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Chapter 1

Birdcall Identi�cation

1.1 Birdcall Identi�cation: Introduction1

1.1.1 Birdcall Identi�cation Project

1.1.1.1 Motivation

Birdwatchers around the world have struggled with the arduous task of remembering and identifying the
many birdcalls native to their area. As an added struggle, those who live in an urban environment are
challenged to pull the sound of a birdcall out of the background noise present in the city. Our birdcall
identi�cation program attempts to computationally identify birdcalls. With a computational identi�er,
many problems associated with birdcall identi�cation are mitigated: there is no need to remember birdcalls,
the program can algorithmically separate the birdcall from the background, and the sound �le can be
automatically saved to the computer.

1.1.1.2 Method

Previous attempts to identify bird sounds relied solely on spectrograms. Our process focuses on using a
time-domain matched �lter and frequency analysis in tandem to achieve accurate results. The matched �lter
identi�es the similarities between two sounds as a function of time. Frequency analysis di�ers two sounds
based on the energy in the frequency spectrum. The matched �lter in conjunction with frequency analysis
provide accuracy far surpassing that of lone spectrograms.

1.2 Birdcall Identi�cation: Bird Choice2

1.2.1 Bird Choice

We elected to use six di�erent birdcalls in our project: the common loon wail; the common loon tremolo;
the red-tailed hawk cry; the red-tailed hawk shriek; the bobwhite quail mating-call; and the ferruginous
pygmy-owl hoot. The group selected these calls based upon two major criteria. Each call needed to be
available from multiple sources, and each call had to be audibly di�erent from the other calls selected.

The project group contains no bird experts, so we used only prerecorded birdcall clips as samples. Such
audio clips saved us the necessity of making �eld recordings. Also, the clips' creators, who presumably
possess more ornithological expertise than we, had already identi�ed the birds present in each recording. For
formatting reasons, we chose only audio clips saved as wav �les. However, with this constraint, relatively few
bird types suited our needs. Adults of each bird species have up to fourteen or �fteen call types. Of these

1This content is available online at <http://cnx.org/content/m18950/1.3/>.
2This content is available online at <http://cnx.org/content/m18933/1.6/>.
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2 CHAPTER 1. BIRDCALL IDENTIFICATION

types, frequently only one or two are available as recordings, and of recorded types, almost none exist in
multiple, wav-�le examples on the internet, or in libraries. This signi�cantly reduced our pool of candidate
birds.

Our second major criterion was that the chosen birdcalls be audibly and spectrographically distinctive.
Although spectrographic analysis can easily reveal di�erences between signals in the frequency domain,
human error is less likely when group members can tell the di�erence between time-domain calls by ear.
Having a variety of birdcalls, some similar, some radically di�erent, also produces a more interesting analysis
than the use of entirely alike, or entirely dislike calls.

The application of both criteria resulted in the �nal selection of birds.
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1.3 Birdcall Identi�cation: Matched Filter Implementation3

1.3.1 Matched Filter Implementation

1.3.1.1 Matched Filter

Matched �lters do an excellent job of identifying sound samples, so we decided to apply the method here
to identify birdcall audio �les. A matched �lter searches for a sample clip, the �lter, within a longer audio
recording. Convolution compares the �lter to the longer signal at each possible o�set. The greater the
maximum amplitude of the convolution result, the stronger the match. By having a di�erent �lter for each
birdcall, we can search an audio �le to identify which birdcall it contains.

The matched �lter algorithm is as follows:

1. Reverse the �lters in the time-domain.
2. Normalize the energy of each of the �lters.
3. Convolve each �lter with the input signal and take the maximum amplitude of the resulting convolution

signals.
4. The �lter that gives us the greatest maximum value indicates which birdcall the signal contains.

Figure 1.1

3This content is available online at <http://cnx.org/content/m18917/1.3/>.
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1.3.1.2 Filter Library Creation

Our �rst step in implementing the matched �lter algorithm was to create a library of birdcall �lters. To do
this, we looked at the spectrograms of a few sample audio �les of the same birdcall and selected a portion
that looked representative of the call.

Figure 1.2

For each birdcall, one of the representative audio segments was saved as a �lter. Because the �rst two
steps of the above matched �lter algorithm a�ect only the �lter library and are independent of the input
signal, we reversed the �lters and normalized their energy before saving them to wave �les.

1.3.1.3 Matlab Implementation

The following MATLAB script performed our matched �lter algorithm. When given a wave �le as input, it
would tell us how well the audio sample matched against each of the 6 birdcall �lters.
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note: We used circular convolution instead of linear convolution because it computed much faster.
MATLAB's built-in cconv function zero-pads the two signals before multiplying their FFTs, gener-
ating the convolution result we are looking for.

function result = birdcheck(file)

[sig, fs, nbits] = wavread(file);

signal=sig(:,1);

signal=signal/max(abs(signal));

filters{1}=wavread('filters/bob.wav');

filters{2}=wavread('filters/lt.wav');

filters{3}=wavread('filters/lw.wav');

filters{4}=wavread('filters/pygmy.wav');

filters{5}=wavread('filters/red.wav');

filters{6}=wavread('filters/redcry.wav');

for i=1:6

filter=filters{i};

result(i) = max(abs(cconv(signal,filter(end:-1:1))));

end

end

The script was able to correctly identify several birdcalls. It did fail to correctly identify four cases in two
categories:

1. Two of our loon tremolo �les registered as pygmy owl common songs.
2. Two of our red-tailed hawk shriek �les registered as red-tailed hawk cries.

1.4 Birdcall Identi�cation: Method Re�nement4

Need for Improvement
The matched �lter implementation gave the right result in most cases, but occasionally reported a fairly
good correlation between an input signal and a �lter that were clearly quite distinct from one another. The
matched �lter often doesn't recognize a strong di�erence between two signals if one has power in a particular
frequency range that the other lacks. For instance, a loon tremolo has a wide spectrum compared to a
ferruginous pygmy owl, but the matched �lter often reported a good match because the owl's pitch was in
the loon's range.
Frequency-domain Analysis
We hoped to adjust the matched �lter results by taking into account the frequency-domain error between
the signal and the �lter. The convolution step of the matched �lter showed not only the strongest match
between the signal and the �lter, but also the time of that match in the input signal. We windowed out the
chunk of the input signal that matched best. We then used the mean-squared error between the magnitudes
of that chunk's FFT and the �lter's FFT to obtain a number indicating how well the frequency content of
the two signals matched.

As an example, a comparison of a hawk shriek versus a �lter for a hawk cry shows that their frequency
ranges don't match very well:

4This content is available online at <http://cnx.org/content/m18919/1.2/>.
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Figure 1.3

In contrast, the same shriek versus a �lter for a shriek shows a lower mean-squared error (0.4637 compared
to 0.9257, after scaling):

Figure 1.4
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Correction Algorithm
The mean-squared FFT error by itself was a good predictor of which �lter matched best with an input signal,
despite ignoring phase information to focus only on magnitudes. We divided the matched �lter output by
the mean-squared error to arrive at a �nal result value.

note: We added a small number to the error before dividing, to avoid dividing by zero in the case
where the signal perfectly matches the �lter.

In all cases where the matched �lter had selected the correct bird as the strongest match, this adjustment
increased the ratio between the strong match and the others. It corrected the errors between di�erent
red-tailed hawk vocalizations, but wasn't su�cient to recognize the loon tremolo.

1.5 Birdcall Identi�cation: Matlab GUI5

1.5.1 Matlab Bird Call Identi�cation Program

1.5.1.1 Matlab GUI

The group created a MATLAB Graphical User Interface (GUI) to implement the birdcall identi�cation
algorithms.

5This content is available online at <http://cnx.org/content/m18918/1.2/>.
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Figure 1.5

Our GUI was able to load in audio �les, play them, and display the result of convolving the audio signal
with a speci�c �lter. It also produced a bar graph of the maximum of the convolution result for each �lter.
This would graphically show us not only which birdcall the audio signal contained, but also how con�dently
the program was reporting one birdcall over another.

The GUI has the ability to choose whether or not to use our frequency content checking algorithm.

1.6 Birdcall Identi�cation: Results6

1.6.1 Results

These results show how strongly the di�erent audio samples matched up to the di�erent �lters.
The number outside of the parentheses indicates the results with frequency content checking turned on.

The number inside the parentheses indicates the results with frequency content checking turned o�.
All numbers are relative to the greatest match found for a given sample.
Bobwhite Quail mating call samples against di�erent �lters (4 sample audio �les):

6This content is available online at <http://cnx.org/content/m18952/1.1/>.
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Bobwhite
Quail Mating
Call

Loon Tremolo Loon Wail Pygmy Owl
Common Song

Red-tailed
Hawk Shriek

Red-tailed
Hawk Cry

1.0000 (1.0000) 0.0195 (0.0492) 0.0076 (0.0200) 0.0092 (0.0241) 0.0661 (0.1210) 0.0648 (0.1444)

1.0000 (1.0000) 0.0002 (0.0050) 0.0001 (0.0019) 0.0002 (0.0044) 0.0050 (0.0651) 0.0055 (0.0681)

1.0000 (1.0000) 0.5229 (0.7098) 0.0312 (0.0555) 0.0194 (0.0343) 0.1808 (0.2484) 0.5020 (0.5506)

1.0000 (1.0000) 0.3218 (0.4168) 0.0252 (0.0372) 0.0735 (0.1055) 0.1417 (0.1777) 0.1406 (0.1810)

Table 1.1

Loon tremolo samples against di�erent �lters (5 sample audio �les):

Bobwhite
Quail Mating
Call

Loon Tremolo Loon Wail Pygmy Owl
Common Song

Red-tailed
Hawk Shriek

Red-tailed
Hawk Cry

0.1415 (0.1839) 0.5374 (0.5355) 0.1321 (0.1692) 1.0000 (1.0000) 0.1288 (0.1597) 0.1314 (0.1729)

0.0687 (0.0858) 1.0000 (1.0000) 0.7520 (0.8008) 0.3405 (0.4000) 0.2189 (0.2581) 0.0478 (0.0604)

0.0145 (0.0432) 0.1217 (0.2971) 0.0138 (0.0415) 1.0000 (1.0000) 0.0227 (0.0651) 0.0058 (0.0176)

0.0004 (0.0077) 1.0000 (1.0000) 0.0079 (0.1194) 0.0045 (0.0758) 0.0011 (0.0197) 0.0002 (0.0032)

0.0142 (0.0417) 1.0000 (1.0000) 0.2819 (0.5282) 0.0375 (0.1053) 0.0363 (0.0966) 0.0305 (0.0884)

Table 1.2

Loon wail samples against di�erent �lters (5 sample audio �les):

Bobwhite
Quail Mating
Call

Loon Tremolo Loon Wail Pygmy Owl
Common Song

Red-tailed
Hawk Shriek

Red-tailed
Hawk Cry

0.0027 (0.0084) 0.2130 (0.3991) 1.0000 (1.0000) 0.0137 (0.0406) 0.0109 (0.0327) 0.0011 (0.0035)

0.0058 (0.0109) 0.3337 (0.4185) 1.0000 (1.0000) 0.0221 (0.0393) 0.0278 (0.0503) 0.0025 (0.0047)

0.0123 (0.0245) 0.1891 (0.2551) 1.0000 (1.0000) 0.1412 (0.2133) 0.0222 (0.0436) 0.0120 (0.0239)

0.0633 (0.1744) 0.1927 (0.3783) 1.0000 (1.0000) 0.0870 (0.2364) 0.1453 (0.3819) 0.0072 (0.0198)

0.0001 (0.0030) 0.0039 (0.0598) 1.0000 (1.0000) 0.0004 (0.0072) 0.0005 (0.0099) 0.0001 (0.0015)

Table 1.3

Pygmy owl common song samples against di�erent �lters (3 sample audio �les):

Bobwhite
Quail Mating
Call

Loon Tremolo Loon Wail Pygmy Owl
Common Song

Red-tailed
Hawk Shriek

Red-tailed
Hawk Cry

continued on next page
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0.1991 (0.2862) 0.1992 (0.2607) 0.0325 (0.0482) 1.0000 (1.0000) 0.3698 (0.5210) 0.0497 (0.0689)

0.0002 (0.0044) 0.0023 (0.0390) 0.0003 (0.0051) 1.0000 (1.0000) 0.0004 (0.0080) 0.0001 (0.0014)

0.0056 (0.0432) 0.0340 (0.2394) 0.0054 (0.0451) 1.0000 (1.0000) 0.0086 (0.0654) 0.0071 (0.0560)

Table 1.4

Red-tailed hawk shriek samples against di�erent �lters (3 sample audio �les):

Bobwhite
Quail Mating
Call

Loon Tremolo Loon Wail Pygmy Owl
Common Song

Red-tailed
Hawk Shriek

Red-tailed
Hawk Cry

0.1069 (0.3132) 0.0156 (0.0641) 0.0149 (0.0646) 0.0083 (0.0356) 1.0000 (0.9954) 0.5033 (1.0000)

0.4171 (0.5852) 0.0650 (0.1608) 0.0245 (0.0643) 0.0328 (0.0844) 1.0000 (0.8354) 0.9876 (1.0000)

0.0050 (0.0650) 0.0005 (0.0085) 0.0004 (0.0071) 0.0004 (0.0074) 1.0000 (1.0000) 0.0337 (0.1755)

Table 1.5

Red-tailed cry samples against di�erent �lters (2 sample audio �les):

Bobwhite
Quail Mating
Call

Loon Tremolo Loon Wail Pygmy Owl
Common Song

Red-tailed
Hawk Shriek

Red-tailed
Hawk Cry

0.0082 (0.0734) 0.0001 (0.0025) 0.0001 (0.0016) 0.0001 (0.0027) 0.0377 (0.2092) 1.0000 (1.0000)

0.0933 (0.3682) 0.0028 (0.0204) 0.0012 (0.0089) 0.0019 (0.0145) 0.4080 (0.5496) 1.0000 (1.0000)

Table 1.6

1.7 Birdcall Identi�cation: Conclusion7

1.7.1 Birdcall Identi�cation Project

1.7.1.1 Conclusion

The combination of the matched �lter process with the frequency content analysis proved to be a fairly
robust tool in identifying birdcalls. The matched �lter tells us which birdcall is found in the time-domain,
while the frequency analysis con�rms the proper frequency content at the site of the match.

Our MATLAB GUI implementation gave a simple interface to identify birdcalls within a wave �le. The
interface gives a visual con�dence reading regarding which birdcalls are within a sound sample. With more
time, the program could easily be translated to a web application or mobile interface for use in the �eld.

1.7.1.2 Future Work

Our implementation was simply a test of concept. If we wished to take the project further, the �rst step
would be to increase the �lter library size. If made mobile, we could create a �lter library that would mold
itself to the species of birds in the speci�c geographic location, giving our algorithm less to check against.

Though our program can be made faster, the project as a whole was highly successful. Further work
needs to be done to ensure the reliability of the program, especially as birdcalls are added. In the end, a
venture into a marketing plan could prove to be lucrative.

7This content is available online at <http://cnx.org/content/m18954/1.1/>.
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Chapter 2

Building an Electrocardiogram (ECG)
Diagnostic System

2.1 Introduction: Building an Electrocardiogram (ECG) Based Di-
agnostic System1

2.1.1 Introduction: Building an Electrocardiogram (ECG) Based Diagnostic Sys-
tem

Our goal is to build an Electrocardiogram (ECG) that not only calculates the heart rate automatically, but
can also detect other heart abnormalities as well. This requires more advanced analysis of the ECG Signal.
There are several steps that need to be accomplished in order to achieve this goal, as outlined in the �owchart
below.

Overall Data Flowchart for an Automatic ECG

Figure 2.1: Breaks down the di�erent steps which need to be accomplished in order to accomplish ECG
signal analysis

Data acquisition and signal conditioning are covered in Collecting and Filtering Live ECG Signal2 . The
remaining phases, which are all related to signal analysis are covered in Algorithms for ECG Signal Analysis3

1This content is available online at <http://cnx.org/content/m18955/1.2/>.
2http://cnx.org/content/m18955/latest/m18956
3http://cnx.org/content/m18955/latest/m18957
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.
Before we go into more detail about how to build an ECG, it is helpful to understand how the ECG

works and how to interpret the data you receive.

2.1.1.1 Physiological Background of the ECG

An ECG is a non-invasive diagnostic device to monitor the condition of the heart through its electrical
activity. This signal is acquired through externally located electrodes that adhere to the skin. A simple,
clinical lead placement uses three leads: left arm, right arm and left leg (Figure 2). The electrical activity
versus time forms an electrograph and can be used to determine and diagnose heart abnormalities and
arrhythmias. This principle is based on Einthoven's law.

Electrode Placement for Three-Lead ECG

Figure 2.2: Lead 1 is attached to the right wrist, Lead 2 to the left wrist and Lead 3 is attached to the
right ankle as a ground electrode.

All recorded electrical activity of the electrocardiogram corresponds to the net electrical current in the
heart over time, depolarizing parts of the heart in sequence. The electrical impulse is initiated by the
sinoatrial (SA) node. This causes the atria to contract and is evident on the ECG as the P wave. Next,
there is a delay caused by the conduction of the impulse to the atrioventricular (AV) node such that the
physical contraction of the atria have time to complete before the contraction of the ventricles. The QRS
complex on the ECG is due to the depolarization of the ventricles, and occurs when the ventricles contract.
Finally, the T wave on the ECG is due to the repolarization of the ventricles (P�anzer, 2004). Therefore,
each heartbeat corresponds to a pulse on the ECG beginning with each P wave and the ending with each
T wave. The heart rate can be determined by determining the time it takes to complete one beat and is
typically reported in beats per minute. Figure 3 demonstrates the characteristic shape of the waveform in a
healthy patient.

Typical ECG Signal

Figure 2.3: An example of the typical shape and location of the various components of an ECG signal.
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2.1.1.2 Background Information on Monitored Heart Conditions

To perform automatic detection of an ECG signal, there needs to be something that clearly delineates a
certain abnormality from other signals. Therefore, the signal processing selected is to detect ventricular
hypertrophy and old myocardial infarctions. Luckily, these types of abnormalities are both very useful for
doctors to diagnose a patient and have distinguishable ECG features.

