Fulbright Economics Teaching Program
 Academic year 2005-2006
 Fall Term

Sept. 06, 2005 Dec. 24, 2005

MICROECONOMICS

Teaching Team
Instructor: Dang Van Thanh, Thai Van Can
Guest lecturer: Vu Thanh Tu Anh
Tutor: Nguyen Ho Phuong Chi
Interpreter: Nguyen Quy Tam

Class Times
Monday: 8:30 11:00
Wednesday \& Friday: 8:30 10:00

Office Hours

Dang Van Thanh: Thursday, from 18:00 to 21:00

```
Thai Van Can:
Nguyen Ho Phuong Chi:
```


Course Objectives

The course aims at providing students with fundamental concepts and tools in microeconomic analysis that can be applied for analysis and assessment of public policies or other economic issues. Upon completion of the course, students will have learnt: (1) the central concept of price mechanism resulting from supply and demand in the products and factor markets; (2) the principle of making optimal decision for efficient resource allocation as a consumer or producer of products, or as a supplier of factors of production; (3) the shortcomings of the market economy that justify government intervention; and (4) the criteria of welfare economics to help assess the optimality of economic policies in areas, such as public finance, trade, or rural development.

Course Description

This course examines the efficient allocation of scarce resources, resulting from decentralized decisions in a market economy. It analyzes how households decide on the quantity of labor to supply and products (goods and services) to consume, and how firms
decide on the nature, the quantity of products to produce, and their production process under perfect and imperfect competition. The course shows the optimal efficiency that can be achieved under competitive general equilibrium and points out examples of market failures that justify government corrective measures.

The course consists of eight parts. Part one introduces the concepts of microeconomics and the basic model of supply and demand and the role of price mechanism; it also discusses the concepts of consumer and producer surpluses which are widely used, as criteria in welfare economics, to assess alternative policies. Part two reviews the theory of consumer behavior and its application, and derives demand curves for different markets. Part three discusses firm behavior, production theory, cost theory, and the profit maximization objective, and derives the supply curves for competitive firms and markets. Part four reviews the results of competitive markets in terms of efficiency and equity. Part five discusses the imperfect competition under monopoly, oligopoly, and monopolistic competition. Part six analyses the market for factor inputs; it examines the determination of input prices by deriving the supply and demand curves for inputs. Part seven explores the general equilibrium from all markets and its properties. The final part looks at market failures, such as asymmetric information, externalities, and insufficient investment in public goods, and government approaches to correcting these failures.
The course also includes reviews and several problem sets.

Course Outline

I. Introduction to Microeconomics and supply and demand curves

1. Definition of microeconomics
2. Demand, Supply and Market Equilibrium
3. Elasticities of Supply and Demand
II. Demand and consumer behavior
4. The Theory of Consumer Behavior
5. Individual Demand \& Market Demand
6. Applications of Consumer Behavior Theory
7. Choice under Uncertainty, Game theory

III . Supply and decision of the firm

1. Theory of Production
2. Costs of Production
3. Profit Maximization and Competitive Supply
4. Long-run Equilibrium for Firms \& Competitive Industry.

Industry Long-run Supply Curve
IV. Analysis of Competitive Markets

1. Supply behavior of competitive firms and industries

V. Imperfect competition

1. Market Power: Monopoly and monopsony
2. Monopoly Inefficiency \& Control
3. Pricing with Market Power
4. Internal Transfer Pricing of Firm
5. Monopolistic Competition and Oligopoly
VI. Factor Markets
6. Labor market
7. Capital market and investment

VII. General Equilibrium \& Economic efficiency

1. General equilibrium in all markets
2. Properties of a competitive general equilibrium
VIII. Market failures and the role of the government
3. Externalities and Public Goods

2. Asymmetric Information

Student obligations

Economics is an analytical subject. Students cannot master it by simple memorization, nor can they survive by last minute cramming. Students must understand concepts and develop the ability to apply them to resolve various problems. This ability takes practice and requires reading of the textbook and notes and study the materials as well as solve the problem sets. The course material is cumulative (new concepts build on old ones), so it is absolutely essential to keep up-to-date on a daily basis. To this end, students are expected to attend class regularly, read the required readings carefully prior to class meeting, actively participate in class discussions, and complete written assignment, including problem sets as scheduled.

Text Book and Required Readings

The required readings are in the course outline. It is very important that students complete the assigned readings prior to class discussion. Most readings will come from the main textbook and handouts.

The main textbook is Microeconomics, Fifth Edition, by Robert S. Pindyck and Daniel L. Rubinfeld, Prentice-Hall Publishers. This textbook has been selected because it provides a very clear exposition of modern microeconomic concepts and has the key advantage that its third edition is available in Vietnamese.

The textbook has a website at: http://myphlip.pearsonemg.com/cw/mpbookhome.cfm.vbookid=152

Optional Texts

N.Gregory Mankiw, Nguyn 1 Kinh t. h.c (volume 1), Statistics Publication, 2003.

Walter Nicholson, Microeconomic Theory, fifth edition, in English, is relatively more advanced.

Jack Hirshliefer and Amihai Glazer, Ly Thuyet Gia Ca Va Su Van Dung is in Vietnamese and appears to be rather basic.

Robert H. Frank, Microeconomics and Behavior, McGraw-Hill, 1997.
Students should also read newspapers, magazines, and articles on economic issues and try to apply what they have learned in class to current policy problems.

Problem sets

There are 10 problem sets in this course. They are
 readings. Students must submit their solutions before 8:20 AM on the due date. It is illegal (i.e. cheating) for students to copy the answers to the problem sets from other students, and cheating will not be tolerated in any circumstances (see Regulations and Guidelines in the Students Handbook).

Grading:

The final grade will be based on the following weights:
Problem sets: 30\%
Mid-term Exams: 30\%
Final exam: 40%

PROGRAM AND SCHEDULE

Week	$\begin{aligned} & \hline \text { Monday } \\ & 8: 30-11: 00 \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { Wednesday } \\ \text { 8:30-10:00 } \\ \hline \end{gathered}$	$\begin{gathered} \text { Friday } \\ \text { 8:30-10:00 } \end{gathered}$
1	5/9 General Introduction to Microeconomics Reading: Textbook: Pindyck \& Rubinfeld, Ch. 1 Handout 1	Demand, Supply and Market Equilibrium Reading: Textbook: Pindyck \& Rubinfeld, Ch. 2 Handout 2 PS \#1 assigned	9/9Elasticities of Supply and Demand
2		Individual Demand \& Market Demand Reading: Textbook: Pindyck \& Rubinfeld, Ch. 4 Handout 4 $P S$	$16 / 9$ Review

Week	$\begin{gathered} \text { Monday } \\ \text { 8:30-11:00 } \end{gathered}$	Wednesday 8:30-10:00	$\begin{gathered} \text { Friday } \\ \text { 8:30-10:00 } \end{gathered}$
5	\quad Theory of ProductionReading: Rubinfeld, Ch. 6 Handout 7	Costs of Production Reading: Textbook: Pindyck \& Rubinfeld, Ch. 7 Handout 8 PS \#4 due, PS \#5 assigned	7/10
6	$\quad 10 / 10$$\quad$Profit Maximization and \quad Competitive Supply Reading: Rubinfeld, Ch. 8 Handout 9	$12 / 10$ Long-run Equilibrium for Firms \& Competitive Industry. Industry Long-run Supply Curve Reading: Textbook: Pindyck \& Rubinfeld, Ch. 8 Handout 9	14/10

7	\quadAnalysis of Competitive \quad MarketsReading: Rubinfeld, Ch. 9 Handout 10	Analysis of Competitive Markets (cont.) Reading: Textbook: Pindyck \& Rubinfeld, Ch. 9 Handout 10 PS \#5 due	21/10
	24/10	Thursday 27/10	28/10
8	Review for Mid-term Exam	Mid-term Exam 08:30 11:00	Grading of Mid-term Exam

Week	$\begin{gathered} \text { Monday } \\ 8: 30-11: 00 \end{gathered}$	Wednesday 8:30-10:00	$\begin{gathered} \text { Friday } \\ \text { 8:30-10:00 } \end{gathered}$
9	$31 / 10$ Market Power: Monopoly Reading: Rubinfeld, Ch. 10 Handout 11	Monopoly Inefficiency \& Control Reading: Rubinfeld, Ch. 10 Handout 11 PS \#6 assigned	Review
10	$7 / 11$ Pricing with Market Power Reading: Rubinfeld, Ch. 11 Handout 12	Internal Transfer Pricing of Firm. Firm with Subsidiaries Reading: Rubinfeld, Ch. 11 Handout 12 PS \#6 due, PS \#7 assigned	$11 / 11$ Review
11	$\operatorname{Monopolistic~Competition~}_{\substack{\text { Mnd } \\ \text { M/11 }}}$	Game Theory 16/11	18/11 ${ }_{\text {Review }}$

	Oligopoly Reading: Rubinfeld, Ch. 12 Handout 13	Reading: Textbook: Pindyck \& Rubinfeld, Ch. 13 Handout 14 PS \#7 due, PS \#8 assigned	
12	Game Theory Reading: Rubinfeld, Ch. 13 Handout 14	\quad Game Theory 23/11 $\frac{\text { Reading: }}{\text { Textbook: Pindyck \& }}$ Rubinfeld, Ch. 13 Handout 14	$25 / 11$ Review

Week	$\begin{gathered} \text { Monday } \\ 8: 30-11: 00 \end{gathered}$	Wednesday 8:30-10:00	$\begin{gathered} \text { Friday } \\ \text { 8:30-10:00 } \end{gathered}$
13	Market for Factor Inputs (Labor Market) Reading: Textbook: Pindyck \& Rubinfeld, Ch. 14 Handout 15	Market for Factor Inputs (Capital and Investment) Reading: Textbook: Pindyck \& Rubinfeld, Ch. 15 Handout 16 PS \#8 due, PS \#9 assigned	2/12 Review
14	\quad \quad Economic efficiency Reading: Rubinfeld, Ch. 16 Handout 17	\quad Asymmetric Information $\frac{\text { Reading: }}{\text { Textbook: Pindyck \& }}$ Rubinfeld, Ch. 17 Handout 18 $P S$	Review ${ }^{9 / 12}$

15	Externalities and public goods Reading: Rubinfeld, Ch. 18 Handout 19	Edtuernalities and public goods PS R \#dafing: Rubinfeld, Ch. 18 Handout 19	16/12 Review PS \#10 due
16	19212	Thursday 23/12	23/12
	Review for Final Exam	$\begin{aligned} & \text { Final Exam } \\ & \text { 08:30 11:00 } \end{aligned}$	Grading of Final Exam

Microeconomics
for Public Policy
Fulbright Economics Teaching Program
Fall Semester
$2005-2006$

What is Economics.

Starting point of economics: Universal law of scarcity
Law of scarcity: Conflict between unlimited human wants and their limited resources
Consequence of scarcity: Man must choose between wants and resource allocation

Two aspects of the choice: Objectives and constraints

What is Economics.

Conventional concept: Economics is a social science that studies the allocation of scare resources to competing uses in order to maximize the benefit of individuals, organizations and economy.
A different perspective: Economics as a science studying markets (James Buchanan).

Definition of Market

Market: Collection of buyers and sellers that, through their actual or potential interactions, determine the price of a product or set of products.

Extent of a market:

- Geography
- Product range

Basic Questions of Economics

What to produce.
How.
How much.
For whom.

Solutions of Different Economic Systems

Centrally command economy

Decentralized market economy
Mixed economy
Socialist market economy

8/30/2005
Vu Thnh T. Anh

Microeconomics vs. Macroeconomics

Distinguishing Criteria: Unit of analysis
Macroeconomics: deals with the entire economy, including output, growth, inflation, unemployment v.v.
Microeconomics:

- Deals with individual economic units (consumers, workers, investors), private and public firms, governments (central and local)
- Studies how these economic units interact to form larger units (market, industry).
Relationship b/w microeconomics and macroeconomics

Positive vs. Normative Economics

Positive Economics: What is.

- Uses economics theory, supported by mathematical and econometric models, to describe, explain economic phenomena and predict their outcomes that have been and will be happening in the real life as results of choices made by economic agents.

Normative Economics: What should be.

- Heavily directed by moral, social and cultural values
- Characterized by subjective judgments
- Source of disagreements among economists

Theories and Models

Microeconomic Analysis
Theories are used to explain observed phenomena in terms of a set of basic rules and assumptions. Theories are built upon assumptions, economic principles and logical operations.
For example
The Theory of the Firm
The Theory of Consumer Behavior

Economics Models and Theories

Micro analysis

Verification of a theory

The validity of a theory is determined by the quality of its predictions and explanations, given assumptions.
To dismiss a theory, it is not enough to reject initial assumptions, but its predictions must be proved wrong or useless against observations.

Economics Models and Theories

Micro analysis
Model:
Mathematical representation of economics theory, and a popular tool of economists in explaining and forecasting what have been and will be happening.

Theories and Models

Microeconomic Analysis
Evolving the Theory
Testing and refining theories is central to the development of the science of economics.

Economics and Public Policy

What is public policy. A course of government action (or inaction) taken in response to social problems [Kraft and Furlong, 2004:4]
Social problems are conditions the public widely perceives to be unacceptable and therefore requiring intervention (or renouncement of intervention).
A basic problem of public policy: How to optimize decisions, i.e. to achieve stated objectives given resource constraints (information, human resources, financial resources etc.)

A Public Policy Case: Killer Airbags

By relating the story of the so-called killer airbags in the US to the regulation on helmet wearing in Vietnam, what can be learned from the US experience. How do you evaluate Vietnams policy on transportation safety.

Under what circumstances is it appropriate to trade off human lives against money when making decision about safety.

Most people and without any government regulation requiring it have locks on their doors to protect them from intruders. If airbags/ helmets are so good at protecting people for injuries and death, why were government regulations required to let them installed on automobiles/motorbikes.

Economics and Public Policy Policy Analysis Process

1. Define and analyze the problem
2. Determine objectives of the policy
3. Construct policy alternatives
4. Develop evaluative criteria
5. Evaluate policy alternatives
6. Conclude and recommend

Define and analyze problem

Question

What is the problem faced.
Where does it exist.
Who or what is affected.
How did the effect develop.
What are the major causes.
How might the caused be affected by policy action.

Illustration

What is the current traffic situation.
How not wearing helmet relates to the probability and seriousness of accidents.

Beside the reason of not wearing helmet, are there any other important causes.
How will new policy change the probability and seriousness of accident.

Determine Policy Objectives

Question

What are economic, political, cultural and social goals of the policy.
How are these goals specified.

Illustration
How much should
motorbike-related accident be reduced.
Specific criteria: number of incidence, death toll, injury victims, etc.

Construct Policy Options

Question

What policy options might be considered for dealing with the problem.

Develop Evaluative Criteria

Question

What criteria are most suitable to evaluate current problem and policy options.
Whats the cost of action.
Whats the likely
effectiveness.
Economic, political, cultural and societal feasibility.
Equality.

Illustration

What are the most important criteria for regulating the wearing of helmet. Speed limit. Reorganizing traffic and resettlement.
What are the most effective measures in curbing traffic accidence.
Reaction toward speed limit and shooting.

Evaluate Policy Options

Question

Which option is better.
What kind of analysis should be done to distinguish better policy.
Is there sufficient data for the analysis.

What extra data is needed.

Conclusions and Recommendations

Question

Given current conditions, what is the most desirable policy.
What other factors should be considered.

Illustration
Should people be allowed to reside along the national highways.
Can speed shooting solve the fundamental problems.
Should punishment be doubled.

The Road Ahead

Two sectors of the economy

- Production
- Consumption

Two sector markets

- Product market
- Factor market

Invisible hand (or the role of the markets)
Visible hand (or the role of the government)

CHAPTER 2

BASIS OF DEMAND AND SUPPLY

KEY ISSUES	
Supply	
Demand	
Market Equilibrium	
Change in Market Equilibrium	
Supply Demand Elasticities	
Producer and consumer surplus	
${ }^{233092005}$	

Supply

Supply curve

shows the amount of a good that producers are willing to sell at each price per unit of time (ceteris paribus)
Supplied quantity - price relation is generally expressed as:

$$
Q_{s}=Q s(\mathrm{P})
$$

Demand

Demand curve

shows the amount of a good or service that consumers are willing to purchase at each price per unit of time holding all other factors constant

Demanded quantity - price relation is generally expressed as:

$$
Q_{D}=Q_{D}(P)
$$

Market mechanism

Summary of market mechanism

1) Supply and demand interact and determine market equilibrium price.
2) When it is not in equilibrium, market will adjust the shortage or excess of goods until it reaches equilibrium.
3) Market should be perfectly competitive for this mechanism work.

Change in Market Equilibrium

Market equilibrium changes over time due to:
Demand changes (demand curve shifts)
Supply changes (supply curve shifts)
Both supply and demand change

Change in demand (demand curve shifts)

Change in demand is different from change in quantity demanded

Demand is determined by factors other than price such as income, prices of other related goods, preferences .
Change in demand shows by the shift of demand curve.
Change in quantity demanded shows by the movement along the demand curve.

Change in supply (supply curve shifts)

State of technology
Price of inputs
Expected price
Tax and subsidy policy
Natural environment

a ng Van Thanh
17

Change in Market Equilibrium

Original equilibrium is $\mathrm{P}_{0}, \mathrm{Q}_{0}$

As supply increases (S shifts to S)

At P_{0} excess is $\mathrm{Q}^{s} \underline{Q}_{0}$
New equilibrium at
P_{r}, Q_{I}

Change in Market Equilibrium

Equilibrium price is determined by relationship between supply and demand.

Supply and demand are determined by specific values of their key factors.

Any change in one or many of these factors lead(s) to change in equilibrium price and quantity.

Change in Market Equilibrium

Comment
To forecast future price of a good or service, it is needed to look at future change in supply and demand.

Supply and Demand Elasticities

Elasticity is defined as a measure of responsiveness, it looks at how a change in one variable affects a change in another.
Elasticity is the percentage change in one variable with respect to a percentage change in another.

Demand Elasticity

Price elasticity of demand
Shows the responsiveness of quantity demanded to a change in price.
is the percentage change in quantity demanded with respect to a percentage change in the price of the good.

Demand Elasticity

Comment

1) P and Q are negatively related, thus

$$
E_{P}<0 .
$$

2) No calculation unit for E P

Price Elasticity of Demand

Relationship between total revenue and sale price
$\mathrm{E}_{\mathrm{P}}<-1$: TR negatively related to P (positively related to Q)
$\mathrm{E}_{\mathrm{P}}>-1$: TR positively related to P (negatively related to Q)

At the selling price and quantity where $E \quad{ }_{P}=-1$, what is TR.

