Lessons Learned at Solar Battery Charging Stations

A Presentation to Village Power '98 Stephen Graham SGA Consulting, Ottawa, Canada

The Study

World Bank Sponsored to answer: Do SBCS make sense? 1. 2. If so what are best practices? A four country field survey of SBCS programs Brazil - 40 Stns, since 1996 Morocco - 30 Stns, since 1994 Thailand - 1350 Stns, since 1988 The Philippines - 225 Stns, since 1990 **Findings** preliminary

Conclusion: When do SBCS make sense?

- 1. For small residential demand.
- 2. Remote from the grid.
- 3. Where diesel costs are high.
- 4. As a complement to SHS markets.

Fluorescent lights (1-2), radio, B&W TV Grid BCS unless high battery transport costs **Diesel BCS unless on-site** fuel costs high SHS markets serve higher demand and ability to pay (ATP) - SBCS builds confidence & markets, lower cost, local service node

An Economic Analysis

Four Options: Solar Station (SBCS), Diesel Station (DBCS), Solar Home (SHS), Grid Station (GBCS)

Base Case -> Sensitivity Analysis for Access & Demand

> Fuel price; Diesel BCS Battery transport cost; Grid BCS

Demand; Diesel BCS & SHS

Assumptions: DR = 12%, 15 yr project Battery - SLI, 12V, 85 Ah, cycle life 100, DOD 80%, userowned Insolation - Design 4.2 kWh/m²-d (Ave 5.0 kWh/m²-d)

Economic diesel cost \$0.18/ litre Grid LRMC \$0.05 / kWh Household demand 100 Wh/day (2 lts, 3 hrs; 0.3 TV 1.5 hrs; 1 radio, 3 hrs)

No environmental benefits to solar

More Economic Assumptions &

Inputs

SBCS

Capacity per outlet based on full charge to battery on monthly min. solar day number of outlets based on battery capacity, HH demand & assumed market size battery life based on cycle life Incremental Management Cost (IMC)

Grid BCS

Charger capacity 60V, 20A Serves broad community to always operate at capacity No IMC

SHS

- Module capacity based on daily demand and monthly min. insolation battery life assumed 36 mo. IMC **Diesel BCS** 3 kW capacity, e=1.55 kWh/ L Charger capacity 60V, 20A local diesel cost add \$.02 / L
 - serves identical community to SBCS

No IMC

Findings of Base-Case Analysis

Sensitivity to Access: On-Site Fuel Cost

1/ National Economic diesel price assumed \$0.18/litre
SBCS is not Diesel BCS competitive until local fuel price cost is at least 100% of economic price

Fuel Price 1.4 1.3 1.2 **Diesel BCS** 21.1 Grid BCS 0.9 0.8 0.15 0.2 0.25 0 0.05 0.1 **Fuel Transport Margin Over** Economic Price (\$) 1/

Figure 2.3: SBCS: Sensitivity of B/C to

Sensitivity to Access: Battery Transport Cost

SBCS becomes Grid BCS-competitive when economic transport costs are more than \$0.75 / trip

Figure : SBCS: Sensitivity of B/C to **Battery Transport Cost** 2 1.8 1.6 **Diesel BCS** °≈ 1.4 ---Grid BCS 1.2 1 0.8 0.5 0.75 0.25 0 **Round Trip Cost / Battery** (\$)

Sensitivity to Demand: A Role for SBCS at low demands

Low demand = lower Diesel capacity utilization as demand increases SHS becomes competitive - cost effective use of batteries

The Synergy of SBCS and SHS

Same service, potential complementary markets,

- SBCS benefits over SHS markets
 - lower economic costs for low demands serves lower ATP

proof of concept

community presence for marketing, finance and servicing SHS

modular for conversion to SHS SHS benefits over SBCS

convenience

Conclusion: What are best practices?

- Keep design simple and low-cost, serve basic market demand; allow SHS to serve higher end Emphasize operator skills and community participation
- Keep utilization high
- Subsidy may be necessary in remote areas and to pilot/demonstrate technology

Technical Design Features

Minimize costs

assume a low load demand- SHS serves higher no bus; dedicate panels to each charge outlet eliminate HVD; self-regulating system meters for charge status of batteries and operator control

user owns and controls discharge of battery

Organization & Operation Design Features

Isolated areas with low Ability To Pay (ATP) Often community-control Battery SOC rarely monitored

users scheduled charge time; limit at Stn. (1 day) restricted closed market community sets fees few operator incentives Areas with high ATP
Owner-operator potential
Battery SOC monitored
before & after charge
SOC determines battery
residence time
open market - competition
sets fees
operator incentives

Subsidy May be Necessary

Field Experience: Design

Field Experience: Costs

SBCS Capital Cost \$/Wp

Field Experience:

Implementation and Operation

Country	Implement Institutions	Demo. Costs Borne by:	Implementation Strategy
Brazil	National NGO	US equip supplier & Govt.	NGO mobilizes locally Equip supplier & Devpt Bank finance operator
Maroc	Private firm with franchises	Private Govt / donor aid	Franchise purchases SBCS & set up to market rural energy equip – SBCS "lost leader"
Thailand	Govt. Agencies (2)	Govt	Disadvantaged communities – strong input – capital subsidized
Philippine	Utilities- REC LGU Govt Agncies NGO's Universities	Donor Aid	Disadvantaged communities – capital subsidized
SGA Consulting, Ottawa			

Village Power '98, Oct. 6-8

Field Experience: Financial Considerations

