

Michael J. McQuestion, PhD, MPH Johns Hopkins University

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture0/EN/pg... 11/11/2011

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture0/EN/pg... 11/11/2011

pg	0003
1 0_	-

3

Theory of the Course

Highlight, theorize, and analyze problems that program managers typically face Identify similarities and dissimilarities between developed and developing countries Integrate case studies with current journal articles Reward theoretical synthesis while emphasizing a problem-solving approach

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw Complete all required readings before viewing lectures Focus on theoretical, practical aspects of the readings rather than methodological details View every lecture Participate actively in LiveTalks and BBS Turn in all assignments on time

Small Group Exercises

The class will be divided into small groups
Each group will complete Exercises 2, 3, and 4
Exercise 1 is an individual exercise
The exercises are worth 30% of your grade
After all four exercises have been submitted, members from each group are required to complete and submit peer evaluations
Peer evaluations will be factored into the grading

Bulletin Board

The BBS is a tool for enhancing learning Use it to share questions and insights with other class members We will monitor it and contribute as appropriate

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture0/EN/pg... 11/11/2011

CASA/AFIX; and GAVI

Tools: CASA

CASA is a free software program developed by CDC which you will download and use in an exercise analyzing immunization records Work through the CASA tutorial before attempting the assignment

pg_0013

Online Evaluations

Do the online evaluations after each lecture They are quite short and will help us improve the course All online evaluations are anonymous and will not affect your grade

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

Lecture Evaluation

Your feedback on this lecture presentation is very important and will be used for future revisions. Please take a moment to evaluate this lecture. The Evaluation link is available on the lecture page.

Page 1 of 3

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

Vaccines and Vaccination Program Essentials

Michael J. McQuestion, PhD, MPH Johns Hopkins University

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture1/EN/pg... 11/11/2011

Page 2 of 3

Page 3 of 3

Definitior

Vaccine: A preparation of killed microorganisms, living attenuated organisms, or living fully virulent organisms that is administered to produce or artificially increase immunity to a particular disease Merriam-Webster Dictionary, 2005

2

Page 2 of 3

Page 3 of 3
Page 1 of 3

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture1/EN/pg... 11/11/2011

Vaccine Timelii

4

1000 AD: first records of Chinese variolation
1721: Lady Mary Wortley Montagu, wife of British ambassador to Turkey, has first variolation in England performed on her three-year-old daughter
1796: Edward Jenner uses cowpox viruses to vaccinate a child against smallpox

Morbidity Comparise

Comparison of 2@ Century Annual Morbidity and Current Morbidity, Vaccine-Preventable Diseases

Disease	20th Century Annual Morbidity	2003* (Provisional)	Percent Decrease
Diphtheria	175,885	1	99.99%
Measles	503,282	42	99.99%
Mumps	152,209	197	99.87%
Pertussis	147,271	8,483	94.29%
Polio (paralytic)	16,316	0	100%
Rubella	47,745	7	99.99%
Congenital Rubella Syndrome	823	0	100%
Tetanus	1,314	14	98.93%
H. influenzae, type b and unknown (<5 yrs)	20,000	213	98.94%
Source: CDC. MMWR April 2, 1999. 48: 242-2 Source: CDC. MMWR January 9, 2004. 52:12 Data are estimated.	64 Numbers in ye 77-1300 in 2003	llow indicate at or near	record lows

This favorite slide of Walts demonstrates continued

Buachtev/hfghangrogramaining record lows in virtually all of the vaccinepreventable diseases listed as indicated in yellow

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture1/EN/pg... 11/11/2011

Age Birt h	BCG OPV	HR1	Scheme B
6 wee ks	DPT1. OPV1		
10 weeks	DP T2, OPV2		HB2
14 weeks	DPT3, OPV3 HB3		HB3
9 months	Measles		
	Yellow fever (where risk exists)		
	Hepa titis B Vac	cine**	
**Accord ing to p From UNICEF, 1	9 erinatal tran smissio n ra 996	t es	

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture1/EN/pg... 11/11/2011

Page 1 of 3

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture1/EN/pg... 11/11/2011

Page 1 of 3

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

Source: Bruce Gellin, MD, MPH, Executive

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture1/EN/pg... 11/11/2011

Directoru National Interwation. May 31, 2001, National Immunization Conference

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture1/EN/pg... 11/11/2011

General Rule

There are no contraindications to simultaneous administration of any vaccinesexcept cholera and yellow fever vaccines
Increasing the interval between doses of a multidose vaccine does not diminish the effectiveness of the vaccine
Decreasing the interval between doses of a multidose vaccine may interfere with antibody response and protection
It is not necessary to restart the series of any vaccine* due to extended intervals between doses
* (except oral typhoid vaccine in some circumstances)

Vacci ne	Est im at ed Rat e
BCG	1 in 1,000 to 1 in 50,000
	do ses
OPV (Oral polio vaccine)	1 in 3 million doses for
	the first do se of OPV
Measle s	1 in 1 million do se s
DTP	1 in 750,000

Source:

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture1/EN/pg... 11/11/2011

Page 2 of 3

WHO

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture1/EN/pg... 11/11/2011

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture1/EN/pg... 11/11/2011

Page 1 of 3

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

Section B

National EPI Programs: The Developing World and the United States

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture1/EN/pg... 11/11/2011

Page 1 of 3

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

Source:

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture1/EN/pg... 11/11/2011

Page 2 of 3

World Bank, 2002

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture1/EN/pg... 11/11/2011
				In	tegrat	ed EP	Budg	et					
Component Functional areas	Type of Cost	External—Partners								Gov.	Grand Total	Shortfa	
		WHO		Total	E.g.	E.g.	E.g.,	Others	Total External				
		Regional	WR	WHO	USAID	JICA	UNICEF	outera	\$	1%			
Immu nizati on Se rvices	Inv.	22 2								-			
	Rec.					6			1 - 2				
	Tot.												
Logistics	iny.												
	Rec.												
	Tot.		-						2		8 - P		
_	inv.												
	Rec.												
	Tot												
_	Inv.												1
	Rec.										1 *		1
	Tot.					(1				1 3		2

Source:

Page 2 of 3

World Bank, 2002

Source:

Page 2 of 3

World Bank, 2002

Page 1 of 3

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

Source: WHO/UNICEF joint reporting form, 1998, 2001

Page 2 of 3

datationstatesWHO

Source:

Page 2 of 3

World Bank, 2002

Page 1 of 3

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture1/EN/pg... 11/11/2011

Source:

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture1/EN/pg... 11/11/2011

Page 2 of 3

WHO/UNICEF

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture1/EN/pg... 11/11/2011

Page 1 of 3

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture1/EN/pg... 11/11/2011

Page 1 of 3

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

Page 1 of 3

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture1/EN/pg... 11/11/2011

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

Page 1 of 3

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture1/EN/pg... 11/11/2011

Page 2 of 3

WHO/UNICEF estimates, 2002

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture1/EN/pg... 11/11/2011

Page 1 of 3

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture1/EN/pg... 11/11/2011

Page 1 of 3

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

Page 1 of 3

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture1/EN/pg... 11/11/2011

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

As Do Global Problems

Eradication efforts may weaken routine EPI LDCs unable to finance vaccination efforts AIDS decimating health manpower Global migration flows increase disease transmission, risk of reintroduction

61

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

Source: Task Force on Community

Page 2 of 3

Preventive Services, 2000

.

Page 3 of 3

Source: Task Force on Community

Page 2 of 3

Preventive Services, 2000

-

Page 3 of 3

Source: Task Force on Community

Page 2 of 3

Preventive Services, 2000

.

Page 3 of 3

Page 2 of 3

Page 3 of 3

Copyright 2005, The Johns Hopkins University and Michael McQuestion. All rights reserved. Use of these materials permitted only in accordance with license rights granted. Materials provided AS IS; no representations or warranties provided. User assumes all responsibility for use, and all liability related thereto, and must independently review all materials for accuracy and efficacy. May contain materials owned by others. User is responsible for obtaining permissions for use from third parties as needed.

Page 3 of 3

Measurement Concepts and Introduction to Problem Solving

Michael J. McQuestion, PhD, MPH Johns Hopkins University

Hallmarks of the U.S. Disease-Reporting

System Decentralized, comprehensive Redundant state and federal capabilities Fax and online reporting Prompt outbreak investigation, feedback (MMWR)

pg_0005

	Form			
State of California—Heslith and Human Services Agen	er			Department of Health Serviv DCDC //mmunization Brand 2151 Berkeley Way, Room
Date Investigation Started	ASLES (RUBEOLA)	CASE REPORT—CALI		Berkeley, CA 94704 Ny Case Numbe
Personal Data Sex Name Sex Male	Date of birth C 	Inset age Address (number, street) yrs ≤ 1 wear) Cily	ZIP code Phone
Person reporting case, phone number ()	Date reported to county P	hysician (if any) phone number)	Hospital (if any) ()	phone number
Ethnicity ⊟Hispanic ■Non-Hisp Race/National Origin ■White ■Blac	anic 🗖 Unknown C k 🗖 American Indian/Alaska N	country of birth: DU.S. Dother ative (Aleut, Eskimo) Duknow	r	Unknow
Asian—Please also check one box below:	Pacific Isla Hmong Guarn	ander—Please also check <i>one</i> box below arian	r.	
Japanese Cambodian (Non-Hmon Korsan Leotian (Non-Hmong) Filipino Vietnamese (Non-Hmor	g) ☐ Thai ☐ Samuo ☐ OtherAsian ☐ Hawai g) ☐ Other	an Ian Pacific Islander	Social Security nur	nber
Clinical and Lab Data	-			
Rash □Yes □No Ifyes, rash onset da	te: month day year	Fever Yes No If yes, onset date:		Cough Yes No
Duration:	ys 🔲 4 or more days	Highest temperature:	daay yeaar 	Runny nose
Description		If temperature not measured, did	patient's skin feel: tal	Watery or red eyes or photophobia

pg_	0	0	06	

ni z z days belore rasii.	🗖 Yes	🗖 No

Hallmarks of Global Disease Reporting

System Historically incomplete, delayed in many countries Exceptions: smallpox, polio, measles (active surveillance + outbreak investigation) Steady improvements in recent years

WHO Vaccine-Preventable Diseases Monitoring

System

Includes the following indicators

- Coverage rate time series by vaccine
- Annual numbers of cases EPI target diseases
- Proportion of districts reporting
- DPT3 dropout rates

http://www.who.int/vaccines-surveillance/intro.html

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

Main Sources of Vaccine Coverage

Data United States

- National Immunization Survey: 1994present
- National Health and Nutrition Examination Survey (NHANES): 1960present
- State registries

Developing world

- World fertility surveys (197284, 60 LDCs)
- Demographic and health surveys (1984 present, ~200 done so far in over 70 countries)
- Ministries of health, UN statistics

United States National Immunization Survey

Surveys 78 Immunization Action Plan areas Produces annualized coverage estimates for 10 antigens Identifies particular high-risk groups Telephone survey + provider record check Santoli et al (1999) used 1997 NIS to estimate proportion of vaccinations given through Vaccines for Children Program Using 1999 NIS data, Luman et al (2001) showed that 75% of incompletely immunized children were only one visit away from completing their immunization
Page 2 of 2

schedules

11

Sources of Immunization-Cost Data

Administrative record reviews Vaccine manufacturers Living Standards Measurement Surveys (World Bank, selected LDCs) Other surveys

Immunization Costs

United States

- Lieu et al (2000) computed the costs of streptococcus pneumonia in a cohort of U.S. children
- Result: routine immunization against the disease would save \$760m/year

Developing world

- San Sebastian et al (2001) compared hospitalbased to community health worker-based delivery strategies in one region of Ecuador
- Result: CHWs immunized children more cheaply

Page 2 of 2

than	
hospitals	13

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw Measures Equity: does the program reach all groups. Sustainability: can high performance be maintained.

Some Key Micro-Level Measures

Efficiency, affordability, cost-effectiveness Access (cost, convenience) Community demand Quality of services

pg_001'	7
---------	---

pg_0	018
------	-----

Local Data

United States

- Bolton et al (1998) compared vaccination card, parental recall, and medical records data for a cohort of 525 Baltimore children
- Results: parents overestimated and the cards underestimated immunization status

Developing world

- Onta et al (1998) studied administrative EPI data from Nepal
- Results: district health offices, peripheral health workers routinely inflate vaccination reports

Continued 19

First Step in Problem-Solving: Define the

Problem

Someone identifies a problem and calls for a solution

Who selects it and how it is chosen affect both the intervention and its resources

Why the concern arises and how the problem is defined frame the choice of strategy

an expression of trust to provider [that is] stron

Vaccination

an expression of trust between patient and provider [that is] strongly shaped by the management practices of [health care] organizations (Gilson, in press)

Page 2 of 2

Continued 24

Vaccination

an expression of trust between patient and provider [that is] strongly shaped by the management practices of [health care] organizations (Gilson, in press) A health input parents choose conditional on their resources and competing wants (Victor Fuchs, 1996)

Page 2 of 2

Continued 25

Vaccination

an expression of trust between patient and provider [that is] strongly shaped by the management practices of [health care] organizations (Gilson, in press) A health input parents choose conditional on their resources and competing wants (Victor Fuchs, 1996)

Basic health services, including essential immunization, are a human right (WHO 2001)

Continued 26

pg_0027

- Health workers dont do their job (organizational)
- Disease risk is minimal (epidemiologic)

pg_00)28
-------	-----

The Frame Sets the Parameters for the

Solution Management frame

- *Problem: low* immunization utilization
- *Solution: improve* quality of services

Page 2 of 2

Continued 30

pg_0	031
------	-----

Problem Definition

Few problems can be conceptualized in purely logical, factual terms Problem definition always entails practical valuejudgments Each frame strives to be logical but invariably imposes its particular parameters (theoretical boundaries) and value judgments

Page 2 of 2

Continued 32

Problem Definition

The fact that immunizing children is problematized across disciplines and cultures points to an underlying value judgment that it is important Given the above, a robust problem-solving approach should be:

- Reflexive, making value judgments explicit
- Evidence-based

In this course, we will use materials drawn from three frames of reference:

- Epidemiological
- Economistic
- Sociological

Epidemiological Concepts

Individual

Exposure Case Risk factors Participation

Population

Endemicity Prevalence, incidence Contextual factors Coverage

No. cases EPI target disease x

No. inhabitants

% communities with = 80% children

1223m fully immunized

No. households with child 1223m fully immunized

No. households with child age 1223m

% health facilities reporting AFP cases weekly

pg_	0036
10_	

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw Rationality Heterogeneous preferences Marginal utility Substitutability Markets: supply-demand equilibria

pg_0037

Page 2 of 2

Continued 38

pg	0039
1 -	-

Sociological Concepts

Individual

Attributes: Ascribed, attained Beliefs: Self-efficacy, Perceived vulnerability Behaviors Reference groups, social networks