Ventricular hypertrophy is the enlargement of either of the ventricles. Left ventricular hypertrophy
is particularly common in athletes as well as an indicator of hypertension. It is also used in the Framingham
risk equation to predict future cardiac problems the patient may face (ECG Abnormalities, 2006). One of
its characteristic ECG patterns is the inverted T wave (Figure 4).

An Example of an ECG Signal with an Inverted T-wave

Figure 2.4

A myocardial infarction (a.k.a. heart attack) is caused by the complete blockage of one of the coronary
arteries. The coronary artery is what supplies the heart muscle with blood. A blockage prevents blood from
reaching the surrounding muscular tissue resulting in necrosis. This damage is permanent so the resulting
ECG characteristic will remain with the patient. Therefore, the doctor can easily tell if a patient has had a
heart attack in the past. The ECG of an old myocardial infarction is characterized by a signi�cant Q wave
(Figure 5). This means that the Q peak is unusually deep, usually with amplitude of about one-third that
of the R peak (Dubin, 2000).

An Example of an ECG Signal with a Signi�cant Q-wave

Figure 2.5

By building an ECG that can automatically detect these and potentially other heart abnormalities, it
will be easier for doctors to monitor multiple patients. This is especially important in third world countries
where there are often far too many patients in one clinic than one doctor or nurse can adequately care for.

2.2 Collecting and Filtering Live ECG Signal4

2.2.1 Collecting ECG Signal: Hardware

Using the NI Elvis breadboard and data acquisition system, the ECG signal is collected from the three leads.
Lead 1 is connected to the right arm, Lead 2 is connected to the left wrist and Lead 3 is connected to the
right ankle (see Introduction: Building an ECG Based Diagnostic System5 for more information about lead

4This content is available online at <http://cnx.org/content/m18956/1.2/>.
5http://cnx.org/content/m18956/latest/m18955
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placement). The diodes placed between the input leads and the rest of the circuit are to protect the patient
from any back�owing current.

ECG Signal Collection Circuit

Figure 2.6: ECG signal collection circuit adapted from that of Radio Locman (www.rlocman.ru). The
AD620 is used as a di�erential ampli�er with a gain of ∼7 in order to combine the electrical signals from
each of the leads into one easily readable signal.

In NI LabVIEW, the Data Acquisition Assistant (DAQ Assistant) is used to collect the signal after
preliminary band pass �ltering. The data is sampled at a rate of 1 kHz. Our LabVIEW VI is available here6

.

2.2.2 Signal Conditioning

Signal �ltering is necessary to help isolate the frequencies found in the ECG signal from the noise. With a
three lead system, the majority of the noise comes from the electrical activity in the muscles on the arm,

6http://cnx.org/content/m18956/latest/ECG_LIVE.vi
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or electromyography (EMG) noise. EMG signals are present in a wide frequency band which overlaps with
the ECG signal in the lower frequencies. Therefore, with this set-up, it is impossible to completely remove
EMG noise from the ECG signal. Therefore, it is helpful for the patient to relax and remain still while the
data is being collected. In addition, 60 Hz noise is present from power line interference which also must be
removed.

2.2.2.1 Analog Band Pass Filter Design

The �rst stage of �ltering is an analog �lter built onto the NI Elvis breadboard. It is a bandpass �lter with
cut-o� frequencies of 0.5 and 150 Hz. This will help eliminate the high frequency noise from the muscles
before the signal is greatly ampli�ed.

Analog Bandpass Filter Circuit Diagram

Figure 2.7
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Bode Plot � Analog Band Pass Filter

Figure 2.8

2.2.2.2 Digital Filters Using LabVIEW

Once the signal has been acquired by the DAQ Assistant into LabVIEW, it is processed by two additional
�lters and ampli�cation of 100 times. The �rst �lter is a band stop �lter between 55 and 65 Hz to eliminate
power line interference. A third order Butterworth (IIR) was used to implement this �lter because it is low
order and has a good frequency response for this signal.
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Magnitude of the Frequency Response � Digital Band Stop Filter

Figure 2.9

The second is a tenth order Butterworth low pass �lter. The cuto� frequency of this �lter is 80 Hz to
further eliminate EMG noise. The ECG signal is located between 0.5 Hz and about 70-80 Hz depending on
the individual.

Magnitude of the Frequency Response � Digital Low Pass Filter

Figure 2.10

The resulting signal is displayed in real time in the graphical user interface, also designed in LabVIEW.
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2.3 Algorithms for ECG Signal Analysis7

2.3.1 ECG Signal Analysis: Abnormality Detection

The �owchart below breaks down the tasks needed to accomplish signal analysis in greater detail. Both
LabVIEW and Matlab were used to accomplish these tasks.

Signal Analysis Flow Chart

Figure 2.11

2.3.2 Matlab Implementation of Filter Banks Analysis

Many scenarios deal with signals which contain speci�c energy distributions in the frequency domain. For
example, with regard to the ECG, a signi�cant proportion of the energy from the QRS complex extends to
a frequency of 40 Hz, and even more if the Q, R, and S waves have very sharp morphologies. The P and T
waves, in general, have a signi�cant proportion of their energy only up to 10 Hz. Thus, a strategic approach
to detecting heartbeats is to analyze di�erent sub-bands of the ECG, rather than just the output of one �lter
which maximizes SNR of the QRS.

In this �lter bank analysis technique we use 5 sub-bands, each one has bandwidth 5Hz. The ECG signal
is processed by those 5 sub-band �lters and downsampled. The downsampled signal is

7This content is available online at <http://cnx.org/content/m18957/1.1/>.
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Figure 2.12

A variety of features which are indicative of the QRS complex can be designed by combining sub-bands
of interest from l = 0, 1, . . . , M-1. For example a sum-of-absolute values feature P1 can be computed using
sub-bands 1, 2, and 3.

Figure 2.13

P1 has a value which corresponds to the energy in the frequency band [5.6, 22.5] Hz. Similarly, P2 and P3
can be computed using sub-bands {1, 2, 3, 4}, and {2, 3, 4}, respectively, and these values are proportional
to the energy in their respective sub-bands. Heuristic beat detection logic can be used to incorporate some
of the above features which are indicative of the QRS complex.

Figure 4 gives an overview of the sequential levels in the beat detection algorithm. The goal of the
detection algorithm is to maximize the number of true positives (TP's), while keeping the number of false
negatives (FN's) and false positives (FP's) to a minimum. Since it is not possible to arrive at this goal using
one simple detector, multiple detectors with complementary FN's and FP's performances are simultaneously
operated and the results of each fused together to arrive at an overall decision. The advantage of this strategy
is that multiple features which are indicative of the QRS complex can be used to detect beats.
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Beat Detection Algorithm Schematic

Figure 2.14

A one-channel beat detection block is described in Figure 5.
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Schematic of One-Channel Beat Detection Block

Figure 2.15

The detection strength Ds of an incoming feature (e.g., P1, P2, P3) is determined by comparing with the
signal and noise levels (SL and NL, respectively):

Figure 2.16

If a feature's value is less than NL then Ds is limited at 0, and if it is above SL then DS is limited to
one. When a feature has a greater than a speci�ed threshold (preset between zero and one) it is classi�ed
as a signal peak and the signal history is updated with the feature's value. If the feature has a smaller than
the threshold it is classi�ed as a noise peak and the noise history is updated with the feature's value.

The detail operations of each level can be found in the paper by V. Afonso et al (ECG beat detection
using �lter banks, IEEE Trans. Biomed. Eng. 46: 1999). Also, download and run ECGmain.m8 to test out
�lter banks. Supplementary m�les: nqrsdetect.m9 , ECGSigProc.m10 , t.mat11 , x.mat12 .

8http://cnx.org/content/m18957/latest/ECGmain.m
9http://cnx.org/content/m18957/latest/nqrsdetect.m

10http://cnx.org/content/m18957/latest/ECGSigProcFB.m
11http://cnx.org/content/m18957/latest/t.mat
12http://cnx.org/content/m18957/latest/x.mat
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2.3.3 LabVIEW Programming for Signal Processing and Interfacing

LabVIEW is used to not only process and acquire the signal, but to also develop an user friendly interface
that automatically alerts the user to any abnormalities or arrhythmias detected. This particular ECG is
developed to detect left ventricular hypertrophy and old myocardial infarction. It will also automatically
display the heart rate and whether or not the patient's heart rate is within a healthy range.

The Graphical User Interface

Figure 2.17: This view of the the GUI shows a normal, healthy ECG signal. The indicator lights (6)
will change color depending on the diagnosis. Additionally, the green trace turns red if any abnormality
or arrhythmia is detected.

The user interface consists of several useful features. First, there is a text input for the patient's name to
avoid confusion in the clinic. Second, the ECG chart is automatically updated with the name and live signal
data. Third, the user can control the data acquisition periods. The heart rate and any abnormalities are
displayed in the patient report. The warning lights to the left of the patient report correspond to the current
condition of the patient's ECG. If everything is normal, the green light is on and the signal is green. If an
arrhythmia is detected, the yellow light turns on and a warning message will appear in the patient report
that indicates the type. Similarly, the orange light turns on if an abnormality is detected and a warning
message appears in the report. For either of these, the ECG trace turns red in the chart window. A red
light indicates that no recognizable signal is being detected. This can mean that the patient has �at-lined,
that the circuit board is not powered or that the leads are not connected properly. As a result, the warning
message will ask the user to check the lead and power connections. Finally, the form can be reset between
patients. You can download our VI here13 to test it out.

13http://cnx.org/content/m18957/latest/ECG_LIVE.vi



Chapter 3

Discrete Multi-Tone Modulation Using a
String Can System

3.1 Introduction1

3.1.1 Why Discrete Multi-tone Modulation?

Discrete multi-tone modulation, or DMT, is a modulation method often used for transmitter-receiver systems
that have extremely poor channel characteristics. In our case, we are using a string and tin-can telephone;
one of those toys that you may know as a childhood novelty where two people can communicate with each
other by attaching the ends of a string to the bottoms of two tin cans and having one person speak into one
can while the other listens. The string used to communicate between the two cans is a very bad channel for
data transmission, which is why you cannot always distinctly understand what someone is trying to say in
a tin-can telephone. That's where DMT should come in.

3.1.2 What is DMT?

This modulation scheme uses frequency-division multiplexing of several sub-carriers that each carry a portion
of the data that is intended for sending across the channel. The sub-carriers are not far from each other
in frequency, but they are all orthogonal so they do not interfere. The sub-carrier itself can be modulated
using any desired scheme as would be done for a single-carrier modulation scheme. These sub-carriers are
then sent together across the channel.

3.1.3 What are the advantages of DMT for us?

The DMT method is simply slowly modulating narrowband signals as opposed to quickly modulating a
wideband signal, meaning channel equalization is simpli�ed. Then if we �nd out the passband for our string
channel, which will probably be quite narrow, we can use DMT to make e�cient use of such limited frequency
space. DMT is also fairly immune to multipath and attenuation, which will be signi�cant problems for our
system as well.

3.2 System Speci�cations2

• Used sewing thread string, considered the lightest material and therefore the most sensitive to vibra-
tions; also tried using copper wire and �shing line

1This content is available online at <http://cnx.org/content/m18960/1.1/>.
2This content is available online at <http://cnx.org/content/m18961/1.2/>.
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• Instead of tin cans we used paper cups, since the paper diaphragm on the cup's bottom is more mobile
than that of the tin can, meaning it can better drive the string's vibrations; also considered plastic
cups

• Each cup is raised o� the ground on a wooden stand several feet tall, to make sure the audio that leaks
from the system does not bounce o� the �oor and hit the system directly again, causing multipath

• The stands also allow us to gauge the length at which we keep the cups separated, as the distance
determines the tension in the string in between them, and any change in the string's tension has a
tremendous e�ect on the impulse response, which we cannot a�ord to change since we are modulating
the sub-carriers over very speci�c frequencies

• Styrofoam is used to separate the cups from the wooden stands, so that the cups do not vibrate the
whole stand as much

• The receiver cup with the microphone placed in it is padded with foam as well to keep multipath e�ects
at a minimum

• Speaker used for the transmitter had an output diameter that matched the diameter of the mouth of
the cup to minimize leakage of audio from the transmitter



27

Figure 3.1

3.3 DMT Transmitter3

The transmitted signal consists of a sum of sub-carriers with data on each carrier being modulated indepen-
dently using BPSK

3.3.1 Outline for Transmitting Text Over Channel

1. Convert text to ASCII and ASCII to binary (1 and -1): In order to convert text to ASCII in Matlab,
use the int8() function. Once we have the ASCII values, the next step is to convert these values into

3This content is available online at <http://cnx.org/content/m18984/1.1/>.
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binary. The �rst step is to convert the int8() output values into values with an output in double format.
This can be done by using the double() function in Matlab. Once the values are in double format, use
the de2bi() function to convert them to binary values. Now we need to convert all 0s in this binary
number into -1s. This allows for easier phase correction at the receiver end.To do this, assign this
vector to x and perform the function y = 2.*x-1

2. Transpose and reshape matrix to combine all rows into 1 row vector: Originally, each column will
represent a di�erent letter. To get each row to represent a letter, we transpose the matrix. Then we
use the reshape() function to convert the matrix into one row vector.

3. Create another symmetric row and take their IFFT: This is a neat trick that can be employed to
simplify the transmitter. If we take the IFFT of two symmetric rows instead of one row, the result
will be purely real. Therefore, we will only need to transmit and decode one vector instead of two. To
produce these vectors, take the original vector and use the shiftlr() function. Use the output of this
function as the second row in a 2 row matrix. The �rst row will be the original row. Take the IFFT
of this matrix.

4. Add cyclic pre�x of same length as impulse response: The cyclic pre�x is described in more detail under
Channel Characteristics. For now, create a vector of zeroes that is as long as the non-zero component
of the impulse response of the channel and add it to the beginning and end of each symbol (block).

5. Combine rows and modulate to pass band frequency of channel: Make a row vector of the two symmetric
rows and cosine/sine modulate them at the pass-band frequency

6. Make .wav �le and add impulses before and after signal to synchronize: Use the wavwrite() function
in Matlab to convert the row vector into a .wav �le. Introduce short bursts before and after the signal
to mark the beginning and end of the signal.The block diagram below provides a basic layout of the
transmitter employed:

Figure 3.2

3.4 Channel Characteristics4

3.4.1 Channel Selection

The channel for our system was chosen after a lot of research into the kind of qualities required by the
speci�c goal of sending data over the channel. We tried various materials such as a �shing line, copper wire
and various types of threads, and tested each of them on the system to �nd out which one of those materials

4This content is available online at <http://cnx.org/content/m18971/1.1/>.
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would be best to carry longitudinal vibrations (of the transmitted wav-�le) successfully and with the least
amount of error.

We decided that the material needs to be lightweight and not stretchy � hence sewing thread would work
great for our system. The longer the string is, the more lossy it will be � so we moderated the length of the
string we used to about 35 inches.

The sewing thread channel has speci�c parameters that should be taken into consideration when imple-
menting the system. It is important to have an understanding of these speci�cations to allow for successful
data transmission by reducing possible bit errors.

3.4.2 Channel Parameters

The parameters that we took into consideration are:

• Channel Capacity � the capacity of a channel is de�ned to be the upper bound of the maximum bit rate
that can be sent over the channel without introducing errors. After taking the channel capacity into
consideration, we realized that it would not be possible to send voice or images over the channel simply
because these transmission types would require intensive bit rate, which the sewing thread channel is
not capable of. Hence, we resorted to sending text over the channel.

• Multipath E�ects � the signal being transmitted might take more than one path to reach the receiver,
causing superposition/interference with the original signal on the channel. For example, the trans-
mitted sound might travel through the air and superimpose with the signal on the channel, causing
unnecessary complications. To reduce these multipath e�ects, we used a method called cyclic pre-
�x.(Figure 1) What this does is that it takes a chunk (of the same length as the impulse response of
the system) from the end of the bit-stream being sent over the channel, replicates it, and then pre�xes
the bit-stream with the same data. This essentially makes the channel perform circular convolution
rather than the linear convolution it would normally carry out. Hence, this cyclic pre�x allows the
multipath to settle before the main data arrives at the receiver.

Figure 3.3

• Signal Distortion � this could be caused by noise interfering with the signal being transmitted. This
introduction of noise could cause synchronization problems at the receiver end, since the receiver would
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not be able to distinguish where it is just receiving noise from the actual signal being transmitted.
Therefore, for synchronization, we sent two impulses before and after the actual data being sent over
the channel. These impulses help the receiver know when the actual data is being received � starting
right after the �rst impulse and ending right before the second impulse.

• Bandwidth Wastage � not using the entire range of frequencies available on the channel would obviously
lead to wastage of its bandwidth, since a lot more data could be sent over the channel by modulating
data at di�erent carrier frequencies. This is essentially the idea of Frequency Division Multiplexing,
which forms the basis of the DMT modulation depicted in this project. Hence, sending di�erent blocks
of data at di�erent available frequency pass-bands would lead an e�cient use of the channel bandwidth.
In our project, we didn't need to send over multiple frequencies since the amount of data sent could
easily be modulated within one pass-band � speci�cally the one band between 160Hz to about 320Hz.

3.5 DMT Receiver5

The received signal is an analog, modulated version of the original signal which has been transmitted by
multiple carriers. The receiver is just an inverted version of the transmitter described earlier.

3.5.1 Outline for Receiving Text After Transmission

1. Convert .wav �le into a row vector, remove impulses and modulate: Once the signal has been received
by the receiver end (see System Speci�cations on how to do this), the �rst step is to convert it into
a row vector. This can be done by using the wavread() function in Matlab. After this we need to
remove the impulses before and after the sent signal. The easiest way to do this is to plot the received
signal and then determine a threshold above which only the values for the impulse exist. Truncate the
vector to the same length as the original vector without impulses by removing all values greater than
the threshold set by analyzing the plot. After retrieving the original data back, cosine/sine modulate
again to return to retrieve the original signal.

