Fulbright Economics Teaching Program
Academic Year 20052006
Fall Semester
Financial Analysis Syllabus
Instructor : Mr. Nguyen Minh Kieu, Ms. Viktoria Dalko

Teaching team

Co-instructor: Mr. Diep Dung
Tutor : Mr. Huynh The Du
Translator: Ms. Tran Thi Kim Chi

Class meeting time

Weekly Lectures	Date	Time
Lecture 1	Tuesday	$2: 004: 30 \mathrm{pm}$
Lecture 2	Wednesday	$10: 1511: 45 \mathrm{am}$
Review or case study	Friday	$10: 1511: 45 \mathrm{am}$

Office hours
Office hours for this course are planned on all working days from 4:30 to 6:00 p.m. and from 9:00 to 11:30 a.m. on Saturday. Specific office hours of each teaching team member will be
announced at the beginning of the course. If the office hours scheduled
grenpleatertato make appointments with teaching team members and choose the most convenient time to you.

Course objectives

To provide participants a framework and tools of financial analysis for policy planning and decision making
To introduce participants the basic financial concepts of time value of money, risk and return, cost of capital, capital budgeting, capital structure, dividend policy, debt and equity financing, and financial models such as discounted cash flows model, capital asset pricing model, Gordon model, Baumol model, Miller-Orr model, To instruct participants to use these concepts and models in a real world of business To provide participants basic concepts and knowledge to study other related courses including Appraisal of Development Expenditures, Development Finance, Public Finance.

Course description

This course will be offered on Fall Semester and lasted in 16 weeks with two lectures and one review or case study each week. Additionally, there are six assignments delivered and required participants to submit for every two weeks, and 2 exams: one mid-term and one
final exam undertaken by all participants. Details of each lecture are presented in class schedule (page 3).

Teaching methods

This course is instructed in Vietnamese, however some materials and readings delivered may be in English and Vietnamese. Teaching team members use co-participation as the main teaching method which requires the participants attend all formal lectures, discuss, and ask questions as many as possible and make group discussions after class.
The participants are encouraged to discuss with and raise questions to teaching team members on the issues related to the course.

Readings

There are a lot of readings provided to participants including teaching handouts, lecture notes and reading materials abstracted from the following textbooks and references:

1. Van Horne, J.C., and Wachowicz, J.M., (2001), Fundamentals of Financial Management, $11{ }^{\text {th }}$ Edition, Prentice Hall
2. Ross, Westerfield and Jordan: Fundamentals of Corporate Finance, Seventh edition,

2005, McGraw-Hill Irwin
3. Ross, S.A., Westerfield, R.W., Jaffe, J.F., (2002), Corporate Finance, 6 th $^{\text {th }}$ Edition, McGraw-Hill and Irwin
4. Brealey, R.A., and Myers, S.C., (1996), Principles of Corporate Finance, 5 th Edition, McGraw-Hill
5. Frank J. Fabozzi, Franco Modigliani, Frank J. Jones, Michael G. Ferri: Foundations of financial markets and institutions, Third edition, 2002, Prentice Hall
6. Madura, J. (2001) Financial Markets and Institutions, $5 \quad{ }^{\text {th }}$ Edition, South-Western College Publishing
7. Shapiro, A. A., (1999), Multinational Financial Management, 6 th $^{\text {th }}$ edition, Prentice Hall.
8. Eun and Resnick: International Financial Management, Third Edition, 2004, Irwin-McGraw-Hill

Course requirements and expectations

It is expected that participants will read the assigned readings before class, regularly attend class, actively take part in class discussions and successfully complete all assignments and exams. Sometimes the readings may not be easy to read and require some subsequent readings for further understanding. Participants may be called upon to comment on the assigned readings or answer the instructors questions. For further readings and advanced materials, please read textbooks in the library or ask teaching team members.

Fulbright Economics Teaching Program
Academic Year 2005-2006

Financial Analysis
Syllabus

Course assessment

The performance of participants in this course will be assessed via assignments (15\%), case study (15%), mid-term (30%) and final exam (40%). For the assignments, participants may form up discussion groups of 23 people but all must write and submit their own wording solutions. For exams, each participant may use only one A4 (both sides) sheet of summary but no other materials or textbooks are allowed during the exams.

Class schedule

This course is designed for 16 weeks, including 14 lecture-weeks, 2 exam-weeks, and 6 assignments. Each lecture-week consists of 2 lectures and 1 weekly review or case study, and exam-week consists of exam-review, exam and exam-feedback.

PART 1: INTRODUCTION TO FINANCIAL ANALYSIS

WEEK 1

Lecture 1: Tuesday, 6/09/05
Topic: Overview of financial analysis
Readings: Brealey \& Myers, chapter 1
Handouts: Lecture notes N.M. Kieu, Overview of financial analysis Instructor: Nguyen Minh Kieu

Wednesdav.

" vanvoncey,

Readings: Brealey \& Myers, chapter 1
Handouts: Lecture notes N.M. Kieu, Overview of financial analysis
Instructor: Nguyen Minh Kieu
Case study: Friday, 9/09/05
Topic: Imex. Co Ltd.
Instructor: Diep Dung, Huynh The Du
WEEK 2
Lecture 2: Tuesday, 13/09/05 Assignment 1 delivered
Topic: Time value of money and discounted cash flow model
Readings: Brealey \& Myers, chapter 2\&3
Handouts: Lecture notes N.M. Kieu, Time value of money
Instructor: Nguyen Minh Kieu
Wednesday, 14/09/05
Topic: Time value of money and discounted cash flow model (cont.)
Readings: Brealey \& Myers, chapter 2\&3
Handouts: Lecture notes N.M. Kieu, Time value of money
Instructor: Nguyen Minh Kieu
Review: Friday, 16/09/05
Topic: Lecture 1\&2
Instructor: Diep Dung

WEEK 3

Lecture 3: Tuesday, 20/09/05
Topic: Risk, rate of return and capital asset pricing model
Readings: Brealey \& Myers, chapter 7\&8
Handouts: Lecture notes N.M. Kieu, Risk and rate of return
Instructor: Nguyen Minh Kieu
Wednesday, 21/09/05
Topic: Risk, rate of return and capital asset pricing model (cont.)
Readings: Brealey \& Myers, chapter 7\&8
Handouts: Lecture notes N.M. Kieu, Risk and rate of return
Instructor: Nguyen Minh Kieu
Case study: Friday, 23/09/05 Assignment 1 due
Topic: Tiger Capital Ltd.
Instructor: Diep Dung, Huynh The Du

PART 2: FINANCIAL ANALYSIS AND INVESTMENT DECISIONS

WEEK 4

Lecture 4: Tuesday, 27/09/05 Assignment 2 delivered
Topic: Bond and stock valuation
Readings: Brealey \& Myers, chapter 3\&4
Handouts: Lecture notes N.M. Kieu, Bond and stock valuation Instructor:

Nguyen Wednesday, 28/09/05

Minhropic: Bond and stock valuation (cont.)

Kieudings: Brealey \& Myers, chapter 3\&4

Handouts: Lecture notes N.M. Kieu, Bond and stock valuation

Instructor: Nguyen Minh Kieu

Case study: Friday, 29/09/05

Topic: Petrovietnam

Instructor: Diep Dung, Huynh The Du

WEEK 5
 Lecture 5: Tuesday, 04/10/05

Topic: Capital budgeting and decisions
Readings: Brealey \& Myers, chapter 5\&6
Handouts: Lecture notes Financial analysis and investment decisions
Instructor: Nguyen Minh Kieu
Wednesday, 05/10/05
Topic: Capital budgeting and decisions (cont.)
Readings: Brealey \& Myers, chapter 5\&6
Handouts: Lecture notes Financial analysis and investment decisions
Instructor: Nguyen Minh Kieu
Case study: Friday, 07/10/05 Assignment 2 due
Topic: Mercury Project
home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

Fulbright Economics Teaching Program
Academic Year 2005-2006

Syllabus
Case Study

Instructor: All teaching team members

WEEK 6

Lecture 6: Tuesday, 11/10/05 Assignment 3 delivered
Topic: Cash and inventory decisions
Readings: Brealer \& Myers, chapter 31
Handouts: Lecture notes N.M. Kieu, Cash and inventory management
Instructor: Nguyen Minh Kieu
Wednesday, 12/10/05
Topic: Cash and inventory decisions (cont.)
Readings: Brealer \& Myers, chapter 31
Handouts: Lecture notes N.M. Kieu, Cash and inventory management
Instructor: Nguyen Minh Kieu
Case study: Friday, 14/10/05
Topic: Eastern Textile Ltd.
Instructor: Diep Dung, Huynh The Du

WEEK 7
Lecture

7: Topic: Accounts receivable management and decisions
Reardays: Brealey \& Myers, chapter 30
Hendants: Lecture notes N.M. Kieu, Receivables and payables management
Instructor: Nguyen Minh Kieu
Exam Review Wednesday, 19/10/05
Topic: Mid-term Exam review
Readings: Brealey \& Myers, chapter 31
Handouts: Lecture notes N.M. Kieu, Cash an inventory management
Instructor: Nguyen Minh Kieu
Exam Review: Friday, 21/10/05 Assignment 3 due
Topic: Mid-term Exam review
Instructor: Diep Dung

WEEK 8

Exam review:
Topic:
Readings:
Handouts:
Instructor:
Exam review:
Topic:
Readings:
home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw
Fulbright Economics Teaching Program
Academic Year 2005-2006
Syllabus
Case Study

Handouts:
Instructor:
Review: Friday, 28/10/05
Topic: Mid-term exam
Instructor:

PART 3: FINANCIAL ANALYSIS AND FINANCING DECISIONS

WEEK 9

Lecture 9: Tuesday, 1/11/05
Topic: Financial leverage and capital structure Assignment 4 delivered
Readings: RWJ Chapter 17
Handouts: Lecture notes N.M. Kieu, Operating and financial leverage
Lecture notes N.M Kieu, Capital structure Determination
Instructor: Viktoria

Wednesday, 2/11/05

Topic: Financial leverage and capital structure (cont.)
Readings: RWJ Chapter 17
Handouts: Lecture notes N.M. Kieu, Operating and financial leverage
Lecture notes N.M Kieu, Capital structure Determination
Instructor: Viktoria
Case study: Friday, 4/11/05
Topic: The trouble I have seen, by David N. James (HBR article)
Instructor: Viktoria.

Diep Dung, Huynh

The Du

WEEK 10

Lecture 10: Monday, 08/11/05
Topic: Corporate senior bond instruments, international banking and money markets, and international bond markets
Readings: Fabozzi Chapter 20, 21, ER Chapter 6, 7
Handouts: Lecture notes
Instructor: Viktoria
Lecture 17: Wednesday, 09/11/05
Topic: International bond markets (cont.)
Readings: Fabozzi Chapter 20, 21, ER Chapter 6, 7
Handouts: Lecture notes
Instructor: Viktoria
Case study: Friday, 11/11/05 Assignment 4 due
Topic: Clarkson Lumber Co. by Thomas R. Piper (HBS case)
Instructor: Viktoria, Diep Dung, Huynh The Du

Fulbright Economics Teaching Program
Academic Year 2005-2006

Financial Analysis
Case Study

Syllabus

WEEK 11

Lecture 11: Tuesday, 15/11/05 Assignment 5 delivered
Topic: Analysis and decisions of short-term finance and planning: cash, liquidity, credit and inventory management
Readings: RWJ Chapter 19, 20, (incl. appendix), 21 (incl. appendix)
Handouts: Lecture notes
Instructor: Viktoria
Lecture 12 Wednesday, 16/11/05
Topic: Analysis and decisions of short-term financing (cont.)
Readings: RWJ Chapter 19, 20, (incl. appendix), 21 (incl. appendix)
Handouts: Lecture notes
Instructor: Viktoria
Case study: Friday, 18/11/05
Topic: How fast can your company afford to grow. by Neil C. Churchill and John W. Mullins (HBR article)
Instructor: Viktoria, Diep Dung, Huynh The Du

WEEK 12

Lecture 12: Tuesday, 22/11/05
Topic: Analysis and decisions of equity financing sources:
primary markets, secondary markets in the United States and around the world
Readinos: Fahozzi Chanter

HAntあull8; Leccirathatpser 8

Instructor: Viktoria
Lecture 12 Wednesday, 22/11/05
Topic: Analysis and decisions of equity financing sources
Readings: Fabozzi Chapter 14, 15, 18, 19, ER Chapter 8
Handouts: Lecture notes
Instructor: Viktoria
Case study: Friday, 24/11/05 Assignment 5 due
Topic: Netscape's Initial Public Offering by W. Carl Kester , Kendall Backstrand (HBS case)
Instructor: Viktoria, Diep Dung, Huynh The Du

WEEK 13

Lecture 13: Monday, 29/11/05 Assignment 6 delivered
Topic: Cost of capital, raising capital and analysis and decisions of dividend policy
Readings: RWJ Chapter 15, 16, 18
Handouts: Lecture notes
Instructor: Viktoria
Wednesday, 30/11/05
Topic: Cost of capital, raising capital and analysis and decisions of dividend policy (cont.)
home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw
Fulbright Economics Teaching Program
Academic Year 2005-2006
Syllabus
Case Study

Readings: RWJ Chapter 15, 16, 18
Handouts: Lecture notes
Instructor: Viktoria
Case study: Friday, 2/12/05
Topic: Ford Motor Co.'s Value Enhancement Plan (A) by Andre F. Perold
(HBS case)
Instructor: Viktoria, Diep Dung, Huynh The Du
PART 4: FINANCIAL STATEMENTS ANALYSIS

WEEK 14

Lecture 14: Monday, 6/12/05
Topic: Financial statements analysis
Readings: Stickney \& Weil, chapter 6
Handouts: Lecture notes N.M. Kieu, Financial statements analysis
Instructor: Nguyen Minh Kieu

Wednesday, 7/12/05

Topic: Financial statements analysis (cont.)
Readings: Stickney \& Weil, chapter 6
Handouts: Lecture notes N.M. Kieu, Financial statements analysis
Instructor: Viktoria
Case study: Friday, 9/12/05 Assignment 6 due
Topic: Agifish Co. Ltd.
Instructor:

Diep Dung,
Huynh The

WEEß45

Exam review: Monday, 13/12/05
Topic: All topics
Readings: All delivered
Handouts: All delivered
Instructor: All teaching team members
Exam review: Wednesday, 14/12/05
Topic: All topics
Readings: All delivered
Handouts: All delivered
Instructor: All teaching team members

WEEK 16

Office hour: Thursday, 22/12/05
Topic: All topics
Readings: All readings
home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw
Fulbright Economics Teaching Program
Academic Year 2005-2006
Syllabus
Case Study

Handouts: All handouts

Instructor: All teaching team members Final Exam: Friday, December 23, 2005 Instructor: All teaching team members

Assignments

Assignment	Topic	Delivery Date \$	ue Date Prepared by
1	Time value of money Risk, return and CAPM	13/09/2005 23/09	9/05 N.M. Kieu
2	Bond and stock valuation Capital budgeting	27/09/2005 07/10	0/05 N.M. Kieu
3	Cash and inventory management Receivables management	11/10/2005 21/10	0/05 N.M. Kieu
4	Operating and financial leverage Capital structure	01/11/2005 11/1	1/05 Viktorie
5	Short-term financing determination Long-term financing determination Ginny's Restaurant by Mark Mitchell (HBS exercise)	15/11/2005 24/1	1/05 Viktori
6	Dividend policy Financial statements analysis	29/11/2005 09/12	2/05 Viktori ${ }^{\text {a }}$

IMEX CO., LTD.

1. Settings

Imex Co. is a firm newly equitized from a state owned enterprise. Its predecessor is the Foreign Trade Company founded in 1975, whose main function was to implement the foreign trade plans with countries in the Economic Mutuality Council. By the end of the 1980s, as foreign trade activity changed, the firms functions also changed to adapt to the new circumstances. The firm was renamed as Imex and began to specialize in import and export. After only two years, Imex has become a strong, large-scale enterprise operating in almost all areas of business, but it is still principally involved in import and export with its two main product lines being the export of rice and the import of fertilizer. Since then, the Imex brand name has become well known.

Imex operated efficiently until 1997. However, when the financial crisis arose in East Asia and around the world, many held the opinion that import and export activity would face many difficulties and risks. Based on this view, Imex decided to diversify into the production of import substitutes and to invest in infrastructure. All the resources taken from import and export were used in these activities. Since then, goods manufactured at high cost have proven to be uncompetitive and infrastructure projects entered into on impulse have faced many obstacles in investment procedures and site clearance, resulting in
continual losses for the firm.
Since the firm did not track its business activities or prepare its financial plans in a clear, systematic way (investments were made on impulse; imports for sale were confused with imports for production, building factories or infrastructure works; production costs were confused with investment costs), it was not able to assess which operations were not efficient. It seemed that the firm operations were inefficient in all areas. The reason given for Imexs slowdown was the financial crisis.

After 5 years of continuing losses, Imex was equitized at the beginning of 2003 in the hope of creating a new momentum to overcome its difficulties. The government holds 30% of the shares. Despite having made losses for a long time, Imexs import and export activities have actually been developing very well, and the brand name Imex is strong and well known. Besides the traditional products rice and fertilizers Imex has promoted the export of seafood and import of household appliances. Import and export goods other than rice and fertilizer account for nearly 50% of total import and export value. Accordingly, the brand name Imex was left unchanged when the firm was equitized.

As a financial expert and an experienced manager, Mr. An, the new CEO, attributes one reason for the above disorder to accounting practices. Thus, he is looking for competent financial specialists to work with him to prepare a plan to rearrange the finance and accounting department according to the joint stock company model, in which accounting and finance are clearly separated and each play an important role.

This plan is on the agenda of the Board for their upcoming meeting. It is predicted that the plan will be hard to pass, because among the 12 Board members there are five members (former leaders of Imex, including the Chairman of the Board) who are used to the current style of financial management and are determined to resist changes. Three other members, who have just bought shares in IPO, support the changes. The remaining four members have not yet made up their minds and will lean towards the side with the most persuasive arguments. They are, however, influenced by the old system. According to Imexs articles, the plan will be adopted if more than 50% of the Board members agree. If 50% of the members agree and 50% of them disagree, the group including the Chairman will prevail.

2. Concepts of the role of accounting and finance

In a centrally planned economy, production is the most important element and is seen as being the center of economic activity. Financing, distribution, and consumption are regarded as insignificant subordinate functions to serve production. Accounting is seen as the recording of what has actually happened in the firm calculated in terms of money. Financial management is a vague concept and is unnecessary, since the financial plan has been decided and handed down from above, attached to the production plan. This lack of clarity regarding the role of finance results in the misunderstanding that accounting and finance are the same. Recording activities that have actually happened for managers who already know about them (they decided to carry out those activities) and thus are not interested, is the daily work of the accounting department. In addition, the role of the chief accountant is seen as being the person who, together with the CEO, goes to apply for budgetary
capital
from
the With the transition to a market economy, firms have gained autonomy in fiømøணingent implementing their production plans, but the old management style is still influential and firms do not attach importance to financial management. As a result, many managers cannot understand financial statements even after 15 years of transition to the market economy. This includes the majority of the Board members of Imex, including the former CEO of the pre-equitization Imex.

3. The current model and financial structure of Imex

3.1 The main activities

Imexs business activities include import, export, production, and infrastructure investment.

Import and export: These are the main functions of Imex, principally the export of rice and seafood, and the import of fertilizer and household appliances. In principle, Imex purchases rice for export under a procurement contract with farmers. However, the two parties often violate the contract. When prices go up, farmers break the contract; and when the price falls, the firm finds a way not to buy at the agreed price. For this reason, rice procurement is often carried out through intermediaries. The procurement of seafood is in a similar situation. Fertilizers and household appliances are sold through agents. Import and export are the most efficient (i.e. profitable) operations, accounting for more than 40% of annual revenue.

Fulbright Economics Teaching Program
Academic Year 2005-2006

Financial Analysis
Case Study

Production: Imex owns a cement plant with a capacity of 150,000 tons per year, but actual production and sales amount to only 100,000 tons per year, while inventories are high. Collection from sales is slow, and accounts receivable are considerable. The average collection amounts to 150 days. In addition, Imex opened a ceramic tile mill with a capacity of 2 million $m \quad{ }^{2}$ per year last year. The investment capital in the plant is 98 billion dong, and it is at the stage where the firm is still exploring the market. Production activity constitutes 40% of revenue of the firm, but its cost amounts to more than 50% (even after excluding administrative costs in the head office). The only production activities which show a profit are the rice husking plant and seafood processing plant.

Infrastructure investment: Imex is undertaking a build-operate-transfer highway project. The project is progressing slowly because the compensation and site clearance (right-of-way acquisition) have yet not been finished. Three years have elapsed since the deadline for completion, but the work realized only amounts to 30% of the total project. In addition, Imex is engaged in a project for a 400 -apartment complex for sale. The total investment is around 100 billion dong. The house is still under construction with 80% of the total work having been completed, but all the apartments have already been sold. Imex has collected 90% of the proceeds; the remaining 10% will be collected as the building is handed over to its occupants. The construction of the apartments has been highly profitable and hence Imex plans to develop another project ten times the scale of the current one.

Capital contributed to joint ventures: Imex has two joint ventures. One is a feed mill with a capacity of 20,000 tons per year. The feed mill has been operating
etticiently, and Imex owns 30% of $1 t$. The other joint
pentuof islaichdmiexalontslitay. The fertilizer plant has been operating for 3 years but its products are poor quality, priced high, and cannot be sold. Imex has contributed into joint ventures mainly with its land use right and its deferred-payment purchases of equipment from joint venture partners under the commercial banks guarantee.

Securities investment: Imex acquired securities one year following the opening of the securities market; at that time, the VNINDEX was 540

3.2 Financial management

Although the government holds 30% of the shares, Imex is an independently managed enterprise with regard to finance. The Law of Enterprises governs the firms operation.

3.3 Organization of the accounting and finance department

The accounting and finance department of Imex can be divided into three levels: managers, consolidated accounts, and detailed accounting. The accounting operation is divided into groups of accounts. Each accountant is responsible for keeping track of certain accounts

The managers of the accounting and finance department: The chief accountant has overall responsibility for detail accounting and the consolidated accounts, but the most important duty before equitization was to work together with the CEO to apply for budgetary capital (government funds) and investment projects.
home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw
Fulbright Economics Teaching Program
Academic Year 2005-2006

The three vice-chief accountants are in charge of current assets, fixed assets, and liabilities, respectively.

The consolidated accounting section has responsibility for preparing financial statements and annual financial plans.

The accountants (detail accounting) are assigned to keep track of specified accounts as follows:

Cash and bank deposits
Inventories
Accounts receivable
Investments (securities, joint-venture capital)
Fixed assets
Expenditures
Accounts payable
Tax and contribution to budgetary capital
Bank loans
Project accounting (one accountant is in charge of each project)
Treasurer

3.4 The duties of the accounting and finance department

To organize and implement the accounting work in compliance with regulations

To make accounting and finance plans to facilitate the firms operations

3.5 The actual operations of the accounting and finance department

The actual operations focus only on accounting, while the financial management function hardly exists.

4. The stakeholders requests

4.1 The CEOs requests

Faced with the urgent need for a rearrangement of the accounting and finance department, and knowing that the plan will be difficult to have adopted, the CEO needs to have a compelling plan to get the support of the four wavering members and to persuade the conservative members. Thus, it is necessary to make two points clear in the plan:

How to help the Board members to distinguish between accounting, financial accounting, and financial management, and hence to clarify the role of each function, especially that of financial management
How to organize the accounting and finance department of the firm

4.2 The Boards requests

Most of the Board members are used to the current style of management and do not want to change it. Faced with the prospect of changes in the firms accounting and
home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

Fulbright Economics Teaching Program
Academic Year 2005-2006

Financial Analysis
Case Study
finance department, the conservative members want to show that the current management is proper and changes are not necessary. Hence, they want to hire some financial experts to put forward the arguments for the current system.

Suggested questions

1. What would you do if Mr. An, the CEO, asked you to make a plan to reform the accounting department. In contrast, what would your arguments be if the Board hired you to support the current management style.
2. Many people have suggested that Imexs operations are not efficient because its investments have not been reasonable. Do you think that this is correct. What should Imex do to make itself efficient.

TIGER CAPITAL LTD.

In preparation for the start up of Tiger Capital, an investment fund in Vietnam, the founders of the fund are concerned about the market efficiency and the ability to value financial assets in Vietnam. Mr. Nam Viet, who has been working as a financial expert for almost 30 years in market assessment and financial asset valuation for international investment funds in East Asia, has been assigned to explore the market. He is well known in the Tokyo, Hong Kong, Bangkok and Manila exchanges for his valuable analyses.

Mr. Nam Viets first task is to gather the information needed on the Vietnam stock market in relation to his assignment. He has the following information:

1. The formation and development of the Vietnam securities exchange

1.1 The formation of the Vietnam securities exchange

During 1995-1996, Vietnams economy had changed considerably after a decade of doi moi. However, the model of state owned enterprises (SOEs) had revealed inadequacies. Many SOEs were in distress and in need of rearrangement. At that time, the privatization and equitization of SOEs were not widely accepted. Nevertheless, the government promulgated the first legal document on equitization, Decree 28/CP, on May 7, 1996 regarding transforming some SOEs into corporations to meet the requirements of doi moi, industrialization, and modernization of the country. Only 10 SOEs were equitized during the

Dedte44, 19988 VD rePlace Decree 28/CP to equitize almost all SOEs of non-targeted industries within 5-10 years. In the same effort, the foundation of a securities market was proposed to create a favorable environment for equitization promotion.

From another angle, to achieve the targeted growth rate of 7-7.5\% per year in this period, the demand for funds for economic development was huge. The banking system had just passed through the shock of 1989 and started embracing the market mechanism, and hence, it could not play a significant role yet. Bank credits constituted only just over 10% of the total funds for the economy. A new channel of funds was required to meet the demand for investment funds.

The two factors above led to the idea of developing a securities market to promote equitization and create a new channel of funds. The government issued Decree 75/CP on the establishment of the Securities Commission on November 28, 1996. Decree 48/1998/ND-CP regarding securities and a securities market was promulgated on July 14, 1998. After almost 5 years of arrangement and many delays, the Vietnam securities market was officially established on July 20, 2000, with the exchange center located in HCM City.

1.2 Trading behavior

After almost 3 operating years and 600 trading sessions, the overall picture of the market is as follows:

Investors mainly focus on trading stocks, whose transaction value amounts to 90% of the total market transaction value, while trading in bonds is quiet. However, the value of listed stocks comprises only 30% of total market value while the value of listed
bonds amounts to 70%. The total value of listed securities is currently 6,600 billion dong including above 1,000 billion dong of 21 company stocks. Seven hundred and fifty trading sessions have been held safely with a total transaction value of 3,700 billion dong. ${ }^{1}$

The VNINDEX started at 100 , reaching a peak of 570 nearly one year later, and then went down continuously sinking to 151.48 in July 14, 2003. The chart of the VNINDEX behavior is shown in Appendix 1.

2. The market structure

2.1 The commodities and the issuers

Types of securities: There are three types of securities including 21 listed company stocks, 40 government bonds, and 2 corporate bonds. Derivatives are not allowed in Vietnam yet.

All of the 21 listed companies are former SOEs that have been equitized.
The total registered capital is 1,046 billion dong. The value of the stock market is 2,081 billion dong, equivalent to 134 million dollars, or 0.37% of GDP, and 0.65% of the total bank loan balance in the Vietnamese banking system.

The value of the bond market is 4,285 billion dong, or less than 1% of GDP, including 40 government bonds with a value of 4,127 billion dong, 2 corporate bonds issued by the Bank for Investment and Development of Vietnam (BIDV) with a value of 158 billion

Abstract

dong. 2.2 Investors

Individual investors: 14,500 accounts have been opened in the securities companies, but only about 1,000 accounts trade regularly.