Group-level

Social structure: strata, heterogeneity, inequality Institutions, norms Collective action Communities

Sociological EPI Measure<mark>s</mark>

% communities with local health committees meeting at least quarterly Whether local health committee controls local health resources No. volunteer-days contributed for local vaccination activities No. consecutive years community has = 80% children 1223 months fully immunized

Low-Income Countries and Routine Vaccines:

	%		%		%		%
Country	Financed	Country	Financed	Country	Financed	Country	Financed
Burkina Faso**	100	Nepal	53	Tanzania	10	Congo	0
Chad**	100	Uganda	50	Zambia	10	Eritrea	0
Ghana	100	Mongolia	40	Armenia	7	Guinea-Bissau	0
Honduras	100	Turkmenistan	36	C. Afr. Rep.	4	Lao PDR	0
Mali**	100	Gambia	30	Kenya	3	Liberia	0
Nicaragua	100	Moldava, Rep.	29	Sierra Leone	3	Mauritania	0
Nigeria	100	Cameroon	27	Burundi	2	Mozambique	0
Pakistan	100	Guinea	25	Malawi	2	Myanmar	0
Senegal**	100	Haiti	25	Afghanistan	0	Rwanda	0
India	98	Lesotho	25	Angola	0	Somalia	0
Côte d'Ivoire**	95	Benin	15	Azerbaijan	0	Tajikistan	0
Niger**	80	Ethiopia	15	Bhutan	0		
⊺ogo	80	Madagascar	10	Bosnia/Herz.	0		
Viet Nam	73	Sudan	10	Cambodia	0		

* The routine valcines of the expanded programme of immunization (EFI) and dipitheria, measles, pertussis, polio, tuberpulosis, and tetanus. Yellow lever is part of EPI coverage in countries at risk in Africa and South America. "Low-income count v" in this list represents GNP per capital of \$785 or less. ** These countries have benefited from grants from the European Union Sources for both lists: Vaccine finance, ofWCEF; income levels: World Eanx

Step Three: Conceptualize Problem

Determinants

Once framed, a problem is analyzed to identify and conceptualize its determinants

This process necessarily entails two steps:

- Theorizing
- Making causal inferences

pg_0	047
------	-----

Causal Inference

In practice, identifying a particular cause of immunization program problems is difficult

- The problems have multiple causes
- Many causes are unobservable

As a result, most empirical research fails to meet all causal inference criteria

The methodologically strongest are experiments or quasi-experiments that randomize subjects and compare the outcomes of treatment, control groups Problem: most programs are full-coverage, so exposure cannot be controlled

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture2/EN/pg... 12/11/2011

pg_0050

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture2/EN/pg... 12/11/2011

Page 2 of 2

Copyright 2005, The Johns Hopkins University and Michael McQuestion. All rights reserved. Use of these materials permitted only in accordance with license rights granted. Materials provided AS IS; no representations or warranties provided. User assumes all responsibility for use, and all liability related thereto, and must independently review all materials for accuracy and efficacy. May contain materials owned by others. User is responsible for obtaining permissions for use from third parties as needed. 52

Page 1 of 3

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

Delivery Strategies, Cold Chain, and Logistics

Michael J. McQuestion, PhD, MPH Johns Hopkins University

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture3/EN/pg... 12/11/2011

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture3/EN/pg... 12/11/2011

Page 1 of 3

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

Section A

Components of a Vaccine Delivery System

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture3/EN/pg... 12/11/2011

Strategies for hard-to-reach populations Vaccine and surveillance logistics Injection safety Cold chain Data quality These components characterize every vaccination program Programs in the U.S. and developing countries use different strategies to achieve them Over time, the strategies are converging 4

accine Delivery in the

Vaccines are delivered routinely through a mix of public and private fixed facilities Traditionally, a state responsibility Significant federal inputs (Childhood Immunization Initiative) following 1991 measles epidemic Private insurance: covers 60% of children ages 0 5, but only half cover vaccines HMOs: give about 25% of all U.S. child immunizations; virtually all cover vaccines Vaccines for Children Program (1994present) - Gives free vaccines to 35% of all infants

- 1/3 of providers are public, 2/3 private

Continued 5

Vaccine Delivery in the	U.S
 High-risk groups least likely to be immunized Inner-city neighborhoods Low-income Uninsured Racial and ethnic minorities Vaccines: federal (CDC) purchasing and safety oversight Specimens: CDC, state laboratories Cold chain: vaccines, drugs fully integrated Data quality: standard CDC supervision protocols, provider and state registries 	
	6

Page 2 of 3

Page 1 of 3

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

Page 2 of 3

Source: Task Force on Community

Page 2 of 3

Preventive Services, 2000

-

Source: Task Force on Community

Page 2 of 3

Preventive Services, 2000

-

Source: Task Force on Community

Page 2 of 3

Preventive Services, 2000

-

Page 2 of 3

Page 2 of 3

Page 2 of 3

WHO

Source:

Page 2 of 3

WHO

Page 2 of 3

Page 2 of 3

Page 2 of 3

Page 1 of 3

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture3/EN/pg... 12/11/2011

_ DQA Overvie

Two internal, two external team members visit a sample of 24 health units, 4 districts, and national EPI offices (2 weeks) DTP3 coverage, dropout rates, district reporting: key EPI performance indicators Result: monitoring/reporting system assessment, DPT3 coverage audit

26

Similar indicators are measured at national, district, and health unit levels for all DQA measures Results are tabulated, adjusted for the level of errors, and summarized in a series of Excel tables and charts

29

Source:

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture3/EN/pg... 12/11/2011

Page 2 of 3

GAVI

_ Summary

Vaccine delivery systems are complex and must meet exacting technical standards DC, LDC vaccine delivery systems are converging due to new technologies As they advance, vaccination program performance increasingly depends on the ability to solve management-related problems

38

Copyright 2005, The Johns Hopkins University and Michael McQuestion. All rights reserved. Use of these materials permitted only in accordance with license rights granted. Materials provided AS IS; no representations or warranties provided. User assumes all responsibility for use, and all liability related thereto, and must independently review all materials for accuracy and efficacy. May contain materials owned by others. User is responsible for obtaining permissions for use from third parties as needed.

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture3/EN/pg... 12/11/2011

Page 1 of 3

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

Monitoring, Surveillance, and Feedback

Michael J. McQuestion, PhD, MPH Johns Hopkins University

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture4/EN/pg... 12/11/2011

Page 1 of 3

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture4/EN/pg... 12/11/2011

Source:

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture4/EN/pg... 12/11/2011

Page 2 of 3

WHO, 2001

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture4/EN/pg... 12/11/2011

Source:

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture4/EN/pg... 12/11/2011

Page 2 of 3

WHO, 1993

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture4/EN/pg... 12/11/2011

Source:

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture4/EN/pg... 12/11/2011

Page 2 of 3

WHO http://www.nt.who.int/vaccines/globalsummary/Immunization/CountryProfileR esult.cfm)

Source: WHO/UNICEF joint reporting form, 1998, 2002

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture4/EN/pg... 12/11/2011

Page 2 of 3

datanfromstalesWHO

TABLE Z. (CO	Lyne	ortoo casos o	r not mapric clispa ses, by goographic division and an Measing Maningococcal			and area —	area - United States, 200	
Area	cianaze	Malaria	Indigeorus	imported*	disease	Mumps	Pertussia	Pize
UNITED STATES	25,753	1 439	×	18	1,5-1	270	9,77	i.
NEW TREAMS	7,307		1.00	121	95	•	925	
Vano	210	6	12.1	121	1		2	
VI	17	4		2	4	2	- 72	
L'ass.	1,:07	43		÷.	14	2	6.0	
507	1.55	12		÷.	-16	5	2	
UD & ANT	1 573	3725	4	5	27.2	31	634	
Ups me N.N	5.476	E2			60	5	442	
MYCAY	19	230	82	3	37	1	2	
Pa.	3,269	50	24	4	96	22	2	
		• • • • • •	,		,			

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture4/EN/pg... 12/11/2011

Source: CDC. Summary of

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture4/EN/pg... 12/11/2011

Page 2 of 3

notifiable diseases. 1998.

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture4/EN/pg... 12/11/2011

a second second second second second	1000	20101	107 H	socol	94054	
Marrian	51 1958 CIIII	N 1955, CB	1045, CD	1 /055.01	2003	
OTHER TIDT, DAY	on farming	a factorial	a partial	a fasting	. a 1994	
DI PADILID TAPES	05.0 (-0.4)	64 . 440.45	64.3 (40.6)	64.0 140.05	087 140	
>4 doses	83.8 (=0.8)	01.7 (±0.0)	U2." (±0.8)	U1.6 (±0.9)	94 0 1+3	
Followin is all doses	1916 (-0.6)	19.5 (+11.6)	1914 (+117)	90.2 (+0.7)	a1 (- '+')	
Hubile doses	\$1.5 (-0.5)	\$14 (+0.5)	VID (+0.65	V12 (+0.65)	4.9 40	
MME al dose	S1 5 (-0.6)	90 5 (+0.65	61.4 1+0.65	61.6 (+0.7)	03.6 5+3	
Long it D at down	88 . (-0-)	003 (40.65	88.0 140.75	80.0 (+0.7)	024 40	
Va alla al desa	ers (10)	67.8 (10.9)	76.3 (10.8)	20.6	84.5 110	
PCA/T		to in transf	and trany	Taris Trany	1.1.1	
≥3 dores				40.9 ((11))	85 1 (11)	
≥4 doses	-	-	-	-	35 r (±-	
Combined series						
4:3:* 995	79.9 (=0.8)	77.6 (±0.9)	78.6 (±0.9)	78.5 (±1.0)	92'z (±3)	
43.5.0	784 (0.9)	76.2 (10.9)	77.2 (10.90	77.5 (11.0)	S1 8 (13)	
43 52 111	73 5 (0.80	72.9 (10.9)	61.2 01109	48 (110)	234 113	
Eurineumy - sous y Eurineumy - sous y Eurineuma - sous y Eurineuma - sous y Eurineuma - sous y Parneuma - sous y Centaence into es Fernience into es Fernience into es Forencentus interes		54° (110) Suin: di. Honia and Istan	en a un uy us lavcids and di cris	rate clanus loveice and	i suolulariour.	

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture4/EN/pg... 12/11/2011

Developing World Feedba

WHO is the definitive source of data on vaccine coverage and vaccine-preventable diseases in the developing world Ministries of health report most of the data These routine data are often supplemented by rapid assessments, surveys, and audits Results are fed back in several publications

18

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture4/EN/pg... 12/11/2011
Page 2 of 3

http://www.who.int/wer/2004/7942/en/

Page 1 of 3

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

Section B

Tools for Improving Surveillance: Rapid Assessments, Lot Quality Assurance (LQA), and Cluster Survey

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture4/EN/pg... 12/11/2011

Rapid Assessments
 Several types Comprehensive EPI program review Immunization data quality audits Injection safety audits Performed by international teams 12 weeks duration Qualitative and quantitative methods Immediate feedback
21

Lot Quality Assuran

Purpose: to check quality of reported data Lots can be health facilities, geographic areas, administrative records, etc. Combines stratified random sampling and onesided hypothesis testing Lot results can be combined to estimate coverage

22

LQA Method, Step by	Step
Declare number of lots using census or other data as sampling frame	
Fix acceptable upper threshold for performance (e.g., 80% fully immunized) and a lower threshold (say, 50%)	
- Based on local information	
- Any lots below the upper threshold are rejected Define power (i.e., probability of a Type I error)	
Fix acceptable level of random error (e.g., 5%)	
Calculate total sample size: n units Calculate number of units needed per lot	
Set critical value (maximum no. defective units/lot) using standard tables	
	23

Source: WHO Weekly Epidemiological

Page 2 of 3

Record, 1995,70,261268)

-

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture4/EN/pg... 12/11/2011

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture4/EN/pg... 12/11/2011

Page 2 of 3

Ferrinho and Reinach 1993)

Page 1 of 3

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

Section C

Trends in Immunization Monitoring and Surveillance

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture4/EN/pg... 12/11/2011

Some Global Trends in Monitoring and Surveillance

Analysis of data at district levels Immunization data quality audits (DQAs) Surveillance system performance audits Inclusion of private sector data Active, case-based surveillance Injection safety Adverse events, rumors New diseases (e.g., rubella, H. Influenzae B)

30

Page 1 of 3

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

ates	2001 2001		LINILO	EURO	SEARO	W PRO
tates	2001 2002	2 2001 2002 2	001 2002 200	1 2002 2001	2002 2001	2002
atos	46 46 3	5 35 22 22 51	51 10 11 27	27		
t ates reporting	46 45 3	5 33 20 20 43	47 10 11 26	26		
II districts with >80% DPT3 3	3287982	1 22 1 2 7 7	5 1		5-1-5	
+ interagency meet s	30 32 1	5 14 6 8 23 18	3961311			
dverse events monitored 19	17 17 15 13	11 32 42 6 9	15 14			
epatitis B vaccine in use 5 7	29 30 8 10	28 29 0 0 7 8				

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture4/EN/pg... 12/11/2011

Page 1 of 3

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture4/EN/pg... 12/11/2011

Online Informati

In the United States, NETSS, HIV/AIDS, Vaccine Adverse Events, and other national surveillance systems are being integrated into the National Electronic Disease Surveillance System (NEDSS) NEDSS will:

- Standardize case definitions, reporting forms
- Allow states to transmit real-time data via the Internet

Currently, WHO member countries are striving to meet three main disease reduction targets

- 1. Reduce measles by 90%
- 2. Eliminate neonatal tetanus
- 3. Eradicate poliomyelitis

37

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture4/EN/pg... 12/11/2011

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture4/EN/pg... 12/11/2011
Page 1 of 3

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

Nu	mber of Co	nfirmed Poliovi	rus Cases, and	Key Surve	illance Indic
Year	No. AFP Cases	by Year No. Confirmed Poliovirus Cases (Laboratory Confirmed)	Angola, 1998200 Polio-Compatibl Cases	2* Non-Polio AFP Rate	% of Persons AFP with Adequate St Specimen
1998	16	7 (3)		0.1	56%
1999	1,176 1,10	3 (53)		1.2	7%
2000	213 115 (5	5)		1.6	55%
2001	149	1 (1)	10	2.0	66%
2002	100	0	0	3.4	89%
* N T	As of June 30, 3 u mber of pe rs one case of not wo stoo l specin shipped proper	2002. cons with AFP pe r 10 n-polio A FP pe r 100,0 nen s collected a t an in ly to th e laborato ry.	0,00 0 population age 000 per year. te rval of = 24 hours w	d < 15 yea rs; n ithin 14 days of	ninimum expected

