
Intro to Digital Signal Processing

Collection Editor:
Robert Nowak





Intro to Digital Signal Processing

Collection Editor:
Robert Nowak

Authors:

Behnaam Aazhang
Swaroop Appadwedula

Richard Baraniuk
Matthew Berry
Dan Calderon
Hyeokho Choi
Benjamin Fite

Roy Ha
Michael Haag
Mark Haun

Don Johnson

Douglas L. Jones
Nick Kingsbury
Dima Moussa
Robert Nowak

Justin Romberg
Daniel Sachs
Phil Schniter

Ivan Selesnick
Melissa Selik
Bill Wilson

Online:
< http://cnx.org/content/col10203/1.4/ >

C O N N E X I O N S

Rice University, Houston, Texas



This selection and arrangement of content as a collection is copyrighted by Robert Nowak. It is licensed under the

Creative Commons Attribution 1.0 license (http://creativecommons.org/licenses/by/1.0).

Collection structure revised: January 22, 2004

PDF generated: September 29, 2011

For copyright and attribution information for the modules contained in this collection, see p. 185.



Table of Contents

1 DSP Systems I

1.1 Image Restoration Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Digital Image Processing Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 2D DFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Images: 2D signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 DFT as a Matrix Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.6 Fast Convolution Using the FFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.7 The FFT Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.8 The DFT: Frequency Domain with a Computer Analysis . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 23
1.9 Discrete-Time Processing of CT Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.10 Sampling CT Signals: A Frequency Domain Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1.11 Filtering with the DFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
1.12 Ideal Reconstruction of Sampled Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
1.13 Amplitude Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
1.14 Classic Fourier Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2 Random Signals

2.1 Introduction to Random Signals and Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.2 Introduction to Stochastic Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.3 Random Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
2.4 Stationary and Nonstationary Random Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
2.5 Random Processes: Mean and Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
2.6 Correlation and Covariance of a Random Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
2.7 Autocorrelation of Random Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2.8 Crosscorrelation of Random Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3 Filter Design I (Z-Transform)

3.1 Di�erence Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.2 The Z Transform: De�nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 93
3.3 Table of Common z-Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.4 Poles and Zeros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.5 Rational Functions and the Z-Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
3.6 The Complex Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
3.7 Region of Convergence for the Z-transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
3.8 Understanding Pole/Zero Plots on the Z-Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
3.9 Zero Locations of Linear-Phase FIR Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
3.10 Discrete Time Filter Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4 Filter Design II

4.1 Bilinear Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5 Filter Design III

5.1 Linear-Phase FIR Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.2 Four Types of Linear-Phase FIR Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.3 Design of Linear-Phase FIR Filters by DFT-Based Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.4 Design of Linear-Phase FIR Filters by General Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.5 Linear-Phase FIR Filters: Amplitude Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
5.6 FIR Filter Design using MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154



iv

5.7 MATLAB FIR Filter Design Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 155
5.8 Parks-McClellan Optimal FIR Filter Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6 Wiener Filter Design

7 Adaptive Filtering

7.1 Adaptive Filtering: LMS Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

8 Wavelets and Filterbanks
8.1 Haar Wavelet Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 163
8.2 Orthonormal Wavelet Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 172
8.3 Continuous Wavelet Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
8.4 Discrete Wavelet Transform: Main Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
8.5 The Haar System as an Example of DWT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Attributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185



Chapter 1

DSP Systems I

1.1 Image Restoration Basics1

1.1.1 Image Restoration

In many applications (e.g., satellite imaging, medical imaging, astronomical imaging, poor-quality family
portraits) the imaging system introduces a slight distortion. Often images are slightly blurred and image
restoration aims at deblurring the image.

The blurring can usually be modeled as an LSI system with a given PSF h [m,n].

Figure 1.1: Fourier Transform (FT) relationship between the two functions.

The observed image is
g [m,n] = h [m,n] ∗ f [m,n] (1.1)

G (u, v) = H (u, v)F (u, v) (1.2)

F (u, v) =
G (u, v)
H (u, v)

(1.3)

Example 1.1: Image Blurring
Above we showed the equations for representing the common model for blurring an image. In
Figure 1.2 we have an original image and a PSF function that we wish to apply to the image in
order to model a basic blurred image.

1This content is available online at <http://cnx.org/content/m10972/2.2/>.

1



2 CHAPTER 1. DSP SYSTEMS I

(a) (b)

Figure 1.2

Once we apply the PSF to the original image, we receive our blurred image that is shown in
Figure 1.3:

Figure 1.3

1.1.1.1 Frequency Domain Analysis

Example 1.1 (Image Blurring) looks at the original images in its typical form; however, it is often useful
to look at our images and PSF in the frequency domain. In Figure 1.4, we take another look at the image
blurring example above and look at how the images and results would appear in the frequency domain if we
applied the fourier transforms.



3

Figure 1.4

1.2 Digital Image Processing Basics2

1.2.1 Digital Image Processing

A sampled image gives us our usual 2D array of pixels f [m,n] (Figure 1.5):

2This content is available online at <http://cnx.org/content/m10973/2.2/>.



4 CHAPTER 1. DSP SYSTEMS I

Figure 1.5: We illustrate a "pixelized" smiley face.

We can �lter f [m,n] by applying a 2D discrete-space convolution3 as shown below (where h [m,n] is our
PSF):

g [m,n] = h [m,n] ∗ f [m,n]

=
∑∞
k=−∞

∑∞
l=−∞ h [m− k, n− l] f [k, l]

(1.4)

Example 1.2: Sampled Image

3"Discrete Time Convolution" <http://cnx.org/content/m10087/latest/>



5

Figure 1.6: Illustrate the "pixelized" nature of all digital images.

We also have discrete-space FTS:

F [u, v] =
∞∑

m=−∞

∞∑
n=−∞

f [m,n] e−(jum)e−(jvm) (1.5)

where F [u, v] is analogous to DTFT4 in 1D.

note: "Convolution in Time" is the same as "Multiplication in Frequency"

g [m,n] = h [m,n] ∗ f [m,n] (1.6)

which, as stated above, is the same as:

G [u, v] = H [u, v]F [u, v] (1.7)

Example 1.3: Magnitude of FT of Cameraman Image

4"Discrete-Time Fourier Transform (DTFT)" <http://cnx.org/content/m10247/latest/>



6 CHAPTER 1. DSP SYSTEMS I

Figure 1.7

To get a better image, we can use the fftshift command in Matlab to center the Fourier
Transform. The resulting image is shown in Figure 1.8:

Figure 1.8



7

1.3 2D DFT5

1.3.1 2D DFT

To perform image restoration (and many other useful image processing algorithms) in a computer, we need
a Fourier Transform (FT) that is discrete and two-dimensional.

F [k, l] = F (u, v) |u= 2πk
N ,v= 2πl

N
(1.8)

for k = {0, . . . , N − 1} and l = {0, . . . , N − 1}.

F (u, v) =
∑
m

∑
n

f [m,n] e−(jum)e−(jvm) (1.9)

F [k, l] =
N−1∑
m=0

N−1∑
n=0

f [m,n] e(−j) 2πkm
N e(−j) 2πln

N (1.10)

where the above equation ((1.10)) has �nite support for an NxN image.

1.3.1.1 Inverse 2D DFT

As with our regular fourier transforms, the 2D DFT also has an inverse transform that allows us to reconstruct
an image as a weighted combination of complex sinusoidal basis functions.

f [m,n] =
1
N2

N−1∑
k=0

N−1∑
l=0

F [k, l] e
j2πkm
N e

j2πln
N (1.11)

Example 1.4: Periodic Extensions

5This content is available online at <http://cnx.org/content/m10987/2.4/>.



8 CHAPTER 1. DSP SYSTEMS I

Figure 1.9: Illustrate the periodic extension of images.

1.3.2 2D DFT and Convolution

The regular 2D convolution equation is

g [m,n] =
N−1∑
k=0

N−1∑
l=0

f [k, l]h [m− k, n− l] (1.12)

Example 1.5
Below we go through the steps of convolving two two-dimensional arrays. You can think of f
as representing an image and h represents a PSF, where h [m,n] = 0 for m and n > 1 and
m and n < 0.

h =

 h [0, 0] h [0, 1]

h [1, 0] h [1, 1]



f =


f [0, 0] . . . f [0, N − 1]

...
. . .

...

f [N − 1, 0] . . . f [N − 1, N − 1]





9

Step 1 (Flip h):

h [−m,−n] =


h [1, 1] h [1, 0] 0

h [0, 1] h [0, 0] 0

0 0 0

 (1.13)

Step 2 (Convolve):
g [0, 0] = h [0, 0] f [0, 0] (1.14)

We use the standard 2D convolution equation ((1.12)) to �nd the �rst element of our convolved
image. In order to better understand what is happening, we can think of this visually. The basic
idea is to take h [−m,−n] and place it "on top" of f [k, l], so that just the bottom-right element,
h [0, 0] of h [−m,−n] overlaps with the top-left element, f [0, 0], of f [k, l]. Then, to get the next
element of our convolved image, we slide the �ipped matrix, h [−m,−n], over one element to the
right and get the following result:

g [0, 1] = h [0, 0] f [0, 1] + h [0, 1] f [0, 0]

We continue in this fashion to �nd all of the elements of our convolved image, g [m,n]. Using the
above method we de�ne the general formula to �nd a particular element of g [m,n] as:

g [m,n] = h [0, 0] f [m,n] + h [0, 1] f [m,n− 1] + h [1, 0] f [m− 1, n] + h [1, 1] f [m− 1, n− 1] (1.15)

1.3.2.1 Circular Convolution

Exercise 1.3.1 (Solution on p. 59.)

What does H [k, l]F [k, l] produce?
Due to periodic extension by DFT (Figure 1.10):

Figure 1.10



10 CHAPTER 1. DSP SYSTEMS I

Based on the above solution, we will let

∼
g [m,n] = IDFT (H [k, l]F [k, l]) (1.16)

Using this equation, we can calculate the value for each position on our �nal image,
∼
g [m,n]. For example,

due to the periodic extension of the images, when circular convolution is applied we will observe a wrap-
around e�ect.

∼
g [0, 0] = h [0, 0] f [0, 0] + h [1, 0] f [N − 1, 0] + h [0, 1] f [0, N − 1] + h [1, 1] f [N − 1, N − 1] (1.17)

Where the last three terms in (1.17) are a result of the wrap-around e�ect caused by the presence of the
images copies located all around it.

1.3.2.2 Zero Padding

If the support of h is MxM and f is NxN , then we zero pad f and h to M + N − 1 x M + N − 1 (see
Figure 1.11).

Figure 1.11

note: Circular Convolution = Regular Convolution

1.3.2.3 Computing the 2D DFT

F [k, l] =
N−1∑
m=0

N−1∑
n=0

f [m,n] e(−j) 2πkm
N e(−j) 2πln

N (1.18)



11

where in the above equation,
∑N−1
n=0 f [m,n] e(−j) 2πln

N is simply a 1D DFT over n. This means that we will
take the 1D FFT of each row; if we have N rows, then it will require N logN operations per row. We can
rewrite this as

F [k, l] =
N−1∑
m=0

f ′ [m, l] e(−j) 2πkm
N (1.19)

where now we take the 1D FFT of each column, which means that if we have N columns, then it requires
N logN operations per column.

note: Therefore the overall complexity of a 2D FFT is

O
(
N2logN

)
where N2 equals the number of pixels in the image.

1.4 Images: 2D signals6

1.4.1 Image Processing

Figure 1.12: Images are 2D functions f (x, y)

1.4.2 Linear Shift Invariant Systems

Figure 1.13

H is LSI if:

1.
H (α1f1 (x, y) + α2f2 (x, y)) = H (f1 (x, y)) +H (f2 (x, y))

for all images f1, f2 and scalar.
2.

H (f (x− x0, y − y0)) = g (x− x0, y − y0)

LSI systems are expressed mathematically as 2D convolutions:

g (x, y) =
∫ ∞
−∞

∫ ∞
−∞

h (x− α, y − β) f (α, β) dαdβ

where h (x, y) is the 2D impulse response (also called the point spread function).

6This content is available online at <http://cnx.org/content/m10961/2.7/>.



12 CHAPTER 1. DSP SYSTEMS I

1.4.3 2D Fourier Analysis

F (u, v) =
∫ ∞
−∞

∫ ∞
−∞

f (x, y) e−(jux)e−(jvy)dxdy

where F is the 2D FT and u and v are frequency variables in x (u) and y (v).
2D complex exponentials are eigenfunctions7 for 2D LSI systems:∫∞

−∞

∫∞
−∞ h (x− α, y − β) eju0αejv0βdαdβ =

∫∞
−∞

∫∞
−∞ h (α′, β′) eju0(x−α′)ejv0(y−β′)dα′dβ′ =

eju0xejv0y
∫∞
−∞

∫∞
−∞ h (α′, β′) e−(ju0α′)e−(jv0β′)dα ′dβ′

(1.20)

where ∫ ∞
−∞

∫ ∞
−∞

h (α′, β′) e−(ju0α
′)e−(jv0β

′)dα′dβ′ ≡ H (u0, v0)

H (u0, v0) is the 2D Fourier transform of h (x, y) evaluated at frequencies u0 and v0.

Figure 1.14

g (x, y) = h (x, y) ∗ f (x, y)

=
∫∞
−∞

∫∞
−∞ h (x− α, y − β) f (α, β) dαdβ

(1.21)

G (u, v) = H (u, v)F (u, v)

Inverse 2D FT

g (x, y) =
1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

G (u, v) ejuxejvydudv (1.22)

1.4.4 2D Sampling Theory

Figure 1.15: Think of the image as a 2D surface.

We can sample the height of the surface using a 2D impulse array.

7"Eigenfunctions of LTI Systems" <http://cnx.org/content/m10500/latest/>



13

Figure 1.16: Impulses spaced ∆ (x) apart in the horizontal direction and ∆ (y) in the vertical

fs (x, y) = S (x, y) f (x, y)

where fs (x, y) is sampled image in frequency
2D FT of s (x, y) is a 2D impulse array in frequency S (u, v)

Figure 1.17

multiplication in time ⇔ convolution in frequency

Fs (u, v) = S (u, v) ∗ F (u, v)

Figure 1.18: F (u, v) is bandlimited in both the horizontal and vertical directions.

Figure 1.19: periodically replicated in (u, v) frequency plane

1.4.5 Nyquist Theorem

Assume that f (x, y) is bandlimited to ± (Bx), ± (By):



14 CHAPTER 1. DSP SYSTEMS I

Figure 1.20

If we sample f (x, y) at spacings of ∆ (x) < π
Bx

and ∆ (y) < π
By

, then f (x, y) can be perfectly recovered

from the samples by lowpass �ltering:

Figure 1.21: ideal lowpass �lter, 1 inside rectangle, 0 outside

Aliasing in 2D

(a) (b)

Figure 1.22

1.5 DFT as a Matrix Operation8

8This content is available online at <http://cnx.org/content/m10962/2.5/>.



15

1.5.1 Matrix Review

Recall:

• Vectors in RN :

x =


x0

x1

. . .

xN−1

 , xi ∈ R

• Vectors in CN :

x =


x0

x1

. . .

xN−1

 , xi ∈ C

• Transposition:

a. transpose:

xT =
(
x0 x1 . . . xN−1

)
b. conjugate:

xH =
(
x0
∗ x1

∗ . . . xN−1
∗
)

• Inner product9:

a. real:

xT y =
N−1∑
i=0

xiyi

b. complex:

xHy =
N−1∑
i=0

xn
∗yn

• Matrix Multiplication:

Ax =


a00 a01 . . . a0,N−1

a10 a11 . . . a1,N−1

...
... . . .

...

aN−1,0 aN−1,1 . . . aN−1,N−1




x0

x1

. . .

xN−1

 =


y0

y1

. . .

yN−1



yk =
N−1∑
n=0

aknxn

• Matrix Transposition:

AT =


a00 a10 . . . aN−1,0

a01 a11 . . . aN−1,1

...
... . . .

...

a0,N−1 a1,N−1 . . . aN−1,N−1


9"Inner Products" <http://cnx.org/content/m10755/latest/>



16 CHAPTER 1. DSP SYSTEMS I

Matrix transposition involved simply swapping the rows with columns.

AH = AT
∗

The above equation is Hermitian transpose.

AT k,n = An,k

AHk,n = A∗n,k

1.5.2 Representing DFT as Matrix Operation

Now let's represent the DFT10 in vector-matrix notation.

x =


x [0]

x [1]

. . .

x [N − 1]



X =


X [0]

X [1]

. . .

X [N − 1]

 ∈ CN

Here x is the vector of time samples and X is the vector of DFT coe�cients. How are x and X related:

X [k] =
N−1∑
n=0

x [n] e−(j 2π
N kn)

where

akn =
(
e−(j 2π

N )
)kn

= WN
kn

so
X = Wx

where X is the DFT vector, W is the matrix and x the time domain vector.

Wk,n =
(
e−(j 2π

N )
)kn

X = W


x [0]

x [1]

. . .

x [N − 1]


IDFT:

x [n] =
1
N

N−1∑
k=0

X [k]
(
ej

2π
N

)nk
10"Discrete Fourier Transform (DFT)" <http://cnx.org/content/m10249/latest/>



17

where (
ej

2π
N

)nk
= WN

nk∗

WN
nk∗ is the matrix Hermitian transpose. So,

x =
1
N
WHX

where x is the time vector, 1
NW

H is the inverse DFT matrix, and X is the DFT vector.

1.6 Fast Convolution Using the FFT11

1.6.1 Important Application of the FFT

Exercise 1.6.1 (Solution on p. 59.)

How many complex multiplies and adds are required to convolve two N -pt sequences?

y [n] =
N−1∑
m=0

x [m]h [n−m]

1. Zero-pad these two sequences to length 2N − 1, take DFTs using the FFT algorithm

x [n]→ X [k]

h [n]→ H [k]

The cost is
O ((2N − 1) log (2N − 1)) = O (N logN)

2. Multiply DFTs
X [k]H [k]

The cost is
O (2N − 1) = O (N)

3. Inverse DFT using FFT
X [k]H [k]→ y [n]

The cost is
O ((2N − 1) log (2N − 1)) = O (N logN)

So the total cost for direct convolution of two N -point sequences is O
(
N2
)
. Total cost for convolution using

FFT algorithm is O (N logN). That is a huge savings (Figure 1.23).

Figure 1.23

11This content is available online at <http://cnx.org/content/m10963/2.6/>.



18 CHAPTER 1. DSP SYSTEMS I

1.6.2 Summary of DFT

• x [n] is an N -point signal (Figure 1.24).

Figure 1.24

•

X [k] =
N−1∑
n=0

x [n] e−(j 2π
N kn) =

N−1∑
n=0

x [n]WN
kn

where WN = e−(j 2π
N ) is a "twiddle factor" and the �rst part is the basic DFT.

1.6.2.1 What is the DFT

X [k] = X

[
F =

k

N

]
=
N−1∑
n=0

x [n] e−(j2πFn)

where X
[
F = k

N

]
is the DTFT of x [n] and

∑N−1
n=0 x [n] e−(j2πFn) is the DTFT of x [n] at digital frequency

F . This is a sample of the DTFT. We can do frequency domain analysis on a computer!

1.6.2.2 Inverse DFT (IDFT)

x [n] =
1
N

N−1∑
n=0

X [k] ej
2π
N kn

• Build x [n] using Simple complex sinusoidal building block signals
• Amplitude of each complex sinusoidal building block in x [n] is 1

NX [k]

1.6.2.3 Circular Convolution

DFT
x [n]⊕ h [n]↔ X [k]H [k] (1.23)

1.6.2.4 Regular Convolution from Circular Convolution

• Zero pad x [n] and h [n] to length = length (x) + length (h)− 1
• Zero padding increases frequency resolution in DFT domain (Figure 1.25)



19

(a) (b)

Figure 1.25: (a) 8-pt DFT of 8-pt signal (b) 16-pt DFT of same signal padded with 8 additional zeros

1.6.2.5 The Fast Fourier Transform (FFT)

• E�cient computational algorithm for calculating the DFT
• "Divide and conquer"
• Break signal into even and odd samples keep taking shorter and shorter DFTs, then build N -pt DFT

by cleverly combining shorter DFTs
• N -pt DFT: O

(
N2
)
→ O (N log2N)

1.6.2.6 Fast Convolution

• Use FFT's to compute circular convolution of zero-padded signals
• Much faster than regular convolution if signal lengths are long
• O

(
N2
)
→ O (N log2N)

See Figure 1.26.

Figure 1.26

1.7 The FFT Algorithm12

De�nition 1.1: FFT
(Fast Fourier Transform) An e�cient computational algorithm for computing the DFT13.

1.7.1 The Fast Fourier Transform FFT

DFT can be expensive to compute directly

X [k] =
N−1∑
n=0

x [n] e−(j2π k
N n) , 0 ≤ k ≤ N − 1

For each k, we must execute:

12This content is available online at <http://cnx.org/content/m10964/2.6/>.
13"Discrete Fourier Transform (DFT)" <http://cnx.org/content/m10249/latest/>



20 CHAPTER 1. DSP SYSTEMS I

• N complex multiplies
• N − 1 complex adds

The total cost of direct computation of an N -point DFT is

• N2 complex multiplies
• N (N − 1) complex adds

How many adds and mults of real numbers are required?
This " O

(
N2
)
" computation rapidly gets out of hand, as N gets large:

N 1 10 100 1000 106

N2 1 100 10,000 106 1012

Table 1.1

Figure 1.27

The FFT provides us with a much more e�cient way of computing the DFT. The FFT requires only "
O (N logN)" computations to compute the N -point DFT.

N 10 100 1000 106

N2 100 10,000 106 1012

N logN 10 200 3000 6× 106

Table 1.2

How long is 1012µsec? More than 10 days! How long is 6× 106µsec?

Figure 1.28

The FFT and digital computers revolutionized DSP (1960 - 1980).

1.7.2 How does the FFT work?

• The FFT exploits the symmetries of the complex exponentials WN
kn = e−(j 2π

N kn)

• WN
kn are called "twiddle factors"



21

Rule 1.1: Complex Conjugate Symmetry

WN
k(N−n) = WN

−(kn) = WN
kn∗

e−(j2π k
N (N−n)) = ej2π

k
N n = e−(j2π k

N n)∗

Rule 1.2: Periodicity in n and k

WN
kn = WN

k(N+n) = WN
(k+N)n

e−(j 2π
N kn) = e−(j 2π

N k(N+n)) = e−(j 2π
N (k+N)n)

WN = e−(j 2π
N )

1.7.3 Decimation in Time FFT

• Just one of many di�erent FFT algorithms
• The idea is to build a DFT out of smaller and smaller DFTs by decomposing x [n] into smaller and

smaller subsequences.
• Assume N = 2m (a power of 2)

1.7.3.1 Derivation

N is even, so we can complete X [k] by separating x [n] into two subsequences each of length N
2 .

x [n]→

 N
2 if n = even
N
2 if n = odd

X [k] =
N−1∑
n=0

x [n]WN
kn , 0 ≤ k ≤ N − 1

X [k] =
∑
n=2r

x [n]WN
kn +

∑
n=2r+1

x [n]WN
kn

where 0 ≤ r ≤ N
2 − 1. So

X [k] =
∑N

2 −1
r=0 x [2r]WN

2kr +
∑N

2 −1
r=0 x [2r + 1]WN

(2r+1)k

=
∑N

2 −1
r=0 x [2r]

(
WN

2
)kr

+WN
k∑N

2 −1
r=0 x [2r + 1]

(
WN

2
)kr (1.24)

where WN
2 = e−(j 2π

N 2) = e
−
„
j 2π
N
2

«
= WN

2
. So

X [k] =

N
2 −1∑
r=0

x [2r]WN
2

kr +WN
k

N
2 −1∑
r=0

x [2r + 1]WN
2

kr

where
∑N

2 −1
r=0 x [2r]WN

2

kr is N
2 -point DFT of even samples ( G [k]) and

∑N
2 −1
r=0 x [2r + 1]WN

2

kr is N
2 -point

DFT of odd samples ( H [k]).

X [k] = G [k] +WN
kH [k] , 0 ≤ k ≤ N − 1



22 CHAPTER 1. DSP SYSTEMS I

Decomposition of an N -point DFT as a sum of 2 N
2 -point DFTs.

Why would we want to do this? Because it is more e�cient!

note: Cost to compute an N -point DFT is approximately N2 complex mults and adds.

But decomposition into 2 N
2 -point DFTs + combination requires only(

N

2

)2

+
(
N

2

)2

+N =
N2

2
+N

where the �rst part is the number of complex mults and adds for N
2 -point DFT, G [k]. The second part is

the number of complex mults and adds for N
2 -point DFT, H [k]. The third part is the number of complex

mults and adds for combination. And the total is N2

2 +N complex mults and adds.

Example 1.6: Savings
For N = 1000,

N2 = 106

N2

2
+N =

106

2
+ 1000

Because 1000 is small compared to 500,000,

N2

2
+N ' 106

2

So why stop here?! Keep decomposing. Break each of the N
2 -point DFTs into two

N
4 -point DFTs, etc., ....

We can keep decomposing:

N

21
=
{
N

2
,
N

4
,
N

8
, . . . ,

N

2m−1
,
N

2m

}
= 1

where
m = log2N = times

Computational cost: N -pt DFT −→ two N
2 -pt DFTs. The cost is N

2 → 2
(
N
2

)2
+N . So replacing each

N
2 -pt DFT with two N

4 -pt DFTs will reduce cost to

2

(
2
(
N

4

)2

+
N

2

)
+N = 4

(
N

4

)2

+ 2N =
N2

22
+ 2N =

N2

2p
+ pN

As we keep going p = {3, 4, . . . ,m}, where m = log2N . We get the cost

N2

2log2N
+N log2N =

N2

N
+N log2N = N +N log2N

N +N log2N is the total number of complex adds and mults.
For large N , cost ' N log2N or " O (N log2N)", since N log2N � N for large N .

Figure 1.29: N = 8 point FFT. Summing nodes Wn
k twiddle multiplication factors.



23

note: Weird order of time samples

Figure 1.30: This is called "butter�ies."

1.8 The DFT: Frequency Domain with a Computer Analysis14

1.8.1 Introduction

We just covered ideal (and non-ideal) (time) sampling of CT signals (Section 1.10). This enabled DT signal
processing solutions for CT applications (Figure 1.31):

Figure 1.31

Much of the theoretical analysis of such systems relied on frequency domain representations. How do we
carry out these frequency domain analysis on the computer? Recall the following relationships:

x [n] DTFT↔ X (ω)

x (t) CTFT↔ X (Ω)

where ω and Ω are continuous frequency variables.

1.8.1.1 Sampling DTFT

Consider the DTFT of a discrete-time (DT) signal x [n]. Assume x [n] is of �nite duration N (i.e., an N -point
signal).

X (ω) =
N−1∑
n=0

x [n] e(−j)ωn (1.25)

where X (ω) is the continuous function that is indexed by the real-valued parameter −π ≤ ω ≤ π. The
other function, x [n], is a discrete function that is indexed by integers.

14This content is available online at <http://cnx.org/content/m10992/2.3/>.



24 CHAPTER 1. DSP SYSTEMS I

We want to work with X (ω) on a computer. Why not just sample X (ω)?

X [k] = X
(

2π
N k
)

=
∑N−1
n=0 x [n] e(−j)2π k

N n
(1.26)

In (1.26) we sampled at ω = 2π
N k where k = {0, 1, . . . , N − 1} and X [k] for k = {0, . . . , N − 1} is called the

Discrete Fourier Transform (DFT) of x [n].

Example 1.7

Finite Duration DT Signal

Figure 1.32

The DTFT of the image in Figure 1.32 (Finite Duration DT Signal) is written as follows:

X (ω) =
N−1∑
n=0

x [n] e(−j)ωn (1.27)

where ω is any 2π-interval, for example −π ≤ ω ≤ π.

Sample X(ω)

Figure 1.33

where again we sampled at ω = 2π
N k where k = {0, 1, . . . ,M − 1}. For example, we take

M = 10

. In the following section (Section 1.8.1.1.1: Choosing M) we will discuss in more detail how we
should choose M , the number of samples in the 2π interval.

(This is precisely how we would plot X (ω) in Matlab.)

1.8.1.1.1 Choosing M

1.8.1.1.1.1 Case 1

Given N (length of x [n]), choose M � N to obtain a dense sampling of the DTFT (Figure 1.34):



25

Figure 1.34

1.8.1.1.1.2 Case 2

Choose M as small as possible (to minimize the amount of computation).
In general, we require M ≥ N in order to represent all information in

x [n] , n = {0, . . . , N − 1}

Let's concentrate on M = N :
x [n] DFT↔ X [k]

for n = {0, . . . , N − 1} and k = {0, . . . , N − 1}

numbers↔ N numbers

1.8.2 Discrete Fourier Transform (DFT)

De�ne

X [k] ≡ X
(

2πk
N

)
(1.28)

where N = length (x [n]) and k = {0, . . . , N − 1}. In this case, M = N .

