3 . . 2-6
2-3 Individual Program Section Allocations 2-6
2-4 Resolution of Global Symbols for IN1l, IN2, and IN3 2-7
4-1 Comparison of Overlay Run-Time Module Sizes . . 4-16
5-1 Comparison of Overlay Run-Time Module Sizes . . 5-54

7-1 Mapping Comparison Summary . « « « « « « o o o o » 712
10-1 TKB Switches . « « ¢« & & ¢ o ¢ o « « o o« o« « « « 10-2
10-2 Files for SEL.TSK . . « « « « « « « « « « « +» » 10-48
11-1 LINK QUALIFIERS « +« « 4 « o o o o o o o « « o« « 11-4
11-2 Input Files for SEL.TSK . . . « « .+ + + « « .+ . 1l1-61
12-1 Task Builder Options . . « +« « « ¢ « « & o « o+ o 12-2
A-1 Symbol Declaration Flag Byte -- Bit Assignments . A-7
A-2 Program Section Name Flag Byte -- Bit Assignments A-8
A-3 Relocation Dlrectory Command Byte -- Bit

Assignments« .+ +« « ¢ « o 4 + o + + « o . A-13
B-1 Task and Resident Library Data . . . e« « « « . « B-4
B-2 Resident Library/Common Name Block Data . + « « . B-8
F-1 Task File Switch Defaults« « . . . F-8
F-2 Map File Switch Defaults « . + . . . F-10
F-3 Symbol Table File Switch Defaults F-=11
F-4 Input File Switch Defaults « . . . F-11

XV

N

-

PREFACE

“MANUAL OBJECTIVES

This manual describes the concepts and capabilities of the
RSX-11M/M-PLUS Task Builder.

Working examples are used throughout this manual to introduce and
describe features of the Task Builder. Because RSX-11M systems
support a large number of programming languages, it is not practical
to 1illustrate the Task Builder features in all of the languages
supported. Instead, most of the examples in the main text of this
manual are written in MACRO-11l. :

INTENDED AUDIENCE

Before reading this manual, you should be familiar with the
fundamental concepts of your operating system (RSX~11M or
RSX-11M-PLUS) and with the operating procedures described in the
RSX-11M/M-PLUS MCR Operations Manual and the RSX-11M/M-PLUS Command
Language Manual. In addition, you should be familiar with the
programming concepts described in the RSX-11M/M-PLUS Guide to Program
Development.

STRUCTURE OF THIS DOCUMENT

This manual has 12 chapters. Their contents are summarized as
follows:

® Chapter 1 describes the Task Builder command sequences that
you use to interact with the Task Builder.

® Chapter 2 describes the Dbasic Task Builder functions,
including the Task Builder's allocation of virtual address
space and the resolution of global symbols. It also contains
an introduction to supervisor-mode. 1libraries, privileged
tasks, and multiuser tasks.

® Chapter 3 describes the Task Builder's overlay capability and
the language you use to define an overlay structure.

® Chapter 4 describes the two methods available to you to 1load
overlay segments.

® Chapter 5 describes some. typical Task Builder features,
~including tasks that access shared regions and device commons,
tasks that create dynamic regions, and virtual program
sections. .

® Chapter 6 defines privileged tasks, describes their mapping,

and shows how to build a privileged task to examine unit
control blocks.

xvii

PREFACE

® Chapter 7 describes user-mode I- and D-space, the mapping of
these spaces, and the advantages of using I- and D-space in
user mode.

® Chapter 8 describes supervisor-mode libraries. The chapter
defines and shows how to build and use supervisor-mode
libraries.

® Chapter 9 describes and shows how to build multiuser tasks.

® Chapter 10 lists and describes the Task Builder switches. The
switches are listed in alphabetical order.

® Chapter 11 lists and describes the qualifiers for the DCL LINK
command. The qualifiers are listed in alphabetical order.

® Chapter 12 lists and describes the Task Builder options. The
options are listed in alphabetical order.

This manual also contains eight ‘appendices. Their contents are
summarized as follows:

e Appendix A contains a detailed description of the Task Builder
input data structures.

® Appendix B contains a detailed description of the task image
file structure.

® Appendix C describes the considerations for building a task on
one system to run on a system with a different hardware
"configuration.

® Appendix D describes two memory dumps: postmortem and
snapshot.

® Appendix E contains a list of the symbols and program section
names reserved for Task Builder use.

® Appendix F contains information on improving Task Builder
performance.

® Appendix G describes the fast Task Builder.
® Appendix H contains the Task Builder error messages.

A Task Builder glossary follows the appendices.

ASSOCIATED DOCUMENTS

Other manuals closely allied with this document are described in the
Information Directory and Master Index for your operating system.
This directory defines the intended audience of each manual in the
documentation set and provides a Dbrief synopsis of each manual's
contents.

CONVENTIONS USED IN THIS DOCUMENT

In this manual, horizontal ellipses (...) indicate that additional,
optional arguments in a statement format have been omitted. For
example:

input-spec, ...

xviii

N

PREFACE

means that one or more input-spec items, separated by commas, can be
specified.

Vertical ellipses mean that lines in an example, command lines, or
lines 1in a Task Builder map file that are not pertinent to an example
have been omitted. For example:

TKB>input-line

means that one or more of the indicated TKB items have been omitted.
In the examples of Task Builder command sequences, the portion of the
command sequence that you type is printed in red. The Task Builder's
responses and prompts are printed in black.

The symbol @ET indicates the location in a command 1line or string
where you must press the RETURN key.

Brackets [] indicate an optional argument.
Parentheses () indicate a required argument.

The words "Task Builder" in this manual have been abbreviated to the
acronym TKB.

Unless otherwise stated, references to tasks, their mappihg, and their
structure imply a nonprivileged task in an RSX-11M mapped system.

Shading in the manual has the following meanings:

SUMMARY OF TECHNICAL CHANGES

This manual contains the changes for RSX-11lM Version 4.1 and
RSX-11M-PLUS Version 2.1. This manual has been extensively revised.
A study of the Table of Contents and this Summary of Technical Changes
is recommended before you look for information in the manual.

GENERAL CHANGES

Editorial changes were made throughout the manual to correct
typographical errors.

Small technical changes were made throughout the manual as a result of
ongoing development, SPR responses, and readers' comments.

Each command, switch, and option is shown in both MCR format and DCL
format if there is a DCL equivalent.

A new chapter describing the qualifiers used in the Task Builder DCL
LINK command has been added.

The major technical changes to the manual are listed below.

TECHNICAL CHANGES

Information about building an F4PRES, FORRES, or FMSRES library with
or without FCSRES = has been apter 5.1
i s R ‘ En s s ;"é‘f:g« s Y "

i W o
%E% gggg . Eé&g’%éﬁ

xxi

CHAPTER 1

INTRODUCTION AND COMMAND SPECIFICATIONS

The basid‘steps in developing a program are as follows:

1. You write one or more routines in an RSX-11M/M-PLUS supported
source language and enter each routine as an ASCII text file,
through an editor.

2. You submit each text file to the appropriate language
translator (an assembler or compller), which converts it to a
relocatable object module.

3. You specify the object modules as input to the Task Builder
‘ (TKB), which combines the object modules into a single task
image output file.

4. You install and run the task.

If you find errors in the task when you run it, you make corrections
to the text file using the editor, and then repeat steps 2 through 4.

The Task Builder's main function 1is to «convert relocatable object
modules (.OBJ files) into a single task image (.TSK file) that you can
install and run on a RSX-11M or RSX-11M-PLUS system. The task is the
fundamental executable unit in both systems.

If your program consists of a single object module, using the Task
Builder (TKB) is appropriately simple. You specify as input only the
name of the file containing the object module produced from the
translation of the program, and specify as output the task image file.

Typically, however, programs consist of more than a single object
module. In this case, you name each of the object module files as
input. TKB links the object modules, resolves references between
them, resolves references to the system library, and produces a single
task image ready to be installed and executed.

TKB makes a set of assumptions (defaults) about the task image based
on typical usage and storage requirements. You can override these
assumptions by including switches and options in the task-building
terminal sequence. Thus, you can build a task that is tailored to its
own input/output and storage requirements.

-TKB also produces (upon request) a memory allocation (map) £file that
contains information describing the allocation of address space, the
modules that make up the task image, and the value of all global
symbols. In addition, you can request that a list of global symbols,
accompanied by the name of each referenc1ng module, be appended to the
file (global cross reference).

Note that the examples in this manual use both MCR and DCL as the
command line interpreters (CLIs).

INTRODUCTION AND COMMAND SPECIFICATIONS

The following example shows a simple sequence for building a task:

MCR i DCL
>MAC PROG, =PROG >MACRO PROG
>TKB PROG, ,=PROG >LINK PROG
>INS PROG >INS PROG
>RUN PROG >RUN PROG

The first command (MAC or MACRO) causes the MACRO-11 assembler to
translate the source code of the file PROG.MAC into a relocatable
‘object module in the file PROG.OBJ. The second command (TKB or LINK)
causes TKB to process the file PROG.OBJ and to produce the task image
file PROG.TSK. The third command (INS) causes the INSTALL processor
to add the task to the Executive's directory of executable tasks
(System Task Directory). The fourth command (RUN) causes the task to
execute.

The example just given includes the command
TKB LINK
>TKB PROG, ,=PROG or >LINK PROG

This command illustrates the simplest use of TKB. A single file is
the output and a single file is the input.

The following sections describe basic Task Builder command forms and
sequences.

1.1 TASK COMMAND LINE

The Task Builder command lines for both MCR and DCL are discussed in
the following sections.

1.1.1 The MCR Command Line for the Task Builder

The task command 1line used in MCR contains the output file
specifications, followed by the input file specifications; they are
separated by an equal sign (=). You can specify up to three output
files and any number of input files.

The task command line has the following MCR form:
task—imége—file,map—file,symbol—definition—file=input—file,...

You must give the output files in a specific order: the first file
you name is the image (.TSK) file; the second is the memory allocation
(.MAP) file; and the third is the symbol definition (.STB) file. The
map file 1lists information about the size and location of components
within the task. The symbol definition file contains the global
symbol definitions in the task and their wvirtual or relocatable
addresses in a format suitable for reprocessing by TKB. You specify
this file when you are building a resident library or common.
(Resident libraries and commons are described in Chapter 3.) TKB
combines the input files to create a single task image that can be
installed and executed.

INTRODUCTION AND COMMAND SPECIFICATIONS

1.1.1.1 Printing the Map File - If you create a map file by

specifying one in the TKB command line, there are a number of ways
— that you can print the file. The following examples show you ways
(that you may print the map file.

1. With the following two command lines, you can create a map
file and then print it later. The TKB command line tells TKB
to create a task file, a map file without printing it (by use
of the switch /-SP), and a symbol definition file. The PRINT
command line tells the system to print the map file.

>TKB INV.TSK,INV.MAP/-SP, INV.STB=INV.OBJ
>PRINT INV.MAP

2. With the next command 1line, you can print the map file
directly as it 1is created. In this case, TKB tells the
system to print the file by use of the switch /SP. However,
the system task QMGPRT.TSK must be installed as PRT... for
‘this method to work.

>TKB INV.TSK,INV.MAP/SP, INV.STB=INV.OBJ

N
w

With the next command line, you can pri
line printer that you specify. | T

, m ager fc
e following command line.

>TKB INV.TSK,LPn:,SY:INV.STB=INV.OBJ

1.1.1.2 Omitting Specific Output Files - You can omit any output file
by replacing the file specification with the delimiting comma that
would normally follow it. The following commands illustrate the ways
in which TKB interprets the output file names.

Command Output Files
>TKB IMG1, IMG1l, IMG1l=IN1 The task image file is IMG1l.TSK, the
= memory allocation (map) file is
<\ IMG1.MAP, and the symbol definition file
is IMGl.STB.
>TKB IMG1=INl The task image file is IMG1l.TSK.
>TKB , IMG1l=IN1 The map file is IMG1.MAP.
">TKB =, , IMG1=IN1l The symbol definition file is IMG1l.STB.
>TKB IMG1,,IMG1=INl The task image file is IMGl.TSK and the
symbol definition file is IMG1.STB.
>TKB =IN1 This is a diagnostic run with no output
files.

1.1.2 The DCL LINK Command Line for the Task Builder
<; The LINK command for the TKB has the following DCL form:

LINK/[qual]/[NO]TASK[: fspec]/MAP[: fspec]/SYMBOLTABLE: [fspec] [, fspec[,s]]

INTRODUCTION AND COMMAND SPECIFICATIONS

This is the standard form of the LINK command for the Task Builder
used in this manual. Any DCL command 1line, including the LINK
command, has variations in the way it may be used. For possible
variations, see the RSX-11M/M-PLUS Command Language Manual, both the
Introduction and the section on the LINK command.)

The LINK command has many qualifiers and defaults. The qualifiers,
which will be discussed as they appear in the manual, are the TKB
switches and options listed in Chapters 10 and 11.

TKB can produce three different kinds of output files either at
separate times or at the same time. These files are the task file
(.TSK), the map file (.MAP), and the symbol definition file (.STB).
The input files for the LINK command are discussed next. The output
files -- task, map, and symbol definition -- are discussed after the
input files.

1.1.2.1 The LINK Command Input File - You may specify only the input
file when you build your task with the LINK command. The LINK command
then creates an output file with the same name as the input file, by
default. This way you need only specify the input file name, which
must be an object (.0BJ) file. The default file type for the input
file is .0OBJ. You separate the input file name from the rest of the
qualifiers, if any, by a space. Therefore, the following simple LINK
command lines

>LINK BUN and >LINK BUN.OBJ

each produce an output task file with the default name BUN and the
file +type .TSK (BUN.TSK). The LINK command expects the input file to
have a .0BJ file type by default. Therefore, you need not specify
.OBJ in the input filespec.

You may specify more than one input file in the LINK command as
>LINK ROLL1,ROLL2, ROLL3

This command produces one output task file, which is a combination of
the three input files. The output file has the default name ROLL1l and
the file type .TSK (ROLL1.TSK). LINK uses the first input file name
that it encounters as the default output file name.

However, other files, such as library files, will have a different
file type that must Dbe specified. To specify a library file as an
input file you can use the following command line:

>LINK COOKIEl,COOKIEZ,COOKIE3,MIX4/LIBRARY

Here, MIX4 is a library file, and three .0BJ input files are combined
with the 1library file to produce one task file. A library file has
the .OLB file type, but this file type need not be specified in the
LINK command. However, the library file must be indicated with the
/LIBRARY qualifier. The library file should be specified last in the
input file string. If you use a library file, you must use it
together with the object file or files that you have coded and want to
build with the library. The separate input object files are named
here COOKIEl, COOKIE2, and COOKIE3. This example produces the output
task file with the default name of COOKIEl and the .TSK file type
(COOKIEL.TSK).

/‘”‘\

vl'/,_\\

INTRODUCTION AND COMMAND SPECIFICATIONS

Another way to specify a library file, but only use specific routines
contained in the library file, is to use the /INCLUDE qualifier. A
command line using this qualifier would appear as

>LINK COOKIEl,COOKIE2,COOKIE3,MIX4/INCLUDE:BATCH1,BATCH2

and would include routines named BATCH1 and BATCH2 from the library
named MIX4. When you use /INCLUDE with an input file name you need
not use the /LIBRARY qualifier.

More information about the /LIBRARY and /INCLUDE qualifiers 1is
included in the description of qualifiers in Chapter 11.

1.1.2.2 The LINK Command Task File - The output file of the LINK
command 1is the task file. This file has the .TSK file type. The
default name of the task file is the same name as that of the input
file. Therefore,

>LINK BUN

produces an output file called BUN.TSK. By the same process, LINK
produces one output file with a .TSK file type from multiple input
files and uses the first input file encountered in the command line as"
the name of the output file. Therefore,

>LINK ROLL,BUN,CROISSANT
produces an output file called ROLL.TSK.

To name the output file any name you want, you must use the /TASK
qualifier on the LINK command. Thus,

>LINK/TASK:BREAD ROLL,BUN,CROISSANT

produces an output file named BREAD with the file type .TSK from the
three input files ROLL, BUN, and CROISSANT.

You may or may not want a .TSK file as output. An example of not
wanting a task file would occur when you wanted to see only a .MAP
file for a task, or you wanted to see if TKB would actually build
without errors the files that you had specified. (.MAP file output is
discussed in the next section.) You can notify LINK that you do not
want a .TSK file by using the NOTASK qualifier specified as

>LINK/NOTASK ROLL,BUN,CROISSANT

Here, TKB goes through the building process but does not produce any
output.

1.1.2.3 The LINK Command Map File - In addition to the task file, you
can use the LINK command to produce a map file for the task. The map
file has a .MAP file type. The map file contains the addresses and
symbols used by your task, and it describes their relationship. The
LINK command will produce this file only if you specify that it do so.
Thus, the command

>LINK/MAP CHIP,OAT,FLOUR

produces a task file with the default name of CHIP and a map file with
the default name of CHIP, which is that of the first input file.

INTRODUCTION AND COMMAND SPECIFICATIONS

However, you may name specifically the task file and let the map file
default to the name of the first input file, as before. You can do
this with the following two variations of the LINK command:

>LINK/TASK:COOKIE/MAP CHIP,OAT, FLOUR
>LINK/MAP/TASK:COOKIE CHIP,OAT,FLOUR

To name specifically the map file, you must use a file name after the
/MAP qualifier. You can do this - by either of the following two
variations of the LINK command:

>LINK/TASK:COOKIE/MAP:COOKIE CHIP,OAT, FLOUR

>LINK/MAP:COOKIE/TASK:COOKIE CHIP,OAT, FLOUR

These latter two variations produce a task file called COOKIE.TSK and
a map file called COOKIE.MAP.

There are other qualifiers that produce a .MAP file. These qualifiers
are /[NO]SYSTEM LIBRARY DISPLAY, /[NOJ]CROSS_REFERENCE, /[NOJWIDE, and
/LONG. Chapter 11 explains the operation of these qualifiers.

1.1.2.4 The LINK Command Symbol Definition File - Another file can be
produced by the LINK command. This file is called the symbol
definition file and it has the file type .STB. This file contains the
symbols used or referenced by the input files. TKB uses this file
when you use libraries, commons, and overlays as part of your task.
Libraries and commons are discussed in Chapter 5, and overlays are
discussed in Chapters 3 and 4.

To create a symbol definition file for your task, you must
specifically notify the LINK command that you want to do so. Thus,
the command

>LINK/TASK:COOKT/MAP:COOKM/SYMBOL_TABLE:COOKS CHIP,OAT, FLOUR

produces three files: the task file COOKT.TSK, the map file
COOKM.MAP, and the symbol definition file COOKS.STB.

By default, the LINK command uses the name of the first input file to
create the name of the symbol definition file. Thus

>LINK/TASK:COOKT/MAP:COOKM/SYMBOL_TABLE CHIP,OAT, FLOUR

produces a symbol definition file called CHIP.STB.

1.1.2.5 Printing the .MAP File When Using the LINK Command -
Automatic printing of your .MAP file may occur if your system has the
system task QMGPRT.TSK installed with the PRT... name. Otherwise,
the .MAP file 1is «created in your directory or the directory you
specified in the LINK command line and 1is not immediately printed.
From there, you may print it later by methods specific to your own
system type or configuration.

If you use /MAP as a command qualifier, in the following way,

>LINK/MAP CHIP,OAT,FLOUR

1-6

\\

INTRODUCTION AND COMMAND SPECIFICATIONS

without a filespec argument, TKB puts the map in your directory with
the file name of the first input file encountered. In this example,
the name of the map file is CHIP.MAP. This file 1is printed if the
...PRT task is installed.

If you use /MAP with a filespec argument, either on an input file or
as the LINK command qualifier, as in the commands

>LINK/MAP :COOKIE/TASK:COOKIE CHIP,OAT,FLOUR
>LINK/TASK:COOKIE CHIP/MAP:COOKIE,OAT, FLOUR

TKB puts the map in your directory with the name you have specified in
the filespec argument. In these two examples, the map files are named
COOKIE.MAP.

If you use /MAP as an input filespec qualifier, without a filespec
argument on /MAP, as in the command

>LINK/TASK:COOKIE CHIP/MAP,OAT,FLOUR

TKB places the map file in your directory with the name of the file to
which /MAP 'is attached. In this example, the map file is named
CHIP.MAP.

TKB always tries to spool the map file to the printer. TKB will
succeed in doing this if the system task QMGPRT.TSK is installed with
the PRT... name. To prevent spooling, use the /NOPRINTER qualifier
with the /MAP qualifier.

1.2 MULTILINE INPUT

Although you can specify a maximum of three output files, you can
specify any number of input files. When you specify several input
files, a more flexible format 1is sometimes necessary -- one that
consists of several 1lines. This multiline format is also necessary
when you want to include options in your command sequence (see Section
1.3).

1.2.1 Multiline Input Using the TKB Command

If you type TKB, the Monitor Console Routine (MCR) activates the Task
Builder. TKB then prompts for input until it receives a line
consisting only of the terminating slash characters (//). For
example: '

>TKB
TKB>IMG1, IMG1=INl
TKB>IN2, IN3
TKB> //
>
This sequence produces the same result as the single line command

>TKB IMG1l,IMG1=IN1l,IN2,IN3

Both command sequences produce the task image file IMGl.TSK and the
map file IMG1l.MAP from the input files IN1.OBJ, IN2.0BJ, and IN3.0BJ.

INTRODUCTION AND COMMAND SPECIFICATIONS

You must specify the output file specifications and the equal sign (=)
on the first command line. You can begin or continue input file
specifications on subsequent lines.

When you type the terminating slash characters (//), TKB stops
accepting input, builds the task, and returns control to MCR.

1.2.2° Multiline Input Using the LINK Command

The LINK command can get very long when you use many qualifiers. One
way to shorten the command line is to use the hyphen (which is the
continuation character) at a 1logical point in the command, thus
terminating that individual line at that point. One way to do this is
the following:

>LINK-

->/TASK : COOKIE/MAP : CRUNCH-
->/SYMBOL_TABLE:CRUMB CHIP,RAISIN,OAT, FLOUR
>

Or, you can do it this way:

>LINK-

->/TASK : COOKIE/MAP : CRUNCH/SYMBOL_TABLE:CRUMB -
->CHIP,RAISIN, NUT, SUGAR, OAT, FLOUR, SALT, SODA

> .

This is also a legitimate command line. Notice the space after CRUMB
and Dbefore the hyphen. This space 1is the separation between the
qualifiers and the input file specifications, and it must be present
whether or not you use the hyphen.

1.2.2.1 Abbreviated Qualifiers in LINK - To shorten the length of a
command line, you can use an abbreviated qualifier such as SYM for
SYMBOL _TABLE. The previous command could look like the following one
if you use the hyphen and abbreviated qualifiers:

>LINK-

~>TAS : COOKIE/MA :CRUNCH/SYM:CRUMB CHIP,RAISIN,OAT, FLOUR

>

All the qualifiers in the LINK command can be abbreviated somewhat.
The following is a sample list of abbreviations for frequently used

qualifiers:

LONG FORM SHORT FORM
/ANCILLARY_PROCESSOR /ANC
/NOCHECKPOINT:arg /NOCH:arg
/CHECKPOINT :arg /CHEC:arg
/CODE:arg /COD:arg
/NOHEADER /NOHE
/HEADER /HEAD or/HEA
/MAP: filespec /MA:filespec
/OPTIONS:option /OPT:cption
/OVERLAY DESCRIPTION /OVER
/SHAREABLE:arg /SHARE:arg
/SYMBOL TABLE:filespec /SYM:filespec
/NOTASK: filespec /NOT:filespec
/TASK: filespec /TAS:filespec
/LIBRARY : /LIB
/INCLUDE:modulename, ..., /INC:modulename, ...,

1-8

INTRODUCTION AND COMMAND SPECIFICATIONS

However, be careful that you use abbreviations that DCL can . recognize
as unique. For example, the two qualifiers /SEQUENTIAL and /SEGREGATE
can be abbreviated /SEQ and /SEG, but not /SE and /SE.

1.3 TASK BUILDER OPTIONS

The Task Builder uses many options to control the way in which a task
is built. Section 1.3.1 discusses entering these options in TKB if
your system uses MCR as the command line interpreter. Section 1.3.2
discusses entering these options in LINK if your system uses DCL as
the command 1line interpreter. Section 1.3.3 discusses specific
methods that you may use or circumstances that you may encounter when
entering these options.

1.3.1 Entering Task Builder Options in TKB

You use options to specify the characteristics of the task you are
building. To include options in a task, you must use the multiline
format. If you type a single slash (/) following the input file
specification, TKB requests option information by displaying ENTER
OPTIONS: and prompting for input. The TKB example for entering
options follows: .

>TKB

TKB>IMG1l, IMGl1l=IN1l
TKB>IN2,IN3

TKB/

Enter Options:
TKB>PRI=100
TKB>COMMON=JRNAL : RO
TKB>//

>

In this sequence there are two options: PRI=100 and COMMON=JRNAL:RO.
The two slashes end option input, initiate the task build, and return
control to MCR upon completion.

NOTE

When you are building an overlaid task, there are
exceptions to the use of the single slash (/).
Overlaid tasks are described in Chapter 4.

1.3.2 Entering Task Builder Options in LINK

If you want to use Task Builder options, you must use the LINK command
qualifier /OPTIONS in the LINK command line. After DCL reads the
command line, it prompts you for the option or options. Enter each
option after the prompt, and then press the RETURN key after each
option. To end option input, you press only the RETURN key after the
option prompt. An example follows:

>LINK/TASK:COOKIE/MAP:COOKIEM/OPTIONS CHIP,OQAT, SUGAR, FLOUR
Option? PRI=100

Option? COMMON=JRNAL :RO

Option? @)

>

INTRODUCTION AND COMMAND SPECIFICATIONS

In this command sequence there are two options, PRI and COMMON. The
RETURN key is pressed after the third option prompt. You may use the
hyphen in the LINK command line to provide 1line continuation. The
hyphen does not interfere with option input.

Alternatively, you can use a filespec on the /OPTION qualifier to
designate a file that contains the options that you want to use. An
example follows:

>LINK/TASK:COOKIE/MAP : COOKIEM/OPTIONS: filespec CHIP,OAT,SUGAR, FLOUR

>

The file named in filespec can have any name you want but must have
the file type of .CMD. It must contain the options in a list, each
option on a single 1line. This < file cannot contain any slash
characters (/). You can create this file with the EDT editor. The
file would look like the following:

PRI=100
COMMON=JRNAL : RO

1.3.3 Entering the Option Line

The RSX-11M/M-PLUS Task Builder provides numerous options, which are
described in Chapter 12. The general form of an option is a keyword
- followed by an equal sign (=) and an argument list. The arguments in
‘the 1list are separated from one another by a colon (:). 'In the

examples in Sections 1.3.1 and 1.3.2, the first option consists of the.

keyword PRI and a single argument indicating that the task is to be
assigned the priority 100. The second option consists of the keyword
" COMMON and an argument list, JRNAL:RO, indicating that the task
accesses a resident common region named JRNAL and that the access is

read-only. You can specify more than one option on a line by using an

exclamation point (!) to separate the options.

For example, the TKB command
TKB>PRI=100!COMMON=JRNAL: RO

is equivalent to the two lines

TKB>PRI=100
TKB>COMMON=JRNAL : RO

In a similar way, the LINK command
Option? PRI=100!COMMON=JRNAL:RO
is equivalent to the two lines

Option? PRI=100")
Option? COMMON=JRNAL:RO

Some options accept more than one argument list. You use a comma (,)
to separate the argument lists. For example, in the TKB command

TKB>COMMON=JRNAL:RO, RFIL:RW

INTRODUCTION AND COMMAND SPECIFICATIONS

or in the LINK command
Option? COMMON=JRNAL:RO,RFIL:RW

the first argument 1list indicates that the task has requested
read-only access to the resident common JRNAL. The second argument
list indicates that the task has requested read/write access to the
resident common RFIL.

The following three sequences for TKB are equivalent:
TKB >COMMON=JRNAL: RO, RFIL:RW
TKB>COMMON=JRNAL : RO ! COMMON=RFIL :RW

TKB>COMMON=JRNAL : RO
TKB>COMMON=RFIL:RW

Similarly, the following three sequences for LINK are equivalent:
Option? COMMON=JRNAL:RO,RFIL:RW
Option? COMMON=JRNAL:RO!COMMON=RFIL:RW

Option? COMMON=JRNAL:RO
Option? COMMON=RFIL:RW

1.4 MULTIPLE TASK SPECIFICATIONS

For MCR, if you intend to build more than one task, you can use the
single slash (/) following option input. This directs TKB to stop
accepting input, build the task, and request information for the next
task build. For example:

>TKB

TKB>IMG1=IN1l
TKB>IN2, IN3

TKB>/

Enter Options:
TKB>PRI=100
TKB>COMMON=JRNAL : RO
TKB>/

TKB>IMG2=SUB1
TKB)//

TKB accepts the output and input file specifications and the option
input; it then stops accepting input upon encountering the single
slash (/) during option input. TKB builds IMG1.TSK and then returns
to accept more input for building IMG2.TSK.

For DCL, there is no way to enter multiple task specifications with a
single LINK command.

1.5 INDIRECT COMMAND FILES

You can enter commands to TKB directly from the keyboard, or
indirectly through the indirect command file facility. To use the
indirect command file facility, you prepare a file that contains the
TKB commands you want to be executed. Later, after you invoke TKB,
you type an.at sign (@) followed by the name of the indirect command
file.

INTRODUCTION AND COMMAND SPECIFICATIONS

For example, suppose you create a file called AFIL.CMD containing the
following:

IMG1, IMG1=IN1
IN2, IN3

PRI=100
COMMON=JRNAL : RO
//

Later, you can type:

TKB LINK

>TKB >LINK
TKB>QAFIL File(s)?@AFIL
TKB> >

or simply:
TKB LINK

>TKB @AFIL >LINK @AFIL

If you use DCL, it passes the indirect command file to TKB. When TKB
encounters the at sign (@), it directs its search for commands to the
file named AFIL.CMD.

The preceding example is equivalent to the TKB sequence

>TKB

TKB>IMG1l, IMG1=IN1l
TKB>IN2, IN3

TKB>/

Enter Options:
TKB>PRI=100
TKB>COMMON=JRNAL :RO
TKB>//

>

or the LINK sequence

>LINK/TASK:IMG1l/MAP:IMG1/OPTION IN1, -
->IN2,IN3

Option? PRI=100

Option? COMMON=JRNAL :RO

Option?

>

When TKB encounters two terminating slash characters (//) in the
indirect command file, it terminates indirect command file processing,
builds the task, and exits to MCR.

When TKB encounters a single slash (/) in an indirect command file and
the slash is the last character in the file, TKB directs its search
for commands to the terminal. For example, suppose the file AFIL.CMD
in the last example is changed to read:

IMG1, IMG1=IN1
IN2,IN3

TN

INTRODUCTION AND COMMAND SPECIFICATIONS

Later, you can type:

> TKB
TKB>@AFIL

In this case, TKB goes to the terminal and prompts:

Enter Options:
TKB>

From this point, you input options to TKB directly from the keyboard.
If you then conclude option input from the keyboard with double
slashes (//), TKB suspends command processing, as described above, and
exits to MCR following the task build. If you conclude option input
with a single slash (/), TKB prompts for new command input following

’ the task build of IMG1l.TSK, as follows:

TKB>

Using the single slash (/) following option input in indirect command
files 1is a convenient way to return control to your terminal between
successive task builds. For example, suppose you create two indirect
command files. The first, AFIL.CMD, contains:

IMG1, IMG1=IN1
IN2, IN3

PRI=100
COMMON=JRNAL

The second, AFIL1.CMD, contains:

IMG2, IMG2=IN4
IN5, ING

PRI=100
//

Then, the terminal sequence to build these two tasks is:

>TKB
TKB>Q@AFIL
TKB>@AFIL1
>

NOTE

For interaction with a TKB indirect command file as
described above, you must use the multiline format
when you specify the indirect command file.

TKB permits two levels of indirection in file references. That is,
the indirect command file referenced 1in a terminal sequence can
contain a reference to another indirect command file. For example, if
the file BFIL.CMD contains all the standard options that are used by a
particular group of users at an installation, you can modify AFIL to
include an indirect command file reference to BFIL.CMD as a separate
line in the option sequence.

INTRODUCTION AND COMMAND SPECIFICATIONS

The contents of AFIL.CMD would then be:

IMG1, IMG1=IN1
IN2, IN3

PRI=100
COMMON=JRNAL : RO
@BFIL

//

To build these files, you type:

>TKB
TKB> QAFIL

Suppose the contents of BFIL.CMD are:

STACK=100
UNITS=5!ASG=DT1l:5

Then the terminal equivalent of building these files is:

>TKB

TKB>IMG1l, IMG1=IN1l
TKB>IN2, IN3

TKB> /

Enter Options:
TKB>PRI=100
TKB>COMMON=JRNAL : RO
TKB>STACK=100
TKB>UNITS=5!ASG=DT1:5
TKB>//

>

The indirect command file reference must appear on a separate line.
For example, if you modify AFIL.CMD by adding the @BFIL reference on
the same line as the COMMON=JRNAL:RO option, the substitution would
not take place and TKB would report an error.

1.6 COMMENTS IN INDIRECT COMMAND FILE LINES

For TKB or LINK, you can include comments at any point in the indirect

command file sequence, except in lines that contain file
specifications. You begin a comment with a semicolon (;) and
terminate it with a carriage return. All text Dbetween these

delimiters is a comment.

For example, in the indirect command file AFIL.CMD, described in
Section 1.5, you can add comments to provide more information about
the purpose and the status of the task.

; TASK 33A

; DATA FROM GROUP E-46 WEEKLY
iMGl,IMG1=

i PROCESSING ROUTINES

iNl

.

SN

INTRODUCTION AND COMMAND SPECIFICATIONS

;s STATISTICAL TABLES

N2

; ADDITIONAL CONTROLS

N3

/

PRI=100

éOMMON=JRNAL:RO ;s RATE TABLES
; TASK STILL IN DEVELOPMENT
7/

1.7 FILE SPECIFICATIONS

TKB adheres to the standard RSX-11M/M-PLUS conventions for file
specifications. For any file, you can specify the device, the User
File Directory (UFD), the file name, the file type, the file version
number, and any number of switches.

The file specification has the form

device:[group,member]filename.type;version/swl/sw2.../swn

When you specify files by name only, TKB applies the default switch
settings for device, group, member, type, and version.

For example:

TKB LINK
>TKB >LINK
TKB>IMG1, IMG1=IN1 File(s)?/TASK:IMG1/MAP:IMGl IN1, -
TKB>IN2,IN3 File(s)?IN2,IN3
TKB>// >
5 ‘

If the default directory of the terminal from which TKB is running is
[200,200], the task image file specification of the example is assumed
to be:

SY0:[200, 200]IMG1.TSK;1

That is, TKB creates the task image file on the system device (SYO:)
under UFD [200,200]. The default type for a task image file is .TSK
and, if the name IMGl1.TSK is new, the version number is 1. The
default settings for all the task image switches also apply. Switch
defaults are described in detail in Chapter 10.

For example in TKB:

>TKB
TKB>[20,23]IMG1/CP/DA, IMG1/CR=IN1
TKB>IN2;3,IN3

TKB>//

>

INTRODUCTION AND COMMAND SPECIFICATIONS

And, for example, in LINK:

>LINK/TASK:[20,23]IMG1l /CHECK:SYS/DEB/MAP: IMG1/CROSS IN1, -
->IN2;3,IN3
>

This sequence of commands instructs TKB to create a task .image file
IMG1.TSK;1 and a memory allocation (map) file IMG1.MAP;1 (actually, it
produces IMGl.TSK and IMGl.MAP with versions one higher than the
current versions) under UFD [20,23] on the device SY:. The task image
is checkpointable and contains the standard debugging aid (ODT). TKB
outputs the map to the 1line printer with a global cross-reference
listing appended-to it. TKB builds the task from the latest versions
of IN1.OBJ and 1IN3.0BJ, and the specific version of IN2.0BJ. The
input files are all found on the system device.

The system device (SY:) 1is always the default device wunless you
specify otherwise. If you specify another device on either side of
the equal sign, (or space in LINK) that device becomes the default
device for the files on that side of the equal sign (or space in
LINK).

For example in TKB:

>TKB
TKB>[20, 23]IMG1, IMGl, IMG1=DB1:IMG1, IN1, IN2

And, in LINK:

>LINK/TASK:[20,23]IMG1/MAP:IMG1/SYM:IMG1 DB1l:IMG1, IN1, IN2
>

This command line produces a task image file, map file, and 1listing
file in UFD [20,23] on device SY:. All the object files are in UFD
[20,23] on device DBl. In cases where files are scattered among
several devices, the devices must be specified in the command line.