Source: WHO (Reprinted in MMWR, Vol 51, No

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture4/EN/pg... 12/11/2011

Page 2 of 3

pg_0046

34;762 08/30/2002)

Region	Adequate Non-Polio Stool C	Wild Polio Polio onfirmed Virus Non-Polic	Adequate Po Stool Conf	Wil lio Poli irmed Viru
African	1.30 53% 1,537 13	7 3.01 71% 110 62	e specimens Ca	ses Case
The Americ	as 1.08 65% 12 0 1.25 89%	6 * 10 0		
Eastern Mediterrane	an 1.42 67% 441 248 1.89	83% 139 139		
European	1.14 83%	0 0 1.23 81% ** 3	** 2	
South-East	1.73 81% 593 271	1.75 83% 267 267		
Asia				

Page 1 of 3

Administrative EPI District DPTdropout	data from 26 districts, Malaw	
Administrative EPI District DPTdropout	data from 26 districts, Malaw	
District DPTdropout		12001
1 Chitina	DPTwastage DPT3coverage	
1 Dritipa	10 15	80
2 Karonga	5 19	100
3Mzimba	10 31	82
4 Nkhata Bay	0 38	91
5 Rumphi	13 18	103
6 Dedza	14 18	92
7Dowa	15 19	90
8 Kas ungu	16 47	74
9 Lilongwe	4 6	84
10 Mc hinji	22 29	82
11 Nkhota kota 14 28	2010	82
12 Nt cheu	6 37	97
13 Nt chisi	13 41	75
14 Salima	15 58	76
15 Balak a	10 27	93
16 Blantyre	9 2	87
17 Chikwawa	14 25	85
18 Chiradzulu	12 42	87
19 Machinga	5 38	122
20 Mangochi	14 24	85
21 Mulanje	19 29	76
22 Mwanza	15 38	108
23 Nsanje	13 31	98
24 Phalombe	9 20	119
25 Thyolo	8 6	109
26 Zomba	1 B	105

Page 1 of 3

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture4/EN/pg... 12/11/2011

Page 1 of 3

	Duenout	Wastage	Courses
Dropo ut	1	0.31 **	0.46
Wastage	1	1	0.26 **
Coverage		_	1
As expected lower the dr	d, the higher the oppout and was	ne coverage le stage rates	evel, the

Page 1 of 3

Page 1 of 3

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

Section D

Case Study: Hispaniola Polio Outbreak, 2000 2001

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture4/EN/pg... 12/11/2011

Hispaniola Outbro	eak
 These are the first polio cases in the Americas region since 1991 Laboratory results Same Sabin Type I vaccine-associated virus isolated from Dominican, Haitian stool samples Recommended actions Immediate mass vaccination to interrupt transmission; continued aggressive case-finding 	
	59

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture4/EN/pg... 12/11/2011

Page 1 of 3

Indicator	Dominican Republic	Haiti
Stool samples collected: AFP cases	84	17
Stool samples collected: contacts	205	34
Polio cases confirmed	14	3

OPV Vaccinations: Hai
OPV vaccinations, children 6-23m,
before and after mass campaign, Jacmel
Region, Haiti, March 2001
lot 123456789
before
yes 27 29 17 22 14 14 7 24 26
no 11 6 4 3 5 12 9 24 12
total 38 35 21 25 19 26 16 24 38
reject yes no no no yes yes yes no yes
after
yes 35 34 19 23 16 16 8 24 33
no 3 1 2 2 3 10 8 24 5
total 38 35 21 25 19 26 16 24 38
reject no no no yes yes yes no no
64

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture4/EN/pg... 12/11/2011

Page 1 of 3

Indicator	Dominican Republic	Haiti
AFP cases	95	29
AFP stool samples collected	94	27
Polio cases confirmed	14	6

Page 2 of 3

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture4/EN/pg... 12/11/2011

Page 2 of 3

Page 2 of 3

Page 2 of 3

Page 2 of 3

Copyright 2005, The Johns Hopkins University and Michael McQuestion. All rights reserved. Use of these materials permitted only in accordance with license rights granted. Materials provided AS IS; no representations or warranties provided. User assumes all responsibility for use, and all liability related thereto, and must independently review all materials for accuracy and efficacy. May contain materials owned by others. User is responsible for obtaining permissions for use from third parties as needed.

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture4/EN/pg... 12/11/2011

Improving Provider Performance

Michael J. McQuestion, PhD, MPH Johns Hopkins University

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture5/EN/pg... 12/11/2011

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture5/EN/pg... 12/11/2011

Continued 5

Continued 6

Framing the Efficiency Problem

System-level program inefficiencies require system-level solutions Most local-level problems can be framed in terms of health worker performance

- Easier to solve
- Requires supervision and feedback
- May require retraining, reallocation of program tasks

Provider Inefficiencies

Missed opportunity: a health care encounter in which a person is eligible to receive a vaccination but is not vaccinated completely

Inappropriately timed vaccination: a child receives one or more vaccinations before or after the recommended age

Note: provider inefficiencies are distinct from *immunization dropout,* a health behavioral problem we will consider in a later lecture

Magnitude of the Problem

A review of 70 observational surveys in 44 industrialized and developing countries found a median 32% of eligible women and children had experienced missed immunization opportunities (Hutchins, Jansen and Robertson 1993)

- Industrialized: 15%
- Developing: 41%

Continued 9

Measuring the Problem

The most common indicator of missed opportunities in the difference between DTP1 and DTP3, or TT1 and TT2 vaccination rates The following slides show why these indicators are most meaningful at the local level

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

Causes of Missed Opportunities

Cause	Percent of all Missed Opportunities	
Failure to administer vaccines simultaneously	22	
False contraindications	19	
Negative health worker attitude	s 16	
Logistical problems	10	
Parental refusal	3	

Notes Available

15

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

Missed Opportunities in the U.S.

Reason	Impact	Fixability
Provider unaware patient is eligible	+++	+++
Provider policy not to vaccinate	+++	+++
Failure to provide simultaneous vaccination	ns +	++
Inappropriate contraindications	++	+
Administrative barriers, cost	+	+++

Notes Available

16

An Empirical Example

Cutts et al (1991) studied immunization program efficiency in Guinea Conakry and four cities in Mozambique Methods: WHO EPI 30-cluster household surveys, clinic visits Results: among children with cards, inefficiencies reduced coverage by 29% in Conakry and 19% in Mozambique

pg_001'	7
---------	---

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

Missed Opportunities

Cumulative inefficiency effects, children 12- 23m with cards, Mozambique 1987			
	average 7 surveys	average 7 surveys range	
fully, correctly vaccinated	62	51-74	
added coverage with:			
correct timing	11	6-15	
simultaneous vaccination	2	1-4	
vaccinate at	6	3	

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

pg_0	022
------	-----

U + · · · · ·		
Conakry	Mozambique	
		22
	Conakry	Conakry Mozambique

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

Strategies for Reducing Missed

Opportunities Establish clear guidelines, standards for immunization Educate providers Provide feedback about missed opportunities and immunization rates Modify office practices to change standards of care Provide incentives Notes Available

26

- training (Furgely is in the

An Example of Peer Supervisio<mark>n</mark>

Robinson et al (2001) studied a peer training intervention in Maluku Province, Indonesia, in 19931994

Theory: peer trainers are a non-threatening supplement to hierarchical classroom training Intervention: immunization nurses spent 12 weeks with peers at 15 low-performing health centers
Continued 28

Page 1 of 2

pg_0030	
ro_ • • • •	

pg_0	031
------	-----

Notes Available

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

pg_	0036
10_	

pg_0037

pg_	0038	
10_		

Page 2 of 2

Continued 39

Continued 40

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

AFIX

LeBaron et al (1999) documented the introduction of AFIX in four states and two cities In 1994, clinic-based coverage (4:3:1, ages 19 35m) was lower than population-based coverage (determined by National Immunization Survey) During 199496 clinic-based coverage rose an average of 11% per year

A rate faster than population-based coverage increases in 5/6 sites

Page 2 of 2

Continued 41

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

- imequaized, wides of missed opportunities
- Quality of documentation

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

				VI	FC Upda
l		A Publication	of the Maryle	Update and Vaccines For Children Pr	ogram
		Apr	il 8, 2002	Volume 3, Issue 2	
	Selected Results of VFC Site Reviews, June 2001—January a				
				Percent	Percent
	Number	Number	Percent of	Incomplete	Inadequate
	Of	of	Children	Due to	Vaccine
	Reviews	Records	Complete	"Missed Opportunities"	Storage
	380	5 789	80%	10%	7%
46

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw Create incentives for improvement Examples Identify local resources to tap Leave free materials, upgrades Offer training Invite to present at conferences Certificates, letters of commendation Document, disseminate case studies

pg_0	047
------	-----

Page 2 of 2

49

Copyright 2005, The Johns Hopkins University and Michael McQuestion. All rights reserved. Use of these materials permitted only in accordance with license rights granted. Materials provided AS IS; no representations or warranties provided. User assumes all responsibility for use, and all liability related thereto, and must independently review all materials for accuracy and efficacy. May contain materials owned by others. User is responsible for obtaining permissions for use from third parties as needed.

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture5/EN/pg... 12/11/2011

Page 1 of 3

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

Registries, Reminders, and Recalls

Michael J. McQuestion, PhD, MPH Johns Hopkins University

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture6/EN/pg... 12/11/2011

Page 1 of 3

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture6/EN/pg... 12/11/2011

Immunization Registi

Immunization registry: A confidential, population-based, computerized information system that collects vaccination data about all children within a geographic area (INVAC, 1998)

4

The earliest U.S. immunization registries date back to the 1960s These were manual tracking systems using birth certificates to monitor individual catchment areas 1974: Delaware launched the first statewide registry; it continues to capture data from all vaccine providers
In 1980, CDCs National Immunization Program (NIP) developed the first computer-based registry, the Automated Immunization Management System (AIMS)
The initially slow response to the 198991 measles epidemic convinced many public health practitioners of the need for a nationwide <i>Continued</i> 5 immunization registry

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture6/EN/pg... 12/11/2011

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture6/EN/pg... 12/11/2011

Page 2 of 3

2002. Vol 51/No.34, 161.

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture6/EN/pg... 12/11/2011

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture6/EN/pg... 12/11/2011

Vhy Are Registries Need

Because patients often change providers, immunization records are scattered Patients and providers cannot keep track of an increasingly complex immunization schedule Up-to-date data on each patient allow reminders and recalls to be generated as needed Provider practices can be continuously monitored Local information pinpoints where to implement effective, resource-intensive strategies to increase coverage Adverse events and effects of immunization policy

Adverse events and effects of immunization policy changes can be tracked more carefully

9

Page 2 of 3

Stokley et al 2001

Page 2 of 3

Stokley et al 2001

Page 1 of 3

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

Page 2 of 3

Stokley et al 2001

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture6/EN/pg... 12/11/2011

Page 1 of 3

Page 1 of 3

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture6/EN/pg... 12/11/2011

Page 1 of 3

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

Oklahoma Poli

Overall, children who received IPV were as likely to be up-to-date than those who received OPV
Although statistically insignificant, the pattern suggests that children given IPV2 were less likely to be up-to-date than those in earlier cohorts who were given OPV2
Possible reasons
Painful side reactions to IPV1
Providers reluctance to give injections
The vaccine policy shift

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

pg_0025

25

Where population-based registries are working and have attained high coverage, their results are more reliable than other data sources

Example: New York City (Irigoyen, 2000)

- 11 randomly selected pediatric practices compared to registry data
- Practice-based (CASA) assessments showed 61% UTD
- Registry data increased figure to 71%

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

Page 1 of 3

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture6/EN/pg... 12/11/2011

Irigoven 2000 The yellow bar is the coverage levels as per the chart audits, and the pink bar on top is the contribution of the NYC registry. The contribution of the NYC registry was about 10%, and it varied by antigen. The antigens that required more doses showed the highest increase.

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

Page 1 of 3

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture6/EN/pg... 12/11/2011

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

Goals of a Regis

Create a unique record for each vaccine-eligible child at birth or at first contact Allow providers to readily access and update each childs immunization record Generate immunization information for parents Help public health authorities monitor area coverage, track vaccination policy impacts, and identify adverse events

29

Page 1 of 3

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture6/EN/pg... 12/11/2011

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

32

Page 1 of 3

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture6/EN/pg... 12/11/2011

Page 2 of 3

Linkins, 2000

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture6/EN/pg... 12/11/2011

Page 1 of 3

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

Page 1 of 3

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture6/EN/pg... 12/11/2011

Page 2 of 3

Linkins, 2000

Page 1 of 3

Political Invite private MDs to join State Registry Task Force Technical Provide training, support for upgrading computer-based MIS in private practices, clinics Demonstrate quality, usefulness of registry data -Economic - Cost-benefit analysis of registry participation Other Indemnify (hold harmless) private providers from legal liability related to registries 39

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture6/EN/pg... 12/11/2011

Page 2 of 3

Boyd et al 2002

Problem Solvia

Many more studies are needed to generate the evidence necessary to convince private practitioners to participate
But is science alone sufficient.
Consider the contrasting logics of public and private providers
Public sector providers are expected to provide immunization information to states as part of their ongoing duties
Private sector providers do not have this duty; their imperative is profitability

46
Page 1 of 3

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

Coercing private sector providers to participate by legislative mandate has not worked When private providers perceive the value added by registries, they will participate Examples of value added Point-of-contact efficiencies - Goodwill of clients Public recognition -47

Remaining Technical Challeng

Provide automatic feedback to each provider Generate appropriate electronic signatures for vaccination certificates Develop standard test cases to evaluate algorithms for eliminating duplicate records Integrate registries with communicable disease reporting Create linked Web-based and provider-based registries Enable electronic exchange across providers

50

Page 1 of 3

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture6/EN/pg... 12/11/2011

A reminder is a notification that immunizations are due soon
A recall is a notification that immunizations are past due
Providers direct reminders and recalls to patients; registries allow them to be directed to patients and providers alike
Reminders and recalls are relatively inexpensive and effective
They may be linked to other programs and services
52

Page 1 of 3

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

Provider Remind

53

Chambers et al (1991) performed an experiment to assess the effects of computer-generated reminders on the probability that clinicians gave influenza vaccination to eligible patients Methods

- Reminders were incorporated into computerized clinical encounter forms for every visit
- When the bill was paid, the reminder was removed

Physicians were rando Always Reminded, So Reminded	omized into metimes F	o three groups: Reminded, Never
Results Group % immunized Always reminded Sometimes reminded 38 Never reminded	51 271 30	n 72 218

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture6/EN/pg... 12/11/2011

Page 1 of 3

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

Chambers et al (19

Patient characteristics were not predictive of immunization but number of visits was Attending physicians and fellows were more likely than residents to immunize When the Sometimes-Reminded clinicians did not receive a reminder, they were less likely than the Never-Reminded clinicians to immunize the patient