DFT

X [k] =
N−1∑
n=0

x [n] e(−j)2π k
N n (1.29)

Inverse DFT (IDFT)

x [n] =
1
N

N−1∑
k=0

X [k] ej2π
k
N n (1.30)



26 CHAPTER 1. DSP SYSTEMS I

1.8.2.1 Interpretation

Represent x [n] in terms of a sum of N complex sinusoids15 of amplitudes X [k] and frequencies

ωk =
2πk
N

, k ∈ {0, . . . , N − 1}

note: Fourier Series with fundamental frequency 2π
N

1.8.2.1.1 Remark 1

IDFT treats x [n] as though it were N -periodic.

x [n] =
1
N

N−1∑
k=0

X [k] ej2π
k
N n (1.31)

where n ∈ {0, . . . , N − 1}
Exercise 1.8.1 (Solution on p. 59.)

What about other values of n?

1.8.2.1.2 Remark 2

Proof that the IDFT inverts the DFT for n ∈ {0, . . . , N − 1}

1
N

∑N−1
k=0 X [k] ej2π

k
N n = 1

N

∑N−1
k=0

∑N−1
m=0 x [m] e(−j)2π k

Nmej2π
k
N n

= ???
(1.32)

Example 1.8: Computing DFT
Given the following discrete-time signal (Figure 1.35) with N = 4, we will compute the DFT using
two di�erent methods (the DFT Formula and Sample DTFT):

Figure 1.35

15"Continuous Time Complex Exponential" <http://cnx.org/content/m10060/latest/>



27

1. DFT Formula

X [k] =
∑N−1
n=0 x [n] e(−j)2π k

N n

= 1 + e(−j)2π k4 + e(−j)2π k4 2 + e(−j)2π k4 3

= 1 + e(−j)π2 k + e(−j)πk + e(−j) 3
2πk

(1.33)

Using the above equation, we can solve and get the following results:

x [0] = 4

x [1] = 0

x [2] = 0

x [3] = 0

2. Sample DTFT. Using the same �gure, Figure 1.35, we will take the DTFT of the signal and
get the following equations:

X (ω) =
∑3
n=0 e

(−j)ωn

= 1−e(−j)4ω
1−e(−j)ω

= ???

(1.34)

Our sample points will be:

ωk =
2πk

4
=
π

2
k

where k = {0, 1, 2, 3} (Figure 1.36).

Figure 1.36



28 CHAPTER 1. DSP SYSTEMS I

1.8.3 Periodicity of the DFT

DFT X [k] consists of samples of DTFT, so X (ω), a 2π-periodic DTFT signal, can be converted to X [k],
an N -periodic DFT.

X [k] =
N−1∑
n=0

x [n] e(−j)2π k
N n (1.35)

where e(−j)2π k
N n is an N -periodic basis function (See Figure 1.37).

Figure 1.37

Also, recall,

x [n] = 1
N

∑N−1
n=0 X [k] ej2π

k
N n

= 1
N

∑N−1
n=0 X [k] ej2π

k
N (n+mN)

= ???

(1.36)

Example 1.9: Illustration



29

Figure 1.38

note: When we deal with the DFT, we need to remember that, in e�ect, this treats the signal as
an N -periodic sequence.

1.8.4 A Sampling Perspective

Think of sampling the continuous function X (ω), as depicted in Figure 1.39. S (ω) will represent the
sampling function applied to X (ω) and is illustrated in Figure 1.39 as well. This will result in our discrete-
time sequence, X [k].



30 CHAPTER 1. DSP SYSTEMS I

Figure 1.39

note: Remember the multiplication in the frequency domain is equal to convolution in the time
domain!

1.8.4.1 Inverse DTFT of S(ω)

∞∑
k=−∞

δ

(
ω − 2πk

N

)
(1.37)

Given the above equation, we can take the DTFT and get the following equation:

N

∞∑
m=−∞

δ [n−mN ] ≡ S [n] (1.38)

Exercise 1.8.2 (Solution on p. 59.)

Why does (1.38) equal S [n]?



31

So, in the time-domain we have (Figure 1.40):

Figure 1.40



32 CHAPTER 1. DSP SYSTEMS I

1.8.5 Connections

Figure 1.41

Combine signals in Figure 1.41 to get signals in Figure 1.42.

Figure 1.42



33

1.9 Discrete-Time Processing of CT Signals16

1.9.1 DT Processing of CT Signals

DSP System

Figure 1.43

1.9.1.1 Analysis

Yc (Ω) = HLP (Ω)Y (ΩT ) (1.39)

where we know that Y (ω) = X (ω)G (ω) and G (ω) is the frequency response of the DT LTI system. Also,
remember that

ω ≡ ΩT

So,
Yc (Ω) = HLP (Ω)G (ΩT )X (ΩT ) (1.40)

where Yc (Ω) and HLP (Ω) are CTFTs and G (ΩT ) and X (ΩT ) are DTFTs.

note:

X (ω) =
2π
T

∞∑
k=−∞

Xc

(
ω − 2πk

T

)
OR

X (ΩT ) =
2π
T

∞∑
k=−∞

Xc (Ω− kΩs)

Therefore our �nal output signal, Yc (Ω), will be:

Yc (Ω) = HLP (Ω)G (ΩT )

(
2π
T

∞∑
k=−∞

Xc (Ω− kΩs)

)
(1.41)

16This content is available online at <http://cnx.org/content/m10993/2.2/>.



34 CHAPTER 1. DSP SYSTEMS I

Now, if Xc (Ω) is bandlimited to
[
−Ωs

2 ,
Ωs
2

]
and we use the usual lowpass reconstruction �lter in the D/A,

Figure 1.44:

Figure 1.44

Then,

Yc (Ω) =

 G (ΩT )Xc (Ω) if |Ω| < Ωs
2

0 otherwise
(1.42)



35

1.9.1.2 Summary

For bandlimited signals sampled at or above the Nyquist rate, we can relate the input and output of the
DSP system by:

Yc (Ω) = Geff (Ω)Xc (Ω) (1.43)

where

Geff (Ω) =

 G (ΩT ) if |Ω| < Ωs
2

0 otherwise

Figure 1.45

1.9.1.2.1 Note

Geff (Ω) is LTI if and only if the following two conditions are satis�ed:

1. G (ω) is LTI (in DT).
2. Xc (T ) is bandlimited and sampling rate equal to or greater than Nyquist. For example, if we had a

simple pulse described by
Xc (t) = u (t− T0)− u (t− T1)

where T1 > T0. If the sampling period T > T1 − T0, then some samples might "miss" the pulse while
others might not be "missed." This is what we term time-varying behavior.

Example 1.10



36 CHAPTER 1. DSP SYSTEMS I

Figure 1.46

If 2π
T > 2B and ω1 < BT , determine and sketch Yc (Ω) using Figure 1.46.

1.9.2 Application: 60Hz Noise Removal

Figure 1.47

Unfortunately, in real-world situations electrodes also pick up ambient 60 Hz signals from lights, computers,
etc.. In fact, usually this "60 Hz noise" is much greater in amplitude than the EKG signal shown in
Figure 1.47. Figure 1.48 shows the EKG signal; it is barely noticeable as it has become overwhelmed by
noise.



37

Figure 1.48: Our EKG signal, y (t), is overwhelmed by noise.

1.9.2.1 DSP Solution

Figure 1.49

Figure 1.50

1.9.2.2 Sampling Period/Rate

First we must note that |Y (Ω) | is bandlimited to ±60 Hz. Therefore, the minimum rate should be 120
Hz. In order to get the best results we should set

fs = 240Hz



38 CHAPTER 1. DSP SYSTEMS I

.

Ωs = 2π ×
(

240
rad
s

)

Figure 1.51

1.9.2.3 Digital Filter

Therefore, we want to design a digital �lter that will remove the 60Hz component and preserve the rest.

Figure 1.52

1.10 Sampling CT Signals: A Frequency Domain Perspective17

1.10.1 Understanding Sampling in the Frequency Domain

We want to relate xc (t) directly to x [n]. Compute the CTFT of

xs (t) =
∞∑

n=−∞
xc (nT ) δ (t− nT )

17This content is available online at <http://cnx.org/content/m10994/2.2/>.



39

Xs (Ω) =
∫∞
−∞

∑∞
n=−∞ xc (nT ) δ (t− nT ) e(−j)Ωtdt

=
∑∞
n=−∞ xc (nT )

∫∞
−∞ δ (t− nT ) e(−j)Ωtdt

=
∑∞
n=−∞ x [n] e(−j)ΩnT

=
∑∞
n=−∞ x [n] e(−j)ωn

= X (ω)

(1.44)

where ω ≡ ΩT and X (ω) is the DTFT of x [n].

note:

Xs (Ω) =
1
T

∞∑
k=−∞

Xc (Ω− kΩs)

X (ω) = 1
T

∑∞
k=−∞Xc (Ω− kΩs)

= 1
T

∑∞
k=−∞Xc

(
ω−2πk
T

) (1.45)

where this last part is 2π-periodic.

1.10.1.1 Sampling

Figure 1.53



40 CHAPTER 1. DSP SYSTEMS I

Example 1.11: Speech
Speech is intelligible if bandlimited by a CT lowpass �lter to the band ±4 kHz. We can sample
speech as slowly as _____?

Figure 1.54

Figure 1.55: Note that there is no mention of T or Ωs!

1.10.2 Relating x[n] to sampled x(t)

Recall the following equality:

xs (t) =
∑
nn

x (nT ) δ (t− nT )



41

Figure 1.56

Recall the CTFT relation:

x (αt)↔ 1
α
X

(
Ω
α

)
(1.46)

where α is a scaling of time and 1
α is a scaling in frequency.

Xs (Ω) ≡ X (ΩT ) (1.47)



42 CHAPTER 1. DSP SYSTEMS I

1.11 Filtering with the DFT18

1.11.1 Introduction

Figure 1.57

y [n] = x [n] ∗ h [n]

=
∑∞
k=−∞ x [k]h [n− k]

(1.48)

Y (ω) = X (ω)H (ω) (1.49)

Assume that H (ω) is speci�ed.
Exercise 1.11.1 (Solution on p. 59.)

How can we implement X (ω)H (ω) in a computer?

Recall that the DFT treats N -point sequences as if they are periodically extended (Figure 1.58):

18This content is available online at <http://cnx.org/content/m11022/2.3/>.



43

Figure 1.58

1.11.2 Compute IDFT of Y[k]

∼
y [n] = 1

N

∑N−1
k=0 Y [k] ej2π

k
N n

= 1
N

∑N−1
k=0 X [k]H [k] ej2π

k
N n

= 1
N

∑N−1
k=0

∑N−1
m=0 x [m] e−(j2π k

Nm)H [k] ej2π
k
N n

=
∑N−1
m=0 x [m]

(
1
N

∑N−1
k=0 H [k] ej2π

k
N (n−m)

)
=

∑N−1
m=0 x [m]h [((n−m))N ]

(1.50)

And the IDFT periodically extends h [n]:

∼
h [n−m] = h [((n−m))N ]

This computes as shown in Figure 1.59:



44 CHAPTER 1. DSP SYSTEMS I

Figure 1.59

∼
y [n] =

N−1∑
m=0

x [m]h [((n−m))N ] (1.51)

is called circular convolution and is denoted by Figure 1.60.

Figure 1.60: The above symbol for the circular convolution is for an N -periodic extension.

1.11.2.1 DFT Pair

Figure 1.61

Note that in general:



45

Figure 1.62

Example 1.12: Regular vs. Circular Convolution
To begin with, we are given the following two length-3 signals:

x [n] = {1, 2, 3}

h [n] = {1, 0, 2}

We can zero-pad these signals so that we have the following discrete sequences:

x [n] = {. . . , 0, 1, 2, 3, 0, . . . }

h [n] = {. . . , 0, 1, 0, 2, 0, . . . }

where x [0] = 1 and h [0] = 1.

• Regular Convolution:

y [n] =
2∑

m=0

x [m]h [n−m] (1.52)

Using the above convolution formula (refer to the link if you need a review of convolution19),
we can calculate the resulting value for y [0] to y [4]. Recall that because we have two length-3
signals, our convolved signal will be length-5.

· n = 0
{. . . , 0, 0, 0, 1, 2, 3, 0, . . . }

{. . . , 0, 2, 0, 1, 0, 0, 0, . . . }

y [0] = 1× 1 + 2× 0 + 3× 0

= 1
(1.53)

· n = 1
{. . . , 0, 0, 1, 2, 3, 0, . . . }

{. . . , 0, 2, 0, 1, 0, 0, . . . }

y [1] = 1× 0 + 2× 1 + 3× 0

= 2
(1.54)

19"Discrete Time Convolution" <http://cnx.org/content/m10087/latest/>



46 CHAPTER 1. DSP SYSTEMS I

· n = 2
{. . . , 0, 1, 2, 3, 0, . . . }

{. . . , 0, 2, 0, 1, 0, . . . }

y [2] = 1× 2 + 2× 0 + 3× 1

= 5
(1.55)

· n = 3
y [3] = 4 (1.56)

· n = 4
y [4] = 6 (1.57)

Regular Convolution Result

Figure 1.63: Result is �nite duration, not periodic!

• Circular Convolution:
∼
y [n] =

2∑
m=0

x [m]h [((n−m))N ] (1.58)

And now with circular convolution our h [n] changes and becomes a periodically extended
signal:

h [((n))N ] = {. . . , 1, 0, 2, 1, 0, 2, 1, 0, 2, . . . } (1.59)

· n = 0
{. . . , 0, 0, 0, 1, 2, 3, 0, . . . }

{. . . , 1, 2, 0, 1, 2, 0, 1, . . . }

∼
y [0] = 1× 1 + 2× 2 + 3× 0

= 5
(1.60)



47

· n = 1
{. . . , 0, 0, 0, 1, 2, 3, 0, . . . }

{. . . , 0, 1, 2, 0, 1, 2, 0, . . . }

∼
y [1] = 1× 1 + 2× 1 + 3× 2

= 8
(1.61)

· n = 2 ∼
y [2] = 5 (1.62)

· n = 3 ∼
y [3] = 5 (1.63)

· n = 4 ∼
y [4] = 8 (1.64)

Circular Convolution Result

Figure 1.64: Result is 3-periodic.

Figure 1.65 (Circular Convolution from Regular) illustrates the relationship between circular
convolution and regular convolution using the previous two �gures:

Circular Convolution from Regular

Figure 1.65: The left plot (the circular convolution results) has a "wrap-around" e�ect due to periodic
extension.



48 CHAPTER 1. DSP SYSTEMS I

1.11.2.2 Regular Convolution from Periodic Convolution

1. "Zero-pad" x [n] and h [n] to avoid the overlap (wrap-around) e�ect. We will zero-pad the two signals
to a length-5 signal (5 being the duration of the regular convolution result):

x [n] = {1, 2, 3, 0, 0}

h [n] = {1, 0, 2, 0, 0}

2. Now take the DFTs of the zero-padded signals:

∼
y [n] = 1

N

∑4
k=0X [k]H [k] ej2π

k
5n

=
∑4
m=0 x [m]h [((n−m))5]

(1.65)

Now we can plot this result (Figure 1.66):

Figure 1.66: The sequence from 0 to 4 (the underlined part of the sequence) is the regular convolution
result. From this illustration we can see that it is 5-periodic!

note: We can compute the regular convolution result of a convolution of an M -point signal
x [n] with an N -point signal h [n] by padding each signal with zeros to obtain two M + N − 1
length sequences and computing the circular convolution (or equivalently computing the IDFT of
H [k]X [k], the product of the DFTs of the zero-padded signals) (Figure 1.67).



49

Figure 1.67: Note that the lower two images are simply the top images that have been zero-padded.

1.11.3 DSP System

Figure 1.68: The system has a length N impulse response, h [n]

1. Sample �nite duration continuous-time input x (t) to get x [n] where n = {0, . . . ,M − 1}.
2. Zero-pad x [n] and h [n] to length M +N − 1.
3. Compute DFTs X [k] and H [k]
4. Compute IDFTs of X [k]H [k]

y [n] =
∼
y [n]

where n = {0, . . . ,M +N − 1}.
5. Reconstruct y (t)



50 CHAPTER 1. DSP SYSTEMS I

1.12 Ideal Reconstruction of Sampled Signals20

1.12.1 Reconstruction of Sampled Signals

How do we go from x [n] to CT (Figure 1.69)?

Figure 1.69

1.12.1.1 Step 1

Place x [n] into CT on an impulse train s (t) (Figure 1.70).

xs (t) =
∞∑

n=−∞
x [n] δ (t− nT ) (1.66)

Figure 1.70

1.12.1.2 Step 2

Pass xs (t) through an idea lowpass �lter HLP (Ω) (Figure 1.71).

20This content is available online at <http://cnx.org/content/m11044/2.3/>.



51

Figure 1.71

If we had no aliasing then xr [t] = xc (t), where x [n] = xc (nT ).

1.12.2 Ideal Reconstruction System

Figure 1.72

In Frequency Domain:

1.
Xs (Ω) = X (ΩT )

where X (ΩT ) is the DTFT of x [n] at digital frequency ω = ΩT .
2.

Xr (Ω) = HLP (Ω)Xs (Ω)

note:

Xr (Ω) = HLP (Ω)X (ΩT )

In Time Domain:

1.

xs (t) =
∞∑

n=−∞
x [n] δ (t− nT )



52 CHAPTER 1. DSP SYSTEMS I

2.

xr (t) =
∞∑

n=−∞
x [n] δ (t− nT ) ∗ hLP (t)

hLP (t) = sinc
( π
T
t
)

note:

xr (t) =
∞∑

n=−∞
x [n] sinc

( π
T

(t− nT )
)

Figure 1.73

hLP (t) = sinc
(
π
T t
)

=
sin( πT t)
( πT t)

(1.67)

hLP (t) "interpolates" the values of x [n] to generate xr (t) (Figure 1.74).



53

Figure 1.74

Sinc Interpolator

xr (t) =
∞∑

n=−∞
x [n]

sin
(
π
T (t− nT )

)
π
T (t− nT )

(1.68)

1.13 Amplitude Quantization21

The Sampling Theorem says that if we sample a bandlimited signal s (t) fast enough, it can be recovered
without error from its samples s (nTs), n ∈ {. . . ,−1, 0, 1, . . . }. Sampling is only the �rst phase of acquiring
data into a computer: Computational processing further requires that the samples be quantized: ana-
log values are converted into digital22 form. In short, we will have performed analog-to-digital (A/D)
conversion.

21This content is available online at <http://cnx.org/content/m0051/2.23/>.
22"Signals Represent Information": Section Digital Signals <http://cnx.org/content/m0001/latest/#digital>



54 CHAPTER 1. DSP SYSTEMS I

s(nTs)

Q[s(nTs)]

0

1

2

3

1–1

4
5

7

–0.5 0.5

6
∆

(a)

1

0

–1 -1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1
sampled signal

0

1

2

3

4

5

6

7

amplitude-quantized
and sampled signal

signal

(b)

Figure 1.75: A three-bit A/D converter assigns voltage in the range [−1, 1] to one of eight integers
between 0 and 7. For example, all inputs having values lying between 0.5 and 0.75 are assigned the integer
value six and, upon conversion back to an analog value, they all become 0.625. The width of a single
quantization interval ∆ equals 2

2B
. The bottom panel shows a signal going through the analog-to-digital,

where B is the number of bits used in the A/D conversion process (3 in the case depicted here). First
it is sampled, then amplitude-quantized to three bits. Note how the sampled signal waveform becomes
distorted after amplitude quantization. For example the two signal values between 0.5 and 0.75 become
0.625. This distortion is irreversible; it can be reduced (but not eliminated) by using more bits in the
A/D converter.

A phenomenon reminiscent of the errors incurred in representing numbers on a computer prevents signal
amplitudes from being converted with no error into a binary number representation. In analog-to-digital
conversion, the signal is assumed to lie within a prede�ned range. Assuming we can scale the signal without
a�ecting the information it expresses, we'll de�ne this range to be [−1, 1]. Furthermore, the A/D converter
assigns amplitude values in this range to a set of integers. A B-bit converter produces one of the integers{

0, 1, . . . , 2B − 1
}
for each sampled input. Figure 1.75 shows how a three-bit A/D converter assigns input

values to the integers. We de�ne a quantization interval to be the range of values assigned to the same
integer. Thus, for our example three-bit A/D converter, the quantization interval ∆ is 0.25; in general, it is
2

2B
.

Exercise 1.13.1 (Solution on p. 59.)

Recalling the plot of average daily highs in this frequency domain problem23, why is this plot so
jagged? Interpret this e�ect in terms of analog-to-digital conversion.

Because values lying anywhere within a quantization interval are assigned the same value for computer
processing, the original amplitude value cannot be recovered without error. Typically, the D/A
converter, the device that converts integers to amplitudes, assigns an amplitude equal to the value lying
halfway in the quantization interval. The integer 6 would be assigned to the amplitude 0.625 in this scheme.

23"Frequency Domain Problems", Problem 5 <http://cnx.org/content/m10350/latest/#i4>



55

The error introduced by converting a signal from analog to digital form by sampling and amplitude quanti-
zation then back again would be half the quantization interval for each amplitude value. Thus, the so-called
A/D error equals half the width of a quantization interval: 1

2B
. As we have �xed the input-amplitude range,

the more bits available in the A/D converter, the smaller the quantization error.
To analyze the amplitude quantization error more deeply, we need to compute the signal-to-noise ratio,

which equals the ratio of the signal power and the quantization error power. Assuming the signal is a

sinusoid, the signal power is the square of the rms amplitude: power (s) =
(

1√
2

)2

= 1
2 . The illustration

(Figure 1.76) details a single quantization interval.

∆

Q[s(nTs)]s(nTs)

ε }
Figure 1.76: A single quantization interval is shown, along with a typical signal's value before ampli-
tude quantization s (nTs) and after Q (s (nTs)). ε denotes the error thus incurred.

Its width is ∆ and the quantization error is denoted by ε. To �nd the power in the quantization error,
we note that no matter into which quantization interval the signal's value falls, the error will have the same
characteristics. To calculate the rms value, we must square the error and average it over the interval.

rms (ε) =
√

1
∆

∫ ∆
2

−∆
2
ε2dε

=
(

∆2

12

) 1
2

(1.69)

Since the quantization interval width for a B-bit converter equals 2
2B

= 2−(B−1), we �nd that the signal-to-
noise ratio for the analog-to-digital conversion process equals

SNR =
1
2

2−(2(B−1))

12

=
3
2

22B = 6B + 10log1.5dB (1.70)

Thus, every bit increase in the A/D converter yields a 6 dB increase in the signal-to-noise ratio. The
constant term 10log1.5 equals 1.76.

Exercise 1.13.2 (Solution on p. 59.)

This derivation assumed the signal's amplitude lay in the range [−1, 1]. What would the amplitude
quantization signal-to-noise ratio be if it lay in the range [−A,A]?
Exercise 1.13.3 (Solution on p. 59.)

How many bits would be required in the A/D converter to ensure that the maximum amplitude
quantization error was less than 60 db smaller than the signal's peak value?

Exercise 1.13.4 (Solution on p. 59.)

Music on a CD is stored to 16-bit accuracy. To what signal-to-noise ratio does this correspond?

Once we have acquired signals with an A/D converter, we can process them using digital hardware or
software. It can be shown that if the computer processing is linear, the result of sampling, computer
processing, and unsampling is equivalent to some analog linear system. Why go to all the bother if the same
function can be accomplished using analog techniques? Knowing when digital processing excels and when it
does not is an important issue.



56 CHAPTER 1. DSP SYSTEMS I

1.14 Classic Fourier Series24

The classic Fourier series as derived originally expressed a periodic signal (period T ) in terms of harmonically
related sines and cosines.

s (t) = a0 +
∞∑
k=1

akcos
(

2πkt
T

)
+
∞∑
k=1

bksin
(

2πkt
T

)
(1.71)

The complex Fourier series and the sine-cosine series are identical, each representing a signal's
spectrum. The Fourier coe�cients, ak and bk, express the real and imaginary parts respectively of the
spectrum while the coe�cients ck of the complex Fourier series express the spectrum as a magnitude and
phase. Equating the classic Fourier series (1.71) to the complex Fourier series25, an extra factor of two and
complex conjugate become necessary to relate the Fourier coe�cients in each.

ck =
1
2

(ak − jbk)

Exercise 1.14.1 (Solution on p. 59.)

Derive this relationship between the coe�cients of the two Fourier series.

Just as with the complex Fourier series, we can �nd the Fourier coe�cients using the orthogonality
properties of sinusoids. Note that the cosine and sine of harmonically related frequencies, even the same
frequency, are orthogonal. ∫ T

0

sin
(

2πkt
T

)
cos
(

2πlt
T

)
dt = 0 , k ∈ Z l ∈ Z (1.72)

∫ T

0

sin
(

2πkt
T

)
sin
(

2πlt
T

)
dt =

 T
2 if (k = l) and (k 6= 0) and (l 6= 0)

0 if (k 6= l) or (k = 0 = l)

∫ T

0

cos
(

2πkt
T

)
cos
(

2πlt
T

)
dt =


T
2 if (k = l) and (k 6= 0) and (l 6= 0)

T if k = 0 = l

0 if k 6= l

These orthogonality relations follow from the following important trigonometric identities.

sin (α) sin (β) = 1
2 (cos (α− β)− cos (α+ β))

cos (α) cos (β) = 1
2 (cos (α+ β) + cos (α− β))

sin (α) cos (β) = 1
2 (sin (α+ β) + sin (α− β))

(1.73)

These identities allow you to substitute a sum of sines and/or cosines for a product of them. Each term in
the sum can be integrating by noticing one of two important properties of sinusoids.

• The integral of a sinusoid over an integer number of periods equals zero.
• The integral of the square of a unit-amplitude sinusoid over a period T equals T

2 .

24This content is available online at <http://cnx.org/content/m0039/2.23/>.
25"Complex Fourier Series", (1) <http://cnx.org/content/m0042/latest/#complexfourierseries>



57

To use these, let's, for example, multiply the Fourier series for a signal by the cosine of the lth harmonic
cos
(

2πlt
T

)
and integrate. The idea is that, because integration is linear, the integration will sift out all but

the term involving al.∫ T
0
s (t) cos

(
2πlt
T

)
dt =

∫ T
0
a0cos

(
2πlt
T

)
dt +

∑∞
k=1 ak

∫ T
0

cos
(

2πkt
T

)
cos
(

2πlt
T

)
dt +∑∞

k=1 bk
∫ T

0
sin
(

2πkt
T

)
cos
(

2πlt
T

)
dt

(1.74)

The �rst and third terms are zero; in the second, the only non-zero term in the sum results when the
indices k and l are equal (but not zero), in which case we obtain alT

2 . If k = 0 = l, we obtain a0T .
Consequently,

al =
2
T

∫ T

0

s (t) cos
(

2πlt
T

)
dt , l 6= 0

All of the Fourier coe�cients can be found similarly.

a0 = 1
T

∫ T
0
s (t) dt

ak = 2
T

∫ T
0
s (t) cos

(
2πkt
T

)
dt , k 6= 0

bk = 2
T

∫ T
0
s (t) sin

(
2πkt
T

)
dt

(1.75)

Exercise 1.14.2 (Solution on p. 60.)

The expression for a0 is referred to as the average value of s (t). Why?

Exercise 1.14.3 (Solution on p. 60.)

What is the Fourier series for a unit-amplitude square wave?

Example 1.13
Let's �nd the Fourier series representation for the half-wave recti�ed sinusoid.

s (t) =

 sin
(

2πt
T

)
if 0 ≤ t < T

2

0 if T
2 ≤ t < T

(1.76)

Begin with the sine terms in the series; to �nd bk we must calculate the integral

bk =
2
T

∫ T
2

0

sin
(

2πt
T

)
sin
(

2πkt
T

)
dt (1.77)

Using our trigonometric identities turns our integral of a product of sinusoids into a sum of integrals
of individual sinusoids, which are much easier to evaluate.∫ T

2
0

sin
(

2πt
T

)
sin
(

2πkt
T

)
dt = 1

2

∫ T
2

0
cos
(

2π(k−1)t
T

)
− cos

(
2π(k+1)t

T

)
dt

=

 1
2 if k = 1

0 otherwise

(1.78)

Thus,

b1 =
1
2

b2 = b3 = · · · = 0



58 CHAPTER 1. DSP SYSTEMS I

On to the cosine terms. The average value, which corresponds to a0, equals
1
π . The remainder

of the cosine coe�cients are easy to �nd, but yield the complicated result

ak =

 −
(

2
π

1
k2−1

)
if k ∈ {2, 4, . . . }

0 if k odd
(1.79)

Thus, the Fourier series for the half-wave recti�ed sinusoid has non-zero terms for the average,
the fundamental, and the even harmonics.