2. Low pass �lter to retrieve original signal and remove some noise Design: LPF �lter in Matlab.
3. Remove the cyclic pre�x: Remove vector of length equal to the impulse response from the beginning

and ending of the current vector. NOTE: These vectors may not be purely zero anymore because of
introduction of noise

4. Find one period in the received signal by comparing the complete received signal with the length of the
original signal: We need to �nd a segment of the same length as the original vector that we received
after taking the IFFT in the transmitter. This vector should also be approximately periodic.

5. Take the FFT of this signal: This should return approximately the same vector that was the input
into the IFFT on the transmitter end.

6. Create thresholds to round values to -1 and 1: This serves two purposes. First, we are now back to
the -1/1 values that we had originally when we transmitted our signal. Also, since -1 and 1 represent
two very distinct phases, we can assume are values less than 0 to be -1 and all values greater than 0
to be 1. This corrects for the phase errors that may have been introduced by the channel.

7. Repeat steps 4-6 for multiple received periods: This is to minimize the e�ects that noise may have had
on any given block of data and to correct for any phase inversions that may have occurred.

8. Find two rows that are symmetric: Convert all -1 to 0 of �rst rowDo this by implementing the function
(x+1)./2 where x is the original vector

9. Convert values of �rst row to ASCII and map these values to text: Now we have a binary vector which
can be converted back to decimal using the command bi2de() and once the decimal value is retrieved,
we can map back to ASCII

5This content is available online at <http://cnx.org/content/m18983/1.1/>.
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Block Diagram Implementation of Receiver

Figure 3.4

3.6 Key Results and Conclusion6

3.6.1 Key Results

The �rst implementation of our system involved sending an impulse over the sewing thread channel. The
impulse wave was created by recording a quick �ick on the microphone and then using the Sound Recorder
on the computer to make a wave �le out of it. This wave �le can easily be plotted in MATLAB to see how
the impulse looks like and if it actually produces a very high amplitude compared to the noise, in as little
time as possible.

Once the impulse was received at the receiver cup, the microphone captured this sound and again this
was saved as a wave �le on the computer. This wave �le can easily be read into MATLAB as a vector
using the wavread function. The next step is to take the FFT of this impulse response to �gure out the
transfer function of the channel. The following plot shows you how the transfer function (frequency domain
representation of the impulse response) looked like.

Figure 3.5

6This content is available online at <http://cnx.org/content/m18973/1.1/>.
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As you can see in the �gure above, there is a major pass band at about 250Hz. This is exactly what we
chose to send our data stream over the channel. A closer look would reveal that there are actually several
other smaller peaks in the transfer function too, which could possibly be used to modulate data at di�erent
frequencies, and hence utilize the Frequency Division Multiplexing scheme.

The actual data stream that we sent over the channel involved modulating at 250Hz with a sine wave
of an appropriate period. The modulated sine wave is shown below. Each point on the wave represent one
data bit that we were sending over the channel (0s, 1s and -1s).

Figure 3.6

Also, to reduce the amount of bit errors at the receiving end, we sent multiple replications of the data
stream one after the other. This allowed us to compare multiple strings of data at the receiver and then
optimize the choice of the string that best represented the data at the transmitting end.

The spectrogram below will help you visualize the signal we sent over the channel.

Figure 3.7
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The �gure above helps us prove and reiterate that the data we sent over the channel was in fact modulated
at 250Hz � the horizontal dark red line at 250Hz suggests the major presence of that particular frequency in
the transmitted data. Besides that, the multiple vertical sections that you see in the center of the spectrogram
represent the data bits that are being sent over the channel at that particular instance. The presence of
multiple sections indicates replication of the data bits, as I mentioned before.

Another important feature of this spectrogram is the presence of two impulse signals before and after the
data bit stream. It is clearly visible that impulses of the same kind have been sent along with the actual data
to help synchronize the receiver with the transmitter (as explained in the Channel Speci�cations module).

3.6.2 Conclusions

Here are some of the important conclusions and take aways from our project:

• DMT modulation allows us to transmit the word �Hello� over a channel as inconsistent as a string
by taking di�erent channel characteristics such as channel capacity, frequency pass bands and noise
introduction into account before transmitting data

• E�cient data transmission fully exploits the bandwidth of the channel by using frequency division
multiplexing by sending small, parallel blocks of data on orthogonal carriers

• Synchronization is one of the major challenges of using DMT modulation. One method of synchronizing
the transmitted and received signals is to send loud bursts before and after the relevant data. This
allows us to mark the start and end of the data in the received signal

3.7 The Project Team7

Jaimeet Gulati - Electrical and Computer Engineering, Rice University
Ryan Pei - Electrical and Computer Engineering, Rice University
Shamoor Anis - Electrical and Computer Engineering, Rice University
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Chapter 4

Estimating Target Location Using 2-D
Projective Geometry and Background
Subtraction

4.1 Introduction to Estimating Target Location Using 2-D Projective
Geometry and Background Subtraction1

Project Intro-Summary
Our ideal objective of this project was to build a surveillance system that can detect any moving object and
locate its exact position. First, We used background subtraction in order to segment out only moving object
from the background. Next, we came up with an idea of using projective geometry to map the frame from
camera's point of view onto the world plane. When one camera was used to locate an object, the results
were sometimes misleading (i.e. could not distinguish height and depth). By using multiple cameras instead,
we were able to obtain a more precise location of the object. This project was more focused on detecting
the changes in the background and locate its position, rather than �nding the object's shape. Thus, each
camera had equal weights on providing data. In the next modules, we are going to present how we used
background subtraction and 2-D projective geometry in order to build our simple surveillance system.

4.2 Background Subtraction2

4.2.1 Background Subtraction

What is Background Subtraction?
Background Subtraction is a process to detect a movement or signi�cant di�erences inside of the video frame,
when compared to a reference, and to remove all the non-signi�cant components (background). Background
subtraction is applied in many areas, such as surveillance system (to e�ectively segment the only moving
object).

Steps to implement background subtraction

• Learning Background � we captured ten background frames and calculated the mean(µ) and the stan-
dard deviation(σ) with the below equations

• We assumed the value of the background was iid-normal distribution

1This content is available online at <http://cnx.org/content/m19011/1.1/>.
2This content is available online at <http://cnx.org/content/m19013/1.1/>.
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Figure 4.1: calculation of mean and standard deviation. xi is the value at a particular pixel of ith
image

Processing Data (real time) � Distinguishing Background and Non-Background Objects

• First, we set the threshold of background as µ ± 2σ
• Each pixel in the background -> N ∼ (µ, σ), if that pixel is part of the background, its value will lie

within µ ± 2σ range 95% of the time.
• Any pixels that go beyond the threshold are considered as parts of non-background object.

Figure 4.2: Normal distribution of background pixels
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The Below �gures are the result of implementing background subtraction

Figure 4.3: Figure a is the background frame we set. When non-background object is introduced (�gure
b), we can see the object is segmented out (�gure d).

4.3 2-D Projective Geometry3

4.3.1 2-D Projective Geometry

What is Projective Geometry
Projective Geometry was developed in the 17th century by Girard Desargues, a French mathematician.

It is a type of geometry that is based upon the principles of perspective art (approximate representation
of an image perceive by the eye on a �at surface). It deals with the properties and invariants of geometric
�gures under projection-any mapping of points in the plane that preserves straight lines.
Steps to Implement 2-D Projective Geometry

In our case, we performed 2-D Projective Geometry on the image taken by a camera. We de�ned the
location of the object we see in the camera image as the location on �camera plane� and the actual location
of the object as the location on �world plane�. This is shown in �gure 1 below.

3This content is available online at <http://cnx.org/content/m19014/1.1/>.
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Figure 4.4: Image Plane vs World Plane

The �rst step to implement 2-D Projective Geometry (i.e. maps camera plane onto world plane) is to
calibrate many parameters of our located camera. This step is to �nd the location of the camera (distance
+ angles) from our designated world plane. This is essential to perform required calculations in the next
step. We calibrated necessay parameters by running a program called �Camera Calibration tool� provided
by Caltech. Details about this program can be found on its supporting website:

www.vision.caltech.edu/bouguetj/calib_doc/4

Once we run the program to locate the camera's position, we will obtain a result that looks similar to
the two �gures below:

4http://cnx.org/content/m19014/latest/www.vision.caltech.edu/bouguetj/calib_doc/
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Figure 4.5

Besides the 2 �gures above, we will also obtain all data necessary in the mapping process. These includes:
- Focal length, fc: measurement of how strongly camera converges or diverges light
- Principal Point, cc: the point where camera plane intersects the axis

Figure 4.6: Principal Point

- Skew Coe�cient, α
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- Distortions (image distortion coe�cients), kc
- Camera Matrix, KK

Figure 4.7

Coordinate of the origin of the camera reference frame, Tc_1 - Surface normal vector of the plane of
camera reference frame, Rc_1

Finally once we obtain all the necessary information, we are now ready to begin the mapping process:The
mapping process is as followed (we also obtained these steps from Caltech):

• Let P be a point space of coordinate vector XX = [X;Y;0] in the world plane (point on the right picture
of �gure 1)

• Let XXc = [Xc;Yc;Zc] be the coordinate vector of P in the camera reference frame. Then we will get
the relationship:

Figure 4.8

• Let xn be the normalized image projection:

Figure 4.9

• Also let the square of the distance:
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Figure 4.10

• After including lens distortion, the new normalized point coordinate xd is de�ned as follows:

Figure 4.11

Where dx is the tangential distortion vector:

Figure 4.12

• Once distortion is applied, the �nal pixel coordinates x_pixel = [xp;yp] of the projection of P on the
image plane is:
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Figure 4.13

After we follow all the above steps, we will obtain the result as in �gure 11. In this case, the process above
maps chess board in the photo (left buttom �gure) onto chess board on the world plane (right buttom �gure).
When the image of the car is mapped on to the world plane, it looks deformed. This is because the camera
cannot tell the di�erence between the height and the depth of the object on the image plane. Therefore in
this process, everything is assumed to be �at (zero height). This will become a problem later as we would
not be able to locate exact position of the object.

Figure 4.14: Result of our mapping

4.4 Combining Results - Background Subtraction + Projective
Geometry5

4.4.1 Combining Our Results � Projective Geometry + Background Subtraction

Combining Our Results
By combining the result from our two parts, it is possible to tract the location of the object. As mentioned

earlier, we need to use two di�erent camera capturing image from di�erent angle. This is because using one

5This content is available online at <http://cnx.org/content/m19012/1.1/>.
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camera cannot di�erentiate depth and height. So by using two cameras, we can superimpose the two images
(of world plane) and �nd an accurate location of the object(See �gure 1 for result).

Figure 4.15: Result after we combine the two processes (from 2 di�erent cameras)

4.4.1.1

We represent our result in the form of Weight Particles plots (shown in �gure 2). By summing the two plot
above (c, d), square this resulting sum and divide it with the sum of all the value in the matrix -> matrix
represents the weights of the �nal particles. If you plot this matrix, you will get the plot (as below) that
represents the probability distribution of the target in x-y space.

Figure 4.16: Weighted Particles Plots



44
CHAPTER 4. ESTIMATING TARGET LOCATION USING 2-D

PROJECTIVE GEOMETRY AND BACKGROUND SUBTRACTION



Chapter 5

Frequency Analysis for Art Forensics

5.1 The Team1

5.1.1 The Team

Students
Lucia Sun: ls4@rice.edu2

�íí� developed most Matlab codes for the project. Her GPA is greater than 4.0. . .

1This content is available online at <http://cnx.org/content/m18949/1.3/>.
2ls4@rice.edu
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Figure 5.1
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Zeting Liu: zbl1@rice.edu3

".." is our poster master. He is an exchange student from a Hong Kong university. Oops, I always
forget its name, should be something like HKUST (Hong Kong University of Science and Technology). He
is also the CEO of a brilliant website http://www.boliance.com4 /.

Figure 5.2

3zbl1@rice.edu
4http://www.boliance.com/
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Xiang Guo (Jash): xg1@rice.edu5

"´´" Jash did a lot of things including bringing in snacks and treating the team for a bu�et dinner.
The most important thing he learned in 301 is �Totally!�

Figure 5.3

Mentor
Professor Don H. Johnson: dhj@rice.edu6

He is the BIG Guy in DSP. You know what I mean...

5xg1@rice.edu
6dhj@rice.edu
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Figure 5.4

5.2 Introduction7

5.2.1 Abstract

A canvas can be characterized by the vertical and horizontal weave densities while the actual painting serves
as an additive signal that only distracts from the thread-counting process. The thread counting algorithm
and the spectral techniques we employ in our project can analyze weave density for entire paintings with an
accuracy comparable to human measurements more e�ciently.

5.2.2 Motivation

Van Gogh Museum of Amsterdam has a collection of artist's works and is looking for a more advanced analysis
for sequencing paintings in addition to the traditional manual methods. Our whole-painting analysis shows
that frequency distributions should match if two paintings are from the same canvas roll. This could better
support the forensic evidence quantitatively when comparing two paintings.

5.2.3 Approach

5.2.3.1 Current Approach

Human measurement � weave threads are manually counted and compared. This approach is ine�cient and
may not be accurate.

5.2.3.2 Our New Approach

Use thread counting algorithm and spectral techniques to analyze weave density for entire paintings. Fre-
quency distributions of weave densities should match if two paintings are from same canvas roll.

7This content is available online at <http://cnx.org/content/m18943/1.1/>.
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5.3 Background8

5.3.1 Warp and Weft

Warp � the vertical threads mounted in a loom. Warps are usually well aligned with a fairly uniform
spacing.

Weft � the horizontal threads mounted in a loom. Wefts are usually threaded back and forth through
the warp in an interlaced fashion. Therefore the weft shows more variability than the warp.

5.3.2 Vertical vs. Horizontal

An artist may orient the canvas on the stretcher in whatever way once he or she cuts a piece of canvas fro a
painting. But we could expect the thread count having the narrower distribution to be the warp direction.

In our model, the vertical threads create oscillations of x-ray intensity in the x direction, which leads
to a horizontal frequency component. The similar idea applies to the horizontal threads and the vertical
frequency.

5.3.3 Canvas Texture Modeling

Canvas texture can be modeled as a sum of two sinusoids having nearly orthogonal spatial frequencies.
c(x) = p(x) + A/2 * [(2 + ahsin (2πfh*x + θh) + avsin(2πfv*x +θv)]
The quantity c(x) is the canvas x-ray image that depends on the 2D spatial variable x; p(x) represents the

artist's contribution (the painting) to the x-ray. The constants A, ah and av determine the average intensity
and the amplitudes of the horizontal and vertical weave. fv and fh are the vector frequencies corresponding
to the vertical and horizontal thread counts, respectively.

5.3.4 X-Ray Image

Our project uses X-ray images of a painting as the raw data.
The thread used to make a canvas is transparent to x-rays. Fortunately, artists usually prepared their

canvases with a white undercoat to smooth the surface. The small variations in undercoat thickness �lling
the valleys of the canvas weave lead to variations in x-ray opacity that can be measured. The greater the
radiographic-absorbing paint thickness along the bean, the greater the opacity, meaning that x-ray image
intensity variations correspond to paint thickness variations.

Figure 2 is the X-ray image of Figure 1- van Gogh's Portrait of an Old Man with a Beard
(F205/JH971).

8This content is available online at <http://cnx.org/content/m18945/1.1/>.
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Figure 5.5
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Figure 5.6

5.3.5 Weave Density

Thread counting algorithms seek the weave density, measured in threads/cm, within a swatch and to study
how these counts vary throughout the painting.

5.3.6 Short-Space Spectrum

2-D Fourier transforms of small areas reveal isolated peaks at the proper vertical and horizontal frequencies.
A square section is extracted from the x-ray, the average subtracted and window applies to obtain spectral

detail using the 2D Fourier transform.
Figure 3 represents a simple case: a 1� × 1� swatch from x-ray image and the detailed spectrum computed

from a 0.5� × 0.5� square located in the upper left corner of the swatch. The wedges indicate areas where
weave-related spectral peaks are found.
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Figure 5.7

5.4 Methods and Results9

5.4.1 Whole Painting Analysis and Results

5.4.1.1 Step 1: Obtain the Raw Data

We received x-ray images of paintings from the Van Gogh Museum of Amsterdam. Images usually sampled
at 600. Figure 1 shows the x-ray image of Van Gogh's Backyards of Old Houses in Antwerp in the

Snow (F260) provided by the Van Gogh Museum.

9This content is available online at <http://cnx.org/content/m18946/1.1/>.
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Figure 5.8
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5.4.1.2 Step 2: Short Time Fourier Analysis

We apply shot time Fourier analysis for each 0.5� × 0.5� swatch. We discarded the outrange frequency peaks
and set the value as NaN for the corresponding swatches. For multiple peaks in the frequency region of
interest, we accepted the peak that is closest to the median value.

5.4.1.3 Step 3: Spectra of Whole-Painting

We sampled the short-space spectrum every 1/4� in both directions (horizontal and vertical) for the whole-
painting by choosing swatches overlap each other by half in each direction. Thus the spectra of whole-painting
were obtained. And we could determine the warp and weft direction of the canvas according to the spread of
measurements. Calculations were made in Matlab and took about three hours to analyze F205 on a laptop
computer.

Figure 2 shows the resulting spectra of F205.

Figure 5.9

5.4.1.4 Step 4: Deviations Matching Analysis

From the spectra of the whole-painting, we obtained thread count deviations spectra by calculating the
distributions of frequencies and subtracting the averages.

Figure 3 and 4 show the vertical thread count deviations of F205 and F260 respectively. Horizontal
deviations spectra are not shown here.
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Figure 5.10
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Figure 5.11

Visually, we can see the matching strips between these two painting. But how well do they match?

5.4.1.5 Step 5: 2D to 1D Conversion

We �rst computed the 1D thread count deviations from the 2D data. The 1D thread count deviations are
obtained by summing the column deviations of 2D data while discarding all the NaNs if any.

Figure 5 and 6 are the corresponding 1D plot of F205 and F260.
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Figure 5.12
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Figure 5.13

We can clearly see the similarities now. But how do they correlate then?

5.4.1.6 Step 6: Correlation Determination

We then computed unbiased correlation coe�cient between 1D vertical thread count deviations of F205 and
F260 along the x-axis. You can clearly see a peak (0.7479) appears at the 55th alignment as two paintings
are mapped to the matching alignment, or visually �best �t� together. The correlation mapping plot is shown
in �gure 7.



