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Chapter 1

Introduction to Signals

1.1 Signal Classi�cations and Properties1

1.1.1 Introduction

This module will begin our study of signals and systems by laying out some of the fundamentals of signal clas-
si�cation. It is essentially an introduction to the important de�nitions and properties that are fundamental
to the discussion of signals and systems, with a brief discussion of each.

1.1.2 Classi�cations of Signals

1.1.2.1 Continuous-Time vs. Discrete-Time

As the names suggest, this classi�cation is determined by whether or not the time axis is discrete (countable)
or continuous (Figure 1.1). A continuous-time signal will contain a value for all real numbers along the
time axis. In contrast to this, a discrete-time signal2, often created by sampling a continuous signal, will
only have values at equally spaced intervals along the time axis.

Figure 1.1

1This content is available online at <http://cnx.org/content/m10057/2.21/>.
2"Discrete-Time Signals" <http://cnx.org/content/m0009/latest/>

1
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1.1.2.2 Analog vs. Digital

The di�erence between analog and digital is similar to the di�erence between continuous-time and discrete-
time. However, in this case the di�erence involves the values of the function. Analog corresponds to a
continuous set of possible function values, while digital corresponds to a discrete set of possible function
values. An common example of a digital signal is a binary sequence, where the values of the function can
only be one or zero.

Figure 1.2

1.1.2.3 Periodic vs. Aperiodic

Periodic signals (Section 6.1) repeat with some period T , while aperiodic, or nonperiodic, signals do not
(Figure 1.3). We can de�ne a periodic function through the following mathematical expression, where t can
be any number and T is a positive constant:

f (t) = f (T + t) (1.1)

The fundamental period of our function, f (t), is the smallest value of T that the still allows (1.1) to be
true.

(a)

(b)

Figure 1.3: (a) A periodic signal with period T0 (b) An aperiodic signal
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1.1.2.4 Finite vs. In�nite Length

As the name implies, signals can be characterized as to whether they have a �nite or in�nite length set of
values. Most �nite length signals are used when dealing with discrete-time signals or a given sequence of
values. Mathematically speaking, f (t) is a �nite-length signal if it is nonzero over a �nite interval

t1 < f (t) < t2

where t1 > −∞ and t2 < ∞. An example can be seen in Figure 1.4. Similarly, an in�nite-length signal,
f (t), is de�ned as nonzero over all real numbers:

∞ ≤ f (t) ≤ −∞

Figure 1.4: Finite-Length Signal. Note that it only has nonzero values on a set, �nite interval.

1.1.2.5 Causal vs. Anticausal vs. Noncausal

Causal signals are signals that are zero for all negative time, while anticausal are signals that are zero for
all positive time. Noncausal signals are signals that have nonzero values in both positive and negative time
(Figure 1.5).
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(a)

(b)

(c)

Figure 1.5: (a) A causal signal (b) An anticausal signal (c) A noncausal signal

1.1.2.6 Even vs. Odd

An even signal is any signal f such that f (t) = f (−t). Even signals can be easily spotted as they
are symmetric around the vertical axis. An odd signal, on the other hand, is a signal f such that
f (t) = −f (−t) (Figure 1.6).
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(a)

(b)

Figure 1.6: (a) An even signal (b) An odd signal

Using the de�nitions of even and odd signals, we can show that any signal can be written as a combination
of an even and odd signal. That is, every signal has an odd-even decomposition. To demonstrate this, we
have to look no further than a single equation.

f (t) =
1
2

(f (t) + f (−t)) +
1
2

(f (t)− f (−t)) (1.2)

By multiplying and adding this expression out, it can be shown to be true. Also, it can be shown that
f (t) + f (−t) ful�lls the requirement of an even function, while f (t) − f (−t) ful�lls the requirement of an
odd function (Figure 1.7).

Example 1.1
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(a)

(b)

(c)

(d)

Figure 1.7: (a) The signal we will decompose using odd-even decomposition (b) Even part: e (t) =
1
2

(f (t) + f (−t)) (c) Odd part: o (t) = 1
2

(f (t)− f (−t)) (d) Check: e (t) + o (t) = f (t)
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1.1.2.7 Deterministic vs. Random

A deterministic signal is a signal in which each value of the signal is �xed and can be determined by a
mathematical expression, rule, or table. Because of this the future values of the signal can be calculated
from past values with complete con�dence. On the other hand, a random signal3 has a lot of uncertainty
about its behavior. The future values of a random signal cannot be accurately predicted and can usually
only be guessed based on the averages4 of sets of signals (Figure 1.8).

(a)

(b)

Figure 1.8: (a) Deterministic Signal (b) Random Signal

Example 1.2
Consider the signal de�ned for all real t described by

f (t) = {
sin (2πt) /t t ≥ 1

0 t < 1
(1.3)

This signal is continuous time, analog, aperiodic, in�nite length, causal, neither even nor odd, and,
by de�nition, deterministic.

1.1.3 Signal Classi�cations Summary

This module describes just some of the many ways in which signals can be classi�ed. They can be continuous
time or discrete time, analog or digital, periodic or aperiodic, �nite or in�nite, and deterministic or random.
We can also divide them based on their causality and symmetry properties. There are other ways to classify
signals, such as boundedness, handedness, and continuity, that are not discussed here but will be described
in subsequent modules.

3"Introduction to Random Signals and Processes" <http://cnx.org/content/m10649/latest/>
4"Random Processes: Mean and Variance" <http://cnx.org/content/m10656/latest/>
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1.2 Signal Size and Norms5

1.2.1 Introduction

The "size" of a signal would involve some notion of its strength. We use the mathematical concept of the
norm to quantify this concept for both continuous-time and discrete-time signals. As there are several types
of norms that can be de�ned for signals, there are several di�erent conceptions of signal size.

1.2.2 Signal Energy

1.2.2.1 In�nite Length, Continuous Time Signals

The most commonly encountered notion of the energy of a signal de�ned on R is the L2 norm de�ned by
the square root of the integral of the square of the signal, for which the notation

||f ||2 =
(∫ ∞
−∞
|f (t) |2dt

)1/2

. (1.4)

However, this idea can be generalized through de�nition of the Lp norm, which is given by

||f ||p =
(∫ ∞
−∞
|f (t) |pdt

)1/p

(1.5)

for all 1 ≤ p <∞. Because of the behavior of this expression as p approaches ∞, we furthermore de�ne

||f ||∞ = sup
t∈R
|f (t) |, (1.6)

which is the least upper bound of |f (t) |. A signal f is said to belong to the vector space Lp (R) if ||f ||p <∞.

Example 1.3
For example, consider the function de�ned by

f (t) = {
1/t 1 ≤ t
0 otherwise

. (1.7)

The L1 norm is

||f ||1 =
∫ ∞
−∞
|f (t) |dt =

∫ ∞
−∞

1
t
dt =∞. (1.8)

The L2 norm is

||f ||2 =
(∫ ∞
−∞
|f (t) |2dt

)1/2

=
(∫ ∞
−∞

1
t2
dt

)1/2

= 1. (1.9)

The L∞ norm is

||f ||∞ = sup
t∈R
|f (t) | = sup

t∈R[1,∞)

1
t

= 1. (1.10)

5This content is available online at <http://cnx.org/content/m12363/1.4/>.
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1.2.2.2 Finite Length, Continuous Time Signals

The most commonly encountered notion of the energy of a signal de�ned on R [a, b] is the L2 norm de�ned
by the square root of the integral of the square of the signal, for which the notation

||f ||2 =

(∫ b

a

|f (t) |2dt

)1/2

. (1.11)

However, this idea can be generalized through de�nition of the Lp norm, which is given by

||f ||p =

(∫ b

a

|f (t) |pdt

)1/p

(1.12)

for all 1 ≤ p <∞. Because of the behavior of this expression as p approaches ∞, we furthermore de�ne

||f ||∞ = sup
t∈R[a,b]

|f (t) |, (1.13)

which is the least upper bound of |f (t) |. A signal f is said to belong to the vector space Lp (R [a, b]) if
||f ||p <∞. The periodic extension of such a signal would have in�nite energy but �nite power.

Example 1.4
For example, consider the function de�ned on R [−5, 3] by

f (t) = {
t −5 < t < 3

0 otherwise
. (1.14)

The L1 norm is

||f ||1 =
∫ 3

−5

|f (t) |dt =
∫ 3

−5

|t|dt = 17. (1.15)

The L2 norm is

||f ||2 =
(∫ 3

−5

|f (t) |2dt
)1/2

=
(∫ 3

−5

|t|2dt
)1/2

≈ 7.12 (1.16)

The L∞ norm is

||f ||∞ = sup
t∈R[−5,3]

|t| = 5. (1.17)

1.2.2.3 In�nite Length, Discrete Time Signals

The most commonly encountered notion of the energy of a signal de�ned on Z is the l2 norm de�ned by the
square root of the sumation of the square of the signal, for which the notation

||f ||2 =

( ∞∑
n=−∞

|f (n) |2
)1/2

. (1.18)

However, this idea can be generalized through de�nition of the lp norm, which is given by

||f ||p =

( ∞∑
n=−∞

|f (n) |p
)1/p

(1.19)
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for all 1 ≤ p <∞. Because of the behavior of this expression as p approaches ∞, we furthermore de�ne

||f ||∞ = sup
n∈Z
|f (n) |, (1.20)

which is the least upper bound of |f (n) |. A signal f is said to belong to the vector space lp (Z) if ||f ||p <∞.

Example 1.5
For example, consider the function de�ned by

f (n) = {
1/n 1 ≤ n
0 otherwise

. (1.21)

The l1 norm is

||f ||1 =
∑

n = −∞∞|f (n) | =
∞∑
n=1

1
n

=∞. (1.22)

The l2 norm is

||f ||2 =

( ∞∑
n=−∞

|f (n) |2
)1/2

=

( ∞∑
n=1

1
n2

)1/2

=
π
√

6
6

(1.23)

The l∞ norm is

||f ||∞ = sup
n∈Z
|f (n) | = sup

n∈Z[1,∞)

1
n

= 1. (1.24)

1.2.2.4 Finite Length, Discrete Time Signals

The most commonly encountered notion of the energy of a signal de�ned on Z [a, b] is the l2 norm de�ned
by the square root of the sumation of the square of the signal, for which the notation

||f ||2 =

(
b∑

n=a

|f (n) |2
)1/2

. (1.25)

However, this idea can be generalized through de�nition of the lp norm, which is given by

||f ||p =

(
b∑

n=a

|f (n) |p
)1/p

(1.26)

for all 1 ≤ p <∞. Because of the behavior of this expression as p approaches ∞, we furthermore de�ne

||f ||∞ = sup
n∈Z[a,b]

|f (n) |, (1.27)

which is the least upper bound of |f (n) |. In this case, this least upper bound is simply the maximum value
of |f (n) |. A signal f is said to belong to the vector space lp (Z [a, b]) if ||f ||p < ∞. The periodic extension
of such a signal would have in�nite energy but �nite power.
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Example 1.6
For example, consider the function de�ned on Z [−5, 3] by

f (n) = {
n −5 < n < 3

0 otherwise
. (1.28)

The l1 norm is

||f ||1 =
3∑

n=−5

|f (n) | =
∑
−53|n| = 21. (1.29)

The l2 norm is

||f ||2 =

(
3∑
−5

|f (n) |2
)1/2

=

(
3∑
−5

|n|2dt

)1/2

≈ 8.31 (1.30)

The l∞ norm is

||f ||∞ = sup
n∈Z[−5,3]

|f (n) | = 5. (1.31)

1.2.3 Signal Norms Summary

The notion of signal size or energy is formally addressed through the mathematical concept of norms. There
are many types of norms that can be de�ned for signals, some of the most important of which have been
discussed here. For each type norm and each type of signal domain (continuous or discrete, and �nite or
in�nite) there are vector spaces de�ned for signals of �nite norm. Finally, while nonzero periodic signals
have in�nite energy, they have �nite power if their single period units have �nite energy.

1.3 Signal Operations6

1.3.1 Introduction

This module will look at two signal operations a�ecting the time parameter of the signal, time shifting and
time scaling. These operations are very common components to real-world systems and, as such, should be
understood thoroughly when learning about signals and systems.

1.3.2 Manipulating the Time Parameter

1.3.2.1 Time Shifting

Time shifting is, as the name suggests, the shifting of a signal in time. This is done by adding or subtracting
a quantity of the shift to the time variable in the function. Subtracting a �xed positive quantity from the
time variable will shift the signal to the right (delay) by the subtracted quantity, while adding a �xed positive
amount to the time variable will shift the signal to the left (advance) by the added quantity.

6This content is available online at <http://cnx.org/content/m10125/2.17/>.
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Figure 1.9: f (t− T ) moves (delays) f to the right by T .

1.3.2.2 Time Scaling

Time scaling compresses or dilates a signal by multiplying the time variable by some quantity. If that
quantity is greater than one, the signal becomes narrower and the operation is called compression, while if
the quantity is less than one, the signal becomes wider and is called dilation.

Figure 1.10: f (at) compresses f by a.

Example 1.7
Given f (t) we woul like to plot f (at− b). The �gure below describes a method to accomplish this.
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(a) (b)

(c)

Figure 1.11: (a) Begin with f (t) (b) Then replace t with at to get f (at) (c) Finally, replace t with
t− b

a
to get f

`
a
`
t− b

a

´´
= f (at− b)

1.3.2.3 Time Reversal

A natural question to consider when learning about time scaling is: What happens when the time variable
is multiplied by a negative number? The answer to this is time reversal. This operation is the reversal of
the time axis, or �ipping the signal over the y-axis.

Figure 1.12: Reverse the time axis



14 CHAPTER 1. INTRODUCTION TO SIGNALS

1.3.3 Time Scaling and Shifting Demonstration

Figure 1.13: Download7 or Interact (when online) with a Mathematica CDF demonstrating Discrete
Harmonic Sinusoids.

1.3.4 Signal Operations Summary

Some common operations on signals a�ect the time parameter of the signal. One of these is time shifting in
which a quantity is added to the time parameter in order to advance or delay the signal. Another is the time
scaling in which the time parameter is multiplied by a quantity in order to dilate or compress the signal in
time. In the event that the quantity involved in the latter operation is negative, time reversal occurs.

1.4 Common Continuous Time Signals8

1.4.1 Introduction

Before looking at this module, hopefully you have an idea of what a signal is and what basic classi�cations
and properties a signal can have. In review, a signal is a function de�ned with respect to an independent
variable. This variable is often time but could represent any number of things. Mathematically, continuous

7See the �le at <http://cnx.org/content/m10125/latest/TimeshifterDrill_display.cdf>
8This content is available online at <http://cnx.org/content/m10058/2.15/>.
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time analog signals have continuous independent and dependent variables. This module will describe some
useful continuous time analog signals.

1.4.2 Important Continuous Time Signals

1.4.2.1 Sinusoids

One of the most important elemental signal that you will deal with is the real-valued sinusoid. In its
continuous-time form, we write the general expression as

Acos (ωt+ φ) (1.32)

where A is the amplitude, ω is the frequency, and φ is the phase. Thus, the period of the sinusoid is

T =
2π
ω

(1.33)

Figure 1.14: Sinusoid with A = 2, w = 2, and φ = 0.

1.4.2.2 Complex Exponentials

As important as the general sinusoid, the complex exponential function will become a critical part of your
study of signals and systems. Its general continuous form is written as

Aest (1.34)

where s = σ+jω is a complex number in terms of σ, the attenuation constant, and ω the angular frequency.

1.4.2.3 Unit Impulses

The unit impulse function, also known as the Dirac delta function, is a signal that has in�nite height and
in�nitesimal width. However, because of the way it is de�ned, it integrates to one. While this signal is useful
for the understanding of many concepts, a formal understanding of its de�nition more involved. The unit
impulse is commonly denoted δ (t).

More detail is provided in the section on the continuous time impulse function. For now, it su�ces to
say that this signal is crucially important in the study of continuous signals, as it allows the sifting property
to be used in signal representation and signal decomposition.
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1.4.2.4 Unit Step

Another very basic signal is the unit-step function that is de�ned as

u (t) =

 0 if t < 0

1 if t ≥ 0
(1.35)

t

1

Figure 1.15: Continuous-Time Unit-Step Function

The step function is a useful tool for testing and for de�ning other signals. For example, when di�erent
shifted versions of the step function are multiplied by other signals, one can select a certain portion of the
signal and zero out the rest.

1.4.3 Common Continuous Time Signals Summary

Some of the most important and most frequently encountered signals have been discussed in this module.
There are, of course, many other signals of signi�cant consequence not discussed here. As you will see later,
many of the other more complicated signals will be studied in terms of those listed here. Especially take
note of the complex exponentials and unit impulse functions, which will be the key focus of several topics
included in this course.

1.5 Common Discrete Time Signals9

1.5.1 Introduction

Before looking at this module, hopefully you have an idea of what a signal is and what basic classi�cations
and properties a signal can have. In review, a signal is a function de�ned with respect to an independent
variable. This variable is often time but could represent any number of things. Mathematically, discrete
time analog signals have discrete independent variables and continuous dependent variables. This module
will describe some useful discrete time analog signals.

9This content is available online at <http://cnx.org/content/m34575/1.2/>.
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1.5.2 Important Discrete Time Signals

1.5.2.1 Sinusoids

One of the most important elemental signal that you will deal with is the real-valued sinusoid. In its
discrete-time form, we write the general expression as

Acos (ωn+ φ) (1.36)

where A is the amplitude, ω is the frequency, and φ is the phase. Because n only takes integer values, the
resulting function is only periodic if 2π

ω is a rational number.

Discrete-Time Cosine Signal

n

sn

1
…

…

Figure 1.16: A discrete-time cosine signal is plotted as a stem plot.

Note that the equation representation for a discrete time sinusoid waveform is not unique.

1.5.2.2 Complex Exponentials

As important as the general sinusoid, the complex exponential function will become a critical part of your
study of signals and systems. Its general discrete form is written as

Aesn (1.37)

where s = σ+jω , is a complex number in terms of σ, the attenuation constant, and ω the angular frequency.
The discrete time complex exponentials have the following property.

ejωn = ej(ω+2π)n (1.38)

Given this property, if we have a complex exponential with frequency ω + 2π, then this signal "aliases"
to a complex exponential with frequency ω, implying that the equation representations of discrete complex
exponentials are not unique.

1.5.2.3 Unit Impulses

The second-most important discrete-time signal is the unit sample, which is de�ned as

δ (n) =

 1 if n = 0

0 otherwise
(1.39)
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Unit Sample

1

n

δn

Figure 1.17: The unit sample.

More detail is provided in the section on the discrete time impulse function. For now, it su�ces to say
that this signal is crucially important in the study of discrete signals, as it allows the sifting property to be
used in signal representation and signal decomposition.

1.5.2.4 Unit Step

Another very basic signal is the unit-step function de�ned as

u (n) =

 0 if n < 0

1 if n ≥ 0
(1.40)

Figure 1.18: Discrete-Time Unit-Step Function

The step function is a useful tool for testing and for de�ning other signals. For example, when di�erent
shifted versions of the step function are multiplied by other signals, one can select a certain portion of the
signal and zero out the rest.

1.5.3 Common Discrete Time Signals Summary

Some of the most important and most frequently encountered signals have been discussed in this module.
There are, of course, many other signals of signi�cant consequence not discussed here. As you will see later,
many of the other more complicated signals will be studied in terms of those listed here. Especially take
note of the complex exponentials and unit impulse functions, which will be the key focus of several topics
included in this course.
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1.6 Continuous Time Impulse Function10

1.6.1 Introduction

In engineering, we often deal with the idea of an action occurring at a point. Whether it be a force at
a point in space or some other signal at a point in time, it becomes worth while to develop some way of
quantitatively de�ning this. This leads us to the idea of a unit impulse, probably the second most important
function, next to the complex exponential, in this systems and signals course.

1.6.2 Dirac Delta Function

The Dirac delta function, often referred to as the unit impulse or delta function, is the function that
de�nes the idea of a unit impulse in continuous-time. Informally, this function is one that is in�nitesimally
narrow, in�nitely tall, yet integrates to one. Perhaps the simplest way to visualize this is as a rectangular
pulse from a − ε

2 to a + ε
2 with a height of 1

ε . As we take the limit of this setup as ε approaches 0, we see
that the width tends to zero and the height tends to in�nity as the total area remains constant at one. The
impulse function is often written as δ (t). ∫ ∞

−∞
δ (t) dt = 1 (1.41)

Figure 1.19: This is one way to visualize the Dirac Delta Function.

10This content is available online at <http://cnx.org/content/m10059/2.26/>.
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Figure 1.20: Since it is quite di�cult to draw something that is in�nitely tall, we represent the Dirac
with an arrow centered at the point it is applied. If we wish to scale it, we may write the value it is
scaled by next to the point of the arrow. This is a unit impulse (no scaling).

Below is a brief list a few important properties of the unit impulse without going into detail of their
proofs.

Unit Impulse Properties

• δ (αt) = 1
|α|δ (t)

• δ (t) = δ (−t)
• δ (t) = d

dtu (t), where u (t) is the unit step.
• f (t) δ (t) = f (0) δ (t)

The last of these is especially important as it gives rise to the sifting property of the dirac delta function, which
selects the value of a function at a speci�c time and is especially important in studying the relationship of an
operation called convolution to time domain analysis of linear time invariant systems. The sifting property
is shown and derived below.∫ ∞

−∞
f (t) δ (t) dt =

∫ ∞
−∞

f (0) δ (t) dt = f (0)
∫ ∞
−∞

δ (t) dt = f (0) (1.42)
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1.6.3 Unit Impulse Limiting Demonstration

Figure 1.21: Click on the above thumbnail image (when online) to download an interactive Mathematica
Player demonstrating the Continuous Time Impulse Function.

1.6.4 Continuous Time Unit Impulse Summary

The continuous time unit impulse function, also known as the Dirac delta function, is of great importance
to the study of signals and systems. Informally, it is a function with in�nite height ant in�nitesimal width
that integrates to one, which can be viewed as the limiting behavior of a unit area rectangle as it narrows
while preserving area. It has several important properties that will appear again when studying systems.

1.7 Discrete Time Impulse Function11

1.7.1 Introduction

In engineering, we often deal with the idea of an action occurring at a point. Whether it be a force at
a point in space or some other signal at a point in time, it becomes worth while to develop some way of
quantitatively de�ning this. This leads us to the idea of a unit impulse, probably the second most important
function, next to the complex exponential, in this systems and signals course.

11This content is available online at <http://cnx.org/content/m34566/1.6/>.
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1.7.2 Unit Sample Function

The unit sample function, often referred to as the unit impulse or delta function, is the function that
de�nes the idea of a unit impulse in discrete time. There are not nearly as many intricacies involved in its
de�nition as there are in the de�nition of the Dirac delta function, the continuous time impulse function.
The unit sample function simply takes a value of one at n=0 and a value of zero elsewhere. The impulse
function is often written as δ (n).

δ (n) =

 1 if n = 0

0 otherwise
(1.43)

Unit Sample

1

n

δn

Figure 1.22: The unit sample.

Below we will brie�y list a few important properties of the unit impulse without going into detail of their
proofs.

Unit Impulse Properties

• δ (αn) = 1
|α|δ (n)

• δ (n) = δ (−n)
• δ (n) = u (n)− u (n− 1)
• f (n) δ (n) = f (0) δ (n)

The last of these is especially important as it gives rise to the sifting property of the unit sample function,
which selects the value of a function at a speci�c time and is especially important in studying the relationship
of an operation called convolution to time domain analysis of linear time invariant systems. The sifting
property is shown and derived below.

∞∑
n=−∞

f (n) δ (n) =
∞∑

n=−∞
f (0) δ (n) = f (0)

∞∑
n=−∞

δ (n) = f (0) (1.44)
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1.7.3 Discrete Time Impulse Response Demonstration

Figure 1.23: Interact(when online) with a Mathematica CDF demonstrating the Discrete Time Impulse
Function.

1.7.4 Discrete Time Unit Impulse Summary

The discrete time unit impulse function, also known as the unit sample function, is of great importance
to the study of signals and systems. The function takes a value of one at time n=0 and a value of zero
elsewhere. It has several important properties that will appear again when studying systems.
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1.8 Continuous Time Complex Exponential12

1.8.1 Introduction

Complex exponentials are some of the most important functions in our study of signals and systems. Their
importance stems from their status as eigenfunctions of linear time invariant systems. Before proceeding,
you should be familiar with complex numbers.

1.8.2 The Continuous Time Complex Exponential

1.8.2.1 Complex Exponentials

The complex exponential function will become a critical part of your study of signals and systems. Its general
continuous form is written as

Aest (1.45)

where s = σ+jω is a complex number in terms of σ, the attenuation constant, and ω the angular frequency.

1.8.2.2 Euler's Formula

The mathematician Euler proved an important identity relating complex exponentials to trigonometric func-
tions. Speci�cally, he discovered the eponymously named identity, Euler's formula, which states that

ejx = cos (x) + jsin (x) (1.46)

which can be proven as follows.
In order to prove Euler's formula, we start by evaluating the Taylor series for ez about z = 0, which

converges for all complex z, at z = jx. The result is

ejx =
∑∞
k=0

(jx)k

k!

=
∑∞
k=0 (−1)k x2k

(2k)! + j
∑∞
k=0 (−1)k x2k+1

(2k+1)!

= cos (x) + jsin (x)

(1.47)

because the second expression contains the Taylor series for cos (x) and sin (x) about t = 0, which converge
for all real x. Thus, the desired result is proven.

Choosing x = ωt this gives the result

ejωt = cos (ωt) + jsin (ωt) (1.48)

which breaks a continuous time complex exponential into its real part and imaginary part. Using this
formula, we can also derive the following relationships.

cos (ωt) =
1
2
ejωt +

1
2
e−jωt (1.49)

sin (ωt) =
1
2j
ejωt − 1

2j
e−jωt (1.50)

12This content is available online at <http://cnx.org/content/m10060/2.24/>.
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1.8.2.3 Continuous Time Phasors

It has been shown how the complex exponential with purely imaginary frequency can be broken up into
its real part and its imaginary part. Now consider a general complex frequency s = σ + ωj where σ is the
attenuation factor and ω is the frequency. Also consider a phase di�erence θ. It follows that

e(σ+jω)t+jθ = eσt (cos (ωt+ θ) + jsin (ωt+ θ)) . (1.51)

Thus, the real and imaginary parts of est appear below.

Re{e(σ+jω)t+jθ} = eσtcos (ωt+ θ) (1.52)

Im{e(σ+jω)t+jθ} = eσtsin (ωt+ θ) (1.53)

Using the real or imaginary parts of complex exponential to represent sinusoids with a phase delay multiplied
by real exponential is often useful and is called attenuated phasor notation.

We can see that both the real part and the imaginary part have a sinusoid times a real exponential. We
also know that sinusoids oscillate between one and negative one. From this it becomes apparent that the
real and imaginary parts of the complex exponential will each oscillate within an envelope de�ned by the
real exponential part.

(a) (b)

(c)

Figure 1.24: The shapes possible for the real part of a complex exponential. Notice that the oscillations
are the result of a cosine, as there is a local maximum at t = 0. (a) If σ is negative, we have the case of
a decaying exponential window. (b) If σ is positive, we have the case of a growing exponential window.
(c) If σ is zero, we have the case of a constant window.
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1.8.3 Complex Exponential Demonstration

Figure 1.25: Interact (when online) with a Mathematica CDF demonstrating the Continuous Time
Complex Exponential. To Download, right-click and save target as .cdf.

1.8.4 Continuous Time Complex Exponential Summary

Continuous time complex exponentials are signals of great importance to the study of signals and systems.
They can be related to sinusoids through Euler's formula, which identi�es the real and imaginary parts of
purely imaginary complex exponentials. Eulers formula reveals that, in general, the real and imaginary parts
of complex exponentials are sinusoids multiplied by real exponentials. Thus, attenuated phasor notation is
often useful in studying these signals.
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1.9 Discrete Time Complex Exponential13

1.9.1 Introduction

Complex exponentials are some of the most important functions in our study of signals and systems. Their
importance stems from their status as eigenfunctions of linear time invariant systems. Before proceeding,
you should be familiar with complex numbers.

1.9.2 The Discrete Time Complex Exponential

1.9.2.1 Complex Exponentials

The complex exponential function will become a critical part of your study of signals and systems. Its general
discrete form is written as

Aesn (1.54)

where s = σ+jω , is a complex number in terms of σ, the attenuation constant, and ω the angular frequency.
The discrete time complex exponentials have the following property, which will become evident through

discussion of Euler's formula.
ejωn = ej(ω+2π)n (1.55)

Given this property, if we have a complex exponential with frequency ω + 2π, then this signal "aliases"
to a complex exponential with frequency ω, implying that the equation representations of discrete complex
exponentials are not unique.

1.9.2.2 Euler's Formula

The mathematician Euler proved an important identity relating complex exponentials to trigonometric func-
tions. Speci�cally, he discovered the eponymously named identity, Euler's formula, which states that

ejx = cos (x) + jsin (x) (1.56)

which can be proven as follows.
In order to prove Euler's formula, we start by evaluating the Taylor series for ez about z = 0, which

converges for all complex z, at z = jx. The result is

ejx =
∑∞
k=0

(jx)k

k!

=
∑∞
k=0 (−1)k x2k

(2k)! + j
∑∞
k=0 (−1)k x2k+1

(2k+1)!

= cos (x) + jsin (x)

(1.57)

because the second expression contains the Taylor series for cos (x) and sin (x) about t = 0, which converge
for all real x. Thus, the desired result is proven.

Choosing x = ωn this gives the result

ejωn = cos (ωn) + jsin (ωn) (1.58)

which breaks a discrete time complex exponential into its real part and imaginary part. Using this formula,
we can also derive the following relationships.

cos (ωn) =
1
2
ejωn +

1
2
e−jωn (1.59)

sin (ωn) =
1
2j
ejωn − 1

2j
e−jωn (1.60)

13This content is available online at <http://cnx.org/content/m34573/1.3/>.
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1.9.2.3 Discrete Time Phasors

It has been shown how the complex exponential with purely imaginary frequency can be broken up into
its real part and its imaginary part. Now consider a general complex frequency s = σ + ωj where σ is the
attenuation factor and ω is the frequency. Also consider a phase di�erence θ. It follows that

e(σ+jω)n+jθ = eσn (cos (ωn+ θ) + jsin (ωn+ θ)) . (1.61)

Thus, the real and imaginary parts of esn appear below.

Re{e(σ+jω)n+jθ} = eσncos (ωn+ θ) (1.62)

Im{e(σ+jω)n+jθ} = eσnsin (ωn+ θ) (1.63)

Using the real or imaginary parts of complex exponential to represent sinusoids with a phase delay multiplied
by real exponential is often useful and is called attenuated phasor notation.

We can see that both the real part and the imaginary part have a sinusoid times a real exponential. We
also know that sinusoids oscillate between one and negative one. From this it becomes apparent that the
real and imaginary parts of the complex exponential will each oscillate within an envelope de�ned by the
real exponential part.

(a) (b)

(c)

Figure 1.26: The shapes possible for the real part of a complex exponential. Notice that the oscillations
are the result of a cosine, as there is a local maximum at t = 0. Of course, these drawings would be
sampled in a discrete time setting. (a) If σ is negative, we have the case of a decaying exponential
window. (b) If σ is positive, we have the case of a growing exponential window. (c) If σ is zero, we have
the case of a constant window.
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1.9.3 Discrete Complex Exponential Demonstration

Figure 1.27: Interact (when online) with a Mathematica CDF demonstrating the Discrete Time Com-
plex Exponential. To Download, right-click and save target as .cdf.
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1.9.4 Discrete Time Complex Exponential Summary

Continuous time complex exponentials are signals of great importance to the study of signals and systems.
They can be related to sinusoids through Euler's formula, which identi�es the real and imaginary parts of
purely imaginary complex exponentials. Eulers formula reveals that, in general, the real and imaginary parts
of complex exponentials are sinusoids multiplied by real exponentials. Thus, attenuated phasor notation is
often useful in studying these signals.



Chapter 2

Introduction to Systems

2.1 System Classi�cations and Properties1

2.1.1 Introduction

In this module some of the basic classi�cations of systems will be brie�y introduced and the most important
properties of these systems are explained. As can be seen, the properties of a system provide an easy way
to distinguish one system from another. Understanding these basic di�erences between systems, and their
properties, will be a fundamental concept used in all signal and system courses. Once a set of systems can be
identi�ed as sharing particular properties, one no longer has to reprove a certain characteristic of a system
each time, but it can simply be known due to the the system classi�cation.

2.1.2 Classi�cation of Systems

2.1.2.1 Continuous vs. Discrete

One of the most important distinctions to understand is the di�erence between discrete time and continuous
time systems. A system in which the input signal and output signal both have continuous domains is said to
be a continuous system. One in which the input signal and output signal both have discrete domains is said
to be a continuous system. Of course, it is possible to conceive of signals that belong to neither category,
such as systems in which sampling of a continuous time signal or reconstruction from a discrete time signal
take place.

2.1.2.2 Linear vs. Nonlinear

A linear system is any system that obeys the properties of scaling (�rst order homogeneity) and superposition
(additivity) further described below. A nonlinear system is any system that does not have at least one of
these properties.

To show that a system H obeys the scaling property is to show that

H (kf (t)) = kH (f (t)) (2.1)

1This content is available online at <http://cnx.org/content/m10084/2.21/>.
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Figure 2.1: A block diagram demonstrating the scaling property of linearity

To demonstrate that a system H obeys the superposition property of linearity is to show that

H (f1 (t) + f2 (t)) = H (f1 (t)) +H (f2 (t)) (2.2)

Figure 2.2: A block diagram demonstrating the superposition property of linearity

It is possible to check a system for linearity in a single (though larger) step. To do this, simply combine
the �rst two steps to get

H (k1f1 (t) + k2f2 (t)) = k2H (f1 (t)) + k2H (f2 (t)) (2.3)

2.1.2.3 Time Invariant vs. Time Varying

A system is said to be time invariant if it commutes with the parameter shift operator de�ned by ST (f (t)) =
f (t− T ) for all T , which is to say

HST = STH (2.4)

for all real T . Intuitively, that means that for any input function that produces some output function, any
time shift of that input function will produce an output function identical in every way except that it is
shifted by the same amount. Any system that does not have this property is said to be time varying.



33

Figure 2.3: This block diagram shows what the condition for time invariance. The output is the same
whether the delay is put on the input or the output.

2.1.2.4 Causal vs. Noncausal

A causal system is one in which the output depends only on current or past inputs, but not future inputs.
Similarly, an anticausal system is one in which the output depends only on current or future inputs, but not
past inputs. Finally, a noncausal system is one in which the output depends on both past and future inputs.
All "realtime" systems must be causal, since they can not have future inputs available to them.

One may think the idea of future inputs does not seem to make much physical sense; however, we have
only been dealing with time as our dependent variable so far, which is not always the case. Imagine rather
that we wanted to do image processing. Then the dependent variable might represent pixel positions to the
left and right (the "future") of the current position on the image, and we would not necessarily have a causal
system.
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(a)

(b)

Figure 2.4: (a) For a typical system to be causal... (b) ...the output at time t0, y (t0), can only depend
on the portion of the input signal before t0.

2.1.2.5 Stable vs. Unstable

There are several de�nitions of stability, but the one that will be used most frequently in this course will
be bounded input, bounded output (BIBO) stability. In this context, a stable system is one in which the
output is bounded if the input is also bounded. Similarly, an unstable system is one in which at least one
bounded input produces an unbounded output.

Representing this mathematically, a stable system must have the following property, where x (t) is the
input and y (t) is the output. The output must satisfy the condition

|y (t) | ≤My <∞ (2.5)

whenever we have an input to the system that satis�es

|x (t) | ≤Mx <∞ (2.6)

Mx andMy both represent a set of �nite positive numbers and these relationships hold for all of t. Otherwise,
the system is unstable.

2.1.3 System Classi�cations Summary

This module describes just some of the many ways in which systems can be classi�ed. Systems can be
continuous time, discrete time, or neither. They can be linear or nonlinear, time invariant or time varying,
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and stable or unstable. We can also divide them based on their causality properties. There are other ways
to classify systems, such as use of memory, that are not discussed here but will be described in subsequent
modules.

2.2 Linear Time Invariant Systems2

2.2.1 Introduction

Linearity and time invariance are two system properties that greatly simplify the study of systems that exhibit
them. In our study of signals and systems, we will be especially interested in systems that demonstrate both
of these properties, which together allow the use of some of the most powerful tools of signal processing.

2.2.2 Linear Time Invariant Systems

2.2.2.1 Linear Systems

If a system is linear, this means that when an input to a given system is scaled by a value, the output of the
system is scaled by the same amount.

Linear Scaling

(a) (b)

Figure 2.5

In Figure 2.5(a) above, an input x to the linear system L gives the output y. If x is scaled by a value α
and passed through this same system, as in Figure 2.5(b), the output will also be scaled by α.

A linear system also obeys the principle of superposition. This means that if two inputs are added
together and passed through a linear system, the output will be the sum of the individual inputs' outputs.

(a) (b)

Figure 2.6

2This content is available online at <http://cnx.org/content/m2102/2.24/>.
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Superposition Principle

Figure 2.7: If Figure 2.6 is true, then the principle of superposition says that Figure 2.7 (Superposition
Principle) is true as well. This holds for linear systems.

That is, if Figure 2.6 is true, then Figure 2.7 (Superposition Principle) is also true for a linear system.
The scaling property mentioned above still holds in conjunction with the superposition principle. Therefore,
if the inputs x and y are scaled by factors α and β, respectively, then the sum of these scaled inputs will
give the sum of the individual scaled outputs:

(a) (b)

Figure 2.8

Superposition Principle with Linear Scaling

Figure 2.9: Given Figure 2.8 for a linear system, Figure 2.9 (Superposition Principle with Linear
Scaling) holds as well.
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Example 2.1
Consider the system H1 in which

H1 (f (t)) = tf (t) (2.7)

for all signals f . Given any two signals f, g and scalars a, b

H1 (af (t) + bg (t)) = t (af (t) + bg (t)) = atf (t) + btg (t) = aH1 (f (t)) + bH1 (g (t)) (2.8)

for all real t. Thus, H1 is a linear system.

Example 2.2
Consider the system H2 in which

H2 (f (t)) = (f (t))2
(2.9)

for all signals f . Because

H2 (2t) = 4t2 6= 2t2 = 2H2 (t) (2.10)

for nonzero t, H2 is not a linear system.

2.2.2.2 Time Invariant Systems

A time-invariant system has the property that a certain input will always give the same output (up to
timing), without regard to when the input was applied to the system.

Time-Invariant Systems

(a) (b)

Figure 2.10: Figure 2.10(a) shows an input at time t while Figure 2.10(b) shows the same input
t0 seconds later. In a time-invariant system both outputs would be identical except that the one in
Figure 2.10(b) would be delayed by t0.

In this �gure, x (t) and x (t− t0) are passed through the system TI. Because the system TI is time-
invariant, the inputs x (t) and x (t− t0) produce the same output. The only di�erence is that the output
due to x (t− t0) is shifted by a time t0.

Whether a system is time-invariant or time-varying can be seen in the di�erential equation (or di�erence
equation) describing it. Time-invariant systems are modeled with constant coe�cient equations.
A constant coe�cient di�erential (or di�erence) equation means that the parameters of the system are not
changing over time and an input now will give the same result as the same input later.
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Example 2.3
Consider the system H1 in which

H1 (f (t)) = tf (t) (2.11)

for all signals f . Because

ST (H1 (f (t))) = ST (tf (t)) = (t− T ) f (t− T ) 6= tf (t− T ) = H1 (f (t− T )) = H1 (ST (f (t))) (2.12)

for nonzero T , H1 is not a time invariant system.

Example 2.4
Consider the system H2 in which

H2 (f (t)) = (f (t))2
(2.13)

for all signals f . For all real T and signals f ,

ST (H2 (f (t))) = ST

(
f(t)2

)
= (f (t− T ))2 = H2 (f (t− T )) = H2 (ST (f (t))) (2.14)

for all real t. Thus, H2 is a time invariant system.

2.2.2.3 Linear Time Invariant Systems

Certain systems are both linear and time-invariant, and are thus referred to as LTI systems.

Linear Time-Invariant Systems

(a) (b)

Figure 2.11: This is a combination of the two cases above. Since the input to Figure 2.11(b) is a scaled,
time-shifted version of the input in Figure 2.11(a), so is the output.

As LTI systems are a subset of linear systems, they obey the principle of superposition. In the �gure
below, we see the e�ect of applying time-invariance to the superposition de�nition in the linear systems
section above.
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(a) (b)

Figure 2.12

Superposition in Linear Time-Invariant Systems

Figure 2.13: The principle of superposition applied to LTI systems

2.2.2.3.1 LTI Systems in Series

If two or more LTI systems are in series with each other, their order can be interchanged without a�ecting
the overall output of the system. Systems in series are also called cascaded systems.
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Cascaded LTI Systems

(a)

(b)

Figure 2.14: The order of cascaded LTI systems can be interchanged without changing the overall
e�ect.

2.2.2.3.2 LTI Systems in Parallel

If two or more LTI systems are in parallel with one another, an equivalent system is one that is de�ned as
the sum of these individual systems.

Parallel LTI Systems

(a) (b)

Figure 2.15: Parallel systems can be condensed into the sum of systems.
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Example 2.5
Consider the system H3 in which

H3 (f (t)) = 2f (t) (2.15)

for all signals f . Given any two signals f, g and scalars a, b

H3 (af (t) + bg (t)) = 2 (af (t) + bg (t)) = a2f (t) + b2g (t) = aH3 (f (t)) + bH3 (g (t)) (2.16)

for all real t. Thus, H3 is a linear system. For all real T and signals f ,

ST (H3 (f (t))) = ST (2f (t)) = 2f (t− T ) = H3 (f (t− T )) = H3 (ST (f (t))) (2.17)

for all real t. Thus, H3 is a time invariant system. Therefore, H3 is a linear time invariant system.

Example 2.6
As has been previously shown, each of the following systems are not linear or not time invariant.

H1 (f (t)) = tf (t) (2.18)

H2 (f (t)) = (f (t))2
(2.19)

Thus, they are not linear time invariant systems.

2.2.3 Linear Time Invariant Demonstration

Figure 2.16: Interact(when online) with the Mathematica CDF above demonstrating Linear Time
Invariant systems. To download, right click and save �le as .cdf.

2.2.4 LTI Systems Summary

Two very important and useful properties of systems have just been described in detail. The �rst of these,
linearity, allows us the knowledge that a sum of input signals produces an output signal that is the summed
original output signals and that a scaled input signal produces an output signal scaled from the original
output signal. The second of these, time invariance, ensures that time shifts commute with application of
the system. In other words, the output signal for a time shifted input is the same as the output signal for the
original input signal, except for an identical shift in time. Systems that demonstrate both linearity and time
invariance, which are given the acronym LTI systems, are particularly simple to study as these properties
allow us to leverage some of the most powerful tools in signal processing.



42 CHAPTER 2. INTRODUCTION TO SYSTEMS



Chapter 3

Time Domain Analysis of Continuous
Time Systems

3.1 Continuous Time Systems1

3.1.1 Introduction

As you already now know, a continuous time system operates on a continuous time signal input and produces
a continuous time signal output. There are numerous examples of useful continuous time systems in signal
processing as they essentially describe the world around us. The class of continuous time systems that
are both linear and time invariant, known as continuous time LTI systems, is of particular interest as the
properties of linearity and time invariance together allow the use of some of the most important and powerful
tools in signal processing.

3.1.2 Continuous Time Systems

3.1.2.1 Linearity and Time Invariance

A system H is said to be linear if it satis�es two important conditions. The �rst, additivity, states for every
pair of signals x, y that H (x+ y) = H (x) +H (y). The second, homogeneity of degree one, states for every
signal x and scalar a we have H (ax) = aH (x). It is clear that these conditions can be combined together
into a single condition for linearity. Thus, a system is said to be linear if for every signals x, y and scalars
a, b we have that

H (ax+ by) = aH (x) + bH (y) . (3.1)

Linearity is a particularly important property of systems as it allows us to leverage the powerful tools of
linear algebra, such as bases, eigenvectors, and eigenvalues, in their study.

A system H is said to be time invariant if a time shift of an input produces the corresponding shifted
output. In other, more precise words, the system H commutes with the time shift operator ST for every
T ∈ R. That is,

STH = HST . (3.2)

Time invariance is desirable because it eases computation while mirroring our intuition that, all else equal,
physical systems should react the same to identical inputs at di�erent times.

When a system exhibits both of these important properties it allows for a more straigtforward analysis
than would otherwise be possible. As will be explained and proven in subsequent modules, computation

1This content is available online at <http://cnx.org/content/m10855/2.8/>.
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CHAPTER 3. TIME DOMAIN ANALYSIS OF CONTINUOUS TIME

SYSTEMS

of the system output for a given input becomes a simple matter of convolving the input with the system's
impulse response signal. Also proven later, the fact that complex exponential are eigenvectors of linear time
invariant systems will enable the use of frequency domain tools such as the various Fouier transforms and
associated transfer functions, to describe the behavior of linear time invariant systems.

Example 3.1
Consider the system H in which

H (f (t)) = 2f (t) (3.3)

for all signals f . Given any two signals f, g and scalars a, b

H (af (t) + bg (t)) = 2 (af (t) + bg (t)) = a2f (t) + b2g (t) = aH (f (t)) + bH (g (t)) (3.4)

for all real t. Thus, H is a linear system. For all real T and signals f ,

ST (H (f (t))) = ST (2f (t)) = 2f (t− T ) = H (f (t− T )) = H (ST (f (t))) (3.5)

for all real t. Thus, H is a time invariant system. Therefore, H is a linear time invariant system.

3.1.2.2 Di�erential Equation Representation

It is often useful to to describe systems using equations involving the rate of change in some quantity. For
continuous time systems, such equations are called di�erential equations. One important class of di�erential
equations is the set of linear constant coe�cient ordinary di�erential equations, which are described in more
detail in subsequent modules.

Example 3.2
Consider the series RLC circuit shown in Figure 3.1. This system can be modeled using di�erential
equations. We can use the voltage equations for each circuit element and Kircho�'s voltage law to
write a second order linear constant coe�cient di�erential equation describing the charge on the
capacitor.

The voltage across the battery is simply V . The voltage across the capacitor is 1
C q. The voltage

across the resistor is R dq
dt . Finally, the voltage across the inductor is L

d2q
dt2 . Therefore, by Kircho�'s

voltage law, it follows that

L
d2q

dt2
+R

dq

dt
+

1
C
q = V. (3.6)
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Figure 3.1: A series RLC circuit.

3.1.3 Continuous Time Systems Summary

Many useful continuous time systems will be encountered in a study of signals and systems. This course
is most interested in those that demonstrate both the linearity property and the time invariance property,
which together enable the use of some of the most powerful tools of signal processing. It is often useful to
describe them in terms of rates of change through linear constant coe�cient ordinary di�erential equations.

3.2 Continuous Time Impulse Response2

3.2.1 Introduction

The output of an LTI system is completely determined by the input and the system's response to a unit
impulse.

System Output

Figure 3.2: We can determine the system's output, y(t), if we know the system's impulse response,
h(t), and the input, f(t).

The output for a unit impulse input is called the impulse response.

2This content is available online at <http://cnx.org/content/m34629/1.1/>.
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Figure 3.3

3.2.1.1 Example Approximate Impulses

1. Hammer blow to a structure
2. Hand clap or gun blast in a room
3. Air gun blast underwater

3.2.2 LTI Systems and Impulse Responses

3.2.2.1 Finding System Outputs

By the sifting property of impulses, any signal can be decomposed in terms of an integral of shifted, scaled
impulses.

f (t) =
∫ ∞
−∞

f (τ) δ (t− τ) dτ (3.7)

δ (t− τ) peaks up where t = τ .
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Figure 3.4

Since we know the response of the system to an impulse and any signal can be decomposed into impulses,
all we need to do to �nd the response of the system to any signal is to decompose the signal into impulses,
calculate the system's output for every impulse and add the outputs back together. This is the process
known as Convolution. Since we are in Continuous Time, this is the Continuous Time Convolution
Integral.

3.2.2.2 Finding Impulse Responses

Theory:

a. Solve the system's di�erential equation for y(t) with f (t) = δ (t)
b. Use the Laplace transform

Practice:

a. Apply an impulse-like input signal to the system and measure the output
b. Use Fourier methods

We will assume that h(t) is given for now.

The goal now is to compute the output y(t) given the impulse response h(t) and the input f(t).
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Figure 3.5

3.2.3 Impulse Response Summary

When a system is "shocked" by a delta function, it produces an output known as its impulse response. For
an LTI system, the impulse response completely determines the output of the system given any arbitrary
input. The output can be found using continuous time convolution.

3.3 Continuous Time Convolution3

3.3.1 Introduction

Convolution, one of the most important concepts in electrical engineering, can be used to determine the
output a system produces for a given input signal. It can be shown that a linear time invariant system
is completely characterized by its impulse response. The sifting property of the continuous time impulse
function tells us that the input signal to a system can be represented as an integral of scaled and shifted
impulses and, therefore, as the limit of a sum of scaled and shifted approximate unit impulses. Thus, by
linearity, it would seem reasonable to compute of the output signal as the limit of a sum of scaled and
shifted unit impulse responses and, therefore, as the integral of a scaled and shifted impulse response. That
is exactly what the operation of convolution accomplishes. Hence, convolution can be used to determine a
linear time invariant system's output from knowledge of the input and the impulse response.

3.3.2 Convolution and Circular Convolution

3.3.2.1 Convolution

3.3.2.1.1 Operation De�nition

Continuous time convolution is an operation on two continuous time signals de�ned by the integral

(f ∗ g) (t) =
∫ ∞
−∞

f (τ) g (t− τ) dτ (3.8)

for all signals f, g de�ned on R. It is important to note that the operation of convolution is commutative,
meaning that

f ∗ g = g ∗ f (3.9)

3This content is available online at <http://cnx.org/content/m10085/2.34/>.
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for all signals f, g de�ned on R. Thus, the convolution operation could have been just as easily stated using
the equivalent de�nition

(f ∗ g) (t) =
∫ ∞
−∞

f (t− τ) g (τ) dτ (3.10)

for all signals f, g de�ned on R. Convolution has several other important properties not listed here but
explained and derived in a later module.

3.3.2.1.2 De�nition Motivation

The above operation de�nition has been chosen to be particularly useful in the study of linear time invariant
systems. In order to see this, consider a linear time invariant system H with unit impulse response h. Given
a system input signal x we would like to compute the system output signal H (x). First, we note that the
input can be expressed as the convolution

x (t) =
∫ ∞
−∞

x (τ) δ (t− τ) dτ (3.11)

by the sifting property of the unit impulse function. Writing this integral as the limit of a summation,

x (t) = lim
∆→0

∑
n

x (n∆) δ∆ (t− n∆) ∆ (3.12)

where

δ∆ (t) = {
1/∆ 0 ≤ t < ∆

0 otherwise
(3.13)

approximates the properties of δ (t). By linearity

Hx (t) = lim
∆→0

∑
n

x (n∆)Hδ∆ (t− n∆) ∆ (3.14)

which evaluated as an integral gives

Hx (t) =
∫ ∞
−∞

x (τ)Hδ (t− τ) dτ. (3.15)

Since Hδ (t− τ) is the shifted unit impulse response h (t− τ), this gives the result

Hx (t) =
∫ ∞
−∞

x (τ)h (t− τ) dτ = (x ∗ h) (t) . (3.16)

Hence, convolution has been de�ned such that the output of a linear time invariant system is given by the
convolution of the system input with the system unit impulse response.

3.3.2.1.3 Graphical Intuition

It is often helpful to be able to visualize the computation of a convolution in terms of graphical processes.
Consider the convolution of two functions f, g given by

(f ∗ g) (t) =
∫ ∞
−∞

f (τ) g (t− τ) dτ =
∫ ∞
−∞

f (t− τ) g (τ) dτ. (3.17)

The �rst step in graphically understanding the operation of convolution is to plot each of the functions.
Next, one of the functions must be selected, and its plot re�ected across the τ = 0 axis. For each real t, that
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same function must be shifted left by t. The product of the two resulting plots is then constructed. Finally,
the area under the resulting curve is computed.

Example 3.3
Recall that the impulse response for the capacitor voltage in a series RC circuit is given by

h (t) =
1
RC

e−t/RCu (t) , (3.18)

and consider the response to the input voltage

x (t) = u (t) . (3.19)

We know that the output for this input voltage is given by the convolution of the impulse response
with the input signal

y (t) = x (t) ∗ h (t) . (3.20)

We would like to compute this operation by beginning in a way that minimizes the algebraic
complexity of the expression. Thus, since x (t) = u (t) is the simpler of the two signals, it is
desirable to select it for time reversal and shifting. Thus, we would like to compute

y (t) =
∫ ∞
−∞

1
RC

e−τ/RCu (τ)u (t− τ) dτ. (3.21)

The step functions can be used to further simplify this integral by narrowing the region of inte-
gration to the nonzero region of the integrand. Therefore,

y (t) =
∫ max{0,t}

0

1
RC

e−τ/RCdτ. (3.22)

Hence, the output is

y (t) = {
0 t ≤ 0

1− e−t/RC t > 0
(3.23)

which can also be written as

y (t) =
(

1− e−t/RC
)
u (t) . (3.24)

3.3.2.2 Circular Convolution

Continuous time circular convolution is an operation on two �nite length or periodic continuous time signals
de�ned by the integral

(f ∗ g) (t) =
∫ T

0

^
f (τ)

^
g (t− τ) dτ (3.25)

for all signals f, g de�ned on R [0, T ] where
^
f,
^
g are periodic extensions of f and g. It is important to note

that the operation of circular convolution is commutative, meaning that

f ∗ g = g ∗ f (3.26)
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for all signals f, g de�ned on R [0, T ]. Thus, the circular convolution operation could have been just as easily
stated using the equivalent de�nition

(f ∗ g) (t) =
∫ T

0

^
f (t− τ)

^
g (τ) dτ (3.27)

for all signals f, g de�ned on R [0, T ] where
^
f,
^
g are periodic extensions of f and g. Circular convolution

has several other important properties not listed here but explained and derived in a later module.
Alternatively, continuous time circular convolution can be expressed as the sum of two integrals given by

(f ∗ g) (t) =
∫ t

0

f (τ) g (t− τ) dτ +
∫ T

t

f (τ) g (t− τ + T ) dτ (3.28)

for all signals f, g de�ned on R [0, T ].
Meaningful examples of computing continuous time circular convolutions in the time domain would in-

volve complicated algebraic manipulations dealing with the wrap around behavior, which would ultimately
be more confusing than helpful. Thus, none will be provided in this section. However, continuous time circu-
lar convolutions are more easily computed using frequency domain tools as will be shown in the continuous
time Fourier series section.