59

Solutions to Exercises in Chapter 1

Solution to Exercise 1.3.1 (p. 9)
2D Circular Convolution

∼
g [m,n] = IDFT (H [k, l]F [k, l])

= circular convolution in 2D
(1.80)

Solution to Exercise 1.6.1 (p. 17)
There are 2N − 1 non-zero output points and each will be computed using N complex mults and N − 1
complex adds. Therefore,

Total Cost = (2N − 1) (N +N − 1) ' O
(
N2
)

Solution to Exercise 1.8.1 (p. 26)

x [n+N ] = ???

Solution to Exercise 1.8.2 (p. 30)
S [n] is N -periodic, so it has the following Fourier Series26:

ck = 1
N

∫ N
2

−N2
δ [n] e(−j)2π k

N ndn

= 1
N

(1.81)

S [n] =
∞∑

k=−∞

e(−j)2π k
N n (1.82)

where the DTFT of the exponential in the above equation is equal to δ
(
ω − 2πk

N

)
.

Solution to Exercise 1.11.1 (p. 42)
Discretize (sample) X (ω) and H (ω). In order to do this, we should take the DFTs of x [n] and h [n] to get
X [k] and X [k]. Then we will compute

∼
y [n] = IDFT (X [k]H [k])

Does
∼
y [n] = y [n]?

Solution to Exercise 1.13.1 (p. 54)
The plotted temperatures were quantized to the nearest degree. Thus, the high temperature's amplitude
was quantized as a form of A/D conversion.
Solution to Exercise 1.13.2 (p. 55)
The signal-to-noise ratio does not depend on the signal amplitude. With an A/D range of [−A,A], the
quantization interval ∆ = 2A

2B
and the signal's rms value (again assuming it is a sinusoid) is A√

2
.

Solution to Exercise 1.13.3 (p. 55)
Solving 2−B = .001 results in B = 10 bits.
Solution to Exercise 1.13.4 (p. 55)
A 16-bit A/D converter yields a SNR of 6× 16 + 10log1.5 = 97.8 dB.
Solution to Exercise 1.14.1 (p. 56)
Write the coe�cients of the complex Fourier series in Cartesian form as ck = Ak + jBk and substitute into
the expression for the complex Fourier series.

∞∑
k=−∞

cke
j 2πkt

T =
∞∑

k=−∞

(Ak + jBk) ej
2πkt
T

26"Fourier Series: Eigenfunction Approach" <http://cnx.org/content/m10496/latest/>



60 CHAPTER 1. DSP SYSTEMS I

Simplifying each term in the sum using Euler's formula,

(Ak + jBk) ej
2πkt
T = (Ak + jBk)

(
cos
(

2πkt
T

)
+ jsin

(
2πkt
T

))
= Akcos

(
2πkt
T

)
−Bksin

(
2πkt
T

)
+ j

(
Aksin

(
2πkt
T

)
+Bkcos

(
2πkt
T

))
We now combine terms that have the same frequency index in magnitude. Because the signal is real-
valued, the coe�cients of the complex Fourier series have conjugate symmetry: c−k = ck

∗ or A−k = Ak and
B−k = −Bk. After we add the positive-indexed and negative-indexed terms, each term in the Fourier series
becomes 2Akcos

(
2πkt
T

)
− 2Bksin

(
2πkt
T

)
. To obtain the classic Fourier series (1.71), we must have 2Ak = ak

and 2Bk = −bk.
Solution to Exercise 1.14.2 (p. 57)
The average of a set of numbers is the sum divided by the number of terms. Viewing signal integration as
the limit of a Riemann sum, the integral corresponds to the average.
Solution to Exercise 1.14.3 (p. 57)
We found that the complex Fourier series coe�cients are given by ck = 2

jπk . The coe�cients are pure

imaginary, which means ak = 0. The coe�cients of the sine terms are given by bk = − (2Im (ck)) so that

bk =

 4
πk if k odd

0 if k even

Thus, the Fourier series for the square wave is

sq (t) =
∑

k∈{1,3,... }

4
πk

sin
(

2πkt
T

)
(1.83)



Chapter 2

Random Signals

2.1 Introduction to Random Signals and Processes1

Before now, you have probably dealt strictly with the theory behind signals and systems, as well as look
at some the basic characteristics of signals2 and systems3. In doing so you have developed an important
foundation; however, most electrical engineers do not get to work in this type of fantasy world. In many
cases the signals of interest are very complex due to the randomness of the world around them, which leaves
them noisy and often corrupted. This often causes the information contained in the signal to be hidden
and distorted. For this reason, it is important to understand these random signals and how to recover the
necessary information.

2.1.1 Signals: Deterministic vs. Stochastic

For this study of signals and systems, we will divide signals into two groups: those that have a �xed behavior
and those that change randomly. As most of you have probably already dealt with the �rst type, we will
focus on introducing you to random signals. Also, note that we will be dealing strictly with discrete-time
signals since they are the signals we deal with in DSP and most real-world computations, but these same
ideas apply to continuous-time signals.

2.1.1.1 Deterministic Signals

Most introductions to signals and systems deal strictly with deterministic signals. Each value of these
signals are �xed and can be determined by a mathematical expression, rule, or table. Because of this, future
values of any deterministic signal can be calculated from past values. For this reason, these signals are
relatively easy to analyze as they do not change, and we can make accurate assumptions about their past
and future behavior.

1This content is available online at <http://cnx.org/content/m10649/2.2/>.
2"Signal Classi�cations and Properties" <http://cnx.org/content/m10057/latest/>
3"System Classi�cations and Properties" <http://cnx.org/content/m10084/latest/>

61



62 CHAPTER 2. RANDOM SIGNALS

Deterministic Signal

Figure 2.1: An example of a deterministic signal, the sine wave.

2.1.1.2 Stochastic Signals

Unlike deterministic signals, stochastic signals, or random signals, are not so nice. Random signals
cannot be characterized by a simple, well-de�ned mathematical equation and their future values cannot
be predicted. Rather, we must use probability and statistics to analyze their behavior. Also, because of
their randomness, average values (Section 2.5) from a collection of signals are usually studied rather than
analyzing one individual signal.

Random Signal

Figure 2.2: We have taken the above sine wave and added random noise to it to come up with a noisy,
or random, signal. These are the types of signals that we wish to learn how to deal with so that we can
recover the original sine wave.

2.1.2 Random Process

As mentioned above, in order to study random signals, we want to look at a collection of these signals rather
than just one instance of that signal. This collection of signals is called a random process.

De�nition 2.1: random process
A family or ensemble of signals that correspond to every possible outcome of a certain signal
measurement. Each signal in this collection is referred to as a realization or sample function of
the process.
Example
As an example of a random process, let us look at the Random Sinusoidal Process below. We use
f [n] = Asin (ωn+ φ) to represent the sinusoid with a given amplitude and phase. Note that the



63

phase and amplitude of each sinusoid is based on a random number, thus making this a random
process.

Random Sinusoidal Process

Figure 2.3: A random sinusoidal process, with the amplitude and phase being random numbers.

A random process is usually denoted by X (t) or X [n], with x (t) or x [n] used to represent an individual
signal or waveform from this process.

In many notes and books, you might see the following notation and terms used to describe di�erent
types of random processes. For a discrete random process, sometimes just called a random sequence, t
represents time that has a �nite number of values. If t can take on any value of time, we have a continuous
random process. Often times discrete and continuous refer to the amplitude of the process, and process or
sequence refer to the nature of the time variable. For this study, we often just use random process to refer
to a general collection of discrete-time signals, as seen above in Figure 2.3 (Random Sinusoidal Process).



64 CHAPTER 2. RANDOM SIGNALS

2.2 Introduction to Stochastic Processes4

2.2.1 De�nitions, distributions, and stationarity

De�nition 2.2: Stochastic Process
Given a sample space, a stochastic process is an indexed collection of random variables de�ned for
each ω ∈ Ω.

Xt (ω) , t ∈ R (2.1)

Example 2.1
Received signal at an antenna as in Figure 2.4.

Figure 2.4

For a given t, Xt (ω) is a random variable with a distribution

First-order distribution

FXt (b) = Pr [Xt ≤ b]
= Pr [{ω ∈ Ω | Xt (ω) ≤ b}]

(2.2)

De�nition 2.3: First-order stationary process
If FXt (b) is not a function of time then Xt is called a �rst-order stationary process.

Second-order distribution

FXt1 ,Xt2 (b1, b2) = Pr [Xt1 ≤ b1, Xt2 ≤ b2] (2.3)

for all t1 ∈ R, t2 ∈ R, b1 ∈ R, b2 ∈ R
4This content is available online at <http://cnx.org/content/m10235/2.15/>.



65

Nth-order distribution

FXt1 ,Xt2 ,...,XtN (b1, b2, . . . , bN ) = Pr [Xt1 ≤ b1, . . . , XtN ≤ bN ] (2.4)

Nth-order stationary : A random process is stationary of order N if

FXt1 ,Xt2 ,...,XtN (b1, b2, . . . , bN ) = FXt1+T ,Xt2+T ,...,XtN+T (b1, b2, . . . , bN ) (2.5)

Strictly stationary : A process is strictly stationary if it is Nth order stationary for all N .

Example 2.2
Xt = cos (2πf0t+ Θ (ω)) where f0 is the deterministic carrier frequency and Θ (ω) : Ω → R
is a random variable de�ned over [−π, π] and is assumed to be a uniform random variable; i.e.,

fΘ (θ) =

 1
2π if θ ∈ [−π, π]

0 otherwise

FXt (b) = Pr [Xt ≤ b]
= Pr [cos (2πf0t+ Θ) ≤ b]

(2.6)

FXt (b) = Pr [−π ≤ 2πf0t+ Θ ≤ −arccos (b)] + Pr [arccos (b) ≤ 2πf0t+ Θ ≤ π] (2.7)

FXt (b) =
∫ (−arccos(b))−2πf0t

(−π)−2πf0t
1

2πdθ +
∫ π−2πf0t

arccos(b)−2πf0t
1

2πdθ

= (2π − 2arccos (b)) 1
2π

(2.8)

fXt (x) = d
dx

(
1− 1

πarccos (x)
)

=

 1
π
√

1−x2 if |x| ≤ 1

0 otherwise

(2.9)

This process is stationary of order 1.



66 CHAPTER 2. RANDOM SIGNALS

Figure 2.5

The second order stationarity can be determined by �rst considering conditional densities and
the joint density. Recall that

Xt = cos (2πf0t+ Θ) (2.10)

Then the relevant step is to �nd

Pr [Xt2 ≤ b2 | Xt1 = x1] (2.11)

Note that
(Xt1 = x1 = cos (2πf0t+ Θ))⇒ (Θ = arccos (x1)− 2πf0t) (2.12)

Xt2 = cos (2πf0t2 + arccos (x1)− 2πf0t1)

= cos (2πf0 (t2 − t1) + arccos (x1))
(2.13)

Figure 2.6



67

FXt2 ,Xt1 (b2, b1) =
∫ b1

−∞
fXt1 (x1)Pr [Xt2 ≤ b2 | Xt1 = x1] dx 1 (2.14)

Note that this is only a function of t2 − t1.
Example 2.3
Every T seconds, a fair coin is tossed. If heads, then Xt = 1 for nT ≤ t < (n+ 1)T . If tails, then
Xt = −1 for nT ≤ t < (n+ 1)T .

Figure 2.7

pXt (x) =

 1
2 if x = 1
1
2 if x = −1

(2.15)

for all t ∈ R. Xt is stationary of order 1.
Second order probability mass function

pXt1Xt2 (x1, x2) = pXt2 |Xt1 (x2|x1) pXt1 (x1) (2.16)

The conditional pmf

pXt2 |Xt1 (x2|x1) =

 0 if x2 6= x1

1 if x2 = x1

(2.17)

when nT ≤ t1 < (n+ 1)T and nT ≤ t2 < (n+ 1)T for some n.

pXt2 |Xt1 (x2|x1) = pXt2 (x2) (2.18)

for all x1 and for all x2 when nT ≤ t1 < (n+ 1)T and mT ≤ t2 < (m+ 1)T with n 6= m

pXt2Xt1 (x2, x1) =


0 if x2 6= x1for nT ≤ t1, t2 < (n+ 1)T

pXt1 (x1) if x2 = x1for nT ≤ t1, t2 < (n+ 1)T

pXt1 (x1) pXt2 (x2) if n 6= mfor (nT ≤ t1 < (n+ 1)T ) and (mT ≤ t2 < (m+ 1)T )

(2.19)



68 CHAPTER 2. RANDOM SIGNALS

2.3 Random Signals5

Random signals are random variables which evolve, often with time (e.g. audio noise), but also with distance
(e.g. intensity in an image of a random texture), or sometimes another parameter.

They can be described as usual by their cdf and either their pmf (if the amplitude is discrete, as in a
digitized signal) or their pdf (if the amplitude is continuous, as in most analogue signals).

However a very important additional property is how rapidly a random signal �uctuates. Clearly a
slowly varying signal such as the waves in an ocean is very di�erent from a rapidly varying signal such as
vibrations in a vehicle. We will see later in here6 how to deal with these frequency dependent characteristics
of randomness.

For the moment we shall assume that random signals are sampled at regular intervals and that each
signal is equivalent to a sequence of samples of a given random process, as in the following examples.

5This content is available online at <http://cnx.org/content/m10989/2.5/>.
6"Approximation Formulae for the Gaussian Error Integral, Q(x)" <http://cnx.org/content/m11067/latest/>



69

Figure 2.8: Detection of signals in noise: (a) the transmitted binary signal; (b) the binary signal after
�ltering with a half-sine receiver �lter; (c) the channel noise after �ltering with the same �lter; (d) the
�ltered signal plus noise at the detector in the receiver.



70 CHAPTER 2. RANDOM SIGNALS

Figure 2.9: The pdfs of the signal plus noise at the detector for the two ± (1). The vertical dashed
line is the detector threshold and the shaded area to the left of the origin represents the probability of
error when data = 1.

2.3.1 Example - Detection of a binary signal in noise

We now consider the example of detecting a binary signal after it has passed through a channel which adds
noise. The transmitted signal is typically as shown in (a) of Figure 2.8.

In order to reduce the channel noise, the receiver will include a lowpass �lter. The aim of the �lter is
to reduce the noise as much as possible without reducing the peak values of the signal signi�cantly. A good
�lter for this has a half-sine impulse response of the form:

h (t) =


π

2Tb
sin
(
πt
Tb

)
if 0 ≤ t ≤ Tb

0 otherwise
(2.20)

Where Tb = bit period.
This �lter will convert the rectangular data bits into sinusoidally shaped pulses as shown in (b) of

Figure 2.8 and it will also convert wide bandwidth channel noise into the form shown in (c) of Figure 2.8.
Bandlimited noise of this form will usually have an approximately Gaussian pdf.

Because this �lter has an impulse response limited to just one bit period and has unit gain at zero
frequency (the area under h (t) is unity), the signal values at the center of each bit period at the detector
will still be ± (1). If we choose to sample each bit at the detector at this optimal mid point, the pdfs of the
signal plus noise at the detector will be shown in Figure 2.9.

Let the �ltered data signal be D (t) and the �ltered noise be U (t), then the detector signal is

R (t) = D (t) + U (t) (2.21)

If we assume that + (1) and −1 bits are equiprobable and the noise is a symmetric zero-mean process, the
optimum detector threshold is clearly midway between these two states, i.e. at zero. The probability of error
when the data = + (1) is then given by:

Pr [ error | D = + (1)] = Pr [R (t) < 0 | D = + (1)]

= FU (−1)

=
∫ −1

−∞ fU (u) du

(2.22)



71

where FU and fU are the cdf and pdf of U . This is the shaded area in Figure 2.9.
Similarly the probability of error when the data = −1 is then given by:

Pr [ error | D = −1] = Pr [R (t) > 0 | D = −1]

= 1− FU (+ (1))

=
∫∞

1
fU (u) du

(2.23)

Hence the overall probability of error is:

Pr [error] = Pr [ error | D = + (1)]Pr [D = + (1)] + Pr [ error | D = −1]Pr [D = −1]

=
∫ −1

−∞ fU (u) duPr [D = + (1)] +
∫∞

1
fU (u) duPr [D = −1]

(2.24)

since fU is symmetric about zero

Pr [error] =
∫ ∞

1

fU (u) du (Pr [D = + (1)] + Pr [D = −1]) =
∫ ∞

1

fU (u) du

To be a little more general and to account for signal attenuation over the channel, we shall assume that the
signal values at the detector are ± (v0) (rather than ± (1)) and that the �ltered noise at the detector has a
zero-mean Gaussian pdf with variance σ2:

fU (u) =
1√

2πσ2
e−

u2

2σ2 (2.25)

and so

Pr [error] =
∫∞
v0
fU (u) du

=
∫∞
v0
σ
fU (σu)σdu

= Q
(
v0
σ

) (2.26)

where

Q (x) =
1√
2π

∫ ∞
x

e−
u2
2 du (2.27)

This integral has no analytic solution, but a good approximation to it exists and is discussed in some detail
in here7.

From (2.26) we may obtain the probability of error in the binary detector, which is often expressed as
the bit error rate or BER. For example, if Pr [error] = 2 × 103, this would often be expressed as a bit
error rate of 2× 103, or alternatively as 1 error in 500 bits (on average).

The argument ( v0
σ ) in (2.26) is the signal-to-noise voltage ratio (SNR) at the detector, and the BER

rapidly diminishes with increasing SNR (see here8).

2.4 Stationary and Nonstationary Random Processes9

2.4.1 Introduction

From the de�nition of a random process (Section 2.1), we know that all random processes are composed
of random variables, each at its own unique point in time. Because of this, random processes have all the
properties of random variables, such as mean, correlation, variances, etc.. When dealing with groups of signals

7"Approximation Formulae for the Gaussian Error Integral, Q(x)" <http://cnx.org/content/m11067/latest/>
8"Approximation Formulae for the Gaussian Error Integral, Q(x)", Figure 1

<http://cnx.org/content/m11067/latest/#�gure1>
9This content is available online at <http://cnx.org/content/m10684/2.2/>.



72 CHAPTER 2. RANDOM SIGNALS

or sequences it will be important for us to be able to show whether of not these statistical properties hold
true for the entire random process. To do this, the concept of stationary processes has been developed.
The general de�nition of a stationary process is:

De�nition 2.4: stationary process
a random process where all of its statistical properties do not vary with time

Processes whose statistical properties do change are referred to as nonstationary.
Understanding the basic idea of stationarity will help you to be able to follow the more concrete and

mathematical de�nition to follow. Also, we will look at various levels of stationarity used to describe the
various types of stationarity characteristics a random process can have.

2.4.2 Distribution and Density Functions

In order to properly de�ne what it means to be stationary from a mathematical standpoint, one needs to
be somewhat familiar with the concepts of distribution and density functions. If you can remember your
statistics then feel free to skip this section!

Recall that when dealing with a single random variable, the probability distribution function is a
simply tool used to identify the probability that our observed random variable will be less than or equal to
a given number. More precisely, let X be our random variable, and let x be our given value; from this we
can de�ne the distribution function as

Fx (x) = Pr [X ≤ x] (2.28)

This same idea can be applied to instances where we have multiple random variables as well. There may be
situations where we want to look at the probability of event X and Y both occurring. For example, below
is an example of a second-order joint distribution function.

Fx (x, y) = Pr [X ≤ x, Y ≤ y] (2.29)

While the distribution function provides us with a full view of our variable or processes probability,
it is not always the most useful for calculations. Often times we will want to look at its derivative, the
probability density function (pdf). We de�ne the the pdf as

fx (x) =
d

dx
Fx (x) (2.30)

fx (x) dx = Pr [x < X ≤ x+ dx] (2.31)

(2.31) reveals some of the physical signi�cance of the density function. This equations tells us the probability
that our random variable falls within a given interval can be approximated by fx (x) dx. From the pdf, we
can now use our knowledge of integrals to evaluate probabilities from the above approximation. Again we
can also de�ne a joint density function which will include multiple random variables just as was done
for the distribution function. The density function is used for a variety of calculations, such as �nding the
expected value or proving a random variable is stationary, to name a few.

note: The above examples explain the distribution and density functions in terms of a single
random variable, X. When we are dealing with signals and random processes, remember that
we will have a set of random variables where a di�erent random variable will occur at each time
instance of the random process, X (tk). In other words, the distribution and density function will
also need to take into account the choice of time.

2.4.3 Stationarity

Below we will now look at a more in depth and mathematical de�nition of a stationary process. As was
mentioned previously, various levels of stationarity exist and we will look at the most common types.



73

2.4.3.1 First-Order Stationary Process

A random process is classi�ed as �rst-order stationary if its �rst-order probability density function remains
equal regardless of any shift in time to its time origin. If we let xt1 represent a given value at time t1, then
we de�ne a �rst-order stationary as one that satis�es the following equation:

fx (xt1) = fx (xt1+τ ) (2.32)

The physical signi�cance of this equation is that our density function, fx (xt1), is completely independent
of t1 and thus any time shift, τ .

The most important result of this statement, and the identifying characteristic of any �rst-order stationary
process, is the fact that the mean is a constant, independent of any time shift. Below we show the results
for a random process, X, that is a discrete-time signal, x [n].

−
X = mx [n]

= E [x [n]]

= constant (independent of n)

(2.33)

2.4.3.2 Second-Order and Strict-Sense Stationary Process

A random process is classi�ed as second-order stationary if its second-order probability density function
does not vary over any time shift applied to both values. In other words, for values xt1 and xt2 then we will
have the following be equal for an arbitrary time shift τ .

fx (xt1 , xt2) = fx (xt1+τ , xt2+τ ) (2.34)

From this equation we see that the absolute time does not a�ect our functions, rather it only really depends
on the time di�erence between the two variables. Looked at another way, this equation can be described as

Pr [X (t1) ≤ x1, X (t2) ≤ x2] = Pr [X (t1 + τ) ≤ x1, X (t2 + τ) ≤ x2] (2.35)

These random processes are often referred to as strict sense stationary (SSS) when all of the distri-
bution functions of the process are unchanged regardless of the time shift applied to them.

For a second-order stationary process, we need to look at the autocorrelation function (Section 2.7) to see
its most important property. Since we have already stated that a second-order stationary process depends
only on the time di�erence, then all of these types of processes have the following property:

Rxx (t, t+ τ) = E [X (t+ τ)]

= Rxx (τ)
(2.36)

2.4.3.3 Wide-Sense Stationary Process

As you begin to work with random processes, it will become evident that the strict requirements of a SSS
process is more than is often necessary in order to adequately approximate our calculations on random
processes. We de�ne a �nal type of stationarity, referred to as wide-sense stationary (WSS), to have
slightly more relaxed requirements but ones that are still enough to provide us with adequate results. In
order to be WSS a random process only needs to meet the following two requirements.

1.
−
X= E [x [n]] = constant

2. E [X (t+ τ)] = Rxx (τ)

Note that a second-order (or SSS) stationary process will always be WSS; however, the reverse will not
always hold true.



74 CHAPTER 2. RANDOM SIGNALS

2.5 Random Processes: Mean and Variance10

In order to study the characteristics of a random process (Section 2.1), let us look at some of the basic
properties and operations of a random process. Below we will focus on the operations of the random signals
that compose our random processes. We will denote our random process with X and a random variable from
a random process or signal by x.

2.5.1 Mean Value

Finding the average value of a set of random signals or random variables is probably the most fundamental
concepts we use in evaluating random processes through any sort of statistical method. The mean of a
random process is the average of all realizations of that process. In order to �nd this average, we
must look at a random signal over a range of time (possible values) and determine our average from this set
of values. The mean, or average, of a random process, x (t), is given by the following equation:

mx (t) = µx (t)

=
−
X

= E [X]

=
∫∞
−∞ xf (x) dx

(2.37)

This equation may seem quite cluttered at �rst glance, but we want to introduce you to the various notations
used to represent the mean of a random signal or process. Throughout texts and other readings, remember
that these will all equal the same thing. The symbol, µx (t), and the X with a bar over it are often used as a
short-hand to represent an average, so you might see it in certain textbooks. The other important notation
used is, E [X], which represents the "expected value of X" or the mathematical expectation. This notation
is very common and will appear again.

If the random variables, which make up our random process, are discrete or quantized values, such as in
a binary process, then the integrals become summations over all the possible values of the random variable.
In this case, our expected value becomes

E [x [n]] =
∑
x

αPr [x [n] = α] (2.38)

If we have two random signals or variables, their averages can reveal how the two signals interact. If the
product of the two individual averages of both signals do not equal the average of the product of the two
signals, then the two signals are said to be linearly independent, also referred to as uncorrelated.

In the case where we have a random process in which only one sample can be viewed at a time, then
we will often not have all the information available to calculate the mean using the density function as
shown above. In this case we must estimate the mean through the time-average mean (Section 2.5.4: Time
Averages), discussed later. For �elds such as signal processing that deal mainly with discrete signals and
values, then these are the averages most commonly used.

2.5.1.1 Properties of the Mean

• The expected value of a constant, α, is the constant:

E [α] = α (2.39)

• Adding a constant, α, to each term increases the expected value by that constant:

E [X + α] = E [X] + α (2.40)

10This content is available online at <http://cnx.org/content/m10656/2.3/>.



75

• Multiplying the random variable by a constant, α, multiplies the expected value by that constant.

E [αX] = αE [X] (2.41)

• The expected value of the sum of two or more random variables, is the sum of each individual expected
value.

E [X + Y ] = E [X] + E [Y ] (2.42)

2.5.2 Mean-Square Value

If we look at the second moment of the term (we now look at x2 in the integral), then we will have the
mean-square value of our random process. As you would expect, this is written as

−
X2 = E

[
X2
]

=
∫∞
−∞ x2f (x) dx

(2.43)

This equation is also often referred to as the average power of a process or signal.

2.5.3 Variance

Now that we have an idea about the average value or values that a random process takes, we are often
interested in seeing just how spread out the di�erent random values might be. To do this, we look at the
variance which is a measure of this spread. The variance, often denoted by σ2, is written as follows:

σ2 = Var (X)

= E
[
(X − E [X])2

]
=

∫∞
−∞

(
x−

−
X

)2

f (x) dx

(2.44)

Using the rules for the expected value, we can rewrite this formula as the following form, which is commonly
seen:

σ2 =
−
X2 −

(
−
X

)2

= E
[
X2
]
− (E [X])2

(2.45)

2.5.3.1 Standard Deviation

Another common statistical tool is the standard deviation. Once you know how to calculate the variance,
the standard deviation is simply the square root of the variance, or σ.

2.5.3.2 Properties of Variance

• The variance of a constant, α, equals zero:

Var (α) = σ (α)2

= 0
(2.46)



76 CHAPTER 2. RANDOM SIGNALS

• Adding a constant, α, to a random variable does not a�ect the variance because the mean increases
by the same value:

Var (X + α) = σ (X + α)2

= σ (X)2
(2.47)

• Multiplying the random variable by a constant, α, increases the variance by the square of the constant:

Var (αX) = σ (αX)2

= α2σ (X)2
(2.48)

• The variance of the sum of two random variables only equals the sum of the variances if the variable
are independent.

Var (X + Y ) = σ (X + Y )2

= σ (X)2 + σ (Y )2
(2.49)

Otherwise, if the random variable are not independent, then we must also include the covariance of
the product of the variables as follows:

Var (X + Y ) = σ (X)2 + 2Cov (X,Y ) + σ (Y )2
(2.50)

2.5.4 Time Averages

In the case where we can not view the entire ensemble of the random process, we must use time averages
to estimate the values of the mean and variance for the process. Generally, this will only give us acceptable
results for independent and ergodic processes, meaning those processes in which each signal or member of
the process seems to have the same statistical behavior as the entire process. The time averages will also
only be taken over a �nite interval since we will only be able to see a �nite part of the sample.