For some files, a device specification is sufficient. In the example
above, the map file could be fully specified by the device LP:. The
map listing is produced on the line printer, but is not retained as a
file.

For TKB format in MCR, this example also uses switches /CP, /CR, and
/DA, and uses LINK command qualifiers /CHECKPOINT:SYSTEM, /DEBUG,

/CROSS_REFERENCE, and /SYMBOL TABLE. The syntax and meaning for each
switch and qualifier are given in Chapters 10 and 1l1.

1.8 SUMMARY OF SYNTAX RULES
The syntax rules for issuing commands to TKB are as follows:

® A task-build command can take any one of four forms. The
first form is a single line:

TKB LINK

>TKB task-command-line >LINK command—line

TN

N

INTRODUCTION AND COMMAND SPECIFICATIONS

The second form has additional lines for input file names=:

TKB LINK
>TKB >LINK
TKB>task~command-line File(s)? /TASK:.....
TKB>input-line File(s)? INFILE1, INFILEZ,...
TKB>terminating-symbol RET
> >

The third form allows you to specify options:

'TKB LINK
>TKB >LINK ,
TKB>task-command-line File(s)? /TAS:.../OPT INFILEL, ...
TKB>/ Options? ...
Enter Options: Options?
>

TKB>option-line

TKB>terminating-symbol
>

The fourth form has both input lines and option lines:

TKB ’ LINK
>TKB >LINK
TKB>task-command-line File(s)? /TAS..../MAP:.../OPT -
TKB>input-line File(s)? INFILEL,...

Option? option-line
Optlon? RET

.
.

TKB>/
Enter Options:
TKB>option-1line

.

TKB>terminating-symbol
>

For TKB in MCR or in indirect command files, the terminating
symbol is:

/ if you intend to build more than one task
// 1if you want TKB to return control to MCR

For LINK, the normal terminating symbol in command or option
input is the RETURN key. However, the CTRL/Z combination ends
the command without any execution by TKB. If you have
specified an indirect command file for input to LINK, the
terminating symbol in the indirect command file is the
end-of-file if it has no options, or // if it has options.

INTRODUCTION AND COMMAND SPECIFICATIONS

® A Task Builder command line has one of the following forms:

TKB LINK
output-file-list=input-file,... output/qual input/qual
=input-file,... input-file
@indirect-command-file @indirect-command-file

The third form is an indirect command file specification, . as
described in Section 1.5. '

A TKB output file list has one of the following three forms:
task-image-file,map-file,symbol-definition-file
task-image-file,map-file
task-image-file

The task-image-file is the file specification for the task
image file; map-file is the file specification for the memory
allocation (map) file; and symbol-definition-file is the file
specification for the symbol definition file. Any of the
specifications can be omitted, so that, for example, the
following form is permitted:

task-image-file,,symbol-definition-file

An input line has one of two forms:

TKB LINK
=input-file,... . input-file,...
@indirect-command-file @indirect-command-line
Both input-file and indirect-command-file are file

specifications.

An option line has one of two forms:

TKB LINK
option!... Option?option-line
@indirect-command-file Option?@indirect-command-file.

The indirect-command-file is a file specification.
An option has the form:

keyword=argument-list, ...
The argument-list is:

arg:...

The syntax for each option is given in Chapter 12.

INTRODUCTION AND COMMAND SPECIFICATIONS
e A file specification conforms to standard RSX-11M/M-PLUS
conventions. It has the form:
device:[directoryname]filename.type;version/swl/sw2.../swn
device:
The name of the physical device on which the volume
containing the desired file is mounted. The name consists
of two ASCII characters followed by an optional 1- or

2-digit octal unit number and a colon; for example, LP: or
DT1:.

directoryname

The directory name in RSX-11M is [group,member]. Where
group

is the group number, in the range of 1 through 377(8).
member

is the member number, in the range of 1 through 377(8).

filename

The name of the desired file. The file name can contain up
to 9 alphanumeric characters. '

type

The 3-character file type identification. Files having the
same name but a different function are distinguished from
one another by the file type; for example, CALC.TSK and
CALC.OBJ.

version

The version number, in decimal on Micro/RSX systems or in
octal on RSX-11M/M-PLUS systems, of the file. Various
versions of the same file are distinguished from one
another by this number; for example, CALC.OBJ;1 and
CALC.OBJ;2.

All components of a file specification are optional. The
combination of +the group number and the member number is
the User File Directory (UFD) that contains the file name.

CHAPTER 2

TASK BUILDER FUNCTIONS

The process of building a task involves three distinct Task Builder
(TKB) functions:

1. Linking object modules
2. Assigning addresses to the task image
3. Building data structures into the task

First, TKB is a linker. It collects and links the relocatable object

modules that you specify to it into a single task image, and resolves
references to global symbols across the module boundaries.

Second, TKB assigns addresses to the task image. On mapped systems,
TKB assigns addresses for a task beginning at 0. The Executive then
relocates the addresses at run time. On unmapped systems, TKB assigns
addresses for a task beginning at the base address of the partition in
which the task is to run. The addresses of tasks that run on unmapped
systems are not relocated at run time.

NOTE

Unless otherwise indicated, references to tasks that
run on mapped systems assume that the tasks are
nonprivileged and residing within system-controlled
partitions. .

Third, TKB builds data structures into the task image that are

required by the INSTALL processor to install the task and by the
Executive to run it.

This chapter describes the three TKB functions in detail. It also
describes the concepts of mapped and unmapped systems. In addition,
this chapter introduces regions overlays,
privileged tasks, and many of the mapping
concepts necessary for an understanding of task mapping and Task
Builder functions. :

2.1 LINKING OBJECT MODULES

TKB links object modules within the context of program sections and
resolves references to global symbols across module boundaries.

When the language translators convert symbolic source code within a
module to object code, they assign provisional 16-bit addresses to the
code. A single assembly or compilation produces a single object
module. In its simplest form, each module begins at 0 and extends

TASK BUILDER FUNCTIONS

upward to the highest address in the module. Three object modules
produced at separate times might have the address limits shown in
Figure 2-1.

1000—‘

750

500

MODULE #1 MODULE #3

MODULE #2

RELOCATABLE 0- RELOCATABLE O RELOCATABLE 0-

ZK-377-81

Figure 2-1 Relocatable Object Modules

If these modules represent the separate modules of a single program,
TKB links them together and modifies the provisional addresses to one
of the following:

e For a mapped system, a single sequence of addresses beginning
at 0 and extending upward to the sum of the lengths of all the
modules (-1 byte)

'e For an unmapped system, a single sequence of addresses
beginning at a base address assigned at task-build time and
extending upward to the sum of the lengths of all the modules
(-1 byte)

For example, Figure 2-2 shows the three modules linked for a mapped
system and the modules linked for an unmapped system.

2.1.1 Allocating Program Sections

The language translators process source code and TKB 1links bbject
modules within the context of program sections. A program section is
a block of code or data that consists of three elements:

® A name

® A set of attributes

e A length
A program section is the basic unit used by TKB to determine the
placement of code and data in a task image. The language translators
maintain a separate location counter for each program section in a

program. The name of each program section, its attributes, and its
length are conveyed to TKB through the object module.

TASK BUILDER FUNCTIONS

2250 — 3250
J |
MODULE #3 MODULE #3
MODULE #2 MODULE #2
MODULE #1 MODULE #1
Y
oL BASE 1000--
MAPPED UNMAPPED
SYSTEM SYSTEM

ZK-378-81

Figure 2-2 Modules Linked for Mapped and Unmapped Systems

You can create as many program sections within a module as you wish by
explicitly declaring them (with the COMMON statement in FORTRAN or the
+PSECT directive in MACRO-11, for example) or by allowing the language
translator to create them. If you do not explicitly create a program
section in your source code, the language translator you are working
with will create a "blank" program section within each module
translated. This program section will appear on your 1listings and
maps as . BLK.. For more information on explicitly declared program
sections, see your language reference manual.

A program section's name is the name by which the language translator
and TKB reference it. When processing files, both the language
translator and TKB create intérnal tables that contain program section
names, attributes, and ' lengths. A named program section can be
declared more than once. However, all occurrences of that named
program section must have identical attributes if the section occurs
more than once in the same module or if the section is a 'global
program section. Identically named program sections within the same
module and global program sections with differing attributes cause TKB
to declare the program section as having multiple attributes, which is
an error. However, identically named program sections with differing
attributes may appear in different trees of an overlaid task if the
program sections have the local (LCL) attribute.

TASK BUILDER FUNCTIONS

Program section attributes define a program section's contents, its
placement in a task image, and, in some cases, the allowed mode of
access (read/write or read-only).

A program section's length determines how much address space TKB must
reserve for it.

When a program consists of more than one module, it is not unusual for
program sections of the same name to exist in more than one of the
modules. Therefore, as TKB scans the object modules, it collects
scattered occurrences of program sections of the same name and
combines them into a single area of your task image file. The
attributes listed in Table 2-1 control the way TKB collects and places
each program section in the task image.

Table 2-1
Program Section Attributes

Attribute Value Meaning

access—code RW Read/write: data can be read from, and
written into, the program section.

RO Read-only: data can be read from, but
cannot be written into, the program
section.

allocation-code CON Concatenate: all references to a given

program section name are concatenated;
the total allocation is the sum of the
individual allocations.

OVR Overlay: all references to a given
program section name overlay each other;
the total allocation is the length of the-
longest individual allocation.

relocation-code REL Relocatable: the base address of the
program section is relocated relative to
the base address of the task.

ABS Absolute: the Dbase address of the
program section 1is not relocated; it is
always O.
save SAV The program section has the SAVE

attribute, and TKB forces the program
section into the root.

scope-code GBL Global: the program section name is
recognized across overlay segment
boundaries; TKB allocates storage for the
program section from references outside
the defining overlay segment.

(continued on next page)

2-4

—~

TN

O

TASK BUILDER FUNCTIONS

Table 2-1 (Cont.)
Program Section Attributes

Attribute Value Meaning

scope-code LCL Local: the program section name is
(Cont.) recognized only within the defining

overlay segment; TKB allocates storage
for the program section from references
within the defining overlay segment only.

type-code D Data: the program section contains data.
I Instruction: the program section
contains either instructions, or data and

instructions.

2.1.1.1 Access-code and Allocation-code - TKB uses a program
section's access-code and allocation-code to determine its placement
and size in a task image. If you specify /SG (or /SEGREGATE in LINK)
in the command sequence, TKB divides address space into read/write and
read-only areas, and places the program sections in the appropriate
area according to access-code. However, the default is to order the
program sections alphabetically.

TKB uses a program section's allocation-code to determine its starting

~address and length. If a program section's allocation-code indicates

that TKB is to overlay it (OVR), TKB places each allocation to the
program section from each module at the same address within the task
image. TKB determines the total size of the program section from the
length of the longest allocation to it.

If a program section's allocation-code indicates that TKB is to
concatenate it (CON), TKB places the allocation from the modules one

~after the other in the task image, and determines the total allocation

from the sum of the lengths of each allocation.

TKB always allocates address space for a program section beginning on

a word Dboundary. If the program section has the D (data) and CON
(concatenate) attributes, TKB appends to the last byte of the previous
allocation all storage contributed by subsequent modules. It does

this regardless of whether that byte is on a word or nonword boundary.
For a program section with the I (instruction) and CON attributes,
however, TKB allocates address space contributed by subsequent modules
beginning with the nearest following word boundary.

For example, suppose three modules, IN1l, IN2, and IN3, are to be task
built. Table 2-2 lists these modules with the program sections that
each contains and their access codes and allocation codes.

In this example, the program section named B, with the attribute CON
(concatenate), occurs twice. Thus, the total allocation for B is the
sum of the lengths of each occurrence; that is, 100 + 120 = 220. The
program section named A also occurs twice. However, it has the OVR
(overlay) attribute; so its total allocation is the largest of the two
sizes, or 300. Table 2-3 1lists the individual program section
allocations.

TASK BUILDER FUNCTIONS

Table 2-2 :
Program Sections for Modules IN1l, IN2, and IN3

Program
Section Access Allocation Size
File Name Name Code Code (Octal)
IN1l B RW CON 100
A RW OVR 300
C RO CON 150
IN2 A RW OVR 250
B RW CON 120
IN3 C RO CON 50
Table 2-3

Individual Program Section Allocations.

Program Section Total

Name Allocation
B 220
A 300
C 220

TKB then groups the program sections according to their access codes
and alphabetizes each group, as shown in Figure 2-3.

NOTE

The example shown in Figure 2-3 represents the Task
Builder's allocation of program sections if the /SG or
switch (or, for LINK, the /SEGREGATE or
/SHAREABLE : task qualifier) is used For more
information, see the description of the
/SG switches in Chapter 10 and the

/SEQUENTIAL, and /SEGREGATE qualifiers in Chapter 11.

/ C (220) READ-ONLY
ACCESS
B (220)
READ/WRITE TASK MEMORY
A (300) ACCESS
STACK
HEADER

ZK-379-81

Figure 2-3 »Allocation of Task Memory

The save attribute (SAV) is useful in cases where the information in a
program section must be kept available to all task segments. The SAV

TASK BUILDER FUNCTIONS

attribute of a program section causes TKB to force the program section
into the root of an overlaid task. Therefore, the named common block
in the FORTRAN SAVE statement or the named program section in the
MACRO-11 .PSECT directive specified with the SAV attribute are in the
root of the task.

2.1.1.2 Type-Code and Scope-Code - The scope-code is meaningful only
when you define an overlay structure for a task. The scope-code is
d i 3 and 4 within the context of the d ipti

2.1.2 Resolving Global Symbols

TKB resolves references to global symbols across module boundaries and
any references (explicit or implicit) to the system library. When the
language translators process a text file, they assume that references
to global symbols within the file are defined in other, separately
assembled or compiled modules. As TKB links the relocatable object
modules, it creates an internal table of the global symbols it
encounters within each module. If, after TKB examines and 1links all
the object modules, references remain to symbols that have not been
defined, TKB assumes that it will find the definition for the symbols
within the default system object module library (LB:[1,1]SYSLIB.OLB).
If undefined symbols still remain after SYSLIB is examined, TKB flags
the symbols as undefined. If you have not specified an output map in
your TKB command sequence, TKB reports the names of the undefined
symbols to you on your terminal. If you have specified an output map,
TKB outputs to your terminal only the fact that the task contains
undefined symbols. The names of the symbols appear on your map
listing.

When creating the task image file, TKB resolves global references, as
shown in the following example. Table 2-4 lists the three files IN1,
IN2, and IN3, showing the program sections within each file, the
global symbol definitions within each program section, and the
references to global symbols in each program section.

Table 2-4
Resolution of Global Symbols for IN1l, IN2, and IN3

File Program Section Global Global
Name Name Definition Reference
IN1 B Bl A
B2 Ll
A Ccl
XXX
C
IN2 A A
B Bl B2
IN3 C Bl

In processing the first file, IN1l, TKB finds definitions for Bl and B2
and references to A, Ll, Cl, and XXX. Because no definition exists

TASK BUILDER FUNCTIONS

for these references, TKB defers the resolution of these global
symbols. In processing the next file, IN2, TKB finds a definition for
A, which resolves the previous reference, and a reference to B2, which
can be immediately resolved.

When all the object files have been processed, TKB has three
unresolved global reference: Cl, L1, and XXX. Assume that a search
of the system library LB:[1,1]SYSLIB.OLB resolves Ll and XXX, and TKB
includes the defining modules in the task's image. Assume also that
TKB cannot resolve the global symbol Cl. TKB lists it as an undefined
global symbol.

The relocatable global symbol Bl is defined twice. TKB lists it as a
multiply defined global symbol. TKB uses the first definition of that
multiply defined symbol.

Finally, an absolute global symbol (for example, symbol=100) can be
defined more than once without being listed as multiply defined, as
long as each occurrence of the symbol has the same value.

2.2 THE TASK STRUCTURE

TKB builds the data structures required by other system programs and
incorporates them into the task image. The Executive (which is
responsible for the allocation of system resources) must have access
to the data for all tasks on the system. It must know, for example, a
task's size and priority, and it must have information about the way

each task expects to use the system. It is the Task Builder's
responsibility to allocate space 1in the task 1image for the data
structures required by the Executive. For example, TKB allocates

space for the task header and initializes it.
The disk image file created by TKB contains the linked task and all of
the information required by the system programs to install and run it.
In its simplest form, the disk image file consists of three physically
contiguous parts:

® The label block group

e The task header

® The task memory image

Figure 2-4 illustrates the basic simplified structure of this file.

. TASK |
: MEMORY

HEADER

LABEL
BLOCK

ZK-380-81

Figure 2-4 Disk Image of the Task

2-8

R

TASK BUILDER FUNCTIONS

The label block group contains data produced by TKB and used by
INSTALL command processing. It contains information about the task,
such as the task's name, the partition in which it runs, its size and
priority, and the logical units assigned to it. When you install the
task, INSTALL command processing (hereinafter called INSTALL) uses
this information to create a Task Control Block (TCB) entry for the
task in the System Task Directory (STD) and to initialize the task's
header information.

The task's header contains information that the Executive uses when it
runs the task. The header also provides a storage area for saving the
task's essential data when the task is checkpointed. TKB creates and
partially initializes the header; INSTALL initializes the rest of the
header.

The task memory contains the 1linked modules of the program and,
therefore, the code and data. It also contains the task's stack. The
stack is an area of task memory that a task can use for temporary
storage and subroutine linkage. It can be referenced through general
register 6, the stack pointer (SP). The label block group, the task's
header, and the task memory are described in detail in Appendix B.

The task's memory image is the part of your task that the system reads
into physical memory at run time. The 1label block group is not
required in physical memory. Therefore, in its simplest form, the
task's memory image consists of only two parts: the task header and
task memory. Figure 2-5 shows the memory image.

. TASK |
! MEMORY 3

HEADER

ZK-381-81

Figure 2-5 Memory Image

2.3 OVERLAYS

This section is an introduction to overlaid tasks. Details about
overlaid tasks can be found in Chapters 3 and 4.

Using overlays can save memory space by reducing the size of the
executing portion of the task or the physical memory required by the
task. Parts of an overlaid task reside on disk, thereby saving memory
space.

An overlaid task is a task designed to have discrete parts. The parts
of a task designed this way can execute relatively independently of
other parts. Parts of an overlaid task reside on disk until they are
needed for their required function. The common part of the task,
which stays in memory, is the root. The root calls the other parts of
the task, which are referred to as segments, from disk into memory.

TASK BUILDER FUNCTIONS

The RSX-11M/M-PLUS systems have two types of overlaid tasks. One type
of overlaid task reads 1in segments from disk over other segments
already in memory. A task of this type 1is called a disk-resident
overlaid task. In this task, segments reside on disk until they are
needed. The segments in disk-resident overlays that share the same
memory address space of the task with other segments must be logically
independent of those segments. The independence is necessary because
the other segments are on disk and cannot be referenced. For example,
Task A, an overlaid task root, can call either of two
segments: segment B or segment C. The root of Task A initially calls
- segment B. Segments B and C occupy the same memory space. Segment B
cannot call segment C and segment C cannot call segment B. However,
if segment B returns control of the task to the root of task A, the
root can then call segment C. Segment C would then be read into
memory over segment B. Figure 2-6 illustrates this sequence.

Because segments of a disk-resident overlaid task can occupy the same
memory space, a disk-overlaid task can occupy less memory than it
would if it were not overlaid. However, more disk I/0 transfers (and,
therefore, more time) are needed for this type of task.

MEMORY
TASK A
TASK A
rooT |root| B | c || LoaD TASK
~y FLJ
A
MEMORY
B
TASK A ROOT CALLS
TASK A
ROOT [ROOTI B | ¢ J SEGMENT B
Y] N
.~
MEMORY
c
ASK 2 ROOT CALLS
TASK A
ROOT [rRoot] B | ¢ || seamentc
A ~
I

ZK-382-81

Figure 2-6 Simple 2-Segment, Disk-~Resident Overlay Calling Sequence

2-10

N

TASK BUILDER FUNCTIONS

Another type of overlaid task is the memory-resident overlaid task.
In this task, the segments reside on disk until they are needed. At
that time, the needed segment is read into a sequentially adjacent
area of memory and resides there until the task ends. For example, a
memory-resident overlaid Task A has two segments: segment B and
segment C. If the root of task A calls segment B, segment B is read
into memory adjacent to the root. When the root regains control and
then calls segment C, segment C 1is read into memory adjacent to
segment B. Figure 2-7 illustrates this sequence. ‘ .

MEMORY

TASK A
[root| B | ¢ []

LOAD TASK

TASK A
ROOT

MEMORY

TASK A
[rooT| B | C |

ROOT CALLS
SEGMENT B

TASK A
ROOT

MEMORY

TASK A
[rooT| B | ¢ |

ROOT CALLS
SEGMENT C

ZK-383-81

Figure 2~7 Simple 2-Segment, Memory-Resident Overlay
Calling Sequence

TASK BUILDER FUNCTIONS

Memory-resident overlaid tasks execute faster than disk-resident
overlaid tasks. The increase in speed occurs because fewer disk I/0
transfers are needed during task execution.

2.4 ADDRESSING CONCEPTS

The primary addressing mechanism of the PDP-11 is the 16-bit computer
word. The maximum physical address space that the PDP-11 can
reference at any one time is a function of the length of this word.
Because of the 16-bit word size, a task can have an address no larger
than 177777 (octal) (32K words) within the task image for nonprivileged
tasks on an unmapped system. In practice, the task size may be
limited to a few words less than 32K because of system design.

2.4.1 Physical, Virtual, and Logical Addresses

Physical} virtual, and logical addresses, and virtual and logical
address space, are concepts that provide a basis for understanding the
functions of task addressing and the use of task windows.

e Physical addresses - A single, physical location in memory is
called the physical address.

Memory is divided into parts called bytes. They are numbered
according to their position in memory. Therefore, the lowest
byte is 0 and the highest byte is whatever the upper limit of

memory may be for a particular system; for example, 32K, 64K,
and so forth. The assigned number 1is called the physical
address. :

A task contains addresses (for example, 0 through 2200). TKB
relocates the task's addresses in an unmapped system by a
number represented by the base address of the partition in
which it 1is 1installed. After installation, the task's
addresses refer to physical addresses of memory, which always
correspond to the same physical memory in an unmapped system.

Therefore, the task addresses have an actual one-to-one
relationship to physical memory. The same relationship exists
any time the task 1is in memory. The memory (physical)
addresses will not be from 0 through 2200. For example, after
the task is installed in the partition, the task's address of
0 may become physical address 17000 because the Task Builder
added in the offset, which is equal to the partition base
address.

In a mapped system, the task's addresses remain the same but
the physical memory addresses may change due to Executive
processes (checkpointing, swapping, and sO forth.).
Therefore, the task addresses do not always correspond to the
same physical memory. If the task uses memory management
directives, the memory addressing can be changed by the task
to include any part of physical memory that it is allowed to
access.

@ Virtual addresses - A task's virtual addresses are the
addresses within the task.

TASK BUILDER FUNCTIONS

The PDP-11's 16-bit word length (a mapped system) imposes the
address range of 32K words on the virtual addresses.
Therefore, these task addresses could include addresses 0
through 177777(octal) depending on the length of the task.
These task addresses are not the same as the actual addresses
of the memory in which the task resides.

® Virtual address space - A task's virtual address space is that
space encompassed by the range of virtual addresses that the
task uses.

With the Create Address Window (CRAWS) memory management
directive, a task can divide its virtual address space into
segments called virtual address windows. By wusing address
windows, you can manipulate the mapping of virtual addresses
to different areas of physical memory.

e Logical addresses - A task's logical addresses are the actual
physical memory addresses that the task can access.

® Logical address space - The task's logical address space is
the total amount of physical memory to which the task has
access rights.

The physical memory represented by the logical addresses may
or may not be continuous. The items in physical memory that
logical address space includes are the task itself, and static
and dynamic regions.

2.4.2 Unmapped Systems

In an unmapped system, the task's virtual address space and its
logical address space coincide exactly, as shown in Figure 2-8.

In an unmapped system, the task's address space is 1limited to 32K
words . All of the machine's physical memory and all of its device
registers are accessible to all tasks running on the system. The top
4K words of address space are reserved for the UNIBUS addresses that
correspond to the peripheral device registers (the I/O page), and a
segment of low memory is occupied by the Executive. Therefore, in an
unmapped system, the largest task size is 32K words minus the I/O page
and the size of the Executive. Figure 2-9 shows the memory layout for
an unmapped system. ' '

Unmapped systems contain only user-controlled partitions. When TKB
links the relocatable object modules of a task that is to run on an
unmapped system, it requires that you specify the partition in which
the task is to run, and the partition's base address and length. TKB
sets the base address of the task to the base address of the
partition. This means that the task's location in physical memory is
bound to the partition and does not change. Because all of physical
memory in an unmapped system is directly addressable, and the task's
location within memory does not change, the addresses that TKB assigns
coincide exactly with the physical addresses of the machine and,
therefore, do not need to be relocated at run time.

2-13

TASK BUILDER FUNCTIONS

PHYSICAL
i MEMORY
32K TASK N+32K
32K sl it
VIRTUAL LOGICAL
N PARTITION
ADDRESS - ADDRESS
oPAGE BASE ADDRESS SPACE
BEFORE
ASSIGNING
ADDRESSES
N
0 —t— e — -
~N ~
l‘(nv
0

ZK-384-81

Figure 2-8 Virtual and Logical Address Space Coincidence
in an Unmapped System

2.4.3 Mapped Systems

A mapped system is one in which the processor contains a KT-11 memory
management unit. The processor handbook for your machine contains a
complete description of the memory management unit.

nagged,p;ocessors have up to. three modes of operation: kernel,
BUpexrvisor, and user (the PDP-11/34 does not have supervisor mode).
Th

e information in this section is relevant to user mode only.

In a mapped system, the relationship between virtual address space and
physical address space is different from that of an unmapped system.
The primary addressing mechanism for a mapped system 1is still the
16-bit word, and virtual address space is still 32K words. However, a
mapped system has a much greater physical memory capacity and,
therefore, physical memory and virtual address space do not coincide.

N

/ ‘

TASK BUILDER FUNCTIONS

32 K WORDS

I/0 PAGE

* EXECUTIVE*

o L |

ZK-385-81

Figure 2-9 Memory Layout for Unmapped System

To address all of physical memory in a mapped system, a machine must
have an effective word length of 18 or 22 bits, depending on the model
of the machine. When TKB links the relocatable object modules of a
task that is to run on a mapped system, it assigns 16-bit addresses to
the task image. The memory management unit's function (under control
of the Executive) 1is to convert the task's 16-bit addresses to

effective 18- or 22-bit physical addresses. The mechanical job of
task relocation 1is performed by the Executive and the memory
management unit at task run time. Figure 2-10 illustrates the

relationship between physical memory and virtual address space in a
mapped system. :

The memory management unit divides a machine's 32K words of virtual
address space into eight 4K-word segments or pages. Each page has two
registers associated with it:

@ A 16-bit Page Description Register (PDR), which contains
control and access information about the page with which it is
associated

e A 16-bit Page Address Register (PAR), which is an address
relocation register

The PDRs and PARs are always used as a pair. Each pair is called an
Active Page Register (APR). Figure 2-11 shows how the memory
management unit divides the 32K words of virtual address space.

The Executive allocates only as many APRs as are necessary to map a
given task into physical memory. Therefore, a 4K-word task requires
one APR; a 6K-word task requires two. Figure 2-12 1illustrates this
mapping.

32K —

TASK
MEMORY

HEADER

0—

VIRTUAL ADDRESS
SPACE

FOR 32 KWORD
TASK

TASK BUILDER FUNCTIONS

HIGHEST
PHYSICAL
ADDRESS

PARTITION
BOUNDARY

b

7

MEMORY
MANAGEMENT
UNIT

MEMORY

TASK

HEADER

PARTITION
BOUNDARY

MEMORY

TASK

HEADER

MEMORY

TASK

HEADER

MEMORY

TASK

-

HEADER

0—

® EXECUTIVE *

ETC. °

PHYSICAL
MEMORY

J

SYSTEM-CONTROLLED

PARTITION

Figure 2-10 Task Relocation in a Mapped System

ZK-386-81

TASK BUILDER FUNCTIONS

Finally, the layout of the virtual address space for a task that is to
run in a mapped system is different in most cases from that of a task
that is run in an unmapped system. Unless a task is privileged, the
I1/0 page and the Executive are not normally part of a task's virtual
address space and, unlike in an unmapped system, a task is inhibited
by the system from accessing any portion of physical memory that it
does not specifically own. Because the I/0 page and the Executive are
not part of a task's wvirtual address space, a task can be
approximately 32,767 words long (32K minus 32 words needed by the
loader) on a mapped system. TKB can build a task of 32K minus 1 word
in size. However, overlaid tasks, and tasks that become extended, may
use the entire 32K-word space.

PAGE 7
VIRTUAL 160000 — APR7 —
PAGE 6
VIRTUAL 140000 — APR6 —
PAGE 5
VIRTUAL 120000 — APR5 —
' PAGE 4 32K WORDS OF
VIRTUAL ADDRESS
VIRTUAL 100000 — APR4 — SPACE
PAGE 3
VIRTUAL 60000 — APR3 —
‘ PAGE 2
VIRTUAL 40000 — APR2 —
PAGE 1
VIRTUAL 20000 — APR 1 :
I PAGE 0
VIRTUALO APR O

. ZK-387-81

Figure 2-11 Memory Management Unit's Division of Virtual
Address Space

2.4.4 Regions

This section briefly describes regions and their relationship to and
use by tasks. Regions and their use are more thoroughly described in
Chapter 5.

A region is a defined area of memory that can contain code or data.
It can also be a blank area reserved for use by one or more tasks.
The region is named and built like a task except that the /HD header
switch (/HEADER in LINK) is negated (/-HD in TKB or /NOHEADER in LINK)
because the region is not a task and does not need a task header.
Tasks can also create regions dynamically as they execute. Dynamic
regions are useful because they increase the task's logical address
space while saving 1its virtual address space. Regions also allow
tasks to share code and data with other tasks.

TASK BUILDER FUNCTIONS

160000 APR 7 — APR 7—
140000 APR 6 — APR 6 —
120000 APR 5 — APR 5—
100000 APR 4 — | APR 4 —
60000 APR 3 — APR 3—
40000 APR 2 — APR 2 —
20000 APR 1 — APR 1 —
TASK
MEMORY 4 K WORDS
HEADER & STACK
VIRTUALO APR0— ! APR 0 —

TASK A (4 K WORDS)

Figure 2-12 Mapping for 4K-Word and

TASK
MEMORY

HEADER & STACK

6 K WORDS

TASK B (6 K WORDS)

6K-Word Tasks

ZK-388-81

Regions are named according to their use or the way in which they were

built. These regions are:

® Task Region -- A continuous block of memory in which the task
runs.
® Common Shared Region -- On unmapped systems, a shared region

defined by an operator at run time or built into the system
during system generation; for example, a global common area.

TASK BUILDER FUNCTIONS

Resident commons are usually called shared regions because
they are used as an area in which tasks share common data.
Shared regions can be absolute or position independent.
Shared regions and their use are described in Chapter 5.

® Library Shared Region -- A shared region containing common
code or routines shared by tasks, and in this way saving
virtual address space in the tasks.

® Dynamic Region -- A region created dynamically at run time by
the Create Region (CRRG$) memory management directive in the
task. This directive and associated directives are described
in the RSX-11M/M-PLUS Executive Reference Manual.

By convention, a shared region that contains code is a library and a
shared region that contains data is a common. i

Tasks must map to a region by using task windows which must be defined
and numbered in the task when the task is built. Usually, a task uses
one window for each region to which mapping must occur. Task windows
are described in the next section, Task Mapping and Windows.

Figure 2-14 shows a sample collection of regions that could make up a
task's 1logical address space. A task's logical address space can
expand and contract dynamically as the task issues the appropriate
memory management directives. The header and root segment are always
part of the region. Therefore, the task header and root segment
always use window 0 (UAPR 0) and region 0. Because a region occupies
a continuous area of memory, each region is shown as a separate block.

2.5 TASK MAPPING AND WINDOWS

As mentioned earlier, tasks that run on mapped systems must be
relocated at run time. When you build a task that is to run on a
mapped system, TKB creates and places in the header of the task one or
more 8-word data structures called window blocks. When you install a
task, INSTALL initializes the window block(s). ‘Once initialized, a
window block describes a range of continuous virtual addresses called
a window.

2.5.1 Task Windows

A window can be as small as 32 words or as large as 32K words. When a
task consists of one continuous range of addresses (a single region
task) only one window block is required to describe the entire task
from the beginning of its header to the highest virtual address in the
task. When a task consists of two or more regions (such as a task
that references a shared region as described in Chapter 5), each
region must have at least one window block associated with it that
describes all or a portion of the region.

When the Executive maps a task into physical memory, it extracts the
information it requires to set up the APRs of the memory management
unit from the task's window block.

TASK BUILDER FUNCTIONS

HIGHEST VIRTUAL o~
ADDRESS \

TASK REGION —

N O
TASK > REGIO
MEMORY

WINDOW BLOCK
0

HEADER & STACK /
LOWEST VIRTUAL ——>

ADDRESS

ZK-389-81

Figure 2-13 Window Block O

When you run your task, the Executive determines where in physical
memory the task is to reside. The Executive then loads the Page
Address Register portion of the APRs with a relocation constant that,
when combined with the addresses of the task, yields the 18- or 22-bit
physical address range of the task.

Referring to Figure 2-14, which illustrates a mapped system without I-
and D-space, you can observe that a large 32K user task contains three
distinct areas of continuous space called "windows." The term "task
window" 1is a construct that maps a continuous portion of the task's
virtual address space to a continuous portion of a region in the
task's 1logical address space. Windows must have a specified size and
starting address. The window size can be from 32 words to 32K minus
32 words, and windows must start on a 4K address boundary. Figure
2-14 shows three windows that are not continuous in the task's virtual
address space. However, the space within each window is continuous.
In this task, the size of window 0 is 11K; the size of window 1 is

11K; and the size of window 2 is 8K. The concept of windows exists
for the following specific reason.

AN

TASK BUILDER FUNCTIONS

By using the concept of windows and the memory management directives,
a nonprivileged task can access a larger logical memory space than
that implied by the 32K virtual addressing range and normally
accessible by the 16-bit address. A task can, in fact, only access
32K of memory at one time. However, a nonprivileged task can change

its access to logical addresses (real, physical memory). The area
that your program accesses can be changed by the program during
program execution. The process of accessing different logical areas

of memory is called "mapping."

By referring to Figure 2-14, you can see that window 1 in the task is
mapped to region 1 in physical memory. The task can change the window.
1 mapping to region 0 in physical memory. In effect, then, though a
task is limited to a range of 32K virtual addresses, a task can access
all the physical memory available to it (determined by the way that
you set up the mapping) by changing the mapping of its windows to
different 1logical addresses. Figure 2-14 provides a visual
description of the concept of mapping to different logical addresses.

The discussion now proceeds to setting up the task's windows. This: is
done by defining task window blocks to TKB. '

To manipulate virtual address mapping to various logical areas, you
must first divide a task's 32K of virtual address space into segments.
These segments are task (virtual address) windows. Each window
encompasses a continuous range of virtual addresses. The first
address of the window address range must be a multiple of 4K (the
first address must begin on a 4K boundary) because of the way that the
KT-11 memory management unit uses APRs.

S % »-;%"*’:? 3

A task that includes directives that dynamically manipulate address
windows must have task window blocks set up in the task header as well
as Window Definition Blocks in the code for use by the Create Address
Window directive. The Executive uses task window blocks to identify
and describe each currently existing window. When linking the task,
the programmer specifies the number of extra window blocks needed by
the task. The number of blocks should equal the maximum number of
windows that will exist concurrently while the task is running.

In RSX-11M or RSX-11M-PLUS without I- and D-space, a window's
identification is a number from O to 7, which is an index to the
window's corresponding window block. The address window identified by
0 1is the window that always maps the task's header and root segment.
TKB creates window 0, which the Executive uses to map the task. No
directive may specify window 0; a directive that does so is rejected.