3.3.2.2.1 De�nition Motivation

The above operation de�nition has been chosen to be particularly useful in the study of linear time invariant
systems. In order to see this, consider a linear time invariant system H with unit impulse response h. Given
a �nite or periodic system input signal x we would like to compute the system output signal H (x). First,
we note that the input can be expressed as the circular convolution

x (t) =
∫ T

0

^
x (τ)

^
δ (t− τ) dτ (3.29)

by the sifting property of the unit impulse function. Writing this integral as the limit of a summation,

x (t) = lim
∆→0

∑
n

^
x (n∆)

^
δ∆ (t− n∆) ∆ (3.30)

where

δ∆ (t) = {
1/∆ 0 ≤ t < ∆

0 otherwise
(3.31)

approximates the properties of δ (t). By linearity

Hx (t) = lim
∆→0

∑
n

^
x (n∆)H

^
δ∆ (t− n∆) ∆ (3.32)

which evaluated as an integral gives

Hx (t) =
∫ T

0

^
x (τ)H

^
δ (t− τ) dτ. (3.33)

Since Hδ (t− τ) is the shifted unit impulse response h (t− τ), this gives the result

Hx (t) =
∫ T

0

^
x (τ)

^
h (t− τ) dτ = (x ∗ h) (t) . (3.34)

Hence, circular convolution has been de�ned such that the output of a linear time invariant system is given
by the convolution of the system input with the system unit impulse response.
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3.3.2.2.2 Graphical Intuition

It is often helpful to be able to visualize the computation of a circular convolution in terms of graphical
processes. Consider the circular convolution of two �nite length functions f, g given by

(f ∗ g) (t) =
∫ T

0

^
f (τ)

^
g (t− τ) dτ =

∫ T

0

^
f (t− τ)

^
g (τ) dτ. (3.35)

The �rst step in graphically understanding the operation of convolution is to plot each of the periodic
extensions of the functions. Next, one of the functions must be selected, and its plot re�ected across the
τ = 0 axis. For each t ∈ R [0, T ], that same function must be shifted left by t. The product of the two
resulting plots is then constructed. Finally, the area under the resulting curve on R [0, T ] is computed.

3.3.3 Convolution Demonstration

Figure 3.6: Interact (when online) with a Mathematica CDF demonstrating Convolution. To Download,
right-click and save target as .cdf.

3.3.4 Convolution Summary

Convolution, one of the most important concepts in electrical engineering, can be used to determine the
output signal of a linear time invariant system for a given input signal with knowledge of the system's unit
impulse response. The operation of continuous time convolution is de�ned such that it performs this function
for in�nite length continuous time signals and systems. The operation of continuous time circular convolution
is de�ned such that it performs this function for �nite length and periodic continuous time signals. In each
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case, the output of the system is the convolution or circular convolution of the input signal with the unit
impulse response.

3.4 Properties of Continuous Time Convolution4

3.4.1 Introduction

We have already shown the important role that continuous time convolution plays in signal processing. This
section provides discussion and proof of some of the important properties of continuous time convolution.
Analogous properties can be shown for continuous time circular convolution with trivial modi�cation of the
proofs provided except where explicitly noted otherwise.

3.4.2 Continuous Time Convolution Properties

3.4.2.1 Associativity

The operation of convolution is associative. That is, for all continuous time signals f1, f2, f3 the following
relationship holds.

f1 ∗ (f2 ∗ f3) = (f1 ∗ f2) ∗ f3 (3.36)

In order to show this, note that

(f1 ∗ (f2 ∗ f3)) (t) =
∫∞
−∞

∫∞
−∞ f1 (τ1) f2 (τ2) f3 ((t− τ1)− τ2) dτ2dτ1

=
∫∞
−∞

∫∞
−∞ f1 (τ1) f2 ((τ1 + τ2)− τ1) f3 (t− (τ1 + τ2)) dτ2dτ1

=
∫∞
−∞

∫∞
−∞ f1 (τ1) f2 (τ3 − τ1) f3 (t− τ3) dτ1dτ3

= ((f1 ∗ f2) ∗ f3) (t)

(3.37)

proving the relationship as desired through the substitution τ3 = τ1 + τ2.

3.4.2.2 Commutativity

The operation of convolution is commutative. That is, for all continuous time signals f1, f2 the following
relationship holds.

f1 ∗ f2 = f2 ∗ f1 (3.38)

In order to show this, note that

(f1 ∗ f2) (t) =
∫∞
−∞ f1 (τ1) f2 (t− τ1) dτ1

=
∫∞
−∞ f1 (t− τ2) f2 (τ2) dτ2

= (f2 ∗ f1) (t)

(3.39)

proving the relationship as desired through the substitution τ2 = t− τ1.
4This content is available online at <http://cnx.org/content/m10088/2.17/>.
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3.4.2.3 Distribitivity

The operation of convolution is distributive over the operation of addition. That is, for all continuous time
signals f1, f2, f3 the following relationship holds.

f1 ∗ (f2 + f3) = f1 ∗ f2 + f1 ∗ f3 (3.40)

In order to show this, note that

(f1 ∗ (f2 + f3)) (t) =
∫∞
−∞ f1 (τ) (f2 (t− τ) + f3 (t− τ)) dτ

=
∫∞
−∞ f1 (τ) f2 (t− τ) dτ +

∫∞
−∞ f1 (τ) f3 (t− τ) dτ

= (f1 ∗ f2 + f1 ∗ f3) (t)

(3.41)

proving the relationship as desired.

3.4.2.4 Multilinearity

The operation of convolution is linear in each of the two function variables. Additivity in each variable
results from distributivity of convolution over addition. Homogenity of order one in each varible results from
the fact that for all continuous time signals f1, f2 and scalars a the following relationship holds.

a (f1 ∗ f2) = (af1) ∗ f2 = f1 ∗ (af2) (3.42)

In order to show this, note that

(a (f1 ∗ f2)) (t) = a
∫∞
−∞ f1 (τ) f2 (t− τ) dτ

=
∫∞
−∞ (af1 (τ)) f2 (t− τ) dτ

= ((af1) ∗ f2) (t)

=
∫∞
−∞ f1 (τ) (af2 (t− τ)) dτ

= (f1 ∗ (af2)) (t)

(3.43)

proving the relationship as desired.

3.4.2.5 Conjugation

The operation of convolution has the following property for all continuous time signals f1, f2.

f1 ∗ f2 = f1 ∗ f2 (3.44)

In order to show this, note that (
f1 ∗ f2

)
(t) =

∫∞
−∞ f1 (τ) f2 (t− τ) dτ

=
∫∞
−∞ f1 (τ) f2 (t− τ)dτ

=
∫∞
−∞ f1 (τ) f2 (t− τ) dτ

=
(
f1 ∗ f2

)
(t)

(3.45)

proving the relationship as desired.
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3.4.2.6 Time Shift

The operation of convolution has the following property for all continuous time signals f1, f2 where ST is
the time shift operator.

ST (f1 ∗ f2) = (ST f1) ∗ f2 = f1 ∗ (ST f2) (3.46)

In order to show this, note that

ST (f1 ∗ f2) (t) =
∫∞
−∞ f2 (τ) f1 ((t− T )− τ) dτ

=
∫∞
−∞ f2 (τ)ST f1 (t− τ) dτ

= ((ST f1) ∗ f2) (t)

=
∫∞
−∞ f1 (τ) f2 ((t− T )− τ) dτ

=
∫∞
−∞ f1 (τ)ST f2 (t− τ) dτ

= f1 ∗ (ST f2) (t)

(3.47)

proving the relationship as desired.

3.4.2.7 Di�erentiation

The operation of convolution has the following property for all continuous time signals f1, f2.

d

dt
(f1 ∗ f2) (t) =

(
df1

dt
∗ f2

)
(t) =

(
f1 ∗

df2

dt

)
(t) (3.48)

In order to show this, note that

d
dt (f1 ∗ f2) (t) =

∫∞
−∞ f2 (τ) d

dtf1 (t− τ) dτ

=
(
df1
dt ∗ f2

)
(t)

=
∫∞
−∞ f1 (τ) d

dtf2 (t− τ) dτ

=
(
f1 ∗ df2dt

)
(t)

(3.49)

proving the relationship as desired.

3.4.2.8 Impulse Convolution

The operation of convolution has the following property for all continuous time signals f where δ is the Dirac
delta funciton.

f ∗ δ = f (3.50)

In order to show this, note that

(f ∗ δ) (t) =
∫∞
−∞ f (τ) δ (t− τ) dτ

= f (t)
∫∞
−∞ δ (t− τ) dτ

= f (t)

(3.51)

proving the relationship as desired.
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3.4.2.9 Width

The operation of convolution has the following property for all continuous time signals f1, f2 where
Duration (f) gives the duration of a signal f .

Duration (f1 ∗ f2) = Duration (f1) +Duration (f2) (3.52)

. In order to show this informally, note that (f1 ∗ f2) (t) is nonzero for all t for which there is a τ such that
f1 (τ) f2 (t− τ) is nonzero. When viewing one function as reversed and sliding past the other, it is easy to
see that such a τ exists for all t on an interval of length Duration (f1) +Duration (f2). Note that this is not
always true of circular convolution of �nite length and periodic signals as there is then a maximum possible
duration within a period.

3.4.3 Convolution Properties Summary

As can be seen the operation of continuous time convolution has several important properties that have
been listed and proven in this module. With slight modi�cations to proofs, most of these also extend to
continuous time circular convolution as well and the cases in which exceptions occur have been noted above.
These identities will be useful to keep in mind as the reader continues to study signals and systems.

3.5 Eigenfunctions of Continuous Time LTI Systems5

3.5.1 Introduction

Prior to reading this module, the reader should already have some experience with linear algebra and should
speci�cally be familiar with the eigenvectors and eigenvalues of linear operators. A linear time invariant
system is a linear operator de�ned on a function space that commutes with every time shift operator on
that function space. Thus, we can also consider the eigenvector functions, or eigenfunctions, of a system.
It is particularly easy to calculate the output of a system when an eigenfunction is the input as the output
is simply the eigenfunction scaled by the associated eigenvalue. As will be shown, continuous time complex
exponentials serve as eigenfunctions of linear time invariant systems operating on continuous time signals.

3.5.2 Eigenfunctions of LTI Systems

Consider a linear time invariant system H with impulse response h operating on some space of in�nite length
continuous time signals. Recall that the output H (x (t)) of the system for a given input x (t) is given by the
continuous time convolution of the impulse response with the input

H (x (t)) =
∫ ∞
−∞

h (τ)x (t− τ) dτ. (3.53)

Now consider the input x (t) = est where s ∈ C. Computing the output for this input,

H (est) =
∫∞
−∞ h (τ) es(t−τ)dτ

=
∫∞
−∞ h (τ) este−sτdτ

= est
∫∞
−∞ h (τ) e−sτdτ.

(3.54)

Thus,

H
(
est
)

= λse
st (3.55)

5This content is available online at <http://cnx.org/content/m34639/1.1/>.
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where

λs =
∫ ∞
−∞

h (τ) e−sτdτ (3.56)

is the eigenvalue corresponding to the eigenvector est.
There are some additional points that should be mentioned. Note that, there still may be additional

eigenvalues of a linear time invariant system not described by est for some s ∈ C. Furthermore, the above
discussion has been somewhat formally loose as est may or may not belong to the space on which the system
operates. However, for our purposes, complex exponentials will be accepted as eigenvectors of linear time
invariant systems. A similar argument using continuous time circular convolution would also hold for spaces
�nite length signals.

3.5.3 Eigenfunction of LTI Systems Summary

As has been shown, continuous time complex exponential are eigenfunctions of linear time invariant systems
operating on continuous time signals. Thus, it is particularly simple to calculate the output of a linear time
invariant system for a complex exponential input as the result is a complex exponential output scaled by the
associated eigenvalue. Consequently, representations of continuous time signals in terms of continuous time
complex exponentials provide an advantage when studying signals. As will be explained later, this is what
is accomplished by the continuous time Fourier transform and continuous time Fourier series, which apply
to aperiodic and periodic signals respectively.

3.6 BIBO Stability of Continuous Time Systems6

3.6.1 Introduction

BIBO stability stands for bounded input, bounded output stability. BIBO stablity is the system property
that any bounded input yields a bounded output. This is to say that as long as we input a signal with
absolute value less than some constant, we are guaranteed to have an output with absolute value less than
some other constant.

3.6.2 Continuous Time BIBO Stability

In order to understand this concept, we must �rst look more closely into exactly what we mean by bounded.
A bounded signal is any signal such that there exists a value such that the absolute value of the signal is
never greater than some value. Since this value is arbitrary, what we mean is that at no point can the signal
tend to in�nity, including the end behavior.

6This content is available online at <http://cnx.org/content/m10113/2.11/>.
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Figure 3.7: A bounded signal is a signal for which there exists a constant A such that |f (t) | < A

3.6.2.1 Time Domain Conditions

Now that we have identi�ed what it means for a signal to be bounded, we must turn our attention to the
condition a system must possess in order to guarantee that if any bounded signal is passed through the
system, a bounded signal will arise on the output. It turns out that a continuous time LTI (Section 2.1)
system with impulse response h (t) is BIBO stable if and only if

Continuous-Time Condition for BIBO Stability∫ ∞
−∞
|h (t) |dt <∞ (3.57)

This is to say that the impulse response is absolutely integrable.

3.6.2.2 Laplace Domain Conditions

Stability is very easy to infer from the pole-zero plot7 of a transfer function. The only condition necessary
to demonstrate stability is to show that the jω-axis is in the region of convergence. Consequently, for stable
causal systems, all poles must be to the left of the imaginary axis.

7"Poles and Zeros" <http://cnx.org/content/m10112/latest/>
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(a) (b)

Figure 3.8: (a) Example of a pole-zero plot for a stable continuous-time system. (b) Example of a
pole-zero plot for an unstable continuous-time system.

3.6.3 BIBO Stability Summary

Bounded input bounded output stability, also known as BIBO stability, is an important and generally
desirable system characteristic. A system is BIBO stable if every bounded input signal results in a bounded
output signal, where boundedness is the property that the absolute value of a signal does not exceed some
�nite constant. In terms of time domain features, a continuous time system is BIBO stable if and only if its
impulse response is absolutely integrable. Equivalently, in terms of Laplace domain features, a continuous
time system is BIBO stable if and only if the region of convergence of the transfer function includes the
imaginary axis.

3.7 Linear Constant Coe�cient Di�erential Equations8

3.7.1 Introduction: Ordinary Di�erential Equations

In our study of signals and systems, it will often be useful to describe systems using equations involving the
rate of change in some quantity. Such equations are called di�erential equations. For instance, you may
remember from a past physics course that an object experiences simple harmonic motion when it has an
acceleration that is proportional to the magnitude of its displacement and opposite in direction. Thus, this
system is described as the di�erential equation shown in (3.58).

d2x

dt2
= −cx (3.58)

Because the di�erential equation in (3.58) has only one independent variable and only has derivatives with
respect to that variable, it is called an ordinary di�erential equation. There are more complicated di�erential
equations, such as the Schrodinger equation, which involve derivatives with respect to multiple independent
variables. These are called partial di�erential equations, but they are not within the scope of this module.

8This content is available online at <http://cnx.org/content/m34501/1.4/>.
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Given a su�ciently descriptive set of initial conditions or boundary conditions, if there is a solution to
the di�erential equation, that solution is unique and describes the behavior of the system. Of course, the
results are only accurate to the degree that the model mirrors reality.

3.7.2 Linear Constant Coe�cient Ordinary Di�erential Equations

An important subclass of ordinary di�erential equations is the set of linear constant coe�cient ordinary
di�erential equations. These equations are of the form

Ax (t) = f (t) (3.59)

where A is a di�erential operator of the form given in (3.60).

A = an
dn

dtn
+ an−1

dn−1

dtn−1
+ ...+ a1

d

dt
+ a0 (3.60)

Note that operators of this type satisfy the linearity conditions, and a1, ..., an are real constants. Further-
more, Equation (3.59) with these operators has derivatives with respect to only one variable, making it an
ordinary di�erential equation.

A similar concept for a discrete time setting, di�erence equations, is discussed in the chapter on time
domain analysis of discrete time systems. There are many parallels between the discussion of linear constant
coe�cient ordinary di�erential equations and linear constant coe�cient di�erece equations.

3.7.3 Applications of Di�erential Equations

Consider the decay model in which a quantity of an unstable isotope decreases at a rate proportional to the
quanity of unstable isotope remaining. Thus, the decay of the isotope is modeled by the �rst order linear
constant coe�cient di�erential equation

dx

dt
+ rx = 0 (3.61)

where r is some real rate.
Now consider the series RLC circuit shown in Figure 3.9. This system can be modeled using di�erential

equations. We can use the voltage equations for each circuit element and Kircho�'s voltage law to write a
second order linear constant coe�cient di�erential equation describing the charge on the capacitor.

The voltage across the battery is simply V . The voltage across the capacitor is 1
C q. The voltage across

the resistor is R dq
dt . Finally, the voltage across the inductor is L

d2q
dt2 . Therefore, by Kircho�'s voltage law, it

follows that

L
d2q

dt2
+R

dq

dt
+

1
C
q = V. (3.62)
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Figure 3.9: A series RLC circuit.

The section Solving Linear Constant Coe�cient Di�erential Equations9 will describe in depth how solu-
tions to di�erential equations like those in the examples may be obtained.

3.7.4 Linear Constant Coe�cient Oridinary Di�erential Equations Summary

Di�erential equations are an important mathematical tool for modeling continuous time systems. An im-
portant subclass of these is the class of linear constant coe�cient ordinary di�erential equations. Linear
constant coe�cient ordinary di�erential equations are often particularly easy to solve as will be described
in the module on solutions to linear constant coe�cient ordinary di�erential equations and are useful in
describing a wide range of situations that arise in electrical engineering and in other �elds.

3.8 Solving Linear Constant Coe�cient Di�erential Equations10

3.8.1 Introduction

The approach to solving linear constant coe�cient ordinary di�erential equations is to �nd the general form of
all possible solutions to the equation and then apply a number of conditions to �nd the appropriate solution.
The two main types of problems are initial value problems, which involve constraints on the solution and its
derivatives at a single point, and boundary value problems, which involve constraints on the solution or its
derivatives at several points.

The number of initial conditions needed for an Nth order di�erential equation, which is the order of the
highest order derivative, is N , and a unique solution is always guaranteed if these are supplied. Boundary
value problems can be slightly more complicated and will not necessarily have a unique solution or even a
solution at all for a given set of conditions. Thus, this module will focus exclusively on initial value problems.

3.8.2 Solving Linear Constant Coe�cient Ordinary Di�erential Equations

Consider some linear constant coe�cient ordinary di�erential equation given by Ax (t) = f (t), where A is a
di�erential operator of the form

A = an
dn

dtn
+ an−1

dn−1

dtn−1
+ ...+ a1

d

dt
+ a0. (3.63)

9http://cnx.org/content/m34506/latest/
10This content is available online at <http://cnx.org/content/m34506/1.4/>.
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Let xh (t) and xp (t) be two functions such that Axh (t) = 0 and Axp (t) = f (t). By the linearity of A, note
that A (xh (t) + xp (t)) = 0+f (t) = f (t). Thus, the form of the general solution xg (t) to any linear constant
coe�cient ordinary di�erential equation is the sum of a homogeneous solution xh (t) to the equation Ax = 0
and a particular solution xp (t) that is speci�c to the forcing function f (t).

We wish to determine the forms of the homogeneous and nonhomogeneous solutions in full generality in
order to avoid incorrectly restricting the form of the solution before applying any conditions. Otherwise,
a valid set of initial or boundary conditions might appear to have no corresponding solution trajectory.
The following discussion shows how to accomplish this for linear constant coe�cient ordinary di�erential
equations.

3.8.2.1 Finding the Homogeneous Solution

In order to �nd the homogeneous solution to Ax (t) = f (t), consider the di�erential equation Ax (t) = 0. We
know that the solutions have the form ceλt for some complex constants c, λ. Since Aceλt = 0 for a solution,
it follows that (

an
dn

dtn
+ an−1

dn−1

dtn−1
+ ...+ a1

d

dt
+ a0

)
eλt = 0, (3.64)

so it also follows that

anλ
n + an−1λ

n−1...+ a1λ+ a0 = 0. (3.65)

Therefore, the parameters of the solution exponents are the roots of the above polynomial, called the
characteristic polynomial.

For equations of order two or more, there will be several roots. If all of the roots are distinct, then the
the general form of the homogeneous solution is simply

xh (t) = c1e
λ1t + ...+ cne

λnt. (3.66)

If a root has multiplicity that is greater than one, the repeated solutions must be multiplied by each powers
of t from 0 to one less than the root multiplicity (in order to ensure linearly independent solutions). For
instance, if λ1 had multiplicity 2 and λ2 had multiplicity 3, the homogeneous solution would be

xh (t) = c1e
λ1t + c2te

λ1t + c3e
λ2t + c4te

λ2t + c5t
2eλ2t. (3.67)

Example 3.4
Consider the decay model in which a quantity of an unstable isotope decreases at a rate proportional
to the quanity of unstable isotope remaining. Thus, the decay of the isotope is modeled by the �rst
order linear constant coe�cient di�erential equation

dx

dt
+ rx = 0 (3.68)

where r is some real rate. This di�erential equation could easily be solved through straightforward
integration. However, the methods described above will be used instead. Note that the forcing
function is zero, so only a homogenous solution is needed. It is easy to see that the characteristic
polynomial is λ+ r = 0, so there is one root λ1 = r. Thus the solution is of the form

x (t) = c1e
rt. (3.69)

Given a rate and an initial condition, this can be applied to a speci�c situation. For instance, we
know that carbon-14 decays at a rate of approximately r = 1.21x10−4year−1, and if we normalize
the natural concentration of carbon-14 to x (0) = 1 the solution becomes x (t) = e−1.21x10−4t.
Knowledge of this curve would be useful for radioisotope based dating.
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3.8.2.2 Finding the Particular Solution

Finding the particular solution is slightly more complicated task than �nding the homogeneous solution. A
formal method, called variation of parameters accomplishes this, and there are also several heuristics that
can be used. It can also be found through convolution of the input with the unit impulse response, once
the unit impulse response is known. Finding the particular solution to a di�erential equation is discussed
further in the chapter concerning the Laplace transform, which greatly simpli�es the procedure for solving
linear constant coe�cient ordinary di�erential equations using frequency domain tools.

Example 3.5
Consider the series RLC circuit shown in Figure 3.10. This system can be modeled using di�erential
equations. We can use the voltage equations for each circuit element and Kircho�'s voltage law to
write a second order linear constant coe�cient di�erential equation describing the charge on the
capacitor.

The voltage across the battery is simply V . The voltage across the capacitor is 1
C q. The voltage

across the resistor is R dq
dt . Finally, the voltage across the inductor is L

d2q
dt2 . Therefore, by Kircho�'s

voltage law, it follows that

L
d2q

dt2
+R

dq

dt
+

1
C
q = V. (3.70)

Figure 3.10: A series RLC circuit.

First, the homogeneous solution is found. It is easy to see that the characteristic polynomial

is Lλ2 + Rλ + 1
C = 0. Therefore, the two roots are λ1 = −R−

√
R2− 4L

C

2L and λ2 = −R+
√
R2− 4L

C

2L .

Often, these are stated in terms of the attenuation factor α = R
2

√
C
L and the resonant frequency

ω0 = 1√
LC

. Thus, λ1 = −α−
√
α2 − ω2

0 and λ2 = −α+
√
α2 − ω2

0 .

Thus, the homogeneous equation is of the form

xh (t) = c1e
−α−
√
α2−ω2

0t + c2e
−α+
√
α2−ω2

0t. (3.71)

It turns out that the response to the constant voltage source forcing function is a constant, so

xp (t) = V C. (3.72)
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Hence, the general solution is

x (t) = V C + c1e
−α−
√
α2−ω2

0t + c2e
−α+
√
α2−ω2

0t (3.73)

where c1 and c2 depend on the initial conditions. The system demonstrates a rich array of behaviors
based on the relative values of α and ω0, which the reader is encouraged to explore.

3.8.3 Solving Di�erential Equations Summary

Linear constant coe�cient ordinary di�erential equations are useful for modeling a wide variety of continuous
time systems. The approach to solving them is to �nd the general form of all possible solutions to the
equation and then apply a number of conditions to �nd the appropriate solution. This is done by �nding the
homogeneous solution to the di�erential equation that does not depend on the forcing function input and a
particular solution to the di�erential equation that does depend on the forcing function input.



Chapter 4

Time Domain Analysis of Discrete Time
Systems

4.1 Discrete Time Systems1

4.1.1 Introduction

As you already now know, a discrete time system operates on a discrete time signal input and produces a
discrete time signal output. There are numerous examples of useful discrete time systems in digital signal
processing, such as digital �lters for images or sound. The class of discrete time systems that are both
linear and time invariant, known as discrete time LTI systems, is of particular interest as the properties of
linearity and time invariance together allow the use of some of the most important and powerful tools in
signal processing.

4.1.2 Discrete Time Systems

4.1.2.1 Linearity and Time Invariance

A system H is said to be linear if it satis�es two important conditions. The �rst, additivity, states for every
pair of signals x, y that H (x+ y) = H (x) +H (y). The second, homogeneity of degree one, states for every
signal x and scalar a we have H (ax) = aH (x). It is clear that these conditions can be combined together
into a single condition for linearity. Thus, a system is said to be linear if for every signals x, y and scalars
a, b we have that

H (ax+ by) = aH (x) + bH (y) . (4.1)

Linearity is a particularly important property of systems as it allows us to leverage the powerful tools of
linear algebra, such as bases, eigenvectors, and eigenvalues, in their study.

A system H is said to be time invariant if a time shift of an input produces the corresponding shifted
output. In other, more precise words, the system H commutes with the time shift operator ST for every
T ∈ Z. That is,

STH = HST . (4.2)

Time invariance is desirable because it eases computation while mirroring our intuition that, all else equal,
physical systems should react the same to identical inputs at di�erent times.

When a system exhibits both of these important properties it opens. As will be explained and proven
in subsequent modules, computation of the system output for a given input becomes a simple matter of

1This content is available online at <http://cnx.org/content/m34614/1.2/>.
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convolving the input with the system's impulse response signal. Also proven later, the fact that complex
exponential are eigenvectors of linear time invariant systems will encourage the use of frequency domain
tools such as the various Fouier transforms and associated transfer functions, to describe the behavior of
linear time invariant systems.

Example 4.1
Consider the system H in which

H (f (n)) = 2f (n) (4.3)

for all signals f . Given any two signals f, g and scalars a, b

H (af (n) + bg (n)) = 2 (af (n) + bg (n)) = a2f (n) + b2g (n) = aH (f (n)) + bH (g (n)) (4.4)

for all integers n. Thus, H is a linear system. For all integers T and signals f ,

ST (H (f (n))) = ST (2f (n)) = 2f (n− T ) = H (f (n− T )) = H (ST (f (n))) (4.5)

for all integers n. Thus, H is a time invariant system. Therefore, H is a linear time invariant
system.

4.1.2.2 Di�erence Equation Representation

It is often useful to to describe systems using equations involving the rate of change in some quantity. For
discrete time systems, such equations are called di�erence equations, a type of recurrence relation. One
important class of di�erence equations is the set of linear constant coe�cient di�erence equations, which are
described in more detail in subsequent modules.

Example 4.2
Recall that the Fibonacci sequence describes a (very unrealistic) model of what happens when a
pair rabbits get left alone in a black box... The assumptions are that a pair of rabits never die
and produce a pair of o�spring every month starting on their second month of life. This system is
de�ned by the recursion relation for the number of rabit pairs y (n) at month n

y (n) = y (n− 1) + y (n− 2) (4.6)

with the initial conditions y (0) = 0 and y (1) = 1. The result is a very fast growth in the sequence.
This is why we never leave black boxes open.

4.1.3 Discrete Time Systems Summary

Many useful discrete time systems will be encountered in a study of signals and systems. This course is most
interested in those that demonstrate both the linearity property and the time invariance property, which
together enable the use of some of the most powerful tools of signal processing. It is often useful to describe
them in terms of rates of change through linear constant coe�cient di�erence equations, a type of recurrence
relation.
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4.2 Discrete Time Impulse Response2

4.2.1 Introduction

The output of a discrete time LTI system is completely determined by the input and the system's response
to a unit impulse.

System Output

Figure 4.1: We can determine the system's output, y[n], if we know the system's impulse response,
h[n], and the input, x[n].

The output for a unit impulse input is called the impulse response.

Figure 4.2

2This content is available online at <http://cnx.org/content/m34626/1.1/>.
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(a) (b)

Figure 4.3

4.2.1.1 Example Impulses

Since we are considering discrete time signals and systems, an ideal impulse is easy to simulate on a computer
or some other digital device. It is simply a signal that is 1 at the point n = 0, and 0 everywhere else.

4.2.2 LTI Systems and Impulse Responses

4.2.2.1 Finding System Outputs

By the sifting property of impulses, any signal can be decomposed in terms of an in�nite sum of shifted,
scaled impulses.

x [n] =
∑∞
k=−∞ x [k]δk[n]

=
∑∞
k=−∞ x [k]δ[n− k]

(4.7)

The function δk[n] = δ[n− k] peaks up where n = k.
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(a) (b)

Figure 4.4

Since we know the response of the system to an impulse and any signal can be decomposed into impulses,
all we need to do to �nd the response of the system to any signal is to decompose the signal into impulses,
calculate the system's output for every impulse and add the outputs back together. This is the process
known as Convolution. Since we are in Discrete Time, this is the Discrete Time Convolution Sum.

4.2.2.2 Finding Impulse Responses

Theory:

a. Solve the system's Di�erence Equation for y[n] with f[n] = δ[n]
b. Use the Z-Transform

Practice:

a. Apply an impulse input signal to the system and record the output
b. Use Fourier methods

We will assume that h[n] is given for now.

The goal is now to comput the output y[n] given the impulse response h[n] and the input x[n].

Figure 4.5
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4.2.3 Impulse Response Summary

When a system is "shocked" by a delta function, it produces an output known as its impulse response. For
an LTI system, the impulse response completely determines the output of the system given any arbitrary
input. The output can be found using discrete time convolution.

4.3 Discrete Time Convolution3

4.3.1 Introduction

Convolution, one of the most important concepts in electrical engineering, can be used to determine the
output a system produces for a given input signal. It can be shown that a linear time invariant system is
completely characterized by its impulse response. The sifting property of the discrete time impulse function
tells us that the input signal to a system can be represented as a sum of scaled and shifted unit impulses.
Thus, by linearity, it would seem reasonable to compute of the output signal as the sum of scaled and shifted
unit impulse responses. That is exactly what the operation of convolution accomplishes. Hence, convolution
can be used to determine a linear time invariant system's output from knowledge of the input and the impulse
response.

4.3.2 Convolution and Circular Convolution

4.3.2.1 Convolution

4.3.2.1.1 Operation De�nition

Discrete time convolution is an operation on two discrete time signals de�ned by the integral

(f ∗ g) (n) =
∞∑

k=−∞

f (k) g (n− k) (4.8)

for all signals f, g de�ned on Z. It is important to note that the operation of convolution is commutative,
meaning that

f ∗ g = g ∗ f (4.9)

for all signals f, g de�ned on Z. Thus, the convolution operation could have been just as easily stated using
the equivalent de�nition

(f ∗ g) (n) =
∞∑

k=−∞

f (n− k) g (k) (4.10)

for all signals f, g de�ned on Z. Convolution has several other important properties not listed here but
explained and derived in a later module.

4.3.2.1.2 De�nition Motivation

The above operation de�nition has been chosen to be particularly useful in the study of linear time invariant
systems. In order to see this, consider a linear time invariant system H with unit impulse response h. Given
a system input signal x we would like to compute the system output signal H (x). First, we note that the
input can be expressed as the convolution

x (n) =
∞∑

k=−∞

x (k) δ (n− k) (4.11)

3This content is available online at <http://cnx.org/content/m10087/2.27/>.
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by the sifting property of the unit impulse function. By linearity

Hx (n) =
∞∑

k=−∞

x (k)Hδ (n− k) . (4.12)

Since Hδ (n− k) is the shifted unit impulse response h (n− k), this gives the result

Hx (n) =
∞∑

k=−∞

x (k)h (n− k) = (x ∗ h) (n) . (4.13)

Hence, convolution has been de�ned such that the output of a linear time invariant system is given by the
convolution of the system input with the system unit impulse response.

4.3.2.1.3 Graphical Intuition

It is often helpful to be able to visualize the computation of a convolution in terms of graphical processes.
Consider the convolution of two functions f, g given by

(f ∗ g) (n) =
∞∑

k=−∞

f (k) g (n− k) =
∞∑

k=−∞

f (n− k) g (k) . (4.14)

The �rst step in graphically understanding the operation of convolution is to plot each of the functions.
Next, one of the functions must be selected, and its plot re�ected across the k = 0 axis. For each real t, that
same function must be shifted left by t. The product of the two resulting plots is then constructed. Finally,
the area under the resulting curve is computed.

Example 4.3
Recall that the impulse response for a discrete time echoing feedback system with gain a is

h (n) = anu (n) , (4.15)

and consider the response to an input signal that is another exponential

x (n) = bnu (n) . (4.16)

We know that the output for this input is given by the convolution of the impulse response with
the input signal

y (n) = x (n) ∗ h (n) . (4.17)

We would like to compute this operation by beginning in a way that minimizes the algebraic
complexity of the expression. However, in this case, each possible coice is equally simple. Thus, we
would like to compute

y (n) =
∞∑

k=−∞

aku (k) bn−ku (n− k) . (4.18)

The step functions can be used to further simplify this sum. Therefore,

y (n) = 0 (4.19)

for n < 0 and

y (n) =
n∑
k=0

(ab)k (4.20)
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for n ≥ 0. Hence, provided ab 6= 1, we have that

y (n) = {
0 n < 0

1−(ab)n+1

1−(ab) n ≥ 0
. (4.21)

4.3.2.2 Circular Convolution

Discrete time circular convolution is an operation on two �nite length or periodic discrete time signals de�ned
by the integral

(f ∗ g) (n) =
N−1∑
k=0

^
f (k)

^
g (n− k) (4.22)

for all signals f, g de�ned on Z [0, N − 1] where
^
f,
^
g are periodic extensions of f and g. It is important to

note that the operation of circular convolution is commutative, meaning that

f ∗ g = g ∗ f (4.23)

for all signals f, g de�ned on Z [0, N − 1]. Thus, the circular convolution operation could have been just as
easily stated using the equivalent de�nition

(f ∗ g) (n) =
N−1∑
k=0

^
f (n− k)

^
g (k) (4.24)

for all signals f, g de�ned on Z [0, N − 1] where
^
f,
^
g are periodic extensions of f and g. Circular convolution

has several other important properties not listed here but explained and derived in a later module.
Alternatively, discrete time circular convolution can be expressed as the sum of two summations given

by

(f ∗ g) (n) =
n∑
k=0

f (k) g (n− k) +
N−1∑
k=n+1

f (k) g (n− k +N) (4.25)

for all signals f, g de�ned on Z [0, N − 1].
Meaningful examples of computing discrete time circular convolutions in the time domain would involve

complicated algebraic manipulations dealing with the wrap around behavior, which would ultimately be
more confusing than helpful. Thus, none will be provided in this section. Of course, example computations
in the time domain are easy to program and demonstrate. However, disrete time circular convolutions are
more easily computed using frequency domain tools as will be shown in the discrete time Fourier series
section.

4.3.2.2.1 De�nition Motivation

The above operation de�nition has been chosen to be particularly useful in the study of linear time invariant
systems. In order to see this, consider a linear time invariant system H with unit impulse response h. Given
a �nite or periodic system input signal x we would like to compute the system output signal H (x). First,
we note that the input can be expressed as the circular convolution

x (n) =
N−1∑
k=0

^
x (k)

^
δ (n− k) (4.26)
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by the sifting property of the unit impulse function. By linearity,

Hx (n) =
N−1∑
k=0

^
x (k)H

^
δ (n− k) . (4.27)

Since Hδ (n− k) is the shifted unit impulse response h (n− k), this gives the result

Hx (n) =
N−1∑
k=0

^
x (k)

^
h (n− k) = (x ∗ h) (n) . (4.28)

Hence, circular convolution has been de�ned such that the output of a linear time invariant system is given
by the convolution of the system input with the system unit impulse response.

4.3.2.2.2 Graphical Intuition

It is often helpful to be able to visualize the computation of a circular convolution in terms of graphical
processes. Consider the circular convolution of two �nite length functions f, g given by

(f ∗ g) (n) =
N−1∑
k=0

^
f (k)

^
g (n− k) =

N−1∑
k=0

^
f (n− k)

^
g (k) . (4.29)

The �rst step in graphically understanding the operation of convolution is to plot each of the periodic
extensions of the functions. Next, one of the functions must be selected, and its plot re�ected across the
k = 0 axis. For each k ∈ Z [0, N − 1], that same function must be shifted left by k. The product of the two
resulting plots is then constructed. Finally, the area under the resulting curve on Z [0, N − 1] is computed.



74 CHAPTER 4. TIME DOMAIN ANALYSIS OF DISCRETE TIME SYSTEMS

4.3.3 Interactive Element

Figure 4.6: Interact (when online) with the Mathematica CDF demonstrating Discrete Linear Convo-
lution. To download, right click and save �le as .cdf
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4.3.4 Convolution Summary

Convolution, one of the most important concepts in electrical engineering, can be used to determine the
output signal of a linear time invariant system for a given input signal with knowledge of the system's unit
impulse response. The operation of discrete time convolution is de�ned such that it performs this function
for in�nite length discrete time signals and systems. The operation of discrete time circular convolution is
de�ned such that it performs this function for �nite length and periodic discrete time signals. In each case,
the output of the system is the convolution or circular convolution of the input signal with the unit impulse
response.

4.4 Properties of Discrete Time Convolution4

4.4.1 Introduction

We have already shown the important role that discrete time convolution plays in signal processing. This
section provides discussion and proof of some of the important properties of discrete time convolution.
Analogous properties can be shown for discrete time circular convolution with trivial modi�cation of the
proofs provided except where explicitly noted otherwise.

4.4.2 Discrete Time Convolution Properties

4.4.2.1 Associativity

The operation of convolution is associative. That is, for all discrete time signals f1, f2, f3 the following
relationship holds.

f1 ∗ (f2 ∗ f3) = (f1 ∗ f2) ∗ f3 (4.30)

In order to show this, note that

(f1 ∗ (f2 ∗ f3)) (n) =
∑∞
k1=−∞

∑∞
k2=−∞ f1 (k1) f2 (k2) f3 ((n− k1)− k2)

=
∑∞
k1=−∞

∑∞
k2=−∞ f1 (k1) f2 ((k1 + k2)− k1) f3 (n− (k1 + k2))

=
∑∞
k3=−∞

∑∞
k1=−∞ f1 (k1) f2 (k3 − k1) f3 (n− k3)

= ((f1 ∗ f2) ∗ f3) (n)

(4.31)

proving the relationship as desired through the substitution k3 = k1 + k2.

4.4.2.2 Commutativity

The operation of convolution is commutative. That is, for all discrete time signals f1, f2 the following
relationship holds.

f1 ∗ f2 = f2 ∗ f1 (4.32)

In order to show this, note that

(f1 ∗ f2) (n) =
∑∞
k1=−∞ f1 (k1) f2 (n− k1)

=
∑∞
k2=−∞ f1 (n− k2) f2 (k2)

= (f2 ∗ f1) (n)

(4.33)

proving the relationship as desired through the substitution k2 = n− k1.

4This content is available online at <http://cnx.org/content/m34625/1.2/>.
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4.4.2.3 Distribitivity

The operation of convolution is distributive over the operation of addition. That is, for all discrete time
signals f1, f2, f3 the following relationship holds.

f1 ∗ (f2 + f3) = f1 ∗ f2 + f1 ∗ f3 (4.34)

In order to show this, note that

(f1 ∗ (f2 + f3)) (n) =
∑∞
k=−∞ f1 (k) (f2 (n− k) + f3 (n− k))

=
∑∞
k=−∞ f1 (k) f2 (n− k) +

∑∞
k=−∞ f1 (k) f3 (n− k)

= (f1 ∗ f2 + f1 ∗ f3) (n)

(4.35)

proving the relationship as desired.

4.4.2.4 Multilinearity

The operation of convolution is linear in each of the two function variables. Additivity in each variable
results from distributivity of convolution over addition. Homogenity of order one in each varible results from
the fact that for all discrete time signals f1, f2 and scalars a the following relationship holds.

a (f1 ∗ f2) = (af1) ∗ f2 = f1 ∗ (af2) (4.36)

In order to show this, note that

(a (f1 ∗ f2)) (n) = a
∑∞
k=−∞ f1 (k) f2 (n− k)

=
∑∞
k=−∞ (af1 (k)) f2 (n− k)

= ((af1) ∗ f2) (n)

=
∑∞
k=−∞ f1 (k) (af2 (n− k))

= (f1 ∗ (af2)) (n)

(4.37)

proving the relationship as desired.

4.4.2.5 Conjugation

The operation of convolution has the following property for all discrete time signals f1, f2.

f1 ∗ f2 = f1 ∗ f2 (4.38)

In order to show this, note that (
f1 ∗ f2

)
(n) =

∑∞
k=−∞ f1 (k) f2 (n− k)

=
∑∞
k=−∞ f1 (k) f2 (n− k)

=
∑∞
k=−∞ f1 (k) f2 (n− k)

=
(
f1 ∗ f2

)
(n)

(4.39)

proving the relationship as desired.
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4.4.2.6 Time Shift

The operation of convolution has the following property for all discrete time signals f1, f2 where ST is the
time shift operator with T ∈ Z.

ST (f1 ∗ f2) = (ST f1) ∗ f2 = f1 ∗ (ST f2) (4.40)

In order to show this, note that

ST (f1 ∗ f2) (n) =
∑∞
k=−∞ f2 (k) f1 ((n− T )− k)

=
∑∞
k=−∞ f2 (k)ST f1 (n− k)

= ((ST f1) ∗ f2) (n)

=
∑∞
k=−∞ f1 (k) f2 ((n− T )− k)

=
∑∞
k=−∞ f1 (k)ST f2 (n− k)

= f1 ∗ (ST f2) (n)

(4.41)

proving the relationship as desired.

4.4.2.7 Impulse Convolution

The operation of convolution has the following property for all discrete time signals f where δ is the unit
sample funciton.

f ∗ δ = f (4.42)

In order to show this, note that

(f ∗ δ) (n) =
∑∞
k=−∞ f (k) δ (n− k)

= f (n)
∑∞
k=−∞ δ (n− k)

= f (n)

(4.43)

proving the relationship as desired.

4.4.2.8 Width

The operation of convolution has the following property for all discrete time signals f1, f2 whereDuration (f)
gives the duration of a signal f .

Duration (f1 ∗ f2) = Duration (f1) +Duration (f2)− 1 (4.44)

. In order to show this informally, note that (f1 ∗ f2) (n) is nonzero for all n for which there is a k such that
f1 (k) f2 (n− k) is nonzero. When viewing one function as reversed and sliding past the other, it is easy to
see that such a k exists for all n on an interval of length Duration (f1) +Duration (f2)− 1. Note that this
is not always true of circular convolution of �nite length and periodic signals as there is then a maximum
possible duration within a period.

4.4.3 Convolution Properties Summary

As can be seen the operation of discrete time convolution has several important properties that have been
listed and proven in this module. With silight modi�cations to proofs, most of these also extend to discrete
time circular convolution as well and the cases in which exceptions occur have been noted above. These
identities will be useful to keep in mind as the reader continues to study signals and systems.
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4.5 Eigenfunctions of Discrete Time LTI Systems5

4.5.1 Introduction

Prior to reading this module, the reader should already have some experience with linear algebra and should
speci�cally be familiar with the eigenvectors and eigenvalues of linear operators. A linear time invariant
system is a linear operator de�ned on a function space that commutes with every time shift operator on
that function space. Thus, we can also consider the eigenvector functions, or eigenfunctions, of a system.
It is particularly easy to calculate the output of a system when an eigenfunction is the input as the output
is simply the eigenfunction scaled by the associated eigenvalue. As will be shown, discrete time complex
exponentials serve as eigenfunctions of linear time invariant systems operating on discrete time signals.

4.5.2 Eigenfunctions of LTI Systems

Consider a linear time invariant system H with impulse response h operating on some space of in�nite length
discrete time signals. Recall that the output H (x (n)) of the system for a given input x (n) is given by the
discrete time convolution of the impulse response with the input

H (x (n)) =
∞∑

k=−∞

h (k)x (n− k) . (4.45)

Now consider the input x (n) = esn where s ∈ C. Computing the output for this input,

H (esn) =
∑∞
k=−∞ h (k) es(n−k)

=
∑∞
k=−∞ h (k) esne−sk

= esn
∑∞
k=−∞ h (k) e−sk.

(4.46)

Thus,

H (esn) = λse
sn (4.47)

where

λs =
∞∑

k=−∞

h (k) e−sk (4.48)

is the eigenvalue corresponding to the eigenvector esn.
There are some additional points that should be mentioned. Note that, there still may be additional

eigenvalues of a linear time invariant system not described by esn for some s ∈ C. Furthermore, the above
discussion has been somewhat formally loose as esn may or may not belong to the space on which the system
operates. However, for our purposes, complex exponentials will be accepted as eigenvectors of linear time
invariant systems. A similar argument using discrete time circular convolution would also hold for spaces
�nite length signals.

4.5.3 Eigenfunction of LTI Systems Summary

As has been shown, discrete time complex exponential are eigenfunctions of linear time invariant systems
operating on discrete time signals. Thus, it is particularly simple to calculate the output of a linear time
invariant system for a complex exponential input as the result is a complex exponential output scaled by
the associated eigenvalue. Consequently, representations of discrete time signals in terms of discrete time
complex exponentials provide an advantage when studying signals. As will be explained later, this is what

5This content is available online at <http://cnx.org/content/m34640/1.1/>.
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is accomplished by the discrete time Fourier transform and discrete time Fourier series, which apply to
aperiodic and periodic signals respectively.

4.6 BIBO Stability of Discrete Time Systems6

4.6.1 Introduction

BIBO stability stands for bounded input, bounded output stability. BIBO stablity is the system property
that any bounded input yields a bounded output. This is to say that as long as we input a signal with
absolute value less than some constant, we are guaranteed to have an output with absolute value less than
some other constant.

4.6.2 Discrete Time BIBO Stability

In order to understand this concept, we must �rst look more closely into exactly what we mean by bounded.
A bounded signal is any signal such that there exists a value such that the absolute value of the signal is
never greater than some value. Since this value is arbitrary, what we mean is that at no point can the signal
tend to in�nity, including the end behavior.

Figure 4.7: A bounded signal is a signal for which there exists a constant A such that |f (t) | < A

4.6.2.1 Time Domain Conditions

Now that we have identi�ed what it means for a signal to be bounded, we must turn our attention to the
condition a system must possess in order to guarantee that if any bounded signal is passed through the
system, a bounded signal will arise on the output. It turns out that a continuous-time LTI (Section 2.1)
system with impulse response h (n) is BIBO stable if and only if it is absolutely summable. That is

6This content is available online at <http://cnx.org/content/m34515/1.2/>.
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Discrete-Time Condition for BIBO Stability

∞∑
n=−∞

|h (n) | <∞ (4.49)

4.6.2.2 Z-Domain Conditions

Stability for discrete-time signals (Section 1.1) in the z-domain7 is about as easy to demonstrate as it is for
continuous-time signals in the Laplace domain. However, instead of the region of convergence needing to
contain the jω-axis, the ROC must contain the unit circle. Consequently, for stable causal systems, all poles
must be within the unit circle.

(a) (b)

Figure 4.8: (a) A stable discrete-time system. (b) An unstable discrete-time system.

4.6.3 BIBO Stability Summary

Bounded input bounded output stability, also known as BIBO stability, is an important and generally
desirable system characteristic. A system is BIBO stable if every bounded input signal results in a bounded
output signal, where boundedness is the property that the absolute value of a signal does not exceed some
�nite constant. In terms of time domain features, a discrete time system is BIBO stable if and only if its
impulse response is absolutely summable. Equivalently, in terms of z-domain features, a continuous time
system is BIBO stable if and only if the region of convergence of the transfer function includes the unit circle.

4.7 Linear Constant Coe�cient Di�erence Equations8

4.7.1 Introduction: Di�erence Equations

In our study of signals and systems, it will often be useful to describe systems using equations involving
the rate of change in some quantity. In discrete time, this is modeled through di�erence equations, which
are a speci�c type of recurrance relation. For instance, recall that the funds in an account with discretely

7"The Z Transform: De�nition" <http://cnx.org/content/m10549/latest/>
8This content is available online at <http://cnx.org/content/m12325/1.4/>.
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componded interest rate r will increase by r times the previous balance. Thus, a discretely compounded
interest system is described by the �rst order di�erence equation shown in (4.50).

y (n) = (1 + r) y (n− 1) (4.50)

Given a su�ciently descriptive set of initial conditions or boundary conditions, if there is a solution to the
di�erence equation, that solution is unique and describes the behavior of the system. Of course, the results
are only accurate to the degree that the model mirrors reality.

4.7.2 Linear Constant Coe�cient Di�erence Equations

An important subclass of di�erence equations is the set of linear constant coe�cient di�erence equations.
These equations are of the form

Cy (n) = f (n) (4.51)

where C is a di�erence operator of the form given

C = cND
N + cN−1D

N−1 + ...+ c1D + c0 (4.52)

in which D is the �rst di�erence operator

D (y (n)) = y (n)− y (n− 1) . (4.53)

Note that operators of this type satisfy the linearity conditions, and c0, ..., cn are real constants.
However, (4.51) can easily be written as a linear constant coe�cient recurrence equation without di�erence

operators. Conversely, linear constant coe�cient recurrence equations can also be written in the form of
a di�erence equation, so the two types of equations are di�erent representations of the same relationship.
Although we will still call them linear constant coe�cient di�erence equations in this course, we typically
will not write them using di�erence operators. Instead, we will write them in the simpler recurrence relation
form

N∑
k=0

aky (n− k) =
M∑
k=0

bkx (n− k) (4.54)

where x is the input to the system and y is the output. This can be rearranged to �nd y (n) as

y (n) =
1
a0

(
−

N∑
k=1

aky (n− k) +
M∑
k=0

bkx (n− k)

)
(4.55)

The forms provided by (4.54) and (4.55) will be used in the remainder of this course.
A similar concept for continuous time setting, di�erential equations, is discussed in the chapter on time

domain analysis of continuous time systems. There are many parallels between the discussion of linear
constant coe�cient ordinary di�erential equations and linear constant coe�cient di�erece equations.

4.7.3 Applications of Di�erence Equations

Di�erence equations can be used to describe many useful digital �lters as described in the chapter discussing
the z-transform. An additional illustrative example is provided here.

Example 4.4
Recall that the Fibonacci sequence describes a (very unrealistic) model of what happens when a
pair rabbits get left alone in a black box... The assumptions are that a pair of rabits never die
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and produce a pair of o�spring every month starting on their second month of life. This system is
de�ned by the recursion relation for the number of rabit pairs y (n) at month n

y (n) = y (n− 1) + y (n− 2) (4.56)

with the initial conditions y (0) = 0 and y (1) = 1. The result is a very fast growth in the sequence.
This is why we do not open black boxes.

4.7.4 Linear Constant Coe�cient Di�erence Equations Summary

Di�erence equations are an important mathematical tool for modeling discrete time systems. An important
subclass of these is the class of linear constant coe�cient di�erence equations. Linear constant coe�cient
di�erence equations are often particularly easy to solve as will be described in the module on solutions to
linear constant coe�cient di�erence equations and are useful in describing a wide range of situations that
arise in electrical engineering and in other �elds.

4.8 Solving Linear Constant Coe�cient Di�erence Equations9

4.8.1 Introduction

The approach to solving linear constant coe�cient di�erence equations is to �nd the general form of all
possible solutions to the equation and then apply a number of conditions to �nd the appropriate solution.
The two main types of problems are initial value problems, which involve constraints on the solution at several
consecutive points, and boundary value problems, which involve constraints on the solution at nonconsecutive
points.

The number of initial conditions needed for an Nth order di�erence equation, which is the order of the
highest order di�erence or the largest delay parameter of the output in the equation, is N , and a unique
solution is always guaranteed if these are supplied. Boundary value probelms can be slightly more complicated
and will not necessarily have a unique solution or even a solution at all for a given set of conditions. Thus,
this section will focus exclusively on initial value problems.

4.8.2 Solving Linear Constant Coe�cient Di�erence Equations

Consider some linear constant coe�cient di�erence equation given by Ay (n) = f (n), in which A is a
di�erence operator of the form

A = aND
N + aN−1D

N−1 + ...+ a1D + a0 (4.57)

where D is the �rst di�erence operator

D (y (n)) = y (n)− y (n− 1) . (4.58)

Let yh (n) and yp (n) be two functions such that Ayh (n) = 0 and Ayp (n) = f (n). By the linearity of
A, note that L (yh (n) + yp (n)) = 0 + f (n) = f (n). Thus, the form of the general solution yg (n) to any
linear constant coe�cient ordinary di�erential equation is the sum of a homogeneous solution yh (n) to the
equation Ay (n) = 0 and a particular solution yp (n) that is speci�c to the forcing function f (n).

We wish to determine the forms of the homogeneous and nonhomogeneous solutions in full generality in
order to avoid incorrectly restricting the form of the solution before applying any conditions. Otherwise, a
valid set of initial or boundary conditions might appear to have no corresponding solution trajectory. The
following sections discuss how to accomplish this for linear constant coe�cient di�erence equations.

9This content is available online at <http://cnx.org/content/m12326/1.5/>.
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4.8.2.1 Finding the Homogeneous Solution

In order to �nd the homogeneous solution to a di�erence equation described by the recurrence relation∑N
k=0 aky (n− k) = f (n), consider the di�erence equation

∑N
k=0 aky (n− k) = 0. We know that the solu-

tions have the form cλn for some complex constants c, λ. Since
∑N
k=0 akcλ

n−k = 0 for a solution it follows
that

cλn−N
N∑
k=0

akλ
N−k = 0 (4.59)

so it also follows that

a0λ
N + ...+ aN = 0. (4.60)

Therefore, the solution exponential are the roots of the above polynomial, called the characteristic polyno-
mial.

For equations of order two or more, there will be several roots. If all of the roots are distinct, then the
general form of the homogeneous solution is simply

yh (n) = c1λ
n
1 + ...+ c2λ

n
2 . (4.61)

If a root has multiplicity that is greater than one, the repeated solutions must be multiplied by each power
of n from 0 to one less than the root multipicity (in order to ensure linearly independent solutions). For
instance, if λ1 had a multiplicity of 2 and λ2 had multiplicity 3, the homogeneous solution would be

yh (n) = c1λ
n
1 + c2nλ

n
1 + c3λ

n
2 + c4nλ

n
2 + c5n

2λn2 . (4.62)

Example 4.5
Recall that the Fibonacci sequence describes a (very unrealistic) model of what happens when a
pair rabbits get left alone in a black box... The assumptions are that a pair of rabits never die
and produce a pair of o�spring every month starting on their second month of life. This system is
de�ned by the recursion relation for the number of rabit pairs y (n) at month n

y (n)− y (n− 1)− y (n− 2) = 0 (4.63)

with the initial conditions y (0) = 0 and y (1) = 1.
Note that the forcing function is zero, so only the homogenous solution is needed. It is easy to

see that the characteristic polynomial is λ2 − λ − 1 = 0, so there are two roots with multiplicity

one. These are λ1 = 1+
√

5
2 and λ2 = 1−

√
5

2 . Thus, the solution is of the form

y (n) = c1

(
1 +
√

5
2

)n
+ c2

(
1−
√

5
2

)n
. (4.64)

Using the initial conditions, we determine that

c1 =
√

5
5

(4.65)

and

c2 = −
√

5
5
. (4.66)
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Hence, the Fibonacci sequence is given by

y (n) =
√

5
5

(
1 +
√

5
2

)n
−
√

5
5

(
1−
√

5
2

)n
. (4.67)

4.8.2.2 Finding the Particular Solution

Finding the particular solution is a slightly more complicated task than �nding the homogeneous solution. It
can be found through convolution of the input with the unit impulse response once the unit impulse response
is known. Finding the particular solution ot a di�erential equation is discussed further in the chapter
concerning the z-transform, which greatly simpli�es the procedure for solving linear constant coe�cient
di�erential equations using frequency domain tools.