Income Elasticity of Demand

Income elasticity of demand is \% change in quantity demanded as income changes 1%.

$$
\begin{gathered}
\mathrm{E}_{\mathrm{I}}=(\% \cdot \mathrm{Q}) /(\% . I) \\
\mathrm{E}_{\mathrm{I}}=\frac{. \mathrm{Q} / \mathrm{Q}}{. I / \mathrm{I}}=\frac{. \mathrm{Q}}{. I} * \frac{\mathrm{I}}{\mathrm{Q}}
\end{gathered}
$$

Income Elasticity of Demand
$\mathrm{E}_{\mathrm{I}}<0$: inferior goods
$\mathrm{E}_{\mathrm{I}}>0$: normal goods
$\mathrm{E}_{\mathrm{I}}<1$: essential goods
$\mathrm{E}_{\mathrm{I}}>1$: luxury goods
${ }_{23}^{233092005}$

Cross Elasticity of Demand

$\mathrm{E}_{\mathrm{XY}}=\mathrm{o}: \mathrm{X}$ and Y are not related
$\mathrm{E}_{\mathrm{XY}}<\mathrm{o}: \mathrm{X}$ and Y are complements
$\mathrm{E}_{\mathrm{XY}}>0: \mathrm{X}$ and Y are substitutes
What is the relationship between two firms.

Elasticity of supply

$\mathrm{E}_{\mathrm{S}}>1$: supply is relatively elastic
$\mathrm{E}_{\mathrm{S}}<1$: supply is relatively less elastic
$E_{S}=1$: supply is unitary elastic
$E_{S}=0$: supply is inelastic
$E_{S}=8$: supply is perfectly elastic

	Short term Elasticity vs. long term Elasticity
For most of goods and services:	
Short term elasticity is less than long term	
elasticity. (e.g., gasoline)	

Gasoline: Short term and long term demand curves

Short term Elasticity vs. long term Elasticity

Supply
For most of goods and services:
Price elasticity of supply in long term is greater than in short term.

For others (durables, recycles):
Price elasticity of supply in long term is less than in short term.

Short term Elasticity vs. long term Elasticity Supply of copper		
Price elasticity:	Short term	term
Major supplier	0.20	1.60
Minor supply	0.43	0.31
Total supply	0.25	1.50
23092005	a ng Van Thanh	

	Short term Elasticity vs. long term Elasticity
Climate in Brazil and coffee price in New York	
Elasticity explains why coffee price fluctuates greatly. Due to differences between long term and short term elasticities of supply.	
${ }^{230902005}$	

Producer and consumer surplus

Consumer surplus is the sum of differences between the price that consumers are willing to pay and the price that they actually paid.

Producer surplus is the sum of differences between the price that producers sold and the price that they are willing to sell.

Chapter 3

Consumer Behavior

Consumer behavior

Three steps to study consumer behavior

Step 1) Study consumer preferences (indifference curve).

In order to explain how and why consumer prefers this bundle of goods to other bundles.

Consumer behavior

Three steps to study consumer behavior

Step 2) look at consumers ability (budget line).

Incomes of consumers are limited.

Consumer behavior

Three steps to study consumer behavior
Step 3) Finally, combine consumer preferences and Budget constraints to determine Consumer choice.

What combination of goods consumer will buy in order to maximize her satisfaction.

Consumer preferences

Bundles

A market bundle of goods is a combination with specific quantities of one or more goods.

A bundle can be preferred to other bundle because of its different combination of goods and quantity.

Consumer preferences

Three basic assumptions on consumer preferences

1) Preference is complete.
2) Preference is transitive
3) Consumer always prefers more to less

Dang Van Thanh

Consumer preferences

Indifference curve

Indifference curve is representing all combinations of goods and services (bundles) that give a consumer with the same level of satisfaction (utility).

Consumer preferences

Indifference map (collection of indifference curves)
Indifference map: set of indifference curves showing the market baskets among which a consumer is indifferent.

23/09/2005
a ng Va n Thanh

consumer preferences

Characteristics of indifference curve
Indifference curve is downward sloping from left to right.

Indifference curves can never cross each other.

If indifference curves are upward sloping or touch each other, the assumption of more is better would be violated
a ng Va n Thanh

consumer preferences

Marginal rate of substitution
Marginal rate of substitution (MRS) is the amount of a good a consumer is willing to give up in order to obtain one more unit of another good.

MRS is the slope of indifference curve.

Consumer preferences

Characteristics of indifference curve
Indifference curves are convex from the origin

If it is concave from the origin, the law of diminishing MRS will be violate

Consumer preferences

Perfect Substitution and Perfect
Complement
Two goods are said perfect substitutes when the marginal rate of substitution of one for another is a constant. MRS : const Two goods are said perfect complements when the indifference curves are shaped as right angles. $\mathrm{MRS}=0$

Consumer preferences	
Bads Good for which less is preferred rather than more E.g. Air pollution Poison	
$23 / 092005$	

Consumer preferences

What do you think.

How should we look at the bads when analyzing consumer preferences.

Consumer preferences

Utility

Utility: represents the satisfaction that a consumer gets from a given market bundle.

If the purchase of 3 microeconomics textbooks makes you happier than buying one shirt, it can be said that the books give you higher utility.
Consumer preferences

Consumer preferences

Ordinal versus Cardinal Utility

Ordinal utility: places market bundles in the order of most to least preferred. However, it does not indicate by how much one is preferred to another.
Cardinal utility function: describing by how much one market bundle is preferred to another.

Consumer preferences

Ordinal vs. Cardinal

Measuring unit of utility is not important.
Thus, ordinal utility functions are enough to understand how individual consumer decisions are made .

Budget constraints

Preferences can not explain all consumer behaviors.

Budget constraints: Constraints that consumers face as a result of limited incomes.

Budget constraints

Budget line

Budget line: all combinations of goods for which the total amount of money spent is equal to income.

\| Budget constraints	
Budget line	
Let F be the amount of food purchased and C the amount of clothing.	
Price of food $=\mathrm{P}_{f}$ and clothings $=\mathrm{P}_{c}$	
Thus, $\mathrm{P}_{f} F$ is the amount of money spent on food and $\mathrm{P}_{c} C$ the amount of money spent on clothing.	
23109/2005	2005 a $\mathrm{ng} \mathrm{Va} \mathrm{n} \mathrm{Thanh}^{\text {a }}$

- Budget constraints

Budget line can be expressed as:

$$
P_{F} F+P_{C} C=I
$$

Or:

$$
\mathbf{C}=\mathbf{I} / \mathbf{P}_{\mathrm{C}}\left(\mathbf{P}_{\mathrm{F}} / \mathbf{P}_{\mathrm{C}}\right) \mathbf{F}
$$

Budget constraints
Budget line
The slope of the budget line is the
negative of the ratio of the prices of the
two goods.
The slope of the budget line tells us
relative prices of the two goods.
23092005

Budget constraints

Budget constraints

The effects of changes in income and prices

Price changes
An increase (fall) in price of one good causes the budget line to rotate inward (outward), pivoting from one intercept.

Consumer choice

Bundle maximizing satisfaction of consumer (optimal bundle) must satisfy two conditions:

1) It must be located on the budget line.

$$
\left(\mathrm{P}_{\mathrm{F}} \mathrm{~F}+\mathrm{P}_{\mathrm{C}} \mathrm{C}=\mathrm{I}\right)
$$

2) It must lie on the highest indifference curve.

Consumer choice

Maximizing market bundle:
The point of tangency between indifference curve and budget line.

It is where the slope of the indifference curve is exactly equal the slope of the budget line

Consumer choice

Optimal bundle:

Slope of the indifference curve $=$ Slope of the budget line
$. \mathrm{C} / \mathrm{F}=-\mathrm{P} \quad{ }_{\mathrm{F}} / \mathrm{P}_{\mathrm{C}}$

As $\quad M R S=-\frac{. C}{. F}$
Thus, we can say that consumer reach maximum utility at:

$$
M R S=\frac{P_{F}}{P_{C}}
$$

Consumer choice			
Consider two group of customers, each member wishes to spend $\$ 10,000$ on the styling and performance of a car.			
Each group has different preferences for styling and performance.			
By finding the point of tangency between a typical individuals preference curve and the budget constraint, an automobile company can design a production and marketing plan.			
$23 / 09 / 2005$			

Revealed preference -

Marginal utility and Consumer choice
Marginal utility additional satisfaction obtained from consuming one additional unit of a good.

Marginal utility and Consumer choice			
E.g.:	X	U_{X}	MU_{X}
Comat	1	9	9
Comment:	2	16	7
Marginal utility is	3	21	5
subject to the law of	4	24	3
diminishing	5	25	1
235927005			

Marginal utility and Consumer choice	
Formula:	$0=M U_{F}(. F)+M U_{C}(. C)$
Rearrange:	- (. $C / . F)=M U_{F} / M U_{C}$
as:	$-(. C / . F)=M R S$
Therefore:	$M R S=M U_{F} / M U_{C}$
230922005	

Marginal utility and Consumer choice		
Consumer reaches maximum utility at:		
MRS $=P_{F} / P_{C}$		
since: $M R S=M U{ }_{F} / M U{ }_{C}$		
The optimal condition can be expressed as:		
	$M U_{F} / M U_{C}=P_{F} / P_{C}$	
Or:	$M U_{F} / P_{F}=M U{ }_{C} / P_{C}$	(3)

Marginal utility and Consumer choice
Utility is maximized when the consumer has equalized the marginal utility per dollar of expenditure across all goods. It is called equal marginal principle.

End of Chapter 3

Consumer behavior

Chapter 4

Individual and Market Demand

	Topics
Individual Demand	
Income and Substitution Effects	
Market Demand	
Network Externalities	
2492005	

Individual Demand

Individual Demand curve: Curve relating the quantity of a good that a single consumer will buy to its price (ceteris paribus)

Are they negatively related as expected.

Effect of price change

Effect of price change

Two important properties of demand curve

1) The level of utility that can be attained changes as we move along the curve.
2) At every point on the demand curve, the consumer is maximizing utility by satisfying the condition that the marginal rate of substitution MRS of food for clothing equals the ratio of the prices of food and clothing.

Effect of income changes

Individual Demand

Income changes
Increase in income shifts budget curve to the right, consumption goes up along the income consumption curve.
At the same time, income increase will shift demand curve to the right.

Individual Demand

Normal good - Inferior good

When the income-consumption curve has a negative slope:

The quantity demanded falls as income increases.
Income elasticity of demand is negative The goods are described as inferior.

Individual Demand

Engel Curve
Engel curve: Relating the quantity of a good consumed to income.

Good is normal, Engel curve is upward sloping.
Good is inferior, Engel curve is downward sloping.

(Sngel Curve

Individual Demand

Substitutes and Complements

1) Two goods are substitutes if an increase (fall) in the price of one leads to an increase (fall) in the quantity demanded of the other.
2) Two goods are complements if an increase (fall) in the price of one good leads to a decrease (increase) in the quantity demanded of the other.

Individual Demand

Substitutes and Complements

When the Price consumption Curve is downward sloping, two goods are substitutes. When the Price consumption Curve is upward sloping, two goods are complements.

Two goods can be both complements and substitutes!

Income and Substitution Effects

A fall in the price of a good has two effects: Substitution \& income

Substitution effect

Consumers will tend to buy more of the good that has becomes cheaper and less of those goods that are now relatively more expensive.

Income effect

Because one of the goods is now cheaper, consumers enjoy an increase in real purchasing power.

Income and Substitution Effects

Substitution effect
Substitution effect: Change in consumption of a good associated with a change in its price, with the level of utility held constant.
When the price of one good declines, the substitution effect always leads to an increase in the quantity demanded of the good.

Income and Substitution Effects

Income effect

Income effect: Change in consumption of a good resulting from an increase in purchasing power, with relative price held constant.
When real income increases, quantity demanded can increase or decrease.
Even with inferior goods, the income effect is rarely large enough to outweigh the substitution effect.

Income and Substitution Effects

A special case the Giffen Good
Theoretically, the income effect may be large enough to cause the demand curve for a good to slope upward.

This case is rarely of practical interest.

| Effect of a Gasoline Tax with
 a rebate |
| :--- | :--- |
| Suppose: |
| Income $=\$ 9,000 /$ year |
| Price of gasoline $=\$ 1 /$ gallon |
| $t=\$ 0.5 /$ gallon |

Market demand

From Individual to Market Demand

Market demand curve
Curve relating the quantity of a good that all consumers in a market will buy to its price.

The sum of the individual demand curves

Summing to obtain a market demand curve

Market demand

Two important points

1) The market demand curve will shift to the right as more consumers enter the market.
2) Factors that influence the demands of many consumers will also affect market demand.

Network externalities

So far, we have assumed that peoples demand for a good are independent of one another.

In fact, a persons demand may be affected by the number of other people who have purchase the good.

If this is the case, there exists a network externality.

Network externalities

Positive network externality exists if the quantity of a good demanded by a typical consumer increases in response to the growth in purchases of other consumers.

Negative network externality is the reverse case.

Network externalities

The Bandwagon effect
Wishes to possess a good in part because other do.
Exploiting this effect is a major objective in marketing campaigns (advertising toys, clothing)

Network externalities

The Snob Effect

Wishes to own an exclusive or unique good
The quantity demanded of a snob good is higher the fewer the people who own it.

End of Chapter 4

Individual and Market demands

Discussion subjects

Measure consumer loss (benefit) when the price increases (decreases)

Types of subsidy
Labor-rest model and labor curve
Intertemporal consumption model
a ng Va n Thanh

Measuring the change in consume welfare when the price changes		
Compensating variation (CV).		
Equivalent variation (EV).		
Change in consumer surplus		
	3	Efitiot

Translator: Kim Chau
Editor: Andy Richardson

Translator: Kim Chau
Editor: Andy Richardson

Different kinds of subsidy

Price subsidy (partial subsidy) and cash subsidy.

Direct consumption subsidy and cash subsidy.

Translator: Kim Chau
Editor: Andy Richardson

Translator: Kim Chau
Editor: Andy Richardson
Direct consumption subsidy and cash

a ng Van Thanh

Translator: Kim Chau

Editor: Andy Richardson

Translator: Kim Chau

Editor: Andy Richardson

Translator: Kim Chau
Editor: Andy Richardson
Model of intertemporal consumption

Translator: Kim Chau

Editor: Andy Richardson

CHOICE UNDER UNCERTAINTY

Example 1 (ELLSBERG)

300 balloons: 100 white, 200 either red or blue but we dont know the exact quantity of each

Game rule: choose 1 of the 2 games below:
(1) Win 100,000 dong if a white balloon is taken out
(2) Win 100,000 dong if a red balloon is taken out

Change the game rule: choose 1 of the 2 games
below :
(1) Win 100,000 dong if the balloon taken out is not white
(2) Win 100,000 dong if the balloon taken out is not red

Comments:

People normally are not risk-loving
Peoples risk preferences are different
In life, we often have to make choice under uncertainty
(risk)
Looking again at the basic problem:
The new problem is:
(i) Evaluate the level of attractiveness and the risk of each scenario.
(ii) Evaluate individual risk preferences
(iii) Study decisions made in situations of risk

Terminology:

Risk
Uncertainty
In this chapter, since we do not need to differentiate between these terms we can regard them as equivalent

Subjective and objective probability

Evaluate the level of attractiveness and risk of each scenario.

Example: Flipping a coin
Bet 10,000 dong on whether a coin will land heads or tails.

If correct, receive 20,000 dong; if incorrect, lose the money.

If correct, receive 5,000 dong; if incorrect, lose the money.

If correct, receive 10,000 dong; if incorrect, lose the money.

Evaluate the level of attractiveness : expected value

Calculating formula of expected value:

$$
\bar{X}_{p} X_{1 p} \geq X_{2} p_{3} X_{3}+\quad++. p_{\text {n }} X
$$

Example 2: Evaluate the level of risk

Flipping a coin (continued)
Bet 100,000 dong on whether a coin will land heads or tails.

If correct, receive 100,000 dong; if incorrect, lose the money.

Example 2 (continued)

Comments:

In life there are many similar cases: life insurance, social insurance, health insurance, fire insurance, transportation insurance
Q: Why do we buy insurance.
A: To reduce fluctuations in consumption
The highest acceptable price for insurance is
different for everyone, reflecting different risk preferences

Different Preferences Regarding Risk

Definitions:

A risk averse agent is one who, given a choice between a certain and an uncertain case with equivalent expected value, will choose the certain case.

A Risk lover is the opposite
Someone who is risk neutral is only interested in the expected value of a situation and does not pay attention to the risk.
What can we say about the utility functions of these three groups.

Evaluating attitudes toward risk

Utility function of the risk averse agent
Someone who is risk averse will always choose the certain case when certain and uncertain cases have a similar expected value.
Convention:

- Money is a means to satisfy consumption
- Expected utility function (von Neumann

Morgenstern utility)
Look at and explain it from a mathematical perspective:
Risk premium:

Evaluate attitudes towards risk

Utility function of a risk lover \qquad
Utility function of a risk neutral agent

STATE PREFERENCE APPROACH

Choice in a risky situation

- Problem: I=100 dong can be used for two purposes: to consume or to gamble

Game:

- Kim bets a dong. The dealer takes out a card at random
- If it is a spade Kim will lose the bet (a dong)
- If it is a heart, a diamond, or a club Kim will win 40 xu for each dong that she bets (i.e. she wins $0.4 a$).
- The question is how much should Kim bet.

STATE PREFERENCE APPROACH
 Budget line

- Assume that Kim bets 10 dong: What is her expenditure when she wins or loses.
4 Kims consumption budget depends on 2 factors.

1) Probability of a spade - objective
2) The bet a - subjective

Therefore when choosing the level of bet, Kim actually chooses two levels of expenditure $C{ }_{w}$ and C_{L}
Main difference compared with basic problem: 2
goods (C_{W} and C_{L}) are contingent commodities
The value of contingent commodities depends on what events actually happen

- Budget line

STATE PREFERENCE APPROACH

Indifference curve

- Indifference curve: Have to compare Kims choices in situations that have equal expected income but different levels of risk.
- The fair odds line is where every point has an equal expected income which is equal to the income at the beginning.
- How is this line determined.
- X is any point on the fair odds line
(1). $C_{\mathrm{w}}^{X}=-C_{L}^{X} \quad(1), C_{\mathrm{w}}^{E}=. C_{L}^{E} \quad 100$

STATE PREFERENCE APPROACH

Indifference curve (continued)
A risk averse person will always choose the certain
case when a certain and an uncertain case have similar expected value. and will not bet even when the game is fair.