Institutional investors: There are very few institutional investors like Dragon Capital. At the time of writing there are no active securities investment funds. The National Securities Commission has just licensed the establishment of the Vietfund Management Company (VFM); a joint venture between Saigon Thuong Tin Bank (Sacombank) and Dragon Capital with a legal capital of 8 billion dong.

2.3 Intermediate institutions

There are nine securities companies.
Settlement bank: BIDV
There is no organization to assess the market.

2.4 Market information

Under current regulations, when a firm issues its securities, it must submit two important documents (among others) to the National Securities Commission, namely the Disclosure and

[^0]the financial statements certified by an accepted audit company for the last two continuous years. The purpose of these two documents is to publicize all information on the firms performance in the past, present, and future. All information on the firms operations is announced in the shareholders conferences.

In theory, if these two documents are clearly and objectively prepared, all investors can find information about the past, present, and future operations of the listed firm by looking at them. However, investors are concerned about the reliability of the information, especially in the firms development strategy and audited financial statements.

Financial statements

Despite being an important source of information on firms, many firms do not focus on the preparation of transparent financial statements, which are presumably provided to the tax office, banks, and the Securities Commission (for listed companies). Thus, firms strive to make their financial statements as beautiful as possible.

The competent agencies receiving financial statements are little concerned about analysis of financial statements since they regard this as the auditors task. In addition, their ability to analyze and benchmark criteria to make persuasive conclusions is limited.

Regulations on the preparation and audit of financial statements have been specified in detail, but their enforcement is not strict. If regulations were strictly enforced, firms would not be able to manipulate their financial statements, but if a listed firm does not wish to follow some principles in accounting, it can do so. ${ }^{2}$ In practice, many firms have manipulated financial statements.

Information on the firms development strategy

Basically, the firms development strategy is its investment plan, or its plan to implement investment projects. The point is how reliable are the projects. Is a project with very high NPV or IRR reliable. Under current conditions, as both forecasts and standards for project valuation are inadequate, one can assert that project appraisal results will not be reliable. Therefore, predictions of the firms development based on their announced plans are not reliable.

2.5 Trading mechanism

Transactions are made by matching orders in the market or by agreement
According to regulations, securities prices are not allowed to fluctuate totally freely; prices in a trading session should fluctuate by no more than 5% from the previous trading session (the range of fluctuation allowed in the period when the market was newly established was only 3%).

3. Valuation of financial assets

3.1 Developing a portfolio

Is it possible to design portfolios that can eliminate all specific risks with 21 stocks, 40 government bonds, and 2 corporate bonds. Looking at the fluctuation of the 21 stocks

[^1](Appendix 1), Mr. Nam Viet finds that virtually all of them have the same trend, and hence, he wonders how they correlate.

3.2 Calculating asset valuation indices

As an experienced specialist in financial asset valuation, Mr. Nam Viet regards the capital asset pricing model (CAPM) as the most easily applicable and persuasive model for managers. Therefore, he decides to base his calculations on this model, and modify the results with his experiences to have the closest-to-reality outcomes when he determines the components in the formula: $r=r{ }_{f}+\quad\left(r_{m}-r_{f}\right)$.

Information on \mathbf{r}_{f}

In Vietnam, government bonds have been issued since before the security market came into existence. Government bonds are issued through the local treasury system and the open market. Surprisingly, the coupon rate must compete with deposit rates offered by Vietnamese commercial banks; in other words, the difference between coupon rates and bank deposit rates for the same term is negligible. For example:

On June 26, 2000, the BIDV offered bonds with a 5 year term and a coupon payable in advance at the beginning of each year. Interest for the first year was 6.55% with interest for the following years being equal to the 12 -month deposit rate (payable in advance) plus 0.5%, the rate to be announced on January 26 every year. As a result, the BIDV sold a large volume of bonds at par value. The equivalent interest rates paid at the end of period were 8.01% in 2002 and 8.86% in 2003.

On Julv 28. 2000, the government issued 5-vear

```
hothds emithof calpgeapf 6.5% payable
```

In August 2003, the government issued 5-year bonds with a fixed coupon of 8.7% payable at the beginning of each year.

Information on r_{m}

Looking at the behavior of the VNINDEX it is difficult to calculate a market interest rate. If we take a start point of July 28, 2000, and an end point of July 19, 2003, the nominal average increase in the market rate is 14.4%, and the inflation-adjusted increase is 13%. On this basis Nam Viet has suggested a risk premium, based on his experience, of 8% for the Vietnamese market.

Beta coefficient ()

Although it is not reliable to derive a beta coefficient within 60 months, some securities companies have calculated betas for listed companies as shown in Appendix 2.

The above is the information that Mr. Nam Viet has collected on financial asset valuation in Vietnam. Now, he is going to analyze and make conclusions to present to Tiger Capitals founders.

Questions

[^2]1. Some people regard the Vietnamese securities market as being of semi strong-form efficiency. Do you think this is right. Present your argument.
2. Many people think that it is impossible to value financial assets in Vietnam, even though they are being traded normally. What do you think we need to do to value financial assets in Vietnam.
3. Currently the Vietnamese banking system has been using short-term funds to make medium and long-term loans. This entails a significant risk. Do you think the securities market can replace the banking system in supplying long-term funds in Vietnam.

Appendix 1:

BEHAVIORS OF VNINDEX AND 21 STOCKS

Vietnam Stock Index Diagram
Biểu đồ chỉ số chúng khoán

lèncoing ty: SAM

Ten rifing ty: Lar

Academic 2005-06 Case Study
Ién cong ty: Hal.

TAn ring ty: LAN

Tenconq ty: \quad BBC

len congty: phe

lèl coing ty: BT6

léncong ty: BTC

Translator: Kim Chi Editor: Andy Richardson
Academic 2005-06

Ten rinṇ ty: KHA

lèn cóng ty: HAE
 Case Study

Tïrn ixiry ly: GIL

TPn ring ty: $\quad 134$

Ién congty:
YTC

Appendix 2:
STATISTICS OF STOCK INDICES

No	Stock	Beta	Alpha	RSquare	E(Rs)	STD(Rs)	E(Rm)	STD (Rm)	COV (SM))
1	AGF	0.349	0	0.122	-0 0.013	-0.001		0.013	0	0.349
2	BBC	0.385	-0	0.148		014-0.00		0.014	0	0.385
3	BTC	0.002	-0	0	-0.076 0.2	$264-0.00$		0.264	0	0.002
4	BPC	0.009	-0	0	-0.012 0 .	104-0.00\|		0.104	0	0.009
5	BT6	0.387	-0	0.15	-0.001 0.0.	013-0.00		0.013	0	0.387
6	CAN	0.003	-0	0	-0.017 0	$127-0.00$		0.127	0	0.003
7	DPC	0.264	-0	0.07	-0.002 0.	016-0.00	2	0.016	0	0.264
8	GIL	0.011	-0	0	-0.007 0.	08-0.001		0.08	0	0.011
9	GMD	0.019	-0	0	-0.004 0.p	06-0.001		0.06	0	0.019
10	HAP	0.03	-0	0.001	-0.011 0,	1160.001		0.116	0	0.03
11	HAS	0	-0	0	-0.089 0.	283-0.00		0.283	0	0
12	KHA	0.009	-0	0	-0.004 0.p7	07-0.001		0.07	0	0.009
13	LAF	0.019	-0	0	-0.018 0	$138-0$		0.138		0.019
14	REE	0.575	-0	0.331	0	0.0270 .0		0.027		0.575
15	SAM	0.571	0	0.326			I	0.026	0	I

16	SGH	0.011	-0	0.000	-0.021 0	14-0.002	0.14	0	6.0111
17	SAV	0.364	-0	8.45	-0.001 0.	013-0.00	0.013	0	0.364
18	TMS	0.064	-0	8:804	-0.004 0.	0790.001	0.079	0	0.064
19	TRI	0.278	-0	0.078	-0.001 0.	015-0.00	0.015	0	0.278
20	TS4	0	-0	0	-0.038 0.	19-0.001	0.19	0	0
21	VTC	-0	-0	0	-0.064 0.	$251-0.00$	0.251	-0	-0

Appendix 3:

TEN STOCKS WITH THE LARGEST TRADING VOLUMES

1. By transaction volume (in number of shares)

No.	Stock	No. of Trading Sessions	Transaction Volume Weight (\%)	Session Average	
1	SAM	449	$14,265,500$	28.665	31,771
2	REE	449	$13,070,100$	26.263	29,109
3	BBC	238	$4,295,000$	8.63	18,046
4	TMS	446	$2,728,000$	5.482	6,116
5	HAP	446	$2,262,300$	4.546	5,072
6	AGF	171	$1,818,800$	3.655	10,636
7	SAV	166	$1,665,000$	3.346	10,030
8	TRI	234	$1,648,800$	3.313	7,046
9	BT6	178	$1,301,700$	2.616	7,312
10	SGH	304	917,900	1.844	3,019

2. Bu trancaction

No.g	Stock	No. of Trading Sessions	Transaction Value W	eight (\%)	Session Average
1	SAM	449	558,878	31.635	1,244,717
2	REE	449	439,680	24.888	979,244
3	TMS	446	164,052	9.286	367,831
4	HAP	446	136,782	7.742	306,686
5	BBC	238	92,656	5.245	389,310
6	AGF	171	54,245	3.07	317,222
7	TRI	234	46,072	2.608	196,888
8	LAF	390	43,760	2.477	112,205
9	GIL	232	35,525	2.011	153,125
10	SAV	166	33,713	1.908	203,090

LISTED COMPANIES AND SECURITIES COMPANIES

1. Listed companies

AGF : An Giang Fishery Import-Export Joint Stock Company
BBC : Bien Hoa Confectionery J. S. Company
BPC : Bim Son Packing J. S. Company
BT6 : Concrete 620-Chau Thoi J. S. Company
BTC : Binh Trieu Mechanic \& Construction J.S. Company
CAN : Ha Long Canning J. S. Company
DPC : Da Nang Plastic J. S. Company
GIL : Binh Thanh Manufacturing and Trading J. S. Company
GMD : Transportation Union Agent J. S. Company
HAP : Hai Phong Paper J. S. Company
HAS : Ha Noi Post Office Installation J. S. Company
KHA : Khanh Hoi Import-Export J. S. Company
LAF : Long An Import-Export Processing J. S. Company
REE : Refrigeration Electrics J. S. Company
$\mathbf{c a M}$ - rahlas.

```
mir: cavica
```



```
SGGP:Saar`o n Hotel J. S. Company
TMS : Foreign Trade Delivery Storage J. S. Company
TRI : Sai Gon Beverages J. S. Company
TS4 : Fishery 4 J. S. Company
VTC : VTC Telecommunication J. S. Company
2. Securities Companies
ACBS : ACB Securities Company
Agriseco : Agri Bank Securities Company
BSC : BIDV Securities Company
BVSC : Bao Viet Securities Company
FSC : The First Securities Company
IBS : Incombank Securities Company
SSI : Sai Gon Securities J. S. Company
TSC : Thang Long Securities Company
VCBS : Vietcombank Securities Company
```


[^3]
MERCURY RESIDENTIAL BUILDING ${ }^{1}$

For Mr. Vuong, the sales manager of High Sky Co., Ltd, February $14{ }^{\text {th }}, 2003$ was a particularly important day. On that day he was given the responsibility of preparing the documentation calling on the joint-venture partners to participate in the auction of a 10.3 ha plot of land on Nguyen Huu Canh Street, District One, Ho Chi Minh City (HCMC) in order to set up the Mercury residential building project with over 6,000 apartments or condominiums for sale or for rent.

After just over one month of hard work, Mr. Vuong together with his associates will submit a preliminary evaluation of the project to the first meeting of the proposed joint-venture partners on April $1{ }^{\text {st }}, 2003$.

THE HOUSING MARKET IN HO CHI MINH CITY

1. Housing demand in Ho Chi Minh City

According to calculations from Ho Chi Minh Citys Department of Land and Housing, the housing demand in HCMC over the next 10 years will be about 954,000 apartments (each with an area of approximately $70 \mathrm{~m} \quad{ }^{2}$), with $60 \%-70 \%$ being residential apartments, of which about 160,000 apartments will be needed for low income residents. To meet this demand, it will be necessary to have 100,000 more apartments every year on avaraces Δ anordincta actimatac from the Nanartment of

 new residences is only about 50% of the total demand, of which 80% are being built by the private sector.

Traditionally, Vietnamese people have always preferred to own their own houses and do not like apartments. However, the steady rise in land prices is making the construction of houses more expensive and living in street front houses at the present time is inconvenient, resulting in a move towards living in apartments. These factors are playing a part in the increase in demand for apartments.

2. Types of apartment complex in Ho Chi Minh City

At present, there are 4 principal types of apartment building in HCMC. The first type is buildings for the resettling program located in the city center, the second is buildings for the resettling program located in the suburbs, the third type is apartment buildings for business purposes and the fourth type is high-class condominiums. Investors in the first three types are actually state businesses. With the first type, investors are granted the privilege of not paying the land use levy for the area of the building construction, and are given a discount of 50% on the land use levy for the area included in the project but not used for building construction. Moreover, investors are allowed to sell the first and second floor apartments at commercial prices, and to transfer

[^4]the reimbursement to the resettled households as a kind of advance on capital. With the second type, the privileges are the same but the buildings do not attract purchasers because of their location in the suburbs and outlying areas. With the third type, in actual fact, the apartments are often bought up when they are still at the planning stage. People who have a real need find it difficult to purchase them unless they have enough information or financial capability. There are different types of investor in the fourth type of apartment, mostly joint ventures with foreign partners. This type of apartment is for people with high incomes. The businesses are going well and are very profitable.

3. Irrationality of the housing market

From the information above, we can see that there is a considerable demand for housing in HCMC, and some apartment buildings are sold out when they are still at the planning stage. In fact, the people buying these apartments are not really people with an actual need, but are nearly all real estate speculators who then re-sell them to make money on the difference in price. As a result, there are a considerable number of vacant apartments left in the buildings. At present, average apartments are priced from 300-500 million dong, but very few of those who have a genuine need for the apartments have the ability to purchase them.

4. Purchasing ability of people with a need

Housing demand usually arises when two people go together to the Peoples Committee of the ward to register their marriage. At this time, a young couple have saved almost nothing yet, so buying an apartment at a price from 300-500 million dong is
impossible. However, what is certain is that they will be able to buy one after 10 to 15 years. If they are granted some form of credit with payment in installments, they will be able to satisfy their demand immediately. As the financial markets in Vietnam are not yet developed, reputations in credit relationships between entities in the economy, and in particular the creditworthiness of individuals, is not high. Granting someone a loan to buy property with payment by installments over a 10-20 year period is still something which is new and difficult for a number of credit companies.

In fact, in several countries and in developed countries in particular, most of the housing demand, which is the most important demand for the majority of people, is satisfied through some form of mortgage lending. Recognizing this trend, a number of banks in VN have already established a lending policy for the purchase of apartments. Customers wishing to sign a contract to be granted a loan to purchase an apartment must satisfy certain conditions. They must have a permanent household registration in HCMC, the object of borrowing must be to get money to buy an apartment, the maximum time of the loan is 10 years, and the amount of the loan must not exceed 50% of the apartment price. In considering whether or not to grant a loan, it is important to appraise the borrowers income and solvency in order to decide the period of the loan. Property used as a mortgage is a secondary condition ${ }^{2}$ used to guarantee the loan.

Because of the problems outlined above, the outright purchase of an apartment is not possible and the most reasonable solution for such customers is to rent an apartment

[^5]at a minimum of one million dong per month while saving money over 10 to 15 years to buy an apartment of their own.

These problems are a paradox now, but it is forecast that in the near future as peoples standard of living and income gradually stabilize, the degree of trust in credit relations will improve, and the business of making loans to buy houses will develop. This will become a positive element that will help the real estate markets function become more active and healthy.

MERCURY APARTMENT BUILDING PROJECT

1. The plot of land on Nguyen Huu Canh Street

Included in a plan to mobilize capital of $35,00040,000$ billion dong to meet the demand for investment for development with a target of achieving an average annual GDP growth rate of 12%, is a decision by HCMC to auction several plots of land. The first lot to be auctioned was at 22-22 Bis Le Thanh Ton Street, District 1 and it was sold for 56 billion dong. A lot of more than 10 ha on Nguyen Huu Canh Street is also included in this plan. This piece of land has a very favorable location right in the heart of HCMC, and is ideal for the construction of high-rise buildings. The City requires that a modern high-rise apartment complex be constructed here.

2. Principal parameters for the project

According to regulations, and to the

2.1. Standard and technical parameters

The total area of this plot is 10.3 ha, of which 6.2 ha are in civilian use (60.3% of the total area), 2.5 ha are used for transportation (24.3% of the total area), and 1.6 ha is used for vegetation (15.4% of the total area). It has a very advantageous location for the construction of apartment buildings.

According to the regulations, the proportion of land which can be used for the construction of high-rise buildings is a maximum of 60%.

The number of floors to be built: Of the four high-rise buildings, two have a minimum height of 20 floors and two have a minimum height of 30 floors. Hence the project plan uses an average number of 24 floors with 2 underground floors.

Number of floors for sale: Of the 26 floors to be built, the 2 underground floors and the first floor are to be set aside for public services. This leaves 23 floors remaining for sale.

Percentage of floor area for sale: The percentage of floor area for sale comprises 65% with the remainder being public areas such as corridors and staircases.

Area for sale and forecast number of apartments: From the parameters listed above, we get a total area to be sold of $561,522 \mathrm{~m} \quad{ }^{2}$. The average area of each apartment is $84 \mathrm{~m}^{2}$. The total number of apartments planned is about 6,100 units.

Estimated period for construction is 36 months.
2.2. Construction cost parameters

The average construction cost is $4,200,000 \mathrm{dong} / \mathrm{m}{ }^{2}$ of floor built (including the investment cost of infrastructure inside each building).

The main infrastructure construction cost is 350,000 dong $/ \mathrm{m}^{2}$ of land.
The actual price paid at the land auction was 935 billion dong. This price was
1.1 times the initial asking price when HCMC called for the auction.

3. Total invested capital and capital source

3.1. Total invested capital

Based on the parameters above, the direct costs required to implement the project are as follows:

Table1: Estimated costs of the investment project

No.	Amount in million dong	
1.	Purpose	Cost
2.	Preparation cost for the investment	935,000
3.	Construction cost of the main infrastructure backbone	84,500
4.	Construction cost of the Blocks	36,315
5.	Contingency fund (5\% of total cost excluding land purchase)	$4,101,552$
	Total	211,118

3.2. Sources of investment capital

Of the almost 5,400 billion dong total investment for the project, about 4,200 billion dong will be mobilized from the prepaid money of customers purchasing the apartments. High Sky Co Ltd and several other partners, using all their owned capital, will contribute the remaining 1,200 billion dong. The capital demand not yet met will reach a high point of 1,000 billion dong.

The ratio of contribution for each party is as follows: High Sky Co Ltd will contribute 300 billion dong, and the five other partners will contribute the rest.

4. Selling price and business methods

4.1. Proposed selling price

Taking the average selling prices of several apartment buildings in HCMC as a basis, such as 9 million dong $/ \mathrm{m}^{2}$ at the Cao at apartment building in District 5; 8.9 million dong $/ \mathrm{m}^{2}$ at Nguyen inh Chinh apartment building, in Phu Nhuan District; 8.85 million dong $/ \mathrm{m}^{2}$ at ang Dung apartment building, in Phu Nhuan District and USD $1,200 / \mathrm{m}^{2}$ (equivalent to 18.5 million dong $/ \mathrm{m}^{2} \quad{ }^{2}$) at Pasteur apartment building, District 1 , the proposed selling price to be applied to this project will be 10 million dong/m $\quad{ }^{2}$.

The price of 10 million dong/m $\quad{ }^{2}$ will be the price at the time the plan is publicized. This will be when the initial trading contract is first signed. After that, the selling price will increase by 10% every year. The price when construction is finished will be 12.1 million dong $/ \mathrm{m}^{2}$.

With the aim of product diversification to satisfy various types of customers, the apartments will be divided into 3 types: large sized apartments with one large bedroom, two small bedrooms and 3 bathrooms; medium sized apartments with 1 large bedroom, two small bedrooms, and 2 bathrooms; and small sized apartments with one bedroom and one bathroom. The areas for each size are $96 \mathrm{~m}^{2}, 72 \mathrm{~m}^{2}$ and $64 \mathrm{~m}{ }^{2}$ respectively. Thus the average price of an apartment will varv from 700

million to 1 billion dong.

4.2. Business methods

It is envisaged that the mode of operation will be for purchasers to register for purchase when the plans are available, with the following terms of payment:

Upon signing the contract, the purchaser pays 35% of the apartment value.
Following the completion of construction, the purchaser pays 30% of the apartment value.

After receiving possession of the apartment, the purchaser is to pay the next 30% of the apartment value.

After completion of the sale procedures (the purchaser receives the title deeds), the purchaser pays the remaining 5% of the apartment value.

From the experience of earlier projects and on the basis of this projects characteristics, it is estimated that sales and payments will occur throughout the period of construction. In the first year of the project, 40% of the total will be sold and the cash collected. In each of the following two years, 30% of the total will be sold and the cash received.

In addition, there are some other modes of operation, such as selling with payment by installments and leasing. The prices for payment by installments and leasing
will be calculated based on the estimated selling price of 10 million dong already noted above.

4.3. Regulation on the calculation of trading results and the payment of income tax

During the construction process, it will not be possible to calculate all the costs even though turnover clearly arises, so the Department of Tax has permitted income tax to be assessed when the project is complete (when the total investment capital has been accounted for). This means that income tax will be paid at the end of the $4 \quad$ th year.

On the basis of this regulation the investor can draw out the period for finalizing the project accounts to delay the payment of income tax with the purpose of making use of the capital, and hence making the business more profitable.

5. Preliminary calculation of the effectiveness of the investment

5.1. Implementation schedule for the use of invested capital

The estimated demand for expenditure from invested capital for the project is presented in table 2 below:

Table 2: Details of investment costs
Unit: million dong

| No. | Items | Year 1 y | ear 2 Year 3 Year 4 Total | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

1 I	and purchase						
\%	of total cost	100\%					
	timated expenditure	935,000					935,000
2 I	nitial costs						
\%	of total cost	60\%	20\% 10\% 10	\%			
	timated expenditure	50,700	16,900 8,45	8,450			84,500
3 I	nfrastructure construction						
\%	of total cost		60\%	30\% 10\%			
	timated expenditure		21,789 10,8	3,631			36,315
	Iain building construction						
\%	of total cost		40\%	50\% 10\%			
	timated expenditure		1,640,621 2	050,776 41	\%,155 4,101,		

Translator: Nguyen Huu Luan Editor: Andy Richardson
home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw
Fulbright Economics Teaching Program Financial Analysis Academic 2005-06 Case Study

5.2. Revenue collection plan

Table 3: Revenue estimation

No.	Items	Year 1 Y	ear 2 Year 3	3 Year 4 T	otal	
1 P	rcentage sold		40\%	30\%	30\%	100\%
2 S	elling price		10	11	12.1	
3 T	ptal area sold		224,609 168,457	57168,45756	1,522	
	mount receivable		2,246,088 1,853	3,023 2,038,3	,25 6,137,435	

5.3. Calculation of the business results

Table 4: Estimation of the business results
Unit: million dong

No.	Target	Amount
1 Revenue	$6,137,435$	
2 Expenditure	$5,332,170$	
3 Earn nngs before tax	805,265	
4 Corporate tax (32\%)	257,685	
5 Earn		

The trading result will be calculated at the end of the $4{ }^{\text {th }}$ year for tax payment.

5.4. Effectiveness of the project (NPV, IRR)

Calculations of the net present value (NPV) and the internal rate of return (IRR) of the project are as follows:

Table 5: Assessment of the financial efficiency of the project
Unit: million dong

No.	Target	Year 1 Ye	ar 2 Year 3 Y	ear 4	
	ash inflows		2,246,088 1,853,	,23 2,038,325	
II C	ash outflows	985,700	1,679,310 2,070,	20 633,355	
1 P	urchase of land	935,000			
2 Ir	itial costs	50,700	16,900	8,450	8,450
	frastructure construction		21,789	10,894	3,631
4 C	onstruction of building		1,640,621 2,050,	76410,155	

$\begin{aligned} & 5 \text { Opntingency } \\ & 6 \mathrm{~T} \text { x paid } \end{aligned}$				$-\begin{aligned} & 211,118 \\ & 257,685 \end{aligned}$
III Net cashflow	$(985,700)$	566,778 (217,098	1,404,970	

NPV@12\%

310,101
IRR

6. Opinions regarding the project

In order to provide information for the participants of the meeting, Mr. Vuong and his associates have gathered, surveyed, and requested consultative opinions from certain organs, units, and individuals concerning the project

6.1. Opinion of the city authorities

The construction of apartment buildings on the plot of land on Nguyen Huu Canh Street and at other locations is essential, so the City Departments, services and sections will facilitate the execution of the project.

Socioeconomically, this is a highly effective project. Implementation of the project will solve the housing problems of nearly 30,000 people (about 6% of the annual housing demand), so the city will provide supportive measures for its realization.

6.2. Opinion of the residents living in the area

When this project is built, we will have to move away, which will disrupt our lives and routines, so it is necessary to have reasonable compensation and support.

6.3. Opinion of some customers

Investing in this project will give the purchasers more opportunity to choose an apartment that satisfies their needs.

6.4. Opinion of a land and construction consultancy firm

Investing in an apartment building of over $\mathbf{6 , 0 0 0}$ apartments such as this is a very heavy commitment. It is possible that there will be considerable difficulty in selling these apartments. They cannot all be sold at one time. Furthermore, with such a large number of apartments, there will be nearly 30,000 people living in the complex. As this is a large number it will be necessary to diversify the functions of the project by leasing from 2-3 floors for use as supermarkets and other recreational facilities with the top floor and roof terrace as restaurants, coffee shops and so on.

Carrying out such a project at one go is too great a commitment and the risks are considerable, so the investment could perhaps be divided into 2 phases with only 2 buildings being constructed in each phase. However, there are some counter-arguments because dividing the investment into phases will make the implementation schedule longer. Thus parts of the project could get out of step. In addition, the second phase of
construction will badly affect the residents living in the two buildings already built, so selling the first phase apartments would probably be very difficult.

6.5. Opinion of the trading and commerce consultative unit

At present, the business methods outlined above are appropriate for many apartment buildings. However, this is a large scale project with a large number of apartments which will be almost impossible to sell all at one time, so a variety of different selling methods such as outright sale, selling with payment by installments, or leasing can be applied in order to increase the number of customers.

6.6. Opinion of the financer

Sources of invested capital: Mobilizing 1,000 billion dong at one time will require a considerable effort from all partners taking part in the project. But this is only the most optimistic view of the situation. If people are slower to purchase than in the forecast, then an enormous source of capital will be needed which could mean up to 3,000 billion dong. In such a scenario the partner of the project would not be able to meet the demand. Therefore, it is necessary to consider other more feasible ways of mobilizing capital. On the other hand, using other sources of capital will increase the equitys rate of return.

The effectiveness of the investment: In fact, the implementation of projects is normally subject to many changes and hence incompatible with using fixed calculations. It is thus important to consider the various external factors that have an impact on the
project in order to know exactly how much the probability of inefficiency is, and then propose measures for risk prevention.

7. Information on capital mobilization

Diversification of the sources of capital can be carried out by such means as borrowing capital from domestic credit organizations or issuing infrastructure bonds.

7.1. Borrowing capital from domestic credit organizations

This method of mobilizing capital faces two problems, namely:
Loan limit problem: According to the regulations currently in force, a credit organization is only allowed to grant a certain customer a loan of up to a maximum of 15% of the credit organizations equity. Because of this, no domestic credit organization is able to grant the whole sum required. The Agricultural and Rural Development Bank, the bank with the largest share capital, only has about 3,500 billion dong meaning that it can only grant a maximum loan of about 525 billion VND. If all the domestic credit organizations were combined, the total amount of shareholders equity would total about 15,000 billion VND, and the maximum loan limit would reach 2,250 billion VND. But it would be very difficult to have such a large loan granted.