Continued 55

Client Reminde

While registries produce reminders and recalls listing the specific antigens needed, general reminders and recalls are also effective Irigoyen et al (2000) evaluated different reminder methods in a New York City pediatric clinic serving a low-income population

58

Irigoyen et al (20

Children in any reminder group were more likely to keep their appointments Highest kept appointment rate: group P+T Children not UTD were less likely to keep appointments regardless of reminder method Vaccination coverage rates significantly improved in Groups P and T Cost per reminder: \$0.67 (P); \$1.58 (P+T)

60

Case Study: Kaiser Permane

The HMO Kaiser Permanente covers 30% of Californias children In 1998, Kaisers registry contained information on 2m patients and 11m vaccinations The registry is used to generate reminders and recalls (outreach) and to generate point-of-contact reminders for providers (inreach)

Continued 62

Case Study: Kaiser Permane

The inreach procedure prints an I on the charts of all incompletely immunized children Over a two-week period in 1998, Is were printed on 1,074/3,462 (31%) charts 602/1,074 (56%) were immunized during the contact Using the inreach procedure, 25% more children were immunized in the same two-week period than in 1997 (Lugg et al 1999)

63

hе. Perhaps not Lynch (1994) studied determinants of immunization performance of Glasgow, Scotland general practice physicians Scotland has a national immunization registry which includes a computerized system of reminders and recalls Providers have cash incentives to attain high immunization levels in their coverage areas 64

_Lynch (1994

65

Despite the reminders and recalls, 25% of providers failed to meet the targets in 1991 Local poverty level and the amount of income the GP received for past immunization performance (bonuses expressed as a proportion of total revenue) were predictors of local vaccine coverage Conclusions: provider incentives, reminders, and recalls all help raise immunization levelsbut they cant entirely overcome health inequities

_ Summary

Immunization registries are a superior method of tracking childrens immunizations and provider performance

The main barriers to their use are their complexity and the reluctance of private practitioners to participate

Reminders and recalls are effective in raising coverage rates

Registries, reminders, and recalls may not be enough to overcome all health inequities

Copyright 2005, The Johns Hopkins University and Michael McQuestion. All rights reserved. Use of these materials permitted only in accordance with license rights granted. Materials provided AS IS; no representations or warranties provided. User assumes all responsibility for use, and all liability related thereto, and must independently review all materials for accuracy and efficacy. May contain materials owned by others. User is responsible for obtaining permissions for use from third parties as needed.

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture6/EN/pg... 12/11/2011

Page 1 of 3

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

Quality of Care

Michael J. McQuestion, PhD, MPH Johns Hopkins University

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture7/EN/pg... 12/11/2011

Page 1 of 3

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture7/EN/pg... 12/11/2011

Quality of Ca

Quality of care: The degree to which health services for individuals and populations increase the likelihood of desired health outcomes and are consistent with current professional knowledge Institute of Medicine, 1990

Notes

- This definition incorporates both treatment and prevention
- Desired health outcomes are those sought by the recipients of the services
- Current professional knowledge refers to ever-changing technical standards of care

4
Vhy Emphasize Quality of Ca

Merely making health services accessible does not ensure they will be utilized Research in many settings has shown that demand for immunizations and other primary health care services rises with the quality of those services Conclusion: To attain and maintain healthy populations, countries must find ways to improve the quality of care on offer

5

Indicators and I	Dimensions of Quality of	^c Ca
Safety Effectiveness Appropriateness Efficiency Timeliness Acceptability Health outcomes Health improvement Prevention/early detection Technical quality/ proficiency/ competence	Access Continuity Availability Availability of information Consumer participation/choice Patient/carer experience Respect and caring Affordability	
		0

Goal	<i>Level of Attainment</i> or Quality	Distribution of Attainment or Equity
Optimal health	Health outcomes/improvement Technical quality/ proficiency/competence Appropriateness Effectiveness Safety Prevention/early detection Access/availability/continuity	Access/availability/continuity
Responsiveness	Consumer participation/choice Patient/carer experience Acceptability Respect and caring Availability of information Timeliness	Affordability
Fair financing		Affordability

Dimension	How Measured
Structure	
Physical plant	Direct observation
Waiting time	Supervisory checklist
Process	
Client-provider	Participant observation
interaction	Exit interviews
MIS	Data quality assessm
Outcomes	
Vaccine coverage	Household surveys

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture7/EN/pg... 12/11/2011

Page 1 of 3

Effectiveness Offer services that address the most important health problems of the most vulnerable groups Integrate curative and preventive services (maternal care, immunizations) Attain high population coverage Efficiency Rationalize essential drug supply Routinely use information for decision-making -Monitor costs Continued 21

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture7/EN/pg... 12/11/2011

Page 1 of 3

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

Section B

Case Studies of Quality of Care and Immunization: Case One

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture7/EN/pg... 12/11/2011

Results: Service Inp

Equipment, supplies: Supply problems rare Training: Adequate Knowledge: Staff who regularly immunize were knowledgeable about EPI, *other staff less so* Supervision: Regular but of *low quality* Facilities: Physical amenities up to par

30

Page 1 of 3

Recommendations
 In this case, most of the problems detected were in the process dimension To improve quality, the authors concluded, remedial efforts should first address: Missed opportunities Poor accessibility in slum areas Low knowledge about immunization among mothers and providers
Continued ³⁸

Recommendation

Note: This was a cross-sectional study, so the performance monitoring function in Donabedians model was not operating True quality assurance entails implementing the recommendations and continuing to monitor performance The importance of the monitoring function is evident in the next case study

39

Page 1 of 3

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

Section C

Case Studies of Quality of Care and Immunization: Case Two

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture7/EN/pg... 12/11/2011

The Coverage Ci

The B.I. team used an innovative graphic tool to show the nested determinants of effective coverage Availability: inputs are there Accessibility: people can reach the services Utilization: people use them Adequate coverage: compliance, timing is right Effective coverage: the proportion of people receiving high-quality services

Continued 43

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture7/EN/pg... 12/11/2011

The Coverage Ca

In this example, an availability bottleneck was solved in 1992, but others remained That year, most of the availability-access bottleneck was also solved, increasing immunization access to 91% By 1993, active channeling and defaulter tracking reduced the high dropout rate (utilization-adequate coverage bottleneck) An accessibility-utilization bottleneck remained to be solved

44

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture7/EN/pg... 12/11/2011

B.I. Resul

Guinea and Benin increased the percent of children under one fully immunized from 5% to 62% and 12% to 60%, respectively, over the period 19861993 Mean cost per fully immunized child: US\$1012 Utilization of all PHC services increased Overall, user fees were covering all local recurrent costs in both countries by 1993 Conclusion: people act rationally and are willing to pay more if the product is otherwise unavailable, if access becomes easier, or if quality is perceived to have improved (Knippenberg et al 1997:Page S44)

Continued 47

B.I. Result

By 1995, over 5,000/7,000 West and Central African health centers, serving about half the population, had adopted BI strategies Success, however, has not been not uniform

- Health centers obtain varying levels of effectiveness, efficiency
- By 1993, about one-third were still not covering their designated local recurrent costs
- The poorest 510% do not utilize the centers at all, but the remaining poor utilize them more than do the better-off

48

Page 1 of 3

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture7/EN/pg... 12/11/2011

Page 2 of 3

2001, Divelbess 2000

The Donabedian and B.I. frameworks both require monitoring and feedback to assure quality This is feasible and should be part of any routine immunization program

The B.I. strategies embody:

- Rational choice among users
- Providers, community engaged in a continuous, evidence-based quality assurance process

Both frameworks help immunization programs meet the WHO-endorsed intrinsic goals:

- Optimal health for all
- Responsiveness
- Equity

50

Copyright 2005, The Johns Hopkins University and Michael McQuestion. All rights reserved. Use of these materials permitted only in accordance with license rights granted. Materials provided AS IS; no representations or warranties provided. User assumes all responsibility for use, and all liability related thereto, and must independently review all materials for accuracy and efficacy. May contain materials owned by others. User is responsible for obtaining permissions for use from third parties as needed.

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture7/EN/pg... 12/11/2011

Health Behaviors, Social Learning, and Collective Action

Michael J. McQuestion, PhD, MPH Johns Hopkins University

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture8/EN/pg... 12/11/2011

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture8/EN/pg... 12/11/2011

pg_0005

Health Belief Model

U.S. health researchers (Becker 1974, Rosenstock 1974) developed the *Health Belief Model* in an attempt to explain why many people do not accept preventive health services, even when easily accessible

The model incorporates four key elements:

- Perceived susceptibility to the disease
- Perceived seriousness of the disease
- Perceived benefits, barriers to taking action
- Cues that motivate action

Health Belief Model

Susceptibility: the individuals estimate of her probability of getting the disease Seriousness: the individuals estimate of how bad it would be to get the disease Benefits, barriers: the individuals estimate of how effective the preventive treatment would be and how much it will cost to get it Cues: mass media message, conversation or other external factor that stimulates the individual to get the treatment

Health Belief Model

The model further assumes that the individuals social and demographic characteristics modify her perceptions and personal sense of agency

- Ascribed characteristics
- Personality, class, peer, and reference group composition

Example: Mexico City Campaig<mark>n</mark>

Perez-Cuevas et al (1999) measured immunization behaviors among urban Mexican mothers during a mass campaign

They measured four outcomes:

- Knowledge about the campaign
- Comprehension of media and promotional messages
- Motivation to seek immunizations
- Opinions about mass media messages
 Hypothesis: mothers who knew about and understood the purposes of the campaigns would most likely participate in them of their

own volition

Continued 9

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture8/EN/pg... 12/11/2011

costerebeiny, severity or

Health Behavioral Mode

Andersen (1968) developed this most widely used health services utilization model It incorporates three sets of determinants:

- Predisposing characteristics
- Enabling characteristics
- Need characteristics

The determinants are sequential predisposing -> enabling -> need -> action

Example: Inner-City Baltimor<mark>e</mark>

Strobino et al (1996) used a related health behavioral model *(Protection Motivation Theory)* to examine parental attitudes and underimmunization in low-income neighborhoods of Baltimore

They interviewed mothers and caretakers and matched the responses to provider records

pg_001'	7
---------	---

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture8/EN/pg... 12/11/2011

Household Health Production

In this model (Grossman 1972), parents are assumed to produce health the way a firm produces goods or services They operate independently and rationally They choose their health behaviors to maximize overall household utility, given resource and time constraints The household health production function combines information, health behaviors, food and other inputs conditional on time, resource, other

constraints

Household Health Production

A parent is an efficient producer to the extent she maximizes outputs (healthy household members) and minimizes costs

- She chooses the correct inputs
- She optimally combines the inputs

A households derived demand for immunization or other health behaviors could increase because the cost of those behaviors fell or because their quality improved

The lower the out-of-pocket, opportunity, information, and psychic costs, the more likely parents will perform a given health behavior

A good immunization program increases household health production by lowering these costs

Pros and Cons of the HHP Mod<mark>el</mark>

Pros

Household the primary producer Clear behavioral assumptions: Utility maximization, rationality Methodologically tractable, easy to estimate

Cons

Assumes actors are independent Preferences are fixed Assumes all choices are based on costbenefit calculations
Critiques of Individual Model<mark>s</mark>

Health belief, health behavioral, household health production, and other models not mentioned here all presume individuals act independently in choosing health behaviors From an empirical viewpoint, none of these models explains much of the observed variance in health behaviors within and across groups

Practical Bias

Bunton et al (1991) fault these models for their practical bias: overly focused on the effects of outside intervention; tied to top-down behavioral change

They call for more emphasis on how communities themselves generate change or adapt to outside interventions

In the following sections, we consider models that incorporate social factors

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture8/EN/pg... 12/11/2011

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture8/EN/pg... 12/11/2011

Social Learning Theory

In all human behavior, there is continuous *reciprocal interaction* between cognitive, environmental, and behavioral determinants (Bandura, 1977) People can influence their destiny, but there are

limits to their self-direction

- Cognitive skills
- Physical constraints
- Available role models

pg_0027

pg_00)28
-------	-----

pg_0030	
ro_ • • • •	

30

Modeling and Diffusion

Modeling is also a mechanism through which innovative ideas and practices diffuse within and across social structures

- Symbolic modeling: via mass media
- Direct modeling: actors observe local adopters through their interpersonal networks
 Reinforcement may be needed before observers adopt the behavior

Prosocial behaviors diffuse faster than dissocial behaviors

pg_0	031
------	-----

31

Page 2 of 2

Continued 32

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture8/EN/pg... 12/11/2011

- May Pead 40 engine ralizable self-regulation skill

From Self-Regulation to Socializatio<mark>n</mark>

Actors model both the performances of influential others and the personal standards they set High personal standards are generally admired and often generate social rewards (vicarious reinforcement of standard-setting behavior) Public recognition both rewards the exemplar and helps transmit the standard to others in the group

Self-Selection Processes

Consistency in modeling favors the social transmission of standards

Actors choose reference groups whose members share similar behavioral norms

 Their self-evaluations are thus influenced by actual or anticipated reactions of members whose judgments they value

Actors will likely adhere to contingent self-reward if others in the group do the same

Self-Regulation as Developmen

The principal goal of social development is to transmit general standards of conduct that could serve as guides for self-regulation of behavior in a variety of activities

Bandura 1977:138

pg_	0036
10_	

36

Reciprocal Determinism

Personal behavior determines which of many possible environmental influences come into play and how they materialize Environmental influences call forth and shape particular behavioral repertoires In this two-way regulatory system, both environments and behaviors constantly interact

Continued 37

pg_	0038	
10_		

38

Social Learning Summarized

By explicitly relating social structure to behavioral change, social learning theory overcomes the main criticism of individual behavioral models leveled by Bunton et al (1991) They assert that: Attitudes, values and beliefs about health are a product of social interaction[and] the context of behavioris central to any account of behavioral change. (Bunton et al 1991:156)
pg	0039
1	-

39

Implications for Immunization

Harnessing social learning processes to create immunization demand means working with communities, not just individuals As social learning proceeds, conditions become increasingly favorable for shifting the immunization equilibrium (reciprocal determinism) Provided the outcomes being modeled are

favorable, the result should be higher immunization levels

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture8/EN/pg... 12/11/2011

Overview

This section describes **collective action**, a theory that seeks to explain how self-interested actors sometimes join forces to achieve a **collective good**

The theory maintains the assumption that agents act rationally to maximize individual utility In this section, I draw heavily from the work of two economists, Mancur Olson and Samuel Popkin

Public Good

Public (collective) good (def): The achievement of a common goal, or satisfaction of a common interest (Olson 1965)

Under certain conditions, actors in a collectivity will provide a public good through collective action