(444

VIRTUAL ADDRESS SPACE
of 32K USER TASK

-

0K

KT

11 MEMORY MANAGEMENT UNIT

4K

WINDOW 0 4K

4K

_ HEADER

/__ CONTAINS

3 WINDOW BLOCKS

val ape | DF]
15 13 12 65 0
| ape | BN | o |
SELECT L
APR
USER KERNEL
ACTIVE PAGE REGS | ACTIVE PAGE REGS
PAR PDR PAR PDR
7] paF 7] PaF
6] par 6| PAF
5| PAF 5| PAF
4| PAF 4| par
3] PaF 3| PaF
2| PaF 2| paF
1| PaF 1| PaF
Lsto] Par o] paF
|

DETERMINED BY BITS 14-15 OF PSW I

KAPR OR UAPR

11 USER
00 KERNEL

PBN |

TASK
LOGICAL
ADDRESS
SPACE

PHYSICAL MEMORY

REGION 0

REGION 1
WINDOW 1

REGION 2
WINDOW 2

17 | 65

| 18-8IT PHYSICAL ADDRESS

N

TASK REGION
WINDOW 0

C

EXECUTIVE

— L
K

Figure 2-14 Virtual to Logical Address Space Translation

ZK-390-81

. SNOILONNA ¥IATIING MSVL

TASK BUILDER FUNCTIONS

When a task uses memory management directives, the Executive views the
relationship between the task's virtual and logical address space in
terms of windows and regions. Unless a virtual address is part of an
existing address window, the address does not point anywhere. This is
a point to watch when setting up windows with the Create Address
Window directive (CRAWS). Similarly, a window can be mapped only to
an area that is all or part of an existing region within the task's
logical address space.

Once a task has defined the necessary windows and regions, the task

can issue memory management directives to perform operations such as
the following: :

® Map a window to all or part of a region.

® Unmap a window from one region in order to map it to another
region.

® Unmap a window from one part of a region in order to map it to
another part of the same region.

TASK BUILDER FUNCTIONS

TASKS " APRS MEMORY
USER D
NON-
PRIVILEGED 7 : I/0 PAGE
USER
TASK
32K
9 N+32K
- - USER | USER
- 7 TASK
0
N
0
SPVSR D
7
SUPERVISOR-
MODE ,
LIBRARY ,
32K N+32K
0 ‘ SPVSR
MODE
SPVSR ! LIBRARY
7
0 N
0
, KERNEL D
EXECUTIVE 7
36K
POOL,
COMMON,
DATA 0 ' TABLES,
ETC.
4 KERNEL | N\
4
INSTRUCTIONS conE
)
1+D ! ”
LOW CORE |

ZK-391-81

P N,

32K

32K

TASKS

NON-
PRIVILEGED
USER
TASK

SUPERVISOR-
MODE
LIBRARY

EXECUTIVE

DATA

1INSTRUCTIONS

1+D

TASK BUILDER FUNCTIONS

APRS MEMORY
USER D
7 1/0 PAGE
0
USER | USER
7 ’ TASK
0
SPVSR D
.
0
SPVSR
MODE
SPVSRI LIBRARY
7
0
KERNEL D
4
POOL,
1 COMMON,
) TABLES,
ETC.
KERNEL |
4
CODE
;
0 LOW CORE

N+32K

N+32K

36K

0

ZK-392-81

TASK BUILDER FUNCTIONS

2.7 PRIVILEGED TASKS

RSX-11M/M-PLUS systems have two classes of tasks: privileged and
nonprivileged. However, the term "privileged" has meaning in mapped
systems only, because in mapped systems certain areas of memory are
protected from nonprivileged tasks. In an unmapped system, any task
has the ability to access all of physical memory if so programmed.
Therefore, the distinction between these two classes of tasks is
primarily one of their mapping to memory in a mapped system.

Privileged tasks in a mapped system can access system data areas and
the Executive. Altering system data areas or the Executive can cause
obscure and difficult problems. Therefore, privileged tasks must be
progyrammed and used with all caution.

You can specify a task as privileged by using the /PR:n switch in the
TKB command line or the /PRIVILEGED:n qualifier in LINK. The /PR:0
switch or /PRIVILEGED:0 qualifier allows a task to perform certain
privileged operations; but the task with a privilege of 0 cannot
access the Executive or system data structures. The /PR:4 switch or
the /PRIVILEGED:4 qualifier allows the task to directly map the I/O
page, Executive routines, and system data structures. The /PR:4
switch or the /PRIVILEGED:4 qualifier is used for a privileged task in
a system that has an Executive of 16K or less. The /PR:5 switch or
the /PRIVILEGED:5 qualifier allows a task to directly map to the I/O
page, Executive routines, and system data structures. The /PR:5
‘switch or the /PRIVILEGED:5 qualifier is used for a privileged task in
a system that has an Executive of 20K or less.

Chapter 6 describes privileged tasks and their mapping in detail.

TASK BUILDER FUNCTIONS

e
S

2!

.
.

TASK BUILDER FUNCTIONS

USER-MODE MEMORY
APRS
7 L
B 7 'T-l ~Y
TASK , — —
VIRTUAL - .
ADDRESS N N
SPACE
4K — —
DATA 0
D-SPACE
0
4K
DATA
INSTRUCTIONS 7
— - INSTRUCTIONS
0 - _

L
I 1
22
€
L
W

I-SPACE

' ZK-1049-82

2-28

! -
the discrete parts of the overlay structure that form the tree. You

CHAPTER 3

OVERLAY CAPABILITY

TKB provides you with the means to reduce the memory and/or virtual
address space requirements of your task by using tree-like overlay
structures created with the Overlay Descrlptlon Language (ODL). You
can divide your conventional tas
are loadable with one disk access

]
are

can specify two kinds of overlay segments: those that reside on disk,
and those that reside permanently in memory after being loaded from
disk. ‘

3.1 OVERLAY STRUCTURES

To create an overlay structure, you divide a task into a series of
segments consisting of:

@ A single root segment, which is always in memory

e Any number of overlay segments, you must consider which either
1) reside on disk and share virtual address space and physical
memory with one another (disk-resident overlays); or 2) reside
in memory and share only Vlrtual address space with one
another (memory-resident overlays)l

Segments consist of one or more object modules, which in turn consist
of one or more program sections. Segments that overlay each other
must be logically independent; that is, the components of one segment
cannot reference the components of another segment with which it
shares virtual address space. In addition to the logical independence
of the overlay segments, you must consider the general flow of control
within the task when creating overlay segments.

You must also consider the kind of overlay segment to create at a
given position in the structure, and how to construct it. Dividing a
task into dlsk resident overlays saves physical space, but introduces
the overhead activity of loading these segments each time they are

needed -- but are not present -- in memory . Memory-resident
overlays, on the other hand, are loaded from disk only the first time
they are referenced. Thereafter, they remain in memory and are

referenced by remapping.

l. Note that memory-resident overlays can be used only if the hardware
has a memory management unit, and if support for the memory management
directives has been included in the system on which the task is to
run.

OVERLAY CAPABILITY

Several large classes of tasks can be handled effectively when built

as overlay structures. For example, a task that moves sequentially
through a set of modules 1is well suited to wuse as an overlay
structure. A task that selects"one of a set of modules according to

the value of an item of input data is also well suited to use as an
overlay structure.

3.1.1 Disk-Resident Overlay Structures

Disk-resident overlays conserve virtual address space and physical
memory by sharing them with other overlays. Segments that are
logically independent need not be present in memory at the same time.
They, therefore,. can occupy a common physical area in memory (and,

therefore, common virtual address space) whenever either needs to be
used.

The use of disk-resident overlays is shown in this section by an
example, task TKl, which consists of four input files. Each input
file consists of a single module with the same name as the file.
The task is built by the TKB command

>TKB TK1, ,=OVRLAY.ODL/MP
or the LINK commands

>LINK/TASK:TK1 OVRLAY.ODL/OVERLAY DESCRIPTION

or

>LINK/TAS:TK1 OVRLAY.ODL/OVER
and the file OVRLAY.ODL contains the modules CNTRL, A, B, C in -an
overlay description for the task being built. The /MP switch in TKB
or the /OVERLAY DESCRIPTION qualifier in LINK specifies that the input

file is an Overlay Description Language (ODL) file.

In this example, the modules A, B, and C are logically independent;
that is:

A does not call B or C and does not use the data of B or C.

B does not call A or C and does not use the data of A or C.

C does not call A or B and does not use the data of A or B.
A disk-resident overlay structure can be defined in which A, B, and C
are overlay segments that occupy the same storage area in physical
memory. The flow of control for the task is as follows:

CNTRL calls A and A returns to CNTRL.

CNTRL calls B and B returns to CNTRL.

CNTRL calls C and C returns to CNTRL.

CNTRL calls A and A returns to CNTRL.

OVERLAY CAPABILITY

In this example, the loading of overlays occurs only four times during
the execution of the task. Therefore, the virtual address space and
physical memory requirements of the task can be reduced without unduly
increasing the overhead activity.

The effect of the use of an overlay structure on allocating virtual
address space and physical memory for task TK1l is described in the
following paragraphs.

The lengths of the modules are:

Module Length (in Octal)
CNTRL 20000 bytes
A 30000 bytes
B 20000 bytes
C 14000 bytes

Figure 3-1 shows the virtual address space and physical memory
required as a result of building TKl as a single-segment task on a
system with memory management hardware.

The virtual address space and physical memory requirement to build TK1
as a single-segment task is 104000(octal) bytes.

In contrast, Figure 3-2 shows the virtual address space and physical
memory required as a result of building TKl as a multisegment task and
using the overlay capability.

The multisegment task requires 50000(octal) bytes.
NOTE

In addition to the storage required for modules A, B,
and C, storage 1is required for overhead in handling
the overlay structures.. This overhead is not
reflected in this example.

In using the overlay capability, the total amount of wvirtual address
space and physical memory required for the task is determined by the
sum of the length of the root segment and the length of the longest
overlay segment. Overlay segments A and B in this example are much
longer than overlay segment C. If A and B are divided into sets of
logically independent modules, task storage requirements can be
further reduced. Segment A can be divided into a control program (AO)
and two overlays (Al and A2). Segment A2 can then be divided into the
main part (A2) and two overlays (A2l and A22). Similarly, segment B
ca? be divided into a control module (B0O) and two overlays (Bl and
B2).

Figure 3-3 shows the virtual address space and physical memory
required for the task produced by the additional overlays defined for
A and B.

As a single-segment task, TKl requires 104000(octal) bytes of virtual
address space and physical memory. The first overlay structure
reduces the requirement by 34000(octal) bytes. The second overlay
structure further reduces the requirement by 14000(octal) bytes.

The vertical and horizontal lines in the diagrams of Figures 3-2 and
3-3 represent the state of virtual address space and physical memory
at various times during the calling sequence of TKl. For example, in
Figure 3-3 the leftmost vertical line in both diagrams shows virtual
address space and physical memory, respectively, when CNTRL, AO, and
Al are loaded. The neéxt vertical line shows virtual address space and
physical memory when CNTRL, AO, A2, and A2l are loaded, and so on.

3-3

The horizontal lines in the diagrams of Figures 3-2 and 3-3

segments
example,

region

160000

140000

120000

100000

60000

40000

20000

APR 7—

APR 6—

APR 5—

APR 4—

APR 3—

APR 2—

APR 1—

APR 0—

OVERLAY CAPABILITY

C c
B B
—>
A A
CNTRL CNTRL
(ROOT SEGMENT) (ROOT SEGMENT)
HEADER AND STACK HEADER AND STACK

VIRTUAL ADDRESS SPACE

PHYSICAL MEMORY

Figure 3-1 TK1 Built As a Single-Segment Task

indicate
that share virtual address space and physical memory.
in Figure 3-3, the uppermost horizontal 1line of
in Dboth diagrams shows Al, A2l, A22, Bl, B2, and C,
which can use the same virtual address
next horizontal line shows Al, A2, Bl, B2, and C, and so on.

For
task

all of
space and physical memory.

The

104000
BYTES

ZK-393-81

OVERLAY CAPABILITY

160000 APR 7—

140000 APR 6—

120000 APR 5—

100000 APR 4—
60000 APR 3—
40000 APR 2—
' A - A
B B
¢ c 50000
' BYTE
20000 APR 1—
CNTRL CNTRL
(ROOT SEGMENT) (ROOT SEGMENT)
0 APRO_ HEADERANDSTACK | HEADER AND STACK

VIRTUAL ADDRESS SPACE

PHYSICAL MEMORY

ZK-394-81

Figure 3-2 TK1 Built As a Multisegment Task

3.1.2 Memory-Resident Overlay Structures (Not Supported on RSX-11S)

TKB provides for creating overlay segments that are loaded from disk
only the first time they are referenced. Thereafter, they reside in
memory. Memory-resident overlays share virtual address space just as

OVERLAY CAPABILITY

disk-resident overlays do but, unlike disk-resident overlays,
memory-resident overlays do not share physical memory. Instead, they
reside in separate areas of physical memory, each segment aligned on a
32-word Dboundary. Memory-resident overlays save time for a running
task because they do not need to be copied from a secondary storage
device each time they are to overlay other segments. "Loading" a
memory-resident overlay reduces to mapping a set of shared virtual
addresses to the unique physical area of memory containing the
overlaying segment. :

The use of memory-resident oveflays is shown in this section by an
example, task TK2, which consists of four input files. Each input
file consists of a single module with the same name as the file.
The task is built by the TKB command

>TKB TK2, ,=OVRLAY2.ODL/MP
or the LINK commands

>LINK/TASK:TK2 OVRLAY2.ODL/OVERLAY DESCRIPTION

or

>LINK/TAS:TK2 OVRLAY2.ODL/OV
and the file OVRLAY2.0ODL contains the modules CNTRL, D, E, and F in an
overlay description for the task being built. The /MP switch in TKB
or the /OVERLAY DESCRIPTION qualifier in LINK specifies that the input

file is an Overlay Description Language (ODL) file.

In this example, the modules D, E, and F are logically independent;
that is:

D does not call E or F and does not use the data of E or F.

E does not call D or F and does not use the data of D or F.

F does not call D or E and does not use the data of D or E.
A memory-resident overlay structure can be defined in which D, E, and
F are overlay segments that occupy separate physical memory locations
but the same virtual address space. The flow of control for the task
is as follows:

CNTRL calls D and D returns to CNTRL.

CNTRL calls E and E returns to CNTRL.

CNTRL calls F and F returns to CNTRL.
The effect of the use of a memory-resident overlay structure on
allocating virtual address space and physical memory for task TK2 is

described in the following paragraphs.

The lengths of the modules are:

Module Length (in Octal)
CNTRL 20000
D’ 10000
E 14000
F 12000

OVERLAY CAPABILITY

160000 APR 7—

140000 APR 6—

120000 APR 5—

100000 APR 4—
60000 APR 3—
40000 APR 2—
: 2
o LA21[A22] Al A21|A22 o
A2 B2 | ¢ A2 B2| C
AO BO B
20000 APR 1— A0 0
. _— } 34000
CNTRL CNTRL
(ROOT SEGMENT) (ROOT SEGMENT)
0 APRO- HEADER ANDSTACK | HEADER AND STACK

VIRTUAL ADDRESS SPACE

PHYSICAL MEMORY

ZK-395-81

Figure 3-3 TKl1 Built with Additional Overlay Defined

Figure 3-4 shows the virtual address space and physical memory
requirements as a result of building TK2 as a single-segment task on a
system with memory management hardware.

The virtual address space and physical memory requirements when TK2 is
built as a single-segment task is 56000(octal) bytes.

160000

140000

120000

100000

60000

40000

20000

APR 7—

APR 6—

APR 5—

APR 4—

APR 3—

APR 2—

APR 1—

APR 0—

OVERLAY CAPABILITY

F F

E E
56000
> BYTES

D D

CNTRL ’ CNTRL
(ROOT SEGMENT) (ROOT SEGMENT)
HEADER AND STACK HEADER AND STACK |/

VIRTUAL ADDRESS SPACE

PHYSICAL MEMORY
ZK-396-81

Figure 3-4 TK2 Built As a Single-Segment Task

If TK2 is built usingl the Task Builder's memory-resident overlay

capability,

the relationship of wvirtual address space to physical

memory changes, as shown in Figure 3-5.

3-8

OVERLAY CAPABILITY

160000 APR 7—
140000 APR 6—
120000 APR 5—
100000 APR 4—
60000 APR 3—
F
40000 APR 2— .
) 56000
BYTES
D E F D
20000 APR 1— 34000g)
CNTRL BYTES CNTRL
(ROOT SEGMENT) (ROOT SEGMENT)
) HEADER AND STACK K
0 APRO- HEADER AND STAC /
VIRTUAL ADDRESS SPACE

PHYSICAL MEMORY

ZK-397-81

Figure 3-5 TK2 Built As a Memory-Resident Overlay

The physical memory requirements for TK2 do not change (56000(octal)
bytes), but the virtual address space requirements have been reduced
to 34000(octal) bytes. This represents a savings in virtual address
space of 22000(octal) bytes.

OVERLAY CAPABILITY

NOTE

In addition to the storage required for modules D, E,
and F, storage is required for overhead in handling
the overlay structures. This overhead is not
reflected in this example.

In Figure 3-5, the vertical and horizontal 1lines in the wvirtual
address space diagram represent the state of virtual address space at
various times during the calling sequence of TK2. The leftmost
vertical 1line shows virtual address space when CNTRL and D are loaded
and mapped. The next vertical line shows virtual address space when
CNTRL and E are 1loaded and mapped. The third vertical line shows
virtual address space.when CNTRL and F are loaded and mapped.

The uppermost horizontal line of the task region shows that segments
D, E, and F share virtual address space.

When TK2 is activated, the Executive loads TK2's root segment into
physical memory. The Executive loads segments D, E, and F into memory
as they are called. Once all segments in the structure have been
called, "loading" of the overlay segments reduces to the remapping of
virtual address space to the physical locations in memory where the
overlay segments permanently reside. Figures 3-6 and 3-7 illustrate
the relationship between virtual address space and physical memory for
task TK2 during four time periods:

e TIME 1 (Figure 3-6A) - TK2 is run and the system 1loads the
root segment (CNTRL) into physical memory and maps to it.

e TIME 2 (Figure 3-6B) - CNTRL calls segment D. The system
loads = segment D into physical memory and maps to it. Segment
D returns to CNTRL.

o TIME 3 (Figure 3-7A) - CNTRL calls segment E. The system
loads segment E into physical memory, unmaps from segment D,
and maps to segment E. Segment E returns to CNTRL.

e TIME 4 (Figure 3-7B) - CNTRL calls segment F. The system
loads segment F into physical memory, unmaps from segment E,
and remaps to segment F. Segment F returns to CNTRL.

It is important to be «careful in choosing whether to have
memory-resident overlays in a structure. Carelessly using these
segments can result in inefficient allocation of wvirtual address
space, because TKB allocates virtual address space in blocks of 4K
words. Consequently, the 1length of each overlay segment should

approach that limit if you are to minimize waste. (A segment that is
one word longer than 4K words, for example, is allocated 8K words of
virtual address space. All Dbut one word of the second 4K words is

unusable.)

You can also conserve physical memory by maintaining control over the
contents of each segment. Including a module in several
memory-resident segments that overlay one another causes physical
memory to be reserved for each extra copy of that module. Common
modules, including those from the system object module 1library
(SYSLIB), should be placed in a segment that can be accessed from all
referencing segments. ~

OVERLAY CAPABILITY

160000 APR 7—

140000 APR 6—

120000 APR 5—

100000 APR 4—

60000 APR 3—
40000 APR 2—
20000 APR 1—
CNTRL CNTRL
(ROOT SEGMENT) —_— (ROOT SEGMENT)
HEADER AND STACK HEADER AND STACK
0O APRO-bii— - -

VIRTUAL ADDRESS SPACE

PHYSICAL MEMORY

ZK-398-81

Figure 3-6A Relationship Between Virtual Address Space
and Physical Memory -- Time 1

160000

140000

120000

100000

60000

40000

20000

APR 7—

APR 6—

APR 5—

APR 4—

APR 3—

APR 2—

APR 1—

APR 0—

Figure 3-6B Relationship Between Virtual Address Space

OVERLAY CAPABILITY

CNTRL
(ROOT SEGMENT)

HEADER AND STACK

VIRTUAL ADDRESS SPACE

CNTRL
(ROOT SEGMENT)

HEADER AND STACK

PHYSICAL MEMORY

and Physical Memory =-- Time 2

ZK-399-81

N

OVERLAY CAPABILITY

160000 APR 7—

140000 APR 6—

120000 APR 5—

100000 APR 4—

60000 APR 3—
40000 APR 2—]
D
20000 APR 1—
CNTRL CNTRL
((ROOT SEGMENT) _— > (ROOT SEGMENT)
o apro. L_HEADERANDSTACK | EADER AND STACK

VIRTUAL ADDRESS SPACE

PHYSICAL MEMORY
ZK-400-81

Figure 3-7A Relationship Between Virtual Address Space
and Physical Memory =- Time 3

OVERLAY CAPABILITY

160000 APR 7—

140000 APR 6—

120000 APR 5—

100000 APR 4—

60000 APR 3—
F

40000 APR 2—
E
D

20000 APRI— b VT _ _ _ _

CNTRL ' CNTRL
(ROOT SEGMENT) _— (ROOT SEGMENT)
0 APRO- HEADERANDSTACK | HEADER AND STACK

VIRTUAL ADDRESS SPACE

PHYSICAL MEMORY

ZK-401-81

Figure 3-7B Relationship Between Virtual Address Space
and Physical Memory -- Time 4

The primary criterion for choosing to have memory-resident overlays is
the need to save virtual address space when disk-resident overlays are
either - undesirable (because they would slow down the system
unacceptably), or impossible (because the segments are part of a
resident library or other shared region that must permanently reside
in memory).

OVERLAY CAPABILITY

Memory-resident overlays can help you use large systems to better
advantage because of the time savings realized when a large amount of
physical memory is available. Resident libraries, in particular, can
benefit from the virtual address space saved when they are divided
into memory-resident segments.

3.2 OVERLAY TREE

The arrangement of overlay segments within the virtual address space
of a task can be represented schematically as a tree-like structure.
Each branch of the tree represents a segment. Parallel branches
denote segments that overlay one another and therefore have the same
virtual address; these segments must be logically independent.
Branches connected end to end represent segments that do not share
virtual address space with each other; these segments need not be
logically independent.

TKB provides an Overlay Description Language (ODL) for representing an
overlay structure consisting of one or more trees (the ODL is
described in Section 3.4). .

The single overlay tree shown in Figure 3-8 represents the allocation
of virtual address space for TK1l (see Section 3.1l.1).

The tree has a root (CNTRL) and three main branches (A0, BO, and C).
It also has six leaves (Al, A21, A22, Bl, B2, and C).

The tree has as many paths as it has leaves. The path down is defined
from the leaf to the root. For example:

A21-A2-A0-CNTRL
The path up is defined from the root to the leaf. For example:
CNTRL-BO-B1
Knowing the properties of the tree and its paths is important to
understanding the overlay loading mechanism and the resolution of

global symbols.
A21 A22

A1l A2 B1 B2

L_’_l

AO BO

b)

CNTRL

ZK-402-81

Figure 3-8 Overlay Tree for TK1

OVERLAY CAPABILITY

3.2.1 Loading Mechanism

Modules can call other modules that exist on the same path. The
module CNTRL (Figure = 3-8) 1is common to every path of the tree and,
therefore, can call and be called by every module in the tree. The

module A2 can call the modules A21, A22, AO, and CNTRL; but A2 cannot
call Al, Bl1l, B2, BO, or C. :

When a module in one overlay segment calls a module in another overlay
segment, the called segment must be in memory and mapped, or must be
brought into memory. The methods for loading overlays are described
in Chapter 4.

3.2.2 Resolution of Global Symbols in a Multisegment Task

In resolving global symbols for a multisegment task, TKB performs the
same activities that it does for a single-segment task. The rules
defined in Chapter 2 for resolving global symbols in a single-segment
task apply also in this case, but the scope of the global symbols is
altered by the overlay structure.

In a single-segment task, any module can refer to any global
definition. In a multisegment task, however, a module can only refer
to a global symbol that is defined on a path that passes through the
called segment.

The following points, illustrated in the tree diagram in Figure 3-9,
describe the two distinct cases of multiply defined symbols and
ambiguously defined symbols.

In a single-segment task, if you define two global symbols with the
same name, the symbols are multiply defined and an error message is
produced.

In a multisegment task, you can define two global symbols with the
same name- if they are on separate paths, and not referenced from a
segment that is common to both.

If you define a global symbol more than once on separate paths, but
they are referenced from a segment that is common to both, the symbol
is ambiguously defined. If you define a global symbol more than once
on a single path, it is multiply defined.

TKB's procedure for resolving global symbols is summarized as follows:
1. TKB selects an overlay segment for processing.

2. TKB scans each module in the segment for global definitions
and references.

3. If the symbol is a definition, TKB searches all segments on
paths that pass through the segment being processed, and
looks for references that must be resolved.

4. If the symbol is a reference, TKB performs the tree search as
described in step 3, looking for an existing definition.

5. If the symbol is new, TKB enters it in a 1list of global
symbols associated with the segment.

Overlay segments are selected for processing in an order corresponding
to their distance from the root. That is, TKB processes the segment
farthest from the root first, before processing an adjoining segment.

/—\\

OVERLAY CAPABILITY

When TKB processes a segment, its search for global symbols proceeds
as follows:

1.

2.

3.

4.

Figure

The segment being processed
All segments toward the root
All segments away from the root

All co-trees (see Section 3.5)

3-9 illustrates the resolution of global symbols in a

multisegment task.

A21 A22
T (DEF) R (REF)
S (REF) Q (REF)
| S (REF)
Al B1 B2
Q (REF) A2 Q (REF) S (REF)
R (REF) R (DEF) S (REF)
S (REF)
A0 BO C
Q (DEF) Q (DEF)
S (DEF) S (DEF)
T (DEF) l
CNTRL
S (REF)

ZK-403-81

Figure 3-9 Resolution of Global Symbols in a Multisegment Task

The following notes discuss the resolution of references in Figure

3-9:

1.

The global symbol Q is defined in both segment A0 and segment
BO. The references to Q in segment A22 and in segment Al are
resolved by the definition in AO. The reference to Q in Bl
is resolved by the definition in BO. The two definitions of

Q are distinct in all respects and occupy different overlay
paths.

The global symbol R is defined in segment A2. The reference
to R in A22 is resolved by the definition in A2 because there
is a path to the reference from the definition
(CNTRL-AO-A2-A22). The reference to R in Al, however, is
undefined because there is no definition for R on a path
through Al.

The global symbol S is defined in both segment A0 and segment
BO. References to S from segments Al, A2l1l, or A22 are
resolved by the definition in AO, and references to S in Bl
and B2 are resolved by the definition in BO. However, the
reference to S in CNTRL cannot be resolved because there are
two definitions of S on separate paths through CNTRL. The
global symbol S is ambiguously defined.

OVERLAY CAPABILITY

4. The global symbol T is defined in Dboth segment A21 and
segment AO. Since there 1is a single path through the two
definitions (CNTRL-AQ-A2-A21), the global symbol T is
multiply defined.

3.2.3 Resolution of Global Symbols from the Default Library

The process of resolving global symbols may require two passes over
the tree structure. The global symbols discussed in the previous
section are included in user-specified input modules that TKB scans in
the first pass. If any undefined symbols remain, TKB initiates a
second pass over the structure in an attempt to resolve such symbols
by searching the default object module library (normally
LBO:[1,1]SYSLIB.OLB). TKB reports any undefined symbols remaining
after its second pass. ‘

When multiple tree structures (co-trees) are defined, as described in
Section 3.5, any resolution of global symbols across tree structures
during a second pass can result in multiple or ambiguous definitions.
In addition, such references can cause overlay segments to be
inadvertently displaced from memory by the overlay loading routines,
thereby causing run-time failures. To eliminate these conditions, the
tree search on the second pass is restricted to:

® The segment in which the undefined reference has occurred

® All segments in the current tree that are on a path through
the segment ‘

® The root segment

When the current segment is the main root, the tree search is extended
to all segments. You can unconditionally extend the tree search to
all segments by including - the /FU (full) switch in TKB or the
/FULL SEARCH qualifier in LINK in the task image file specification.
(Refer to Chapter 10 for a description of the TKB /FU switch, or to
Chapter 11 for a description of the LINK /FULL_SEARCH qualifier.)

3.2.4 Allocation of Program Sections in a Multisegment Task

One of a program section's attributes indicates whether the program
section is 1local (LCL) to the segment in which it is defined or is
global (GBL). '

Local program sections with the same name can appear in any number of
segments. TKB allocates virtual address space for each local program
section in the segment in which it 1is declared. Global program
sections that have the same name, however, must be resolved by TKB.

When a global program section is defined in several overlay segments
along a common path, TKB allocates all virtual address space for the
program section in the overlay segment closest to the root.

FORTRAN common blocks. are translated into global program sections with
the overlay (OVR) attribute. In Figure 3-10, the common block COMA is
defined in modules A2 and A2l. TKB allocates the virtual address
space for COMA in A2 because that segment is closer to the root than
the segment that contains A21.

OVERLAY CAPABILITY

If the segments AQ and BO use the common block COMAB, however, TKB
allocates the virtual address space for COMAB in both the segment that
contains A0 and the segment .that contains BO. A0 and BO cannot
communicate through COMAB. When the overlay segment containing BO is
loaded, any data stored in COMAB by AO is lost.

You can specify the allocation of program sections explicitly. If AO
and BO need to share the contents of COMAB, you can force the
allocation of this program section into the root segment by the use of
the .PSECT directive of the Task Builder's overlay description
language, described in Section 3.4.

A21 A22
A1l A2
COMA B1 B2
AO BO C
COMAB COMAB |
CNTRL

ZK-404-81

Figure 3-10 Resolution of Program Sections for TK1

3.3 OVERLAY DATA STRUCTURES AND RUN-TIME ROUTINES

When TKB constructs an overlaid task, it builds additional data
structures and adds them to the task image. The data structures
contain information about the overlay segments and describe the
relationship of each segment in the tree to the other segments in the
tree. TKB also includes into the task image a number of ~ system
library routines (called overlay run-time routines). The overlay
run-time routines use the data structures to facilitate the loading of
the segments and to provide the necessary linkages from one segment to
another at run time.

TKB links the majority of data structures and all of the overlay
run-time routines into the root segment of the task. The number and
type of data structures, and the functions the routines perform,
depend on two considerations:

® Whether the task is built to use the Task Builder's autoload
or manual load facilities

e Whether the overlay segment 1is memory resident or disk
resident

OVERLAY CAPABILITY

These considerations have a marked impact on the size and operation of
the task. Chapter 4 describes the Task Builder's autoload and manual
load facilities and describes the methods for loading overlays.
Appendix B describes the data structures and their contents in detail.

The contents of the root segment for a task with an overlay structure
are discussed briefly in the following sections.

3.3.1 Overlaid Conventional Task Structures
Depending on the considerations just discussed, some or all of the
following data structures are required by the overlay run-time
routines:

® Segment tables

® Autoload vectors

® Window descriptors

® Region descriptors

Figure 3-11 shows a typical overlay root segment structure.

TASK CODE & DATA :

WINDOW DESCRIPTORS
REGION DESCRIPTORS
SEGMENT DESCRIPTORS

OVERLAY
RUN-TIME
ROUTINES

AUTOLOAD VECTORS TYPICAL

MAIN TREE
ROOT SEGMENT

TASK CODE
AND
DATA

HEADER AND STACK

w—

ZK-405-81

Figure 3-11 Typical Overlay Root Segment Structure

OVERLAY CAPABILITY

There is a segment descriptor for every segment in the task. The
descriptor contains information about the load address, the length of
the segment, and the tree linkage.

In an autoloadable, overlaid task, autoload vectors appear in the root
segment and 1in every segment that calls modules in another segment
located farther away from the root of the tree. All references to
resident libraries are resolved through autoload vectors in the root.

Window descriptors are allocated whenever a memory-resident overlay

structure is defined for the task. The descriptor contains
information required by the Create Address Window system directive
(CRAWS). One descriptor is allocated for each memory-resident overlay
segment.

Region descriptors are allocated whenever a task is linked to a shared
region containing memory-resident overlays. The descriptor contains
information required by the Attach Region system directive (ATRGS).

1.5K

300

VIRTUAL I-SPACE

OVERLAY CAPABILITY

3.6K
I-SPACE PART OF
AUTOLOAD VECTORS
CODE
3K
3K
OVERLAY RUN-TIME
ROUTINES 2740
AUTOLOAD VECTORS- 2720
I-SPACE PART
2640
2630
TASK
CODE
1270
300
UNUSED HEADER COPY
0

VIRTUAL D-SPACE

D-SPACE PART OF
AUTOLOAD VECTORS

DATA

WINDOW DESCRIPTORS

REGION DESCRIPTORS

SEGMENT DESCRIPTORS

AUTOLOAD VECTORS
D-SPACE PART

TASK
DATA

STACK SPACE

TASK HEADER
USABLE COPY

P

>

UP-TREE
SEGMENT

MAIN
TREE
ROOT
SEGMENT

ZK-1050-82

N

OVERLAY CAPABILITY

3.4 OVERLAY DESCRIPTION LANGUAGE
TKB provides a language, called the Overlay Description Language
(oDL), that allows you to describe the overlay structure of a task.
An overlay description is a text file consisting of a series of ODL
directives, one directive per line. Each line may have as many as 132
characters. You enter the name of this file in a TKB command line,
and identify it as an ODL file by specifying the /MP switch in TKB or
the /OVERLAY DESCRIPTION qualifier in LINK to the file name.
For example, the following TKB command line specifies an ODL file:
>TKB TASK1, ,=OVRLAY/MP
and the following LINK command line specifies the same:
>LINK/TASK:TASK1 OVRLAY/OVERLAY_DESCRIPTION
or

>LINK/TAS:TASK1 OVRLAY/OVER

If you specify an ODL file to TKB, it must be the only input file you
specify.

A command line in an ODL file takes the form
label: directive argument-list ;comment

A label is required only for the .FCTR directive (see Section 3.4.2).
Labels cannot be used with the other directives.

The ODL directives are listed below and described in Sections 3.4.1
through 3.4.6:

® .ROOT and .END

e .FCTR
® .NAME
® .PSECT

® @ (at sign; indirect command file specifier)

The ODL directives can act upon the following items: named input
files, overlay segments, program sections, and lines in the ODL file
itself. These items follow each directive on the same line as the
directive, and form an argument-list. Operators, such as the hyphen,
exclamation point, and comma, group the argument-list items (named
task elements) or attach attributes to them.

If the named task element is a file, you can enter a complete file
specification. Defaults for omitted parts of the file specification
are as described in Chapters 1 and 10, except that the default device
is SY0:, and the default UFD is taken from the terminal UIC.

In addition, the following restrictions apply to argument-lists:

® You can only use the dot character (.) in a file name.

® Comments cannot appear on a line ending with a file name.

OVERLAY CAPABILITY

3.4.1 .ROOT and .END Directives

The .ROOT directive defines the structure of the overlaid task.

Because of this, .ROOT usually appears first in the overlay
description. The .NAME directive may precede the .ROOT directive in
certain circumstances discussed in Section 3.4.4. Each overlay
description must end with one .END directive. The .ROOT directive

tells TKB where to start building the tree, and the .END directive
tells TKB where the input ends.

The arguments of the .ROOT directive use three operators to express
concatenation, memory residency, and overlaying. These operators can
be used also in the .FCTR directive.

® The hyphen (-) operator indicates the concatenation of virtual
address space. For example, X-Y means that sufficient virtual
address space will be allocated to contain module X and module
Y simultaneously. TKB allocates segment X and segment Y in
sequence to produce one segment.

e The exclamation point (!) operator indicates memory residency

of overlays. (This operator is discussed in Section 3.4.3.)
® The comma (,) operator, ‘appearing within parentheses,
indicates the overlaying of virtual address space. For

example, (Y,2) means that virtual address space can contain
either segment Y or segment Z. If no exclamation point (!)
precedes the left parenthesis, segment Y and segment Z also
share physical memory.

The comma (,) operator is also used to define multiple tree
structures (as described in Section 3.5.1).

You use parentheses to delimit a group of segments that start at the
same virtual address. The number of nested parenthetical groups
cannot exceed 16.

For example:

.ROOT X-(Y,2Z2-(21,22))
.END

These directives describe the tree and its corresponding virtual
address space shown. in Figure 3-13:

21 Z2
Z1 Z2
Y
Y z z
L X

ZK-406-81

Figure 3-13 Tree and Virtual Address Space Diagram

3-24

OVERLAY CAPABILITY

To create the overlay description for the task TKl1 in Figure 3-3
(Section 3.1.1), you could create a file called TFIL.ODL that contains
the directives: '

.ROOT CNTRL-(AO-(Al,A2-(A21,A22)),B0-(B1,B2),C)
.END

To build the task with that overlay structure, you would type:

TKB LINK
>TKB TK1l,,=TFIL/MP >LINK/TASK:TK1 TFIL/OVERLAY DESCRIPTION
or

>LINK/TA:TK1 TFIL/OV

The /MP switch or the /OVERLAY DESCRIPTION qualifier in the command
strings above tells TKB that there is only one input file (TFIL.ODL),
and that this file contains the overlay description for the task.

3.4.2 .FCTR Directive

The .FCTR directive allows you to build large, complex trees and
represent them clearly.