Loan guarantee problem: With such projects as these, the banks usually ask for some form of property as a guarantee for the loan. Where the loan is being guaranteed by property being built from the capital to be borrowed, the banks
adscoraqibineethe lieass 50 of the required capital ${ }^{3}$. This is a rather difficult condition for High Sky Co. Ltd and other partners.

7.2. Issuing infrastructure bonds

As a matter of fact, only the Peoples Committee of HCMC has ever issued infrastructure bonds, and the General Corporation of Oil and Gas issued corporate bonds. The General Corporation of Post and Telecommunications is intending to issue bonds but the scheme has not been carried out yet. Issuing infrastructure or corporate bonds will be very difficult because the creditworthiness in the public eye is not high enough. With this project and the development level of the present capital market, it will be very difficult to find an organization which is able to sponsor the issuing of such bonds.

From the problems mentioned above, we can see that the construction project for the Mercury apartment building is very efficient, but High Sky Co. Ltd and the other partners still confront a lot of difficulties in executing the project. Even if High Sky Co Ltd. and the partners are successful in the land tender a lot of time must elapse before we see the realization of such a futuristic project.

Questions for discussion:

[^6]1 In your opinion, on the basis of reality and prospect, how will an evaluation of the reality and prospects for the HCMC real estate market assist you in assessing the Mercury project in general.

2 Many people have voiced the opinion that this project is very effective, but not realistic because it is too large. What comment do you have on this opinion.

3 In your opinion, what is essential to do to assess this projects efficiency.
4 Do you have any comments on the opinions mentioned in the partners meeting.
5 What solution do you think is the most feasible to mobilize the investment capital required for the project.

The outline of chapter 1

What is Corporate Finance concerned with. What is the difference between finance and accounting.
The relationship between corporate finance and financial system

What is Corporate Finance.

Corporate finance (CF) concerned with:
Acquiring assets
Financing assets acquisition
Managing assets effectively and efficiently
Distributing earning profits
Corporate finance examines making decisions

Three major decisions of CF

Investment decisions
Related to the amount and composition of assets (current and fixed assets) needed to be held by the firm
Related to achieving an appropriate balance between current assets and fixed assets

Financing decisions
Related to the types of finance used to acquire assets Related to achieving an appropriate balance between short-term and long-term sources and between debt and equity sources
Related to achieving an appropriate balance between retained earnings and dividends
Dividend policy decisions
Related to achieving an appropriate balance between retained earnings and dividend payment

Examples of investment decisions

Decisions on investing current assets
Cash balance determination
Credit policy determination
Inventory determination
Decisions on investing fixed assets
Capital budgeting and investment decisions
Financial assets valuation and investment
decisions

```
Examples of financing decisions
```

```
0)
```

0) Decisions on short-tem and long-term financing
Decisions on short-tem and long-term financing
Short-term financing
Short-term financing
Using payables or
Using payables or
Short-term debts
Short-term debts
Short-term bank loans or commercial papers
Short-term bank loans or commercial papers
Long-term financing
Long-term financing
Using debts or
Using debts or
Using bank loans or issuing corporate bonds
Using bank loans or issuing corporate bonds
Equity
Equity
Using retained earnings or issuing new stocks
Using retained earnings or issuing new stocks
Decisions on capital structure
Decisions on capital structure
Optimal capital structure theory
Optimal capital structure theory
Net operating income theory
Net operating income theory
M\&M theory
```
    M&M theory
```


Examples of dividend policy decisions

How should the firm use its net income to maximize the wealth for shareholders.

Retained earnings for reinvestment or
Dividend payment
How does the dividend policy affect on stock price of the firm.

The objectives of FM

Profitability objective is concerned with
maintaining or increasing the firms earnings via:
Cost control
Pricing policy
Sales volume
Stock management
Capital expenditures
Liquidity objective ensuring that the firm is always able to meet its obligations, by:

Anticipating cash shortages
Maintaining the confidence of creditors and bankers
Pre-arranging finance to cover cash shortages

The goal of the firm

Maximizing a firms earnings after tax (EAT) $=>$ shortcomings
Maximizing earnings per share (EPS)
=> shortcomings
A firm may have various objectives, but the final goal of the firm is to maximize the wealth of the firms present owners

Maximize value of the firm
Maximize market price of the firms stock

Organization of FM Function

CEO Chief Executive Officer CFO Chief Financial Officer reports to CEO
Controller responsible for accounting and external reports
Treasurer responsible for investment, financing, and asset management

Accounting versus financing

Accounting concerned with:

Recording what happened on the related accounts Making financial statements Reporting to the external stakeholders

Financing concerned with:

Planning and budgeting what will happen
Using financial statements for analysis and making decision
Reporting to the internal managers

Financial market

Financial market a market where financial assets are exchanged
What is a financial asset. Asset. Tangible asset versus intangible asset.

A asset is any possession that has value in an exchange. Assets consist of tangible and intangible assets
Tangible asset is one whose value depends on particular physical properties (buildings, land, machinery, or materials)
Intangible assets represent legal claims to some future benefit, their value is no relation to the physical form in which the claims are recorded
Financial assets are intangible assets

```
Examples of financial
assets
A bond issued by the Government (Gov. bond)
A bond issued by BIDV
Common stock issued by REE
Common stock issued by Kinh Do Company
Home mortgage loan
Options
Certificate of deposit (CD)
Treasury bills
Commercial papers
```


The purpose and role of financial market

Purpose to allocate savings efficiently to ultimate users

Roles of financial market:
Determine the price of financial assets via interaction of buyers and sellers (demand and supply)
Provide investors a mechanism to liquidate financial assets
Provide buyers and sellers information, thus, reduce costs of transactions

Classification of financial markets

By type of claim

Source: Modigliani, F, and Fabozzi F, Capital Market, Prentice Hall, 1996

Financial institutions

Financial institution institutions that mobilize money from savers and uses those funds to make loan and other financial services

Financial institutions include bank and non-bank institutions:

Bank
Commercial banks
Saving institutions Non-bank

Insurance companies
Pension funds
Finance companies
Mutual funds
What is difference between bank and non-bank institution.

Financial instruments

	Capital market instruments
Stocks	
Bonds	
Money market instruments	
Treasury bills	
Commercial papers	
Bank acceptance	
Repurchase agreement	
Certificate of deposits,	

Foreign exchange market instruments
Domestic currency
Foreign currencies
Derivative market instruments
Forward contract
Swap contract
Future contract
Option contract

Financial system in Vietnam

Financial market
Financial institutions
Financial instruments

Financial market

Capital market Formed since July 2000 Foreign exchange market Formed since 1991

Money market Still have not been developed

Capital market

Capital market in Vietnam known as Stock Market
Vietnam Stock Market formed in July 2000
Organized market
OTC market
In general, Vietnam stock market is a very small market

Source: Saigon Securities Company

Prices of major stocks

Source: Saigon Securities Company

Conditions to be IIsted					
Condition s In it ialpub	lic offerseasonednew	issue		B ond offer	
Form of ow nership	Jo int com pany, equitized com pany	Join t com pany, equitized com pany	sto ck	Jo in t com pany, equitized com pany, stateowned com pany	stock
Capital	$=>10$ billion VND $=$	>10 billion VND $=$		>10 billion VND	
Income statem ent	Profita b le 2 latest years	Prof fitab le 2 latest years		Prof ita ble 2 latest years	
M anagem ent Experienced in	m anagem ent	Experienced in m anagem ent		Experienced in m anagem ent	
$\begin{aligned} & \text { U nd erw riting } \\ & \text { req uired } \end{aligned}$	R equired if value of the offer >10 billion VND	R equired if value of the offer>10 billion VND		Required	
Ratio of shares held outside shareh olders	- M inim um 20\% if value of the offer less th an 100 billion V N D - M inim um 15\% if v a lue of the offer $m o$ re th an 100 billion V N D	- M inim um 20\% if value of the offer less th an 100 billion VN D - M inim um 15% if value of the o ffer m ore th an 100 billion VN D		- M inim um 20\% if value of the o ffer less than 100 billion VND - M inim um 15\% if value of the offer m o re than 100 billion VND	
$\begin{aligned} & \text { Maximum } \\ & \text { value of the } \end{aligned}$ offer	U nre stric te dE quals total value	of outstanding	shares	Un restricted	
Transferability U nrestricted U	restricted U nrestricted				
Form of shares Face	$\text { u niformed } \quad \text { value }$	Face uniform ed	value	Face u niform ed	value

Money market

Money market in Vietnam have not been developed
Money market instruments are not diversified for the investors selection

Treasury bills
CDs issued by commercial banks and finance companies

Lack of Interbank Offer Rate like SIBOR or LIBOR

Foreign Exchange Market

Formed since 1991, called Center for Foreign Currency Transactions (CFCT)
In 1994, the Interbank Foreign Currency Market (IFCM) were established replacing for CFCT in trading foreign currencies
Kinds of currency transactions
Before 1998, all are spot transactions
After 1998, transactions are included:
Spot
Forward
Swaps, and
Options offered since 2002

Financial institutions in Vietnam

The State Bank of Vietnam plays the role of central bank Credit institutions play the role of financial intermediaries

Banks
Non-bank institutions

Credit institutions

Banks Depository institutions, including:
Commercial banks
Development and investment bank
Specializing banks
Export and import bank
Housing bank
Social policy bank
Non-bank institution Non-depository institutions

Commercial banks

State-owned banks
Vietnam Bank for Industry and Commerce
Vietnam Bank for Agriculture and Rural Development
Vietnam Bank for Foreign Trade (Vietcombank)
Mekong Delta Housing Bank
Social policy bank
Joint stock banks (Asia Commercial Bank, East
Asia Commercial Bank,)
Joint venture banks
Foreign bank branches

Non-bank institutions

Non-bank institutions non-depository institution
Types of non-bank institutions
Finance company
Leasing company
Insurance company
People credit fund
Development assistance fund
Investment funds

Financial instruments

Capital market
Stocks
24 listed types of stock traded on organized stock exchange Hundred of types of stock traded on OTC market Bonds

Government bonds
Corporate bonds
Money market
Treasury bills
CDs issued by finance companies and commercial banks

Foreign exchange market

Financial instruments (cont.)

Foreign exchange market
Spot contracts
Forward contracts
Swaps contracts
Options contracts
Future contracts are not available in Vietnam
Mortgage securities are not formally traded on financial market in Vietnam

Conclusions

Financial system in Vietnam have formed and started its operation and development since the economy had been transformed into market economy.
Components of financial system including financial market, financial institutions, and financial instruments have gradually formed. However, financial system in Vietnam has currently been being on the way of development.

Outputs of working capital management practices

A survey conducted in August 2000 A sample of 150 small and medium enterprises located in HCM City
Interviewee were included:
Owner-managers
Managers
Chief-accountants
Senior accountants

Research on working capital management practices

	No. of firms Percentage		
Type of industry	Trading	99	66.0\%
	Manufacturing	51	340\%
	Total	150	1000\%
The form of ownership	Private enterprise	40	26.7\%
	Lirnited company	105	70.0\%
	Joint stock company	5	3.3\%
	Total	150	1000\%

Fulbright Economics Teaching Program 2005-2006

Research on working capital management practices

The form of ownership	Type of industry		
	Trading		Manufacturing
	No. of firms	Percentage	No. of firms Percentage
Private enterprise	31	313%	$9 \quad 176 \%$
Limited company	65	657%	40.784%
Joint stock company	3	30\%	2.39%
Total	99	100.0\%	51 100.0\%

Source: Data analysis for the study

Research on working capital management practices

Table 3: Preparing cash budgets			
Frequency of preparing cash budgets	Never	No.	$\%$
	Rarely	7	5.4%
	Sometimes	17	4.7%
	Often	61	40.4%
	Always	56	37.6%
	Total	149	1000%
Period for preparing cash budget	Never	9	6.0%
	Weekly	16	10.7%
	Monthly	114	76.0%
	Quarterly	7	4.7%
	Semiannually	2	1.3%
	Annually	2	1.3%
	Total	150	100.0%

Source Data analysis for the study

Fulbright Economics Teaching Program 2005-2006

Research on working capital management practices

Research on working capital management practices

		No.	Percentage
Occurring cash shortage	Never	12	8.0\%
	Ravely	18	12.0\%
	Sometimes	116	77.3%
	Offen	3	20\%
	Always	1	. 7%
	Total	150	100.0%
Ocmirring each surplus	Never	7	47\%
	Rarely	82	54.7\%
	Sometimes	51	34.0\%
	Often	6	4.0%
	Always	4	27\%
	Tozal	150	100.0\%
Cach surpluc invectment	Rank depocit	28	187\%
	Treasury hill purchase	1	7\%
	No invectment	113	75.3%
	Others	1	.7\%
	Net eash sufplus	7	4.7\%
	Total	150	1000%

Fulbright Economics Teaching Program 2005-2006

Research on working capital management practices

		No.	Percentage
Sell products or services on credit	Never	3	2.0\%
	Rarely	7	4.7\%
	Sometimes	19	12.7\%
	Often	78	52.0\%
	Always	43	287\%
	Total	150	100.0\%
Set up credit policy to the customers	Never	11	73%
	Rarely	15	100%
	Sometimes	30	20.0\%
	Often	60	40.0\%
	Always	34	227\%
	Total	150	100.0\%

Source: Data analysis for the study

Research on working capital management practices

		No.	Percentage
Review levels of receivables	Weekly	16	10.7\%
	Monthly	12.4	82.7%
	Quarterly	8	5.3\%
	Annually	1	.7\%
	No answer	1	7\%
	Total	150	1000\%
Review bad debts	Never	7	4.7\%
	Weekly	9	60\%
	Monthly	120	800\%
	Quarterly	7	4.7\%
	Semiannually	3	20\%
	Annually	3	2.0\%
	No answer	1	7\%
	Total	150	100 0\%

Research on working capital management practices

Table 8: Percentage of bad debts compared to sales			
Bad debt percentages	Less than 5 \% of sales	No.	Percentage
	$5-10 \%$ of sales	67	44.0%
	$10-20 \%$ of sales	12	44.7%
	More than 20% of sales	1	80%
	Don't know	2	7%
	No answer	2	1.3%
	Total	150	1.3%
Source: Data analysis for the study			

Research on working capital management practices

		No.	Percentage
Review inventory levels	Never	2	1.3\%
	Rarely	8	53%
	Sometimes	11	7.3%
	Often	52	347%
	Always	77	513%
	Total	150	1000%
Prepare inventory budgets	Never	7	47\%
	Rarely	9	6.0\%
	Sometimes	13	8.7\%
	Often	52	347%
	Always	69	46.0\%
	Total	150	1000%

Source: Data analysts for the study

Fulbright Economics Teaching Program 2005-2006

Research on working capital management practices

		No.	Percentage
Inventory level determination	Based on theories of inventory	3	20\%
	management		
	Based on historical data	3	20\%
	Based on owner/management's	141	94.0\%
	experience		
	Others	3	20\%
	Total	150	1000\%
EQQ Model application	Do not know this moded	134	89.3\%
	Know but never use	9	60\%
	Sometimes use	5	3 3\%
	Often use.	2.	13\%
	Total	150	1000%

Conclusions

Most SMEs have not considered financial management important
Working capital management practices were based on experience rather than applying financial theories
Lack of knowledge and implement of financial models for decision making
Decisions made based on subjective feelings rather than on scientific and quantitative analysis

The outline of chapter 3

Interest
Simple interest
Compound interest
Continuous compound interest
Time value of money
Future value and present value
Single amount
Annuities
Annuities due
Perpetuity
Compounding more than once a year

Interest rate

Interest money paid (borrowers) or earned (lenders) for using money
Simple interest interest paid (earned) on only the principal (original amount) borrowed (lent)
Compound interest interest paid (earned) on any previous interest earned, as well as on the principal borrowed (lent)
Continuous compound interest interest is compounded continuously

Lenders and Borrowers, Principal and Interest

Interest money paid for using the principal

Let the followings denote:
SI: simple interest in dollars
P_{0} : principal
r : nominal interest per year
s: number of interest periods per year
i:interest rate per time period per year
n : number of year
FV_{s} : future value the value at some time of a present amount
PV_{0} : present value the current value of a future amount of money $=\varnothing$

Simple interest

$$
\mathrm{SI}=\mathrm{P}_{0}(\mathrm{i})(\mathrm{n})
$$

Ex: You deposit $\$ 1000$ in a saving account with a simple interest rate of 6%. At the end of 5 years you get the accumulated interest of:

$$
\mathrm{SI}=1000(0.06)(5)=\$ 300
$$

and the terminal value (future value) of:

$$
\mathrm{FV}_{5}=1000+(1000)(0.06)(5)=\$ 1300
$$

Generally:
$F V_{n}=P_{0}+S I=P_{0}+P_{0}(I)(n)=P_{0}[1+(i)(n)](3-1)$ $P V_{0}=P_{0}=F V_{n} /[1+(i)(n)](3-2)$

Compound interest

$$
\begin{align*}
& \mathrm{FV}_{1}=\mathrm{P}_{\mathrm{o}}(1+\mathrm{i}) \\
& \mathrm{FV}_{2}=\mathrm{FV}_{1}(1+\mathrm{i})=\mathrm{P}_{\mathrm{o}}(1+\mathrm{i})(1+\mathrm{i})=\mathrm{P}_{0}(1+\mathrm{i})^{2} \\
& \tag{3-3}\\
& \mathrm{FV}_{\mathrm{s}}=\mathrm{P}_{\mathrm{o}}(1+\mathrm{i})^{\mathrm{s}} \tag{3-4}\\
& \mathrm{FV}_{\mathrm{s}}=\mathrm{P}_{\mathrm{o}}\left(\mathrm{FVIF}_{\mathrm{i}, \mathrm{~s}}\right) \\
& \mathrm{FVIF}_{\mathrm{i}, \mathrm{~s}} \text { : Future value interest factor at } \mathrm{i} \% \text { for } \mathrm{s} \\
& \text { periods } \\
& \mathrm{PV}_{0}=\mathrm{P}_{0}=\mathrm{FV}_{\mathrm{s}} /(1+\mathrm{i})^{\mathrm{s}} \\
& \mathrm{PV}_{0}=\mathrm{FV}_{\mathrm{s}}(\mathrm{PVIF} \mathrm{~F}, \mathrm{~s}, \mathrm{~s} \\
& \mathrm{PVIF}_{\mathrm{i}, \mathrm{~s}}: \\
& \text { present }
\end{align*}
$$

Compound interest (cont.)

$i=r / s,(3-3)$ may be rewritten: $F V_{s}=P_{0}(1+r / s) s$. If a sum of P is deposited to accrue interest for n years, the future value at the end of n years is:
$F V_{s n}=P(1+r / s)^{s n}$
$s=1$ annual interest
s = 2 semiannual interest
$s=4$ quarterly interest
$s=12$ monthly interest
$s=365$ daily interest
$s=8$ continuous interest

Continuous compounding

$$
\begin{aligned}
& F V_{8}=\lim _{s .8} F V_{s n}=\lim _{s .8} P_{o} \cdot \dagger \quad \frac{r}{s .} . \\
& \text { Let } \mathrm{r} / \mathrm{s}=1 / \mathrm{x}<=>\mathrm{s}=\mathrm{r} . \mathrm{x} \text { and } \mathrm{sn}=\text { s.r. } \mathrm{x} \\
& F V_{8}=\lim _{s .8} P_{o} \cdot \AA^{\dagger} \frac{r}{s}:{ }^{s n}=\lim _{x .8} P_{o} \cdot \dagger \frac{1}{x}: \quad=P_{o} e^{r \cdot r . x} \\
& \text { Recall that } \\
& \lim _{x .8}: \frac{1}{x}_{x}^{x}:=e=2.71828 \ldots
\end{aligned}
$$

Future and present value of single amount

Future value the value at some future time of a present amount of money, or a series of payments, evaluated at a given interest rate

$$
\mathrm{FV}_{\mathrm{n}}=\mathrm{PV} \mathrm{~V}_{0}(1+\mathrm{i})^{\mathrm{n}}=\mathrm{PV}_{0}\left(\mathrm{FVIF}_{\mathrm{i}, \mathrm{n}}\right)
$$

Present value the current value of a future amount of money, or series of payments, evaluated at a given interest rate

$$
P V_{o}=F V_{0} /(1+i)^{n}=F V_{n}\left(P V I F_{i, n}\right)
$$

Examples of future and present value

You deposit \$100 in the time account at annual interest rate of 5%. How much you will get after 5 years.

$$
\begin{aligned}
& \mathrm{PV}_{0}=\$ 100, \mathrm{i}=5 \%=0.05, \mathrm{n}=5=>\mathrm{FV}_{5}=. \\
& \mathrm{FV}_{5}=100(1+0.05)^{5}=100\left(\mathrm{FVIF}_{5,5}\right)=100(1.2763)= \\
& \$ 127.63
\end{aligned}
$$

You want to obtain $\$ 127.63$ in 5 years, how much you have to deposit in a time account at present time.

$$
\begin{aligned}
& \mathrm{FV}_{5}=\$ 127.63, \mathrm{i}=5 \%=0.05, \mathrm{n}=5=>\mathrm{PV} \quad 0=. \\
& \mathrm{PV}_{0}=127.63 /(1+0.05)^{5}=127.63\left(\mathrm{PVIF}_{5,5}\right)=127.63(0.7835)
\end{aligned}
$$

$=\$ 100$

Solving for interest rate

Suppose you buy a security at price of $\$ 78.35$ which will pay you $\$ 100$ after 5 years. What is the interest rate you can earn on your investment.
$\mathrm{PV}_{0}=\$ 78.35, \mathrm{FV}_{5}=\$ 100, \mathrm{n}=5, \mathrm{i}=$.
We have: $\mathrm{FV}_{5}=\mathrm{PV}_{0}\left(\mathrm{FVIF}_{\mathrm{i}, 5}\right)$
$100=78.35\left(\right.$ FVIF $\left._{i, 5}\right)$
$\mathrm{FVIF}_{\mathrm{i}, 5}=100 / 78.35=1.2763=>\mathrm{i}=5 \%$ (derive from Table 1)

```
Other way
FVIF \(_{\mathrm{i}, 5}=(1+\mathrm{i})^{5}=1.2763\)
\(1+i=(1.2763)^{1 / 5}=(1.2763)^{0.2}=1.05\)
\(=>i=1.051=0.05=5 \%\)
```


Solving for time

Suppose you know the security will provide a return of 5 percent per year, that it will cost $\$ 78.35$, when does the security mature so that you will receive $\$ 100$ at maturity.

```
\(\mathrm{PV}_{0}=\$ 78.35, \mathrm{FV}_{\mathrm{n}}=\$ 100, \mathrm{i}=5 \%, \mathrm{n}=\).
\(100=78.35(1+0.05)^{n}=78.35\left(\right.\) FVIF \(\left._{5, n}\right)\)
\(\mathrm{FVIF}_{5, \mathrm{n}}=100 / 78.35=1.276=>\mathrm{n}=5\) years (derive from
    Table 1)
Other way
FVIF \(_{5, \mathrm{n}}=(1+0.05)^{\mathrm{n}}=100 / 78.35=1.2763\)
n( \(\ln 1.05)=\ln 1.2763\)
\(\mathrm{n}=(\ln 1.05) / \ln 1.2763=5\) years
```


Time line and cash flows

Time line a graphical representation which is used to show the timing of cash flow A cash flow a series of payments or receipts occurring over a specified number of periods.

Outflow: a series of payments (deposit, cost, or an amount paid)
Inflow: a series of receipts

Kinds of cash flows

Annuity a equal cash flow occurring over a specified number of periods

Ordinary annuity: equal cash flow occurring at the end of each period
Annuity due: equal cash flow occurring at the beginning of each period
Perpetuity An ordinary annuity whose cash flow continues forever
Uneven (or mixed) cash flow cash flow in which the amount (payment or receipt) varies from one period to the next

Illustration of time line and cash flows					
Time	$\stackrel{0}{4}$		2		4
Cash flow	-100				$\mathrm{FV}_{4}=$.
	0	1	2	3	4
Annuity	100		100100100		
	$\stackrel{1}{4}$	1	2	3	4
Uneven cash flow	100200		500300		

Future value of an ordinary annuity

$$
\begin{array}{ll}
\mathrm{FVA}_{\mathrm{n}}=\mathrm{R}\left(\mathrm{FVIFA}_{\mathrm{i}, \mathrm{n}}\right) & \begin{array}{l}
\mathrm{R}: \text { the periodic receipt or payment } \\
F V A_{n}=R_{:+^{+}}^{+^{n}}\left(\begin{array}{ll}
1 & i)^{n-t} .
\end{array}\right. \\
\mathrm{n}: \text { the length of the annuity }
\end{array} \\
F V A_{n}=R\left[\begin{array}{ll}
(1+i)^{n}-1
\end{array}\right] i & \begin{array}{l}
\mathrm{FVIFA}_{\mathrm{i}, \mathrm{n}}: \text { the future value interest } \\
\text { factor at } \mathrm{i} \% \text { for } \mathrm{n} \text { periods }
\end{array} \\
& \text { Numerical solution } \\
\text { Tabular solution } \\
\text { Financial calculation solution } \\
\text { Excel solution }
\end{array}
$$

Assume you lease your house at price of VND20 million per year and deposit all receipts at the end of each year in a saving account for the annual interest rate of 10%. How much you will have at the end of three years.

Numerical solution
$\mathrm{FVA}_{3}=20+20(1+0.1)+20(1+0.1)^{2}=$ VND66.2 million
Tabular solution (Table 3)
$\mathrm{FVA}_{3}=\mathrm{R}\left(\right.$ FVIFA $\left._{\mathrm{i}, \mathrm{n}}\right)=20\left(\right.$ FVIFA $\left._{10,3}\right)=20(3.310)=$
VND66.2 million
Financial calculation solution
PMT $=-20, \mathrm{n}=3, \mathrm{i} \%=10=>\mathrm{FV}=$ VND66.2 million
Excel solution
Select f_{x}, financial, FV , click OK , and enter rate $=0.1$, nper $=3$, pmt $=-20$, then click OK

Assume you plan to withdraw VND20 million at the end of each year for 3 years from your saving account which offers you the annual interest rate of 10%. How much you have to deposit in you account at the current time.

Numerical solution
$\mathrm{PVA}_{3}=20 /(1+0.1)+20 /(1+0.1)^{2}+20 /(1+0.1)^{3}=\mathrm{VND}$
49.74million

Tabular solution (Table 4)
PVA $_{3}=$ R(PVIFA $\left.{ }_{i, n}\right)=20\left(\right.$ PVIFA $\left._{10,3}\right)=20(2.487)=$ VND49. 74
million
Financial calculation solution
PMT = 20, $\mathrm{n}=3, \mathrm{i} \%=10=>\mathrm{PV}=$ VND49.74million
Excel solution
Select f_{x} financial, PV, click OK and enter rate $=0.1$, nper $=$
$3, p m t=20$, then click OK

Solving for unknown interest or discount rate

If you know:
The annuitys future or present value The periodic payment or receipt, and The number of periods
You can solve for compound or discount rate
Solutions to solve for interest rate include:
Tabular
Financial calculator
Excel
Illustrated example

```
Assume Ms. A plans to have VND }34\mathrm{ million at the end of 5 years in order to
travel abroad. Annually she decides to deposit her money of VND6 million in a
saving account. If the bank compounds interest annually, what interest rate
does she expect the bank offer.
            Tabular solution (Table 3)
FVA
    = 5.67
    => i = 6% (approximately)
    Financial calculation solution
PMT = - 6, n = 5, FV = 34 => i = 6.26%
    Excel solution
Select }\mp@subsup{f}{x}{}\mathrm{ , financial, rate, click OK, and enter nper =5, pmt
    = -6,FV = 34, then click OK
```


Solving for unknown periodic payment or receipt

If you know:
The annuitys future or present value
The interest rate, and
The number of periods
You can solve for periodic payments or receipts
Solutions to solve for interest rate include:
Tabular
Financial calculator
Excel
Illustrated example

[^7]
Annuity Due

Annuity due calls for a series of equal payments or receipts occurred at the beginning of each period
Future value of annuity due (FVAD ${ }_{n}$)
$F_{V A D}^{n}=R\left(\right.$ FVIFA $\left._{i, n}\right)(1+i)$
Present value of annuity due ($\mathrm{PVAD}_{\mathrm{n}}$)

$$
\begin{aligned}
\operatorname{PVAD}_{\mathrm{n}}= & R\left(\text { PVIFA }_{i, n-1}\right)+\mathrm{R} \\
& =\mathrm{R}\left(\mathrm{PVIFA}_{\mathrm{i}, \mathrm{n}-1}+1\right)
\end{aligned}
$$

Illustrated example

Assume you lease your house at price of VND20 million per year and deposit all receipts at the beginning of each year in a saving account for the annual interest rate of 10%. How much you will have at the end of three years.