2.5.4.1 Estimating the Mean

For the ergodic random process, x (t), we will estimate the mean using the time averaging function de�ned
as

−
X = E [X]

= 1
T

∫ T
0
X (t) dt

(2.51)

However, for most real-world situations we will be dealing with discrete values in our computations and
signals. We will represent this mean as

−
X = E [X]

= 1
N

∑N
n=1X [n]

(2.52)

2.5.4.2 Estimating the Variance

Once the mean of our random process has been estimated then we can simply use those values in the following
variance equation (introduced in one of the above sections)

σx
2 =

−
X2 −

(
−
X

)2

(2.53)



77

2.5.5 Example

Let us now look at how some of the formulas and concepts above apply to a simple example. We will just
look at a single, continuous random variable for this example, but the calculations and methods are the same
for a random process. For this example, we will consider a random variable having the probability density
function described below and shown in Figure 2.10 (Probability Density Function).

f (x) =

 1
10 if 10 ≤ x ≤ 20

0 otherwise
(2.54)

Probability Density Function

Figure 2.10: A uniform probability density function.

First, we will use (2.37) to solve for the mean value.

−
X =

∫ 20

10
x 1

10dx

= 1
10
x2

2 |
20
x=10

= 1
10 (200− 50)

= 15

(2.55)

Using (2.43) we can obtain the mean-square value for the above density function.

−
X2 =

∫ 20

10
x2 1

10dx

= 1
10
x3

3 |
20
x=10

= 1
10

(
8000

3 − 1000
3

)
= 233.33

(2.56)

And �nally, let us solve for the variance of this function.

σ2 =
−
X2 −

(
−
X

)2

= 233.33− 152

= 8.33

(2.57)



78 CHAPTER 2. RANDOM SIGNALS

2.6 Correlation and Covariance of a Random Signal11

When we take the expected value (Section 2.5), or average, of a random process (Section 2.1.2: Random
Process), we measure several important characteristics about how the process behaves in general. This
proves to be a very important observation. However, suppose we have several random processes measuring
di�erent aspects of a system. The relationship between these di�erent processes will also be an important
observation. The covariance and correlation are two important tools in �nding these relationships. Below
we will go into more details as to what these words mean and how these tools are helpful. Note that much of
the following discussions refer to just random variables, but keep in mind that these variables can represent
random signals or random processes.

2.6.1 Covariance

To begin with, when dealing with more than one random process, it should be obvious that it would be nice
to be able to have a number that could quickly give us an idea of how similar the processes are. To do this,
we use the covariance, which is analogous to the variance of a single variable.

De�nition 2.5: Covariance
A measure of how much the deviations of two or more variables or processes match.

For two processes, X and Y , if they are not closely related then the covariance will be small, and if they
are similar then the covariance will be large. Let us clarify this statement by describing what we mean by
"related" and "similar." Two processes are "closely related" if their distribution spreads are almost equal
and they are around the same, or a very slightly di�erent, mean.

Mathematically, covariance is often written as σxy and is de�ned as

cov (X,Y ) = σxy

= E

[(
X−

−
X

)(
Y−

−
Y

)]
(2.58)

This can also be reduced and rewritten in the following two forms:

σxy =
−

(xy) − −x
−
y (2.59)

σxy =
∫ ∞
−∞

∫ ∞
−∞

(
X−

−
X

)(
Y−

−
Y

)
f (x, y) dxdy (2.60)

2.6.1.1 Useful Properties

• If X and Y are independent and uncorrelated or one of them has zero mean value, then

σxy = 0

• If X and Y are orthogonal, then
σxy = − (E [X]E [Y ])

• The covariance is symmetric
cov (X,Y ) = cov (Y,X)

11This content is available online at <http://cnx.org/content/m10673/2.3/>.



79

• Basic covariance identity
cov (X + Y, Z) = cov (X,Z) + cov (Y, Z)

• Covariance of equal variables
cov (X,X) = Var (X)

2.6.2 Correlation

For anyone who has any kind of statistical background, you should be able to see that the idea of de-
pendence/independence among variables and signals plays an important role when dealing with random
processes. Because of this, the correlation of two variables provides us with a measure of how the two
variables a�ect one another.

De�nition 2.6: Correlation
A measure of how much one random variable depends upon the other.

This measure of association between the variables will provide us with a clue as to how well the value
of one variable can be predicted from the value of the other. The correlation is equal to the average of the
product of two random variables and is de�ned as

cor (X,Y ) = E [XY ]

=
∫∞
−∞

∫∞
−∞ xyf (x, y) dxdy

(2.61)

2.6.2.1 Correlation Coe�cient

It is often useful to express the correlation of random variables with a range of numbers, like a percentage.
For a given set of variables, we use the correlation coe�cient to give us the linear relationship between
our variables. The correlation coe�cient of two variables is de�ned in terms of their covariance and standard
deviations (Section 2.5.3.1: Standard Deviation), denoted by σx, as seen below

ρ =
cov (X,Y )
σxσy

(2.62)

where we will always have
−1 ≤ ρ ≤ 1

This provides us with a quick and easy way to view the correlation between our variables. If there is no
relationship between the variables then the correlation coe�cient will be zero and if there is a perfect positive
match it will be one. If there is a perfect inverse relationship, where one set of variables increases while the
other decreases, then the correlation coe�cient will be negative one. This type of correlation is often referred
to more speci�cally as the Pearson's Correlation Coe�cient,or Pearson's Product Moment Correlation.



80 CHAPTER 2. RANDOM SIGNALS

(a) (b)

(c)

Figure 2.11: Types of Correlation (a) Positive Correlation (b) Negative Correlation (c) Uncorrelated
(No Correlation)

note: So far we have dealt with correlation simply as a number relating the relationship between
any two variables. However, since our goal will be to relate random processes to each other,
which deals with signals as a function of time, we will want to continue this study by looking at
correlation functions (Section 2.7).

2.6.3 Example

Now let us take just a second to look at a simple example that involves calculating the covariance and
correlation of two sets of random numbers. We are given the following data sets:

x = {3, 1, 6, 3, 4}

y = {1, 5, 3, 4, 3}
To begin with, for the covariance we will need to �nd the expected value (Section 2.5), or mean, of x and
y.

−
x=

1
5

(3 + 1 + 6 + 3 + 4) = 3.4

−
y=

1
5

(1 + 5 + 3 + 4 + 3) = 3.2

−
xy=

1
5

(3 + 5 + 18 + 12 + 12) = 10

Next we will solve for the standard deviations of our two sets using the formula below (for a review click
here (Section 2.5.3: Variance)).

σ =
√
E
[
(X − E [X])2

]



81

σx =

√
1
5

(0.16 + 5.76 + 6.76 + 0.16 + 0.36) = 1.625

σy =

√
1
6

(4.84 + 3.24 + 0.04 + 0.64 + 0.04) = 1.327

Now we can �nally calculate the covariance using one of the two formulas found above. Since we calculated
the three means, we will use that formula (2.59) since it will be much simpler.

σxy = 10− 3.4× 3.2 = −0.88

And for our last calculation, we will solve for the correlation coe�cient, ρ.

ρ =
−0.88

1.625× 1.327
= −0.408

2.6.3.1 Matlab Code for Example

The above example can be easily calculated using Matlab. Below I have included the code to �nd all of the
values above.

x = [3 1 6 3 4];

y = [1 5 3 4 3];

mx = mean(x)

my = mean(y)

mxy = mean(x.*y)

% Standard Dev. from built-in Matlab Functions

std(x,1)

std(y,1)

% Standard Dev. from Equation Above (same result as std(?,1))

sqrt( 1/5 * sum((x-mx).^2))

sqrt( 1/5 * sum((y-my).^2))

cov(x,y,1)

corrcoef(x,y)

2.7 Autocorrelation of Random Processes12

Before diving into a more complex statistical analysis of random signals and processes (Section 2.1), let us
quickly review the idea of correlation (Section 2.6). Recall that the correlation of two signals or variables
is the expected value of the product of those two variables. Since our focus will be to discover more about
a random process, a collection of random signals, then imagine us dealing with two samples of a random

12This content is available online at <http://cnx.org/content/m10676/2.4/>.



82 CHAPTER 2. RANDOM SIGNALS

process, where each sample is taken at a di�erent point in time. Also recall that the key property of these
random processes is that they are now functions of time; imagine them as a collection of signals. The expected
value (Section 2.5) of the product of these two variables (or samples) will now depend on how quickly they
change in regards to time. For example, if the two variables are taken from almost the same time period,
then we should expect them to have a high correlation. We will now look at a correlation function that
relates a pair of random variables from the same process to the time separations between them, where the
argument to this correlation function will be the time di�erence. For the correlation of signals from two
di�erent random process, look at the crosscorrelation function (Section 2.8).

2.7.1 Autocorrelation Function

The �rst of these correlation functions we will discuss is the autocorrelation, where each of the random
variables we will deal with come from the same random process.

De�nition 2.7: Autocorrelation
the expected value of the product of a random variable or signal realization with a time-shifted
version of itself

With a simple calculation and analysis of the autocorrelation function, we can discover a few important
characteristics about our random process. These include:

1. How quickly our random signal or processes changes with respect to the time function
2. Whether our process has a periodic component and what the expected frequency might be

As was mentioned above, the autocorrelation function is simply the expected value of a product. Assume we
have a pair of random variables from the same process,X1 = X (t1) andX2 = X (t2), then the autocorrelation
is often written as

Rxx (t1, t2) = E [X1X2]

=
∫∞
−∞

∫∞
−∞ x1x2f (x1, x2) dx 2dx 1

(2.63)

The above equation is valid for stationary and nonstationary random processes. For stationary processes
(Section 2.4), we can generalize this expression a little further. Given a wide-sense stationary processes, it
can be proven that the expected values from our random process will be independent of the origin of our time
function. Therefore, we can say that our autocorrelation function will depend on the time di�erence and not
some absolute time. For this discussion, we will let τ = t2 − t1, and thus we generalize our autocorrelation
expression as

Rxx (t, t+ τ) = Rxx (τ)

= E [X (t)X (t+ τ)]
(2.64)

for the continuous-time case. In most DSP course we will be more interested in dealing with real signal
sequences, and thus we will want to look at the discrete-time case of the autocorrelation function. The
formula below will prove to be more common and useful than (2.63):

Rxx [n, n+m] =
∞∑

n=−∞
x [n]x [n+m] (2.65)

And again we can generalize the notation for our autocorrelation function as

Rxx [n, n+m] = Rxx [m]

= E [X [n]X [n+m]]
(2.66)



83

2.7.1.1 Properties of Autocorrelation

Below we will look at several properties of the autocorrelation function that hold for stationary random
processes.

• Autocorrelation is an even function for τ

Rxx (τ) = Rxx (−τ)

• The mean-square value can be found by evaluating the autocorrelation where τ = 0, which gives us

Rxx (0) =
−
X2

• The autocorrelation function will have its largest value when τ = 0. This value can appear again,
for example in a periodic function at the values of the equivalent periodic points, but will never be
exceeded.

Rxx (0) ≥ |Rxx (τ) |

• If we take the autocorrelation of a period function, then Rxx (τ) will also be periodic with the same
frequency.

2.7.1.2 Estimating the Autocorrleation with Time-Averaging

Sometimes the whole random process is not available to us. In these cases, we would still like to be able to
�nd out some of the characteristics of the stationary random process, even if we just have part of one sample
function. In order to do this we can estimate the autocorrelation from a given interval, 0 to T seconds, of
the sample function.

R̆xx (τ) =
1

T − τ

∫ T−τ

0

x (t)x (t+ τ) dt (2.67)

However, a lot of times we will not have su�cient information to build a complete continuous-time function of
one of our random signals for the above analysis. If this is the case, we can treat the information we do know
about the function as a discrete signal and use the discrete-time formula for estimating the autocorrelation.

R̆xx [m] =
1

N −m

N−m−1∑
n=0

x [n]x [n+m] (2.68)

2.7.2 Examples

Below we will look at a variety of examples that use the autocorrelation function. We will begin with a
simple example dealing with Gaussian White Noise (GWN) and a few basic statistical properties that will
prove very useful in these and future calculations.

Example 2.4
We will let x [n] represent our GWN. For this problem, it is important to remember the following
fact about the mean of a GWN function:

E [x [n]] = 0



84 CHAPTER 2. RANDOM SIGNALS

Figure 2.12: Gaussian density function. By examination, can easily see that the above statement is
true - the mean equals zero.

Along with being zero-mean, recall that GWN is always independent. With these two facts,
we are now ready to do the short calculations required to �nd the autocorrelation.

Rxx [n, n+m] = E [x [n]x [n+m]]

Since the function, x [n], is independent, then we can take the product of the individual expected
values of both functions.

Rxx [n, n+m] = E [x [n]]E [x [n+m]]

Now, looking at the above equation we see that we can break it up further into two conditions: one
when m and n are equal and one when they are not equal. When they are equal we can combine
the expected values. We are left with the following piecewise function to solve:

Rxx [n, n+m] =

 E [x [n]]E [x [n+m]] if m 6= 0

E
[
x2 [n]

]
if m = 0

We can now solve the two parts of the above equation. The �rst equation is easy to solve as we
have already stated that the expected value of x [n] will be zero. For the second part, you should
recall from statistics that the expected value of the square of a function is equal to the variance.
Thus we get the following results for the autocorrelation:

Rxx [n, n+m] =

 0 if m 6= 0

σ2 if m = 0

Or in a more concise way, we can represent the results as

Rxx [n, n+m] = σ2δ [m]

2.8 Crosscorrelation of Random Processes13

Before diving into a more complex statistical analysis of random signals and processes (Section 2.1), let us
quickly review the idea of correlation (Section 2.6). Recall that the correlation of two signals or variables
is the expected value of the product of those two variables. Since our main focus is to discover more about
random processes, a collection of random signals, we will deal with two random processes in this discussion,
where in this case we will deal with samples from two di�erent random processes. We will analyze the
expected value (Section 2.5.1: Mean Value) of the product of these two variables and how they correlate to
one another, where the argument to this correlation function will be the time di�erence. For the correlation
of signals from the same random process, look at the autocorrelation function (Section 2.7).

13This content is available online at <http://cnx.org/content/m10686/2.2/>.



85

2.8.1 Crosscorrelation Function

When dealing with multiple random processes, it is also important to be able to describe the relationship,
if any, between the processes. For example, this may occur if more than one random signal is applied to a
system. In order to do this, we use the crosscorrelation function, where the variables are instances from
two di�erent wide sense stationary random processes.

De�nition 2.8: Crosscorrelation
if two processes are wide sense stationary, the expected value of the product of a random variable
from one random process with a time-shifted, random variable from a di�erent random process

Looking at the generalized formula for the crosscorrelation, we will represent our two random processes
by allowing U = U (t) and V = V (t− τ). We will de�ne the crosscorrelation function as

Ruv (t, t− τ) = E [UV ]

=
∫∞
−∞

∫∞
−∞ uvf (u, v) dvdu

(2.69)

Just as the case with the autocorrelation function, if our input and output, denoted as U (t) and V (t), are
at least jointly wide sense stationary, then the crosscorrelation does not depend on absolute time; it is just
a function of the time di�erence. This means we can simplify our writing of the above function as

Ruv (τ) = E [UV ] (2.70)

or if we deal with two real signal sequences, x [n] and y [n], then we arrive at a more commonly seen formula
for the discrete crosscorrelation function. See the formula below and notice the similarities between it and
the convolution14 of two signals:

Rxy (n, n−m) = Rxy (m)

=
∑∞
n=−∞ x [n] y [n−m]

(2.71)

2.8.1.1 Properties of Crosscorrelation

Below we will look at several properties of the crosscorrelation function that hold for two wide sense
stationary (WSS) random processes.

• Crosscorrelation is not an even function; however, it does have a unique symmetry property:

Rxy (−τ) = Ryx (τ) (2.72)

• The maximum value of the crosscorrelation is not always when the shift equals zero; however, we can
prove the following property revealing to us what value the maximum cannot exceed.

|Rxy (τ) | ≤
√
Rxx (0)Ryy (0) (2.73)

• When two random processes are statistically independent then we have

Rxy (τ) = Ryx (τ) (2.74)

14"Discrete Time Convolution" <http://cnx.org/content/m10087/latest/>



86 CHAPTER 2. RANDOM SIGNALS

2.8.2 Examples

Exercise 2.8.1 (Solution on p. 87.)

Let us begin by looking at a simple example showing the relationship between two sequences.
Using (2.71), �nd the crosscorrelation of the sequences

x [n] = {. . . , 0, 0, 2,−3, 6, 1, 3, 0, 0, . . . }

y [n] = {. . . , 0, 0, 1,−2, 4, 1,−3, 0, 0, . . . }

for each of the following possible time shifts: m = {0, 3,−1}.



87

Solutions to Exercises in Chapter 2

Solution to Exercise 2.8.1 (p. 86)

1. For m = 0, we should begin by �nding the product sequence s [n] = x [n] y [n]. Doing this we get the
following sequence:

s [n] = {. . . , 0, 0, 2, 6, 24, 1,−9, 0, 0, . . . }

and so from the sum in our crosscorrelation function we arrive at the answer of

Rxy (0) = 22

2. For m = 3, we will approach it the same was we did above; however, we will now shift y [n] to the
right. Then we can �nd the product sequence s [n] = x [n] y [n− 3], which yields

s [n] = {. . . , 0, 0, 0, 0, 0, 1,−6, 0, 0, . . . }

and from the crosscorrelation function we arrive at the answer of

Rxy (3) = −6

3. For m = −1, we will again take the same approach; however, we will now shift y [n] to the left. Then
we can �nd the product sequence s [n] = x [n] y [n+ 1], which yields

s [n] = {. . . , 0, 0,−4,−12, 6,−3, 0, 0, 0, . . . }

and from the crosscorrelation function we arrive at the answer of

Rxy (−1) = −13



88 CHAPTER 2. RANDOM SIGNALS



Chapter 3

Filter Design I (Z-Transform)

3.1 Di�erence Equation1

3.1.1 Introduction

One of the most important concepts of DSP is to be able to properly represent the input/output relation-
ship to a given LTI system. A linear constant-coe�cient di�erence equation (LCCDE) serves as a way
to express just this relationship in a discrete-time system. Writing the sequence of inputs and outputs,
which represent the characteristics of the LTI system, as a di�erence equation help in understanding and
manipulating a system.

De�nition 3.1: di�erence equation
An equation that shows the relationship between consecutive values of a sequence and the di�er-
ences among them. They are often rearranged as a recursive formula so that a systems output can
be computed from the input signal and past outputs.
Example

y [n] + 7y [n− 1] + 2y [n− 2] = x [n]− 4x [n− 1] (3.1)

3.1.2 General Formulas for the Di�erence Equation

As stated brie�y in the de�nition above, a di�erence equation is a very useful tool in describing and calculating
the output of the system described by the formula for a given sample n. The key property of the di�erence
equation is its ability to help easily �nd the transform, H (z), of a system. In the following two subsections,
we will look at the general form of the di�erence equation and the general conversion to a z-transform directly
from the di�erence equation.

3.1.2.1 Di�erence Equation

The general form of a linear, constant-coe�cient di�erence equation (LCCDE), is shown below:

N∑
k=0

aky [n− k] =
M∑
k=0

bkx [n− k] (3.2)

1This content is available online at <http://cnx.org/content/m10595/2.6/>.

89



90 CHAPTER 3. FILTER DESIGN I (Z-TRANSFORM)

We can also write the general form to easily express a recursive output, which looks like this:

y [n] = −
N∑
k=1

aky [n− k] +
M∑
k=0

bkx [n− k] (3.3)

From this equation, note that y [n− k] represents the outputs and x [n− k] represents the inputs. The value
of N represents the order of the di�erence equation and corresponds to the memory of the system being
represented. Because this equation relies on past values of the output, in order to compute a numerical
solution, certain past outputs, referred to as the initial conditions, must be known.

3.1.2.2 Conversion to Z-Transform

Using the above formula, (3.2), we can easily generalize the transfer function, H (z), for any di�erence
equation. Below are the steps taken to convert any di�erence equation into its transfer function, i.e. z-
transform. The �rst step involves taking the Fourier Transform2 of all the terms in (3.2). Then we use
the linearity property to pull the transform inside the summation and the time-shifting property of the
z-transform to change the time-shifting terms to exponentials. Once this is done, we arrive at the following
equation: a0 = 1.

Y (z) = −
N∑
k=1

akY (z) z−k +
M∑
k=0

bkX (z) z−k (3.4)

H (z) = Y (z)
X(z)

=
PM
k=0 bkz

−k

1+
PN
k=1 akz

−k

(3.5)

3.1.2.3 Conversion to Frequency Response

Once the z-transform has been calculated from the di�erence equation, we can go one step further to de�ne
the frequency response of the system, or �lter, that is being represented by the di�erence equation.

note: Remember that the reason we are dealing with these formulas is to be able to aid us in
�lter design. A LCCDE is one of the easiest ways to represent FIR �lters. By being able to �nd
the frequency response, we will be able to look at the basic properties of any �lter represented by
a simple LCCDE.

Below is the general formula for the frequency response of a z-transform. The conversion is simple a matter
of taking the z-transform formula, H (z), and replacing every instance of z with ejw.

H (w) = H (z) |z,z=ejw

=
PM
k=0 bke

−(jwk)PN
k=0 ake

−(jwk)

(3.6)

Once you understand the derivation of this formula, look at the module concerning Filter Design from the
Z-Transform (Section 3.10) for a look into how all of these ideas of the Z-transform (Section 3.2), Di�erence
Equation, and Pole/Zero Plots (Section 3.8) play a role in �lter design.

3.1.3 Example

Example 3.1: Finding Di�erence Equation
Below is a basic example showing the opposite of the steps above: given a transfer function one
can easily calculate the systems di�erence equation.

H (z) =
(z + 1)2(

z − 1
2

) (
z + 3

4

) (3.7)

2"Derivation of the Fourier Transform" <http://cnx.org/content/m0046/latest/>



91

Given this transfer function of a time-domain �lter, we want to �nd the di�erence equation. To
begin with, expand both polynomials and divide them by the highest order z.

H (z) = (z+1)(z+1)

(z− 1
2 )(z+ 3

4 )
= z2+2z+1

z2+2z+1− 3
8

= 1+2z−1+z−2

1+ 1
4 z
−1− 3

8 z
−2

(3.8)

From this transfer function, the coe�cients of the two polynomials will be our ak and bk values
found in the general di�erence equation formula, (3.2). Using these coe�cients and the above form
of the transfer function, we can easily write the di�erence equation:

x [n] + 2x [n− 1] + x [n− 2] = y [n] +
1
4
y [n− 1]− 3

8
y [n− 2] (3.9)

In our �nal step, we can rewrite the di�erence equation in its more common form showing the
recursive nature of the system.

y [n] = x [n] + 2x [n− 1] + x [n− 2] +
−1
4
y [n− 1] +

3
8
y [n− 2] (3.10)

3.1.4 Solving a LCCDE

In order for a linear constant-coe�cient di�erence equation to be useful in analyzing a LTI system, we must
be able to �nd the systems output based upon a known input, x (n), and a set of initial conditions. Two
common methods exist for solving a LCCDE: the direct method and the indirect method, the later
being based on the z-transform. Below we will brie�y discuss the formulas for solving a LCCDE using each
of these methods.

3.1.4.1 Direct Method

The �nal solution to the output based on the direct method is the sum of two parts, expressed in the following
equation:

y (n) = yh (n) + yp (n) (3.11)

The �rst part, yh (n), is referred to as the homogeneous solution and the second part, yh (n), is referred
to as particular solution. The following method is very similar to that used to solve many di�erential
equations, so if you have taken a di�erential calculus course or used di�erential equations before then this
should seem very familiar.

3.1.4.1.1 Homogeneous Solution

We begin by assuming that the input is zero, x (n) = 0. Now we simply need to solve the homogeneous
di�erence equation:

N∑
k=0

aky [n− k] = 0 (3.12)

In order to solve this, we will make the assumption that the solution is in the form of an exponential. We
will use lambda, λ, to represent our exponential terms. We now have to solve the following equation:

N∑
k=0

akλ
n−k = 0 (3.13)



92 CHAPTER 3. FILTER DESIGN I (Z-TRANSFORM)

We can expand this equation out and factor out all of the lambda terms. This will give us a large polynomial
in parenthesis, which is referred to as the characteristic polynomial. The roots of this polynomial will
be the key to solving the homogeneous equation. If there are all distinct roots, then the general solution to
the equation will be as follows:

yh (n) = C1(λ1)n + C2(λ2)n + · · ·+ CN (λN )n (3.14)

However, if the characteristic equation contains multiple roots then the above general solution will be slightly
di�erent. Below we have the modi�ed version for an equation where λ1 has K multiple roots:

yh (n) = C1(λ1)n + C1n(λ1)n + C1n
2(λ1)n + · · ·+ C1n

K−1(λ1)n + C2(λ2)n + · · ·+ CN (λN )n (3.15)

3.1.4.1.2 Particular Solution

The particular solution, yp (n), will be any solution that will solve the general di�erence equation:

N∑
k=0

akyp (n− k) =
M∑
k=0

bkx (n− k) (3.16)

In order to solve, our guess for the solution to yp (n) will take on the form of the input, x (n). After guessing
at a solution to the above equation involving the particular solution, one only needs to plug the solution into
the di�erence equation and solve it out.

3.1.4.2 Indirect Method

The indirect method utilizes the relationship between the di�erence equation and z-transform, discussed
earlier (Section 3.1.2: General Formulas for the Di�erence Equation), to �nd a solution. The basic idea is
to convert the di�erence equation into a z-transform, as described above (Section 3.1.2.2: Conversion to Z-
Transform), to get the resulting output, Y (z). Then by inverse transforming this and using partial-fraction
expansion, we can arrive at the solution.

Z{y (n+ 1)− y (n)} = zY (z)− y (0) (3.17)

This can be interatively extended to an arbitrary order derivative as in Equation (3.18).

Z{−
N−1∑
m=0

y (n−m)} = znY (z)−
N−1∑
m=0

zn−m−1y(m) (0) (3.18)

Now, the Laplace transform of each side of the di�erential equation can be taken

Z{
N∑
k=0

ak

[
y (n−m+ 1)−

N−1∑
m=0

y (n−m) y (n)

]
= Z{x (n)}} (3.19)

which by linearity results in

N∑
k=0

akZ{y (n−m+ 1)−
N−1∑
m=0

y (n−m) y (n)} = Z{x (n)} (3.20)

and by di�erentiation properties in

N∑
k=0

ak

(
zkZ{y (n)} −

N−1∑
m=0

zk−m−1y(m) (0)

)
= Z{x (n)}. (3.21)



93

Rearranging terms to isolate the Laplace transform of the output,

Z{y (n)} =
Z{x (n)}+

∑N
k=0

∑k−1
m=0 akz

k−m−1y(m) (0)∑N
k=0 akz

k
. (3.22)

Thus, it is found that

Y (z) =
X (z) +

∑N
k=0

∑k−1
m=0 akz

k−m−1y(m) (0)∑N
k=0 akz

k
. (3.23)

In order to �nd the output, it only remains to �nd the Laplace transform X (z) of the input, substitute the
initial conditions, and compute the inverse Z-transform of the result. Partial fraction expansions are often
required for this last step. This may sound daunting while looking at (3.23), but it is often easy in practice,
especially for low order di�erence equations. (3.23) can also be used to determine the transfer function and
frequency response.

As an example, consider the di�erence equation

y [n− 2] + 4y [n− 1] + 3y [n] = cos (n) (3.24)

with the initial conditions y' (0) = 1 and y (0) = 0 Using the method described above, the Z transform of
the solution y [n] is given by

Y [z] =
z

[z2 + 1] [z + 1] [z + 3]
+

1
[z + 1] [z + 3]

. (3.25)

Performing a partial fraction decomposition, this also equals

Y [z] = .25
1

z + 1
− .35

1
z + 3

+ .1
z

z2 + 1
+ .2

1
z2 + 1

. (3.26)

Computing the inverse Laplace transform,

y (n) =
(
.25z−n − .35z−3n + .1cos (n) + .2sin (n)

)
u (n) . (3.27)

One can check that this satis�es that this satis�es both the di�erential equation and the initial conditions.

3.2 The Z Transform: De�nition3

3.2.1 Basic De�nition of the Z-Transform

The z-transform of a sequence is de�ned as

X (z) =
∞∑

n=−∞
x [n] z−n (3.28)

Sometimes this equation is referred to as the bilateral z-transform. At times the z-transform is de�ned
as

X (z) =
∞∑
n=0

x [n] z−n (3.29)

which is known as the unilateral z-transform.
There is a close relationship between the z-transform and the Fourier transform of a discrete time

signal, which is de�ned as

X
(
ejω
)

=
∞∑

n=−∞
x [n] e−(jωn) (3.30)

3This content is available online at <http://cnx.org/content/m10549/2.10/>.