60 CHAPTER 5. FREQUENCY ANALYSIS FOR ART FORENSICS

Figure 5.14

The results indicate that these two paintings (F205 and F260) were likely cut from the
same canvas roll, sharing the more variable weft direction.

5.4.2 Orientation Issues in Matching

When we computed the correlation for the paintings, we actually did it four times in our Matlab programs.
This is because that any two paintings could possibly match in either direction and each painting could be
rotated 0, 90 or 180 degree.

In plotting the correlation mapping, we choose the one that gave the best �t among all possible orienta-
tions.

5.5 Conclusions and Future Work10

5.5.1 Conclusions

Clearly, our correlation analysis result is consistent with the matching of F205 and F260 as we can see from
the two spectra. And in fact, F205 and F260 were painted by Van Gogh in the same month in
1885!

The spectral techniques of our project o�er a more e�cient and accurate approach to analyzing and
sequencing paintings than manual methods. Whole-painting analysis could provide quantitative support for
forensic evidence.

The following �gure 1 shows the mapping result between all six paintings we worked on. Some paintings
have multiple x-ray images due to its big size. Hot spots represent �good matches�. Hot spots along the
diagonal are expected as weave density deviations should match in the same painting.

10This content is available online at <http://cnx.org/content/m18947/1.1/>.
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Figure 5.15

Figure 2 shows the same mapping result but with only hot spots left. (With correlation coe�cient greater
than 0.75)
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Figure 5.16

5.5.2 Future Work

5.5.2.1 Elimination of NaNs in Thread Counting Densities

NaNs are the result of outrange or multiple frequency peaks in the short time Fourier analysis for sample
swatches. The reason for these abnormal frequencies are uncertain yet, might due to the x-ray scanning
process, imperfect alignment of threads, etc.

5.5.2.2 Overlap and Critical Values

How big the correlation coe�cient should be when we can say that two paintings match? This could vary
much according to the size of paintings, alignment directions (warp or weft) and other facts. In addition,
we noticed some peaks usually appear at the edge of our correlation plots. This is because small overlap
sometimes results in matching accidently. We are working to �nd a threshold value for overlap and correlation
coe�cient.

5.5.2.3 Averages vs. Deviations

Another part of our project involves the Thread Count Average match between paintings which could be
used collaborate with the result shown here to reach a more convincing analysis for art forensics.
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5.5.2.4 Applications in Other Fields

Our research philosophy could extend to many related signal processing areas such as speech analysis, image
identi�cation and so on. The methods and techniques we developed could be employed not only for canvas
paintings but also similar texture materials.

5.6 References and Acknowledgements11
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D.H. Johnson, C.R. Johnson, Jr., A.G. Klein, W.A. Sethares, H. Lee, E. Hendricks, �A Thread Counting
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11This content is available online at <http://cnx.org/content/m18948/1.1/>.
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Chapter 6

Give Me Your Digits!

6.1 Give Me Your Digits!: Introduction and Background1

6.1.1 Give Me Your Digits!: Introduction and Background

6.1.1.1 Introduction

Digital technology can allow us to save labor and time through the automation of menial tasks. Here we
are developing a program to transcribe digits using a computer and a camera. Computers are notorious
for excelling at repeating similar tasks/ instructions. The following modules will describe how we have
implemented a rudimentary system to acquire, process, and identify handwritten digits (0-9).

6.1.1.2 Background

The conversion of handwriting to the digital regime has been implemented industrially by the USPS; more
theoretical work has been compiled by academia most notably by Dr. Yann Lecun. We identi�ed and clas-
si�ed handwritten digits through the utilization of the MNIST (modi�ed national institute of standards and
technology) database and classi�ers � which include feature extractors and identi�ers. We also preprocessed
input images through the usage of morphological operators. All of the computation was done using Matlab
version 7.1. The process we have developed and many like it have its usages in a world which is developing
and converting to the digital regime.

6.1.1.3 Process Overview

The systematic process of identifying handwritten digits follows 3 major parts: image acquisition, image
processing, and identi�cation.

6.1.1.3.1 Image Acquisition

Firstly in the project an image must be acquired. This part of the project could have been simpli�ed with
the usage of a scanning device. Instead we opted for the usage of a digital camera to make our system more
�exible. Along the way we found that the images produced by a digital camera required more rigorous image
processing steps due to varying input qualities of images.

6.1.1.3.2 Database

The MNIST database: Its extensiveness is described here. We tested our identi�cation algorithms using the
database alone.

1This content is available online at <http://cnx.org/content/m18959/1.2/>.
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6.1.1.3.3 Image Processing

This part of the process deals with converting raw input images into the standard MNIST database format.
Most notably here we deal with cleaning up images and use morphological operators to help us separate
digits.

6.1.1.3.4 Identi�cation Algorithms

This part of the process deals with extracting features from each individual input digit and comparing them
with features of images in the MNIST database. Feature extraction was implemented in the �eld with the
2D FFT. Identi�cation/ classi�cation or the actual matching algorithms goes into the regime of computer
science courses and is slightly out of the scope of this course.

6.2 Give Me Your Digits!: Digit Database2

6.2.1 Give Me Your Digits!: Digit Database

The MNIST database
We used a database as a reference for comparing sample inputs. The database is a modi�ed database from the
National Institute of Standards and Technology (MNIST) database of handwritten digits. More speci�cally,
we downloaded the database from http://yann.lecun.com/exdb/mnist/ and converted the database into
Matlab format using code from http://www.cs.toronto.edu/∼hinton/code/converter.m.

The format of the images in the MNIST database is a 20 by 20 grayscale image centered in a 28 by 28
box using its center of mass. The training set of the database is composed of ∼60,000 (5,000 images/dig)
images compiled from ∼250 writers. The test database is disjoint form the training set and is composed of
∼10,000 images (1,000 images/dig). This database was designed by computer scientists for the analyzing of
classi�ers (identi�cation algorithm).

2This content is available online at <http://cnx.org/content/m18965/1.1/>.
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Figure 6.1: Image of the training database for the digit `0'

6.3 Give Me Your Digits!: Image Acquisition3

6.3.1 Give Me Your Digits!: Image Acquisition

Camera Setup
A Canon XSI Digital SLR was mounted onto a tripod as shown below. A desk lamp was used for additional
lighting. More speci�cally an 18-55mm zoom lens was used at the 18mm (fully zoomed out), the onboard
�ash was used on manual settings. Handwriting was standardized to half an inch in height with a pilot
ballpoint pen to help simplify the subsequent image processing procedure.

3This content is available online at <http://cnx.org/content/m18963/1.1/>.
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Figure 6.2: Camera setup

One Time Manual Cropping
The algorithm used requires one line of handwritten digits at a time thus once the image was captured using
the camera it was loaded into matlab using the uiget�le �(fancy gui to get �lepath and �lename) and Imread-
(use �lepath/�lename to load in actual image into matlab workspace) commands. To �nish o� this step use
the imcrop() command to manually crop one line of digits from the image with �nal product below. Note:
this is the only time that there is manually cropping of the image from here on we complete the process
algorithmically. Please see improvements on how we could of taken out all manual cropping entirely.

Figure 6.3: Photographed and manually cropped image of digits.

6.4 Give Your Digits!: Image Processing4

6.4.1 Give Your Digits!: Image Processing

When an image is acquired, its size and dimensions will vary. Since the database we use is in grayscale and
28x28 pixels large, each input image must be processed so that it also has the same dimensions.

4This content is available online at <http://cnx.org/content/m18969/1.1/>.
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Figure 6.4: Acquired Image

6.4.1.1 Convert to Grayscale

The acquired image is in RGB format, where each pixel in the image consists of 3 components: the intensity
of red, green and blue. Grayscale consists of a single intensity value for each pixel. Therefore, to change
each input image to grayscale, we will use the Matlab operator, rgb2gray().

6.4.1.2 Edge Detection

The only information of interest in the input image are the intensities of the actual digits, rather than the
intensities of the background. Edge detection will remove background noise and �lter the image so that only
areas of high contrast (which is the shape of the handwritten digits) remain. The �gure below shows the
result of applying a simple Sobel edge detector using the edge() command with the threshold set to default.

Figure 6.5: Result of edge detection with sobel operator.

6.4.1.3 Dilation: Morphological Operator

A morphological operator such as dilation processes an image so that its shape is changed in some way.
Dilation expands all the boundaries of objects in the image. Dilation in this case also serves to connect
any disconnected regions of an outline together. Through the imdilate() command, we can specify how to
expand the digit outlines by a structuring element. Depending on the shape of the structuring element, the
appearance of the image will change. The `ball' structuring element will be a good choice, since this uses
a gradient to make the digits look smoother and rounded out, similar to the way the data is normalized.
Depending on how large the digits are written, the size of the structuring element will need adjustment
� larger images require a larger structuring element in order to �ll more of the outline. In order to get
consistent results from dilation, we made sure all writing samples were approximately the same size. The
�gure below shows the result of dilation.
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Figure 6.6: Dilation of Digit Outlines

6.4.1.4 Separating Individual Digits

Now that the only identi�able regions in the image are the digits themselves, the Matlab operator region-
props() with the `boundingbox' option, we will be able to separate the digits into individual images.

Figure 6.7: Connected regions are identi�ed by `boundingbox'

6.4.1.5 Resize and Normalize Image

Most input images are much larger than needed and must be rescaled and centered to 28x28 pixels. Imresize()
scales the image to 20x20 pixels. Afterwards, zero padding adds zeros to each side of the image, resulting in
a 28x28 pixel image. The input image is now standardized and ready to be identi�ed.

6.5 Give Me Your Digits!: Identi�cation Algorithm5

6.5.1 Give Me Your Digits!: Identi�cation Algorithm

6.5.1.1 Feature Extraction

In General
Now that the image is in the format of the database (28 x 28 grayscale), a method to match the image
to the database must be explored. To achieve a high accuracy rate in matching from the database, a
feature extraction method could be employed. Three methods will be explored: pixel matching, Principle
Component Analysis (PCA), and two-dimensional Fast Fourier Transform (2D FFT).
Pixel Matching
Pixel matching, the �rst method, is not to use any feature extraction. It is meant to match the image to
the database in the most obvious manner. The identi�er literally compares the images pixel by pixel and

5This content is available online at <http://cnx.org/content/m18966/1.1/>.
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computes the mean squared error (MSE, sums up all the error). In fact, the following two methods employ
pixel matching after the transforms.
PCA Principle Component Analysis
Next, the Principle Component Analysis, employs an orthogonal linear transformation that transform the
matrix to a new matrix such that the greatest variance of the projection of the data comes to the �rst
coordinate (principle component), and the second highest variance to the second coordinate, and so on. For
our purposes of matching the image from the database, the PCA actually performs very poorly. This is due
to the fact that because the images so closely resemble each other (same variance). This similar variance
is attributed to it being so small (28 x 28) and gray scale. As a result, the PCA transform of the images
are almost identical for this speci�c database. Experimentally, roughly a 30% matching rate was observed,
which is barely better than random guessing. PCA would be much better suited for large images with great
variances.
2D FFT
Last, our method of choice, is the two-dimensional Fast Fourier Transform. Recall that the FFT is a
form of Discrete Fourier Transform. The 2D FFT, for our purpose of image extraction, is the a frequency
representation of the images. Note that the magnitude of the FFT must be used to compute the MSE. Also,
the Matlab �tshift command was used shift the high frequency to the center.

Figure 6.8: The formatted images and their 2D FFT's

6.5.1.2 Identi�cation

In General
Once the input images are transformed, they are now ready to be matched and identi�ed by the images in
the database. Three algorithms can be used: a) �nding the lowest MSE, b) �nding the best averaged MSE,
and c) �nding the highest frequency digit from the best one hundred MSE.
Absolute Nearest Neighbor
The �rst algorithm �nds the database image that has the lowest MSE from the input image out of all the
randomly selected database images and declares that the input image is the digit the matched database
image represents. In other words, it is an absolute nearest neighbor approach. The accuracy of this method
depends heavily on the number of randomly selected database images since the bigger the database to choose
from, the higher the chance that there will be a perfect match.
Averaging Database Per Digit
Another algorithm that could be used is to average all of the MSE's of the database of one digit with a
input digit,and declare the digit with the lowest average as the input's digit. This method, in theory, should
eliminate the chance picking an outlier.
Majority of Nearest Neighbors
Finally, the last algorithm is a variation of the aforementioned minimum MSE approach. This method
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picks the one hundred lowest MSE's observed from the selected database and tallies the frequency of digits
represented and declares the highest frequency digit is the input's digit. In other words, it is �nding the digit
with the most nearest neighbors. In theory, this approach should be more associated with �nding common
features since higher frequency of certain digit means shared characteristics. A drawback of this method
could come from a particularly poor input (say a 3 that looks awfully like an 8), there is a possibly of �tying�
since the digits are separated by integers.

6.6 Give Me Your Digits!: Results6

Give Me Your Digits!: Results

6.6.1 Using test database as input:

In order to compare and test the accuracy of our classi�ers we randomly select 500 test images and test their
accuracy using our identi�cation algorithms (classi�ers).

Figure 6.9: Accuracy of Minimum and Average MSE with FFT and without FFT

Reducing Size of Database
In general we vary K the number of training samples we randomly select � this e�ectively reduces the number
of images we compare our input to using classi�ers. In general as you increase K (e�ectively increase the
size of the database we are comparing to and thusly our chances for �nding a good match) we increase the
accuracy of our algorithms.

6This content is available online at <http://cnx.org/content/m18968/1.1/>.



73

Pixel Matching
Pixel matching and minimum MSE give the best results. Pixel matching does so well here because the test
images and training images we're created by NIST using the same image processing algorithm and thus
match pixel to pixel accurately. It is interesting to note that using the FFT2D does not stray far from
the pixel matching result. More extensive testing of di�erent types of nearest neighbors and even neural
networks is beyond the scope of this course and enters computer science.
Averaging
Averaging gives a poorer result because the database per digit is so varied: in theory taking a general
average of some digits gives extremely similar answers; this could be the reason for such poor comparison;
∼50percent accuracy could signify half of the digits have this poor averaging characteristic. Averaging was
originally implemented to rid the chance for out-layers giving erroneous nearest neighbor result, with our
random selection of the training database and inputs we should actually be trying to �nd out-layers (exact)
or close to exact matches to our image to get better results.

6.6.2 Using camera photo (image acquisition) as an input:

Due to limitation of resources we were only able to approximate this data by taking 10 digits (0-9) from 10
people and approximating the accuracy.

-FFT2 with minimum mean squared error gave approximately 95% accuracy with adequate spacing
between digits � (if not spaced properly bound box will cut o� adjacent digits skewing results).

-Pixel matching with minimum mean squared error gave approximately 80% accuracy.
Reasoning behind this is that the sequence and morphological operation parameters we used are not

exactly the same as the ones NIST used to develop their database. Thusly the FFT2 will give more of and
averaging e�ect yielding better results than just strait pixel matching alone.

6.7 Give Me Your Digits!: Improvements and Conclusion7

6.7.1 Give Me Your Digits!: Improvements and Conclusion

6.7.1.1 Suggested Improvements to the Digit Identi�er

The Database
The database utilized in this project was developed solely for the testing classi�cation techniques (analyzing
identi�cation algorithms). The size of the database �les and vast diversity in the digits was good enough
for our purposes. The USPS uses a similar database which can be found online, this database may be more
suitable for input from a camera. More importantly we could expand our identi�cation to letters if we
expanded our database to include letters; this was out of the scope of our project as it requires extensive
optimization of classi�ers.
Feature Extraction and Identi�ers
Feature extraction is possibly one of the areas for improvement. The FFT2D really does not really
vary enough from digit to digit and thus is not a great feature extractor. Identi�ers could be an area
of extensive improvement, most notably instead of Nearest Neighbor approaches Neural Networks could
of been used to train. An large list of types of classi�ers has been compiled by Dr. Yann LeCun at
http://yann.lecun.com/exdb/mnist/.
Reduce Noise
Noise reduction methods can reduce the chance to detect noise as a digit, the many �lters that are in
the image processing toolbox of matlab could make our system �exible enough to allow crumpled/ paper,
smeared ink ect. A big part of making our project more viable in the real world would be to make the
parameters of each morphological operator dynamic with di�erent input images. For example detect pen
thickness (how thick the lines that make up the handwritten digit) and increase the size of dilate to �ll in

7This content is available online at <http://cnx.org/content/m18967/1.1/>.
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the larger gap between edges. Edge detection parameter can also be changed to have more precise threshold
(lower bounds and upper bounds- see caney edge detection) based on input.

-In more detail one should look into wiener2() command which adaptively �lters out noise based on
overall variance in the image. This e�ectively smoothes out edges (especially edges in noise dots) and thusly
will reduce detecting edges in noise.

-Another �lter that we looked into but did not end up using is med�lt2() which is a median �lter which
pushes noise out to the boundaries of image and then zero pads the boundaries of the image. Since we have
no information at the boundaries of each of our digits this method would have worked with few side e�ects.
Be Prepared for Angled Imput
Input images may be angled based on both handwriting styles and/or due to tilt of the paper being pho-
tographed. Thusly the same identi�cation algorithms used in this project could be calculated simultaneously
with rotated (using imrotate()) versions of the input image.
Paragraph Cropping
We have accomplished the algorithm for cropping individual digits all on the same line. The extensive data
from regionprops() command can be further analyzed to read in entire paragraphs of handwriting and even
understand spacing and indentation.
Scanner
Finally there are more accurate and faster methods of scanning in handwriting using an industrial scanner
like the USPS (lazer technology) or even a convention scanner could greatly improve the quality of images.

6.7.1.2 Conclusion:

With the use of image processing tools & identi�cation algorithms, in our case, the FFT2, minimum MSE,
one can achieve high levels of accuracy in hand-written digit recognition. As seen from the results above, we
see that pixel matching is superior when using the MNIST test images.