The .FCTR directive has a label at the beginning of the ODL line that
is pointed to by a reference in a .ROOT or another .FCTR statement.
The label must be unique with respect to module names and other
labels. The .FCTR directive allows you to extend the tree description
beyond a single line, enabling you to provide a clearer description of
the overlay. (There can be only one .ROOT directive.)

For example, to simplify the tree given in the file TFIL (described in
Section 3.4.1), you could use the .FCTR directive in the overlay
description as follows: '

.ROOT CNTRL-(AFCTR,BFCTR,C)

AFCTR: .FCTR AO-(Al,A2-(A21,A22))
BFCTR: .FCTR BO-(Bl1,B2)
.END

The label BFCTR is used in the .ROOT .directive to designate the
argument BO-(B1,B2) of the .FCTR directive. The resulting overlay
description is easier to interpret than the original description. The
tree consists of a root, CNTRL, and three main branches. Two of the
main branches have sub-branches.

The .FCTR directive can be nested to a level of 16. For example, you
could further modify TFIL as follows:

.ROOT CNTRL-(AFCTR,BFCTR,C)

AFCTR: .FCTR AO-(Al,A2FCTR)

A2FCTR: .FCTR A2-(A21,A22)

BFCTR: .FCTR BO-(B1,B2)
.END

3-25

OVERLAY CAPABILITY

3.4.3 Arguments for the .FCTR and .ROOT Directives

The arguments for the .FCTR and .ROOT directives may have different
forms or syntax. The examples in this chapter use forms such as Al,
Bl, X, and Y for clarity, but the actual arguments that you use may
have somewhat different names. This section lists the forms that the
arguments may take for these directives. If you use an argument that
does not fall into one of the following five categories, TKB takes the
argument as that of the name of an object module file; in other words,
the file name that you use must have an extension of .OBJ.

NOTE

When you use library file specifications in an ODL
file, as in Sections 3.4.3.2 and -3.4.3.3, you must use
the TKB /LB switch as described in those sections and
in Chapter 10. There are no LINK equivalents to use
within an ODL file.

3.4.3.1 Named Input File - You may use a named input file that has
the object file format. For example,

CALC: .FCTR [7,54]MULT.OBJ

The default is .OBJ.

3.4.3.2 Specific Library Modules - You may name and therefore use
specific object modules from a library file. For example,

~

BAKER: .FCTR [300,3]COOKIE/LB:CHIP:OAT

where COOKIE.OLB is the library file and CHIP and OAT are the modules
that you want to extract from the file. The default extension is .OLB
and it need not be specified as part of the argument.

3.4.3.3 A Library to Resolve References Not Previously Resolved - You
may specify a 1library as an argument in a .FCTR statement after
extracting specific modules in a previous .FCTR statement. TKB uses
the 1library to resolve symbols ' that may still be unresolved after
extracting the modules. For example,

BAKER: .FCTR [300,3]COOKIE/LB:CHIP:OAT
LIB: .FCTR LB:[1,4]RECIPE/LB

3.4.3.4 A Section Name Used in a .PSECT Directive - You may use the
name that you used as a program section name in the .PSECT directive
as the argument in a .FCTR statement. For example,

.PSECT COM,GBL,D,RW,O0VR
FSTCOM: .FCTR CoM)

.’/\\

OVERLAY CAPABILITY

3.4.3.5 A segment Name Used in a .NAME Directive - You may use the
name that you specified as the name of a segment in the .NAME
directive. For example,

.NAME SEG1,GBL, DSK
OVLY: .FCTR SEGLl-MOD1-MOD2

3.4.4 Exclamation Point Operator

The exclamation point operator allows you to specify memory-resident
overlay segments (see Section 3.1.2). You specify memory residency by
placing an- exclamation point (!) immediately before the left
parenthesis enclosing the segments to be affected. The overlay
description for task TK2 in Figure 3-4 (Section 3.1.2) is as follows:

.ROOT CNTRL-!(D,E,F)
.END

In the example above, segments D, E, F are declared resident in
separate areas of physical memory. The Task Builder determines the
single starting virtual address for D, E, and F by rounding the octal
length of segment CNTRL up to the next 4K boundary. The physical
memory allocated to segments D, E, and F is determined by rounding the
actual 1length of each segment to the next 32-word boundary (256-word
boundary if the /CM switch or /COMPATIBLE qualifier is in effect), and
adding this value to the total memory required by the task.

The exclamation point operator applies to that segment immediately to
the right of the left parenthesis and those segments farther from the
root on the same level with that segment. In other words, all
parallel segments must be of the same residency type (disk resident or
memory resident).

The exclamation point operator applies to segments at the same level
from the root inside a pair of parentheses; segments nested in
parenthesis within that level, but farther from the root, are not
affected. '

It is therefore possible to define an overlay structure that combines
the space-saving attributes of disk-resident overlays with the speed
of memory-resident overlays. For example:

.ROOT A-!(B1-(B2,B3),C)
.END

In this example, Bl and C are declared memory resident by the
exclamation point operator. B2 and B3 are declared disk resident,
however, because no exclamation point operator precedes the
parentheses enclosing them.

Note that while a memory-resident overlay can call a disk-resident
overlay, the converse 1is not 1legal; that 1is, you cannot use an
exclamation point for segments emanating from a disk-resident segment.
For example, you cannot build the following structure:

.ROOT A-(B1-1!(B2,B3),C) ; this overlay description is illegal
.END

In this example, Bl is declared disk resident; so it is illegal to use
the exclamation point to declare B2 and B3 memory resident.

OVERLAY CAPABILITY

3.4.5 .NAME Directive

The .NAME directive allows you to name a segment, and assign
attributes to the segment. The name must be unique with respect to
file names, program section names, .FCTR labels, and other segment
names used in the overlay description.’ You use the .NAME directive
prior to using the .ROOT or .FCTR directive. The Task Builder
attaches attributes to a segment when it encounters the name in a
.ROOT or .FCTR directive that defines the overlay segment. If you
apply multiple names to a segment, the attributes of the last name
given are in effect. This directive does the following:

® Names uniquely a segment that is loaded through the manual
load facility (see Chapter 4)

® Permits a named data-only segment to be loaded through the
autoload mechanism

The format of the .NAME directive is:
.NAME segname[,attr][,attr]
segname

A 1- to 6-character name; this name can consist of the Radix-50
characters A-Z, 0-9, and $ (the period (.) cannot be used).

attr
One of the following:

GBL The name is entered in the segment's global symbol
table.

The GBL attribute makes it possible to load
data-only overlay segments by means of the autoload
mechanism (see Chapter 4).

NODSK No disk space is allocated to the named segment.

If a data overlay segment has no initial values, but
will have 1its contents established by the running
task, no space for the named segment on disk need be
reserved. If the code attempts to establish initial
values for data in a segment for which no disk space
is allocated (a segment with the NODSK attribute),
TKB gives a fatal error.

NOGBL The name is not entered in the segment's global
symbol table.

If the GBL attribute is not present, NOGBL is
assumed.

DSK Disk storage is allocated to the named segment.

If the NODSK attribute 1is not present, DSK is
assumed.

OVERLAY CAPABILITY

3.4.5.1 Example of The Use of The .NAME Directive - In the following
modified ODL file for TK1l (Figure 3-3 of Section 3.1.1), you provide
names for the three main branches, AQ, BO, and C, by specifying the
names in the .NAME directive and using them in the .ROOT directive.
The default attributes NOGBL and DSK are in effect for BRNCH1 and
BRNCH3, but BRNCH2 has the complementary attributes (GBL and NODSK)
that cause TKB to enter the name BRNCH2 into the segment's global
symbol table and suppress disk allocation for that segment. BRNCH2
contains uninitialized storage to be utilized at run time.

.NAME BRNCH1

.NAME BRNCH2, GBL, NODSK

.NAME BRNCH3 '

+ROOT CNTRL-!(BRNCH1-AFCTR, *BRNCH2-BFCTR, BRNCH3-C)

AFCTR: .FCTR AO-(Al,A2-(A21,A22))
BFCTR: .FCTR BO-*1(B1,B2)
.END

(The asterisk (*) is the autoload indicator; it is discussed in
Chapter 4.) '

You can load the data overlay segment BRNCH2 by including the
following statement in the program:

CALL BRNCH2

This action is immediately followed by an automatic return to the next
instruction in the program.

You can also use segment names in making patches with the ABSPAT and
GBLPAT options (see Chapter 11).

NOTE

In the absence of a unique .NAME specification, TKB
establishes a segment name, using the first module
name or library module name occurring in the segment.

3.4.6 .PSECT Directive

You can use the .PSECT directive to control the placement of a global
program section in an overlay structure. The name of the program
section (a 1- to 6-character name consisting of the Radix-50
characters A-Z, 0-9, and $) and its attributes are given in the .PSECT
directive. The attributes used in the .PSECT directive must match
those 1in the actual program section in the module. Thus, you can use
the name in a .ROOT or .FCTR statement to indicate to the Task Builder
the segment to which the program section will be allocated. An
example of the use of .PSECT is given in the modified version of task
TK1 (the original version is shown in Figure 3-3 in Section 3.1.1)
shown below.

In this example, TK1l has a disk-resident overlay structure. The
example assumes that the programmer was careful about the logical
independence of the modules in the overlay segment, but failed to take
into account the requirement for logical independence in multiple
executions of the same overlay segment. -

The flow of task TKl can be summarized as follows. CNTRL calls each
of the overlay segments, and the overlay segment returns to CNTRL in
the order A, B, C, A. Module A 1is executed twice. The overlay
segment containing A must be reloaded for the second execution.

OVERLAY CAPABILITY

Module A uses a common block named DATA3. The Task Builder allocates

DATA3 to the overlay segment containing A. The first execution of A

stores some results in DATA3. The second execution of A requires

these values. In this disk-resident overlay structure, however, the

values calculated by the first execution of A are overlaid. When the

segment containing A is read in for the second execution, the common -
block is in its initial state.

To permit the two executions of A to communicate, a .PSECT directive
is used to force the allocation of DATA3 into the root. The indirect
command file for TK1l, TFIL.ODL, is modified as follows:

.PSECT DATA3,RW, GBL, REL,OVR
.ROOT CNTRL-DATA3-(AFCTR,BFCTR,C)

AFCTR: .FCTR AO-(Al,A2-(A21,A22))
BFCTR: .FCTR BO-(B1,B2)
.END

The attributes RW, GBL, REL, and OVR are described in Chapter 2.

3.4.7 1Indirect Command Files

The Overlay Description Language processor can accept ODL text
indirectly, that is, specified in an indirect command file. If an at
sign (@) appears as the first character in an ODL line, the processor
reads text from the file specified immediately after the at sign. The
processor accepts the ODL text from the file as input at the point in
the overlay description where the file is specified.

For example, suppose you create a file, called BIND.ODL, that contains
the text:

B: .FCTR Bl1-(B2,B3)

A line beginning with @BIND can replace this text at the position
where the text would have appeared:

Indirect _ ‘ Direct
.ROOT A-(B,C) .ROOT A-(B,C)
C: .FCTR Cl1l-(C2,C3) C: .FCTR C1-(C2,C3)
@BIND B: .FCTR B1-(B2,B3)
.END . .END

The Task Builder allows two levels of indirection.

3.5 MULTIPLE-TREE STRUCTURES

You can define more than one tree within an overlay structure. These
multiple +tree structures consist of a main tree and one or more
co-trees. The root segment of the main tree 1is 1loaded by the
Executive when the task is made active, while segments within each
co-tree are loaded through calls to the overlay run-time routines.
Except for this distinction, all overlay trees have identical
characteristics: a root segment that resides in memory, and two or
more overlay segments.

OVERLAY CAPABILITY

The main property of a structure containing more than one tree is that
storage 1is not shared among trees. Any segment in a tree can be
referred to from another tree without displacing segments from the
calling tree. Routines that are called from several main tree overlay
segments, for example, can overlay one another in a co-tree. The same
considerations in deciding whether to create memory-resident overlays
or disk-resident overlays in a single-tree structure apply in building
a structure containing co-trees.

3.5.1 Defining a Multiple-Tree Structure

Multiple-tree structures are specified within the Overlay Description
Language by extending the function of the comma operator. As
described 1in Section 3.4, this operator, when included within
parentheses, defines a pair of segments that share storage. Including
the comma operator outside all parentheses delimits overlay trees.
The first overlay tree thus defined is the main tree. Subsequent
trees are co-trees. For example:

+ROOT X, Y
X: .FCTR X0-(X1,X2,X3)
Y: .FCTR YO0-(Y1l,Y2)
.END
In this example, two overlay trees are specified: 1) a main tree
containing the root segment X0 and three overlay segments; and 2) a
co-tree consisting of root segment Y0 and two overlay segments. The

Executive 1loads segment X0 into memory when the task is activated.
The task then loads the remaining segments through calls to the
overlay run-time routines.

3.5.1.1 Defining Co-trees With a Null Root by Using .NAME - A co-tree
must have a root segment to establish linkage with its own overlay
segments. However, co-tree root segments need not contain code or
data and, therefore, can 'be 0 length. You can create a segment of
this type, called a null segment, by means of the .NAME directive.
The previous example is modified, as shown below, to move file Y0.OBJ
to the root and include a null segment.

.ROOT X, Y

X: .FCTR X0-Y0-(X1,X2,X3)
.NAME YNUL

Y: .FCTR YNUL-(Y1,Y2)
.END

The null segment YNUL is created by using the .NAME directive, and
replaces the co-tree root that formerly contained YO0.OBJ.

3.5.2 Multiple-Tree Example

The following example illustrates the use of multiple trees to reduce
the size of the task.

In this example, the root segment CNTRL of task TK1 (described in
Section 3.1.1) has had two routines added to it: CNTRLX and CNTRLY.
The routines are 1logically independent of each other, and both are

OVERLAY CAPABILITY

approximately 4000(octal) bytes long. However, the routines have been
placed in the root segment of TKl instead of being overlaid because
both routines must be accessed from modules on all paths of the tree.
In a single-tree overlay structure, the root segment is the only
segment common to all paths of the tree. The schematic diagram for
the modified structure is shown in Figure 3-14.

A21 A22
A1 A2 B1 B2
AO BO T
l
CNTRLY
ROOT
CNTRLX SEGMENT
CNTRL

ZK-407-81

Figure 3-14 Overlay Tree for Modified TK1

One possible overlay description for this structure is shown below:

.ROOT CNTRL-CNTRLX-CNTRLY- (AFCTR, BFCTR,C)
AFCTR: .FCTR AO-(Al,A2FCTR)
A2FCTR: .FCTR A2-(A21,A22)
BFCTR: .FCTR BO-(B1,B2)
.END

Because TK1l consists of disk-resident overlays and the new routines
are concatenated within the overlay structure, the new routines add
10000(octal) bytes to both the virtual address space and physical
memory requirements of the task. However, the added routines consume
more virtual address space than might be expected, as shown in Figure
3-15.

The expansion of TKl's virtual address space requirements caused the
task to extend 4000(octal) bytes beyond the next highest 4K-word
boundary (APR 2). Because the Executive must use an additional
mapping register (APR2), the apparent cost in virtual address space
above APR 2 of 4000(octal) bytes is in fact 20000(octal) bytes.
(Compare the diagram in Figure 3-15 with the diagram in Figure 3-3.)
The shaded portion of the unused virtual address space in Figure 3-15
represents the portion of virtual address space that is allocated but
is unusable as allocated.

Small tasks, such as TK1l, are seldom adversely affected by the
inefficient allocation of virtual address space, but larger tasks may
be. For example, a large task that contains code to create dynamic
regions (see Chapter 5) or that contains Executive directives to
extend its task region (see the RSX-11M/M-PLUS Executive ' Reference
Manual) requires at 1least 4K words of virtual address space to map
each region. In such a task, using co-trees can often save virtual
address space and can, therefore, be of paramount importance. TK1l can
be modified to reflect this.

/"‘\

OVERLAY CAPABILITY

APR7—
APR6—
APR5—
APR4—
APR3—
A21]A22 B A21[A22
APR2— | A1 B1 [— A B1
A2 B2| C : A2 B2| C
r | BO A [Bo
CNTRLY | CoNTRLY
NTRLX — TRLX
APRI- fo — — SNIRRX L SNIRL
ROOT
SEGMENT CNTRL CNTRL
APRO- HEADER AND STACK " HEADER AND STACK
VIRTUAL ADDRESS
SPACE

PHYSICAL MEMORY

ZK-408-81

Figure 3-15 Virtual Address Space and Physical Memory
for Modified TK1

As noted earlier, the routines CNTRLX and CNTRLY are logically
independent. Logical independence 1is a primary requirement for all
segments that overlay each other. However, CNTRLX and CNTRLY cannot
be structured into either of the main branches of TKl's tree because
it is further required that the routines be accessible from modules on
all paths of the tree. Therefore, the only way CNTRLX and CNTRLY can
be overlaid and still meet all of these requirements is through a
co-tree structure. Figure 3-16 shows the schematic representation of
TK1l as a co-tree structure.

OVERLAY CAPABILITY

A21 A22
A1l A2 B1 B2
L__'__I
A0 BF ’ T CNTRLX CNTRLY
CNTRL | CNTRL2
MAIN TREE CO-TREE

ZK-409-81

Figure 3-16 Overlay Co-Tree for Modified TKl

The root segment CNTRL2 of the co-tree is a null segment. It contains
no code or data and has a length of 0. As noted earlier, the Task
Builder requires the root segment in order to establish linkage with
the overlay segments. One possible overlay description for building
TK1l as a 2-tree structure is shown below. '

.NAME CNTRL2

.ROOT CNTRL-(AFCTR,BFCTR,C),CNTRL2~(CNTRLX, CNTRLY)
AFCTR: .FCTR AO-(Al,A2FCTR)
A2FCTR: .FCTR A2-(A21,A22)
‘BFCTR: .FCTR BO-(B1l,B2)

.END

You define the co-tree in the .ROOT directive by placing the comma
operator outside all parentheses (immediately before CNTRL2). The
.NAME directive creates the null root segment. Figure 3-16 shows the
new relationship between virtual address space and physical memory.

The diagrams in Figure 3-17 illustrate the savings (4000(octal) bytes)
in Dboth virtual address space and physical memory that is realized by
overlaying CNTRLX and CNTRLY. What may be more important in some
applications, however, 'is that the top of TKl's task region has
dropped below the 4K-word boundary of APR 2. TK1 has gained 4K words
of potentially usable virtual address space.

NOTE

The numbers used in this example have been simplified
for illustrative purposes. In addition, the storage
required for overhead in handling the overlay
structures is not reflected in this example.

Because the null root CNTRL2 is O bytes long, it does not require any
virtual address space or physical memory and, therefore, does not
appear in the diagrams in Figure 3-17.

Finally, you can define any number of co-trees. Additional co-trees
can access all modules in the main tree and other co-trees.

OVERLAY CAPABILITY

A
APR 7—
APR 6—
APR 5—
APR 4—
APR 3—
APR 2—
CNTRLX CNTRLY NULL ROOT CNTRLX CNTRLY
A21[A22 LENGTH=0 A21]A22
Al B1 Al B1
A2 B2 | C A2 B2 | C
‘ AO BO S AO BO
APR 1—
CNTRL ' CNTRL
(ROOT SEGMENT) : (ROOT SEGMENT)
HEADER AND STACK HEADER AND STACK
APRO— b 777727
VIRTUAL ADDRESS SPACE

PHYSICAL MEMORY

ZK-410-81

Figure 3-17 Virtual Address Space and Physical Memory
for TK1 As a Co-Tree

3.€ CREATING AN ODL FILE FROM A VIRTUAL ADDRESS SPACE ALLOCATION
DIAGRAM

You can use a graphic method as an aid to converting a virtual address
space allocation diagram into the correct Task Builder ODL file.

OVERLAY CAPABILITY

First create a virtual address space allocation diagram of your
overlaid task, similar to that shown in Figure 3-18, without the
dotted-line path shown in the diagram.

A21 A22

E E ‘-ooo-cvnodboc---'oo:

PAT A o

§ H &3 A2 : B2 C
; El."“".“>.":

: \/ : Y

E AO :-»‘ BO teeses ».-.:
i :
: !
é ROOT (CNTRL) ¢

ZK-1052-82

Figure 3-18 Virtual Address Space Allocation Diagram

The dotted-line path will be the basis for writing the ODL statements
that ‘'you need. To determine the path through your virtual address
space allocation diagram, follow these steps:

1. Start in the lower left corner of the root segment.

2. Draw a dotted line upward as far as you can go without
passing through the top or into ‘"empty" virtual space,
crossing into new segments as needed.

3. When you reach the top segment, proceed to the right until
you reach a vertical line.

4. If the end of your dotted line is now opposite the vertical
line of the 1lowest segment, cross the vertical line and
continue again from step 2; otherwise, proceed to step 5.

5. Because the end of your dotted 1line is not opposite the
vertical 1line of the lowest segment proceed downward until
you reach the lowest segment.

6. If you are not in the root, cross the vertical 1line to the
right and continue from step 2; otherwise, proceed to step 7.

7. If your dotted line is in the lower right corner of the root,
you have finished the dotted-line walk.

Once you have drawn the dotted line, you should go back over it to
verify that you followed all the steps. While doing this, draw
arrowheads at each point where a line was crossed to indicate the
direction of the line.

N

OVERLAY CAPABILITY
3.6.1 Creating a .ROOT Statement by Using a Virtual Address Space
Allocation Diagram
Now you are ready to write the .ROOT statement. Follow these steps:

1. Write .ROOT followed by the name of the root statement (in
this example, .ROOT CNTRL).

2. Follow the dotted-line path.

3. Add each successive ODL element to your root statement, using
the following syntax, based on the direction of your dotted
line.

A. At an upward crossing: -("name of new segment"
B. At a horizontal crossing: ,"name of new segment”

C. At a downward crossing:)

4. When you have returned to the root, your root statement 1is
complete.

Using the dotted-line path in Figure 3-18 and the above associated
steps for writing the .ROOT statement, you can write as shown below:

l. Step 1 : Write .ROOT CNTRL

2. Step 3A: Write .ROOT CNTRL-(AO

3. Step 3A: Write .ROOT CNTRL-(AO-(Al

4. Step 3B: Write .ROOT CNTRL-(AO-(Al,A2

5. Step 3A: Write .ROOT CNTRL-(AO-(Al,A2-(A21

6. Step 3B: Write .ROOT CNTRL-(AO-(Al,A2-(A21,A22

7. Step 3C: Write .ROOT CNTRL—(AO—(AI(AZ—(AZI,A22)

8. Step 3C: Write .ROOT CNTRL-(AO0-(Al,A2-(A21,A22))

9. Step 3B: Write .ROOT CNTRL-(AO-(Al,A2-(A21,A22)),BO
10. Step 3A: Write .ROOT CNTRL-(AO-(Al,A2-(A21,A22))-BO-(Bl
11. Step 3B: Write .ROOT CNTRL-(AO-(Al,A2-(A21,A22))-B0O-(B1l,B2
12. Step 3C: Write .ROOT CNTRL-(AO-(Al,A2-(A21,A22))-B0-(B1l,B2)
13. Step 3B: Write .ROOT CNTRL-(AO-(Al,A2-(A21,A22))-B0-(B1,B2),C
14. Step 3C: Write .ROOT CNTRL-(AO-(Al,A2-(A21,A22))-B0O-(B1,B2),C)

The steps for writing .FCTR statements and co-tree statements follow
next.

OVERLAY CAPABILITY

3.6.2 Creating a .FCTR Statement by Using a . Virtual Address Space
Allocation Diagram

By using the steps for creating a .ROOT statement from a virtual
address space allocation diagram, you created the following .ROOT
statement.

.ROOT CNTRL-(AO-(Al,A2~(A21,A22))-B0-(B1,B2),C)

It may be desirable to simplify your specific .ROOT statement into one
or more .FCTR statements. A technique similar to the one used to
create the .ROOT statement may be used to create the .FCTR statement.

In this example, segments AO, Al, A2, A2l, and A22 are selected to Dbe
in the .FCTR statement. Having selected these segments (normally
related as a "stack" of segments) you are now ready to write down the
.FCTR statement.

First, draw a virtual address space allocation diagram of the segments
that you have selected. (You may use Figure 3-18 for this
explanation.) Then follow these next steps to draw a dotted-line path
through the diagram:

1. Start in the lower left corner of the lowest or "base"
segment (AO) in your diagram. ‘

2. Draw a dotted line upward as far as you can go without
passing through the top or into empty virtual space, crossing
into new segments as needed.

3. When you reach the top segment, proceed to the right until
you reach a vertical line. '

4. If the end of your dotted line is now opposite the vertical
line of the 1lowest segment, cross the vertical line and
continue again from step 2; otherwise, proceed to step 5.

5. Because the end of your dotted 1line is not opposite the
vertical 1line of the lowest segment, proceed downward until
you reach the lowest segment.

6. If you are not in the base segment (A0), cross the vertical
line to the right and continue from step 2; otherwise,
proceed to step 7.

7. If your dotted line is in the lower right corner of the Dbase
segment, you have finished the dotted-line walk.

Once you have drawn the dotted line, you should go back over it to
verify that you followed all the steps. While doing this, draw
arrowheads at each point where a line was crossed to indicate the
direction of the line.

Now you are ready to write the .FCTR statement. Follow these next
steps:

1. Write a label followed by .FCTR, which is in turn followed by
the name of the first segment (A0) (in this example, AFCTR
.FCTR AO0)

2. Follow the dotted-line path.

TN

OVERLAY CAPABILITY

3. Add each successive ODL element to your root statement, using
the following syntax, based on the direction of your dotted
line.

A. At an upward crossing: ("name of new segment"
B. At a horizontal crossing: ,"name of new segment"

C. At a downward crossing:)

4. When you have returned to the base segment, your .FCTR
statement is complete.

Using the dotted line path and the above associated steps for writing
the .FCTR statement, you can write as shown below:

l. Step 1 : Write AFCTR .FCTR AO

2. Step 3A: Write AFCTR .FCTR AO-(Al

3. Step 3B: Write AFCTR .FCTR AO-(Al,A2

4. Step 3A: Write AFCTR .FCTR AO-(Al,A2-(A21

5. Step 3B: Write AFCTR .FCTR AO-(Al,A2-(A21,A22
6. Step 3C: Write AFCTR .FCTR AO—(Al,A2—(A21;A22)
7. Step 3C: Write AFCTR .FCTR AO-(Al,A2-(A21,A22))

You have now reached the base segment and have written the two ODL
statements:

.ROOT CNTRL-(AO-(Al,A2-(A21,A22))-B0O-(B1l,B2),C)
AFCTR: .FCTR AO-(Al,A2-(A21,A22))

The last step requires that you substitute the label, AFCTR, into the
.ROOT statement, which results in:

«.ROOT CNTRL-AFCTR-BO-(B1,B2),C)
AFCTR: .FCTR AO-(Al,A2-(A21,A22))

Additional .FCTR statements would be determined and written in the
same way. For example, you could write a .FCTR statement labeled
BFCTR for the segments BO, Bl, and B2.

The following section shows how to write an ODL statement for a
co-tree by using the same methods.

3.6.3 Creating an ODL Statement for a Co-Tree by Using a Virtual
Address Space Diagram

Assuming that you want to write an ODL statement for a co-tree like
the one 1in Figure 3-19, you would have two virtual address space
allocation diagrams, one for the main tree and one for the co-tree.
These two diagrams are shown in Figure 3-19. :

OVERLAY CAPABILITY

A21 | A22
A1 B1
A2 B2 | C
A0 BO CNTRLX CNTRLY
ROOT (CNTRL) CNTRL2
MAIN TREE CO-TREE

ZK-1051-82

Figure 3-19 Virtual Address Space Allocation for a Main Tree
and Its Co-Tree

From Figure 3-19 you see that the co-tree is a stack of segments also.
Therefore, it 1is possible to write the statement for the co-tree in
the same fashion and with the same rules as that described in Section
3.6. However, certain facts must be kept in mind. These are that:

® The co-tree has a null root
® A .NAME statement must be used to name the null root

® A comma must be placed outside of the parentheses and at the

end of that part of the .ROOT statement that defines the main
tree

Therefore, the ODL statement that we obtain before writing the co-tree
part is:

-NAME CNTRL2
«ROOT CNTRL-AFCTR-BO-(B1,B2),C),
AFCTR: .FCTR AO-(Al,A2-(A21,A22))

By following the rules in Section 3.6 and by using the diagram in
Figure 3-19, you can then create the ODL statement:

- NAME CNTRL2

«-ROOT CNTRL-AFCTR-BO-(B1l,B2),CNTRL2- (CNTRLX,CNTRLY)
AFCTR: .FCTR AO-(Al,A2-(A21,A22))

3.7 OVERLAYING PROGRAMS WRITTEN IN A HIGH-LEVEL LANGUAGE

Programs written in a high-level language usually require the use of a
large number of library routines in order to execute. Unless care is
taken when overlaying such programs, the following problems can occur:

® TKB throughput may be drastically reduced because of the
number of library references in each overlay segment.

® Library references from the default object module library that
are resolved across tree boundaries can result in
unintentional displacement of segments from memory at run
time.

OVERLAY CAPABILITY

e Attempts to task-build such programs can result in multiple
and ambiguous symbol definitions when a co-tree structure is
defined.

The following procedures are effective in solving these problems:

® You can increase TKB throughput by 1linking commonly used
library routines into the main root segment.

® You can eliminate ambiguous definitions, multiple definitions,
and cross-tree references by using the NOFU switch (the TKB
default) to restrict the scope of the default library search.
However, restricting the scope of the default library search
may also cause problems.

If sufficient memory is available, you can effectively place the
object time system in the root segment by building a memory-resident
library. This also reduces total system memory requirements if other
tasks are also currently using the library.

If a memory-resident library cannot be built, you can force library
modules into the root by preparing a list of the appropriate global
references and linking the object module into the root segment.

For other ways to reduce task size, you should consult the wuser's
guide for the language you are using.

3.8 EXAMPLE 3-1: BUILDING AN OVERLAY

The text in this section and the figures associated with it illustrate
the building of an overlay structure. For this example, the routines
of the resident library LIB.TSK and the task that refers to it,
MAIN.TSK (from Example 5-3, Chapter 5), are assembled as separate
modules and built as an overlaid task. This task is built first with
disk-resident overlays and then with memory-resident overlays. The
disk-resident version of the task is named OVR.TSK and the
memory-resident version is named RESOVR.TSK.

NOTE
This example is intended to provide you with a working
illustration of the Overlay Description Language. It
does not reflect the most efficient use of it.

Two alterations were made to each of the routinesrfor this example:

e ‘A .TITLE and .END assembler directive was added to each
routine to establish it as a unique module.

® The following assembler directive was added to each arithmetic
routine to increase its allocation:

.BLKW 1024.*3

This was done to make TKB allocation of address space more
obvious for documentation purposes.

OVERLAY CAPABILITY

The operation of the overlaid task is identical to that of Example 5-3

in Chapter 5.

directives are as follows:

The lengths

The routines and their titles as a result of the

The integer addition routine is named ADDOV.

The integer subtraction routine is named SUBOV.

The integer multiplication routine is named MULOV.

The integer division routine is named DIVOV.

The register save and restore routine is named SAVOV.

The print routine is named 'PRNOV.

The main calling routine is named ROOTM.

Module

ADDOV

SUBOV

MULOV

DIVov

SAVOV

PRNOV

ROOTM

of the modules are:

Length (in Octal)

14024 bytes
14024 bytes
14024 bytes
14026 bytes
4042 bytes
4260 bytes
4104 bytés

The flow of control for OVR.TSK is as follows:

ROOTM calls

ROOTM calls
ROOTM.

ROOTM calls

ROOTM calls
ROOTM.

ROOTM calls:

ROOTM calls
ROOTM.

ROOTM calls

ROOTM calls
ROOTM.

ADDOV

PRNOV

SUBOV

PRNOV

DIVOV

PRNOV

MULOV

PRNOV

and ADDOV returns to ROOTM.

to print the result and PRNOV

and SUBOV returns to ROOTM.

to print the result and PRNOV

and DIVOV returns to ROOTM.

to print the result and PRNOV

and MULOV returns to ROOTM.

to print the result and PRNOV

.TITLE
returns to
returns @ to
returns to
returns to

OVERLAY CAPABILITY

The print routine (contained in module PRNOV) is called Dbetween each
arithmetic operation by the control routine (contained in module
ROOTM). To avoid loading it into physical memory each time it is
called, you can place PRNOV in the root segment of the task. 1In
addition, each arithmetic routine calls SAVOV. Therefore, SAVOV must
be on a path common to all segments in the tree. It too is placed in
the root segment of the task. One possible overlay configuration for
this task is shown in Figure 3-20.

SUBOV DIVOV
MULOV ADDOV
T
SAVOV
ROOT
PRTOV SEGMENT
ROOTM

ZK-490-81

Figure 3-20 Overlay Tree of Virtual Address Space for OVR.TSK

To build this overlay, first create an ODL file (OVERTREE.ODL) that
contains its description:

. ROOT ROOTM-PRNOV-SAVOV-* (MULOV, ADDOV- (SUBOV, DIVOV))
.END

Then, after you have modified the modules and assembled them, you can
build the task with the following TKB command line: :

>TKB OVR, OVR/-SP,=0VRTREE/MP
or the following LINK command line:
>LINK/TAS :OVR/MAP :OVR/NOPRINT OVRTREE/OVER

This command instructs TKB to build a task image, OVR.TSK, and to
create a map file, OVR.MAP, under the UFD that corresponds to the
terminal UIC. The negated spool switch /-SP or /NOPRINT as a LINK
qualifier inhibits TKB from spooling the map file to the line printer.

The overlay switch /MP attached to the input file or /OVER as a file
qualifier tells TKB that the input file is an ODL file. Therefore,
this file will be the only input file specified. Refer to Chapter 10
for a description of the switches and Chapter 11 for the qualifiers
used in this example.

A'portion of the map that results from this task build 1is shown in
Example 3-1.

3-43

OVERLAY CAPABILITY

Example 3-1 Map File for OVR.TSK

OVR.TSK Memory allocation map TKB M40.10
01-JAN-82 10:06

Partition name : GEN

Identification : 01

Task UIC : [7,62]

Stack limits: 000260 001257 001000 00512.
PRG xfr address: 001264

Total address windows: 1.

Task image size : 7488. words

Task address limits: 000000 035107
R-W disk blk limits: 000002 000073 000072 0005

OVR.TSK Overlay description:

Base Top Length
OOOOQOi 005033i 005034 02588. ROOTM

8.

005034 021057 014024 06164. - MULOV

005034 021057 014024 06164. ADDOV

021060 035103| 014024 06164. SUBOV

021060 035107 | 014030 06168. DIVOV

*** Root segment: ROOTM

R/W mem limits: 000000 005033 005034 02588.

Disk blk limits: 000002 000007 000006 00006.

Memory allocation synopsis:

~ Section Title

- BLK.:(RW, I, LCL,REL,CON) 001260 002514 01356.
001260 000102 00066. ROOTM
001362 000260 00176. PRNOV
001642 000042 00034. SAVOV

ANS : (RW, D, GBL, REL,OVR) 003774 000002 00002.
003774 000002 00002. ROOTM
003774 000002 00002. PRNOV

Global symbols:

Page 1

Ident File

AADD 004032-R DIVV 004052-R PRINT 001550-R SUBB

MULL 004022-R SAVAL 001642-R

.

*** Task builder statistics:

Total work file references: 6363.

Work file reads: O.

Work file writes: O.

Size of core pool: 7086. words (27. page

s)

Size of work file: 3072. words (12. pages)

Elapsed time:00:00:14

©3-44

ROOTM.OBJ ;1
PRNOV.OBJ;1
SAVOV.OBJ;1

- ROOTM.OBJ; 1
PRNOV.OBJ;1

004042~-R

OVERLAY CAPABILITY

Figure 3-21 shows the allocation of virtual address space for OVR.TSK.
The circled numbers in Example 3-1 correspond to those in Figure 3-21.

160000 APR 7—

140000 APR 6—

120000 APR 5—

100000 APR 4—

60000 APR 3—

4 — 035107

SUBOV| DIVOV

¢

40000 APR 2—

— 021057
MULOV ' ADDOV ‘_\0
— 005033
20000 APR 1— SYsLIB
SAVOV
PRNOV
R]
PRNOV 0OT SEGMENT

. — 001257
EADER AND STACK
0 APR 0—- H > — 000000

v

ZK-411-81

Figure 3-21 Allocation of Virtual Address Space for OVR.TSK

OVERLAY CAPABILITY

Note that the root segment for OVR.TSK (ROOTM) has expanded with task
building while the segments containing the arithmetic routines have
not. Before task building, the sum of the modules (in octal bytes)
that comprise the root segment is:

4104 + 4260 + 4042 = 14,426 bytes

After task building, the root segment 1is 20,677(octal) Dbytes long.
TKB has added a header, a stack area, and the overlay run-time
routines to it. The segments containing the arithmetic routines have
not changed. If there had been calls from segments nearer the root to
segments farther up the tree, the Task Builder would have added data
structures to the calling segments as well. (Refer to Chapter 4 for a
description of the overlay loading methods.)