94 CHAPTER 3. FILTER DESIGN I (Z-TRANSFORM)

Notice that that when the z−n is replaced with e−(jωn) the z-transform reduces to the Fourier Transform.
When the Fourier Transform exists, z = ejω , which is to have the magnitude of z equal to unity.

3.2.2 The Complex Plane

In order to get further insight into the relationship between the Fourier Transform and the Z-Transform it
is useful to look at the complex plane or z-plane. Take a look at the complex plane:

Z-Plane

Figure 3.1

The Z-plane is a complex plane with an imaginary and real axis referring to the complex-valued variable
z. The position on the complex plane is given by rejω , and the angle from the positive, real axis around
the plane is denoted by ω. X (z) is de�ned everywhere on this plane. X

(
ejω
)
on the other hand is de�ned

only where |z| = 1, which is referred to as the unit circle. So for example, ω = 1 at z = 1 and ω = π at
z = −1. This is useful because, by representing the Fourier transform as the z-transform on the unit circle,
the periodicity of Fourier transform is easily seen.

3.2.3 Region of Convergence

The region of convergence, known as the ROC, is important to understand because it de�nes the region
where the z-transform exists. The ROC for a given x [n] , is de�ned as the range of z for which the z-transform
converges. Since the z-transform is a power series, it converges when x [n] z−n is absolutely summable.



95

Stated di�erently,
∞∑

n=−∞
|x [n] z−n| <∞ (3.31)

must be satis�ed for convergence. This is best illustrated by looking at the di�erent ROC's of the z-
transforms of αnu [n] and αnu [n− 1].

Example 3.2
For

x [n] = αnu [n] (3.32)

Figure 3.2: x [n] = αnu [n] where α = 0.5.

X (z) =
∑∞
n=−∞ x [n] z−n

=
∑∞
n=−∞ αnu [n] z−n

=
∑∞
n=0 α

nz−n

=
∑∞
n=0

(
αz−1

)n
(3.33)

This sequence is an example of a right-sided exponential sequence because it is nonzero for n ≥ 0.
It only converges when |αz−1| < 1. When it converges,

X (z) = 1
1−αz−1

= z
z−α

(3.34)



96 CHAPTER 3. FILTER DESIGN I (Z-TRANSFORM)

If |αz−1| ≥ 1, then the series,
∑∞
n=0

(
αz−1

)n
does not converge. Thus the ROC is the range of

values where
|αz−1| < 1 (3.35)

or, equivalently,
|z| > |α| (3.36)

Figure 3.3: ROC for x [n] = αnu [n] where α = 0.5

Example 3.3
For

x [n] = (−αn)u [(−n)− 1] (3.37)



97

Figure 3.4: x [n] = (−αn)u [(−n)− 1] where α = 0.5.

X (z) =
∑∞
n=−∞ x [n] z−n

=
∑∞
n=−∞ (−αn)u [−n− 1] z−n

= −
∑−1
n=−∞ αnz−n

= −
∑−1
n=−∞

(
α−1z

)−n
= −

∑∞
n=1

(
α−1z

)n
= 1−

∑∞
n=0

(
α−1z

)n
(3.38)

The ROC in this case is the range of values where

|α−1z| < 1 (3.39)

or, equivalently,
|z| < |α| (3.40)

If the ROC is satis�ed, then

X (z) = 1− 1
1−α−1z

= z
z−α

(3.41)



98 CHAPTER 3. FILTER DESIGN I (Z-TRANSFORM)

Figure 3.5: ROC for x [n] = (−αn)u [(−n)− 1]

3.3 Table of Common z-Transforms4

The table below provides a number of unilateral and bilateral z-transforms (Section 3.2). The table also
speci�es the region of convergence (Section 3.7).

note: The notation for z found in the table below may di�er from that found in other tables. For
example, the basic z-transform of u [n] can be written as either of the following two expressions,
which are equivalent:

z

z − 1
=

1
1− z−1

(3.42)

4This content is available online at <http://cnx.org/content/m10119/2.14/>.



99

Signal Z-Transform ROC

δ [n− k] z−k All (z)

u [n] z
z−1 |z| > 1

−u [(−n)− 1] z
z−1 |z| < 1

nu [n] z
(z−1)2 |z| > 1

n2u [n] z(z+1)

(z−1)3 |z| > 1

n3u [n]
z(z2+4z+1)

(z−1)4 |z| > 1

(−αn)u [(−n)− 1] z
z−α |z| < |α|

αnu [n] z
z−α |z| > |α|

nαnu [n] αz
(z−α)2 |z| > |α|

n2αnu [n] αz(z+α)

(z−α)3 |z| > |α|Qm
k=1 n−k+1

αmm! αnu [n] z
(z−α)m+1

γncos (αn)u [n] z(z−γcos(α))
z2−(2γcos(α))z+γ2 |z| > |γ|

γnsin (αn)u [n] zγsin(α)
z2−(2γcos(α))z+γ2 |z| > |γ|

Table 3.1

3.4 Poles and Zeros5

3.4.1 Introduction

It is quite di�cult to qualitatively analyze the Laplace transform6 and Z-transform (Section 3.2), since
mappings of their magnitude and phase or real part and imaginary part result in multiple mappings of
2-dimensional surfaces in 3-dimensional space. For this reason, it is very common to examine a plot of a
transfer function's7 poles and zeros to try to gain a qualitative idea of what a system does.

Given a continuous-time transfer function in the Laplace domain, H (s), or a discrete-time one in the
Z-domain, H (z), a zero is any value of s or z such that the transfer function is zero, and a pole is any value
of s or z such that the transfer function is in�nite. To de�ne them precisely:

De�nition 3.2: zeros
1. The value(s) for z where the numerator of the transfer function equals zero
2. The complex frequencies that make the overall gain of the �lter transfer function zero.

De�nition 3.3: poles
1. The value(s) for z where the denominator of the transfer function equals zero
2. The complex frequencies that make the overall gain of the �lter transfer function in�nite.

3.4.2 Pole/Zero Plots

When we plot these in the appropriate s- or z-plane, we represent zeros with "o" and poles with "x". Refer
to this module (Section 3.8) for a detailed looking at plotting the poles and zeros of a z-transform on the
Z-plane.

5This content is available online at <http://cnx.org/content/m10112/2.12/>.
6"The Laplace Transform" <http://cnx.org/content/m10110/latest/>
7"Transfer Functions" <http://cnx.org/content/m0028/latest/>



100 CHAPTER 3. FILTER DESIGN I (Z-TRANSFORM)

Example 3.4

Find the poles and zeros for the transfer function H (s) = s2+6s+8
s2+2 and plot the results in the

s-plane.
The �rst thing we recognize is that this transfer function will equal zero whenever the top,

s2 + 6s+ 8, equals zero. To �nd where this equals zero, we factor this to get, (s+ 2) (s+ 4). This
yields zeros at s = −2 and s = −4. Had this function been more complicated, it might have been
necessary to use the quadratic formula.

For poles, we must recognize that the transfer function will be in�nite whenever the bottom
part is zero. That is when s2 + 2 is zero. To �nd this, we again look to factor the equation. This
yields

(
s+ j

√
2
) (
s− j

√
2
)
. This yields purely imaginary roots of j

√
2 and −

(
j
√

2
)

Plotting this gives Figure 3.6 (Pole and Zero Plot)

Pole and Zero Plot

Figure 3.6: Sample pole-zero plot

Now that we have found and plotted the poles and zeros, we must ask what it is that this plot gives us.
Basically what we can gather from this is that the magnitude of the transfer function will be larger when
it is closer to the poles and smaller when it is closer to the zeros. This provides us with a qualitative
understanding of what the system does at various frequencies and is crucial to the discussion of stability8.

3.4.3 Repeated Poles and Zeros

It is possible to have more than one pole or zero at any given point. For instance, the discrete-time transfer
function H (z) = z2 will have two zeros at the origin and the continuous-time function H (s) = 1

s25 will have
25 poles at the origin.

8"BIBO Stability of Continuous Time Systems" <http://cnx.org/content/m10113/latest/>



101

3.4.4 Pole-Zero Cancellation

An easy mistake to make with regards to poles and zeros is to think that a function like (s+3)(s−1)
s−1 is the

same as s+ 3. In theory they are equivalent, as the pole and zero at s = 1 cancel each other out in what is
known as pole-zero cancellation. However, think about what may happen if this were a transfer function
of a system that was created with physical circuits. In this case, it is very unlikely that the pole and zero
would remain in exactly the same place. A minor temperature change, for instance, could cause one of them
to move just slightly. If this were to occur a tremendous amount of volatility is created in that area, since
there is a change from in�nity at the pole to zero at the zero in a very small range of signals. This is generally
a very bad way to try to eliminate a pole. A much better way is to use control theory to move the pole
to a better place.

3.5 Rational Functions and the Z-Transform9

3.5.1 Introduction

When dealing with operations on polynomials, the term rational function is a simple way to describe a
particular relationship between two polynomials.

De�nition 3.4: rational function
For any two polynomials, A and B, their quotient is called a rational function.
Example
Below is a simple example of a basic rational function, f (x). Note that the numerator and
denominator can be polynomials of any order, but the rational function is unde�ned when the
denominator equals zero.

f (x) =
x2 − 4

2x2 + x− 3
(3.43)

If you have begun to study the Z-transform (Section 3.2), you should have noticed by now they are all
rational functions. Below we will look at some of the properties of rational functions and how they can be
used to reveal important characteristics about a z-transform, and thus a signal or LTI system.

3.5.2 Properties of Rational Functions

In order to see what makes rational functions special, let us look at some of their basic properties and
characteristics. If you are familiar with rational functions and basic algebraic properties, skip to the next
section (Section 3.5.3: Rational Functions and the Z-Transform) to see how rational functions are useful
when dealing with the z-transform.

3.5.2.1 Roots

To understand many of the following characteristics of a rational function, one must begin by �nding the
roots of the rational function. In order to do this, let us factor both of the polynomials so that the roots
can be easily determined. Like all polynomials, the roots will provide us with information on many key
properties. The function below shows the results of factoring the above rational function, (3.43).

f (x) =
(x+ 2) (x− 2)
(2x+ 3) (x− 1)

(3.44)

Thus, the roots of the rational function are as follows:
Roots of the numerator are: {−2, 2}

9This content is available online at <http://cnx.org/content/m10593/2.8/>.



102 CHAPTER 3. FILTER DESIGN I (Z-TRANSFORM)

Roots of the denominator are: {−3, 1}

note: In order to understand rational functions, it is essential to know and understand the roots
that make up the rational function.

3.5.2.2 Discontinuities

Because we are dealing with division of two polynomials, we must be aware of the values of the variable that
will cause the denominator of our fraction to be zero. When this happens, the rational function becomes
unde�ned, i.e. we have a discontinuity in the function. Because we have already solved for our roots, it
is very easy to see when this occurs. When the variable in the denominator equals any of the roots of the
denominator, the function becomes unde�ned.

Example 3.5
Continuing to look at our rational function above, (3.43), we can see that the function will have
discontinuities at the following points: x = {−3, 1}

In respect to the Cartesian plane, we say that the discontinuities are the values along the x-axis where the
function is unde�ned. These discontinuities often appear as vertical asymptotes on the graph to represent
the values where the function is unde�ned.

3.5.2.3 Domain

Using the roots that we found above, the domain of the rational function can be easily de�ned.

De�nition 3.5: domain
The group, or set, of values that are de�ned by a given function.
Example
Using the rational function above, (3.43), the domain can be de�ned as any real number x where
x does not equal 1 or negative 3. Written out mathematical, we get the following:

{x ∈ R | (x 6= −3) and (x 6= 1)} (3.45)

3.5.2.4 Intercepts

The x-intercept is de�ned as the point(s) where f (x), i.e. the output of the rational functions, equals zero.
Because we have already found the roots of the equation this process is very simple. From algebra, we know
that the output will be zero whenever the numerator of the rational function is equal to zero. Therefore, the
function will have an x-intercept wherever x equals one of the roots of the numerator.

The y-intercept occurs whenever x equals zero. This can be found by setting all the values of x equal
to zero and solving the rational function.

3.5.3 Rational Functions and the Z-Transform

As we have stated above, all z-transforms can be written as rational functions, which have become the most
common way of representing the z-transform. Because of this, we can use the properties above, especially
those of the roots, in order to reveal certain characteristics about the signal or LTI system described by the
z-transform.

Below is the general form of the z-transform written as a rational function:

X (z) =
b0 + b1z

−1 + · · ·+ bMz
−M

a0 + a1z−1 + · · ·+ aNz−N
(3.46)



103

If you have already looked at the module about Understanding Pole/Zero Plots and the Z-transform (Sec-
tion 3.8), you should see how the roots of the rational function play an important role in understanding the
z-transform. The equation above, (3.46), can be expressed in factored form just as was done for the simple
rational function above, see (3.44). Thus, we can easily �nd the roots of the numerator and denominator of
the z-transform. The following two relationships become apparent:

Relationship of Roots to Poles and Zeros

• The roots of the numerator in the rational function will be the zeros of the z-transform
• The roots of the denominator in the rational function will be the poles of the z-transform

3.5.4 Conclusion

Once we have used our knowledge of rational functions to �nd its roots, we can manipulate a z-transform in
a number of useful ways. We can apply this knowledge to representing an LTI system graphically through
a Pole/Zero Plot (Section 3.8), or to analyze and design a digital �lter through Filter Design from the
Z-Transform (Section 3.10).

3.6 The Complex Plane10

3.6.1 Complex Plane

The complex plane provides a way to express complex numbers graphically. Any complex number can be
expressed as a point on the complex plane. Before looking over the rest of this module, one should be very
familiar with complex numbers. Please refer to the complex number11 module for an explanation or review
of these numbers.

De�nition 3.6: Complex Plane
A two-dimensional graph where the horizontal axis maps the real part and the vertical axis maps
the imaginary part of any complex number or function.

10This content is available online at <http://cnx.org/content/m10596/2.2/>.
11"Complex Numbers" <http://cnx.org/content/m0081/latest/>



104 CHAPTER 3. FILTER DESIGN I (Z-TRANSFORM)

Complex Plane

Figure 3.7: Plot of the complex number, z, as a point on the complex plane.

3.6.1.1 Rectangular Coordinates

Similar to the Cartesian plane, the complex plane allows one to plot ordered pairs of the form (a, b), where
a and b are real numbers that describe a unique complex number through the following general form:

z = a+ jb (3.47)

This form is referred to as the rectangular coordinate.

3.6.1.2 Polar Form

The complex plane can also be used to plot complex numbers that are in polar form. Rather than using a
and b, the polar coordinates use r and θ in their ordered pairs. The r is the distance from the origin to the
complex number and θ is the angle of the complex number relative to the positive, real axis. Look at the
�gure above to see these variables displayed on the complex plane. The general form for polar numbers is
as follows: rejθ

As a reminder, the following equations show the conversion between polar and rectangle coordinates:

r =
√
a2 + b2 (3.48)

θ = arctan
(
b

a

)
(3.49)



105

3.7 Region of Convergence for the Z-transform12

3.7.1 Introduction

With the z-transform (Section 3.2), the s-plane represents a set of signals (complex exponentials13). For
any given LTI14 system, some of these signals may cause the output of the system to converge, while others
cause the output to diverge ("blow up"). The set of signals that cause the system's output to converge lie
in the region of convergence (ROC). This module will discuss how to �nd this region of convergence for
any discrete-time, LTI system.

3.7.2 The Region of Convergence

The region of convergence, known as the ROC, is important to understand because it de�nes the region
where the z-transform (Section 3.2) exists. The z-transform of a sequence is de�ned as

X (z) =
∞∑

n=−∞
x [n] z−n (3.50)

The ROC for a given x [n] , is de�ned as the range of z for which the z-transform converges. Since the
z-transform is a power series, it converges when x [n] z−n is absolutely summable. Stated di�erently,

∞∑
n=−∞

|x [n] z−n| <∞ (3.51)

must be satis�ed for convergence.

3.7.2.1 Properties of the Region of Convergencec

The Region of Convergence has a number of properties that are dependent on the characteristics of the
signal, x [n].

• The ROC cannot contain any poles. By de�nition a pole is a where X (z) is in�nite. Since X (z)
must be �nite for all z for convergence, there cannot be a pole in the ROC.

• If x [n] is a �nite-duration sequence, then the ROC is the entire z-plane, except possibly
z = 0 or |z| = ∞. A �nite-duration sequence is a sequence that is nonzero in a �nite interval
n1 ≤ n ≤ n2. As long as each value of x [n] is �nite then the sequence will be absolutely summable.
When n2 > 0 there will be a z−1 term and thus the ROC will not include z = 0. When n1 < 0 then the
sum will be in�nite and thus the ROC will not include |z| =∞. On the other hand, when n2 ≤ 0 then
the ROC will include z = 0, and when n1 ≥ 0 the ROC will include |z| =∞. With these constraints,
the only signal, then, whose ROC is the entire z-plane is x [n] = cδ [n].

12This content is available online at <http://cnx.org/content/m10622/2.8/>.
13"Continuous Time Complex Exponential" <http://cnx.org/content/m10060/latest/>
14"System Classi�cations and Properties" <http://cnx.org/content/m10084/latest/>



106 CHAPTER 3. FILTER DESIGN I (Z-TRANSFORM)

Figure 3.8: An example of a �nite duration sequence.

The next properties apply to in�nite duration sequences. As noted above, the z-transform converges
when |X (z) | <∞. So we can write

|X (z) | = |
∞∑

n=−∞
x [n] z−n| ≤

∞∑
n=−∞

|x [n] z−n| =
∞∑

n=−∞
|x [n] |(|z|)−n (3.52)

We can then split the in�nite sum into positive-time and negative-time portions. So

|X (z) | ≤ N (z) + P (z) (3.53)

where

N (z) =
−1∑

n=−∞
|x [n] |(|z|)−n (3.54)

and

P (z) =
∞∑
n=0

|x [n] |(|z|)−n (3.55)

In order for |X (z) | to be �nite, |x [n] | must be bounded. Let us then set

|x (n) | ≤ C1r1
n (3.56)

for
n < 0

and
|x (n) | ≤ C2r2

n (3.57)

for
n ≥ 0

From this some further properties can be derived:



107

• If x [n] is a right-sided sequence, then the ROC extends outward from the outermost pole
in X (z). A right-sided sequence is a sequence where x [n] = 0 for n < n1 < ∞. Looking at the
positive-time portion from the above derivation, it follows that

P (z) ≤ C2

∞∑
n=0

r2
n(|z|)−n = C2

∞∑
n=0

(
r2

|z|

)n
(3.58)

Thus in order for this sum to converge, |z| > r2, and therefore the ROC of a right-sided sequence is
of the form |z| > r2.

Figure 3.9: A right-sided sequence.

Figure 3.10: The ROC of a right-sided sequence.



108 CHAPTER 3. FILTER DESIGN I (Z-TRANSFORM)

• If x [n] is a left-sided sequence, then the ROC extends inward from the innermost pole
in X (z). A left-sided sequence is a sequence where x [n] = 0 for n > n2 > −∞. Looking at the
negative-time portion from the above derivation, it follows that

N (z) ≤ C1

−1∑
n=−∞

r1
n(|z|)−n = C1

−1∑
n=−∞

(
r1

|z|

)n
= C1

∞∑
k=1

(
|z|
r1

)k
(3.59)

Thus in order for this sum to converge, |z| < r1, and therefore the ROC of a left-sided sequence is of
the form |z| < r1.

Figure 3.11: A left-sided sequence.

Figure 3.12: The ROC of a left-sided sequence.



109

• If x [n] is a two-sided sequence, the ROC will be a ring in the z-plane that is bounded on
the interior and exterior by a pole. A two-sided sequence is an sequence with in�nite duration
in the positive and negative directions. From the derivation of the above two properties, it follows that
if −r2 < |z| < r2 converges, then both the positive-time and negative-time portions converge and thus
X (z) converges as well. Therefore the ROC of a two-sided sequence is of the form −r2 < |z| < r2.

Figure 3.13: A two-sided sequence.

Figure 3.14: The ROC of a two-sided sequence.



110 CHAPTER 3. FILTER DESIGN I (Z-TRANSFORM)

3.7.2.2 Examples

Example 3.6
Lets take

x1 [n] =
(

1
2

)n
u [n] +

(
1
4

)n
u [n] (3.60)

The z-transform of
(

1
2

)n
u [n] is z

z− 1
2
with an ROC at |z| > 1

2 .

Figure 3.15: The ROC of
`

1
2

´n
u [n]

The z-transform of
(−1

4

)n
u [n] is z

z+ 1
4
with an ROC at |z| > −1

4 .



111

Figure 3.16: The ROC of
`−1

4

´n
u [n]

Due to linearity,

X1 [z] = z
z− 1

2
+ z

z+ 1
4

=
2z(z− 1

8 )
(z− 1

2 )(z+ 1
4 )

(3.61)

By observation it is clear that there are two zeros, at 0 and 1
8 , and two poles, at 1

2 , and
−1
4 .

Following the obove properties, the ROC is |z| > 1
2 .



112 CHAPTER 3. FILTER DESIGN I (Z-TRANSFORM)

Figure 3.17: The ROC of x1 [n] =
`

1
2

´n
u [n] +

`−1
4

´n
u [n]

Example 3.7
Now take

x2 [n] =
(
−1
4

)n
u [n]−

(
1
2

)n
u [(−n)− 1] (3.62)

The z-transform and ROC of
(−1

4

)n
u [n] was shown in the example above (Example 3.6). The

z-transorm of
(
−
(

1
2

)n)
u [(−n)− 1] is z

z− 1
2
with an ROC at |z| > 1

2 .



113

Figure 3.18: The ROC of
`
−
`

1
2

´n´
u [(−n)− 1]

Once again, by linearity,

X2 [z] = z
z+ 1

4
+ z

z− 1
2

=
z(2z− 1

8 )
(z+ 1

4 )(z− 1
2 )

(3.63)

By observation it is again clear that there are two zeros, at 0 and 1
16 , and two poles, at 1

2 , and
−1
4 .

in ths case though, the ROC is |z| < 1
2 .



114 CHAPTER 3. FILTER DESIGN I (Z-TRANSFORM)

Figure 3.19: The ROC of x2 [n] =
`−1

4

´n
u [n]−

`
1
2

´n
u [(−n)− 1].

3.7.3 Graphical Understanding of ROC

Using the demonstration, learn about the region of convergence for the Laplace Transform.

3.7.4 Conclusion

Clearly, in order to craft a system that is actually useful by virtue of being causal and BIBO stable, we
must ensure that it is within the Region of Convergence, which can be ascertained by looking at the pole
zero plot. The Region of Convergence is the area in the pole/zero plot of the transfer function in which the
function exists. For purposes of useful �lter design, we prefer to work with rational functions, which can be
described by two polynomials, one each for determining the poles and the zeros, respectively.

3.8 Understanding Pole/Zero Plots on the Z-Plane15

3.8.1 Introduction to Poles and Zeros of the Z-Transform

It is quite di�cult to qualitatively analyze the Laplace transform16 and Z-transform (Section 3.2), since
mappings of their magnitude and phase or real part and imaginary part result in multiple mappings of
2-dimensional surfaces in 3-dimensional space. For this reason, it is very common to examine a plot of a
transfer function's17 poles and zeros to try to gain a qualitative idea of what a system does.

15This content is available online at <http://cnx.org/content/m10556/2.12/>.
16"The Laplace Transform" <http://cnx.org/content/m10110/latest/>
17"Transfer Functions" <http://cnx.org/content/m0028/latest/>



115

Once the Z-transform of a system has been determined, one can use the information contained in function's
polynomials to graphically represent the function and easily observe many de�ning characteristics. The Z-
transform will have the below structure, based on Rational Functions (Section 3.5):

X (z) =
P (z)
Q (z)

(3.64)

The two polynomials, P (z) andQ (z), allow us to �nd the poles and zeros (Section 3.4) of the Z-Transform.

De�nition 3.7: zeros
1. The value(s) for z where P (z) = 0.
2. The complex frequencies that make the overall gain of the �lter transfer function zero.

De�nition 3.8: poles
1. The value(s) for z where Q (z) = 0.
2. The complex frequencies that make the overall gain of the �lter transfer function in�nite.

Example 3.8
Below is a simple transfer function with the poles and zeros shown below it.

H (z) =
z + 1(

z − 1
2

) (
z + 3

4

)
The zeros are: {−1}
The poles are:

{
1
2 ,−

3
4

}

3.8.2 The Z-Plane

Once the poles and zeros have been found for a given Z-Transform, they can be plotted onto the Z-Plane.
The Z-plane is a complex plane with an imaginary and real axis referring to the complex-valued variable z.
The position on the complex plane is given by rejθ and the angle from the positive, real axis around the
plane is denoted by θ. When mapping poles and zeros onto the plane, poles are denoted by an "x" and zeros
by an "o". The below �gure shows the Z-Plane, and examples of plotting zeros and poles onto the plane can
be found in the following section.



116 CHAPTER 3. FILTER DESIGN I (Z-TRANSFORM)

Z-Plane

Figure 3.20

3.8.3 Examples of Pole/Zero Plots

This section lists several examples of �nding the poles and zeros of a transfer function and then plotting
them onto the Z-Plane.

Example 3.9: Simple Pole/Zero Plot

H (z) =
z(

z − 1
2

) (
z + 3

4

)
The zeros are: {0}
The poles are:

{
1
2 ,−

3
4

}



117

Pole/Zero Plot

Figure 3.21: Using the zeros and poles found from the transfer function, the one zero is mapped to
zero and the two poles are placed at 1

2
and − 3

4

Example 3.10: Complex Pole/Zero Plot

H (z) =
(z − j) (z + j)(

z −
(

1
2 −

1
2j
)) (

z − 1
2 + 1

2j
)

The zeros are: {j,−j}
The poles are:

{
−1, 1

2 + 1
2j,

1
2 −

1
2j
}



118 CHAPTER 3. FILTER DESIGN I (Z-TRANSFORM)

Pole/Zero Plot

Figure 3.22: Using the zeros and poles found from the transfer function, the zeros are mapped to
± (j), and the poles are placed at −1, 1

2
+ 1

2
j and 1

2
− 1

2
j

Example 3.11: Pole-Zero Cancellation

An easy mistake to make with regards to poles and zeros is to think that a function like (s+3)(s−1)
s−1 is

the same as s+3. In theory they are equivalent, as the pole and zero at s = 1 cancel each other out
in what is known as pole-zero cancellation. However, think about what may happen if this were a
transfer function of a system that was created with physical circuits. In this case, it is very unlikely
that the pole and zero would remain in exactly the same place. A minor temperature change, for
instance, could cause one of them to move just slightly. If this were to occur a tremendous amount
of volatility is created in that area, since there is a change from in�nity at the pole to zero at the
zero in a very small range of signals. This is generally a very bad way to try to eliminate a pole. A
much better way is to use control theory to move the pole to a better place.

note: It is possible to have more than one pole or zero at any given point. For instance, the
discrete-time transfer function H (z) = z2 will have two zeros at the origin and the continuous-time
function H (s) = 1

s25 will have 25 poles at the origin.

MATLAB - If access to MATLAB is readily available, then you can use its functions to easily create
pole/zero plots. Below is a short program that plots the poles and zeros from the above example onto the
Z-Plane.

% Set up vector for zeros

z = [j ; -j];

% Set up vector for poles

p = [-1 ; .5+.5j ; .5-.5j];

figure(1);



119

zplane(z,p);

title('Pole/Zero Plot for Complex Pole/Zero Plot Example');

3.8.4 Interactive Demonstration of Poles and Zeros

Figure 3.23: Interact (when online) with a Mathematica CDF demonstrating Pole/Zero Plots. To
Download, right-click and save target as .cdf.



120 CHAPTER 3. FILTER DESIGN I (Z-TRANSFORM)

3.8.5 Applications for pole-zero plots

3.8.5.1 Stability and Control theory

Now that we have found and plotted the poles and zeros, we must ask what it is that this plot gives us.
Basically what we can gather from this is that the magnitude of the transfer function will be larger when
it is closer to the poles and smaller when it is closer to the zeros. This provides us with a qualitative
understanding of what the system does at various frequencies and is crucial to the discussion of stability18.

3.8.5.2 Pole/Zero Plots and the Region of Convergence

The region of convergence (ROC) for X (z) in the complex Z-plane can be determined from the pole/zero
plot. Although several regions of convergence may be possible, where each one corresponds to a di�erent
impulse response, there are some choices that are more practical. A ROC can be chosen to make the transfer
function causal and/or stable depending on the pole/zero plot.