Chapter 7

Information Hiding and Watermarking

7.1 Abstract Summary of Information Hiding and Watermarking1

7.1.1 Introduction

Objective
The objective of this project is to hide a binary message within a piece of audio without damaging sound
quality. The encryption should be resilient against "attacks" from the outside. Speci�cally, the hidden
message should survive the addition of noise, audio recompression, cropping errors, and re-marking an
additional message on top of our message.
Background
To store a covert message in a sound �le, the bits of the �le must be changed at least slightly. These
modi�cations add noise to the listener who wants to enjoy the music in its original form. Therefore the
modi�cation is kept as subtle as possible and masked to exploit �aws in the perception of the human ear.
Typically, an attentive listener will not perceive a small decrease in audio quality, even with a high quality
reproduction of the sound. However, special computer analysis of the modi�ed sound �le can reliably reveal
the hidden message, provided that the encoder and the decoder must have some pre-arranged "agreement"
about where the data may be hidden. The algorithms outlined in this project focus on modifying the
original sound as minimally as possible and taking advantage of certain psycho-acoustical perceptive
phenomena to maintain high sound quality despite the added noise of the encoded message.
Psycho-Acoustical Phenomena
Human auditory perception is limited by several phenomena related to the ear and how the brain perceives
sound. These limitations can be exploited to modify audio �les such that they sound remarkably close to the
original yet contain subtle di�erences that store a hidden message. First of all, the human ear cannot hear
quiet tones masked by loud tones close in pitch. A practical example is that an audience at a choir concert
will generally not notice if one individual is slightly out of pitch, unless that individual is exceptionally out
of pitch or exceptionally loud. Secondly, the human ear is insensitive to small phase shifts in audio. In
practice, the ear is almost completely deaf to time-variations in sound, even when original and phase shifted
clips of a sound are sampled back-to-back. Finally, subtle echoes may not signi�cantly change how audio
sounds. However, this varies depending on how large the echoes are and the contents of the original sound.
Each of the three perceptual limitations listed above inspire the design of an encoding scheme.

1This content is available online at <http://cnx.org/content/m18992/1.1/>.
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7.2 Encoding Information in Audio for Watermarking2

7.2.1 Encoding

Our three encoding algorithms all begin the same way. First we take the user-de�ned constant for the
number of segments and split the input signal in the time domain. Each segment represents a possible bit of
hidden data. More segments mean more bits and a higher data rate, but it also means fewer samples from
which to decode.

Whenever we wish to encode a one we alter the time chunk according to the algorithm. To encode a
zero we leave the segment alone. After altering (or not altering) each segment, we take the Inverse Fourier
Transform if needed and recombine them into our marked �s(t).

7.2.1.1 Frequency-Masking Algorithm (FMA)

In this algorithm we take advantage of frequency masking. Since the human ear cannot hear quieter fre-
quencies next to a louder frequency, we alter these values. To encode a one we �nd the Fourier Transform
for each segment of time and �nd the max value of this transform. Then we scale the neighboring values on
either side by some scalar α < 1.

The case where the max value is close to the edge of our segment is slightly more complicated. We chose
to alter the values on the non-edge side as normal and to alter as many samples on the edge side as existed.

We cannot encode a bit if the maximum value is zero or if the neighboring frequencies are too small
(according to some prede�ned value).

Testing revealed that α = .5 was clearly audible for all of our test �les, but α =.95 was not enough of a
di�erence for the computer to reliably detect.

Diagram of Frequency Encoding Algorithm

Figure 7.1: Diagram of Frequency Encoding Algorithm

2This content is available online at <http://cnx.org/content/m18995/1.6/>.
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Example of a change made by the FMA

Figure 7.2: Example of a change made by the FMA to encode a 1

7.2.1.2 Phase-Shifting Algorithm (PSA)

In this algorithm we take advantage of the fact that the human ear cannot hear slight variations in phase. To
encode a one we �nd the Fourier Transform of each time segment and slightly alter the phase by a prede�ned
value.

We cannot encode a bit if most of the values are zero.
Testing revealed that a phase shift of .25π is audible, while a phase shift of .001π became hard for the

computer to detect.
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Diagram of Phase Encoding Algorithm

Figure 7.3: Diagram of Phase Encoding Algorithm
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Example of a change made by the PSA

Figure 7.4: Example of a change made by the PSA to encode a 1

7.2.1.3 Echo Algorithm (EA)

Here we use the fact that our test suit is comprised of music and already have some amount of echo. Adding
a slight amount more does not make an audible di�erence. To encode a one we shift the segment by some
prede�ned value, de-amplify it by some scalar α < 1, and add this echo back to the original segment.

We cannot encode a bit if most of the values are zero.
Testing revealed that an echo de-ampli�ed to .2 was audible, while a de-ampli�cation by .0001 was not

reliably detected. Also a 30 sample delayed echo was inaudible to the human ear.
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Diagram of Echo Encoding Algorithm

Figure 7.5: Diagram of Echo Encoding Algorithm
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Example of a change made by the EA

Figure 7.6: Example of a change made by the EA to encode a 1

7.3 Decoding Information Hidden in Audio for Watermarking3

To decode, our scheme needs certain information about the original signal. We need to know how many
segments were created and the relevant, comparable value(s) for each segment. For simplicity's sake we
simply input the original signal, though it would have been possible to not repeat this work.

Our decoding algorithms take the marked signal �s(t) and segment it in the time domain as in the encoding
algorithms. We next compare each segment of �s(t) to the original s(t) value. If the values are the same it
was a zero. If the values have changed it was a one.

To decide whether change has occurred, we subtract the proper values and create a sum of the di�erences,
i.e. a scalar representing the amount of change. We then compare this scalar to some threshold. For marked
signals with no noise, this threshold can be 0.

3This content is available online at <http://cnx.org/content/m18994/1.2/>.
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Diagram of Decoding Algorithm

Figure 7.7: Diagram of Decoding Algorithm

7.4 Testing Methods of Information Hiding and Watermarking4

7.4.1 Testing

7.4.1.1 Aural Tests

As our primary objective was to make the changes inaudible, we tested all of our algorithms aurally.
We initially tested the algorithms on a 440 Hz tone to ensure that the algorithms were working as

expected. (We did not test the FMA on the tone as doing so would have been silly because the tone only
has a single frequency with no other frequencies to modify.)

We continued our aural testing with a suite of six songs from di�erent genres: classical, hip-hop, oldies,
pop, rock, and techno. We adjusted any thresholds and prede�ned constants to the point of aural imper-
ceptibility. Working within these limits we were then able to modify these constants to maximize bitrate,
accuracy, and noise resilience.

The following �gure details the particular songs chosen and their overall frequency spectrums.

4This content is available online at <http://cnx.org/content/m18999/1.2/>.
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Figure 7.8: Frequency spectrums of test suite songs

7.4.1.2 Bitrates

Our test suite had a CD quality sampling frequency: 44100Hz, which amounts to 220500 samples for a 5
second long clip. Ideally with no noise it would be possible to use a segment length of 2 samples. This setup
translates to 220500/2 = 110250 segments in 5 seconds and 110250/5 = 22050bits/sec. I.e. at CD quality,
we cannot get more than a 22Kbits/sec data rate.

In practice we found that Mat lab was unable to handle this amount of data. We were, however, able to
successfully reach 4800 segments, or 46 samples per segment. These values translate to 220500/46 = 4793
segments in 5 seconds and 958bits/sec. I.e. we reliably demonstrated a 1Kbit/sec data rate.

7.4.1.3 Power Ratios

To measure how much we had changed each of the signals by encoding bits, we took a power ratio of the
original signal to the output signal.
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Formula for Power Ratio

Figure 7.9: Formula for Power Ratio

We found these ratios for two di�erent input characters: `@' and `w'. Because `@' is encoded by 100 0000
in ASCII, these power ratios measure the minimum amount of change we make to our signals. Because `w'
is encoded by 111 0111 in ASCII, these power ratios measure the maximum amount of change we make to
our signals.

Power Ratios

FMA PSA EA

@ w @ w @ w

classical 1.0052 1.0362 1.0056 1.0352 0.9992 0.9955

hip/hop 1.0079 1.0507 1.0068 1.0413 0.997 0.9818

oldies 1.0133 1.0747 1.0069 1.0425 0.9986 0.9897

pop 1.0115 1.0776 1.0063 1.0388 0.9975 0.9842

rock 1.0131 1.0628 1.0072 1.0419 0.9975 0.9888

techno 1.0155 1.0897 1.0077 1.0463 0.9951 0.9723

Table 7.1

Table 1. Power Ratios for each algorithm encoding one 1 per seven bits (�@�) and one 0 per seven bits
(�w�)
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Figure 7.10: Chart of Power Ratios

The most important feature of these results is that all of our power ratios are very close to one, indicating
that we have not changed the signal very much.

We also see some variation across the di�erent songs because which values are changed and by how much
depends on the song; for example, with the PSA, the delay causes us to drop samples at the end of the
segment, and the power in the dropped samples depends on the song.

As expected, for `w', the power ratio is further from one as more one-bits are encoded. Because adding an
echo can be variously constructive or deconstructive, the power ratio does not re�ect the number of one-bits
as much as FMA and PSA. This fact also explains why the power ratios for the EA are generally lower than
those for the FMA and PSA.

Finally for FMA and PSA the power of the marked signal was lower than the power of the original signal.
For the FMA, this decline in power was expected because we scaled frequencies down, thus, deceasing the
power in the frequency spectrum, which, as Parseval's Theorem tells us, corresponds to decreasing the power
of the signal. For the PSA, this decline in power was also expected because the PSA delays the signal in
various segments, dropping samples in the marked signal. The EA was the only case in which the marked
signal had greater power than the original signal because the echoes in this case were more constructive than
destructive.

7.5 Surviving Attacks on Information Hiding and Audio
Watermarking5

7.5.1 Noise Addition

We added varying amounts of Gaussian noise to our marked test signals and attempted to retrieve the hidden
message with varying success.

In order to account for the noise, we adjusted the threshold we used in the decoding algorithm. From
Figures 10,12, and 14, it is clear that a threshold can be drawn between the higher observed di�erences
(one-bits) and the lower observed di�erences. However, in the cases where too much noise was added (see
Figures 11,13, and 15), this threshold is not so clearly de�ned. In fact, for the PSA and EA, any threshold
value is di�cult to determine whether by calculation or by �eyeing it.�

5This content is available online at <http://cnx.org/content/m19003/1.1/>.
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Figure 7.11: Observed di�erences between frequencies of original signal and frequencies of marked
signal for FMA with no added noise
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Figure 7.12: Observed di�erences between frequencies of original signal and frequencies of marked
signal for FMA with added noise of SNR 30 dB
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Figure 7.13: Observed di�erences between frequencies of original signal and frequencies of marked
signal for PSA with no added noise
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Figure 7.14: Observed di�erences between frequencies of original signal and frequencies of marked
signal for PSA with added noise of SNR 30 dB
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Figure 7.15: Observed di�erences between frequencies of original signal and frequencies of marked
signal for EA with no added noise
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Figure 7.16: Observed di�erences between frequencies of original signal and frequencies of marked
signal for EA with added noise of SNR 70 dB

Based on studying these threshold values, we found maximum noise we could add to the marked signal
for each algorithm. The minimum SNR for the FMA, PSA, and EA were 30 dB, 30 dProject! ElB, and 60
dB, respectively. At these SNR values and with an input of �Elec301 Project! �, the algorithms output as
follows:

FMA
Elec301 Pro*ect! Elec301 Project! ElB, and 60 dB, respectively. At these SNR values and with an input

of �Elec301 Project! �, the algorithms output as follows:
ec301 Project! Elec30ec301 Project! Elec30
PSA
Elec301Elec301Elec301ELec301Elec301EleC#01Elec301Elec300Elec301El ek30qElec301Elec301Elec301Elec301El

El`c 1El
EA
Elec381 Pzg*ect!MleC343 RzebesT!eoec#p1 Psozec|#GleC#00 P2ojEct)Mmec301 QrozEkw

Umea3p1'PRgbmct!Eleg:0q P2ojea4%D|
The FMA and PSA clearly outperformed the EA in the noise category. In fact, at the point that we

begin to miss bits, we can already signi�cantly hear the white noise. Because the FMA only looks at the
di�erence between the frequencies of the original and marked signals for a small segment of the frequency
spectrum (in particular around the maximum frequency of the original signal), the noise power included in
the di�erence is much smaller for the FMA than for the PSA and the EA which both calculate the di�erence
over the whole frequency range. The PSA is good because our ears cannot detect signi�cant alterations in
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phase; in fact, the phase shift could go up to .1*pi without audible detection. This large phase shift power
di�erence between a one and zero is much more than the power added by the noise.

For all of our algorithms some genres of our test signals performed better in every case. We found that
`pop' and `techno' both failed noise tests at least 20db SNR higher than any of the others. Examining the
magnitude in the frequency domain for both of these signals (see Figure 8) shows us that the 90% power
bandwidth is wider than in the others. I.e. there is signi�cant information at higher frequencies, so more
signi�cant frequencies are altered by the noise, which lessens the amount of tolerable SNR.

To defend against noise we encode the user-input phrase over and over as many times as will �t. This
increases our chances of getting the phrase back since the probability of several bits being wrong is lower
than the probability of one bit being judged incorrectly.

Another defense against noise was to raise our various prede�ned values closer to human-hearable level.
For example we can increase the amount of phase shift in the PSA from .01*pi all the way to .1*pi. These
increases mean that the value shifting caused by adding noise is not signi�cant when compared to the value
shifting created by encoding a one. In general, there is a balance between how much noise a marked signal
can take and how audible the mark becomes. This balance is found by toying with the prede�ned values for
each algorithm.

7.5.2 Compression and Decompression

We also tested an attack in which the wave �le was compressed using MPEG-1 and AAC compression
algorithms. In order to test whether we could still recover our encoded bits in MATLAB (MATLAB can
only work with wave audio �les), we then decompressed the �les. We found that we were completely unable
to recover our encoded message and received as output either nothing or complete garbage.

These results were not unexpected as audio compression algorithms take advantage of the same psycho-
acoustical phenomena that we used to

7.5.3 Cropping

Our encoding scheme can survive truncation on the back end. We simply lose any bits contained in the
deleted data. While we did not implement this process, we could implement a matched �lter setup to
survive truncation on the front end. We could take the marked audio �le and attempt to place it in the
unmarked original �le using convolution.

7.5.4 Remarking

We tested whether our algorithm could be marked with a second message and still recover either message.
We provided our decoder with the original signal and the signal that had been marked two di�erent times.
If we had provided the decoder with the once-marked signal and the original signal (cascading the decoder),
we could have easily recovered our original signal; however, we felt this solution was trivial and against the
point of the attack.

We found, as expected, that when encoding two di�erent messages, we could not correctly recover either
message. We, however, found that if two of the same letter were encoded in the same place, we could recover
this particular letter. Remarking the signal with the same message does not a�ect our ability to decode the
message, but remarking can a�ect the quality of the output.
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7.6 Uses of Information Hiding and Watermarking6

7.6.1 Uses

Secure Storage
Hiding security-sensitive information in music epitomizes the idea of "security through obscurity". Even
if an intruder should gain access to the encrypted music �les, there may not be any external indication that
the �les contain encrypted data, rather than simply music. Playing the �les as they were intended produces
regular, non-suspicious music that is nearly indistinguishable from the unmodi�ed recording. Even if a
would-be eavesdropper realizes that the music contains encoded bits, the issue still remains of �nding the
encoded bits within the signal and deciphering their meaning.
Covert Communication
The same reasoning can be applied to music that is openly broadcast between parties wishing to communicate
in secret. An unsuspecting listener just hears music, but the desired audience has the tools to extract the
hidden message. This is not just for spies, of course. A system could be designed where a radio station
broadcasts music encoded with information about the song that is currently playing. A special receiver
interprets the hidden code and o�ers the listener the option to buy the current song or other songs by that
artist. Regardless, listeners with or without the special receiver do not perceive any loss of sound quality
compared to a regular radio broadcast.
Copy Control
Individual copies of a piece of music could be labeled with imperceptible watermarks containing serial
numbers. The watermarking algorithms designed in this project would have to be modi�ed slightly, but they
could be used to verify a signal's compliance with the following rule. A copy is only a legitimate copy if it
includes the o�cial watermark and/or a serial number that has already been sold. Furthermore, when each
customer purchases a copy of the song, his or her purchase will be assigned a serial number. If multiple
copies of a song bearing the same serial number are discovered where they should not be, then it is clear
which user is responsible for breaking the rules.

7.7 Future Work in Information Hiding and Watermarking7

7.7.1 Future Work

Recover the Encoded Message without Original Signal
All three encoding and decoding schemes require that the modi�ed output signal be compared to the original
signal to attempt to recover the encoded message. Obtaining the original signal can be cumbersome in
practice and may present logistical problems. Fortunately, this requirement can be lifted with a slight design
change.
Detect Whether a Signal has been Watermarked
This project could also be furthered by creating a decoding process which takes in a signal and a message
and attempts to discover whether the signal has been marked with that message.
Survive Cropping Attacks
Our algorithms could survive cropping if we set up a matched �lter in the decoder. First we would determine
where the marked signal is located in the original signal using cross-correlation. Then we could crop the
original signal in order to compare it to the marked signal and recreate the message (without, of course, the
bits lost in the crop).
Increase Security by Pseudorandom Sequences
By �rst encoding the message with a pseudorandom sequence, we could increase the security of the message.
If the encoder uses the pseudorandom sequence with the message as a seed to select which segments are

6This content is available online at <http://cnx.org/content/m19001/1.1/>.
7This content is available online at <http://cnx.org/content/m18996/1.1/>.
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encoded, the decoder can only �nd what the original message was if he also has the sequence. Thus, the
encoder and the decoder must have some key sharing mechanism.