Numerical solution
$\mathrm{FVA}_{3}=20(1+0.1)+20(1+0.1)^{2}+20(1+0.1)^{3}=$ VND72.82 million
Tabular solution (Table 3)
$\mathrm{FVA}_{3}=\mathrm{R}\left(\mathrm{FVIFA}_{\mathrm{i}, \mathrm{n}}\right)(1+\mathrm{i})=20\left(\right.$ FVIFA $\left._{10,3}\right)(1+0.1)$ $=20(3.310)(1.1)=$ VND72.82 million
Financial calculation solution
BGN, PMT = - 20, $\mathrm{n}=3, \mathrm{i} \%=10=>\mathrm{FV}=$ VND72. 82 million Excel solution
Select $f_{x^{\prime}}$ financial, FV, click OK, and enter rate $=0.1$, nper $=$ $3, p m t=-20$, type $=1$, then click OK

Assume you plan to withdraw VND20 million at the beginning of each year for 3 years from your saving account which offers you the annual interest rate of 10%. How much you have to deposit in you account at the current time.
Numerical solution
PVA $_{3}=20 /(1+0.1)+20 /(1+0.1)^{2}+20=$ VND54.71 million
Tabular solution (Table 4)
PVA $_{3}=R\left(\right.$ PVIFA $\left._{\mathrm{i}, \mathrm{n} 1}+1\right)=20\left(\right.$ PVIFA $\left._{10,2}+1\right)=20(1.736+1)$
= VND54.72 million

Financial calculation solution
PMT $=20, \mathrm{n}=3, \mathrm{i} \%=10=>$ PV $=$ VND54.71 million
Excel solution
Select f_{x} financial, PV, click OK and enter rate $=0.1$, nper $=3$, pmt $=20$, type $=1$, then click OK.

Perpetuity

Perpetuity is an ordinary annuity whose payment or receipts continue forever
For an annuity, we have:
$P V A_{n}=R_{:=1}^{n} ._{i=1}^{1 /(1+i)^{\prime}}:=R \cdot \frac{1}{i}-\frac{1}{i(1+i)^{n}}$.
For perpetuity, we have:

$$
P V A_{8}=R: \frac{1}{i}-\frac{1}{i(1+i)^{8}}:=\frac{R}{i}
$$

Uneven or mixed cash flows

Uneven cash flow A series of cash flow in which the amount varies from one period to the next
Present value $P V={ }_{i=1}^{n} C F_{t}\left(P V I F_{i, n}\right)$
Future value $F V_{n}={ }_{i=1}^{n} C F_{i}\left(F V I F_{i, n}\right)$
Illustrated example

> Assume that you lease your car for 5 years with the payment schedule at up as follows: $\$ 6000$ for the first two years, $\$ 5000$ for the next two years and 4000 for the final year. What is the present value of your income if the discount rate is of 6%.
> Tabular solution
> $\mathrm{PV}_{0}=6000\left(\mathrm{PVIF}_{6 \%, 1}\right)=6000(0.943)=\$ 5658$
> $\mathrm{PV}_{0}=6000\left(\mathrm{PVIF}_{6 \%, 2}\right)=6000(0.890)=\$ 5340$
> $\mathrm{PV}_{0}=5000\left(\mathrm{PVIF}_{6 \%, 3}\right)=5000(0.840)=\$ 4200$
> $\mathrm{PV}_{0}=5000\left(\mathrm{PVIF}_{6 \%, 4}\right)=5000(0.792)=\$ 3960$
> $\mathrm{PV}_{0}=4000\left(\mathrm{PVIF}_{6 \%, 5}\right)=4000(0.747)=\$ 2988$ Sum $=\$ 22146$

Excel solution
Select f_{x}, financial, NPV, then enter rate $=0.06$ and use the mouse to bold for selecting the cash flows, click OK.

```
Assume that you lease your car for 5 years with the payment
schedule at up as follows: $6000 for the first two years, $5000
for the next two years and 4000 for the final year. What is the
future value of your income at the end of year 5 if the discount
rate is of 6%.
            Tabular solution
    FV 5 = 6000( (FVIF 6%,4) = 6000(1,2625) =$7575
    FV 5 = 6000( (FVIF 6%,3) = 6000(1,1910) =$7146
    FV 5 = 5000(FVIF 6%,2)=5000(1,1236)=$5618
    FV
    FV
                                    Sum = $29639
        Excel solution
        Select f}\mp@subsup{f}{x}{}\mathrm{ f financial, NPV, then enter rate = 0.06 and use the
        mouse to bold for selecting the cash flows, click OK, then
        calculate the future value of the present value that has just
        found
```


Future and present value for n years and m times a year

Future value

$$
\mathrm{FV}_{\mathrm{n}}=\mathrm{PV}[1+(\mathrm{i} / \mathrm{m})]^{\mathrm{mn}}
$$

Present value

$$
\mathrm{PV}_{0}=\mathrm{FV} \mathrm{~V}_{\mathrm{n}} /[1+(\mathrm{i} / \mathrm{m})]^{\mathrm{mn}}
$$

Continuous compounding

Future value

$$
\mathrm{FV}_{\mathrm{n}}=\mathrm{PV} \mathrm{~V}_{0}[1+(\mathrm{i} / \mathrm{m})]^{\mathrm{mn}}
$$

As m approach infinity, we get continuous compounding and

$$
F V_{n}=P V_{0}(e)^{\text {in }}
$$

Present value

$$
P V_{0}=F V_{n} /(e)^{\text {in }}=F V_{n} \cdot e^{\text {in }}
$$

Nominal and effective interest rate

Nominal interest rate A rate of interest quoted for a year that has not been adjusted for frequency of compounding
Effective annual interest rate The actual rate of interest earned (paid) after adjusting the nominal rate for a number of compounding periods per year

Effective rate $\left.=\frac{F V_{n}-P V_{o}}{P V_{0}}=\frac{P V_{0}[1]+(i / m)^{m n}-P V_{0}}{P V_{0}}=[]\right]+(i / m)^{m n}-1$
For one year, $\mathrm{n}=1$, we get: effective rate $=$ $[1+(i / m)]^{m} 1$

Assume that you deposit $\$ 1000$ for 3 years with an interest rate of 6% per year. How much do you get at the end of year 3 if the bank pays the interest (a) semiannually, (b) quarterly, (c) monthly, and (d) continuously.
(a) $\mathrm{FV}_{3}=1000[1+(0.06 / 2)]^{2 \times 3}=\$ 1194.05$
(b) $\mathrm{FV}_{3}=1000[1+(0.06 / 4)]^{4 \times 3}=\$ 1195.62$
(c) $\mathrm{FV}_{3}=1000[1+(0.06 / 12)]^{12 \times 3}=\$ 1196.88$
(d) $\mathrm{FV}_{3}=1000(\mathrm{e})^{0.06 \times 3}=\$ 1197.22$

Discounted cash flow model (DCF)

Applications of DCF model

Valuation
Asset valuation
Firm valuation
Financial asset valuation
Bond valuation
Stock valuation
Capital budgeting
Investment project decisions
Financial asset investment decisions
Leasing
Leasing vs purchasing decisions

The outline of the chapter

Objective

Overview
Assumptions
Capital asset pricing model
Limitations
Arbitrage pricing theory

Overview

Capital asset pricing model was developed by William Sharpe in 1960
This model describes the relationship between risk and expected (required) return
A securitys expected (required) return = risk-free rate + risk premium based on the systematic risk of the security
Risk-free rate = Rate of return on treasury bill/bond
Should the bill or bond be chosen.

Assumptions

The capital market is efficient There are two investment opportunity: a riskfree asset and a portfolio of risky security
Security risk consisting of systematic (market) and unsystematic risk (business risk)

The investor holds the security in a period, say, one year.
The investor is risk averse person.

Capital asset pricing model (CAPM)

The characteristic line A line that describes the relationship between an individual securitys return and return on the market portfolio. The slope of this line is beta.
Security market line (SML) A line that describes the linear relationship between expected rates of return for individual securities (and portfolio) and systematic risk measured by beta.
Relationship between an individual securitys
returns and returns on the market portfolio
Example of Remico stock
Market portfolio: TSE 300

State	Type of economy	Return on market	Return on Remico.Ltd.
I	Boom	15	25
II	Boom	15	15
III	Recession	-5	-5
IV	Recession	-5	-15

Relationship between an individual securitys returns and returns on the market portfolio

Assume that the probability of occurring the economy state is the same

Type of economy	Return on market	Expected return on Remico. (\%)
Boom	15	$(25 \times 0.5)+(15 \times 0.5)=20$
Recession	-5	$(-5 \times 0.5)+(-15 \times 0.5)=-10$

Relationship between an individual securitys returns and returns on the market portfolio

Beta as a measure of responsiveness

Beta () measures the sensitivity of a stocks return to changes in return on the market portfolio.
How to determine beta

$$
=\frac{20-(-10)}{15-(-5)}=\frac{30}{20}=1.5
$$

Significance of beta - Each percent of changes in return on the market portfolio, a stocks return will change $\%$.

Beta estimation in practice

Investment dealers generally estimate beta by using regression analysis on historical data.
In practice, beta is usually provided by financial information services, for example:

In the US, beta provided by Value Line
In Canada, beta provided by Burns Fry Limited.

Beta of a some of stocks	
Stock Beta Amazon.com (AMZN) 3.31 Apple computer (AAPL) 0.72 Boeing (BA) 0.96 Bristol-Myers Sqibb (BMY) 0.86 The Coca-Cola Company (KO) 0.96 Dow Chemical (DOW) 0.86 The Gap (GPS) 1.09 General Electric (GE) 1.13 	

Relationship between risk and return - CAPM

Assumptions:
The capital market is efficient
There are two investment opportunity: a risk-free asset and a portfolio of risky security
Security risk consisting of systematic (market) and unsystematic risk (business risk)
The investor holds the security in a period, say, one year.
The investor is risk averse person
Capital asset pricing model: $\quad \bar{R}_{j}=R_{f}+\left(\bar{R}_{m}-R_{f}\right)$ i
CAPM as a function: $\mathrm{y}=\mathrm{b}+\mathrm{ax}$

Important points associated with CAPM

Relationship between a stocks return and beta is positive linear described by the SML which has the slope:
($R_{m}-R_{f}$)
= $0=>$ The expected return on a security with a beta of zero is the risk-free rate, R_{f}
= 1 => The expected return for any security with a beta of 1 is the market return, R_{M} CAPM is held for portfolio as well. Beta of portfolio:

$$
p={\underset{i=1}{ } w_{i} j ; ~}_{j}
$$

Example to illustrate CAPM

Stock Nike (NKE) and Yahoo (YHOO) have beta of 1.01 and 3.32 respectively. Riskfree rate is 7% and market rate of return is 12%.
The expected return of NKE
$R_{i}=R_{f}+\left(R_{m}-R_{f}\right)_{j}=7+(12-7) 1.01=12.05 \%$
The expected return of YHOO

$$
\bar{R}_{j}=R_{f}+\left(\bar{R}_{m}-R_{f}\right)_{i}=7+(12-7) 3.32=23.6 \%
$$

In the case of portfolio

Assume that the investor combines a portfolio with 40% of stock Nike and 60% of stock Yahoo The expected rate of return of the portfolio:

$$
R_{p}=(0.4 \times 12.05)+(0.6 \times 23.6)=18.98 \%
$$

Beta of the portfolio:

$$
{ }_{p}=(0.4 \times 1.01)+(0.6 \times 3.32)=2.396
$$

The expected rate of return of the portfolio determined by CAPM

$$
\bar{R}_{p}=R_{f}+\left(\bar{R}_{m}-R_{f}\right)_{p}=7+(12-7) 2.396=18.98 \%
$$

Shifts in the SML

The SML may be shifted the impacts of: An increase in inflation An increase in inflation rate leads to an increase in nominal risk-free rate (= Real rate + Inflation rate) and this makes the SML shift upward.
Changes in risk aversion Level of risk aversion is offset by risk premium:

$$
\left(\bar{R}_{m}-R_{f}\right)
$$

CAPM application

Estimating the risk-free rate $\left(\mathrm{R}_{\mathrm{f}}\right)$

Estimating the difference between the market rate and risk-free rate (risk premium)

Estimating the beta of a company
Put all variables estimated into the model to determine the required or expected rate of return.

Arbitrage pricing theory

Two factor model

$R_{i}=a+b_{1 j} F_{1}+b_{2 i} F_{2}+e_{j}$
Multifactor model

$$
R_{i}=a+{ }_{i=1}^{m} b_{i j} F_{i j}+e_{j}
$$

where:

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{j}} \text { : expected return of stock } \mathrm{j} \\
& \mathrm{a}: \text { constant } \\
& \mathrm{F}_{\mathrm{i}}(\mathrm{i}=1 \mathrm{~m}) \text { : value of factor } 1 \mathrm{~m} \text { affecting on return of } \\
& \text { stock } \mathrm{j} \\
& \mathrm{~b}_{\mathrm{ij}} \text { : sensitivity of return of stock } \mathrm{j} \text { under the impact of factor } \\
& \mathrm{i}
\end{aligned}
$$

The outline of the chapter

Definition of risk and return

Risk measurement
Attitude to risk
Risk and return of a portfolio
Diversification
Risk classification

Defining risk and return

Return Income received on an investment, consisting of dividend plus capital gain.
Rate of return Percent of income received divided by the beginning price.
$R=\frac{D_{t}+\left(P_{t}-P_{t-1}\right)}{} \quad \begin{aligned} & D_{t}, P_{t} \text { is dividend and stock price at time } \\ & \text { period t respectively }\end{aligned}$
$=\frac{D_{t}+\left(P_{t}-P_{t-1}\right)}{P_{t-1}} \quad \begin{array}{ll}\text { period t respectively } \\ & P_{t-1} \text { is stock price at time period } t 1\end{array}$
Risk The variability of returns from those that are expected
Examples Let compare risk when you buy
a treasury bill
a government bond
a corporate bond

How to measure risk.

Risk measured by probability distributions
Expected return $\mathrm{E}(\mathrm{R})$: The weighted average of possible returns, with the weights being the probabilities of occurrence
Standard deviation (σ): A statistical measure of the variation of a distribution around its mean. It is the square root of the variance.

Coefficient of variation (CV) The ratio of standard deviation of a distribution to the mean of that distribution. It is a measure of relative risk.

Risk measurement

Expected return and standard deviation

Expected return

```
R
E(R)=, .}(\mp@subsup{R}{i}{})(\mp@subsup{P}{i}{\prime})\quad\mp@subsup{\textrm{P}}{\textrm{i}}{\prime}:\mathrm{ : probability of return that occurring
n}\mathrm{ : number of possibilities
```

Standard deviation

$$
\sigma=\sqrt{\eta_{i=1}^{n}\left[R_{i}-E(R)\right]^{2}} P_{i}
$$

Coefficient of variation

$$
C V=\frac{\sigma}{E(\mathrm{R})}
$$

Examples

State of the economy	Probability	Expected return of stock A (\%)	Expected return of stock B (\%)
Boom	0.30	100	20
Normal	0.40	15	15
Recession	0.30	(70)	10
	100.00		

For stock A : $E_{A}(R)=R_{1} P_{1}+R_{2} P_{2}+R_{3} P_{3}$

$$
=0.3(100)+0.4(15)+0.3(-70)=15 \%
$$

For stock B : $E_{B}(R)=R_{1} P_{1}+R_{2} P_{2}+R_{3} P_{3}$ $=0.3(20)+0.4(15)+0.3(10)=15 \%$

Standard deviation of stock A

$R_{i} E(R)$	$\left[R_{i} E(R)\right]{ }^{2}$	$P_{i}\left[R_{i} E(R)\right]{ }^{2}$
$10015=85$	7225	$0.3(7225)=2167.5$
$1515=0$	0	$0.4(0)=0$
$-7015=-85$	7225	$0.3(7225)=2167.5$
		$\sigma^{2}=4335$

$$
s=\sqrt{s^{2}}=\sqrt{4335}=65.84 \%
$$

Standard deviation of stock B

$R_{i} E(R)$	$\left[R_{i} E(R)\right]{ }^{2}$	$P_{i}\left[R_{i} E(R)\right]{ }^{2}$
$2015=5$	25	$0.3(25)=7.5$
$1515=0$	0	$0.4(0)=0$
$1015=-5$	25	$0.3(25)=7.5$
		$\sigma^{2}=15$

$$
\mathrm{s}=\sqrt{\mathrm{s}^{2}}=\sqrt{15}=3.87 \%
$$

$\sigma_{A}=6.84 \%$ and $\sigma_{B}=3.87 \%=>$ Stock A is riskier than stock B

Coefficient of variation (CV)

	Project A	Project B
Expected return	0.08	0.24
Standard deviation	0.06	0.08
Coefficient of variation	0.75	0.33

$\sigma_{A}=6 \%$ and $\sigma_{B}=8 \%=>$ Is project B riskier than project A.
In this case, we should consider CV of two projects.
$\mathrm{CV}_{\mathrm{A}}=0.75$ and $\mathrm{CV}_{\mathrm{B}}=0.33=>$ Project A is riskier than project B

Attitudes toward risk

How to define the investments attitudes toward risk. Examine show game: Lets Make a Deal There are two doors. Behind one of these doors is $\$ 10,000$ and you have an option: open or not open the doors.

If you choose opening doors => There are two possibilities:
you get $\$ 10,000$, if you are right in opening the right door you get $\$ 0$, if you are wrongin opening the wrong door
If you choose not opening => you will get a certainty equivalent amount (CE), without risk
Your attitudes toward risk are defined based on the relation between CE and expected value
$C E$ < expected value => risk aversion
$C E=$ expected value $=>$ risk indifference
$C E>$ expected value $=>$ risk preference

Return of a portfolio

Portfolio A combination of two or more securities or assets.
The expected return of a portfolio a weighted average of the expected returns of the securities comprising that portfolio. The general formulas for the expected return of a portfolio is as follows:


```
                                    E
                            m: number of different securities in the portfolio
```


Example

Security A and B have the expected return of $14,68 \%$ and 12% respectively. If the weight of each security A is 65% and the weight of B is 35%, the expected return of the portfolio is:

$$
E_{p}(R)={ }_{i=1}^{m} W_{j} E_{i}(R)=(0.65) 14.68+(0.35) 12=13.74 \%
$$

Risk of a portfolio comprising two assets
Risk of a portfolio is measured by portfolio standard deviation and variance of that portfolio.
Formulas for variance of a portfolio comprising two securities j and k is:

$$
\sigma_{p}{ }^{2}=W_{j}^{2} \sigma_{j}{ }^{2}+2 W_{j} W_{k} \sigma_{i, k}+W_{k}^{2} \sigma_{k}{ }^{2}
$$

Standard deviation is the square root of the variance.

Risk of a portfolio comprising m assets

Risk of a portfolio comprising m assets is measured by standard deviation (σ_{p})

```
m m
    Wi}\mp@subsup{W}{k}{}\mp@subsup{\sigma}{i,k}{}\quad\mathrm{ portfolio
        W
        W
        \sigma j,k
        security j and k
        r}\mp@subsup{\textrm{j},\textrm{k}}{}{\textrm{k}}\mathrm{ : the expected correlation coefficient between
        possible returns j and k
```

Covariance a statistical measure of the degree to which variables move together. The equation for covariance is: $\sigma_{i, k}=r_{i, k} \sigma_{i} \sigma_{k}$

Illustration of calculations

A portfolio of two stocks, stock 1 and 2 . Stock 1 has the expected return is 16% with a standard deviation of 15%. Stock 2 has the expected return is 14% with a standard deviation of 12%. The expected correlation coefficient between the two stocks is 0.40 . By investing equal-dollar amounts in each of the two stocks, the expected return and standard deviation of the portfolio are calculated as follows:
$\mathrm{E}_{\mathrm{p}}(\mathrm{R})=(0.5) 16+(0.5) 14=15 \%$
$\sigma_{p}{ }^{2}=W_{j}^{2} \sigma_{i}{ }^{2}+2 W_{j} W_{k} \sigma_{i, k}+W_{k}{ }^{2} \sigma_{k}{ }^{2}$
$\sigma_{p}{ }^{2}=(0.5)^{2}(0.15)^{2}+2(0.5)(0.5)(0.4)(0.15)(0.12)+(0.5)^{2}(0.12)^{2}$
$\sigma_{p}{ }^{2}=0.012825$
$\sigma_{p}=\sqrt{0.012825}=11.3 \%$

Systematic and unsystematic risk

> Systematic risk The variability of return on stocks or portfolio associated with changes in return on the market as a whole.
> Unsystematic risk The variability of return on stocks or portfolio not explained by general market movements. It is avoidable through diversification.
> Total risk = Systematic risk + Unsystematic risk

Diversification

Combination of investing in stocks that their returns have a negative correlation. As a result, decreasing in return of this stock is offset by increasing in return of the other stock => Risk reduction.
Diversification can reduce risk, but only unsystematic risk not systematic risk.

Reducing unsystematic risk through diversification

Investment

Stock of sun
return
(A)

Time
Stock of rain
coat company
(B)

Example

Consider return of stock W, M and a portfolio of WM (returns of W and M have correlation coefficient $\mathrm{r}=-1$)

Year	Stock W	Stock M	Portfolio WM
1997	40%	(10%)	15%
1998	(10)	40	15
1999	35	(5)	15
2000	(5)	35	15
2001	15	15	15
Average return	15	15	15
Standard deviation	22.6%	22.6%	0.0%

The impact of diversification on return and risk of a portfolio

Consider following example:

	Stock S	Stock T
Proportion (W)	60%	40%
Expected return (R)	17.50%	5.5%
Variance $\left(\sigma^{2}\right)$	0.066875	0.013225
Standard deviation (σ)	25.86%	11.50%
Covariance between S and T ($\sigma_{S, T}$)	-0.004875	
Correlation coefficient between S and L ($\quad . \mathrm{S}, \mathrm{T})$	-0.1639	

Return and standard deviation of the portfolio ST

Expected return of the portfolio $R_{p}=W_{s} R_{s}+W_{t} R_{t}=(0.6 \times 17.5)+(0.4 \times 5.5)=12.7 \%$
Variance of the portfolio
$\sigma^{2}=(0.6)^{2}(0.2586)^{2}+2(0.6)(0.4)(-0.004875)+(0.4)^{2}(0.1150)^{2}$ $=0.023851$
Standard deviation of the portfolio

$$
\sigma=\sqrt{0.023851}=0.1544=15.44 \%
$$

Average standard deviation

$$
\sigma=(0.6)(0.2586)+(0.4)(0.1150)=0.2012=20.12 \%
$$

The impact of diversification

In the case $\cdot{ }_{s, T}=1$
Standard deviation of the portfolio is equal the weighted average standard deviations of stocks.
In the case ${ }_{\text {S,T }}<1$
Standard deviation of the portfolio is small the weighted average standard deviation of stocks.

The impact of diversification

The impact of diversification
Expected return (\%)

Portfolio of a risk-free asset and risky stock

Ms. A consider investing $\$ 350$ in stock P and \$ 650 in a risk-free asset. Ms. As portfolio is described as follows:

	Expected return on stock P	Expected return on risk-free asset
Return	14%	10%
Standard deviation	0.20	0
Proportion	35%	65%

Return and risk of the portfolio

The expected return of the portfolio $(0.35 \times 14)+(0.65 \times 10)=11.4 \%$
Variance of the portfolio

$$
\sigma_{p}{ }^{2}=(0.35)^{2}(0.20)^{2}=0.0049
$$

Standard deviation of the portfolio

$$
\sigma=\sqrt{0.0049}=0.07=7 \%
$$

Assume that Ms. A borrows $\$ 200$ at the risk-free rate. Combining this with her original sum of $\$ 1000$, she invests a total of $\$ 1,200$ in stock P.
The expected return of the new portfolio $(1.20 \times 14)+(-0.2 \times 10)=14.8 \%$
Variance of the new portfolio

$$
\sigma_{p}{ }^{2}=(1.2)^{2}(0.20)^{2}=0.0576
$$

Standard deviation of the new portfolio

$$
\sigma=\sqrt{0.0576}=0.24=24 \%
$$

Relationship between expected return and risk for a

 portfolio of risky stock and one risk-free asset

The optimal portfolio

In reality, an investor is likely to combine an investment in the risk-free asset with a portfolio of risky assets, for example portfolio Q Portfolio Q is a combination of

30\% stock BCE
45\% stock CIBC
25\% stock CM
The optimal portfolio is on the line running from R_{F} through A. This line is the tangent to the efficient set of risky securities at point A.

Capital market line

Capital market line shows the relationship between expected return and standard deviation of a portfolio comprising an risk-free asset and risky securities.

The outline of chapter 4

Some basic concepts
Bond valuation
Perpetual bonds
Maturity bonds
Preferred stock valuation
Common stock valuation
Constant growth stocks
No growth stocks
Non-constant growth stocks
Rates of return

Some basic concepts

Liquidation value versus going-concern value
Liquidation value the amount of money that could be realized if an asset or a group of assets sold separately from its operating organization.
Going-concern value the amount that a firm could be sold for as a continuing operating business.
Book value versus market value
Book value (1) the book value of an asset is the accounting value of an asset the assets cost minus its accumulated depreciation, (2) the book value of a firm is the dollar difference between the firms total assets and its liabilities and preferred stock listed on its balance sheet.
Market value the market price at which an asset trades.

Some basic concepts (cont.)

Market value versus intrinsic value
Market value the market price at which an asset trades Intrinsic value the price a security ought to have based on all factors bearing on valuation. In short, intrinsic value of a security is its economic value.
This chapter will consider how to determine a securitys intrinsic value, i.e., what the security ought to be worth based on hard facts.
In general, this value is the present value of the cash-flow stream provided to the investor, discounted at a required rate of return appropriate for the risk involved.

Securities on capital market

```
Securities used in this lecture include:
    Bond
        Government bond
            Perpetual bond
            Maturity bond
                Nonzero coupon bond
            Zero coupon bond
        Corporate bond
            Inconvertible bond
            Convertible bond
            Callable bond i
    Stock
        Preferred stock
        Common stock
Distinguish the differences between bond and
stock
```


Bond valuation

Bond a long-term debt instrument issued by a corporation or government. Face value the stated value of a bond, usually $\$ 1000$
Coupon rate the stated rate of interest on a bond, the annual interest payment divided by the bond s face value
Perpetual bond (consolidated annuities or consol) a bond that never matures, issued by Great Britain after Napoleonic Wars

Bond valuation

Bond classifications

Government or treasury bond vs. corporate bond

Maturity bond vs. perpetual bond
Nonzero coupon bond vs. zero coupon bond Principle of bond valuation
Value of a bond equals the present value of cash flows generated from the bond.