Example 4.6
Consider the following di�erence equation describing a system with feedback

y (n)− ay (n− 1) = x (n) . (4.68)

In order to �nd the homogeneous solution, consider the di�erence equation

y (n)− ay (n− 1) = 0. (4.69)

It is easy to see that the characteristic polynomial is λ − a = 0, so λ = a is the only root. Thus
the homogeneous solution is of the form

yh (n) = c1a
n. (4.70)

In order to �nd the particular solution, consider the output for the x (n) = δ (n) unit impulse case

y (n)− ay (n− 1) = δ (n) . (4.71)

By inspection, it is clear that the impulse response is anu (n). Hence, the particular solution for a
given x (n) is

yp (n) = x (n) ∗ (anu (n)) . (4.72)

Therefore, the general solution is

yg (n) = yh (n) + yp (n) = c1a
n + x (n) ∗ (anu (n)) . (4.73)

Initial conditions and a speci�c input can further tailor this solution to a speci�c situation.

4.8.3 Solving Di�erence Equations Summary

Linear constant coe�cient di�erence equations are useful for modeling a wide variety of discrete time systems.
The approach to solving them is to �nd the general form of all possible solutions to the equation and then
apply a number of conditions to �nd the appropriate solution. This is done by �nding the homogeneous
solution to the di�erence equation that does not depend on the forcing function input and a particular
solution to the di�erence equation that does depend on the forcing function input.



Chapter 5

Introduction to Fourier Analysis

5.1 Introduction to Fourier Analysis1

5.1.1 Fourier's Daring Leap

Fourier postulated around 1807 that any periodic signal (equivalently �nite length signal) can be built up
as an in�nite linear combination of harmonic sinusoidal waves.

5.1.1.1

i.e. Given the collection

B = {ej 2π
T nt}∞n=−∞ (5.1)

any

f (t) ∈ L2 [0, T ) (5.2)

can be approximated arbitrarily closely by

f (t) =
∞∑

n=−∞
Cn e

j 2π
T nt. (5.3)

Now, The issue of exact convergence did bring Fourier2 much criticism from the French Academy of Sci-
ence (Laplace, Lagrange, Monge and LaCroix comprised the review committee) for several years after its
presentation on 1807. It was not resolved for also a century, and its resolution is interesting and important
to understand from a practical viewpoint. See more in the section on Gibbs Phenomena.

Fourier analysis is fundamental to understanding the behavior of signals and systems. This is a result of
the fact that sinusoids are Eigenfunctions (Section 14.5) of linear, time-invariant (LTI) (Section 2.1) systems.
This is to say that if we pass any particular sinusoid through a LTI system, we get a scaled version of that
same sinusoid on the output. Then, since Fourier analysis allows us to rede�ne the signals in terms of
sinusoids, all we need to do is determine how any given system e�ects all possible sinusoids (its transfer
function3) and we have a complete understanding of the system. Furthermore, since we are able to de�ne
the passage of sinusoids through a system as multiplication of that sinusoid by the transfer function at the
same frequency, we can convert the passage of any signal through a system from convolution (Section 3.4)
(in time) to multiplication (in frequency). These ideas are what give Fourier analysis its power.

1This content is available online at <http://cnx.org/content/m10096/2.12/>.
2http://www-groups.dcs.st-and.ac.uk/∼history/Mathematicians/Fourier.html
3"Transfer Functions" <http://cnx.org/content/m0028/latest/>
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Now, after hopefully having sold you on the value of this method of analysis, we must examine exactly
what we mean by Fourier analysis. The four Fourier transforms that comprise this analysis are the Fourier
Series4, Continuous-Time Fourier Transform (Section 8.2), Discrete-Time Fourier Transform (Section 9.2)
and Discrete Fourier Transform5. For this document, we will view the Laplace Transform (Section 11.1)
and Z-Transform6 as simply extensions of the CTFT and DTFT respectively. All of these transforms act
essentially the same way, by converting a signal in time to an equivalent signal in frequency (sinusoids).
However, depending on the nature of a speci�c signal i.e. whether it is �nite- or in�nite-length and whether
it is discrete- or continuous-time) there is an appropriate transform to convert the signal into the frequency
domain. Below is a table of the four Fourier transforms and when each is appropriate. It also includes the
relevant convolution for the speci�ed space.

Table of Fourier Representations

Transform Time Domain Frequency Domain Convolution

Continuous-Time
Fourier Series

L2 ([0, T )) l2 (Z) Continuous-Time Cir-
cular

Continuous-Time
Fourier Transform

L2 (R) L2 (R) Continuous-Time Lin-
ear

Discrete-Time Fourier
Transform

l2 (Z) L2 ([0, 2π)) Discrete-Time Linear

Discrete Fourier Trans-
form

l2 ([0, N − 1]) l2 ([0, N − 1]) Discrete-Time Circular

Table 5.1

4"Continuous-Time Fourier Series (CTFS)" <http://cnx.org/content/m10097/latest/>
5"Discrete Fourier Transform" <http://cnx.org/content/m0502/latest/>
6"Table of Common z-Transforms" <http://cnx.org/content/m10119/latest/>



Chapter 6

Continuous Time Fourier Series (CTFS)

6.1 Continuous Time Periodic Signals1

6.1.1 Introduction

This module describes the type of signals acted on by the Continuous Time Fourier Series.

6.1.2 Relevant Spaces

The Continuous-Time Fourier Series maps �nite-length (or T -periodic), continuous-time signals in L2 to
in�nite-length, discrete-frequency signals in l2.

6.1.3 Periodic Signals

When a function repeats itself exactly after some given period, or cycle, we say it's periodic. A periodic
function can be mathematically de�ned as:

f (t) = f (t+mT )m ∈ Z (6.1)

where T > 0 represents the fundamental period of the signal, which is the smallest positive value of T
for the signal to repeat. Because of this, you may also see a signal referred to as a T-periodic signal. Any
function that satis�es this equation is said to be periodic with period T.

We can think of periodic functions (with period T ) two di�erent ways:

1. as functions on all of R
1This content is available online at <http://cnx.org/content/m10744/2.13/>.

87



88 CHAPTER 6. CONTINUOUS TIME FOURIER SERIES (CTFS)

Figure 6.1: Continuous time periodic function over all of R where f (t0) = f (t0 + T )

2. or, we can cut out all of the redundancy, and think of them as functions on an interval [0, T ] (or,
more generally, [a, a+ T ]). If we know the signal is T-periodic then all the information of the signal is
captured by the above interval.

Figure 6.2: Remove the redundancy of the period function so that f (t) is unde�ned outside [0, T ].

An aperiodic CT function f (t), on the other hand, does not repeat for any T ∈ R; i.e. there exists no
T such that this equation (6.1) holds.

6.1.4 Demonstration

Here's an example demonstrating a periodic sinusoidal signal with various frequencies, amplitudes and
phase delays:
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Figure 6.3: Interact (when online) with a Mathematica CDF demonstrating a Periodic Sinusoidal Signal
with various frequencies, amplitudes, and phase delays. To download, right click and save �le as .cdf.

To learn the full concept behind periodicity, see the video below.

Khan Lecture on Periodic Signals

This media object is a Flash object. Please view or download it at
<http://www.youtube.com/v/tJW_a6JeXD8&rel=0&color1=0xb1b1b1&color2=0xd0d0d0&hl=en_US&feature=player_embedded&fs=1>

Figure 6.4: video from Khan Academy

6.1.5 Conclusion

A periodic signal is completely de�ned by its values in one period, such as the interval [0,T].
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6.2 Continuous Time Fourier Series (CTFS)2

6.2.1 Introduction

In this module, we will derive an expansion for continuous-time, periodic functions, and in doing so, derive
the Continuous Time Fourier Series (CTFS).

Since complex exponentials (Section 1.8) are eigenfunctions of linear time-invariant (LTI) systems (Sec-
tion 14.5), calculating the output of an LTI system H given est as an input amounts to simple multiplication,
where H (s) ∈ C is the eigenvalue corresponding to s. As shown in the �gure, a simple exponential input
would yield the output

y (t) = H (s) est (6.2)

Figure 6.5: Simple LTI system.

Using this and the fact that H is linear, calculating y (t) for combinations of complex exponentials is also
straightforward.

c1e
s1t + c2e

s2t → c1H (s1) es1t + c2H (s2) es2t

∑
n

cne
snt →

∑
n

cnH (sn) esnt

The action of H on an input such as those in the two equations above is easy to explain. H inde-
pendently scales each exponential component esnt by a di�erent complex number H (sn) ∈ C. As such, if
we can write a function f (t) as a combination of complex exponentials it allows us to easily calculate the
output of a system.

6.2.2 Fourier Series Synthesis

Joseph Fourier3 demonstrated that an arbitrary f (t) can be written as a linear combination of harmonic
complex sinusoids

f (t) =
∞∑

n=−∞
cne

jω0nt (6.3)

where ω0 = 2π
T is the fundamental frequency. For almost all f (t) of practical interest, there exists cn to make

(6.3) true. If f (t) is �nite energy ( f (t) ∈ L2 [0, T ]), then the equality in (6.3) holds in the sense of energy
convergence; if f (t) is continuous, then (6.3) holds pointwise. Also, if f (t) meets some mild conditions (the
Dirichlet conditions), then (6.3) holds pointwise everywhere except at points of discontinuity.

2This content is available online at <http://cnx.org/content/m34531/1.9/>.
3http://www-groups.dcs.st-and.ac.uk/∼history/Mathematicians/Fourier.html
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The cn - called the Fourier coe�cients - tell us "how much" of the sinusoid ejω0nt is in f (t). The formula
shows f (t) as a sum of complex exponentials, each of which is easily processed by an LTI system (since it
is an eigenfunction of every LTI system). Mathematically, it tells us that the set of complex exponentials{
ejω0nt , n ∈ Z

}
form a basis for the space of T-periodic continuous time functions.

Example 6.1
We know from Euler's formula that cos (ωt) + sin (ωt) = 1−j

2 ejωt + 1+j
2 e−jωt.

6.2.3 Synthesis with Sinusoids Demonstration

Figure 6.6: Interact(when online) with a Mathematica CDF demonstrating sinusoid synthesis. To
download, right click and save as .cdf.
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Guitar Oscillations on an iPhone

This media object is a Flash object. Please view or download it at
<http://www.youtube.com/v/TKF6nFzpHBU?version=3&hl=en_US>

Figure 6.7

6.2.4 Fourier Series Analysis

Finding the coe�cients of the Fourier series expansion involves some algebraic manipulation of the synthesis
formula. First of all we will multiply both sides of the equation by e−(jω0kt), where k ∈ Z.

f (t) e−(jω0kt) =
∞∑

n=−∞
cne

jω0nte−(jω0kt) (6.4)

Now integrate both sides over a given period, T :∫ T

0

f (t) e−(jω0kt)dt =
∫ T

0

∞∑
n=−∞

cne
jω0nte−(jω0kt)dt (6.5)

On the right-hand side we can switch the summation and integral and factor the constant out of the integral.∫ T

0

f (t) e−(jω0kt)dt =
∞∑

n=−∞
cn

∫ T

0

ejω0(n−k)tdt (6.6)

Now that we have made this seemingly more complicated, let us focus on just the integral,
∫ T

0
ejω0(n−k)tdt,

on the right-hand side of the above equation. For this integral we will need to consider two cases: n = k and
n 6= k. For n = k we will have: ∫ T

0

ejω0(n−k)tdt = T , n = k (6.7)

For n 6= k, we will have:∫ T

0

ejω0(n−k)tdt =
∫ T

0

cos (ω0 (n− k) t) dt+ j

∫ T

0

sin (ω0 (n− k) t) dt , n 6= k (6.8)

But cos (ω0 (n− k) t) has an integer number of periods, n − k, between 0 and T . Imagine a graph of the
cosine; because it has an integer number of periods, there are equal areas above and below the x-axis of the
graph. This statement holds true for sin (ω0 (n− k) t) as well. What this means is∫ T

0

cos (ω0 (n− k) t) dt = 0 (6.9)

which also holds for the integral involving the sine function. Therefore, we conclude the following about
our integral of interest: ∫ T

0

ejω0(n−k)tdt =

 T if n = k

0 otherwise
(6.10)

Now let us return our attention to our complicated equation, (6.6), to see if we can �nish �nding an equation
for our Fourier coe�cients. Using the facts that we have just proven above, we can see that the only time
(6.6) will have a nonzero result is when k and n are equal:∫ T

0

f (t) e−(jω0nt)dt = Tcn , n = k (6.11)
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Finally, we have our general equation for the Fourier coe�cients:

cn =
1
T

∫ T

0

f (t) e−(jω0nt)dt (6.12)

Example 6.2
Consider the square wave function given by

x (t) = {
1/2 t ≤ 1/2

−1/2 t > 1/2
(6.13)

on the unit interval t ∈ Z [0, 1).

ck =
∫ 1

0
x (t) e−j2πktdt

=
∫ 1/2

0
1
2e
−j2πktdt−

∫ 1

1/2
1
2e
−j2πktdt

=
j(−1+ejπk)

2πk

(6.14)

Thus, the Fourier coe�cients of this function found using the Fourier series analysis formula are

ck = {
−j/πk kodd

0 keven
. (6.15)

6.2.5 Fourier Series Summary

Because complex exponentials are eigenfunctions of LTI systems, it is often useful to represent signals using
a set of complex exponentials as a basis. The continuous time Fourier series synthesis formula expresses a
continuous time, periodic function as the sum of continuous time, discrete frequency complex exponentials.

f (t) =
∞∑

n=−∞
cne

jω0nt (6.16)

The continuous time Fourier series analysis formula gives the coe�cients of the Fourier series expansion.

cn =
1
T

∫ T

0

f (t) e−(jω0nt)dt (6.17)

In both of these equations ω0 = 2π
T is the fundamental frequency.

6.3 Common Fourier Series4

Introduction
Once one has obtained a solid understanding of the fundamentals of Fourier series analysis and the
General Derivation of the Fourier Coe�cients, it is useful to have an understanding of the common
signals used in Fourier Series Signal Approximation.

4This content is available online at <http://cnx.org/content/m34770/1.7/>.
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6.3.1 Deriving the Fourier Coe�cients

Consider a square wave f(x) of length 1. Over the range [0,1), this can be written as

x (t) = {
1 t ≤ 1

2 ;

−1 t > 1
2 .

(6.18)

Fourier series approximation of a square wave
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−1

0

1

 

 
K = 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

0

1

 

 
K = 5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

0

1

 

 
K = 11

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

0

1

 

 
K = 49

Figure 6.8: Fourier series approximation to sq (t). The number of terms in the Fourier sum is indicated
in each plot, and the square wave is shown as a dashed line over two periods.

Real Even Signals
Given that the square wave is a real and even signal,

f (t) = f (−t) EVEN
f (t) = f*(t) REAL
therefore,
cn = c−n EVEN
cn = cn* REAL
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Consider this mathematical question intuitively: Can a discontinuous function, like the square wave, be
expressed as a sum, even an in�nite one, of continuous signals? One should at least be suspicious, and in
fact, it can't be thus expressed.

The extraneous peaks in the square wave's Fourier series never disappear; they are termed Gibb's
phenomenon after the American physicist Josiah Willard Gibbs. They occur whenever the signal is dis-
continuous, and will always be present whenever the signal has jumps.

6.3.2 Deriving the Fourier Coe�cients for Other Signals

The Square wave is the standard example, but other important signals are also useful to analyze, and these
are included here.

6.3.2.1 Constant Waveform

This signal is relatively self-explanatory: the time-varying portion of the Fourier Coe�cient is taken out,
and we are left simply with a constant function over all time.

x (t) = 1 (6.19)

6.3.2.2 Sinusoid Waveform

With this signal, only a speci�c frequency of time-varying Coe�cient is chosen (given that the Fourier Series
equation includes a sine wave, this is intuitive), and all others are �ltered out, and this single time-varying
coe�cient will exactly match the desired signal.

x (t) = sin (πt) (6.20)

6.3.2.3 Triangle Waveform

x (t) = {
t t ≤ 1/4

2− 4t 1/4 ≤ t ≤ 3/4

−7/4 + 4t 3/4 ≤ t ≤ 1

(6.21)

This is a more complex form of signal approximation to the square wave. Because of the Symmetry
Properties of the Fourier Series, the triangle wave is a real and odd signal, as opposed to the real and even
square wave signal. This means that

f (t) = −f (−t) ODD
f (t) = f*(t) REAL
therefore,
cn = −c−n
cn = −cn* IMAGINARY
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Fourier series approximation of a triangle wave
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Figure 6.9

6.3.2.4 Sawtooth Waveform

x (t) = t− Floor (t) (6.22)

Because of the Symmetry Properties of the Fourier Series, the sawtooth wave can be de�ned as a real
and odd signal, as opposed to the real and even square wave signal. This has important implications for the
Fourier Coe�cients.
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Fourier series approximation of a sawtooth wave
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Figure 6.10
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6.3.2.5 Fourier Series Approximation VI

Figure 6.11: Interact (when online) with a Mathematica CDF demonstrating the common Fourier
Series. To download, right click and save �le as .cdf.
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link: http://yoder-3.institute.rose-hulman.edu/visible3/chapters/03spect/demosLV/fseries/index.htm

6.3.3 Summary

To summarize, a great deal of variety exists among the common Fourier Transforms. A summary table is
provided here with the essential information.

Common Continuous-Time Fourier Series

Description Time Domain Signal for t ∈ [0, 1) Frequency Domain Signal

Constant Waveform x (t) = 1 ck = {
1 k = 0

0 k 6= 0

Sinusoid Waveform x (t) = sin (πt) ck = {
1/2 k = ±1

0 k 6= ±1

Square Waveform x (t) = {
1 t ≤ 1/2

−1 t > 1/2
ck = {

4/πk kodd

0 keven

Triangle Waveform x (t) = {
t t ≤ 1/2

1− t t > 1/2
ck = {

−8Sin(kπ)/2)/(πk)2
kodd

0 keven

Sawtooth Waveform x (t) = t/2 ck = {
0.5 k = 0

−1/πk k 6= 0

Table 6.1

6.4 Properties of the CTFS5

6.4.1 Introduction

In this module we will discuss the basic properties of the Continuous-Time Fourier Series. We will begin by
refreshing your memory of our basic Fourier series6 equations:

f (t) =
∞∑

n=−∞
cne

jω0nt (6.23)

cn =
1
T

∫ T

0

f (t) e−(jω0nt)dt (6.24)

Let F (·) denote the transformation from f (t) to the Fourier coe�cients

F (f (t)) = cn , n ∈ Z

F (·) maps complex valued functions to sequences of complex numbers7.

5This content is available online at <http://cnx.org/content/m10740/2.15/>.
6"Fourier Series: Eigenfunction Approach" <http://cnx.org/content/m10496/latest/>
7"Complex Numbers" <http://cnx.org/content/m0081/latest/>
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6.4.2 Linearity

F (·) is a linear transformation.
Theorem 6.1:
If F (f (t)) = cn and F (g (t)) = dn. Then

F (αf (t)) = αcn , α ∈ C

and
F (f (t) + g (t)) = cn + dn

Proof:
Easy. Just linearity of integral.

F (f (t) + g (t)) =
∫ T

0
(f (t) + g (t)) e−(jω0nt)dt , n ∈ Z

= 1
T

∫ T
0
f (t) e−(jω0nt)dt+ 1

T

∫ T
0
g (t) e−(jω0nt)dt , n ∈ Z

= cn + dn , n ∈ Z

= cn + dn

(6.25)

6.4.3 Shifting

Shifting in time equals a phase shift of Fourier coe�cients8

Theorem 6.2:
F (f (t− t0)) = e−(jω0nt0)cn if cn = |cn|ej∠(cn), then

|e−(jω0nt0)cn| = |e−(jω0nt0)||cn| = |cn|

∠
(
e−(jω0t0n)

)
= ∠ (cn)− ω0t0n

Proof:

F (f (t− t0)) = 1
T

∫ T
0
f (t− t0) e−(jω0nt)dt , n ∈ Z

= 1
T

∫ T−t0
−t0 f (t− t0) e−(jω0n(t−t0))e−(jω0nt0)dt , n ∈ Z

= 1
T

∫ T−t0
−t0 f

(∼
t
)
e
−
“
jω0n

∼
t
”
e−(jω0nt0)dt , n ∈ Z

= e
−
“
jω0n

∼
t
”
cn , n ∈ Z

(6.26)

6.4.4 Parseval's Relation

∫ T

0

(|f (t) |)2
dt = T

∞∑
n=−∞

(|cn|)2
(6.27)

Parseval's relation tells us that the energy of a signal is equal to the energy of its Fourier transform.

8"Derivation of Fourier Coe�cients Equation" <http://cnx.org/content/m10733/latest/>
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note: Parseval tells us that the Fourier series maps L2 ([0, T ]) to l2 (Z).

Figure 6.12

Exercise 6.4.1 (Solution on p. 117.)

For f (t) to have "�nite energy," what do the cn do as n→∞?

Exercise 6.4.2 (Solution on p. 117.)

If cn = 1
n , |n| > 0 , is f ∈ L2 ([0, T ])?

Exercise 6.4.3 (Solution on p. 117.)

Now, if cn = 1√
n
, |n| > 0 , is f ∈ L2 ([0, T ])?

The rate of decay of the Fourier series determines if f (t) has �nite energy.
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6.4.5 Parsevals Theorem Demonstration

Figure 6.13: Interact (when online) with a Mathematica CDF demonstrating Parsevals Theorem. To
download, right click and save �le as .cdf.
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6.4.6 Symmetry Properties

Rule 6.1: Even Signals

Even Signals

f (t) = f (−t)
‖ cn ‖=‖ c−n ‖

Proof:

cn = 1
T

∫ T
0
f (t) exp (−ßω0nt) dt

= 1
T

∫ T
2

0
f (t) exp (−ßω0nt) dt+ 1

T

∫ T
T
2
f (t) exp (−ßω0nt) dt

= 1
T

∫ T
2

0
f (−t) exp (−ßω0nt) dt+ 1

T

∫ T
T
2
f (−t) exp (−ßω0nt) dt

= 1
T

∫ T
0
f (t) [exp (ßω0nt) dt+ exp (−ßω0nt)] dt

= 1
T

∫ T
0
f (t) 2cos (ω0nt) dt

Rule 6.2: Odd Signals

Odd Signals

f (t) = −f (−t)
cn = c−n*

Proof:

cn = 1
T

∫ T
0
f (t) exp (−ßω0nt) dt

= 1
T

∫ T
2

0
f (t) exp (−ßω0nt) dt+ 1

T

∫ T
T
2
f (t) exp (−ßω0nt) dt

= 1
T

∫ T
2

0
f (t) exp (−ßω0nt) dt− 1

T

∫ T
T
2
f (−t) exp (ßω0nt) dt

= − 1
T

∫ T
0
f (t) [exp (ßω0nt) dt− exp (−ßω0nt)] dt

= − 1
T

∫ T
0
f (t) 2ßsin (ω0nt) dt

Rule 6.3: Real Signals

Real Signals

f (t) = f*(t)
cn = c−n*

Proof:

cn = 1
T

∫ T
0
f (t) exp (−ßω0nt) dt

= 1
T

∫ T
2

0
f (t) exp (−ßω0nt) dt+ 1

T

∫ T
T
2
f (t) exp (−ßω0nt) dt

= 1
T

∫ T
2

0
f (−t) exp (−ßω0nt) dt+ 1

T

∫ T
T
2
f (−t) exp (−ßω0nt) dt

= 1
T

∫ T
0
f (t) [exp (ßω0nt) dt+ exp (−ßω0nt)] dt

= 1
T

∫ T
0
f (t) 2cos (ω0nt) dt
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6.4.7 Di�erentiation in Fourier Domain

(F (f (t)) = cn)⇒
(
F
(
df (t)
dt

)
= jnω0cn

)
(6.28)

Since

f (t) =
∞∑

n=−∞
cne

jω0nt (6.29)

then
d
dtf (t) =

∑∞
n=−∞ cn

dejω0nt

dt

=
∑∞
n=−∞ cnjω0ne

jω0nt
(6.30)

A di�erentiator attenuates the low frequencies in f (t) and accentuates the high frequencies. It removes
general trends and accentuates areas of sharp variation.

note: A common way to mathematically measure the smoothness of a function f (t) is to see how
many derivatives are �nite energy.

This is done by looking at the Fourier coe�cients of the signal, speci�cally how fast they decay as n→∞.

If F (f (t)) = cn and |cn| has the form 1
nk
, then F

(
dmf(t)
dtm

)
= (jnω0)mcn and has the form nm

nk
. So for the

mth derivative to have �nite energy, we need

∑
n

(
|n
m

nk
|
)2

<∞

thus nm

nk
decays faster than 1

n which implies that

2k − 2m > 1

or

k >
2m+ 1

2
Thus the decay rate of the Fourier series dictates smoothness.
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6.4.8 Fourier Di�erentiation Demonstration

Figure 6.14: Interact (when online) with a Mathematica CDF demonstrating Di�erentiation in the
Fourier Domain. To download, right click and save �le as .cdf.

6.4.9 Integration in the Fourier Domain

If
F (f (t)) = cn (6.31)

then

F
(∫ t

−∞
f (τ) dτ

)
=

1
jω0n

cn (6.32)

note: If c0 6= 0, this expression doesn't make sense.

Integration accentuates low frequencies and attenuates high frequencies. Integrators bring out the gen-
eral trends in signals and suppress short term variation (which is noise in many cases). Integrators are
much nicer than di�erentiators.
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6.4.10 Fourier Integration Demonstration

Figure 6.15: Interact (when online) with a Mathematica CDF demonstrating Integration in the Fourier
Domain. To download, right click and save �le as .cdf.

6.4.11 Signal Multiplication and Convolution

Given a signal f (t) with Fourier coe�cients cn and a signal g (t) with Fourier coe�cients dn, we can de�ne
a new signal, y (t), where y (t) = f (t) g (t). We �nd that the Fourier Series representation of y (t), en, is
such that en =

∑∞
k=−∞ ckdn−k. This is to say that signal multiplication in the time domain is equivalent to

signal convolution in the frequency domain, and vice-versa: signal multiplication in the frequency domain
is equivalent to signal convolution in the time domain. The proof of this is as follows

en = 1
T

∫ T
0
f (t) g (t) e−(jω0nt)dt

= 1
T

∫ T
0

∑∞
k=−∞ cke

jω0ktg (t) e−(jω0nt)dt

=
∑∞
k=−∞ ck

(
1
T

∫ T
0
g (t) e−(jω0(n−k)t)dt

)
=

∑∞
k=−∞ ckdn−k

(6.33)
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for more details, see the section on Signal convolution and the CTFS (Section 4.3)

6.4.12 Conclusion

Like other Fourier transforms, the CTFS has many useful properties, including linearity, equal energy in the
time and frequency domains, and analogs for shifting, di�erentation, and integration.

Properties of the CTFS

Property Signal CTFS

Linearity ax (t) + by (t) aX (f) + bY (f)

Time Shifting x (t− τ) X (f) e−j2πfτ/T

Time Modulation x (t) ej2πfτ/T X (f − k)

Multiplication x (t) y (t) X (f) ∗ Y (f)

Continuous Convolution x (t) ∗ y (t) X (f)Y (f)

Table 6.2

6.5 Continuous Time Circular Convolution and the CTFS9

6.5.1 Introduction

This module relates circular convolution of periodic signals in the time domain to multiplication in the
frequency domain.

6.5.2 Signal Circular Convolution

Given a signal f (t) with Fourier coe�cients cn and a signal g (t) with Fourier coe�cients dn, we can de�ne
a new signal, v (t), where v (t) = f (t) ~ g (t) We �nd that the Fourier Series10 representation of v (t), an,
is such that an = cndn. f (t) ~ g (t) is the circular convolution (Section 7.5) of two periodic signals and is

equivalent to the convolution over one interval, i.e. f (t)~ g (t) =
∫ T

0

∫ T
0
f (τ) g (t− τ) dτdt.

note: Circular convolution in the time domain is equivalent to multiplication of the Fourier
coe�cients.

This is proved as follows

an = 1
T

∫ T
0
v (t) e−(jω0nt)dt

= 1
T 2

∫ T
0

∫ T
0
f (τ) g (t− τ) dτe−(ωj0nt)dt

= 1
T

∫ T
0
f (τ)

(
1
T

∫ T
0
g (t− τ) e−(jω0nt)dt

)
dτ

= 1
T

∫ T
0
f (τ)

(
1
T

∫ T−τ
−τ g (ν) e−(jω0(ν+τ))dν

)
dτ , ν = t− τ

= 1
T

∫ T
0
f (τ)

(
1
T

∫ T−τ
−τ g (ν) e−(jω0nν)dν

)
e−(jω0nτ)dτ

= 1
T

∫ T
0
f (τ) dne−(jω0nτ)dτ

= dn

(
1
T

∫ T
0
f (τ) e−(jω0nτ)dτ

)
= cndn

(6.34)

9This content is available online at <http://cnx.org/content/m10839/2.6/>.
10"Fourier Series: Eigenfunction Approach" <http://cnx.org/content/m10496/latest/>
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6.5.3 Exercise

Take a look at a square pulse with a period of T.

Figure 6.16

For this signal

cn =


1
T if n = 0
1
2

sin(π2 n)
π
2 n

otherwise

Take a look at a triangle pulse train with a period of T.

Figure 6.17

This signal is created by circularly convolving the square pulse with itself. The Fourier coe�cients for

this signal are an = cn
2 = 1

4
sin2

(π2 n)
Exercise 6.5.1 (Solution on p. 117.)

Find the Fourier coe�cients of the signal that is created when the square pulse and the triangle
pulse are convolved.
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6.5.4 Conclusion

Circular convolution in the time domain is equivalent to multiplication of the Fourier coe�cients in the
frequency domain.

6.6 Convergence of Fourier Series11

TODO
ADD AUTHOR/MAINTAINER/CRHOLDER:
Ricardo Radaelli-Sanchez
MODULE ID:
m10089

6.6.1 Introduction

Before looking at this module, hopefully you have become fully convinced of the fact that any periodic
function, f (t), can be represented as a sum of complex sinusoids (Section 1.4). If you are not, then try
looking back at eigen-stu� in a nutshell (Section 14.4) or eigenfunctions of LTI systems (Section 14.5). We
have shown that we can represent a signal as the sum of exponentials through the Fourier Series12 equations
below:

f (t) =
∑
n

cne
jω0nt (6.35)

cn =
1
T

∫ T

0

f (t) e−(jω0nt)dt (6.36)

Joseph Fourier13 insisted that these equations were true, but could not prove it. Lagrange publicly ridiculed
Fourier, and said that only continuous functions can be represented by (6.35) (indeed he proved that (6.35)
holds for continuous-time functions). However, we know now that the real truth lies in between Fourier and
Lagrange's positions.

6.6.2 Understanding the Truth

Formulating our question mathematically, let

fN
′ (t) =

N∑
n=−N

cne
jω0nt

where cn equals the Fourier coe�cients of f (t) (see (6.36)).
fN
′ (t) is a "partial reconstruction" of f (t) using the �rst 2N + 1 Fourier coe�cients. fN

′ (t) approx-
imates f (t), with the approximation getting better and better as N gets large. Therefore, we can think
of the set

{
fN
′ (t) , N = {0, 1, . . . }

}
as a sequence of functions, each one approximating f (t) better

than the one before.
The question is, does this sequence converge to f (t)? Does fN

′ (t) → f (t) as N → ∞? We will try to
answer this question by thinking about convergence in two di�erent ways:

1. Looking at the energy of the error signal:

eN (t) = f (t)− fN ′ (t)

2. Looking at limit
N→∞

dfN (t)
d at each point and comparing to f (t).

11This content is available online at <http://cnx.org/content/m10745/2.5/>.
12"Fourier Series: Eigenfunction Approach" <http://cnx.org/content/m10496/latest/>
13http://www-groups.dcs.st-and.ac.uk/∼history/Mathematicians/Fourier.html
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6.6.2.1 Approach #1

Let eN (t) be the di�erence (i.e. error) between the signal f (t) and its partial reconstruction fN
′ (t)

eN (t) = f (t)− fN ′ (t) (6.37)

If f (t) ∈ L2 ([0, T ]) (�nite energy), then the energy of eN (t)→ 0 as N →∞ is∫ T

0

(|eN (t) |)2
dt =

∫ T

0

(
f (t)− fN ′ (t)

)2
dt→ 0 (6.38)

We can prove this equation using Parseval's relation:

limit
N→∞

∫ T

0

(
|f (t)− fN ′ (t) |

)2
dt = limit

N→∞

∞∑
N=−∞

(
|Fn (f (t))−Fn

(
dfN (t)
d

)
|
)2

= limit
N→∞

∑
|n|>N

(|cn|)2 = 0

where the last equation before zero is the tail sum of the Fourier Series, which approaches zero because f (t) ∈
L2 ([0, T ]). Since physical systems respond to energy, the Fourier Series provides an adequate representation
for all f (t) ∈ L2 ([0, T ]) equaling �nite energy over one period.

6.6.2.2 Approach #2

The fact that eN → 0 says nothing about f (t) and limit
N→∞

dfN (t)
d being equal at a given point. Take the two

functions graphed below for example:

(a) (b)

Figure 6.18

Given these two functions, f (t) and g (t), then we can see that for all t, f (t) 6= g (t), but∫ T

0

(|f (t)− g (t) |)2
dt = 0

From this we can see the following relationships:

energy convergence 6= pointwise convergence

pointwise convergence⇒ convergence in L2 ([0, T ])

However, the reverse of the above statement does not hold true.
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It turns out that if f (t) has a discontinuity (as can be seen in �gure of g (t) above) at t0, then

f (t0) 6= limit
N→∞

dfN (t0)
d

But as long as f (t) meets some other fairly mild conditions, then

f (t′) = limit
N→∞

dfN (t′)
d

if f (t) is continuous at t = t′.

These conditions are known as the Dirichlet Conditions.

6.6.3 Dirichlet Conditions

Named after the German mathematician, Peter Dirichlet, the Dirichlet conditions are the su�cient con-
ditions to guarantee existence and energy convergence of the Fourier Series.14

6.6.3.1 The Weak Dirichlet Condition for the Fourier Series

For the Fourier Series to exist, the Fourier coe�cients must be �nite. The Weak Dirichlet Condition
guarantees this. It essentially says that the integral of the absolute value of the signal must be �nite.

Theorem 6.3:
The coe�cients of the Fourier Series are �nite if

Weak Dirichlet Condition for the Fourier Series∫ T

0

|f (t) |dt <∞ (6.39)

Proof:
This can be shown from the magnitude of the Fourier Series coe�cients:

|cn| = |
1
T

∫ T

0

f (t) e−(jω0nt)dt| ≤ 1
T

∫ T

0

|f (t) ||e−(jω0nt)|dt (6.40)

Remembering our complex exponentials (Section 1.8), we know that in the above equation
|e−(jω0nt)| = 1, which gives us:

|cn| ≤
1
T

∫ T

0

|f (t) |dt <∞ (6.41)

⇒ (|cn| <∞) (6.42)

note: If we have the function:

f (t) =
1
t
, 0 < t ≤ T

then you should note that this function fails the above condition because:∫ T

0

|1
t
|dt =∞

14"Fourier Series: Eigenfunction Approach" <http://cnx.org/content/m10496/latest/>
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6.6.3.2 The Strong Dirichlet Conditions for the Fourier Series

For the Fourier Series to exist, the following two conditions must be satis�ed (along with the Weak Dirichlet
Condition):

1. In one period, f (t) has only a �nite number of minima and maxima.
2. In one period, f (t) has only a �nite number of discontinuities and each one is �nite.

These are what we refer to as the Strong Dirichlet Conditions. In theory we can think of signals that
violate these conditions, sin (logt) for instance. However, it is not possible to create a signal that violates
these conditions in a lab. Therefore, any real-world signal will have a Fourier representation.

Example 6.3
Let us assume we have the following function and equality:

f ′ (t) = limit
N→∞

dfN (t)
d

(6.43)

If f (t) meets all three conditions of the Strong Dirichlet Conditions, then

f (τ) = f ′ (τ)

at every τ at which f (t) is continuous. And where f (t) is discontinuous, f ′ (t) is the average of
the values on the right and left.

(a) (b)

Figure 6.19: Discontinuous functions, f (t).

note: The functions that fail the strong Dirchlet conditions are pretty pathological - as engineers,
we are not too interested in them.

6.7 Gibbs Phenomena15

6.7.1 Introduction

The Fourier Series16 is the representation of continuous-time, periodic signals in terms of complex exponen-
tials. The Dirichlet conditions17 suggest that discontinuous signals may have a Fourier Series representation
so long as there are a �nite number of discontinuities. This seems counter-intuitive, however, as complex
exponentials (Section 1.8) are continuous functions. It does not seem possible to exactly reconstruct a discon-
tinuous function from a set of continuous ones. In fact, it is not. However, it can be if we relax the condition

15This content is available online at <http://cnx.org/content/m10092/2.14/>.
16"Fourier Series: Eigenfunction Approach" <http://cnx.org/content/m10496/latest/>
17"Dirichlet Conditions" <http://cnx.org/content/m10089/latest/>
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of 'exactly' and replace it with the idea of 'almost everywhere'. This is to say that the reconstruction is
exactly the same as the original signal except at a �nite number of points. These points, not necessarily
surprisingly, occur at the points of discontinuities.

6.7.1.1 History

In the late 1800s, many machines were built to calculate Fourier coe�cients and re-synthesize:

fN
′ (t) =

N∑
n=−N

cne
jω0nt (6.44)

Albert Michelson (an extraordinary experimental physicist) built a machine in 1898 that could compute
cnup to n = ± (79), and he re-synthesized

f79
′ (t) =

79∑
n=−79

cne
jω0nt (6.45)

The machine performed very well on all tests except those involving discontinuous functions. When a
square wave, like that shown in Figure 6.20 (Fourier series approximations of a square wave), was inputed into
the machine, "wiggles" around the discontinuities appeared, and even as the number of Fourier coe�cients
approached in�nity, the wiggles never disappeared - these can be seen in the last plot in Figure 6.20 (Fourier
series approximations of a square wave). J. Willard Gibbs �rst explained this phenomenon in 1899, and
therefore these discontinuous points are referred to as Gibbs Phenomenon.

6.7.2 Explanation

We begin this discussion by taking a signal with a �nite number of discontinuities (like a square pulse) and
�nding its Fourier Series representation. We then attempt to reconstruct it from these Fourier coe�cients.
What we �nd is that the more coe�cients we use, the more the signal begins to resemble the original.
However, around the discontinuities, we observe rippling that does not seem to subside. As we consider even
more coe�cients, we notice that the ripples narrow, but do not shorten. As we approach an in�nite number
of coe�cients, this rippling still does not go away. This is when we apply the idea of almost everywhere.
While these ripples remain (never dropping below 9% of the pulse height), the area inside them tends to zero,
meaning that the energy of this ripple goes to zero. This means that their width is approaching zero and
we can assert that the reconstruction is exactly the original except at the points of discontinuity. Since the
Dirichlet conditions assert that there may only be a �nite number of discontinuities, we can conclude that
the principle of almost everywhere is met. This phenomenon is a speci�c case of nonuniform convergence.

Below we will use the square wave, along with its Fourier Series representation, and show several �gures
that reveal this phenomenon more mathematically.

6.7.2.1 Square Wave

The Fourier series representation of a square signal below says that the left and right sides are "equal." In
order to understand Gibbs Phenomenon we will need to rede�ne the way we look at equality.

s (t) = a0 +
∞∑
k=1

akcos
(

2πkt
T

)
+
∞∑
k=1

bksin
(

2πkt
T

)
(6.46)

Example 6.4
Figure 1 (Figure 6.20: Fourier series approximations of a square wave) shows several Fourier series
approximations of the square wave18 using a varied number of terms, denoted by K:

18"Fourier Series Approximation of a Square Wave" <http://cnx.org/content/m0041/latest/>
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Fourier series approximations of a square wave

Figure 6.20: Fourier series approximation to sq (t). The number of terms in the Fourier sum is indicated
in each plot, and the square wave is shown as a dashed line over two periods.

When comparing the square wave to its Fourier series representation in Figure 6.20 (Fourier series approx-
imations of a square wave), it is not clear that the two are equal. The fact that the square wave's Fourier
series requires more terms for a given representation accuracy is not important. However, close inspection of
Figure 6.20 (Fourier series approximations of a square wave) does reveal a potential issue: Does the Fourier
series really equal the square wave at all values of t? In particular, at each step-change in the square wave,
the Fourier series exhibits a peak followed by rapid oscillations. As more terms are added to the series,
the oscillations seem to become more rapid and smaller, but the peaks are not decreasing. Consider this
mathematical question intuitively: Can a discontinuous function, like the square wave, be expressed as a
sum, even an in�nite one, of continuous ones? One should at least be suspicious, and in fact, it can't be
thus expressed. This issue brought Fourier19 much criticism from the French Academy of Science (Laplace,
Legendre, and Lagrange comprised the review committee) for several years after its presentation on 1807.
It was not resolved for also a century, and its resolution is interesting and important to understand from a
practical viewpoint.

19http://www-groups.dcs.st-and.ac.uk/∼history/Mathematicians/Fourier.html
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The extraneous peaks in the square wave's Fourier series never disappear; they are termed Gibb's
phenomenon after the American physicist Josiah Willard Gibbs. They occur whenever the signal is dis-
continuous, and will always be present whenever the signal has jumps.

6.7.2.2 Rede�ne Equality

Let's return to the question of equality; how can the equal sign in the de�nition of the Fourier series be
justi�ed? The partial answer is that pointwise�each and every value of t�equality is not guaranteed. What
mathematicians later in the nineteenth century showed was that the rms error of the Fourier series was
always zero.

limit
K→∞

rms (εK) = 0 (6.47)

What this means is that the di�erence between an actual signal and its Fourier series representation may
not be zero, but the square of this quantity has zero integral! It is through the eyes of the rms value that
we de�ne equality: Two signals s1 (t), s2 (t) are said to be equal in the mean square if rms (s1 − s2) = 0.
These signals are said to be equal pointwise if s1 (t) = s2 (t) for all values of t. For Fourier series, Gibb's
phenomenon peaks have �nite height and zero width: The error di�ers from zero only at isolated points�
whenever the periodic signal contains discontinuities�and equals about 9% of the size of the discontinuity.
The value of a function at a �nite set of points does not a�ect its integral. This e�ect underlies the reason
why de�ning the value of a discontinuous function at its discontinuity is meaningless. Whatever you pick
for a value has no practical relevance for either the signal's spectrum or for how a system responds to the
signal. The Fourier series value "at" the discontinuity is the average of the values on either side of the jump.

6.7.3 Visualizing Gibb's Phenomena

The following VI demonstrates the occurrence of Gibb's Phenomena. Note how the wiggles near the square
pulse to the left remain even if you drastically increase the order of the approximation, even though they
do become narrower. Also notice how the approximation of the smooth region in the middle is much better
than that of the discontinuous region, especially at lower orders.
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Figure 6.21: Interact (when online) with a Mathematica CDF demonstrating Gibbs Phenomena. To
download, right click and save as .cdf.

6.7.4 Conclusion

We can approximate a function by re-synthesizing using only some of the Fourier coe�cients (truncating
the F.S.)

fN
′ (t) =

∑
nn≤|N |

cne
jω0nt (6.48)

This approximation works well where f (t) is continuous, but not so well where f (t) is discontinuous. In
the regions of discontinuity, we will always �nd Gibb's Phenomena, which never decrease below 9% of the
height of the discontinuity, but become narrower and narrower as we add more terms.
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Solutions to Exercises in Chapter 6

Solution to Exercise 6.4.1 (p. 101)

(|cn|)2
<∞ for f (t) to have �nite energy.

Solution to Exercise 6.4.2 (p. 101)

Yes, because (|cn|)2 = 1
n2 , which is summable.

Solution to Exercise 6.4.3 (p. 101)

No, because (|cn|)2 = 1
n , which is not summable.

Solution to Exercise 6.5.1 (p. 108)

an = {
unde�ned n = 0
1
8

sin3(π2 n)
(π2 n)3 otherwise
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Chapter 7

Discrete Time Fourier Series (DTFS)

7.1 Discrete Time Periodic Signals1

7.1.1 Introduction

This module describes the type of signals acted on by the Discrete Time Fourier Series.

7.1.2 Relevant Spaces

The Discrete Time Fourier Series maps �nite-length (or N -periodic), discrete time signals in L2 to �nite-
length, discrete-frequency signals in l2.

Periodic signals in discrete time repeats themselves in each cycle. However, only integers are allowed as
time variable in discrete time. We denote signals in such case as x[n], n = ..., -2, -1, 0, 1, 2, ...

7.1.3 Periodic Signals

When a function repeats itself exactly after some given period, or cycle, we say it's periodic. A periodic
function can be mathematically de�ned as:

f [n] = f [n+mN ]m ∈ Z (7.1)

where N > 0 represents the fundamental period of the signal, which is the smallest positive value of
N for the signal to repeat. Because of this, you may also see a signal referred to as an N-periodic signal.
Any function that satis�es this equation is said to be periodic with period N. Here's an example of a
discrete-time periodic signal with period N:

1This content is available online at <http://cnx.org/content/m34824/1.5/>.
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discrete-time periodic signal

Figure 7.1: Notice the function is the same after a time shift of N

We can think of periodic functions (with period N) two di�erent ways:

1. as functions on all of R

Figure 7.2: discrete time periodic function over all of R where f [n0] = f [n0 +N ]

2. or, we can cut out all of the redundancy, and think of them as functions on an interval [0, N ] (or,
more generally, [a, a+N ]). If we know the signal is N-periodic then all the information of the signal
is captured by the above interval.
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Figure 7.3: Remove the redundancy of the period function so that f [n] is unde�ned outside [0, N ].

An aperiodic DT function f [n] does not repeat for any N ∈ R; i.e. there exists no N such that this
equation (7.1) holds.

7.1.4

SinDrillDiscrete Demonstration
Here's an example demonstrating a periodic sinusoidal signal with various frequencies, amplitudes and
phase delays:

Figure 7.4: Interact (when online) with a Mathematica CDF demonstrating a discrete periodic sinu-
soidal signal with various frequencies, amplitudes and phase delays.
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7.1.5 Conclusion

A discrete periodic signal is completely de�ned by its values in one period, such as the interval [0,N].

7.2 Discrete Time Fourier Series (DTFS)2

7.2.1 Introduction

In this module, we will derive an expansion for discrete-time, periodic functions, and in doing so, derive the
Discrete Time Fourier Series (DTFS), or the Discrete Fourier Transform3 (DFT).

7.2.2 DTFS

7.2.2.1 Eigenfunction analysis

Since complex exponentials (Section 1.8) are eigenfunctions of linear time-invariant (LTI) systems (Sec-
tion 14.5), calculating the output of an LTI system H given ejωn as an input amounts to simple multiplica-
tion, where ω0 = 2πk

N , and where H [k] ∈ C is the eigenvalue corresponding to k. As shown in the �gure, a
simple exponential input would yield the output

y [n] = H [k] ejωn (7.2)

Figure 7.5: Simple LTI system.

Using this and the fact that H is linear, calculating y [n] for combinations of complex exponentials is
also straightforward.

c1e
jω1n + c2e

jω2n → c1H [k1] ejω1n + c2H [k2] ejω1n

∑
l

cle
jωln →

∑
l

clH [kl] ejωln

The action of H on an input such as those in the two equations above is easy to explain. H inde-
pendently scales each exponential component ejωln by a di�erent complex number H [kl] ∈ C. As such,
if we can write a function y [n] as a combination of complex exponentials it allows us to easily calculate the
output of a system.

2This content is available online at <http://cnx.org/content/m10784/2.14/>.
3"Discrete Fourier Transform (DFT)" <http://cnx.org/content/m10249/latest/>
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7.2.2.2 DTFS synthesis

It can be demonstrated that an arbitrary Discrete Time-periodic function f [n] can be written as a linear
combination of harmonic complex sinusoids

f [n] =
N−1∑
k=0

cke
jω0kn (7.3)

where ω0 = 2π
N is the fundamental frequency. For almost all f [n] of practical interest, there exists cn to

make (7.3) true. If f [n] is �nite energy ( f [n] ∈ L2 [0, N ]), then the equality in (7.3) holds in the sense
of energy convergence; with discrete-time signals, there are no concerns for divergence as there are with
continuous-time signals.

The cn - called the Fourier coe�cients - tell us "how much" of the sinusoid ejω0kn is in f [n]. The formula
shows f [n] as a sum of complex exponentials, each of which is easily processed by an LTI system (since it
is an eigenfunction of every LTI system). Mathematically, it tells us that the set of complex exponentials{
ejω0kn , k ∈ Z

}
form a basis for the space of N-periodic discrete time functions.

7.2.3 DFT Synthesis Demonstration

Figure 7.6: Download4 or Interact (when online) with a Mathematica CDF demonstrating Discrete
Harmonic Sinusoids. To download, right click and save as .cdf.
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7.2.4 DTFS Analysis

Say we have the following set of numbers that describe a periodic, discrete-time signal, where N = 4:

{. . . , 3, 2,−2, 1, 3, . . . }

Such a periodic, discrete-time signal (with period N) can be thought of as a �nite set of numbers. For
example, we can represent this signal as either a periodic signal or as just a single interval as follows:

(a) (b)

Figure 7.7: Here we can look at just one period of the signal that has a vector length of four and is
contained in C4. (a) Periodic Function (b) Function on the interval [0, T ]

note: The cardinalsity of the set of discrete time signals with period N equals CN .

Here, we are going to form a basis using harmonic sinusoids. Before we look into this, it will be worth
our time to look at the discrete-time, complex sinusoids in a little more detail.

7.2.4.1 Complex Sinusoids

If you are familiar with the basic sinusoid signal5 and with complex exponentials (Section 1.8) then you
should not have any problem understanding this section. In most texts, you will see the the discrete-time,
complex sinusoid noted as:

ejωn

Example 7.1

Figure 7.8: Complex sinusoid with frequency ω = 0

4See the �le at <http://cnx.org/content/m10784/latest/HarmonicSinusoidsDrillDiscrete_display.cdf>
5"Elemental Signals" <http://cnx.org/content/m0004/latest/>
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Example 7.2

Figure 7.9: Complex sinusoid with frequency ω = π
4

7.2.4.1.1 In the Complex Plane

The complex sinusoid can be directly mapped onto our complex plane6, which allows us to easily visualize
changes to the complex sinusoid and extract certain properties. The absolute value of our complex sinusoid
has the following characteristic:

|ejωn| = 1 , n ∈ R (7.4)

which tells that our complex sinusoid only takes values on the unit circle. As for the angle, the following
statement holds true:

∠
(
ejωn

)
= wn (7.5)

For more information, see the section on the Discrete Time Complex Exponential to learn about
Aliasing , Negative Frequencies, and the formal de�nition of the Complex Conjugate .

Now that we have looked over the concepts of complex sinusoids, let us turn our attention back to �nding
a basis for discrete-time, periodic signals. After looking at all the complex sinusoids, we must answer the
question of which discrete-time sinusoids do we need to represent periodic sequences with a period N .

Equivalent Question: Find a set of vectors bk = ejωkn , n = {0, . . . , N − 1} such that {bk}
are a basis for Cn

In answer to the above question, let us try the "harmonic" sinusoids with a fundamental frequency ω0 = 2π
N :

Harmonic Sinusoid
ej

2π
N kn (7.6)

6"The Complex Plane" <http://cnx.org/content/m10596/latest/>
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(a) (b) (c)

Figure 7.10: Examples of our Harmonic Sinusoids (a) Harmonic sinusoid with k = 0 (b) Imaginary

part of sinusoid, Im
“
ej

2π
N

1n
”
, with k = 1 (c) Imaginary part of sinusoid, Im

“
ej

2π
N

2n
”
, with k = 2

ej
2π
N kn is periodic with period N and has k "cycles" between n = 0 and n = N − 1.
Theorem 7.1:
If we let

bk [n] =
1√
N
ej

2π
N kn , n = {0, . . . , N − 1}

where the exponential term is a vector in CN , then {bk} |k={0,...,N−1} is an orthonormal basis
(Section 15.8.3: Orthonormal Basis) for CN .
Proof:
First of all, we must show {bk} is orthonormal, i.e. < bk, bl >= δkl

< bk, bl >=
N−1∑
n=0

bk [n] bl [n]∗ =
1
N

N−1∑
n=0

ej
2π
N kne−(j 2π

N ln)

< bk, bl >=
1
N

N−1∑
n=0

ej
2π
N (l−k)n (7.7)

If l = k, then

< bk, bl > = 1
N

∑N−1
n=0 1

= 1
(7.8)

If l 6= k, then we must use the "partial summation formula" shown below:

N−1∑
n=0

αn =
∞∑
n=0

αn −
∞∑
n=N

αn =
1

1− α
− αN

1− α
=

1− αN

1− α

< bk, bl >=
1
N

N−1∑
n=0

ej
2π
N (l−k)n

where in the above equation we can say that α = ej
2π
N (l−k), and thus we can see how this is in the

form needed to utilize our partial summation formula.

< bk, bl >=
1
N

1− ej 2π
N (l−k)N

1− ej 2π
N (l−k)

=
1
N

1− 1
1− ej 2π

N (l−k)
= 0
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So,

< bk, bl >=

 1 if k = l

0 if k 6= l
(7.9)

Therefore: {bk} is an orthonormal set. {bk} is also a basis (Section 14.1.3: Basis), since there
are N vectors which are linearly independent (Section 14.1.1: Linear Independence) (orthogonality
implies linear independence).

And �nally, we have shown that the harmonic sinusoids
{

1√
N
ej

2π
N kn

}
form an orthonormal basis

for Cn

7.2.4.2 Periodic Extension to DTFS

Now that we have an understanding of the discrete-time Fourier series (DTFS), we can consider the periodic
extension of c [k] (the Discrete-time Fourier coe�cients). Figure 7.11 shows a simple illustration of how we
can represent a sequence as a periodic signal mapped over an in�nite number of intervals.

(a)

(b)

Figure 7.11: (a) vectors (b) periodic sequences

Exercise 7.2.1 (Solution on p. 153.)

Why does a periodic (Section 6.1) extension to the DTFS coe�cients c [k] make sense?