A second method of increasing the security using the pseudorandom sequences is varying the segment
length. In the �rst step of each encoding process, the original signal is cut up into segments of equal time
length. If, instead, the length of each segment is varied according to a pseudo-random sequence known by
the transmitter and receiver. Without this sequence key, a potential eavesdropper would have great di�culty
�nding�let alone interpreting�the changes detected in the modi�ed sound.
Encode on both Audio Channels
All three encoding processes currently only encode on one channel of a stereo audio signal. Both channels may
be used to store additional information, at the cost of degrading the sound quality further. The e�ectiveness
of this strategy is limited because the human brain is comparatively good at discerning di�erences in sound
between the two ears.
Use Error Correcting Codes
This project focuses more heavily on the design of the encoding and decoding systems than the contents of
the transmitted message. However, system performance in the presence of noise might improve if some form
of error correcting code is used. If single-bit errors are evenly distributed throughout a decoded message,
error correcting codes will improve accuracy. The trade-o� is that fewer unique bits can be encoded, and
message length must be reduced.
Extend Findings to Speech Signals
This project focused exclusively on hiding digital data within music �les. Perhaps a more practical application
is to apply these results to speech signals. Human speech typically covers a smaller frequency range than
music and also typically lacks harmonic resonance. It is not clear how well the encoding and decoding
schemes will perform when applied to speech.

7.8 Conclusions about Information Hiding and Watermarking8

7.8.1 Conclusions

Di�erent genres of music are compared (for example classical, oldies, rock, pop, hip hop, techno) with respect
to their data hiding capacity and subjective sound quality when modi�ed by each of the three encoding
schemes. At peak, each one encodes over 200 seven-bit characters in a �ve second audio clip. Matlab
becomes unstable when the algorithms are scaled up to encode more bits, although there is no indication
that the algorithms would fail if given su�cient computational power. Furthermore, it is nearly impossible
to distinguish between the modi�ed and unmodi�ed �ve-second sound clips, even while listening carefully
through high quality headphones.

All of these algorithms can encode about the same number of bits with reasonable quality, although at
least one subject complained that the PSA left a slight ringing in the marked audio �le. The FMA and PSA
both stand up very well to noise, while the EA does poorly. The EA quickly reaches a SNR at which the
decoder can no longer tell which values were supposed to be ones and which were zeros. The FMA decoder
examines such a small band of frequencies that it is much less a�ected by broadband Gaussian noise. Since
the human ear detects phase shifts poorly we can shift the phase such that the added noise is insigni�cant.
The FMA changes the signal power the most, while the EA changes the power the least.

In conclusion, we were successful in hiding a binary ASCII string in audio �les without audible loss of
quality, using three di�erent methods: Frequency-Masking, Phase-Shifting, and Echos.

8This content is available online at <http://cnx.org/content/m18993/1.1/>.
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Music Synthesizer

8.1 Introduction1

8.1.1 Introduction to a Music Synthesizer

8.1.1.1 Our Goal

The aim of the project was to create realistic instrument sounds by means of digital signal processing (DSP).
Algorithms and theories already exist for mimicking various instrument families and all revolve around
modeling the instrument structure and material as well as how the instrument is played. One of the simpler
algorithms is the Karplus-Strong, which produces amazingly realistic guitar sounds. Using this algorithm
in combination with attack-delay-sustain-release (ADSR) concepts, we were able to synthesize some decent
instrument sounds.

8.1.1.2 Next Step

The �rst step would be to increase our instrument library to include di�erent instrument families. Karplus-
Strong mainly works for string and some percussion instruments, which greatly limited the diversity of our
virtual orchestra. This would consist of implementing di�erent algorithms to simulate the various types of
instruments. Finally, how does mimicking instruments through DSP constitute music synthesis? The next
objective would be to generate random pieces of music. A plausible scheme would be to implement a �rst
or second order Markov model to generate random pieces with musical structure but leave enough room for
creativity.

8.2 Karplus-Strong Algorithm2

8.2.1 Karplus-Strong Algorithm

8.2.1.1 How It Works

The Karplus-Strong algorithm was developed by Alexander Strong and analyzed by Kevin Karplus as a
model of hammered or plucked string instruments. It simulates the sharp impact through a short wideband
signal such as a burst of white noise. The signal is fed back through a delay line whose length depends on
the frequency of the desired note. The delayed signal is sent through a lowpass �lter to attenuate all other
frequencies except the frequency of the note and its harmonics.

1This content is available online at <http://cnx.org/content/m19005/1.2/>.
2This content is available online at <http://cnx.org/content/m19006/1.2/>.
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Karplus-Strong Algorithm

Figure 8.1: A diagram representation of a burst of white noise being delayed, �ltered, and combined
with the original burst. The output sounds like a realistic guitar string pluck.

8.2.1.2 Concepts

The main concept behind the algorithm is to model the sudden attack of a pluck with white noise containing
equal energy in all frequencies. Due to the cavity of the instrument, the instrument material, and various
other parameters, only a given frequency and its harmonics will resonate. This is simulated by recursively
shaping the output signal. By matching the length of the time delay to correspond with the frequency of the
note desired, the output will ultimately sound at the selected frequency given a short period of time. The
feedback loop only reinforces the fundamental frequency and its harmonics. This technique is sometimes
referred to as a comb �lter because of the characteristic shape of the output.
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Spectrum of a Plucked String

Figure 8.2: The output of the Karplus-Strong algorithm with its characteristic comb shape. Notice the
rapid attenuation of all other frequencies not near a harmonic.
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8.3 ADSR3

8.3.1 ADSR

Attack-Decay-Sustain-Release (ADSR)

Figure 8.3: The ADSR curve models di�erent instruments by their temporal characteristics. Instru-
ments have varying degrees of the abruptness of the attack, the initial decay in sound, how long the
sound resonates for without appreciable attenuation, and how quickly the sound fades away at the end.

8.3.1.1 Introduction

ADSR stands for attack, decay, sustain, and release and is used to model the timbre of an instrument. The
timbre or tone quality is determined by various factors such as the way the sound is produced and the
material of the instrument. Di�erent families of instruments have their own characteristic ADSR pro�les.
The attack refers to the phase in which the sound is initiated. This could be the fast attack of a strum on
a guitar or the slower one of a pipe organ. The decay phase occurs immediately after the attack impulse
and describes how rapidly the sound dies. Some instruments like a drum have extremely fast decay and the
sound is virtually nonexistent after the attack. The sustain pro�le of an instrument refers to how long the
sound resonates for when it is played. String instruments such as a violin have an extremely long sustain
because the violin's sound box is receiving constant vibrational energy from the bowed string. Finally, the
release phase describes how rapidly the sound fades away once the instrument is not being played.

3This content is available online at <http://cnx.org/content/m19007/1.2/>.
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Guitar ADSR Pro�le

Figure 8.4: The guitar has a fairly abrupt attack due to the method of playing through plucks and
strums. The rapid decay is a result of the nonharmonic frequencies fading quickly leaving only the
fundamental frequency and its harmonics. The sustain and release phases are merged in this case since
the sound just fades away slowly.
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Violin ADSR Pro�le

Figure 8.5: The violin has a slightly slower attack than the guitar but the other phases are drastically
di�erent. Because a violin is bowed to produce sound, there is virtually no decay and a very long sustain.
Constant vibrational energy is delivered to the violin's sound box and the sound only fades once the
bowing stops.

8.3.1.2 Implementation

In order to synthesize di�erent sounding instruments, the ADSR envelope could be applied directly to
the output of the Karplus-Strong algorithm. Since the algorithm models string and certain percussion
instruments, there were limitations on the diversity of instruments that could be synthesized using this
technique. After modeling an instrument's temporal characteristics with an ADSR envelope, one could
apply it to the output of the Karplus-Strong by point-wise multiplication. By using ADSR, we were able to
manipulate the guitar sounding output of the Karplus-Strong algorithm to sound like di�erent instruments
such as an organ or a bell.
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Applying ADSR to Karplus-Strong

Figure 8.6: Synthesis of di�erent instruments in an instrument family can be achieved through apply-
ing ADSR concepts to the Karplus-Strong algorithm. The output of the Karplus-Strong is point-wise
multiplied with the modeled ADSR envelope to produce the �nal output sound.

8.4 Results4

8.4.1 Results

8.4.1.1 Karplus-Strong Algorithm

The Karplus-Strong algorithm worked extremely well for producing realistic guitar sounds. We took advan-
tage of this and synthesized chords as well simply by adding the outputs of the individual notes together. To
simulate the physical strum of a guitar, we inserted a delay between each of the six strings of the guitar so
that they would sound slightly later in time. An electric guitar sound could be easily synthesized by adding
some noise to the output of the Karplus-Strong algorithm. The end product was a very pleasing imitation
of a guitar.

4This content is available online at <http://cnx.org/content/m19008/1.2/>.
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Spectrum of a Strummed Chord

Figure 8.7: The result of combining the individual notes generated by the Karplus-Strong algorithm
together to form a chord.

8.4.1.2 ADSR

Applying the ADSR envelope to the output of Karplus-Strong allowed us to alter the guitar sounds into
ones that sounded like an organ, bell, and the pluck of a harpsichord piano. We created the ADSR curves
through a mixture of research and our own intuition from having heard each instrument.
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8.5 Random Music Generator5

8.5.1 Random Music Generator

8.5.1.1 Introduction

Our original idea was to be able to generate random music once the instrument sounds were synthesized.
Unfortunately, due to time constraints, the best we could do was to have a program randomly pick chords
and note durations from an input library. The resulting output was, as expected, random chords and notes
that most people would probably not consider as music. How does one teach a program how to write music?
One technique is the Markov chain.

8.5.1.2 Markov Chains

Teaching a program music theory so that it can create music would be an extremely tedious task. You
would have to teach chord structure, common progressions, the di�erent musical styles, and so on. What if
you could give the program examples of pieces you considered to be music and ask it, �write something like
that for me.� This is essentially how our Markov chain would work. The principle behind Markov chains in
music is to generate a probability table to determine what note should come next. By feeding the program
an example piece of music, the program can analyze the piece and create a probability table to determine
which notes are more likely follow a given note. Below is an example of a �rst order Markov chain.

Example of First Order Markov Chain Table for Music

Figure 8.8: The entries in each box indicate the probability or likelihood of the note in the column
label to follow the note in the row label. Blank boxes indicate 0 probability, meaning that note will never
be the next note given your current note. For example, if the current note is A#, the next note chosen
will always be A.

5This content is available online at <http://cnx.org/content/m19009/1.2/>.
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With the probability table, one can generate random notes that still has some musical structure to it. By
constructing a similar table for beats or note durations, one can complete the �rst order Markov chain for
music generation. Increasing to a second order Markov chain simply means constructing a larger probability
table where the row headings are now pairs of notes. The program will choose the next note according to the
probability table, consequently updating the current note pair to include the newest note. The idea behind
determining what order Markov chain to use is a balance between ensuring that the program has enough
musical structure and allowing it enough freedom for creativity.

8.6 Extension6

8.6.1 Extension

8.6.1.1 What Next?

Having synthesized a few instruments and come up with a method to generate music randomly, the next step
would be to include di�erent families of instruments by trying other algorithms to physically model them.
This would expand the library of instruments for our synthesizer to make it more interesting. Our long-range
goal is to be able to analyze music input such as a voice and generate random musical accompaniment. The
inspiration for this project was the research done at Microsoft in developing a program called MySong that
automatically chooses chords to accompany a singer. This allows casual singers to create songs complete
with accompaniment on their own. The project helped us learn many of the tools we would need to build a
program similar to MySong.

Link7 to Microsoft's MySong page.

6This content is available online at <http://cnx.org/content/m19010/1.2/>.
7http://research.microsoft.com/en-us/um/people/dan/mysong/



Chapter 9

Selective Listening: Drown Out the
Noise

9.1 Selective Listening: Drown Out the Noise- Introduction1

9.1.1 Introduction

In common practice, there are few situations in which one can record a single audio source by itself; however,
in signal analysis it is often useful to operate on just one component at a time. Consider, for example, what
has come to be known as the Cocktail Party problem. A recording of a Cocktail party contains multiple
sources, but most recording devices and formats combine all the sources into one signal. Home video makers
might want to isolate a voice for a digital scrapbook, or a team of students might want to separate all the
speakers in order to automatically generate a transcript of a conversation and properly attribute the lines
to individual sources. There are also several situations in which one might run spectral analysis on just one
person's voice.

There are a large number of situations in which it is bene�cial to isolate individual signals either for
individual playback or for individual analysis. We aim to explore the methods of isolating individual sources
by developing techniques that use Independent Component Analysis tools in MATLAB.

9.2 Selective Listening: Drown Out the Noise- FICA Past Work2

9.2.1 FICA Past Work

The process of singling out individual components is known as Independent Component Analysis (ICA).
Research and Development at the Helsinki University of Technology has led to the distribution of a Fast
ICA package for MATLAB, which we used for most of our work. A 301 research group from 2007 e�ectively
demonstrated that FastICA neatly separates signals that have been mixed in MATLAB, but failed in situ-
ations where mixing occured using microphones that were exposed to multiple sources at once. This latter
setup is a scenario that needed to work in order to improve the e�ectiveness of ourmethod in the �eld.

1This content is available online at <http://cnx.org/content/m18962/1.1/>.
2This content is available online at <http://cnx.org/content/m18974/1.1/>.
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9.3 Selective Listening: Drown Out the Noise- FICA Assumptions3

9.3.1 FICA Assumptions

The fastICA algorithm is founded upon several important assumptions:

1. The sources are all independent random variables: i.e. P(AB)= P(A)P(B)
2. The sum of signals into a microphone is linear.
3. The signal energy is �nite
4. The mathematical model is represented as y=Hx where y is the observed mixed signal, H is the square

mixing matrix, and x is the source. It is important to note, as will be discussed later, that this
assumption states that the mixing matrix is multiplicative with the source.

5. All signals are recorded simultaneously, analogous to the Cocktail Party problem.
6. The number of sources and the number of microphones is equal. The fastICA will �nd as many

independent component sources as there are microphones, which input the mixed signals.

All of these assumptions must be met in order for the fastICA algorithm to successfully isolate the indepen-
dent sources from one another.

9.4 Selective Listening: Drown Out the Noise- STFICA/Whitening
Di�erences4

9.4.1 STFICA/Whitening Di�erences

In 2007, a 301 Research Group explored how FASTICA works by demonstrating how well it works in its
ideal form�when mixing is handled in MATLAB. For use in more general situations, however, Fast ICA
must be compatible with every day recording equipment exposed to multiple sources. Mixing in MATLAB
creates a simple mixing matrix of the form y=Hx. Given the mixed outputs y, FastICA generates the mixing
matrix, H, and its inverse, then multiplies y by the inverse mixing matrix to produce a vector of the original
source signals.

Our model accounts for a convolutive mixing matrix that models the e�ects of the channel and recording
equipment. For example, room characteristics can a�ect echo and dampening, and even the best microphones
have an impulse response that does not perfectly model delta pulse. Accordingly, a convolutive model of our
system is the most appropriate for our system.

This changes our equations to: y=H*x
where H is a circulant matrix, meaning that each row vector is shifted one to the right relative to the

previous row vector. This matrix implements circular convolution.
Sometimes signals that appear to be independent at �rst glance will, after analysis, have properties of

dependence. In order to maximize the e�ectiveness of component analysis, it makes sense to make signals
appear even more independent through a process of decorrelation known as prewhitening, which decorrelates
the signals in both space and time.

A signal is white if its values are statistically independent�knowing some values of a signal does not reveal
information about other values. Consider white noise, for example. Knowing any value of a white signal
gives you no additional information about another.

Because one of the assumptions of FastICA is that the individual components are independent variables,
a pre-whitening process applied to the mixed signals improves the signal separation during the ICA process.
Originally, the FastICA algorithm included one stage of pre-whitening. This was not su�cient, however,
because we needed to add additional stages to achieve better decorrelation with di�erent numbers of sources.
The Spatio-Temporal FastICA tools had begun to explore whitening, so we began to look into their work
for inspiration.

3This content is available online at <http://cnx.org/content/m18975/1.2/>.
4This content is available online at <http://cnx.org/content/m18976/1.1/>.
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9.5 Selective Listening: Drown Out the Noise- STFICA
Implementation5

9.5.1 STFICA Implementation

Dr. Scott Douglas, an SMU signals professor, wrote the STFICA code that is well known for its ability to
determine demixing matrices that are not simple scalar additions. The key to analyzing audio recordings
with the FastICA method is to implement convolutive matrices along with prewhitening�convolution is what
occurs between the source and the microphone with the air and the soundwave. The bene�t to prewhitening
is that it allows us to prepare the recorded signal in such a fashion that they will more accurately �t the
Fast ICA model assumptions. A prewhitening stage is already implemented in FastICA as part of the whole
package but only in one stage, whereas the STFICA allows one to set as many prewhitening stages as one
needs. Therefore, fastICA code was used except for the unmixing matrix algorithm, which we substituted
with the one from Douglas's STFICA. This carried the advantage of giving us more control over how many
prewhitening stages we were able to implement and creating more elegant demixing matrices. There are some
imperfections, however, because we do not understand the correlation between the number of prewhitening
stages required to treat the recordings and the complexity of the recordings.

% Signal in this demonstration has a 440Hz tone and noise.

% read the two files

a = wavread('demo3_mix1.wav'); % mixed signal 1

b = wavread('demo3_mix2.wav'); % mixed signal 2

% truncate both signals to equal lengths

if(length(a)>length(b))
a = a(1:length(b),1);

else

b = b(1:length(a),1);

end

y = [a';b']; % mixed signal matrix

% perform stfical to demonstrate better success of noise removal

% stfical does not prewhiten the signal beforehand so this must be done

[E, D]=pcamat(y,1,2,'off','off');

[whitesig, whiteningMatrix, dewhiteningMatrix] = whitenv(y,E,D,'off');

[s, W] = stfical(whitesig,1,1);

f2 = dewhiteningMatrix*W*s;

This code performs all of the necessary steps to implement the STFICA algorithm with one prewhitening
stage.

9.6 Selective Listening: Drown Out the Noise- Results6

9.6.1 Results

Note: all supporting code needed for the main Matlab codes to work is attached below

5This content is available online at <http://cnx.org/content/m18977/1.1/>.
6This content is available online at <http://cnx.org/content/m18978/1.1/>.
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This is an unsupported media type. To view, please see http://cnx.org/content/m18978/latest/Supporting
Code.zip

9.6.1.1 Ideal Case: MATLAB

Like last year, fastICA works well in MATLAB. For example, mixing and then separating a siren and a voice
using MATLAB exclusively works quite well as can be seen in the �gure below. fastICA in this very ideal
environment was able to separate the two mixed signals into the independent sources of a voice, the lower
left spectrogram, and a siren, the lower right spectrogram.

