MACHINIST 2nd YEAR TRANSPARENCIES

Directorate General of Employment and Training, Ministry of Labour, Govt. of India.

Developed by CENTRAL INSTRUCTIONAL MEDIA INSTITUTE

SLIP GAUGES

DETERMINING SLIP GAUGE SIZE

PROCEDURE		SLIPS USED	CALCULATION
a)	Write the required dimension		74.643
b)	Select 1st series slip that has the same last digit	(Subtract)	
			73.640
c)	Select 2nd series slip - same last figure & the	(Cubtract)	
	remainder must be either 0.0 or 0.5	(Subtract)	72.500
d)	Select a 3rd series slip - expected remainder must be		
	a 4th series figure	(Subtract)	
			50.000
e)	Select the 4th series slip -remainder must be zero	(Subtract)	***
			0

Range (mm)	Steps (mm)	No.of pieces
Special pieces 1.0005		1
1st Series 1.001 to 1.009	0.001	9
2nd series 1.01 to 1.49	0.01	49
3rd series 0.5 to 24.5	0.5	49
4th series 25.0 to 100.0	25.0	4
Total pieces		112

SPECIAL MICROMETERS

A SINGLE EXTERNAL MICROMETER WITH INTERCHANGEABLE ANVIL

DRILL JIG

FIXTURES

LIMIT PLUG GAUGES

DOUBLE ENDED PLUG GAUGE

PROGRESSIVE PLUG GAUGE

LIMIT RING AND SNAP GAUGES

LIMIT RING GAUGE

TAPER RING GAUGE

END OF COMPONENTS MUST LIE BETWEEN THESE STEPS

SNAP GAUGE

ADJUSTABLE SNAP GAUGE

SHAPER STROKE LENGTH & CUTTING SPEED

Incorrect setting of stroke length much longer than the length of work

HARDNESS TESTING -BRINELL

BRINELL HARDNESS TESTER

A. APPLY LOAD

B. MAKE IMPRESSION

C. MEASURE MEAN DIAMETER OF IMPRESSION

D. APPLY FORMULA AND GET VALUE

HARDNESS TESTING - VICKER

VICKER'S HARDNESS TESTER

INDENTING TOOL

- APPLY LOAD
- MAKE DIAMOND SHAPED IMPRESSION

- MEASURE MEAN DIAGONAL OF IMPRESSION
- USE FORMULA AND GET HARDNESS VALUE

HARDNESS TESTING - ROCKWELL

ROCKWELL HARDNESS TESTER

INDENTING TOOL BALL OR DIAMOND TOOL

METHOD OF APPLYING LOAD

READING AND CONVERSION

TR 01 03 09 12 02

TOOL MAKER'S BUTTON

SET OF BUTTONS

MARK HOLE POSITION

DRILL & TAP

SET BUTTONS

POSITION THE WORK

DRILL & BORE

MEASUREMENT OF SCREW THREAD ELEMENTS - I

ELEMENTS FOR MEASUREMENT

SCREW PITCH GAUGE

SCREW THREAD CALIPER GAUGE

SCREW THREAD PLUG GAUGE

SCREW THREAD RING GAUGE

MEASUREMENT OF SCREW THREAD ELEMENTS - II

SCREW THREAD MICROMETER

THREE WIRE METHOD

VERNIER CALIPER

OUTSIDE MICROMETER AND VEE PRISM

SPECIAL MICROMETER

TYPES OF SCREW THREAD

SQUARE THREAD

BRITISH ACME THREAD

BUTRESS THREAD

METRIC ACME THREAD

WORM THREAD

MODIFIED BUTRESS THREAD

KNUCLE THREAD

TR 01 03 38 16 02

MOVEMENTS & RESTRAINTS OF WORK - I

TR 01 03 38 17 02

MOVEMENTS & RESTRAINTS OF WORK - II

TR 01 04 03 18 02

METHODS OF APPLYING LUBRICANT

GRAVITY FEED METHOD

WICK FEED LUBRICATOR

FORCE FEED METHOD

OIL CAN

SPLASH METHOD

RING OILING

WORM - GEAR BATH OILER

VERTICAL MILLING MACHINE

DIFFERENTIAL INDEXING - I

COMBINED MOTION OF INDEX PLATE AND CRANK

BY GEAR TRAIN

INDEX PLATE ROTATION

WITH CRANK

AGAINST CRANK

BASED ON THE NUMBER OF IDLER GEAR/GEARS IN THE GEAR TRAIN

DIFFERENTIAL INDEXING - II

REQUIRED NUMBER (N) OF DIVISIONS TO BE INDEXED IS 57.

PROCEDURE:

- SELECT ASSUMED NUMBER OF DIVISIONS (A)
- SELECT INDEX PLATE AND SPACING FOR THE ASSUMED NUMBER
 - USE SIMPLE INDEXING.

- SELECT DRIVER AND DRIVEN GEARS
- DESIDE THE DIRECTION OF ROTATION OF INDEX PLATE.
- ACCORDING TO THE ROTATION OF INDEX PLATE ENGAGE/CONNECT IDLER GEAR/ GEARS.

PRIOR TO INDEXING DISENGAGE THE BACK STOP PIN TO PERMIT THE ROTATING OF THE INDEX PLATE

TR 01 05 15 22 02

ELEMENTS OF A STRAIGHT BEVEL GEAR

TR 01 05 26 23 02

SURFACE TEXTURE MEASUREMENT

TR 01 05 26 24 02

METHODS OF INDICATING SURFACE ROUGHNESS

METHODS OF INDICATING SURFACE ROUGHNESS

MA2C10L1

WORM AND WORM WHEEL