7.2.4.2.1 Examples

Example 7.3: Discrete time square wave
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Figure 7.12

Calculate the DTFS c [k] using:

c [k] =
1
N

N−1∑
n=0

f [n] e−(j 2π
N kn) (7.10)

Just like continuous time Fourier series, we can take the summation over any interval, so we have

ck =
1
N

N1∑
n=−N1

e−(j 2π
N kn) (7.11)

Let m = n+N1 (so we can get a geometric series starting at 0)

ck = 1
N

∑2N1
m=0 e

−(j 2π
N (m−N1)k)

= 1
N e

j 2π
N k
∑2N1
m=0 e

−(j 2π
N mk) (7.12)

Now, using the "partial summation formula"

M∑
n=0

an =
1− aM+1

1− a
(7.13)

ck = 1
N e

j 2π
N N1k

∑2N1
m=0

(
e−(j 2π

N k)
)m

= 1
N e

j 2π
N N1k 1−e−(j 2π

N
(2N1+1))

1−e−(jk 2π
N )

(7.14)

Manipulate to make this look like a sinc function (distribute):

ck = 1
N

e
−(jk 2π

2N )
„
e
jk 2π
N (N1+ 1

2 )−e−(jk 2π
N (N1+ 1

2 ))
«

e
−(jk 2π

2N )
„
ejk

2π
N

1
2−e−(jk 2π

N
1
2 )
«

= 1
N

sin

 
2πk(N1+ 1

2 )
N

!
sin(πkN )

= digital sinc

(7.15)
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note: It's periodic! Figure 7.13, Figure 7.14, and Figure 7.15show our above function and
coe�cients for various values of N1.

(a) (b)

Figure 7.13: N1 = 1 (a) Plot of f [n]. (b) Plot of c [k].

(a) (b)

Figure 7.14: N1 = 3 (a) Plot of f [n]. (b) Plot of c [k].

(a) (b)

Figure 7.15: N1 = 7 (a) Plot of f [n]. (b) Plot of c [k].



130 CHAPTER 7. DISCRETE TIME FOURIER SERIES (DTFS)

7.2.5 DTFS conclusion

Using the steps shown above in the derivation and our previous understanding of Hilbert Spaces (Section 15.4)
and Orthogonal Expansions (Section 15.9), the rest of the derivation is automatic. Given a discrete-time,
periodic signal (vector in Cn) f [n], we can write:

f [n] =
1√
N

N−1∑
k=0

cke
j 2π
N kn (7.16)

ck =
1√
N

N−1∑
n=0

f [n] e−(j 2π
N kn) (7.17)

Note: Most people collect both the 1√
N

terms into the expression for ck.

Discrete Time Fourier Series: Here is the common form of the DTFS with the above note
taken into account:

f [n] =
N−1∑
k=0

cke
j 2π
N kn

ck =
1
N

N−1∑
n=0

f [n] e−(j 2π
N kn)

This is what the fft command in MATLAB does.

7.3 Common Discrete Fourier Series7

7.3.1 Introduction

Once one has obtained a solid understanding of the fundamentals of Fourier series analysis and the
General Derivation of the Fourier Coe�cients, it is useful to have an understanding of the common
signals used in Fourier Series Signal Approximation.

7.3.2 Deriving the Coe�cients

Consider a square wave f(x) of length 1. Over the range [0,1), this can be written as

x (t) = {
1 t ≤ 1

2 ;

−1 t > 1
2 .

(7.18)

7This content is available online at <http://cnx.org/content/m34509/1.8/>.
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Fourier series approximation of a square wave

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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0

1

 

 
K = 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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0

1

 

 
K = 5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

0

1

 

 
K = 11

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

0

1

 

 
K = 49

Figure 7.16: Fourier series approximation to sq (t). The number of terms in the Fourier sum is indicated
in each plot, and the square wave is shown as a dashed line over two periods.

Real Even Signals
Given that the square wave is a real and even signal,

f (t) = f (−t) EVEN
f (t) = f*(t) REAL
therefore,
cn = c−n EVEN
cn = cn* REAL

7.3.3 Deriving the Coe�cients for other signals

The Square wave is the standard example, but other important signals are also useful to analyze, and these
are included here.
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7.3.3.1 Constant Waveform

This signal is relatively self-explanatory: the time-varying portion of the Fourier Coe�cient is taken out,
and we are left simply with a constant function over all time.

x (t) = 1 (7.19)

Fourier series approximation of a constant wave
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K = 11

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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0

1

 

 
K = 49

Figure 7.17

7.3.3.2 Sinusoid Waveform

With this signal, only a speci�c frequency of time-varying Coe�cient is chosen (given that the Fourier Series
equation includes a sine wave, this is intuitive), and all others are �ltered out, and this single time-varying
coe�cient will exactly match the desired signal.

x (t) = cos (2πt) (7.20)
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Fourier series approximation of a sinusoid wave

Figure 7.18

7.3.3.3 Triangle Waveform

x (t) = {
t t ≤ 1/2

1− t t > 1/2
(7.21)

This is a more complex form of signal approximation to the square wave. Because of the Symmetry
Properties of the Fourier Series, the triangle wave is a real and odd signal, as opposed to the real and even
square wave signal. This means that

f (t) = −f (−t) ODD
f (t) = f*(t) REAL
therefore,
cn = −c−n
cn = −cn* IMAGINARY



134 CHAPTER 7. DISCRETE TIME FOURIER SERIES (DTFS)

Fourier series approximation of a triangle wave
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Figure 7.19

7.3.3.4 Sawtooth Waveform

x (t) = t/2 (7.22)

Because of the Symmetry Properties of the Fourier Series, the sawtooth wave can be de�ned as a real
and odd signal, as opposed to the real and even square wave signal. This has important implications for the
Fourier Coe�cients.
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Fourier series approximation of a sawtooth wave
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Figure 7.20



136 CHAPTER 7. DISCRETE TIME FOURIER SERIES (DTFS)

7.3.3.5 DFT Signal Approximation

Figure 7.21: Interact (when online) with a Mathematica CDF demonstrating the common Discrete
Fourier Series. To download, right-click and save as .cdf.

7.3.4 Conclusion

To summarize, a great deal of variety exists among the common Fourier Transforms. A summary table is
provided here with the essential information.

Common Discrete Fourier Transforms

Description Time Domain Signal for n ∈
Z [0, N − 1]

Frequency Domain Signal k ∈
Z [0, N − 1]

Constant Function 1 δ (k)

Unit Impulse δ (n) 1
N

Complex Exponential ej2πmn/N δ ((k −m)N )

Sinusoid Waveform cos (j2πmn/N) 1
2 (δ ((k −m)N ) + δ ((k +m)N ))

Box Waveform (M < N/2) δ (n) +
∑M
m=1 δ ((n−m)N ) +

δ ((n+m)N )

sin((2M+1)kπ/N)
Nsin(kπ/N)

Dsinc Waveform (M < N/2) sin((2M+1)nπ/N)
sin(nπ/N) δ (k) +

∑M
m=1 δ ((k −m)N ) +

δ ((k +m)N )

Table 7.1
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7.4 Properties of the DTFS8

7.4.1 Introduction

In this module we will discuss the basic properties of the Discrete-Time Fourier Series. We will begin by
refreshing your memory of our basic Fourier series9 equations:

f [n] =
N−1∑
k=0

cke
jω0kn (7.23)

ck =
1√
N

N−1∑
n=0

f [n] e−(j 2π
N kn) (7.24)

Let F (·) denote the transformation from f [n] to the Fourier coe�cients

F (f [n]) = ck , k ∈ Z

F (·) maps complex valued functions to sequences of complex numbers10.

7.4.2 Linearity

F (·) is a linear transformation.
Theorem 7.2:
If F (f [n]) = ck and F (g [n]) = dk. Then

F (αf [n]) = αck , α ∈ C

and
F (f [n] + g [n]) = ck + dk

Proof:
Easy. Just linearity of integral.

F (f [n] + g [n]) =
∑N
n=0 (f [n] + g [n]) e−(jω0kn) , k ∈ Z

= 1
N

∑N
n=0 f [n] e−(jω0kn) + 1

N

∑N
n=0 g [n] e−(jω0kn) , k ∈ Z

= ck + dk , k ∈ Z

= ck + dk

(7.25)

7.4.3 Shifting

Shifting in time equals a phase shift of Fourier coe�cients11

Theorem 7.3:
F (f [n− n0]) = e−(jω0kn0)ck if ck = |ck|ej∠(ck), then

|e−(jω0kn0)ck| = |e−(jω0kn0)||ck| = |ck|
8This content is available online at <http://cnx.org/content/m34508/1.7/>.
9"Fourier Series: Eigenfunction Approach" <http://cnx.org/content/m10496/latest/>

10"Complex Numbers" <http://cnx.org/content/m0081/latest/>
11"Derivation of Fourier Coe�cients Equation" <http://cnx.org/content/m10733/latest/>
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∠
(
e−(jω0n0k)

)
= ∠ (ck)− ω0n0k

Proof:

F (f [n− n0]) = 1
N

∑N
n=0 f [n− n0] e−(jω0kn) , k ∈ Z

= 1
N

∑N−n0
n=−n0

f [n− n0] e−(jω0k(n−n0))e−(jω0kn0) , k ∈ Z

= 1
N

∑N−n0
n=−n0

f
[∼
n
]
e
−
“
jω0k

∼
n
”
e−(jω0kn0) , k ∈ Z

= e
−
“
jω0k

∼
n
”
ck , k ∈ Z

(7.26)

7.4.4 Parseval's Relation

N∑
n=0

(|f [n] |)2 = N

N−1∑
k=0

(|ck|)2
(7.27)

Parseval's relation tells us that the energy of a signal is equal to the energy of its Fourier transform.

note: Parseval tells us that the Fourier series maps L2 [0, N ] to l2 (Z).

Figure 7.22

Exercise 7.4.1 (Solution on p. 153.)

For f [n] to have "�nite energy," what do the ck do as k →∞?

Exercise 7.4.2 (Solution on p. 153.)

If ck = 1
k , |k| > 0 , is f ∈ L2 [[0, N ]]?

Exercise 7.4.3 (Solution on p. 153.)

Now, if ck = 1√
k
, |k| > 0 , is f ∈ L2 [[0, N ]]?

The rate of decay of the Fourier series determines if f [n] has �nite energy.



139

7.4.5 ParsevalsTheorem Demonstration

Figure 7.23: Interact (when online) with a Mathematica CDF demonstrating Parsevals Theorem. To
download, right-click and save as .cdf.
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7.4.6 Symmetry Properties

Rule 7.1: Even Signals

Even Signals

f [n] = f [−n]
‖ ck ‖=‖ c−k ‖

Proof:

ck = 1
NΣN0 f [n] exp [−ßω0kn]

= 1
NΣ

N
2

0 f [n] exp [−ßω0kn] + 1
NΣNN

2
f [n] exp [−ßω0kn]

= 1
NΣ

N
2

0 f [−n] exp [−ßω0kn] + 1
NΣNN

2
f [−n] exp [−ßω0kn]

= 1
NΣN0 f [n] [exp [ßω0kn] + exp [−ßω0kn]]

= 1
NΣN0 f [n] 2cos [ω0kn]

Rule 7.2: Odd Signals

Odd Signals

f [n] = −f [−n]
ck = c−k*

Proof:

ck = 1
NΣN0 f [n] exp [−ßω0kn]

= 1
NΣ

N
2

0 f [n] exp [−ßω0kn] + 1
NΣNN

2
f [n] exp [−ßω0kn]

= 1
NΣ

N
2

0 f [n] exp [−ßω0kn]− 1
NΣNN

2
f [−n] exp [ßω0kn]

= − 1
NΣN0 f [n] [exp [ßω0kn]− exp [−ßω0kn]]

= − 1
NΣN0 f [n] 2ßsin [ω0kn]

Rule 7.3: Real Signals

Real Signals

f [n] = f*[n]
ck = c−k*

Proof:

ck = 1
NΣN0 f [n] exp [−ßω0kn]

= 1
NΣ

N
2

0 f [n] exp [−ßω0kn] + 1
NΣNN

2
f [n] exp [−ßω0kn]

= 1
NΣ

N
2

0 f [−n] exp [−ßω0kn] + 1
NΣNN

2
f [−n] exp [−ßω0kn]

= 1
NΣN0 f [n] [exp [ßω0kn] + exp [−ßω0kn]]

= 1
NΣN0 f [n] 2cos [ω0kn]
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7.4.7 Di�erentiation in Fourier Domain

(F (f [n]) = ck)⇒
(
F
(
df [n]
dn

)
= jkω0ck

)
(7.28)

Since

f [n] =
N∑
k=0

cke
jω0kn (7.29)

then
d
dnf [n] =

∑N
k=0 ck

dejω0kn

dn

=
∑N
k=0 ckjω0ke

jω0kn
(7.30)

A di�erentiator attenuates the low frequencies in f [n] and accentuates the high frequencies. It removes
general trends and accentuates areas of sharp variation.

note: A common way to mathematically measure the smoothness of a function f [n] is to see how
many derivatives are �nite energy.

This is done by looking at the Fourier coe�cients of the signal, speci�cally how fast they decay as k →∞.

If F (f [n]) = ck and |ck| has the form 1
kl
, then F

(
dmf [n]
dnm

)
= (jkω0)mck and has the form km

kl
. So for the

mth derivative to have �nite energy, we need

∑
k

(
|k
m

kl
|
)2

<∞

thus km

kl
decays faster than 1

k which implies that

2l − 2m > 1

or

l >
2m+ 1

2
Thus the decay rate of the Fourier series dictates smoothness.
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7.4.8 Fourier Di�erentiation Demo

Figure 7.24: Interact (when online) with a Mathematica CDF demonstrating Di�erentiation in a Fourier
Domain. To download, right-click and save as .cdf.

7.4.9 Integration in the Fourier Domain

If
F (f [n]) = ck (7.31)

then

F

(
n∑
η=0

f [η]

)
=

1
jω0k

ck (7.32)

note: If c0 6= 0, this expression doesn't make sense.

Integration accentuates low frequencies and attenuates high frequencies. Integrators bring out the gen-
eral trends in signals and suppress short term variation (which is noise in many cases). Integrators are
much nicer than di�erentiators.
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7.4.10 Fourier Integration Demo

Figure 7.25: Interact (when online) with a Mathematica CDF demonstrating the e�ect of Integration
in a Fourier Domain.To download, right-click and save as .cdf.

7.4.11 Signal Multiplication

Given a signal f [n] with Fourier coe�cients ck and a signal g [n] with Fourier coe�cients dk, we can de�ne
a new signal, y [n], where y [n] = f [n] g [n]. We �nd that the Fourier Series representation of y [n], ek, is
such that ek =

∑N
l=0 cldk−l. This is to say that signal multiplication in the time domain is equivalent to

discrete-time circular convolution (Section 4.3) in the frequency domain. The proof of this is as follows

ek = 1
N

∑N
n=0 f [n] g [n] e−(jω0kn)

= 1
N

∑N
n=0

∑N
l=0 cle

jω0lng [n] e−(jω0kn)

=
∑N
l=0 cl

(
1
N

∑N
n=0 g [n] e−(jω0(k−l)n)

)
=

∑N
l=0 cldk−l

(7.33)
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7.4.12 Conclusion

Like other Fourier transforms, the DTFS has many useful properties, including linearity, equal energy in the
time and frequency domains, and analogs for shifting, di�erentation, and integration.

Property Signal DTFS

Linearity ax (n) + by (n) aX (k) + bY (k)

Time Shifting x (n−m) X (k) e−j2πmk/N

Time Modulation x (n) ej2πmn/N X (k −m)

Multiplication x (n) y (n) X (k) ∗ Y (k)

Circular Convolution x (n) ∗ y (n) X (k)Y (K)

Table 7.2: Properties of the Discrete Fourier Transform

7.5 Discrete Time Circular Convolution and the DTFS12

7.5.1 Introduction

This module relates circular convolution of periodic signals in one domain to multiplication in the other
domain.

You should be familiar with Discrete-Time Convolution (Section 4.3), which tells us that given two
discrete-time signals x [n], the system's input, and h [n], the system's response, we de�ne the output of the
system as

y [n] = x [n] ∗ h [n]

=
∑∞
k=−∞ x [k]h [n− k]

(7.34)

When we are given two DFTs (�nite-length sequences usually of length N), we cannot just multiply them
together as we do in the above convolution formula, often referred to as linear convolution. Because the
DFTs are periodic, they have nonzero values for n ≥ N and thus the multiplication of these two DFTs will be
nonzero for n ≥ N . We need to de�ne a new type of convolution operation that will result in our convolved
signal being zero outside of the range n = {0, 1, . . . , N − 1}. This idea led to the development of circular
convolution, also called cyclic or periodic convolution.

7.5.2 Signal Circular Convolution

Given a signal f [n] with Fourier coe�cients ck and a signal g [n] with Fourier coe�cients dk, we can de�ne
a new signal, v [n], where v [n] = f [n] ~ g [n] We �nd that the Fourier Series13 representation of v [n], ak,
is such that ak = ckdk. f [n] ~ g [n] is the circular convolution (Section 7.5) of two periodic signals and is

equivalent to the convolution over one interval, i.e. f [n]~ g [n] =
∑N
n=0

∑N
η=0 f [η] g [n− η].

note: Circular convolution in the time domain is equivalent to multiplication of the Fourier
coe�cients.

12This content is available online at <http://cnx.org/content/m10786/2.14/>.
13"Fourier Series: Eigenfunction Approach" <http://cnx.org/content/m10496/latest/>
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This is proved as follows

ak = 1
N

∑N
n=0 v [n] e−(jω0kn)

= 1
N2

∑N
n=0

∑N
η=0 f [η] g [n− η] e−(ωj0kn)

= 1
N

∑N
η=0 f [η]

(
1
N

∑N
n=0 g [n− η] e−(jω0kn)

)
= 1

N

∑N
η=0 f [η]

(
1
N

∑N−η
ν=−η g [ν] e−(jω0(ν+η))

)
, ν = n− η

= 1
N

∑N
η=0 f [η]

(
1
N

∑N−η
ν=−η g [ν] e−(jω0kν)

)
e−(jω0kη)

= 1
N

∑N
η=0 f [η] dke−(jω0kη)

= dk

(
1
N

∑N
η=0 f [η] e−(jω0kη)

)
= ckdk

(7.35)

7.5.2.1 Circular Convolution Formula

What happens when we multiply two DFT's together, where Y [k] is the DFT of y [n]?

Y [k] = F [k]H [k] (7.36)

when 0 ≤ k ≤ N − 1
Using the DFT synthesis formula for y [n]

y [n] =
1
N

N−1∑
k=0

F [k]H [k] ej
2π
N kn (7.37)

And then applying the analysis formula F [k] =
∑N−1
m=0 f [m] e(−j) 2π

N kn

y [n] = 1
N

∑N−1
k=0

∑N−1
m=0 f [m] e(−j) 2π

N knH [k] ej
2π
N kn

=
∑N−1
m=0 f [m]

(
1
N

∑N−1
k=0 H [k] ej

2π
N k(n−m)

) (7.38)

where we can reduce the second summation found in the above equation into h [((n−m))N ] =
1
N

∑N−1
k=0 H [k] ej

2π
N k(n−m) y [n] =

∑N−1
m=0 f [m]h [((n−m))N ] which equals circular convolution! When we

have 0 ≤ n ≤ N − 1 in the above, then we get:

y [n] ≡ f [n]~ h [n] (7.39)

note: The notation ~ represents cyclic convolution "mod N".

7.5.2.1.1 Alternative Convolution Formula

Alternative Circular Convolution Algorithm

• Step 1: Calculate the DFT of f [n] which yields F [k] and calculate the DFT of h [n] which yields H [k].
• Step 2: Pointwise multiply Y [k] = F [k]H [k]
• Step 3: Inverse DFT Y [k] which yields y [n]

Seems like a roundabout way of doing things, but it turns out that there are extremely fast ways to
calculate the DFT of a sequence.

To circularily convolve 2 N -point sequences: y [n] =
∑N−1
m=0 f [m]h [((n−m))N ] For each n : N multiples,

N − 1 additions
N points implies N2 multiplications, N (N − 1) additions implies O

(
N2
)
complexity.
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7.5.2.2 Steps for Circular Convolution

We can picture periodic (Section 6.1) sequences as having discrete points on a circle as the domain

Figure 7.26

Shifting by m, f (n+m), corresponds to rotating the cylinder m notches ACW (counter clockwise). For
m = −2, we get a shift equal to that in the following illustration:

Figure 7.27: for m = −2
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Figure 7.28

To cyclic shift we follow these steps:
1) Write f (n) on a cylinder, ACW

Figure 7.29: N = 8
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2) To cyclic shift by m, spin cylinder m spots ACW

f [n]→ f [((n+m))N ]

Figure 7.30: m = −3

7.5.2.2.1 Notes on circular shifting

f [((n+N))N ] = f [n] Spinning N spots is the same as spinning all the way around, or not spinning at all.
f [((n+N))N ] = f [((n− (N −m)))N ] Shifting ACW m is equivalent to shifting CW N −m
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Figure 7.31

f [((−n))N ] The above expression, simply writes the values of f [n] clockwise.

(a) (b)

Figure 7.32: (a) f [n] (b) f
ˆ
((−n))N

˜
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Example 7.4: Convolve (n = 4)

(a) (b)

Figure 7.33: Two discrete-time signals to be convolved.

• h [((− (m () ()N ]

Figure 7.34

Multiply f [m] and sum to yield: y [0] = 3

• h [((1 (− (m () ()N ]

Figure 7.35

Multiply f [m] and sum to yield: y [1] = 5

• h [((2 (− (m () ()N ]
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Figure 7.36

Multiply f [m] and sum to yield: y [2] = 3

• h [((3 (− (m () ()N ]

Figure 7.37

Multiply f [m] and sum to yield: y [3] = 1

7.5.2.3 Exercise

Take a look at a square pulse with a period of T.

For this signal ck =


1
N if k = 0
1
2

sin(π2 k)
π
2 k

otherwise

Take a look at a triangle pulse train with a period of T.
This signal is created by circularly convolving the square pulse with itself. The Fourier coe�cients for

this signal are ak = ck
2 = 1

4
sin2

(π2 k)
Exercise 7.5.1 (Solution on p. 153.)

Find the Fourier coe�cients of the signal that is created when the square pulse and the triangle
pulse are convolved.

7.5.3 Circular Shifts and the DFT

Theorem 7.4: Circular Shifts and DFT
If f [n] DFT↔ F [k] then f [((n−m))N ] DFT↔ e−(j 2π

N km)F [k] (i.e. circular shift in time domain =
phase shift in DFT)
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Proof:

f [n] =
1
N

N−1∑
k=0

F [k] ej
2π
N kn (7.40)

so phase shifting the DFT

f [n] = 1
N

∑N−1
k=0 F [k] e−(j 2π

N kn)ej
2π
N kn

= 1
N

∑N−1
k=0 F [k] ej

2π
N k(n−m)

= f [((n−m))N ]

(7.41)

7.5.4 Circular Convolution Demonstration

Figure 7.38: Interact (when online) with a Mathematica CDF demonstrating Circular Shifts.

7.5.5 Conclusion

Circular convolution in the time domain is equivalent to multiplication of the Fourier coe�cients in the
frequency domain.
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Solutions to Exercises in Chapter 7

Solution to Exercise 7.2.1 (p. 127)

Aliasing: bk = ej
2π
N kn

bk+N = ej
2π
N (k+N)n

= ej
2π
N knej2πn

= ej
2π
N n

= bk

(7.42)

→ DTFS coe�cients are also periodic with period N .
Solution to Exercise 7.4.1 (p. 138)

(|ck|)2
<∞ for f [n] to have �nite energy.

Solution to Exercise 7.4.2 (p. 138)

Yes, because (|ck|)2 = 1
k2 , which is summable.

Solution to Exercise 7.4.3 (p. 138)

No, because (|ck|)2 = 1
k , which is not summable.

Solution to Exercise 7.5.1 (p. 151)

ak = {
unde�ned k = 0
1
8

sin3[π2 k]
[π2 k]

3 otherwise
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Chapter 8

Continuous Time Fourier Transform
(CTFT)

8.1 Continuous Time Aperiodic Signals1

8.1.1 Introduction

This module describes the type of signals acted on by the Continuous Time Fourier Transform.

8.1.2 Relevant Spaces

The Continuous-Time Fourier Transform maps in�nite-length (a-periodic), continuous-time signals in L2 to
in�nite-length, discrete-frequency signals in l2.

8.1.3 Periodic and Aperiodic Signals

When a function repeats itself exactly after some given period, or cycle, we say it's periodic. A periodic
function can be mathematically de�ned as:

f (t) = f (t+mT )m ∈ Z (8.1)

where T > 0 represents the fundamental period of the signal, which is the smallest positive value of T
for the signal to repeat. Because of this, you may also see a signal referred to as a T-periodic signal. Any
function that satis�es this equation is said to be periodic with period T.

An aperiodic CT function f (t) does not repeat for any T ∈ R; i.e. there exists no T such that this
equation (8.1) holds.

Suppose we have such an aperiodic function f (t) . We can construct a periodic extension of f (t) called
fTo (t) , where f (t) is repeated every T0 seconds. If we take the limit as T0 →∞, we obtain a precise model of

1This content is available online at <http://cnx.org/content/m34848/1.5/>.
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an aperiodic signal for which all rules that govern periodic signals can be applied, including Fourier Analysis
(with an important modi�cation). For more detail on this distinction, see the module on the Continuous
Time Fourier Transform.

8.1.4 Aperiodic Signal Demonstration

Figure 8.1: Interact (when online) with a Mathematica CDF demonstrating Periodic versus Aperiodic
Signals.To download, right-click and save as .cdf.

8.1.5 Conclusion

Any aperiodic signal can be de�ned by an in�nite sum of periodic functions, a useful de�nition that makes
it possible to use Fourier Analysis on it by assuming all frequencies are present in the signal.

8.2 Continuous Time Fourier Transform (CTFT)2

8.2.1 Introduction

In this module, we will derive an expansion for any arbitrary continuous-time function, and in doing so,
derive the Continuous Time Fourier Transform (CTFT).

Since complex exponentials (Section 1.8) are eigenfunctions of linear time-invariant (LTI) systems (Sec-
tion 14.5), calculating the output of an LTI system H given est as an input amounts to simple multiplication,
where H (s) ∈ C is the eigenvalue corresponding to s. As shown in the �gure, a simple exponential input
would yield the output

y (t) = H (s) est (8.2)

2This content is available online at <http://cnx.org/content/m10098/2.16/>.
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Using this and the fact that H is linear, calculating y (t) for combinations of complex exponentials is also
straightforward.

c1e
s1t + c2e

s2t → c1H (s1) es1t + c2H (s2) es2t

∑
n

cne
snt →

∑
n

cnH (sn) esnt

The action of H on an input such as those in the two equations above is easy to explain. H inde-
pendently scales each exponential component esnt by a di�erent complex number H (sn) ∈ C. As such, if
we can write a function f (t) as a combination of complex exponentials it allows us to easily calculate the
output of a system.

Now, we will look to use the power of complex exponentials to see how we may represent arbitrary signals
in terms of a set of simpler functions by superposition of a number of complex exponentials. Below we will
present the Continuous-Time Fourier Transform (CTFT), commonly referred to as just the Fourier
Transform (FT). Because the CTFT deals with nonperiodic signals, we must �nd a way to include all real
frequencies in the general equations. For the CTFT we simply utilize integration over real numbers rather
than summation over integers in order to express the aperiodic signals.

8.2.2 Fourier Transform Synthesis

Joseph Fourier3 demonstrated that an arbitrary s (t) can be written as a linear combination of harmonic
complex sinusoids

s (t) =
∞∑

n=−∞
cne

jω0nt (8.3)

where ω0 = 2π
T is the fundamental frequency. For almost all s (t) of practical interest, there exists cn to make

(8.3) true. If s (t) is �nite energy ( s (t) ∈ L2 [0, T ]), then the equality in (8.3) holds in the sense of energy
convergence; if s (t) is continuous, then (8.3) holds pointwise. Also, if s (t) meets some mild conditions (the
Dirichlet conditions), then (8.3) holds pointwise everywhere except at points of discontinuity.

The cn - called the Fourier coe�cients - tell us "how much" of the sinusoid ejω0nt is in s (t). The formula
shows s (t) as a sum of complex exponentials, each of which is easily processed by an LTI system (since it
is an eigenfunction of every LTI system). Mathematically, it tells us that the set of complex exponentials{
ejω0nt , n ∈ Z

}
form a basis for the space of T-periodic continuous time functions.

8.2.2.1 Equations

Now, in order to take this useful tool and apply it to arbitrary non-periodic signals, we will have to delve
deeper into the use of the superposition principle. Let sT (t) be a periodic signal having period T . We want
to consider what happens to this signal's spectrum as the period goes to in�nity. We denote the spectrum
for any assumed value of the period by cn (T ). We calculate the spectrum according to the Fourier formula
for a periodic signal, known as the Fourier Series (for more on this derivation, see the section on Fourier
Series.)

cn =
1
T

∫ T

0

s (t) exp (−ßω0t) dt (8.4)

where ω0 = 2π
T and where we have used a symmetric placement of the integration interval about the origin

for subsequent derivational convenience. We vary the frequency index n proportionally as we increase the

3http://www-groups.dcs.st-and.ac.uk/∼history/Mathematicians/Fourier.html
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period. De�ne

ST (f) ≡ Tcn =
1
T

∫ T

0

(ST (f) exp (ßω0t) dt(8.5)

making the corresponding Fourier Series

sT (t) =
∞∑
−∞

f (t) exp (ßω0t)
1
T

(8.6)

As the period increases, the spectral lines become closer together, becoming a continuum. Therefore,

lim
T→∞

sT (t) ≡ s (t) =

∞∫
−∞

S (f) exp (ßω0t) df (8.7)

with

S (f) =

∞∫
−∞

s (t) exp (−ßω0t) dt (8.8)

Continuous-Time Fourier Transform

F (Ω) =
∫ ∞
−∞

f (t) e−(jΩt)dt (8.9)

Inverse CTFT

f (t) =
1

2π

∫ ∞
−∞
F (Ω) ejΩtdΩ (8.10)

warning: It is not uncommon to see the above formula written slightly di�erent. One of the most
common di�erences is the way that the exponential is written. The above equations use the radial
frequency variable Ω in the exponential, where Ω = 2πf , but it is also common to include the more
explicit expression, j2πft, in the exponential. Click here4 for an overview of the notation used in
Connexion's DSP modules.

Example 8.1
We know from Euler's formula that cos (ωt) + sin (ωt) = 1−j

2 ejωt + 1+j
2 e−jωt.

4"DSP notation" <http://cnx.org/content/m10161/latest/>
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8.2.3 CTFT De�nition Demonstration

Figure 8.2: Interact (when online) with a Mathematica CDF demonstrating Continuous Time Fourier
Transform. To Download, right-click and save as .cdf.

8.2.4 Example Problems

Exercise 8.2.1 (Solution on p. 168.)

Find the Fourier Transform (CTFT) of the function

f (t) =

 e−(αt) if t ≥ 0

0 otherwise
(8.11)

Exercise 8.2.2 (Solution on p. 168.)

Find the inverse Fourier transform of the ideal lowpass �lter de�ned by

X (Ω) =

 1 if |Ω| ≤M
0 otherwise

(8.12)

8.2.5 Fourier Transform Summary

Because complex exponentials are eigenfunctions of LTI systems, it is often useful to represent signals using
a set of complex exponentials as a basis. The continuous time Fourier series synthesis formula expresses a
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continuous time, periodic function as the sum of continuous time, discrete frequency complex exponentials.

f (t) =
∞∑

n=−∞
cne

jω0nt (8.13)

The continuous time Fourier series analysis formula gives the coe�cients of the Fourier series expansion.

cn =
1
T

∫ T

0

f (t) e−(jω0nt)dt (8.14)

In both of these equations ω0 = 2π
T is the fundamental frequency.

8.3 Common Fourier Transforms5

8.3.1 Common CTFT Properties

Time Domain Signal Frequency Domain Signal Condition

e−(at)u (t) 1
a+jω a > 0

eatu (−t) 1
a−jω a > 0

e−(a|t|) 2a
a2+ω2 a > 0

te−(at)u (t) 1
(a+jω)2

a > 0

tne−(at)u (t) n!
(a+jω)n+1 a > 0

δ (t) 1

1 2πδ (ω)

ejω0t 2πδ (ω − ω0)

cos (ω0t) π (δ (ω − ω0) + δ (ω + ω0))

sin (ω0t) jπ (δ (ω + ω0)− δ (ω − ω0))

u (t) πδ (ω) + 1
jω

sgn (t) 2
jω

cos (ω0t)u (t) π
2 (δ (ω − ω0) + δ (ω + ω0)) +
jω

ω02−ω2

sin (ω0t)u (t) π
2j (δ (ω − ω0)− δ (ω + ω0)) +
ω0

ω02−ω2

continued on next page

5This content is available online at <http://cnx.org/content/m10099/2.11/>.
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e−(at)sin (ω0t)u (t) ω0
(a+jω)2+ω02 a > 0

e−(at)cos (ω0t)u (t) a+jω
(a+jω)2+ω02 a > 0

u (t+ τ)− u (t− τ) 2τ sin(ωτ)
ωτ = 2τsinc (ωt)

ω0
π

sin(ω0t)
ω0t

= ω0
π sinc (ω0) u (ω + ω0)− u (ω − ω0)(

t
τ + 1

) (
u
(
t
τ + 1

)
− u

(
t
τ

))
+(

− t
τ + 1

) (
u
(
t
τ

)
− u

(
t
τ − 1

))
=

triag
(
t

2τ

) τsinc2
(
ωτ
2

)

ω0
2π sinc2

(
ω0t
2

) (
ω
ω0

+ 1
)(

u
(
ω
ω0

+ 1
)
− u

(
ω
ω0

))
+(

− ω
ω0

+ 1
)(

u
(
ω
ω0

)
− u

(
ω
ω0
− 1
))

=

triag
(

ω
2ω0

)
∑∞
n=−∞ δ (t− nT ) ω0

∑∞
n=−∞ δ (ω − nω0) ω0 = 2π

T

e−
t2

2σ2 σ
√

2πe−
σ2ω2

2

Table 8.1

triag[n] is the triangle function for arbitrary real-valued n.

triag[n] = {
1 + n if− 1 ≤ n ≤ 0

1− n if 0 < n ≤ 1

0 otherwise

8.4 Properties of the CTFT6

8.4.1 Introduction

This module will look at some of the basic properties of the Continuous-Time Fourier Transform (Section 8.2)
(CTFT).

note: We will be discussing these properties for aperiodic, continuous-time signals but understand
that very similar properties hold for discrete-time signals and periodic signals as well.

8.4.2 Discussion of Fourier Transform Properties

8.4.2.1 Linearity

The combined addition and scalar multiplication properties in the table above demonstrate the basic property
of linearity. What you should see is that if one takes the Fourier transform of a linear combination of signals
then it will be the same as the linear combination of the Fourier transforms of each of the individual signals.
This is crucial when using a table (Section 8.3) of transforms to �nd the transform of a more complicated
signal.

Example 8.2
We will begin with the following signal:

z (t) = af1 (t) + bf2 (t) (8.15)

6This content is available online at <http://cnx.org/content/m10100/2.15/>.
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Now, after we take the Fourier transform, shown in the equation below, notice that the linear
combination of the terms is una�ected by the transform.

Z (ω) = aF1 (ω) + bF2 (ω) (8.16)

8.4.2.2 Symmetry

Symmetry is a property that can make life quite easy when solving problems involving Fourier transforms.
Basically what this property says is that since a rectangular function in time is a sinc function in frequency,
then a sinc function in time will be a rectangular function in frequency. This is a direct result of the similarity
between the forward CTFT and the inverse CTFT. The only di�erence is the scaling by 2π and a frequency
reversal.

8.4.2.3 Time Scaling

This property deals with the e�ect on the frequency-domain representation of a signal if the time variable
is altered. The most important concept to understand for the time scaling property is that signals that are
narrow in time will be broad in frequency and vice versa. The simplest example of this is a delta function,
a unit pulse7 with a very small duration, in time that becomes an in�nite-length constant function in
frequency.

The table above shows this idea for the general transformation from the time-domain to the frequency-
domain of a signal. You should be able to easily notice that these equations show the relationship mentioned
previously: if the time variable is increased then the frequency range will be decreased.

8.4.2.4 Time Shifting

Time shifting shows that a shift in time is equivalent to a linear phase shift in frequency. Since the frequency
content depends only on the shape of a signal, which is unchanged in a time shift, then only the phase
spectrum will be altered. This property is proven below:

Example 8.3
We will begin by letting z (t) = f (t− τ). Now let us take the Fourier transform with the previous
expression substituted in for z (t).

Z (ω) =
∫ ∞
−∞

f (t− τ) e−(jωt)dt (8.17)

Now let us make a simple change of variables, where σ = t − τ . Through the calculations below,
you can see that only the variable in the exponential are altered thus only changing the phase in
the frequency domain.

Z (ω) =
∫∞
−∞ f (σ) e−(jω(σ+τ)t)dτ

= e−(jωτ)
∫∞
−∞ f (σ) e−(jωσ)dσ

= e−(jωτ)F (ω)

(8.18)

7"Elemental Signals": Section Pulse <http://cnx.org/content/m0004/latest/#pulsedef>
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8.4.2.5 Convolution

Convolution is one of the big reasons for converting signals to the frequency domain, since convolution in
time becomes multiplication in frequency. This property is also another excellent example of symmetry
between time and frequency. It also shows that there may be little to gain by changing to the frequency
domain when multiplication in time is involved.

We will introduce the convolution integral here, but if you have not seen this before or need to refresh your
memory, then look at the continuous-time convolution (Section 3.3) module for a more in depth explanation
and derivation.

y (t) = (f1 (t) , f2 (t))

=
∫∞
−∞ f1 (τ) f2 (t− τ) dτ

(8.19)

8.4.2.6 Time Di�erentiation

Since LTI (Section 2.1) systems can be represented in terms of di�erential equations, it is apparent with
this property that converting to the frequency domain may allow us to convert these complicated di�erential
equations to simpler equations involving multiplication and addition. This is often looked at in more detail
during the study of the Laplace Transform (Section 11.1).

8.4.2.7 Parseval's Relation

∫ ∞
−∞

(|f (t) |)2
dt =

∫ ∞
−∞

(|F (ω) |)2
df (8.20)

Parseval's relation tells us that the energy of a signal is equal to the energy of its Fourier transform.

Figure 8.3

8.4.2.8 Modulation (Frequency Shift)

Modulation is absolutely imperative to communications applications. Being able to shift a signal to a di�erent
frequency, allows us to take advantage of di�erent parts of the electromagnetic spectrum is what allows us
to transmit television, radio and other applications through the same space without signi�cant interference.

The proof of the frequency shift property is very similar to that of the time shift (Section 8.4.2.4: Time
Shifting); however, here we would use the inverse Fourier transform in place of the Fourier transform. Since
we went through the steps in the previous, time-shift proof, below we will just show the initial and �nal step
to this proof:

z (t) =
1

2π

∫ ∞
−∞

F (ω − φ) ejωtdω (8.21)
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Now we would simply reduce this equation through another change of variables and simplify the terms.
Then we will prove the property expressed in the table above:

z (t) = f (t) ejφt (8.22)

8.4.3 Properties Demonstration

An interactive example demonstration of the properties is included below:

This media object is a LabVIEW VI. Please view or download it at
<CTFTSPlab.llb>

Figure 8.4: Interactive Signal Processing Laboratory Virtual Instrument created using NI's Labview.

8.4.4 Summary Table of CTFT Properties

Operation Name Signal ( f (t) ) Transform ( F (ω) )

Linearity (Section 8.4.2.1: Lin-
earity)

a (f1, t) + b (f2, t) a (F1, ω) + b (F2, ω)

Scalar Multiplication (Sec-
tion 8.4.2.1: Linearity)

αf (t) αF (ω)

Symmetry (Section 8.4.2.2: Sym-
metry)

F (t) 2πf (−ω)

Time Scaling (Section 8.4.2.3:
Time Scaling)

f (αt) 1
|α|F

(
ω
α

)
Time Shift (Section 8.4.2.4: Time
Shifting)

f (t− τ) F (ω) e−(jωτ)

Convolution in Time (Sec-
tion 8.4.2.5: Convolution)

(f1 (t) , f2 (t)) F1 (t)F2 (t)

Convolution in Frequency (Sec-
tion 8.4.2.5: Convolution)

f1 (t) f2 (t) 1
2π (F1 (t) , F2 (t))

Di�erentiation (Section 8.4.2.6:
Time Di�erentiation)

dn

dtn f (t) (jω)nF (ω)

continued on next page
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Parseval's Theorem (Sec-
tion 8.4.2.7: Parseval's Relation)

∫∞
−∞ (|f (t) |)2

dt
∫∞
−∞ (|F (ω) |)2

df

Modulation (Frequency Shift)
(Section 8.4.2.8: Modulation
(Frequency Shift))

f (t) ejφt F (ω − φ)

Table 8.2: Table of Fourier Transform Properties

8.5 Continuous Time Convolution and the CTFT8

8.5.1 Introduction

This module discusses convolution of continuous signals in the time and frequency domains.

8.5.2 Continuous Time Fourier Transform

The CTFT transforms a in�nite-length continuous signal in the time domain into an in�nite-length contin-
uous signal in the frequency domain.

CTFT

F (Ω) =
∫ ∞
−∞

f (t) e−(jΩt)dt (8.23)

Inverse CTFT

f (t) =
1

2π

∫ ∞
−∞
F (Ω) ejΩtdΩ (8.24)

8.5.3 Convolution Integral

The convolution integral expresses the output of an LTI system based on an input signal, x (t), and the
system's impulse response, h (t). The convolution integral is expressed as

y (t) =
∫ ∞
−∞

x (τ)h (t− τ) dτ (8.25)

Convolution is such an important tool that it is represented by the symbol ∗, and can be written as

y (t) = x (t) ∗ h (t) (8.26)

Convolution is commutative. For more information on the characteristics of the convolution integral, read
about the Properties of Convolution (Section 3.4).

8This content is available online at <http://cnx.org/content/m34849/1.4/>.
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8.5.4 Demonstration

Figure 8.5: Interact (when online) with a Mathematica CDF demonstrating Use of the CTFT in signal
denoising. To Download, right-click and save target as .cdf.
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8.5.5 Convolution Theorem

Let f and g be two functions with convolution f ∗ g.. Let F be the Fourier transform operator. Then

F (f ∗ g) = F (f) · F (g) (8.27)

F (f · g) = F (f) ∗ F (g) (8.28)

By applying the inverse Fourier transform F−1, we can write:

f ∗ g = F−1 (F (f) · F (g)) (8.29)

8.5.6 Conclusion

The Fourier transform of a convolution is the pointwise product of Fourier transforms. In other words,
convolution in one domain (e.g., time domain) corresponds to point-wise multiplication in the other domain
(e.g., frequency domain).



168 CHAPTER 8. CONTINUOUS TIME FOURIER TRANSFORM (CTFT)

Solutions to Exercises in Chapter 8

Solution to Exercise 8.2.1 (p. 159)
In order to calculate the Fourier transform, all we need to use is (8.9) (Continuous-Time Fourier Transform),
complex exponentials (Section 1.8), and basic calculus.

F (Ω) =
∫∞
−∞ f (t) e−(jΩt)dt

=
∫∞

0
e−(αt)e−(jΩt)dt

=
∫∞

0
e(−t)(α+jΩ)dt

= 0− −1
α+jΩ

(8.30)

F (Ω) =
1

α+ jΩ
(8.31)

Solution to Exercise 8.2.2 (p. 159)
Here we will use (8.10) (Inverse CTFT) to �nd the inverse FT given that t 6= 0.

x (t) = 1
2π

∫M
−M ej(Ω,t)dΩ

= 1
2π e

j(Ω,t)|Ω,Ω=ejw

= 1
πt sin (Mt)

(8.32)

x (t) =
M

π

(
sinc

Mt

π

)
(8.33)
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Discrete Time Fourier Transform
(DTFT)

9.1 Discrete Time Aperiodic Signals1

9.1.1 Introduction

This module describes the type of signals acted on by the Discrete Time Fourier Transform.

9.1.2 Relevant Spaces

The Discrete Time Fourier Transform maps arbitrary discrete time signals in l2 (Z) to �nite-length, discrete-
frequency signals in L2 ([0, 2π)).

Figure 9.1: Mapping l2 (Z) in the time domain to L2 ([0, 2π)) in the frequency domain.

9.1.3 Periodic and Aperiodic Signals

When a function repeats itself exactly after some given period, or cycle, we say it's periodic. A periodic
function can be mathematically de�ned as:

f [n] = f [n+mN ]m ∈ Z (9.1)

where N > 0 represents the fundamental period of the signal, which is the smallest positive value of N
for the signal to repeat. Because of this, you may also see a signal referred to as an N-periodic signal. Any

1This content is available online at <http://cnx.org/content/m34850/1.4/>.
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function that satis�es this equation is said to be periodic with period N. Periodic signals in discrete time
repeats themselves in each cycle. However, only integers are allowed as time variable in discrete time. We
denote signals in such case as f[n], n = ..., -2, -1, 0, 1, 2, ... Here's an example of a discrete-time periodic
signal with period N:

discrete-time periodic signal

Figure 9.2: Notice the function is the same after a time shift of N

We can think of periodic functions (with period N) two di�erent ways:

1. as functions on all of R

Figure 9.3: discrete time periodic function over all of R where f [n0] = f [n0 +N ]

2. or, we can cut out all of the redundancy, and think of them as functions on an interval [0, N ] (or,
more generally, [a, a+N ]). If we know the signal is N-periodic then all the information of the signal
is captured by the above interval.
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Figure 9.4: Remove the redundancy of the period function so that f [n] is unde�ned outside [0, N ].

An aperiodic DT function, however, f [n] does not repeat for any N ∈ R; i.e. there exists no N such
that this equation (9.1) holds. This broader class of signals can only be acted upon by the DTFT.

Suppose we have such an aperiodic function f [n] . We can construct a periodic extension of f [n] called
fNo [n] , where f [n] is repeated every N0 seconds. If we take the limit as N0 → ∞, we obtain a precise
model of an aperiodic signal for which all rules that govern periodic signals can be applied, including Fourier
Analysis (with an important modi�cation). For more detail on this distinction, see the module on the
Discete Time Fourier Transform.

9.1.4 Aperiodic Signal Demonstration

Figure 9.5: Click on the above thumbnail image (when online) to download an interactive Mathematica
Player testing Periodic versus Aperiodic Signals. To download, right-click and save as .cdf.
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9.1.5 Conclusion

A discrete periodic signal is completely de�ned by its values in one period, such as the interval [0,N]. Any
aperiodic signal can be de�ned as an in�nite sum of periodic functions, a useful de�nition that makes it
possible to use Fourier Analysis on it by assuming all frequencies are present in the signal.

9.2 Discrete Time Fourier Transform (DTFT)2

9.2.1 Introduction

In this module, we will derive an expansion for arbitrary discrete-time functions, and in doing so, derive the
Discrete Time Fourier Transform (DTFT).

Since complex exponentials (Section 1.8) are eigenfunctions of linear time-invariant (LTI) systems (Sec-
tion 14.5), calculating the output of an LTI systemH given ejωn as an input amounts to simple multiplication,
where ω0 = 2πk

N , and where H [k] ∈ C is the eigenvalue corresponding to k. As shown in the �gure, a simple
exponential input would yield the output

y [n] = H [k] ejωn (9.2)

Figure 9.6: Simple LTI system.

Using this and the fact that H is linear, calculating y [n] for combinations of complex exponentials is
also straightforward.

c1e
jω1n + c2e

jω2n → c1H [k1] ejω1n + c2H [k2] ejω1n

∑
l

cle
jωln →

∑
l

clH [kl] ejωln

The action of H on an input such as those in the two equations above is easy to explain. H inde-
pendently scales each exponential component ejωln by a di�erent complex number H [kl] ∈ C. As such,
if we can write a function y [n] as a combination of complex exponentials it allows us to easily calculate the
output of a system.

Now, we will look to use the power of complex exponentials to see how we may represent arbitrary signals
in terms of a set of simpler functions by superposition of a number of complex exponentials. Below we will
present the Discrete-Time Fourier Transform (DTFT). Because the DTFT deals with nonperiodic
signals, we must �nd a way to include all real frequencies in the general equations. For the DTFT we simply
utilize summation over all real numbers rather than summation over integers in order to express the aperiodic
signals.

2This content is available online at <http://cnx.org/content/m10108/2.18/>.
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9.2.2 DTFT synthesis

It can be demonstrated that an arbitrary Discrete Time-periodic function f [n] can be written as a linear
combination of harmonic complex sinusoids

f [n] =
N−1∑
k=0

cke
jω0kn (9.3)

where ω0 = 2π
N is the fundamental frequency. For almost all f [n] of practical interest, there exists cn to

make (9.3) true. If f [n] is �nite energy ( f [n] ∈ L2 [0, N ]), then the equality in (9.3) holds in the sense
of energy convergence; with discrete-time signals, there are no concerns for divergence as there are with
continuous-time signals.

The cn - called the Fourier coe�cients - tell us "how much" of the sinusoid ejω0kn is in f [n]. The formula
shows f [n] as a sum of complex exponentials, each of which is easily processed by an LTI system (since it
is an eigenfunction of every LTI system). Mathematically, it tells us that the set of complex exponentials{
ejω0kn , k ∈ Z

}
form a basis for the space of N-periodic discrete time functions.

9.2.2.1 Equations

Now, in order to take this useful tool and apply it to arbitrary non-periodic signals, we will have to delve
deeper into the use of the superposition principle. Let sT (t) be a periodic signal having period T . We want
to consider what happens to this signal's spectrum as the period goes to in�nity. We denote the spectrum
for any assumed value of the period by cn (T ). We calculate the spectrum according to the Fourier formula
for a periodic signal, known as the Fourier Series (for more on this derivation, see the section on Fourier
Series.)

cn =
1
T

∫ T

0

s (t) exp (−ßω0t) dt (9.4)

where ω0 = 2π
T and where we have used a symmetric placement of the integration interval about the origin

for subsequent derivational convenience. We vary the frequency index n proportionally as we increase the
period. De�ne

ST (f) ≡ Tcn =
1
T

∫ T

0

(ST (f) exp (ßω0t) dt(9.5)

making the corresponding Fourier Series

sT (t) =
∞∑
−∞

f (t) exp (ßω0t)
1
T

(9.6)

As the period increases, the spectral lines become closer together, becoming a continuum. Therefore,

lim
T→∞

sT (t) ≡ s (t) =

∞∫
−∞

S (f) exp (ßω0t) df (9.7)

with

S (f) =

∞∫
−∞

s (t) exp (−ßω0t) dt (9.8)

Discrete-Time Fourier Transform

F (ω) =
∞∑

n=−∞
f [n] e−(jωn) (9.9)
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Inverse DTFT

f [n] =
1

2π

∫ π

−π
F (ω) ejωndω (9.10)

warning: It is not uncommon to see the above formula written slightly di�erent. One of the most
common di�erences is the way that the exponential is written. The above equations use the radial
frequency variable ω in the exponential, where ω = 2πf , but it is also common to include the more
explicit expression, j2πft, in the exponential. Sometimes DTFT notation is expressed as F

(
ejω
)
,

to make it clear that it is not a CTFT (which is denoted as F (Ω)). Click here3 for an overview of
the notation used in Connexion's DSP modules.

9.2.3 DTFT De�nition demonstration

Figure 9.7: Click on the above thumbnail image (when online) to download an interactive Mathematica
Player demonstrating Discrete Time Fourier Transform. To Download, right-click and save target as .cdf.

9.2.4 DTFT Summary

Because complex exponentials are eigenfunctions of LTI systems, it is often useful to represent signals using
a set of complex exponentials as a basis. The discrete time Fourier transform synthesis formula expresses a
discrete time, aperiodic function as the in�nite sum of continuous frequency complex exponentials.

F (ω) =
∞∑

n=−∞
f [n] e−(jωn) (9.11)

3"DSP notation" <http://cnx.org/content/m10161/latest/>
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The discrete time Fourier transform analysis formula takes the same discrete time domain signal and
represents the signal in the continuous frequency domain.

f [n] =
1

2π

∫ π

−π
F (ω) ejωndω (9.12)

9.3 Common Discrete Time Fourier Transforms4

9.3.1 Common DTFTs

Time Domain x[n] Frequency Domain X(w) Notes

δ [n] 1

δ [n−M ] e−jwM integer M∑∞
m=−∞ δ [n−Mm]

∑∞
m=−∞ e−jwMm =

1
M

∑∞
k=−∞ δ

(
w
2π −

k
M

) integer M

e−jan 2πδ (w + a) real number a

u [n] 1
1−e−jw +

∑∞
k=−∞ πδ (w + 2πk)

anu (n) 1
1−ae−jw if |a| < 1

cos (an) π [δ (w − a) + δ (w + a)] real number a

W · sinc2 (Wn) tri
(

w
2πW

)
real number W, 0 < W ≤ 0.5

W · sinc [W (n+ a)] rect
(

w
2πW

)
· ejaw real numbers W,a 0 < W ≤ 1

rect
[

(n−M/2)
M

]
sin[w(M+1)/2]

sin(w/2) e−jwM/2 integer M

W
(n+a){cos [πW (n+ a)] −
sinc [W (n+ a)]}

jw · rect
(
w
πW

)
ejaw real numbers W,a 0 < W ≤ 1

1
πn2 [(−1)n − 1] |w|

{
0 n = 0

(−1)n

n elsewhere
jw di�erentiator �lter

{
0 n odd

2
πn n even

Hilbert Transform

Table 9.1

Notes
rect(t) is the rectangle function for arbitrary real-valued t.

rect(t) = {
0 if |t| > 1/2

1/2 if |t| = 1/2

1 if |t| < 1/2

(9.13)

4This content is available online at <http://cnx.org/content/m34771/1.3/>.
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tri(t) is the triangle function for arbitrary real-valued t.

tri(t) = {
1 + t if− 1 ≤ t ≤ 0

1− t if 0 < t ≤ 1

0 otherwise

9.4 Properties of the DTFT5

9.4.1 Introduction

This module will look at some of the basic properties of the Discrete-Time Fourier Transform (Section 9.2)
(DTFT).

note: We will be discussing these properties for aperiodic, discrete-time signals but understand
that very similar properties hold for continuous-time signals and periodic signals as well.

9.4.2 Discussion of Fourier Transform Properties

9.4.2.1 Linearity

The combined addition and scalar multiplication properties in the table above demonstrate the basic property
of linearity. What you should see is that if one takes the Fourier transform of a linear combination of signals
then it will be the same as the linear combination of the Fourier transforms of each of the individual signals.
This is crucial when using a table (Section 8.3) of transforms to �nd the transform of a more complicated
signal.

Example 9.1
We will begin with the following signal:

z [n] = af1 [n] + bf2 [n] (9.14)

Now, after we take the Fourier transform, shown in the equation below, notice that the linear
combination of the terms is una�ected by the transform.

Z (ω) = aF1 (ω) + bF2 (ω) (9.15)

9.4.2.2 Symmetry

Symmetry is a property that can make life quite easy when solving problems involving Fourier transforms.
Basically what this property says is that since a rectangular function in time is a sinc function in frequency,
then a sinc function in time will be a rectangular function in frequency. This is a direct result of the similarity
between the forward DTFT and the inverse DTFT. The only di�erence is the scaling by 2π and a frequency
reversal.