Certainty curve: is the locus of all points that have certain
consumption.
Combine the fair odds line and the certainty curve to draw
qualitatively the indifference curve for the risk averse agent
Risk lover
Risk neutral

State preference approach

 Equilibrium (consumer choice)At the equilibrium: $\mathrm{MRS}=$ the slope of the budget line

A risk averse person never takes part in a fair bet
How about risk loving and risk neutral players.

Some applications

Risk premium
Investment diversifying (Dont put all your eggs in one basket)

Risk dispersion (revolving funds, the role of the stock market, supply demand of insurance)
Risk-sharing: in agriculture, grapefruit peasants and traders in the Mekong Delta
Insurance
Conservative tendency in policy change

Topics

The technology of production
Production with one variable input
Production with two variable inputs
Returns to scale

The technology of production

The production function:
Function showing the highest output that a firm can produce for every specified combination of inputs.

Short run and Long run
Short run: Period of time in which quantities of one or more production factors cannot be changed. Long run Amount of time needed to make all production inputs variable. ang van nmanh

Isoquants

Isoquant Curve showing all possible
combinations of inputs that yield the
same output.

The slope of isoquant is the marginal rate of
technical substitution of one input for another.
MRTS $_{\text {LK }}=-. \mathrm{K} / \mathrm{L}$

Isoquants when inputs are perfect substitutes
E.g.
2 different cars of a taxi company
Toll collector and toll machine
The production function
$\mathrm{Q}=\mathrm{F}(\mathrm{K}, \mathrm{L})=2 \mathrm{~K}+4 \mathrm{~L}$
$\mathrm{MRTS}=$ const

Isoquants when inputs are perfect
complements

E.g.
Cleaner and broom
Bricklayer and trowel
The production function
Q = F(K,L) $=\operatorname{Min}(\mathrm{K}, \mathrm{L})$
$\mathrm{MRTS}=0$

Optimal combination of inputs

Optimal combination:

The combination at which the isocost line is tangent to the isoquant.

The combination at which the slope of the isoquant is equal the slope of the isocost line

Marginal product and
 Optimal combination of inputs

Marginal product and Isoquants
If produced along the isoquant, the increase in output due to additional use of one input must be equal to the decrease in output due to the reduction of other input.

Marginal product and Optimal combination of inputs	
Formula: $\quad 0=M P_{L}(. L)+M P_{K}(. K)$	
Rearranging: - - $\left.\mathrm{K}^{\prime} / L\right)=M P_{L} / M P_{K}$	
As:	$-(. K / . L)=M R T S_{L K}$
Result:	$\overline{M R T S}_{L K}=M P_{L} / M P_{K}$
	a ma va Timam

Marginal product and Optimal combination of inputs
To achieve max output, producer must allocate his limited investment on quantity of each input such that marginal products per dollar of investment across all inputs must be the same.
This is called equal marginal principle.

Similarity between consumer behavior and production theories		
CONSUMER		PRODUCER
Utilily maximization	OVERALL Ob.JECTIVE	Profit maximization
- Indifference curve -Budget line	analytical	-soquants - -socost line
	$\begin{array}{\|c} \text { Math. } \\ \text { parameters } \end{array}$	-The production functio $\mathbf{Q}(\mathbf{K}, \mathrm{L})$ - w, r $-\mathrm{C}=\mathrm{C}_{0}$ or $\mathbf{Q}=\mathbf{Q}_{0}$

Similarity between consumer behavior and production theories		
CONSUMER		PRODUCER
$\begin{aligned} & \text { * } \begin{array}{l} \text { Budget line tangent to } \\ \text { Indifference curve } \end{array} \\ & \hline \end{aligned}$	OPTI- MAL CON- DITI- ON	* Isocost line tangent to Isoquant
$\begin{gathered} \text { * } \text { Slope of i ndifference curve } \\ =\text { slope of b udget line } \\ \hline \end{gathered}$		* Slope of isoquant = slope of \qquad
. $\mathrm{Y} / . \mathrm{X}=-\mathbf{P} \quad / \mathbf{P}_{\mathbf{y}}$		K/. L = w/r
$\mathrm{MRS}_{\mathrm{XY}}=\mathrm{P}_{\mathrm{x}} / \mathrm{P}_{\mathrm{y}}$	OPTI- MAL CON- DITI- ON	MRTS $_{\text {LK }}=\mathbf{w} / \mathbf{r}$
$\mathbf{M U}_{\mathbf{X}} / \mathbf{M U}_{\mathbf{Y}}=\mathbf{P}{ }_{\mathbf{x}} / \mathbf{P}_{\mathbf{y}}$		$\mathbf{M P}_{\mathbf{L}} / \mathbf{M P} \mathrm{K}_{\mathrm{K}}=\mathbf{w} / \mathbf{r}$
$\mathbf{M U}_{\mathbf{X}} / \mathbf{P}_{\mathbf{X}} \quad=\mathbf{M U}{ }_{\mathbf{X}} / \mathbf{P}_{\mathbf{Y}}$		$\mathbf{M P}_{\mathrm{L}} / \mathbf{w}=\mathbf{M P} \quad{ }_{\mathrm{K}} / \mathbf{r}$
	a ng V	Thanh

End of Chapter 6

Production theory

Topics

Measuring cost: which costs matter.
Cost in the short run
Cost in the long run
Production with two outputs Economies of scope
Dynamic changes in costs The learning curve

Measuring cost: which costs matter.

Economic and accounting costs
Accounting cost: actual expenses plus depreciation charges for capital equipment.

Economic cost: cost to a firm of utilizing economic resources in production, including opportunity cost.

Measuring cost: which costs matter.
 Opportunity cost
 Cost associated with opportunities that are foregone when a firms resources are not put to their highest-value use.
 Example: a firm that owns a building and therefore pays no rent for office space.
 Does this mean that the cost of office space is zero.

| Measuring cost: which costs matter. |
| :--- | :--- |
| Sunk cost
 Expenditure that has been made and
 cannot be recovered.
 Should be ignored when making future
 economic decisions. |

Cost in the short run

Fixed cost and variable cost
Total output is a function of fixed and variable inputs.

Thus: $\overline{\mathrm{TC}=\mathrm{TFC}+\mathrm{TVC}}$

Short run cost of firm (\$)

Output Fixed Variable Total Marginal Average Average Average

Output Fixed Variable Total Marginal Average Average Average cost cost cost cost (TFC) (TVC) (TC) (MC)fixed variable totalcost cost cost					
050	0	50	---	---	--- ---
150	50	100	50	50	50100
250	78	128	28	25	3964
350	98	148	20		
450112		162	14		
550130		180	18	10	2636
650150		200	20		
750175		225	25		
850204		254	29		
950242		292	38		
1050300		350	58	5	3035
1150385		435	85		

Cost in the short run

Marginal cost (MC) increase in cost resulting from the production of one extra unit of output.

$$
\mathbf{M C}=\frac{\mathrm{TC}}{. \mathrm{Q}}=\frac{\mathrm{TVC}}{. \mathrm{Q}}
$$

Cost in the short run

Relationships between average product and
average variable cost; marginal product and
marginal cost
When $\mathrm{AP}_{\mathrm{L}}\left(\mathrm{MP}_{\mathrm{L}}\right)$ is rising, $\mathrm{AVC}(\mathrm{MC})$ is
decreasing
When $\mathrm{AP}_{\mathrm{L}}\left(\mathrm{MP}_{\mathrm{L}}\right)$ is decreasing, $\mathrm{AVC}(\mathrm{MC})$ is
rising

Cost in the short run

Relationship between production function and cost function in the short run

$$
\begin{aligned}
& \mathrm{Q}=\mathrm{f}(\mathrm{~K}, \mathrm{~L}) \text {. Where } \mathrm{K}=\mathrm{K} \quad 0 \quad \Rightarrow \mathrm{Q}=\mathrm{f}(\mathrm{~L}) \\
& \quad \text { or } \mathrm{L}=\mathrm{f}(\mathrm{Q})(1) \\
& \mathrm{C}=\mathrm{rK} \mathrm{~K}_{0}+\mathrm{wL} \Rightarrow \mathrm{C}=\mathrm{f}(\mathrm{~L})(2) \\
& \text { Put }(1) \text { in }(2) \Rightarrow \mathrm{C}=\mathrm{f}(\mathrm{Q})
\end{aligned}
$$

Cost in the long run	
The cost-minimizing input choice	
Two inputs: labor (L) \& capital (K)	
Labor price: wage (w)	
Capital price	
$R=$ depreciation rate + interest rate	

Cost in the long run

Cost minimization with varying output levels

Expansion path describes the combinations of labor and capital that the firm will choose to minimize costs at each output level.

Lhape of long-run average cost (LAC) in	
the following cases:	
Increasing returns to scale	
Constant returns to scale	
Decreasing returns to scale	
	18

Long-run cost

What is long-run cost curve of a firm.
In the long-run, firms can change output scale.
Long-run cost curve comprised of minimum costs at each output levels.

| Production with two outputs |
| :--- | :--- |
| Economies of scope |

Production with two outputs Economies of scope
Economies of scope are present when the joint of a single firm is greater than the output that could be achieved by two different firms each producing a single product.
Benefit of joint-production. Car tractor company example

Production with two outputs		
Economies of scope		
Advantage		
1) Use similar capital and labor		
2) Share management resources.		
3) Use similar machinery and skilled		
labor		

Production with two outputs
Economies of scope
Production:
Firm chooses output level for each product
Use product transformation curves to illustrate
the combinations.

Production with two outputs	
Economies of scope	
Note Product transformation curves have negative slopes. Product transformation curves are bowed outward, should it be joint production.	

Production with two outputs Economies of scope						
Note						
No direct relationship between economies of						
scope and economies of scale.						
Economies of scope can exist with diseconomies of scales. Economies of scales can exist but not with economies of scope.						

Production with two outputs Economies of scope

Degree of economies of scope measures savings in cost:

$\mathrm{C}\left(\mathrm{Q}_{1}\right)$: Cost of producing output Q_{1} $\mathrm{C}\left(\mathrm{Q}_{2}\right)$: Cost of producing output Q_{2} $C\left(Q_{1} Q_{2}\right)$: Joint cost of producing both outputs
If $\mathrm{SC}>0$ Economies of scope
If $\mathrm{SC}<0$ Diseconomies of scope
a $n g$ Va n Thanh

	Changes in costs - learning curve
Learning curve measures impact of labor experience on cost of production.	
Describes the relationship between a firms cumulative output and the amount of inputs needed to produce each unit of output.	

Changes in cost -- learning curve

Learning curve is based on the relationship:

$$
L=A+B N^{-}
$$

$N=$ Cumulative units of output produced
$L=$ Labor input per unit of output
A, B and $=$ constants
$A \& B$ positive and between 0 and 1

Changes in cost -- learning curve

When $\mathrm{N}=1$
$L=A+B$ or the labor input required to produce the first unit of output

When $=0$
Labor input per unit of output remains the same as the cumulative level of output increases, there is no learning.
Changes in cost -- learning curve

If gets closed to A, A represents the minimum
labor input per unit of output after all learning
has taken place.

The larger is
The more importance is the learning effect

Changes in cost -- learning curve

Note:

1) For new firms, efficiency comes from learning not economies of scale.
2) For mature firms, effect of learning is relatively low.

Predicting the labor requirements of producing a given output		
10	1.00	10.0
20	. 80	18.0 (10.0 + 8.0)
30	. 70	25.0 (18.0 + 7.0)
40	. 64	31.4 (25.0 + 6.4)
50	. 60	37.4 (31.4+6.0)
60	. 56	43.0 (37.4 + 5.6)
70	. 53	48.3 (43.0 + 5.3)
>80	. 51	53.4 (48.3 + 5.1)

	Topics
Profit maximization in the long run	
The industrys long-run supply curve	

Perfectly competitive market

 competitive market

1) Product homogeneity
2) Many participants
3) Perfect information
4) Free entry and exit

Loss minimization

Clue:

$$
\begin{aligned}
& q: T R<T C \\
& \text { or } \mathrm{P}<\mathrm{AC}_{\min }
\end{aligned}
$$

Options:

1) Keep producing
2) Close down (stop producing)

Loss minimization (cont)	
1) Keep producing	
Clue:	$\begin{aligned} & . q: T R=T V C \\ & \text { or } \mathrm{P}=\mathrm{AVC}_{\text {min }} \end{aligned}$
Principle: $\text { Loss }=\text { TFC }$	$\text { Produce at } \mathrm{q}^{*}: \mathrm{MC}=\mathrm{MR}=$ P
12.10205	

Break even

Clue:

$$
q=q_{0}: T R=T C
$$

$$
\text { or } \mathrm{P}=\mathrm{AC} \text { min }
$$

Principle: Produce at $\mathrm{q}^{*}=\mathrm{q}_{0}: \mathrm{MC}=\mathrm{MR}=\mathrm{P}$

Choosing Output in the Short run

Summary of production decision
Maximized profit (minimized loss) when $\mathrm{MC}=\mathrm{MR}=\mathrm{P}$
If $\mathrm{P}>\mathrm{AC}_{\text {min }}$ firm is profitable.
If $\mathrm{P}=\mathrm{AC}$ min firm is break even.
If $\mathrm{AVC}_{\text {min }}<P<A C_{\text {min }}$ firm keeps producing at a loss.
If $\mathrm{P}<\mathrm{AVC}_{\text {min }}<A C$ firm shuts down.

| The short-run market supply curve |
| :--- | :--- |
| Shows the amount of output that the
 industry will produce in the short run for
 every possible price. |
| 12102005 |

Producer Surplus
Producer Surplus in the Short Run Firm earns a surplus on all but the last unit of output. Producer Surplus sum over all units produced by a firm of differences between market price of a good and a marginal costs of production.
${ }_{12,10.2005}$

Long-run competitive equilibrium
Zero economic profit
If TR $>\mathrm{wL}+\mathrm{rk}$, firm earns economic profit and is
a new business
If $\mathrm{TR}=\mathrm{wL}+\mathrm{rk}$, economic profit is zero, yet firm
earns normal profit; the industry is competitive
If $\mathrm{TR}<\mathrm{wl}+\mathrm{rk}$, firm goes out of business
12:10200s

Long run equilibrium in
a competitive market

1) $\mathrm{MC}=\mathrm{MR}=\mathrm{P}$
2) $\mathrm{P}=\mathrm{LAC}$
No incentive to leave or enter the
industry
Profit $=0$
3) Market equilibrium price
D2:1020s

	Economic rent
Economic Rent Amount that firms are willing to pay for an input less the minimum amount necessary to obtain it.	
${ }^{22.10 .2005}$	

The industrys long-run supply curve

To determine long-run supply, we assume:
All firms have access to the available production technology.

Output is increased by using more inputs, not by invention.

| The industrys long-run supply curve |
| :--- | :--- |
| Effects of a tax
 Previously, we saw firms response to tax on
 inputs.
 Now, we look at how they respond to a tax on
 their outputs. |
| ${ }^{\text {12.10.2005 }}$ |

Topics

The efficiency of a competitive market
Price controls: minimum and maximum prices
Price supports and production quotas
The impact of a tax or subsidy
Import quotas and tariffs
Export quotas and tariffs

Price supports and production quotas
Much of agricultural policy is based on a system of price supports. Price set by government above free-market level and maintained by govermental purchases of excess supply. This policy can go hand in hand with restriction of production. 22.10200s

	Price supports
	Is there an efficient way that can increase farmers incomes equal to $\mathrm{A}+\mathrm{B}$ $+D$.
12.10.2005	a $\mathrm{ng}^{\text {V }}$ N Thanh

The impact of a tax or subsidy

When government levies indirect tax on producers, who will bear the tax.

When government taxes consumers, who will bear the tax.

When government gives subsidy to producers based on production output, who will benefit.

When government gives subsidy to consumers based on quantity of specific goods consumed, who will benefit.

	The impact of a tax or subsidy
Tax burden (or benefit of subsidy) is shared between consumers and producers. We look at a specific tax called unit tax.	

Import quotas and tariffs

Objective:
Protect domestic industries
Economic tools to promote or restrict
production and consumption
Create revenue

Import quotas

If the government imposes a tariff, it will gain D, thus net domestic loss is $\mathbf{B}+\mathbf{C}$.

If a quota is used, rectangle D becomes part of the profits of importers, and net domestic loss is B+C

Import quotas vs. tariffs

Similarity:
Main objective: to protect domestic producers.
Both have effects that:
increase domestic price.
increase domestic quantity supplied.
reduce domestic quantity demanded. reduce imports.
12.10.2005
a ng Va n Thanh

Impo Dif	quotas vs. ta ences: Quota	Tax
Volume and foreign exchange for import	Know	Not know
Beneficiary beside producers	Quota holders	Government budget
Increase in Domestic demand	Domestic prices increases, local producers benefit	Domestic prices unchanged, local producers not benefit
Change in world price	Unchanged Domestic prices	Changed Domestic prices
Domestic monopoly	Monopolistic power	No monopolistic power
12.10.2005 a ng Va n Thanh		26

Export quotas vs. Export tax

Similarity:

Both have impact to:
reduce domestic price.
reduce domestic quantity supplied.
increase domestic quantity
demanded.
reduce volume of exports.

Slide 1

Slide 2

Dang Van Thanh

Additional Profit from Perfect First-

Degree Price Discrimination

Slide 4

Fulbright Economics Teaching Program 2005-2006
Second-degree Price Discrimination

Fulbright Economics Teaching Program 2005-2006

Slide 7

| Intertemporal Price Discrimination and Peak-
 Load Pricing |
| :---: | :---: |
| Intertemporal Price Discrimination
 Newly launched products, demand is inelastic
 Book
 Movie
 Computer
 Once obtained max profit from the market, firms will lower the
 price to capture mass market with more elastic demand
 Paperback edition of a book
 Discounted movie
 Discounted computer |

Fulbright Economics Teaching Program 2005-2006
Intertemporal Price Discrimination

Intertemporal Price Discrimination and Peak-Load Pricing

Peak-Load Pricing

For some goods and services, demand peaks at particular times.

Traffic during peak time
Electricity in hot summer nights
Train during holidays, Tet
Capacity limitation also increases MC.
Increases in MR and MC mean price is higher. In each market MR is not equal since it does not influence the other .

Fulbright Economics Teaching Program

 Fall Semester, 2005
MICROECONOMICS

Lecture Note

Limiting Monopoly Power and Promoting Competition

A. Why limiting monopoly power.

Monopoly leads to economic inefficiency because of lack of competition.
Main interrelated consequences:

1. Monopoly price (Pm) higher than competitive price (Pc) and marginal cost (MC).

2 Monopoly output lower than competitive output ($\mathrm{Qm}<\mathrm{Qc}$) .
Competitive market requires $\mathrm{MC}=\mathrm{MR}=\mathrm{P}$.
3. Higher price leads to excess profits, raising
issue of endimosolisideceritys excess profits at the expenses of consumers. Note: Normal profits already include in the cost of production.
4. Social costs: Deadweigh loss (DWL).
a. Consumer surplus loss due to higher prices.
b. Producer surplus loss due to output lower than under competitive market.
B. What are the objectives of limiting monopoly power.