Characteristics of a Public Goo<mark>d</mark>

Unattainable individually: it can only be provided collectively Jointness of supply: available to everyone if available to anyone Non-excludability: cannot be feasibly withheld from any group member Provision is suboptimal unless the marginal costs and benefits are equal for every actor If the collective good can be attained at a sufficiently low cost in relation to its benefit, such that one or more actors stand to gain by providing the good themselves, then it presumably will be

provided

44

Free-rider problem: rational, self-interested actors are tempted to consume the good without contributing their fair share
Multiple objectives: heterogeneous actors may not find common cause
Conflicts of interest: some actors may have vested interests in the status quo
Incomplete information: inability to gauge the chances of success a priori

pg_0	047
------	-----

Non-Material Incentives

Contemporary social theorists believe that nonmaterial incentives are increasingly important, especially to urban inhabitants who are exposed to telecommunications and other aspects of globalization **Solidary:** actor finds participation intrinsically rewarding **Purposive:** ideology motivates participation **Expressive:** actor derives benefits from expression itself

Immunization as Public Good

Herd immunity (def): The resistance of a group to invasion and spread of an infectious agent, based on the immunity of a high proportion of individual members of the group (Fox, 1970) Herd immunity and its stronger cousin, eradication, are examples of public goods They are therefore attainable through collective action

Continued 49

pg_0050

pg_0051

Example: Ethiopia

Bhattacharyya and Murray (2000) used a participatory approach to stimulate collective action for maternal and child health in 20 Ethiopian communities As in the Bamako Initiative case, performance of the existing PHC system was poor

The main goal was to inculcate an ongoing dialogue between health workers and community action committees

Continued 52

Example: Ethiopia

The main strategies involved:

- Forming teams of community volunteers and local health workers to assess MCH needs and propose locally appropriate solutions
- Monitoring, evaluating, and feeding back project results to the communities

Teams could choose to implement 35 selective PHC behaviors, including immunizations Public meetings, social mapping, and free-listing were used to induce teamwork

Structured interviews and household surveys using the lot quality assurance method

gatterpret baseline data

Continued 53

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture8/EN/pg... 12/11/2011

Page 2 of 2

were performed

Preliminary Results

Exclusive breastfeeding, antenatal visits, and availability of soap in the household all significantly increased over the one-year period No data on immunization were given Monitoring and feedback by MOH and project staff were essential to inducing behavioral change

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture8/EN/pg... 12/11/2011

Page 2 of 2

57

Copyright 2005, The Johns Hopkins University and Michael McQuestion. All rights reserved. Use of these materials permitted only in accordance with license rights granted. Materials provided AS IS; no representations or warranties provided. User assumes all responsibility for use, and all liability related thereto, and must independently review all materials for accuracy and efficacy. May contain materials owned by others. User is responsible for obtaining permissions for use from third parties as needed.

Eradication, Part 1: Polio

Michael J. McQuestion, PhD, MPH Johns Hopkins University

This lecture contains materials prepared by Ciro A. de Quadros. Used with permission.

Continued 3

Polio Progress Report

All countries presently and previously endemic for polio have active Acute Flaccid Paralysis (AFP) surveillance systems Globally, the AFP rate was 1.9 per 100,000 persons ages <15 years at the end of 2003 This compares to an expected background rate of 1 per 100,000 Proportion of suspected cases with adequate stool specimens was 86%

Case Study: AFP Surveillance in

Africa

African Region countries introduced active AFP surveillance in 1995

By 1999, 38 countries were regularly reporting AFP and other polio surveillance data to WHO Countries adopted an Integrated Disease Surveillance and Response strategy, centralizing and coordinating core surveillance activities for polio, AFP, and other communicable diseases

Continued 5

Case Study: AFP Surveillance in

Africa Core surveillance activities

- Case detection, registration, confirmation
- Reporting, analysis, use, and feedback of data
- Epidemic preparedness and response

Other diseases included measles, neonatal tetanus, yellow fever, meningitis, cholera

Case Study: Findings

Nsubuga et al (2002) surveyed key informants in 32/38 participating countries to assess the integrated system

Findings

- 31/32 countries had designated AFP surveillance officers (median 10/country)
- 27/32 countries reported median annual AFP surveillance budget of \$US 125,000
- 26/32 countries had at least one vehicle designated for AFP surveillance

Page 2 of 2

Continued 7

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

Case Study: Findings

Attribute	n	(%)	
Use AFP resources for surveillance of other diseases	26	(81)	
Combine detecti on of other diseases with AFP	28	(90)	
Inform clinicians about ot her diseases when informing about AFP	27	(87)	
Use AFP lab transport system for other diseases	14	(44)	
Total	32		

Source: Nsubuga et al 2002

Continued 8

Recrudescence

Rumors and resistance led to cessation of polio vaccination in Northern Nigeria in mid 2003 Result: poliovirus spread to 31/37 Nigerian states and to 12 other previously polio-free African countries Coverage in those countries was not high enough to prevent transmission 355 new polio cases in Nigeria in 2003

Page 2 of 2

Continued 11

Recrudescence

Additional cost of control activities in the 10 affected African countries: \$25 million Current goal: interrupt wild poliovirus transmission worldwide by the end of 2004 Risks

- Surveillance and house-to-house mop-up vaccination efforts will lapse
- The two remaining endemic countries (Niger, Nigeria) will not reach 90% coverage

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

Polio Progress Report

	2003 2004		
Africa	446	162	
Nigeria	355	133	
Nigeria	41	12	
East Mediterranean	113	15	
Pakistan	103	12	
Afghanistan	8	2	
Egypt	1	1	
South -East Asia	225	8	
India	225	8	
American	0	0	
European	0	0	
West Pacific	0	0	

Endgame

23 Western and Central African countries will hold synchronized national immunization days in Fall, 2004, and early 2005 in a bid to end polio transmission on the continent Once transmission is interrupted, experts will decide on the best strategy to stop the use of OPV so that no vaccine-derived polioviruses will be circulating

Copyright 2005, The Johns Hopkins University and Michael McQuestion. All rights reserved. Use of these materials permitted only in accordance with license rights granted. Materials provided AS IS; no representations or warranties provided. User assumes all responsibility for use, and all liability related thereto, and must independently review all materials for accuracy and efficacy. May contain materials owned by others. User is responsible for obtaining permissions for use from third parties as needed. 14

Eradication, Part 2: Measles

Michael J. McQuestion, PhD, MPH Johns Hopkins University

This lecture contains materials prepared by Ciro A. de Quadros. Used with permission.

Measles Progress Report: Americas

Region

Supplemental Immunization Activities (catch-up/ keep-up/follow-up) reached:

- 10.4 million children in 2000
- 10.6 million children in 2001
- 9.9 million children in 2002

Routine measles vaccine coverage was:

- 94% in 2000
- 96% in 2001
- 92% in 2002

Active measles surveillance indicators improved over the period

Continued 3

Region				
Measles Surveillance Performance, Americas Region				
Indicator	2001	2002	2003	
Suspected cases reported	56,136	46,629	30,118	
% visited within 24 hours	61	65	85	
% sites reporting weekly	85	85	91	
% persons with ade quate samp les	71	74	81	
% labs receiving samples <= 5 days	54	58	63	
% labs with results <=4 days	74	74		

Virological Surveillance

As with polio, virological surveillance becomes more important as cases diminish Two serotypes (H1, D9) were found to have transmitted in 20022003

- H1 (Mexico, U.S.) from East Asia
- D9 (Venezuela, Colombia) from Europe In the U.S., other imported serotypes did not transmit (D4, D6, D7)

10_

Measles Progress Report: Americas

Region

In 2002, there were 2,584 confirmed measles cases in five countries

 Large outbreak in Venezuela due to importation from Europe, low coverage

In 2003, there were 105 confirmed measles cases in six countries

- Most cases were imported
- Only Mexico, U.S. reported transmission

Continued 7

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture10_McQ... 11/11/2011

Measles in the United States

Measles incidence has been less than one case per million inhabitants since 1997 Most cases are imported and are from multiple sources Small outbreaks with limited transmission occurs, but immunity levels are high enough to prevent endemic transmission

8

Goal May Be Achieved

There has been no indigenous measles transmission for two years or more in 38/47 AMRO countries and territories Importations will continue as long as measles persists in other regions If countries follow the PAHO strategies, imported cases will not transmit The goal of regional measles elimination may have been achieved

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture10_McQ... 11/11/2011

Page 2 of 2

Continued 10

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture10_McQ... 11/11/2011

Global Measles Situation

During 19972001, 156/191 (82%) of WHO Member Countries provided second opportunities through Supplementary Immunization Activities Conclusion

 Other regions still have a long way to go before global measles eradication can be undertaken

Page 2 of 2

11

Copyright 2005, The Johns Hopkins University and Michael McQuestion. All rights reserved. Use of these materials permitted only in accordance with license rights granted. Materials provided AS IS; no representations or warranties provided. User assumes all responsibility for use, and all liability related thereto, and must independently review all materials for accuracy and efficacy. May contain materials owned by others. User is responsible for obtaining permissions for use from third parties as needed.

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture10_McQ... 11/11/2011

Page 1 of 3

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

Sustaining Immunization Supply

Michael J. McQuestion, PhD, MPH Johns Hopkins University

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture11/EN/p... 11/11/2011

Page 1 of 3

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture11/EN/p... 11/11/2011

Global Inequa

By 1997, 8095% of children in the U.S. and other developed countries were being fully immunized against up to 12 vaccine-preventable diseases
The incidence of those diseases in the developed world is now virtually nil
In 1990, the developing world reached a highwater mark: around 80% of children were immunized against the six core EPI target diseases (UCI 1990)
Since then, vaccine coverage has dropped in many countries
Developing countries still suffer 3 million cases of vaccine-preventable diseases annually
Gap between rich/poor continues to grow

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture11/EN/p... 11/11/2011

The countries continue to receive sizable inputs to eradicate polio, measlesbut this will not solve the sustainability problem Eradication follows different logics Economic: intrinsically cost-beneficial -Pragmatic: not necessarily dependent on routine program performance Political: polities readily organize, support, participate In what ways can the polio eradication investments strengthen routine EPI. A high-level WHO official identified these specific areas: Continued 6

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture11/EN/p... 11/11/2011

Page 1 of 3

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

Section B

Global Alliance for Vaccines and Immunization (GAVI)

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture11/EN/p... 11/11/2011

GAV

An important new actor for global immunization is The Global Alliance for Vaccines and Immunization (GAVI)
GAVI consists of counterpart staff from WHO, UNICEF, the World Bank, the Gates Foundation, other non-governmental organizations, and vaccine manufacturers
The Vaccine Fund receives and disburses donor funds to meet GAVIs goals

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture11/EN/p... 11/11/2011

Fast track: GAVI began in 2000 Donors matched an initial US \$750 million grant from the Bill and Melinda Gates Foundation, bringing total Vaccine Fund commitments to US \$1.3 billion by 2004 GAVI targets the worlds 75 poorest countries As of July, 2004, GAVI had committed US \$1.08 billion to 70 of them in the form of five-year grants As of 2004, GAVI had spent US \$236 million, saving over 500,000 lives Any way you look at it the results are fantastic. Best investment I ever made. (Bill Gates) 10

Eligibility Crit

Annual per capita GNP less than U.S. \$1,000 Functioning Interagency Coordinating Committee Recent EPI program assessment Multi-year plan incorporating assessment recommendations A strategy to improve, maintain injection safety

11

Page 1 of 3

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture11/EN/p... 11/11/2011

GAVI in Africa: Result

S

16

GAVI application process too rapid and timeconsuming Coordination committees ineffectual Cold chain, injection safety, outreach, and supervision weak Routine service data unreliable National budgets for future vaccines nonexistent

Data Quality Audits
 Verification factor A benchmark for reported data quality Data quality must be at least 80% of expected level Quality of the System Index Recording practices Storage and reporting practices Monitoring and evaluation Denominators System design
21

QS				
Provinces		Health Units		
	QSI (%) Avera	ge QSI (%) Lowe.	st QSI (%) Highe	st QSI (%
Ka b u l	<mark>79.4</mark>	<mark>55.7</mark>	46.4	60
Ghazni	66.7	58.9	46.4	71
Hera t	67. <mark>6</mark>	<mark>68.5</mark>	46.4	<mark>85</mark>
Bagh lan	<mark>31.6</mark>	58.9	28.6	82
Averag e QSI	61.3	60.5	28.6	85

Page 1 of 3

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture11/EN/p... 11/11/2011

FCD as a final results as a /Car	waard as a Minister of I	
Costing results, Laos (Sou	1999 (%) 2001 (w)
1. Operational costs	\$ 956,856,82 \$ 1,020,9	932 86
Vaccines	\$ 322920 28 \$ 571.771	1 48
traditional 6	\$ 322,920 \$ 276,971	2
new, underused	S S2	294.800
Injection supplies	\$ 21,565 2 \$ 43,817 4	
Personnel	\$ 170,493 15 \$ 119,60	0 10
Central level	\$ 10.022 \$ 11.307	
Provincial level	\$ 34,481 \$ 40,722	
District level	\$ 95.331 \$ 109.768	2 2
NID (per di ems)	S S	
Transportati on	\$ 154.211 13 \$ 86.557	7
Cold chain maintenance	\$ 30,976 3 \$ 19,058 2	
Short-term training	\$ 64,581 6 \$ 34,636 3	7
IEC/social mobilization	\$ 41,904 4 \$ 18,975 2	
Monitoring and surveillance	\$ 88,134 8 \$ 91,001 8	2
Other	\$ 62.073 5 \$ 35.517 3	
NID outreach	\$ 53,103 \$ 28,480	÷
2. S upplemental Immunization Activities	§ 196.927 \$ 386.539	
3. Capital costs	\$ 211.292 18 \$ 160.69	6 14
Vehicles	\$ 130,482 11 \$ 110,67	99
Cold chain eqpt	\$ 65,735 6 \$ 42,452 4	
Injection equipment	\$ 15.075 1 \$ 7.565 1	
Total routine	\$ 1,168,148 85.6 \$ 1.1	81.627 7
Exclude G AVI-V F new vaccine support	1,168,148 85.6 \$ 886,8	27 56.6
Total SIA	\$ 196,927 14,4 \$ 386.5	539 24.6
Total NIP	\$ 1 365 075 100 \$ 1 56	58 166 1

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture11/EN/p... 11/11/2011

Page 1 of 3

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture11/EN/p... 11/11/2011

Page 2 of 3

Financial Task Force, 1999

Page 1 of 3

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture11/EN/p... 11/11/2011

Page 2 of 3

Mercer Consulting, 2002

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture11/EN/p... 11/11/2011

Conceptualize Determinan

For multinational firms, vaccine profitability has risen since 1992, driven by proprietary products and technology substitution in high-income markets

As industrialized countries vaccine schedules diverge from those of developing countries, there are fewer opportunities to offset vaccine costs for the latter by charging higher prices in the former (tiered pricing)