Bond valuation procedure

Step 1: Estimating the expected cash flows

Step 2: Estimating the discount rate $=$ Risk-free rate +
Risk premium

Step 3: Determining present value of the expected cash flows with the discount rate estimated

Perpetual bond valuation

Perpetual bond or consol A bond that never matures.
$V=\frac{I}{\left(1+k_{d}\right)^{1}}+\frac{I}{\left(1+k_{d}\right)^{2}}+\ldots+\frac{I}{\left(1+k_{d}\right)^{8}}={ }_{.=1}^{8} \frac{I}{\left(1+k_{d}\right)^{4}}=I\left(\right.$ PVIFA $\left._{k_{d}, s}\right)=\frac{I}{k_{d}}$
Assume that you buy a perpetual bond which give you the annual interest of $80 \$$ and your required rate of return is 14%. The value of this bond will be:

$$
\mathrm{V}=\mathrm{I} / \mathrm{k}_{\mathrm{d}}=80 / 0,14=571,43 \$
$$

Bonds with a finite maturity

Nonzero coupon bond valuation
$V=\frac{I}{\left(1+k_{d}\right)^{1}}+\frac{I}{\left(1+k_{d}\right)^{2}}+\ldots+\frac{I}{\left(1+k_{d}\right)^{n}}+\frac{M V}{\left(1+k_{d}\right)^{n}}=I\left({\left.P V I F A_{k_{d}, n}\right)+M V\left(P V I F_{k_{d}, n}\right)}\right)$
where n is the number of years until final maturity and MV is the maturity value of the bond.

A 9 -year-maturity bond with the face value of $1000 \$$, and annual coupon rate of 10% and the investor requires a rate of return 12%, the value of the bond will be:
$V=\frac{100}{(1+0,12)^{1}}+\frac{100}{(1+0,12)^{2}}+\ldots+\frac{100}{(1+0,12)^{9}}+\frac{1000}{(1+0,12)^{9}}=100\left(\right.$ PVIFA $\left._{12,9}\right)+1000\left(P_{\left.V I F_{12,9}\right)}\right.$
$V=100(5,328)+1000(0,361)=893,8 \$$

Bonds with a finite maturity

Zero-coupon bond A bond that pays no interest but sells at a deep discount from its face value.
Zero coupon bond valuation
Assume you want to buy a nonzero coupon bond with the face value of $\$ 1000$ and maturity of 10 years. If your required rate of return is 12%, the value of the bond will be:

$$
\begin{aligned}
V & =\frac{M V}{\left(1+k_{d}\right)^{n}}=M V\left(P V I F_{k_{d}, \mathrm{n}}\right) \\
V & =\frac{1000}{(1+0,12)^{10}}=M V\left(P V I F_{12,10}\right)=1000(0,322)=322 \$
\end{aligned}
$$

Semiannual interest compounding bond

Semiannual interest compounding bond valuation
$V={ }_{t=1}^{2 n} \frac{I / 2}{\left(1+k_{d} / 2\right)^{t}}+\frac{M V}{\left(1+k_{d} / 2\right)^{2 n}}=(I / 2)\left(P V I F A_{k_{i} / 2,2 n}\right)+M V\left(P V I F_{\left.k_{d} / 2,2 n\right)}\right.$
If the 10 percent coupon bonds of Treasury bond have maturity of 5 years, and our nominal required rate of return is 12%, the value of one $\$ 1,000$-par-value bond is:

$$
\begin{aligned}
& V={ }_{t=1}^{10} \frac{1 / 2}{(1+12 / 2)^{t}}+\frac{10}{(1+12 / 2)^{10}}=(1 / 2)\left(P V I F A_{12 / 2,10}\right)+10\left(P V I F_{12 / 2,10)}\right. \\
& V=0,5\left(P V I F A_{6 \%, 10}\right)+10\left(P V I F_{6 \%, 10}\right)=0,5(7,360)+10(0,558)=9,26
\end{aligned}
$$

Behavior of bond prices

The market required rate of return = the stated coupon rate => the price of the bond will equal its face value.
The market required rate of return < the stated coupon rate $=>$ the price of the bond will be more than its face value.
The market required rate of return > the stated coupon rate => the price of the bond will be less than its face value.
The market required rate of return increases => the bond price will fall.
The market required rate of return decreases => the bond price will increase.

Bond price behavior

Ex: A $\$ 1000$ bond has 15 year maturity and annual coupon rate of 15%, and the investors required rate of return is 15% as buying this bond.

Value of the bond as soon as it was issued $15 \%=k$ c $=\mathrm{k}_{\mathrm{d}}$:
$\mathrm{V}=150\left(\right.$ PVIFA $\left._{15 \%, 15}\right)+1000\left(\right.$ PVIF $\left._{15 \%, 15}\right)$ $=150(5,8474)+1000(0,1229)=1000 \$$
Value of the bond 1 year after issuing, if $15 \%=k_{c}>$
$k_{d}=10 \%$
$\mathrm{V}=150\left(\right.$ PVIFA $\left._{10 \%, 14}\right)+1000\left(\right.$ PVIF $\left._{10 \%, 14}\right)$
$=150(7,3667)+1000(0,2633)=1368,31 \$$
Value of the bond 1 year after issuing, if $15 \%=k{ }_{c}<$
$k_{d}=20 \%$
$\mathrm{V}=150\left(\right.$ PVIFA $\left._{20 \%, 14}\right)+1000\left(\right.$ PVIF $\left._{20 \%, 14}\right)$
$=150(4,6106)+1000(0,0779)=769,49 \$$

Risks of bond investment

Credit risk Risk occurs when the issuer cannot pay the debt. Interest rate risk Risk occurs when the market interest rate changes after the issuing. The market interest rate increases, the bond price will decrease.

Market interest rate	Price of the bond	
	One-year bond	14 -year bond
5%	1095.24	1989.86
10	1045.45	1368.33
15	1000.00	1000.00
20	95.33	769.47
25	920.00	617.59

Sensitivity of bond to interest rate movements Bond price elasticity:

$$
\mathrm{e}=\frac{\text { Percent change in price }}{\text { Percent change in interest } \mathrm{r} \text { ate }}
$$

One-year bond: e = [(1095,24 1000)/1000]/[(5 15)/15] = 9,524\%/ $66,667 \%=-0,14$
14-year bond: e = [(1989,86 1000)/1000]/[(5 $15) / 15]=98,986 \% /-66,667 \%=-1,48$ For a given change in market required return, the price of a bond will change by a greater amount, the longer its maturity.

Relationship for two bonds

Yield on bond

Yield to maturity (YTM)
$V=\frac{I}{(1+Y T M)^{1}} \frac{I}{(1+Y T M)^{2}}+\ldots+\frac{I}{(1+Y T M)^{n}}+\frac{M V}{(1+Y T M)^{n}}=I\left(P V I F A_{T V M, n}\right)+M V\left(P V I F_{r I M, n}\right)$
Given V, I, MV, and n, you can solve the equation for YTM

Yield to call (YTC)
$V=\frac{I}{(1+Y T C)^{1}}+\frac{I}{(1+Y T C)^{2}}+\cdots+\frac{I}{(1+Y T C)^{n}}+\frac{P C}{(1+Y T C)^{n}}=I\left(P V I F A_{T C, n}\right)+P C\left(P V I F_{T C, n}\right)$

Given V, I, PC, and n, you can solve the equation for YTC

```
A $1000-par-value bond with }12\mathrm{ years until maturity, and an } percent coupon rate is selling at \(\$ 761 \$\). What is the YTM of this bond.
Yield to maturity (YTM) Using interpolation method to find out YTM
If YTM = 10, we have:
\(V=80\left(P V I F A_{10 \%, 12}\right)+1000\left(P V I F_{10 \%, 12}\right)=80(6.814)+1000(0.319)=864.12 \$\) If \(Y T M=15\), we have:
\(V=80\left(P V I F A_{5 \%, 12}\right)+1000\left(P V I F_{15 \%, 12}\right)=80(5.421)+1000(0.187)=620.68 \$\)
\(0.05\left(\begin{array}{l}\mathrm{X}\left[\begin{array}{l}0.10864 .12 \$ \\ \text { YTM 761.00\$ } \\ 0.15620 .68 \$\end{array}\right.\end{array}\right] 103.12243 .44\)
\(\frac{X}{0.05}=\frac{103.12}{243.44} \Rightarrow \begin{aligned} X & =\frac{(0.05)(103.12)}{243.44}=0.0212 \\ X & =Y T M-0.10 \Rightarrow Y T M=0.10+X=0.1212\end{aligned}\)
```


Preferred stock valuation

Preferred stock A type of stock that
Promises a fixed dividend
Has no stated maturity
=> preferred stock is similar to perpetual bond
Valuation formula
$V=\frac{D_{p}}{k_{p}} \quad \begin{aligned} & \mathrm{D}_{\mathrm{p}} \text { : the stated annual dividend per share of preferred stock } \\ & \mathrm{k}_{\mathrm{p}} \text { : the appropriate discount rate }\end{aligned}$
Illustration: Suppose REE issue a preferred stock with $\$ 100$ par value and 9-percent dividend, and the investors required return was 14%,its value per share would be:

$$
V=\$ 9 / 0.14=64.29 \$
$$

Common stock valuation

Dividend discount models
$V=\frac{D_{1}}{\left(1+k_{e}\right)^{1}}+\frac{D_{2}}{\left(1+k_{e}\right)^{2}}+\cdots+\frac{D_{8}}{\left(1+k_{e}\right)^{8}}={ }_{i=1}^{8} \frac{D_{t}}{\left(1+k_{e}\right)^{t}}$
Constant growth

$$
V=D_{1} /\left(k_{e} g\right)
$$

No growth, $\mathrm{g}=0$
$\mathrm{V}=\mathrm{D}_{1} / \mathrm{k}_{\mathrm{e}}$
Growth phases

$$
V={\underset{t=1}{t_{1}} \frac{D_{0}\left(1+g_{1}\right)^{t}}{\left(1+k_{e}\right)^{t}}+{ }_{t=t_{1}+1}^{8} \frac{D_{t_{1}}\left(1+g_{2}\right)^{t-t_{1}}}{\left(1+k_{e}\right)^{t}} \text {. }}_{\text {and }}
$$

Ex: Stock As dividend per share at $\mathrm{t}=1$ is expected to be $\$ 2$. The dividend grows in five years at 10%, then at 6% forever. Is the investors required return was 14%, what is the price of this stock.

The present value of dividend received in the first five years

The present value of dividend received from the year 6

$$
\begin{gathered}
V_{2}={ }_{t=t_{1}+1}^{8} \frac{D_{t_{1}}\left(1+g_{2}\right)^{t-t_{1}}}{\left(1+k_{e}\right)^{t}}={ }_{t=6}^{8} \frac{D_{5}\left(1+g_{2}\right)^{t-5}}{\left(1+k_{e}\right)^{t}}=\frac{D_{6}}{\left(k_{e}-g_{2}\right)} \\
V_{2}=\frac{D_{6}}{\left(k_{e}-g_{2}\right)}=\frac{D_{5}\left(1+g_{2}\right)}{\left(k_{e}-g_{2}\right)}=\frac{D_{0}\left(1+g_{1}\right)^{5}\left(1+g_{2}\right)}{\left(k_{e}-g_{2}\right)}=\frac{2(1.1)^{5}(1.06)}{0.14-0.06}=42.63 \\
\text { Price of stock } \mathrm{V}=\mathrm{V}_{1}+\mathrm{PV}\left(\mathrm{~V}_{2}\right)=8.99+42.63\left(\mathrm{PVIF}_{14 \%, 5}\right) \\
=8.99+42.63(0.519)=31.12 \$
\end{gathered}
$$

Limitations of the dividend discount model
The model can not apply when the valuing firm retains most its earnings rather than distributes them as dividend.
The model may result in an inaccurate valuation of a firm because of potential errors in determining:
the dividend to be paid over the next year The growth rate
The required rate of return by the investors

Price-Earnings (PE) method

This method is based on the mean PE ratio of all publicly traded competitors in the respective industry
$\mathrm{V}=$ (the expected earnings of firm per share) x (Mean industry PE ratio)
How to determine the PE ratio.
Let b denote the retained earning ratio $=>1 b=$ The dividend-payout ratio $=\mathrm{D}_{1} / \mathrm{E}_{1}$, where $\mathrm{D}_{1}, \mathrm{E}_{1}$ are respectively the expected dividend and earnings per share in period 1.
Because $1 \mathrm{~b}=\mathrm{D} \quad{ }_{1} / \mathrm{E}_{1}=>(1 \mathrm{~b}) \mathrm{E} \quad{ }_{1}=\mathrm{D}_{1}$
We have: $V=D_{1} /\left(k_{e} g\right)=(1 \mathrm{~b}) \mathrm{E} \quad{ }_{1} /\left(k_{\mathrm{e}} \mathrm{g}\right)=>\mathrm{V} / \mathrm{E}_{1}=(1$
b) $/\left(k_{e} g\right)$
$P E=V / E_{1}=(1 b) /\left(\begin{array}{ll}k & \text { e }\end{array}\right)$

Example illustrated PE method

VINATRANS stock with
Par value $=100,000$ dong, $\mathrm{k}_{\mathrm{e}}=20 \%, \mathrm{~g}=10 \%$
Number of share outstanding $=80.000$, Expected EPS $=$ 75,000 dong
Dividend-payout ratio $=100 \%$
$P E=(1 \mathrm{~b}) /(\mathrm{k}$ e g$)=(10) /(0.20 .1)=10$
Stock price $=75,000 \times 10=750,000$ dong
BIBICA stock
Par value $=10,000$ dong, $k_{e}=15 \%, g=10 \%$
Number of share outstanding $=5,600,000$, expected EPS $=$ 2,400 dong
Dividend-payout ratio $=40 \%$
PE $=(1 \mathrm{~b}) /(\mathrm{k} \quad$ e g$)=(10.4) /(0.150 .1)=12$
Stock price $=2,400 \times 12=2,800$ dong

Limitations of the PE method

The PE method may result in an inaccurate valuation for a firm because of potential errors in:

The forecast of the firms future earnings
The choice of the industry used to derive the PE ration
Some investors could not trust the PE ratio regardless of how it is derived

Yield on stock

Yield on preferred stock

$$
P_{0}=\frac{D_{p}}{k_{p}} \Rightarrow k_{p}=\frac{D_{p}}{P_{0}}
$$

Yield on common stock

$$
P_{0}=\frac{D_{1}}{k_{e}-g}=>k_{e}=\frac{D_{1}}{P_{0}}+g
$$

These formulas may be used to determine the component cost of capital later on.

The outline of chapter 6

Basics of capital budgeting
Cash flow estimation
Cost of capital
Decision rules for capital budgeting

Basics of capital budgeting

Importance of capital budgeting
Project classifications
Steps in capital budgeting

Importance of capital budgeting

Why capital budgeting is important to a firm.

The result of capital budgeting decisions continue for many years
Capital budgeting can improve the timing of asset acquisitions and the quality of assets purchased
Capital budgeting involves substantial expenditure and value creation

Project classifications

Based on the purpose of a project
Replacement: maintenance of business
Replacement: cost reduction
Expansion of existing products or markets
Expansion into new product or markets
Safety and/or environment projects
Others
Based on relation of projects
Independent projects
Mutual exclusive projects

Steps in capital budgeting

Estimating the cost of the project
Estimating the expected cash flows from the project
Determining the appropriate cost of capital at which cash flows are discounted.
Selecting and calculating criteria for decision making
Making decision: accept or reject the project.

Fulbright Economics Teaching Program	Financial Analysis
$2005-2006$	Lecture 5

Estimating the cost of the project (CF_{0}) or initial investment cash flow
CF_{0} includes costs:
Purchasing assets
Shipping
Installation
Any other cost related to the assets installation
Working capital requirement (WCR) for operation of the first year
In the case of replacing old by new asset, needs to add the following items:

- old asset sale
+ (price of old asset sale book value of the old asset) * income tax

The necessary cost for WCR = \% of expected income
$\mathrm{CF}_{0}<0$
Note: Interest is not included in the CF ${ }_{0} s$ cash flow

Estimating the expected cash flows from the project

Cash flow The actual net cash flow, as opposed to accounting net income, that flows into or out of a firm during some specified period.
Cash flow estimation involves:
Identifying the relevant cash flows
Changes in net working capital

Relevant cash flows

Relevant cash flows The specific cash flows that should be considered in a capital budgeting decision.
Two cardinal rules help financial manager avoid mistakes in determining relevant cash flows:

Capital budgeting decisions must be based on cash flows, not accounting income
Only incremental cash flows are relevant to the accept/reject decision.

Cash flow versus accounting income In capital budgeting, annual cash flows, not accounting profits, are used .
Net cash flow $=$ Net income + Depreciation

	Accounting profits	Cash flow
Sales	$\$ 100,000$	$\$ 100,000$
Costs except depreciation	50,000	50,000
Depreciation	10,000	-
Operating income	40,000	50,000
Taxes (40\%)	16,000	16,000
Net income/cash flows	24,000	34,000

Net cash flow $=$ Net income + Depreciation $=24,000+10,000$

Incremental cash flows

Incremental cash flow The net cash flow attributable to an investment project. It is changes in the firms total cash flows that occur as a direct result of accepting the project.
In determining incremental cash flows, we need to consider 4 problems:

Sunk costs
Opportunity costs
Effects on other firm parts of the firm externalities
Shipping and installation costs

Sunk costs

Sunk cost A cash outlay that has already incurred and which cannot be recovered regardless of whether the project is accepted or rejected.
Sunk costs are not incremental costs, and they should not be included in the analysis.

Opportunity costs

Opportunity cost The return that will not be earned if funds are invested in a particular project.
Opportunity costs must be included in the projects evaluation.

Externalities

Externalities The effects of a project on cash flows in other parts of the firm.
For example, in evaluating a new branch building project of a bank, the net revenue produced by customers that shift from the main office to the new branch should not be treated as incremental income in the capital budgeting decision.

Shipping and installation costs

Shipping and installation costs occurred when a firm acquires fixed assets are included in incremental cash flows
For examples, if a computer was bought at the invoice price of $\$ 1000$ and shipping and installation costs are $\$ 100$, then the full cost paid for computer investment is $\$ 1,100$.

Changes in net working capital

Investing on a project leads to increasing in current assets and liabilities.
The difference between the required increase in current assets and the spontaneous increase in current liabilities is the change in net working capital.

Determining the cost of capital

Basic definitions
Cost of debt
Cost of preferred stock
Cost of retained earnings
Cost of newly issued common stock
Weighted average cost of capital

Basic definitions

Capital component One of types of capital used by firms to raise money.
Cost of capital components are included:
$k_{d}=$ interest rate on the firms new debt = before tax
component cost of debt $=10 \%$
$\mathrm{k}_{\mathrm{d}}(1 \mathrm{~T})=$ after-tax component cost of debt, where $\mathrm{T}=$ 40% is income tax rate
$\mathrm{k}_{\mathrm{p}}=$ component cost of preferred stock
$k_{s}=$ component cost of retained earnings
$\mathrm{k}_{\mathrm{e}}=$ component cost of external equity obtained by
issuing new common stock
WACC = the weighted average cost of capital

Cost of debt

After-tax cost of debt the relevant cost of new debt, taking into account the tax deductibility of interest: used to calculate the WACC.

After-tax cost of debt $=$ Interest rate tax savings

$$
\begin{aligned}
& =k_{d} \mathrm{k} \quad{ }_{\mathrm{d}}^{\mathrm{T}}=\mathrm{k}_{\mathrm{d}}(1 \mathrm{~T}) \\
& =10(10,4)=6 \%
\end{aligned}
$$

Cost of preferred stock

Cost of preferred stock (k_{p}) the rate of return investors required on the firmsipreferred stock Cost of preferred stock: $\quad \mathrm{k}_{\mathrm{p}}=\frac{\mathrm{p}}{\mathrm{P}_{\mathrm{n}}}$

Where:
$D_{p}=$ preferred stock dividend
$\mathrm{P}_{\mathrm{n}}=$ net issuing price $=$ price flotation costs
Ex. A stock pays $\$ 10$ dividend per share and sells for $\$ 100$ in the market. Flotation cost $=2.5 \%$.

$$
\mathrm{k}_{\mathrm{p}}=\frac{\mathrm{D}_{\mathrm{p}}}{\mathrm{P}_{\mathrm{n}}}=\frac{10}{97.50}=10.30 \%
$$

Cost of retained earnings

Cost of retained earnings $\left(\mathrm{k}_{\mathrm{s}}\right)$ the rate of return required by stockholders on a firms common stock We must assign a cost of retained earnings because of its opportunity cost. If the firm cannot invest retained earning and earn at least k_{s}, it should pay these funds to stockholders and let them invest directly in other assets.
Cost of retained earnings may be estimated by one of three approaches:

The CAPM approach
The bond-yield-plus-risk-premium approach
The discounted cash flow approach

The CAPM approach

This approach is used to estimate k_{s} through 4 steps

Step 1: estimate the risk-free rate, k_{f} generally taking treasury bond or bill rate
Step 2: estimate the stocks beta coefficient, b i and use this as an index of the stocks risk
Step 3: estimate the expected rate of return on the market, k_{m}
Step 4: substitute the preceding values into the CAPM equation to estimate the required rate of return on the stock: $k_{s}=k_{f}+\left(k_{m} k{ }_{f}\right) b_{i}$
Illustrated example: Assume that $k_{f}=8 \%, k_{m}=13 \%, b_{i}=$ 0.7 for a given stock. This stocks $k{ }_{\mathrm{s}}$ is calculated as follows: $k_{s}=8+(138) 0.7=11.5 \%$

Bond-yield-plus-risk-premium approach

This approach is used to estimate k_{s} by adding a risk-premium of three to five percent point to the interest rate on the firms long-term debt.

$$
\mathrm{k}_{\mathrm{s}}=\text { Bond yield + Risk premium }
$$

For example, the debt of a riskier company such as Continental Airlines might carry a yield of 12%, its cost of retained earnings will be: $\mathrm{k}_{\mathrm{s}}=12+4=$ 16\%
Risk premium, 4\%, is a judgmental estimate but empirical research suggests that it may be ranged from 3 to 5 percent.

Discounted cash flow approach

Based on the discounted cash flow model, we have: $\quad P_{0}=\frac{D_{1}}{k-g}$
From this model we can derive: $\quad k_{s}=\frac{D_{1}}{P}+g$ Assume stock A sells for $\$ 23$, its next expected dividend is $\$ 1.24$ and its expected growth rate is 8 percent. Its cost of retained earnings is:

$$
k_{s}=\frac{D_{1}}{P_{0}}+g=\frac{1.24}{23}+8=13.4 \%
$$

Cost of newly issued common stock or external equity, k_{e}
k_{e} based on the cost of retained earnings but increased for flotation cost. Flotation cost (F) the percentage cost of issuing new common stock

$$
k_{e}=\frac{D_{1}}{P_{0}(1-F)}+g
$$

Assume stock A sells for $\$ 23$ with a flotation cost of 10%, its next expected dividend is $\$ 1.24$ and its expected growth rate is 8 percent. Its cost of newly issuing common stock is:

$$
k_{e}=\frac{D_{1}}{P_{0}(1-F)}+g=\frac{1.24}{23(1-0.10)}+g=14.0 \%
$$

Weighted average cost of capital, WACC

Weighted average cost of capital a weighted average of the component costs of debt, preferred stock and common equity
WACC $=w_{d} k_{d}(1-T)+w_{p} k_{p}+w_{s} k_{s}$
$=0.45(10 \%)(1-0.4)+0.02(10.3 \%)$
$+0.53(13.4 \%) \quad=10.0 \%$
Weighted average cost of capital is used as discount rate in capital budgeting.

Capital budgeting decision rules

Four primary methods used to rank projects and decide whether or not they should be accepted are:

Payback period (PP)
Net present value (NPV)
Internal rate of return (IRR)
Modified internal rate of return (MIRR)
Illustrated example

Assumptions in the example

For simplicity, in this example we assume that:

Projects are equally risky
CF_{t} are expected cash flows adjusted to reflect taxes, depreciation, and salvage values
The investment outlays shown as CFO include any necessary changes in net working capital Cash flows occur at the end of the designated year
Project S is a short-term in the sense that its cash flows tend to come in sooner than Ls.

Example

	Expected after-tax cash flows, CF t	
Year	Project S	Project L
0	$(\$ 1000)$	$(\$ 1000)$
1	500	100
2	400	300
3	300	400
4	100	600

Payback period

Payback period the length of time required for the net revenues of an investment to recover the cost of the investment.

Payback period $=$ Year before full recovery $+\frac{\text { Unrecovered cost at start of year }}{\text { Cash flow during year }}$

Conclusions

Project S has a lower payback than L
The lower the payback the better
If the firm required a payback of three years or less, project S would be accepted, but project L would be rejected
If the projects were mutually exclusive, S would be ranked over L because S has the shorter payback.
Payback period is complained in that it ignores the time value of money and dose not take account of costs of capital. So, it is modified by the discounted payback period.

Discounted payback period

Discount rate $=10 \%$ 01234 Project S	
Net cash flow	-1000 500400300100
Discounted NCF	-1000 45533122568
Cumulative discounted NCF -1000-545-214 1179	
Discount rate $=\mathbf{1 0 \%}$	01234
Project L	
Net cash flow	-1000 100300400600
Discounted NCF	-1000 91248301410
Cumulative discounted NCF -1000-909-661-360 50	

Discounted payback $S=2.0+214 / 225=2.95$ years
Discounted payback $L=3.0+360 / 410=3.88$ years

Net present value

Net present value (NPV) A method of ranking investment proposals using the NPV which is equal to the present value of future net cash flows discounted at the cost of capital.
Discounted cash flow (DCF) techniques Methods of ranking investment proposals that employ time value of money concepts: two of these are the net present value and internal rate of return methods.

Steps in NPV methods

Find the present value of each cash flow, including both inflows and outflows, discounted at the projects cost of capital
Sum these discounted cash flows, this sum is defined as the projects NPV
If the NPV is positive, the project should be accepted, while if the NPV is negative, it should be rejected.
If two project are mutually exclusive, the one with the higher NPV should be chosen, provided that NPV is positive.

NPV formula

Where CF_{t} is the expected net cash flow at period t and k is the project cost of capital

	0 1 2	3	4
Project S Net cash flow Present value Net present value $\$ 78.82$ NPV	$\begin{aligned} & \quad-1000.0500 .00400 .00300 .00100 .00 \\ & (\$ 1,000.0) 454.55330 .58225 .3968 .30 \\ & 2 \end{aligned}$		
	0 1 2	3	4
Project L Net cash flow Present value Net present value $\$ 49.18$ NPV	$\begin{aligned} & \quad-1000.0100 .00300 .00400 .00600 .00 \\ & (\$ 1,000.0) \\ & 8 \\ & \hline \end{aligned}$		

Internal rate of return (IRR)

Internal rate of return methods A method of ranking investment proposals using the rate of return on an asset investment calculated by finding the discount rate that equates the present value of future cash inflows to the investments cost.
IRR the discount rate which forces the PV of a projects inflows to equal the PV of its costs.

Internal rate of return (IRR)

PV(Inflows) $=$ PV(Investment cost)
$C F_{0}+\frac{C F_{1}}{(1+I R R)^{1}}+\frac{C F_{2}}{(1+I R R)^{2}}+\ldots \ldots .+\frac{C F_{n}}{(1+I R R)^{n}}=0$
${ }_{i=1}^{n} \frac{C F_{t}}{(1+I R R)^{t}}=0$

Solve this equation for IRR
home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

Fulbright Economics Teaching Program	Financial Analysis
$2005-2006$	Lecture 5

Internal rate of return (IRR)

	0	1	2	3	4
Project S					
Net cash flow	-1000.0 500.00 400.00300 .00100 .00				
Present value	(\$1,000.0) 454.55330 .58225 .3968 .30				
Net present value \$78.82					
NPV	\$78.82				
IRR	14.5\%				
	0	1	2	3	4
Project L					
Net cash flow	-1000.0 100.00 300.00400 .00600 .00				
Present value	(\$1,000.0) 90.91 247.93300 .53409 .81				
Net present value \$49.18					
NPV	\$49.18				
IRR	11.8\%				

IRR decision rule

Hurdle rate the discount rate of cost of capital which the IRR must exceed to a project be accepted.
IRR > hurdle rate => project is accepted
In our example, if both projects have a cost of capital, or hurdle rate, of 10% and two projects are independent => both should be accepted because both expected to earn more than cost of capital needed to finance them.