You can build OVR as a memdry—resident overlay by simply -adding the
memory-resident operator (!) to the ODL file for OVR as shown below:

.ROOT ROOTM-PRNOV~-SAVOV-* ! (MULOV, ADDOV-! (SUBOV, DIVOV))
.END

For this example, the name of the ODL file and the task image file
have been changed * to RESOVR.ODL to distinguish it from the
disk-resident version.

You can build RESOVR with the TKB command line

>TKB RESOVR, RESOVR/-SP, =RESOVR/MP

or the LINK command line

>LINK/TASK:RESOVR/MAP : RESOVR/NOPRINT RESOVR/OVER

These commands direct TKB to build a task named RESOVR.TSK and to
create a map file named RESOVR.MAP. The negated spooling switch /-SP
or /NOPRINT as a LINK qualifier inhibits spooling of the map file.

The /MP switch on the input file or /OVER as a file qualifier tells
TKB that the file is an ODL file and that it will be the only input
file for this task build. Refer to Chapter 10 for a description of
the switches and Chapter 11 for the qualifiers used in this example.

A portion of the map that results from this task build 1is shown in
Example 3-2.

Figure 3-19 shows the allocation of virtual address space for

RESOVR.TSK. The circled numbers in Example 3-2 correspond to those in
Figure 3-22.

Example 3-2 Map File for RESOVR.TSK

Partition name : GEN
Identification : Ol
Task UIC : [7.62]

Stack limits: 000320 001317 001000 00512.

PRG xfr address: 001324

Total address windows: 3.

Task image size : 13920. words

Task address limits: 000000 057777

R-W disk blk limits: 000003 000074 000072 00058.

(continued on next page)

OVERLAY CAPABILITY

Example 3-2 (Cont.) Map File for RESOVR.TSK

(RESOVR.TSK Overlay description:
Base Top Length i
OOOOOOT 005677? 005700 03008. ROOTM
020000 034077 014100 06208. MULOV
020000 }+034077 4014100 06208. ADDOV
040000 |054077 (014100 06208. SUBOV

0400001},/054077 [;|014100 06208. DIVOV

.

*** Root segment: ROOTM

R/W mem limits: 000000 005677 005700 03008.
Disk blk limits: 000003 000010 000006 00006.

Memory allocation synopsis:

(Section ' Title 1Ident File

. BLK.:(RW,I,LCL,REL,CON) 001320 002514 01356.

- 001320 000102 00066. ROOTM 01 ROOTM.OBJ;1

001422 000260 00l176. PRNOV 01 PRNOV.OBJ; 1

001702 000042 00034. sAvVOovV 01 SAVOV.OBJ;1
ANS : (RW, D, GBL, REL,OVR) 004034 000002 00002.

004034 000002 00002. ROOTM 01 ROOTM.OBJ;1

004034 000002 00002. PRNOV 01 PRNOV.OBJ;1

Global symbols:

AADD 004072-R DIVV 004112-R PRINT 001610-R SUBB 004102-R
MULL 004062-R SAVAL 001702-R

.

*** Task builder statistics:

(Total work file references: 6938.
S Work file reads : O.
Work file writes : O.

Size of core pool: 4178. words (l6. pages)
Size of work file: 3072. words (l12. pages)

Elapsed time:00:00:21

Note that TKB allocates virtual address space for each level of
overlay segment on a 4K-word boundary. When built as a disk-resident
overlay, this structure requires 12K words of virtual address space;
when built as a memory-resident overlay structure, it requires 16K
words of virtual address space. As noted earlier, you must be careful
when using memory-resident overlays to ensure that virtual address
space is used efficiently.

/f"\

OVERLAY CAPABILITY

160000 APR 7—

140000 APR 6—

120000 APR 5—

100000 APR 4—

— 054077

SUBOV| DIvov

y

— 040000
— 034077

60000 APR 3—

MULOV ADDOV

“

40000 APR 2— | — 020000

(

— 05677

20000 APR 1— SYSLIB
SAVOV
PRNOV
ROOTM

/

ROOT SEGMENT

- 001317
HEADER AND STACK
0 APR 0— — 000000

“

ZK-412-81

Figure 3-22 Allocation of Virtual Address Space for RESOVR.TSK

3.9 WINDOW BLOCKS IN OVERLAYS

Finally, note in Figure 3-22 that TKB has allocated three window
blocks to map RESOVR.TSK. Each level of the overlay in a
memory-resident overlay requires a separate window block to map it.
In a disk-resident overlay, a single window block maps the entire
structure regardless of how many segment levels there are within the
structure. This consideration can be important when you are building
an overlaid task that either creates dynamic regions or accesses a
resident library or common, because of the extra window blocks
required to use these features.

OVERLAY CAPABILITY
3.10 SUMMARY OF THE OVERLAY DESCRIPTION LANGUAGE

® An overlay structure consists of one or more trees. Each tree
contains at least one segment. A segment is one or more
modules containing one or more program sections that can be
loaded by a single disk access.

A tree can have only one root segment, but it can have any
number of overlay segments.

® An ODL file is a text file consisting of a series of overlay
description directives, one directive per line. You enter
this file in the TKB or LINK command line, and identify it as
an ODL file by attaching the /MP switch for TKB or the
/OVERLAY_ DESCRIPTION qualifier for LINK to the file name. If
you enter an ODL file in the TKB or LINK command line, it must
be the only input file you specify.

® The Overlay Description Language provides five directives for
specifying the tree repreésentation of the overlay structure:

- .ROOT and .END -- There can be only one .ROOT and one .END
directive; the .(END directive must be the last directive
because it terminates input.

- .PSECT, .FCTR, and .NAME -- These can be used in any order
in the ODL file.

® You define the tree structure using the hyphen (-), comma (,),
and exclamation point (!) operators, and by using parentheses.

- The hyphen operator (-) indicates that its arguments are to
be concatenated and thus are to coexist in memory.

- The comma operator (,) within parentheses indicates that
its arguments are to overlay each other either physically,
if disk resident, or virtually, if memory resident.

- The comma operator not within parentheses delimits overlay
trees.

- The exclamation point operator (!) immediately before a
left parenthesis declares the enclosed segments to be
memory resident. Nested segments in parentheses are not
affected by an exclamation point operator at a level closer
to the root.

- The parentheses group segments that begin at the same point
in memory. For example:

.ROOT A-B-(C,D-(E,F))

This ODL command line defines an overlay structure with a
root segment consisting of the modules A and B. In this
structure, there are four overlay segments: C, D, E, and
F. The outer pair of parentheses indicates that the
overlay segments C and D start at the same virtual address;
and similarly, the inner parentheses indicate that E and F
start at the same virtual address.

OVERLAY CAPABILITY

The .ROOT directive defines the beginning overlay structure.
The arguments of the .ROOT directive are one or more of the
following:

- File specifications as described in Chapter 1

- Factor labels

- Segment names

- Program-section names

The .END directive terminates input.

The .FCTR directive provides a means for replacing text by a

symbolic reference (the factor label). This replacement is

useful for two reasons:

- The .FCTR directive extends the text of the .ROOT directive
to more than one line and thus allows complex trees to be
represented.

- The .FCTR directive allows you to write the overlay
description in a form that makes the structure of the tree
more apparent.

For example:

.ROOT A-(B-(C,D),E-(F,G),H)
.END

Using the .FCTR directive, you can write this overlay
description as follows:

.ROOT A-(F1,F2,H)

Fl: .FCTR B-(C,D)
F2: .FCTR E-=(F,G)
.END

The second representation makes it clear that the tree has
three main branches.

The .PSECT directive provides a means for directly specifying
the segment in which a program section is placed. It accepts
the name of the program section and its attributes. For
example:

.PSECT ALPHA,CON,GBL,RW, I,REL

" ALPHA is the program section name and the remaining arguments
are the program section's attributes (program section
attributes are described in Chapter 2).

The program section name (composed of the characters A-Z, 0-9,
$, or .) must appear first in the .PSECT directive, but the
attributes can appear in any order or can be omitted. If an
attribute 1is omitted, a default condition is assumed. The
defaults for program section attributes are RW, I, LCL, REL,
and CON.

In the example above, therefore, you need only specify the
attributes that do not correspond to the defaults: .PSECT
ALPHA, GBL

3-50

/ \

OVERLAY CAPABILITY

The .NAME directive provides you with the means to designate a

segment name for use in the overlay description, and to

specify segment attributes. This directive 1is wuseful for

creating a null segment, naming a segment that is to be loaded

manually, or naming a nonexecutable segment that is to be

autoloadable. (Refer to Chapter 4 of this manual for a

description of manually loaded and automatically loaded -
segments.) If you do not use the .NAME directive, the Task

Builder uses the name of the first file, program section, or

library module in the segment to identify the segment.

The .NAME directive creates a segment name as follows:
.NAME segname,attr,attr
segname
is tﬁe designated name (composed of the characters A-3Z,

0-9, and §$). :

attr

is an optional attribute taken from the following: GBL,
NODSK, NOGBL, DSK.

The defaults are NOGBL and DSK. The defined name must be
unique with respect to the names of program sections,
segments, files, and factor labels.

You can define a co-tree by specifying an additional tree

structure in the .ROOT directive. The first overlay tree

description in the .ROOT directive 1is the main tree.

Subsequent overlay descriptions are co-trees. For example:
.ROOT A-B-(C,D-(E,F)),X-(Y,Z),0Q-(R,S,T)

The main tree in this example has the root segment consisting

of files A.OBJ and B.OBJ. Two co-trees are defined; the first

co-tree has the root segment X and the second co-tree has, the
root segment Q.

3-51

N

CHAPTER 4

OVERLAY LOADING METHODS

The RSX-11M/M-PLUS systems provide two methods for loading

‘disk-resident and memory-resident overlays:

e Autoload -- The overlay run-time routines are automatically
called to load segments you have specified.

® Manual Load -- You include in the task explicit calls to the
overlay run-time routines.

When you build an overlaid task, you must decide which one of these
methods to use, because both cannot be used in the same task.

The loading process depends on the kind of overlay:

® Disk resident -- A segment is loaded from disk into a shared
area of physical memory, writing over whatever was present.

® Memory resident -- A segment is loaded by mapping a set of
shared virtual addresses to a unique unshared area of physical
memory, where the segment has been made permanently resident
(after having been initially brought in from the disk).

With the autoload method, the overlay run-time routines handle loading
and error recovery. Overlays are automatically 1loaded by being
referenced through a transfer-of-control instruction (CALL, JMP, or
JSR). No explicit calls to the overlay run-time routines are needed.

In the manual load method, you handle 1loading and error recovery
explicitly. Manual 1loading saves space and gives you full control
over the loading process, including the ability to specify whether
loading is to be done synchronously or asynchronously.

In the manual load method, you must provide for loading the overlay
segments of the main tree, as well as the root segments and the
overlay segments of the co-trees. Once loaded, the root segment of .a
co-tree remains in memory.

4.1 AUTOLOAD

To specify the autoload method, you use the autoload indicator, an
asterisk (*). You place this indicator in the ODL description of the
task at the points where loading must occur. The execution of a
transfer-of-control instruction to an autoloadable segment up-tree
(farther away from the root) initiates the autoload process.

OVERLAY LOADING METHODS

4.1.1 Autoload Indicator

The autoload indicator (*) marks as autoloadable the segment or other
task element (as defined below). If you apply the autoload indicator
to an ODL statement enclosed in parentheses, every task element within
the parentheses is marked as autoloadable. Placing the autoload
indicator at the outermost level of parentheses in the ODL description
marks every module in the overlay segments as autoloadable.

In the TKl example of Chapter 3, Section 3.1.1, if segment C consisted
of a set of modules Cl, C2, C3, C4, and C5, the tree diagram would be
as shown in Figure 4-1.

A21 A22 o5
! c4
A1l A2 B1 B2 o3
, c2

AO BO o

[| |

T
CNTRL

ZK-413-81

Figure 4-1 Details of Segment C of TKl

Placing the autoload indicator at the outermost level of parentheses
ensures that, regardless of the flow of control within the task, a
module will be properly loaded when it is called. The ODL description
for task TK1l would be:

.ROOT CNTRL-* (AFCTR, BFCTR,CFCTR)

AFCTR: .FCTR AO~(Al,A2-(A21,A22))
BFCTR: .FCTR BO-(B1,B2)
CFCTR: .FCTR Cl1-C2-C3-C4-C5

.END

When you use autoload, the root of a co-tree is loaded by path loading
if one of the branches of the co-tree is called before the root.
However, if the root of the co-tree is called Dbefore the branch is
called, the root must have an autoload indicator.

Also, when the root segment of a co-tree is not a null segment, you
must mark the co-tree's root segment (CNTRL2) as well as its outermost
level of parentheses to ensure that all modules of the co-tree are
properly loaded. For example, if the co-tree root (CNTRL2) of the
multiple tree example, Section 3.5.2, had contained code or data, it
would have been marked as follows:

.ROOT CNTRL-* (AFCTR,BFTCR,CFCTR), *CNTRL2-* (CNTRLX, CNTRLY)

.
.

.

You can apply the autoload indicator to the following elements:

® File names -- to make all the components of the file
autoloadable.

® Portions of ODL tree descriptions enclosed in
parentheses -- to make all the elements within the parentheses
autoloadable, including elements within any nested
parentheses.

OVERLAY LOADING METHODS

® Program section names -- to make the program section
autoloadable. The program section must have the instruction
(I) attribute.

® Segment names defined by the .NAME directive -- to make all
components of the segment autoloadable.

e .FCTR label names -- to make the first component of the factor
autoloadable. All elements specified in the .FCTR statement

are autoloadable if they are enclosed in parentheses.
In the following example, two .PSECT directives and a .NAME directive
are introduced into the ODL description for TKl. Autoload indicators
are applied as follows:

.ROOT CNTRL-(*AFCTR, *BFCTR, *CFCTR) (1]

AFCTR: .FCTR AO-*ASUB1-ASUB2-*(Al,A2-(A21,A22)) @ ©
BFCTR: .FCTR (BO-(B1,B2))
CFCTR: .FCTR CNAM-C1-C2-C3-C4-C5

.NAME CNAM,GBL @

.PSECT ASUB1,I,GBL,OVR @
.PSECT ASUB2,I,GBL,OVR
.END

The following notes are keyed to the example above.

@ The autoload indicator is applied to each factor name;
therefore:

a. *AFCTR=*A0
b. *BFCTR=*(B0-(Bl,B2))
c. *CFCTR=*CNAM

CNAM, however, is an element defined by a .NAME directive.
Therefore, all components of the segment to which the name
applies are made autoloadable, that is, Cl, C2, C3, C4, and
C5.

@® The autoload indicator is applied to the name of a program
section with the instruction (I) attribute (*ASUBl), so that
program section ASUBl is made autoloadable.

© The autoload indicator is applied to a portion of the ODL
description enclosed in parentheses:

*(Al,A2-(A21,A22))

Thus, every element within the parentheses is made
autoloadable (that is, files Al, A2, A21l, and A22).

The net effect of this ODL description is to make every element except
program section ASUB2 autoloadable.

4.1.2 Path Loading

The autoload method uses path loading; that 1is, a call from one
segment to another segment up-tree (farther away from the root)
ensures that all the segments on the path from the calling segment to
the called segment will reside in physical memory and be mapped. Path
loading is confined to the tree in which the called segment resides.

OVERLAY LOADING METHODS

A call from a segment in one tree to a segment in another tree results
in the loading of all segments on the path in the second tree from the
root to the called module.

In Figure 4-2, if CNTRL calls A22, all the modules between the CNTRL
and A2 are loaded. In this case, modules A0 and A2 are loaded.

A21 A22 ' .
L__j__J Cb

) C4
A1l A2 B1 B2 c3
| Cc2

A0 BO C1

L i - |
CNTRL

ZK-414-81

Figure 4-2 Path-Loading Example

With the autoload method, the overlay run-time routines keep a record
of the segments that are 1loaded and mapped, and issue disk-load
requests only for segments that are not in memory. If CNTRL calls A2
after .calling Al, A0 1is not loaded again because it is already in
memory and mapped. i

A reference from one segment to another segment down-tree (closer to
the root) is resolved directly. For example, A2 can immediately
access AQ0 because A0 was path loaded in the call to A2.

4.1.3 Autoload Vectors

To resolve a reference up-tree to a global symbol in an autoloadable
segment, TKB generates an autoload vector for the referenced global
symbol. The reference in the code is changed to a definition that
points to an autoload vector entry. The format for the autoload
vector for conventional tasks is shown in Figure 4-3 and the format
for I- and D-space tasks is shown in Figure 4-4.

JSR PC,@.NAUTO

PC RELATIVE OFFSET TO .NAUTO

SEGMENT DESCRIPTOR ADDR.

ENTRY POINT ADDRESS

ZK-415-81

Figure 4-3 Autoload Vector Format for Conventional Tasks

TN

OVERLAY LOADING METHODS

MOV (PC)+,-(SP)

ADDRESS OF PACKET (D-SPACE)

JMP @.NAUTO

PC RELATIVE OFFSET TO NAUTO

I-SPACE PORTION

ADDRESS OF SEGMENT DESCRIPTOR

ENTRY POINT ADDRESS

D-SPACE PORTION

ZK-1089-82

In Figures 4-3 and 4-4, a transfer-of-control instruction to the
up-tree global symbol generates an autoload vector in the shown

- format. An example of the code sequence used in a call to a global

symbol in an autoloadable segment is shown in Figure 4-5.

USER TASK ROOT

. AUTOLOAD VECTOR
CALL GLOBAL ——» JSR PC,@.NAUTO
—» SEGMENT DESCRIPTOR ADDRESS
. ENTRY POINT ADDRESS (GLOBAL)

!

$AUTO AUTOLOAD ROUTINE

$AUTO: . ;LOAD
: . ;SEGMENT
USER TASK SEGMENT .
GLOBAL:: e ~¢———— JMP GLOBAL ;GO TO
. ;GLOBAL IN
. ;SEGMENT

RETURN

ZK-416-81

Figure 4-5 Example Autoload Code Sequence for a Conventional Task

OVERLAY LOADING METHODS

An exception to the procedure for generating autoload vectors is made
in the case of a program section with the data (D) attribute.
References from a segment to a global symbol up-tree in a program
section with the data (D) attribute are resolved directly.

Because TKB can obtain no information about the flow of control within
the task, it often generates more autoload vectors than are necessary.
However, your knowledge of the flow of control within your task, and
of path 1loading, can help you determine where to place the autoload
indicators. By placing the autoload indicators only at the points
where loading 1is actually required, you can minimize the number of
autoload vectors generated for the task.

In the following example, all the calls to overlays originate in the
root segment. That is, no module in an overlay segment calls outside
its segment. The root segment CNTRL has the following contents:

PROGRAM CNTRL
CALL Al
CALL A21
CALL A2
CALL AO
CALL A22
CALL BO
CALL Bl
CALL B2
CALL Cl1
CALL C2
CALL C3
CALL C4
CALL C5
END

If you place the autoload - indicator at the outermost level of
parentheses, 13 autoload vectors are generated for this task; however,
because A2 and A0 are loaded by path 1loading to A2l1, the autoload
vectors for A2 and A0 are unnecessary. Moreover, because the call to
Cl loads the segment that contains €2, C3, C4, and C5, autoload
vectors for C2 through C5 are unnecessary.

You can eliminate the unnecessary autoload vectors by placing the
autoload indicator only at the points where explicit loading is
required, as follows:

.ROOT CNTRL-(AFCTR, *BFCTR, CFCTR)

AFCTR: - .FCTR AO-(*Al,A2-*(A21,A22))
BFCTR: .FCTR (BO-(B1,B2))
CFCTR: .FCTR *Cl1-C2-C3-C4-C5
.END
With this ODL description, TKB generates seven autoload vectors -- for

Al, A21, A22, BO, Bl, B2, and Cl.

4.1.4 Autoloadable Data Segments

You can make overlay segments that contain no executable code
autoloadable, as follows. First, you must include a .NAME directive
and specify the GBL attribute, as described in Section 3.4.4. For
example:

.ROOT A-*(B,C)
.NAME BNAME, GBL

B: .FCTR BNAME-BFIL
.END

OVERLAY LOADING METHODS

The global symbol BNAME is created and entered into the symbol table
of segment BNAME. Because this segment is marked to be autoloaded,
root segment A calls segment BNAME as follows:

CALL BNAME

The segment is autoloaded and an immediate return to inline code
occurs.

The data of BFIL must be placed in a program section with the data (D)
attribute to suppress the creation of autoload vectors.

4.2 MANUAL LOAD

If you decide to use the manual-load method to load segments, you must
include in your program explicit calls to the $LOAD routine. These
load requests must supply the name of the segment to be loaded. In
addition, they can include information necessary to perform
asynchronous load requests, and to handle load request failures.

The $LOAD routine does not path load. A call to $LOAD loads only the
segment. named in the request. The segment is read in from disk and
mapped. For memory-resident overlays; the segment is mapped, but only
read in if it was not previously read in.

A MACRO-11 programmer calls the $LOAD routine directly. A FORTRAN
programmer calls $LOAD using the FORTRAN subroutine MNLOAD.

4.2.1 MACRO-11 Manual Load Calling Sequence
A MACRO-11 programmer calls $LOAD as follows:

MOV #PBLK, RO
CALL $LOAD

PBLK is the address of a parameter block with the following format:
PBLK: .BYTE length,event-flag
.RAD50 /seg-name/
.WORD [i/o-status] or O
.WORD [ast-trp] or O
length

The length of the parameter block (3 to 5 words).

event-flag

The event flag number, used for asynchronous loading. If the
event-flag number is 0, synchronous loading is performed.

‘seg-name

The name of the segment to be 1loaded: a 1l- to 6-character
Radix-50 name, occupying two words.

OVERLAY LOADING METHODS

i/o-status

The address of the I/0O status doubleword. Standard QIO status
codes apply.

ast-trp

The address of an asynchronous trap service routine to which
control is transferred at the completion of the load request.

The condition code C-list 1is set or «cleared on return, as
follows:

e If condition code C=0, the load request was accepted.
@ If condition code C=1, the load request was unsuccessful.

For a synchronous load request, the return of the condition code C=0
means that the desired segment is loaded and is ready to be executed.
For an asynchronous load request, the return of the code C=0 means
that the 1load request was successfully queued to the device driver,
but the segment is not necessarily in memory. Your program must
ensure that loading has been completed by waiting for the specified
event flag before calling any routines or accessing any data in the
segment.

OVERLAY LOADING METHODS

4.2.3 FORTRAN Manual Load Calling Sequence
To use the manual load mechanism in a FORTRAN program, your program
must refer to the $LOAD routine by means of the MNLOAD subroutine.
The subroutine call has the form: -
CALL MNLOAD(seg-name,[event-flag],[i/o-status],[ast-trp]l,[1d-ind])
seg-name
A 2-word real variable containing the segment name in Radix-50
format.
event-flag
An optional integer event flag number used for an asynchronous
load request. If the event flag number is 0, the load request is
synchronous.
i/o-status
An optional 2-word integer array containing the I/0 status

doubleword, as described for the QIO directive in the
RSX-11M/M-PLUS Executive Reference Manual.

ast-trp
An optional asynchronous trap subroutine entered at the
completion of a request. MNLOAD requires that all pending traps
specify the same subroutine. '

1d-ind

An optional integer variable containing the results of the
subroutine call. One of the following values is returned:

+1 Request was successfully executed.

-1 Request had bad parameters or was not successfully
executed. :

You can omit optional arguments. The folldwing calls are legal:

Call Effect

CALL MNLOAD (SEGA1l) Loads segment named in
SEGAl synchronously.

CALL MNLOAD (SEGA1,0,,,LDIND) Loads segment named 1in
-SEGA1l synchronously and
returns success indica-
tor to LDIND.

OVERLAY LOADING METHODS

Call

CALL MNLOAD (SEGAl,l,IOSTAT,ASTSUB,LDIND)

of the

The following
Section 4.1. 1In this example, there is suffic
the calls to the overlay segments to make
effective. The autoload indicators are

description and the FORTRAN programs are rec

calls to the MNLOAD subroutine, as follows:

PROGRAM CNTRL
EXTERNAL ASTSUB
DATA SEGAl /6RAl
DATA SEGA21 /6RA21

/
/

CALL MNLOAD (SEGAl,1l, IOSTAT,ASTSUB,LDIND)

CALL Al

CALL MNLOAD (SEGA21l,1,IO0STAT,ASTSUB,LDIND)

.

CALL A2l

END
SUBROUTINE ASTSUB
DIMENSION IOSTAT(2)

END

When the AST trap routine is used, the 1I/0

example uses the program CNTRL, previously discussed

Effect

Loads segment named in
SEGAl asynchronously,
transferring control to
ASTSUB upon completion
load request;
stores the 1I/0 status
doubleword in IOSTAT
and the success
indicator in LDIND.

in
ient processing between

asynchronous loading
removed from @ the ODL
ompiled with explicit

status doubleword is

automatically supplied to the dummy variable IOSTAT.

OVERLAY LOADING METHODS

4.3 ERROR HANDLING

If you use the autoload mechanism, a simple recovery procedure 1is
provided that - checks the Directive Status Word (DSW) for an error
indication. If the DSW indicates that no system dynamic storage is
available, the routine issues a Wait for Significant Event directive
and tries again; if the problem is not dynamic storage, the recovery
procedure generates a synchronous breakpoint trap.. If the task
services the trap and returns without altering the state of the
program, the request will be retried.

If you select the manual-load method, you must provide error handling
routines that diagnose load errors and provide appropriate recovery.
A more comprehensive user-written error recovery subroutine can be
substituted for the system-provided vroutine if the following
conventions are observed:

® The error recovery routine must have the entry point name
SALERR.

® The contents of all registers must be saved and restored.

On entry to $ALERR, R2 contains the address of the segment descriptor
that could not Dbe loaded. Before recovery action can be taken, the
routine must determine the cause of the error by examining the
following words in the sequence indicated: ‘ ‘

1. $DsSwW The Directive Status Word may contain an error
status code, indicating that the Executive
rejected the I/0 request to load the overlay
segment.

OVERLAY LOADING METHODS

2. N.OVPT The contents of this location, offset by N.IOST,
point to a 2-word I/O status block containing the
results of the load overlay request returned by
the device driver. The status code occupies the
low-order byte of word O. For example, for a
device-not-ready condition, the code will Dbe
IE.DNR. (For more information on these codes,
refer to the IAS/RSX-11 I/0 Operations Reference
Manual.)

4.4 GLOBAL CROSS-REFERENCE OF AN OVERLAID TASK

This section 1illustrates a global cross-reference that has been
created for an overlaid task. The task consists of a root segment
containing the module ROOT.OBJ, and overlay segments composed of
modules OVR1l, OVR2, OVR3, and OVR4. The overlay description of the
file is as follows:

.ROOT ROOT-(OVR, *OVR2)
OVR: .FCTR OVR1-*(OVR3,0VR4)

Only segments OVR2, OVR3, and OVR4 are autoloadable. Figure 4-6 shows
the resulting overlay tree.

*OVR3 *OVR4 ROOT: CALL OVR3
L | CALL OVR1
1 CALL OVR2
OVR1 *OVR2
J
|
ROOT

ZK-417-81

Figure 4-6 Autoload Overlay Tree Example

As shown, the global symbol OVR1l is defined in module OVR1l, and a
single nonautoloadable, up-tree reference is made to this symbol by
the module ROOT, as indicated by the circumflex. Note that because
OVR1 1is not autoloadable, it depends on a call to OVR3 or OVR4 to get
loaded by path 1loading. The asterisk indicates that the module
contains an autoloadable definition. The modules shown with the
asterisk define the symbol.

The asterisks preceding the modules OVR2, OVR3, and OVR4 indicate that
the global symbols OVR2, OVR3, and OVR4 are autoload symbols and are
referenced from the module ROOT through an autoload vector, as shown
by the at-sign (@) character.

The asterisk and at-sign are shown in the cross-reference 1listing in
Example 4-1.

4-12

&

OVRTST
GLOBAL
SYMBOL

N.ALER
N.IOST
N.MRKS
N.OVLY
N.OVPT
N.RDSG
N.STBL
N.SZSG
OVR1
OVR2
OVR3
OVR4
ROOT
SALBP1
SALBP2
$ALERR
$AUTO
$DSW
SMARKS
SOTSV
$SAVRG
SVEXT
.FSRPT
.NALER
.NIOST
.NMRKS
.NOVLY
.NOVPT
.NRDSG
.NSTBL
.NSZSG

OVRTST
SEGMENT
SEGMENT
OVR1
OVR2
OVR3

OVR4
ROOT

Down-tree references to the global symbol ROOT are made
OVR1l, OVR2, OVR3, and OVR4.

OVERLAY LOADING METHODS

Example 4-1

Cross—-Reference Listing of Overlaid Task

CREATED BY TKB ON 27-JUL-82 AT 12:04 PAGE 1
CROSS REFERENCE CREF Vol
VALUE REFERENCES. . .

000010 AUTO # OVRES

000004 OVCTL # OVRES

000016 # OVRES

000000 OVCTL # OVRES

000054 AUTO OVCTL # VCTDF
000014 # OVRES

000002 # OVRES

000012 # OVRES

002014-R # OVRL ~ ROOT

002014-R * OVR2 @ ROOT

002014-R * OVR3 @ ROOT

002014-R * OVR4 @ ROOT

001176-R # ROOT

001320-R # AUTO

‘001416-R # AUTO

001246-R # ALERR OVDAT

001302-R # AUTO

000046 ALERR # VCTDF

001546-R # OVCTL

000052 # VCTDF

001452-R AUTO # SAVRG

000056 # VCTDF

000050 # VCTDF

001442-R # OVDAT

001436-R # OVDAT

001450-R # OVDAT

001432-R # OVDAT

000042 # OVDAT

001446-R # OVDAT

001434-R # OVDAT

001444-R # OVDAT

ON 27-JUL-82 AT 12:04 PAGE 2

CREATED BY TKB
CROSS REFERENCE
NAME

OVR1
OVR2
OVR3
OVR4
ALERR
VCTDF

AUTO

CREF Vol

RESIDENT MODULES

OVCTL CVDAT OVRES ROOT SAVRG

from modules

These references are resolved directly.

The segment cross-reference shows the segment name and modules in each

overlay.

OVERLAY LOADING METHODS

4.5 USE AND SIZE OF OVERLAY RUNTIME ROUTINES

TKB, when constructing an overlaid task, incorporates certain modules
from the system library to perform the actual overlay operations. An
overlay run-time routine in the task loads overlays from disk or maps
resident overlays by issuing QIO$ or CRAWS directives.

The modules and routines described below implement the TKB autoload
mechanism as described in Section 4.1.

There are three major components to the autoload service, as follows:

AUTO This module controls the overlay process, and the
autoload vectors indirectly call AUTO through .NAUTO.
AUTO determines whether the referenced overlay segment
is already in memory or mapped. It then jumps to the
required entry point if the entry point is available.

The AUTO module is supplied in two variations. These

variations are separately named and described as

follows:

AUTO Selected by TKB by default for all overlaid
tasks. It manages disk-only, PLAS, and cluster

library overlay structures.

AUTOT Manually selected by you by using an explicit
reference in the TKB .ODL file, as shown below.
This module disables the AST traps while
manipulating the overlay data structures. This
is required where user task AST traps might
cause modification of the overlay database. . To
incorporate this module in your task image, you
must include the following element in the .ROOT
factor of the task's ODL file:

-LB:[1,1]SYSLIB/LB:AUTOT-

In addition to including AUTOT in the .ROOT
factor, the - following code must be included in
your task as initialization prior +to the AST
handling routines in your task:

MOV @#.NOVPT, RO
BISB #200,N.FAST(RO)

MRKS This routine traverses the overlay descriptor data
structure to mark any overlay segment that will be
displaced by a new overlay as "out of memory" and
consequently not available.

RDSG The AUTO module calls the RDSG routine repeatedly to
read or map each segment along the overlay tree path
into the task's virtual address space. This is referred
to as ‘"path loading." When path loading is completed,
AUTO calls the required entry point.

Several versions of each component exist reflecting the various sizes
as appropriate for tasks having disk-only overlays, PLAS mapped
overlays, and/or cluster libraries. TKB incorporates the smallest
support routines appropriate for the overlay structure of your task.

OVERLAY LOADING METHODS

Depending on whether your task has disk-only overlays, resident
overlays, or cluster 1libraries, TKB forces one of the following
modules into your task:

OVCTL Contain the MRKS and RDSG routines optimized for disk
overlays only. No support is included for
memory-resident or cluster overlays. ~OVCTL i th

module included for conventional. tasks, and

OVCTR Contain MRKS and RDSG routines assembled for disk and
memory resident overlays. TKB selects either of these
modules if the task overlay structure includes
memory-resident overlays or maps a resident library
containing resident overlays. OVCTR i th dul
selected for conventional tasks and

Contain the MRKS, RDSG, and cluster 1library support

routines. TKB includes OVCTC or OVIDC if cluster

libraries are 1included in your task. OVCTC is the
ul i k

.

Two other modules are incorporated into your task's image. They are:

OVDAT A small, impure data area used by AUTO, MRKS, and RDSG
routines. TKB includes OVDAT in all overlaid tasks, and:
its size is independent of the overlay structure of that
task. '

ALERR An error service module that AUTO invokes under one of
the following circumstances:

e If an I/0 error occurs while attempting to read a
disk overlay into memory

e If a directive error occurs while attempting to
attach or map a region containing memory resident
overlays

Table 4-1 compares the sizes of the overlay run-time support modules.
You can use it to determine when it is appropriate to force certain
variants into your task image.

OVERLAY LOADING METHODS

- Table 4-1
Comparison of Overlay Run-Time Module Sizes

Module

Program
Section

Number
of Bytes
Oct/Dec

Specific Use

One of the following modules is included in any overlaid task
that uses autoload and in any task that links to a PLAS overlaid

resident library.

AUTO

AUTOT

$$AUTO

$$AUTO

$$RTQ
$SRTR

122/82.

132/90.
32/26.
30/24.

All tasks that use autoload

All tasks with ASTs
disabled during autoload

One of the
conventional

task.

following modules 1is included in any overlaid
OVCTR or OVCTC 1is included in any

non-overlaid task (conventional or I- and D- space) that 1links
to a PLAS overlaid resident library.

OVCTL

OVCTR

OVCTC

$$MRKS
$$RDSG
$$PDLS

$SMRKS
$SRDSG
$SPDLS

$$MRKS
$SRDSG
$$PDLS

76/62.
160/112.
2/2.

234/156.
332/218.
12/10.

254/172.
352/234.
120/80.

Disk overlays only

Disk and PLAS overlays with no
cluster libraries

Disk and PLAS overlays
with cluster libraries

The overlay data vector OVDAT is included in any overlaid task
and in any task that links to a PLAS overlaid resident library.

OVDAT

$SOVDT
$$SGDO
$$SGD2
$SRTQ
$$RTR
$$RTS

24/20.
o/o0.
2/2.
0/0.
0/0.
2/2.

Included in all tasks
that perform overlay
operations

(continued on next page)

-

OVERLAY LOADING METHODS

Table 4-1 (Cont.)
Comparison of Overlay Run-Time Module Sizes

Number

Program of Bytes
Module Section Oct/Dec Specific Use
The overlay error service routine ALERR 1is included whenever
OVDAT is included.
ALERR SSALER 24/20. Overlay error
Manual overlay control (LOAD) is used in place of any AUTO
routine. (See Section 4.2, Manual Load.)
LOAD $SLOAD 252/170. Manual overlay control

SSAUTO 14/12.

TN

CHAPTER 5

SHARED REGION CONCEPTS AND EXAMPLES

The Task Builder provides you with many ways of using shared regions
for tailoring your tasks to meet your specific requirements. This
chapter describes some of these facilities and their applications.

This chapter contains five working examples. The discussion of the
examples assumes that you are familiar with the programming concepts
described in the RSX-11M/M-PLUS Guide to Program Development and with
the first four chapters of this manual.

5.1 SHARED REGIONS DEFINED

A shared region is a block of data or code that resides in memory and
can be used by any number of tasks. A shared region can contain data
for use by several tasks or it may be an area where one task writes
data for wuse by another task. Also, a shared region can contain
routines for use by several tasks.