33

Vaccij	ne Market So	egments and Profits	(2000)
Basic	Enhanced	Proprietary	Adult /
Pediatrics	Pediatrics	Pediatrics	Travel
OPV IPV		Pneumonococcal, meningococcal conju gates	Hepatitis A
BCG DTaP	Varicella		Yellow fever
TT	Hepatitis B		Typhoid
DTP	Hib		Influenza
Measles M	MR		
US\$680m \$2.0b \$1.7b			\$1.7b

Source:

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture11/EN/p... 11/11/2011

Page 2 of 3

Mercer Consulting, 2002

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture11/EN/p... 11/11/2011

Page 1 of 3

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture11/EN/p... 11/11/2011

Page 1 of 3

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

In heavily indebted poor countries, immunization and other health programs have been decentralized over the past two decades as part of structural adjustment policies

Continued 41

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture11/EN/p... 11/11/2011

Decentralizatio

A more generalized decentralization trend has affected most developing countries over the past two decades

Countries are shifting both the authority to raise revenues and the responsibility for delivering services to lower governance levels With decentralization comes market liberalization

 Private sector providers are encouraged to give immunizations, too

Continued 42

Decentralizatio

As decentralization progressed during the 1990s, vaccine coverage fell in many countries Some of the coverage losses were due to reduced donor inputs and the failure of national governments to provide adequate funding Another component was technical

 Most districts did not have enough adequately trained managers or the administrative agility to deliver immunization programs on their own

43

Global Decentralization Eff

Khaleghian (2004) studied the effects of decentralization on immunization coverage in 140 lower- and middle-income developing countries from 1980 to 1997 He used DPT3 and measles vaccine coverage data from the WHO/UNICEF joint reporting system Decentralization was indicated by whether states, provinces, or municipalities had taxing, spending, and regulatory authority His time-series model controlled for other factors, including GNP, degree of democratization, ethnicity, and external EPI donor involvement

Continued 51

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture11/EN/p... 11/11/2011

Page 1 of 3

A Managers View
 A national EPI manager also faces new roles and esponsibilities. Ansuring that all districts perform and that none free ride (i.e., fail to maintain high vaccine coverage and strong surveillance systems). Providing ever higher quality feedback to peripheral actors. Bnsuring that public and private providers have adequate performance incentives.

Conclusion

There is no alternative to building public sector capacity for delivering immunization programs With decentralization, many more bureaucratic, political, and community actors require technical inputs A strong national immunization program is still

needed

58

Page 1 of 3

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/Lecture11/EN/p... 11/11/2011

U.S. Immunization Situatio

The U.S. has maintained childhood vaccine coverage levels over 75% since the early 1990s Indigenous transmission of the vaccinepreventable childhood diseases eliminated Influenza still kills over 20,000 Americans yearly, mainly adults over 65 Lets trace the evolution of the U.S. immunization program

61

Page 1 of 3

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

Page 2 of 3

Page 3 of 3

Page 2 of 3

Page 3 of 3

Conceptualize Determinan

53% of children under five have private insurance immunization benefit (Institute of Medicine, 2003) Fluctuations in Section 317 funding reduce public sector immunization delivery for the remainder of children

Section 317 funding cannot be used to reimburse private immunization providers

Even costlier vaccines are on the way

70

Page 2 of 3

Page 3 of 3

As out-of-pocket costs rise, providers shift patients to public facilities, parents abandon the schedule To remedy the situation, the IOM (2003) recommended: - A government-subsidized mandate to all public and private health plans to provide all recommended vaccines Subsidies to cover these additional costs. based on the societal benefits and costs of each vaccine (value-based pricing) - Vouchers for uninsured populations The federal government has yet to implement these IOM recommendations 71

Page 2 of 3

Page 3 of 3

_Summary

Global inequities in the availability and affordability of immunizations persist The advent of new vaccines has dramatically increased costs The poorest countries have little prospect of meeting these costs themselves Market incentives for vaccine manufacturers are weak

72

Copyright 2005, The Johns Hopkins University and Michael McQuestion. All rights reserved. Use of these materials permitted only in accordance with license rights granted. Materials provided AS IS; no representations or warranties provided. User assumes all responsibility for use, and all liability related thereto, and must independently review all materials for accuracy and efficacy. May contain materials owned by others. User is responsible for obtaining permissions for use from third parties as needed.

Page 3 of 3

Sustaining Immunization Demand

Michael J. McQuestion, PhD, MPH Johns Hopkins University

Community Participation

the process by which members of the community, either individually or collectively and with varying levels of commitment:

- Develop the capability to assume greater responsibility for assessing their health needs and problems
- Plan and then act to implement these solutions
- Create and maintain organizations in support of these efforts
- Evaluate the effects and bring about necessary adjustments in goals and programmes on an ongoing basis

Source: WHO, 1991

Continued 4

Community Participation

Community participation is the cornerstone of primary health care

Some examples weve studied in this course:

- Census-based Bolivian model
- Bamako Initiative
- Polio eradication

The decentralization strategy assumes community participation will accompany local control over health resources

As Azfar et al (2002) concluded, it is precisely the lack of community participation that jeopardizes decentralized immunization

programysstatglesst in

Continued 5

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

Reconceptualizing Community Participation

Applying principles of social learning, community participation:

- Needs some heterogeneity to work
- Involves similar actors modeling each others behaviors and personal standards
- Reflects prevailing social norms
- Intrinsically rewards participants
- Rapidly diffuses prosocial behaviors
- Transforms social structures

Continued 10

Applying the principles of collective action, community participation:

- Needs some heterogeneity to work
- Involves self-interested actors
- Requires a discrete, measurable goal
- Must involve every member
- Is short-term in nature
- May have an expressive dimension
Continued 11

Summarizing, external agents can facilitate community participation by:

- Providing appropriate symbolic representations and highlighting actual examples of desired behaviors
- Helping identify attainable goals
- Providing regular progress reports
- Recognizing desired behaviors using peer processes
- Exchanging actors across communities
- Keeping all actors involved

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

Vaccine Reactions

Mild event	rates for specific	vaccina	tions
			irritability,
vaccine	local reaction	fever	discomfort
Hib	5-15%	2-10%	-
	<= 30% children		
Hepatitis B	<=5% adults	1-6%	-
Measles/MMR	<= 10%	<=5%	-
OPV	none	<1%	<1%
TT/DT	<=10%	<=50%	<=60%
DTP	<=50%	<=50%	<=60%
BCG	common	-	-

Page 2 of 2

Source: Data from PAHO, 2002

15

Manufacturer Quality Contro

Vaccine producers must meet rigorous manufacturing practices WHO and government regulatory authorities (NRAs) assure quality and certify each vaccine according to strict standards NRAs test and release each lot of vaccine and maintain post-marketing surveillance Manufacturers increasingly conduct clinical trials and cooperate in AEFI surveillance in-country

pg_001'	7
---------	---

Frequency of Adverse Events

During large-scale immunization campaigns, the frequency of AEFIs may increase, but the rate of occurrence stays the same Example: consider a country giving 100,000 doses of measles vaccine annually

- Expected: 12 sore arms/100,000 doses
- Routine EPI: we observe 1 sore arm/month
- Week-long catch-up campaigns (say 80% coverage): we observe 910 sore arms/week
 Higher frequency may generate negative publicity

pg_0	018
------	-----

Disposal of Sharps

To maximize safety, WHO, UNICEF, and UNFPA issued a joint recommendation in 1999 that all countries should use auto-destruct syringes This increases the problem of safely disposing of used needles and syringes Each district is expected to:

- Have its own sharp disposal plan
- Routinely report on use of sharps disposal boxes at each health facility offering vaccinations

19

systems

20

Quality of Care

The steady improvements in vaccine safety indicators show that countries are devoting more attention to this aspect of quality of care Much of the improvement can be attributed to GAVI grants to the lowest-income countries Popular perceptions of the quality of immunization services affects acceptance

Resistance Due to Waning Incidence

Popular awareness of vaccine-preventable diseases and their severity declines as the numbers of cases decline Popular movements occasionally arise against specific vaccines Gangarosa et al (1998) compared pertussis incidence in a set of countries where anti-vaccine movements successfully stopped pertussis immunization to another set where there were no such movements

Page 2 of 2

Continued 24

Resistance and Community Demand

Nichter (1995) studied rapid immunization efforts in Asia and Africa

He saw that communities exhibited either active demand or passive acceptance of immunization

- Active demand
 - Public is informed, knows risks, benefits
- Passive acceptance

Public merely complies, yields to external pressure to immunize

Continued 26

Resistance and Community Demand

Nichter also observed frequent resistance to vaccination

Resistance is usually based on rumors and fears

- Or is an opportunity for political dissent Vaccination has been associated with Westernization, sterilization, and Christianization Rumors accompany rapid immunization efforts such as polio eradication campaigns

pg_0027

Case Study: Polio Vaccination in

Nigeria

EPI performance had been deteriorating in Nigerias predominantly Muslim northern states National polio immunization campaigns were held in 2002

On the advent of the 2003 campaigns, local Muslim leaders advised the population to shun polio OPV vaccine because they believed it contained sterilizing agents

Continued 28

Case Study: Polio Vaccination in

Nigeria

The Nigerian government formed a special safety verification committee consisting of scientists and traditional leaders

The committee, with WHO support, tested similar OPV lots in use in India and South Africa

In March, 2004, the committee concurred that the OPV was safe

Renewed special immunization activities followed, emphasizing education, informed consent Cost: 491 polio cases in Nigeria, spread of wild poliovirus to nine adjacent countries

pg_0	031
------	-----

interpendization managements high ethical principles

pg_	0036
10_	

pg_0037

Page 2 of 2

Continued 38

pg	0039
1 -	-

Impersonal Trust

An immunization program is a social institution in which actors invest impersonal trust in one another Trust-based institutions lower the risks of trusting strangers through:

- Monitoring and disciplinary procedures
- The faceless commitments embodied in their expert systems (Giddens 1990)

Institution-Based Trust

Institution-based trust is a specific response to the complexity of modern societies, adds Gilson

- Without it, immunization programs would not be feasible
- With it, immunization programs measurably reduce mortality and add to economic productivity

Generalized Trust

The social norms underlying interpersonal trust are built into the institution over time When a trust-based institution embodies social norms relevant to its actors, it can promote generalized trust in other citizens of that society

 In this way, a trust-based immunization program contributes to development in a civic sense

Immunization as a Social Institution:

Conclusion

High quality of care and high-trust relationships among providers therefore contribute to:

- Inducing individual behavioral change
- Enabling collective action

Conclusion

 Given trust, people want to participate in EPI both for their own health and to contribute to the collective good

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

Case Study: Uganda

Birungi (1998) described some negative outcomes that accompanied disruptions of Ugandas Expanded Programme on Immunization in the early 1990s Observing a deterioration in quality of care, Ugandans took to self-administering their injections This mistrust in health institutions has increased the risk of HIV transmission

Continued 46

Continued 47

Continued 48

pg_0050

Immunization registry

Page 2 of 2

Continued 51

They also engaged community organizations (n=20) in systematic outreach activities to reach young children

The outreach strategies included:

- Paid outreach workers
- Bilingual educational materials
- Coordination with Women, Infants, and Children (WIC) and State Child Health Insurance (SCHIP) Programs
- A detailed community action plan

Page 2 of 2

Continued 52

Page 2 of 2

Continued 53

proreations and community organizations

54

Page 2 of 2

Copyright 2005, The Johns Hopkins University and Michael McQuestion. All rights reserved. Use of these materials permitted only in accordance with license rights granted. Materials provided AS IS; no representations or warranties provided. User assumes all responsibility for use, and all liability related thereto, and must independently review all materials for accuracy and efficacy. May contain materials owned by others. User is responsible for obtaining permissions for use from third parties as needed. 55

Problem Solving for Immunization Programs Professor Michael McQuestion

Reading List

Lecture 1 Required

Bonanni, Paulo. Demographic Impact of Vaccination: A Review. Vaccine 17 (1999) S120 - S125.

CDC. Morbidity and Mortality Weekly Report. February 8, 2002 / Vol. 51 / No. RR-2.

Cutts, Felicity T. Vaccination in the 21st Century New Funds, New Strategies. Tropical Medicine and International Health Volume 5 no 3 pp 157159 March 2000.

Shearley, Adelaide E. The Societal Value of Vaccination in Developing Countries. Vaccine 17 (1999) S109 - S112.

Lecture 1 Recommended

Henderson, D. A. Lessons from the Eradication Campaigns. Vaccine 17 (1999) S53 - S155.

CDC. Morbidity and Mortality Weekly Report. April 2, 1999 / Vol. 48 / No. 12

CDC. National, State, and Urban Area Vaccination Coverage Among Children Aged 19-35 Months -- United States, 2003. July 30, 2004 / 53(29); 658-661.

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/ReadingList/EN/... 12/11/2011

US, National Immunization Survey, 2003. Estimated Vaccination Coverage with Individual Vaccines and Selected Vaccinations Series Among Children 19-35 Months of Age by State And Immunization Action Plan Area.

WHO. State of the Worlds Vaccines and Immunization. 2002.

http://www.who.int/vaccines-

Lecture 2 Required

Davis, Matthew M., Mitesh S. Patel and Achamyeleh Gebremariam. Decline in Varicella-Related Hospitalizations and Expenditures for Children and Adults After Introduction of Varicella Vaccine in the United States. *Pediatrics* 2004;114;786-792. http://www.pediatrics.org/cgi/content/full/114/3/786

Luman, Elizatbeth T., MS, Shannon Stokley, MPH, Danni Daniels, MS, R. Monina Klevens, DDS, MPH. Vaccination Visits in Early Childhood Just One More Visit To Be Fully Vaccinated. Am J Prev Med 2001; 20(4S).

Onta, S.R., Sabroe, S. and Hansen, E.H. The Quality of Immunization Data from Routine Primary Health Care Reports: A Case from Nepal. Health Policy and Planning; 13(2): 131-139.

San Sabastian, Miguel DTM&H MsC, Isabel Goicolea MD, Jaime Aviles, Mauricio Narvaez. Improving Immunization Coverage in Rural Areas of Ecuador: A Cost-Effectiveness Analysis. Tropical Doctor, 2001, 31, 21-24.

Smith, Philip J., PhD, Michael P. Battaglia, MA, Vicki J. Huggins, MS, David C. Hoaglin, PhD, Ann-Sofi Roden, MBA, Meena Khare, MS, Trena M. Ezzati-Rice, MS, Robert A. Wright, MA. Overview of the Sampling Design and Statistical Methods Used in the National Immunization Survey. Am J Prev Med 2001;20(4S).