Filter Properties from ROC

• If the ROC extends outward from the outermost pole, then the system is causal.
• If the ROC includes the unit circle, then the system is stable.

Below is a pole/zero plot with a possible ROC of the Z-transform in the Simple Pole/Zero Plot (Example 3.9:
Simple Pole/Zero Plot) discussed earlier. The shaded region indicates the ROC chosen for the �lter. From
this �gure, we can see that the �lter will be both causal and stable since the above listed conditions are both
met.

Example 3.12

H (z) =
z(

z − 1
2

) (
z + 3

4

)
Region of Convergence for the Pole/Zero Plot

Figure 3.24: The shaded area represents the chosen ROC for the transfer function.

18"BIBO Stability of Continuous Time Systems" <http://cnx.org/content/m10113/latest/>



121

3.8.5.3 Frequency Response and Pole/Zero Plots

The reason it is helpful to understand and create these pole/zero plots is due to their ability to help us easily
design a �lter. Based on the location of the poles and zeros, the magnitude response of the �lter can be
quickly understood. Also, by starting with the pole/zero plot, one can design a �lter and obtain its transfer
function very easily.

3.9 Zero Locations of Linear-Phase FIR Filters19

3.9.1 Zero Locations of Linear-Phase Filters

The zeros of the transfer function H (z) of a linear-phase �lter lie in speci�c con�gurations.
We can write the symmetry condition

h (n) = h (N − (1− n))

in the Z domain. Taking the Z-transform of both sides gives

H (z) = z−(N−1)H

(
1
z

)
(3.65)

Recall that we are assuming that h (n) is real-valued. If z0 is a zero of H (z),

H (z0) = 0

then
H (z0

∗) = 0

(Because the roots of a polynomial with real coe�cients exist in complex-conjugate pairs.)
Using the symmetry condition, (3.65), it follows that

H (z0) = z−(N−1)H

(
1
z0

)
= 0

and

H (z0
∗) = z−(N−1)H

(
1
z0
∗

)
= 0

or

H

(
1
z0

)
= H

(
1
z0
∗

)
= 0

note: If z0 is a zero of a (real-valued) linear-phase �lter, then so are z0
∗, 1

z0
, and 1

z0∗
.

3.9.2 ZEROS LOCATIONS

It follows that

1. generic zeros of a linear-phase �lter exist in sets of 4.
2. zeros on the unit circle ( z0 = ejω0) exist in sets of 2. ( z0 6= ± (1))
3. zeros on the real line ( z0 = a) exist in sets of 2. ( z0 6= ± (1))
4. zeros at 1 and -1 do not imply the existence of zeros at other speci�c points.

19This content is available online at <http://cnx.org/content/m10700/2.2/>.



122 CHAPTER 3. FILTER DESIGN I (Z-TRANSFORM)

(a)

(b)

Figure 3.25: Examples of zero sets

3.9.3 ZERO LOCATIONS: AUTOMATIC ZEROS

The frequency response Hf (ω) of a Type II FIR �lter always has a zero at ω = π:

h (n) = [h0, h1, h2, h2, h1, h0]

H (z) = h0 + h1z
−1 + h2z

−2 + h2z
−3 + h1z

−4 + h0z
−5

H (−1) = h0 − h1 + h2 − h2 + h1 − h0 = 0

Hf (π) = H
(
ejπ
)

= H (−1) = 0

note: Hf (π) = 0 always for Type II �lters.

Similarly, we can derive the following rules for Type III and Type IV FIR �lters.



123

note: Hf (0) = Hf (π) = 0 always for Type III �lters.

note: Hf (0) = 0 always for Type IV �lters.

The automatic zeros can also be derived using the characteristics of the amplitude response A (ω) seen earlier.

Type automatic zeros

I �

II ω = π

III ω = 0 or π

IV ω = 0

Table 3.2

3.9.4 ZERO LOCATIONS: EXAMPLES

The Matlab command zplane can be used to plot the zero locations of FIR �lters.



124 CHAPTER 3. FILTER DESIGN I (Z-TRANSFORM)

Figure 3.26

Note that the zero locations satisfy the properties noted previously.

3.10 Discrete Time Filter Design20

3.10.1 Estimating Frequency Response from Z-Plane

One of the primary motivating factors for utilizing the z-transform and analyzing the pole/zero plots is due
to their relationship to the frequency response of a discrete-time system. Based on the position of the poles
and zeros, one can quickly determine the frequency response. This is a result of the correspondence between
the frequency response and the transfer function evaluated on the unit circle in the pole/zero plots. The

20This content is available online at <http://cnx.org/content/m10548/2.10/>.



125

frequency response, or DTFT, of the system is de�ned as:

H (w) = H (z) |z,z=ejw

=
PM
k=0 bke

−(jwk)PN
k=0 ake

−(jwk)

(3.66)

Next, by factoring the transfer function into poles and zeros and multiplying the numerator and denominator
by ejw we arrive at the following equations:

H (w) = | b0
a0
|
∏M
k=1 |ejw − ck|∏N
k=1 |ejw − dk|

(3.67)

From (3.67) we have the frequency response in a form that can be used to interpret physical characteristics
about the �lter's frequency response. The numerator and denominator contain a product of terms of the
form |ejw − h|, where h is either a zero, denoted by ck or a pole, denoted by dk. Vectors are commonly used
to represent the term and its parts on the complex plane. The pole or zero, h, is a vector from the origin to
its location anywhere on the complex plane and ejw is a vector from the origin to its location on the unit
circle. The vector connecting these two points, |ejw − h|, connects the pole or zero location to a place on
the unit circle dependent on the value of w. From this, we can begin to understand how the magnitude of
the frequency response is a ratio of the distances to the poles and zero present in the z-plane as w goes from
zero to pi. These characteristics allow us to interpret |H (w) | as follows:

|H (w) | = | b0
a0
|
∏

”distances from zeros”∏
”distances from poles”

(3.68)

3.10.2 Drawing Frequency Response from Pole/Zero Plot

Let us now look at several examples of determining the magnitude of the frequency response from the
pole/zero plot of a z-transform. If you have forgotten or are unfamiliar with pole/zero plots, please refer
back to the Pole/Zero Plots (Section 3.8) module.

Example 3.13
In this �rst example we will take a look at the very simple z-transform shown below:

H (z) = z + 1 = 1 + z−1

H (w) = 1 + e−(jw)

For this example, some of the vectors represented by |ejw−h|, for random values of w, are explicitly
drawn onto the complex plane shown in the �gure below. These vectors show how the amplitude
of the frequency response changes as w goes from 0 to 2π, and also show the physical meaning
of the terms in (3.67) above. One can see that when w = 0, the vector is the longest and thus
the frequency response will have its largest amplitude here. As w approaches π, the length of the
vectors decrease as does the amplitude of |H (w) |. Since there are no poles in the transform, there
is only this one vector term rather than a ratio as seen in (3.67).



126 CHAPTER 3. FILTER DESIGN I (Z-TRANSFORM)

(a) Pole/Zero Plot (b) Frequency Response: |H(w)|

Figure 3.27: The �rst �gure represents the pole/zero plot with a few representative vectors graphed
while the second shows the frequency response with a peak at +2 and graphed between plus and minus
π.

Example 3.14
For this example, a more complex transfer function is analyzed in order to represent the system's
frequency response.

H (z) =
z

z − 1
2

=
1

1− 1
2z
−1

H (w) =
1

1− 1
2e
−(jw)

Below we can see the two �gures described by the above equations. The Figure 3.28(a)
(Pole/Zero Plot) represents the basic pole/zero plot of the z-transform, H (w). Figure 3.28(b)
(Frequency Response: |H(w)|) shows the magnitude of the frequency response. From the formulas
and statements in the previous section, we can see that when w = 0 the frequency will peak since
it is at this value of w that the pole is closest to the unit circle. The ratio from (3.67) helps us see
the mathematics behind this conclusion and the relationship between the distances from the unit
circle and the poles and zeros. As w moves from 0 to π, we see how the zero begins to mask the
e�ects of the pole and thus force the frequency response closer to 0.



127

(a) Pole/Zero Plot (b) Frequency Response: |H(w)|

Figure 3.28: The �rst �gure represents the pole/zero plot while the second shows the frequency
response with a peak at +2 and graphed between plus and minus π.

3.10.3 Interactive Filter Design Illustration

This media object is a LabVIEW VI. Please view or download it at
<DFD_Utility.llb>

Figure 3.29: Digital �lter design LabVIEW virtual instrument by NI from
http://cnx.org/content/m13115/latest/21.

3.10.4 Conclusion

In conclusion, using the distances from the unit circle to the poles and zeros, we can plot the frequency
response of the system. As w goes from 0 to 2π, the following two properties, taken from the above
equations, specify how one should draw |H (w) |.
While moving around the unit circle...

1. if close to a zero, then the magnitude is small. If a zero is on the unit circle, then the frequency
response is zero at that point.

2. if close to a pole, then the magnitude is large. If a pole is on the unit circle, then the frequency response
goes to in�nity at that point.

21http://cnx.org/content/m13115/latest/



128 CHAPTER 3. FILTER DESIGN I (Z-TRANSFORM)



Chapter 4

Filter Design II

4.1 Bilinear Transform1

There is a way that we can make things a good bit easier for ourselves however. The only drawback is
that we have to do some complex analysis �rst, and look at a bilinear transform! Let's do one more
substitution, and de�ne another complex vector, which we can call r (s):

r (s) ≡ |Γν |ej(θr−2βs) (4.1)

The vector r (s) is just the rotating part of the crank diagram which we have been looking at Figure 4.1
(The Vector r(s)). It has a magnitude equal to that of the re�ection coe�cient, and it rotates around at a
rate 2βs as we move down the line. For every r (s) there is a corresponding Z (s) which is given by:

Z (s) = Z0
1 + r (s)
1− r (s)

(4.2)

The Vector r(s)

Figure 4.1

Now, it turns out to be easier if we talk about a normalized impedance, which we get by dividing

1This content is available online at <http://cnx.org/content/m1057/2.13/>.

129



130 CHAPTER 4. FILTER DESIGN II

Z (s) by Z0.
Z (s)
Z0

=
1 + r (s)
1− r (s)

(4.3)

which we can solve for r (s)

r (s) =
Z(s)
Z0
− 1

Z(s)
Z0

+ 1
(4.4)

This relationship is called a bilinear transform. For every r (s) that we can imagine, there is one and

only one Z(s)
Z0

and for every Z(s)
Z0

there is one and only one r (s). What we would like to be able to do, is

�nd Z(s)
Z0

, given an r (s). The reason for this should be readily apparent. Whereas, as we move along in s,
Z(s)
Z0

behaves in a most di�cult manner (dividing one phasor by another), r (s) simply rotates around on the
complex plane. Given one r (s0) it is easy to �nd another r (s). We just rotate around!

We shall �nd the required relationship in a graphical manner. Suppose I have a complex plane, repre-

senting Z(s)
Z0

. And then suppose I have some point "A" on that plane and I want to know what impedance
it represents. I just read along the two axes, and �nd that, for the example in Figure 4.2 (The Complex

Impedance Plane), "A" represents an impedance of Z(s)
Z0

= 4 + 2j. What I would like to do would be to get

a grid similar to that on the Z(s)
Z0

plane, but on the r (s) plane instead. That way, if I knew one impedence

(say Z(0)
Z0

= ZL
Z0

then I could �nd any other impedance, at any other s, by simply rotating r (s)around by

2βs, and then reading o� the new Z(s)
Z0

from the grid I had developed. This is what we shall attempt to do.

The Complex Impedance Plane

Figure 4.2

Let's start with (4.4) and re-write it as:

r (s) =
Z(s)
Z0

+1−2

Z(s)
Z0

+1

= 1 + −2
Z(s)
Z0

+1

(4.5)

In order to use (4.5), we are going to have to interpret it in a way which might seem a little odd to you.

The way we will read the equation is to say: "Take Z(s)
Z0

and add 1 to it. Invert what you get, and multiply



131

by -2. Then add 1 to the result." Simple isn't it? The only hard part we have in doing this is inverting
Z(s)
Z0

+ 1. This, it turns out, is pretty easy once we learn one very important fact.
The one fact about algebra on the complex plane that we need is as follows. Consider a vertical line, s,

on the complex plane, located a distance d away from the imaginary axis Figure 4.3 (A Vertical Line, s, a
Distance, d, Away From the Imaginary Axis). There are a lot of ways we could express the line s, but we
will choose one which will turn out to be convenient for us. Let's let:

s = d (1− jtan (φ))φ ∈
[
−π

2
,
π

2

]
(4.6)

A Vertical Line, s, a Distance, d, Away From the Imaginary Axis

Figure 4.3

Now we ask ourselves the question: what is the inverse of s?

1
s

=
1
d

1
1− jtan (φ)

(4.7)

We can substitute for tan (φ):
1
s = 1

d
1

1−j sin(φ)
cos(φ)

= 1
d

cos(φ)
cos(φ)−jsin(φ)

(4.8)

And then, since cos (φ)− jsin (φ) = e−(jφ)

1
s = 1

d
cos(φ)
e−(jφ)

= 1
dcos (φ) ejφ

(4.9)



132 CHAPTER 4. FILTER DESIGN II

A Plot of 1/s

Figure 4.4

A careful look at Figure 4.4 (A Plot of 1/s) should allow you to convince yourself that (4.9) is an equation
for a circle on the complex plane, with a diameter 1

d . If s is not parallel to the imaginary axis, but rather has
its perpendicular to the origin at some angle φ, to make a line s′ Figure 4.5 (The Line s'). Since s′ = sejφ,
taking 1

s simply will give us a circle with a diameter of 1
d , which has been rotated by an angle φ from the

real axis Figure 4.6 (Inverse of a Rotated Line). And so we come to the one fact we have to keep in mind:
"The inverse of a straight line on the complex plane is a circle, whose diameter is the inverse
of the distance between the line and the origin."

The Line s'

Figure 4.5: The line s multiplied by ejφ



133

Inverse of a Rotated Line

Figure 4.6



134 CHAPTER 4. FILTER DESIGN II



Chapter 5

Filter Design III

5.1 Linear-Phase FIR Filters1

5.1.1 THE AMPLITUDE RESPONSE

If the real and imaginary parts of Hf (ω) are given by

Hf (ω) = Re (ω) + jIm (ω) (5.1)

the magnitude and phase are de�ned as

|Hf (ω) | =
√

(Re (ω))2 + (Im (ω))2

p (ω) = arctan
(

Im (ω)
Re (ω)

)
so that

Hf (ω) = |Hf (ω) |ejp(ω) (5.2)

With this de�nition, |Hf (ω) | is never negative and p (ω) is usually discontinuous, but it can be very helpful
to write Hf (ω) as

Hf (ω) = A (ω) ejθ(ω) (5.3)

where A (ω) can be positive and negative, and θ (ω) continuous. A (ω) is called the amplitude response.
Figure 5.1 illustrates the di�erence between |Hf (ω) | and A (ω).

1This content is available online at <http://cnx.org/content/m10705/2.3/>.

135



136 CHAPTER 5. FILTER DESIGN III

Figure 5.1

A linear-phase phase �lter is one for which the continuous phase θ (ω) is linear.

Hf (ω) = A (ω) ejθ(ω)

with
θ (ω) = Mω +B

We assume in the following that the impulse response h (n) is real-valued.

5.1.2 WHY LINEAR-PHASE?

If a discrete-time cosine signal
x1 (n) = cos (ω1n+ φ1)

is processed through a discrete-time �lter with frequency response

Hf (ω) = A (ω) ejθ(ω)

then the output signal is given by

y1 (n) = A (ω1) cos (ω1n+ φ1 + θ (ω1))



137

or

y1 (n) = A (ω1) cos
(
ω1

(
n+

θ (ω1)
ω1

)
+ φ1

)
The LTI system has the e�ect of scaling the cosine signal and delaying it by θ(ω1)

ω1
.

Exercise 5.1.1 (Solution on p. 156.)

When does the system delay cosine signals with di�erent frequencies by the same amount?

The function θ(ω)
ω is called the phase delay. A linear phase �lter therefore has constant phase delay.

5.1.3 WHY LINEAR-PHASE: EXAMPLE

Consider a discrete-time �lter described by the di�erence equation

y (n) = 0.1821x (n) + 0.7865x (n− 1) − 0.6804x (n− 2) + x (n− 3) +
0.6804y (n− 1)− 0.7865y (n− 2) + 0.1821y (n− 3)

(5.4)

When ω1 = 0.31π, then the delay is −θ(ω1)
ω1

= 2.45. The delay is illustrated in Figure 5.2:

Figure 5.2



138 CHAPTER 5. FILTER DESIGN III

Notice that the delay is fractional � the discrete-time samples are not exactly reproduced in the output.
The fractional delay can be interpreted in this case as a delay of the underlying continuous-time cosine signal.

5.1.4 WHY LINEAR-PHASE: EXAMPLE (2)

Consider the same system given on the previous slide, but let us change the frequency of the cosine signal.

When ω2 = 0.47π, then the delay is −θ(ω2)
ω2

= 0.14.

Figure 5.3

note: For this example, the delay depends on the frequency, because this system does not have
linear phase.

5.1.5 WHY LINEAR-PHASE: MORE

From the previous slides, we see that a �lter will delay di�erent frequency components of a signal by the
same amount if the �lter has linear phase (constant phase delay).



139

In addition, when a narrow band signal (as in AM modulation) goes through a �lter, the envelop will be
delayed by the group delay or envelop delay of the �lter. The amount by which the envelop is delayed
is independent of the carrier frequency only if the �lter has linear phase.

Also, in applications like image processing, �lters with non-linear phase can introduce artifacts that are
visually annoying.

5.2 Four Types of Linear-Phase FIR Filters2

5.2.1 FOUR TYPES OF LINEAR-PHASE FIR FILTERS

Linear-phase FIR �lter can be divided into four basic types.

Type
impulse response

I symmetric length is odd

II symmetric length is even

III anti-symmetric length is odd

IV anti-symmetric length is even

Table 5.1

2This content is available online at <http://cnx.org/content/m10706/2.2/>.



140 CHAPTER 5. FILTER DESIGN III

Figure 5.4

When h (n) is nonzero for 0 ≤ n ≤ N − 1 (the length of the impulse response h (n) is N), then the
symmetry of the impulse response can be written as

h (n) = h (N − 1− n) (5.5)

and the anti-symmetry can be written as

h (n) = −h (N − 1− n) (5.6)

5.2.2 TYPE I: ODD-LENGTH SYMMETRIC

The frequency response of a length N = 5 FIR Type I �lter can be written as follows.

Hf (ω) = h0 + h1e
(−j)ω + h2e

−2jω + h1e
−3jω + h0e

−4ω (5.7)



141

Hf (ω) = e−2jω
(
h0e

2jω + h1e
jω + h2 + h1e

(−j)ω + h0e
−2jω

)
(5.8)

Hf (ω) = e−2jω
(
h0

(
e2jω + e−2jω

)
+ h1

(
ejω + e(−j)ω

)
+ h2

)
(5.9)

Hf (ω) = e−2jω (2h0cos (2ω) + 2h1cos (ω) + h2) (5.10)

Hf (ω) = A (ω) ejθ(ω) (5.11)

where
θ (ω) = −2ω

A (ω) = 2h0cos (2ω) + 2h1cos (ω) + h2

Note that A (ω) is real-valued and can be both positive and negative. In general, for a Type I FIR �lters of
length N :

Hf (ω) = A (ω) ejθ(ω)

A (ω) = h (M) + 2
M−1∑
n=0

h (n) cos ((M − n)ω) (5.12)

θ (ω) = (−M)ω

M =
N − 1

2

5.2.3 TYPE II: EVEN-LENGTH SYMMETRIC

The frequency response of a length N = 4 FIR Type II �lter can be written as follows.

Hf (ω) = h0 + h1e
(−j)ω + h1e

−2jω + h0e
−3jω (5.13)

Hf (ω) = e
−3
2 jω

(
h0e

3
2 jω + h1e

1
2 jω + h1e

−1
2 jω + h0e

−3
2 jω

)
(5.14)

Hf (ω) = e
−3
2 jω

(
h0

(
e

3
2 jω + e

−3
2 jω

)
+ h1

(
e

1
2 jω + e

−1
2 jω

))
(5.15)

Hf (ω) = e
−3
2 jω

(
2h0cos

(
3
2
ω

)
+ 2h1cos

(
1
2
ω

))
(5.16)

Hf (ω) = A (ω) ejθ(ω) (5.17)

where

θ (ω) =
−3
2
ω

A (ω) = 2h0cos
(

3
2
ω

)
+ 2h1cos

(
1
2
ω

)
In general, for a Type II FIR �lters of length N :

Hf (ω) = A (ω) ejθ(ω)



142 CHAPTER 5. FILTER DESIGN III

A (ω) = 2

N
2 −1∑
n=0

h (n) cos ((M − n)ω) (5.18)

θ (ω) = (−M)ω

M =
N − 1

2

5.2.4 TYPE III: ODD-LENGTH ANTI-SYMMETRIC

The frequency response of a length N = 5 FIR Type III �lter can be written as follows.

Hf (ω) = h0 + h1e
(−j)ω −

(
h1e
−3jω − h0e

−4ω
)

(5.19)

Hf (ω) = e−2jω
(
h0e

2jω + h1e
jω −

(
h1e

(−j)ω − h0e
−2jω

))
(5.20)

Hf (ω) = e−2jω
(
h0

(
e2jω − e−2jω

)
+ h1

(
ejω − e(−j)ω

))
(5.21)

Hf (ω) = e−2jω (2jh0sin (2ω) + 2jh1sin (ω)) (5.22)

Hf (ω) = e−2jωj (2h0sin (2ω) + 2h1sin (ω)) (5.23)

Hf (ω) = e−2jωej
π
2 (2h0sin (2ω) + 2h1sin (ω)) (5.24)

Hf (ω) = A (ω) ejθ(ω) (5.25)

where
θ (ω) = 2ω +

π

2

A (ω) = 2h0sin (2ω) + 2h1sin (ω)

In general, for a Type III FIR �lters of length N :

Hf (ω) = A (ω) ejθ(ω)

A (ω) = 2
M−1∑
n=0

h (n) sin ((M − n)ω) (5.26)

θ (ω) = Mω +
π

2

M =
N − 1

2



143

5.2.5 TYPE IV: EVEN-LENGTH ANTI-SYMMETRIC

The frequency response of a length N = 4 FIR Type IV �lter can be written as follows.

Hf (ω) = h0 + h1e
(−j)ω −

(
h1e
−2jω − h0e

−3jω
)

(5.27)

Hf (ω) = e
−3
2 jω

(
h0e

3
2 jω + h1e

1
2 jω −

(
h1e

−1
2 jω − h0e

−3
2 jω

))
(5.28)

Hf (ω) = e
−3
2 jω

(
h0

(
e

3
2 jω − e

−3
2 jω

)
+ h1

(
e

1
2 jω − e

−1
2 jω

))
(5.29)

Hf (ω) = e
−3
2 jω

(
2jh0sin

(
3
2
ω

)
+ 2jh1sin

(
1
2
ω

))
(5.30)

Hf (ω) = e
−3
2 jωj

(
2h0sin

(
3
2
ω

)
+ 2h1sin

(
1
2
ω

))
(5.31)

Hf (ω) = e
−3
2 jωej

π
2

(
2h0sin

(
3
2
ω

)
+ 2h1sin

(
1
2
ω

))
(5.32)

Hf (ω) = A (ω) ejθ(ω) (5.33)

where

θ (ω) =
−3
2
ω +

π

2

A (ω) = 2h0sin
(

3
2
ω

)
+ 2h1sin

(
1
2
ω

)
In general, for a Type IV FIR �lters of length N :

Hf (ω) = A (ω) ejθ(ω)

A (ω) = 2

N
2 −1∑
n=0

h (n) sin ((M − n)ω) (5.34)

θ (ω) = Mω +
π

2

M =
N − 1

2

5.3 Design of Linear-Phase FIR Filters by DFT-Based Interpolation3

5.3.1 DESIGN OF FIR FILTERS BY DFT-BASED INTERPOLATION

One approach to the design of FIR �lters is to ask that A (ω) pass through a speci�ed set of values. If the
number of speci�ed interpolation points is the same as the number of �lter parameters, then the �lter is
totally determined by the interpolation conditions, and the �lter can be found by solving a system of linear
equations. When the interpolation points are equally spaced between 0 and 2π, then this interpolation
problem can be solved very e�ciently using the DFT.

3This content is available online at <http://cnx.org/content/m10701/2.2/>.



144 CHAPTER 5. FILTER DESIGN III

To derive the DFT solution to the interpolation problem, recall the formula relating the samples of the
frequency response to the DFT. In the case we are interested here, the number of samples is to be the same
as the length of the �lter ( L = N).

H
(

2π
N k
)

=
∑N−1
n=0 h (n) ej

2π
N nk

= DFTN (h (n))
(5.35)

5.3.1.1 Types I and II

Recall the relation between A (ω) and Hf (ω) for a Type I and II �lter, to obtain

A
(

2π
N k
)

= H
(

2π
N k
)
ejM

2π
N k

= DFTN (h (n))WMk
N

(5.36)

Now we can related the N -point DFT of h (n) to the samples of A (ω):

DFTN (h (n)) = A

(
2π
N
k

)
W−Mk
N

Finally, we can solve for the �lter coe�cients h (n).

h (n) = DFTN−1

(
A

(
2π
N
k

)
W−Mk
N

)
(5.37)

Therefore, if the values A
(

2π
N k
)
are speci�ed, we can then obtain the �lter coe�cients h (n)that satis�es the

interpolation conditions by using the inverse DFT. It is important to note however, that the speci�ed values
A
(

2π
N k
)
must possess the appropriate symmetry in order for the result of the inverse DFT to be a real Type

I or II FIR �lter.

5.3.1.2 Types III and IV

For Type III and IV �lters, we have

A
(

2π
N k
)

= (−j)H
(

2π
N k
)
ejM

2π
N k

= (−j) DFTN (h (n))WMk
N

(5.38)

Then we can related the N -point DFT of h (n) to the samples of A (ω):

DFTN (h (n)) = jA

(
2π
N
k

)
WMk
N

Solving for the �lter coe�cients h (n) gives:

h (n) = DFTN−1

(
jA

(
2π
N
k

)
W−Mk
N

)
(5.39)



145

5.3.2 EXAMPLE: DFT-INTERPOLATION (TYPE I)

The following Matlab code fragment illustrates how to use this approach to design a length 11 Type I FIR
�lter for which A

(
2π
N k
)

= (1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1)T , (0 ≤ k ≤ N − 1) and (N = 11) .

� N = 11;

� M = (N-1)/2;

� Ak = [1 1 1 0 0 0 0 0 0 1 1}; % samples of A(w)

� k = 0:N-1;

� W = exp(j*2*pi/N);

� h = ifft(Ak.*W.^(-M*k));

� h'

ans =

0.0694 - 0.0000i

-0.0540 - 0.0000i

-0.1094 + 0.0000i

0.0474 + 0.0000i

0.3194 + 0.0000i

0.4545 + 0.0000i

0.3194 + 0.0000i

0.0474 + 0.0000i

-0.1094 + 0.0000i

-0.0540 - 0.0000i

0.0694 - 0.0000i

Observe that the �lter coe�cients h are real and symmetric; that a Type I �lter is obtained as desired. The
plot of A (ω) for this �lter illustrates the interpolation points.

L = 512;

H = fft([h zeros(1,L-N)]);

W = exp(j*2*pi/L);

k = 0:L-1;

A = H .* W.^(M*k);

A = real(A);

w = k*2*pi/L;

plot(w/pi,A,2*[0:N-1]/N,Ak,'o')

xlabel('\omega/\pi')
title('A(\omega)')



146 CHAPTER 5. FILTER DESIGN III

Figure 5.5

An exercise for the student: develop this DFT-based interpolation approach for Type II, III, and IV FIR
�lters. Modify the Matlab code above for each case.