Shared regions are useful because they make more efficient use of
physical memory. The two kinds of shared regions are:

® A resident common that provides a way that two or more tasks
can share their data ‘

® A resident library that provides a way that two or more tasks
can share a single copy of commonly used subroutines

The term "resident" denotes a shared region that is built and
installed into the system separately from the task that links to it.
In other words, you use TKB to build. a shared region much as you would
use it to build a task. However, the region does not have a header or
a stack. Also, you can use switches to designate the kind of shared
region (a library or a common) to be built.

Figure 5-1 shows a typical resident common. Task A stores some
results in resident common S, and Task B retrieves the data from the
common at a later time.

Figure 5-2 shows a typical resident library. In this case, common
reentrant subroutines are not included in each task image; instead, a
single copy is shared by all tasks.

SHARED REGION CONCEPTS AND EXAMPLES

RESIDENT COMMON RESIDENT COMMON
S S

PARTITION BOUNDARY

TASK A

TASK B

PARTITION BOUNDARY

EXECUTIVE EXECUTIVE
PHYSICAL MEMORY PHYSICAL MEMORY
TIME 1 TIME 2

ZK-418-81

Figure 5-1 Typical Resident Common

When you build a shared region, you must specify an output image file
name for the region in the TKB command sequence. But, because a
shared region is not an executable unit, it is not a task, and does
not require a header or a stack area. Therefore, when you build a
shared region, you always attach the negated header switch (/-HD) to
the region's. image file specification or /NOHEADER as a LINK
qualifier. This switch or qualifier tells TKB to suppress the header
within the image. To suppress the stack area in the Task Builder or
LINK command sequence during option input, you specify STACK=0.
(Refer to Chapters 10, 11, and 12 for a complete description of the
/HD switch, /NOHEADER qualifier, the STACK option, and other switches,
qualifiers, and options.)

In either an RSX-11M or RSX-11M-PLUS system, when you build a shared
region, you use the PAR option to name the partition in which the
region is to reside. You specify the partition name in the TKB
command sequence during option input. (Refer to Chapter 11 for a
d ipti f the PAR ti

SHARED REGION CONCEPTS AND EXAMPLES

RESIDENT LIBRARY
CONTAINING
PARTITION BOUNDARY ROUTINE R
ROUTINE R
TASK A
ROUTINE R TASK A
TASK B TASK B
PARTITION BOUNDARY
EXECUTIVE EXECUTIVE
NONSHARED SHARED
PHYSICAL MEMORY PHYSICAL MEMORY

ZK-419-81

Figure 5-2 Typical Resident Library

Also, you should consider three switches when you build the region.
The /PI switch in TKB or the /CODE:PIC qualifier in LINK determines.
whether the region is relocatable. You can use the /CO switch in the
TKB command sequence or /SHAREABLE:COMMON qualifier in LINK to declare
a region as a shared common. ~The /CO switch or /SHAREABLE:COMMON
qualifier specifies the use of the region as a shared common rather
than as a shared library. Alternatively, you can use the /LI switch
in TKB or /SHAREABLE:LIBRARY qualifier in LINK when you build the
region to declare the region as a shared library. Using these three
switches affects the contents of the symbol definition file, which is
described in Chapter 10 under the /CO, /LI, and /PI switch or Chapter
11 under the /SHAREABLE:COMMON, /SHAREABLE:LIBRARY, and /CODE:PIC
qualifier headings. See also Figure 5-3, Interaction of the /LI, /CO,
and /PI Switches and Figure 5-4, Interaction of the
/SHAREABLE : LIBRARY, /SHAREABLE:COMMON, and /CODE:PIC qualifiers. The
contents of the symbol definition file are described in the following
sections.

SHARED REGION

CONCEPTS AND

EXAMPLES

Si‘é‘/gFCIED SHARED REGION REGION PSECT STB FILE STB FILE
NAME PSECT SYMBOLS
WITH /-HD | ABSOLUTE | RELOCATABLE
ALL SYMBOLS.
JPULI YES SAME AS LIBRARY ONE PSECT RELATIVE TO
ROOT RELOCATABLE START OF THE
PSECT
ALL DECLARED ALL DECLARED
/PI/CO YES PSECT NAMES PSECTS ﬁwbiiiz;gLs
INCLUDED RELOCATABLE
ONE PSECT ALL SYMBOLS
/- * .
/-PI/LI YES ABS ABSOLUTE ABSOLUTE
ALL DECLARED ALL DECLARED
/-PI/CO* YES PSECT NAMES PSECTS ﬁ;;g:gﬁg)Ls
INCLUDED ABSOLUTE :
/Pl YES SAME AS /PI/CO
/-PI* YES SAME AS /-PI/LI
NONE YES SAME AS /-PI/LI

*/-Pl is the default of not using /PI

ZK-420-81

Figure 5-3 Interaction of the /LI, /CO, and /PI Switches

5.1.1 The Symbol Definition File

When you build a shared region, you must specify a symbol definition
(.STB) file 1in the TKB command sequence. This file contains linkage
information about the region. (The format at a .STB file as input to
TKB is the same as that of a .OBJ file. See Appendix A.) Later, when
you build a task that links to the region, TKB uses this .STB file to
resolve calls from within the referencing task to locations within the
region. .

Please note the following equivalencies shared
switches in TKB and qualifiers in LINK:

among the region

TKB SWITCHES LINK QUALIFIERS

/LI /SHAREABLE : LIBRARY

/Cco /SHAREABLE : COMMON

- /PI /CODE:PIC

/PI /CODE : POSITION INDEPENDENT
/-L1 {none)

/-Cco (none)

/-PI Absence of both /CODE:PIC

and /CODE:POSITION_INDEPENDENT

N N TN
QUALIFIER SPECIFIED WITH SHARED REGION REGION PSECT STB FILE STB FILE
/NOHEADER ABSOLUTE | RELOCATABLE NAME PSECT SYMBOLS
ALL SYMBOLS.
) . SAME AS LIBRARY ONE PSECT RELATIVE TO
. /CODE:PIC/SHAREABLE:LIBRARY YES ROOT RELOCATABLE START OF THE
PSECT
ALL DECLARED ALL DECLARED ALL PSECTS
/CODE:PIC/SHAREABLE:COMMON YES PSECT NAMES PSECTS AND SYMBOLS
INCLUDED RELOCATABLE
i ONE PSECT ALL SYMBOLS
/SHAREABLE:LIBRARY YES ABS ABSOLUTE ABSOLUTE
ALL DECLARED ALL DECLARED
/SHAREABLE:COMMON YES PSECT NAMES PSECTS ’QEémBEOLS
INCLUDED ABSOLUTE
/CODE:PIC YES SAME AS /CODE:PIC/SHAREABLE:COMMON
NONE YES SAME AS /SHAREABLE:LIBRARY

ZK-1370-83

Figure 5-4 Interaction of the /SHAREABLE:LIBRARY, /SHAREABLE:COMMON,
and /CODE:PIC Qualifiers

STTAWYXA ANV SLdIDNOD NOIODIY AIIVHS

SHARED REGION CONCEPTS AND EXAMPLES

If you use TKB with MCR, the /PI switch declares a shared region to be
relocatable. Conversely, the /-PI switch declares a shared region to
be absolute. If you specify the /PI switch without the /CO or /LI
switches to indicate a relocatable region, TKB defaults to building a
relocatable (position-independent) shared region (a common) with all
program sections declared in the .STB file. The contents of the .STB
file when these three switches are used are described .in Chapter 10
under the /CO, /LI, and /PI switch headings. See also Figure 5-3,
Interaction of the /LI, /CO, and /PI Switches.

If you use the LINK command with DCL, the /CODE:PIC qualifier declares
a shared region to be relocatable. Conversely, the absence of the
/CODE:PIC qualifier declares the shared region to be absolute. If you
specify the /CODE:PIC qualifier without the /SHAREABLE:COMMON or
/SHAREABLE:LIBRARY qualifiers to indicate a relocatable region, TKB
defaults to building a relocatable (position-independent) shared
region (a common) with all program sections declared in the .STB file.
The contents of the .STB file when these three qualifiers are used are
described in Chapter 11 under the headings /CODE:PIC,
/SHAREABLE : COMMON, and /SHAREABLE:LIBRARY. See also Figure 5-4,
Interaction of the /SHAREABLE : LIBRARY, /SHAREABLE : COMMON, and
/CODE:PIC qualifiers. .

If you do not use either /CO or /LI, or for LINK either

- /SHAREABLE:COMMON or /SHAREABLE:LIBRARY, the contents of an .STB file
for a shared region depend on the use of the /PI switch or the LINK
/CODE:PIC qualifier, which determines whether the region is absolute
or relocatable. The effects of declaring a shared region relocatable
or absolute and the resulting contents of the .STB file are described
in the following sections.

Some .STB files include an entry in the .STB file for each program
section in the region. Each entry declares the program section's
name, attributes, and length. 1In addition, TKB includes in the .STB
file every symbol in the shared region and its value relative to the
beginning of the section in which it resides.

5.1.2 Position-Independent Shared Regions

A position-independent shared region can be placed anywhere in a
referencing task's virtual address space when the system on which the
task runs has memory management hardware.

5.1.2.1 Position-Independent Shared Region Mapping - In the example
of using the memory management APRs, shown in Figure 5-5, two tasks
refer to the shared region S: task A and task B. The shared region S
is 4K words long and therefore requires that much space in the virtual
address space of both tasks. Task A is 6K words long and requires two
APRs (APRO and APR1) to map its task region. The first APR available
to map the shared region is APR 2. Thus, you can specify APR 2 when
task A is built. '

Task B is 16.5K words long. It requires five APRs to map its task
region. The first APR available to map the shared region S in task B
is APR 5. Therefore, you can specify APR 5 when task B is built.

If you do not specify which APR 1is to be used to map a
position-independent shared region, TKB selects the highest set of
APRs available in the referencing task's virtual address space. In
Figure 5-5, for example, if APR 2 in task A and APR 5 in task B had
not been selected at task-build time, TKB would have selected APR 7 in
both cases.

SHARED REGION CONCEPTS AND EXAMPLES

1 SHARED
4 K WORDS REGION
S
APR 7— APR 7—
APR 6— APR 6—
SHARED
REGION
S
APR 5— APR 5—
A

APR 4— APR 4—
APR 3— APR 3—

SHARED

REGION

S TASK B 16.5 K
WORDS

APR 2— APR 2—
APR 1— APR 1—

TASK A 6 K WORDS
APR 0— APR 0— *

ZK-421-81

Figure 5-5 Specifying APRs for a Position-Independent Shared Region

5.1.2.2 Specifying a Position-Independent Region - You specify that a
shared region 1is position independent when you build it by attaching
the /PI switch to the image file specification for the region. If you
use the LINK command, you specify a position-independent region by
using the /CODE:PIC qualifier attached to the LINK command or the

5-7

SHARED REGION CONCEPTS AND EXAMPLES

input file specification. (Refer to Chaptef 10 for a description of
the /PI switch or Chapter 11 for a description of the /CODE:PIC
qualifier.)

You should declare a region position independent if:
® The region contains code that will execute correctly
regardless of its location in the address space of the
referencing task.

® The region contains data that is not address dependent.

® The region contains data that will be referenced by a FORTRAN
program (such data must reside in a named common).

Program section names are preserved in some shared regions. All the
following switch combinations produce shared regions in which PSECT
names are preserved:

TKB LINK

/P1/CO /CODE : PIC/SHAREABLE : COMMON
/-PI/CO /SHAREABLE : COMMON

/PI1 /CODE:PIC

Therefore, you should observe the following precautions when building
and referring to these regions:

® No code or data in the region should be included in the blank
(. BLK.) program section.

® No code’or data in a referencing task should appear in a
program section of the same name as a program section in the
shared region.

® The order in which memory is allocated to program sections
(alphabetic or sequential) must Dbe the same for the shared
region and its referencing tasks. (Chapter 2 describes
alphabetic ordering of program sections. Refer to the
description of the /SQ and /SG switches in Chapter 10 or the
/SEQUENTIAL and /[NOJ]SEGREGATE qualifiers in Chapter 11 for an
explanation of sequential ordering of program sections.)

5.1.3 Absolute Shared Regions

When a shared region is absolute, you select the virtual addresses for
it when you build it. Thus, an absolute shared region is fixed in the
virtual address space of all tasks that refer to it.

5.1.3.1 Absolute Shared Region Mapping - Figure 5-6 shows three tasks
(task C, task D, and task E) and a single absolute shared region, L.
The absolute shared region L is 6K words long and is built to occupy
virtual addresses 120000(octal) to 150000(octal). These addresses
correspond to APR 5 and APR 6, respectively. Tasks C and D can be
linked to region L because at the time they are built APR 5 and APR 6
are unused in both tasks. However, task E is 23K words long and even
though it has 8K words of virtual address space available to map the
shared region, APR 5 (which corresponds to virtual address 120000, the
base address of the shared region) has been allocated to the task
region. If shared region L were position independent, task E could be
linked to it.

SHARED REGION CONCEPTS AND EXAMPLES

ABSOLUTE
SHARED
REGION
L

ABSOLUTE
SHARED
REGION
L

TASK D

|
6 K WORDS
VIRTUAL y
120000
APR 7= APR 7—
APR 6— ABSOLUTE APR 6—
SHARED
REGION
L
APR 5— APR 5—
APR 4— APR 4—
APR 3—
APR 2— APR 2—
APR 1— APR 1—
TASK C
APR 0— APR 0—

Figure 5-6 Mapping for

APR 7—

APR 6—

APR 5—

APR 4—

APR 3—

APR 2—

APR 1—

APR 0—

TASK E

ZK-422-81

an Absolute Shared Region

5-9

SHARED REGION CONCEPTS AND EXAMPLES

5.1.3.2 Specifying an Absolute Shared Region - You specify that a
shared region 1is absolute when you build it by using the /-PI. switch
or omitting the /PI switch or /CODE:PIC qualifier from the task image
file. You establish the virtual address for the region by specifying
the base address of the region as a parameter of the PAR option.

You should build an absolute shared region if:

e The region contains code that must appear in a specific
location in the address space of a referencing task.

® The region contains data that is address dependent.

® The region contains program sections of the same name as
program sections in referencing tasks.

5.1.3.3 Absolute Shared Region .STB File - For TKB commands, when a
shared region 1is created with the /-PI/LI or /-PI switches, or just
the /-HD switch, the only program section name that appears in the
.STB file for the region 1is the absolute program section name
(. ABS.). Similarly for LINK commands, the .ABS program section name
is . the only one that appears when you create the shared region with
the /SHAREABLE:LIBRARY qualifier and the /NOHEADER qualifier or only
the /NOHEADER qualifier. TKB includes in the .STB file for the region
each symbol in the region and its value. But, because TKB does not
include the program section names of an absolute shared region in its
.STB file, all code or data in the region must be referred to by
global symbol name. Also, because the program section names are not
in the .STB file, TKB places no restrictions on the way the program
sections are ordered in either the absolute shared region or the tasks
that reference it. You can order program sections the way you want by
using the TKB /SQ -and /SG switches or the LINK /SEQUENTIAL and
/I[NO]SEGREGATE qualifiers described in Chapters 10 and 11.

5.1.4 Shared Regions with Memory-Resident Overlays

Shared regions with memory-resident overlays are a primary resource
for conserving memory. If the shared region is larger than the
available virtual address space in a task that must reference the
region, you can build the region -- both position-independent and
absolute -- with memory-resident overlays. All segments of the
overlay structure are included in the shared region, but each task
referencing the shared region can include only part of the shared
region -- that 1is, an overlay segment or series of segments in an
overlay path -- in its virtual address space. Therefore, the task
need only have enough virtual address space for the largest shared
region overlay segment, or series of segments in an overlay path, it
is likely to access. Hence, the virtual address space of the task can
be considerably smaller than the size of the shared region.

5.1.4.1 Considerations About Building an Overlaid Shared Region - In
general, overlays can be disk-resident or memory-resident, but those
in shared regions must, by their very nature, be memory-resident. TKB
marks each overlay segment in the shared region with the NODSK
attribute to suppress overlay load requests. When you build a shared
region with memory-resident overlays, you must define the overlay
structure through a conventional ODL file. (See Chapters 3 and 4 of
this manual for information on overlays and the Overlay Description

5-10

TN

SHARED REGION CONCEPTS AND EXAMPLES

Language.) TKB does not include the overlay data base (segment
descriptors, autoload vectors, and so forth) or the overlay run-time
routines within the region image. Instead, this data base becomes a
" part of the .STB file that is linked to the referencing task. When
this task is built, its root segment automdatically includes both - the
data base and global references to overlay support routines residing
in the system object module library.

The procedure for creating a shared region with memory-resident
overlays can be summarized as follows:

® Define an overlay structure containing only memory-resident
overlays. .

® Include the GLBREF option, or provide in the root segment a
module containing the appropriate global references for
defining entry points within those overlay segments. TKB
generates autoload vectors and global definitions for the
overlay segments.

5.1.4.2 Example of Building a Memory-Resident Overlaid Shared
Region - The procedure for creating a shared region is illustrated in
the following example. The shared region to be constructed consists
of reentrant code that resides within the overlay structure defined
below:

.ROOT A-!(B,C-D)
.NAME A
.END

Root segment A contains no code or data and has a length of 0. All
executable code exists within memory-resident overlay segments
composed of object modules B.OBJ, C.OBJ, and D.OBJ, containing global
entry points B, C, and D, respectively.

You generate the .TSK, .MAP, and .STB files by using the following TKB
command :

TKB

TKB>A/-HD/MM, LP:, SY:A=A/MP
Enter Options:
TKB>GBLREF=B,C,D
TKB>PAR=A:160000: 20000
TKB>STACK=0

TKB>/

>

or the following LINK command
LINK

>LINK/TAS :A/NOH/MEM/MAP:LP:/SYM:SY:A/OPT A/OVER
Option? GBLREF=B,C,D

Option? PAR=A:160000:20000

Option? STACK=0

Option?

>

SHARED REGION CONCEPTS AND EXAMPLES

NOTE

When building a shared region, you must use the
same name for the partition and the .TSK and .STB
files.

See the PAR, RESLIB, LIBR, RESCOM, and COMMON
options in Chapter 11.

TKB inserts references to entry points B, C, and D in the root segment
of the 1library which subsequently appear in the. .STB file as
definitions. : '

TKB resolves the definitions for symbol C directly to the actual entry
point. TKB resolves the definitions for symbols B and D to autoload
vectors that it includes in each referencing task.

5.1.4.3 Options for Use in Overlaid Shared Regions - Certain options
may prove useful to you when building and linking shared regions to a
task. They are described next.

GBLDEF -- You can declare the definition of a symbol by means of the
GBLDEF option. The syntax of this option is:

GBLDEF=symbol-name : symbol-value

where symbol-name is a 1l- to 6- character Radix-50 name of the defined
symbol and symbol-value is an octal number in the range of 0 through
177777 assigned to the symbol. This option is frequently used in the
TKB build file for a task or shared region to allow you to alter the
value of a global symbol that resides in a module. This saves you the
trouble of reassembling the source code for a module if changes are
necessary.

GBLINC -- By means of this option, you force TKB to include the
specified symbols in the .STB file being created by the linking
process in which this option appears. The syntax of this option is:

GBLINC=symbol-name, symbol-name, ...,symbol-name

where symbol-name is the symbol or symbols to be included. Use this
option when you want to force particular modules to be linked to the
task that references this library. The global symbol references

specified Dby this option must be satisfied by some module or GBLDEF
specification when you build the task.

GLBREF -- You can force the inclusion of a global reference in the
root segment of the shared region by means of the GBLREF option. 1In
this way, the necessary autoload vectors and definitions can be
generated without explicitly including such references in an object
module. The syntax of the option is:

GBLREF=[,name[,name...]]

where the name consists of from one to six Radix-50 characters. If
the definition resides within an autoloadable segment, TKB constructs
an autoload vector and includes it in the symbol definition file. If

the definition is not autoloadable, TKB obtains the real value and
defines it in the root segment. No global symbol appears in the .STB
file unless the symbol 1is either defined in the root segment or is
referenced in the root segment and defined elsewhere in the overlay
structure.

SHARED REGION CONCEPTS AND EXAMPLES

GBLXCL -- You can exclude a symbol or symbols from the symbol
definition file of a shared region by means of the GBLXCL option. The
syntax of this option is: _ :

GBLXCL=symbol-name, symbol-name, ...,symbol-name

where symbol-name is the symbol or symbols to be excluded. You can
use this option when you do not want the task to be aware of specific
symbols within the library. This option is particularly useful when
you cluster overlaid 1libraries together (see the CLSTR option in
Chapter 11 and the Cluster Libraries section in this chapter).

5.1.4.4 Autoload Vectors and .STB Files for Overlaid Shared Regions -
When TKB builds a task image file containing memory-resident overlays,
TKB allocates autoload vectors in the task image. If the task 1links
to a shared region, autoload vectors for the shared region are also
allocated in the task image. TKB allocates the autoload vectors in
the task's root segment, but not in the shared region. Therefore, the
shared region cannot reference unloaded (unmapped) segments of its
overlay structure.)

When the task executes, the shared region is effectively part of the

task. In fact, when the task loads overlay segments, it makes no
distinction between overlay segments of the task and those of the
shared region. They are loaded as needed in a procedure that is

transparent insofar as the execution of the task is concerned.

For the Fast Task Builder (FTB) and older versions of TKB that do not
support overlaid I- and D-space tasks, each autoload vector in the
shared region's .STB file is allocated in the root of the task being
linked to the region, whether or not the entry point is referenced by
the task. i :

NOTE

Libraries created with older versions of TKB do not
have the ISD records in the .STB file that newer
versions of TKB use to include autoload vectors in the
task from the .STB file. Therefore, TKB must create
autoload vectors for every entry point in the library.

SHARED REGION CONCEPTS AND EXAMPLES

Only those global symbols defined or referenced in the root segment of
the shared region appear in the .STB file. The .STB file also
contains the data base required by the overlay run-time system in
relocatable object module format. This data base includes:

® All autoload vectors

® Segment tables (linked as described in Appendix B)
® Window descriptors

® A single region descriptor

The overlay structure, as reflected in the segment table 1linkage, is
preserved and conveyed. to the referencing task by the .STB file.
Thus, path loading for the shared region can occur exactly as it does
within a task. Aside from address space restrictions, there are no
limitations on the overlay structures that can be defined for a shared
region.

5.1.5 Run-Time Support for Overlaid Shared Regions

Memory-resident overlays within a shared region require little
additional support from the overlay run-time system. The shared
region overlay data base that is 1linked within the image of the
referencing task has a structure that is identical to the equivalent
data created for an overlaid task. Therefore, memory-resident
overlays within the shared region are indistinguishable from
memory-resident overlays that form a part of the task image. The only
additional processing is that required to attach the shared region and
obtain its identification for use by the mapping directives.

Once this initialization is complete, all further processing is
identical to memory-resident overlay processing performed on task
overlays.

Several restrictions apply to shared regions existing, as
memory-resident overlays:

® A shared region cannot use the autoload facility to reference
memory-resident overlays within itself or any other region.
If each segment is uniquely named, overlays can be mapped
through the manual load facility.

® Named program sections in a shared region overlay segment
cannot be referenced by the task. If reference to the storage
is required, such sections must Dbe included in the root
segme?t of the region (with resultant loss of virtual address
space).

® For FTB, and libraries built with versions of TKB that do not
support I- and D-space overlaid tasks, the number of autoload-
vectors 1is independent of the entry points actually
referenced. The maximum number of vectors will be allocated
within each referencing task. In some cases the size of the
allocation will be large.

® There is an overhead of six instructions er autoload call

As implied by the previous items, great care must be exercised if an
efficient memory-resident overlay structure for library routines such
as the FORTRAN IV OTS is to be implemented.

5-14

SHARED REGION CONCEPTS AND EXAMPLES

5.1.6 Linking to a Shared Region

When you build a task that links to a shared region, you must indicate
to TKB the name of the shared region and the type of access the task
requires to it (read/write or read-only). 1In addition, if the shared
region 1is position independent, you can specify which APR TKB is to
allocate for mapping the region into the task's virtual address space.
Four options are available for this action:

® RESLIB (resident library)

® RESCOM (resident common)

® LIBR (system-owned resident library)
® COMMON (system-owned resident common)

'RESLIB and RESCOM accept a complete file specification as one of their
arguments. Thus, you can specify a device and UFD indicating to TKB
the location of the region's image file and, by implication, its
symbol definition file. (Refer to Chapter 1 for more information on
file specifications and defaults.)

LIBR and COMMON accept a 1l- to 6-character name. When you specify
either of these options, the shared region's image file and symbol
definition file must reside under UFD [1,1] on device LBO:.

The RESLIB and RESCOM options require that all users of the shared
region know the UFD under which the shared region's image file and
.STB file reside. The LIBR and COMMON options require only that the
users of the shared region know the name of the shared region. When
you specify either LIBR or COMMON, by default, TKB expects to find the
shared region's image and .STB files on device LB: under UFD [1,1].

All four options accept two additional arguments:
® The type of access that the task requires (RO or RW).

e The first APR that TKB is to allocate for mapping the region
into the task's virtual address space. As stated earlier,
this argument is valid only when the shared region is position
independent.

When you specify any of these options, TKB expects to find a symbol
definition file of the same name as that of the shared region, but
with an extension of .STB, on the same device and under the same UFD
as those of the shared region's image file.

The syntax of these options is given in Chapter 11.

When TKB builds a task, it processes first any options that appear in
the TKB command sequence. When TKB processes one of the four options
above, it locates the disk image of the shared region named in the
option. The disk image of a shared region does not have a header, but
it does have a label block that contains the allocation information
‘about the shared region (for example, its base address, load size, and
the name of the partition for which it was built). TKB extracts this
data from the shared region's label block and places it in the LIBRARY
REQUEST section of the label block for the referencing task.

The .STB file associated with the shared region is an object module

file. TKB processes it as an input file. If the shared region is
position independent, its .STB file contains program section names,
attributes, and lengths. However, the program section names are

flagged within the file as "library" program sections and TKB does not
add their allocations to the task image it is building.

5-15

SHARED REGION CONCEPTS AND EXAMPLES

If the task links to only one shared region, and if neither the shared
region nor the task that links to it contain memory-resident overlays,
the Task Builder allocates two window blocks in the header of the
task. (Overlays are described in Chapter 3.) When the task is
installed, the INSTALL processor will initialize these window Dblocks
as follows:

e Window block 0 will describe the range of virtual addresses
(the window) for the. task region.

® Window block 1 will describe the window for the shared region.
Figure 5-7 shows the window-to-region relationship of such a task.

A shared region need not be installed before a task that links to it
is 'built. - The .STB file that you specify when you build the shared
region contains all the information required by TKB to resolve
references from within a task to locations within the shared region.
The only requirement is that you install a shared region before you
install a task that links to it.

Unless you use the /LI switch or the /SHAREABLE:LIBRARY qualifier,
there 1is a restriction on the way TKB processes tasks that link to
relocatable shared regions. TKB places all program section names into
its internal control section table. The program section names include
those from the .STB file of the shared region as well as those from
the other input modules. A conflict can arise when building a task
that contains program sections of the same name as those in the shared
region to which the task links. The conflict arises because TKB tries
to add the program section allocation in the task to the already
existing allocation for the program section of the same name in the
region. This is not possible because the region's image has already
been built, 1is outside the address space of the task currently being
built, and cannot be modified. Therefore, to avoid this conflict, the
program section names within a task that links to a relocatable shared
region must normally be unique with respect to program section names
within the shared region.

TKB displays an error message under the following conditions:

® A program section in the task and a program section in the
shared region have the same name. ’

@ The program section in the task contains data.

@ TKB tries to initialize the program section in the task.
The error message occurs when TKB tries to store data in an image
outside the address 1limits of the task it is building. If this
conflict occurs, TKB prints the following message:

TKB--*DIAG*-load addr out of range in module module-name .

One exception to the above restriction develdps when all of the
following conditions exist:

® Both program sections (in the shared region and in the
referencing task) have the (D) data and the OVR (overlay)
attributes. '

® The program section in the task is equal to or shorter than
the program section in the shared region.

® The program section in the task does not contain data.

SHARED REGION CONCEPTS AND EXAMPLES

HIGHEST VIRTUAL -
ADDRESS

SHARED

WINDOW BLOCK
1

WINDOW BLOCK
0

TASK
MEMORY

\{HEADER AND STACK

LOWEST VIRTUAL o
ADDRESS

ZK-423-81

Figure 5-7 Windows for Shared Region and Referencing Task

SHARED REGION CONCEPTS AND EXAMPLES

When all of these conditions exist, there is nothing to be initialized
within the shared region. TKB binds the base address of the program
section in the task to the base address of the program section in the
shared region. If the program section in the task contains global
symbols, TKB assigns addresses to them that reflect their location
relative to the Dbeginning of the program section. You can use this
technique to establish symbolic offsets into resident commons .
Examples 5-1 and 5-2 in the following sections illustrate how to
establish these offsets. :

5.1.7 Number and Size of Shared Regions

The number of shared regions to whlch a task can link is a functlon of
the number of window bl

5.1.8 Example 5-1: Building and Linking to a Common in MACRO-11l

The text in this section and the figures associated with it illustrate
the development of a MACRO-1l1l position-independent resident common and
the development of two MACRO-11] tasks that share the common. The
steps in building a position-independent common can be summarized as
follows:

1. You create a source file that allocates the amount of space
required for the common. In MACRO-11l, either of the
assembler directives, .BLKB or .BLKW, provide the means of
allocating this space.

2. You assemble the source file.

3. You build the assembled module, specifying both a task image
file and a symbol definition file.

You specify the /-HD (no header) switch, or the /NOHEADER
qualifier for LINK, and declare the common with /CO, or
/SHAREABLE : COMMON for LINK. You specify the common to be
position independent with the /PI switch, or the /CODE:PIC
qualifier for LINK.

Under options you specify:

STACK=0
PAR=parname

The parname in this PAR option is the name of the partition
in which the common is to reside. (The TKB switches are
described in Chapter 10. The LINK qualifiers are described
in Chapter 11. The STACK and PAR options are described along
with the other options in Chapter 12.)

SHARED REGION CONCEPTS AND EXAMPLES

4. You install the common.

Example 5-1 below shows a MACRO-11] source file that, when assembled
and built, creates a position-independent resident common area named
MACCOM. The common area consists of two program sections named COM1
and COM2, respectively. Each program section is 512(decimal) words
long.

Example 5-1, Part 1 Common Area Source File in MACRO-11
.TITLE MACCOM

COM1 - 512 WORDS
COM2 - 512 WORDS

~o Ne ~e ~e

.PSECT COM1,RW,D,GBL,REL,OVR
.BLKW 512.
.PSECT COM2,RW, D, GBL, REL, OVR
.BLKW 512.

-END

Once this common has been assembled, the TKB command sequence shown
below can be used to build it.

>TKB
TKB>MACCOM/PI/-HD/CO,MACCOM/-SP,MACCOM=MACCOM
TKB>/

Enter Options:

TKB>STACK=0

TKB>PAR=MACCOM: 0: 4000

TKB>//

>

Or, with the LINK command, you may enter the following command
sequence: '

>LINK/TAS :MACCOM/NOH/CODE : PIC/SHARE : COMMON /MAP : MACCOM/NOPRINT/SYM/OPT -
->MACCOM

Option? STACK=0

Option? PAR=MACCOM:0:4000

Option?

>

This command sequence directs TKB to build a position-independent,
headerless common image file named MACCOM.TSK. It also specifies that
the Task Builder is to create a map file, 'MACCOM.MAP, and a symbol
definition file, MACCOM.STB. TKB creates all three
files -- MACCOM.TSK, MACCOM.MAP, and MACCOM.STB -- on device SY:
under the UFD that corresponds to the terminal UIC. TKB will not
spool a map listing to the line printer.

Under options, STACK=0 suppresses the stack area in the common's
image. The PAR option specifies that the common area will reside
within a common partition of the same name as that of +the common,
MACCOM. In addition, the parameters in the PAR option specify a base
of 0 and a length of 4000 octal bytes for the common. (Refer to
Chapters 10, 11, and 12 for descriptions of the switches, qualifiers,
and options used in this example.)

SHARED REGION CONCEPTS AND EXAMPLES

Example 5-1, Part 2 shows the map resulting from this command
sequence.

The task attributes section of this map reflects the switches and
options of the command string. It indicates that the common resides
in a partition named MACCOM, that it was built wunder terminal UIC
[7,62], that it is headerless and position independent, and that it
requires one window block to map. The total length of the common is
1024 (decimal) words and its address limits range from O to
3777(octal). The common image (that portion of the disk image file
that eventually will be read into memory) begins at file-relative disk
block 2 @ . The last block in the file is file-relative disk block
5@® and the common image is four blocks long © .

The memory allocation synopsis details the Task Builder's allocation
for and the attributes of the program sections within the common. For
example, reading from left to right, the map indicates that the
program section COMl permits read/write access, that it contains data,
and that its scope 1is global. It also indicates that COM1l is
relocatable and that all contributions to COM1 are to be overlaid.
Because COM1 has the overlay attribute, the total allocation for it
will be equal to the largest allocation request from the modules that
contribute to it. (For more information on program section
attributes, see Chapter 2.)

Continuing to the right, the first 6-digit number is COMl's base
address, which is 0@ . The next two digits are its length (bytes) in
octal and decimal, respectively.

The next line down lists the first object module that contributes to
COM1. In this case there is only one: the module MACCOM from the
file MACCOM.OBJ;1. The numbers on this 1line indicate the relative
base address of the contribution and the length of the contribution in
octal and decimal @ . If there had been more than one module input to
TKB that contained a program section named COM1l, TKB would have listed
each module and its contribution in this section.

Notice that there is a program section named . BLK. shown on the map
just above the field for COM1l. This is the "blank" program section
that is created automatically by the language translators. The
attributes shown are the default attributes. The allocation for
. BLK. 1is 0 because the program sections in MACCOM were explicitly
declated. If the program sections had not been explicitly declared,
all of the allocation for the common would have been within this
program section. ‘

Example 5-1, Part 2 Task Builder Map for MACCOM.TSK

MACCOM.TSK; 1 Memory allocation map TKB M40.10 Page 1
17-NOV-82 16:05

Partition name : MACCOM

Identification :

Task - UIC : [7,62]

Task attributes: -HD,PI

Total address windows: 1.

Task image size : 1024. WORDS

Task address limits: 000000 003777

R-W disk blk limits: 000002 000005 000004 00004.

*** Root segment: MACCOM\) (3]

R/W mem 1limits: 000000 003777 004000 02048.
Disk blk limits: 000002 000005 000004 00004.

(continued on next page)

TN

SHARED REGION CONCEPTS AND EXAMPLES
Example 5-1, Part 2 (Cont.) Task Builder Map for MACCOM.TSK

Memory allocation synopsis:

Section . Title Ident File

- BLK.:(RW, I,LCL,REL,CON) 000000 000000 00000.
COM1 :(RW,D,GBL,REL,OVR) 000000 002000 01024.

000000|002000{01024. .MAIN. MACCOM.OBJ;1
COM2 :(RW,D,GBL,REL,OVR) 002000|002000{01024.
002000|002000|01024. .MAIN. MACCOM.OBJ:1

*** Task builder statistics:

Total work file references: 183.

Work file reads: O.

Work file writes: O.

Size of core pool: 7086. WORDS (27. PAGES)
Size of work file: 768. WORDS (3. PAGES)

Elapsed time:00:00:05
Figure 5-8 is a diagram that represents the disk image file for

MACCOM. The circled numbers in Figure 5-8 correspond to the circled
numbers in Example 5-1, Part 2.

RELATIVE RELATIVE
DISK BLOCK LOAD
NUMBERS ADDRESSES
_ ;
000005 — COM 2
000004 — — 002000
000003 — COM 1 - 002000 (BYTES)
~ 000002 — — 000000 J
000001 —_ LABEL BLOCK
000000 —

DISK IMAGE FILE
ZK-424-81

Figure 5-8 Allocation Diagram for MACCOM.TSK

SHARED REGION CONCEPTS AND EXAMPLES

Once you have built MACCOM, you can }nstall

Example 5-1, Parts 3 and 4 show two programs: MCOM1 and MCOM2,
respectively. Both of these programs reference the common area MACCOM
created above. MCOM1l in Example 5-1, Part 3 accesses the COM1l portion
of MACCOM. It inserts into the first 10 words of COM1l the numbers 1
through 10 in ascending order. It then issues an Executive directive
request for the task MCOM2 and suspends itself.

When MCOM2 runs, it adds together the integers left in COM1 by MCOM1
and leaves the sum in the first word of COM2. It then issues a resume
directive for MCOM1l and exits.

When MCOM1l resumes, it retrieves the answer left in COM2 and calls the
system library routine $EDMSG (edit message) to format the answer for
output to device TI:.

All of the Executive directives for both programs (RQST$C, SPNDS$S,
QIOWSS, RSUMSC, and EXITS$S) are documented in the RSX-11M-PLUS
Executive Reference Manual. The system library routine $EDMSG is
documented in the IAS/RSX-11 System Library Routines Reference Manual.