5This content is available online at <http://cnx.org/content/m0506/2.7/>.
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9.4.2.3 Time Scaling

This property deals with the e�ect on the frequency-domain representation of a signal if the time variable
is altered. The most important concept to understand for the time scaling property is that signals that are
narrow in time will be broad in frequency and vice versa. The simplest example of this is a delta function,
a unit pulse6 with a very small duration, in time that becomes an in�nite-length constant function in
frequency.

The table above shows this idea for the general transformation from the time-domain to the frequency-
domain of a signal. You should be able to easily notice that these equations show the relationship mentioned
previously: if the time variable is increased then the frequency range will be decreased.

9.4.2.4 Time Shifting

Time shifting shows that a shift in time is equivalent to a linear phase shift in frequency. Since the frequency
content depends only on the shape of a signal, which is unchanged in a time shift, then only the phase
spectrum will be altered. This property is proven below:

Example 9.2
We will begin by letting z [n] = f [n− η]. Now let us take the Fourier transform with the previous
expression substituted in for z [n].

Z (ω) =
∫ ∞
−∞

f [n− η] e−(jωn)dn (9.16)

Now let us make a simple change of variables, where σ = n− η. Through the calculations below,
you can see that only the variable in the exponential are altered thus only changing the phase in
the frequency domain.

Z (ω) =
∫∞
−∞ f [σ] e−(jω(σ+η)n)dη

= e−(jωη)
∫∞
−∞ f [σ] e−(jωσ)dσ

= e−(jωη)F (ω)

(9.17)

9.4.2.5 Convolution

Convolution is one of the big reasons for converting signals to the frequency domain, since convolution in
time becomes multiplication in frequency. This property is also another excellent example of symmetry
between time and frequency. It also shows that there may be little to gain by changing to the frequency
domain when multiplication in time is involved.

We will introduce the convolution integral here, but if you have not seen this before or need to refresh your
memory, then look at the discrete-time convolution (Section 4.3) module for a more in depth explanation
and derivation.

y [n] = (f1 [n] , f2 [n])

=
∑∞
η=−∞ f1 [η] f2 [n− η]

(9.18)

6"Elemental Signals": Section Pulse <http://cnx.org/content/m0004/latest/#pulsedef>
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9.4.2.6 Time Di�erentiation

Since LTI (Section 2.1) systems can be represented in terms of di�erential equations, it is apparent with
this property that converting to the frequency domain may allow us to convert these complicated di�erential
equations to simpler equations involving multiplication and addition. This is often looked at in more detail
during the study of the Z Transform (Section 11.1).

9.4.2.7 Parseval's Relation

∞∑
n=−∞

(|f [n] |)2 =
∫ π

−π
(|F (ω) |)2

dω (9.19)

Parseval's relation tells us that the energy of a signal is equal to the energy of its Fourier transform.

Figure 9.8

9.4.2.8 Modulation (Frequency Shift)

Modulation is absolutely imperative to communications applications. Being able to shift a signal to a di�erent
frequency, allows us to take advantage of di�erent parts of the electromagnetic spectrum is what allows us
to transmit television, radio and other applications through the same space without signi�cant interference.

The proof of the frequency shift property is very similar to that of the time shift (Section 9.4.2.4: Time
Shifting); however, here we would use the inverse Fourier transform in place of the Fourier transform. Since
we went through the steps in the previous, time-shift proof, below we will just show the initial and �nal step
to this proof:

z (t) =
1

2π

∫ ∞
−∞

F (ω − φ) ejωtdω (9.20)

Now we would simply reduce this equation through another change of variables and simplify the terms.
Then we will prove the property expressed in the table above:

z (t) = f (t) ejφt (9.21)

9.4.3 Properties Demonstration

An interactive example demonstration of the properties is included below:
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This media object is a LabVIEW VI. Please view or download it at
<CTFTSPlab.llb>

Figure 9.9: Interactive Signal Processing Laboratory Virtual Instrument created using NI's Labview.

9.4.4 Summary Table of DTFT Properties

Discrete-Time Fourier Transform Properties

Sequence Domain Frequency Domain

Linearity a1s1 (n) + a2s2 (n) a1S1

(
ej2πf

)
+ a2S2

(
ej2πf

)
Conjugate Symmetry s (n) real S

(
ej2πf

)
= S

(
e−(j2πf)

)∗
Even Symmetry s (n) = s (−n) S

(
ej2πf

)
= S

(
e−(j2πf)

)
Odd Symmetry s (n) = −s (−n) S

(
ej2πf

)
= −S

(
e−(j2πf)

)
Time Delay s (n− n0) e−(j2πfn0)S

(
ej2πf

)
Multiplication by n ns (n) 1

−(2jπ)

dS(ej2πf)
df

Sum
∑∞
n=−∞ s (n) S

(
ej2π0

)
Value at Origin s (0)

∫ 1
2
− 1

2
S
(
ej2πf

)
df

Parseval's Theorem
∑∞
n=−∞ (|s (n) |)2 ∫ 1

2
− 1

2

(
|S
(
ej2πf

)
|
)2
df

Complex Modulation ej2πf0ns (n) S
(
ej2π(f−f0)

)
Amplitude Modulation s (n) cos (2πf0n)

S(ej2π(f−f0))+S(ej2π(f+f0))
2

s (n) sin (2πf0n)
S(ej2π(f−f0))−S(ej2π(f+f0))

2j

Table 9.2: Discrete-time Fourier transform properties and relations.

9.5 Discrete Time Convolution and the DTFT7

9.5.1 Introduction

This module discusses convolution of discrete signals in the time and frequency domains.

9.5.2 The Discrete-Time Convolution

9.5.2.1 Discrete Time Fourier Transform

The DTFT transforms an in�nite-length discrete signal in the time domain into an �nite-length (or 2π-
periodic) continuous signal in the frequency domain.

DTFT

X (ω) =
∞∑

n=−∞
x (n) e−(jωn) (9.22)

7This content is available online at <http://cnx.org/content/m34851/1.6/>.



180 CHAPTER 9. DISCRETE TIME FOURIER TRANSFORM (DTFT)

Inverse DTFT

x (n) =
1

2π

∫ 2π

0

X (ω) ejωndω (9.23)
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9.5.2.2 Demonstration

Figure 9.10: Interact (when online) with a Mathematica CDF demonstrating the Discrete Convolution.
To Download, right-click and save as .cdf.
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9.5.2.3 Convolution Sum

As mentioned above, the convolution sum provides a concise, mathematical way to express the output of
an LTI system based on an arbitrary discrete-time input signal and the system's impulse response. The
convolution sum is expressed as

y [n] =
∞∑

k=−∞

x [k]h [n− k] (9.24)

As with continuous-time, convolution is represented by the symbol *, and can be written as

y [n] = x [n] ∗ h [n] (9.25)

Convolution is commutative. For more information on the characteristics of convolution, read about the
Properties of Convolution (Section 3.4).

9.5.2.4 Convolution Theorem

Let f and g be two functions with convolution f ∗ g.. Let F be the Fourier transform operator. Then

F (f ∗ g) = F (f) · F (g) (9.26)

F (f · g) = F (f) ∗ F (g) (9.27)

By applying the inverse Fourier transform F−1, we can write:

f ∗ g = F−1 (F (f) · F (g)) (9.28)

9.5.3 Conclusion

The Fourier transform of a convolution is the pointwise product of Fourier transforms. In other words,
convolution in one domain (e.g., time domain) corresponds to point-wise multiplication in the other domain
(e.g., frequency domain).
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Sampling and Reconstruction

10.1 Signal Sampling1

10.1.1 Introduction

Digital computers can process discrete time signals using extremely �exible and powerful algorithms. How-
ever, most signals of interest are continuous time signals, which is how data almost always appears in nature.
This module introduces the concepts behind converting continuous time signals into discrete time signals
through a process called sampling.

10.1.2 Sampling

Sampling a continuous time signal produces a discrete time signal by selecting the values of the continuous
time signal at evenly spaced points in time. Thus, sampling a continuous time signal x with sampling period
Ts gives the discrete time signal xs de�ned by xs (n) = x (nTs) . The sampling angular frequency is then
given by ωs = 2π/Ts.

It should be intuitively clear that multiple continuous time signals sampled at the same rate can produce
the same discrete time signal since uncountably many continuous time functions could be constructed that
connect the points on the graph of any discrete time function. Thus, sampling at a given rate does not result
in an injective relationship. Hence, sampling is, in general, not invertible.

Example 10.1
For instance, consider the signals x, y de�ned by

x (t) =
sin (t)
t

(10.1)

y (t) =
sin (5t)

t
(10.2)

and their sampled versions xS , ys with sampling period Ts = π/2

xs (n) =
sin (nπ/2)
nπ/2

(10.3)

ys (n) =
sin (n5π/2)

nπ/2
. (10.4)

1This content is available online at <http://cnx.org/content/m10798/2.8/>.
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Notice that since

sin (n5π/2) = sin (n2π + nπ/2) = sin (nπ/2) (10.5)

it follows that

ys (n) =
sin (nπ/2)
nπ/2

= xs (n) . (10.6)

Hence, x and y provide an example of distinct functions with the same sampled versions at a
speci�c sampling rate.

It is also useful to consider the relationship between the frequency domain representations of the continuous
time function and its sampled versions. Consider a signal x sampled with sampling period Ts to produce
the discrete time signal xs (n) = x (nTs). The spectrum Xs (ω) for ω ∈ [−π, π) of xs is given by

Xs (ω) =
∞∑

n=−∞
x (nTs) e−jωn. (10.7)

Using the continuous time Fourier transform, x (tTs) can be represented as

x (tTs) =
1

2πTs

∫ ∞
−∞

X

(
ω1

Ts

)
ejω1tdω1. (10.8)

Thus, the unit sampling period version of x (tTs), which is x (nTs) can be represented as

x (nTs) =
1

2πTs

∫ ∞
−∞

X

(
ω1

Ts

)
ejω1ndω1. (10.9)

This is algebraically equivalent to the representation

x (nTs) =
1
Ts

∞∑
k=−∞

1
2π

∫ π

−π
X

(
ω1 − 2πk

Ts

)
ej(ω1−2πk)ndω1, (10.10)

which reduces by periodicity of complex exponentials to

x (nTs) =
1
Ts

∞∑
k=−∞

1
2π

∫ π

−π
X

(
ω1 − 2πk

Ts

)
ejω1ndω1. (10.11)

Hence, it follows that

Xs (ω) =
1
Ts

∞∑
k=−∞

∞∑
n=−∞

(∫ π

−π
X

(
ω1 − 2πk

Ts

)
ejω1ndω1

)
e−jωn. (10.12)

Noting that the above expression contains a Fourier series and inverse Fourier series pair, it follows that

Xs (ω) =
1
Ts

∞∑
k=−∞

X

(
ω − 2πk
Ts

)
. (10.13)

Hence, the spectrum of the sampled signal is, intuitively, the scaled sum of an in�nite number of shifted and
time scaled copies of original signal spectrum. Aliasing, which will be discussed in depth in later modules,
occurs when these shifted spectrum copies overlap and sum together. Note that when the original signal x is
bandlimited to (−π/Ts, π/Ts) no overlap occurs, so each period of the sampled signal spectrum has the same
form as the orignal signal spectrum. This suggest that if we sample a bandlimited signal at a su�ciently
high sampling rate, we can recover it from its samples as will be further described in the modules on the
Nyquist-Shannon sampling theorem and on perfect reconstruction.
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10.1.3 Sampling Summary

Sampling a continuous time signal produces a discrete time signal by selecting the values of the continuous
time signal at equally spaced points in time. However, we have shown that this relationship is not injective as
multiple continuous time signals can be sampled at the same rate to produce the same discrete time signal.
This is related to a phenomenon called aliasing which will be discussed in later modules. Consequently,
the sampling process is not, in general, invertible. Nevertheless, as will be shown in the module concerning
reconstruction, the continuous time signal can be recovered from its sampled version if some additional
assumptions hold.

10.2 Sampling Theorem2

10.2.1 Introduction

With the introduction of the concept of signal sampling, which produces a discrete time signal by selecting
the values of the continuous time signal at evenly spaced points in time, it is now possible to discuss one
of the most important results in signal processing, the Nyquist-Shannon sampling theorem. Often simply
called the sampling theorem, this theorem concerns signals, known as bandlimited signals, with spectra that
are zero for all frequencies with absolute value greater than or equal to a certain level. The theorem implies
that there is a su�ciently high sampling rate at which a bandlimited signal can be recovered exactly from its
samples, which is an important step in the processing of continuous time signals using the tools of discrete
time signal processing.

10.2.2 Nyquist-Shannon Sampling Theorem

10.2.2.1 Statement of the Sampling Theorem

The Nyquist-Shannon sampling theorem concerns signals with continuous time Fourier transforms that are
only nonzero on the interval (−B,B) for some constant B. Such a function is said to be bandlimited to
(−B,B). Essentially, the sampling theorem has already been implicitly introduced in the previous module
concerning sampling. Given a continuous time signals x with continuous time Fourier transform X, recall
that the spectrum Xs of sampled signal xs with sampling period Ts is given by

Xs (ω) =
1
Ts

∞∑
k=−∞

X

(
ω − 2πk
Ts

)
. (10.14)

It had previously been noted that if x is bandlimited to (−π/Ts, π/Ts), the period of Xs centered about the
origin has the same form as X scaled in frequency since no aliasing occurs. This is illustrated in Figure 10.1.
Hence, if any two (−π/Ts, π/Ts) bandlimited continuous time signals sampled to the same signal, they would
have the same continuous time Fourier transform and thus be identical. Thus, for each discrete time signal
there is a unique (−π/Ts, π/Ts) bandlimited continuous time signal that samples to the discrete time signal
with sampling period Ts. Therefore, this (−π/Ts, π/Ts) bandlimited signal can be found from the samples
by inverting this bijection.

This is the essence of the sampling theorem. More formally, the sampling theorem states the following. If
a signal x is bandlimited to (−B,B), it is completely determined by its samples with sampling rate ωs = 2B.
That is to say, x can be reconstructed exactly from its samples xs with sampling rate ωs = 2B. The angular
frequency 2B is often called the angular Nyquist rate. Equivalently, this can be stated in terms of the
sampling period Ts = 2π/ωs. If a signal x is bandlimited to (−B,B), it is completely determined by its
samples with sampling period Ts = π/B. That is to say, x can be reconstructed exactly from its samples xs
with sampling period Ts.

2This content is available online at <http://cnx.org/content/m10791/2.7/>.
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Figure 10.1: The spectrum of a bandlimited signals is shown as well as the spectra of its samples
at rates above and below the Nyquist frequency. As is shown, no aliasing occurs above the Nyquist
frequency, and the period of the samples spectrum centered about the origin has the same form as the
spectrum of the original signal scaled in frequency. Below the Nyquist frequency, aliasing can occur and
causes the spectrum to take a di�erent than the original spectrum.

10.2.2.2 Proof of the Sampling Theorem

The above discussion has already shown the sampling theorem in an informal and intuitive way that could
easily be re�ned into a formal proof. However, the original proof of the sampling theorem, which will be
given here, provides the interesting observation that the samples of a signal with period Ts provide Fourier
series coe�cients for the original signal spectrum on (−π/Ts, π/Ts).

Let x be a (−π/Ts, π/Ts) bandlimited signal and xs be its samples with sampling period Ts. We can
represent x in terms of its spectrum X using the inverse continuous time Fourier transfrom and the fact that
x is bandlimited. The result is

x (t) = 1
2π

∫ π/Ts
−π/Ts X (ω) ejωtdω (10.15)

This representation of x may then be sampled with sampling period Ts to produce

xs (n) = xs (nTs) = 1
2π

∫ π/Ts
−π/Ts X (ω) ejωnTsdω (10.16)

Noticing that this indicates that xs (n) is the nth continuous time Fourier series coe�cient for X (ω) on
the interval (−π/Ts, π/Ts), it is shown that the samples determine the original spectrum X (ω) and, by
extension, the original signal itself.
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10.2.2.3 Perfect Reconstruction

Another way to show the sampling theorem is to derive the reconstruction formula that gives the original
signal x̃ = x from its samples xs with sampling period Ts, provided x is bandlimited to (−π/Ts, π/Ts). This
is done in the module on perfect reconstruction. However, the result, known as the Whittaker-Shannon
reconstruction formula, will be stated here. If the requisite conditions hold, then the perfect reconstruction
is given by

x (t) =
∞∑

n=−∞
xs (n) sinc (t/Ts − n) (10.17)

where the sinc function is de�ned as

sinc (t) =
sin (πt)
πt

. (10.18)

From this, it is clear that the set

{sinc (t/Ts − n) |n ∈ Z} (10.19)

forms an orthogonal basis for the set of (−π/Ts, π/Ts) bandlimited signals, where the coe�cients of a
(−π/Ts, π/Ts) signal in this basis are its samples with sampling period Ts.

10.2.3 Practical Implications

10.2.3.1 Discrete Time Processing of Continuous Time Signals

The Nyquist-Shannon Sampling Theorem and the Whittaker-Shannon Reconstruction formula enable dis-
crete time processing of continuous time signals. Because any linear time invariant �lter performs a multi-
plication in the frequency domain, the result of applying a linear time invariant �lter to a bandlimited signal
is an output signal with the same bandlimit. Since sampling a bandlimited continuous time signal above
the Nyquist rate produces a discrete time signal with a spectrum of the same form as the original spectrum,
a discrete time �lter could modify the samples spectrum and perfectly reconstruct the output to produce
the same result as a continuous time �lter. This allows the use of digital computing power and �exibility to
be leveraged in continuous time signal processing as well. This is more thouroughly described in the �nal
module of this chapter.

10.2.3.2 Psychoacoustics

The properties of human physiology and psychology often inform design choices in technologies meant for
interactin with people. For instance, digital devices dealing with sound use sampling rates related to the
frequency range of human vocalizations and the frequency range of human auditory sensativity. Because
most of the sounds in human speech concentrate most of their signal energy between 5 Hz and 4 kHz, most
telephone systems discard frequencies above 4 kHz and sample at a rate of 8 kHz. Discarding the frequencies
greater than or equal to 4 kHz through use of an anti-aliasing �lter is important to avoid aliasing, which
would negatively impact the quality of the output sound as is described in a later module. Similarly, human
hearing is sensitive to frequencies between 20 Hz and 20 kHz. Therefore, sampling rates for general audio
waveforms placed on CDs were chosen to be greater than 40 kHz, and all frequency content greater than
or equal to some level is discarded. The particular value that was chosen, 44.1 kHz, was selected for other
reasons, but the sampling theorem and the range of human hearing provided a lower bound for the range of
choices.
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10.2.4 Sampling Theorem Summary

The Nyquist-Shannon Sampling Theorem states that a signal bandlimited to (−π/Ts, π/Ts) can be recon-
structed exactly from its samples with sampling period Ts. The Whittaker-Shannon interpolation formula,
which will be further described in the section on perfect reconstruction, provides the reconstruction of the
unique (−π/Ts, π/Ts) bandlimited continuous time signal that samples to a given discrete time signal with
sampling period Ts. This enables discrete time processing of continuous time signals, which has many
powerful applications.

10.3 Signal Reconstruction3

10.3.1 Introduction

The sampling process produces a discrete time signal from a continuous time signal by examining the value
of the continuous time signal at equally spaced points in time. Reconstruction, also known as interpolation,
attempts to perform an opposite process that produces a continuous time signal coinciding with the points
of the discrete time signal. Because the sampling process for general sets of signals is not invertible, there
are numerous possible reconstructions from a given discrete time signal, each of which would sample to that
signal at the appropriate sampling rate. This module will introduce some of these reconstruction schemes.

10.3.2 Reconstruction

10.3.2.1 Reconstruction Process

The process of reconstruction, also commonly known as interpolation, produces a continuous time signal
that would sample to a given discrete time signal at a speci�c sampling rate. Reconstruction can be mathe-
matically understood by �rst generating a continuous time impulse train

ximp (t) =
∞∑

n=−∞
xs (n) δ (t− nTs) (10.20)

from the sampled signal xs with sampling period Ts and then applying a lowpass �lter G that satis�es certain
conditions to produce an output signal x̃. If G has impulse response g, then the result of the reconstruction
process, illustrated in Figure 10.2, is given by the following computation, the �nal equation of which is used
to perform reconstruction in practice.

x̃ (t) = (ximp ∗ g) (t)

=
∫∞
−∞ ximp (τ) g (t− τ) dτ

=
∫∞
−∞

∑∞
n=−∞ xs (n) δ (τ − nTs) g (t− τ) dτ

=
∑∞
n=−∞ xs (n)

∫∞
−∞ δ (τ − nTs) g (t− τ) dτ

=
∑∞
n=−∞ xs (n) g (t− nTs)

(10.21)

3This content is available online at <http://cnx.org/content/m10788/2.8/>.
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Figure 10.2: Block diagram of reconstruction process for a given lowpass �lter G.

10.3.2.2 Reconstruction Filters

In order to guarantee that the reconstructed signal x̃ samples to the discrete time signal xs from which it
was reconstructed using the sampling period Ts, the lowpass �lter G must satisfy certain conditions. These
can be expressed well in the time domain in terms of a condition on the impulse response g of the lowpass
�lter G. The su�cient condition to be a reconstruction �lters that we will require is that, for all n ∈ Z,

g (nTs) = {
1 n = 0

0 n 6= 0
= δ (n) . (10.22)

This means that g sampled at a rate Ts produces a discrete time unit impulse signal. Therefore, it follows
that sampling x̃ with sampling period Ts results in

x̃ (nTs) =
∑∞
m=−∞ xs (m) g (nTs −mTs)

=
∑∞
m=−∞ xs (m) g ((n−m)Ts)

=
∑∞
m=−∞ xs (m) δ (n−m)

= xs (n) ,

(10.23)

which is the desired result for reconstruction �lters.

10.3.2.3 Cardinal Basis Splines

Since there are many continuous time signals that sample to a given discrete time signal, additional con-
straints are required in order to identify a particular one of these. For instance, we might require our
reconstruction to yield a spline of a certain degree, which is a signal described in piecewise parts by polyno-
mials not exceeding that degree. Additionally, we might want to guarantee that the function and a certain
number of its derivatives are continuous.

This may be accomplished by restricting the result to the span of sets of certain splines, called basis
splines or B-splines. Speci�cally, if a nth degree spline with continuous derivatives up to at least order n− 1
is required, then the desired function for a given Ts belongs to the span of {Bn (t/Ts − k) |k ∈ Z} where

Bn = B0 ∗Bn−1 (10.24)

for n ≥ 1 and

B0 (t) = {
1 −1/2 < t < 1/2

0 otherwise
. (10.25)
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Figure 10.3: The basis splines Bn are shown in the above plots. Note that, except for the order 0 and
order 1 functions, these functions do not satisfy the conditions to be reconstruction �lters. Also notice
that as the order increases, the functions approach the Gaussian function, which is exactly B∞.

However, the basis splines Bn do not satisfy the conditions to be a reconstruction �lter for n ≥ 2 as is
shown in Figure 10.3. Still, the Bn are useful in de�ning the cardinal basis splines, which do satisfy the
conditions to be reconstruction �lters. If we let bn be the samples of Bn on the integers, it turns out that bn
has an inverse b−1

n with respect to the operation of convolution for each n. This is to say that b−1
n ∗ bn = δ.

The cardinal basis spline of order n for reconstruction with sampling period Ts is de�ned as

ηn (t) =
∞∑

k=−∞

b−1
n (k)Bn (t/Ts − k) . (10.26)

In order to con�rm that this satis�es the condition to be a reconstruction �lter, note that

ηn (mTs) =
∞∑

k=−∞

b−1
n (k)Bn (m− k) =

(
b−1
n ∗ bn

)
(m) = δ (m) . (10.27)

Thus, ηn is a valid reconstruction �lter. Since ηn is an nth degree spline with continuous derivatives up to
order n − 1, the result of the reconstruction will be a nth degree spline with continuous derivatives up to
order n− 1.



191

Figure 10.4: The above plots show cardinal basis spline functions η0, η1, η2, and η∞. Note that the
functions satisfy the conditions to be reconstruction �lters. Also, notice that as the order increases, the
cardinal basis splines approximate the sinc function, which is exactly η∞. Additionally, these �lters are
acausal.

The lowpass �lter with impulse response equal to the cardinal basis spline η0 of order 0 is one of the
simplest examples of a reconstruction �lter. It simply extends the value of the discrete time signal for half
the sampling period to each side of every sample, producing a piecewise constant reconstruction. Thus, the
result is discontinuous for all nonconstant discrete time signals.

Likewise, the lowpass �lter with impulse response equal to the cardinal basis spline η1 of order 1 is another
of the simplest examples of a reconstruction �lter. It simply joins the adjacent samples with a straight line,
producing a piecewise linear reconstruction. In this way, the reconstruction is continuous for all possible
discrete time signals. However, unless the samples are collinear, the result has discontinuous �rst derivatives.

In general, similar statements can be made for lowpass �lters with impulse responses equal to cardinal
basis splines of any order. Using the nth order cardinal basis spline ηn, the result is a piecewise degree
n polynomial. Furthermore, it has continuous derivatives up to at least order n − 1. However, unless all
samples are points on a polynomial of degree at most n, the derivative of order n will be discontinuous.

Reconstructions of the discrete time signal given in Figure 10.5 using several of these �lters are shown
in Figure 10.6. As the order of the cardinal basis spline increases, notice that the reconstruction approaches
that of the in�nite order cardinal spline η∞, the sinc function. As will be shown in the subsequent section
on perfect reconstruction, the �lters with impulse response equal to the sinc function play an especially
important role in signal processing.
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Figure 10.5: The above plot shows an example discrete time function. This discrete time function will
be reconstructed using sampling period Ts using several cardinal basis splines in Figure 10.6.

Figure 10.6: The above plots show interpolations of the discrete time signal given in Figure 10.5 using
lowpass �lters with impulse responses given by the cardinal basis splines shown in Figure 10.4. Notice
that the interpolations become increasingly smooth and approach the sinc interpolation as the order
increases.



193

10.3.3 Reconstruction Summary

Reconstruction of a continuous time signal from a discrete time signal can be accomplished through several
schemes. However, it is important to note that reconstruction is not the inverse of sampling and only
produces one possible continuous time signal that samples to a given discrete time signal. As is covered
in the subsequent module, perfect reconstruction of a bandlimited continuous time signal from its sampled
version is possible using the Whittaker-Shannon reconstruction formula, which makes use of the ideal lowpass
�lter and its sinc function impulse response, if the sampling rate is su�ciently high.

10.4 Perfect Reconstruction4

10.4.1 Introduction

If certain additional assumptions about the original signal and sampling rate hold, then the original signal
can be recovered exactly from its samples using a particularly important type of �lter. More speci�cally, it
will be shown that if a bandlimited signal is sampled at a rate greater than twice its bandlimit, the Whittaker-
Shannon reconstruction formula perfectly reconstructs the original signal. This formula makes use of the
ideal lowpass �lter, which is related to the sinc function. This is extremely useful, as sampled versions of
continuous time signals can be �ltered using discrete time signal processing, often in a computer. The results
may then be reconstructed to produce the same continuous time output as some desired continuous time
system.

10.4.2 Perfect Reconstruction

In order to understand the conditions for perfect reconstruction and the �lter it employs, consider the
following. As a beginning, a su�cient condition under which perfect reconstruction is possible will be
discussed. Subsequently, the �lter and process used for perfect reconstruction will be detailed.

Recall that the sampled version xs of a continuous time signal x with sampling period Ts has a spectrum
given by

Xs (ω) =
1
Ts

∞∑
k=−∞

X

(
ω − 2πk
Ts

)
. (10.28)

As before, note that if x is bandlimited to (−π/Ts, π/Ts), meaning that X is only nonzero on (−π/Ts, π/Ts),
then each period of Xs has the same form as X. Thus, we can identify the original spectrum X from the
spectrum of the samples Xs and, by extension, the original signal x from its samples xs at rate Ts if x is
bandlimited to (−π/Ts, π/Ts).

If a signal x is bandlimited to (−B,B), then it is also bandlimited to (−π/Ts, π/Ts) provided that
Ts < π/B. Thus, if we ensure that x is sampled to xs with su�ciently high sampling angular frequency ωs =
2π/Ts > 2B and have a way of identifying the unique (−π/Ts, π/Ts) bandlimited signal corresponding to a
discrete time signal at sampling period Ts, then xs can be used to reconstruct x̃ = x exactly. The frequency
2B is known as the angular Nyquist rate. Therefore, the condition that the sampling rate ωs = 2π/Ts > 2B
be greater than the Nyquist rate is a su�cient condition for perfect reconstruction to be possible.

The correct �lter must also be known in order to perform perfect reconstruction. The ideal lowpass
�lter de�ned by G (ω) = Ts (u (ω + π/Ts)− u (ω − π/Ts)), which is shown in Figure 10.7, removes all signal
content not in the frequency range (−π/Ts, π/Ts). Therefore, application of this �lter to the impulse train∑∞
n=−∞ xs (n) δ (t− nTs) results in an output bandlimited to (−π/Ts, π/Ts).
4This content is available online at <http://cnx.org/content/m10790/2.6/>.
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We now only need to con�rm that the impulse response g of the �lter G satis�es our su�cient condition
to be a reconstruction �lter. The inverse Fourier transform of G (ω) is

g (t) = sinc (t/Ts) = {
1 t = 0

sin(πt/Ts)
πt/Ts

t 6= 0
, (10.29)

which is shown in Figure 10.7. Hence,

g (nTs) = sinc (n) = {
1 n = 0

sin(πn)
πn n 6= 0

= {
1 n = 0

0 n 6= 0
= δ (n) . (10.30)

Therefore, the ideal lowpass �lter G is a valid reconstruction �lter. Since it is a valid reconstruction �lter
and always produces an output that is bandlimited to (−π/Ts, π/Ts), this �lter always produces the unique
(−π/Ts, π/Ts) bandlimited signal that samples to a given discrete time sequence at sampling period Ts when
the impulse train

∑∞
n=−∞ xs (n) δ (t− nTs) is input.

Therefore, we can always reconstruct any (−π/Ts, π/Ts) bandlimited signal from its samples at sampling
period Ts by the formula

x (t) =
∞∑

n=−∞
xs (n) sinc (t/Ts − n) . (10.31)

This perfect reconstruction formula is known as the Whittaker-Shannon interpolation formula and is some-
times also called the cardinal series. In fact, the sinc function is the in�nite order cardinal basis spline η∞.
Consequently, the set {sinc (t/Ts − n) |n ∈ Z} forms a basis for the vector space of (−π/Ts, π/Ts) bandlim-
ited signals where the signal samples provide the corresponding coe�cients. It is a simple exercise to show
that this basis is, in fact, an orthogonal basis.

Figure 10.7: The above plots show the ideal lowpass �lter and its inverse Fourier transform, the sinc
function.



195

Figure 10.8: The plots show an example discrete time signal and its Whittaker-Shannon sinc recon-
struction.

10.4.3 Perfect Reconstruction Summary

This module has shown that bandlimited continuous time signals can be reconstructed exactly from their
samples provided that the sampling rate exceeds the Nyquist rate, which is twice the bandlimit. The
Whittaker-Shannon reconstruction formula computes this perfect reconstruction using an ideal lowpass �lter,
with the resulting signal being a sum of shifted sinc functions that are scaled by the sample values. Sampling
below the Nyquist rate can lead to aliasing which makes the original signal irrecoverable as is described in
the subsequent module. The ability to perfectly reconstruct bandlimited signals has important practical
implications for the processing of continuous time signals using the tools of discrete time signal processing.

10.5 Aliasing Phenomena5

10.5.1 Introduction

Through discussion of the Nyquist-Shannon sampling theorem and Whittaker-Shannon reconstruction for-
mula, it has already been shown that a (−B,B) continuous time signal can be reconstructed from its samples
at rate ωs = 2π/Ts via the sinc interpolation �lter if ωs > 2B. Now, this module will investigate a problem-
atic phenomenon, called aliasing, that can occur if this su�cient condition for perfect reconstruction does not
hold. When aliasing occurs the spectrum of the samples has di�erent form than the original signal spectrum,
so the samples cannot be used to reconstruct the original signal through Whittaker-Shannon interpolation.

10.5.2 Aliasing

Aliasing occurs when each period of the spectrum of the samples does not have the same form as the spectrum
of the original signal. Given a continuous time signals x with continuous time Fourier transform X, recall
that the spectrum Xs of sampled signal xs with sampling period Ts is given by

Xs (ω) =
1
Ts

∞∑
k=−∞

X

(
ω − 2πk
Ts

)
. (10.32)

5This content is available online at <http://cnx.org/content/m34847/1.5/>.
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As has already been mentioned several times, if x is bandlimited to (−π/Ts, π/Ts) then each period of

Xs has the same form as X. However, if x is not bandlimited to (−π/Ts, π/Ts), then the X
(
ω−2πk
Ts

)
can

overlap and sum together. This is illustrated in Figure 10.9 in which sampling above the Nyquist frequency
produces a samples spectrum of the same shape as the original signal, but sampling below the Nyquist
frequency produces a samples spectrum with very di�erent shape. Whittaker-Shannon interpolation of each
of these sequences produces di�erent results. The low frequencies not a�ected by the overlap are the same,
but there is noise content in the higher frequencies caused by aliasing. Higher frequency energy masquerades
as low energy content, a highly undesirable e�ect.

Figure 10.9: The spectrum of a bandlimited signals is shown as well as the spectra of its samples
at rates above and below the Nyquist frequency. As is shown, no aliasing occurs above the Nyquist
frequency, and the period of the samples spectrum centered about the origin has the same form as the
spectrum of the original signal scaled in frequency. Below the Nyquist frequency, aliasing can occur and
causes the spectrum to take a di�erent than the original spectrum.

Unlike when sampling above the Nyquist frequency, sampling below the Nyquist frequency does not yield
an injective (one-to-one) function from the (−B,B) bandlimited continuous time signals to the discrete time
signals. Any signal x with spectrum X which overlaps and sums to Xs samples to xs. It should be intuitively
clear that there are very many (−B,B) bandlimited signals that sample to a given discrete time signal below
the Nyquist frequency, as is demonstrated in Figure 10.10. It is quite easy to construct uncountably in�nite
families of such signals.

Aliasing obtains it name from the fact that multiple, in fact in�nitely many, (−B,B) bandlimited signals
sample to the same discrete sequence if ωs < 2B. Thus, information about the original signal is lost in this
noninvertible process, and these di�erent signals e�ectively assume the same identity, an �alias�. Hence, under
these conditions the Whittaker-Shannon interpolation formula will not produce a perfect reconstruction of
the original signal but will instead give the unique (−ωs/2, ωs/2) bandlimited signal that samples to the
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discrete sequence.

Figure 10.10: The spectrum of a discrete time signal xs, taken from Figure 10.9, is shown along with
the spectra of three (−B,B) signals that sample to it at rate ωs < 2B. From the sampled signal alone,
it is impossible to tell which, if any, of these was sampled at rate ωs to produce xs. In fact, there are
in�nitely many (−B,B) bandlimited signals that sample to xs at a sampling rate below the Nyquist rate.
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10.5.3 Aliasing Demonstration

Figure 10.11: Interact (when online) with a Mathematica CDF demonstrating sampling and aliasing
for a sinusoid. To Download, right-click and save target as .cdf.

10.5.4 Aliasing Summary

Aliasing, essentially the signal processing version of identity theft, occurs when each period of the spectrum
of the samples does not have the same form as the spectrum of the original signal. As has been shown,
there can be in�nitely many (−B,B) bandlimited signals that sample to a given discrete time signal xs at
a rate ωs = 2π/Ts < 2B below the Nyquist frequency. However, there is a unique (−B,B) bandlimited
signal that samples to xs, which is given by the Whittaker-Shannon interpolation of xs, at rate ωs ≥ 2B
as no aliasing occurs above the Nyquist frequency. Unfortunately, su�ciently high sampling rates cannot
always be produced. Aliasing is detrimental to many signal processing applications, so in order to process
continuous time signals using discrete time tools, it is often necessary to �nd ways to avoid it other than
increasing the sampling rate. Thus, anti-aliasing �lters, are of practical importance.

10.6 Anti-Aliasing Filters6

10.6.1 Introduction

It has been shown that a (−B,B) bandlimited signal can be perfectly reconstructed from its samples at a
rate ωs = 2π/Ts ≥ B. However, it is not always practically possible to produce su�ciently high sampling
rates or to ensure that the input is bandlimited in real situations. Aliasing, which manifests itself as a
di�erence in shape between the periods of the samples signal spectrum and the original spectrum, would
occur without any further measures to correct this. Thus, it often becomes necessary to �lter out signal
energy at frequencies above ωs/2 in order to avoid the detrimental e�ects of aliasing. This is the role of
the anti-aliasing �lter, a lowpass �lter applied before sampling to ensure that the signal is (−ωs/2, ωs/2)
bandlimited or at least nearly so.

10.6.2 Anti-Aliasing Filters

Aliasing can occur when a signal with energy at frequencies other that (−B,B) is sampled at rate ωs < 2B.
Thus, when sampling below the Nyquist frequency, it is desirable to remove as much signal energy outside
the frequency range (−B,B) as possible while keeping as much signal energy in the frequency range (−B,B)
as possible. This suggests that the ideal lowpass �lter with cuto� frequency ωs/2 would be the optimal anti-
aliasing �lter to apply before sampling. While this is true, the ideal lowpass �lter can only be approximated
in real situations.

6This content is available online at <http://cnx.org/content/m10794/2.6/>.



199

In order to demonstrate the importance of anti-aliasing �lters, consider the calculation of the error
energy between the original signal and its Whittaker-Shannon reconstruction from its samples taken with
and without the use of an anti-aliasing �lter. Let x be the original signal and y = Gx be the anti-alias
�ltered signal where G is the ideal lowpass �lter with cuto� frequency ωs/2. It is easy to show that the
reconstructed spectrum using no anti-aliasing �lter is given by

X̃ (ω) = {
TsXs (Tsω) |ω| < ωs/2

0 otherwise
= {

∑∞
k=−∞X (ω − kωs) |ω| < ωs/2

0 otherwise
. (10.33)

Thus, the reconstruction error spectrum for this case is

(
X − X̃

)
(ω) = {

−
∑∞
k=1 (X (ω + kωs) +X (ω − kωs)) |ω| < ωs/2

X (ω) otherwise
. (10.34)

Similarly, the reconstructed spectrum using the ideal lowpass anti-aliasing �lter is given by

Ỹ (ω) = Y (ω) = {
X (ω) |ω| < ωs/2

0 otherwise
. (10.35)

Thus, the reconstruction error spectrum for this case is

(
X − Ỹ

)
(ω) = {

0 |ω| < ωs/2

X (ω) otherwise
. (10.36)

Hence, by Parseval's theorem, it follows that ||x − ỹ|| ≤ ||x − x̃||. Also note that the spectrum of Ỹ is
identical to that of the original signal X at frequencies ω ∈ (−ωs/2, ωs/2) . This is graphically shown in
Figure 10.12.
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Figure 10.12: The �gure above illustrates the use of an anti-aliasing �lter to improve the process of
sampling and reconstruction when using a sampling frequency below the Nyquist frequency. Notice that
when using an ideal lowpass anti-aliasing �lter, the reconstructed signal spectrum has the same shape
as the original signal spectrum for all frequencies below half the sampling rate. This results in a lower
error energy when using the anti-aliasing �lter, as can be seen by comparing the error spectra shown.

10.6.3 Anti-Aliasing Filters Summary

As can be seen, anti-aliasing �lters ensure that the signal is (−ωs/2, ωs/2) bandlimited, or at least nearly
so. The optimal anti-aliasing �lter would be the ideal lowpass �lter with cuto� frequency at ωs/2, which
would ensure that the original signal spectrum and the reconstructed signal spectrum are equal on the
interval (−ωs/2, ωs/2). However, the ideal lowpass �lter is not possible to implement in practice, and
approximations must be accepted instead. Anti-aliasing �lters are an important component of systems that
implement discrete time processing of continuous time signals, as will be shown in the subsequent module.

10.7 Discrete Time Processing of Continuous Time Signals7

10.7.1 Introduction

Digital computers can process discrete time signals using extremely �exible and powerful algorithms. How-
ever, most signals of interest are continuous time signals, which is how data almost always appears in nature.
Now that the theory supporting methods for generating a discrete time signal from a continuous time signal
through sampling and then perfectly reconstructing the original signal from its samples without error has
been discussed, it will be shown how this can be applied to implement continuous time, linear time invari-
ant systems using discrete time, linear time invariant systems. This is of key importance to many modern
technologies as it allows the power of digital computing to be leveraged for processing of analog signals.

7This content is available online at <http://cnx.org/content/m10797/2.11/>.
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10.7.2 Discrete Time Processing of Continuous Time Signals

10.7.2.1 Process Structure

With the aim of processing continuous time signals using a discrete time system, we will now examine one of
the most common structures of digital signal processing technologies. As an overview of the approach taken,
the original continuous time signal x is sampled to a discrete time signal xs in such a way that the periods of
the samples spectrum Xs is as close as possible in shape to the spectrum of X. Then a discrete time, linear
time invariant �lter H2 is applied, which modi�es the shape of the samples spectrum Xs but cannot increase
the bandlimit of Xs, to produce another signal ys. This is reconstructed with a suitable reconstruction �lter
to produce a continuous time output signal y, thus e�ectively implementing some continuous time system
H1. This process is illustrated in Figure 10.13, and the spectra are shown for a speci�c case in Figure 10.14.

Figure 10.13: A block diagram for processing of continuous time signals using discrete time systems is
shown.

Further discussion about each of these steps is necessary, and we will begin by discussing the analog to
digital converter, often denoted by ADC or A/D. It is clear that in order to process a continuous time signal
using discrete time techniques, we must sample the signal as an initial step. This is essentially the purpose of
the ADC, although there are practical issues that which will be discussed later. An ADC takes a continuous
time analog signal as input and produces a discrete time digital signal as output, with the ideal in�nite
precision case corresponding to sampling. As stated by the Nyquist-Shannon Sampling theorem, in order to
retain all information about the original signal, we usually wish sample above the Nyquist frequency ωs ≥ 2B
where the original signal is bandlimited to (−B,B). When it is not possible to guarantee this condition, an
anti-aliasing �lter should be used.

The discrete time �lter is where the intentional modi�cations to the signal information occur. This is
commonly done in digital computer software after the signal has been sampled by a hardware ADC and
before it is used by a hardware DAC to construct the output. This allows the above setup to be quite
�exible in the �lter that it implements. If sampling above the Nyquist frequency the. Any modi�cations
that the discrete �lter makes to this shape can be passed on to a continuous time signal assuming perfect
reconstruction. Consequently, the process described will implement a continuous time, linear time invariant
�lter. This will be explained in more mathematical detail in the subsequent section. As usual, there are, of
course, practical limitations that will be discussed later.

Finally, we will discuss the digital to analog converter, often denoted by DAC or D/A. Since continuous
time �lters have continuous time inputs and continuous time outputs, we must construct a continuous time
signal from our �ltered discrete time signal. Assuming that we have sampled a bandlimited at a su�ciently
high rate, in the ideal case this would be done using perfect reconstruction through the Whittaker-Shannon
interpolation formula. However, there are, once again, practical issues that prevent this from happening that
will be discussed later.
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Figure 10.14: Spectra are shown in black for each step in implementing a continuous time �lter using
a discrete time �lter for a speci�c signal. The �lter frequency responses are shown in blue, and both are
meant to have maximum value 1 in spite of the vertical scale that is meant only for the signal spectra.
Ideal ADCs and DACs are assumed.

10.7.2.2 Discrete Time Filter

With some initial discussion of the process illustrated in Figure 10.13 complete, the relationship between
the continuous time, linear time invariant �lter H1 and the discrete time, linear time invariant �lter H2 can
be explored. We will assume the use of ideal, in�nite precision ADCs and DACs that perform sampling and
perfect reconstruction, respectively, using a sampling rate ωs = 2π/Ts ≥ 2B where the input signal x is
bandlimited to (−B,B). Note that these arguments fail if this condition is not met and aliasing occurs. In
that case, preapplication of an anti-aliasing �lter is necessary for these arguments to hold.

Recall that we have already calculated the spectrum Xs of the samples xs given an input x with spectrum
X as

Xs (ω) =
1
Ts

∞∑
k=−∞

X

(
ω − 2πk
Ts

)
. (10.37)

Likewise, the spectrum Ys of the samples ys given an output y with spectrum Y is

Ys (ω) =
1
Ts

∞∑
k=−∞

Y

(
ω − 2πk
Ts

)
. (10.38)

From the knowledge that ys = (H1x)s = H2 (xs), it follows that

∞∑
k=−∞

H1

(
ω − 2πk
Ts

)
X

(
ω − 2πk
Ts

)
= H2 (ω)

∞∑
k=−∞

X

(
ω − 2πk
Ts

)
. (10.39)

Because X is bandlimited to (−π/Ts, π/Ts), we may conclude that

H2 (ω) =
∞∑

k=−∞

H1

(
ω − 2πk
Ts

)
(u (ω − (2k − 1)π)− u (ω − (2k + 1)π)) . (10.40)

More simply stated, H2 is 2π periodic and H2 (ω) = H1 (ω/Ts) for ω ∈ [−π, π).
Given a speci�c continuous time, linear time invariant �lter H1, the above equation solves the system

design problem provided we know how to implement H2. The �lter H2 must be chosen such that it has a
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frequency response where each period has the same shape as the frequency response of H1 on (−π/Ts, π/Ts).
This is illustrated in the frequency responses shown in Figure 10.14.

We might also want to consider the system analysis problem in which a speci�c discrete time, linear
time invariant �lter H2 is given, and we wish to describe the �lter H1. There are many such �lters, but we
can describe their frequency responses on (−π/Ts, π/Ts) using the above equation. Isolating one period of
H2 (ω) yields the conclusion that H1 (ω) = H2 (ωTs) for ω ∈ (−π/Ts, π/Ts). Because x was assumed to be
bandlimited to (−π/T, π/T ), the value of the frequency response elsewhere is irrelevant.

10.7.3 Practical Considerations

As mentioned before, there are several practical considerations that need to be addressed at each stage of
the process shown in Figure 10.13. Some of these will be brie�y addressed here, and a more complete model
of how discrete time processing of continuous time signals appears in Figure 10.15.

Figure 10.15: A more complete model of how discrete time processing of continuous time signals is
implemented in practice. Notice the addition of anti-aliasing and anti-imaging �lters to promote input
and output bandlimitedness. The ADC is shown to perform sampling with quantization. The digital
�lter is further speci�ed to be causal. The DAC is shown to perform imperfect reconstruction, a zero
order hold in this case.

10.7.3.1 Anti-Aliasing Filter

In reality, we cannot typically guarantee that the input signal will have a speci�c bandlimit, and su�ciently
high sampling rates cannot necessarily be produced. Since it is imperative that the higher frequency com-
ponents not be allowed to masquerade as lower frequency components through aliasing, anti-aliasing �lters
with cuto� frequency less than or equal to ωs/2 must be used before the signal is fed into the ADC. The
block diagram in Figure 10.15 re�ects this addition.

As described in the previous section, an ideal lowpass �lter removing all energy at frequencies above ωs/2
would be optimal. Of course, this is not achievable, so approximations of the ideal lowpass �lter with low
gain above ωs/2 must be accepted. This means that some aliasing is inevitable, but it can be reduced to a
mostly insigni�cant level.

10.7.3.2 Signal Quantization

In our preceding discussion of discrete time processing of continuous time signals, we had assumed an ideal
case in which the ADC performs sampling exactly. However, while an ADC does convert a continuous time
signal to a discrete time signal, it also must convert analog values to digital values for use in a digital logic
device, a phenomenon called quantization. The ADC subsystem of the block diagram in Figure 10.15 re�ects
this addition.
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The data obtained by the ADC must be stored in �nitely many bits inside a digital logic device. Thus,
there are only �nitely many values that a digital sample can take, speci�cally 2N where N is the number of
bits, while there are uncountably many values an analog sample can take. Hence something must be lost in
the quantization process. The result is that quantization limits both the range and precision of the output
of the ADC. Both are �nite, and improving one at constant number of bits requires sacri�cing quality in the
other.

10.7.3.3 Filter Implementability

In real world circumstances, if the input signal is a function of time, the future values of the signal cannot
be used to calculate the output. Thus, the digital �lter H2 and the overall system H1 must be causal. The
�lter annotation in Figure 10.15 re�ects this addition. If the desired system is not causal but has impulse
response equal to zero before some time t0, a delay can be introduced to make it causal. However, if this
delay is excessive or the impulse response has in�nite length, a windowing scheme becomes necessary in order
to practically solve the problem. Multiplying by a window to decrease the length of the impulse response
can reduce the necessary delay and decrease computational requirements.

Take, for instance the case of the ideal lowpass �lter. It is acausal and in�nite in length in both directions.
Thus, we must satisfy ourselves with an approximation. One might suggest that these approximations could
be achieved by truncating the sinc impulse response of the lowpass �lter at one of its zeros, e�ectively
windowing it with a rectangular pulse. However, doing so would produce poor results in the frequency
domain as the resulting convolution would signi�cantly spread the signal energy. Other windowing functions,
of which there are many, spread the signal less in the frequency domain and are thus much more useful for
producing these approximations.

10.7.3.4 Anti-Imaging Filter

In our preceding discussion of discrete time processing of continuous time signals, we had assumed an ideal
case in which the DAC performs perfect reconstruction. However, when considering practical matters, it is
important to remember that the sinc function, which is used for Whittaker-Shannon interpolation, is in�nite
in length and acausal. Hence, it would be impossible for an DAC to implement perfect reconstruction.

Instead, the DAC implements a causal zero order hold or other simple reconstruction scheme with respect
to the sampling rate ωs used by the ADC. However, doing so will result in a function that is not bandlimited
to (−ωs/2, ωs/2). Therefore, an additional lowpass �lter, called an anti-imaging �lter, must be applied to the
output. The process illustrated in Figure 10.15 re�ects these additions. The anti-imaging �lter attempts to
bandlimit the signal to (−ωs/2, ωs/2), so an ideal lowpass �lter would be optimal. However, as has already
been stated, this is not possible. Therefore, approximations of the ideal lowpass �lter with low gain above
ωs/2 must be accepted. The anti-imaging �lter typically has the same characteristics as the anti-aliasing
�lter.

10.7.4 Discrete Time Processing of Continuous Time Signals Summary

As has been show, the sampling and reconstruction can be used to implement continuous time systems
using discrete time systems, which is very powerful due to the versatility, �exibility, and speed of digital
computers. However, there are a large number of practical considerations that must be taken into account
when attempting to accomplish this, including quantization noise and anti-aliasing in the analog to digital
converter, �lter implementability in the discrete time �lter, and reconstruction windowing and associated
issues in the digital to analog converter. Many modern technologies address these issues and make use of
this process.



Chapter 11

Laplace Transform and Continuous Time
System Design

11.1 Laplace Transform1

11.1.1 Introduction

The Laplace transform is a generalization of the Continuous-Time Fourier Transform (Section 8.2). It is
used because the CTFT does not converge/exist for many important signals, and yet it does for the Laplace-
transform (e.g., signals with in�nite l2 norm). It is also used because it is notationally cleaner than the
CTFT. However, instead of using complex exponentials (Section 7.2) of the form ejωt, with purely imaginary
parameters, the Laplace transform uses the more general, est, where s = σ+jω is complex, to analyze signals
in terms of exponentially weighted sinusoids.

11.1.2 The Laplace Transform

11.1.2.1 Bilateral Laplace Transform Pair

Although Laplace transforms are rarely solved in practice using integration (tables (Section 11.2) and com-
puters (e.g. Matlab) are much more common), we will provide the bilateral Laplace transform pair here
for purposes of discussion and derivation. These de�ne the forward and inverse Laplace transformations.
Notice the similarities between the forward and inverse transforms. This will give rise to many of the same
symmetries found in Fourier analysis (Section 5.1).

Laplace Transform

F (s) =
∫ ∞
−∞

f (t) e−(st)dt (11.1)

Inverse Laplace Transform

f (t) =
1

2πj

∫ c+j∞

c−j∞
F (s) estds (11.2)

note: We have de�ned the bilateral Laplace transform. There is also a unilateral Laplace
transform ,

F (s) =
∫ ∞

0

f (t) e−(st)dt (11.3)

1This content is available online at <http://cnx.org/content/m10110/2.17/>.
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which is useful for solving the di�erence equations with nonzero initial conditions. This is similar
to the unilateral Z Transform in Discrete time.

11.1.2.2 Relation between Laplace and CTFT

Taking a look at the equations describing the Z-Transform and the Discrete-Time Fourier Transform:

Continuous-Time Fourier Transform

F (Ω) =
∫ ∞
−∞

f (t) e−(jΩt)dt (11.4)

Laplace Transform

F (s) =
∫ ∞
−∞

f (t) e−(st)dt (11.5)

We can see many similarities; �rst, that :
F (Ω) = F (s) (11.6)

for all Ω = s

note: the CTFT is a complex-valued function of a real-valued variable ω (and 2 π periodic). The
Z-transform is a complex-valued function of a complex valued variable z.

Plots

Figure 11.1

11.1.2.3 Visualizing the Laplace Transform

With the Fourier transform, we had a complex-valued function of a purely imaginary variable, F (jω).
This was something we could envision with two 2-dimensional plots (real and imaginary parts or magnitude
and phase). However, with Laplace, we have a complex-valued function of a complex variable. In
order to examine the magnitude and phase or real and imaginary parts of this function, we must examine
3-dimensional surface plots of each component.
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real and imaginary sample plots

(a) (b)

Figure 11.2: Real and imaginary parts of H (s) are now each 3-dimensional surfaces. (a) The Real
part of H (s) (b) The Imaginary part of H (s)

magnitude and phase sample plots

(a) (b)

Figure 11.3: Magnitude and phase of H (s) are also each 3-dimensional surfaces. This representation
is more common than real and imaginary parts. (a) The Magnitude of H (s) (b) The Phase of H (s)

While these are legitimate ways of looking at a signal in the Laplace domain, it is quite di�cult to draw
and/or analyze. For this reason, a simpler method has been developed. Although it will not be discussed in
detail here, the method of Poles and Zeros2 is much easier to understand and is the way both the Laplace
transform and its discrete-time counterpart the Z-transform3 are represented graphically.

11.1.2.4 Using a Computer to �nd the Laplace Transform

Using a computer to �nd Laplace transforms is relatively painless. Matlab has two functions, laplace
and ilaplace, that are both part of the symbolic toolbox, and will �nd the Laplace and inverse Laplace

2"Poles and Zeros" <http://cnx.org/content/m10112/latest/>
3"The Z Transform: De�nition" <http://cnx.org/content/m10549/latest/>
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transforms respectively. This method is generally preferred for more complicated functions. Simpler and
more contrived functions are usually found easily enough by using tables.

11.1.3 Laplace Transform De�nition Demonstration

Figure 11.4: Interact (when online) with a Mathematica CDF demonstrating the Laplace Transform.
To Download, right-click and save target as .cdf.