Modified internal rate of return (MIRR)

Modified IRR The discount rate at which the present value of a projects cost is equal to the present value of its terminal value, where the terminal value is found as the sum of the cash inflows, compounded at the firms cost of capital. PV costs $=$ PV terminal value

Where COF refers to cash outflows and CIF refers to cash inflows.

Modified internal rate of return (MIRR)

	0	1	2	3	4
Project S					
Net cash flow	-1000.0500.00 400.00300 .00100 .00				
Present value	(\$1,000.0) 454.55 $330.58 \mathbf{2 2 5 . 3 9} \mathbf{6 8 . 3 0}$				
Net present value \$78.82					
NPV	\$78.82				
IRR	14.5\%				
MIRR	12.1\%				
	0	1	2	3	4
Project L					
Net cash flow	-1000.0 100.00 300.00 400.00600 .00				
Present value	(\$1,000.0) 90.91247 .93300 .53409 .81				
Net present value \$49.18					
NPV	\$49.18				
IRR	11.8\%				
MIRR	11.3\%				

The outline of chapter 7

Cash management
Reasons for holding cash
Determining the target cash balance
Investing the idle cash
Inventory management
Inventory classification
Determining the economic order quantity

Reasons for holding cash

Cash
Cash on hand
Cash at bank
Reasons for holding cash
Transaction motive the need to have cash for daily payments
Speculative motive the need to hold cash in order to be able to take advantage bargain purchase that might arise
Precautionary motive the need for a safety supply to act as financial reserve.

Determining the target cash balance

The target cash balance involves a trade-off between the opportunity cost of holding too much cash and the trading costs of holding too little
The optimal cash balance makes total costs (= Opportunity cost+ transaction cost) minimum.

Total costs of holding cash include:
Opportunity cost
Trading cost
Graph description of determining cash balance

Total costs $=$ Opportunity cost + Trading cost

Costs of holding
cash

Determining the cash balance

Situation discussion How does your company determine the cash balance.

Based on the managers experience
Based on applying theories of cash management
Never determine cash balance
Other ways
Have you ever heard of Baumol model.
Yes
No
Known but never use the model
Have you ever heard of Miller-Orr model.
Yes
No
Known but never use the model

The Baumol model

Assumptions The model assumes:
The firm has a constant disbursement rate.
There no cash receipts during the projected period.
No safety stock is allowed for.
Variables involved in the model
$\mathrm{F}=$ The fixed cost of selling securities to replenish cash
(dong)
$\mathrm{T}=$ The total amount of new cash needed for transactions over the planning period
$\mathrm{K}=$ The opportunity cost of holding cash (\% per annum)
$\mathrm{C}=$ The initial cash balance (dong)

Determining cash balance based on the Baumol model

The average cash balance $=($ Beginning cash balance+ Ending cash balance) $/ 2=(\mathrm{C}$ $+0) / 2=\mathrm{C} / 2=>$ Opportunity cost $=(\mathrm{C} / 2) \mathrm{K}$ The number of times the company must sell marketable securities to replace cash $=\mathrm{T} / \mathrm{C}$ => Trading cost= (T/C)F
Total cost = Opportunity cost+ Trading cost

$$
\mathrm{TC}=(\mathrm{C} / 2) \mathrm{K}+(\mathrm{T} / \mathrm{C}) \mathrm{F}
$$

Determining the optimal cash balance

Cash balance is optimal when total cost is minimum.
We differentiate the TC equation with respect to the cash balance and set the derivative equal to zero, that is: $\quad \frac{d T C}{d C}=0$
$\mathrm{TC}=(\mathrm{C} / 2) \mathrm{K}+(\mathrm{T} / \mathrm{C}) \mathrm{F}$
$\frac{d T C}{d C}=\frac{K}{2}-\frac{T F}{C^{2}}=0 \quad \Longrightarrow C=\sqrt{\frac{\sqrt{2 F}}{K}}=*$

Using Baumol model

Which cases are suitable to the Baumol model.
The outflows exceed inflows, that is, the amount the company pays is greater than the amount it receives during the projected period.
Examples: Producing and exporting companies, Consulting companies, divisions using budget from headquarter for its expenditures
What do we need to use the model.
Estimating the cash disbursement during the period Estimating the trading cost of selling marketable securities
Estimating the opportunity cost of holding cash shortterm interest rate
A money market available for trading money market instruments

Example

MM\&Co. plans to pay cash weekly. At the beginning of week 0 , the company has a cash balance of $\mathrm{C}=600$ million dong, and the outflows exceed inflows by 300 million dong per week. As the cash balance drops to zero, the company has to replace cash by selling treasury bills with a trading cost of 1 million dong. For cash surplus, the company can deposit for a interest rate of $0.65 \% /$ month. How can the company use the Baumol model to determine the target cash balance.

Example solution

The optimal cash balance determined by using Baumol model:

$$
C=\sqrt{\frac{2 \pi E}{K}}=*
$$

Where $\mathrm{F}=1$ million dong

$$
K=0.65 \% \times 12=7.8 \% / \text { year }=0.078
$$

$$
\mathrm{T}=300 \times 52=15,600 \text { million dong }
$$

$$
C^{*}=\sqrt{\frac{2 T F}{K}}=\sqrt{\frac{2(15600) 1}{0.078}}=632 \text { million dong }
$$

The Miller-Orr model

Assumptions:

Inflows and outflows fluctuate randomly from day to day.
The distribution of daily net cash flow (cash inflows minus cash outflows) is normally distributed.
Variables used in the model
$\mathrm{F}=$ Transaction cost of buying and selling marketable
securities
$\mathrm{K}=$ The percentage opportunity cost of holding cash
$\mathrm{C}=$ Cash balance at a point of time
$L=$ Lower limit of cash balance
$\mathrm{H}=$ Upper limit of cash balance
Z = The target cash balance
$\mathrm{H}^{*}, \mathrm{Z}^{*}=$ The optimal values of H and Z

The Miller-Orr model graph

Determining cash balance

The maximum cash balance (H) is set to minimize the opportunity cost.
The minimum cash balance (L) is set to minimize the trading cost.
The target cash balance (Z) is set to wander randomly within the lower and upper limits.
If $\mathrm{C}=\mathrm{H}=>$ buying (H Z) dollars of marketable securities to decrease cash balance to Z.
If $C=L=>$ selling ($Z \mathrm{~L}$) dollars of marketable securities to increase cash balance to Z

Determining cash balance by using Miller-Orr model

The target cash balance (Z) determined by

$$
Z^{*}=\sqrt[3]{\frac{3 F \sigma^{2}}{4 K}}+L \quad \begin{aligned}
& \sigma^{2}: \text { The variance of net daily } \\
& \text { cash flows }
\end{aligned}
$$

The maximum cash balance (H) determined by $H^{*}=3 Z^{*}-2 L$

The average cash balance ($\mathrm{C}_{\text {average }}$) determined by

$$
C_{\text {average }}=\frac{4 Z^{*}-L}{3}
$$

Example

Trading cost of selling marketable securities
$\mathrm{F}=1000$ \$, the nominal interest rate is 10% per annum, and the standard deviation of net daily cash flows is $2,000 \$$.
The daily opportunity cost, K, is $(1+K)^{365} 1=$ $0.11+K=\sqrt[365]{1.10}=1.000261 \quad$. $K=0.000261$
Let us assume that $\mathrm{L}=0$
$Z^{*}=\sqrt[3]{\frac{3 F \sigma^{2}}{4 K}}+L=\sqrt[3]{\frac{3(1000) 2000^{2}}{4(0.000261)}}+0=22568 \$$
$H^{*}=3 Z *-2 L=3(22568)=67,704 \$$
$C_{\text {average }}=\frac{4(22,568)-0}{3}=30,091 \$$

Conclusions withdrawn from the Miller-Orr model

The optimal cash balance (z^{*}) is positively related to trading cost, F, and negatively related to opportunity cost, K. This finding is consistent with the Baumol model.

The optimal cash balance and average cash balance are positively related to the variability of cash flows. $=>$ the firm whose cash flows are subject to greater uncertainty should maintain a larger average cash balance.

Implications of the Miller-Orr model

To use the Miller-Orr the manager must do four things:

1. Set the lower control limit for the cash balance. This limit can be related to a minimum safety margin decided on by management.
2. Estimate the standard of daily cash flows.
3. Estimate the interest rate.
4. Estimate the trading cost of buying and selling marketable securities.

Borrowing or selling marketable securities.

Borrowing is likely to be more expensive than selling marketable securities because the interest rate is likely to be higher than trading cost.
A firm is more likely to need to borrow to cover an unexpected cash outflow, the greater its cash flow variability and lower its investment in marketable securities.
For the larger company, the opportunity cost of holding cash is usually greater than the trading cost of buying and selling marketable securities.

Managing the collection and disbursement of cash

Float is the difference between bank cash and book cash.
Disbursement float causing an immediate decrease in book cash but no immediate change in bank cash Collection float causing an immediate an increase in book cash but no immediate change in bank cash Net float the sum of disbursement float and collection float
Objectives of managing the collection and disbursement of cash

Collection: Accelerating collection
Disbursement: Delaying disbursement

Basic parts of cash collection process

Three parts of collection float

Mail float is the part of the collection and disbursement process where checks are trapped in the postal system.
In-house processing float is the time it takes the receiver of a check to process the payment and deposit it in a bank for collection.
Availability float refers to the time required to clear a check through the bank system.

Cost of float

The cost of float can be determined by:
Estimating the average daily receipts
Calculating the average delay in obtaining the receipts
Discounting the average daily receipts by the delay-adjusted cost of capital

Example

Suppose that Company ABC has two receipts each month:

	Amount	Number of days delay	Float
Item 1	500,000	3	$1,500,000$
Item 2	300,000	5	$1,500,000$
Total	800,000		$3,000,000$

Cost of float

Average daily receipts $=800,000.000 / 30=26,666,667$ dong
Average daily float $=3,000,000,000 / 30=100,000,000$ dong
Weighted average delay $=(5 / 8) * 3+(3 / 8) * 5=3.75$ days Suppose cost of debt capital is 10%, then interest rate for 3.75 days: $0.1(3.75 / 365)=0.00103$

The present value of the delay cash flows $=(26,666,667) /$
$(1+0.00103)=26,639,229$ dong
The net present value of the delay float $=26,639,229$
$26,666,667=-27,438$ dong
The net present value of the delay float for the year $=-$
$27,438 \times 365=-10,014,870$ dong

Investing idle cash

Why does a company has to invest the idle cash.
How does the company invest its idle cash.
Deposit the idle cash into a bank account
Buy money market instruments
Treasury bills
CDs
Commercial papers
Bankers acceptance
Eurodallar

Inventory management

Inventory classification based on production process

Raw-materials
Work-in-process
Finished goods
Inventory classification by the dollar value
Group A its percentage is low in items but high in value
Group B
Group C its percentage is high in items but low in value

Economic order quantity

Economic Order Quantity (EOQ) The quantity of an inventory item to order so that total inventory costs are minimized over the firms planning period.
Total inventory costs are included:
Ordering costs (O): Assume that ordering costs per order are constant regardless of size of the order.
The total ordering cost for a period is simply the cost per order times the number of order for that period.
Carrying cost per unit (C): represent the cost of inventory storage, handling, insurance, and required rate of return on the investment in inventory over the period

Economic order quantity model

EOQ model determines the optimal order quantity (Q^{*}) that minimize total inventory costs over planning period
Variables involved:
Ordering cost per order (O)
Carrying cost per unit (C)
Total inventory costs (T)
Total usage (in units) of an item of inventory (S)
The order quantity (Q)

Total inventory costs $=$ Total ordering costs + Total carrying costs

Determining the optimal order quantity

Average inventory $=($ Beginning inventory + Ending inventory) $/ 2=(\mathrm{Q}+0) / 2=\mathrm{Q} / 2$
Carrying cost for period $=($ Carrying cost per unit) x (Average inventory) $=C(Q / 2)$
Total number of order = (Total usage of an item of inventory for that period / (Order quantity) = S/Q
Total ordering costs $=($ Ordering cost per order) x (Total number of order) $=O(S / Q)$
Total inventory costs $=($ Total carrying costs $)+$ (Total ordering costs) $=\mathrm{C}(\mathrm{Q} / 2)+\mathrm{O}(\mathrm{S} / \mathrm{Q})$

Determining the optimal order quantity (cont.)

Total inventory costs $=\mathrm{C}(\mathrm{Q} / 2)+\mathrm{O}(\mathrm{S} / \mathrm{Q})$ If the firm sets up a larger $\mathrm{Q}=>$ Total ordering costs will be low but total carrying cost will be high.
If the firm sets up a smaller $\mathrm{Q}=>$ Total ordering costs will be high but total carrying cost will be low.
Q is optimal as if the total inventory costs is minimized.

Determining the optimal order quantity (cont.)

Total inventory costs: $\mathrm{T}=\mathrm{C}(\mathrm{Q} / 2)+\mathrm{O}(\mathrm{S} / \mathrm{Q})$ $\frac{d T}{d Q}=\frac{C}{2}-\frac{O S}{2}$

Total inventory costs minimized if we take derivative of T with respect to Q and set the result equal 0 . Then we obtain:

$$
\frac{d T}{d Q}=\frac{C}{2}-\frac{O S}{Q^{2}}=0 \quad . \quad Q=\sqrt{\frac{2 Q S}{C}}=
$$

Outline of the chapter

Objective of receivable management Credit policies

Credit standard policies
Credit term policies
Credit period
Cash discount
Credit policies with default risk

Objective of receivables management

Receivables come from sales in credit
Credit sales Increasing revenue Increasing profit Credit sales méreasing receivables Increasing operating costs
Objective of receivables management is: to determine whether increasing in revenue and profit is large enough to offset increasing in costs, or
to determine whether saving in cost is large enough to offset decreasing in profit.

Credit policies

Credit standards

Credit terms
Credit period
Cash discount
Credit policies with influence of default risk

Credit standards

Credit standards the minimum quality of credit worthiness of a credit applicant that is acceptable to the firm.
Credit standard policy may be:
Lowering lower the standards or easier in accepting sales in credit
Highering Higher the standards or more difficult in accepting sales in credit

Suppose that ABC. Ltd s product sells for $\$ 10$ a unit, of which $\$ 8$ represents variable costs before tax. Annual sales are presently running at level of $\$ 2.4$ million and opportunity cost of carrying the additional receivables is 20 percent before tax. The relaxation in credit standards is expected to produce a 25 percent increase in sales but dverage collection period is increased to 2 months. Should the firm relax its credit

Profitability of additional sales
Additional sales $=2.4 \times 25 \%=\$ 0.6$ million $=\$ 600,000$
Additional sales in unit $=600,000 / 10=60,000$
Additional profit $=60,000(108)=\$ 120,000$
Opportunity cost of receivables
Receivable turnover = 12 months/Average collection
period $=12 / 2=6$
Additional receivables = Additional sales revenue/
receivable turnover $=600,000 / 6=\$ 100,000$
Investment in additional receivables $=100,000(8 / 10)=$ \$80,000
Required before-tax return on additional investment= $80,000 \times 20 \%=\$ 16,000$ (opportunity cost)

Policy determination

Additional profit from relaxation of credit standards = \$120,000
Opportunity cost originated from relaxation of credit standards $=16,000 \$$ Additional profit > Opportunity cost The company should lower its credit standards

Credit terms include:
Credit period
Cash discount, and
Cash discount period
Example a credit term $2 / 10$ net 30 means
Credit period $=30$ days
Cash discount $=2 \%$
Cash discount period < or = 10 days
A change in credit terms is often a change in:
Credit period, or
Cash discount

ABC. Ltd s product has selling price of $\$ 10$, variable cost per unit is $\$ 8$, and its annual revenue is 2.4 million dollars. The opportunity cost of carrying receivable is 20%. If the firm changes its credit terms from net 30 to net 60, there are \$360,000 in additional sales and its average collection period increases from 30 to 60 days. Should the firm change its credit period.

Additional profit
Additional sales: $\$ 360,000=>$ Additional sales in unit $=360,000 / 10=$ 36,000
Additional profit $=36,000(108)=\$ 72,000 \$$
Opportunity cost of carrying receivables
New receivable turnover = 12 months/Average collection period $=12 / 2=6$
Additional receivables associated with new sales =Additional sales / New receivable turnover $=360,000 / 6=\$ 60,000$
Additional receivables associated with original sales $=(2,400,000 / 6)$
$(2,400,000 / 12)=\$ 200,000$
Total receivables $=60,000+200,000=\$ 260,000$
Investment in additional receivables $=260,000(8 / 10)=\$ 208,000$
Opportunity cost of carrying receivables $=208,000 \times 20 \%=\$ 41,600$

Additional profit if credit period changed $=\$ 72,000$
Opportunity cost of carrying receivables $=\$ 41,600$
Additional profit > Opportunity cost
The firm should change its credit period.

Cash discount terms

Cash discount terms include:
Cash discount rate
Cash discount period
Changing cash discount terms means:
Changing cash discount rate
Changing cash discount period
In reality, cash discount period is rarely changed.

Presently the annual sales of ABC. Ltd is 3 million dollars and its average collection period is 2 months. Opportunity cost of carrying receivables is 20%. ABC believes if its credit term is changed from net 45 to $2 / 10$ net 45 , its average collection period will lower to 1 month and 60 percent of its customers will pay earlier to take discount. Should the firm change its credit term.

Determine cost saved
Receivable turnover before changing credit term = 12 months/Average collection period $=12 / 2=6$
Receivables before changing credit term = Sales /
Receivable turnover $=3,000,000 / 6=\$ 500,000$
Receivables after changing credit term $=3,000,000 / 12=$ \$250,000
Receivables decreased $=500,000250,000=\$ 250,000$
Cost saving $=250,000 \times 20 \%=\$ 50,000$
Determine profit lost because of discount taken by customers $=$ $3,000,000 \times 0.6 \times 0.02=\$ 36,000$

Policy determination

$$
\begin{aligned}
& \text { Cost saving }=\$ 50,000 \\
& \text { Profit loss }=\$ 36,000 \\
& \text { Cost saving > Profit loss } \\
& \text { The firm should change its credit term. }
\end{aligned}
$$

Change in credit policy with default risk

Generally, lowering credit standards leads to increase in sales, thus, increase in profit. However, lowering credit standards leads to increase in default risk and average collection period, thus, increase in opportunity costs. How should the firm make a decision.

The current annual sales of $A B C$. Ltd is 2.4 million dollars, its profit margin and opportunity cost of carrying receivables are 20%. The firm is considering to determine its policies. Information of current policy, policy A, policy B are described as below:

	Current policy	Policy A	Policy B
Sales in credit (demand)	$2,400,000$	$3,000,000$	$3,300,000$
Additional sales		600,000	300,000
Loss due to default risk: Original sales Additional sales	2%		
Average collection period: Original sales Additional sales	1 month	2 months	3 months

Policy analysis

Items	Policy A Polic	B
1. Additional sales	\$600.000	\$300.000
2. Additional profit due to additional sales (Additioanl sales x Profit margin)	$\begin{array}{r} 600,000 \times 0.2 \\ =\$ 120,000 \\ \hline \end{array}$	$\begin{array}{r} 300,000 \times 0.2= \\ \$ 60,000 \\ \hline \end{array}$
3. Additional receivables (Additional sales /Receivanle turnover after change)	$\begin{array}{r} 600,000 / 12 / 2 \\ =\$ 100,000 \end{array}$	$\begin{array}{r} 300,000 / 12 / 3= \\ \$ 75,000 \end{array}$
4. Investment in additional receivables (Additional receivables x Cost of goods sold)	$\begin{array}{r} 100,000 \times 0.8 \\ =\$ 80,000 \\ \hline \end{array}$	$\begin{array}{r} 75,000 \times 0.8= \\ \$ 60,000 \\ \hline \end{array}$
5. Opportunity cost of investment in additional receivables (20%)	$\begin{array}{r} 80,000 \times 0.2 \\ =\$ 16,000 \\ \hline \end{array}$	$\begin{array}{r} 60,000 \times 0.2= \\ \$ 12,000 \\ \hline \end{array}$
6. Lost due to default risk of additional sales (Additional sales x default risk rate)	$\begin{array}{r} 600,000 \times 0.1 \\ =\$ 60,000 \end{array}$	$\begin{array}{r} 300,000 \times 0.18 \\ =\$ 54,000 \end{array}$
7. Total lost (line $5+6$)	\$76,000	\$66,000
8. Additional profit after minusing lost: (2) (7)	\$44,000	$(\$ 6,000)$

Policy determination

Policy A:
Additional profit $=\$ 120,000$
Opportunity cost due to additional receivables $=\$ 16,000$
Loss due to default risk $=\$ 60,000$
Net profit = \$44,000
Policy B:
Additional profit $=\$ 60,000$
Opportunity cost due to additional receivables $=\$ 12,000$
Loss due to default risk $=\$ 54,000$
Net profit = - \$6,000
The firm should lower its current credit standards to policy A, but not to B.

Key Concepts and Skills

Know how to determine a firms cost of equity capital
Know how to determine a firms cost of debt
Know how to determine a firms overall cost of capital

Understand pitfalls of overall cost of capital and how to manage them

Chapter Outline

The Cost of Capital: Some Preliminaries
The Cost of Equity
The Costs of Debt and Preferred Stock
The Weighted Average Cost of Capital
Divisional and Project Costs of Capital
Flotation Costs and the Weighted Average
Cost of Capital

Why Cost of Capital Is Important

We know that the return earned on assets depends on the risk of those assets
The return to an investor is the same as the cost to the company

Our cost of capital provides us with an indication of how the market views the risk of our assets
Knowing our cost of capital can also help us determine our required return for capital budgeting projects

Required Return

The required return is the same as the appropriate discount rate and is based on the risk of the cash flows
We need to know the required return for an investment before we can compute the NPV and make a decision about whether or not to take the investment
We need to earn at least the required return to compensate our investors for the financing they have provided

Cost of Equity

The cost of equity is the return required by equity investors given the risk of the cash flows from the firm

There are two major methods for determining the cost of equity
Dividend growth model
SML or CAPM

The Dividend Growth Model Approach

Start with the dividend growth model formula and rearrange to solve for R_{E}

$$
\begin{aligned}
& P_{0}=\frac{D_{1}}{R_{E}-g} \\
& R_{E}=\frac{D_{1}}{P_{0}}+g
\end{aligned}
$$

Dividend Growth Model Example

Suppose that your company is expected to pay a dividend of $\$ 1.50$ per share next year. There has been a steady growth in dividends of 5.1% per year and the market expects that to continue. The current price is $\$ 25$. What is the cost of equity.

$$
R_{E}=\frac{1.50}{25}+.051=.111
$$

Example: Estimating the Dividend

 Growth RateOne method for estimating the growth rate is to use the historical average
Year Dividend Percent Change
19951.23
19961.30
$(1.301 .23) / 1.23=5.7 \%$
19971.36
(1.36 1.30) / $1.30=4.6 \%$
19981.43
$(1.431 .36) / 1.36=5.1 \%$
19991.50
$(1.501 .43) / 1.43=4.9 \%$
Average $=(5.7+4.6+5.1+4.9) / 4=5.1 \%$

Advantages and Disadvantages of Dividend Growth Model

Advantage easy to understand and use

Disadvantages

Only applicable to companies currently paying dividends

Not applicable if dividends arent growing at a reasonably constant rate
Extremely sensitive to the estimated growth rate an increase in g of 1% increases the cost of equity by 1%
Does not explicitly consider risk

The SML Approach

Use the following information to compute our cost of equity

Risk-free rate, R_{f}
Market risk premium, $E\left(R_{M}\right) R_{f}$
Systematic risk of asset,

$$
R_{E}=R_{f}+{ }_{E}\left(E\left(R_{M}\right)-R_{f}\right)
$$

Example - SML

Suppose your company has an equity beta of .58 and the current risk-free rate is 6.1%. If the expected market risk premium is 8.6%, what is your cost of equity capital.

$$
R_{E}=6.1+.58(8.6)=11.1 \%
$$

Since we came up with similar numbers using both the dividend growth model and the SML approach, we should feel pretty good about our estimate

```
Advantages and Disadvantages of SML
    Advantages
        Explicitly adjusts for systematic risk
        Applicable to all companies, as long as we can
        compute beta
    Disadvantages
        Have to estimate the expected market risk
        premium, which does vary over time
        Have to estimate beta, which also varies over time
        We are relying on the past to predict the future,
    which is not always reliable
```


Example Cost of Equity

Suppose our company has a beta of 1.5. The market risk premium is expected to be 9% and the current risk-free rate is 6%. We have used analysts estimates to determine that the market believes our dividends will grow at 6% per year and our last dividend was $\$ 2$. Our stock is currently selling for $\$ 15.65$. What is our cost of equity.