Example 5-1, Part 3 MACRO-11 Source Listing for MCOM1

.TITLE MCOM1
.IDENT /O1/

-MCALL EXITS$S,SPND$S,RQSTSC,QIOWSS

OUT: .BLKW 100. ; SCRATCH AREA
FORMAT: .ASCIZ /THE RESULT IS %D./
MES : .ASCII /ERROR FROM REQUEST/

LEN = . - MES

.EVEN

PSECT - COM1 IS USED TO ACCESS THE FIRST 512. WORDS OF THE
COMMON.

~ o~

.PSECT COM1,GBL,OVR,D
INT: «BLKW 10.

(continued on next page)

7N

:/-\\

SHARED REGION CONCEPTS AND EXAMPLES

Example 5-1, Part 4 MACRO-11 Source Listing for MCOM2

10$:

ERR1:

MES:

~ o~

INT:

ANS:

START:

PSECT -
COMMON .

.PSECT
«-BLKW

.PSECT

Mov
MoV
MoV

MOV
INC
DEC
BNE
RQSTSC
BCS
SPND$S
MOV
Mov
MOV
CALL
QIOWSS
EXITS$S

QIOWSS

EXITS$S
-END

Example

.TITLE
. IDENT

«MCALL
.ASCII
LEN = .
. EVEN

PSECT -
COMMON .

. PSECT
« BLKW

PSECT -
COMMON .

«PSECT
«BLKW

. PSECT
Mov
MOV

CLR

COM2 IS USED TO ACCESS THE SECOND 512. WORDS OF THE
IT WILL CONTAIN THE RESULT

COM2, GBL,OVR, D
1

#10.,RO ; NUMBER OF INTEGERS TO SUM

#1,R1 ; START WITH A 1

#INT,R3 ; PLACE VALUES IN 1ST 10 WORDS
; OF COMMON

R1, (R3)+ ; INITIALIZE COMMON

R1 ; NEXT INTEGER

RO ; ONE LESS TIME

108 ; TO INITIALIZE

MCOM2 ; REQUEST THE SECOND TASK

ERR1 ; REQUEST FAILED
; WAIT FOR MCOM2 TO SUM THE INTEGERS

#OUT, RO ; ADDRESS OF SCRATCH AREA

#FORMAT, R1 ; FORMAT SPECIFICATION

#ANS, R2 ; ARGUMENT TO CONVERT

$EDMSG ; DO CONVERSION

#I0.WVB, #5, #1,,,, <#OUT,R1, #40>

#I0.WVB, #5, #1,,,, <#MES, #LEN, #40>

START

5-1, Part 4 MACRO-11 Source Listing for MCOM2
MCOM2

/01/

EXIT$S,QIOWSS, RSUMSC

/ERROR FROM RESUME/

- MES

COM1 IS USED TO ACCESS THE FIRST 10. WORDS OF THE
COM1, GBL,OVR,D

10.

COM2 IS USED TO ACCESS THE SECOND 10. WORDS OF THE
IT WILL CONTAIN THE RESULT

COM2, GBL, OVR, D
1

#10.,RO ; NUMBER OF INTEGERS TO SUM

#INT,R3 ; PLACE VALUES IN 1ST 10 WORDS
; OF COMMMON

ANS ; INITIALIZE ANSWER

(continued on next page)

SHARED REGION CONCEPTS AND EXAMPLES

Example 5-1, Part 4 (Cont.)

MACRO-11 Source Listing for MCOM2

10$: ADD (R3)+,ANS ; ADD IN VALUES
DEC RO ; ONE LESS VALUE
BNE 108 ; TO SUM
RSUMSC MCOM1 ; RESUME MCOM1
BCS ERR ; RESUME FAILED
EXITSS

ERR:
QIOWSS #IO.WVB, #5, #1,,,,<#MES, #LEN, #40>
EXITSS
.END START

Note that both tasks MCOM1 and MCOM2 contain .PSECT declarations
establishing program section names that are the same as program
section names within the position-independent common to which the task
is linked (MACCOM). As stated earlier, in most circumstances this
would be illegal. In this application, however, the .PSECT directives
have been placed into the tasks to establish symbolic offsets in the
resident common. When either task is built, TKB assigns to the symbol
INT: the base address of program section COM1l, and to the symbol ANS:
the base address of program section COM2. Figure 5-9 illustrates this
assignment.

ANS: [; r T~ -
== - - COM 2
\\\ \\\
\\\ \\\\
~ < ___ _ _ _____C =~
ANS:
INT;_[‘ 1=~ COM 1
~ — \\\
\\ ~~
\\ \\
-~ - S~
\\ \\
-~ L o e =
\\\
INT:

ZK-425-81

Figure 5-9 Assigning Symbolic References within a Common

Once you have assembled MCOM1 and MCOM2, you can build them with the
following command sequences:

TKB LINK
>TKB >LINK/TAS/MAP :MCOM1/NOPRINT/OPT MCOM1
TKB>MCOM1, MCOM1 /-SP=MCOM1 Option? RESCOM=MACCOM/RW
TKB>/ Option?

Enter Options: >
TKB > RESCOM=MACCOM/RW

TKB>//

>

/ \

SHARED REGION CONCEPTS AND EXAMPLES

TKB LINK
>TKB >LINK/TAS/MAP :MCOM2 /NOPRINT/OPT MCOM2
TKB>MCOM2, MCOM2 /-SP=MCOM2 Option? RESCOM=MACCOM/RW
TKB>/ Option?
Enter Options: >

TKB>RESCOM=MACCOM/RW
TKB>//
>

Under options in both of these command sequences, the RESCOM option
tells TKB that these programs intend to reference a common data area
named MACCOM and that the tasks require read/write access to it.
Because the RESCOM option is used, TKB expects to find the image file
and the symbol definition file for the common on device SY: under the
UFD that corresponds to the terminal UIC. In addition, because the
optional APR specification was omitted from the RESCOM option, TKB
allocates virtual address space for the common starting with APR7 in
both tasks (the highest APR available in both tasks).

The TKB map for MCOM1l is shown in Example 5-1, Part 5. The map for

MCOM2 is not essentially different from that of MCOMl and is therefore
not included here. ‘

Example 5-1, Part 5 Task Builder Map for MCOM1l.TSK

MCOM1.TSK;1 Memory allocation map TKB M40.10 Page 1
11-DEC-82 16:12

Partition name : GEN

Identification : 01

Task UIC : [7,62] l
‘Stack limits: 000274 001273 001000 00512.

PRG xfr address: 001650

Total address windows: 2.
- Task 1image size : 1184. words

Task address limits: 000000 004407

R-W disk blk limits: 000002 000006 000005 00005.

*** Root segment: MCOM1

R/W mem limits: 000000 004407 004410 02312.

Disk blk limits: 000002 000006 000005 00005.

Memory allocation synopsis:

Section Title Ident File

. BLK.:(RW,I,LCL,REL,CON) 001274 002664 01460.

001274 000574 00380. MCOM 01 MCOM1.0BJ;1
CoMl :(Rw,D,GBL,REL,OVR) 160000 002000 01024.

160000 000024 00020. MCOM 01 MCOM1.0BJ;1
coM2 :(RW,D,GBL,REL,OVR) 162000 002000 01024.

162000 000002 00002. MCOM 01 MCOM1.0BJ;1
DPBS$: (RW, I,LCL,REL,CON) 004160 000016 00014.

004160 000016 00014. MCOM 01 MCOM1.0BJ;1

~$$RESL: (RO, I,LCL,REL,CON) 004176 000212 00138.

(continued on next page)

SHARED REGION CONCEPTS AND EXAMPLES

Example 5-1, Part 5 (Cont.) 'Task Builder Map for MCOM1.TSK

*¥** Task builder statistics:

Total work file references: 1924.

Work file reads: O.

Work file writes: O.

Size of core pool: 7086. words (27. pages)
Size of work file: 1024. words (4. pages)

Elapsed time:00:00:04

Note that TKB has placed two window blocks in MCOMl's ‘“header. When
MCOM1 is installed, the INSTALL processor will initialize these window
blocks as follows:

® Window block 0 will describe the range of virtual addresses
(the window) for MCOMl's task region.

® Window block 1 will describe the window for the shared region
MACCOM.

5.1.9 Linking Shared Regions Together

Shared regions can link to other shared regions. You may find it
convenient to have code in a shared 1library and have access to
routines in another shared library to which it links.

The following text describes, as an example for a mapped system, -the
TKB command sequence for building a resident library named FILEB.
That text is followed by TKB and LINK command sequences that show an
example of building another resident library named FORCOM that links
to FILEB. Following after that, TKB and LINK command sequences show
the Dbuilding of a task that links to FORCOM. In the TKB and LINK
command sequences to follow, it is assumed that you know the contents
of the libraries and the task. The examples show the linkage only.

The first shared region to be built is called FILEB. The library
FILEB 1is a position-dependent library. You use the /-PI switch or no
/CODE:PIC qualifier to signify that the 1library 1is absolute. You
build the 1library with the /-HD switch or the /NOHEADER qualifier to
indicate that the library has no header. The /LI switch or the
/SHAREABLE:LIBRARY qualifier indicates that FILEB is to be a shared
library. The program section name of the library is . ABS, which is
the only one in the library. FILEB is to be 1loaded into a
user-controlled partition on a mapped system. The name of the
partition in which FILEB resides has the same name, FILEB, that you
specify in the PAR option. The PAR option also specifies the base
address and the length of the partition. Because FILEB is absolute, a
base address must be specified; here, the base address is 160000. The
length in this example 1is 4K bytes. If neither the base nor the
length is specified, TKB tries to determine the length.

The TKB command sequence follows:

>TKB
TKB>FILEB/-PI/-HD/LI,FILEB/-SP,FILEB=FILEB.OBJ
TKB> /)

Enter Options:

TKB>STACK=0

TKB>PAR=FILEB:160000:40000

TKB>//

.'/ \

SHARED REGION CONCEPTS AND EXAMPLES

For the LINK command, use the following sequence:

>LINK/TAS/SHARE: LIBRARY /NOHEAD/MAP: FILEB/NOPRINT/SYM/OPT FILES
Option? STACK=0

‘Option? PAR=FILEB:160000:40000

Option?

>

The next TKB command sequence specifies a shared 1library called
FORCOM. FORCOM 1links to the read-only library called FILEB. You
build FORCOM with the /LI switch or /SHAREABLE:LIBRARY qualifier to
specify a library to the Task Builder. FORCOM is relocatable. You
specify in the RESLIB option that the resident library to which FORCOM
links 1is called FILEB. The access required is read-only, which /RO
specifies in the RESLIB option line.

The TKB command sequence follows:

>TKB
TKB>FORCOM/-HD/LI/PI,FORCOM/-SP, FORCOM=FORCOM .OBJ
TKB>/

Enter Options:

TKB>STACK=0

TKB>PAR=FORCOM:0:4000

TKB>RESLIB=FILEB/RO

TKB>//
>

For LINK, use the following command sequence:

>LINK/TAS : FORCOM/NOHEAD/CODE : PIC/SHARE : LIB/MAP : FORCOM/NOPRINT/SYM/OPT -
->FORCOM A

Option? STACK=0

Option? PAR=FORCOM:0:4000

Option? RESLIB=FILEB/RO

OPTION? GET

>

The next command sequences build the task and specifies that the task
links to the library called FORCOM. The RESLIB option line specifies
the link to the resident library called FORCOM.

For TKB, use the following command sequence:

>TKB

TKB>FOTASK, FOTASK/-SP, FOTASK=FOTASK.OBJ
TKB>/

Enter Options:

TKB>RESLIB=FORCOM/RW

TKB>//
>

For LINK, use the following command sequence:

>LINK/TAS : FOTASK/MAP : FOTASK/NOPRINT/SYM/OPT FOTASK
Option? RESLIB=FORCOM/RW

Option? @ET

>

Build the libraries before you build the task, and install the
libraries Dbefore you run or install the task. See Chapter 10 for a
description of the /PI, /HD, /CO, and /LI switches; and see Chapter 11
for a description of the /CODE:PIC, /[NO]HEADER, /SHAREABLE:COMMON,
and /SHAREABLE:LIBRARY qualifiers. See Chapter 12 for ‘a description
of the PAR, RESCOM, and RESLIB options.

SHARED REGION CONCEPTS AND EXAMPLES

5.1.10 Example 5-2: Building and Linking to a Device Common in
MACRO-11

A device common is a special type of common that occupies physical
addresses on the I/0 page. When mapped into the virtual address. space
of a task, a device common permits the task to manipulate peripheral
device registers directly.

NOTE

Because any access to the I/O page 1is potentially
hazardous to the running system, you must exercise
extreme caution when working with device commons.

The remaining text in this section and the figures associated with it
illustrate the development and use of a device common. Example 5-2,
Part 1 shows an assembly listing for a position-independent device
common named TTCOM. When installed, TTCOM will map the control and
data registers of the console terminal. Its physical base address
will be 777500.

Example 5-2, Part 1 Assembly Listing for TTCOM

.TITLE TTCOM
-PSECT TTCOM, GBL,D,RW,OVR

.=.+60 : i
SRCSR:: .BLKW 1
SRBUF: : . BLKW 1
$XCSR:: . BLKW 1
$XBUF: : - BLKW 1

.END

The PDP-11 Peripherals Handbook defines the control and data register
addresses for the console terminal. In Example 5-2, Part 1, the
register addresses and the symbol names that correspond to them are as
follows:

Register Address " Symbol
Keyboard Status 777560) $RCSR
Keyboard Data 777562 SRBUF
Printer Status 777564 $XCSR
Printer Data 777566 $XBUF

The double colon (::) following each symbol in Example 5-2, Part 1
establishes the symbol as global. The first symbol, RCSR, is offset
from the Dbeginning of TTCOM by 60(octal) bytes. Each symbol
thereafter is one word removed from the symbol that precedes it.
Thus, when TTCOM is installed at 777500, each symbol will be located
at its proper address.

Once you have assembled TTCOM, you can build it using the following
TKB command sequence: :

>TKB
TKB>LB:[1,1]TTCOM/-HD/PI,LB:[1,1]TTCOM/-WI/SP,LB:[1,1]TTCOM=TTCOM
TKB>/

Enter Options:

TKB>STACK=0

TKB>PAR=TTCOM:0:100

TKB>//

>

SHARED REGION CONCEPTS AND EXAMPLES

For the LINK command:

>LINK/TAS:LB:[1,1]TTCOM/NOH/COD:PIC/MAP/NOWIDE/PRINT/SYM/OPT TTCOM
Option? STACK=0

Option? PAR=TTCOM:0:100

Option?

>

This command sequence directs TKB to create a common image named
TTCOM.TSK and a symbol definition file named TTCOM.STB. TKB places
both files on device LB: wunder UFD [1,1]. The command sequence also
specifies that TKB is to spool a map listing to the line printer.

In TKB, the /-WI switch specifies an 80-column 1line printer 1listing
format. In the LINK command, /NOWIDE specifies an 80-column format.
The /PRINT qualifier need not be present because printing of the map
file is the default operation.

NOTE
For the command sequence above to work in a multiuser

protection system, it must be input’' from a privileged
terminal.

The STACK=0 option suppresses the stack area in the common's image
file. : . sy . - i

‘%g?

on

The TKB map for TTCOM that results from the command sequence above is
shown in Example 5-2, Part 2. The task attributes section of this map
indicates that the common is position independent and that no header
is associated with it. The common's image and symbol definition file
reside on device LB: under UFD [1,17].

The map in Example 5-2, Part 2 shows the global symbols defined in the
common with their relative offsets into the common region. You
establish the virtual base address for the common and the virtual
addresses for the symbols within it when you build the tasks that link
to the common.

You establish the physical addresses for the common with the MCR
command SET. The keyword that you use with the SET command depends on
which system yo i s

These previous SET command sequences create a main partition named
TTCOM that begins at physical address 777500 in 18-bit systems and
physical address 1777750 in 22-bit systems. The partition 1is one
64-byte block 1long, (100(octal) bytes). The argument DEV identifies

SHARED REGION CONCEPTS AND EXAMPLES

the partition type.

You can establish the partition for a device common at any time in
both the RSX-11M and the RSX-11M-PLUS systems. Partitions created to
accommodate a device common are not a system generation consideration
because they represent areas of physical address space above memory
and therefore cannot conflict with memory partitions.

Example 5-2, Part 2 Task Builder Map for TTCOM

TTCOM.TSK:;1 Memory allocation map TKB M40.10 Page 1
1-DEC-82 17:02

Partition name : TTCOM

Identification

Task UIC : [7,62] TASK

Task attributes: -HD,PI ATTRIBUTES
Total address windows: 1. SECTION
Task image size : 32. WORDS

Task address limits: 0G0000 000067
R-W disk blk limits: 000002 000002 000001 00001.

*** Root segment: TTCOM
R/W mem 1limits: 000000 000067 000070 00056.
Disk blk limits: 000002 000002 000001 0OO0OOl.

Memory allocation synopsis:

Section Title 1Ident File

. BLK.
TTCOM

(RW, I,LCL,REL,CON) 000000 000000 00000.
(RW, D, GBL, REL,OVR) 000000 000070 00056.

000000 000070 00056. .MAIN. TTCOM.OBJ ;1

Global symbols:

$RBUF 000062-R $RCSR 000060-R $XBUF 000066-R $XCSR 000064-R

% Tagk builder statistics:

Total work file references: 214.

Work file reads: O.

Work file writes: O.

Size of core pool: 6666. WORDS (26. PAGES)
Size of work file: 768. WORDS (3. PAGES)

Elapsed time:00:00:02

TN

SHARED REGION CONCEPTS AND EXAMPLES

Example 5-2, Part’ 3 shows an assembly 1listing for a demonstration
program named TEST. When built and installed, TEST will print the
letters A through Z on the console terminal by directly accessing the
console terminal status and data registers. It will access the status
and data registers through the device common TTCOM.

Example 5-2, Part 3 Assembly Listing for TEST

.TITLE TEST
. IDENT /01/
.MCALL EXITS$S

START: MOV #15,R0 ; START WITH A CARRIAGE RETURN
CALL OUTBYT ; PRINT IT
MOV #12,RO ; THEN A LINE FEED
CALL OUTBYT ; PRINT IT
MOV #101,RO0 ; FIRST LETTER IS AN "A"
MoV #26.,R1 ; NUMBER OF LETTERS TO PRINT

OUTPUT: CALL OUTBYT PRINT CURRENT LETTER

DEC R1 ; ONE LESS TIME
BNE OUTPUT ; AGAIN
MOV #15,R0 ; ANOTHER CARRIAGE RETURN
CALL OUTBYT :
MoV #12,RO ; ANOTHER LINE FEED
CALL OUTBYT
EXITSS

OUTBYT: TSTB $XCSR ; OUTPUT BUFFER READY?
BPL OUTBYT ; IF NOT WAIT
MoV RO, $XBUF ; MOVE CHARACTER TO OUTPUT BUFFER
INC RO ; INITIALIZE NEXT LETTER
RETURN

.END START

Once you have assembled TEST, you can build it with the following TKB
command sequence:

>TKB

TKB>TEST, TEST/-WI/MA=TEST
TKB>/

Enter Options:

TKB >COMMON=TTCOM:RW: 1

TKB>//
>

For the LINK command, you can build TEST with the following command
sequence:

>LINK/TAS/MAP/SYS/NOWIDE/OPT TEST
Option? COMMON=TTCOM:RW:1

Option?

>

The COMMON option in this command sequence tells TKB that TEST intends
to access the device common TTCOM and that TEST will have read/write
access to it. It also directs TKB to reserve APR 1 for mapping the
common into TEST's virtual address space.

The TKB map that results from the command sequence above is shown in
Example 5-2, Part 4.

SHARED REGION CONCEPTS AND EXAMPLES

This map contains a global symbols section. TKB included it because
the /MA switch was applied to the memory allocation file at task-build
time. Note that the global symbols in this section, which were
defined in TTCOM, now have virtual addresses assigned to them. The
addresses assigned by TKB are the result of the APR 1 specification in
the COMMON= keyword during the task build.

It is important to remember that programs like TEST, which access the
I1/0 page, take complete control of the registers they reference.
Therefore, coding errors in such programs can disable the devices they
reference and can even make it impossible for the device drivers to
regain control of the device. If this happens, you must reboot the
system.

Example 5-2, Part 4 Memory Allocation Map for TEST

TEST.TSK:;1 Memory allocation map TKB M40.10 Page 1
1-DEC-82 17:03

Partition name : GEN

‘Identification : 01
Task UIC : [7,62]
Stack limits: 000274 001273 001000 00512.

PRG xfr address: 001274

Total address windows: 2.

Task 1image size : 384. WORDS

Task address limits: 000000 001377

R-W disk blk limits: 000002 000003 000002 00002.

*** Root segment: TEST

R/W mem 1limits: 000000 001377 001400 00768.
Disk blk limits: 000002 000003 000002 00002.

Memory allocation synopsis:

Section Title Ident File

. BLK.:(RW, I,LCL,REL,CON) 001274 000100 00068.

001274 000100 00068. .MAIN. TEST.OBJ;1

TTCOM :(RW, D, GBL, REL,OVR) 200000 000070 00056.

200000 000070 00056. TTCOM TTCOM.STB;1

Global symbols:

$RBUF 020062-R $RCSR 020060-R $XBUF 020066-R » $XCSR 020064-R

*** Task builder statistics:

Total work file references: 243.

Work file reads: O.

Work file writes: O.

Size of core pool: 6666. WORDS (26. pages)
Size of work file: 768. WORDS (3. pages)

Elapsed time:00:00:03

SHARED REGION CONCEPTS AND EXAMPLES
5.1.11 Example 5-3: Building and Linking to a Resident Library in
MACRO-11
Resident libraries consist of subroutines that are shared by two or
more tasks. When such tasks reside in physical memory simultaneously,
resident libraries provide a considerable memory savings because the

subroutines within the library appear in memory only once.

The text in this section and the figures associated with it illustrate
the development and use of a resident library, called LIB.

Example 5-3, Part 1 shows five FORTRAN-callable subroutines:

® An integer addition routine, AADD

® An integer subtraction routine, SUBB

® An integer multiplication routine, MULL

® An integer division routine, DIVV

® A register save and restore coréutine, SAVAL
These subroutines are contained in a single source file, LIB.MAC.
When assembled and Dbuilt, they constitute an example of a resident

library. FORTRAN-callable routines were used in this example so that
the routines can be accessed by either FORTRAN or MACRO-11 programs.

Example 5-3, Part 1 Source Listing for Resident Library LIB.MAC

.TITLE LIB
.IDENT /O1/

.PSECT AADD,RO,I,GBL,REL,CON

;** FORTRAN CALLABLE SUBROUTINE TO ADD TWO INTEGERS

AADD:: CALL $SAVAL ; SAVE RO-R5
MoV @2(R5),R0O ; FIRST OPERAND
MoV @4(R5),R1 ; SECOND OPERAND
ADD RO,R1 ; SUM THEM
Mov R1,Q@6(R5) ; STORE RESULT
RETURN ; RESTORE REGISTERS AND RETURN

.PSECT SUBB,RO,I,GBL,REL,CON

;** FORTRAN CALLABLE SUBROUTINE TO SUBTRACT TWO INTEGERS

SUBB:: CALL $SAVAL ; SAVE RO-R5
MoV @2(R5),RO ; FIRST OPERAND
MOV @4(R5),R1 ; SECOND OPERAND
SUB R1,RO ; SUBTRACT SECOND FROM FIRST
Mov RO, @6 (R5) ; STORE RESULT
RETURN ;

RESTORE REGISTERS AND RETURN
.PSECT MULL, RO, I,GBL,REL,CON

(continued on next page)

SHARED REGION CONCEPTS AND EXAMPLES
Example 5-3, Part 1 (Cont.) Source Listing for Resident Library LIB.MAC

;** FORTRAN CALLABLE SUBROUTINE TO MULTIPLY TWO INTEGERS

MULL:: CALL $SAVAL ; SAVE RO-R5
MoV @2(R5),RO ; FIRST OPERAND
MOV @4 (R5),R1 ; SECOND OPERAND
MUL RO,R1 ; MULTIPLY
MoV . R1,@6(R5) ; STORE RESULT
RETURN ; RESTORE REGISTERS AND RETURN

.PSECT ‘DIVV,RO,I,GBL,REL,CON
:** FORTRAN CALLABLE SUBROUTINE TO DIVIDE TWO INTEGERS

DIVV:: CALL $SAVAL SAVE REGS RO-R5

MoV @2(R5),R3 ; FIRST OPERAND

MOV @4 (R5),R1 ; SECOND OPERAND

CLR R2 ; LOW ORDER 16 BITS

DIV R1,R2 ;° DIVIDE

MOV R2,@6 (R5) ; STORE RESULT

RETURN ; RESTORE REGISTERS AND RETURN

+.PSECT SAVAL,RO, I,GBL,REL,CON

; **ROUTINE TO SAVE REGISTERS

$SAVAL: :
MOV R4,-(SP) ;SAVE R4
MOV R3,~-(SP) ;SAVE R3
MOV R2,-(SP) ;SAVE R2
MOV R1l,-(SP) ;SAVE R1
MOV RO, -(SP) ;SAVE RO
MOV 12(sSpP),-(SP) ;COPY RETURN
MOV R5,14(SspP) ;SAVE RS
CALL @(Sp)+ sCALL THE CALLER
MOV (sP)+,R0 ;s RESTORE RO
MOV (sP)+,R1 ;s RESTORE R1
MOV (sP)+,R2 ;RESTORE R2
MOV (sP)+,R3 ;RESTORE R3
MOV (SP)+,R4 sRESTORE R4
MOV (SsP)+,R5 ;s RESTORE R5
RETURN

. END

Once you have assembled LIB, you can build it with the following TKB
command sequence:

TKB>LIB/PI/-HD/LI,LIB/-WI,LIB=LIB
TKB>/

Enter Options:

TKB>STACK=0

TKB>PAR=LIB:0:200

TKB>//

>

Or, for LINK, you can use the following command sequence:

>LINK/TAS/CODE:PIC/NOHEAD/SHARE:LIB/MAP/NOWIDE/SYM/OPT LIB
Option? STACK=0

Option? PAR=LIB:0:200

Option?

>

(continued on next page)

/ N\

SHARED REGION CONCEPTS AND EXAMPLES

The TKB command sequence Jjust shown instructs TKB to build a
position-independent (/PI), headerless (/-HD) 1library image named
LIB.TSK. It instructs TKB to create a map file LIB.MAP and to output
an 80-column 'listing (/-WI) to the line printer. It also specifies
that TKB is to create a symbol definition file, LIB.STB. TKB creates
all three files -- LIB.TSK, LIB.MAP, and LIB.STB -- on device SY:
under the UFD that corresponds to the terminal UIC. The /LI and /PI
switches used together cause TKB to name the program section LIB,
which is the root segment of the library. LIB becomes the only named
program section in the library.

The LINK command sequence takes the name of the input file (LIB) as
the default name for the task file, the map file, and the symbol
definition file. The qualifiers in the LINK command have the
following functions: the /CODE:PIC qualifier specifies a relocatable
library; the /NOHEAD qualifier is required for building a library or
common; the /SHARE:LIB qualifier specifies that a library be built;
the /MAP qualifier requests a map, uses the input file name for the
default name, and outputs the map file to the line printer by default;
the /NOWIDE qualifier requests an 80-column listing; the /SYM
qualifier requests a symbol definition file; and the /OPT qualifier
requests a prompt for options.

If you used the command sequence above without the /LI switch or
/SHAREABLE:LIBRARY qualifier, TKB would create a common by default.

The STACK=0 option suppresses the stack area within the resident
library's image. The PAR option tells TKB that the resident library
will reside within a partition of the same name as that of the
library. [As jions, L re Y !

W :
s nhot. In addition, the

R P fo) s rary is 0 and that it is
200(octal) bytes 1long. (For more information on the switches,
qualifiers, and options used in this example, refer to Chapters 10,
11, and 12, respectively.) '

Example 5-3, Part 2 shows the TKB map that results from the command
sequence above.

Note in the global symbols section of the map in Example 5-3, Part 2
that TKB has assigned offsets to the symbols for each library
function. When the task that links to this library is built, TKB will
assign virtual addresses to these symbols.

The program MAIN in Example 5-3, Part 3 exercises the routines in the
resident 1library LIB.TSK. When you assemble and build it, MAIN will
call upon the library routines to add, subtract, multiply, and divide
the integers contained in the labels OPl and OP2 within the program.
MAIN will print the results of each operation to device TI:.

Example 5-3, Part 2 Task Builder Map for LIB.TSK

LIB.TSK;1 Memory allocation map TKB M40.10 Page 1
11-DEC-82 '13:50

Partition name : LIB
Identification : 01
Task UIC : [7,62]

Task Attributes: -HD,PI

Total address windows: 1.

Task image size : 64. words

Task address limits: 000000 000163

R-W disk blk limits: 000002 000002 000001 00001.

(continued on next page)

SHARED REGION CONCEPTS AND EXAMPLES

Example 5-3, Part 2 (Cont.) .Task Builder Map for LIB.TSK

*** Root segment: LIB

R/W mem 1limits: 000000 000163 000164 00116.
Disk blk limits: 000002 000002 000001 000O1l.

Memory allocation synopsis:

Section

. BLK.:(RW,I,LCL,REL,CON) 000000
AADD :(RO,I,GBL,REL,CON) 000000
000000
DIVV :(RO,I,GBL,REL,CON) 000024
000024

MULL :(RO, I,GBL,REL,CON) 000052
000052

SAVAL : (RO, I,GBL,REL,CON) 000076
000076
SUBB :(RO,I,GBL,REL,CON) 000140
000140

Global symbols:

AADD 000000-R MULL 000052-R

DIVV 000024-R

*** Task builder statistics:

000000
000024
000024
000026
000026
000024
000024
000042
000042
000024
000024

SUBB

Total work file references: 368.

Work file reads: O.
Work file writes: O.

00000.
00020.
00020. LIB
00022.
00022. LIB
00020.
00020. LIB
00034.
00034. LIB
00020.
00020. LIB

000140-R

Size of core pool: 7086. words (27. pages)
Size of work file: 768. words (3. pages)

Elapsed time:00:00:03
Example 5-3, Part
.TITLE MAIN

.IDENT /O1/

+

-

~e ~o ~

Ident

01

01

01

01

0l

3 Source Listing for MAIN.MAC

-MCALL QIOWS$S,EXITSS

OP1: .WORD 1
OP2: «WORD 1
ANS: . BLKW 1
OuT: « BLKW 100.

FORMAT: .ASCIZ /THE ANSWER
.EVEN
.ENABL LSB

= %D./

~e So ~o ~o

LIB.TSK.

OPERAND 1
OPERAND 2
RESULT

i **MAIN - CALLING ROUTINE TO EXERCISE THE ARITHMETIC ROUTINES
FOUND IN THE RESIDENT LIBRARY,

FORMAT MESSAGE

File

LIB.OBJ; 2
LIB.OBJ;2
LIB.OBJ; 2
LIB.OBJ; 2

LIB.OBJ;2

(continued on next page)

N

SHARED REGION CONCEPTS AND EXAMPLES

Example 5-3, Part 3 (Cont.) Source Listing for MAIN.MAC -

START:
MOV #ANS, - (SP) ; TO CONTAIN RESULT
MOV #0P2,-(SP) : OPERAND 2
MOV #0P1, -(SP) ; OPERAND 1
MoV #3,-(SP) ; PASSING 3 ARGUMENTS
MOV SP,R5 ; ADDRESS OF ARGUMENT BLOCK
CALL AADD ; ADD TWO OPERANDS
CALL PRINT ; PRINT RESULTS
MOV SP,R5 ; ADDRESS OF ARGUMENT BLOCK
CALL SUBB ; SUBTRACT SUBROUTINE
CALL PRINT ; PRINT RESULTS
MOV SP,R5 ; ADDRESS OF ARGUMENT BLOCK
CALL MULL ; MULTIPLY SUBROUTINE
CALL PRINT ; PRINT RESULTS
MOV SP,R5 ; ADDRESS OF ARGUMENT BLOCK
CALL DIVV ; DIVIDE SUBROUTINE
CALL PRINT ; PRINT RESULTS
EXITSS

+
*

* PRINT - PRINT RESULT OF OPERATION.

\
~e S ~o

PRINT: MOV #OUT, RO ; ADDRESS OF SCRATCH AREA
Mov #FORMAT,R1 ; FORMAT SPECIFICATION
Mov #ANS, R2 ; ARGUMENT TO CONVERT
CALL SEDMSG ; FORMAT MESSAGE
QIOWS$S #IO.WVB, #5,#1,,,,<#0UT,R1, #40>
RETURN ; RETURN FROM SUBROUTINE

.END START

Once you have assembled MAIN, you can use the following TKB command
sequence to build it:

TKB>MAIN,MAIN/MA/-WI/-SP=MAIN
TKB> /

Enter Options:
TKB>RESLIB=LIB/RO:3

TKB>//

>

Or, you can use the following LINK command sequence to build it:

>LINK/TAS/MAP:MAIN/SYS/NOWIDE/NOPRINT/OPT MAIN
Option? RESLIB=LIB/RO:3

Option?

>

These command sequences instruct TKB to build a task file named
MAIN.TSK on device SY: under the UFD that corresponds to the terminal
UIC. It also specifies that TKB is to create a map file MAIN.MAP.
The /MA switch or /SYS qualifier requests an extended map format. 1In
the TKB example, /MA was applied to the device specification so that
TKB would include in the map for the task the symbols within the
library LIB. In DCL, the /SYS qualifier includes the symbols within
the library into the map. The negated form of the wide listing switch
(/-WI) was appended to the map specification to obtain an 80-column
map format. In DCL, the /NOWIDE qualifier specified an 80-column map
format. 1In this example, /-SP and /NOPRINT prevent TKB from spooling
a map listing to the line printer.

The RESLIB option specifies that the task MAIN is to access the
library LIB and that it requires read-only access to LIB. TKB uses
APR3 to map the library.

SHARED REGION CONCEPTS AND EXAMPLES

The TKB map that results from this

Example 5-3, Part 4.

Example 5-3, Part 4 Task Builder Map for MAIN.TSK

command

MAIN.TSK;1 Memory allocation map TKB M40.10

11-DEC-82

Partition name : GEN
Identification : 01
Task UIC : [7,62]

13:51

Stack limits: 000274 001273 001000 00512.

PRG xfr address: 001634
Total address windows: 2.
Task image size : 1152. WORDS

Task address limits: 000000 004327
R-W disk blk limits: 000002 000006 000005 00005.

*** Root segment: MAIN

R/W mem limits: 000000 004327 004330 02264.
Disk blk limits: 000002 000006 000005 00005.

Memory allocation synopsis:

- BLK.:(RW,I,LCL,REL,CON) 001274
001274
002024
003074
003312
003406
003656
004004
AADD :(RO,I,GBL,REL,CON) 060000
060000
DIVV :(RO,I,GBL,REL,CON) 060024
060024
MULL :(RO, I,GBL,REL,CON) 060052
060052
SAVAL :(RO, I,GBL,REL,CON) 060076
060076
SUBB :(RO, I,GBL,REL,CON) 060140
060140
$$RESL: (RO, I,LCL,REL,CON) 004114
004114
004140
004226

Global symbols:

AADD 060000-R $CBDSG 003110-R
DIVV 060024-R $CBOMG 003116-R
IO.WVB 011000 $CBOSG 003124-R
MULL 060052-R $CBTA 003154-R
SUBB 060140-R $CBTMG 003132-R
$CBDAT 003074-R $CBVER 003116-R
$CBDMG 003102-R $CDDMG 003656-R

002620
000530
001050
000216
000074
000250
000126
000110
000024
000024
000026
000026
000024
000024
000042
000042
000024
000024
000212
000024
000066
000100

$CDTB
$COTB
$C5TA
S$SDAT

$DDIV
$D1IV

$DMUL

01424.

00344. MAIN

sequence 1is

Page 1

00552. EDTMG 15

00142. CBTA
00060. CATB

00168. EDDAT 03
00086. CDDMG 00

00072. C5TA

00020.
00020. LIB
00022.
00022. LIB
00020.
00020. LIB
00034.
00034. LIB
00020.
00020. LIB
00138.