11.1.4 Interactive Demonstrations

Khan Lecture on Laplace

This media object is a Flash object. Please view or download it at
<http://www.youtube.com/v/OiNh2DswFt4&rel=0&color1=0xb1b1b1&color2=0xd0d0d0&hl=en_US&feature=player_embedded&fs=1>

Figure 11.5: See the attached video on the basics of the Unilateral Laplace Transform from Khan
Academy
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11.1.5 Conclusion

The laplace transform proves a useful, more general form of the Continuous Time Fourier Transform. It
applies equally well to describing systems as well as signals using the eigenfunction method, and to describing
a larger class of signals better described using the pole-zero method.

11.2 Common Laplace Transforms4

11.2.1

Signal Laplace Transform Region of Convergence

δ (t) 1 All s

δ (t− T ) e−(sT ) All s

u (t) 1
s Re (s) > 0

−u (−t) 1
s Re (s) < 0

tu (t) 1
s2 Re (s) > 0

tnu (t) n!
sn+1 Re (s) > 0

− (tnu (−t)) n!
sn+1 Re (s) < 0

e−(λt)u (t) 1
s+λ Re (s) > −λ(

−e−(λt)
)
u (−t) 1

s+λ Re (s) < −λ
te−(λt)u (t) 1

(s+λ)2
Re (s) > −λ

tne−(λt)u (t) n!
(s+λ)n+1 Re (s) > −λ

−
(
tne−(λt)u (−t)

)
n!

(s+λ)n+1 Re (s) < −λ

cos (bt)u (t) s
s2+b2 Re (s) > 0

sin (bt)u (t) b
s2+b2 Re (s) > 0

e−(at)cos (bt)u (t) s+a
(s+a)2+b2

Re (s) > −a

e−(at)sin (bt)u (t) b
(s+a)2+b2

Re (s) > −a
dn

dtn δ (t) sn All s

Table 11.1

11.3 Properties of the Laplace Transform5

Table of Laplace Transform Properties

Property Signal Laplace Transform Region of
Convergence

continued on next page

4This content is available online at <http://cnx.org/content/m10111/2.13/>.
5This content is available online at <http://cnx.org/content/m10117/2.11/>.
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Linearity αx1 (t) + βx2 (t) αX1 (s) + βX2 (s) At least ROC1 ∩ ROC2

Time Shifting x (t− τ) e−(sτ)X (s) ROC

Frequency Shifting
(modulation)

eηtx (t) X (s− η) Shifted ROC ( s− η
must be in the region of
convergence)

Time Scaling x (αt) (1− |α|)X (s− α) Scaled ROC ( s− α
must be in the region of
convergence)

Conjugation x (t)∗ X (s∗)∗ ROC

Convolution x1 (t) ∗ x2 (t) X1 (t)X2 (t) At least ROC1 ∩ ROC2

Time Di�erentiation d
dtx (t) sX (s) At least ROC

Frequency
Di�erentiation

(−t)x (t) d
dsX (s) ROC

Integration in Time
∫ t
−∞ x (τ) dτ (1− s)X (s) At least

ROC ∩ (Re (s) > 0)

Table 11.2: Table of Laplace Transform properties.

11.4 Inverse Laplace Transform6

11.4.1 Introduction

When using the Laplace-transform (Section 11.1)

H (s) =
∞∑

t=−∞
h (t) s−t (11.7)

it is often useful to be able to �nd h (t) given H (s). There are at least 4 di�erent methods to do this:

1. Inspection (Section 11.4.2: Inspection Method)
2. Partial-Fraction Expansion (Section 11.4.3: Partial-Fraction Expansion Method)
3. Power Series Expansion (Section 11.4.5: Power Series Expansion Method)
4. Contour Integration (Section 11.4.6: Contour Integration Method)

11.4.2 Inspection Method

This "method" is to basically become familiar with the Laplace-transform pair tables (Section 11.2) and
then "reverse engineer".

Example 11.1
When given

H (s) =
s

s− α
with an ROC (Section 12.6) of

|s| > α

6This content is available online at <http://cnx.org/content/m34857/1.1/>.
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we could determine "by inspection" that

h (t) = αtu (t)

11.4.3 Partial-Fraction Expansion Method

When dealing with linear time-invariant systems the z-transform is often of the form

H (s) = B(s)
A(s)

=
PM
k=0 bks

−kPN
k=0 aks

−k

(11.8)

This can also expressed as

H (s) =
a0

b0

∏M
k=1 1− cks−1∏N
k=1 1− dks−1

(11.9)

where ck represents the nonzero zeros of H (s) and dk represents the nonzero poles.
If M < N then H (s) can be represented as

H (s) =
N∑
k=1

Ak
1− dks−1

(11.10)

This form allows for easy inversions of each term of the sum using the inspection method (Section 11.4.2:
Inspection Method) and the transform table7. If the numerator is a polynomial, however, then it becomes
necessary to use partial-fraction expansion8 to put H (s) in the above form. If M ≥ N then H (s) can be
expressed as

H (s) =
M−N∑
r=0

Brs
−r +

∑N−1
k=0 b'ks

−k∑N
k=0 aks

−k
(11.11)

Example 11.2
Find the inverse z-transform of

H (s) =
1 + 2s−1 + s−2

1− 3s−1 + 2s−2

where the ROC is |s| > 2. In this case M = N = 2, so we have to use long division to get

H (s) =
1
2

+
1
2 + 7

2s
−1

1− 3s−1 + 2s−2

Next factor the denominator.

H (s) = 2 +
−1 + 5s−1

(1− 2s−1) (1− s−1)

Now do partial-fraction expansion.

H (s) =
1
2

+
A1

1− 2s−1
+

A2

1− s−1
=

1
2

+
9
2

1− 2s−1
+

−4
1− s−1

Now each term can be inverted using the inspection method and the Laplace-transform table. Thus,
since the ROC is |s| > 2,

h (t) =
1
2
δ (t) +

9
2

2tu (t)− 4u (t)

7"Table of Common z-Transforms" <http://cnx.org/content/m10119/latest/>
8"Partial Fraction Expansion" <http://cnx.org/content/m2111/latest/>
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11.4.4 Demonstration of Partial Fraction Expansion

External Image
Please see:

http://demonstrations.wolfram.com/PartialFractionDecomposition/thumbnail_174.jpg

Figure 11.6: Interactive experiment illustrating how the Partial Fraction Expansion method is used
to solve a variety of numerator and denominator problems. (To view and interact with the simulation,
download the free Mathematica player at http://www.wolfram.com/products/player/download.cgi)

Khan Lecture on Partial Fraction Expansion

This media object is a Flash object. Please view or download it at
<http://www.youtube.com/v/S-

XKGBesRzk&rel=0&color1=0xb1b1b1&color2=0xd0d0d0&hl=en_US&feature=player_embedded&fs=1>

Figure 11.7: video from Khan Academy

11.4.5 Power Series Expansion Method

When the z-transform is de�ned as a power series in the form

H (s) =
∞∑

t=−∞
h (t) s−t (11.12)

then each term of the sequence h (t) can be determined by looking at the coe�cients of the respective power
of s−t.

Example 11.3
Now look at the Laplace-transform of a �nite-length sequence.

H (s) = s2
(
1 + 2s−1

) (
1− 1

2s
−1
) (

1 + s−1
)

= s2 + 5
2s+ 1

2 +−s−1
(11.13)

In this case, since there were no poles, we multiplied the factors of H (s). Now, by inspection, it
is clear that

h (t) = δ (t+ 2) +
5
2
δ (t+ 1) +

1
2
δ (t) +−δ [t− 1]

.

One of the advantages of the power series expansion method is that many functions encountered in engi-
neering problems have their power series' tabulated. Thus functions such as log, sin, exponent, sinh, etc,
can be easily inverted.

Example 11.4
Suppose

H (s) = logt
(
1 + αs−1

)
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Noting that

logt (1 + x) =
∞∑
t=1

−1t+1xt

t

Then

H (s) =
∞∑
t=1

−1t+1αts−t

t

Therefore

H (s) =

 −1t+1αt

t if t ≥ 1

0 if t ≤ 0

11.4.6 Contour Integration Method

Without going in to much detail

h (t) =
1

2πj

∮
r

H (s) st−1ds (11.14)

where r is a counter-clockwise contour in the ROC of H (s) encircling the origin of the s-plane. To further
expand on this method of �nding the inverse requires the knowledge of complex variable theory and thus
will not be addressed in this module.

11.4.7 Demonstration of Contour Integration

External Image
Please see:

http://demonstrations.wolfram.com/ContourIntegralAroundASimplePole/thumbnail_174.jpg

Figure 11.8: Interactive experiment illustrating how the contour integral is applied on a simple
example. For a more in-depth discussion of this method, some background in complex analysis
is required. (To view and interact with the simulation, download the free Mathematica player at
http://www.wolfram.com/products/player/download.cgi)

11.4.8 Conclusion

The Inverse Laplace-transform is very useful to know for the purposes of designing a �lter, and there are many
ways in which to calculate it, drawing from many disparate areas of mathematics. All nevertheless assist
the user in reaching the desired time-domain signal that can then be synthesized in hardware(or software)
for implementation in a real-world �lter.

11.5 Poles and Zeros in the S-Plane9

11.5.1 Introduction to Poles and Zeros of the Laplace-Transform

It is quite di�cult to qualitatively analyze the Laplace transform (Section 11.1) and Z-transform10, since
mappings of their magnitude and phase or real part and imaginary part result in multiple mappings of

9This content is available online at <http://cnx.org/content/m34855/1.4/>.
10"The Z Transform: De�nition" <http://cnx.org/content/m10549/latest/>
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2-dimensional surfaces in 3-dimensional space. For this reason, it is very common to examine a plot of a
transfer function's11 poles and zeros to try to gain a qualitative idea of what a system does.

Once the Laplace-transform of a system has been determined, one can use the information contained in
function's polynomials to graphically represent the function and easily observe many de�ning characteristics.
The Laplace-transform will have the below structure, based on Rational Functions (Section 12.7):

H (s) =
P (s)
Q (s)

(11.15)

The two polynomials, P (s) and Q (s), allow us to �nd the poles and zeros of the Laplace-Transform.

De�nition 11.1: zeros
1. The value(s) for s where P (s) = 0.
2. The complex frequencies that make the overall gain of the �lter transfer function zero.

De�nition 11.2: poles
1. The value(s) for s where Q (s) = 0.
2. The complex frequencies that make the overall gain of the �lter transfer function in�nite.

Example 11.5
Below is a simple transfer function with the poles and zeros shown below it.

H (s) =
s+ 1(

s− 1
2

) (
s+ 3

4

)
The zeros are: {−1}
The poles are:

{
1
2 ,−

3
4

}

11.5.2 The S-Plane

Once the poles and zeros have been found for a given Laplace Transform, they can be plotted onto the
S-Plane. The S-plane is a complex plane with an imaginary and real axis referring to the complex-valued
variable z. The position on the complex plane is given by rejθ and the angle from the positive, real axis
around the plane is denoted by θ. When mapping poles and zeros onto the plane, poles are denoted by an
"x" and zeros by an "o". The below �gure shows the S-Plane, and examples of plotting zeros and poles onto
the plane can be found in the following section.

11"Transfer Functions" <http://cnx.org/content/m0028/latest/>
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S-Plane

Figure 11.9

11.5.3 Examples of Pole/Zero Plots

This section lists several examples of �nding the poles and zeros of a transfer function and then plotting
them onto the S-Plane.

Example 11.6: Simple Pole/Zero Plot

H (s) =
s(

s− 1
2

) (
s+ 3

4

)
The zeros are: {0}
The poles are:

{
1
2 ,−

3
4

}
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Pole/Zero Plot

Figure 11.10: Using the zeros and poles found from the transfer function, the one zero is mapped to
zero and the two poles are placed at 1

2
and − 3

4

Example 11.7: Complex Pole/Zero Plot

H (s) =
(s− j) (s+ j)(

s−
(

1
2 −

1
2j
)) (

s− 1
2 + 1

2j
)

The zeros are: {j,−j}
The poles are:

{
−1, 1

2 + 1
2j,

1
2 −

1
2j
}
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Pole/Zero Plot

Figure 11.11: Using the zeros and poles found from the transfer function, the zeros are mapped to
± (j), and the poles are placed at −1, 1

2
+ 1

2
j and 1

2
− 1

2
j

Example 11.8: Pole-Zero Cancellation

An easy mistake to make with regards to poles and zeros is to think that a function like (s+3)(s−1)
s−1 is

the same as s+3. In theory they are equivalent, as the pole and zero at s = 1 cancel each other out
in what is known as pole-zero cancellation. However, think about what may happen if this were a
transfer function of a system that was created with physical circuits. In this case, it is very unlikely
that the pole and zero would remain in exactly the same place. A minor temperature change, for
instance, could cause one of them to move just slightly. If this were to occur a tremendous amount
of volatility is created in that area, since there is a change from in�nity at the pole to zero at the
zero in a very small range of signals. This is generally a very bad way to try to eliminate a pole. A
much better way is to use control theory to move the pole to a better place.

note: It is possible to have more than one pole or zero at any given point. For instance, the
discrete-time transfer function H (z) = z2 will have two zeros at the origin and the continuous-time
function H (s) = 1

s25 will have 25 poles at the origin.

MATLAB - If access to MATLAB is readily available, then you can use its functions to easily create
pole/zero plots. Below is a short program that plots the poles and zeros from the above example onto the
Z-Plane.

% Set up vector for zeros

z = [j ; -j];

% Set up vector for poles

p = [-1 ; .5+.5j ; .5-.5j];

figure(1);



218
CHAPTER 11. LAPLACE TRANSFORM AND CONTINUOUS TIME

SYSTEM DESIGN

zplane(z,p);

title('Pole/Zero Plot for Complex Pole/Zero Plot Example');

11.5.4 Interactive Demonstration of Poles and Zeros

Figure 11.12: Interact (when online) with a Mathematica CDF demonstrating Pole/Zero Plots. To
Download, right-click and save target as .cdf.
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11.5.5 Applications for pole-zero plots

11.5.5.1 Stability and Control theory

Now that we have found and plotted the poles and zeros, we must ask what it is that this plot gives us.
Basically what we can gather from this is that the magnitude of the transfer function will be larger when
it is closer to the poles and smaller when it is closer to the zeros. This provides us with a qualitative
understanding of what the system does at various frequencies and is crucial to the discussion of stability
(Section 3.6).

11.5.5.2 Pole/Zero Plots and the Region of Convergence

The region of convergence (ROC) for X (z) in the complex Z-plane can be determined from the pole/zero
plot. Although several regions of convergence may be possible, where each one corresponds to a di�erent
impulse response, there are some choices that are more practical. A ROC can be chosen to make the transfer
function causal and/or stable depending on the pole/zero plot.

Filter Properties from ROC

• If the ROC extends outward from the outermost pole, then the system is causal.
• If the ROC includes the unit circle, then the system is stable.

Below is a pole/zero plot with a possible ROC of the Z-transform in the Simple Pole/Zero Plot (Example 11.6:
Simple Pole/Zero Plot) discussed earlier. The shaded region indicates the ROC chosen for the �lter. From
this �gure, we can see that the �lter will be both causal and stable since the above listed conditions are both
met.

Example 11.9

H (z) =
z(

z − 1
2

) (
z + 3

4

)
Region of Convergence for the Pole/Zero Plot

Figure 11.13: The shaded area represents the chosen ROC for the transfer function.
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11.5.5.3 Frequency Response and Pole/Zero Plots

The reason it is helpful to understand and create these pole/zero plots is due to their ability to help us easily
design a �lter. Based on the location of the poles and zeros, the magnitude response of the �lter can be
quickly understood. Also, by starting with the pole/zero plot, one can design a �lter and obtain its transfer
function very easily.

11.5.6 Conclusion

Pole-Zero Plots are clearly quite useful in the study of the Laplace and Z transform, a�ording us a method
of visualizing the at times confusing mathematical functions.

11.6 Region of Convergence for the Laplace Transform12

11.6.1 Introduction

With the Laplace transform (Section 11.1), the s-plane represents a set of signals (complex exponentials
(Section 1.8)). For any given LTI (Section 2.1) system, some of these signals may cause the output of the
system to converge, while others cause the output to diverge ("blow up"). The set of signals that cause the
system's output to converge lie in the region of convergence (ROC). This module will discuss how to
�nd this region of convergence for any continuous-time, LTI system.

11.6.2 The Region of Convergence

The region of convergence, known as the ROC, is important to understand because it de�nes the region
where the Laplace transform (Section 11.1) exists. The Laplace transform of a sequence is de�ned as

H (s) =
∫ ∞
−∞

h (t) e−(st)dt (11.16)

The ROC for a given h (t) , is de�ned as the range of t for which the Laplace transform converges. If we
consider a causal (Section 1.1), complex exponential, h (t) = e−(at)u (t), we get the equation,∫ ∞

0

e−(at)e−(st)dt =
∫ ∞

0

e−((a+s)t)dt (11.17)

Evaluating this, we get
−1
s+ a

(
limit
t→∞

e−((s+a)t) − 1
)

(11.18)

Notice that this equation will tend to in�nity when limit
t→∞

e−((s+a)t) tends to in�nity. To understand when

this happens, we take one more step by using s = σ + jω to realize this equation as

limit
t→∞

e−(jωt)e−((σ+a)t) (11.19)

Recognizing that e−(jωt) is sinusoidal, it becomes apparent that e−(σ(a)t) is going to determine whether
this blows up or not. What we �nd is that if σ + a is positive, the exponential will be to a negative power,
which will cause it to go to zero as t tends to in�nity. On the other hand, if σ + a is negative or zero, the
exponential will not be to a negative power, which will prevent it from tending to zero and the system will
not converge. What all of this tells us is that for a causal signal, we have convergence when

12This content is available online at <http://cnx.org/content/m10114/2.11/>.
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Condition for Convergence
Re (s) > −a (11.20)

Alternatively, we can note that since the Laplace transform is a power series, it converges when h (t) e−(st)

is absolutely summable. Therefore, ∫ ∞
−∞

h (t) e−(st)dt <∞ (11.21)

must be satis�ed for convergence.
Although we will not go through the process again for anticausal signals, we could. In doing so, we would

�nd that the necessary condition for convergence is when

Necessary Condition for Anti-Causal Convergence

Re (s) < −a (11.22)

11.6.2.1 Properties of the Region of Convergencec

The Region of Convergence has a number of properties that are dependent on the characteristics of the
signal, h (t).

• The ROC cannot contain any poles. By de�nition a pole is a where H (s) is in�nite. Since H (s)
must be �nite for all s for convergence, there cannot be a pole in the ROC.

• If h (t) is a �nite-duration sequence, then the ROC is the entire s-plane, except possibly
s = 0 or |s| = ∞. A �nite-duration sequence is a sequence that is nonzero in a �nite interval
t1 ≤ t ≤ t2. As long as each value of h (t) is �nite then the sequence will be absolutely summable.
When t2 > 0 there will be a s−1 term and thus the ROC will not include s = 0. When t1 < 0 then the
sum will be in�nite and thus the ROC will not include |s| =∞. On the other hand, when t2 ≤ 0 then
the ROC will include s = 0, and when t1 ≥ 0 the ROC will include |s| = ∞. With these constraints,
the only signal, then, whose ROC is the entire z-plane is h (t) = cδ (t).

Figure 11.14: An example of a �nite duration sequence.



222
CHAPTER 11. LAPLACE TRANSFORM AND CONTINUOUS TIME

SYSTEM DESIGN

The next properties apply to in�nite duration sequences. As noted above, the z-transform converges
when |H (s) | <∞. So we can write

|H (s) | = |
∫ ∞
−∞

h (t) e−(st)dt| ≤
∫ ∞
−∞
|h (t) e−(st)|dt =

∫ ∞
−∞
|h (t) ||e−(st)|dt (11.23)

We can then split the in�nite sum into positive-time and negative-time portions. So

|H (s) | ≤ N (s) + P (s) (11.24)

where

N (s) =
∫ −1

−∞
|h (t) ||e−(st)|dt (11.25)

and

P (s) =
∫ ∞

0

|h (t) ||e−(st)|dt (11.26)

In order for |H (s) | to be �nite, |h (t) | must be bounded. Let us then set

|h (t) | ≤ C1r1
t (11.27)

for
t < 0

and
|h (t) | ≤ C2r2

t (11.28)

for
t ≥ 0

From this some further properties can be derived:

• If h (t) is a right-sided sequence, then the ROC extends outward from the outermost pole
in H (s). A right-sided sequence is a sequence where h (t) = 0 for t < t1 < ∞. Looking at the
positive-time portion from the above derivation, it follows that

P (s) ≤ C2

∫ ∞
0

r2
t|e−(st)|dt = C2

∫ ∞
0

r2

|e−(st)|
dt (11.29)

Thus in order for this integral to converge, |e−s| > r2, and therefore the ROC of a right-sided sequence
is of the form |e−s| > r2.
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Figure 11.15: A right-sided sequence.

Figure 11.16: The ROC of a right-sided sequence.

• If h (t) is a left-sided sequence, then the ROC extends inward from the innermost pole
in H (s). A left-sided sequence is a sequence where h (t) = 0 for t > t1 > −∞. Looking at the
negative-time portion from the above derivation, it follows that

P (s) ≤ C1

∫ −1

−∞
r1
te−(st)dt = C1

∫ −1

−∞

(
r1

|e−s|

)t
dt = C1

∫ ∞
1

(
|e−s|
r1

)k
dk (11.30)

Thus in order for this integral to converge, |e−s| < r1, and therefore the ROC of a left-sided sequence
is of the form |e−s| < r1.
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Figure 11.17: A left-sided sequence.

Figure 11.18: The ROC of a left-sided sequence.

• If h (t) is a two-sided sequence, the ROC will be a ring in the z-plane that is bounded on
the interior and exterior by a pole. A two-sided sequence is an sequence with in�nite duration
in the positive and negative directions. From the derivation of the above two properties, it follows that
if r2 < |e−s| < r2 converges, then both the positive-time and negative-time portions converge and thus
H (s) converges as well. Therefore the ROC of a two-sided sequence is of the form −r2 < |e−s| < r2.



225

Figure 11.19: A two-sided sequence.

Figure 11.20: The ROC of a two-sided sequence.

11.6.2.2 Examples

To gain further insight it is good to look at a couple of examples.

Example 11.10
Lets take

h1 (t) =
(

1
2

)t
u (t) +

(
1
4

)t
u (t) (11.31)
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The Laplace-transform of
(

1
2

)t
u (t) is s

s− 1
2
with an ROC at |s| > 1

2 .

Figure 11.21: The ROC of
`

1
2

´t
u (t)

The z-transform of
(−1

4

)t
u (t) is s

s+ 1
4
with an ROC at |s| > −1

4 .

Figure 11.22: The ROC of
`−1

4

´t
u (t)
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Due to linearity,

H1 (s) = s
s− 1

2
+ s

s+ 1
4

=
2s(s− 1

8 )
(s− 1

2 )(s+ 1
4 )

(11.32)

By observation it is clear that there are two zeros, at 0 and 1
8 , and two poles, at 1

2 , and
−1
4 .

Following the above properties, the ROC is |s| > 1
2 .

Figure 11.23: The ROC of h1 (t) =
`

1
2

´t
u (t) +

`−1
4

´t
u (t)

Example 11.11
Now take

h2 (t) =
(
−1
4

)t
u (t)−

(
1
2

)t
u ((−t)− 1) (11.33)

The z-transform and ROC of
(−1

4

)t
u (t) was shown in the example above (Example 11.10). The

Laplace-transorm of
(
−
(

1
2

)t)
u ((−t)− 1) is s

s− 1
2
with an ROC at |s| > 1

2 .



228
CHAPTER 11. LAPLACE TRANSFORM AND CONTINUOUS TIME

SYSTEM DESIGN

Figure 11.24: The ROC of
“
−
`

1
2

´t”
u ((−t)− 1)

Once again, by linearity,

H2 (s) = s
s+ 1

4
+ s

s− 1
2

=
s(2s− 1

8 )
(s+ 1

4 )(s− 1
2 )

(11.34)

By observation it is again clear that there are two zeros, at 0 and 1
16 , and two poles, at 1

2 , and
−1
4 .

in ths case though, the ROC is |s| < 1
2 .
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Figure 11.25: The ROC of h2 (t) =
`−1

4

´t
u (t)−

`
1
2

´t
u ((−t)− 1).

11.6.3 Graphical Understanding of ROC

Using the demonstration, learn about the region of convergence for the Laplace Transform.

11.6.4 Conclusion

Clearly, in order to craft a system that is actually useful by virtue of being causal and BIBO stable, we
must ensure that it is within the Region of Convergence, which can be ascertained by looking at the pole
zero plot. The Region of Convergence is the area in the pole/zero plot of the transfer function in which the
function exists. For purposes of useful �lter design, we prefer to work with rational functions, which can be
described by two polynomials, one each for determining the poles and the zeros, respectively.

11.7 Rational Functions and the Laplace Transform13

11.7.1 Introduction

When dealing with operations on polynomials, the term rational function is a simple way to describe a
particular relationship between two polynomials.

De�nition 11.3: rational function
For any two polynomials, A and B, their quotient is called a rational function.
Example
Below is a simple example of a basic rational function, f (x). Note that the numerator and
denominator can be polynomials of any order, but the rational function is unde�ned when the

13This content is available online at <http://cnx.org/content/m34530/1.2/>.
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denominator equals zero.

f (x) =
x2 − 4

2x2 + x− 3
(11.35)

11.7.2 Properties of Rational Functions

In order to see what makes rational functions special, let us look at some of their basic properties and
characteristics. If you are familiar with rational functions and basic algebraic properties, skip to the next
section to see how rational functions are useful when dealing with the Laplace transform.

11.7.2.1 Roots

To understand many of the following characteristics of a rational function, one must begin by �nding the
roots of the rational function. In order to do this, let us factor both of the polynomials so that the roots
can be easily determined. Like all polynomials, the roots will provide us with information on many key
properties. The function below shows the results of factoring the above rational function, (11.35).

f (x) =
(x+ 2) (x− 2)
(2x+ 3) (x− 1)

(11.36)

Thus, the roots of the rational function are as follows:
Roots of the numerator are: {−2, 2}
Roots of the denominator are: {−3, 1}

note: In order to understand rational functions, it is essential to know and understand the roots
that make up the rational function.

11.7.2.2 Discontinuities

Because we are dealing with division of two polynomials, we must be aware of the values of the variable that
will cause the denominator of our fraction to be zero. When this happens, the rational function becomes
unde�ned, i.e. we have a discontinuity in the function. Because we have already solved for our roots, it
is very easy to see when this occurs. When the variable in the denominator equals any of the roots of the
denominator, the function becomes unde�ned.

Example 11.12
Continuing to look at our rational function above, (11.35), we can see that the function will have
discontinuities at the following points: x = {−3, 1}

In respect to the Cartesian plane, we say that the discontinuities are the values along the x-axis where the
function is unde�ned. These discontinuities often appear as vertical asymptotes on the graph to represent
the values where the function is unde�ned.

11.7.2.3 Domain

Using the roots that we found above, the domain of the rational function can be easily de�ned.

De�nition 11.4: domain
The group, or set, of values that are de�ned by a given function.
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Example
Using the rational function above, (11.35), the domain can be de�ned as any real number x where
x does not equal 1 or negative 3. Written out mathematically, we get the following:

{x ∈ R | (x 6= −3) and (x 6= 1)} (11.37)

11.7.2.4 Intercepts

The x-intercept is de�ned as the point(s) where f (x), i.e. the output of the rational functions, equals zero.
Because we have already found the roots of the equation this process is very simple. From algebra, we know
that the output will be zero whenever the numerator of the rational function is equal to zero. Therefore, the
function will have an x-intercept wherever x equals one of the roots of the numerator.

The y-intercept occurs whenever x equals zero. This can be found by setting all the values of x equal
to zero and solving the rational function.

11.7.3 Rational Functions and the Laplace Transform

Rational functions often result when the Laplace transform is used to compute transfer functions for LTI
systems. When using the Laplace transform to solve linear constant coe�cient ordinary di�erential equations,
partial fraction expansions of rational functions prove particularly useful. The roots of the polynomials in the
numerator and denominator of the transfer function play an important role in describing system behavior.
The roots of the polynomial in the numerator produce zeros of the transfer function where the system
produces no output for an input of that complex frequency. The roots of the polynomial in the denominator
produce poles of the transfer function where the system has natural frequencies of oscillation.

11.7.4 Summary

Once we have used our knowledge of rational functions to �nd its roots, we can manipulate a Laplace
transform in a number of useful ways. We can apply this knowledge by representing an LTI system graphically
through a pole-zero plot for analysis or design.

11.8 Di�erential Equations14

11.8.1 Di�erential Equations

It is often useful to describe systems using equations involving the rate of change in some quantity through
di�erential equations. Recall that one important subclass of di�erential equations, linear constant coe�cient
ordinary di�erential equations, takes the form

Ay (t) = x (t) (11.38)

where A is a di�erential operator of the form

A = an
dn

dtn
+ an−1

dn−1

dtn−1
+ ...+ a1

d

dt
+ a0. (11.39)

The di�erential equation in (11.38) would describe some system modeled by A with an input forcing function
x (t) that produces an output solution signal y (t). However, the unilateral Laplace transform permits a
solution for initial value problems to be found in what is usually a much simpler method. Speci�cally, it
greatly simpli�es the procedure for nonhomogeneous di�erential equations.

14This content is available online at <http://cnx.org/content/m34510/1.3/>.
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11.8.2 General Formulas for the Di�erential Equation

As stated brie�y in the de�nition above, a di�erential equation is a very useful tool in describing and
calculating the change in an output of a system described by the formula for a given input. The key
property of the di�erential equation is its ability to help easily �nd the transform, H (s), of a system. In
the following two subsections, we will look at the general form of the di�erential equation and the general
conversion to a Laplace-transform directly from the di�erential equation.

11.8.2.1 Conversion to Laplace-Transform

Using the de�nition, , we can easily generalize the transfer function, H (s), for any di�erential equa-
tion. Below are the steps taken to convert any di�erential equation into its transfer function, i.e. Laplace-
transform. The �rst step involves taking the Fourier Transform15 of all the terms in . Then we use the
linearity property to pull the transform inside the summation and the time-shifting property of the Laplace-
transform to change the time-shifting terms to exponentials. Once this is done, we arrive at the following
equation: a0 = 1.

Y (s) = −
N∑
k=1

akY (s) s−k +
M∑
k=0

bkX (s) s−k (11.40)

H (s) = Y (s)
X(s)

=
PM
k=0 bks

−k

1+
PN
k=1 aks

−k

(11.41)

11.8.2.2 Conversion to Frequency Response

Once the Laplace-transform has been calculated from the di�erential equation, we can go one step further to
de�ne the frequency response of the system, or �lter, that is being represented by the di�erential equation.

note: Remember that the reason we are dealing with these formulas is to be able to aid us in
�lter design. A LCCDE is one of the easiest ways to represent FIR �lters. By being able to �nd
the frequency response, we will be able to look at the basic properties of any �lter represented by
a simple LCCDE.

Below is the general formula for the frequency response of a Laplace-transform. The conversion is simply a
matter of taking the Laplace-transform formula, H (s), and replacing every instance of s with ejw.

H (w) = H (s) |s,s=ejw

=
PM
k=0 bke

−(jwk)PN
k=0 ake

−(jwk)

(11.42)

Once you understand the derivation of this formula, look at the module concerning Filter Design from the
Laplace-Transform (Section 12.9) for a look into how all of these ideas of the Laplace-transform (Section 11.1),
Di�erential Equation, and Pole/Zero Plots (Section 12.5) play a role in �lter design.

11.8.3 Solving a LCCDE

In order for a linear constant-coe�cient di�erence equation to be useful in analyzing a LTI system, we must
be able to �nd the systems output based upon a known input, x (t), and a set of initial conditions. Two
common methods exist for solving a LCCDE: the direct method and the indirect method, the latter
being based on the Laplace-transform. Below we will brie�y discuss the formulas for solving a LCCDE using
each of these methods.

15"Derivation of the Fourier Transform" <http://cnx.org/content/m0046/latest/>
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11.8.3.1 Direct Method

The �nal solution to the output based on the direct method is the sum of two parts, expressed in the following
equation:

y (t) = yh (t) + yp (t) (11.43)

The �rst part, yh (t), is referred to as the homogeneous solution and the second part, yh (t), is referred
to as particular solution. The following method is very similar to that used to solve many di�erential
equations, so if you have taken a di�erential calculus course or used di�erential equations before then this
should seem very familiar.

11.8.3.1.1 Homogeneous Solution

We begin by assuming that the input is zero, x (t) = 0. Now we simply need to solve the homogeneous
di�erential equation:

N∑
k=0

aky (t− k) = 0 (11.44)

In order to solve this, we will make the assumption that the solution is in the form of an exponential. We
will use lambda, λ, to represent our exponential terms. We now have to solve the following equation:

N∑
k=0

akλ
t−k = 0 (11.45)

We can expand this equation out and factor out all of the lambda terms. This will give us a large polynomial
in parenthesis, which is referred to as the characteristic polynomial. The roots of this polynomial will
be the key to solving the homogeneous equation. If there are all distinct roots, then the general solution to
the equation will be as follows:

yh (t) = C1(λ1)t + C2(λ2)t + · · ·+ CN (λN )t (11.46)

However, if the characteristic equation contains multiple roots then the above general solution will be slightly
di�erent. Below we have the modi�ed version for an equation where λ1 has K multiple roots:

yh (t) = C1(λ1)t + C1t(λ1)t + C1t
2(λ1)t + · · ·+ C1t

K−1(λ1)t + C2(λ2)t + · · ·+ CN (λN )t (11.47)

11.8.3.1.2 Particular Solution

The particular solution, yp (t), will be any solution that will solve the general di�erential equation:

N∑
k=0

akyp (t− k) =
M∑
k=0

bkx (t− k) (11.48)

In order to solve, our guess for the solution to yp (t) will take on the form of the input, x (t). After guessing
at a solution to the above equation involving the particular solution, one only needs to plug the solution into
the di�erential equation and solve it out.

11.8.3.2 Indirect Method

The indirect method utilizes the relationship between the di�erential equation and the Laplace-transform,
discussed earlier, to �nd a solution. The basic idea is to convert the di�erential equation into a Laplace-
transform, as described above (Section 11.8.2.1: Conversion to Laplace-Transform), to get the resulting
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output, Y (s). Then by inverse transforming this and using partial-fraction expansion, we can arrive at the
solution.

L{ d
dt
y (t)} = sY (s)− y (0) (11.49)

This can be interatively extended to an arbitrary order derivative as in Equation (11.50).

L{ d
n

dtn
y (t)} = snY (s)−

n−1∑
m=0

sn−m−1y(m) (0) (11.50)

Now, the Laplace transform of each side of the di�erential equation can be taken

L{
n∑
k=0

ak
dk

dtk
y (t)} = L{x (t)} (11.51)

which by linearity results in

n∑
k=0

akL{
dk

dtk
y (t)} = L{x (t)} (11.52)

and by di�erentiation properties in

n∑
k=0

ak

(
skL{y (t)} −

k−1∑
m=0

sk−m−1y(m) (0)

)
= L{x (t)}. (11.53)

Rearranging terms to isolate the Laplace transform of the output,

L{y (t)} =
L{x (t)}+

∑n
k=0

∑k−1
m=0 aks

k−m−1y(m) (0)∑n
k=0 aks

k
. (11.54)

Thus, it is found that

Y (s) =
X (s) +

∑n
k=0

∑k−1
m=0 aks

k−m−1y(m) (0)∑n
k=0 aks

k
. (11.55)

In order to �nd the output, it only remains to �nd the Laplace transform X (s) of the input, substitute
the initial conditions, and compute the inverse Laplace transform of the result. Partial fraction expansions
are often required for this last step. This may sound daunting while looking at Equation (11.55), but it is
often easy in practice, especially for low order di�erential equations. Equation (11.55) can also be used to
determine the transfer function and frequency response.

As an example, consider the di�erential equation

d2

dt2
y (t) + 4

d

dt
y (t) + 3y (t) = cos (t) (11.56)

with the initial conditions y' (0) = 1 and y (0) = 0 Using the method described above, the Laplace transform
of the solution y (t) is given by

Y (s) =
s

(s2 + 1) (s+ 1) (s+ 3)
+

1
(s+ 1) (s+ 3)

. (11.57)

Performing a partial fraction decomposition, this also equals

Y (s) = .25
1

s+ 1
− .35

1
s+ 3

+ .1
s

s2 + 1
+ .2

1
s2 + 1

. (11.58)
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Computing the inverse Laplace transform,

y (t) =
(
.25e−t − .35e−3t + .1cos (t) + .2sin (t)

)
u (t) . (11.59)

One can check that this satis�es that this satis�es both the di�erential equation and the initial conditions.

11.8.4 Summary

One of the most important concepts of DSP is to be able to properly represent the input/output relation-
ship to a given LTI system. A linear constant-coe�cient di�erence equation (LCCDE) serves as a way
to express just this relationship in a discrete-time system. Writing the sequence of inputs and outputs,
which represent the characteristics of the LTI system, as a di�erence equation helps in understanding and
manipulating a system.

11.9 Continuous Time Filter Design16

11.9.1 Introduction

Analog (Continuous-Time) �lters are useful for a wide variety of applications, and are especially useful in
that they are very simple to build using standard, passive R,L,C components. Having a grounding in basic
�lter design theory can assist one in solving a wide variety of signal processing problems.

11.9.2 Estimating Frequency Response from Z-Plane

One of the motivating factors for analyzing the pole/zero plots is due to their relationship to the frequency
response of the system. Based on the position of the poles and zeros, one can quickly determine the frequency
response. This is a result of the correspondence between the frequency response and the transfer function
evaluated on the unit circle in the pole/zero plots. The frequency response, or DTFT, of the system is
de�ned as:

H (w) = H (z) |z,z=ejw

=
PM
k=0 bke

−(jwk)PN
k=0 ake

−(jwk)

(11.60)

Next, by factoring the transfer function into poles and zeros and multiplying the numerator and denominator
by ejw we arrive at the following equations:

H (w) = | b0
a0
|
∏M
k=1 |ejw − ck|∏N
k=1 |ejw − dk|

(11.61)

From (11.61) we have the frequency response in a form that can be used to interpret physical characteristics
about the �lter's frequency response. The numerator and denominator contain a product of terms of the
form |ejw − h|, where h is either a zero, denoted by ck or a pole, denoted by dk. Vectors are commonly used
to represent the term and its parts on the complex plane. The pole or zero, h, is a vector from the origin to
its location anywhere on the complex plane and ejw is a vector from the origin to its location on the unit
circle. The vector connecting these two points, |ejw − h|, connects the pole or zero location to a place on
the unit circle dependent on the value of w. From this, we can begin to understand how the magnitude of
the frequency response is a ratio of the distances to the poles and zero present in the z-plane as w goes from
zero to pi. These characteristics allow us to interpret |H (w) | as follows:

|H (w) | = | b0
a0
|
∏

”distances from zeros”∏
”distances from poles”

(11.62)

16This content is available online at <http://cnx.org/content/m34921/1.2/>.
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In conclusion, using the distances from the unit circle to the poles and zeros, we can plot the frequency
response of the system. As w goes from 0 to 2π, the following two properties, taken from the above equations,
specify how one should draw |H (w) |.
While moving around the unit circle...

1. if close to a zero, then the magnitude is small. If a zero is on the unit circle, then the frequency
response is zero at that point.

2. if close to a pole, then the magnitude is large. If a pole is on the unit circle, then the frequency response
goes to in�nity at that point.

11.9.3 Drawing Frequency Response from Pole/Zero Plot

Let us now look at several examples of determining the magnitude of the frequency response from the
pole/zero plot of a z-transform. If you have forgotten or are unfamiliar with pole/zero plots, please refer
back to the Pole/Zero Plots (Section 12.5) module.

Example 11.13
In this �rst example we will take a look at the very simple z-transform shown below:

H (z) = z + 1 = 1 + z−1

H (w) = 1 + e−(jw)

For this example, some of the vectors represented by |ejw−h|, for random values of w, are explicitly
drawn onto the complex plane shown in the �gure below. These vectors show how the amplitude
of the frequency response changes as w goes from 0 to 2π, and also show the physical meaning
of the terms in (11.61) above. One can see that when w = 0, the vector is the longest and thus
the frequency response will have its largest amplitude here. As w approaches π, the length of the
vectors decrease as does the amplitude of |H (w) |. Since there are no poles in the transform, there
is only this one vector term rather than a ratio as seen in (11.61).

(a) Pole/Zero Plot (b) Frequency Response: |H(w)|

Figure 11.26: The �rst �gure represents the pole/zero plot with a few representative vectors graphed
while the second shows the frequency response with a peak at +2 and graphed between plus and minus
π.
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Example 11.14
For this example, a more complex transfer function is analyzed in order to represent the system's
frequency response.

H (z) =
z

z − 1
2

=
1

1− 1
2z
−1

H (w) =
1

1− 1
2e
−(jw)

Below we can see the two �gures described by the above equations. The Figure 11.27(a)
(Pole/Zero Plot) represents the basic pole/zero plot of the z-transform, H (w). Figure 11.27(b)
(Frequency Response: |H(w)|) shows the magnitude of the frequency response. From the formulas
and statements in the previous section, we can see that when w = 0 the frequency will peak since
it is at this value of w that the pole is closest to the unit circle. The ratio from (11.61) helps us see
the mathematics behind this conclusion and the relationship between the distances from the unit
circle and the poles and zeros. As w moves from 0 to π, we see how the zero begins to mask the
e�ects of the pole and thus force the frequency response closer to 0.

(a) Pole/Zero Plot (b) Frequency Response: |H(w)|

Figure 11.27: The �rst �gure represents the pole/zero plot while the second shows the frequency
response with a peak at +2 and graphed between plus and minus π.

11.9.4 Types of Filters

11.9.4.1 Butterworth Filters

The Butterworth �lter is the simplest �lter. It can be constructed out of passive R, L, C circuits. The
magnitude of the transfer function for this �lter is

Magnitude of Butterworth Filter Transfer Function

|H (jω) | = 1√
1 +

(
ω
ωc

)2n
(11.63)

where n is the order of the �lter and ωc is the cuto� frequency. The cuto� frequency is the frequency
where the magnitude experiences a 3 dB dropo� (where |H (jω) | = 1√

2
).
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Figure 11.28: Three di�erent orders of lowpass Butterworth analog �lters: n = {1, 4, 10}. As n
increases, the �lter more closely approximates an ideal brickwall lowpass response.

The important aspects of Figure 11.28 are that it does not ripple in the passband or stopband as other
�lters tend to, and that the larger n, the sharper the cuto� (the smaller the transition band17).

Butterworth �lters give transfer functions (H (jω) and H (s)) that are rational functions. They also
have only poles18, resulting in a transfer function of the form

1
(s− s1) (s− s2) · · · (s− sn)

(11.64)

and a pole-zero plot of

17"Practical Filters" <http://cnx.org/content/m10126/latest/>
18"Poles and Zeros" <http://cnx.org/content/m10112/latest/>
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Figure 11.29: Poles of a 10th-order ( n = 5 ) lowpass Butterworth �lter.

Note that the poles lie along a circle in the s-plane.

11.9.4.2 Chebyshev Filters

The Butterworth �lter does not give a su�ciently good approximation across the complete passband in
many cases. The Taylor's series approximation is often not suited to the way speci�cations are given for
�lters. An alternate error measure is the maximum of the absolute value of the di�erence between the
actual �lter response and the ideal. This is considered over the total passband. This is the Chebyshev error
measure and was de�ned and applied to the FIR �lter design problem. For the IIR �lter, the Chebyshev
error is minimized over the passband and a Taylor's series approximation at ω =∞ is used to determine the
stopband performance. This mixture of methods in the IIR case is called the Chebyshev �lter, and simple
design formulas result, just as for the Butterworth �lter.

The design of Chebyshev �lters is particularly interesting, because the results of a very elegant theory
insure that constructing a frequency-response function with the proper form of equal ripple in the error will
result in a minimum Chebyshev error without explicitly minimizing anything. This allows a straightforward
set of design formulas to be derived which can be viewed as a generalization of the Butterworth formulas , .
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The form for the magnitude squared of the frequency-response function for the Chebyshev �lter is

|F (jω) |2 =
1

1 + ε2CN (ω)2 (11.65)

where CN (ω) is an Nth-order Chebyshev polynomial and ε is a parameter that controls the ripple size.
This polynomial in ω has very special characteristics that result in the optimality of the response function
((11.65)).
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Figure 11.30: Fifth Order Chebyshev Filter Frequency Response

11.9.4.3 Bessel �lters

Insert bessel �lter information

11.9.4.4 Elliptic Filters

There is yet another method that has been developed that uses a Chebyshev error criterion in both the
passband and the stopband. This is the fourth possible combination of Chebyshev and Taylor's series
approximations in the passband and stopband. The resulting �lter is called an elliptic-function �lter, because
elliptic functions are normally used to calculate the pole and zero locations. It is also sometimes called a
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Cauer �lter or a rational Chebyshev �lter, and it has equal ripple approximation error in both pass and
stopbands , , , .

The error criteria of the elliptic-function �lter are particularly well suited to the way speci�cations for
�lters are often given. For that reason, use of the elliptic-function �lter design usually gives the lowest order
�lter of the four classical �lter design methods for a given set of speci�cations. Unfortunately, the design of
this �lter is the most complicated of the four. However, because of the e�ciency of this class of �lters, it is
worthwhile gaining some understanding of the mathematics behind the design procedure.

This section sketches an outline of the theory of elliptic- function �lter design. The details and properties
of the elliptic functions themselves should simply be accepted, and attention put on understanding the overall
picture. A more complete development is available in , .

Because both the passband and stopband approximations are over the entire bands, a transition band
between the two must be de�ned. Using a normalized passband edge, the bands are de�ned by

0 < ω < 1 passband (11.66)

1 < ω < ωs transition band (11.67)

ωs < ω <∞ stopband (11.68)

This is illustrated in Figure .
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Figure 11.31: Third Order Analog Elliptic Function Lowpass Filter showing the Ripples and Band
Edges

The characteristics of the elliptic function �lter are best described in terms of the four parameters that
specify the frequency response:

1. The maximum variation or ripple in the passband δ1,
2. The width of the transition band (ωs − 1),
3. The maximum response or ripple in the stopband δ2, and
4. The order of the �lter N .

The result of the design is that for any three of the parameters given, the fourth is minimum. This is a very
�exible and powerful description of a �lter frequency response.

The form of the frequency-response function is a generalization of that for the Chebyshev �lter

FF (jω) = |F (jω) |2 =
1

1 + ε2G2 (ω)
(11.69)

where

FF (s) = F (s)F (−s) (11.70)
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with F (s) being the prototype analog �lter transfer function similar to that for the Chebyshev �lter. G (ω)
is a rational function that approximates zero in the passband and in�nity in the stopband. The de�nition
of this function is a generalization of the de�nition of the Chebyshev polynomial.

11.9.5 Filter Design Demonstration

11.9.6 Conclusion

As can be seen, there is a large amount of information available in �lter design, more than an introductory
module can cover. Even for designing Discrete-time IIR �lters, it is important to remember that there is
a far larger body of literature for design methods for the analog signal processing world than there is for
the digital. Therefore, it is often easier and more practical to implement an IIR �lter using standard analog
methods, and then discretize it using methods such as the Bilateral Transform.
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Chapter 12

Z-Transform and Discrete Time System
Design

12.1 Z-Transform1

12.1.1 Introduction

The Z transform is a generalization of the Discrete-Time Fourier Transform (Section 9.2). It is used because
the DTFT does not converge/exist for many important signals, and yet does for the z-transform. It is also
used because it is notationally cleaner than the DTFT. In contrast to the DTFT, instead of using complex
exponentials (Section 7.2) of the form ejωn, with purely imaginary parameters, the Z transform uses the
more general, zn, where z is complex. The Z-transform thus allows one to bring in the power of complex
variable theory into Digital Signal Processing.

12.1.2 The Z-Transform

12.1.2.1 Bilateral Z-transform Pair

Although Z transforms are rarely solved in practice using integration (tables2 and computers (e.g. Matlab)
are much more common), we will provide the bilateral Z transform pair here for purposes of discussion
and derivation. These de�ne the forward and inverse Z transformations. Notice the similarities between the
forward and inverse transforms. This will give rise to many of the same symmetries found in Fourier analysis
(Section 5.1).

Z Transform

X (z) =
∞∑

n=−∞
x [n] z−n (12.1)

Inverse Z Transform

x [n] =
1

2πj

∮
r

X (z) zn−1dz (12.2)

note: We have de�ned the bilateral z-transform. There is also a unilateral z-transform ,

X (z) =
∞∑
n=0

x [n] z−n (12.3)

1This content is available online at <http://cnx.org/content/m34858/1.4/>.
2"Table of Common z-Transforms" <http://cnx.org/content/m10119/latest/>
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which is useful for solving the di�erence equations with nonzero initial conditions. This is similar
to the unilateral Laplace Transform in continuous time.

12.1.2.2 Relation between Z-transform and DTFT

Taking a look at the equations describing the Z-Transform and the Discrete-Time Fourier Transform:

Discrete-Time Fourier Transform

X
(
ejω
)

=
∞∑

n=−∞
x (n) e−(jωn) (12.4)

Z-Transform

X (z) =
∞∑

n=−∞
x [n] z−n (12.5)

We can see many similarities; �rst, that :

X
(
ejω
)

= X (z) (12.6)

for all z = ejω

12.1.2.3 Visualizing the Z-transform

With the DTFT, we have a complex-valued function of a real-valued variable ω (and 2 π periodic). The
Z-transform is a complex-valued function of a complex valued variable z.

Plots

Figure 12.1

With the Fourier transform, we had a complex-valued function of a purely imaginary variable,
F (jω). This was something we could envision with two 2-dimensional plots (real and imaginary parts or
magnitude and phase). However, with Z, we have a complex-valued function of a complex variable. In
order to examine the magnitude and phase or real and imaginary parts of this function, we must examine
3-dimensional surface plots of each component.
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Consider the z-transform given by H (z) = z, as illustrated below.

Figure 12.2

The corresponding DTFT has magnitude and phase given below.

note: While these are legitimate ways of looking at a signal in the Z domain, it is quite di�cult
to draw and/or analyze. For this reason, a simpler method has been developed. Although it will
not be discussed in detail here, the method of Poles and Zeros3 is much easier to understand and
is the way both the Z transform and its continuous-time counterpart the Laplace-transform are
represented graphically.

3"Poles and Zeros" <http://cnx.org/content/m10112/latest/>
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(a) (b)

Figure 12.3: Magnitude and Phase of H(z).

What could the system H be doing? It is a perfect all-pass, linear-phase system. But what does this
mean?

Suppose h [n] = δ [n− n0]. Then

H (z) =
∑∞
n=−∞h [n] z−n

=
∑∞
n=−∞δ [n− n0] z−n

= z−n0 .

(12.7)

Thus, H (z) = z−n0 is the z-transform of a system that simply delays the input by n0. H (z) is the
z-transform of a unit-delay.

Now consider x [n] = αnu [n]
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Figure 12.4

X (z) =
∑∞
n=−∞x [n] z−n =

∑∞
n=0α

nz−n

=
∑∞
n=0

(
α
z

)n
= 1

1−αz

(
if |αz | < 1

)
(GeometricSeries)

= z
z−α .

(12.8)

What if |αz | ≥ 1? Then
∑∞
n=0

(
α
z

)n
does not converge! Therefore, whenever we compute a z-

tranform, we must also specify the set of z's for which the z-transform exists. This is called the
regionofconvergence(ROC).

note: Matlab has two functions, ztrans and iztrans, that are both part of the symbolic toolbox,
and will �nd the Z and inverse Z transforms respectively. This method is generally preferred for
more complicated functions. Simpler and more contrived functions are usually found easily enough
by using tables4.

12.1.3 Application to Discrete Time Filters

The z-transform might seem slightly ugly. We have to worry about the region of convergence, and stability
issues, and so forth. However, in the end it is worthwhile because it proves extremely useful in analyzing
digital �lters with feedback. For example, consider the system illustrated below

4"Table of Common z-Transforms" <http://cnx.org/content/m10119/latest/>
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Plots

Figure 12.5

We can analyze this system via the equations

v [n] = b0x [n] + b1x [n− 1] + b2x [n− 2] (12.9)

and

y [n] = v [n] + a1y [n− 1] + a2y [n− 2] (12.10)

More generally,

v [n] =
∑N
k=0bkx [n− k] (12.11)

and

y [n] =
∑M
k=1aky [n− k] + v [n] (12.12)

or equivalently, ∑N
k=0bkx [n− k] = y [n]−

∑M
k=1aky [n− k] . (12.13)

What does the z-transform of this relationship look like?

Z
∑M
k=0aky [n− k] = Z

∑M
k=0bkx [n− k]∑M

k=0akZ{y [n− k]} =
∑M
k=0bkZ{x [n− k]}

(12.14)

Note that

Z{y [n− k]} =
∑∞
n=−∞y [n− k] z−n

=
∑∞
m=−∞y [m] z−mz−k

= Y (z) z−k.

(12.15)



251

Thus the relationship reduces to ∑M
k=0akY (z) z−k =

∑N
k=0bkX (z) z−k

Y (z)
∑M
k=0akz

−k = X (z)
∑N
k=0bkz

−k

Y (z)
X(z) =

PN
k=0bkz

−kPM
k=0akz

−k

(12.16)

Hence, given a system the one above, we can easily determine the system's transfer function, and end up
with a ratio of two polynomials in z: a rational function. Similarly, given a rational function, it is easy to
realize this function in a simple hardware architecture.

12.1.4 Interactive Z-Transform Demonstration

Figure 12.6: Interact (when online) with a Mathematica CDF demonstrating the Z Transform. To
Download, right-click and save target as .cdf.

12.1.5 Conclusion

The z-transform proves a useful, more general form of the Discrete Time Fourier Transform. It applies
equally well to describing systems as well as signals using the eigenfunction method, and proves extremely
useful in digital �lter design.
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12.2 Common Z-Transforms5

12.2.1

Signal Z-transform Region of Convergence

δ (t) 1 all s

δ (t− T ) e−(sT ) all s

u (t) 1
s R>0

−u (−t) 1
s R<0

tu (t) 1
s2 R>0

tnu (t) n!
sn+1 R>0

− (tnu (−t)) n!
sn+1 R<0

e−(λt)u (t) 1
s+λ R>−λ(

−
(
e−(λt)

)
u (−t) 1

s+λ R<−λ
te−(λt)u (t) 1

(s−λ)2
R>−λ

tne−(λt)u (t) n!
(s+λ)n+1 R>−λ

−
(
tne−(λt)u (−t)

)
n!

(s+λ)n+1 R<−λ
cos (bt)u (t) s

s2+b2 R>0

sin (bt)u (t) b
s2+b2 R>0

e−(at)cos (bt)u (t) s+a
(s+a)2+b2

R>−a
e−(at)sin (bt)u (t) b

(s+a)2+b2
R>−a

dn

dtn δ (t) sn all s

Table 12.1: Common Continuous Time Fourier Series

12.3 Properties of the Z-Transform6

12.3.1 Introduction

This module will look at some of the basic properties of the Z-Transform (Section 9.2) (DTFT).

note: We will be discussing these properties for aperiodic, discrete-time signals but understand
that very similar properties hold for continuous-time signals and periodic signals as well.