Figure 9.1

For a better grasp of our results, here are the sound �les of the mixed signal, isolated siren, and isolated
voice, respectively. Also, the MATLAB code used for this trial is also attached after the sound �les.

This is an unsupported media type. To view, please see
http://cnx.org/content/m18978/latest/demo1_mix.wav



109

This is an unsupported media type. To view, please see
http://cnx.org/content/m18978/latest/demo1_sr1.wav

This is an unsupported media type. To view, please see
http://cnx.org/content/m18978/latest/demo1_sr2.wav

This is an unsupported media type. To view, please see http://cnx.org/content/m18978/latest/demo1.m

9.6.1.2 Real Time Acoustic Mixing Case: fast ICA used

Performing this same feat using an actual microphone, however, fails. For example, we recorded two sources,
voice and tone, simultaneously with two microphones which resulted in the spectrograms of the two mixed
signals shown below. Once these mixed signals were passed through the fastICA algorithm, the results were
terrible source isolation. As you can see by the lower two spectrograms of the �gure below, the independent
components look almost the same as the mixed signals we started out with.

Figure 9.2
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Here are the sound �les for the two mixed signals and the two "separated sources". The code use to carry
out this trial is last.

This is an unsupported media type. To view, please see
http://cnx.org/content/m18978/latest/demo2_mix1.wav

This is an unsupported media type. To view, please see
http://cnx.org/content/m18978/latest/demo2_mix2.wav

This is an unsupported media type. To view, please see
http://cnx.org/content/m18978/latest/demo2_source1.wav

This is an unsupported media type. To view, please see
http://cnx.org/content/m18978/latest/demo2_source2.wav

This is an unsupported media type. To view, please see http://cnx.org/content/m18978/latest/demo2
code.m

9.6.1.3 Real Time Acoustic Mixing: STFICA or fastICA used

We conjecture two reasons to explain why fastICA is unsuccessful in this scenario.
First, atmospheric and room conditions will change the signal using convolutive operations, rather than

the scaling ones that fastICA implements. Second, the characteristic response of the microphones both
changes the signals and varies from microphone to microphone, introducing both inaccuracy and imprecision.
The original ICA technique, fastICA, does not automatically account for these deviations. Also, although
the fastICA does implement a single stage of prewhitening, it may not be enough to alter the input mixed
signals so that they look independent of one another in time and space, therefore satisfying the fastICA
assumption of independent inputs. So we decided to use the STFICA model in order to account for the
convolutive matrix involved and to allow for a user-speci�able number of prewhitening stages.

It was at this time that we experimented with the number of prewhitening stages by setting an iteration
level and then watching the output spectrograms for each iteration. Our group could not �nd a pattern or
relation between the iteration number of the prewhitening and the e�ectiveness of the source isolation, but it
was de�nitely observed that more than stage helps in the source isolation process. Sometimes one iteration
would result in some separation, and then the next few iterations did not result in any source separation at
all.

Using the STFICA algorithm in some real world cases worked out better than the original fastICA
procedure. In one experiment, we produced a pure tone and recoded the source with two microphones. The
expected sources that would be isolated were the tone and any ambient noise. The mixed signal of each of
the two microphones was passed through the fastICA code and also separately through the STFICA code
for comparison. Even with this very simple case, fastICA produced poor results as can be seen in the middle
two spectrograms of the output independent components. The spectrograms look almost identical to the
original mixed signals that were the inputs. STFICA, on the other hand, separated the pure tone from the
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white noise exceptionally well. As can be seen in the last row of the �gure, the tone (located on the bottom
left) was well isolated from the ambient white noise (spectrogram on the bottom right).

Figure 9.3

Here are the sound �les for the two mixed signals, the two "separated signals" produced by fastICA, and
the two separated components produced by the STFICA.

This is an unsupported media type. To view, please see
http://cnx.org/content/m18978/latest/demo3_mix1.wav

This is an unsupported media type. To view, please see
http://cnx.org/content/m18978/latest/demo3_mix2.wav
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This is an unsupported media type. To view, please see
http://cnx.org/content/m18978/latest/demo3_source1 ICA.wav

This is an unsupported media type. To view, please see
http://cnx.org/content/m18978/latest/demo3_source2 ICA.wav

This is an unsupported media type. To view, please see
http://cnx.org/content/m18978/latest/demo3_source1 STFICA.wav

This is an unsupported media type. To view, please see
http://cnx.org/content/m18978/latest/demo3_source2 STFICA.wav

This is an unsupported media type. To view, please see http://cnx.org/content/m18978/latest/demo3
code.m

In more complicated situations where the sources were multiple human speakers, a human speaker and
a tone, or other, we did not achieve the same success. The modi�ed algorithm sometimes made one voice
more prominent than the other, but it appeared to be doing �ltering in a way that was not achieving the
desired result. The success here was not as great as with the simple tone with noise case.

9.7 Selective Listening:Drown Out the Noise - Conclusion7

9.7.1 Conclusion

9.7.1.1 Final Thoughts

Our work has shown how important it is to have the right model for the right situation. The fact that
the use of convolutive rather than a multiplicative mixing matrix led to success attests to the importance
of proper modeling. This was clearly demonstrated by the results of our testing. The Fast ICA model is
appropriate for the ideal case of mixing signals in Matlab because all the necessary fast ICA assumptions
are met. In particular, the mixing matrix is multiplicative. However, for the case or acoustically mixing
signals by recording two sources simutaneously, we saw that fast ICA failed competely to isolate individual
sources because a convolutive mixing matrix is involved instead of a multiplicative one. It should be noted
that there are a least two stages in which convolution occurs: both in the room and in the air on the way
to the microphone, and as the microphone transduces the signal to an electric signal. These processes may
be grouped into a single mixing matrix without loss of information because of the transitive property of
convolution and because we are not exclusively interested in what the signal of the microphone was, but
rather in what the original source sounded like. Using the STFICA algorithm, we were able to at least
successfully separate the sources for the tone and noise case, therefore proving that the STFICA model is
suited for this secnario. However, we were not successful in more complicated cases such as voice and tone
due to the fact that our group did not have enough time to fully undertand and implement the concept of

7This content is available online at <http://cnx.org/content/m18979/1.1/>.



113

variable stages of prewhtening. So there is potential for the STFICA model to be fully applicable to all
acoustically mixed sources, but further modifcations as well as a better understand of the model is needed.
Another testament to the importance of choosing the correct model for a particular application, is that while
it is true that fast ICA failed with acoustically mixed signals, fast ICA works exceptionally well with image
applications such as visual noise removal.

9.7.1.2 Steps Toward Improvement

Since our team did not yet achieve exceptional separation of more complicated acoustic signals, such as
the voice and tone case, there are some steps to take to improve our results. For example, there must
be a re�nement of the prewhitening process, which requires additional study on the part of our group
members. With this better understanding of the prewhitening concept and process, we expect to gain
a better comprehension of the number of required prewhitening stages to make the given mixed signals
become more independent of one another in time and space. This should in e�ect signi�cantly help in the
demixing of any complicated mixed signals to its individual sources with as much success as with the tone
and noise case. Another method for improvement includes the use of expected behavior in order to better
isolate the signal sources. For exmaple, if we know that a man and a woman are speaking, we should be able
to tell our algorithm some additional information about the expected spectra of our speakers.

9.8 Selective Listening: Drown Out the Noise- Applications8

9.8.1 Applications

Given our results for the STFICA, we are con�dent that with more knowledge of the prewhitening stage we
could e�ectively separate sources from far more complicated signals such as voice, music, noise, etc. Our
original goal was to utilize the FastICA to separate voice from music and improve speech recognition. That
is feasible if recording the live audio, but it seems ill-posed if attempted from music �les and speakers. There
are, however, many other potential avenues such as:

• E�ective noise �ltering
• Speech recognition improvement
• EKG noise removal
• Surveillance
• Acoustic source separation

For the FastICA, though not e�ective in acoustic environments, there are applications that it is well-suited
for such as:

• Digital image separation
• Digital music separation

9.9 Selective Listening: Drown Out the Noise- Acknowledgments9
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Group Members:

8This content is available online at <http://cnx.org/content/m18980/1.1/>.
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Chapter 10

Signal Denoising using Wavelet-based
Methods

10.1 Signal Denoising using Wavelet-based Methods1

Signal Denoising using Wavelets-based Methods Ioannis Kougioumtzoglou, Isaac Hernandez-Fajardo, Geor-
gios Evangelatos

and Xin Ming.
George R. Brown School of Engineering, Rice University
Houston, TX - USA

10.1.1 Introduction

The basic idea which lies behind wavelets is the representation of an arbitrary function as a combination of
simpler functions, generated as scaled and dilated versions of a particular oscillatory �mother� function.

Late Jean Morlet, a geophysical engineer, introduced the term �wavelet� while attempting to analyze
signals related to seismic data. The mathematical formulation of the wavelet transform and its inverse was
rigorously established by Grossman and Morlet citep([5]). Since then, ideas from diverse scienti�c �elds have
resulted in developing wavelets into a powerful analysis tool.

The term wavelet is often used to denote a signal located in time with a concentrated amount of energy
citep([1]). This �mother� wavelet is used to generate a set of �daughter�functions through the operations of
scaling and dilation applied to the mother wavelet. This set forms an orthogonal basis that allows, using
inner products, to decompose any given signal much like in the case of Fourier analysis. Wavelets, however,
are superior to Fourier analysis for time information is not lost when moving to the frequency domain. This
property makes them suitable for applications from diverse �elds where the frequency content of a signal as
well as the energy's temporal location is valuable.

The wavelets application of interest for this work is their use for data analysis, speci�cally for signals
denoising. Denoising stands for the process of removing noise, i.e unwanted information, present in an
unknown signal. The use of wavelets for noise removal was �rst introduced by Donoho and Johnstone
citep([4]). The shrinkage methods for noise removal, �rst introduced by Donoho citep([3]), have led to a
variety of approaches to signal denoising.

This work presents a revision of the wavelets basic theory. De�nitions of mother wavelets, wavelets
decomposition and its advantage over Fourier analysis are discussed in Section 1. Section 2 presents a
summary of basic methods developed for noise removal. Their main features and limitations are presented,
and a comparison study taken into account computational e�ciency is performed. Section 3 introduces an

1This content is available online at <http://cnx.org/content/m18931/1.2/>.
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example application for denoising methods. A given function contaminated with Gaussian additive noise is
used as testbed for the described methods. Conclusions about the performance of the denoising procedures
and the utility of using wavelet decomposition for this type of problem are presented.

10.1.2 Wavelet Decomposition Basics

10.1.2.1 Historical note

The term wavelet was �rst introduced by Jean Morlet while working on the analysis of signals for seismic
analysis on oil-related projects. Before Morlet's work remarkable contributions were developed by Haar
citep([6]) and Zweig in 1975. After the work of Morlet and Grossmann on the de�nition of the continous
wavelet transform (CWT), several developings have followed. The work of researchers as Stromberg, Du-
abechies, Mallat and Newland, among others, has pushed forward the theoretical frontiers of wavelets-based
orthogonal decomposition and also augmented the scope of possible application �elds.

10.1.2.2 Basic concepts

A review of basic concepts in the wavelets framework is presented in next lines. This review is based upon
burrus1988.

The term wavelet is mostly used for denoting a particular wave whose energy is concentrated in a speci�c
temporal location. A wavelet is therefore a known signal with some peculiar characteristics that allow it to
be employed for studying the properties of other signals simultaneously in the frequency and time domains.
An typical plot of a wavelet is shown in Figure 10.1

Figure 10.1: Daubechies wavelet ψD20 citep([1])

Based on a particular wavelet, it is possible to de�ne a wavelet expansion. A wavelet expansion is the
representation of a signal in terms of an orthogonal collection of real-valued functions generated by applying
suitable transformations to the original given wavelet. These functions are called �daughter� wavelets while
the original wavelet is dubbed �mother� wavelet, acknowledging its function as source of the orthogonal
collection. If f (t) is a given signal to be decomposed, then it is possible to represent the signal as:

f (t) =
∑
i

aiψi (t) (10.1)
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In equation (10.1), ψi (t) are the orthogonal basis functions, and the coe�cients ai can be found through
the inner product of f (t) and the functions ψi (t) (Equation (10.2)).

ai =< ai, ψi (t) >=
∫
f (t)ψi (t) dt (10.2)

The previous equations represent the general formulation for orthogonal decomposition, and so they are
the same equations discussed in the particular case of Fourier analysis. In the case of wavelets expansion,
and consequently with their de�nition, the wavelets basis functions have two integer indexes, and Equation
(10.3) must be rewritten as

f (t) =
∑
j

∑
k

aj,kψj,k (t) (10.3)

Equation (10.3) is the wavelet expansion of f (t) while the collection of coe�cients aj,k is the discrete
wavelet transform (DWT) of f (t).

10.1.2.3 Characteristic of wavelet expansions

The properties and hence advantages of a familiy of wavelets depend upon the mother wavelet features.
However, a common set of features are shared by the most useful of them citep([1]).

1. A wavelet expansion is formed by a two-dimensional expansion of a signal. It should be noticed that
the dimension of the signal itself is not determinant in the wavelet representation.

2. A wavelet expansion provides a dual time-frequency localization of the input signal. This implies that
most of the energy of the signal will be captured by a few coe�cients.

3. The computational complexity of the discrete wavelet transform is at most O (nlog (n)) i.e. as bad as
for the discrete Fourier transform (DFT) when calculated using the Fast Fourier Transform (FFT).
For some particular types of wavelets, the complexity can be as low as O (n).

4. The basis functions in a wavelet expansion are generated from the mother wavelet by scaling and
translation operations. The indexing in two dimensions is achieved using this expression:

ψj,k (t) = 2j/2ψ
(
2jt− k

)
j, k ∈ Z (10.4)

5. Most wavelets basis functions satisfy multiresolution conditions. This property guarantees that if a
set of signals can be represented by basis functions generated from a translation ψ (t− k) of the mother
wavelet, then a larger set of functions, including the original, can be represented by a new set of basis
functions ψ (2t− k). This feature is used in the algorithm of the fast wavelet transform, FWT the
equivalent of the FFT algorithm for wavelets decomposition.

6. The lower resolution coe�cients can be calculated from the higher resolution coe�cients using a �lter
bank algorithm. This property contributes to the e�ciency of the calculation of the DWT.

10.1.3 Denoising with Wavelets

If y (t) is an empirically recorded signal with and underlying description, g (t), a model for the noise addition
process transforming g(t) into y(t) is described by Equation (10.5).

yi = g (ti) + σεi, i = 1, ..., n (10.5)

where εi are independent normal random variables N (0, 1) and σ represents the intensity of the noise in
y (t). Using this model, it follows that the objective of noise removal is, given a �nite set of yi values,
reconstruct the original signal g without assuming a particular structure for the signal.
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The usual approach to noise removal models noise as a high frequency signal added to an original signal.
Fourier transform could be used to track this high frequency, ultimately removing it by adequate �ltering.
This noise removal strategy is conceptually clear and e�cient since depends only on calculating the DFT
of a given signal. However, there are some issues that must be taken into account. The most prominent of
such issues ocurrs when the original signal has important information associated to the same frequency as
the noise. When a frequency domain representation of the signal is obtained, �ltering out this frequency will
induce noticeable loss of information of the target signal.

In cases as the one described, the wavelets approach is more appropiated due to the fact that the signal
will be studied using a �dual� frequency-time representation, which allows separating noise frequencies from
valuable signal frequencies. Under this approach, noise will be represented as a consistent high frequency
signal in the entire time scope and so its identi�cation will be easier than using Fourier analysis.

Once the noise representation is identi�ed, the removal process starts. It has been proven that a suitable
strategy for noise removal consists in making the coe�cients associated to the noise frequency equal to zero.
This statement represents a global perspective for noise removal, di�erent methods for denoising di�er in the
way these coe�cients are tracked and taken out from the representation. The conceptual details of several
of these methods are presented in the next sections. The main reference for the methods discussed here is
antoniadis2001

Before attempting to describe the methods is convenient to discuss an alternative de�nition for wavelet
representation used for noise removal. First, the description assumes that the representation is achieved
using periodised wavelets bases on [0, 1]. Also, the basis functions are generated by dilation and translation
of a compactely supported scaling function φ, also called father wavelet and a familiar mother wavelet
function, ψ. ψ must be associated with an r-regular multiresolution analysis of L2 (R). An advantage of this
approach is that generated wavelets families allow integration of di�erent kinds of smoothness and vanishing
moments. This features lead to the fact that many signals in practice can be represented sparsely (with
few wavelets coe�cients) and uniquely under wavelets decomposition. The decomposition expresion using a
father and a mother wavelet is depicted in Equation (10.6).

g (t) =
2j0−1∑
k=0

αj0kφj0k (t) +
∞∑
j=j0

2j−1∑
k=0

βjkψjk (t) , j0 ≥ 0, t ∈ [0, 1] (10.6)

where j0 is a primary resolution level, and αj0k and βjk are calculated as the inner products shown in
Equations (10.7) and (10.8)

αj0k =< g, φj0k >=
∫ 1

0

g (t)φj0k (t) dt, j0 ≥ 0, k = 0, 1, ..., 2j0 − 1 (10.7)

βjk =< g, ψjk >=
∫ 1

0

g (t)ψjk (t) dt, j ≥ j0 ≥ 0, k = 0, 1, ..., 2j − 1 (10.8)

When the discrete wavelet transform is used, the coe�cients cj0k, discrete scaling coe�cients and djk,
discrete wavelet coe�cients are used instead of the continous parameters αj0k and βjk. The discrete
parameters can be approximately calculated by applying a

√
n factor to the continous coe�cients.