Objective: Increase economic efficiency by limiting monopoly power, thus favoring competition, innovation and growth.

Lower monopoly price, Pm , toward competitive prices, Pc .
Raising output to Qc.
Reduce excess profits.
Reduce social costs of DWL.
C. How to limit market power. Three possible approaches:

Tax and redistribute the excess profits, regulation, and anti-trust laws.
D. $1{ }^{\text {st }}$ Approach: Shall excess profits be taxed and redistributed to innjured parties. Not feasible.

1. Difficulty to calculate excess profits.
2. Difficult to identify consumers hurt to return profits to them.
E. $2{ }^{\text {nd }}$ Approach: Regulation of monopoly
E.1. Price regulation for natural monopoly

Natural monopoly has long term declining average and marginal costs as output expands. The average cost is higher than MC.

Objective: Set ceiling for regulated price, Pr, lower than Pm, and expand regulated output, such that $\mathbf{Q r}>\boldsymbol{Q m}$
a. Set maximum price based on expected ROR that a firm will earn

$$
\begin{aligned}
& \mathrm{P}=\mathrm{AVC}+(\text { Depr }+\mathrm{Tax}+\mathrm{sK}) / \mathrm{Q} \\
& \mathrm{Depr}=\text { depreciation } \\
& \quad \mathrm{s}=\text { fair rate of return } \\
& \mathrm{K}=\text { capital stock of the firm } \\
& \mathrm{Q}=\text { firm output }
\end{aligned}
$$

b. Set maximum price according to

$$
\operatorname{Pmax}(\mathrm{t})=\mathrm{P}(\mathrm{t}-1)(1+\text { Inflation }+ \text { Productivity })
$$

E.2. Challenges to regulation

Difficulties in determining costs and benefits of regulation.
High compliance costs to administer regulation
Economies of scale have largely exhausted.
Technological changes make entry relatively easier.

E. 3 Deregulation: the US experience

Deregulation of railroad (1976), airline (1978), trucking industries (1980), , telephone service and long distance (1982, settlement of ATT and anti trust case), natural gas, electricity generation.
E.3.1. Positive results: Cases
a. Airline fare declined on average by about 30 \% between late 70s and 90 s; passenger traffic rose from 250 millions to about 500 million in the same period.
b. Local telephone charges rose while long distance charges declined.

Long distance call minutes rose substantially.

E.3.2. However, some negative effects: Cases
a. Airline fare increased by $30 \%-55 \%$ if 1 or 2 airlines going out of business in a given route, following increased competition deregulation.

Fewer remaining airlines become dominant, leading to entry difficulties because they:
(i) Own long term lease of limited gates at airports (No gates for planes to pick up or discharge passengers);
(ii) Capture market with their frequent flyer programs;
(iii) Own the electronic reservation systems that channel potential flyers to them.

b.

Increased
inconvenieAgeknes: lost luggage, flight delays, cancellation to
customersis) Telecommunications: difficulties to change companies
(iii) Electricity: higher prices and black out in California.

E.3.3. Current movement

Some groups advocate for a return to some regulation

F. $3{ }^{\text {rd }}$ Approach: Anti Trust Laws (Competitive Laws)

Objectives: Set rules and regulations to limit or prohibit:

1. The use of existing market power; acquisition of market power; and
2. Conduct of firms that tend to lessen competition.

Thai van Can/J: \Courses 05-06\Microeconomics for Transitional Economics\Lecture Notes\MI06-L13E Lecture Note-Limiting Monopoly-Eng.doc

F.1. Anti-Trust Laws: the US Experience

The main law is Sherman Act (1890), complemented and amended by Clayton Act (1914), Federal Trade Commission (1914); Robinson-Putnam Act (1936), Wheeler-Lea Act (1936), and Celler - Kefauver Antimerger Act (1950).

Note: However, exceptions for firms may be granted in case of easy entry, existence of substantial foreign competition, or for mergers leading to economy of scale, or preventing financial failure of a merged company..

F.1.1. Sherman Act (1890)

a. Sherman Act, Sec. 1 prohibits:
i. Any actions, including contracts,conspiracies, to restrain trade in the US and in trade with foreign nations. Example: An agreement among producers to restrict output and to fix prices is prohibited (an offense).
ii. Explicit and implicit collusion. Implicit collusion: parallel conduct whereby a firm consistently follows actions of another firm.
b. Sherman Act, Sec 2, prohibits:
i. Attempts to monopolize trade in the US or in trade with foreign nations
ii. Mergers into larger firms that tend to substantially lessen competition.
iv. Different prices for essentially the same products to injure competition.

Case:

Microsoft Co.held over 90% of the world market for PC operating system and office productivity system (Word, Excel, etc). In October 1998, DOJ sued Microsoft. The District Court found Microsoft had monopoly power in operating system and engaged in anticompetitive practices to protect that monopoly(June 1991), Microsoft appealed to the Circuit Court of Appeals for the District of Columbia. The

Appellate supported the Disstrict Courts decisions (June 2001). The government case is essentially completed. Its success has triggered private civil suits from competitors and consumers, some of which are still pending. ${ }^{1}$

F.1.2. Clayton Act (1914) prohibits:

Price discrimination, exclusive and tying contracts, intercorporate
stock holdings, and interlocking directorates.
F.1.3. Federal Trade Commission (1914 and subsequent amendments, latest being in 1995) prohibits:
a. Unfair and anticompetitive practices, such as false and misleading advertising and labeling,
b. Enforcement by administrative proceedings, thus reaching further than those of other antitrust laws.

F.1.4. Robinson- Patman Act (1936) prohibits:

Predatory pricing, which is practices of pricing aiming at driving competitors out of market and discourage new
entrants.

F.1.5. Wheeler-Lea Act (1936) prohibits :

False and deceptive advertisement

F.1. 6 Celler - Kefauver Antimerger Act (1950) prohibits

All types of mergers, horizontal, vertical, conglomerates, if their effects are to lessen competition and tend to create monopoly
F.2. Who may initiate legal actions against monopolist.

1. Government: Department of Justice (DOJ).
2. FTC.

> 3. Any interested parties, most plaintiffs are consumers. Competitors may also sue.
F.3. What is the division of competence for legal actions against monopolist.

[^0]a. DOJ for criminal cases.
b. FTC for civil cases.

F.4. How are anti-trust laws resolved.

Resolutions by:

1. Dissolution or divestiture, resulting from court trial.
2. Injunction from court requires defendant to restrain from anticompetitive actions, resulting from court trial.
3. Consent decree: defendant agrees to observe the business behavior set down in the decree with DOJ or FTC, without court trial. Consent decree may cover any decisions that could have been taken, resulting from court trial.

Case: In 1974, DOJ sued ATT for illegal practices aiming at eliminating competitors in telephone equipment and long distance markets. ${ }^{2}$

The case was settled by consent decree in 1982. ATT was broken into 22 local companies representing $2 / 3$ of its original
.
assets and lost
itspnthoobelly Laboratory (research), Western electric
phatfulataring of telephone equipment), and was allowed to
diftanicfo cable TV, electronic data transmission,
mpnopoly It
The case cost the government US\$25 million and ATT, US\$
360 million

F.5. What are the penalties.

1. Violation of antitrust laws is a felony
2. Fine, or prison, or both.
3. Payments for punitive and compensatory damages to plaintiff may be added.

Fine US 1 million for corporation
US\$ 100,000 and up to 3 years in prison for individuals
Punitive damages to punish for violation of the law

[^1]Thai van Can/J: \Courses 05-06\Microeconomics for Transitional Economics\Lecture Notes\MI06-L13E Lecture Note-Limiting Monopoly-Eng.doc

Compensatory damages for the losses incurred by plaintiff (e.g. consumers) because of violation of the law (against monopoly).For deterrence, compensatory damages are tripled.

Case: Electrical Machinery Conspiracy (1961) among

General Electric, Westinghouse, and other electric producers guilty of price fixing and market division.

Penalties: .US\$ 2 million in fine; US\$ 400 million in total damages; 7 executives in jail, 23 others suspended sentences.

F. 6. How to compute compensatory damages .

The starting point to determine the amount of compensatory damages is the excess profit plus DWL. Variations from this benchmark depend on the facts of the case to arrive at the final amount. ${ }^{3}$

F.7. How are Anti-trust laws in the EU.

Essentially the same as the US laws

Differences:
a. Easier to show dominant position under the EU than the US law
b. Civil penalties in Europe but civil and criminal penalties in the US
G. How to measure monopoly power.
G.1. Lerner index: $\mathrm{L}=(\mathrm{P} M C) / \mathrm{P}=-1 / \mathrm{Ed}$
G.2. Concentration ratio, C4: ratio of sales of a few firms (4) over total sales:

$$
\mathrm{C} 4:(\mathrm{S} 1+\mathrm{S} 2+\mathrm{S} 3+\mathrm{S} 4) / \mathrm{St}
$$

G.3. Herfindhal-Hirshman Index, calculated for the whole country (USA) for a given product belonging to a given industry.:

$$
H H I=10000 S w_{i}^{2}
$$

where:

[^2]Thai van Can/J: \Courses 05-06\Microeconomics for Transitional Economics\Lecture Notes\MI06-L13E Lecture Note-Limiting Monopoly-Eng.doc
$W_{i}=\mathrm{Si} / \mathrm{St}$
$\mathrm{Si}=$ sales of firm i
$\mathrm{St}=$ total sales of the measured industry

Difference between C4 and HHI: the latter is based on all firms in the industry (more than 4 firms of C4) and on the squares of the market shares of firms. ${ }^{4}$

G.4. Caution on the use of HHI

G.4.1. Attention to the relevant market

1. It tends to overestimate the true degree of monopoly, if the economy is open with additional competition from foreign firms(eg beer market);
2. It tends to underestimate the true degree of monopoly, if the firm subject to scrutinization, operates in local or regional markets;
G. 4.2 Attention to the relevant industry classification
3. HHI varies according to industry definition and product classes (North

NhbleticaFor a given product, the degree of monopoly varies, deduestilyng on the industry under which it is classified Classification
2. How With 8ne know what products belong to which industries. digit Close substitutes, products with large positive cross elasticities are classified under the same industry class

Case

DOJ sued Dupont Company on monopolizing the market for cellophane. Dupont successfully argued that the relevant market was not cellophane but a larger market of flexible packaging materials, including waxed paper, aluminum foils and other materials, based on high cross elasticity of demand between cellophane and those other materials. Since Dupont had less than 20% of this market, the Supreme Court ruled that Dupont had not monopolized the market (1953).

[^3]Thai van Can/J: \Courses 05-06\Microeconomics for Transitional Economics\Lecture Notes \MI06-L13E Lecture Note-Limiting Monopoly-Eng.doc

How has the HHI been actually used This index has been used by the DOJ to start reviewing the monopoly structure of industry or approval of mergers.
a. If post merger $\mathrm{HHI}<1000$; DOJ may not challenge.
b. If pre merger: $\quad 1000<\mathrm{HHI}<1800$ and post merger HHI increases by more 100, DOJ may challenge.
c. If pre merger: $\quad \mathrm{HHI}>1800$ and post merger HHI increases by more than 50, DOJ may challenge.

Fulbright Economics Teaching Program

Fall Semester
05/09/2005 23/12/2005

MICROECONOMICS

Assignment 1

Distributed: 7/09/2005
Due: 14/09/2005

Question 1.

The increases in world crude oil prices of 55% last year made the prices of gasoline and oil increase in many places around the world. The price of gasoline in the U.S. has risen to USD 3 per gallon, equivalent to $12,700 \mathrm{VND} /$ liter.
Vietnam is no exception. The Vietnamese government cannot avoid raising the prices of gasoline and oil domestically because the state budget cannot cover a large amount of subsidies, amounting to billions of dong every year. In 2005 the government has already had to increase the prices of gasoline and oil three times, the first time at the end of March (3/29), the second time at the beginning of July $(7 / 3)$, and the third time in the middle of August $(8 / 17)$.
a) Analyze the impact of increased prices of gasoline and oil on other goods that need to use gasoline and oil as either a direct or indirect input (through the transportation cost). Use a graph showing supply and demand curves to illustrate your answer.
b) One the one hand the government has been forced to increase gasoline and oil prices, yet on the other hand the government is worried that the impact of increased prices will push the inflation rate for the year 2005 into double figures. Therefore, the Prime Minister and the Ministry of Finance have instructed the relevant local and national authorities to intensify control so as to keep prices stable. According to you, in an economy operating under market principles where the majority of local enterprises are not monopoly and not state-owned, can the leaders of local and national government implement the above demand. Explain.
c) Some people are anxious that enterprises will take advantage of the increased prices of gasoline and oil to increase selling prices by a much greater degree than the cost increase, creating difficulties for consumers. According to you, are there grounds for the above concern, given that most enterprises in a market economy operate in an environment of strong competition. Explain, giving examples to illustrate your answer where possible.

Question 2.

Viettel, the military telecommunications corporation, is a new provider of mobile phone services. Besides its cheaper tariffs compared to its competitors, the method of calculating charges after the first minute is also advantageous for customers with 6second blocks (S phone: 10 seconds, Vinaphone and Mobiphone: 30 seconds). Therefore Viettels subscriber base has increased quickly to 1 million. Its customers include two groups. The first have never used mobile phones before, the second have switched from other providers.
Observe and compare the price elasticity of demand of these two groups of customers.

Ouestion 3.

Avian flu broke out in Vietnam in the last few months of 2003 and at the

 beginning of 2004, and reappeared during the last few months of 2004. Did it have an impact on the prices of other kinds of food at that time. Use a graph of the supply and demand curves to illustrate your answer.
Question 4.

The market supply and demand function of product X is estimated as follows: (D) :

```
(S) : P
    S=Q s+20 110.
(the unit for Q
D},\mp@subsup{Q}{}{S}\mathrm{ is 1,0(0@2tonnes, and the unit for P
a) Determine the equilibrium price and quantity of product \(X\).
b) Determine the consumer surplus and producer surplus, and the total surplus of society.
c) Determine the elasticity of demand at the equilibrium price. If the producers act together to decrease the selling price a little more will the total expenditure of all customers on this product increase or decrease.
d) Now, if the government levies VAT of \(10 \%\) on industry X what is the equilibrium quantity, how much do buyers have to pay and how much do the sellers receive after paying tax.
e) Who bears the tax and how much tax is on each tonne. Calculate the duty revenue that the government receives from product X .
f) Calculate the changes in the consumer surplus, the producer surplus and the total surplus of society.
```


Fulbright Economics Teaching Program

Fall Semester
05/09/2005 23/12/2005

MICROECONOMICS

Assignment 2

Distributed: 14/09/2005
Due: 21/09/2005 (8:20am)

Ouestion 1.

It was very hot today and Minh was very thirsty. The value of each bottle of water is shown below:

The value of the first bottle: 7,000 dong
The value of the second bottle: 5,000 dong
The value of the third bottle: 3,000 dong
The value of the fourth bottle: 1,000 dong

Based on this information, make a table of demand and draw Minhs demand curve for bottled water.
a. How many bottles of water does Minh buy if it is 4,000 dong/bottle. How much is Minhs surplus. Show Minhs surplus in your graph.
b. If the price goes down to 2,000 dong, what is the change in the demand quantity. What is the change in Minhs surplus. Show this change in your graph.

Question 2.

Assume that for Minh, beef is a normal good, in contrast to rice, which is a kind of low-level good. If the price of beef decreases how will Minhs consumption of rice change. How will Minhs consumption of beef change. Draw an appropriate graph to illustrate.

Question 3.

The price of 1 kg of apples is 20,000 dong and 1 kg of oranges is $\mathbf{1 0 , 0 0 0}$ dong.
One consumer first buys 10 kg of apples and 5 kg of oranges. At that time the consumers marginal utility of 1 kg of apples is 3 units and 1 kg of oranges is 1 unit.
a. Does this consumer achieve maximum utility. Why or why not.
b. If your answer is no how should the consumer adjust the quantity of each kind of fruit to achieve the maximum utility.

Question 4.

A big laundry in Ho Chi Minh City needs several hundred kg of detergent. The owner said, I think that OMO is as good as TIDE, and my shop normally just uses these two kinds of detergent. She continued, However sometimes I buy only one of the two, and sometimes I buy both of them at random, just to get the quantity I need.
a. According to you, do her two sayings contradict each other. Briefly explain.

Based on the laundrys owners opinions, answer the following questions.
b. What is the relationship between these two kinds of goods in consumption.
c. According to you, what are the characteristics of the marginal rate of substitution (MRS) between these two products.
d. According to you, in this case, can we write the equation for the indifference curve. If yes, what is the equation.
e. Assume that the laundry owner needs 120 kg of detergent every day. When does she buy only OMO. Draw the indifference line, the budget line, and show where her optimal market basket lies.
f. Now, assume that the laundry owner needs 140 kg of detergent every day. When does she buy both OMO and TIDE at random. Draw the indifference line. the budget line. and show where
her optimal market basket can be found.

Fulbright Economics Teaching Program

Fall Semester
05/09/2005 23/12/2005

MICROECONOMICS

Assignment 3

Distributed: 21/09/2005
Due: 28/09/2005 (8:20am)

Question 1.