12.3.2 Discussion of Z-Transform Properties

12.3.2.1 Linearity

The combined addition and scalar multiplication properties in the table above demonstrate the basic property
of linearity. What you should see is that if one takes the Z-transform of a linear combination of signals then

5This content is available online at <http://cnx.org/content/m34859/1.1/>.
6This content is available online at <http://cnx.org/content/m34477/1.2/>.
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it will be the same as the linear combination of the Z-transforms of each of the individual signals. This is
crucial when using a table (Section 8.3) of transforms to �nd the transform of a more complicated signal.

Example 12.1
We will begin with the following signal:

x [n] = af1 [n] + bf2 [n] (12.17)

Now, after we take the Fourier transform, shown in the equation below, notice that the linear
combination of the terms is una�ected by the transform.

X (z) = aF1 (z) + bF2 (z) (12.18)

12.3.2.2 Symmetry

Symmetry is a property that can make life quite easy when solving problems involving Z-transforms. Basically
what this property says is that since a rectangular function in time is a sinc function in frequency, then a
sinc function in time will be a rectangular function in frequency. This is a direct result of the symmetry
between the forward Z and the inverse Z transform. The only di�erence is the scaling by 2π and a frequency
reversal.

12.3.2.3 Time Scaling

This property deals with the e�ect on the frequency-domain representation of a signal if the time variable
is altered. The most important concept to understand for the time scaling property is that signals that are
narrow in time will be broad in frequency and vice versa. The simplest example of this is a delta function,
a unit pulse7 with a very small duration, in time that becomes an in�nite-length constant function in
frequency.

The table above shows this idea for the general transformation from the time-domain to the frequency-
domain of a signal. You should be able to easily notice that these equations show the relationship mentioned
previously: if the time variable is increased then the frequency range will be decreased.

12.3.2.4 Time Shifting

Time shifting shows that a shift in time is equivalent to a linear phase shift in frequency. Since the frequency
content depends only on the shape of a signal, which is unchanged in a time shift, then only the phase
spectrum will be altered. This property is proven below:

Example 12.2
We will begin by letting x [n] = f [n− η]. Now let's take the z-transform with the previous
expression substituted in for x [n].

X (z) =
∞∑

n=−∞
f [n− η] z−n (12.19)

Now let's make a simple change of variables, where σ = n − η. Through the calculations below,
you can see that only the variable in the exponential are altered thus only changing the phase in
the frequency domain.

X (z) =
∑∞
η=−∞ f [σ] z−(σ+η)

= z−η
∑∞
σ=−∞ f [σ] z−σ

= z−ηF (z)

(12.20)

7"Elemental Signals": Section Pulse <http://cnx.org/content/m0004/latest/#pulsedef>
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12.3.2.5 Convolution

Convolution is one of the big reasons for converting signals to the frequency domain, since convolution in
time becomes multiplication in frequency. This property is also another excellent example of symmetry
between time and frequency. It also shows that there may be little to gain by changing to the frequency
domain when multiplication in time is involved.

We will introduce the convolution integral here, but if you have not seen this before or need to refresh your
memory, then look at the discrete-time convolution (Section 4.3) module for a more in depth explanation
and derivation.

y [n] = (f1 [n] , f2 [n])

=
∑∞
η=−∞ f1 [η] f2 [n− η]

(12.21)

12.3.2.6 Time Di�erentiation

Since discrete LTI (Section 2.1) systems can be represented in terms of di�erence equations, it is apparent
with this property that converting to the frequency domain may allow us to convert these complicated
di�erence equations to simpler equations involving multiplication and addition.

12.3.2.7 Parseval's Relation

∞∑
n=−∞

x [n] x∗ [n] =
∫ π

−π
F (z) F∗ (z) dz (12.22)

Parseval's relation tells us that the energy of a signal is equal to the energy of its Fourier transform.

Figure 12.7

12.3.2.8 Modulation (Frequency Shift)

Modulation is absolutely imperative to communications applications. Being able to shift a signal to a di�erent
frequency, allows us to take advantage of di�erent parts of the electromagnetic spectrum is what allows us
to transmit television, radio and other applications through the same space without signi�cant interference.

The proof of the frequency shift property is very similar to that of the time shift (Section 12.3.2.4: Time
Shifting); however, here we would use the inverse Fourier transform in place of the Fourier transform. Since
we went through the steps in the previous, time-shift proof, below we will just show the initial and �nal step
to this proof:

z (t) =
1

2π

∫ ∞
−∞

F (ω − φ) ejωtdω (12.23)
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Now we would simply reduce this equation through another change of variables and simplify the terms.
Then we will prove the property expressed in the table above:

z (t) = f (t) ejφt (12.24)

12.3.3 Properties Demonstration

An interactive example demonstration of the properties is included below:

This media object is a LabVIEW VI. Please view or download it at
<CTFTSPlab.llb>

Figure 12.8: Interactive Signal Processing Laboratory Virtual Instrument created using NI's Labview.

12.3.4 Summary Table

Property Signal Z-Transform Region of Convergence

Linearity αx1 (n) + βx2 (n) αX1 (z) + βX2 (z) At least ROC1 ∩ ROC2

Time shi�ng x (n− k) z−kX (z) ROC

Time scaling x (n/k) X
(
zk
)

ROC1/k

Z-domain scaling anx (n) X (z/a) |a|ROC

Conjugation x (n) X (z) ROC

Convolution x1 (n) ∗ x2 (n) X1 (z)X2 (z) At least ROC1 ∩ ROC2

Di�erentiation in z-Domain [nx [n]] − d
dzX (z) ROC= all R

Parseval's Theorem
∑∞
n=−∞ x [n] x∗ [n]

∫ π
−π F (z) F∗ (z) dz ROC

Table 12.2: Properties of the Z-Transform

12.4 Inverse Z-Transform8

12.4.1 Introduction

When using the z-transform9

X (z) =
∞∑

n=−∞
x [n] z−n (12.25)

it is often useful to be able to �nd x [n] given X (z). There are at least 4 di�erent methods to do this:

1. Inspection (Section 12.4.2: Inspection Method)
2. Partial-Fraction Expansion (Section 12.4.3: Partial-Fraction Expansion Method)
3. Power Series Expansion (Section 12.4.5: Power Series Expansion Method)
4. Contour Integration (Section 12.4.6: Contour Integration Method)

8This content is available online at <http://cnx.org/content/m10651/2.5/>.
9"The Z Transform: De�nition" <http://cnx.org/content/m10549/latest/>
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12.4.2 Inspection Method

This "method" is to basically become familiar with the z-transform pair tables10 and then "reverse engineer".

Example 12.3
When given

X (z) =
z

z − α
with an ROC (Section 12.6) of

|z| > α

we could determine "by inspection" that

x [n] = αnu [n]

12.4.3 Partial-Fraction Expansion Method

When dealing with linear time-invariant systems the z-transform is often of the form

X (z) = B(z)
A(z)

=
PM
k=0 bkz

−kPN
k=0 akz

−k

(12.26)

This can also expressed as

X (z) =
a0

b0

∏M
k=1 1− ckz−1∏N
k=1 1− dkz−1

(12.27)

where ck represents the nonzero zeros of X (z) and dk represents the nonzero poles.
If M < N then X (z) can be represented as

X (z) =
N∑
k=1

Ak
1− dkz−1

(12.28)

This form allows for easy inversions of each term of the sum using the inspection method (Section 12.4.2:
Inspection Method) and the transform table11. If the numerator is a polynomial, however, then it becomes
necessary to use partial-fraction expansion12 to put X (z) in the above form. If M ≥ N then X (z) can be
expressed as

X (z) =
M−N∑
r=0

Brz
−r +

∑N−1
k=0 b'kz

−k∑N
k=0 akz

−k
(12.29)

Example 12.4
Find the inverse z-transform of

X (z) =
1 + 2z−1 + z−2

1− 3z−1 + 2z−2

where the ROC is |z| > 2. In this case M = N = 2, so we have to use long division to get

X (z) =
1
2

+
1
2 + 7

2z
−1

1− 3z−1 + 2z−2

10"Table of Common z-Transforms" <http://cnx.org/content/m10119/latest/>
11"Table of Common z-Transforms" <http://cnx.org/content/m10119/latest/>
12"Partial Fraction Expansion" <http://cnx.org/content/m2111/latest/>
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Next factor the denominator.

X (z) = 2 +
−1 + 5z−1

(1− 2z−1) (1− z−1)

Now do partial-fraction expansion.

X (z) =
1
2

+
A1

1− 2z−1
+

A2

1− z−1
=

1
2

+
9
2

1− 2z−1
+

−4
1− z−1

Now each term can be inverted using the inspection method and the z-transform table. Thus, since
the ROC is |z| > 2,

x [n] =
1
2
δ [n] +

9
2

2nu [n]− 4u [n]

12.4.4 Demonstration of Partial Fraction Expansion

External Image
Please see:

http://demonstrations.wolfram.com/PartialFractionDecomposition/thumbnail_174.jpg

Figure 12.9: Interactive experiment illustrating how the Partial Fraction Expansion method is used
to solve a variety of numerator and denominator problems. (To view and interact with the simulation,
download the free Mathematica player at http://www.wolfram.com/products/player/download.cgi)

Khan Lecture on Partial Fraction Expansion

This media object is a Flash object. Please view or download it at
<http://www.youtube.com/v/S-

XKGBesRzk&rel=0&color1=0xb1b1b1&color2=0xd0d0d0&hl=en_US&feature=player_embedded&fs=1>

Figure 12.10: video from Khan Academy

12.4.5 Power Series Expansion Method

When the z-transform is de�ned as a power series in the form

X (z) =
∞∑

n=−∞
x [n] z−n (12.30)

then each term of the sequence x [n] can be determined by looking at the coe�cients of the respective power
of z−n.
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Example 12.5
Now look at the z-transform of a �nite-length sequence.

X (z) = z2
(
1 + 2z−1

) (
1− 1

2z
−1
) (

1 + z−1
)

= z2 + 5
2z + 1

2 +−z−1
(12.31)

In this case, since there were no poles, we multiplied the factors of X (z). Now, by inspection, it
is clear that

x [n] = δ [n+ 2] +
5
2
δ [n+ 1] +

1
2
δ [n] +−δ [n− 1]

.

One of the advantages of the power series expansion method is that many functions encountered in engi-
neering problems have their power series' tabulated. Thus functions such as log, sin, exponent, sinh, etc,
can be easily inverted.

Example 12.6
Suppose

X (z) = logn
(
1 + αz−1

)
Noting that

logn (1 + x) =
∞∑
n=1

−1n+1xn

n

Then

X (z) =
∞∑
n=1

−1n+1αnz−n

n

Therefore

X (z) =

 −1n+1αn

n if n ≥ 1

0 if n ≤ 0

12.4.6 Contour Integration Method

Without going in to much detail

x [n] =
1

2πj

∮
r

X (z) zn−1dz (12.32)

where r is a counter-clockwise contour in the ROC of X (z) encircling the origin of the z-plane. To further
expand on this method of �nding the inverse requires the knowledge of complex variable theory and thus
will not be addressed in this module.



259

12.4.7 Demonstration of Contour Integration

External Image
Please see:

http://demonstrations.wolfram.com/ContourIntegralAroundASimplePole/thumbnail_174.jpg

Figure 12.11: Interactive experiment illustrating how the contour integral is applied on a sim-
ple example. For a more in-depth discussion of this method, some background in complex analy-
sis is required. (To view and interact with the simulation, download the free Mathematica player at
http://www.wolfram.com/products/player/download.cgi)

12.4.8 Conclusion

The Inverse Z-transform is very useful to know for the purposes of designing a �lter, and there are many
ways in which to calculate it, drawing from many disparate areas of mathematics. All nevertheless assist
the user in reaching the desired time-domain signal that can then be synthesized in hardware(or software)
for implementation in a real-world �lter.

12.5 Poles and Zeros in the Z-Plane13

12.5.1 Introduction to Poles and Zeros of the Z-Transform

It is quite di�cult to qualitatively analyze the Laplace transform (Section 11.1) and Z-transform14, since
mappings of their magnitude and phase or real part and imaginary part result in multiple mappings of
2-dimensional surfaces in 3-dimensional space. For this reason, it is very common to examine a plot of a
transfer function's15 poles and zeros to try to gain a qualitative idea of what a system does.

Once the Z-transform of a system has been determined, one can use the information contained in function's
polynomials to graphically represent the function and easily observe many de�ning characteristics. The Z-
transform will have the below structure, based on Rational Functions (Section 12.7):

X (z) =
P (z)
Q (z)

(12.33)

The two polynomials, P (z) and Q (z), allow us to �nd the poles and zeros16 of the Z-Transform.

De�nition 12.1: zeros
1. The value(s) for z where P (z) = 0.
2. The complex frequencies that make the overall gain of the �lter transfer function zero.

De�nition 12.2: poles
1. The value(s) for z where Q (z) = 0.
2. The complex frequencies that make the overall gain of the �lter transfer function in�nite.

Example 12.7
Below is a simple transfer function with the poles and zeros shown below it.

H (z) =
z + 1(

z − 1
2

) (
z + 3

4

)
13This content is available online at <http://cnx.org/content/m10556/2.12/>.
14"The Z Transform: De�nition" <http://cnx.org/content/m10549/latest/>
15"Transfer Functions" <http://cnx.org/content/m0028/latest/>
16"Poles and Zeros" <http://cnx.org/content/m10112/latest/>



260 CHAPTER 12. Z-TRANSFORM AND DISCRETE TIME SYSTEM DESIGN

The zeros are: {−1}
The poles are:

{
1
2 ,−

3
4

}

12.5.2 The Z-Plane

Once the poles and zeros have been found for a given Z-Transform, they can be plotted onto the Z-Plane.
The Z-plane is a complex plane with an imaginary and real axis referring to the complex-valued variable z.
The position on the complex plane is given by rejθ and the angle from the positive, real axis around the
plane is denoted by θ. When mapping poles and zeros onto the plane, poles are denoted by an "x" and zeros
by an "o". The below �gure shows the Z-Plane, and examples of plotting zeros and poles onto the plane can
be found in the following section.

Z-Plane

Figure 12.12

12.5.3 Examples of Pole/Zero Plots

This section lists several examples of �nding the poles and zeros of a transfer function and then plotting
them onto the Z-Plane.

Example 12.8: Simple Pole/Zero Plot

H (z) =
z(

z − 1
2

) (
z + 3

4

)
The zeros are: {0}
The poles are:

{
1
2 ,−

3
4

}
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Pole/Zero Plot

Figure 12.13: Using the zeros and poles found from the transfer function, the one zero is mapped to
zero and the two poles are placed at 1

2
and − 3

4

Example 12.9: Complex Pole/Zero Plot

H (z) =
(z − j) (z + j)(

z −
(

1
2 −

1
2j
)) (

z − 1
2 + 1

2j
)

The zeros are: {j,−j}
The poles are:

{
−1, 1

2 + 1
2j,

1
2 −

1
2j
}
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Pole/Zero Plot

Figure 12.14: Using the zeros and poles found from the transfer function, the zeros are mapped to
± (j), and the poles are placed at −1, 1

2
+ 1

2
j and 1

2
− 1

2
j

Example 12.10: Pole-Zero Cancellation

An easy mistake to make with regards to poles and zeros is to think that a function like (s+3)(s−1)
s−1 is

the same as s+3. In theory they are equivalent, as the pole and zero at s = 1 cancel each other out
in what is known as pole-zero cancellation. However, think about what may happen if this were a
transfer function of a system that was created with physical circuits. In this case, it is very unlikely
that the pole and zero would remain in exactly the same place. A minor temperature change, for
instance, could cause one of them to move just slightly. If this were to occur a tremendous amount
of volatility is created in that area, since there is a change from in�nity at the pole to zero at the
zero in a very small range of signals. This is generally a very bad way to try to eliminate a pole. A
much better way is to use control theory to move the pole to a better place.

note: It is possible to have more than one pole or zero at any given point. For instance, the
discrete-time transfer function H (z) = z2 will have two zeros at the origin and the continuous-time
function H (s) = 1

s25 will have 25 poles at the origin.

MATLAB - If access to MATLAB is readily available, then you can use its functions to easily create
pole/zero plots. Below is a short program that plots the poles and zeros from the above example onto the
Z-Plane.

% Set up vector for zeros

z = [j ; -j];

% Set up vector for poles

p = [-1 ; .5+.5j ; .5-.5j];

figure(1);
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zplane(z,p);

title('Pole/Zero Plot for Complex Pole/Zero Plot Example');

12.5.4 Interactive Demonstration of Poles and Zeros

Figure 12.15: Interact (when online) with a Mathematica CDF demonstrating Pole/Zero Plots. To
Download, right-click and save target as .cdf.
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12.5.5 Applications for pole-zero plots

12.5.5.1 Stability and Control theory

Now that we have found and plotted the poles and zeros, we must ask what it is that this plot gives us.
Basically what we can gather from this is that the magnitude of the transfer function will be larger when
it is closer to the poles and smaller when it is closer to the zeros. This provides us with a qualitative
understanding of what the system does at various frequencies and is crucial to the discussion of stability
(Section 3.6).

12.5.5.2 Pole/Zero Plots and the Region of Convergence

The region of convergence (ROC) for X (z) in the complex Z-plane can be determined from the pole/zero
plot. Although several regions of convergence may be possible, where each one corresponds to a di�erent
impulse response, there are some choices that are more practical. A ROC can be chosen to make the transfer
function causal and/or stable depending on the pole/zero plot.

Filter Properties from ROC

• If the ROC extends outward from the outermost pole, then the system is causal.
• If the ROC includes the unit circle, then the system is stable.

Below is a pole/zero plot with a possible ROC of the Z-transform in the Simple Pole/Zero Plot (Example 12.8:
Simple Pole/Zero Plot) discussed earlier. The shaded region indicates the ROC chosen for the �lter. From
this �gure, we can see that the �lter will be both causal and stable since the above listed conditions are both
met.

Example 12.11

H (z) =
z(

z − 1
2

) (
z + 3

4

)
Region of Convergence for the Pole/Zero Plot

Figure 12.16: The shaded area represents the chosen ROC for the transfer function.
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12.5.5.3 Frequency Response and Pole/Zero Plots

The reason it is helpful to understand and create these pole/zero plots is due to their ability to help us easily
design a �lter. Based on the location of the poles and zeros, the magnitude response of the �lter can be
quickly understood. Also, by starting with the pole/zero plot, one can design a �lter and obtain its transfer
function very easily.

12.6 Region of Convergence for the Z-transform17

12.6.1 Introduction

With the z-transform18, the s-plane represents a set of signals (complex exponentials (Section 1.8)). For
any given LTI (Section 2.1) system, some of these signals may cause the output of the system to converge,
while others cause the output to diverge ("blow up"). The set of signals that cause the system's output to
converge lie in the region of convergence (ROC). This module will discuss how to �nd this region of
convergence for any discrete-time, LTI system.

12.6.2 The Region of Convergence

The region of convergence, known as the ROC, is important to understand because it de�nes the region
where the z-transform19 exists. The z-transform of a sequence is de�ned as

X (z) =
∞∑

n=−∞
x [n] z−n (12.34)

The ROC for a given x [n] , is de�ned as the range of z for which the z-transform converges. Since the
z-transform is a power series, it converges when x [n] z−n is absolutely summable. Stated di�erently,

∞∑
n=−∞

|x [n] z−n| <∞ (12.35)

must be satis�ed for convergence.

12.6.2.1 Properties of the Region of Convergencec

The Region of Convergence has a number of properties that are dependent on the characteristics of the
signal, x [n].

• The ROC cannot contain any poles. By de�nition a pole is a where X (z) is in�nite. Since X (z)
must be �nite for all z for convergence, there cannot be a pole in the ROC.

• If x [n] is a �nite-duration sequence, then the ROC is the entire z-plane, except possibly
z = 0 or |z| = ∞. A �nite-duration sequence is a sequence that is nonzero in a �nite interval
n1 ≤ n ≤ n2. As long as each value of x [n] is �nite then the sequence will be absolutely summable.
When n2 > 0 there will be a z−1 term and thus the ROC will not include z = 0. When n1 < 0 then the
sum will be in�nite and thus the ROC will not include |z| =∞. On the other hand, when n2 ≤ 0 then
the ROC will include z = 0, and when n1 ≥ 0 the ROC will include |z| =∞. With these constraints,
the only signal, then, whose ROC is the entire z-plane is x [n] = cδ [n].

17This content is available online at <http://cnx.org/content/m10622/2.8/>.
18"The Z Transform: De�nition" <http://cnx.org/content/m10549/latest/>
19"The Z Transform: De�nition" <http://cnx.org/content/m10549/latest/>
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Figure 12.17: An example of a �nite duration sequence.

The next properties apply to in�nite duration sequences. As noted above, the z-transform converges
when |X (z) | <∞. So we can write

|X (z) | = |
∞∑

n=−∞
x [n] z−n| ≤

∞∑
n=−∞

|x [n] z−n| =
∞∑

n=−∞
|x [n] |(|z|)−n (12.36)

We can then split the in�nite sum into positive-time and negative-time portions. So

|X (z) | ≤ N (z) + P (z) (12.37)

where

N (z) =
−1∑

n=−∞
|x [n] |(|z|)−n (12.38)

and

P (z) =
∞∑
n=0

|x [n] |(|z|)−n (12.39)

In order for |X (z) | to be �nite, |x [n] | must be bounded. Let us then set

|x (n) | ≤ C1r1
n (12.40)

for
n < 0

and
|x (n) | ≤ C2r2

n (12.41)

for
n ≥ 0

From this some further properties can be derived:
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• If x [n] is a right-sided sequence, then the ROC extends outward from the outermost pole
in X (z). A right-sided sequence is a sequence where x [n] = 0 for n < n1 < ∞. Looking at the
positive-time portion from the above derivation, it follows that

P (z) ≤ C2

∞∑
n=0

r2
n(|z|)−n = C2

∞∑
n=0

(
r2

|z|

)n
(12.42)

Thus in order for this sum to converge, |z| > r2, and therefore the ROC of a right-sided sequence is
of the form |z| > r2.

Figure 12.18: A right-sided sequence.

Figure 12.19: The ROC of a right-sided sequence.
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• If x [n] is a left-sided sequence, then the ROC extends inward from the innermost pole
in X (z). A left-sided sequence is a sequence where x [n] = 0 for n > n2 > −∞. Looking at the
negative-time portion from the above derivation, it follows that

N (z) ≤ C1

−1∑
n=−∞

r1
n(|z|)−n = C1

−1∑
n=−∞

(
r1

|z|

)n
= C1

∞∑
k=1

(
|z|
r1

)k
(12.43)

Thus in order for this sum to converge, |z| < r1, and therefore the ROC of a left-sided sequence is of
the form |z| < r1.

Figure 12.20: A left-sided sequence.

Figure 12.21: The ROC of a left-sided sequence.
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• If x [n] is a two-sided sequence, the ROC will be a ring in the z-plane that is bounded on
the interior and exterior by a pole. A two-sided sequence is an sequence with in�nite duration
in the positive and negative directions. From the derivation of the above two properties, it follows that
if −r2 < |z| < r2 converges, then both the positive-time and negative-time portions converge and thus
X (z) converges as well. Therefore the ROC of a two-sided sequence is of the form −r2 < |z| < r2.

Figure 12.22: A two-sided sequence.

Figure 12.23: The ROC of a two-sided sequence.
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12.6.2.2 Examples

Example 12.12
Lets take

x1 [n] =
(

1
2

)n
u [n] +

(
1
4

)n
u [n] (12.44)

The z-transform of
(

1
2

)n
u [n] is z

z− 1
2
with an ROC at |z| > 1

2 .

Figure 12.24: The ROC of
`

1
2

´n
u [n]

The z-transform of
(−1

4

)n
u [n] is z

z+ 1
4
with an ROC at |z| > −1

4 .
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Figure 12.25: The ROC of
`−1

4

´n
u [n]

Due to linearity,

X1 [z] = z
z− 1

2
+ z

z+ 1
4

=
2z(z− 1

8 )
(z− 1

2 )(z+ 1
4 )

(12.45)

By observation it is clear that there are two zeros, at 0 and 1
8 , and two poles, at 1

2 , and
−1
4 .

Following the obove properties, the ROC is |z| > 1
2 .
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Figure 12.26: The ROC of x1 [n] =
`

1
2

´n
u [n] +

`−1
4

´n
u [n]

Example 12.13
Now take

x2 [n] =
(
−1
4

)n
u [n]−

(
1
2

)n
u [(−n)− 1] (12.46)

The z-transform and ROC of
(−1

4

)n
u [n] was shown in the example above (Example 12.12). The

z-transorm of
(
−
(

1
2

)n)
u [(−n)− 1] is z

z− 1
2
with an ROC at |z| > 1

2 .
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Figure 12.27: The ROC of
`
−
`

1
2

´n´
u [(−n)− 1]

Once again, by linearity,

X2 [z] = z
z+ 1

4
+ z

z− 1
2

=
z(2z− 1

8 )
(z+ 1

4 )(z− 1
2 )

(12.47)

By observation it is again clear that there are two zeros, at 0 and 1
16 , and two poles, at 1

2 , and
−1
4 .

in ths case though, the ROC is |z| < 1
2 .
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Figure 12.28: The ROC of x2 [n] =
`−1

4

´n
u [n]−

`
1
2

´n
u [(−n)− 1].

12.6.3 Graphical Understanding of ROC

Using the demonstration, learn about the region of convergence for the Laplace Transform.

12.6.4 Conclusion

Clearly, in order to craft a system that is actually useful by virtue of being causal and BIBO stable, we
must ensure that it is within the Region of Convergence, which can be ascertained by looking at the pole
zero plot. The Region of Convergence is the area in the pole/zero plot of the transfer function in which the
function exists. For purposes of useful �lter design, we prefer to work with rational functions, which can be
described by two polynomials, one each for determining the poles and the zeros, respectively.

12.7 Rational Functions and the Z-Transform20

12.7.1 Introduction

When dealing with operations on polynomials, the term rational function is a simple way to describe a
particular relationship between two polynomials.

De�nition 12.3: rational function
For any two polynomials, A and B, their quotient is called a rational function.
Example
Below is a simple example of a basic rational function, f (x). Note that the numerator and
denominator can be polynomials of any order, but the rational function is unde�ned when the

20This content is available online at <http://cnx.org/content/m10593/2.8/>.
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denominator equals zero.

f (x) =
x2 − 4

2x2 + x− 3
(12.48)

If you have begun to study the Z-transform21, you should have noticed by now they are all rational
functions. Below we will look at some of the properties of rational functions and how they can be used to
reveal important characteristics about a z-transform, and thus a signal or LTI system.

12.7.2 Properties of Rational Functions

In order to see what makes rational functions special, let us look at some of their basic properties and
characteristics. If you are familiar with rational functions and basic algebraic properties, skip to the next
section (Section 12.7.3: Rational Functions and the Z-Transform) to see how rational functions are useful
when dealing with the z-transform.

12.7.2.1 Roots

To understand many of the following characteristics of a rational function, one must begin by �nding the
roots of the rational function. In order to do this, let us factor both of the polynomials so that the roots
can be easily determined. Like all polynomials, the roots will provide us with information on many key
properties. The function below shows the results of factoring the above rational function, (12.48).

f (x) =
(x+ 2) (x− 2)
(2x+ 3) (x− 1)

(12.49)

Thus, the roots of the rational function are as follows:
Roots of the numerator are: {−2, 2}
Roots of the denominator are: {−3, 1}

note: In order to understand rational functions, it is essential to know and understand the roots
that make up the rational function.

12.7.2.2 Discontinuities

Because we are dealing with division of two polynomials, we must be aware of the values of the variable that
will cause the denominator of our fraction to be zero. When this happens, the rational function becomes
unde�ned, i.e. we have a discontinuity in the function. Because we have already solved for our roots, it
is very easy to see when this occurs. When the variable in the denominator equals any of the roots of the
denominator, the function becomes unde�ned.

Example 12.14
Continuing to look at our rational function above, (12.48), we can see that the function will have
discontinuities at the following points: x = {−3, 1}

In respect to the Cartesian plane, we say that the discontinuities are the values along the x-axis where the
function is unde�ned. These discontinuities often appear as vertical asymptotes on the graph to represent
the values where the function is unde�ned.

21"The Z Transform: De�nition" <http://cnx.org/content/m10549/latest/>
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12.7.2.3 Domain

Using the roots that we found above, the domain of the rational function can be easily de�ned.

De�nition 12.4: domain
The group, or set, of values that are de�ned by a given function.
Example
Using the rational function above, (12.48), the domain can be de�ned as any real number x where
x does not equal 1 or negative 3. Written out mathematical, we get the following:

{x ∈ R | (x 6= −3) and (x 6= 1)} (12.50)

12.7.2.4 Intercepts

The x-intercept is de�ned as the point(s) where f (x), i.e. the output of the rational functions, equals zero.
Because we have already found the roots of the equation this process is very simple. From algebra, we know
that the output will be zero whenever the numerator of the rational function is equal to zero. Therefore, the
function will have an x-intercept wherever x equals one of the roots of the numerator.

The y-intercept occurs whenever x equals zero. This can be found by setting all the values of x equal
to zero and solving the rational function.

12.7.3 Rational Functions and the Z-Transform

As we have stated above, all z-transforms can be written as rational functions, which have become the most
common way of representing the z-transform. Because of this, we can use the properties above, especially
those of the roots, in order to reveal certain characteristics about the signal or LTI system described by the
z-transform.

Below is the general form of the z-transform written as a rational function:

X (z) =
b0 + b1z

−1 + · · ·+ bMz
−M

a0 + a1z−1 + · · ·+ aNz−N
(12.51)

If you have already looked at the module about Understanding Pole/Zero Plots and the Z-transform (Sec-
tion 12.5), you should see how the roots of the rational function play an important role in understanding the
z-transform. The equation above, (12.51), can be expressed in factored form just as was done for the simple
rational function above, see (12.49). Thus, we can easily �nd the roots of the numerator and denominator
of the z-transform. The following two relationships become apparent:

Relationship of Roots to Poles and Zeros

• The roots of the numerator in the rational function will be the zeros of the z-transform
• The roots of the denominator in the rational function will be the poles of the z-transform

12.7.4 Conclusion

Once we have used our knowledge of rational functions to �nd its roots, we can manipulate a z-transform in
a number of useful ways. We can apply this knowledge to representing an LTI system graphically through
a Pole/Zero Plot (Section 12.5), or to analyze and design a digital �lter through Filter Design from the
Z-Transform (Section 12.9).



277

12.8 Di�erence Equations22

12.8.1 Introduction

One of the most important concepts of DSP is to be able to properly represent the input/output relation-
ship to a given LTI system. A linear constant-coe�cient di�erence equation (LCCDE) serves as a way
to express just this relationship in a discrete-time system. Writing the sequence of inputs and outputs,
which represent the characteristics of the LTI system, as a di�erence equation help in understanding and
manipulating a system.

De�nition 12.5: di�erence equation
An equation that shows the relationship between consecutive values of a sequence and the di�er-
ences among them. They are often rearranged as a recursive formula so that a systems output can
be computed from the input signal and past outputs.
Example

y [n] + 7y [n− 1] + 2y [n− 2] = x [n]− 4x [n− 1] (12.52)

12.8.2 General Formulas for the Di�erence Equation

As stated brie�y in the de�nition above, a di�erence equation is a very useful tool in describing and calculating
the output of the system described by the formula for a given sample n. The key property of the di�erence
equation is its ability to help easily �nd the transform, H (z), of a system. In the following two subsections,
we will look at the general form of the di�erence equation and the general conversion to a z-transform directly
from the di�erence equation.

12.8.2.1 Di�erence Equation

The general form of a linear, constant-coe�cient di�erence equation (LCCDE), is shown below:

N∑
k=0

aky [n− k] =
M∑
k=0

bkx [n− k] (12.53)

We can also write the general form to easily express a recursive output, which looks like this:

y [n] = −
N∑
k=1

aky [n− k] +
M∑
k=0

bkx [n− k] (12.54)

From this equation, note that y [n− k] represents the outputs and x [n− k] represents the inputs. The value
of N represents the order of the di�erence equation and corresponds to the memory of the system being
represented. Because this equation relies on past values of the output, in order to compute a numerical
solution, certain past outputs, referred to as the initial conditions, must be known.

12.8.2.2 Conversion to Z-Transform

Using the above formula, (12.53), we can easily generalize the transfer function, H (z), for any di�erence
equation. Below are the steps taken to convert any di�erence equation into its transfer function, i.e. z-
transform. The �rst step involves taking the Fourier Transform23 of all the terms in (12.53). Then we

22This content is available online at <http://cnx.org/content/m10595/2.6/>.
23"Derivation of the Fourier Transform" <http://cnx.org/content/m0046/latest/>



278 CHAPTER 12. Z-TRANSFORM AND DISCRETE TIME SYSTEM DESIGN

use the linearity property to pull the transform inside the summation and the time-shifting property of the
z-transform to change the time-shifting terms to exponentials. Once this is done, we arrive at the following
equation: a0 = 1.

Y (z) = −
N∑
k=1

akY (z) z−k +
M∑
k=0

bkX (z) z−k (12.55)

H (z) = Y (z)
X(z)

=
PM
k=0 bkz

−k

1+
PN
k=1 akz

−k

(12.56)

12.8.2.3 Conversion to Frequency Response

Once the z-transform has been calculated from the di�erence equation, we can go one step further to de�ne
the frequency response of the system, or �lter, that is being represented by the di�erence equation.

note: Remember that the reason we are dealing with these formulas is to be able to aid us in
�lter design. A LCCDE is one of the easiest ways to represent FIR �lters. By being able to �nd
the frequency response, we will be able to look at the basic properties of any �lter represented by
a simple LCCDE.

Below is the general formula for the frequency response of a z-transform. The conversion is simple a matter
of taking the z-transform formula, H (z), and replacing every instance of z with ejw.

H (w) = H (z) |z,z=ejw

=
PM
k=0 bke

−(jwk)PN
k=0 ake

−(jwk)

(12.57)

Once you understand the derivation of this formula, look at the module concerning Filter Design from the
Z-Transform (Section 12.9) for a look into how all of these ideas of the Z-transform24, Di�erence Equation,
and Pole/Zero Plots (Section 12.5) play a role in �lter design.

12.8.3 Example

Example 12.15: Finding Di�erence Equation
Below is a basic example showing the opposite of the steps above: given a transfer function one
can easily calculate the systems di�erence equation.

H (z) =
(z + 1)2(

z − 1
2

) (
z + 3

4

) (12.58)

Given this transfer function of a time-domain �lter, we want to �nd the di�erence equation. To
begin with, expand both polynomials and divide them by the highest order z.

H (z) = (z+1)(z+1)

(z− 1
2 )(z+ 3

4 )
= z2+2z+1

z2+2z+1− 3
8

= 1+2z−1+z−2

1+ 1
4 z
−1− 3

8 z
−2

(12.59)

From this transfer function, the coe�cients of the two polynomials will be our ak and bk values
found in the general di�erence equation formula, (12.53). Using these coe�cients and the above
form of the transfer function, we can easily write the di�erence equation:

x [n] + 2x [n− 1] + x [n− 2] = y [n] +
1
4
y [n− 1]− 3

8
y [n− 2] (12.60)

24"The Z Transform: De�nition" <http://cnx.org/content/m10549/latest/>
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In our �nal step, we can rewrite the di�erence equation in its more common form showing the
recursive nature of the system.

y [n] = x [n] + 2x [n− 1] + x [n− 2] +
−1
4
y [n− 1] +

3
8
y [n− 2] (12.61)

12.8.4 Solving a LCCDE

In order for a linear constant-coe�cient di�erence equation to be useful in analyzing a LTI system, we must
be able to �nd the systems output based upon a known input, x (n), and a set of initial conditions. Two
common methods exist for solving a LCCDE: the direct method and the indirect method, the later
being based on the z-transform. Below we will brie�y discuss the formulas for solving a LCCDE using each
of these methods.

12.8.4.1 Direct Method

The �nal solution to the output based on the direct method is the sum of two parts, expressed in the following
equation:

y (n) = yh (n) + yp (n) (12.62)

The �rst part, yh (n), is referred to as the homogeneous solution and the second part, yh (n), is referred
to as particular solution. The following method is very similar to that used to solve many di�erential
equations, so if you have taken a di�erential calculus course or used di�erential equations before then this
should seem very familiar.

12.8.4.1.1 Homogeneous Solution

We begin by assuming that the input is zero, x (n) = 0. Now we simply need to solve the homogeneous
di�erence equation:

N∑
k=0

aky [n− k] = 0 (12.63)

In order to solve this, we will make the assumption that the solution is in the form of an exponential. We
will use lambda, λ, to represent our exponential terms. We now have to solve the following equation:

N∑
k=0

akλ
n−k = 0 (12.64)

We can expand this equation out and factor out all of the lambda terms. This will give us a large polynomial
in parenthesis, which is referred to as the characteristic polynomial. The roots of this polynomial will
be the key to solving the homogeneous equation. If there are all distinct roots, then the general solution to
the equation will be as follows:

yh (n) = C1(λ1)n + C2(λ2)n + · · ·+ CN (λN )n (12.65)

However, if the characteristic equation contains multiple roots then the above general solution will be slightly
di�erent. Below we have the modi�ed version for an equation where λ1 has K multiple roots:

yh (n) = C1(λ1)n + C1n(λ1)n + C1n
2(λ1)n + · · ·+ C1n

K−1(λ1)n + C2(λ2)n + · · ·+ CN (λN )n (12.66)
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12.8.4.1.2 Particular Solution

The particular solution, yp (n), will be any solution that will solve the general di�erence equation:

N∑
k=0

akyp (n− k) =
M∑
k=0

bkx (n− k) (12.67)

In order to solve, our guess for the solution to yp (n) will take on the form of the input, x (n). After guessing
at a solution to the above equation involving the particular solution, one only needs to plug the solution into
the di�erence equation and solve it out.

12.8.4.2 Indirect Method

The indirect method utilizes the relationship between the di�erence equation and z-transform, discussed
earlier (Section 12.8.2: General Formulas for the Di�erence Equation), to �nd a solution. The basic idea is
to convert the di�erence equation into a z-transform, as described above (Section 12.8.2.2: Conversion to Z-
Transform), to get the resulting output, Y (z). Then by inverse transforming this and using partial-fraction
expansion, we can arrive at the solution.

Z{y (n+ 1)− y (n)} = zY (z)− y (0) (12.68)

This can be interatively extended to an arbitrary order derivative as in Equation (12.69).

Z{−
N−1∑
m=0

y (n−m)} = znY (z)−
N−1∑
m=0

zn−m−1y(m) (0) (12.69)

Now, the Laplace transform of each side of the di�erential equation can be taken

Z{
N∑
k=0

ak

[
y (n−m+ 1)−

N−1∑
m=0

y (n−m) y (n)

]
= Z{x (n)}} (12.70)

which by linearity results in

N∑
k=0

akZ{y (n−m+ 1)−
N−1∑
m=0

y (n−m) y (n)} = Z{x (n)} (12.71)

and by di�erentiation properties in

N∑
k=0

ak

(
zkZ{y (n)} −

N−1∑
m=0

zk−m−1y(m) (0)

)
= Z{x (n)}. (12.72)

Rearranging terms to isolate the Laplace transform of the output,

Z{y (n)} =
Z{x (n)}+

∑N
k=0

∑k−1
m=0 akz

k−m−1y(m) (0)∑N
k=0 akz

k
. (12.73)

Thus, it is found that

Y (z) =
X (z) +

∑N
k=0

∑k−1
m=0 akz

k−m−1y(m) (0)∑N
k=0 akz

k
. (12.74)

In order to �nd the output, it only remains to �nd the Laplace transform X (z) of the input, substitute the
initial conditions, and compute the inverse Z-transform of the result. Partial fraction expansions are often
required for this last step. This may sound daunting while looking at (12.74), but it is often easy in practice,
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especially for low order di�erence equations. (12.74) can also be used to determine the transfer function and
frequency response.

As an example, consider the di�erence equation

y [n− 2] + 4y [n− 1] + 3y [n] = cos (n) (12.75)

with the initial conditions y' (0) = 1 and y (0) = 0 Using the method described above, the Z transform of
the solution y [n] is given by

Y [z] =
z

[z2 + 1] [z + 1] [z + 3]
+

1
[z + 1] [z + 3]

. (12.76)

Performing a partial fraction decomposition, this also equals

Y [z] = .25
1

z + 1
− .35

1
z + 3

+ .1
z

z2 + 1
+ .2

1
z2 + 1

. (12.77)

Computing the inverse Laplace transform,

y (n) =
(
.25z−n − .35z−3n + .1cos (n) + .2sin (n)

)
u (n) . (12.78)

One can check that this satis�es that this satis�es both the di�erential equation and the initial conditions.

12.9 Discrete Time Filter Design25

12.9.1 Estimating Frequency Response from Z-Plane

One of the primary motivating factors for utilizing the z-transform and analyzing the pole/zero plots is due
to their relationship to the frequency response of a discrete-time system. Based on the position of the poles
and zeros, one can quickly determine the frequency response. This is a result of the correspondence between
the frequency response and the transfer function evaluated on the unit circle in the pole/zero plots. The
frequency response, or DTFT, of the system is de�ned as:

H (w) = H (z) |z,z=ejw

=
PM
k=0 bke

−(jwk)PN
k=0 ake

−(jwk)

(12.79)

Next, by factoring the transfer function into poles and zeros and multiplying the numerator and denominator
by ejw we arrive at the following equations:

H (w) = | b0
a0
|
∏M
k=1 |ejw − ck|∏N
k=1 |ejw − dk|

(12.80)

From (12.80) we have the frequency response in a form that can be used to interpret physical characteristics
about the �lter's frequency response. The numerator and denominator contain a product of terms of the
form |ejw − h|, where h is either a zero, denoted by ck or a pole, denoted by dk. Vectors are commonly used
to represent the term and its parts on the complex plane. The pole or zero, h, is a vector from the origin to
its location anywhere on the complex plane and ejw is a vector from the origin to its location on the unit
circle. The vector connecting these two points, |ejw − h|, connects the pole or zero location to a place on
the unit circle dependent on the value of w. From this, we can begin to understand how the magnitude of
the frequency response is a ratio of the distances to the poles and zero present in the z-plane as w goes from
zero to pi. These characteristics allow us to interpret |H (w) | as follows:

|H (w) | = | b0
a0
|
∏

”distances from zeros”∏
”distances from poles”

(12.81)

25This content is available online at <http://cnx.org/content/m10548/2.10/>.
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12.9.2 Drawing Frequency Response from Pole/Zero Plot

Let us now look at several examples of determining the magnitude of the frequency response from the
pole/zero plot of a z-transform. If you have forgotten or are unfamiliar with pole/zero plots, please refer
back to the Pole/Zero Plots (Section 12.5) module.

Example 12.16
In this �rst example we will take a look at the very simple z-transform shown below:

H (z) = z + 1 = 1 + z−1

H (w) = 1 + e−(jw)

For this example, some of the vectors represented by |ejw−h|, for random values of w, are explicitly
drawn onto the complex plane shown in the �gure below. These vectors show how the amplitude
of the frequency response changes as w goes from 0 to 2π, and also show the physical meaning
of the terms in (12.80) above. One can see that when w = 0, the vector is the longest and thus
the frequency response will have its largest amplitude here. As w approaches π, the length of the
vectors decrease as does the amplitude of |H (w) |. Since there are no poles in the transform, there
is only this one vector term rather than a ratio as seen in (12.80).

(a) Pole/Zero Plot (b) Frequency Response: |H(w)|

Figure 12.29: The �rst �gure represents the pole/zero plot with a few representative vectors graphed
while the second shows the frequency response with a peak at +2 and graphed between plus and minus
π.

Example 12.17
For this example, a more complex transfer function is analyzed in order to represent the system's
frequency response.

H (z) =
z

z − 1
2

=
1

1− 1
2z
−1

H (w) =
1

1− 1
2e
−(jw)

Below we can see the two �gures described by the above equations. The Figure 12.30(a)
(Pole/Zero Plot) represents the basic pole/zero plot of the z-transform, H (w). Figure 12.30(b)
(Frequency Response: |H(w)|) shows the magnitude of the frequency response. From the formulas
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and statements in the previous section, we can see that when w = 0 the frequency will peak since
it is at this value of w that the pole is closest to the unit circle. The ratio from (12.80) helps us see
the mathematics behind this conclusion and the relationship between the distances from the unit
circle and the poles and zeros. As w moves from 0 to π, we see how the zero begins to mask the
e�ects of the pole and thus force the frequency response closer to 0.

(a) Pole/Zero Plot (b) Frequency Response: |H(w)|

Figure 12.30: The �rst �gure represents the pole/zero plot while the second shows the frequency
response with a peak at +2 and graphed between plus and minus π.

12.9.3 Interactive Filter Design Illustration

This media object is a LabVIEW VI. Please view or download it at
<DFD_Utility.llb>

Figure 12.31: Digital �lter design LabVIEW virtual instrument by NI from
http://cnx.org/content/m13115/latest/26.

12.9.4 Conclusion

In conclusion, using the distances from the unit circle to the poles and zeros, we can plot the frequency
response of the system. As w goes from 0 to 2π, the following two properties, taken from the above
equations, specify how one should draw |H (w) |.
While moving around the unit circle...

1. if close to a zero, then the magnitude is small. If a zero is on the unit circle, then the frequency
response is zero at that point.

26http://cnx.org/content/m13115/latest/
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2. if close to a pole, then the magnitude is large. If a pole is on the unit circle, then the frequency response
goes to in�nity at that point.



Chapter 13

Capstone Signal Processing Topics

13.1 DFT: Fast Fourier Transform1

We now have a way of computing the spectrum for an arbitrary signal: The Discrete Fourier Transform
(DFT)2 computes the spectrum at N equally spaced frequencies from a length- N sequence. An issue that
never arises in analog "computation," like that performed by a circuit, is how much work it takes to perform
the signal processing operation such as �ltering. In computation, this consideration translates to the number
of basic computational steps required to perform the needed processing. The number of steps, known as
the complexity, becomes equivalent to how long the computation takes (how long must we wait for an
answer). Complexity is not so much tied to speci�c computers or programming languages but to how many
steps are required on any computer. Thus, a procedure's stated complexity says that the time taken will be
proportional to some function of the amount of data used in the computation and the amount demanded.

For example, consider the formula for the discrete Fourier transform. For each frequency we chose, we
must multiply each signal value by a complex number and add together the results. For a real-valued signal,
each real-times-complex multiplication requires two real multiplications, meaning we have 2N multiplications
to perform. To add the results together, we must keep the real and imaginary parts separate. Adding N
numbers requires N − 1 additions. Consequently, each frequency requires 2N + 2 (N − 1) = 4N − 2 basic
computational steps. As we have N frequencies, the total number of computations is N (4N − 2).

In complexity calculations, we only worry about what happens as the data lengths increase, and take the
dominant term�here the 4N2 term�as re�ecting how much work is involved in making the computation.
As multiplicative constants don't matter since we are making a "proportional to" evaluation, we �nd the
DFT is an O

(
N2
)
computational procedure. This notation is read "order N -squared". Thus, if we double

the length of the data, we would expect that the computation time to approximately quadruple.

Exercise 13.1.1 (Solution on p. 302.)

In making the complexity evaluation for the DFT, we assumed the data to be real. Three ques-
tions emerge. First of all, the spectra of such signals have conjugate symmetry, meaning that
negative frequency components (k =

[
N
2 + 1, ..., N + 1

]
in the DFT3) can be computed from the

corresponding positive frequency components. Does this symmetry change the DFT's complexity?
Secondly, suppose the data are complex-valued; what is the DFT's complexity now?
Finally, a less important but interesting question is suppose we want K frequency values instead

of N ; now what is the complexity?

1This content is available online at <http://cnx.org/content/m0504/2.8/>.
2"Discrete Fourier Transform", (1) : Discrete Fourier transform <http://cnx.org/content/m0502/latest/#eqn1>
3"Discrete Fourier Transform", (1) : Discrete Fourier transform <http://cnx.org/content/m0502/latest/#eqn1>
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13.2 The Fast Fourier Transform (FFT)4

13.2.1 Introduction

The Fast Fourier Transform (FFT) is an e�cient O(NlogN) algorithm for calculating DFTs The FFT 5exploits
symmetries in the W matrix to take a "divide and conquer" approach. We will �rst discuss deriving the
actual FFT algorithm, some of its implications for the DFT, and a speed comparison to drive home the
importance of this powerful algorithm.

13.2.2 Deriving the FFT

To derive the FFT, we assume that the signal's duration is a power of two: N = 2l . Consider what happens
to the even-numbered and odd-numbered elements of the sequence in the DFT calculation.

S (k) = s (0) + s (2) e(−j) 2π2k
N + · · · + s (N − 2) e(−j)

2π(N−2)k
N +

s (1) e(−j) 2πk
N + s (3) e(−j)

2π×(2+1)k
N + · · · + s (N − 1) e(−j)

2π(N−2+1)k
N =

s (0) + s (2) e
(−j) 2πk

N
2 + · · · + s (N − 2) e

(−j)
2π(N2 −1)k

N
2 +s (1) + s (3) e

(−j) 2πk
N
2 + · · ·+ s (N − 1) e

(−j)
2π(N2 −1)k

N
2

 e
−(j2πk)

N

(13.1)

Each term in square brackets has the form of a N
2 -length DFT. The �rst one is a DFT of the even-

numbered elements, and the second of the odd-numbered elements. The �rst DFT is combined with the

second multiplied by the complex exponential e
−(j2πk)

N . The half-length transforms are each evaluated at
frequency indices k ∈ {0, . . . , N − 1} . Normally, the number of frequency indices in a DFT calculation range
between zero and the transform length minus one. The computational advantage of the FFT comes from
recognizing the periodic nature of the discrete Fourier transform. The FFT simply reuses the computations

made in the half-length transforms and combines them through additions and the multiplication by e
−(j2πk)

N

, which is not periodic over N
2 , to rewrite the length-N DFT. Figure 13.1 (Length-8 DFT decomposition)

illustrates this decomposition. As it stands, we now compute two length- N2 transforms (complexity 2O
(
N2

4

)
), multiply one of them by the complex exponential (complexity O (N) ), and add the results (complexity
O (N) ). At this point, the total complexity is still dominated by the half-length DFT calculations, but the
proportionality coe�cient has been reduced.

Now for the fun. Because N = 2l , each of the half-length transforms can be reduced to two quarter-length
transforms, each of these to two eighth-length ones, etc. This decomposition continues until we are left with
length-2 transforms. This transform is quite simple, involving only additions. Thus, the �rst stage of the
FFT has N

2 length-2 transforms (see the bottom part of Figure 13.1 (Length-8 DFT decomposition)). Pairs
of these transforms are combined by adding one to the other multiplied by a complex exponential. Each pair
requires 4 additions and 4 multiplications, giving a total number of computations equaling 8N4 = N

2 . This
number of computations does not change from stage to stage. Because the number of stages, the number of
times the length can be divided by two, equals log2N , the complexity of the FFT is O (N logN) .

4This content is available online at <http://cnx.org/content/m10783/2.7/>.
5"Fast Fourier Transform (FFT)" <http://cnx.org/content/m10250/latest/>
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Length-8 DFT decomposition

(a)

(b)

Figure 13.1: The initial decomposition of a length-8 DFT into the terms using even- and odd-indexed
inputs marks the �rst phase of developing the FFT algorithm. When these half-length transforms are
successively decomposed, we are left with the diagram shown in the bottom panel that depicts the
length-8 FFT computation.

Doing an example will make computational savings more obvious. Let's look at the details of a length-8
DFT. As shown on Figure 13.1 (Length-8 DFT decomposition), we �rst decompose the DFT into two length-
4 DFTs, with the outputs added and subtracted together in pairs. Considering Figure 13.1 (Length-8 DFT
decomposition) as the frequency index goes from 0 through 7, we recycle values from the length-4 DFTs
into the �nal calculation because of the periodicity of the DFT output. Examining how pairs of outputs are
collected together, we create the basic computational element known as a butter�y (Figure 13.2 (Butter�y)).
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Butter�y

Figure 13.2: The basic computational element of the fast Fourier transform is the butter�y. It takes
two complex numbers, represented by a and b, and forms the quantities shown. Each butter�y requires
one complex multiplication and two complex additions.

By considering together the computations involving common output frequencies from the two half-length
DFTs, we see that the two complex multiplies are related to each other, and we can reduce our computational
work even further. By further decomposing the length-4 DFTs into two length-2 DFTs and combining their
outputs, we arrive at the diagram summarizing the length-8 fast Fourier transform (Figure 13.1 (Length-8
DFT decomposition)). Although most of the complex multiplies are quite simple (multiplying by e−(jπ)

means negating real and imaginary parts), let's count those for purposes of evaluating the complexity as full
complex multiplies. We have N

2 = 4 complex multiplies and 2N = 16 additions for each stage and log2N = 3
stages, making the number of basic computations 3N

2 log2N as predicted.

Exercise 13.2.1 (Solution on p. 302.)

Note that the ordering of the input sequence in the two parts of Figure 13.1 (Length-8 DFT
decomposition) aren't quite the same. Why not? How is the ordering determined?

13.2.2.1 FFT and the DFT

We now have a way of computing the spectrum for an arbitrary signal: The Discrete Fourier Transform
(DFT)6 computes the spectrum at N equally spaced frequencies from a length- N sequence. An issue that
never arises in analog "computation," like that performed by a circuit, is how much work it takes to perform
the signal processing operation such as �ltering. In computation, this consideration translates to the number
of basic computational steps required to perform the needed processing. The number of steps, known as
the complexity, becomes equivalent to how long the computation takes (how long must we wait for an
answer). Complexity is not so much tied to speci�c computers or programming languages but to how many
steps are required on any computer. Thus, a procedure's stated complexity says that the time taken will be
proportional to some function of the amount of data used in the computation and the amount demanded.

For example, consider the formula for the discrete Fourier transform. For each frequency we chose, we
must multiply each signal value by a complex number and add together the results. For a real-valued signal,
each real-times-complex multiplication requires two real multiplications, meaning we have 2N multiplications
to perform. To add the results together, we must keep the real and imaginary parts separate. Adding N
numbers requires N − 1 additions. Consequently, each frequency requires 2N + 2 (N − 1) = 4N − 2 basic
computational steps. As we have N frequencies, the total number of computations is N (4N − 2).

In complexity calculations, we only worry about what happens as the data lengths increase, and take the
dominant term�here the 4N2 term�as re�ecting how much work is involved in making the computation.

6"Discrete Fourier Transform", (1) : Discrete Fourier transform <http://cnx.org/content/m0502/latest/#eqn1>
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As multiplicative constants don't matter since we are making a "proportional to" evaluation, we �nd the
DFT is an O

(
N2
)
computational procedure. This notation is read "order N -squared". Thus, if we double

the length of the data, we would expect that the computation time to approximately quadruple.

Exercise 13.2.2 (Solution on p. 302.)

In making the complexity evaluation for the DFT, we assumed the data to be real. Three ques-
tions emerge. First of all, the spectra of such signals have conjugate symmetry, meaning that
negative frequency components (k =

[
N
2 + 1, ..., N + 1

]
in the DFT7) can be computed from the

corresponding positive frequency components. Does this symmetry change the DFT's complexity?
Secondly, suppose the data are complex-valued; what is the DFT's complexity now?
Finally, a less important but interesting question is suppose we want K frequency values instead

of N ; now what is the complexity?