Lecture 2 Recommended

Bolton, Paul, MBBS MPH SCM; Elizabeth Holt, DRPH; Alan Ross, PhD; Nancy Huchart, RN MPH; Bernard Guyer, MD MPH. Estimating Vaccination Coverage Using Parental Recall, Vaccination Cards, and Medical Records. Public Health Rep 1998; 113: 521-526.

Fuchs, Victor R. Economics, Values, and Health Care Reform. The American Economic Review, Volume 86, Issue 1 (March 1996), 1-24.

Graves, P. M. Comparison of the Cost-effectiveness of Vaccines and Insecticide Impregnation of Mosquito Nets for the Prevention of Malaria. Annals of Tropical Medicine & Parasitology, Vol. 92, No. 4, 399 410 (1998).

Lieu, Tracy A., MD, MPH G. Thomas Ray, MBA, Steven B. Black, MD, Jay C. Butler, MD, Jerome O. Klein, MD, Robert F. Breiman, MD, Mark A. Miller, MD, Henry R. Shinefield, MD. Projected Cost-effectiveness of Pneumococcal Conjugate Vaccination of Healthy Infants and Young Children. JAMA, March 15, 2000Vol 283, No. 11.

National Health and Nutrition Examination Survey (nhanes.) CDC. http://www.cdc.gov/nchs/nhanes.htm____

Lecture 3 Required

Parnos Katia CDND MCs MDH: Stanhan M Eriadman MD MDH:

Page 2 of 3

Patries, Kaue, Crive, Pisc, Pierr, Stephen M. Frieuman, MD, Merr, Phapila.Biodentel.and Mathematical Community Volunteers on Immunization Rates of Children Younger Than 2 Years. Arch Pediatr Adolesc Med. 1999;153:518-524.

Briss, Peter A., MD, Lance E. Rodewald, MD, Alan R. Hinman, MD, MPH, Abigail M. Shefer, MD, Raymond A. Strikas, MD, Roger R. Bernier, PhD, Vilma G. Carande-Kulis, MS, PhD, Hussain R. Yusuf, MBBS, MPH, Serigne M. Ndiaye, PhD, Sheree M. Williams, PhD, The Task Force on Community Preventive Services. Reviews of Evidence Regarding Interventions to Improve Vaccination Coverage in Children, Adolescents, and Adults Am J Prev Med 2000;18(1S).

The LATH Consortium of Deloitte Touche Tohmatsu Emerging Markets (DTTEM), Euro Health Group (EHG) and Liverpool Associates in Tropical Health (LATH). How to Prepare for a Data Quality Audit Briefing Paper. The Global Alliance for Vaccines and Immunizations.

Perry, Henry, Nathan Robison, Dardo Chavez, Orlando Taja, Carolina Hilari, David Shanklin, and John Wyon. The Census-based, Impact-oriented Approach: Its Effectivenss in Promoting Child Health in Bolivia. HEALTH POLICY AND PLANNING; 13(2): 140-151.

Technet 2001. New Delhi Consultation Report. Technet 2001.

Lecture 3 Recommended

WHO. Weekly Epidemiological Record. 14 February 2003, 78th Year. No. 7, 2003, 78, 41-48 http://www.who.int/wer_.

WHO. Safe Disposal of Syringes and Needles in the Context of Health Care Waste Management Systems. WHO, 2003.

Lecture 4 Required

PAHO. EPI Newsletter Expanded Programs on Immunization in the Americas. Volume XXII, Number 5, October 2000.

Roush, Sandy, MT, MPH; Siiri Bennett, MD; Hayley Hughes, MPH; Melinda Wharton, MD, MPH. Chapter 16: Enhancing Surveillance. VPD Surveillance Manual, 3 rd Edition, 2002, Chapter 16, Enhancing Surveillance: 16 1.

Singh, Jagvir, Jain, D. C., Sharma, R. S., and Verghese, T. Further Observations on Comparison of Immunization Coverage by Lot Quality Assurance Sampling and 30 Cluster Sampling. Southeast Asian J Trop Med Public Health, Vol 27, No. 2, June 1996.

Stewart, J. C., Schroeder, D. G., Marsh, D. R., Allhasane, S., and Kone, D. Assessing a Computerized Routine Health Information System in Mali Using LQAS. HEALTH POLICY AND PLANNING, 16(3): 248-255.

Lecture 4 Recommended

Coetzee, D. J., Ferrinho, P., and Reinach, S. G. A Vaccination Survey Using the EPI Methodology to Evaluate the Impact of a Child Health Outreach Programme in an Urban Area of South Africa. Bulletin of the World Health Organization, 71 (1): 33-39 (1993).

LQA Tool. Ward Form Tetanus Toxoid Immunization of Women.

Macintyre, Kate. Rapid Assessment and Sample Surveys: Trade-offs in Precision and Cost. HEALTH POLICY AND PLANNING; 14(4): 363373.

Taufik Vouccof Chamcul Hogue & Mizan Ciddigi Heing Lot Ouality

Assurance from the World Health Organization, 2001, 79 (6).

WHO. Weekly Epidemiological Record. 1995, 70, 261-268.

WHO. Monitoring Immunization Services Using Lot Quality Technique. 1996.

WHO. Description and Comparison of the Methods of Cluster Sampling and Lot Quality Assurance Sampling to Assess Immunization Coverage. 2001.

Lecture 5 Required

Cutts, F. T., Zell, E. R., Soares, A. C., and Diallo, S. Obstacles to Achieving Immunization for All 2000: Missed Immunization Opportunities and Inappropriately Timed Immunization. Journal of Tropical Pediatrics, Vol. 37, August 1991.

Charles W. LeBaron, MD; J. Todd Mercer, MPH; Mehran S. Massoudi, PhD, MPH; Eugene Dini, MPA; John Stevenson, MA; Wayne M. Fischer, MPH; Herbert Loy; Lori Stonehocker Quick, RN, MSN; John C. Warming; Pat Tormey, RN, MPH; M. DesVignes-Kendrick, MD, MPH. Changes in Clinic Vaccination Coverage After Institution of Measurement and Feedback in 4 States and 2 Cities. Arch Pediatr Adolesc Med. 1999;153:879-886.

Robinson, J. Stephen, Barton R. Burkhalter, Barbie Rasmussen, & Ristianto Sugiono. Low-cost onthe-job Peer Training of Nurses Improved Immunization Coverage in Indonesia. Bulletin of the World Health Organization, 2001, 79 (2).

Lecture 5 Recommended

CDC. Core Elements for AFIX Training and Implementation. April 2004. http://www.cdc.gov/nip/afix____

Bobo, Janet Kay, PhD, James L. Gale, MD, Purushottam B. Thapa, MBBS, and Steven G. F. Wassilak, MD. Risk Factors for Delayed Immunization in a Random Sample of 1163 Children from Oregon and Washington. PEDIATRICS Vol. 91, No. 2 February 1993.

Dietz, Vance J.,, MD; Andrew L. Baughman, MPH; Eugene F. Dini, MPA; John M. Stevenson, MA; Bennett K. Pierce, MS; James C. Hersey, PhD; for the Georgia Immunization Program Evaluation Team. Vaccination Practices, Policies, and Management Factors Associated With High Vaccination Coverage Levels in Georgia Public Clinics. Arch Pediatr Adolesc Med. 2000;154:184-189.

Dini, Eugene F., Michael Chaney, Ronald L. Moolenaar, and Charles W. LeBaron. Information as Intervention: How Georgia Used Vaccination Coverage Data to Double Public Sector Vaccination Coverage in Seven Years. J Public Health Management Practice, 1996, 2(1), 45-49.

Fielding, Jonathan E., MD, MPH, MBA; William G. Cumberland, PhD; Lynn Pettitt, RPh, MPH. Immunization Status of Children of Employees in a Large Corporation. JAMA, February 16, 1994 Vol. 271, No. 7.

Hughart, RN, MPH, Donna Strobino, PhD, Elizabeth Hold, DRPH, Bernard Guyer, MD, MPH, William Hou, MS, Ashraful Huq, MBBS, MPH, and Alan Ross, PhD. The Relation of Parent and Provider Characteristics to Vaccination Status of Children in Private Practices and Managed Care Organizations in Maryland. Medical Care, January 1999, Vol. 37, No. 1.

Szilagyi, Peter G. and Lance E. Rodewald. Missed Opportunities for Immunizations: A Review of the Evidence. J Public Health Management

Page 2 of 3

Taylor James A., MD; Paul M. Darden, MD; Eric Slora, PhD; Cynthia M. Hasemeier; Linda Asmussen; and Richard Wasserman, MD, MPH. The Influence of Provider Behavior, Parental Characteristics, and a Public Policy Initiative on the Immunization Status of Children Followed by Private Pediatricians: A Study From Pediatric Research in Office Settings. PEDIATRICS Vol. 99 No. 2 February 1997.

Lecture 6 Required

Boyd, Terry D., MS, Robert W. Linkins, MPH, PhD, Keith Mason, AS, Igor Bulim, BBA, Brenda Lemke, MHA. Assessing Immunization Registry Data Completeness in Bexar County, Texas. Am J Prev Med 2002;22(3).

Chambers, Christopher V., MD, Donald J. Balaban, MD, MPH, Barbara L. Carlson, MA, and Donald M. Grasberger. The Effect of Microcomputer-Generated Reminders on Influenza Vaccination Rates in a University-Based Family Practice Center. JABFP. Jan. Feb. 1991, Vol. 4, No. 1.

CDC. Morbidity and Mortality Weekly Report. May 28, 2004 / Vol. 53 / No. 20.

Shannon Stokley, MPH; Lance E. Rodewald, MD; and Edmond F. Maes, PhD. The Impact of Record Scattering on the Measurement of Immunization Coverage. PEDIATRICS Vol. 107 No. 1 January 2001.

Wilcox, Sarah A., PhD, Christopher P. Koepke, PhD, Robert Levenson, MBA, and Judith C. Thalheimer. Registry-Driven, Community-Based Immunization Outreach: A Randomized Controlled Trial. September 2001, Vol 91, No. 9 | American Journal of Public Health.

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/ReadingList/EN/... 12/11/2011

Lecture 6 Recommended

Horne, Philip R., BS, Kristin N. Saarlas, MPH, Alan R. Hinman, MD, MPH. Costs of Immunization Registries Experiences from the All Kids Count II Projects. Am J Prev Med 2000;19(2).

Irigoyen, Matilde M., MD; Sally Findley, PhD; Beryl Earle, RN, PhD; Kevin Stambaugh; and Roger Vaughan, DrPH. Impact of Appointment Reminders on Vaccination Coverage at an Urban Clinic. PEDIATRICS Vol. 106 No. 4 October 2000.

Karen C. Lee, MD; Jonathan A. Finkelstein, MD, MPH; Irina L. Miroshnik, MS; Donna Rusinak, BS; Jeanne M. Santoli, MD, MPH; Susan M. Lett, MD, MPH; Tracy A. Lieu, MD, MPH. Pediatricians Self-reported Clinical Practices and Adherence to National Immunization Guidelines After the Introduction of Pneumococcal Conjugate Vaccine. ARCH PEDIATR ADOLESC MED/VOL 158, JULY 2004.

Lynch, Mauricea Lima. The Uptake of Childhood Immunization and Financial Incentives to General Practitioners. Health Economics, Vol. 3: 117-125 (1994).

Mullooly, J., L. Drew, F. DeStefano, R. Chen, K. Okoro, E. Swint, V. Immanuel, P. Ray, N. Lewis, C. Vadheim, M. Lugg, and the Vaccine Safety DataLink Team. American Journal of Epidemiology Vol. 149, No. 2, 1999.

National Immunization Program. Immunization Registry Minimum Functional Standards. 15 May 2001.

Smith, Robin E. and Alvin N. Eden. Assessing Immunization Rates in an Ambulatory Care Setting. Journal of Urban Health: Bulletin of the New York Academy of Medicine, Vol. 79, No. 2. June

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/ReadingList/EN/... 12/11/2011

2002.

Popovich, Michael, Robert Conn, Michael Garcia, Terrance Hughes, Todd Watkins. White Paper: Five Lessons Learned Implementing Statewide Immunization Information Systems and Where Do Registries Go From Here. WHP021A December 2001.

Olin, P. Vaccination Programmes out of Pace with Vaccine Development: A Call for National Vaccination Registers. ACTA PDIATR 88 (1999)

Szilagyi, Peter G., MD, MPH, Clayton Bordley, MD, MPH, Julie C. Vann, PhD, MS, RN, Ann Chelminski, MD, Ronald M. Kraus, EdM, Peter A. Margolis, MD, PhD, Lance E. Rodewald, MD. Effect of Patient Reminder/Recall Interventions on Immunization Rates A Review. JAMA, October 11, 2000Vol 284, No. 14.

Lecture 7 Required

Laxmi Bilas Acharya and John Cleland. Maternal and Child Health Services in Rural Nepal: Does Access or Quality Matter More. HEALTH POLICY AND PLANNING; 15(2): 223229.

Vandemoortele, Jan, Denis Broun, and Rudolf Knippenberg. Epilogue. INT. J. HEALTH PLANN.-MGMT. Vol. 12, Suppl. 1, S165-S168 (1997).

Knippenberg, Rudolf, Eusebe Alihonou, Agnes Soucat, Kayode Oyegbite, Maria Calivis, Ian Hopwood, Reiko Niimi, Mamadou Pathe Diallo, Mamadou Conde, and Samuel Ofosu-Amaah. Implementation of the Bamako Initiative: Strategies in Benin and Guinea. INT. J. HEALTH PLANN.-MGMT. VOL. 12, SUPPL. 1, S29S47 (1997).

Perry, Henry, Robert Weierbach, Shams El-Arifeen, and Iqbal Hossain. A Comprehensive Assessment of the Quality of Immunization Services in One Major area of Dhaka City, Bangladesh. Tropical Medicine and International Health Vol. 3, No. 12, 981-992, December 1998.

Silverman, Myrna, Martha Ann Terry, Richard Kent Zimmerman, Jean F. Nutini, Edmund M. Ricci. The Role of Qualitative Methods for Investigating Barriers to Adult Immunization. QUALITATIVE HEALTH RESEARCH, Vol. 12 No. 8, October 2002 1058-1075.

Lecture 7 Recommended

Evans, David B., Tessa Tan-Torres Edejer, Jeremy Lauer, Julio Frenk, and Christopher J. L. Murray. Measuring Quality: From the System to the Provider. International Journal for Quality in Health Care 2001; Volume 13, Number 6: pp. 439-446.

Mariko, Mamadou. Quality of Care and the Demand for Health Services in Bamako, Mali: The Specific Roles of Structural, Process, and Outcome Components. Social Science & Medicine (2002).

Perrin, Edward B., PhD. Some Thoughts on Outcomes Research, Quality Improvement, and Performance Measurement. MEDICAL CARE Volume 40, Number 6, Supplement pp III-89III-91.