The price of the world crude oil heats up making the prices of gasoline and oil increase a lot in most of the countries around the world. Indonesia, although is a member of the Organization of the Petroleum Exporting Countries (OPEC), has to import gasoline and oil because its domestic production cannot meet the needs. The Indonesian government decided to raise the prices of gasoline and oil to 50% in coming early October. This increased price will reduce the budgetary impact of subsidies. And the government wants the price be an efficient allocation of scarce resources, avoiding waste consumption. However, each policy often impacts differently on various parts of society. Economically it is reasonable to raise the domestic prices of gasoline and oil while the world price hanta won hut than lifo nf millinno nf monn monnlo will ho mom
neats up, vut men nite oi minions us puor peopie win ve nime
diffiriuds Afngaterinectabeil is a political pressure for the current government. Indonesian government decided to provide an oil subsidy for 15,5 million poor households

In order to provide a rational subsidy, meaning that it can ensure their living standard at least as same as before the raise of the oil price, a group of researchers of the Statistics Department collected the related data to the poor households as follows:

Average heads in each household: 4
Average income of each household: 18 USD/ month
Oil price before the raise: $\mathrm{P} \quad \mathrm{x}_{1}=0,375 \mathrm{USD} /$ litre
Oil price after the raise: $\mathrm{P} \quad \mathrm{x}_{2}=0,6 \mathrm{USD} /$ litre

Estimation of the utility function of each household in spending for oil and other goods: $U(X, Y)=2 X^{1 / 2} Y$
where: X is the number of litres of oil used every month.
Y is the balance of income for other expenses
a) By algebraic method, determine the number of litres of oil that each poor family bought every month before and after the price raise if there is no subsidy.
b) On a graph with clear notes, use horizontal axis for oil, draw the budget line, the indifference line, and show where the optimal consumption lies. (Draw by EXCEL, not by hand)
c) Calculate the price elasticity of demand of the poor household for oil.
d) By algebraic method (then show on the graph) determine when the price raises, does the substitution make the purchasing power of the poor households decrease. How many litres. Does the income make the purchasing power increase or decrease. How many litres increase or decrease.
e) For the poor households, is oil a normal or a low-level good. Briefly explain.
f) Based on the informations in part a) and part d), draw the normal demand curve and the compensating demand curve. Assume that these demand curves are straight lines.
g) Determind the minimun amount of subsidy for each poor household every month by consuming surplus on each kind of demand curve.
h) Determine the minimum amount of subsidy for each poor household every month by compensating variation (CV) and show this amount of subsidy on the graph.
i) By algebraic method, determine the minimum amount of subsidy for each poor household every month by equivalent variation (EV) and show this amount of subsidy on the graph.
j) If Indonesian government raises the oil price and provides an amount of subsidy according to the compensating variation (CV) it is sure that the poor households utility is as same as it is before the increased price. Therefore some criticized that this was a helpless policy. They thought that it was better to keep the same price and did not have to spend money for the subsidy operation. Do you agree with the above comment. If not, show the important difference between these two ways to see the positiveness of this policy.
k) In reality, Indonesian government provided a subsidy of 13 USD/month. Assume that the data collected by the Department of Statistics is exact, how many litres of oil did each poor household buy every month by this amount of subsidy. How much utility did they achieve. Did their welfare increase, decrease, or no change compared with the time when the price has not increased..

1) Write the calculated results in the below table:

	Oil bought every month (litre)	Amount of subsidy (USD)	Utility (unit)
When the price did not increase and no subsidy			
When the price increased and no subsidy			
When the price increased and subsidy provided by CV			
When the price increased and got a subsidy of 13 USD/month			

Ouestion 2.

Fulbright Vietnam participants are forced to do their assignments on computer. In order to support them in printing their weekly assignments and researches the Director Board give them three options.
Option 1: Provide an amount of 60,000 dong/ month including in the scholarship for them to use as they want. And they have to pay 500 dong/page as market price.
Option 2: Provide free printing maximum 120 pages every month. If they exceed the limit they have to pay 500 dong.
Option 3: Provide a price subsidy of 50% of market price, it means that they have to pay only $250 \mathrm{dong} /$ page. The maximum price subsidy is 60,000 dong/ month.

Assume tnat eacn stuaent saves a mixed amount or
B00k0, reseaches.
a) In the same graph, use horizontal axis for number of printing pages, vertical axis for the balance to buy books, newspapers, learning materials, stationaryDraw the budget line without subsidy and 3 other budget lines with subsidy corresponding to the above three options.
b) In what case do the students think that the first option is more benefit than the other two.
c) In what case do the students think that the first and second options are the same and more benefit than the third.
d) And in what case do the students think that three options are the same.
e) If the Director Board asks the class monitor to pick one of three above options for the whole class for the whole year which option will you advise the monitor to pick.

Fulbright Economics Teaching Program
 Fall Semester
 05/09/2005 23/12/2005

MICROECONOMICS

Assignment 4

Distributed: 29/09/2005
Due: 5/10/2005 (8:20am)

Question 1. Gambling with hurricanes

Every year its the same: right through the stormy season people in the central provinces have to struggle with hurricanes, to flee from hurricanes, and to clear up the mess they leave behind. Hurricanes cause great damage anyway, but if we are unlucky enough to see dikes breached the damage is immeasurable. Every year we see the same situation with the scenario of dikes capable of withstanding only a category 7 or 8 hurricane having to cope with category 11 or 12 hurricanes being repeated at many different locations in stormy areas.

Assume that the budget of province X is B and can be used for two purposes: taking precautions against hurricanes and spending for other public purposes. Assume that the probability of a dike being breached by a
 that provincial efforts to take precautions against hurricanes do not decrease the probability of a dike breach occurring, but can reduce the damage caused by the breach. Assume that in order to limit the damage having value I the province has to invest an amount of $\mathrm{pI}(0<\mathrm{p}<1)$.
a) Use a graph to determine qualitatively the optimal investment of province X in defenses against hurricanes.
b) Does province X exert its maximum effort completely to protect against the danger of a breach in a dike occurring. There is no need for calculation: use your own intuition to explain the reason for this.
c) Use the same assumptions as above but now, if the dike is breached, the province will receive an amount of relief S from the Center. Use a graph to determine qualitatively the optimal investment of province X in hurricane defenses. What comments do you have when comparing the result with the above question.

Question 2: Preventing corruption

Tac Lem is the cashier of a company. Although right from the beginning he accumulated a colossal fortune W , it is still hard for him to give up the habit of once in a while siphoning off the company money. The probability of being caught in the
act of stealing for Tac Lem is p. If he is caught he has to pay a fine of a dong for each dong stolen by him.
a) Use a graph to analyze the optimal amount of money Tac Lem should steal depending on p and a .
b) Do you have any suggestions to reduce Tac Lems corruption (these suggestions are to be based only on the background and data given above).
c) Assume $\mathrm{a}=3$. Calculate the lowest value of p that no more motivates Tac Lem to steal money.

Question 3: A constant assignment

The assumption from question 2 is used in this question, but now we solve the problem with concrete numbers.

Assume Tac Lems von Neumann Morgenstern utility function is $U(C)=\ln C$.
a) Assume $\mathrm{p}=0.2, \mathrm{a}=3$. Calculate the maximum amount of money Tac Lem would steal and his expected utility, and analyse the dependence of these two values on p and a by algebraic methods.
b) Now assume that Tac Lem can enter into collusion with the chief accountant so the probability of finding out decreases down to 0.1 . In return, Tac Lem has to give the chief accountant a 50% cut. Furthermore, if discovered, Tac Lem has
to accept all the responsibility himself. Calculate the maximum amount of money stolen by Tac Lem and his expected utility in this case. Comparing this with the result in question (a) what comments do you have.

Question 4. Diversification

Imagine that (not true of course) on the morning of September $15 \quad$ th, 2005 you are given 10 million dong to solve some problems as follows:
a) Choose a company quoted at the HCM City Securities Trading Center at random and calculate how many securities (round number) you could buy if on the morning of September $15{ }^{\text {th }}, 2005$ you spent the whole 10 million dong to buy securities in this company.
b) Considering the total value of all the securities you bought as a random variable, draw a graph to calculate the average value and variance of this random variable from September $15^{\text {th }}$ to $30^{\text {th }}$.
c) Repeat questions (a) and (b) for the securities of another optional company.
d) Now assume that you are required to spend 5 million dong on each security. Analyse the variation of the total value of all your securities from September 15 to $30^{\text {th }}$. What are your comments on this variation compared with the two cases above.
(For these three questions, assume that when you choose a kind of security you will keep it from September $15{ }^{\text {th }}$ to $30{ }^{\text {th }}$ to observe the changes in price).

Fulbright Economics Teaching Program

Fall Semester
05/09/2005 23/12/2005

MICROECONOMICS

Assignment 5

Distributed: 5/10/2005
Due: 19/10/2005 (8:20am)

Question 1

a) Explain the difference between increasing returns to scale and economies of scale. Under what circumstances do increasing returns to scale lead to economies of scale and under what circumstances do increasing returns to scale lead to diseconomies of scale.
b) Explain the difference between economies of scale and economies of scope. Illustrate by examples.

Question 2

The Processing Food ABC Company is a fairly large-scale operation. Its products are fresh, frozen and canned pork and beef. At the end of the 80 s, the company lost its important markets in Russia and the East European countries. Previously, its products had mainly been exported but now they are mainly consumed domestically. The utilization of machinery is very low compared with the capacity.

Faced with the current production and business difficulties, staff in the commercial and technical departments have researched and proposed a scheme to diversify the products so as to exploit the fixed assets and make use of the management group more efficiently. In addition, this proposal would also stabilize workers jobs and wages. According to this scheme, besides the traditional products, the company would also produce fresh, dried, frozen and canned chicken and duck.

The company director was enthusiastic about the ideas of the research group and organized a meeting to get the views of key staff regarding the product diversification program. Before the meeting, the director thought that there would be unanimity in the group and he would be able to execute the plan immediately. The meeting went contrary to his expectations so he was perplexed as to how to make the final decision. Nearly half of those attending the meeting did not sympathize with the plan and chief of this group was the chief accountant. Those opposing the plan were convinced by his forceful arguments.

According to detailed calculations by the chief accountant, based on expected sales of the new products and current sales of the traditional products, the annual fixed costs to be apportioned to the new products would be 40%; if this calculation was correct, the depreciation expense could be up to 20% of the entire cost of the new product. Therefore, it was certain that the cost price for the company would be higher than most of its competitors. Finally, the chief accountant concluded, If this plan is executed the profit for the new products will be low and they might even only just break even. An even worse scenario could occur, albeit with a low probability, that the company would lose money and that loss could be up to 15% of the whole cost.

If you were the director of ABC Company responsible for making the final decision would you implement the project to diversify the product range. Apply the theory of Microeconomics to explain your decision convincingly.

Ouestion 3

A perfectly competitive company currently produces at a level of output of $q \quad{ }_{1}$ units/month and the return is . ${ }_{1}$ (million dong). At output q_{1}, the marginal cost of the enterprise is higher than the selling price. Does output $q \quad{ }_{1}$ bring the maximum return for the enterprise. Explain. If your answer is NO, should the enterprise increase or decrease its output compared with the current level.

Question 4

The production function of enterprise X is: $\mathrm{Q}(\mathrm{K}, \mathrm{L})=2 \mathrm{k} \quad{ }^{1 / 2} 1^{1 / 2}$. The unit price of capital is $r=2$ and the unit price of labor is $w=6$. At present enterprise X invests an amount of $\mathrm{k}=\mathrm{k}_{0}=100$ units.
a) Write the total cost function and short-run marginal cost function corresponding to the output variable (Q).
b) If the market price of the product is $\mathrm{P}=9$ and enterprise X is operating in a perfectly competitive industry, how many units of product does the enterprise produce. How much is the revenue.
c) In the long run, the enterprise can adjust both its capital and labor. If enterprise X produces at same output level as in question b how much capital and labor does it use. How much is the profit. Is it higher or lower compared to the result for question b above.

Question 5

Assume that Vietnam has banned the import of electronic products, so the domestic equilibrium price is twice as high as the world price. In each case below, plot a graph with clear notes to show the change in the domestic equilibrium price; the changes in the quantity of demand, supply and imports; the change in consumer surplus, producer
surplus, tax collected by the government and social surplus. And in each case, show clearly who gains and who loses.
a) To protect domestic electronic production, the government levies a tax on imported electronic goods at a rate of 50% of the world price.
b) Under pressure from consumers and to push domestic electronic companies to improve their production and management, to strengthen competition and to be ready for integration, the government reduces the import tax rate down to 20% of the world price.
c) After reducing the import tax, domestic enterprises react strongly and the imported goods are made subject to a sales tax. The sales tax rate is 25% calculated on the world price including import tax.
d) After reducing the import tax, the government imposes a sales tax at a rate of 25% calculated on the world price including import tax. The sales tax is imposed on both imported goods and domestic production.

Fulbright Economics Teaching Program Fall Semester, 2005

MICROECONOMICS

Problem Set 6: Market Power: Monopoly
Distribution date: November 2, 2005
Due date: November 11, 2005 at 8:20 a.m.

Monopoly Profits

1. A monopoly faces a demand curve $\mathrm{P}=3004 \mathrm{Q}$, a constant average variable $\operatorname{cost}=100$, and fixed cost $=50$.

What is the profit maximizing price and output. Explain
2 A monopoly must take into account the demand curve facing her firm for maximizing profit. She hears that the monopoly power is higher, the higher is the inelasticity of the demand curve. She consult you on whether her firm should produce an output that corresponds to a price on the demand curve where the elasticity $\mathrm{E}=-0.5$. Explain your advice.

Deadweight Losses

3. A monopolist is characterized by the following: a demand curve : $\mathrm{P}=180 \mathrm{Q}$; $\mathrm{MC}: 60+2 \mathrm{Q}$. Calculate and draw a graph with appropriate labelling of variables to show the areas of DWL.

To achieve this, please compute the following:
a. Monopoly price and output (Pm, Qm);
b. Price and output that would exist under competitive market (Pc, Qc);
c. Price and output that would exist at the intersection of $\mathrm{MC}=\mathrm{MR}=\mathrm{Ps}(\mathrm{Ps}$, Qs). Note that Qs should be equal to Qm, and
d. Deadweight losses arisen from monopoly.

Tax under competitive and monopoly markets

4. The market for Ha Dong silk faces a demand curve, $\mathrm{P}=28$ 0.02Q. Ms. Las old family business produces silk at the long run average total cost, which is also the marginal cost of 8 units (in thousands of constant VND) per meter.
a. There are several small producers in the village, using the same technology and having similar costs as Ms. Las business. For this question and the
question (b) below, the market is considered to be under perfect competition. Compute the equilibrium price Pc and Qc.
b. A tax of 2 units (in thousands of constant VND) is introduced. Compute the price paid by the buyers, the sellers, and the produced quatity.
c. Ten years later, Ms Las business is so successful, she bought all other silk businesses in her village and becomes a monopoly. Cost conditions remain the same as under perfect competition and without tax. Compute the new price Pm and Qm.
d. If a tax of VND 2 units(in thousands of constant VND) is introduced. Compute the monopoly price Pmt and Qmt.

Regulation

5. A monopoly faces a demand curve given by $\mathrm{P}=\mathrm{a}-\mathrm{bQ}$ and has a marginal cost by curve represented by $\mathrm{MC}=\mathrm{e}+\mathrm{fQ}$. The government wants to regulate this monopoly.
a. What is the ceiling price that leads to the greatest reduction of DWL.
i. Draw the graph and indicate the appropriate labels, such as price
and quantity
ondquetition are (Pc, Qc).
monopoly

Qm) and
b. Why a prrefegtow that ceiling will lead to inefficiency.
6. A natural monopoly (such as Electricity of Viet Nam) has economies of scale. Its average total cost declines as output rises. The average total cost is therefore larger than its marginal cost which also declines. It faces the demand curve $\mathrm{P}=\mathrm{abQ}$. Monopoly price Pm is higher than competitive price Pc .

In order to increase output, regulator has to set a ceiling price.
a. May the ceiling (Pc) be set at the intersection (A) of the MC with the demand curve. Explain
b. Where should the ceiling (Pr) be set to ensure that the monopoly can continue to operate and at possible highest output (Qr).

Competitive Policies

7. Should the following activities be prohibited to promote competition, thus economic efficiency, and economic welfare. Support your reasoning with appropriate graphs to show the relevant factors, such as PC, Pm, Qc, Qm, MC, MR, DWL.
a. Conspiring to fix prices
b. Merging firms aiming at creating monopoly
c. Obtaining a patent with the exclusive right to produce a good

8. Monopoly index

The Lerners index of monopoly power is $\mathrm{L}=(\mathrm{P} M C) / \mathrm{P}$. This imply that:
a. If $\mathrm{L}=0$, the firm is in a perfectly competitive market. Is this correct. Explain
b. The value of L is between 0 and 1 . Is this correct. Explain
c. The larger L is, the higher the profits of the monopoly are. Is this correct. Explain.

Fulbright Economics Teaching Program

Fall Semester
05/09/2005 23/12/2005

MICROECONOMICS

Suggested solution to Assignment 1

Question 1.
a) When the price of gasoline and oil increases it will make the production cost of other goods that need to use gasoline and oil as either a direct and indirect input (through the transportation cost) increase. This means that the supply of these goods will decrease (the supply curve shifts to the left) with the result that the equilibrium price increases and the equilibrium production volume decreases.

b) In an economy operating under market principles where the majority of local enterprises are not monopoly and not state-owned, nobody can forbid enterprises from adjusting the selling price when their costs increase. If the government intervenes by setting a ceiling price across the board it will contravene market principles. As a result, localities cannot keep the price stable (because they have neither the power nor the right). This shows that, when an economy integrates into the world economy, sometimes market power is stronger than the governments power). Even the price of electricity is not immune: the government is planning to increase it by about 40\% between now and the year 2008.
c) Some people are anxious that enterprises will take advantage of the increased prices of gasoline and oil to increase selling prices by a much greater degree
than the cost increase, creating difficulties for consumers. In a market economy operating in an environment with strong competition, this anxiety is completely unfounded. When the cost increases, most enterprises, whether operating in an environment of competition or under monopoly conditions, and assuming the price was not under government control before, will mostly increase their prices by an amount lower than the cost increase in order to maximize their benefit (excluding products where the price was under government control before, when the enterprise might take advantage of the opportunity presented by the cost increase to request a higher price. However such enterprises are few and completely under government control).

Below is an article from Thanh Nien newspaper, dated 09/12/2005 as an illustration for this suggested solution. Note that the article will be issued after this assignment.

Ouestion 2.

Having a variety of different providers of mobile phone services is very good for subscribers. When the price of a provider decreases its demand will increase. However, Viettels subscribers are mainly new ones who have never used services from other providers. Subscribers who have used mobile phones from other providers for many years do not change their old numbers easily. This is for a variety of reasons including a high income and their relationships with customers, partners and friends. Therefore, the price elasticity of demand of this group of subscribers will be less than that of the new group.

Question 3.

Avian flu broke out in Vietnam in the last few months of 2003 and at the

 beginning of 2004, and reappeared during the last few months of 2004. This had the effect of increasing demand for other goods (the demand curve shifted to the right) and the prices of items like pork, beef and fish increased during this time.

Question 4.