Using SML: $R_{E}=6 \%+1.5(9 \%)=19.5 \%$
Using DGM: $R_{E}=[2(1.06) / 15.65]+.06$
= 19.55%

Cost of Debt

The cost of debt is the required return on our companys debt
We usually focus on the cost of long-term debt or bonds
The required return is best estimated by computing the yield-to-maturity on the existing debt
We may also use estimates of current rates based on the bond rating we expect when we issue new debt
The cost of debt is NOT the coupon rate

Example: Cost of Debt

Suppose we have a bond issue currently outstanding that has 25 years left to maturity. The coupon rate is 9% and coupons are paid semiannually. The bond is currently selling for $\$ 908.72$ per $\$ 1000$ bond. What is the cost of debt.

$$
\begin{aligned}
& N=50 ; P M T=45 ; F V=1000 ; P V=-908.75 ; C P T \\
& I / Y=5 \% ; Y T M=5(2)=10 \%
\end{aligned}
$$

Cost of Preferred Stock

Reminders
Preferred generally pays a constant dividend every period
Dividends are expected to be paid every period forever

Preferred stock is an annuity, so we take the annuity formula, rearrange and solve for R_{P} $R_{P}=D / P_{0}$

Example: Cost of Preferred Stock

Your company has preferred stock that has an annual dividend of $\$ 3$. If the current price is $\$ 25$, what is the cost of preferred stock.

$$
R_{P}=3 / 25=12 \%
$$

The Weighted Average Cost of Capital

We can use the individual costs of capital that we have computed to get our average cost of capital for the firm.
This average is the required return on our assets, based on the markets perception of the risk of those assets

The weights are determined by how much of each type of financing that we use

Capital Structure Weights

Notation

$E=$ market value of equity $=$ \# outstanding shares times price per share
$\mathrm{D}=$ market value of debt = \# outstanding bonds times bond price
$V=$ market value of the firm $=D+E$

Weights

$W_{E}=E / V=$ percent financed with equity
$\mathrm{w}_{\mathrm{D}}=\mathrm{D} / \mathrm{V}=$ percent financed with debt

Example: Capital Structure Weights

Suppose you have a market value of equity equal to $\$ 500$ million and a market value of debt $=\$ 475$ million.
What are the capital structure weights.

$$
\begin{aligned}
& V=500 \text { million }+475 \text { million }=975 \text { million } \\
& w_{E}=E / D=500 / 975=.5128=51.28 \% \\
& w_{D}=D / V=475 / 975=.4872=48.72 \%
\end{aligned}
$$

Taxes and the WACC

We are concerned with after-tax cash flows, so we need to consider the effect of taxes on the various costs of capital
Interest expense reduces our tax liability
This reduction in taxes reduces our cost of debt
After-tax cost of debt $=R_{D}\left(1-T_{C}\right)$
Dividends are not tax deductible, so there is no tax impact on the cost of equity
$W A C C=W_{E} R_{E}+w_{D} R_{D}\left(1-T_{C}\right)$

Extended Example WACC - I

Equity Information
50 million shares
$\$ 80$ per share
Beta $=1.15$
Market risk premium =
9\%
Risk-free rate $=5 \%$

Debt Information
$\$ 1$ billion in outstanding
debt (face value)
Current quote $=110$
Coupon rate $=9 \%$, semiannual coupons
15 years to maturity
Tax rate $=40 \%$

Extended Example WACC - II

What is the cost of equity.

$$
R_{E}=5+1.15(9)=15.35 \%
$$

What is the cost of debt.
$N=30 ; P V=-1100 ; P M T=45 ; F V=1000 ; C P T$
$\mathrm{I} / \mathrm{Y}=3.9268$
$R_{D}=3.927(2)=7.854 \%$
What is the after-tax cost of debt.
$R_{D}\left(1-T_{C}\right)=7.854(1-.4)=4.712 \%$

Extended Example WACC - III

What are the capital structure weights.
$\mathrm{E}=50$ million (80) $=4$ billion
$\mathrm{D}=1$ billion (1.10) $=1.1$ billion
$\mathrm{V}=4+1.1=5.1$ billion
$w_{E}=E / V=4 / 5.1=.7843$
$w_{D}=D / V=1.1 / 5.1=.2157$
What is the WACC.
WACC $=.7843(15.35 \%)+.2157(4.712 \%)=$ 13.06\%

Eastman Chemical I

Click on the web surfer to go to Yahoo Finance to get information on Eastman Chemical (EMN)
Under profile, you can find the following information \# shares outstanding
Book value per share
Price per share
Beta
Under research, you can find analysts estimates of earnings growth (use as a proxy for dividend growth)
The bonds section at Yahoo Finance can provide the T-bill rate Use this information, along with the CAPM and DGM to estimate the cost of equity

Eastman Chemical II

Go to Bondsonline to get market information on Eastman Chemicals bond issues

Enter Eastman Ch to find the bond information Note that you may not be able to find information on all bond issues due to the illiquidity of the bond market
Go to the SEC site to get book market information from the firms most recent 10Q

Eastman Chemical III

Find the weighted average cost of the debt Use market values if you were able to get the information
Use the book values if market information was not available
They are often very close
Compute the WACC
Use market value weights if available

Cost of Equity

I. The cost of equity, R_{E}
A. Dividend growth model approach (from Chapter 8):

$$
R_{E}=D_{1} / P_{0}+g
$$

where D. is the expected drividend in one period, g is the dividend growth rate, and P_{0} is the current stock price.
B. SMLL approach (from Chapter 13):

$$
R_{E}=R_{t}-\beta_{E} \times\left(R_{N}-R_{X}\right]
$$

where $R_{\text {}}$ is the risk-rree rate, R_{w} is the expected return on the overall market, and β_{E} is the systematic risk of the equity.

```
Cost of Debt
    Il. The cost of deth, ,RD
        A. For a fimm with pullily hedd debt, the cost of debtc: can bemeasured as the
        yield to maturity on the oustanding debt. The coupon rate is irelevant. Yied
        to maturity is covered in Chapter 7.
    B. If the firm has no publicly traded debt, then the cost of dett can be measured
        as the yied to matuity on similarly rated bonds (bond ratings are discussed in
        Chapter7),
```


WACC

III. The weighted average cost of capital, WACC
A. The firm's WACC is the overall required return on the firm as a whole. It is the appropriate discount rate to use for cash flows similar in risk to those of the overall firm.
B. The WACC is calculated as:

$$
W A C C=\left(E M \times R_{E}+(D M) \times R_{0} \times\left(1-T_{C}\right)\right.
$$

where T_{C} is the corporate tax rate, E is the market value of the firm's equity, D is the market value of the fim's debt, and $V=E+D$. Note that E / V is the percentage of the firm's financing fin market value tems) that is equity, and DIV is the percentage that is debt.

Divisional and Project Costs of Capital

Using the WACC as our discount rate is only appropriate for projects that are the same risk as the firms current operations
If we are looking at a project that is NOT the same risk as the firm, then we need to determine the appropriate discount rate for that project
Divisions also often require separate discount rates

```
Using WACC for All Projects -
Example
    What would happen if we use the WACC for
    all projects regardless of risk.
    Assume the WACC = 15%
    Project Required Return IRR
    A 20% 17%
    B 15% 18%
    C 10% 12%
```


The Pure Play Approach

Find one or more companies that specialize in the product or service that we are considering
Compute the beta for each company
Take an average
Use that beta along with the CAPM to find the appropriate return for a project of that risk Often difficult to find pure play companies

Subjective Approach

Consider the projects risk relative to the firm overall If the project is more risky than the firm, use a discount rate greater than the WACC
If the project is less risky than the firm, use a discount rate less than the WACC
You may still accept projects that you shouldnt and reject projects you should accept, but your error rate should be lower than not considering differential risk at all

Subjective Approach - Example

Risk Level	Discount Rate
Very Low Risk	WACC 8\%
Low Risk	WACC 3\%
Same Risk as Firm	WACC
High Risk	WACC +5\%
Very High Risk $+10 \%$	

Flotation Costs

The required return depends on the risk, not how the money is raised
However, the cost of issuing new securities should not just be ignored either
Basic Approach
Compute the weighted average flotation cost
Use the target weights because the firm will issue securities in these percentages over the long term

NPV and Flotation Costs - Example

Your company is considering a project that will cost $\$ 1$ million. The project will generate after-tax cash flows of $\$ 250,000$ per year for 7 years. The WACC is 15% and the firms target D/E ratio is .6 The flotation cost for equity is 5% and the flotation cost for debt is 3%. What is the NPV for the project after adjusting for flotation costs.

$$
\begin{aligned}
& f_{\mathrm{A}}=(.375)(3 \%)+(.625)(5 \%)=4.25 \% \\
& \mathrm{PV} \text { of future cash flows }=1,040,105 \\
& \text { NPV }=1,040,105-1,000,000 /(1-.0425)=-4,281
\end{aligned}
$$

The project would have a positive NPV of 40,105 without considering flotation costs
Once we consider the cost of issuing new securities, the NPV becomes negative

Quick Quiz

What are the two approaches for computing the cost of equity.
How do you compute the cost of debt and the aftertax cost of debt.
How do you compute the capital structure weights required for the WACC.
What is the WACC.
What happens if we use the WACC for the discount rate for all projects.
What are two methods that can be used to compute the appropriate discount rate when WACC isnt appropriate. How should we factor in flotation costs to our analysis.

Outline of the chapter

```
Operating leverage
    Effect of operating leverage
    Break-even point analysis
    Degree of operating leverage (DOL)
    DOL and break-even point
    DOL and business risk
Financial leverage
    EBIT-EPS break-even or indifference analysis
    Degree of financial leverage (DFL)
    DFL and financial leverage
Total leverage
```


Concepts of leverage in finance

Leverage The use of fixed costs in an attempt to increase (or lever up) profitability.
Operating leverage The use of fixed operating costs by the firm to increase EBIT.

Financial leverage The use of fixed financing costs by the firm to increase EPS.

Operating leverage

Operating leverage The use of fixed operating cost to lever up EBIT.
Fixed operating costs Costs are fixed regardless of volume, for example:

Depreciation
Insurance
Part of the overall utility bills
Part of the cost of management
Operating leverage measured by the ratios:
Fixed cost / Total costs
Fixed cost / Sales

Analyze the effect of operating leverage

Three firms before changes in sales	Firm F	Firm V	Firm 2F
Sales	\$10,000	\$11,000	\$19,500
Operating costs			
Fixed cost (FC)	7,000	2,000	14,000
Variable cost (VC)	2,000	7,000	3,000
Operating profit (EBIT)	1,000	2,000	2,500
Operating leverage ratios			
FC/total costs	0.78	0.22	0.82
FC/sales	0.70	0.18	0.72
Three firms after 50\% increases in sales			
Sales	\$15,000	\$16,500	\$29,250
Operating costs			
Fixed cost (FC)	7,000	2,000	14,000
Variable cost (VC)	3,000	10,500	4,500
Operating profit (EBIT)	5,000	4,000	10,750
Percent change in EBIT (EBIT EBIT ${ }_{t-1}$)/EBIT ${ }_{t}$)	400\%	100\%	330\%

Conclusion

\square
Increase in sales
With operating leverage
used by the firm

Increase in EBIT (400\%)

Percent change in EBIT in the case of using operating leverage is bigger than that of without using operating leverage.

Break-even analysis (1)

Break-even analysis A technique for studying the relationship among fixed costs, variable costs, profits, and sales.
Break-even point The sales volume (in unit or dollar) required so that total revenues and total costs are equal, thus, profits equal 0.
Let the followings denote:
EBIT = Earnings before interest and taxes
$P=$ price per unit
$\mathrm{V}=$ variable cost per unit
($\mathrm{P} V$) $=$ unit contribution margin
$\mathrm{Q}=$ quantity (units) produced and sold
$F=$ Fixed cost
$\mathrm{Q}_{\mathrm{BE}}=$ Break-even point (quantity)

Break-even analysis (2)

At the break-even point:
Sales = Total costs
$\mathrm{PQ}_{\mathrm{BE}}=\mathrm{VQ}_{\mathrm{BE}}+\mathrm{F}$
$(P \vee) Q \quad$ be $=F$
$Q_{B E}=F /(P \mathrm{~V})$
Assume that a company produces bicycles that sell for $\$ 50$ per unit, The company has annual fixed costs of $\$ 100.000$, and variable costs are $\$ 25$ a unit regardless of the volume sold.
$Q_{B E}=F /(P V)=100,000 /(5025)=4,000$ units

Break-even point in sales

Let the followings denote:
$S_{B E}=$ break-even sales revenues
FC = Fixed cost
$\mathrm{VC}_{\mathrm{BE}}=$ Total variable costs at the break-even point
At the break-even point:
$S_{B E}=F C+V_{B E}=F C+\left(V C_{B E} / S_{B E}\right) S_{B E}$
Because the relationship between total variable
costs and sales is assumed constant, $\mathrm{VC}{ }_{\mathrm{BE}} / \mathrm{S}_{\mathrm{BE}}=$ VC / S for any level of sales. Thus, $\mathrm{S}_{\mathrm{BE}}=\mathrm{FC}+$ (VC/S) S_{BE}
$=>S_{B E}=F C /[1(V C / S)]$

Break-even point in sales (2)

Using data from the given example of Company F, V and 2F, the break-even point in sales is determined as follows:

Company F:
$S_{B E}=F C /[1(V C / S)]=7000 /[1$ 2000/10000] $=8750$
Company V: .
Company 2F: .

Degree of operating leverage (DOL)

Degree of operating leverage (DOL) The percentage change in a firms operating profit (EBIT) resulting from a 1 percent change in sales.

```
Degree of operating Percentage change in
N (leverage (DOL) at Q 
        sales
                            r sales
\[
D O L=\frac{. E B I T / E B I T}{. Q / Q}
\]
```


How to measure DOL.

DOL in units

$$
D O L_{Q}=\frac{Q(P-V)}{Q(P-V)-F}=\frac{Q}{Q-Q_{B E}}
$$

DOL in dollars of sales

$$
D O L_{S}=\frac{S-V C}{S-V C-F C}=\frac{E B I T+F}{E B I T}
$$

Suppose that selling price of bicycle product is $\$ 50$ for an unit, the annual fixed cost is $\$ 100,000$ and variable cost is $\$ 25$ for an unit. What is the firms DOL.

Degree of operating in units
$D O L_{5000}=\frac{5000(50-25)}{5000(50-25)-100.000}=5$
$D O L_{6000}=\frac{6000(50-25)}{6000(50-25)-100.000}=3$
What is the meaning of DOL.
It means that a 1 change in sales from the 5,000unit sales position causes a 5 percent change in EBIT.
From the 6,000-unit sales, a 1 change in sales causes 3 percent change in EBIT.

Relationship between DOL and EBIT

Quantity produced and sold (O)	Operating profit (EBIT) Degr ee of operating leverage (DOL)	
0	$-100,000$	0.00
1000	$-75,000$	-0.33
2000	$-50,000$	-1.00
3000	$-25,000$	-3.00
QE	0	Infinite
	25,000	5.00
	50,000	3.00
6000	75,000	2.33
7000	100,000	2.00

Relationship between DOL and EBIT

DOL= 0 at the sales of $\$ 0$
Moving from the firms break-even point, the greater is the absolute value of the firms operating profit or loss and the lower is the relative sensitivity of operating profit to changes in outputs (sales) as measured by DOL.
DOL approaches positive (or negative) infinity as sales approaches the break-even point.
DOL approaches 1 as sales grow beyond the breakeven point.

DOL and business risk

Financial leverage

Financial leverage The use of fixed financing costs (bond and preferred stock) by the firm.
Financial leverage involves the use of fixed financing cost in the hope of increasing the return to common shareholders (EPS).

Differences between operating leverage and financial leverage

Operating leverage
Use the fixed operating costs to lever up the operating profit (EBIT)
Can not be determined by management, indicated by the requirement of the firms operations.

Financial leverage
Use the fixed
financing costs to lever up the return
(EPS) to common shareholders
May be chosen by management

Should the firm use financial leverage.

EBIT-EPS break-even analysis

EBIT-EPS break-even analysis Analysis of the effect of financing alternatives (bonds, preferred stocks and common stocks) on earnings per share (EPS)
The break-even point is the EBIT level where EPS is the same for two (or more) alternatives.
Example: CTC with long-term financing of $\mathbf{\$ 1 0}$ million consisting entirely of common stock equity, wishes to raise $\$ 5$ million for expansion through one of three possible financing plans: (1) all common stock, (2) all debt at 12 percent interest, or (3) all preferred stock with 11 percent dividend. The present annual EBIT is $\$ 1.5$ million dollars but with expansion is expected to rise to $\$ 2.7$ million. The income tax rate is 40 percent and 200,000 shares of common stocks are outstanding. Common stock can be sold at $\$ 50$ per share under the first financing option, which translates into100,000 additional shares of stock.

How to calculate EPS.

$$
E P S=\frac{(E B I T-I)(1-t)-P D}{N S}
$$

Where: I = Annual interest paid to debt
PD = Annual preferred dividend paid
t = Corporate tax rate
NS = Number of shares of common stock
outstanding

EPS under three financing alternatives			
	Common stock	Debt	Preferred stock
Earnings before interest and tax (EBIT)	\$2,700,000	\$2,700,000	\$2,700,000
Interest (I)	-	600,000	-
Earnings before taxes (EBT)	2,700,000	2,100,000	2,700,000
Income taxes [EBT x t]	1,080,000	840,000	1,080,000
Earnings after taxes (EAT)	1,620,000	1,260,000	1,620,000
Preferred stock dividends (PD)	-	-	550,000
Earnings available to common shareholders (EACS)	1,620,000	1,260,000	1,070,000
Number of shares of common stock outstanding (NS)	300,000	200,000	200,000
Earnings per share (EPS)	\$5.40	\$6.30	\$5.35

Indifference point

Indifference point The level of EBIT that produces the same level of EPS for two (or more) alternative capital structure.

Alternative 1: Common stock and debt
Alternative 2: Common stock and preferred stock

Chart for three additional-financing alternatives

Indifference point determined mathematically

At the indifference point, we have:
$E P S_{1}=E P S_{2}$
$\frac{\left(E B I T_{1,2}-I_{1}\right)(1-t)-P D_{1}}{N S_{1}}=\frac{\left(E B I T_{1,2}-I_{2}\right)(1-t)-P D_{2}}{N S_{2}}$
EBIT $_{1,2}=$ EBIT indifference point between financing alternative 1 and 2
$\mathrm{I}_{1}, \mathrm{I}_{2}=$ Annual interest paid under financing alternative 1 and 2
$P D_{1}, \mathrm{PD}_{2}=$ Annual preferred stock dividend paid under financing alternative
1 and 2
$\mathrm{t}=$ Corporate tax rate
$\mathrm{NS}_{1}, \mathrm{NS}_{2}=$ Number of shares of common stock to be outstanding under financing alternative 1 and 2

Indifference point between common stock and debt financing alternatives
Common stock financing
$E P S_{1}=\frac{\left(E B I T_{1,2}-I_{1}\right)(1-t)-P D_{1}}{N S_{1}}=\frac{\left(E B I T_{1,2}-0\right)(1-0.4)-0}{300,000}=\frac{0.6 E B I T_{1,2}}{300,000}$
Debt financing
$E P S_{2}=\frac{\left(E B I T_{1,2}-I_{1}\right)(1-t)-P D_{1}}{N S_{1}}=\frac{\left(E B I T_{1,2}-600,000\right)(1-0.4)-0}{200,000}$
At the indifference point, $\mathrm{EPS}_{1}=\mathrm{EPS}_{2}$
$\left(\right.$ EBIT $\left._{1,2}\right)(0.6)(200,000)=($ EBIT 1,2$)(0.6)(300,000)(0.6)(600,000)(300,000)$
$\left(\right.$ EBIT $\left._{1,2}\right)(60,000)=108,000,000,000$
EBIT $_{1,2}=\$ 1,800,000$

Indifference point between common stock and preferred stock financing alternatives

Common stock financing
$E P S_{1}=\frac{\left(E B I T_{1,2}-I_{1}\right)(1-t)-P D_{1}}{N S_{1}}=\frac{\left(E B I T_{1,2}-0\right)(1-0,4)-0}{300.000}=\frac{0,6 E B I T_{1,2}}{300.000}$
Preferred stock financing
$E P S_{2}=\frac{\left(E B I T_{1,2}-I_{1}\right)(1-t)-P D_{1}}{N S_{1}}=\frac{\left(E B I T_{1,2}-0\right)(1-0,4)-550.000}{200.000}$
At the indifference point, $\mathrm{EPS}_{1}=\mathrm{EPS}_{2}$

$$
\begin{aligned}
\left(\text { EBIT }_{1,2}\right)(0.6)(200,000) & =\left(\text { EBIT }_{1,2}\right)(0.6)(300,000)(550,000)(300,000) \\
\left(\text { EBIT }_{1,2}\right)(60,000) & =1,650,000,000,000 \\
\text { EBIT }_{1,2} & =\$ 2,750,000
\end{aligned}
$$

How to determine financing alternatives. Indifference point between common stock and debt financing alternatives is $\$ 1.8$ million.

If EBIT is lower than the indifference point ($\$ 1.8$ million), EPS under common stock financing is greater than EPS under debt financing.
If EBIT is higher than the indifference point (\$1.8 million), EPS under debt financing is greater than EPS under common stock financing.
Indifference point between common stock and preferred stock financing alternatives is $\$ 2.75$ million.

If EBIT is lower than the indifference point ($\$ 2.75$ million), EPS under common stock financing is greater than EPS under preferred stock financing.
If EBIT is higher than the indifference point ($\$ 2.75$ million), EPS under preferred stock financing is greater than EPS under common stock financing.

Degree of financial leverage

Degree of financial leverage (DFL) The percentage change in a firms earnings per share (EPS) resulting from a 1 percent change in operating profit (EBIT).

$$
\begin{aligned}
& \begin{array}{c}
\text { Degree of financial } \\
\text { leverage (DFL) at EBIT } \\
\text { of } \mathrm{X} \text { dollars }
\end{array} \\
& D F L_{\text {EBIT }}=\frac{\% \cdot E P S}{\% . E B I T}=\frac{\begin{array}{c}
\text { Percentage change in earnings per } \\
\text { share (EPS) }
\end{array}}{\text { Percentage change in operating }} \begin{array}{l}
\text { profit (EBIT) }
\end{array} \\
& D F P I T / E B I T
\end{aligned}
$$

Degree of financial leverage

$$
D F L_{E B I T}=\frac{E B I T}{E B I T-I-[P D /(1-t)]}
$$

For debt-financing alternative

$$
D F L_{E B I T}=\frac{E B I T}{E B I T-I}=\frac{2,700,000}{2,700,000-600,000}=1.29
$$

For preferred stock financing alternative

$$
D F L_{E B I T}=\frac{2,700,000}{2,700,000-0-[550,000 /(1-0.4)]}=1.51
$$

What does the DFL mean.

In the case of using debt-financing, $\mathrm{DFL}_{\text {EBIT of }}$ $\$ 2.7$ million $=1.29$
In the case of using preferred stock financing, $\mathrm{DFL}_{\text {EBit of } \$ 2.7 \text { million }}=1.51$
1\% change in EBIT results change 1.29\% in EPS if using debt-financing and 1.51% if using preferred stock financing.

Financial leverage and financial risk

Financial risk The added variability in earnings per share (EPS) that is induced by the use of financial leverage.
Use of financial leverage => Increase in fixed financing costs => Increase in probability of insolvency $=>$ Increase in financial risk Use of financial leverage => Change in EPS as EBIT changed => Increase in business risk.

Total leverage

Total leverage is the use of both fixed operating and financing costs by the firm.
Financial leverage is combined with operating leverage, the result is referred to as total leverage.
Degree of total leverage (DTL) is the percentage change in a firms earnings per share (EPS) resulting from a 1 percent change in output or sales.

Total leverage

How to determine the DTL.

$\begin{gathered}\text { Degree of total leverage } \\ \text { (DTL at Q units (or } \mathrm{S} \\ \text { dollars) of outputs (or } \\ \text { sales) }\end{gathered} \quad=\frac{\text { Percentage change in EPS }}{\begin{array}{c}\text { Percentage change in output } \\ \text { (or sales) }\end{array}}$
$D T L_{Q}=\frac{Q(P-V)}{Q(P-V)-F-I-[P D /(1-t)]}$
$D T L_{S}=\frac{E B I T+F}{E B I T-I-[P D /(1-t)]}$

Example

A firm produces bicycle with the selling price of $\$ 50$, variable cost per unit is $\$ 25$ and fixed operating cost is $\$ 100,000$. Suppose that the firm has $\$ 200,000$ in debt at 8 percent interest and the tax rate is 40 percent. Degree of total leverage at 8,000 units are determined as follows:

$$
D T L_{8000}=\frac{8000(50-25)}{8000(50-25)-100,000-16,000}=2.38
$$

Other way: DTL = DOL x DFL

$$
=2.00 \times 1.19=2.38
$$

What does the DTL mean.

$D T L_{8000}=\frac{8000(50-25)}{8000(50-25)-100,000-16,000}=2.38$
1% change in output results 2.38 percent change EPS. This change comes from the impact of:

Degree of operating leverage (2.00), and
Degree of financial leverage (1.19)

Financial Leverage and Capital Structure

Key Concepts and Skills

Understand the effect of financial leverage on cash flows and cost of equity
Understand the impact of taxes and bankruptcy on capital structure choice
Understand the basic components of the bankruptcy process

Chapter Outline

The Capital Structure Question
The Effect of Financial Leverage
Capital Structure and the Cost of Equity Capital
M\&M Propositions I and II with Corporate Taxes
Bankruptcy Costs
Optimal Capital Structure
The Pie Again
Observed Capital Structures
A Quick Look at the Bankruptcy Process

Capital Restructuring

We are going to look at how changes in capital structure affect the value of the firm, all else equal Capital restructuring involves changing the amount of leverage a firm has without changing the firms assets

Increase leverage by issuing debt and repurchasing outstanding shares
Decrease leverage by issuing new shares and retiring outstanding debt

Choosing a Capital Structure

What is the primary goal of financial managers.
Maximize stockholder wealth
We want to choose the capital structure that will maximize stockholder wealth

We can maximize stockholder wealth by maximizing firm value or minimizing WACC

The Effect of Leverage

How does leverage affect the EPS and ROE of a firm.
When we increase the amount of debt financing, we increase the fixed interest expense
If we have a really good year, then we pay our fixed cost and we have more left over for our stockholders
If we have a really bad year, we still have to pay our fixed costs and we have less left over for our stockholders
Leverage amplifies the variation in both EPS and ROE

Example: Financial Leverage, EPS and ROE

We will ignore the effect of taxes at this stage What happens to EPS and ROE when we issue debt and buy back shares of stock.

Financial Leverage Example

Example: Financial Leverage, EPS and ROE

Variability in ROE
Current: ROE ranges from 6.25% to 18.75%
Proposed: ROE ranges from 2.50\% to 27.50%
Variability in EPS
Current: EPS ranges from $\$ 1.25$ to $\$ 3.75$
Proposed: EPS ranges from $\$ 0.50$ to $\$ 5.50$
The variability in both ROE and EPS increases when financial leverage is increased

Break-Even EBIT

Find EBIT where EPS is the same under both the current and proposed capital structures If we expect EBIT to be greater than the break-even point, then leverage is beneficial to our stockholders

If we expect EBIT to be less than the breakeven point, then leverage is detrimental to our stockholders

Example: Break-Even EBIT

$$
\begin{aligned}
\frac{\mathrm{EBIT}}{400,000} & =\frac{\mathrm{EBIT}-400,000}{200,000} \\
\mathrm{EBIT} & =\frac{400,000}{200,000}:(\mathrm{EBIT}-400,000) \\
\mathrm{EBIT} & =2 \mathrm{EBIT}-800,000 \\
\mathrm{EBIT} & =\$ 800,000 \\
\mathrm{EPS} & =\frac{800,000}{400,000}=\$ 2.00 \quad \text { Break-even Graph }
\end{aligned}
$$

Example: Homemade Leverage and ROE

Current Capital Structure	Proposed Capital Structure
Investor borrows $\$ 2000$	Investor buys $\$ 1000$
and uses $\$ 2000$ of their	worth of stock $(50$
own to buy 200 shares of	shares) and $\$ 1000$ worth
stock	of Trans Am bonds
Payoffs:	paying 10%.
Recession: $200(1.25)-$	Payoffs:
$.1(2000)=\$ 50$	
Expected: $200(2.50)-$	Recession: $50(.50)+$
$.1(2000)=\$ 300$	$.1(1000=\$ 125$
Expansion: $200(3.75)$ -	Expected: $50(3.00)+$
$.1(2000)=\$ 550$	$.1(1000)=\$ 250$
Mirrors the payoffs from	Expansion: $50(5.50)+$
purchasing 100 shares	$.1(1000)=\$ 375$
from the firm under the	Mirrors the payoffs from
proposed capital	purchasing 100 shares
structure	under the current capital
	structure

Capital Structure Theory

Modigliani and Miller Theory of Capital Structure

Proposition I firm value
Proposition II WACC
The value of the firm is determined by the cash flows to the firm and the risk of the assets
Changing firm value
Change the risk of the cash flows
Change the cash flows

```
Capital Structure Theory Under Three
Special Cases
Case I Assumptions
No corporate or personal taxes
No bankruptcy costs
Case II Assumptions
Corporate taxes, but no personal taxes
No bankruptcy costs
Case III Assumptions
Corporate taxes, but no personal taxes
Bankruptcy costs
```


Case I Propositions I and II

Proposition I
The value of the firm is NOT affected by changes in the capital structure The cash flows of the firm do not change, therefore value doesnt change
Proposition II
The WACC of the firm is NOT affected by capital structure

$$
\begin{aligned}
& \text { Case } I \text { - Equations } \\
& \qquad \begin{array}{l}
\text { WACC }=R_{A}=(E / V) R_{E}+(D / V) R_{D} \\
R_{E}=R_{A}+\left(R_{A} R_{D}{ }_{D}\right)(D / E) \\
R_{A} \text { is the cost of the firms business risk, i.e., the } \\
\text { risk of the firms assets } \\
\left(R_{A} R_{D}\right)(D / E) \text { is the cost of the firms financial } \\
\text { risk, i.e., the additional return required by } \\
\text { stockholders to compensate for the risk of } \\
\text { leverage }
\end{array} \\
& \hline
\end{aligned}
$$

Case I - Example

Data
Required return on assets $=16 \%$, cost of debt $=10 \%$; percent of debt = 45\%

What is the cost of equity.

$$
R_{E}=.16+(.16-.10)(.45 / .55)=.2091=20.91 \%
$$

Suppose instead that the cost of equity is 25%, what is the debt-to-equity ratio.
$.25=.16+(.16-.10)(\mathrm{D} / \mathrm{E})$
$D / E=(.25-.16) /(.16-.10)=1.5$
Based on this information, what is the percent of equity in the firm.
$E / V=1 / 2.5=40 \%$

```
The CAPM, the SML and Proposition
II
How does financial leverage affect systematic risk.
CAPM: \(R_{A}=R_{f}+{ }_{A}\left(R_{M} R_{f}\right)\)
Where \({ }_{A}\) is the firms asset beta and measures the systematic risk of the firms assets
Proposition II
Replace \(R_{A}\) with the CAPM and assume that the
debt is riskless \(\left(R_{D}=R_{f}\right)\)
\(R_{E}=R_{f}+{ }_{A}(1+D / E)\left(R_{M} R_{f}\right)\)
```


Business Risk and Financial Risk

$R_{E}=R_{f}+\quad{ }_{A}(1+D / E)\left(R_{M} R_{f}\right)$
CAPM: $R_{E}=R_{f}+{ }_{E}\left(R_{M} R_{f}\right)$
${ }_{E}={ }_{A}(1+D / E)$
Therefore, the systematic risk of the stock depends on:
Systematic risk of the assets, ${ }_{\mathrm{A}}$, (Business risk)
Level of leverage, D/E, (Financial risk)

Case II Cash Flow

Interest is tax deductible
Therefore, when a firm adds debt, it reduces taxes, all else equal
The reduction in taxes increases the cash flow of the firm

How should an increase in cash flows affect the value of the firm.