Streefland, P.H, A.M.R. Chowdhury, & P. Ramos-Jimenez. Quality of Vaccination Services and Social Demand for Vaccinations in Africa and Asia. Bulletin of the World Health Organization, 1999, 77 (8).

Thomas, Stephen, James R. Killingsworth, and Shambhu Acharya. User Fees, Self-Selection and the Poor in Bangladesh. HEALTH POLICY AND PLANNING; 13(1): 50-58.

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/ReadingList/EN/... 12/11/2011

Lecture 8 Required

Bandura, Albert. Social Learning Theory. Prentice Hall, Inc. Englewood Cliffs, NJ, 1977. Chapters 2-6.

Bhattacharyya, Karabi and John Murray. Community Assessment and Planning for Maternal and Child Health Programs: A Participatory Approach in Ethiopia. Human Organization, Vol. 59, No. 2, 2000.

Olson, Mancur. A Theory of Groups and Organizations.

Perez-Cuevas, Ricardo, Hortensia Reyes, Ulises Pego, Patricia Tome, Karla Ceja, Sergio Flores, Gonzalo Gutierrez. Immunization Promotion Activities: Are They Effective in Encouraging Mothers to Immunize Their Children. Social Science & Medicine 49 (1999) 921-932.

Zimmerman, Richard Kent, MD, MPH, Mary Patricia Nowalk, PhD, RD, Inis J. Bardella, MD, Michael J. Fine, MD, MSc, Janine E. Janosky, PhD, Tammy A. Santibanez, PhD, Stephen A. Wilson, MD, Mahlon Raymund, PhD. Physician and Practice Factors Related to Influenza Vaccination Among the Elderly. Am J Prev Med 2004;26(1).

Lecture 8 Recommended

Bastien, Joseph W. Cross Cultural Communication of Tetanus Vaccinations in Bolivia. Soc. Sci. Med. Vol. 41, No. 1, pp. 77-86, 1995.

Bunton, Robin, Simoa Murphy, and Paul Bennett. Theories of Behavioral Change and Their Use in Health Promotion: Some Neglected Areas. Health Education Research. Vol. 6, No. 2, pp. 153-162, 1991.

Coreil, Jeannine, Antoine Augustin, Neal A. Halsey, and Elizabeth Holt. Social and Psychological Costs of Preventive Child Health Services in Haiti. Soc. Sci. Med. Vol. 38, No. 2, pp. 231-238, 1994.

Gore, Prasanna, Suresh Madhavan, David Curry, Gordon McClung, Mary Castiglia, Sidney A. Rosenbluth, Raymond A. Smego. Predictors of Childhood Immunization Completion in a Rural Population. Social Science & Medicine 48 (1999) 1011-1027.

Haaland, Ane and Carol Vlassoff. Introducing *Health Workers for Change* : From Transformation Theory to Health Systems in Developing Countries. HEALTH POLICY AND PLANNING; 16(Suppl. 1): 16.

Noack, Horst. The Role of Socio-structural Factors in Health Behavior. 1988.

Rosenstock, Irwin M., PhD, Victor J. Strecher, PhD, MPH, and Marshall H. Becker, PhD, MPH. Social Learning Theory and the Health Belief Model. Health Education Quarterly Vol. 15(2): 175-183 (Summer 1988).

Strobino, Donna, PhD; Virginia Keane, MD; Elizabeth Holt, DrPH; Nancy Hughart, RN, MPH; and Bernard Guyer, MD, MPH. Parental Attitudes Do Not Explain Underimmunization. PEDIATRICS Vol. 98 No. 6 December 1996.

Weinstein, Neil D. Testing Four Competing Theories of Health-Protective Behavior. Health Psychology, 1993, Vol. 12, No. 4, 324-333.

Lecture 9 Required

Aulword D R H E Hull C I Cachi D W Cuttor 1 M Olivo Disasso

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/ReadingList/EN/... 12/11/2011
Ayiwaru, K. B., H. F. Hull, S. L. Coull, K. W. Sutter, J.-M. Olive. Disease **HeaditesStratAgy: AuDise** Study of Poliomyelitis Eradication. Bulletin of the World Health Organization, 2000, 78(3).

Heymann, David L., MD, and R. Bruce Alyward, MD. Eradicating Polio. New England Journal of Medicine 351; 13. 23 September 2004.

CDC. Morbidity and Mortality Weekly Report. 28 May 2004 / Vol. 53 / No. 20.

CDC. Morbidity and Mortality Weekly Report. 25 June 2004 / Vol. 53 / No. 24.

Nsubuga, Peter, Sharon McDonnell, Bradley Perkins, Roland Sutter, Linda Quick, Mark White, Stephen Cochi, and Mac Otten. Polio Eradication Initiative in Africa: Influence on Other Infectious Disease Surveillance Development. BMC Public Health 2002, 2:27 This article is available from: http://www.biomedcentral.com/1471-2458/2/27_____

Lecture 9 Recommended

Andrianarivelo, M. Rakoto, P. Boisier, L. Rabarijaona, M. Ratsitorahina, R. Migliani and H. Zeller. Mass Vaccination Campaigns to Eradicate Poliomyelitis in Madagascar: Oral Poliovirus Vaccine Increased Immunity of Children Who Missed Routine Programme. Tropical Medicine and International Health volume 6 no 12 pp 1032-1039 December 2001.

Geoffard, Pierre-Yves, and Tomas Philipson. Disease Eradication: Private versus Public Vaccination. The American Economic Review, Volume 87, Issue 1 (Mar., 1997), 222-230.

Polio News. Issue 21. March 2004.

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

Roberts, Leslie. Polio: The Final Assault. Science Magazine, Vol. 303. 26 March 2004.

CDC. Weekly Epidemiological Record. No. 27, 2002, 77, 221228.

CDC. Weekly Epidemiological Record. No. 9, 2002, 77, 6976.

WHO. Global Polio Eradication Initiative Progress 2003.

Lecture 10 Required

de Quadros, Ciro A., Hector Izurieta, Linda Venczel, and Peter Carrasco. Measles Eradication in the Americas: Progress to Date. The Journal of Infectious Diseases 2004; 189(Suppl 1):S22735.

Guris, Dalya, Rafael Harpaz, Susan B. Redd, Natalie J. Smith, a and Mark J. Papania. Measles Surveillance in the United States: An Overview. The Journal of Infectious Diseases 2004; 189(Suppl 1):S17784.

Hutchins, Sonja S., Ruth Jiles, and Roger Bernier. Elimination of Measles and of Disparities in Measles Childhood Vaccine Coverage among Racial and Ethnic Minority Populations in the United States. The Journal of Infectious Diseases 2004; 189:S14652.

CDC. Morbidity and Mortality Weekly Report. 13 August 2004/ Vol. 53 / No. 31.

Lecture 10 Recommended

Di Fabio, Jose Luis and Ciro de Quadros. Considerations for Combination Vaccine Development and Use in the Developing World. Clinical Infectious Diseases 2001; 33(Suppl 4):S3405.

Hinman Alan R Walter A Orenstein and Mark 1 Panania Evolution

Stratessis in **Ithin Britis** States. The Journal of Infectious Diseases 2004; 189(Suppl 1):S1722.

Hinman, A. Eradication of Vaccine-Preventable Diseases. Annu. Rev. Public Health. 1999. 20:211 29.

CDC. Morbidity and Mortality Weekly Report. 2 July 2004 / Vol. 53 / No. 25.

Orenstein, Walter A., Mark J. Papania, and Melinda E. Wharton. Measles Elimination in the United States. The Journal of Infectious Diseases 2004; 189(Suppl 1):S13.

Strebel , Peter M., Ana-Maria Henao-Restrepo, Edward Hoekstra, Jean-Marc Olive, Mark J. Papania, and Stephen L. Cochi. Global Measles Elimination Efforts: The Significance of Measles Elimination in the United States. The Journal of Infectious Diseases 2004; 189(Suppl 1):S2517.

Guris, Dalya MD MPH. Module on Best Practices for Measles Surveillance. World Health Organization 2001.

Lecture 11 Required

Bonua, Sekhar ,Manju Rani, Oliver Razum. Global Public Health Mandates in a Diverse World: The Polio Eradication Initiative and the Expanded Programme on Immunization in Sub-Saharan Africa and South Asia. Health Policy 70 (2004) 327345.

Vaccination in Bogota in the Context of the Decentralisation and Reform of the Health System in Colombia. Europe and the Americas Forum on Health Sector Reform. 2002.

GAVI. Update on Country Level GAVI & Vaccine Fund Related Activities. 1 November 2004.

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

Muraskin, William, PhD. The Global Alliance for Vaccines and Immunization: Is It a New Model for Effective PublicPrivate Cooperation in International Public Health. American Journal of Public Health | November 2004, Vol 94, No. 11.

National Vaccine Advisory Committee. Strengthening the Supply of Routinely Recommended Vaccines in the United States. JAMA, December 17, 2003 Vol. 290, No. 23.

Lecture 11 Recommended

Batson, Amie and Matthias M. Bekier. Vaccines Where Theyre Needed. The McKinsey Quarterly 2001 Number 4: Emerging Markets.

Bloom, Gerald. Equity in Health in Unequal Societies: Meeting Health Needs in Contexts of Social Change. Health Policy 57 (2001) 205224.

Brugha, Ruair, Mary Starling, and Gill Walt. GAVI, the First Steps: Lessons for the Global Fund. THE LANCET Vol. 359, February 2, 2002.

Costello, A. and H. White. Reducing Global Inequalities in Child Health. Arch Dis Child 2001; 84:98102.

Gilson, Lucy, Denny Kalyalya, Felix Kuchler, Sally Lake, Hezron Oranga, and Marius Ouendo. The Equity Impacts of Community Financing Activities in Three African Countries. International Journal of Health Planning and Management 2000; 15: 291-317.

Artar Omar Catu Khknon and Datrick Maaghar Conditions for

Effective Decensyliters is of Research Findings. 13 March 2001.

Khaleghian, Peyvand. Decentralization and Public Services: The Case of Immunization. Social Science & Medicine 59 (2004) 163183.

Woodle, Dian. Vaccine Procurement and Self-Sufficiency in Developing Countries. HEALTH POLICY AND PLANNING; 15(2): 121129.

Zhao, Zhen, PhD, Ali H. Mokdad, PhD, and Lawrence Barker, PhD. Impact of Health Insurance Status on Vaccination Coverage in Children 1935 Months Old, United States, 19931996. Public Health Reports / MarchApril 2004 / Volume 119.

CASA

Bulim, Igor CDC National Immunization Program. File Import Specifications to Link Immunization Registries/Patient Management Systems to the Clinic Assessment Software Application (CASA) Version 2.X. July 2001.

Minnesota Department of Health Immunization, Tuberculosis and International Health Section. Using CASA to Do the Chart Review. January 2001.

Lecture 12 Required

Bardenheier, Barbara, MPH, MA; Hussain Yusuf, MBBS, MPH; Benjamin Schwartz, MD, MPH; Deborah Gust, PhD; Lawrence Barker, PhD; Lance Rodewald, MD, MPH. Are Parental Vaccine Safety Concerns Associated With Receipt of Measles-Mumps-Rubella, Diphtheria and Tetanus Toxoids With Acellular Pertussis, or Hepatitis B Vaccines by Children. Arch Pediatr Adolesc Med. 2004; 158:569-575.

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

Findley, Sally E., PhD, Matilde Irigoyen, MD, Donna See, MPH, MBA, Martha Sanchez, BA, Shaofu Chen, MD, PhD, Pamela Sternfels, MS, and Arturo Caesar, MD, MPH. Community-Provider Partnerships to Reduce Immunization Disparities: Field Report From Northern Manhattan. American Journal of Public Health July 2003, Vol. 93, No. 7.

Gilson, Lucy. Trust and the Development of Health Care as a Social Institution. Social Science & Medicine 56 (2003) 14531468.

Nichter, Mark. Vaccinations in the Third World: A Consideration of Community Demand. Soc. Sci. Med. Vol. 41, No. 5, pp. 617-32, 1995.

Ulmer, Jeffrey B. and Margaret A. Liu. Ethical Issues for Vaccines and Immunization. Immunology Vol. 2, April 2002.

Lecture 12 Recommended

Birungi, Harriet. Injections and Self-Help: Risk and Trust in Ugandan Health Care. Soc. Sci. Med. Vol. 47, No. 10, pp. 1455-1462, 1998.

Gangarosa, E. J., A. M. Galazka, C. R. Wolfe, L. M. Phillips, R. E. Gangarosa, E. Miller, R. T. Chen. Impact of Anti-Vaccine Movements on Pertussis Control: The Untold Story. THE LANCET Vol. 351 January 31, 1998.

Gust, Deborah A., PhD, MPH; Tara W. Strine, MPH; Emmanuel Maurice, MS; Philip Smith, PhD; Hussain Yusuf, MBBS, MPH; Marilyn Wilkinson, ScD; Michael Battaglia, MA; Robert Wright, BS; and Benjamin Schwartz, MD. Underimmunization Among Children: Effects of Vaccine Safety

Page 2 of 3

Concerns on Immunization Status. PEDIALRICS Vol. 114 No. 1 July 2004. Morgan, Lynn M. Community Participation in Health: Perpetual Allure, Persistent Challenge. PEDIATRICS Vol. 114 No. 1 July 2004.

Mosquera, M., Y. Zapata, K. Lee, C. Arango, and A. Varela. Strengthening User Participation through Health Sector Reform in Colombia: A Study of Institutional Change and Social Representation. HEALTH POLICY AND PLANNING; 16(Suppl 2): 52-60.

PAHO/WHO. Immunization Safety: How to Address Events Allegedly Attributable to Vaccination or Immunization. 2002. http://www.paho.org_.

UNICEF. Combatting Antivaccination Rumours: Lessons Learned from Case Studies in East Africa.

WHO. Vaccines and Biologicals Aide Mmoire. http://www.who.int/vaccines/____

Woo, Emily Jane, MD, MPH, Robert Ball, MD, MPH, ScM, Ann Bostrom, PhD, Sean V. Shadomy, DVM, MPH, Leslie K. Ball, MD, MPH, Geoffrey Evans, MD, and Miles Braun, MD, MPH. Vaccine Risk Perception Among Reporters of Autism After Vaccination: Vaccine Adverse Event Reporting System 19902001. American Journal of Public Health June 2004, Vol. 94, No. 6.

Zakus, J. David L. and Catherine L. Lysack. Revisiting Community Participation. HEALTH POLICY AND PLANNING; 13(1): 1-12.

Copyright 2005, The Johns Hopkins University and Michael McQuestion. All rights reserved. Use of these materials permitted only in accordance with license rights granted. Materials provided AS IS; no representations or warranties provided. User assumes all responsibility for use, and all liability related thereto, and must independently review all materials for accuracy and efficacy. May contain materials owned by others. User is responsible for obtaining permissions for use from third parties as needed.

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/IMMUNIZE/ReadingList/EN/... 12/11/2011