Market supply and demand functions of the good X is estimated as follows:
(D): P
(S) : P
(the unit for Q

$$
\mathrm{D}=-(1 / 2) Q \quad \mathrm{D}+110 .
$$

$$
s=Q \quad s_{+}+20
$$

${ }^{\mathrm{D}}, \mathrm{Q}^{\mathrm{S}}$ is 1,000 tonnes, and the unit for $\mathrm{P} \quad{ }^{\mathrm{D}}, \mathrm{P}^{\mathrm{S}}$ is $1,000 \mathrm{VND} /$ tonne)
a) The market is balanced when $Q^{S}=Q^{D}=Q$ and $P^{S}=P^{D}=P_{0}$

$$
\Rightarrow \mathrm{Q}_{0}+20=-(1 / 2) \mathrm{Q} \quad 0^{+}+110
$$

$$
3 / 2 \mathrm{Q} \quad 0=90 \Rightarrow \mathrm{Q} \quad \mathbf{0}^{=}=\mathbf{6 0} \text { thousand tonnes and } \mathbf{P} \quad \mathbf{0}_{\mathbf{0}}=\mathbf{8 0} \text { thousand }
$$ dong/tonne

b) Consumer surplus is the area of triangle $\mathrm{AP}{ }_{0} \mathrm{E}_{0}$

$$
\mathrm{CS}=* 60 *(110-80)=900 \text { million } \mathrm{VND}
$$

Producer surplus is the area of triangle $\mathrm{BP}{ }_{0} \mathrm{E}_{0}$ $\mathrm{PS}=* 60 *(80-20)=1,800$ million VND
Total social surplus $=\mathrm{CS}+\mathrm{PS}=2,700$ million VND
c) The price elasticity of demand at the equilibrium price.
$\mathrm{E}_{\mathrm{p}}=(\mathrm{dQ} / \mathrm{dP}) *(\mathrm{P} / \mathrm{Q})=-2 *(80 / 60)=-8 / 3$
$\mathrm{Ep}<-1$: Demand is highly elastic, total consumption is contra-variant to the price so from this price level, if the producers act together to decrease the selling price a little more the total expenditure of all customers on this product will increase.
d) If with VAT, market is balanced when: $Q^{\mathrm{S}}=\mathrm{Q}^{\mathrm{D}}=\mathrm{Q}_{1}$ and $\mathrm{P}^{\mathrm{S}}+\operatorname{tax}=\mathrm{P}^{\mathrm{D}}$ $\mathrm{P}^{\mathrm{S}}+10 \% \mathrm{P}^{\mathrm{S}}=\mathrm{P}^{\mathrm{D}}$ or $1.1 \mathrm{P}^{\mathrm{S}}=\mathrm{P}^{\mathrm{D}}$

$$
1,1\left(\mathrm{Q} \quad{ }_{1}+20\right)=-(1 / 2) Q \quad{ }_{1}+110
$$

$$
1,6 \mathrm{Q} \quad 1=88 \Rightarrow \mathrm{Q} \quad 1=\mathbf{5 5} \text { thousand tonnes }
$$

The amount the buyer has to pay is P
${ }^{\mathrm{Dl}}=-(1 / 2) 55+110=82.5$ thousand dong/tonne
The amount the seller receives after paying tax $\mathrm{P} \quad{ }^{\mathrm{S} 1}=55+20=75$ thousand dong/ton
e) The consumer pays 2.5 thousand dong of tax (82.580) and the producer pays 5 thousand dong of tax ($80-75$) on each tonne of product. Total tax gained by the government from the industry X is: $7.5 * 55=412.5$ million dong
f) Consumer surplus decreases
.CS $=-*(60+55) *(82,5-80)=-143.75$ million dong
Producer surplus decreases
. PS $=-*(60+55) *(80-75)=-287.5$ million dong
(on the graph it is the area of trapezium $\mathrm{P}{ }^{\mathrm{Sl}} \mathrm{FE}_{0} \mathrm{P}_{0}$)
The tax gained by the government is
. $\mathrm{G}=7.5 * 55=412.5$ million dong
(on the graph it is the area of the rectangle $\mathrm{P} \quad{ }^{\mathrm{D}}{ }_{1} \mathrm{CFP}^{\mathrm{S}}{ }_{1}$)

Total social surplus decreases
(Aniw decresase .isscalleg $=-18,75$ million dong
(Afadmeighaploss) the area of triangle CFE0)

Fulbright Economics Teaching Program

Steel and plastics prices are like to increase first in Vietnam, following soaring production material costs, manufacturers said.

Local steel makers said their prices will go up, based on a US\$30 per ton increase for steel ingots since early June, sending the cost of doing business per month soaring by as much as $\$ 25,000$.

The plastics industry has been directly hit by soaring oil prices, as plastic is a byproduct oil processing.

For tens of years working in the industrial sector, I have never seen material costs this high, says Phan Van Thanh, director of a Ho Chi Minh City-based plastics maker

In the second quarter of 2004, the cost of imported PEHD, a precursor plastics material, was
\$U.ל-U.6 per kilo, but has topped \$1-1.1 per kilo in the
second quarter of this year.
So far, the prices of plastics have surged by 10 to 15% this year, and manufacturers say further increases are unavoidable.

Rising interest rates

Manufacturers also expressed concern over the fact that they are shouldering the increased burden of rising interest rates.

Almost all local companies borrow money from banks, thus they are now hit by higher interest rates, says analysts and financial experts.

So far, banks have raised rates for loans in Vietnamese dong to 0.85% per month, up from 0.75% per month. Meanwhile, the cost of borrowing US dollars is up by roughly 2.2% per month to 5.2% per month.

If manufacturers increase their prices by 5%, then 2% of the increase is driven up by rising interest rates, according to analysts.

Reported by Mai Phuong \& Thanh Xuan Translated by Hieu Trung

Dear participants,
This suggested solution was done last week. However, by chance I read the article below in the Sai Gon Economics Times no. 38-2005, dated on 15/09 and found some ideas similar to my suggested solution. This is for your reference.

Steel Asso ciation reacts to the regulations on the steel business
The Vietnam Steel Association (VNSA) has just requested the Government Office to reconsider the necessity of the regulations on steel business promulgated by the Ministry of Commerce in the middle of August 2005 and petition the government to assign the Ministry of Justice to compare this regulation with current law for more appropriate decisions.
For the VNSA, construction steel is neither a kind of conditional commodity nor one that is under government price controls. And from 1993 the government abolished the regulation of ceiling prices and floor prices for this commodity. Moreover, according to VNSA the production capacity of the whole country is 6 million tons/year, two times more than the demand so the competition among enterprises is very strong, and cannot be a monopoly. So there is no reason for the Ministry of Commerce to issue a regulation for this kind of commodity separately. Besides, some stipulations interfered too much in the business self-regulation of the enterprises mentioned in the state-owned enterprise law and the state laws on price.
VNSA thinks that the Ministry of Commerce should not intervene in the market by administrative

procedures

T.H
home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

Fulbright Economics Teaching Program

Fall Semester

 05/09/2005-23/12/2005MICROECONOMICS

Suggested solution to Assignment 2

Question 1.

a. Table of Minhs demand for bottled water

P (thousand dong/bottle)	Q^{D} (bottle)
7	1
5	2
3	3
1	4

P (thousand dong/bottle)

Minhs demand curve for bottled water is a step graph if the quantity is a discrete variable. If the quantity is a continuous variable the demand line is straight.
b. If the price of a bottle of water is 4,000 dong, Minh will buy 2 bottles. Minhs surplus is 4,000 dong $=(7-4)+(5-4)$
home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

c. If the price goes down to 2,000 dong, the demand quantity is 3 bottles. Minhs surplus now is 9,000 dong $=(7-2)+(5-2)+(3-2)$, the increase in quantity is: . $\mathrm{CS}=9-4=5,000$ dong.

Question 2.

Assume that for Minh, beef is a normal good, in contrast to rice, which is an inferior good. If the price of beef decreases, Minhs consumption of rice will decrease and his consumption of beef will increase. An illustrative graph follows.

Question 3.

The price of 1 kg of apples is $\mathbf{2 0 , 0 0 0}$ dong and 1 kg of oranges is $\mathbf{1 0 , 0 0 0}$ dong.

 One consumer first buys 10 kg of apples and 5 kg of oranges. At that time the consumers marginal utility of 1 kg of apples is 3 units and 1 kg of oranges is lunit.a. This consumer does not achieve maximum utility because MUA/PA> MUO/PO (3/20>1/10)
b. To achieve maximum utility, this person has to adjust the quantity of each kind of the above fruit by buying more apples and less oranges to achieve maximum utility: MUA/PA= MUO/PO.

Further explanation: Under the first method of buying, the marginal utility of every dong of used to buy apples is greater than the marginal utility of every dong used to buy oranges. Under the rule of decreasing marginal utility, the consumer has to buy more apples and fewer oranges until the marginal utility of each dong spent on different kinds of goods is equal.

Ouestion 4.

A big laundry in Ho Chi Minh City needs several hundred kg of detergent. The owner
said, I think that OMO is as good as TIDE, and my shop normally just uses these two kinds of detergent. She continued, However sometimes I buy only one of the two, and sometimes I buy both of them at random, just to get the quantity I need.
a. Her two sayings do not contradict each other at all. The benefit of each kg of detergent of any brand name is the same, but which one we should buy will depend their relative prices.

MUO = MUT does not provide enough information to choose which one and we have to compare MUO/PO and MUT/PT to make a decision.
If MUO/PO $>$ MUT/PT as $\mathrm{PO}<\mathrm{PT}$ we should only buy OMO.
If MUO/PO $<$ MUT/PT as PO $>$ PT we should only buy TIDE.
If $\mathrm{MUO} / \mathrm{PO}=\mathrm{MUT} / \mathrm{PT}$ as $\mathrm{PO}=\mathrm{PT}$ we should buy both of them at random.
b. In consumption, the relationship between these two goods is as perfect substitutes.
c. The marginal rate of substitution (MRS) between these two kinds of goods is a constant. If each bag of detergent is packed the same in $1 \mathrm{~kg}, 5 \mathrm{~kg}$, or 10 kg MRS $=1$. If OMO is packed in 5 kg , TIDE is packed in 10 kg MRSOT $=1 / 2$ or MRSTO $=2$
d. These two goods are perfect substitutes so the indifference curve is a straight downward-sloping line like the budget line, and in this case the equation of the indifference curve can be written as follows:
$\mathrm{U}(\mathrm{O}, \mathrm{T})=\mathrm{aO}+\mathrm{bT}$
where O is the number of bags of OMO and T is the number of bags of TIDE ($a=b$ if the weight of each bag of two kinds is the same, $a=2 b$ if the weight of each bag of OMO doubles each bag of TIDE).
e. Assume that the owner of the laundry needs 140 kg of detergent every day, she buys both OMO and TIDE at random when $\mathrm{PT}=\mathrm{PO}$

The budget to buy 120 kg of OMO is B_{1}. This budget is not enough to buy 120 kg of TIDE.
Whereas the budget sufficient to buy 120 kg of TIDE is $\mathrm{B}_{2} . \mathrm{B}_{2}>\mathrm{B}_{1}$, therefore

f. Assume that the owner of the laundry needs 140 kg of detergent every day, she buys both OMO and TIDE at random when $\mathrm{PT}=\mathrm{P}_{\mathrm{O}}$

Fulbright Economics Teaching Program

Fall Semester
05/09/2005 23/12/2005

MICROECONOMICS

Suggested solution to Assignment 3

Question 1.

Average income of each household: 40.50 USD/month
Oil price before the increase: P

$$
\mathrm{xl}=0.375 \text { USD/liter }
$$

Oil price after the increase: P
$\mathrm{x}_{2}=0.60$ USD/liter

Estimate of the utility function for each household for spending on oil and other goods:
$\mathrm{U}(\mathrm{X}, \mathrm{Y})=2 \mathrm{X}^{1 / 2} \mathrm{Y}$
where: X is the number of liters of oil used every month.
Y is the balance of income available to spend on other items.
a) Determine the number of liters of oil that each poor family bought every month before and after the price increases, in the case that there is no subsidy.

Constraint: X.P ${ }_{\mathrm{x}}+\mathrm{Y} . \mathrm{P} \quad \mathrm{Y}=\mathrm{I}$
Objective function: $\operatorname{Max} U(X, Y)=2 X^{1 / 2} Y$
To maximize the utility of limited budget the poor households have to buy oil and other kinds of goods with quantities as follows:
X.P
x^{+}Y.P $\mathrm{y}=\mathrm{I}(1)$ (Constraint)
and MU

$$
x^{\prime} / \mathrm{P}_{\mathrm{X}}=\mathrm{MU} \quad \mathrm{y}^{\prime} / \mathrm{P}_{\mathrm{Y}}(2)(\text { Optimal condition })
$$

By the utility function $\mathrm{U}(\mathrm{X}, \mathrm{Y})=2 \mathrm{X}^{1 / 2} \mathrm{Y} \Rightarrow M U_{X}=\frac{\cdot U}{. X}=\frac{Y}{X^{1 / 2}}$ and
$M U_{Y}=\frac{. U}{. Y}=2 \mathrm{X}^{1 / 2}$
Substituting all the given and calculated values in (1) and (2):
Oil price before the increase
$0.375 \mathrm{X}+\mathrm{Y}=40.5(\mathrm{P} \quad \mathrm{Y}=1)(3)$

$$
\frac{Y=}{0,375 X^{1 / 2}} \quad 2 X^{1 / 2} \Rightarrow \mathrm{Y}=0.75 \mathrm{X}(4)
$$

Substituting (4) in (3): $0.375 \mathrm{X}+0.75 \mathrm{X}=40.5=>\mathrm{X}=\mathrm{X} \quad \mathbf{1}^{\mathbf{1}}=\mathbf{4 0 . 5} / \mathbf{1 . 1 2 5}=\mathbf{3 6}$
liters.
Money spent on other goods is: $Y=Y \quad 1=0.75 * 36=27$ USD.
The utility is: $\mathrm{U} \quad 1=2 * 36{ }^{1 / 2 *} 27=324$ utility units
Oil price before the increase

Fulbright Economics Teaching Program
Academic year 2005-2006
$0.6 \mathrm{X}+\mathrm{Y}=40.5(5)$

$$
\frac{Y=}{0,6 X^{1 / 2}} \quad 2 X^{1 / 2}=>\mathrm{Y}=1.2 \mathrm{X}(6)
$$

Substituting (6) in (5): $0.6 \mathrm{X}+1.2 \mathrm{X}=40.5 \Rightarrow \mathrm{X}=\mathrm{X}$

$$
{ }_{2}=40.5 / 1.8=22.5
$$

liters.
Money spent on other goods is: $Y=Y \quad{ }_{2}=1.2 * 22.5=27$ USD.
The utility is: $\mathrm{U}_{\mathbf{2}}=\mathbf{2 * 2 2 . 5}{ }^{\mathbf{1 / 2} * 27}=\mathbf{2 5 6 . 1 4 4 5}$ utility units
b) Graph

c) The price elasticity of demand for oil for poor households.

$$
\begin{aligned}
& E_{P}=\frac{. X}{\cdot P_{X}} \frac{\bar{P}_{X}}{\bar{X}}=\frac{X_{2}-X_{1}}{P_{X_{2}}-P_{X_{1}}} \frac{\left(P_{X 2}+P_{X 1}\right) / 2}{\left(X_{2}+X_{1}\right) / 2} \\
& E_{P}=\frac{22,5-36}{0,6-0,375} \frac{(0,6+0,375) / 2}{(22,5+36) / 2} \\
& E_{P}=\frac{-13,5}{0,225} \quad \frac{0,4875}{29,25}=-1
\end{aligned}
$$

d) To determine the substitution impact, we have to exclude the income impact. This means that we have to determine the new optimal consumption on the first indifference line U_{1}, but at the price $\mathrm{P}_{\mathrm{x} 2}$.

Constraint: $\mathrm{U}(\mathrm{X}, \mathrm{Y})=2 \mathrm{X} \quad{ }^{1 / 2} \mathrm{Y}=\mathrm{U} \quad 1$
Objective function: Min $E=X . P \quad x^{+}$Y.P $\quad y(E$ is the amount of money consumed)

To minimize consumption at the determined utility poor households have to buy oil and other kinds of goods in the following quantity:

$$
\begin{aligned}
& \mathrm{U}(\mathrm{X}, \mathrm{Y})=2 \mathrm{X} \quad{ }^{1 / 2} \mathrm{Y}=324(7) \quad \text { (Constraint) } \\
& \text { and } \mathrm{MU}_{\mathrm{X}} / \mathrm{P}_{\mathrm{X}}=\mathrm{MU} \quad{ }_{\mathrm{Y}} / \mathrm{P}_{\mathrm{Y}}(8) \text { (Optimal condition) }
\end{aligned}
$$

(8) that is (6) in part a, this means $\mathrm{Y}=1.2 \mathrm{X}$ (9)

Substituting (9) in (7): $2 \mathrm{X} \quad{ }^{1 / 2} * 1.2 \mathrm{X}=324 \Rightarrow 2.4 \mathrm{X} \quad{ }^{3 / 2}=324$

$$
\begin{aligned}
& X^{3 / 2}=135 \Rightarrow X=X \quad X^{\prime}=\mathbf{2 6 . 3 1 6} \text { liters } \\
& Y=Y^{\prime}=\mathbf{1 . 2} * \mathbf{2 6 . 3 1 6}=\mathbf{3 1 . 5 7 9} \text { USD }
\end{aligned}
$$

Lowest total consumption is $E=I^{\prime}=\mathbf{0 . 6} \mathbf{2 6 . 3 1 6}+\mathbf{3 1 . 5 7 9}=\mathbf{4 7 . 3 6 9}$ USD Therefore, when the price increases, substitution makes the purchasing power of poor households decrease $\mathbf{9 . 6 8 4}$ liters ($=\mathbf{X} \quad 1^{-} \mathrm{X}=3626.316$) and the income increase make their purchasing power decrease $\mathbf{3 . 8 1 6}$ liters ($=\mathrm{X}^{\prime}-\mathrm{X}_{2}=26.316$ 22.5)

e) For poor households, oil is a normal good, because when the income decreases $\left(\begin{array}{ll}\mathrm{B} \cdot \mathrm{B} & 2\end{array}\right)$, the purchasing power decreases $\left(\begin{array}{lll}\mathrm{X} & \mathrm{X} & 2\end{array}\right)$,
f) The normal demand curve and the compensating demand curve are shown on the next page.
g) According to the consumer surplus corresponding to the normal demand curve the minimum amount of subsidy (S) is:
$\mathrm{S}=. \mathrm{CS}=0.5^{*}(36+22.5)^{*}(0.60 .375)=6.58125$ USD/month
(area of the trapezium $\mathrm{P}_{\mathrm{X} 1} \mathrm{P}_{\mathrm{X} 2} \mathrm{~A}_{2} \mathrm{~A}_{1}$)
According to the consumer surplus corresponding to the compensating demand curve the minimum amount of subsidy (S) is:
$\mathrm{S}=. \mathrm{CS}=0,5^{*}(36+26.316)^{*}(0.60 .375)=7.0106$ USD/month
(the area of the trapezium $\mathrm{P}_{\mathrm{X} 1} \mathrm{P}_{\mathrm{X} 2} \mathrm{~A}^{\prime} \mathrm{A}_{1}$)

h) To get the old utility $\left(\begin{array}{ll}U_{1}\end{array}\right)$ at the new price $\left(\begin{array}{ll} & \mathrm{x}_{2}\end{array}\right)$ the poor households need to have an income of I $=47.369$ USD (calculated in question d above). Therefore according to the compensating demand curve the minimum amount of subsidy (S) is:

i) According to the equivalent variation (EV), first we have to find the minimum amount of money such that consumers get the new utility ($\left.\begin{array}{ll}\mathrm{U}_{2}\end{array}\right)$ at the old price ($\mathrm{P}_{\mathrm{x} 1}$)
(11) is actually (4) from part a), meaning $\mathrm{Y}=0.75 \mathrm{X}$ (12)

Substituting (12) in (10): $2 \mathrm{X} \quad 1 / 2 * 0.75 \mathrm{X}=256.1445 \Rightarrow 1.5 \mathrm{X} \quad{ }^{3 / 2}=256.1445$

$$
X^{3 / 2}=170.763 \Rightarrow X=X \quad \|=\mathbf{3 0 . 7 8} \text { liters }
$$

$$
Y=Y^{\prime \prime}=0.75 * 30.78=23.085 \text { USD }
$$

Lowest total consumption is $\mathrm{E}=\mathrm{I}^{\prime \prime}=\mathbf{0 . 3 7 5} * \mathbf{3 0 . 7 8}+\mathbf{2 3 . 0 8 5}=\mathbf{3 4 . 6 2 7} \mathbf{~ U S D}$
j) According to the equivalent variation (EV) the minimum amount of subsidy (S) is:
$\mathrm{S}=\mathrm{EV}=\mathrm{I}-\mathrm{I}^{\prime \prime}=40.5-34.627=5.873$ USD/month
k) If the Indonesian government raises the oil price and provides an amount of subsidy according to the compensating variation (CV), it can ensure that poor households utility will be the same as it was before the price increase becomes effective. Therefore some have criticized it as a pointless policy. They hold that it would be better to keep the same price and avoid spending money on managing the subsidy operation. This criticism is not valid. If the same price is maintained and a large price subsidy given for the whole of society, it will encourage people to use too much oil and to use it inefficiently. Having the domestic price reflect the

- oromapricesmalkesfoh masidfficidndolse be provided to poor households so the budget will be less than before and they themselves will use oil more economically.