5.3.3 SUMMARY: IMPULSE AND AMP RESPONSE

For an N -point linear-phase FIR �lter h (n), we summarize:

1. The formulas for evaluating the amplitude response A (ω) at L equally spaced points from 0 to 2π (
L ≥ N).

2. The formulas for the DFT-based interpolation design of h (n).

TYPE I and II:

A

(
2π
L
k

)
= DFTL ([h (n) , 0L−N ])WMk

L (5.40)

h (n) = DFTN−1

(
A

(
2π
N
k

)
W−Mk
N

)
(5.41)

TYPE III and IV:

A

(
2π
L
k

)
= (−j) DFTL ([h (n) , 0L−N ])WMk

L (5.42)

h (n) = DFTN−1

(
jA

(
2π
N
k

)
W−Mk
N

)
(5.43)



147

5.4 Design of Linear-Phase FIR Filters by General Interpolation4

5.4.1 DESIGN OF FIR FILTERS BY GENERAL INTERPOLATION

If the desired interpolation points are not uniformly spaced between 0 and π then we can not use the DFT.
We must take a di�erent approach. Recall that for a Type I FIR �lter,

A (ω) = h (M) + 2
M−1∑
n=0

h (n) cos ((M − n)ω)

For convenience, it is common to write this as

A (ω) =
M∑
n=0

a (n) cos (nω)

where h (M) = a (0) and h (n) = a(M−n)
2 , 1 ≤ n ≤ N − 1 . Note that there are M + 1 parameters.

Suppose it is desired that A (ω) interpolates a set of speci�ed values:

A (ωk) = Ak , 0 ≤ k ≤M

To obtain a Type I FIR �lter satisfying these interpolation equations, one can set up a linear system of
equations.

M∑
n=0

a (n) cos (nωk) = Ak , 0 ≤ k ≤M

In matrix form, we have
1 cos (ω0) cos (2ω0) . . . cos (Mω0)

1 cos (ω1) cos (2ω1) . . . cos (Mω1)
...

1 cos (ωM ) cos (2ωM ) . . . cos (MωM )




a (0)

a (1)
...

a (M)

 =


A (0)

A (1)
...

A (M)


Once a (n) is found, the �lter h (n) is formed as

{h (n)} = 1/2 {a (M) , a (M − 1) , . . . , a (1) , 2× a (0) , a (1) , . . . , a (M − 1) , a (M)}

5.4.2 EXAMPLE

In the following example, we design a length 19 Type I FIR. Then M = 9 and we have 10 parameters. We
can therefore have 10 interpolation equations. We choose:

A (ωk) = 1 , ωk = {0, 0.1π, 0.2π, 0.3π} 0 ≤ k ≤ 3 (5.44)

A (ωk) = 0 , ωk = {0.5π, 0.6π, 0.7π, 0.8π, 0.8π, 1.0π} 4 ≤ k ≤ 9 (5.45)

To solve this interpolation problem in Matlab, note that the matrix can be generated by a single multipli-
cation of a column vector and a row vector. This is done with the command C = cos(wk*[0:M]); where
wk is a column vector containing the frequency points. To solve the linear system of equations, we can use
the Matlab backslash command.

4This content is available online at <http://cnx.org/content/m10704/2.2/>.



148 CHAPTER 5. FILTER DESIGN III

N = 19;

M = (N-1)/2;

wk = [0 .1 .2 .3 .5 .6 .7 .8 .9 1]'*pi;

Ak = [1 1 1 1 0 0 0 0 0 0]';

C = cos(wk*[0:M]);

a = C/Ak;

h = (1/2)*[a([M:-1:1]+1); 2*a([0]+1); a(1:M]+1)];

[A,w] = firamp(h,1);

plot(w/pi,A,wk/pi,Ak,'o')

title('A(\omega)')
xlabel('\omega/\pi')

Figure 5.6

The general interpolation problem is much more �exible than the uniform interpolation problem that the
DFT solves. For example, by leaving a gap between the pass-band and stop-band as in this example,
the ripple near the band edge is reduced (but the transition between the pass- and stop-bands is not as
sharp). The general interpolation problem also arises as a subproblem in the design of optimal minimax (or
Chebyshev) FIR �lters.

5.4.3 LINEAR-PHASE FIR FILTERS: PROS AND CONS

FIR digital �lters have several desirable properties.

• They can have exactly linear phase.
• They can not be unstable.



149

• There are several very e�ective methods for designing linear-phase FIR digital �lters.

On the other hand,

• Linear-phase �lters can have long delay between input and output.
• If the phase need not be linear, then IIR �lters can be more e�cient.

5.5 Linear-Phase FIR Filters: Amplitude Formulas5

5.5.1 SUMMARY: AMPLITUDE FORMULAS

Type θ (ω) A (ω)

I − (Mω) h (M) + 2
∑M−1
n=0 h (n) cos ((M − n)ω)

II − (Mω) 2
∑N

2 −1
n=0 h (n) cos ((M − n)ω)

III − (Mω) + π
2 2

∑M−1
n=0 h (n) sin ((M − n)ω)

IV − (Mω) + π
2 2

∑N
2 −1
n=0 h (n) sin ((M − n)ω)

Table 5.2

where M = N−1
2

5.5.2 AMPLITUDE RESPONSE CHARACTERISTICS

To analyze or design linear-phase FIR �lters, we need to know the characteristics of the amplitude response
A (ω).

Type Properties

I

A (ω) is even about ω = 0 A (ω) = A (−ω)

A (ω) is even about ω = π A (π + ω) = A (π − ω)

A (ω) is periodic with 2π A (ω + 2π) = A (ω)

II

A (ω) is even about ω = 0 A (ω) = A (−ω)

A (ω) is odd about ω = π A (π + ω) = −A (π − ω)

A (ω) is periodic with 4π A (ω + 4π) = A (ω)

III

A (ω) is odd about ω = 0 A (ω) = −A (−ω)

A (ω) is odd about ω = π A (π + ω) = −A (π − ω)

A (ω) is periodic with 2π A (ω + 2π) = A (ω)

continued on next page

5This content is available online at <http://cnx.org/content/m10707/2.5/>.



150 CHAPTER 5. FILTER DESIGN III

IV

A (ω) is odd about ω = 0 A (ω) = −A (−ω)

A (ω) is even about ω = π A (π + ω) = A (π − ω)

A (ω) is periodic with 4π A (ω + 4π) = A (ω)

Table 5.3

Figure 5.7

5.5.3 EVALUATING THE AMPLITUDE RESPONSE

The frequency response Hf (ω) of an FIR �lter can be evaluated at L equally spaced frequencies between 0
and π using the DFT. Consider a causal FIR �lter with an impulse response h (n) of length-N , with N ≤ L.
Samples of the frequency response of the �lter can be written as

H

(
2π
L
k

)
=
N−1∑
n=0

h (n) e(−j) 2π
L nk



151

De�ne the L-point signal {g (n) | 0 ≤ n ≤ L− 1} as

g (n) =

 h (n) if 0 ≤ n ≤ N − 1

0 if N ≤ n ≤ L− 1

Then

H

(
2π
L
k

)
= G (k) = DFTL (g (n))

where G (k) is the L-point DFT of g (n).

5.5.3.1 Types I and II

Suppose the FIR �lter h (n) is either a Type I or a Type II FIR �lter. Then we have from above

Hf (ω) = A (ω) e(−j)Mω

or
A (ω) = Hf (ω) ejMω

Samples of the real-valued amplitude A (ω) can be obtained from samples of the function Hf (ω) as:

A

(
2π
L
k

)
= H

(
2π
L
k

)
ejM

2π
L k = G (k)WMk

L

Therefore, the samples of the real-valued amplitude function can be obtained by zero-padding h (n), taking
the DFT, and multiplying by the complex exponential. This can be written as:

A

(
2π
L
k

)
= DFTL ([h (n) , 0L−N ])WMk

L (5.46)

5.5.3.2 Types III and IV

For Type III and Type IV FIR �lters, we have

Hf (ω) = je(−j)MωA (ω)

or
A (ω) = (−j)Hf (ω) ejMω

Therefore, samples of the real-valued amplitude A (ω) can be obtained from samples of the function Hf (ω)
as:

A

(
2π
L
k

)
= (−j)H

(
2π
L
k

)
ejM

2π
L k = (−j)G (k)WMk

L

Therefore, the samples of the real-valued amplitude function can be obtained by zero-padding h (n), taking
the DFT, and multiplying by the complex exponential.

A

(
2π
L
k

)
= (−j) DFTL ([h (n) , 0L−N ])WMk

L (5.47)

Example 5.1: EVALUATING THE AMP RESP (TYPE I)
In this example, the �lter is a Type I FIR �lter of length 7. An accurate plot of A (ω) can be
obtained with zero padding.



152 CHAPTER 5. FILTER DESIGN III

Figure 5.8

The following Matlab code fragment for the plot of A (ω) for a Type I FIR �lter.

h = [3 4 5 6 5 4 3]/30;

N = 7;

M = (N-1)/2;

L = 512;

H = fft([h zeros(1,L-N)]);

k = 0:L-1;

W = exp(j*2*pi/L);

A = H .* W.^(M*k);

A = real(A);

figure(1)

w = [0:L-1]*2*pi/(L-1);

subplot(2,1,1)

plot(w/pi,abs(H))

ylabel('|H(\omega)| = |A(\omega)|')
xlabel('\omega/\pi')
subplot(2,1,2)

plot(w/pi,A)

ylabel('A(\omega)')
xlabel('\omega/\pi')



153

print -deps type1

The command A = real(A) removes the imaginary part which is equal to zero to within computer
precision. Without this command, Matlab takes A to be a complex vector and the following plot
command will not be right.

Observe the symmetry of A (ω) due to h (n) being real-valued. Because of this symmetry, A (ω)
is usually plotted for 0 ≤ ω ≤ π only.

Example 5.2: EVALUATING THE AMP RESP (TYPE II)

Figure 5.9

The following Matlab code fragment produces a plot of A (ω) for a Type II FIR �lter.

h = [3 5 6 7 7 6 5 3]/42;

N = 8;

M = (N-1)/2;

L = 512;

H = fft([h zeros(1,L-N)]);

k = 0:L-1;

W = exp(j*2*pi/L);

A = H .* W.^(M*k);

A = real(A);



154 CHAPTER 5. FILTER DESIGN III

figure(1)

w = [0:L-1]*2*pi/(L-1);

subplot(2,1,1)

plot(w/pi,abs(H))

ylabel('|H(\omega)| = |A(\omega)|')
xlabel('\omega/\pi')
subplot(2,1,2)

plot(w/pi,A)

ylabel('A(\omega)')
xlabel('\omega/\pi')
print -deps type2

The imaginary part of the amplitude is zero. Notice that A (π) = 0. In fact this will always be the
case for a Type II FIR �lter.

An exercise for the student: Describe how to obtain samples of A (ω) for Type III and Type IV
FIR �lters. Modify the Matlab code above for these types. Do you notice that A (ω) = 0 always
for special values of ω?

5.5.4 Modules for Further Study

1. Zero Locations of Linear-Phase Filters (Section 3.9)
2. Design of Linear-Phase FIR Filters by Interpolation (Section 5.3)
3. Linear-Phase FIR Filter Design by Least Squares6

5.6 FIR Filter Design using MATLAB7

5.6.1 FIR Filter Design Using MATLAB

5.6.1.1 Design by windowing

The MATLAB function fir1() designs conventional lowpass, highpass, bandpass, and bandstop linear-phase
FIR �lters based on the windowing method. The command

b = fir1(N,Wn)

returns in vector b the impulse response of a lowpass �lter of order N. The cut-o� frequency Wn must be
between 0 and 1 with 1 corresponding to the half sampling rate.

The command

b = fir1(N,Wn,'high')

6"Linear-Phase Fir Filter Design By Least Squares" <http://cnx.org/content/m10577/latest/>
7This content is available online at <http://cnx.org/content/m10917/2.2/>.



155

returns the impulse response of a highpass �lter of order N with normalized cuto� frequency Wn.
Similarly, b = fir1(N,Wn,'stop') with Wn a two-element vector designating the stopband designs a

bandstop �lter.
Without explicit speci�cation, the Hamming window is employed in the design. Other windowing

functions can be used by specifying the windowing function as an extra argument of the function. For
example, Blackman window can be used instead by the command b = fir1(N, Wn, blackman(N)).

5.6.1.2 Parks-McClellan FIR �lter design

The MATLAB command

b = remez(N,F,A)

returns the impulse response of the length N+1 linear phase FIR �lter of order N designed by Parks-McClellan
algorithm. F is a vector of frequency band edges in ascending order between 0 and 1 with 1 corresponding
to the half sampling rate. A is a real vector of the same size as F which speci�es the desired amplitude of
the frequency response of the points (F(k),A(k)) and (F(k+1),A(k+1)) for odd k. For odd k, the bands
between F(k+1) and F(k+2) is considered as transition bands.

5.7 MATLAB FIR Filter Design Exercise8

5.7.1 FIR Filter Design MATLAB Exercise

5.7.1.1 Design by windowing

Exercise 5.7.1 (Solution on p. 156.)

Assuming sampling rate at 48kHz, design an order-40 low-pass �lter having cut-o� frequency 10kHz
by windowing method. In your design, use Hamming window as the windowing function.

5.7.1.2 Parks-McClellan Optimal Design

Exercise 5.7.2 (Solution on p. 156.)

Assuming sampling rate at 48kHz, design an order-40 lowpass �lter having transition band 10kHz-
11kHz using the Parks-McClellan optimal FIR �lter design algorithm.

5.8 Parks-McClellan Optimal FIR Filter Design9

8This content is available online at <http://cnx.org/content/m10918/2.2/>.
9This content is available online at <http://cnx.org/content/m10914/2.2/>.



156 CHAPTER 5. FILTER DESIGN III

Solutions to Exercises in Chapter 5

Solution to Exercise 5.1.1 (p. 137)

• θ(ω)
ω = constant

• θ (ω) = Kω
• The phase is linear.

Solution to Exercise 5.7.1 (p. 155)

b = fir1(40,10.0/48.0)

Solution to Exercise 5.7.2 (p. 155)

b = remez(40,[1 1 0 0],[0 10/48 11/48 1])



Chapter 6

Wiener Filter Design

157



158 CHAPTER 6. WIENER FILTER DESIGN



Chapter 7

Adaptive Filtering

7.1 Adaptive Filtering: LMS Algorithm1

7.1.1 Introduction

Figure 7.1 is a block diagram of system identi�cation using adaptive �ltering. The objective is to change
(adapt) the coe�cients of an FIR �lter, W , to match as closely as possible the response of an unknown
system, H. The unknown system and the adapting �lter process the same input signal x [n] and have
outputs d [n](also referred to as the desired signal) and y [n].

W

H
e[n]

y[n]

x[n] d[n]

Figure 7.1: System identi�cation block diagram.

7.1.1.1 Gradient-descent adaptation

The adaptive �lter, W , is adapted using the least mean-square algorithm, which is the most widely used
adaptive �ltering algorithm. First the error signal, e [n], is computed as e [n] = d [n]− y [n], which measures
the di�erence between the output of the adaptive �lter and the output of the unknown system. On the
basis of this measure, the adaptive �lter will change its coe�cients in an attempt to reduce the error. The

1This content is available online at <http://cnx.org/content/m10481/2.14/>.

159



160 CHAPTER 7. ADAPTIVE FILTERING

coe�cient update relation is a function of the error signal squared and is given by

hn+1 [i] = hn [i] +
µ

2

(
−∂(|e|)2

∂hn [i]

)
(7.1)

The term inside the parentheses represents the gradient of the squared-error with respect to the ith

coe�cient. The gradient is a vector pointing in the direction of the change in �lter coe�cients that will
cause the greatest increase in the error signal. Because the goal is to minimize the error, however, (7.1)
updates the �lter coe�cients in the direction opposite the gradient; that is why the gradient term is negated.
The constant µ is a step-size, which controls the amount of gradient information used to update each
coe�cient. After repeatedly adjusting each coe�cient in the direction opposite to the gradient of the error,
the adaptive �lter should converge; that is, the di�erence between the unknown and adaptive systems should
get smaller and smaller.

To express the gradient decent coe�cient update equation in a more usable manner, we can rewrite the
derivative of the squared-error term as

∂(|e|)2

∂h[i] = 2 ∂e
∂h[i] e

= 2∂(d−y)
∂h[i] e

=
(

2
∂(d−PN−1

i=0 h[i]x[n−i])
∂h[i]

)
(e)

(7.2)

∂(|e|)2

∂h [i]
= 2 (−x [n− i]) e (7.3)

which in turn gives us the �nal LMS coe�cient update,

hn+1 [i] = hn [i] + µex [n− i] (7.4)

The step-size µ directly a�ects how quickly the adaptive �lter will converge toward the unknown system. If µ
is very small, then the coe�cients change only a small amount at each update, and the �lter converges slowly.
With a larger step-size, more gradient information is included in each update, and the �lter converges more
quickly; however, when the step-size is too large, the coe�cients may change too quickly and the �lter will
diverge. (It is possible in some cases to determine analytically the largest value of µ ensuring convergence.)

7.1.2 MATLAB Simulation

Simulate the system identi�cation block diagram shown in Figure 7.1.
Previously in MATLAB, you used the filter command or the conv command to implement shift-

invariant �lters. Those commands will not work here because adaptive �lters are shift-varying, since the
coe�cient update equation changes the �lter's impulse response at every sample time. Therefore, implement
the system identi�cation block on a sample-by-sample basis with a do loop, similar to the way you might
implement a time-domain FIR �lter on a DSP. For the "unknown" system, use the fourth-order, low-pass,
elliptical, IIR �lter designed for the IIR Filtering: Filter-Design Exercise in MATLAB2.

Use Gaussian random noise as your input, which can be generated in MATLAB using the command
randn. Random white noise provides signal at all digital frequencies to train the adaptive �lter. Simulate
the system with an adaptive �lter of length 32 and a step-size of 0.02. Initialize all of the adaptive �lter
coe�cients to zero. From your simulation, plot the error (or squared-error) as it evolves over time and plot
the frequency response of the adaptive �lter coe�cients at the end of the simulation. How well does your
adaptive �lter match the "unknown" �lter? How long does it take to converge?

Once your simulation is working, experiment with di�erent step-sizes and adaptive �lter lengths.

2"IIR Filtering: Filter-Design Exercise in MATLAB" <http://cnx.org/content/m10623/latest/>



161

7.1.3 Processor Implementation

Use the same "unknown" �lter as you used in the MATLAB simulation.
Although the coe�cient update equation is relatively straightforward, consider using the lms instruction

available on the TI processor, which is designed for this application and yields a very e�cient implementation
of the coe�cient update equation.

To generate noise on the DSP, you can use the PN generator from the Digital Transmitter: Introduction
to Quadrature Phase-Shift Keying3, but shift the PN register contents up to make the sign bit random. (If
the sign bit is always zero, then the noise will not be zero-mean and this will a�ect convergence.) Send
the desired signal, d [n], the output of the adaptive �lter, y [n], and the error to the D/A for display on the
oscilloscope.

When using the step-size suggested in the MATLAB simulation section, you should notice that the error
converges very quickly. Try an extremely small µ so that you can actually watch the amplitude of the error
signal decrease towards zero.

7.1.4 Extensions

If your project requires some modi�cations to the implementation here, refer to Haykin [1] and consider
some of the following questions regarding such modi�cations:

• How would the system in Figure 7.1 change for di�erent applications? (noise cancellation, equalization,
etc.)

• What happens to the error when the step-size is too large or too small?
• How does the length of an adaptive FIR �lters a�ect convergence?
• What types of coe�cient update relations are possible besides the described LMS algorithm?

3"Digital Transmitter: Introduction to Quadrature Phase-Shift Keying" <http://cnx.org/content/m10042/latest/>



162 CHAPTER 7. ADAPTIVE FILTERING



Chapter 8

Wavelets and Filterbanks

8.1 Haar Wavelet Basis1

8.1.1 Introduction

Fourier series2 is a useful orthonormal representation3 on L2 ([0, T ]) especiallly for inputs into LTI systems.
However, it is ill suited for some applications, i.e. image processing (recall Gibb's phenomena4).

Wavelets, discovered in the last 15 years, are another kind of basis for L2 ([0, T ]) and have many nice
properties.

8.1.2 Basis Comparisons

Fourier series - cn give frequency information. Basis functions last the entire interval.

1This content is available online at <http://cnx.org/content/m10764/2.9/>.
2"Fourier Series: Eigenfunction Approach" <http://cnx.org/content/m10496/latest/>
3"Orthonormal Basis Expansions" <http://cnx.org/content/m10760/latest/>
4"Gibbs Phenomena" <http://cnx.org/content/m10092/latest/>

163



164 CHAPTER 8. WAVELETS AND FILTERBANKS

Figure 8.1: Fourier basis functions

Wavelets - basis functions give frequency info but are local in time.



165

Figure 8.2: Wavelet basis functions

In Fourier basis, the basis functions are harmonic multiples of ejω0t

Figure 8.3: basis =
n

1√
T
ejω0nt

o

In Haar wavelet basis (Section 8.5), the basis functions are scaled and translated versions of a "mother
wavelet" ψ (t).



166 CHAPTER 8. WAVELETS AND FILTERBANKS

Figure 8.4

Basis functions {ψj,k (t)} are indexed by a scale j and a shift k.

Let φ (t) = 1 , 0 ≤ t < T Then
{
φ (t) , 2

j
2ψ
(
2jt− k

)
, φ (t) , 2

j
2ψ
(
2jt− k

)
| j ∈ Z and

(
k = 0, 1, 2, . . . , 2j − 1

)}



167

Figure 8.5

ψ (t) =

 1 if 0 ≤ t < T
2

−1 if 0 ≤ T
2 < T

(8.1)



168 CHAPTER 8. WAVELETS AND FILTERBANKS

Figure 8.6

Let ψj,k (t) = 2
j
2ψ
(
2jt− k

)

Figure 8.7

Larger j → "skinnier" basis function, j = {0, 1, 2, . . . }, 2j shifts at each scale: k = 0, 1, . . . , 2j − 1
Check: each ψj,k (t) has unit energy



169

Figure 8.8

(∫
ψj,k

2 (t) dt = 1
)
⇒
(
‖ ψj,k (t) ‖2 = 1

)
(8.2)

Any two basis functions are orthogonal.

(a) (b)

Figure 8.9: Integral of product = 0 (a) Same scale (b) Di�erent scale



170 CHAPTER 8. WAVELETS AND FILTERBANKS

Also, {ψj,k, φ} span L2 ([0, T ])

8.1.3 Haar Wavelet Transform

Using what we know about Hilbert spaces5: For any f (t) ∈ L2 ([0, T ]), we can write

Synthesis

f (t) =
∑
j

∑
k

wj,kψj,k (t) + c0φ (t) (8.3)

Analysis

wj,k =
∫ T

0

f (t)ψj,k (t) dt (8.4)

c0 =
∫ T

0

f (t)φ (t) dt (8.5)

note: the wj,k are real

The Haar transform is super useful especially in image compression

5"Inner Products" <http://cnx.org/content/m10755/latest/>



171

8.1.4 Haar Wavelet Demonstration

Figure 8.10: Interact (when online) with a Mathematica CDF demonstrating the Haar Wavelet as an
Orthonormal Basis.



172 CHAPTER 8. WAVELETS AND FILTERBANKS

8.2 Orthonormal Wavelet Basis6

An orthonormal wavelet basis is an orthonormal basis of the form

B =
{

2
j
2ψ
(
2jt− k

)
| j ∈ Z and k ∈ Z

}
(8.6)

The function ψ (t) is called the wavelet.
The problem is how to �nd a function ψ (t) so that the set B is an orthonormal set.

Example 8.1: Haar Wavelet
The Haar basis (Section 8.1) (described by Haar in 1910) is an orthonormal basis with wavelet
ψ (t)

ψ (t) =


1 if 0 ≤ t ≤ 1/2

−1 if 1/2 ≤ t ≤ 1

0 otherwise

(8.7)

For the Haar wavelet, it is easy to verify that the set B is an orthonormal set (Figure 8.11).

6This content is available online at <http://cnx.org/content/m10957/2.3/>.



173

Figure 8.11

Notation:
ψj,k (t) = 2

j
2ψ
(
2jt− k

)
where j is an index of scale and k is an index of location.

If B is an orthonormal set then we have the wavelet series.

Wavelet series

x (t) =
∞∑

j=−∞

∞∑
k=−∞

d (j, k)ψj,k (t) (8.8)

d (j, k) =
∫ ∞
−∞

x (t)ψj,k (t) dt



174 CHAPTER 8. WAVELETS AND FILTERBANKS

8.3 Continuous Wavelet Transform7

The STFT provided a means of (joint) time-frequency analysis with the property that spectral/temporal
widths (or resolutions) were the same for all basis elements. Let's now take a closer look at the implications
of uniform resolution.

Consider two signals composed of sinusoids with frequency 1 Hz and 1.001 Hz, respectively. It may be
di�cult to distinguish between these two signals in the presence of background noise unless many cycles are
observed, implying the need for a many-second observation. Now consider two signals with pure frequencies
of 1000 Hz and 1001 Hz-again, a 0.1% di�erence. Here it should be possible to distinguish the two signals
in an interval of much less than one second. In other words, good frequency resolution requires longer
observation times as frequency decreases. Thus, it might be more convenient to construct a basis whose
elements have larger temporal width at low frequencies.

The previous example motivates a multi-resolution time-frequency tiling of the form (Figure 8.12):

t

omega

a_small

a_large

Figure 8.12

The Continuous Wavelet Transform (CWT) accomplishes the above multi-resolution tiling by time-scaling
and time-shifting a prototype function ψ (t), often called the mother wavelet. The a-scaled and τ -shifted
basis elements is given by

ψa,τ (t) =
1√
|a|
ψ

(
t− τ
a

)
where

a and τ ∈ R

∫ ∞
−∞

ψ (t) dt = 0

Cψ =
∫ ∞
−∞

(|ψ (Ω) |)2

|Ω|
dΩ <∞

7This content is available online at <http://cnx.org/content/m10418/2.14/>.



175

The conditions above imply that ψ (t) is bandpass and su�ciently smooth. Assuming that ‖ ψ (t) ‖= 1, the
de�nition above ensures that ‖ ψa,τ (t) ‖= 1 for all a and τ . The CWT is then de�ned by the transform
pair

XCWT (a, τ) =
∫ ∞
−∞

x (t)ψa,τ (t)∗dt

x (t) =
1
Cψ

∫ ∞
−∞

∫ ∞
−∞

XCWT (a, τ)ψa,τ (t)
a2

dτda

In basis terms, the CWT says that a waveform can be decomposed into a collection of shifted and stretched
versions of the mother wavelet ψ (t). As such, it is usually said that wavelets perform a "time-scale" analysis
rather than a time-frequency analysis.

The Morlet wavelet is a classic example of the CWT. It employs a windowed complex exponential as
the mother wavelet:

ψ (t) =
1√
2π
e−(jΩ0t)e−

t2
2

Ψ (Ω) = e−
(Ω−Ω0)2

2

where it is typical to select Ω0 = π
√

2
log2 . (See illustration (Figure 8.13).) While this wavelet does not

exactly satisfy the conditions established earlier, since Ψ (0) ' 7× 10−7 6= 0, it can be corrected, though in
practice the correction is negligible and usually ignored.

Figure 8.13

While the CWT discussed above is an interesting theoretical and pedagogical tool, the discrete wavelet
transform (DWT) is much more practical. Before shifting our focus to the DWT, we take a step back and
review some of the basic concepts from the branch of mathematics known as Hilbert Space theory (Vector



176 CHAPTER 8. WAVELETS AND FILTERBANKS

Space8, Normed Vector Space9, Inner Product Space10, Hilbert Space11, Projection Theorem12). These
concepts will be essential in our development of the DWT.

8.4 Discrete Wavelet Transform: Main Concepts13

8.4.1 Main Concepts

The discrete wavelet transform (DWT) is a representation of a signal x (t) ∈ L2 using an or-
thonormal basis consisting of a countably-in�nite set of wavelets. Denoting the wavelet basis as
{ψk,n (t) | k ∈ Z and n ∈ Z}, the DWT transform pair is

x (t) =
∞∑

k=−∞

∞∑
n=−∞

dk,nψk,n (t) (8.9)

dk,n = < ψk,n (t) , x (t) >

=
∫∞
−∞ ψk,n (t)∗x (t) dt

(8.10)

where {dk,n} are the wavelet coe�cients. Note the relationship to Fourier series and to the sampling
theorem: in both cases we can perfectly describe a continuous-time signal x (t) using a countably-in�nite
(i.e., discrete) set of coe�cients. Speci�cally, Fourier series enabled us to describe periodic signals using
Fourier coe�cients {X [k] | k ∈ Z}, while the sampling theorem enabled us to describe bandlimited signals
using signal samples {x [n] | n ∈ Z}. In both cases, signals within a limited class are represented using a
coe�cient set with a single countable index. The DWT can describe any signal in L2 using a coe�cient set
parameterized by two countable indices: {dk,n | k ∈ Z and n ∈ Z}.