Case II - Example		
EBIT	Unlevered Firm	
Interest	5000	5000
Taxable Income	0	500
Taxes (34\%)	5000	4500
Net Income	1700	1530
CFFA	3300	2970

Interest Tax Shield

Annual interest tax shield
Tax rate times interest payment
6250 in 8% debt $=500$ in interest expense
Annual tax shield $=.34(500)=170$
Present value of annual interest tax shield
Assume perpetual debt for simplicity
$P V=170 / .08=2125$
$P V=D\left(R_{D}\right)\left(T_{C}\right) / R_{D}=D T_{C}=6250(.34)=2125$

Case II Proposition I

The value of the firm increases by the present value of the annual interest tax shield
Value of a levered firm = value of an unlevered firm + PV of interest tax shield

Value of equity = Value of the firm Value of debt Assuming perpetual cash flows

$$
\begin{aligned}
& V_{U}=E B I T(1-T) / R_{U} \\
& V_{L}=V_{U}+D T_{C}
\end{aligned}
$$

```
Example: Case II Proposition I
    Data
        EBIT = 25 million; Tax rate = 35%; Debt = $75
        million; Cost of debt = 9%; Unlevered cost of
        capital = 12%
    V
    V
    E = 161.67 75 = $86.67 million
```


Case II Proposition II

The WACC decreases as D/E increases because of the government subsidy on interest payments
$R_{A}=(E / V) R_{E}+(D / V)\left(R_{D}\right)\left(1-T_{C}\right)$
$R_{E}=R_{U}+\left(R_{U} R_{D}\right)(D / E)\left(1-T_{C}\right)$

Example

$$
\begin{aligned}
& R_{E}=.12+(.12-.09)(75 / 86.67)(1-.35)=13.69 \% \\
& R_{A}=(86.67 / 161.67)(.1369)+(75 / 161.67)(.09) \\
& (1-.35) \\
& R_{A}=10.05 \%
\end{aligned}
$$

Example: Case II Proposition II

Suppose that the firm changes its capital structure so that the debt-to-equity ratio becomes 1 .

What will happen to the cost of equity under the new capital structure.

$$
R_{E}=.12+(.12-.09)(1)(1-.35)=13.95 \%
$$

What will happen to the weighted average cost of capital.

$$
\mathrm{R}_{\mathrm{A}}=.5(.1395)+.5(.09)(1-.35)=9.9 \%
$$

Case III

Now we add bankruptcy costs
As the D/E ratio increases, the probability of bankruptcy increases
This increased probability will increase the expected bankruptcy costs
At some point, the additional value of the interest tax shield will be offset by the expected bankruptcy cost At this point, the value of the firm will start to decrease and the WACC will start to increase as more debt is added

Bankruptcy Costs

> Direct costs
> Legal and administrative costs
> Ultimately cause bondholders to incur additional losses
> Disincentive to debt financing
> Financial distress
> Significant problems in meeting debt obligations
> Most firms that experience financial distress do not ultimately file for bankruptcy

More Bankruptcy Costs

Indirect bankruptcy costs
Larger than direct costs, but more difficult to measure and estimate
Stockholders wish to avoid a formal bankruptcy filing Bondholders want to keep existing assets intact so they can at least receive that money
Assets lose value as management spends time worrying about avoiding bankruptcy instead of running the business
Also have lost sales, interrupted operations and loss of valuable employees

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

Fulbright Economics Teaching Program 2005-2006

Conclusions

Case I no taxes or bankruptcy costs
No optimal capital structure
Case II corporate taxes but no bankruptcy costs
Optimal capital structure is 100% debt
Each additional dollar of debt increases the cash flow of the firm
Case III corporate taxes and bankruptcy costs
Optimal capital structure is part debt and part equity Occurs where the benefit from an additional dollar of debt is just offset by the increase in expected bankruptcy costs
home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

Managerial Recommendations

The tax benefit is only important if the firm has a large tax liability
Risk of financial distress
The greater the risk of financial distress, the less debt will be optimal for the firm
The cost of financial distress varies across firms and industries and as a manager you need to understand the cost for your industry

Fulbright Economics Teaching Program 2005-2006

In the extended pie model, the value of all the claims against the firm's cash flows is not affected by capital structure, but the reiative values of claims change 35 the amount of debt finanting is increased.

The Value of the Firm

Value of the firm = marketed claims + nonmarketed claims

Marketed claims are the claims of stockholders and bondholders
Nonmarketed claims are the claims of the government and other potential stakeholders The overall value of the firm is unaffected by changes in capital structure
The division of value between marketed claims and nonmarketed claims may be impacted by capital structure decisions

Observed Capital Structure

Capital structure does differ by industries
Differences according to Cost of Capital 2000
Yearbook by Ibbotson Associates, Inc.
Lowest levels of debt
Drugs with 2.75% debt
Computers with 6.91% debt
Highest levels of debt
Steel with 55.84\% debt
Department stores with 50.53% debt

Work the Web Example

You can find information about a companys capital structure relative to its industry, sector and the S\&P 500 at Yahoo Marketguide Click on the web surfer to go to the site

Choose a company and get a quote
Choose ratio comparisons

Bankruptcy Process Part I

Business failure business has terminated with a loss to creditors
Legal bankruptcy petition federal court for bankruptcy
Technical insolvency firm is unable to meet debt obligations
Accounting insolvency book value of equity is negative

Bankruptcy Process Part II

Liquidation
Chapter 7 of the Federal Bankruptcy Reform Act of 1978
Trustee takes over assets, sells them and distributes the proceeds according to the absolute priority rule
Reorganization
Chapter 11 of the Federal Bankruptcy Reform Act of 1978
Restructure the corporation with a provision to repay creditors

Quick Quiz

Explain the effect of leverage on EPS and ROE
What is the break-even EBIT.
How do we determine the optimal capital structure.

What is the optimal capital structure in the three cases that were discussed in this chapter.

What is the difference between liquidation and reorganization.


```
Chapter Overview
    Part I:
    Stock markets around the world
        International
        US
    Part II:
    Raising equity
        Venture Capital
        IPO
```


Part I:
 International and US Stock Markets
 A Statistical Perspective
 Market Structure, Trading Practices, and Costs International Equity Market Benchmarks
 World Equity Market Benchmark Shares
 Trading in International Equities
 Factors Affecting International Equity Returns
 Common stock markets in the US
 Market efficiency

```
Market Capitalization of Developed
Countries
Almost 92\% of the total market capitalization of the worlds equity markets is accounted for by the market capitalization of the developed world.
```


Market Capitalization of Developing Countries

The other 10% is accounted for by the market capitalization of developing countries in emerging markets.

Latin America
Asia
Eastern Europe
Mideast/Africa
Recently the growth rates in these emerging markets have been strong, but with more volatility than we have here at home.

Measures of Liquidity

The equity markets of the developed world tend to be much more liquid than emerging markets.

Liquidity refers to how quickly an asset can be sold without a major price concession.
So, while investments in emerging markets may be profitable, the focus should be on the long term.

Measures of Market Concentration

Emerging Markets tend to be much more concentrated than our markets.
Concentrated in relatively few companies.
That is, a few issues account for a much larger percentage of the overall market capitalization in emerging markets than in the equity markets of the developed world.

Market Structure,
Trading Practices, and Costs
Primary Markets
Shares offered for sale directly from the issuing company.
Secondary Markets
Provide market participants with marketability and share valuation.

Market Structure, Trading Practices, and Costs
 Market Order
 An order to your broker to buy or sell share immediately at the market price.
 Limit Order
 An order to your broker to buy or sell at the at a price you want, when and if he can.
 If immediate execution is more important than the price, use a market order.

Market Structure, Trading Practices, and Costs

Dealer Market

The stock is sold by dealers, who stand ready to buy and sell the security for their own account.
In the U.S., the OTC market is a dealer market.

Auction Market

Organized exchanges have specialists who match buy and sell orders. Buy and sell orders may get matched without the specialist buying and selling as a dealer.

Automated Exchanges

Computers match buy and sell orders.

```
International Equity Market
Benchmarks
    North America
    Europe
    Asia/Pacific Rim
```


World Equity Benchmark Shares

World Equity Benchmark Shares (WEBS) Country-specific baskets of stocks designed to replicate the country indexes of 14 countries. WEBS are subject to U.S. SEC and IRS diversification requirements.
Low cost, convenient way for investors to hold diversified investments in several different countries.

```
Trading in International Equities
    Magnitude of International Equity Trading
    Cross-Listing of Shares
    Yankee Stock Offerings
    The European Stock Market
    American Depository Receipts
```

Magnitude of International Equity Trading

During the 1980s world capital markets began a trend toward greater global integration.
Diversification, reduced regulation, improvements in computer and communications technology, increased demand from MNCs for global issuance.

Cross-Listing of Shares

Cross-Listing refers to a firm having its equity shares listed on one or more foreign exchanges.

The number of firms doing this has exploded in recent years.

Advantages of Cross-Listing

It expands the investor base for a firm.
Establishes name recognition for the firm in new capital markets, paving the way for new issues.

May offer marketing advantages.
May mitigate possibility of hostile takeovers.

Yankee Stock Offerings

The direct sale of new equity capital to U.S. public investors by foreign firms.
Privatization in South America and Eastern
Europe
Equity sales by Mexican firms trying to cash in on NAFTA

The European Stock Market

There is not as yet a single European stock market that comprises all national markets.
NASDAQ Europe hopes to become a pan-European stock market that operates independently of any national European exchange.
All trading is denominated in the euro.
It expects to offer trading in both European and U.S. stocks.
www.NasdaqEurope.com

American Depository Receipts

Foreign stocks often trade on U.S. exchanges as ADRs.
It is a receipt that represents the number of foreign shares that are deposited at a U.S. bank.

The bank serves as a transfer agent for the ADRs

American Depository Receipts

There are many advantages to trading ADRs as opposed to direct investment in the companys shares:

ADRs are denominated in U.S. dollars, trade on U.S. exchanges and can be bought through any broker.
Dividends are paid in U.S. dollars.
Most underlying stocks are bearer securities, the ADRs are registered.

Global Registered Shares

DaimlerChrysler AG is a German firm, whose stock trades as a GRS.
GRS are one share traded globally, unlike ADRs, which are receipts for banks deposits of home-market shares and traded on foreign markets.

They trade in both dollars and euros.
All shareholders have equal status and voting rights.

```
Factors Affecting
International Equity Returns
    Macroeconomic Factors
    Exchange Rates
    Industrial Structure
```


Macroeconomic Factors Affecting International Equity Returns
 The data do not support the notion that equity returns are strongly influenced by macro factors.
 That is correspondent with findings for U.S. equity markets.

Exchange Rates

Exchange rate movements in a given country appear to reinforce the stock market movements within that country.
One should be careful not to confuse correlation with causality.

Industrial Structure

Studies examining the influence of industrial structure on foreign equity returns are inconclusive.

```
COMMON STOCK MARKETS IN THE
UNITED STATES
    Major National Stock OTC Market
    Exchanges
        NYSE or Big Board
        NASDAQ
    NASD
        AMEX or ASE or Curb
    Regional Stock
    Exchanges
        Boston, Chicago,
        Cincinnati, San
        Francisco, Philadelphia
```



```
OTC Market
```

Trading unlisted stocks
Listing requirements
NASDAQ stock market
NASDAQ market tiers
NASDAQ National
Market
Small Capitalization
Market

NASDAQ market makers

Other OTC markets
OTC Bulletin Board
Pink Sheets

```
Pricing Efficiency of the Stock Market
    Forms of Efficiency
        Weak form
        Semistrong form
        Strong form
    Implications for Investing in Common Stock
    Active strategies
    Passive strategies
```

$$
\begin{aligned}
& \text { Part II: } \\
& \text { Raising Capital } \\
& \\
& \\
& \\
& \hline
\end{aligned}
$$

Raising Capital

Understand the venture capital market and its role in financing new businesses
Understand how securities are sold to the public and the role of investment bankers Understand initial public offerings and the costs of going public

Venture Capital

Private financing for relatively new businesses in exchange for stock
Usually entails some hands-on guidance
The ultimate goal is usually to take the company public and the VC will benefit from the capital raised in the IPO

Many VC firms are formed from a group of investors that pool capital and then have partners in the firm decide which companies will receive financing Some large corporations have a VC division

Choosing a Venture Capitalist

Look for financial strength
Choose a VC that has a management style that is compatible with your own
Obtain and check references
What contacts does the VC have.
What is the exit strategy.

```
Selling Securities to the Public
    Management must obtain permission from the
Board of Directors
Firm must file a registration statement with the SEC
SEC examines the registration during a 20-day
waiting period
    A preliminary prospectus, called a red herring, is
    distributed during the waiting period
    If there are problems the company is allowed to
    amend the registration and the waiting period starts
    over
Securities may not be sold during the waiting period
The price is determined on the effective date of the
registration
```

```
Table I
\begin{tabular}{cll}
\multicolumn{1}{c}{ Method } & \multicolumn{1}{c}{ Type } & \multicolumn{1}{c}{ Definition } \\
\hline \begin{tabular}{l} 
Public \\
Traditional \\
negotiated \\
cash offer
\end{tabular} & \begin{tabular}{l} 
Firm \\
commitment \\
cash offer
\end{tabular} & \begin{tabular}{l} 
Company negotiates an agreement with an \\
investment banker to undervite and \\
distribute the new shares. A specified \\
number of shares are bought by \\
underwriters and sold at a higher price. \\
Company has investment bankers sell as \\
many of the new shares as possible at the \\
agraed-upon price. Thera is no guarantea \\
concerning how much cash will be raised.
\end{tabular} \\
& \begin{tabular}{l} 
Best efforts \\
cash offer \\
Privileged \\
subscription
\end{tabular} & \begin{tabular}{l} 
Company offers the new stock directly to its \\
Direct rights \\
offer \\
Standby rights \\
offer
\end{tabular} \\
& \begin{tabular}{l} 
Like the direct rights ofler, Ihis conteins a \\
privileged subscription arrangement with \\
existing shareholders. The net proceeds are \\
guaranteed by the underwriters.
\end{tabular}
\end{tabular}
```

```
Table II
    Nontraditional Shelf cash offer Qualifying companies can authorize all
    cash offer
                shares they expect to sell over a two-year period and sell them when needed.
\(\begin{array}{ll}\text { Competitive } & \text { Company can elect to award the } \\ \text { fimm cash offer } \\ \text { underwriting contract through a public }\end{array}\) auction instead of negotiation.
Private Direct Securities are sold directly to the purchaser, placement who, at least until recently, generally could not resell secuities for at least two years.
```


Underwriters

Services provided by underwriters
Formulate method used to issue securities
Price the securities
Sell the securities
Price stabilization by lead underwriter
Syndicate group of investment bankers that market the securities and share the risk associated with selling the issue
Spread difference between what the syndicate pays the company and what the security sells for in the market

Firm Commitment Underwriting

Issuer sells entire issue to underwriting syndicate The syndicate then resells the issue to the public
The underwriter makes money on the spread between the price paid to the issuer and the price received from investors when the stock is sold The syndicate bears the risk of not being able to sell the entire issue for more than the cost Most common type of underwriting in the United States

Best Efforts Underwriting

Underwriter must make their best effort to sell the securities at an agreed-upon offering price
The company bears the risk of the issue not being sold
The offer may be pulled if there is not enough interest at the offer price and the company does not get the capital and they have still incurred
substantial flotation costs
Not as common as it used to be

Green Shoes and Lockups

Green Shoe provision

Allows syndicate to purchase an additional 15\% of the issue from the issuer
Allows the issue to be oversubscribed
Provides some protection for the lead underwriter as they perform their price stabilization function
Lockup agreements
Restriction on insiders that prevents them from selling their shares of an IPO for a specified time period
The lockup period is commonly 180 days
The stock price tends to drop when the lockup period expires due to market anticipation of additional shares hitting the street

IPO Underpricing

Initial Public Offering IPO
May be difficult to price an IPO because there isnt a current market price available
Additional asymmetric information associated with companies going public
Underwriters want to ensure that their clients earn a good return on IPOs on average
Underpricing causes the issuer to leave money on the table

Work the Web Example

How have recent IPOs done.
Click on the web surfer to go to the Bloomberg site and follow the IPO Center link

How many companies have gone public in the last week.
How have companies that went public three months ago done. What about six months ago.

New Equity Issues and Price

Stock prices tend to decline when new equity is issued
Possible explanations for this phenomenon
Signaling and managerial information
Signaling and debt usage
Issue costs
Since the drop in price can be significant and much of the drop may be attributable to negative signals, it is important for management to understand the signals that are being sent and try to reduce the -effect when possible

Issuance Costs

Spread
Other direct expenses legal fees, filing fees, etc. Indirect expenses opportunity costs, i.e., management time spent working on issue Abnormal returns price drop on existing stock Underpricing below market issue price on IPOs Green Shoe option cost of additional shares that the syndicate can purchase after the issue has gone to market

Rights Offerings: Basic Concepts

Issue of common stock offered to existing shareholders
Allows current shareholders to avoid the dilution that can occur with a new stock issue Rights are given to the shareholders

Specify number of shares that can be purchased
Specify purchase price
Specify time frame
Rights may be traded OTC or on an
exchange

Dilution

Dilution is a loss in value for existing shareholders

Percentage ownership shares sold to the general public without a rights offering
Market value firm accepts negative NPV projects
Book value and EPS occurs when market-tobook value is less than one

Shelf Registration

Permits a corporation to register a large issue with the SEC and sell it in small portions
Reduces the flotation costs of registration
Allows the company more flexibility to raise money quickly
Requirements
Company must be rated investment grade
Cannot have defaulted on debt within last three years
Market value of stock must be greater than \$150
million
No violations of the Securities Act of 1934 in the last three years

Private Placement of Securities

Sale of securities to a limited number of institutional investors.

SEC specified conditions to be met for private placement.
Issuers work with investment bankers.
Rule 144A offering or non-Rule 144A offering

Rule 144 A

SEC rule permitting large institutions to trade securities acquired in a private placement among themselves without having to register these securities with the SEC.

SEC Rule 144A improves liquidity of privately placed securities.
Encourages non-U.S. firms to issue securities in the U.S. private placement market.

End of Chapter

Key Concepts and Skills

Understand dividend types and how they are paid

Understand the issues surrounding dividend policy decisions
Understand the difference between cash and stock dividends

Understand why share repurchases are an alternative to dividends

Chapter Outline

Cash Dividends and Dividend Payment
Does Dividend Policy Matter.
Some Real-World Factors Favoring a Low Payout
Some Real-World Factors Favoring a High Payout
A Resolution of Real-World Factors
Establishing a Dividend Policy
Stock Repurchase: An Alternative to Cash Dividends
Stock Dividends and Stock Splits

Cash Dividends

Regular cash dividend cash payments made directly to stockholders, usually each quarter
Extra cash dividend indication that the extra amount may not be repeated in the future
Special cash dividend similar to extra dividend, but definitely wont be repeated Liquidating dividend some or all of the business has been sold

Dividend Payment

Declaration Date Board declares the dividend and it becomes a liability of the firm

Ex-dividend Date

Occurs two business days before date of record
If you buy stock on or after this date, you will not receive the dividend
Stock price generally drops by about the amount of the dividend
Date of Record Holders of record are determined and they will receive the dividend payment
Date of Payment checks are mailed

Does Dividend Policy Matter.

Dividends matter the value of the stock is based on the present value of expected future dividends

Dividend policy may not matter
Dividend policy is the decision to pay dividends versus retaining funds to reinvest in the firm In theory, if the firm reinvests capital now, it will grow and can pay higher dividends in the future

Illustration of Irrelevance

Consider a firm that can either pay out dividends of $\$ 10,000$ per year for each of the next two years or can pay $\$ 9000$ this year, reinvest the other $\$ 1000$ into the firm and then pay $\$ 11,120$ next year.
Investors require a 12\% return.
Market Value with constant dividend $=\$ 16,900.51$
Market Value with reinvestment $=\$ 16,900.51$
If the company will earn the required return, then it doesnt matter when it pays the dividends

Low Payout Please

Why might a low payout be desirable.
Individuals in upper income tax brackets might prefer lower dividend payouts, with the immediate tax consequences, in favor of higher capital gains
Flotation costs low payouts can decrease the amount of capital that needs to be raised, thereby lowering flotation costs
Dividend restrictions debt contracts might limit the percentage of income that can be paid out as dividends

High Payout Please

Why might a high payout be desirable.
Desire for current income
Individuals in low tax brackets
Groups that are prohibited from spending principal (trusts and endowments)
Uncertainty resolution no guarantee that the higher future dividends will materialize
Taxes
Dividend exclusion for corporations
Taxexempt investors dont have to worry about
differential treatment between dividends and capital gains

Dividends and Signals

Asymmetric information managers have more information about the health of the company than investors
Changes in dividends convey information
Dividend increases
Management believes it can be sustained
Expectation of higher future dividends, increasing present value
Signal of a healthy, growing firm
Dividend decreases
Management believes it can no longer sustain the current level of dividends
Expectation of lower dividends indefinitely; decreasing present value
Signal of a firm that is having financial difficulties

Clientele Effect

Some investors prefer low dividend payouts and will buy stock in those companies that offer low dividend payouts
Some investors prefer high dividend payouts and will buy stock in those companies that offer high dividend payouts

Implications of the Clientele Effect

What do you think will happen if a firm changes its policy from a high payout to a low payout.

What do you think will happen if a firm changes its policy from a low payout to a high payout.
If this is the case, does dividend POLICY matter.

Dividend Policy in Practice

Residual dividend policy
Constant growth dividend policy dividends increased at a constant rate each year
Constant payout ratio pay a constant percent of earnings each year
Compromise dividend policy

Residual Dividend Policy

Determine capital budget
Determine target capital structure
Finance investments with a combination of debt and equity in line with the target capital structure
Remember that retained earnings are equity
If additional equity is needed, issue new shares
If there are excess earnings, then pay the remainder out in dividends

Example Residual Dividend Policy

Given
Need $\$ 5$ million for new investments
Target capital structure: D/E = 2/3
Net Income = \$4 million
Finding dividend
40% financed with debt (2 million)
60% financed with equity (3 million)
NI equity financing $=\$ 1$ million, paid out as dividends

Compromise Dividend Policy

Goals, ranked in order of importance
Avoid cutting back on positive NPV projects to pay a dividend
Avoid dividend cuts
Avoid the need to sell equity
Maintain a target debt/equity ratio
Maintain a target dividend payout ratio
Companies want to accept positive NPV projects, while avoiding negative signals

Stock Repurchase

Company buys back its own shares of stock
Tender offer company states a purchase price and a desired number of shares
Open market buys stock in the open market
Similar to a cash dividend in that it returns cash from the firm to the stockholders
This is another argument for dividend policy irrelevance in the absence of taxes or other imperfections

Real-World Considerations

Stock repurchase allows investors to decide if they want the current cash flow and associated tax consequences
Investors face capital gains taxes instead of ordinary income taxes (lower rate)
In our current tax structure, repurchases may be more desirable due to the options provided stockholders
The IRS recognizes this and will not allow a stock repurchase for the sole purpose of allowing investors to avoid taxes

Information Content of Stock
Repurchases
Stock repurchases sends a positive signal that management believes that the current price is low
Tender offers send a more positive signal than open market repurchases because the company is stating a specific price

The stock price often increases when repurchases are announced

Fulbright Economics Teaching Program

 2005-2006
Example: Repurchase Announcement

America West Airlines announced that its Board of Directors has authorized the purchase of up to 2.5 million shares of its Class B common stock on the open market as circumstances warrant over the next two years
Following the approval of the stock repurchase program by the companys Board of Directors earlier today. W. A. Franke, chairman and chief officer said The stock repurchase program reflects our belief that America West stock may be an attractive investment opportunity for the Company, and it underscores our commitment to enhancing long-term shareholder value.
The shares will be repurchased with cash on hand, but only if and to the extent the Company holds unrestricted cash in excess of $\$ 200$ million to ensure that an adequate level of cash and cash equivalents is maintained.

Stock Dividends

Pay additional shares of stock instead of cash

Increases the number of outstanding shares
Small stock dividend
Less than 20 to 25\%
If you own 100 shares and the company declared
a 10% stock dividend, you would receive an additional 10 shares
Large stock dividend more than 20 to 25\%

Stock Splits

Stock splits essentially the same as a stock dividend except expressed as a ratio
For example, a 2 for 1 stock split is the same as a 100% stock dividend

Stock price is reduced when the stock splits
Common explanation for split is to return price to a more desirable trading range

Quick Quiz

What are the different types of dividends and how is a dividend paid.
What is the clientele effect and how does it affect dividend policy relevance.
What is the information content of dividend changes.
What is the difference between a residual dividend policy and a compromise dividend policy.
What are stock dividends and how do they differ from cash dividends.
How are share repurchases an alternative to dividends and why might investors prefer them.

[^0]: ${ }^{1}$ Reported by the National Securities Commission on the review of three years operation of Vietnam Securities Exchange.

[^1]: ${ }^{2}$ Phuong Thao, The tricks of listed companies to manipulate financial statements, Securities Investment, 185, 23/6/2003, p. 6.

 Nguyen Minh Kieu/Huynh The Du 3 Translator: Kim Chi
 Editor: Andy Richardson

[^2]: ${ }^{3}$ http://www.tvcstock.com/TVH/BanTin/BTN23042003.mht

[^3]: Source: Vietcombank Securities Company VCBS

[^4]: ${ }^{11}$ This is just a scenario for discussion in class at FETP and does not imply the analysis of any real case.

[^5]: ${ }^{2}$ In fact, mortgaged property is an essential condition when the banks decide to grant a loan.

[^6]: ${ }^{3}$ According to the regulation on loan guarantees, the amount of contributed equity, and/or guarantee property, and/or property sponsored by s 3rd party must be at least 15% of the total amount of investment in the project in order to guarantee the loan with property formed from the loan capital.

[^7]: Assume Ms. A plans to have VND 34 million at the end of 5 years in order to travel abroad. How much does she have to deposit in a saving account at the end of each year if the bank annually compounds interest at a rate of 5%.

 Tabular solution (Table 3)
 $\mathrm{FVA}_{n}=\mathrm{R}\left(\right.$ FVIFA $\left._{\mathrm{i}, \mathrm{n}}\right)=\mathrm{R}\left(\right.$ FVIFA $\left._{5,5}\right)=\mathrm{R}(5.526)=34=>\mathrm{R}=$ 34/5.526

 $$
 =>R
 $$

 = VND6.15 million
 Financial calculation solution
 $\mathrm{n}=5, \mathrm{FV}=34, \mathrm{i}=5 \%=>\mathrm{PMT}=$ VND6.15 million
 Excel solution
 Select f_{x}, financial, PMT, click OK , then enter nper $=5$, rate $=$ $0.05, \mathrm{FV}=34$, then click OK