1) In fact, the Indonesian government provides a subsidy of $13 \mathrm{USD} / \mathrm{month}$ to each poor household to buy oil, making their nominal income 53.50 USD/month.

$$
\begin{aligned}
& 0.6 \mathrm{X}+\mathrm{Y}=53.5(13) \\
& \frac{Y=}{0,6 X^{1 / 2}} \quad 2 X^{1 / 2}=>\mathrm{Y}=1.2 \mathrm{X}
\end{aligned}
$$

Substituting (14) in (13): $0.6 X+1.2 X=53.5 \Rightarrow X=X$

$$
3_{3}=53.5 / 1.8=29,72 \text { liters }
$$

And the amount of money for other kinds of goods is: $\mathrm{Y}=\mathrm{Y} \quad \mathbf{2}_{\mathbf{2}}^{\mathbf{= 1 . 2}} \mathbf{2 9 . 7 2}=$ 35.66 USD.

The utility is: $U_{2}=2 * 29.72^{1 / 2} * 35.66=388.88$ units of utility
Their welfare increases compared with the oil price before the increase ($U \quad{ }_{1}=324$)
m) The calculated results are:

	Amount of oil bought every month (liters)	Amount of subsidy (USD)	Utility (units)
Before the price increase and with no subsidy	$\mathbf{3 6}$	$\mathbf{0}$	$\mathbf{3 2 4}$

After the price increase and with no subsidy	$\mathbf{2 2 . 5}$	$\mathbf{0}$	$\mathbf{2 5 6 . 1 4 4 5}$
After the price increase and with subsidy provided by CV	$\mathbf{2 6 . 3 1 6}$	$\mathbf{6 . 8 6 9}$	$\mathbf{3 2 4}$
After the price increase and with the actual subsidy of 13 USD/month	$\mathbf{2 9 . 7 2}$	$\mathbf{1 3}$	$\mathbf{3 8 8 . 8 8}$

Question 2.

Fulbright Vietnam participants are required to do their assignments on computer. In order to support them in printing their weekly assignments and research reports the Board of Directors offers them three options.
Option 1: Provide an amount of 60,000 dong/month, included in the scholarship, for them to use as they want. They have to pay the market price of 500 dong/page.
Option 2: Provide free printing to a maximum of 120 pages every month. If they exceed the limit they have to pay 500 dong/page.
Option 3: Provide a price subsidy of 50\% of the market price, meaning that they have to pay only 250 dong/page. The maximum price subsidy is 60,000 dong/month.

Assume that each student has a fixed budget of 200,000 dong/month to spend on books, newspapers, learning materials, stationery and on printing the assignments and research reports.

The budget line

a) In the case that every month students print less than 120 pages they will think that the first option is more beneficial than the other two (utility is $\mathrm{U} \quad{ }_{1}$).
b) In the case that every month the students print from 120 to 239 pages they will think that the first and second options are the same and that they are more beneficial than the third option (utility is U_{2}).
c) And in the case that every month the students need to print 240 pages or more, they will think that the three options are equal in value (utility is $\mathrm{U} \quad{ }_{3}$).
d) You should advise the class monitor to choose the cash subsidy (option 1). By this option, your benefit is always bigger or at least equal to the other two options, no matter how many pages you want to print every month.

Fulbright Economics Teaching Program
Fall Semester
05/09/2005 23/12/2005
MICROECONOMICS
\section*{Assignment 4}
Distributed: 29/09/2005
Due: 5/10/2005 (8:20am)

Question 1. Gambling with hurricanes

Assume that the budget of province X is B and can be used for two purposes: taking precautions against hurricanes and spending for other public purposes. Assume that the probability of a dike being breached by a hurricane every year is 20% and the damage caused by the dike being breached is $L(L<B)$. Also assume (unrealistically) that provincial efforts to take precautions against hurricanes do not decrease the probability of a dike breach occurring, but can reduce the damage caused by the breach. Assume that in order to limit the damage having value I the province has to
invest
an
ambsita graph to determine qualitatively the optimal investment of province X in of pI
defenses against hurricanes.
Prudget line
If $I=0: C \quad L, I=0=B L$

C $\quad \mathrm{W}, \mathrm{I}=0=\mathrm{B}$
If $I=L: C \quad L, I=L=B p L$

C $\quad \mathrm{w}, \mathrm{I}=\mathrm{L}=\mathrm{B} p \mathrm{~L}$
The corner coefficient of the budget line is: $-\mathrm{p} /(1-\mathrm{p})$.
The corner coefficient of the fair odds line is: $-. /(1-)=.-0.2 /(1-0.2)=-1 / 4$.

Because we do not know the exact value of p we have to consider 2 cases:

Case 1: $p=$.. It can easily be seen that the optimal policy for province X is to invest so as fully to reduce the risk (full insurance see part 2 of the handout).

Case 2: $\mathrm{p}>$.. See the graph.
C_{w} ।

a. Does province X exert its maximum effort completely to protect against the danger of a breach in a dike occurring. No.

In case 1 , when $p=$, the probability of a dike breach occurring is higher than the cost to reduce the damage caused by the breach, so it is easy to understand that province X wants to invest an amount of L to eliminate the damage.

In case 2 , when $p>$., as the result of qualitative analysis we see that province X will not invest so as to eliminate the damage, and this seems a little strange to understand because it is clear that when a dike breach occurs (even by any probability lower than the necessary cost to decrease its damage) the damage is immeasurable. If we come back to the problem of insurance (presented in class and in the reading), it seems that we can understand and agree with each other that when the insurance price is higher than the possibility of accident occurring the individuals will not buy the full insurance. But this is more difficult to understand when the decision is in common, especially when that decision is made by the central or by local government.

In the media, not only in Vietnam but in many other developed and developing
countries as well, we find that the press often criticize the government for not rooting out every vestige of corruption, criminals, and environmental pollution. One of the basic reasons, from the economic perspective, of this reality is that the cost of wiping out corruption, crime, and environmental pollution is too high, much higher than its benefit (recall the decreasing marginal benefit). This is a typical illustration for marginal analysis.
a) Use the same assumptions as above but now, if the dike is breached, the province will receive an amount of relief S from the Center. Use a graph to determine qualitatively the optimal investment of province X in hurricane defenses. What comments do you have when comparing the result with the above question.

The amount of relief S from the Center does not change the probability of a dike breach occurring so SLCB is the same. Now lets look at how the budget line changes.

```
If \(\mathrm{I}=0\) : C
    \(\mathrm{L}, \mathrm{I}=0=\mathrm{B} L+\mathrm{S}\)
C \(\quad \mathrm{W}, \mathrm{I}=0=\mathrm{B}\)
If \(\mathrm{I}=\mathrm{L}: \mathrm{C} \quad \mathrm{L}, \mathrm{I}=\mathrm{L}=\mathrm{BpL}+\mathrm{S}\)
```

$$
\mathrm{w}, \mathrm{I}=\mathrm{L}=\mathrm{B} \mathrm{pL}
$$

The corner coefficient is still: $-\mathrm{p} /(1-\mathrm{p})$. The only difference is that the budget line shifts horizontally to the right by a portion exactly equal to S . Then if a graph is used we will see the optimal point move closer to E it means that province X tends to invest less in overcoming the consequences of hurricanes.

We can come to a conclusion by mathematics. To know if this amount of relief changes the amount of investment of province X to overcome the consequences of hurricanes, see the optimal condition: MRS $=$ the slope of the budget line.

In class we already demonstrated that: $\quad M R S=-\frac{\cdot}{1^{\prime}() \cdot} \frac{U \mathcal{C}()_{w}}{U C{ }_{L}}$
So, when there is no relief the optimal investment I ${ }^{* N S}$ has to meet fully:
$\frac{p .}{11-p}=-\frac{U B L-+-(1) p I_{N S}^{*}:}{U B\left(I-p_{N S}^{*}\right)} . \quad \frac{U B L-+-(1) p I_{N S}^{*}:}{U B\left(I-p_{N S}^{*}\right)}=\frac{p .(1-)}{. p(1)}$
And when there is relief the optimal investment I *S has to meet fully:
$\frac{p .}{1+-p}=-\frac{U B L L^{-+-+(1) p} I_{S}^{*} U B L}{U B\left(I-p_{s}^{*}\right)} \cdot \frac{{ }^{\prime}:{ }^{-+-+(1) p I_{S}^{*} S}:}{U B\left(I-p_{s}^{*}\right)}=\frac{p .(1-)}{p(1)}$
Since $\mathrm{U}[]>$.0 and $\mathrm{U}[]<$.0 it is easy to see that the optimal investment with relief $\left(I^{* S}\right)$ will be lower than the optimal investment $\left(I^{* N S}\right)$ when there is no relief. This is an example illustrating the moral hazard of the local government when they know for sure that they will receive relief from the Center when a dike breach occurs.

Question 2: Preventing corruption

Tac Lem is the cashier of a company. Although right from the beginning he accumulated a colossal fortune W, it is still hard for him to give up the habit of once in a while siphoning off the company money. The probability of being caught in the act of stealing for Tac Lem is p. If he is caught he has to pay a fine of a dong for each dong stolen by him.
a) Use a graph to analyze the optimal amount of money Tac Lem should steal depending on p and a.

The corner coefficient of SLCB: $-p /(1-p)$
Budget line: If Tac Lems siphoned off money is named T:

$$
\text { If T }=0: C \quad \mathrm{~L}, \mathrm{~T}=0=\mathrm{C} \mathrm{~W}, \mathrm{~T}=0=\mathrm{W}
$$

In the general case: $\mathrm{C} \quad{ }_{\mathrm{L}}=\mathrm{W}+\mathrm{T} \mathrm{aT}=\mathrm{W}(\mathrm{a} 1) \mathrm{T}$

C

$$
\mathrm{w}=\mathrm{W}+\mathrm{T}
$$

So, the corner coefficient of the budget line $=-1 /(\mathrm{a} 1)$
Case 1: SLCB is steeper than or coincides with the budget line, meaning $\mathbf{p} /(1-p)=$ $1 /(a 1)$, or $p=1 / a$. In this case, the optimal solution is the corner solution. It means that the probability of being caught in the act of stealing for Tac Lem is high enough for him not to siphon off the company money.

Case 2: The budget line is steeper than SLCB, or $p<1 / \mathrm{a}$, so the optimal solution is at B (see the above graph).
a) Do you have any suggestions to reduce Tac Lems corruption (these suggestions are to be based only on the background and data given above).

Under other similar conditions these proposals revolve around 3 basic factors of the model:
i) The higher the probability of being caught, the lower the incentive for Tac Lem to pocket the company money.
ii) The higher the fine paid when he is caught, the lower the level of corruption.
iii) Utility function: The more ashamed the cashier feels when he is caught, the less eager he will be to siphon off the company money.
c) Assume $a=3$. Calculate the lowest value of p that no more motivates Tac Lem to steal money.

There is no more motivation for Tac Lem to steal money if the optimal solution is a corner solution, i.e. when $p=1 / \mathrm{a}$. So the lowest value of p that no more motivates Tac Lem to steal money is $p=1 / 3$.

Question 3: A constant assignment

The assumption from question 2 is used in this question, but now we solve the problem with concrete numbers.

Assume Tac Lems von Neumann Morgenstern utility function is $U(C)=\ln C$.
a) Assume $p=0.2, a=3$. Calculate the
maximum amount of money Fac Lem
would steal and his expected utility, and analyse the dependence of these two
values on p and a by algebraic methods.

Tac Lems utility function is:
$E U=p \cdot U\left(C_{L}\right)+(1 p) \cdot U\left(C \quad{ }_{W}\right)=p \cdot U\left[W\left(\begin{array}{l}\text { a }\end{array}\right) T\right]+(1-p) \cdot U(W+T)$
The corner coefficient of SLCB $=-\mathrm{p} /(1-\mathrm{p})=-0.2 /(10.2)=-0.25$

The corner coefficient of the budget line $=-1 /($ a 1$)=-1 / 2$.
The optimal level of take of the company money T $\quad{ }^{*}$ has to meet fully MRS $=$ the corner coefficient of the budget line, or:

$$
\frac{.}{1-.} \frac{U \forall i(a) F-}{U \mathfrak{w}() T++^{*}} \quad{ }^{*}:=-\frac{11}{a-14}-\frac{\frac{-2}{w F 2^{*}}}{\frac{1}{w F^{*}}}=-\cdot \frac{\underline{\underline{1}}}{2} \quad T^{*} \quad \mathrm{w} / 5
$$

Tac Lems expected utility is:

[^4]$\mathrm{EU}=0.2 \ln (0.6 \mathrm{w})+0.8 \ln (1,2 \mathrm{w})=0.043+\ln (\mathrm{w})$
b) Now assume that Tac Lem can enter into collusion with the chief accountant so the probability of finding out decreases down to 0.1. In return, Tac Lem has to give the chief accountant a 50\% cut. Furthermore, if discovered, Tac Lem has to accept all the responsibility himself. Calculate the maximum amount of money stolen by Tac Lem and his expected utility in this case. Comparing this with the result in question (a) what comments do you have.

Then, Tac Lems expected utility is:
$\mathrm{EU}=0.1 \ln (0,26 \mathrm{w})+0.9 \ln (1.185 \mathrm{w})=0.019+\ln (\mathrm{w})$
So, when Tac Lem and the cashier can enter into collusion with each other the double level of theft doubles. The possibility of being caught is lower therefore Tac Lem
tends to siphon off more of the company money. If Tac
Lem enters into collusion with
the chief accountant it means that he accepts to share part of his utility to decrease the probability of being caught from 20% down to 10% - synonymous with the decease in risk.

Question 4. Diversification

Imagine that (not true of course) on the morning of September 15 th , 2005 you are given 10 million dong to solve some problems as follows:
a) Choose a company quoted at the HCM City Securities Trading Center at random and calculate how many securities (round number) you could buy if on the morning of September $15^{\text {th }}, 2005$ you spent the whole 10 million dong to buy securities in this company.

If we choose securities REE and HAP the calculated result will be as follows:

Date Security	REE		HAP		50\%REE - 50HAP	
	price	Investment value	Security price	Investment value	Security price	Investment value
$15 / 09 / 2005$	21.5	10,000	22.8	$10,00026.5$	0,000	

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

16/09/2005	32.3	10,239 23.110	, 11827.0	10,178		
19/09/2005	33.7	10,683 23.210	,162 27.6	10,422		
20/09/2005	35.3	11,190 24.310	,643 28.9	10,917		
21/09/2005	33.7	10,683 23.210	,162 27.6	10,422		
22/09/2005	35	11,095 23.510	,293 28.3	10,694		
23/09/2005	34.8	11,032 23.510	,293 28.2	10,662		
26/09/2005	34.5	10,937 23.510	,293 28.1	10,615		
27/09/2005	34.2	10,841 23.310	,205 27.9	10,523		
28/09/2005	34.4	10,905 23.310	,205 28.0	10,555		
29/09/2005	34.2	10,841 23.410	,249 27.9	10,545		
30/09/2005	35.9	11,380 24.510	,731 29.3	11,056		
Investment amount		10,000		10,000		10,000
Number of securities bought		317		438		378
Average value		10,819		10,280		10,549
Variance		149,128		43,708		81,970

b) Considering the total value of all the securities you bought as a random variable, draw a graph to calculate the average value and variance of this random variable from September $15{ }^{\text {th }}$ to $30{ }^{\text {th }}$.

CHANGES OF INVESTMENT VALUE

c) Repeat questions (a) and (b) for the securities of another optional company.
(See the above solution)
d) Now assume that you are required to spend 5 million dong on each security. Analyse the variation of the total value of all your securities from September 15 to $30^{\text {th }}$. What are your comments on this variation compared with the two cases above. ${ }^{2}$

We see that the average value of the securities, the average price and the variance of an investment portfolio comprising two securities lie between the respective values of the two securities. From this emerges the question: Could it be the case that the conclusion of all the theoretical models that diversification of investment reduces the risk is incorrect. Actually, this is not the case. Looking at the graph, we can see that the price changes of the selected securities are as alike as two peas in a pod, and this is also true for other types of security. In particular, on the graph there are two periods of time when the price suddenly changes for all types of securities quoted simultaneously, that is from September 19 to 21 and from September 29 to 30. The reason is that there was a rumor of a new policy allowing the level of ownership of a

company by ioreign snarenoiders to rise irom 30% to
49%. This makes us question
the randomness of variations in security price in the security trading market and the
role of the security market in combining and dispersing risk.