Finally, when the DWT is applied to Equation (10.5), these expressions are obtained (Equations (10.9)
and (10.10)):

^
cj0k = cj0k + σεjk, k = 0, 1, ..., 2j0 − 1 (10.9)

^
djk = djk + σεjk, j = j0, ..., J − 1, k = 0, ..., 2j − 1 (10.10)
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10.1.3.1 Classical approach to wavelet thresholding

The original and simpler way to remove noise from a contaminated signal consists in modifying the wavelets
coe�cients in a smart way such that the �small� coe�cients associated to the noise are basically neglected.
The updated coe�cients can thus be used to reconstruct the original underlying function free from the e�ects
of noise. It is implicit in the strategy that only a few �large� wavelets coe�cients djk are associated with
the original signal, and that their identi�cation and elimination of any other coe�cients will allow a perfect
reconstruction of the underlying signal g. Several methods use this idea and implement it in di�erent ways.
When attempting to descrease the in�uence of noise wavelets coe�cients it is possible to do it in particular
ways, also the need of information of the underlying signal leads to di�erent statistical treatments of the
available information.

In the linear penalization method every wavelet coe�cient is a�ected by a linear shrinkage particular
associated to the resolution level of the coe�cient. A mathematical expression for this type of approach
using linear shrinkage is shown in Equation (10.11).

d̃jk =
^
djk

1 + λ22js
(10.11)

In Equation (10.11), parameter s is the known smoothness index of the underlying signal g, while parameter
λ is a smooting factor whose determination is critical for this type of analysis.

It must be said that linear thresholding is adequate only for spatially homogenous signal with important
levels of regularity. When homegeneity and regularity conditions are not met nonlinear wavelet thresholding
or shrinkage methods are usually more suitable.

donoho1995 and donoho1995b proposed a nonlinear strategy for thresholding. Under their approach, the
thresholding can be done by implementing either a hard or a soft thresholding rule. Their mathematical
expressions are shown in Equation (10.12) and Equation (10.13) respectively.

In both methods, the role of the parameter λ as a threshold value is critical as the estimator leading to
destruction, reduction, or increase in the value of a wavelet coe�cient.

δHλ

(
^
djk

)
= {

0 if |
^
djk| ≤ λ

^
djk if |

^
djk| > λ

(10.12)

δSλ

(
^
djk

)
= {

0 if |
^
djk| ≤ λ

^
djk − λ if

^
djk > λ

^
djk + λ if

^
djk < − λ

(10.13)

Several authors have discussed the properties and limitations of these two strategies; hard thresholding,
due to its induced discontinuity, can be unstable and sensitive even to small changes in the data. On the
other hand, soft thresholding can create unnecessary bias when the true coe�cients are large. Although
more sophisticated methods has been introduced to account for the drawbacks of the described nonlinear
strategies, the discussion in this report is limited to the hard and soft approaches.

10.1.3.1.1 Term-by-Term Thresholding

One apparent problem in applying wavelet thresholding methods is the way of selecting an appropriate value
for the threshold, λ. There are indeed several approaches for specifying the value of the parameter in question.
In a general sense, these strategies can be classi�ed in two groups: global thresholds and level-dependent
thresholds. Global threshold implies the selection of one λ value, applied to all the wavelet coe�cients.
Level-dependent thresholds implies that a (possibly) di�erent threshold value lambdaj is applied for each
resolution level. All the alternatives require an estimate of the noise level σ. The standard deviation of
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the data values is clearly not a good estimator, unless the underlying response function g is reasonably �at.
donoho1995 considered estimating σ in the wavelet domain by using the expression in Equation (10.14).

^
σ=

median

(
|
^
dJ−1,k|

)
0.6745

, k = 0, 1, ..., 2J−1 − 1 (10.14)

10.1.3.1.2 The minimax threshold

donoho1995 obtained an optimal threshold value λM by minimizing the risk involved in estimating a function.
The porposed minimax threshold depends of the available data and also takes into account the noise level
contaminating the signal (Equation (10.15)).

λM =
^
σ λ∗n (10.15)

Where, λ∗n is equal to the value of λ satisfying Equation (10.16)

λ∗n = inf
λ
sup
d
{ Rλ (d)
n−1 +Roracle (d)

} (10.16)

In Equation (10.16), Rλ (d) is calculated following Equation (10.17).

Rλ (d) = E

(
δλ

^
d

)2

(10.17)

while Roracle (d) is an operators called oracle used to account for the risk associated to the modi�cation
of the value of a given wavelet coe�cient. Two of these oracles were introduced by donoho1995: diagonal
linear projection (DLP), and diagonal linear shrinker (DLS). The Equations (10.18) and (10.19) show
the expressions for the two oracles.

RDLPoracle (d) = min
(
d2, 1

)
(10.18)

RDLSoracle (d) =
d2

d2 + 1
(10.19)

antoniadis2001 provided values of the minimax threshold for both the hard and soft nonlinear thresholding
rules. For the soft rule, 1.669 and 2.226 for n equal to 128 and 1024; for the hard rule, 2.913 and 3.497 again
for n equal to 128 and 1024.

10.1.3.1.3 The universal threshold

donoho1995 proposed this threshold as an alternative to the minimax thresholds, applied to all the wavelet
coe�cients. The universal threshold is de�ned in Equation (10.20).

λU =
^
σ
√

2logn (10.20)

This threshold is easy to remember and its implementation in software is simpler and the optimization
problem implicit in the minimax method are avoided. Also, the universal threshold ensures, with high
probability, that every sample in the wavelet transform in which the underlying function is exactly zero will
be estimated as zero, although the convergance rate (depending in the size of the sample) is slow.
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10.1.3.1.4 The translation invariant method

It has been noted that wavelet thresholding with either minimax thresholds or the universal threshold
presents some inconvenient features. In particular, in the vicinity of discontinuities, these wavelet thresholds
can exhibit pseudo-Gibbs phenomena. While these phenomena are less pronounced than in the case of
Fourier analysis and also are present in a local scale, this situation represents a challenge for the thresholding
methods.

coifman1995 proposed the use of the translation invariant wavelet thresholding scheme. The idea is
to correct mis-alignments between features in the studied signal and features in the basis used for the
decomposition. When the signal contains an important number of discontinuities, the method applies a
range of shifts to it, and average the results obtained after such transformations.

If a empirical contaminated signal y [i] , (i = 1, ..., n) is provided, the tranlation invariant wavelet thresh-
olding estimator is calculated as (Equation (10.21)):

^
g
TI

=
1
n

n∑
k=1

(WSk)
'

δλ (WSky) (10.21)

where δλ is either the hard of soft thresholding rule, W is the size n orthogonal matrix associated to the
DWT, and Sk is the shift kernel de�ned as:

Sk =

 Ok×(n−k) Ik×k

I(n−k)×(n−k) O(n−k)×k

 (10.22)

In Equation (10.22), I is the identity matrix and O stands for a zero matrix with dimensions as indicated
in the expression.

10.1.3.1.5 The SureShrink Threshold

donoho1995 proposed a procedure to select a threshold value λj for every resolution level j. The method
uses Steinâ[U+0080][U+0099]s unbiased risk criterion citep([7]) to get an unbiased estimate of the l2-risk.

In mathematical terms, given a set X1, ..., Xs of variables distributed as N (µi, 1) with i = 1, ..., s, the
problem consists in estimate the vector of means with minimum l2−risk. It turns out an estimator of µ,

can be describes as
^
µ (X) = X + g (X), with g a function from Rs to Rs is weakly di�erentiable. With this

information, the risk of the estimation can be described as (Equation (10.23)):

Eµ||
^
µ (X)− µ||2 = s+ Eµ

(
||g (X) ||2 + 2∇g (X)

)
(10.23)

with,

∇g ≡
s∑
i=1

∂gi
∂xi

(10.24)

If an operator SURE is de�ned as (Equation (10.25)):

SURE (λ;X) = s− 2 ·#{i : |Xi| ≤ λ}+ [min (|Xi|, λ)]2 (10.25)

where the operator #{A} returns the cardinality of the set A, it is found that SURE is an unbiased estimate
of the l2−risk, i.e,

Eµ||
^
µ (X)− µ||2 = SURE (λ;X) (10.26)
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Now, the threshold λ is found by minimizing SURE over the set X of give data. Extending this principle
to the entire set of resolution levels, an expression for λsj is found (Equation (10.27)):

λsj = arg min
0≤λ≤λU

SURE

λ;
^
djk
^
σ

 , j = j0, ..., J − 1; k = 0, ..., 2j − 1 (10.27)

where λU is the universal threshold, and
^
σ is the estimator of the noise level (Equation (10.14)).

10.1.3.2 Classical Methods: Block Thresholding

Thresholding approaches resorting to term-by-term modi�cation on the wavelets coe�cients attempt to
balance variance and bias contribution to the mean squared error in the estimation of the underlying signal
g. However, it has been proven that such balance is not optimal. Term-by-term thresholding end sup
removing to many terms leading to estimation prone to bias and with a slower convergance rate due to the
number of operations involved.

A useful resource to improve the quality of the aforementioned balanced is by using information of the
set of data associated to a particular wavelet coe�cient. In order to do so, a block strategy for thresholded is
proposed. The main idea consists in isolating a block of wavelet coe�cients and based upon the information
collected about the entire set make a decision about decreasing or even entirely discard the group. This
procedure will allow faster manipulation of the information and accelerated convergence rates.

10.1.3.2.1 Overlapping Block Thresholding Estimator

cai2001 considered an overlapping block thresholding estimator by modifying the nonoverlapping block
thresholding estimator citep([2]). The e�ect is that the treatment of empirical wavelet coe�cients in the
middle of each block depends on the data in the whole block. At each resolution level, this method packs

wavelet coe�cients
^
djk into nonoverlapping blocks (jb) of length L0. Following this, the blocks are extended

in each direction an amount L1 = max
(
1;
[
L0
2

])
, generating overlapping blocks (jB) of augmented length

L = L0 + 2L1.
If S2

(jB) is the L
2−energy of the empirical signal in the augmented block jB , the wavelet coe�cients in

the blocks jb will be estimated simultaneously using the expression in Equation (10.28)

Φ

d
jk

(jb) = max

0,
S2

(jB) − λL
^
σ

2

S2
(jB)

^
djk(10.28)

Once the estimated wavelet coe�cients
Φ

d
jk

(jb) have been calculated, an estimation of the underlying signal g

can be obtained through using the new wavelet coe�cients and the unmodi�ed scaling coe�cients
^
cj0k in the

IDWT. The results from this method (NeigBlock) presented in this document used a value of L0 =
[
log
(
n
2

)]
and a value of λ = 4.50524 as suggested by cai2001.

10.1.3.3 Bayesian Approach to wavelet shrinkage and thresholding

From Equations (10.9) and (10.10) it can be established that the empirical scaling and wavelet coe�cients,
conditional on their respective underlying coe�cients, are independently distributed, i.e:

^
cj0k/

(
cj0k, σ

2
)
∼ N

(
cj0k, σ

2
)

(10.29)



123

^
djk/

(
cjk, σ

2
)
∼ N

(
djk, σ

2
)

(10.30)

The Bayesian approach imposes an apriori model for the wavelets coe�cients designed to capture the
sparseness of the wavelet expansion common to most applications. An usual prior model for each wavelet

coe�cient
^
djk is a mixture of two distributions, one of them associated to negligable coe�cients and the

other to signi�cant coe�cients. Two types of mixtures have been widely used. One of them employs two
normal distributions while the other uses one normal distribution and one point mass at zero.

After mathematical manipulation, it can be shown that an estimator for the underlying signal can be
written as (Equation (10.31)):

^
gBR (t) =

2j0−1∑
k=0

^
cj0k√
n
φj0k (t) +

J−1∑
j=j0

2j−1∑
k=0

BR
(
djk|

(
djk, σ

2
))

√
n

ψjk (t) (10.31)

i.e. the scaling coe�cients are estimated by the empirical scaling coe�cients while the wavelet coe�cients
are estimated by a Bayesian rule (BR), taking into account the obtained empirical wavelet coe�cient and
the noise level.

10.1.3.3.1 Shrinkage estimates based on deterministic/stochastic decompositions

huang2000 proposed a method that takes into account the value of the prior mean for each wavelet coe�cient,
by introducing a estimator for the parameter into the general wavelet shrinkage model. These authors
assumed thatthe undelying signal is composed of a piecewise deterministic portion with an added zero mean
stochastic part.

If
^
cj0 is the vector of empirical scaling coe�cients,

^
dj the vector of empirical wavelet coe�cients, cj0

the vector of underlying scaling coe�cients, and dj the vector of underlying wavelet coe�cients, then the
Bayesian model (Equation (10.32)):

ω/
(
β, σ2

)
∼ N

(
β, σ2I

)
(10.32)

with ω =

(
^
cj0 ,

^
dj0 , ...,

^
d
'

J−1

)'

and the underlying signal β =
(
c'j0 ,d

'

j0
, ...,d'

J−1

)'
is assumed to follow an

apriori distribution (Equation (10.33))

β/ (µ, θ) ∼ N (µ,Σ (θ)) (10.33)

where µ is the deterministic mean structure and Σ (θ) accounts for the uncertainty and value correlation
in the underlying signal. Notice that if η following a distribution N (0,Σ (θ)) is de�ned as the stochastic
component representing small variation (high frequency) in the signal, then µ can be interpretated as the
stochastic component accounting for the large-scale variation in β. So, it is possible to rewrite β as (Equation
(10.34)),

β = µ+ η (10.34)

Using this model, a shrinkage rule can be established by calculating the mean of β conditional on σ2 which
is expressed as (Equation (10.35)),

E
(
β/
(
ω, σ2

))
= µ+

Σ (θ)
(Σ (θ) + σ2I)

(ω − µ) (10.35)
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10.1.4 Numerical Simulations

10.1.4.1 Description of the Scheme

In order to assess the e�ciency and accuracy of the proposed methods, a number of simulations have been
conducted. To this aim, data have been generated according to the following scheme

yi = f (xi) + εi, {εi} N
(
0, σ2

)
(10.36)

where the data {xi} are considered equally spaced in the interval [0, 1]. The signal-to-noise ratio has been
taken equal to 3. In these simulations the Symmlet 8 wavelet basis has been used. Given the random nature
of {εi}, 100 realizations of the function {yi} have been produced. This has been done in order to apply the
comparison criteria to the ensemble average of the realizations. Since the primary goal of the simulations is
the comparison of the di�erent denoising methods, the following criteria are introduced:

1. Root Mean Squared Error: The mean squared error de�ned as (Equation (10.37))

1
N

N∑
i=1

(
(f (xi)− fdn (xi))

2
(10.37)

is computed for each realization and averaged over the 100 samples. Then, its square root is taken.
2. Maximum Deviation: The average over the 100 samples of max

1<i<N
|f (xi)− fdn (xi)|

Computational e�ciency has not been chosen as one of the criteria, since it is greatly depended on the
individual programming skills of the individual. Therefore, in order to avoid a non-uniform programming
approach which could possibly result in misleading conclusions, time e�ciency has not been considered.

The test functions f (x) and the sample sizes N have been chosen as the factors of the comparison studies.
To this aim, two samples, one of moderate moderate size (N = 128) and another of larger size (N = 1024)
have been considered.

As far as the test functions are concerned, two smooth signals (Figures Figure 10.2 and Figure 10.3)
and two discontinuous ones (Figures Figure 10.4 and Figure 10.5) were taken into account. In Figure 10.2,
the function consists of the sum of two sinusoids, whereas in Figure 10.3, a time shifted sine is illustrated.
Since the signals are smooth, linear methods are expected to be comparable to the nonlinear ones. On the
other hand, nonlinear wavelet estimators are expected to perform better for the functions in (Figure 10.4,
Figure 10.5). These highly discontinuous signals have been used as examples in donoho1993
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Figure 10.2: Original function with added Gaussian White noise (Wave function)

Figure 10.3: Original function with added Gaussian White noise (Time shifted sine function)
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Figure 10.4: Original function with added Gaussian White noise (Blocks function)

Figure 10.5: Original function with added Gaussian White noise (Bumps function)
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10.1.4.2 Results

The following plots, (Figures Figure 10.6 - Figure 10.13), illustrate the denoising performance for the 10
methods used. Each integer corresponds to a particular method as follows

1. VisuShrink-Hard: Universal threshold with hard thresholding rule
2. VisuShrink-Soft: Universal threshold with soft thresholding rule
3. SureShrink: SureShrink threshold
4. Translation-Invariant-Hard: Translation invariant threshold with hard thresholding rule
5. Translation-Invariant-Soft: Translation invariant threshold with soft thresholding rule
6. Minimax-Hard: Minimax threshold with hard thresholding rule
7. Minimax-Soft: Minimax threshold with soft thresholding rule
8. NeighBlock: Overlapping block thresholding (with L0 = [logn/2], λ = 4.50524)
9. Linear Penalization: Term-by-term thresholding using linear shrinking
10. Deterministic/Stochastic: Bayesian thresholding method for shrinkage estimates

Figure 10.6: Comparison Study using Wave function. N=128
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Figure 10.7: Comparison Study using Wave function. N=1024

Figure 10.8: Comparison Study using Time-shifted sine function. N=128
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Figure 10.9: Comparison Study using Time-shifted sine function. N=1024

Figure 10.10: Comparison Study using Blocks function. N=128
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Figure 10.11: Comparison Study using Blocks function. N=1024

Figure 10.12: Comparison Study using Bumps function. N=128
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Figure 10.13: Comparison Study using Bumps function. N=1024

10.1.5 Conclusions

A general comment can be made related to the Root Mean Squared Error (RMSE). As expected, the bigger
the sample size the lower the value of the RMSE. It is readily seen that this is true for the same test function
and denoising procedure.

Focusing on the smooth Wave function, the bayesian method performs well. However, the linear penal-
ization method and the Translation-Invariant-Hard method are very competitive. The performance of the
penalization method should not be surprising since the linear estimators are expected to achieve good results
in smooth functions such as the Wave signal. Similar remarks can be made about the Time-Shifted Sine
signal, a function that shares with the Wave signal the smoothnes feature.

As far as the Bumps function and the Blocks function are concerned, the Bayesian method outperform
the classical ones in terms of RMSE. This leads to the conclusion that using Bayesian methods for such
type of functions is preferable if computational e�ciency is not an issue. In fact, it is well established that
non-Bayesian methods uniformly outperform Bayesian methods in terms of CPU time.

Finally, as a general remark, larger values of MaxDeviation occur for functions with many spikes and
discontinuities.
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