0ol
01
01

01

00020. SAVRG 04
00054. ARITH 03.04
00064. DARITH 0007

003312-R
003320-R
004004-R
003452-R
004264-R
004170-R
004226-R

shown in

File

MAIN.OBJ;1

SYSLIB.OLB;1034
SYSLIB.OLB;1034
SYSLIB.OLB;1034
SYSLIB.OLB;1034
SYSLIB.OLB;1034
SYSLIB.OLB;1034

LIB.STB;17
LIB.STB;17
LIB.STB;17
LIB.STB;17
LIB.STB;17
SYSLIB.OLB;1034

SYSLIB.OLB;1034
SYSLIB.OLB;1034

SEDMSG 002122-R
$MUL 004140-R
$SAVRG 004114-R
$TIM 003532-R

(continued on next page)

(

SHARED REGION CONCEPTS AND EXAMPLES

Example 5-3, Part 4 (Cont.) Task Builder Map for MAIN.TSK

*** Task builder statistics:

Total work file references: 2218.

Work file reads: O.

Work file writes: O.

Size of core pool: 2066. words (8. pages)
Size of work file: 1024. words (4. pages)

Elapsed time:00:00:19

This map contains a global symbols section. Note that the symbols
within the 1library now have virtual addresses assigned to them and
that these addresses begin at 60000(octal), the virtual base address
of APR 3. The Task Builder's allocation of virtual address space for
MAIN.TSK is represented diagrammatically in Figure 5-10.

APR 7—
APR 6—
APR 56—

APR 4—

LIB. TSK } WINDOW 1 REGION 1

VIRTUAL 60000 APR 3—

APR 2—

APR 1—

MAIN. TSK }WINDOW 0 REGIONO

VIRTUALO APRO—

ZK-426-81

Figure 5-10 Allocation of Virtual Address Space for MAIN.TSK

The library LIB is position independent and can therefore be mapped
anywhere in the referencing task's virtual address space. APR 3 was
used in this example to contrast this mapping arrangement with the
mapping of MACCOM in the virtual address space of task MCOM1 in
Example 5-1 (Section 5.1.7). If the optional APR parameter in the
RESLIB option above had been left blank, TKB would have allocated the
highest available APR to map the library.

5.1.11.1 Resolving Program Section Names in a Shared Region - As
described in earlier sections of this chapter, program section names
within position-independent shared regions must normally be unique
with respect to program section names within tasks that reference
them. When a shared region is a position-independent resident common
and you explicitly declare the program section names within it,
avoiding program section name conflicts is an easy matter. However,
when a shared region is a position-independent resident library that

5-39

SHARED REGION CONCEPTS AND EXAMPLES

contains calls to routines within an object module 1library (SYSLIB,
for example), conflicts may develop that are not apparent to you. The
problem arises when the position-independent resident library and one
or more tasks that 1link to it contain calls to separate routines
residing within the same program section of an object module library.

When TKB resolves a call from within a module that it is processing to
a routine within an object module library, it places the routine from
the library into the image it is building. It also enters into its
internal table the name of the program section in the object module
library within which the routine resides. If a position-independent
resident 1library contains a call to a routine within a given program
section of SYSLIB, for example, and then subsequently a task that
links to the resident library contains a call to a different routine
within the same program section of SYSLIB, both the resident 1library
and the referencing task will contain the program section name. When
you build the referencing task, the library's .STB file will contain
the program section name and a program section conflict will develop.
(Refer to Section 5.1.6 for additional information on the sequence in
which TKB processes tasks and the potential program section name
conflicts that can result.)

This situation and one possible solution to it can be illustrated with
Example 5-3. When this example was first created, only the arithmetic
routines were included in the source file of the resident library
(LIB.MAC in Example 5-3, Part 1). The system library coroutine
($SAVAL) was resolved from SYSLIB. Because the first instruction of
each arithmetic routine called $SAVAL, TKB included a copy of it in
the resident library's image at task-build time. This turned out to
be unsatisfactory because of a call to the SYSLIB routine $EDMSG (edit
message) within the program MAIN that links to the resident 1library.
Both routines ($SAVAL and SEDMSG) reside within the unnamed or blank
program section (. BLK.) within SYSLIB. Therefore, a program section
name conflict developed when MAIN was built.

To circumvent this problem, the source code for $SAVAL was included in
the source file for the resident library under the explicitly declared
program section name SAVAL.

Another solution would have been to Dbuild the resident 1library
absolute. In this case, TKB would not have included program section
names from the resident library into the .STB file for the resident
library.

It is important to note that the above program section name conflict
develops only when two different routines residing within the same
program section of an object module library are involved. It presents
no problem when a resident library and a task that links to it contain
a call to the same routine in an object module library. In that case,
TKB copies the routine and the program section name in which it
resides into the resident library when the library is built. Then,
when the task that calls the same routine is built, TKB resolves the
reference to the routine in the resident library instead of in the
object module library.

5.1.12 Example 5-4: Building a Task That Creates a Dynamic Region

In all the examples of tasks shown thus far in this chapter, TKB has

automatically constructed and placed in the header of the task all of
the window blocks necessary to map all of the regions of the task's
image. The INSTALL processor has been responsible for initializing

5-40

PAsaN

SHARED REGION CONCEPTS AND EXAMPLES

the window blocks when the task was installed. In all the examples,
this has been possible because both TKB and the INSTALL processor have
had all the information concerning the regions available to them.

When a task creates regions while it is running (dynamic regions), the
information concerning the regions is not available to either the Task
Builder or INSTALL. Therefore, when TKB builds such a task, it does
not automatically create window blocks for the dynamic regions. It
creates only the window blocks necessary to map the task region (the
region containing the header and stack) and any shared regions that
the task references.

Dynamic regions are created and mapped with Executive directives that
are 1imbedded 1in the task's code. When you build a task that creates
dynamic regions, you must explicitly specify to TKB how many window
blocks (in excess of those created by TKB for the task region and any
shared regions) it is to place in the task's header. The Executive
will initialize these window blocks when it processes the region and
mapping directives. 1In all (includi ind bloek £ th t
region and shared regions

The text ‘in the remainder of this section and the figures associated
with it illustrate the development of a task that creates dynamic
regions. Example 5-4 shows a task (DYNAMIC.MAC) that creates a 128-
word dynamic region. This task simply creates an unnamed region, maps
to it, and fills it with an ascending sequence of numbers beginning at
the region's base and moving upwards. When the region is full,
DYNAMIC detaches from it and prints the following message on your
terminal:

DYNAMIC IS NOW EXITING
The region is automatically deleted on detach.

All of the Executive directives used Dby DYNAMIC (RDBBKS$, WDBBKS,
DTRGSS, EXITS$S, CRRGSS, CRAWSS, QIOWSS, and QIOWSC) to create and
manipulate the region are described in the RSX-11M/M-PLUS Executive
Reference Manual. These directives are SYSGEN options on RSX-11M
systems.

Example 5-4, Part 1 Source Listing for DYNAMIC.MAC

.TITLE DYNAMIC
.IDENT /VOl/

.MCALL RDBBKS$,WDBBKS$, DTRGS$S, EXITSS, CRRGSS,CRAWSS
.MCALL QIOWSC,QIOWSS ‘

.NLIST BEX.

REGION DESCRIPTOR BLOCK

i WORD O "SIZE OF REGION IN 32 DECIMAL WORD BLOCKS

H WORD 1 REGION NAME

i WORD 2 n

H WORD 3 NAME OF SYSTEM CONTROLLED PARTITION IN

; WORD 4 WHICH REGION WILL BE CREATED

H WORD 5 STATUS WORD

; WORD 6 PROTECTION WORD

RDB: RDBBKS$ 128.,,GEN, <RS.MDL!RS.ATT!RS.DEL!RS.RED!RS.WRT>, 170017

H WINDOW DESCRIPTOR BLOCK
WORD 0O APR TO BE USED TO MAP REGION

(continued on next page)

~e

SHARED REGION CONCEPTS AND EXAMPLES

Example 5-4, Part 1 (Cont.) Source Listing for DYNAMIC.MAC

; WORD 1 SIZE OF WINDOW IN 32-WORD BLOCKS
: WORD 2 REGION ID
; WORD 3 OFFSET INTO REGION TO START MAPPING
; WORD 4 LENGTH IN 32-WORD BLOCKS TO MAP
: WORD 5 STATUS WORD
WDB: WDBBKS 7,128.,0,0,,WS.MAP!WS.WRT>
MES1: .ASCIZ /DYNAMIC IS NOW EXITING/
Sl1-= . - MESL
ERRL: .ASCII /CREATE REGION FAILED/
SIZ1 = . - ERRI
ERR2: .ASCITI /CREATE ADDRESS WINDOW FAILED/
SIZ2 = . - ERR2
ERR3: .ASCII /DETACH REGION FAILED/
SIZ3 = . - ERR3
.EVEN
. PAGE
.ENABL LSB
START:)
CRRGSS #RDB ; CREATE A 128 WORD UNNAMED REGION
BCS 1$; FAILED TO CREATE REGION
MOV RDB+R.GID,WDB+W.NRID ; COPY REGION ID INTO WINDOW BLOCK

CRAWSS #WDB CREATE ADDR WINDOW AND MAP

BCS 2$; FAILED TO CREATE ADDR WINDOW

MOV WDB+W.NBAS, RO ; BASE ADDR OF CREATED REGION

MOV WDB+W.NSIZ,R2 ; NUMBER OF 32. WORDS IN REGION

«.REPT 5 ; MULTIPLY

ASL R2 ; BY

.ENDR ;7 32.

MOV #1,R1 ; INITIAL VALUE TO PLACE IN REGION
208: MOV R1, (RO)+ ; MOVE VALUE INTO REGION

INC R1 ; NEXT VALUE TO PLACE IN REGION

DEC R2 ; ONE LESS WORD LEFT

BGT 20$; TO FILL IN

DTRGS$S #RDB ; DETACH AND DELETE REGION

BCS 33 ; DETACH FAILED

QIOWSC IO.WVB,5,1,,,,<MES1,S1,40>

EXITS$S ;

ERROR ROUTINES

=~ = e
%23
.

MOV #ERR1, RO ; CREATE FAILED
MOV #SIZ1,R1 ; SIZE OF MESSAGE
BR 6$; WRITE MESSAGE
2$: MOV #ERR2, RO ; CREATE ADDRESS WINDOW FAILED
MOV #SI172,R1 ; SIZE OF MESSAGE
BR 6$
3$: MOV #ERR3, RO ; DETACH FAILED
MOV #SIZ1,R1 ; SIZE OF MESSAGE
6$: QIOWSS #IO.WVB,#5,#1,,,,<RO,R1, #40>
EXITSS
.END START

Once you have assembled DYNAMiC, you can build it with the following
TKB command sequence:

TKB>DYNAMIC, DYNAMIC/~-WI /-SP=DYNAMIC
TKB>/

Enter Options:

TKB>WNDWS=1

TKB>//

>

SHARED REGION CONCEPTS AND EXAMPLES

Or, you may use the following LINK command sequence:

>LINK/TAS/MAP :DYNAMIC/NOWIDE/NOPRINT/OPT DYNAMIC
Option? WNDWS=1

Option?

>

This command sequence directs TKB to create a task 1image named

' DYNAMIC.TSK and an 80-column (/-WI; or /NOWIDE in DCL) map file named
DYNAMIC.MAP on device SY: under the terminal UIC. Because /-SP is
attached to the map file in the TKB command line, and because /NOPRINT
is specified in the DCL command line, TKB does not spool the file to
the line printer.

Under options, the WNDWS option directs TKB to create one window block
over and above that required to map the task region. Note that one
window block must be created for each region the task expects to be
mapped to simultaneously.

The map that results from this command sequence is shown in Example
5-4, Part 2.

Note that creating dynamic regions always involves the assumption that
there will be enough room in the partition named in the task's region
descriptor block to create the region when the task is run. In this
example, if DYNAMIC were to be run in a system whose partition GEN was
not large enough to accommodate the region it creates, the CREATE
REGION directive would fail.

Example 5-4, Part 2 Task Builder Map for DYNAMIC.TSK

DYNAMiC.TSK;l Memory éllocation map TKB M40.10 Page 1
11-DEC-82 16:05

Partition name : GEN

Identification : VOl

Task UIC : [7,62]

Stack limits: 000274 001273 001000 00512.

PRG xfr address: 001470

Total address windows: 2.

Task image size : 512. WORDS

Task address limits: 000000 001753

R-W disk blk limits: 000002 000003 000002 00002.

*** Root segment: DYNAMI

R/W mem limits: 000000 001753 001754 01004.
Disk blk limits: 000002 000003 000002 00002.

Memory allocation synopsis:
Section Title 1Ident File

. BLK.:(RW,I,LCL,REL,CON) 001274 000430 00280.

001274 000430 00280. DYNAMI VOl DYNAMIC.OBJ;1
$DPB$$: (RW, I, LCL,REL,CON) 001724 000030 00024.
001724 000030 00024. DYNAMI VOl DYNAMIC.OBJ;1

(continued on next page)

SHARED REGION CONCEPTS AND EXAMPLES

Example 5-4, Part 2 (Cont.) Task Builder Map for DYNAMIC.TSK

*** Task builder statistics:

Total work file references: 549.

Work file reads: 0.

Work file writes: O.

Size of core pool: 7086. words (27. pages)
Size of work file: 768. words (3. pages)

Elapsed time:00:00:06

5.2 CLUSTER LIBRARIES

The term "cluster libraries" refers to both a function and a structure
created by the Task Builder (TKB) that allow a task to dynamically map
memory-resident shared regions at run time. Cluster libraries permit
a task to use, for example, a F77CLS library, an FMS-11 library, and
an FCS-11 library, all mapped through the same task address window.
The run-time routines put into the task by the Task Builder remap the
library regions so that, instead of occupying 48K bytes of virtual
address space, they share 16K bytes of virtual address space.

One task address window (window 1) maps the libraries into the same
span of virtual address space (48Kb to 64Kb). TKB maps your task from
virtual O upward.

TKB implements the cluster library function in two parts. The first
part, revectoring of interlibrary calls, is independent of the actual
remap mechanism but is required for remapping to work. The second

part executes the required MAP$ directives to map the appropriate
library.

The following examples use the library and task structure shown in
Figure 5-11. Note that in the following examples, the FMS-11/RSX V1.0
and FORTRAN-77 software products are sold under separate license and
are not included with the R or RS M system. Cluster
library support may be used with RMS-11 V2.0 or later versions, and
operates in a fashion similar to the FCS-11 example. Also, the
particular FCSRES used below is generated by SYSGEN. It consists of
two PLAS overlays and a null root.

VIRTUAL
ADDRESS
] 64KB
FORTRAN OTS LIBRARY FMS-11 LIBRARY FCS-11 LIBRARY
F77CLS FMSCLS FCSRES
48KB

L |

USER
TASK

- ZK-492-81

Figure 5-11 Example Library and Task Structure

SHARED REGION CONCEPTS AND EXAMPLES

5.2.1 Building the Libraries

You must follow several rules when designing and building shareable
clustered libraries. The rules are summarized next and discussed in
detail following the summary.

5.2.1.1 Summary of Rules for Building the Libraries -
® All libraries but the first require resident overlays.

® User task vectors indirectly resolve all interlibrary
references.

® Revectored entry point symbols must not appear in the
"upstream" .STB file.

® A called library procedure must not require parameters on the
stack.

® All the libraries must be PIC or built for the same address.
@ Trap or asynchronous entry into a library is not permitted.

The rules are discussed in detail as follows.

5.2.1.2 Rule 1: All Libraries but the First Require Resident

Overlays - The first 1library is the first named library in
the CLSTR option line. To obtain. the required run-time overlay data
structures in your task, you must define all the libraries except
possibly the first by using memory resident overlays. Although it can
be an overlaid 1library, the first library need not be and can be a
single-segment structure. If the first library is woverlaid with a
null root, the overlay run-time system cannot distinguish between the
first library and the other libraries in the cluster (those named in
the CLSTR option after the first). Therefore, if the first library
called is not the first library named in the CLSTR option, severe
performance degradation may be noticed because of excessive mapping
and unmapping of the 1libraries. Therefore, to avoid performance
degradation if the first library is overlaid with a null root, make
certain that the first library called is the first 1library named in
the CLSTR option.

All the libraries, except the first, must have a null root if
overlaid. You can achieve this in cases where a library is not
normally overlaid by creating an unbalanced overlay structure with a
null module. For example, the following ODL specification for FMSCLS
and a null module would suffice: .

.NAME FMSCLS
«ROOT FMSCLS-* (NULL, FMSLIB)

NULL: .FCTR LB:[1,1]SYSLIB/LB:NULL ;NULL MODULE
FMSLIB: .FCTR SY:FMSLIB-LB:[1,1]FDVLIB/LB ;FMS-11 ROUTINES
.END

SHARED REGION CONCEPTS AND EXAMPLES

The above ODL specification creates an unbalanced tree in the form
shown in Figure 5-12:

FMS-11 ROUTINES

L NULL

ZK-427-81

Figure'5—12 Example of an Unbalanced Tree with Null Segment

The effect, after you build your task, is an overlay structure that is
represented in the Figure 5-13.

TKB provides the cross-library linkage that it creates from the
overlay segment data contained in the individual .STB files of each
library.

FORTRAN OTS FMS-11 ROUTINES FCS-11 ROUTINES

NULL NULL

USER TASK

ZK-428-81

Figure 5-13 Example of an Overlay Cluster Library Structure

5.2.1.3 Rule 2: User Task Vectors Indirectly Resolve All

Interlibrary References - Figure 5-14 illustrates rule 2 and
is a part of the example in Figure 5-13. In Figure 5-14, 1if the
FORTRAN OTS 1library references an FCS-11 entry point .OPEN, the
transfer of control from the FORTRAN OTS library to the FCS-11 library
must be resolved by a jump vector in your task. Or, to state it in
another way, the CALL instruction in the FORTRAN OTS library must not
reference directly the target address (the address of .OPEN) in the
FCS-11 library. The system library contains the modules that perform
the indirect transfer for FCS-11 based libraries and user tasks. If

you want to duplicate the indirect referencing mechanism for your own:

purposes, Figure 5-14 and the following text describe the control flow
for FCsS-11.

N

SHARED REGION CONCEPTS AND EXAMPLES

FORTRAN OTS FCS-11 LIBRARY

.OPEN::
FCSVEC
.OPEN::

Sample code from FCSVEC module:

.OPEN:: MOV #30,-(SP) ; STACK OFFSET INTO USER TASK
; JUMP TABLE
BR DISPAT ; JOIN COMMON DISPATCH

DISPAT: MOV RO,-(SP) ; SAVE REGISTER
MOV @#.FSRPT,RO GET FCS-11 POINTER

ADD A.JUMP(RO0),2(SP) ; ADD VECTOR BASE TO OFFSET
MOV (SP)+,R0 ; RESTORE REGISTER

MOV @(SP)+,-(SP) ; PICK UP ADDRESS OF TARGET
RETURN ; AND TRANSFER TO TARGET

ZK-429-81

Figure 5-14 Example of a Vectored Call Between Libraries

In this example, the module FCSVEC defines the .OPEN entry point. The
code at that 1location stacks an offset or "entry number" and joins
common dispatch code. The dispatch code, using the 1low . core FCS-11
impure pointer called .FSRPT, obtains the address of the FCS-11 impure
data area. At offset A.JUMP in that area is the address of a vector
of FCS-11 entry points. A return is executed, which transfers control
to the routine whose address is now on top of the stack. If the
target routine 1is an overlaid library, the run-time support ($AUTO)
loads the appropriate overlay and relays the transfer of control.

You may use this vectoring mechanism to isolate the linkages between
two 1libraries whether or not you use them in the cluster library
scheme. You can replace either the FORTRAN OTS or the FCS-11 1library
in your system without relinking the other library. However, you must
relink your task when you replace either of these libraries.

5.2.1.4 Rule 3: Revectored Entry Point Symbols Must Not Appear in

. the “Upstream" .STB File - This rule means that the
GBLXCL=symbol option must appear for each revectored symbol, as in
FORTRAN OTS in this example. In the brief example above, the

following line must appear in the build file for the FORTRAN OTS
library:

GBLXCL=.O0PEN

SHARED REGION CONCEPTS AND EXAMPLES

5.2.1.5 Rule 4: A Called Library Procedure Must Not Require
' Parameters on the Stack - This rule applies to routines
contained in 1libraries other than the "default"” library, as
represented by the FMSCLS and FCSRES libraries of the above example.
In addition, the called procedures must use the JSR PC and RTS PC call
and return convention. The flow of control for a call into a cluster
library member other than the default proceeds as follows.

Only your task can call and reference the FCSRES library routine
.OPEN. All references from other 1libraries are revectored as
described above. TKB resolves all such references to an appropriate
task resident autoload vector. As in the example, when the FORTRAN
OTS library calls .OPEN, the code revectors the call through your task
and hence to the autoload vector. At this point, the TKB run-time
routine S$AUTO gets control and searches the overlay segment descriptor
tree, noting which segments are resident and which must be loaded or
mapped to access the target routine.

Next, S$AUTO notes that a member of a library cluster must be unmapped
to comply with the map adjustments required to access the target
routine. The reference to the unmapped library and the segment within
the 1library is placed on-the stack, the target library is mapped, and
the target routine is accessed through a JSR PC instruction. That
target routine must not attempt to access parameters by offsets from
the stack pointer (SP) because of the presence of $AUTO saved
information. Upon return from the target by an RTS PC instruction,
the target library is unmapped, and the previous library remapped
using the saved segment and library data on the stack. Finally, $AUTO
executes an RTS PC instruction to return to the caller.

Note that if your task contains a mix of cluster libraries and
noncluster 1libraries, the call format rule applies only to control
transfers to cluster library routines. Other noncluster libraries
that you create may use any appropriate call and parameter passing
convention.

5.2.1.6 Rule 5: All the Libraries Must be PIC or Built for the Same

Address - TKB must be able to place each library of the
cluster at the same virtual address. To do this, the libraries must
be Dbuilt as position independent or be built to the exact address
specified in the CLSTR command described below.

5.2.1.7 Rule 6: Trap or Asynchronous Entry Into a Library is not

Permitted - A routine built as part of a library that is to
be used in a cluster may not be specified as the service routine for a
synchronous trap, or for asynchronous entry as a result of I/O
completion or Executive service. This restriction is required because
at the moment of the trap or fault, the appropriate library may not be
the one that is mapped. For example, if the default library contains
the service routine to display an error message upon odd address trap
(the odd address fault occurs within one of the other libraries of the
cluster), the routine will not be available to service the trap. It
will have been unmapped by the run-time routines to map the called
library.

I/0 completion and fault service vectors and routines must be placed
in libraries or task segments that are resident at all times that the
fault, trap, or I/0 completion may occur.

/ \

/ N\

SHARED REGION CONCEPTS AND EXAMPLES

5.2.2 Building Your Task

After building the individual libraries and placing the .TSK and .STB
files for all the libraries into the LB:[1,1] directory, you may build
your task. The TKB option line that you must use for your task has
the following syntax:

CLSTR=1library 1,library 2,...library n:switch:apr
library n

The first specification denotes the first or the default library,
which 1is the library to which the task maps when the task starts
up and remaps after any call to another library.

In an RSX-11M or RSX-11M-PLUS system, the total number of
libraries to which a task may map is seven. The number of the
component libraries in clusters is limited to a maximum of six.
A cluster must contain a minimum of two libraries. It is
possible to have two clusters of three libraries each or three
clusters of two libraries each; any combination of clusters and
libraries must equal at least two or a maximum of six. If six
libraries are wused in clusters, the task may map to only one
other, separate library.

:switch:apr

The switch :RW or :RO indicates whether the cluster is read-only
or read-write for this particular task. The APR specification is
optional and indicates which APR is to be used as the starting
APR when mapping to cluster libraries. If not specified, TKB
assigns the highest available APRs and as many as required to map
the library.

5.2.3 Examples

The sample build files for F77CLS, FDVRES, and FCSRES, and for the
FMS-11 demonstration task FMSDEM are appended as an example of the
cluster library-build process.

5.2.3.1 F77CLS -- Build the Default Library for the FORTRAN-77 OTS -
If you use TKB syntax, enter the following command sequence:

>TKB

TKB>F77CLS/-HD,F77CLS/CR/~-SP/MA,F77CLS=F77RES
TKB>LB:[[1,1]]F770TS/LB

TKB>LB:[[1,1]]SYSLIB/LB:FCSVEC ; INCLUDE THE FCS JUMP VECTOR
TKB> /

Enter Options:

STACK=0

PAR=F77CLS:140000:40000

FORCE THE JUMP TABLE TO BE LOADED FROM THE SYSTEM

LIBRARY WHEN THE USER TASK IS BUILT

Q ~o ~o e s

BLINC=.FCSJT REFERENCE SYMBOL DEFINED IN

THE MODULE SYSLIB/LB:FCSJMP

~o ~o

PREVENT DEFINITIONS FOR FCS-11 ENTRY POINTS FROM APPEARING
IN THE .STB FILE FOR THIS LIBRARY OR OTHER SYSTEM LIBRARY

~e Ne o <~

SHARED REGION CONCEPTS AND EXAMPLES

GBLXCL=.ASLUN
GBLXCL=.CLOSE
GBLXCL=.CSI1
GBLXCL=.CSI2
GBLXCL=.DELET
GBLXCL=.DLFNB
GBLXCL=.ENTER
GBLXCL=.EXTND
GBLXCL=.FCTYP
GBLXCL=.FIND"
GBLXCL=.FINIT
GBLXCL=.FLUSH
GBLXCL=.GET
GBLXCL=.GETSQ
GBLXCL=.GTDID
GBLXCL=.GETDIR
GBLXCL=.MARK
GBLXCL=.MRKDL
GBLXCL=.0PEN
GBLXCL=.0PFID
GBLXCL=.0OPFNB
GBLXCL=.PARSE
GBLXCL=.POINT
GBLXCL=.POSIT
GBLXCL=.POSRC
GBLXCL=.PRINT
GBLXCL=.PRSDV
GBLXCL=.PRSFN
GBLXCL=.PUT
GBLXCL=.PUTSQ
GBLXCL=.REMOV
GBLXCL=.SAVR1
GBLXCL=.TRNCL
GBLXCL=.READ
GBLXCL=.WAIT
GBLXCL=.WRITE

//
If you use DCL syntax for the command and options shown, you must do
two things. First, create a command file that contains the options

and name it, for example, CLUSTR.CMD. The reason you must do this is
that DCL cannot contain all these options within its command buffer.
This command file can contain the options in the following example
sequence:

STACK=0!PAR=F77CLS:140000:40000

GBLINC=.FCSJT

GBLXCL=.CSI1, .CSI2, .DLFNB, .FINIT, .GET, .GETSQ, .GTDID
GBLXCL=.MRKDL, .OPFNB, . PARSE, . POINT, . POSRC, . PRINT
GBLXCL=.PUT, .PUTSQ, .SAVR1, .READ, .WAIT

Second, enter the following DCL command sequence:

>LINK/TAS:F77CLS/NOH/MAP:F77CLS/NOPRINT/SYS/CROSS/SYM:F77CLS/OPT -

->F77RES,LB:[1,1]F770TS/LIB,LB:[1,1]SYSLIB/INC:FCSVEC
Option? @CLUSTR.CMD

Option?

>

SHARED REGION CONCEPTS AND EXAMPLES

The GBLINC option as shown in the TKB and DCL examples forces TKB to
add a global reference entry in the library .STB file. This ensures
that TKB links certain modules required by the library, such as impure
data areas or root-only routines, without further user action. These
modules should be in the system library (LB:[1,1]SYSLIB.OLB) or in a
library always referenced by your task, so that this forced loading
mechanism is entirely invisible to you.

5.2.3.2 FDVRES -- Build an FMS-11/RSX V1.0 Shareable Library - The
following is an example command file. You name it FDVRES.CMD. If you
use TKB syntax, you can use the following TKB command line:

>TKB @FDVRES
If you use DCL syntax, you can use the following LINK command line:
>LINK @FDVRES
TITLE OF THE EXAMPLE COMMAND FILE THAT BUILDS THE FORMS
MANAGEMENT PLAS-RESIDENT LIBRARY FOR USE WITH THE
TASK BUILDER CLSTR OPTION.

FDVRES.CMD

8 Ne N Ne Ne o w0 oSo

THE FOLLOWING CODE IS THE EXAMPLE TKB COMMAND FILE:

LB:[1,1]FDVRES/-HD/MM/SG,MP:[1, 34]JFVRES/MA/-SP,LB:[1, 1]FDVRES=
SY:[1, 24 JFDVRESBLD/MP

STACK=0

PAR=FDVRES:140000:40000

TASK=FDVRES

THE FOLLOWING LINE FORCES THE FCS JUMP TABLE TO BE INCLUDED IN THE
SYMBOL TABLE FILE FOR THE FORMS MANAGEMENT LIBRARY.

BLINC=.FCSJT

THE FOLLOWING LINES FORCE LIBRARY ENTRY POINTS AND DEFINITIONS INTO
THE TASK ROOT:

o Ne e s Q) e s ome s

GBLREF=CBCUR, CBREV,CBSTST,CBS132, DVSBLD, DVSBLK, DVSDHW, DVSDWD
GBLREF=DV$GRA, DVSREV, DVSUND, DSATT1, DSATT2, DSCLRC, D$FID, DSFXLN
GBLREF=D$LNCL, D$PICT, DSPLEN, DSRLEN, DSVATT, D$2ATT, D1SALN, D1SALP
GBLREF=D1$ARY, D1$COM, D1$MIX, D1$NUM, D1SSCR, D1$SNM, D2$DEC, D2$DIS
GBLREF=D2$FUL, D2$NEC, D2$REQ, D2$RTJ, D2$SPO, D2$TAB, D2SVRT, D2$ZFL
GBLREF=FCS$ALL, FCSANY, FC$CLS, FCCSH, FCSDAT, FCGET, FCGSC, FCSLST
GBLREF=FCOPN, FCPAL, FC$PSC, FCSPUT, FCSRAL, RCSRTN, FCSHO, FCSLN
GBLREF=FCSSPF, FCSSPN, FCSTRM, FESARG, FESDLN, FE$DNM, FESDSP, FE$FCD
GBLREF=FES$FCH, FESFLB, FESFLD, FESFNM, FESFRM, FESFSP, FESICH, FESIFN
GBLREF=FE$IMP,FESINI,FESIOL, FESIOR, FESLIN, FENOF, FENSC, FESSTR
GBLREF=FES$UTR, FESINC,FS$SUC, FTSATB, FTSKPD, FTNTR, FTNXT, FT$PRV
GBLREF=FT$SBK, FTSSFW, FT$SNX, FT$SPR, FTSXBK, FT$XFW, FSASIZ, F$CHN
GBLREF=FFNC, FIMP, FLEN, FNAM, F$NUM, FSREQ, FSRSIZ, F$STS
GBLREF=FTRM, FVAL, ISALT, ISCLR, ISDEC, ISDSP, ISSERR, IS$SHFM
GBLREF=IS$HLP, ISSINS, ISSLST, ISSMED, ISSNMS, IS$SSCR, IS$SGN, ISADVO
GBLREF=I$ALLC, I $BADR, I$BEND, I$BPTR, I $BSIZ, I$CFRM, I $CURC, I$SCURP
GBLREF=I$DISP, I$DLN1, I$SDLN2, I$FADR, I$FBLK, I$FCHN, ISFDES, I$FDST
GBLREF=I$FDS1,I$FDS2, I$FIXD, IS$FMST, I$FOFF, I$FORM, ISFSIZ, I$FXD1
GBLREF=I$FXD2, I$HLEN, I$HLPF, ISILEN, I$IMPA, ISLCOL, ISLINE, ISLLIN
GBLREF=ISLNCL, I$LPTR, ISLVID, I$NBYT, I $NDAT, I$NFLD, I$PATN, I $PBLN
GBLREF=I$RESP, I$SROFF, I$STAT, I$STKP, I$SVST, ISVATT, LSCLSZ, L$FDES
GBLREF=L$LNCL, LSRESP, $ $SFDVT

GBLREF=$FDV

7

SHARED REGION CONCEPTS AND EXAMPLES

THE FOLLOWING LINES PREVENT THE DEFINITIONS FOR FCS-11 ENTRY POINTS
FROM APPEARING IN THE FORMS MANAGEMENT LIBRARY .STB FILE:

o ~o ~eo

GBLXCL=.ASCPP
GBLXCL=.ASLUN
GBLXCL=.CLOSE
GBLXCL=.CTRL
GBLXCL=.DELET
GBLXCL=.DLFNB
GBLXCL=.ENTER
GBLXCL=.EXTND
GBLXCL=.FATAL
GBLXCL=.FCTYP
GBLXCL=.FIND
GBLXCL=.FINIT
GBLXCL=.FLUSH
GBLXCL=.GET
GBLXCL=.GETSQ
GBLXCL=.GTDID
GBLXCL=.GTDIR
GBLXCL=.MARK
GBLXCL=.MBFCT
GBLXCL=.MRKDL
GBLXCL=.0PEN
GBLXCL=.0PFID
GBLXCL=.0PFNB
GBLXCL=.PARSE
GBLXCL=.POINT
GBLXCL=.POSIT
GBLXCL=.POSRC
GBLXCL=.PPASC
GBLXCL=.PPR50
GBLXCL=.PRINT
GBLXCL=.PRSDI
GBLXCL=.PRSDV
GBLXCL=.PRSFN
GBLXCL=.PUT
GBLXCL=.PUTSQ ,
GBLXCL=.RDFDR
GBLXCL=.RDFFP
GBLXCL=.RDFUI
GBLXCL=.REMOV
GBLXCL=.SAVR1
GBLXCL=.TRNCL
GBLXCL=.WRITE

//

5.2.3.3 FDVRESBLD.ODL -- Overlay Description for FMS-11/RSX V1.0
Cluster Library - The following example file is an Overlay

Description File named FDVRESBLD.ODL. If you use DCL syntax, you
enter it as-

>LINK/.../.../... FDVRESBLD/OVER
If you use TKB syntax, you enter the command line as

>TKB outfile(s)=FDVRESBLD/MP

; THE FOLLOWING LINE IS THE FILENAME OF THE .ODL FILE FOR THE
; PLAS-RESIDENT FORMS MANAGEMENT LIBRARY:

FDVRESBLD.ODL"

SHARED REGION CONCEPTS AND EXAMPLES

PLAS-RESIDENT FORMS MANAGEMENT LIBRARY:

~e N Se S

. NAME FDVROT
.ROOT FDVROT-*! (MAIN, NULO)

NULO: .FCTR LB:[1,1]SYSLIB/LB:NULL

FCSV: .FCTR LB:[1,1]SYSLIB/LB:FCSVEC

MAIN: .FCTR LB:[1,1]FDVLIB/LB:FDV-LB:[1,1]FDVLIB/LB-FCSV
.END

5.2.3.4 FCSRES Library Build - FCSRSIBLD.BLD is distributed with the
RSX-11M and RSX-11M-PLUS distribution kits. Refer to the build
command and overlay description contained in the files FCSRS1BLD.CMD
and FCSRS1BLD.ODL, which can be generated by SYSGEN if you want.

5.2.3.5 F77TST.CMD -- File to Build the FMS-11/RSX V1.0 FORDEM Test
Task - The following 1is an example build command file named
F77TST.CMD. If you use TKB syntax, enter the following command line:

>TKB @F77TST.CMD
If you use DCL syntax, enter the following command line:
>LINK @F77TST.CMD

;THE FOLLOWING IS THE CONTENT OF THE COMMAND FILE
FORDEM/FP, FORDEM/MA /-SP=FORDEM, HLLFOR
LB;[1,1]FDVLIB/LB ‘
LB:[1,1]F770TS/LB

EXTSCT=$$FSR1:2000
CLSTR=F77CLS, FDVRES, FCSRES:RO
STACK=200

5.2.4 Overlay Run-Time Support Requirements

The Task Builder uses the .STB files of the cluster 1libraries to
obtain the information needed to create the overlay data base. For
each PLAS overlaid cluster library TKB places autoload vectors,
segment descriptors, window descriptors, and a region descriptor in
the root of the task. This information comprises the overlay run-time
support for the cluster libraries. In Appendix B, Figure B-9 and the
accompanying text describe this information. Table 5-1 describes the
space needed for the overlay run-time system support that includes
cluster libraries. For a complete description of overlay run-time
routine sizes, see Section 4.5.

Using cluster libraries conserves virtual space and may require only
one window.

THE FOLLOWING LINES OF CODE ARE CONTAINED IN THE .ODL FILE FOR THE

SHARED REGION CONCEPTS AND EXAMPLES

Table 5-1
Comparison of Overlay Run-Time Module Sizes

Number
Program of Bytes
Module Section Oct/Dec Specific Use

One of the following modules is included in any overlaid task
that uses autoload and in any task that links to a PLAS overlaid
resident library.

AUTO $SAUTO 122/82. All tasks that use autoload

AUTOT ‘$$AUTO 132/90. All tasks with AST's
$SRTQ 32/26. disabled during autoload
$$RTR 30/24.

One of the following modules is included in any overlaid
conventional task. OVCTR or OVCTC is included in any
non-overlaid task (conventional or) t<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>