[^5]
Fulbright Economics Teaching Program

Fall Semester

05/09/2005 23/12/2005

MICROECONOMICS

Suggested solution to Assignment 5

Question 1.

a) Increasing returns to scale show the relationship between all the inputs and the output, while economies of scale show the relationship between the output and the average cost.
Increasing returns to scale occur when the output increases at a faster rate than the inputs.
Economies of scale occur when the average cost decreases as the output increases. Increasing returns to scale lead to economies of scale when the prices of the inputs do not change or increase at low rate as their use increases. If the opposite holds true, then increasing returns to scale lead to diseconomies of scale. For example, if all inputs increase by 20% while the output increases by 28% it will mean that the company enjoys economies of scale, and if the unit prices of the factors do not change or increase by less than 8% it is certain that the average cost will decrease and the company will eniov

-- - -

economies
Bf When the average cost decreases and the output increases the company enjoys Sezhomies of scale. Economies of scope are present when the average cost decreases as it produces more different types of products (product diversification).

Question 2.

You should implement the project to diversify the product range because costs increase less than sales. If the company were in profit before, the profit would increase. If it were making a loss, the loss would decrease.

Question 3.

The output q_{1} does not bring maximum profit for the company. To maximize profit the enterprise should decrease the output compared with present levels.

At MC $<$ MR output should be increased, because the profit will increase or the loss will decrease.
At $\mathrm{MC}>\mathrm{MR}$ output should be decreased, also because the profit will increase or the loss will decrease.
$\mathrm{MC}=\mathrm{MR}$ is where the maximum profit is and where the minimum loss is.

Question 4.

$$
0=100 \text {. }
$$

a) T . (1) $=>1=\mathrm{Q}^{2} / 400$

$\mathrm{MC}=\mathrm{dTC} / \mathrm{dQ}=(3 / 100) \mathrm{Q}$
b) To maximize profit, a perfectly competitive industry will produce an output to satisfy the condition of $\mathrm{MC}=\mathrm{P}$

$$
(3 / 100) \mathrm{Q}=9 \Rightarrow \mathrm{Q}=300
$$

$$
\mathrm{TR}=\mathrm{P} * \mathrm{Q}=2,700 ; \mathrm{TC}=200+(3 / 200) * 300 \quad 2=1,550
$$

$$
.=\mathrm{TR} \mathrm{TC}=1,150
$$

c) In the long run, the enterprise can adjust both its capital and labor. The combination of these two factors is optimal when $\mathrm{MPk} / \mathrm{r}=\mathrm{MP} \quad 1 / \mathrm{w}$ 1

$$
\begin{aligned}
1 / 2 / 2 \mathrm{k}^{1 / 2}=\mathrm{k} \quad \quad \quad 1 / 2 / 61^{1 / 2}=>\mathrm{k}=31(2) \\
1 / 2 \mathrm{l}^{1 / 2}=300 \Rightarrow \mathrm{l}=150 / 3 \quad{ }^{1 / 2}=86.6
\end{aligned}
$$

Substituting (2) in (1): $\mathrm{Q}=2 *$ (31)

$$
\mathrm{k}=259.8
$$

$$
\mathrm{TC}=2^{*} 259.8+6^{*} 86.6=1,039.2
$$

$$
.=\mathrm{TR} \mathrm{TC}=2,700-1,039.2=1,660.8
$$

Question 5.

a) 10 protect domestic electronic
 on

The domestic equilibrium price increases from $\mathrm{P} \quad{ }^{\mathrm{w}}$ to $1.5 \mathrm{P}{ }^{\mathrm{w}}$
Demand decreases from $Q{ }^{\mathrm{D} 0}$ to $Q^{\mathrm{D} 1}$
Supply increases from $Q^{\mathrm{S} 0}$ up to $\mathrm{Q}{ }^{\mathrm{S} 1}$.

Imports decrease from ($\mathrm{Q}{ }^{\mathrm{D} 0} \mathrm{Q}{ }^{\mathrm{S0} 0}$) down to ($\mathrm{Q}^{\mathrm{D} 1} \mathrm{Q}{ }^{\mathrm{Sl}}$)
Consumer surplus decreases, the consumers lose: . $\mathrm{CS}=-\mathrm{a}-\mathrm{b}-\mathrm{c}-\mathrm{d}$
Producer surplus increases, the producers get profit: .PS = a
The government profits from the tax collected: . $G=c$
Social surplus decreases: . $N W=-b-d$
b) Under pressure from consumers and to push domestic electronic companies to improve their production and management, to strengthen competition and to be ready for integration, the government reduces the import tax rate down to 20% of the world price.

The domestic equilibrium price decreases from 1.5P ${ }^{w}$ down to $1.2 \mathrm{P}{ }^{\mathrm{w}}$ Demand increases from $Q^{\text {D1 }}$ up to $Q^{D 2}$
Supply decreases from $Q^{S 1}$ down to $Q^{S 2}$
Imports increase from $\left(\mathrm{Q}^{\mathrm{D} 1} \mathrm{Q}{ }^{\mathrm{S} 1}\right)$ up to $\left(\mathrm{Q}^{\mathrm{D} 2} \mathrm{Q}^{\mathrm{S} 2}\right)$
Consumer surplus increases, the consumers gain profit: . $C S=a+b+c+d$
Producer surplus decreases, producers lose: . $\mathrm{PS}=-\mathrm{a}$
Change (if any) in the tax collected by the government: $. \mathrm{G}=\mathrm{e}+\mathrm{g}-\mathrm{c}$ (no
conclusion as to whether it increases, decreases or remains unchanged)
Social surplus increases: . NW $=+\mathrm{b}+\mathrm{d}+\mathrm{e}+\mathrm{g}$
c) After reducing the import tax, domestic enterprises react strongly and the imported goods are made subject to a sales tax. The sales tax rate is 25% calculated on the world price including import tax.
At this excise tax rate, the domestic price will increase to $1.5 \mathrm{P} \quad{ }^{\mathrm{w}}$. Therefore all the conclusions regarding the impact of excise tax in this question are simply the exact opposite to question b .
d) After reducing the import tax, the government imposes a sales tax at a rate of 25% calculated on the world price including import tax. The sales tax is imposed on both imported goods and domestic production.
There are some differences in this answer compared with the answer to question c .

The domestic equilibrium price (demand price) increases from 1.2P $\quad{ }^{\mathrm{w}}$ to 1.5 P w
Demand decreases from $Q^{D 2}$ down to $Q^{D 3}=Q^{\text {D1 }}$
Supply price (producers final price) does not change, it remains at $\mathrm{P} \quad \mathrm{S}=1.2 \mathrm{P}$ w Supply does not change $\mathrm{Q}^{\mathrm{S} 3}=\mathrm{Q}^{\mathrm{S} 2}$.
Imports decrease from ($\mathrm{Q}^{\mathrm{D} 2} \mathrm{Q}^{\mathrm{S} 2}$) down to ($\mathrm{Q}^{\mathrm{D} 3} \mathrm{Q}^{\mathrm{S} 2}$)
Consumer surplus decreases, the consumers lose: . $\mathrm{CS}=-\mathrm{a}-\mathrm{b}-\mathrm{c}-\mathrm{d}$
Producer surplus does not change, so no effect on the producers: .PS = 0
Tax collected by the government increases: . $G=a+b+c-g$
Social surplus decreases: . $\mathrm{NW}=-\mathrm{d}-\mathrm{g}$

Fulbright Economics Teaching Program Fall Semester, 2005

 MICROECONOMICS

 MICROECONOMICS
 Problem Set 6: Market Power: Monopoly
 Answers
 Due date: 8:20 a.m., November 9, 2005

Monopoly Profits

1. A monopoly faces a demand curve $\mathrm{P}=3004 \mathrm{Q}$, a constant average variable cost $=100$, and fixed cost $=50$.

What is the profit maximizing price and output. Explain

```
Answer
1 storder condition for maximizing profit:
MR = MC
R=PQ = 300Q 4Q**2
MR = 300 8Q
MC=100
```

MK
$\theta=25 ; P=200$
MC
$\begin{aligned} & \overline{\text { Profofit }}=\text { Revenue }-c o s t=300(25) \\ & 300\end{aligned}(25) * * 2-100(25) 50=2450$
2 A monopoly must take into account the demand curve facing her firm for maximizing profit. Should the firm produce an output that put it on the inelastic portion of the demand curve. Explain

Answer
Maximizing profits requires:
$M R=M C$

From
$P=M C /(1+1 / E d)$
one has:
$P=M R /(1+1 / E d) \Rightarrow M R=P(1+1 / E d)$
If demand is inelastic : $E d>-1=>(1+1 / E d)<0$ and
$M R<0$

Monopolist will not produce in the inelastic portion of the demand curve, but only the elastic portion of the demand curve

Deadweight Losses

3. A monopolist is characterized by the following: a demand curve : $\mathrm{P}=180 \mathrm{Q}$; $\mathrm{MC}: 60+2 \mathrm{Q}$. Calculate and draw a graph with appropriate labelling of variables to show the areas of DWL.

To achieve this, please compute the following:
a. Monopoly price and output (Pm, Qm);
b. Price and output that would exist under competitive market (Pc, Qc);
c. Price and output that would exist at the intersection of $\mathrm{MC}=\mathrm{MR}=\mathrm{Ps}(\mathrm{Ps}$, Qs). Note that Qs should be equal to Qm, and
d. Deadweight losses arisen from monopoly.

Answer
a. Demand curve: $P=180 Q$

Revenue: $R=P Q=180 Q Q^{* *}{ }_{2}$
$M R=1802 Q$
$M C=60+2 Q$

```
Maximizing profit rule under monopoly
\(M R=M C\)
\(=>1802 Q=60+2 Q=>4 Q=120=>\)
Qm = 30;
Price is determined from the demand curve:
Pm=180 Qm=150
b. Maximizing profit rule under perfect competition:
    \(M C=P\)
    \(=>60+2 Q=180 Q=>3 Q=120=>\)
        \(Q c=40, P c=180-Q c=140\)
c. \(M R=M C=>1802 Q=60+2 Q=>4 Q=120=>\)
        \(Q s=30 ; P s=1802 Q m=120\)
d. \(D W L=(P m-P s)(Q c-Q m) 1 / 2=(150120)(40-30) 1 / 2=(30 x\)
10) \(1 / 2=150\)
```

Tax under competitive and monopoly markets
4. The market for Ha Dong silk faces a demand curve, $\mathrm{P}=28$ 0.02Q. Ms. Las old family business produces silk at the long run average total cost, which is also the marginal cost of 8 units (in thousands of constant VND) per meter.
a. There are several small producers in the village, using the same technology and having similar costs as Ms. Las business. For this question and the question (b) below, the market is considered to be under perfect competition. Compute the equilibrium price Pc and Qc.
b. A tax of 2 units (in thousands of constant VND) is introduced. Compute the price paid by the buyers, the sellers, and the produced quatity.
c. Ten years later, Ms Las business is so successful, she bought all other silk businesses in her village and becomes a monopoly. Cost conditions remain the same as under perfect competition and without tax. Compute the new price Pm and Qm .
d. If a tax of VND 2 units(in thousands of constant VND) is introduced. Compute the monopoly price Pmt and Qmt.

Answer
a. Maximizing profit rule under perfect competition:

$$
P=M C=>
$$

$P=2 \gamma$
0.02Q
b. B\&yers pay
$\overrightarrow{\mathrm{Qc}=} \quad M C 1=M C+$ Tax $=>8+2=10$
2Maximizing profit rule under perfect competition:
$\beta_{8 c}^{000}=M C 1=>$
8
Buyers pays
$P b t=M C 1=10=P c t$
Sellers receive
Pst $=8$
Government receives $T=2$

Qct is derived from
$P c t=280.02 Q c t=>10=280.02 Q c t$
Qct $=(28-10) / 0.02=900$

Imposing a specific tax reduces output and raises price.
c. Demand curve: $P=280.02 Q$

Revenue: $R=P Q=280.02 Q * * 2$

```
MR=28 0.04Q
MC= 8
```

Maximizing profit rule under monopoly:
$M R=M C=>$
$280.04 \mathrm{Q}=8=>0.04 \mathrm{Q}=20=>$
Qm=500;
Price is determined from the demand curve:
Pm $=280.02 Q m=18$
d. $M C 1=M C+\operatorname{tax}=>8+2=10$
Maximizing profit rule under monopoly:
$M R=M C 1=>$
$280.04 \mathrm{Q}=10=>0.04 \mathrm{Q}=18=>$
Qmt = 450;
Price is determined from the demand curve:
$\boldsymbol{P m t}=280.02 Q \boldsymbol{m t}=19$

Imposing a specific tax reduces output and raises price.

Regulation

5. A monopoly faces a demand curve given by $\mathrm{P}=\mathrm{a}-\mathrm{bQ}$ and has a marginal
cost by curve represented by

wants to
a. What is the ceiling price that leads to the greatest reduction of DWL.
i. Draw the graph and indicate the appropriate labels, such as price and quantity under monopoly are (Pm, Qm) and perfect competition are (Pc, Qc).
ii. Solve algebraically the ceiling price.
b. Why a price below that ceiling will lead to inefficiency.

Answer

a.
i. Draw figure

$$
\begin{aligned}
& i i . R=P Q=a Q-b Q^{* *} 2 \\
& M R=a 2 b Q \\
& M R=M C=>a 2 b Q=e+f Q=>Q(2 b+f)=a-e \\
& Q m=(a e) / 2 b+f) ; P m=a b(a e) /(2 b+f)
\end{aligned}
$$

Competitive price:

$$
\begin{aligned}
& P=M C=>a-b Q=e+f Q=>Q(b+f)=a-e \\
& Q c=(a e) /(b+f) ; P c=a b(a e) /(b+f)
\end{aligned}
$$

The ceiling is set at the competitive price $\mathrm{Pc}<\mathbf{P m}$ and $Q c>Q m$. Since $M C=P c$, leading to the largest reduction in DWL. The DWL is zero, provided that the ceiling still allwows the monopoly to operate .
b. Since MC has a positive slope, any price Pg below $P c=M C$ will lead to a lower Qg. Pd is the price that consumers are willing to pay, and which corresponds to a point on the demand curve (D) and which exceeds the MC corresponding to $Q g(P d>M C)$. This will result in some DWL thus inefficiency.
6. A natural monopoly (such as Electricity of Viet Nam) has economies of scale. Its average total cost declines as output rises. The average total cost is therefore larger than its marginal cost which also declines. It faces a linear demand curve $\mathrm{P}=\mathrm{abQ}$. Monopoly price Pm is higher than competitive price Pc .

In order to increase output, regulator has to set a ceiling price.
a. May the ceiling (Pc) be set at the intersection (A) of the MC with the demand curve. Explain
b. Where should the ceiling (Pr) be set to ensure that the monopoly can continue to operate and at possible highest output (Qr).

Answer

a. At the intersection point (A) of the MC with the demand curve , which is represented by $M C=P c$, where $P c<A T C$, the monopoly will incur a loss. Thus this Pc may not be set as a ceiling.
b. The ceiling price Pr should be set at the intersection of the ATC and the denand curve where Pr covers ATC and the economic profit is zero.

Competitive Policies

7. Should the following activities be prohibited to promote competition, thus economic efficiency, and economic welfare. Support your reasoning with appropriate graphs to show the relevant factors, such as $\mathrm{Pc}, \mathrm{Pm}, \mathrm{Qc}, \mathrm{Qm}, \mathrm{MC}, \mathrm{MR}, \mathrm{DWL}$.
a. Conspırıng
b. Merging firms aiming at creating monopoly
c. Gutaining a patent with the exclusive right to produce a good prices

Answer
a. Conspiring to fix prices should be prohibited because conspirators would restrict competition, fix price Pm > MC which is higher than Pc, lower output Qm $<Q c$, reduce economic efficiency, resulting in excess profits and DWL.
b. Merging firms aiming at creating monopoly. This should be prohibited as a preventive measure against the potential negative effects of monopoly that might take place, as discussed in (a).
c. Obtaining a patent with the exclusive right to produce a good should not be prohibited. The granting of a patent aims at rewarding inventors and encouraging the emergence of new technologies. However, the reward to patent holders (Pm>MC, excess profits) should be balanced by the negative effects of monopoly (excess profits $+D W L$). These effects are the reason why the monopoly of the patented goods is granted, as a normal practice, for a specific period, after which the negative effects tend to be eliminated with the termination of monopoly.

8. Monopoly index

The Lerners index of monopoly power is $\mathrm{L}=(\mathrm{P} M C) / \mathrm{P}$. This imply that:
a. If $\mathrm{L}=0$, the firm is in a perfectly competitive market. Is this correct. Explain
b. The value of L is between 0 and 1 . Is this correct. Explain
c. The larger L is, the higher the profits of the monopoly are. Is this correct. Explain.

Answer

a. Correct.
$L=0=>P=M C$, this is the optimal condition for the perfectly competitve firm to produce.
b. Correct

> The highest gap between P and $M C$ is when MC tends toward to zero, therefore the upper limit of L is 1 . The higher L is, the higher the degree of monopoly power of the firm being measured for its monopoly.
> i. Because:
c. Incorrect.

[^0]: ${ }^{1}$ Pindyck, Robert and D. Rubinfeld, 2005, Microeconomics, $6 \quad^{\text {th }}$ Ed., (New Jersey: Pearson), pp.376-77.

 Thai van Can/J: \Courses 05-06\Microeconomics for Transitional Economics\Lecture Notes\MI06-L13E Lecture Note-Limiting Monopoly-Eng.doc

[^1]: ${ }^{2}$ The cases are from Salvatore, Dominick, 1993, Managerial Economics, (Singapore: McGraw Hill),pp.519-29

[^2]: ${ }^{3}$ See Posner, Richard, A., 1992, Economic Analysis of Law, (Boston: Little and Brown Company\}, pp. 315-22

[^3]: ${ }^{4}$ See Baye, Michael; 2005, 2005, Managerial Economics and Business Strategy, $5 \quad{ }^{\text {th }}$ Ed, (New York: McGraw Hill), pp. 240-48.

[^4]: ${ }^{1}$ Th.c ra d i.u ki.n t.i uu s. d.ng . trn chnh 1 rt rat. di.u ki.n b.c nh.t c.a hm m.c tiu.

[^5]: ${ }^{2}$ For these three questions, assume that when you choose a kind of security you will keep it from September $15^{\text {th }}$ to $30{ }^{\text {th }}$ to observe the changes in price.