Wavelets are orthonormal functions in L2 obtained by shifting and stretching a mother wavelet,
ψ (t) ∈ L2. For example,

ψk,n (t) = 2−
k
2ψ
(
2−kt− n

)
, k and n ∈ Z (8.11)

de�nes a family of wavelets {ψk,n (t) | k ∈ Z and n ∈ Z} related by power-of-two stretches. As k increases,
the wavelet stretches by a factor of two; as n increases, the wavelet shifts right.

note: When ‖ ψ (t) ‖= 1, the normalization ensures that ‖ ψk,n (t) ‖= 1 for all k ∈ Z, n ∈ Z.

Power-of-two stretching is a convenient, though somewhat arbitrary, choice. In our treatment of the discrete
wavelet transform, however, we will focus on this choice. Even with power-of two stretches, there are various
possibilities for ψ (t), each giving a di�erent �avor of DWT.

Wavelets are constructed so that {ψk,n (t) | n ∈ Z} (i.e., the set of all shifted wavelets at �xed scale k),
describes a particular level of 'detail' in the signal. As k becomes smaller (i.e., closer to −∞), the wavelets
become more "�ne grained" and the level of detail increases. In this way, the DWT can give a multi-
resolution description of a signal, very useful in analyzing "real-world" signals. Essentially, the DWT gives
us a discrete multi-resolution description of a continuous-time signal in L2.

In the modules that follow, these DWT concepts will be developed "from scratch" using Hilbert space
principles. To aid the development, we make use of the so-called scaling function φ (t) ∈ L2, which will be
used to approximate the signal up to a particular level of detail. Like with wavelets, a family of scaling
functions can be constructed via shifts and power-of-two stretches

φk,n (t) = 2−
k
2 φ
(
2−kt− n

)
, k and n ∈ Z (8.12)

8"Vector Space" <http://cnx.org/content/m10419/latest/>
9"Normed Vector Space" <http://cnx.org/content/m10428/latest/>

10"Inner Product Space" <http://cnx.org/content/m10430/latest/>
11"Hilbert Spaces" <http://cnx.org/content/m10434/latest/>
12"Projection Theorem" <http://cnx.org/content/m10435/latest/>
13This content is available online at <http://cnx.org/content/m10436/2.12/>.



177

given mother scaling function φ (t). The relationships between wavelets and scaling functions will be
elaborated upon later via theory14 and example (Section 8.5).

note: The inner-product expression for dk,n, (8.10) is written for the general complex-valued
case. In our treatment of the discrete wavelet transform, however, we will assume real-valued
signals and wavelets. For this reason, we omit the complex conjugations in the remainder of our
DWT discussions

8.5 The Haar System as an Example of DWT15

The Haar basis is perhaps the simplest example of a DWT basis, and we will frequently refer to it in our
DWT development. Keep in mind, however, that the Haar basis is only an example; there are many
other ways of constructing a DWT decomposition.

For the Haar case, the mother scaling function is de�ned by (8.13) and Figure 8.14.

φ (t) =

 1 if 0 ≤ t < 1

0 otherwise
(8.13)

Figure 8.14

From the mother scaling function, we de�ne a family of shifted and stretched scaling functions {φk,n (t)}
according to (8.14) and Figure 8.15

φk,n (t) = 2−
k
2 φ
(
2−kt− n

)
, k ∈ Z n ∈ Z

= 2−
k
2 φ
(

1
2k

(
t− n2k

)) (8.14)

14"The Scaling Equation" <http://cnx.org/content/m10476/latest/>
15This content is available online at <http://cnx.org/content/m10437/2.10/>.



178 CHAPTER 8. WAVELETS AND FILTERBANKS

Figure 8.15

which are illustrated in Figure 8.16 for various k and n. (8.14) makes clear the principle that increment-
ing n by one shifts the pulse one place to the right. Observe from Figure 8.16 that {φk,n (t) | n ∈ Z} is
orthonormal for each k (i.e., along each row of �gures).

Figure 8.16



GLOSSARY 179

Glossary

A Autocorrelation

the expected value of the product of a random variable or signal realization with a time-shifted
version of itself

C Complex Plane

A two-dimensional graph where the horizontal axis maps the real part and the vertical axis maps
the imaginary part of any complex number or function.

Correlation

A measure of how much one random variable depends upon the other.

Covariance

A measure of how much the deviations of two or more variables or processes match.

Crosscorrelation

if two processes are wide sense stationary, the expected value of the product of a random variable
from one random process with a time-shifted, random variable from a di�erent random process

D di�erence equation

An equation that shows the relationship between consecutive values of a sequence and the
di�erences among them. They are often rearranged as a recursive formula so that a systems
output can be computed from the input signal and past outputs.

Example:

y [n] + 7y [n− 1] + 2y [n− 2] = x [n]− 4x [n− 1] (3.1)

domain

The group, or set, of values that are de�ned by a given function.

Example: Using the rational function above, 16 , the domain can be de�ned as any real number
x where x does not equal 1 or negative 3. Written out mathematical, we get the following:

{x ∈ R | (x 6= −3) and (x 6= 1)} (3.45)

F FFT

(Fast Fourier Transform) An e�cient computational algorithm for computing the DFT17.

First-order stationary process

If FXt (b) is not a function of time then Xt is called a �rst-order stationary process.

P poles

1. The value(s) for z where Q (z) = 0.

16http://cnx.org/content/m10593/latest/
17"Discrete Fourier Transform (DFT)" <http://cnx.org/content/m10249/latest/>



180 GLOSSARY

2. The complex frequencies that make the overall gain of the �lter transfer function in�nite.

poles

1. The value(s) for z where the denominator of the transfer function equals zero

2. The complex frequencies that make the overall gain of the �lter transfer function in�nite.

R random process

A family or ensemble of signals that correspond to every possible outcome of a certain signal
measurement. Each signal in this collection is referred to as a realization or sample function
of the process.

Example: As an example of a random process, let us look at the Random Sinusoidal Process
below. We use f [n] = Asin (ωn+ φ) to represent the sinusoid with a given amplitude and phase.
Note that the phase and amplitude of each sinusoid is based on a random number, thus making
this a random process.

rational function

For any two polynomials, A and B, their quotient is called a rational function.

Example: Below is a simple example of a basic rational function, f (x). Note that the
numerator and denominator can be polynomials of any order, but the rational function is
unde�ned when the denominator equals zero.

f (x) =
x2 − 4

2x2 + x− 3
(3.43)

S stationary process

a random process where all of its statistical properties do not vary with time

Stochastic Process

Given a sample space, a stochastic process is an indexed collection of random variables de�ned
for each ω ∈ Ω.

Xt (ω) , t ∈ R (2.1)

Z zeros

1. The value(s) for z where P (z) = 0.

2. The complex frequencies that make the overall gain of the �lter transfer function zero.

zeros

1. The value(s) for z where the numerator of the transfer function equals zero

2. The complex frequencies that make the overall gain of the �lter transfer function zero.



Bibliography

[1] S. Haykin. Adaptive Filter Theory. Prentice Hall, 3rd edition edition, 1996.

181



182 INDEX

Index of Keywords and Terms

Keywords are listed by the section with that keyword (page numbers are in parentheses). Keywords
do not necessarily appear in the text of the page. They are merely associated with that section. Ex.
apples, � 1.1 (1) Terms are referenced by the page they appear on. Ex. apples, 1

2 2d convolution, � 1.2(3), � 1.4(11)
2d fourier transforms, � 1.2(3)
2d FT, � 1.2(3)
2D FTs, � 1.4(11)
2D sampling, � 1.4(11)
2D-DFT, � 1.3(7)

A A/D, � 1.8(23), � 1.9(33), � 1.11(42)
adaptive �ltering, � 7.1(159)
amplitude response, � 5.1(135), 135, � 5.5(149)
analog, � 1.8(23), � 1.9(33)
analog-to-digital (A/D) conversion, � 1.13(53),
53
autocorrelation, � 2.4(71), � 2.7(81), 82, 82
average, � 2.5(74)
average power, 75

B bandlimited, 37, 176
basis, � 8.1(163)
BER, 71
bilateral z-transform, 93
bilinear transform, � 4.1(129), 129, 130
bit error rate, 71
blur, � 1.1(1)

C causal, 120
characteristic polynomial, 92
circular convolution, � 1.6(17), � 1.11(42), 44
complex, � 3.6(103), � 3.8(114)
complex plane, � 3.6(103), 103, 103
computational algorithm, 179
continuous random process, 63
continuous time, � 3.4(99)
control theory, 101, 118
convolution, � 1.1(1), � 1.3(7), � 1.6(17),
� 1.11(42)
correlation, 79, 79, � 2.7(81)
correlation coe�cient, 79
correlation functions, 80
covariance, 78, 78
Crosscorrelation, 85
crosscorrelation function, 85

CT, � 1.10(38)
CTFT, � 1.7(19), � 1.9(33)
CWT, � 8.3(174)

D D/A, � 1.8(23), � 1.9(33), � 1.11(42)
deblurring, � 1.1(1), 1
deconvolution, � 1.1(1)
density function, � 2.4(71)
design, � 3.10(124)
deterministic, � 2.1(61)
deterministic signals, 61
DFT, � 1.3(7), � 1.5(14), � 1.7(19), � 1.8(23),
� 1.11(42)
DFT-based interpolation, � 5.3(143)
di�erence equation, 89, 89
digital, � 1.8(23), � 1.9(33)
digital �lters, � 1.6(17)
direct method, 91
discrete fourier transform, � 1.8(23), � 1.11(42)
Discrete Fourier Transform (DFT), 24
discrete random process, 63
discrete time, � 3.3(98), � 3.4(99), � 3.10(124)
discrete time fourier transform, � 1.8(23)
Discrete Wavelet Transform, � 8.4(176), 176,
� 8.5(177)
distribution, � 2.2(64)
distribution function, � 2.4(71)
domain, 102, 102
dsp, � 1.1(1), � 2.4(71), � 2.5(74), � 2.7(81),
� 3.3(98), � 7.1(159)
DTFT, � 1.7(19), � 1.8(23), � 1.9(33)

E envelop delay, 139
ergodic, 76
Euler, � 1.14(56)
exercise, � 5.7(155)
expansion, � 8.1(163)

F fast fourier transform, � 1.7(19)
FFT, � 1.3(7), � 1.5(14), � 1.6(17), � 1.7(19),
19
�lter, � 1.12(50), � 3.10(124)



INDEX 183

�ltering, � 1.6(17)
�lters, � 1.11(42)
�nite-duration sequence, 105
FIR, � 5.6(154), � 5.7(155)
FIR Filters, � 5.3(143)
�rst order stationary, � 2.4(71)
�rst-order stationary, 73
First-order stationary process, 64
fourier, � 8.1(163)
Fourier coe�cients, � 1.14(56), 56
Fourier series, � 1.14(56), � 8.1(163)
Fourier Transform, � 1.9(33), � 1.11(42),
� 3.2(93), 93
fourier transforms, � 1.10(38)
frequency, � 1.10(38), � 1.14(56)
frequency domain, � 1.7(19)
FT, � 1.1(1), � 1.10(38)
function, � 3.5(101)

G Gauss, � 1.14(56)
gradient descent, � 7.1(159)
group delay, 139

H haar, � 8.1(163), � 8.5(177)
haar wavelet, � 8.1(163)
hilbert, � 8.1(163)
hilbert spaces, � 8.1(163)
homogeneous solution, 91

I ideal low pass �lter, � 1.12(50)
image, � 1.1(1), � 1.3(7)
image processing, � 1.3(7), � 1.4(11)
imaginary, � 3.6(103)
independent, 76
indirect method, 91
initial conditions, 90
interpolation, � 1.12(50)

J joint density function, � 2.4(71), 72
joint distribution function, 72

L laplace transform, � 3.4(99)
left-sided sequence, 108
linear algebra, � 1.5(14)
linear-phase, � 5.3(143)
linear-phase FIR �lters, � 5.1(135), � 5.2(139),
� 5.5(149)
linearly independent, 74
LMS, � 7.1(159)
LPF, � 1.12(50)
LTI systems, � 1.6(17), � 1.9(33)

M MATLAB, � 5.6(154), � 5.7(155)

matrix, � 1.5(14)
mean, � 2.5(74), 74
mean-square value, 75
moment, 75
Morlet wavelet, 175
mother wavelet, 174, 176
multi-resolution, 176
multiresolution, � 8.4(176)

N nonstationary, � 2.4(71), 72
normalized impedance, 129
nyquist, � 1.10(38)

O order, 90
orthogonal wavelet basis, � 8.2(172)
orthogonality, � 1.14(56), 56

P particular solution, 91
pdf, � 2.4(71)
Pearson's Correlation Coe�cient, 79
periodic, 176
phase delay, 137
plane, � 3.6(103)
point spread function, 11
polar form, 104
pole, � 3.4(99), � 3.8(114), � 3.10(124)
pole-zero cancellation, 101, 118
poles, 99, 103, 115
polynomial, � 3.5(101)
power series, 94, 105
probability, � 2.4(71)
probability density function (pdf), 72
probability distribution function, 72
probability function, � 2.4(71)

Q quantization interval, � 1.13(53), 54
quantized, � 1.13(53), 53

R random, � 2.1(61), � 2.5(74), � 2.7(81)
random process, � 2.1(61), 62, 62, 63,
� 2.2(64), � 2.4(71), � 2.5(74), � 2.7(81)
random sequence, 63
random signal, � 2.1(61), � 2.5(74)
random signals, � 2.1(61), 62, � 2.3(68),
� 2.5(74), � 2.7(81)
rational, � 3.5(101)
rational function, � 3.5(101), 101, 101
rational functions, � 3.5(101)
realization, 180
reconstruction, � 1.12(50)
rectangular coordinate, 104
region of convergence (ROC), 105
restoration, � 1.1(1)



184 INDEX

right-sided sequence, 107
ROC, � 3.2(93), 94, 105

S sample function, 180
sampling, � 1.2(3), � 1.8(23), � 1.10(38)
scaling function, 176, � 8.5(177), 177
second order stationary, � 2.4(71)
second-order stationary, 73
signal-to-noise, � 1.13(53), 55
signals, � 3.4(99)
sinc, � 1.12(50)
sinusoid, � 1.14(56)
square wave, � 1.14(56)
SSS, � 2.4(71)
stable, 120
stationarity, � 2.4(71)
stationary, � 2.2(64), � 2.4(71), � 2.7(81)
stationary process, 72
stationary processes, 72
stochastic, � 2.1(61)
stochastic process, � 2.2(64), 64
stochastic signals, 62
strict sense stationary, � 2.4(71)
strict sense stationary (SSS), 73
symmetries, 20
system identi�cation, � 7.1(159)
systems, � 3.4(99)

T time, � 1.10(38)
time-frequency analysis, � 8.3(174)
time-varying behavior, 35

transfer function, 90
transform pairs, � 3.3(98)
twiddle factors, 20
two-dimensional dft, � 1.3(7)
two-sided sequence, 109

U uncertainty principle, � 8.3(174)
uncorrelated, 74
unilateral, � 3.3(98)
unilateral z-transform, 93

V variance, � 2.5(74), 75
vector, � 1.5(14)
vertical asymptotes, 102

W wavelet, � 8.1(163), 172, � 8.4(176), � 8.5(177)
wavelets, � 8.1(163), 163, 176, 176
wide sense stationary, � 2.4(71)
wide-sense stationary (WSS), 73
wrap-around, 10
WSS, � 2.4(71)

X x-intercept, 102

Y y-intercept, 102

Z z transform, � 3.3(98), � 3.4(99)
z-plane, 94, � 3.6(103), � 3.8(114)
z-transform, � 3.2(93), 93, � 3.3(98),
� 3.5(101), 105
z-transforms, 98
zero, � 3.4(99), � 3.8(114), � 3.10(124)
zeros, 99, 103, 115



ATTRIBUTIONS 185

Attributions

Collection: Intro to Digital Signal Processing
Edited by: Robert Nowak
URL: http://cnx.org/content/col10203/1.4/
License: http://creativecommons.org/licenses/by/1.0

Module: "Image Restoration Basics"
By: Robert Nowak
URL: http://cnx.org/content/m10972/2.2/
Pages: 1-3
Copyright: Robert Nowak
License: http://creativecommons.org/licenses/by/1.0

Module: "Digital Image Processing Basics"
By: Robert Nowak
URL: http://cnx.org/content/m10973/2.2/
Pages: 3-6
Copyright: Robert Nowak
License: http://creativecommons.org/licenses/by/1.0

Module: "2D DFT"
By: Robert Nowak
URL: http://cnx.org/content/m10987/2.4/
Pages: 7-11
Copyright: Robert Nowak
License: http://creativecommons.org/licenses/by/1.0

Module: "Images: 2D signals"
By: Robert Nowak
URL: http://cnx.org/content/m10961/2.7/
Pages: 11-14
Copyright: Robert Nowak
License: http://creativecommons.org/licenses/by/1.0

Module: "DFT as a Matrix Operation"
By: Robert Nowak
URL: http://cnx.org/content/m10962/2.5/
Pages: 14-17
Copyright: Robert Nowak
License: http://creativecommons.org/licenses/by/1.0

Module: "Fast Convolution Using the FFT"
By: Robert Nowak
URL: http://cnx.org/content/m10963/2.6/
Pages: 17-19
Copyright: Robert Nowak
License: http://creativecommons.org/licenses/by/1.0



186 ATTRIBUTIONS

Module: "The FFT Algorithm"
By: Robert Nowak
URL: http://cnx.org/content/m10964/2.6/
Pages: 19-23
Copyright: Robert Nowak
License: http://creativecommons.org/licenses/by/1.0

Module: "The DFT: Frequency Domain with a Computer Analysis"
By: Robert Nowak
URL: http://cnx.org/content/m10992/2.3/
Pages: 23-32
Copyright: Robert Nowak
License: http://creativecommons.org/licenses/by/1.0

Module: "Discrete-Time Processing of CT Signals"
By: Robert Nowak
URL: http://cnx.org/content/m10993/2.2/
Pages: 33-38
Copyright: Robert Nowak
License: http://creativecommons.org/licenses/by/1.0

Module: "Sampling CT Signals: A Frequency Domain Perspective"
By: Robert Nowak
URL: http://cnx.org/content/m10994/2.2/
Pages: 38-41
Copyright: Robert Nowak
License: http://creativecommons.org/licenses/by/1.0

Module: "Filtering with the DFT"
By: Robert Nowak
URL: http://cnx.org/content/m11022/2.3/
Pages: 42-49
Copyright: Robert Nowak
License: http://creativecommons.org/licenses/by/1.0

Module: "Ideal Reconstruction of Sampled Signals"
By: Robert Nowak
URL: http://cnx.org/content/m11044/2.3/
Pages: 50-53
Copyright: Robert Nowak
License: http://creativecommons.org/licenses/by/1.0

Module: "Amplitude Quantization"
By: Don Johnson
URL: http://cnx.org/content/m0051/2.23/
Pages: 53-55
Copyright: Don Johnson
License: http://creativecommons.org/licenses/by/3.0/

Module: "Classic Fourier Series"
By: Don Johnson
URL: http://cnx.org/content/m0039/2.23/
Pages: 56-58
Copyright: Don Johnson
License: http://creativecommons.org/licenses/by/1.0



ATTRIBUTIONS 187

Module: "Introduction to Random Signals and Processes"
By: Michael Haag
URL: http://cnx.org/content/m10649/2.2/
Pages: 61-63
Copyright: Michael Haag
License: http://creativecommons.org/licenses/by/1.0

Module: "Introduction to Stochastic Processes"
By: Behnaam Aazhang
URL: http://cnx.org/content/m10235/2.15/
Pages: 64-67
Copyright: Behnaam Aazhang
License: http://creativecommons.org/licenses/by/1.0

Module: "Random Signals"
By: Nick Kingsbury
URL: http://cnx.org/content/m10989/2.5/
Pages: 68-71
Copyright: Nick Kingsbury
License: http://creativecommons.org/licenses/by/1.0

Module: "Stationary and Nonstationary Random Processes"
By: Michael Haag
URL: http://cnx.org/content/m10684/2.2/
Pages: 71-73
Copyright: Michael Haag
License: http://creativecommons.org/licenses/by/1.0

Module: "Random Processes: Mean and Variance"
By: Michael Haag
URL: http://cnx.org/content/m10656/2.3/
Pages: 74-78
Copyright: Michael Haag
License: http://creativecommons.org/licenses/by/1.0

Module: "Correlation and Covariance of a Random Signal"
By: Michael Haag
URL: http://cnx.org/content/m10673/2.3/
Pages: 78-81
Copyright: Michael Haag
License: http://creativecommons.org/licenses/by/1.0

Module: "Autocorrelation of Random Processes"
By: Michael Haag
URL: http://cnx.org/content/m10676/2.4/
Pages: 81-84
Copyright: Michael Haag
License: http://creativecommons.org/licenses/by/1.0

Module: "Crosscorrelation of Random Processes"
By: Michael Haag
URL: http://cnx.org/content/m10686/2.2/
Pages: 84-86
Copyright: Michael Haag
License: http://creativecommons.org/licenses/by/1.0



188 ATTRIBUTIONS

Module: "Di�erence Equation"
By: Michael Haag
URL: http://cnx.org/content/m10595/2.6/
Pages: 89-93
Copyright: Michael Haag
License: http://creativecommons.org/licenses/by/1.0

Module: "The Z Transform: De�nition"
By: Benjamin Fite
URL: http://cnx.org/content/m10549/2.10/
Pages: 93-98
Copyright: Benjamin Fite
License: http://creativecommons.org/licenses/by/1.0

Module: "Table of Common z-Transforms"
By: Melissa Selik, Richard Baraniuk
URL: http://cnx.org/content/m10119/2.14/
Pages: 98-99
Copyright: Melissa Selik, Richard Baraniuk
License: http://creativecommons.org/licenses/by/1.0

Module: "Poles and Zeros"
By: Richard Baraniuk
URL: http://cnx.org/content/m10112/2.12/
Pages: 99-101
Copyright: Richard Baraniuk
License: http://creativecommons.org/licenses/by/1.0

Module: "Rational Functions and the Z-Transform"
By: Michael Haag
URL: http://cnx.org/content/m10593/2.8/
Pages: 101-103
Copyright: Michael Haag
License: http://creativecommons.org/licenses/by/1.0

Module: "The Complex Plane"
By: Michael Haag
URL: http://cnx.org/content/m10596/2.2/
Pages: 103-104
Copyright: Michael Haag
License: http://creativecommons.org/licenses/by/1.0

Module: "Region of Convergence for the Z-transform"
By: Benjamin Fite, Dan Calderon
URL: http://cnx.org/content/m10622/2.8/
Pages: 105-114
Copyright: Benjamin Fite, Dan Calderon
License: http://creativecommons.org/licenses/by/3.0/



ATTRIBUTIONS 189

Module: "Understanding Pole/Zero Plots on the Z-Plane"
By: Michael Haag
URL: http://cnx.org/content/m10556/2.12/
Pages: 114-121
Copyright: Michael Haag
License: http://creativecommons.org/licenses/by/3.0/

Module: "Zero Locations of Linear-Phase FIR Filters"
By: Ivan Selesnick
URL: http://cnx.org/content/m10700/2.2/
Pages: 121-124
Copyright: Ivan Selesnick
License: http://creativecommons.org/licenses/by/1.0

Module: "Discrete Time Filter Design"
By: Michael Haag
URL: http://cnx.org/content/m10548/2.10/
Pages: 124-127
Copyright: Michael Haag
License: http://creativecommons.org/licenses/by/1.0

Module: "Bilinear Transform"
By: Bill Wilson
URL: http://cnx.org/content/m1057/2.13/
Pages: 129-133
Copyright: Bill Wilson
License: http://creativecommons.org/licenses/by/1.0

Module: "Linear-Phase FIR Filters"
By: Ivan Selesnick
URL: http://cnx.org/content/m10705/2.3/
Pages: 135-139
Copyright: Ivan Selesnick
License: http://creativecommons.org/licenses/by/1.0

Module: "Four Types of Linear-Phase FIR Filters"
By: Ivan Selesnick
URL: http://cnx.org/content/m10706/2.2/
Pages: 139-143
Copyright: Ivan Selesnick
License: http://creativecommons.org/licenses/by/1.0

Module: "Design of Linear-Phase FIR Filters by DFT-Based Interpolation"
By: Ivan Selesnick
URL: http://cnx.org/content/m10701/2.2/
Pages: 143-146
Copyright: Ivan Selesnick
License: http://creativecommons.org/licenses/by/1.0



190 ATTRIBUTIONS

Module: "Design of Linear-Phase FIR Filters by General Interpolation"
By: Ivan Selesnick
URL: http://cnx.org/content/m10704/2.2/
Pages: 147-149
Copyright: Ivan Selesnick
License: http://creativecommons.org/licenses/by/1.0

Module: "Linear-Phase FIR Filters: Amplitude Formulas"
By: Ivan Selesnick
URL: http://cnx.org/content/m10707/2.5/
Pages: 149-154
Copyright: Ivan Selesnick
License: http://creativecommons.org/licenses/by/1.0

Module: "FIR Filter Design using MATLAB"
By: Hyeokho Choi
URL: http://cnx.org/content/m10917/2.2/
Pages: 154-155
Copyright: Hyeokho Choi
License: http://creativecommons.org/licenses/by/1.0

Module: "MATLAB FIR Filter Design Exercise"
By: Hyeokho Choi
URL: http://cnx.org/content/m10918/2.2/
Page: 155
Copyright: Hyeokho Choi
License: http://creativecommons.org/licenses/by/1.0

Module: "Parks-McClellan Optimal FIR Filter Design"
By: Hyeokho Choi
URL: http://cnx.org/content/m10914/2.2/
Page: 155
Copyright: Hyeokho Choi
License: http://creativecommons.org/licenses/by/1.0

Module: "Adaptive Filtering: LMS Algorithm"
By: Douglas L. Jones, Swaroop Appadwedula, Matthew Berry, Mark Haun, Dima Moussa, Daniel Sachs
URL: http://cnx.org/content/m10481/2.14/
Pages: 159-161
Copyright: Douglas L. Jones, Swaroop Appadwedula, Matthew Berry, Mark Haun, Dima Moussa, Daniel
Sachs, Jake Janovetz, Michael Kramer, Brian Wade
License: http://creativecommons.org/licenses/by/1.0

Module: "Haar Wavelet Basis"
By: Roy Ha, Justin Romberg
URL: http://cnx.org/content/m10764/2.9/
Pages: 163-172
Copyright: Roy Ha, Justin Romberg
License: http://creativecommons.org/licenses/by/3.0/



ATTRIBUTIONS 191

Module: "Orthonormal Wavelet Basis"
By: Ivan Selesnick
URL: http://cnx.org/content/m10957/2.3/
Pages: 172-173
Copyright: Ivan Selesnick
License: http://creativecommons.org/licenses/by/1.0

Module: "Continuous Wavelet Transform"
By: Phil Schniter
URL: http://cnx.org/content/m10418/2.14/
Pages: 174-176
Copyright: Phil Schniter
License: http://creativecommons.org/licenses/by/1.0

Module: "Discrete Wavelet Transform: Main Concepts"
By: Phil Schniter
URL: http://cnx.org/content/m10436/2.12/
Pages: 176-177
Copyright: Phil Schniter
License: http://creativecommons.org/licenses/by/1.0

Module: "The Haar System as an Example of DWT"
By: Phil Schniter
URL: http://cnx.org/content/m10437/2.10/
Pages: 177-178
Copyright: Phil Schniter
License: http://creativecommons.org/licenses/by/1.0



Intro to Digital Signal Processing
The course provides an introduction to the concepts of digital signal processing (DSP). Some of the main
topics covered include DSP systems, image restoration, z-transform, FIR �lters, adaptive �lters, wavelets,
and �lterbanks.

About Connexions
Since 1999, Connexions has been pioneering a global system where anyone can create course materials and
make them fully accessible and easily reusable free of charge. We are a Web-based authoring, teaching and
learning environment open to anyone interested in education, including students, teachers, professors and
lifelong learners. We connect ideas and facilitate educational communities.

Connexions's modular, interactive courses are in use worldwide by universities, community colleges, K-12
schools, distance learners, and lifelong learners. Connexions materials are in many languages, including
English, Spanish, Chinese, Japanese, Italian, Vietnamese, French, Portuguese, and Thai. Connexions is part
of an exciting new information distribution system that allows for Print on Demand Books. Connexions
has partnered with innovative on-demand publisher QOOP to accelerate the delivery of printed course
materials and textbooks into classrooms worldwide at lower prices than traditional academic publishers.