13.2.3 Speed Comparison

How much better is O(NlogN) than O( N2)?

Figure 13.3: This �gure shows how much slower the computation time of an O(NlogN) process grows.

N 10 100 1000 106 109

N2 100 104 106 1012 1018

N logN 1 200 3000 6× 106 9× 109

Table 13.1

Say you have a 1 MFLOP machine (a million "�oating point" operations per second). Let N = 1million =
106.

An O( N2) algorithm takes 1012 �ors → 106 seconds ' 11.5 days.
An O( N logN) algorithm takes 6× 106 Flors → 6 seconds.

note: N = 1million is not unreasonable.

Example 13.1
3 megapixel digital camera spits out 3×106 numbers for each picture. So for two N point sequences
f [n] and h [n]. If computing f [n]~ h [n] directly: O( N2) operations.

taking FFTs � O(NlogN)

7"Discrete Fourier Transform", (1) : Discrete Fourier transform <http://cnx.org/content/m0502/latest/#eqn1>
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multiplying FFTs � O(N)
inverse FFTs � O(NlogN).
the total complexity is O(NlogN).

13.2.4 Conclusion

Other "fast" algorithms have been discovered, most of which make use of how many common factors the
transform length N has. In number theory, the number of prime factors a given integer has measures how
composite it is. The numbers 16 and 81 are highly composite (equaling 24 and 34 respectively), the
number 18 is less so ( 2132 ), and 17 not at all (it's prime). In over thirty years of Fourier transform
algorithm development, the original Cooley-Tukey algorithm is far and away the most frequently used. It
is so computationally e�cient that power-of-two transform lengths are frequently used regardless of what
the actual length of the data. It is even well established that the FFT, alongside the digital computer, were
almost completely responsible for the "explosion" of DSP in the 60's.

13.3 Deriving the Fast Fourier Transform8

To derive the FFT, we assume that the signal's duration is a power of two: N = 2l . Consider what happens
to the even-numbered and odd-numbered elements of the sequence in the DFT calculation.

S (k) = s (0) + s (2) e(−j) 2π2k
N + · · · + s (N − 2) e(−j)

2π(N−2)k
N +

s (1) e(−j) 2πk
N + s (3) e(−j)

2π×(2+1)k
N + · · · + s (N − 1) e(−j)

2π(N−2+1)k
N =

s (0) + s (2) e
(−j) 2πk

N
2 + · · · + s (N − 2) e

(−j)
2π(N2 −1)k

N
2 +s (1) + s (3) e

(−j) 2πk
N
2 + · · ·+ s (N − 1) e

(−j)
2π(N2 −1)k

N
2

 e
−(j2πk)

N

(13.2)

Each term in square brackets has the form of a N
2 -length DFT. The �rst one is a DFT of the even-

numbered elements, and the second of the odd-numbered elements. The �rst DFT is combined with the

second multiplied by the complex exponential e
−(j2πk)

N . The half-length transforms are each evaluated at
frequency indices k ∈ {0, . . . , N − 1} . Normally, the number of frequency indices in a DFT calculation range
between zero and the transform length minus one. The computational advantage of the FFT comes from
recognizing the periodic nature of the discrete Fourier transform. The FFT simply reuses the computations

made in the half-length transforms and combines them through additions and the multiplication by e
−(j2πk)

N

, which is not periodic over N
2 , to rewrite the length-N DFT. Figure 13.4 (Length-8 DFT decomposition)

illustrates this decomposition. As it stands, we now compute two length- N2 transforms (complexity 2O
(
N2

4

)
), multiply one of them by the complex exponential (complexity O (N) ), and add the results (complexity
O (N) ). At this point, the total complexity is still dominated by the half-length DFT calculations, but the
proportionality coe�cient has been reduced.

Now for the fun. Because N = 2l , each of the half-length transforms can be reduced to two quarter-length
transforms, each of these to two eighth-length ones, etc. This decomposition continues until we are left with
length-2 transforms. This transform is quite simple, involving only additions. Thus, the �rst stage of the
FFT has N

2 length-2 transforms (see the bottom part of Figure 13.4 (Length-8 DFT decomposition)). Pairs
of these transforms are combined by adding one to the other multiplied by a complex exponential. Each pair

8This content is available online at <http://cnx.org/content/m0528/2.7/>.
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requires 4 additions and 4 multiplications, giving a total number of computations equaling 8N4 = N
2 . This

number of computations does not change from stage to stage. Because the number of stages, the number of
times the length can be divided by two, equals log2N , the complexity of the FFT is O (N logN) .

Length-8 DFT decomposition

(a)

(b)

Figure 13.4: The initial decomposition of a length-8 DFT into the terms using even- and odd-indexed
inputs marks the �rst phase of developing the FFT algorithm. When these half-length transforms are
successively decomposed, we are left with the diagram shown in the bottom panel that depicts the
length-8 FFT computation.

Doing an example will make computational savings more obvious. Let's look at the details of a length-8
DFT. As shown on Figure 13.4 (Length-8 DFT decomposition), we �rst decompose the DFT into two length-
4 DFTs, with the outputs added and subtracted together in pairs. Considering Figure 13.4 (Length-8 DFT
decomposition) as the frequency index goes from 0 through 7, we recycle values from the length-4 DFTs
into the �nal calculation because of the periodicity of the DFT output. Examining how pairs of outputs are
collected together, we create the basic computational element known as a butter�y (Figure 13.5 (Butter�y)).
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Butter�y

Figure 13.5: The basic computational element of the fast Fourier transform is the butter�y. It takes
two complex numbers, represented by a and b, and forms the quantities shown. Each butter�y requires
one complex multiplication and two complex additions.

By considering together the computations involving common output frequencies from the two half-length
DFTs, we see that the two complex multiplies are related to each other, and we can reduce our computational
work even further. By further decomposing the length-4 DFTs into two length-2 DFTs and combining their
outputs, we arrive at the diagram summarizing the length-8 fast Fourier transform (Figure 13.4 (Length-8
DFT decomposition)). Although most of the complex multiplies are quite simple (multiplying by e−(jπ)

means negating real and imaginary parts), let's count those for purposes of evaluating the complexity as full
complex multiplies. We have N

2 = 4 complex multiplies and 2N = 16 additions for each stage and log2N = 3
stages, making the number of basic computations 3N

2 log2N as predicted.

Exercise 13.3.1 (Solution on p. 302.)

Note that the ordering of the input sequence in the two parts of Figure 13.4 (Length-8 DFT
decomposition) aren't quite the same. Why not? How is the ordering determined?

Other "fast" algorithms were discovered, all of which make use of how many common factors the transform
length N has. In number theory, the number of prime factors a given integer has measures how composite
it is. The numbers 16 and 81 are highly composite (equaling 24 and 34 respectively), the number 18 is less so
( 2132 ), and 17 not at all (it's prime). In over thirty years of Fourier transform algorithm development, the
original Cooley-Tukey algorithm is far and away the most frequently used. It is so computationally e�cient
that power-of-two transform lengths are frequently used regardless of what the actual length of the data.

13.4 Matched Filter Detector9

13.4.1 Introduction

A great many applications in signal processing, image processing, and beyond involve determining the
presence and location of a target signal within some other signal. A radar system, for example, searches for
copies of a transmitted radar pulse in order to determine the presence of and distance to re�ective objects
such as buildings or aircraft. A communication system searches for copies of waveforms representing digital
0s and 1s in order to receive a message.

Two key mathematical tools that contribute to these applications are inner products10 and the Cauchy-
Schwarz inequality11 . As is shown in the module on the Cauchy-Schwarz inequality, the expression∣∣∣1 x
||x|| ,

y
||y||2

∣∣∣ attains its upper bound, which is 1, when y = ax for some scalar a in a real or complex

9This content is available online at <http://cnx.org/content/m34670/1.9/>.
10http://cnx.org/content/m12101/latest/
11http://cnx.org/content/m10757/latest/
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�eld. The lower bound, which is 0, is attained when x and y are orthogonal. In informal intuition, this
means that the expression is maximized when the vectors x and y have the same shape or pattern and
minimized when x and y are very di�erent. A pair of vectors with similar but unequal shapes or patterns
will produce relatively large value of the expression less than 1, and a pair of vectors with very di�erent but
not orthogonal shapes or patterns will produce relatively small values of the expression greater than 0. Thus,
the above expression carries with it a notion of the degree to which two signals are �alike�, the magnitude of
the normalized correlation between the signals in the case of the standard inner products.

This concept can be extremely useful. For instance consider a situation in which we wish to determine
which signal, if any, from a set X of signals most resembles a particular signal y. In order to accomplish
this, we might evaluate the above expression for every signal x ∈ X, choosing the one that results in maxima
provided that those maxima are above some threshold of �likeness�. This is the idea behind the matched
�lter detector, which compares a set of signals against a target signal using the above expression in order to
determine which is most like the target signal.

13.4.2 Matched Filter Detector Theory

13.4.2.1 Signal Comparison

The simplest variant of the matched �lter detector scheme would be to �nd the member signal in a set X of
signals that most closely matches a target signal y. Thus, for every x ∈ X we wish to evaluate

m (x, y) =
∣∣∣∣1 x

||x||
,
y

||y||
2
∣∣∣∣ (13.3)

in order to compare every member of X to the target signal y. Since the member of X which most closely
matches the target signal y is desired, ultimately we wish to evaluate

xm = argmaxx∈X

∣∣∣∣1 x

||x||
,
y

||y||
2
∣∣∣∣ . (13.4)

Note that the target signal does not technically need to be normalized to produce a maximum, but gives
the desirable property that m (x, y) is bounded to [0, 1].

The element xm ∈ X that produces the maximum value of m (x, y) is not necessarily unique, so there
may be more than one matching signal in X. Additionally, the signal xm ∈ X producing the maximum value
of m (x, y) may not produce a very large value of m (x, y) and thus not be very much like the target signal
y. Hence, another matched �lter scheme might identify the argument producing the maximum but only
above a certain threshold, returning no matching signals in X if the maximum is below the threshold. There
also may be a signal x ∈ X that produces a large value of m (x, y) and thus has a high degree of �likeness�
to y but does not produce the maximum value of m (x, y). Thus, yet another matched �lter scheme might
identify all signals in X producing local maxima that are above a certain threshold.

Example 13.2
For example, consider the target signal given in Figure 13.6 (Template Signal) and the set of two
signals given in Figure 13.7 (Candidate Signals). By inspection, it is clear that the signal g2 is most
like the target signal f . However, to make that conclusion mathematically, we use the matched
�lter detector with the L2 inner product. If we were to actually make the necessary computations,
we would �rst normalize each signal and then compute the necessary inner products in order to
compare the signals in X with the target signal f . We would notice that the absolute value of the
inner product for g2 with f when normalized is greater than the absolute value of the inner product
of g1 with f when normalized, mathematically stated as

g2 = argmaxx∈{g1,g2}

∣∣∣∣1 x

||x||
,
f

||f ||
2
∣∣∣∣ . (13.5)
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Template Signal

Figure 13.6: We wish to �nd a match for this target signal in the set of signals below.

Candidate Signals

(a) (b)

Figure 13.7: We wish to �nd a match for the above target signal in this set of signals.

13.4.2.2 Pattern Detection

A somewhat more involved matched �lter detector scheme would involve attempting to match a target time
limited signal y = f to a set of of time shifted and windowed versions of a single signal X = {wStg|t ∈ R}
indexed by R. The windowing funtion is given by w (t) = u (t− t1) − u (t− t2) where [t1, t2] is the interval
to which f is time limited. This scheme could be used to �nd portions of g that have the same shape as
f . If the absolute value of the inner product of the normalized versions of f and wStg is large, which is
the absolute value of the normalized correlation for standard inner products, then g has a high degree of
�likeness� to f on the interval to which f is time limited but left shifted by t. Of course, if f is not time
limited, it means that the entire signal has a high degree of �likeness� to f left shifted by t.

Thus, in order to determine the most likely locations of a signal with the same shape as the target signal
f in a signal g we wish to compute

tm = argmaxt∈R

∣∣∣∣1 f

||f ||
,
wStg

||wStg||
2
∣∣∣∣ (13.6)

to provide the desired shift. Assuming the inner product space examined is L2 (R (similar results hold for
L2 (R [a, b)), l2 (Z), and l2 (Z [a, b))), this produces

tm = argmaxt∈R

∣∣∣∣ 1
||f ||||wStg||

∫ ∞
−∞

f (τ)w (τ) g (τ − t)dτ
∣∣∣∣ . (13.7)
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Since f and w are time limited to the same interval

tm = argmaxt∈R

∣∣∣∣ 1
||f ||||wStg||

∫ t2

t1

f (τ) g (τ − t)dτ
∣∣∣∣ . (13.8)

Making the subsitution h (t) = g (−t),

tm = argmaxt∈R

∣∣∣∣ 1
||f ||||wStg||

∫ t2

t1

f (τ)h (t− τ) dτ
∣∣∣∣ . (13.9)

Noting that this expression contains a convolution operation

tm = argmaxt∈R

∣∣∣∣ (f ∗ h) (t)
||f ||||wStg||

∣∣∣∣ . (13.10)

where h is the conjugate of the time reversed version of g de�ned by h (t) = g (−t).
In the special case in which the target signal f is not time limited, w has unit value on the entire real

line. Thus, the norm can be evaluated as ||wStg|| = ||Stg|| = ||g|| = ||h||. Therefore, the function reduces

to tm = argmaxt∈R
(f∗h)(t)
||f ||||h|| where h (t) = g (−t). The function f ∗ g = (f∗h)(t)

||f ||||h|| is known as the normalized

cross-correlation of f and g.
Hence, this matched �lter scheme can be implemented as a convolution. Therefore, it may be expedient

to implement it in the frequency domain. Similar results hold for the L2 (R [a, b)), l2 (Z), and l2 (Z [a, b])
spaces. It is especially useful to implement the l2 (Z [a, b]) cases in the frequency domain as the power of
the Fast Fourier Transform algorithm can be leveraged to quickly perform the computations in a computer
program. In the L2 (R [a, b)) and l2 (Z [a, b]) cases, care must be taken to zero pad the signal if wrap-around
e�ects are not desired. Similar results also hold for spaces on higher dimensional intervals with the same
inner products.

Of course, there is not necessarily exactly one instance of a target signal in a given signal. There could be
one instance, more than one instance, or no instance of a target signal. Therefore, it is often more practical
to identify all shifts corresponding to local maxima that are above a certain threshold.

Example 13.3
The signal in Figure 13.9 (Longer Signal) contains an instance of the template signal seen in
Figure 13.8 (Pattern Signal) beginning at time t = s1 as shown by the plot in Figure 13.10 (Absolute
Value of Output). Therefore,

s1 = argmaxt∈R

∣∣∣∣1 f

||f ||
,
wStg

||wStg||
2
∣∣∣∣ . (13.11)

Pattern Signal

Figure 13.8: This function shows tha pattern we are looking for in the signal below, which occurs at
time t = s1.
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Longer Signal

Figure 13.9: This signal contains an instance of the above signal starting at time t = s1.

Absolute Value of Output

Figure 13.10: This signal shows a sketch of the absolute value of the matched �lter output for the
interval shown. Note that this was just an "eyeball approximation" sketch. Observe the pronounced
peak at time t = s1.

13.4.3 Practical Applications

13.4.3.1 Image Detection

Matched Filtering is used in image processing to detect a template image within a reference image. This
has real-word applications in verifying �ngerprints for security or in verifying someone's photo. As a simple
example, we can turn to the ever-popular "Where's Waldo?" books (known as Wally in the UK!), where the
reader is tasked with �nding the speci�c face of Waldo/Wally in a confusing background rife with look-alikes!
If we are given the template head and a reference image, we can run a two dimensional convolution of the
template image across the reference image to obtain a three dimensional convolution map, Figure 13.11(a),
where the height of the convolution map is determined by the degree of correlation, higher being more
correlated. Finding our target then becomes a matter of determining the spot where the local surface area
is highest. The process is demonstrated in Figure 13.11(b). In the �eld of image processing, this matched
�lter-based process is known as template matching.
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(a)

(b)

Figure 13.11: Example of "Where's Waldo?" picture. Our Matched Filter Detector can be implemented
to �nd a possible match for Waldo.

then we could easily develop a program to �nd the closest resemblance to the image of Waldo's head in
the larger picture. We would simply implement our same match �lter algorithm: take the inner products at
each shift and see how large our resulting answers are. This idea was implemented on this same picture for
a Signals and Systems Project12 at Rice University (click the link to learn more).

Exercise 13.4.1: Pros and Cons (Solution on p. 302.)

What are the advantages of the matched �lter algorithm to image detection? What are the
drawbacks of this method?

13.4.3.2 Communications Systems

Matched �lter detectors are also commonly used in Communications Systems13. In fact, they are the optimal
detectors in Gaussian noise. Signals in the real-world are often distorted by the environment around them,
so there is a constant struggle to develop ways to be able to receive a distorted signal and then be able to
�lter it in some way to determine what the original signal was. Matched �lters provide one way to compare a
received signal with two possible original ("template") signals and determine which one is the closest match
to the received signal.

12http://www.owlnet.rice.edu/∼elec301/Projects99/waldo/process.html
13"Structure of Communication Systems" <http://cnx.org/content/m0002/latest/>
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For example, below we have a simpli�ed example of Frequency Shift Keying14 (FSK) where we having
the following coding for '1' and '0':

Figure 13.12: Frequency Shift Keying for '1' and '0'.

Based on the above coding, we can create digital signals based on 0's and 1's by putting together the
above two "codes" in an in�nite number of ways. For this example we will transmit a basic 3-bit number,
101, which is displayed in Figure 13.13:

Figure 13.13: The bit stream "101" coded with the above FSK.

Now, the signal picture above represents our original signal that will be transmitted over some commu-
nication system, which will inevitably pass through the "communications channel," the part of the system
that will distort and alter our signal. As long as the noise is not too great, our matched �lter should keep us
from having to worry about these changes to our transmitted signal. Once this signal has been received, we
will pass the noisy signal through a simple system, similar to the simpli�ed version shown in Figure 13.14:

14"Frequency Shift Keying" <http://cnx.org/content/m0545/latest/>
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Figure 13.14: Block diagram of matched �lter detector.

Figure 13.14 basically shows that our noisy signal will be passed in (we will assume that it passes in one
"bit" at a time) and this signal will be split and passed to two di�erent matched �lter detectors. Each one
will compare the noisy, received signal to one of the two codes we de�ned for '1' and '0.' Then this value will
be passed on and whichever value is higher (i.e. whichever FSK code signal the noisy signal most resembles)
will be the value that the receiver takes. For example, the �rst bit that will be sent through will be a '1' so
the upper level of the block diagram will have a higher value, thus denoting that a '1' was sent by the signal,
even though the signal may appear very noisy and distorted.

The interactive example below supposes that our transmitter sends 1000 bits, plotting how many of
those bits are received and interpreted correctly as either 1s and 0s, and also keeps a tally of how many are
accidentally misinterpreted. You can play around with the distance between the energy of the "1" and the
"0" (discriminability), the degree of noise present in the channel, and the location of the criterion (threshold)
to get a feel for the basics of signal detection theory.

Example 13.4
Let's use a matched �lter to �nd the "0" bits in a simple signal.

Let's use the signal s1 (t) from example 1 to represent the bits. s1 (t) represents 0, while −s1 (t)
represents 1.

0⇒ (b = 1)⇒ (s1 (t) = s (t)) for 0 ≤ t ≤ T
1⇒ (b = −1)⇒ (s2 (t) = −s (t)) for 0 ≤ t ≤ T

Xt =
P∑

i=−P
bis (t− iT ) (13.12)
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Figure 13.15

The matched �lter output clearly shows the location of the "0" bits.

13.4.3.3 Radar

One of the �rst, and more intriguing forms of communication that used the matched �lter concept was
radar. A known electromagnetic signal is sent out by a transmitter at a target and re�ected o� of the target
back to the sender with a time delay proportional to the distance between target and sender. This scaled,
time-shifted signal is then convolved with the original template signal, and the time at which the output of
this convolution is highest is noted.

This technology proved vital in the 1940s for the powers that possessed it. A short set of videos below
shows the basics of how the technology works, its applications, and its impact in World War 2.

History of Radar

This media object is a Flash object. Please view or download it at
<http://www.youtube.com/v/Zq0uE7nUlEQ&hl=en_US&fs=1&>

Figure 13.16

See the video in Figure 13.17 for an analysis of the same basic principle being applied to adaptive cruise
control systems for the modern car.
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This media object is a Flash object. Please view or download it at
<http://www.youtube.com/v/VabT6UMjLNY&hl=en_US&fs=1>

Figure 13.17: Video on radar-based adaptive cruise control from The Science Channel.

13.4.4 Matched Filter Demonstration

Figure 13.18: Interact (when online) with a Mathematica CDF demonstrating the Matched Filter. To
Download, right-click and save target as .cdf.

13.4.5 Matched Filter Summary

As can be seen, the matched �lter detector is an important signal processing application, rich both in
theoretical concepts and in practical applications. The matched �lter supports a wide array of uses related
to pattern recognition, including image detection, frequency shift keying demodulation, and radar signal
interpretation. Despite this diversity of purpose, all matched �lter applications operate in essentially the
same way. Every member of some set of signals is compared to a target signal by evaluating the absolute
value of the inner product of the the two signals after normalization. However, the signal sets and result
interpretations are application speci�c.
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Solutions to Exercises in Chapter 13

Solution to Exercise 13.1.1 (p. 285)
When the signal is real-valued, we may only need half the spectral values, but the complexity remains
unchanged. If the data are complex-valued, which demands retaining all frequency values, the complexity is
again the same. When only K frequencies are needed, the complexity is O (KN).
Solution to Exercise 13.2.1 (p. 288)
The upper panel has not used the FFT algorithm to compute the length-4 DFTs while the lower one has.
The ordering is determined by the algorithm.
Solution to Exercise 13.2.2 (p. 289)
When the signal is real-valued, we may only need half the spectral values, but the complexity remains
unchanged. If the data are complex-valued, which demands retaining all frequency values, the complexity is
again the same. When only K frequencies are needed, the complexity is O (KN).
Solution to Exercise 13.3.1 (p. 292)
The upper panel has not used the FFT algorithm to compute the length-4 DFTs while the lower one has.
The ordering is determined by the algorithm.
Solution to Exercise 13.4.1 (p. 297)
This algorithm is very simple and thus easy to code. However, it is susceptible to certain types of noise - for
example, it would be di�cult to �nd Waldo if his face was rotated, �ipped, larger or smaller than expected,
or distorted in some other way.



Appendix A: Linear Algebra Overview

14.1 Basic Linear Algebra1

This brief tutorial on some key terms in linear algebra is not meant to replace or be very helpful to those of
you trying to gain a deep insight into linear algebra. Rather, this brief introduction to some of the terms and
ideas of linear algebra is meant to provide a little background to those trying to get a better understanding
or learn about eigenvectors and eigenfunctions, which play a big role in deriving a few important ideas on
Signals and Systems. The goal of these concepts will be to provide a background for signal decomposition
and to lead up to the derivation of the Fourier Series2.

14.1.1 Linear Independence

A set of vectors {x1, x2, . . . , xk} , xi ∈ Cn are linearly independent if none of them can be written as
a linear combination of the others.

De�nition 14.1: Linearly Independent
For a given set of vectors, {x1, x2, . . . , xn}, they are linearly independent if

c1x1 + c2x2 + · · ·+ cnxn = 0

only when c1 = c2 = · · · = cn = 0
Example
We are given the following two vectors:

x1 =

 3

2



x2 =

 −6

−4


These are not linearly independent as proven by the following statement, which, by inspection,
can be seen to not adhere to the de�nition of linear independence stated above.

(x2 = −2x1)⇒ (2x1 + x2 = 0)

Another approach to reveal a vectors independence is by graphing the vectors. Looking at these two
vectors geometrically (as in Figure 14.1), one can again prove that these vectors are not linearly
independent.

1This content is available online at <http://cnx.org/content/m10734/2.6/>.
2"Fourier Series: Eigenfunction Approach" <http://cnx.org/content/m10496/latest/>
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Figure 14.1: Graphical representation of two vectors that are not linearly independent.

Example 14.1
We are given the following two vectors:

x1 =

 3

2



x2 =

 1

2


These are linearly independent since

c1x1 = − (c2x2)

only if c1 = c2 = 0. Based on the de�nition, this proof shows that these vectors are indeed linearly
independent. Again, we could also graph these two vectors (see Figure 14.2) to check for linear
independence.

Figure 14.2: Graphical representation of two vectors that are linearly independent.

Exercise 14.1.1 (Solution on p. 321.)

Are {x1, x2, x3} linearly independent?

x1 =

 3

2
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x2 =

 1

2


x3 =

 −1

0


As we have seen in the two above examples, often times the independence of vectors can be easily seen
through a graph. However this may not be as easy when we are given three or more vectors. Can you easily
tell whether or not these vectors are independent from Figure 14.3. Probably not, which is why the method
used in the above solution becomes important.

Figure 14.3: Plot of the three vectors. Can be shown that a linear combination exists among the
three, and therefore they are not linear independent.

Hint: A set of m vectors in Cn cannot be linearly independent if m > n.

14.1.2 Span

De�nition 14.2: Span
The span3 of a set of vectors {x1, x2, . . . , xk} is the set of vectors that can be written as a linear
combination of {x1, x2, . . . , xk}

span ({x1, . . . , xk}) = {α1x1 + α2x2 + · · ·+ αkxk , αi ∈ Cn }

Example
Given the vector

x1 =

 3

2


the span of x1 is a line.

Example
Given the vectors

x1 =

 3

2


3"Subspaces", De�nition 2: "Span" <http://cnx.org/content/m10297/latest/#defn2>
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x2 =

 1

2


the span of these vectors is C2.

14.1.3 Basis

De�nition 14.3: Basis
A basis for Cn is a set of vectors that: (1) spans Cn and (2) is linearly independent.

Clearly, any set of n linearly independent vectors is a basis for Cn.

Example 14.2
We are given the following vector

ei =



0
...

0

1

0
...

0


where the 1 is always in the ith place and the remaining values are zero. Then the basis for Cn is

{ei , i = [1, 2, . . . , n] }

note: {ei , i = [1, 2, . . . , n] } is called the standard basis.

Example 14.3

h1 =

 1

1


h2 =

 1

−1


{h1, h2} is a basis for C2.
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Figure 14.4: Plot of basis for C2

If {b1, . . . , b2} is a basis for Cn, then we can express any x ∈ Cn as a linear combination of the bi's:

x = α1b1 + α2b2 + · · ·+ αnbn , αi ∈ C

Example 14.4
Given the following vector,

x =

 1

2


writing x in terms of {e1, e2} gives us

x = e1 + 2e2

Exercise 14.1.2 (Solution on p. 321.)

Try and write x in terms of {h1, h2} (de�ned in the previous example).

In the two basis examples above, x is the same vector in both cases, but we can express it in many di�erent
ways (we give only two out of many, many possibilities). You can take this even further by extending this
idea of a basis to function spaces.

note: As mentioned in the introduction, these concepts of linear algebra will help prepare you
to understand the Fourier Series4, which tells us that we can express periodic functions, f (t), in
terms of their basis functions, ejω0nt.

[Media Object]5

4"Fourier Series: Eigenfunction Approach" <http://cnx.org/content/m10496/latest/>
5This media object is a LabVIEW VI. Please view or download it at

<LinearAlgebraCalc3.llb>
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Khan Lecture on Basis of a Subspace

This media object is a Flash object. Please view or download it at
<http://www.youtube.com/v/zntNi3-

ybfQ&rel=0&color1=0xb1b1b1&color2=0xd0d0d0&hl=en_US&feature=player_embedded&fs=1>

Figure 14.5: video from Khan Academy, Basis of a Subspace - 20 min.

14.2 Eigenvectors and Eigenvalues6

In this section, our linear systems will be n×n matrices of complex numbers. For a little background into
some of the concepts that this module is based on, refer to the basics of linear algebra (Section 14.1).

14.2.1 Eigenvectors and Eigenvalues

Let A be an n×n matrix, where A is a linear operator on vectors in Cn.

Ax = b (14.1)

where x and b are n×1 vectors (Figure 14.6).

(a)

(b)

Figure 14.6: Illustration of linear system and vectors.

De�nition 14.4: eigenvector
An eigenvector of A is a vector v ∈ Cn such that

Av = λv (14.2)

where λ is called the corresponding eigenvalue. A only changes the length of v, not its direction.

6This content is available online at <http://cnx.org/content/m10736/2.9/>.
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14.2.1.1 Graphical Model

Through Figure 14.7 and Figure 14.8, let us look at the di�erence between (14.1) and (14.2).

Figure 14.7: Represents (14.1), Ax = b.

If v is an eigenvector of A, then only its length changes. See Figure 14.8 and notice how our vector's
length is simply scaled by our variable, λ, called the eigenvalue:

Figure 14.8: Represents (14.2), Av = λv.

note: When dealing with a matrix A, eigenvectors are the simplest possible vectors to operate
on.

14.2.1.2 Examples

Exercise 14.2.1 (Solution on p. 321.)

From inspection and understanding of eigenvectors, �nd the two eigenvectors, v1 and v2, of

A =

 3 0

0 −1


Also, what are the corresponding eigenvalues, λ1 and λ2? Do not worry if you are having problems
seeing these values from the information given so far, we will look at more rigorous ways to �nd
these values soon.
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Exercise 14.2.2 (Solution on p. 321.)

Show that these two vectors,

v1 =

 1

1


v2 =

 1

−1


are eigenvectors of A, where A =

 3 −1

−1 3

. Also, �nd the corresponding eigenvalues.

Khan Lecture on Eigenvectors

This media object is a Flash object. Please view or download it at
<http://www.youtube.com/v/PhfbEr2btGQ&rel=0&color1=0xb1b1b1&color2=0xd0d0d0&hl=en_US&feature=player_embedded&fs=1>

Figure 14.9: video from Khan Academy - Introduction to Eigenvectors and Eigenvalues - 7:43 min.

14.2.2 Calculating Eigenvalues and Eigenvectors

In the above examples, we relied on your understanding of the de�nition and on some basic observations to
�nd and prove the values of the eigenvectors and eigenvalues. However, as you can probably tell, �nding
these values will not always be that easy. Below, we walk through a rigorous and mathematical approach at
calculating the eigenvalues and eigenvectors of a matrix.

14.2.2.1 Finding Eigenvalues

Find λ ∈ C such that v 6= 0, where 0 is the "zero vector." We will start with (14.2), and then work our way
down until we �nd a way to explicitly calculate λ.

Av = λv

Av − λv = 0

(A− λI) v = 0

In the previous step, we used the fact that
λv = λIv

where I is the identity matrix.

I =


1 0 . . . 0

0 1 . . . 0

0 0
. . .

...

0 . . . . . . 1
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So, A− λI is just a new matrix.

Example 14.5
Given the following matrix, A, then we can �nd our new matrix, A− λI.

A =

 a1,1 a1,2

a2,1 a2,2



A− λI =

 a1,1 − λ a1,2

a2,1 a2,2 − λ


If (A− λI) v = 0 for some v 6= 0, then A− λI is not invertible. This means:

det (A− λI) = 0

This determinant (shown directly above) turns out to be a polynomial expression (of order n). Look at the
examples below to see what this means.

Example 14.6
Starting with matrix A (shown below), we will �nd the polynomial expression, where our eigen-
values will be the dependent variable.

A =

 3 −1

−1 3



A− λI =

 3− λ −1

−1 3− λ


det (A− λI) = (3− λ)2 − (−1)2 = λ2 − 6λ+ 8

λ = {2, 4}

Example 14.7
Starting with matrix A (shown below), we will �nd the polynomial expression, where our eigen-
values will be the dependent variable.

A =

 a1,1 a1,2

a2,1 a2,2



A− λI =

 a1,1 − λ a1,2

a2,1 a2,2 − λ


det (A− λI) = λ2 − (a1,1 + a2,2)λ− a2,1a1,2 + a1,1a2,2

If you have not already noticed it, calculating the eigenvalues is equivalent to calculating the roots of

det (A− λI) = cnλ
n + cn−1λ

n−1 + · · ·+ c1λ+ c0 = 0

Conclusion: Therefore, by simply using calculus to solve for the roots of our polynomial we can
easily �nd the eigenvalues of our matrix.
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14.2.2.2 Finding Eigenvectors

Given an eigenvalue, λi, the associated eigenvectors are given by

Av = λiv

A


v1

...

vn

 =


λ1v1

...

λnvn


set of n equations with n unknowns. Simply solve the n equations to �nd the eigenvectors.

Khan Lecture on Deriving Eigenvectors and Eigenvalues

This media object is a Flash object. Please view or download it at
<http://www.youtube.com/v/pZ6mMVEE89g&rel=0&color1=0xb1b1b1&color2=0xd0d0d0&hl=en_US&feature=player_embedded&fs=1>

Figure 14.10: video from Khan Academy - Example Deriving Eignevectors and Eigenvalues - 5:39
min.

14.2.3 Main Point

Say the eigenvectors of A, {v1, v2, . . . , vn}, span (Section 14.1.2: Span) Cn, meaning {v1, v2, . . . , vn} are
linearly independent (Section 14.1.1: Linear Independence) and we can write any x ∈ Cn as

x = α1v1 + α2v2 + · · ·+ αnvn (14.3)

where {α1, α2, . . . , αn} ∈ C. All that we are doing is rewriting x in terms of eigenvectors of A. Then,

Ax = A (α1v1 + α2v2 + · · ·+ αnvn)

Ax = α1Av1 + α2Av2 + · · ·+ αnAvn

Ax = α1λ1v1 + α2λ2v2 + · · ·+ αnλnvn = b

Therefore we can write,

x =
∑
i

αivi

and this leads us to the following depicted system:

Figure 14.11: Depiction of system where we break our vector, x, into a sum of its eigenvectors.
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where in Figure 14.11 we have,

b =
∑
i

αiλivi

Main Point: By breaking up a vector, x, into a combination of eigenvectors, the calculation of
Ax is broken into "easy to swallow" pieces.

14.2.4 Practice Problem

Exercise 14.2.3 (Solution on p. 321.)

For the following matrix, A and vector, x, solve for their product. Try solving it using two di�erent
methods: directly and using eigenvectors.

A =

 3 −1

−1 3



x =

 5

3


[Media Object]7

14.3 Matrix Diagonalization8

From our understanding of eigenvalues and eigenvectors (Section 14.2) we have discovered several things
about our operator matrix, A. We know that if the eigenvectors of A span Cn and we know how to express
any vector x in terms of {v1, v2, . . . , vn}, then we have the operator A all �gured out. If we have A acting
on x, then this is equal to A acting on the combinations of eigenvectors. Which we know proves to be fairly
easy!

We are still left with two questions that need to be addressed:

1. When do the eigenvectors {v1, v2, . . . , vn} of A span Cn (assuming {v1, v2, . . . , vn} are linearly inde-
pendent)?

2. How do we express a given vector x in terms of {v1, v2, . . . , vn}?

14.3.1 Answer to Question #1

Question #1: When do the eigenvectors {v1, v2, . . . , vn} of A span Cn?

If A has n distinct eigenvalues
λi 6= λj , i 6= j

where i and j are integers, then A has n linearly independent eigenvectors {v1, v2, . . . , vn} which then span
Cn.

aside: The proof of this statement is not very hard, but is not really interesting enough to include
here. If you wish to research this idea further, read Strang, G., "Linear Algebra and its Application"
for the proof.

7This media object is a LabVIEW VI. Please view or download it at
<LinearAlgebraCalc3.llb>

8This content is available online at <http://cnx.org/content/m10738/2.6/>.
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Furthermore, n distinct eigenvalues means

det (A− λI) = cnλ
n + cn−1λ

n−1 + · · ·+ c1λ+ c0 = 0

has n distinct roots.

14.3.2 Answer to Question #2

Question #2: How do we express a given vector x in terms of {v1, v2, . . . , vn}?

We want to �nd {α1, α2, . . . , αn} ∈ C such that

x = α1v1 + α2v2 + · · ·+ αnvn (14.4)

In order to �nd this set of variables, we will begin by collecting the vectors {v1, v2, . . . , vn} as columns in a
n×n matrix V .

V =


...

...
...

v1 v2 . . . vn
...

...
...


Now (14.4) becomes

x =


...

...
...

v1 v2 . . . vn
...

...
...




α1

...

αn


or

x = V α

which gives us an easy form to solve for our variables in question, α:

α = V −1x

Note that V is invertible since it has n linearly independent columns.

14.3.2.1 Aside

Let us recall our knowledge of functions and their basis and examine the role of V .

x = V α


x1

...

xn

 = V


α1

...

αn


where α is just x expressed in a di�erent basis (Section 14.1.3: Basis):

x = x1


1

0
...

0

+ x2


0

1
...

0

+ · · ·+ xn


0

0
...

1
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x = α1


...

v1

...

+ α2


...

v2

...

+ · · ·+ αn


...

vn
...


V transforms x from the standard basis to the basis {v1, v2, . . . , vn}

14.3.3 Matrix Diagonalization and Output

We can also use the vectors {v1, v2, . . . , vn} to represent the output, b, of a system:

b = Ax = A (α1v1 + α2v2 + · · ·+ αnvn)

Ax = α1λ1v1 + α2λ2v2 + · · ·+ αnλnvn = b

Ax =


...

...
...

v1 v2 . . . vn
...

...
...




λ1α1

...

λ1αn


Ax = V Λα

Ax = V ΛV −1x

where Λ is the matrix with the eigenvalues down the diagonal:

Λ =


λ1 0 . . . 0

0 λ2 . . . 0
...

...
. . .

...

0 0 . . . λn


Finally, we can cancel out the x and are left with a �nal equation for A:

A = V ΛV −1

14.3.3.1 Interpretation

For our interpretation, recall our key formulas:

α = V −1x

b =
∑
i

αiλivi

We can interpret operating on x with A as:
x1

...

xn

→


α1

...

αn

→


λ1α1

...

λ1αn

→


b1
...

bn


where the three steps (arrows) in the above illustration represent the following three operations:
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1. Transform x using V −1, which yields α
2. Multiplication by Λ
3. Inverse transform using V , which gives us b

This is the paradigm we will use for LTI systems!

Figure 14.12: Simple illustration of LTI system!

[Media Object]9

14.4 Eigen-stu� in a Nutshell10

14.4.1 A Matrix and its Eigenvector

The reason we are stressing eigenvectors (Section 14.2) and their importance is because the action of a matrix
A on one of its eigenvectors v is

1. extremely easy (and fast) to calculate
Av = λv (14.5)

just multiply v by λ.
2. easy to interpret: A just scales v, keeping its direction constant and only altering the vector's length.

If only every vector were an eigenvector of A....

14.4.2 Using Eigenvectors' Span

Of course, not every vector can be ... BUT ... For certain matrices (including ones with distinct eigen-
values, λ's), their eigenvectors span (Section 14.1.2: Span) Cn, meaning that for any x ∈ Cn, we can �nd
{α1, α2, αn} ∈ C such that:

x = α1v1 + α2v2 + · · ·+ αnvn (14.6)

Given (14.6), we can rewrite Ax = b. This equation is modeled in our LTI system pictured below:

Figure 14.13: LTI System.

9This media object is a LabVIEW VI. Please view or download it at
<LinearAlgebraCalc3.llb>

10This content is available online at <http://cnx.org/content/m10742/2.6/>.
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x =
∑
i

αivi

b =
∑
i

αiλivi

The LTI system above represents our (14.5). Below is an illustration of the steps taken to go from x to b.

x→
(
α = V −1x

)
→
(
ΛV −1x

)
→
(
V ΛV −1x = b

)
where the three steps (arrows) in the above illustration represent the following three operations:

1. Transform x using V −1 - yields α
2. Action of A in new basis - a multiplication by Λ
3. Translate back to old basis - inverse transform using a multiplication by V , which gives us b

14.5 Eigenfunctions of LTI Systems11

14.5.1 Introduction

Hopefully you are familiar with the notion of the eigenvectors of a "matrix system," if not they do a quick
review of eigen-stu� (Section 14.4). We can develop the same ideas for LTI systems acting on signals. A
linear time invariant (LTI) system12 H operating on a continuous input f (t) to produce continuous time
output y (t)

H [f (t)] = y (t) (14.7)

Figure 14.14: H [f (t)] = y (t). f and t are continuous time (CT) signals and H is an LTI operator.

is mathematically analogous to an NxN matrix A operating on a vector x ∈ CN to produce another
vector b ∈ CN (see Matrices and LTI Systems for an overview).

Ax = b (14.8)

11This content is available online at <http://cnx.org/content/m10500/2.9/>.
12"Introduction to Systems" <http://cnx.org/content/m0005/latest/>
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Figure 14.15: Ax = b where x and b are in CN and A is an N x N matrix.

Just as an eigenvector (Section 14.2) of A is a v ∈ CN such that Av = λv, λ ∈ C,

Figure 14.16: Av = λv where v ∈ CN is an eigenvector of A.

we can de�ne an eigenfunction (or eigensignal) of an LTI system H to be a signal f (t) such that

H [f (t)] = λf (t) , λ ∈ C (14.9)

Figure 14.17: H [f (t)] = λf (t) where f is an eigenfunction of H.

Eigenfunctions are the simplest possible signals for H to operate on: to calculate the output, we simply
multiply the input by a complex number λ.
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14.5.2 Eigenfunctions of any LTI System

The class of LTI systems has a set of eigenfunctions in common: the complex exponentials (Section 1.8) est,
s ∈ C are eigenfunctions for all LTI systems.

H
[
est
]

= λse
st (14.10)

Figure 14.18: H
ˆ
est
˜

= λse
st where H is an LTI system.

note: While {est , s ∈ C } are always eigenfunctions of an LTI system, they are not necessarily
the only eigenfunctions.

We can prove (14.10) by expressing the output as a convolution (Section 3.3) of the input est and the
impulse response (Section 1.6) h (t) of H:

H [est] =
∫∞
−∞ h (τ) es(t−τ)dτ

=
∫∞
−∞ h (τ) este−(sτ)dτ

= est
∫∞
−∞ h (τ) e−(sτ)dτ

(14.11)

Since the expression on the right hand side does not depend on t, it is a constant, λs. Therefore

H
[
est
]

= λse
st (14.12)

The eigenvalue λs is a complex number that depends on the exponent s and, of course, the system H. To
make these dependencies explicit, we will use the notation H (s) ≡ λs.

Figure 14.19: est is the eigenfunction and H (s) are the eigenvalues.
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Since the action of an LTI operator on its eigenfunctions est is easy to calculate and interpret, it is
convenient to represent an arbitrary signal f (t) as a linear combination of complex exponentials. The
Fourier series13 gives us this representation for periodic continuous time signals, while the (slightly more
complicated) Fourier transform14 lets us expand arbitrary continuous time signals.

13"Fourier Series: Eigenfunction Approach" <http://cnx.org/content/m10496/latest/>
14"Derivation of the Fourier Transform" <http://cnx.org/content/m0046/latest/>
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Solutions to Exercises in Chapter 14

Solution to Exercise 14.1.1 (p. 304)
By playing around with the vectors and doing a little trial and error, we will discover the following rela-
tionship:

x1 − x2 + 2x3 = 0

Thus we have found a linear combination of these three vectors that equals zero without setting the coe�cients
equal to zero. Therefore, these vectors are not linearly independent!
Solution to Exercise 14.1.2 (p. 307)

x =
3
2
h1 +

−1
2
h2

Solution to Exercise 14.2.1 (p. 309)
The eigenvectors you found should be:

v1 =

 1

0


v2 =

 0

1


And the corresponding eigenvalues are

λ1 = 3

λ2 = −1

Solution to Exercise 14.2.2 (p. 310)
In order to prove that these two vectors are eigenvectors, we will show that these statements meet the
requirements stated in the de�nition (De�nition: "eigenvector", p. 308).

Av1 =

 3 −1

−1 3

 1

1

 =

 2

2



Av2 =

 3 −1

−1 3

 1

−1

 =

 4

−4


These results show us that A only scales the two vectors (i.e. changes their length) and thus it proves that
(14.2) holds true for the following two eigenvalues that you were asked to �nd:

λ1 = 2

λ2 = 4

If you need more convincing, then one could also easily graph the vectors and their corresponding product
with A to see that the results are merely scaled versions of our original vectors, v1 and v2.
Solution to Exercise 14.2.3 (p. 313)
Direct Method (use basic matrix multiplication)

Ax =

 3 −1

−1 3

 5

3

 =

 12

4
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Eigenvectors (use the eigenvectors and eigenvalues we found earlier for this same matrix)

v1 =

 1

1



v2 =

 1

−1


λ1 = 2

λ2 = 4

As shown in (14.3), we want to represent x as a sum of its scaled eigenvectors. For this case, we have:

x = 4v1 + v2

x =

 5

3

 = 4

 1

1

+

 1

−1


Ax = A (4v1 + v2) = λi (4v1 + v2)

Therefore, we have

Ax = 4× 2

 1

1

+ 4

 1

−1

 =

 12

4


Notice that this method using eigenvectors required no matrix multiplication. This may have seemed more
complicated here, but just imagine A being really big, or even just a few dimensions larger!



Appendix B: Hilbert Spaces Overview

15.1 Fields and Complex Numbers1

15.1.1 Fields

In order to propely discuss the concept of vector spaces in linear algebra, it is necessary to develop the notion
of a set of �scalars� by which we allow a vector to be multiplied. A framework within which our concept of
real numbers would �t is desireable. Thus, we would like a set with two associative, commutative operations
(like standard addition and multiplication) and a notion of their inverse operations (like subtraction and
division). The mathematical algebraic construct that addresses this idea is the �eld. A �eld (S,+, ∗) is a
set S together with two binary operations + and ∗ such that the following properties are satis�ed.

1. Closure of S under +: For every x, y ∈ S, x+ y ∈ S.
2. Associativity of S under +: For every x, y, z ∈ S, (x+ y) + z = x+ (y + z).
3. Existence of + identity element: There is a e+ ∈ S such that for every x ∈ S, e+ + x = x+ e+ = x.
4. Existence of + inverse elements: For every x ∈ S there is a y ∈ S such that x+ y = y + x = e+.
5. Commutativity of S under +: For every x, y ∈ S, x+ y = y + x.
6. Closure of S under ∗: For every x, y ∈ S, x ∗ y ∈ S.
7. Associativity of S under ∗: For every x, y, z ∈ S, (x ∗ y) ∗ z = x ∗ (y ∗ z).
8. Existence of ∗ identity element: There is a e∗ ∈ S such that for every x ∈ S, e∗ + x = x+ e∗ = x.
9. Existence of ∗ inverse elements: For every x ∈ S with x 6= e+ there is a y ∈ S such that x∗y = y∗x = e∗.

10. Commutativity of S under ∗: For every x, y ∈ S, x ∗ y = y ∗ x.
11. Distributivity of ∗ over +: For every x, y, z ∈ S, x ∗ (y + z) = xy + xz.

While this de�nition is quite general, the two �elds used most often in signal processing, at least within the
scope of this course, are the real numbers and the complex numbers, each with their typical addition and
multiplication operations.

15.1.2 The Complex Field

The reader is undoubtedly already su�ciently familiar with the real numbers with the typical addition and
multiplication operations. However, the �eld of complex numbers with the typical addition and multiplication
operations may be unfamiliar to some. For that reason and its importance to signal processing, it merits a
brief explanation here.

15.1.2.1 De�nitions

The notion of the square root of −1 originated with the quadratic formula: the solution of certain quadratic
equations mathematically exists only if the so-called imaginary quantity

√
−1 could be de�ned. Euler2 �rst

1This content is available online at <http://cnx.org/content/m34514/1.4/>.
2http://www-groups.dcs.st-and.ac.uk/∼history/Mathematicians/Euler.html
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used i for the imaginary unit but that notation did not take hold until roughly Ampère's time. Ampère3

used the symbol i to denote current (intensité de current). It wasn't until the twentieth century that the
importance of complex numbers to circuit theory became evident. By then, using i for current was entrenched
and electrical engineers now choose j for writing complex numbers.

An imaginary number has the form jb =
√
−b2. A complex number, z, consists of the ordered pair

(a,b), a is the real component and b is the imaginary component (the j is suppressed because the imaginary
component of the pair is always in the second position). The imaginary number jb equals (0,b). Note that
a and b are real-valued numbers.

Figure 15.1 (The Complex Plane) shows that we can locate a complex number in what we call the
complex plane. Here, a, the real part, is the x-coordinate and b, the imaginary part, is the y-coordinate.

The Complex Plane

Figure 15.1: A complex number is an ordered pair (a,b) that can be regarded as coordinates in the
plane. Complex numbers can also be expressed in polar coordinates as r∠θ.

From analytic geometry, we know that locations in the plane can be expressed as the sum of vectors, with
the vectors corresponding to the x and y directions. Consequently, a complex number z can be expressed
as the (vector) sum z = a + jb where j indicates the y-coordinate. This representation is known as the
Cartesian form of z. An imaginary number can't be numerically added to a real number; rather, this
notation for a complex number represents vector addition, but it provides a convenient notation when we
perform arithmetic manipulations.

The real part of the complex number z = a + jb, written as Re (z), equals a. We consider the real
part as a function that works by selecting that component of a complex number not multiplied by j. The
imaginary part of z, Im (z), equals b: that part of a complex number that is multiplied by j. Again, both
the real and imaginary parts of a complex number are real-valued.

The complex conjugate of z, written as z∗, has the same real part as z but an imaginary part of the
opposite sign.

z = Re (z) + jIm (z)

z∗ = Re (z)− jIm (z)
(15.1)

Using Cartesian notation, the following properties easily follow.

• If we add two complex numbers, the real part of the result equals the sum of the real parts and the
imaginary part equals the sum of the imaginary parts. This property follows from the laws of vector

3http://www-groups.dcs.st-and.ac.uk/∼history/Mathematicians/Ampere.html
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addition.
a1 + jb1 + a2 + jb2 = a1 + a2 + j (b1 + b2)

In this way, the real and imaginary parts remain separate.
• The product of j and a real number is an imaginary number: ja. The product of j and an imaginary

number is a real number: j (jb) = −b because j2 = −1. Consequently, multiplying a complex number
by j rotates the number's position by 90 degrees.

Exercise 15.1.1 (Solution on p. 369.)

Use the de�nition of addition to show that the real and imaginary parts can be expressed as a
sum/di�erence of a complex number and its conjugate. Re (z) = z+z∗

2 and Im (z) = z−z∗
2j .

Complex numbers can also be expressed in an alternate form, polar form, which we will �nd quite useful.
Polar form arises arises from the geometric interpretation of complex numbers. The Cartesian form of a
complex number can be re-written as

a+ jb =
√
a2 + b2

(
a√

a2 + b2
+ j

b√
a2 + b2

)
By forming a right triangle having sides a and b, we see that the real and imaginary parts correspond to the
cosine and sine of the triangle's base angle. We thus obtain the polar form for complex numbers.

z = a+ jb = r∠θ

r = |z| =
√
a2 + b2

a = rcos (θ)

b = rsin (θ)

θ = arctan
(
b
a

)
The quantity r is known as the magnitude of the complex number z, and is frequently written as |z|. The
quantity θ is the complex number's angle. In using the arc-tangent formula to �nd the angle, we must take
into account the quadrant in which the complex number lies.

Exercise 15.1.2 (Solution on p. 369.)

Convert 3− 2j to polar form.

15.1.2.2 Euler's Formula

Surprisingly, the polar form of a complex number z can be expressed mathematically as

z = rejθ (15.2)

To show this result, we use Euler's relations that express exponentials with imaginary arguments in terms
of trigonometric functions.

ejθ = cos (θ) + jsin (θ) (15.3)

cos (θ) =
ejθ + e−(jθ)

2
(15.4)

sin (θ) =
ejθ − e−(jθ)

2j
The �rst of these is easily derived from the Taylor's series for the exponential.

ex = 1 +
x

1!
+
x2

2!
+
x3

3!
+ . . .
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Substituting jθ for x, we �nd that

ejθ = 1 + j
θ

1!
− θ2

2!
− j θ

3

3!
+ . . .

because j2 = −1, j3 = −j, and j4 = 1. Grouping separately the real-valued terms and the imaginary-valued
ones,

ejθ = 1− θ2

2!
+ · · ·+ j

(
θ

1!
− θ3

3!
+ . . .

)
The real-valued terms correspond to the Taylor's series for cos (θ), the imaginary ones to sin (θ), and Euler's
�rst relation results. The remaining relations are easily derived from the �rst. Because of , we see that
multiplying the exponential in (15.3) by a real constant corresponds to setting the radius of the complex
number by the constant.

15.1.2.3 Calculating with Complex Numbers

Adding and subtracting complex numbers expressed in Cartesian form is quite easy: You add (subtract) the
real parts and imaginary parts separately.

z1 ± z2 = (a1 ± a2) + j (b1 ± b2) (15.5)

To multiply two complex numbers in Cartesian form is not quite as easy, but follows directly from following
the usual rules of arithmetic.

z1z2 = (a1 + jb1) (a2 + jb2)

= a1a2 − b1b2 + j (a1b2 + a2b1)
(15.6)

Note that we are, in a sense, multiplying two vectors to obtain another vector. Complex arithmetic provides
a unique way of de�ning vector multiplication.

Exercise 15.1.3 (Solution on p. 369.)

What is the product of a complex number and its conjugate?

Division requires mathematical manipulation. We convert the division problem into a multiplication problem
by multiplying both the numerator and denominator by the conjugate of the denominator.

z1
z2

= a1+jb1
a2+jb2

= a1+jb1
a2+jb2

a2−jb2
a2−jb2

= (a1+jb1)(a2−jb2)
a22+b22

= a1a2+b1b2+j(a2b1−a1b2)
a22+b22

(15.7)

Because the �nal result is so complicated, it's best to remember how to perform division�multiplying
numerator and denominator by the complex conjugate of the denominator�than trying to remember the
�nal result.

The properties of the exponential make calculating the product and ratio of two complex numbers much
simpler when the numbers are expressed in polar form.

z1z2 = r1e
jθ1r2e

jθ2

= r1r2e
j(θ1+θ2)

(15.8)

z1

z2
=
r1e

jθ1

r2ejθ2
=
r1

r2
ej(θ1−θ2)
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To multiply, the radius equals the product of the radii and the angle the sum of the angles. To divide,
the radius equals the ratio of the radii and the angle the di�erence of the angles. When the original
complex numbers are in Cartesian form, it's usually worth translating into polar form, then performing the
multiplication or division (especially in the case of the latter). Addition and subtraction of polar forms
amounts to converting to Cartesian form, performing the arithmetic operation, and converting back to polar
form.

15.2 Vector Spaces4

15.2.1 Introduction

De�nition 15.1: Vector space
A vector space S is a collection of "vectors" such that (1) if f1 ∈ S ⇒ αf1 ∈ S for all scalars α
(where α ∈ R, α ∈ C, or some other �eld) and (2) if f1 ∈ S, f2 ∈ S, then (f1 + f2) ∈ S
To de�ne an vector space, we need

• A set of things called "vectors" (X)
• A set of things called "scalars" that form a �eld (A)
• A vector addition operation ()
• A scalar multiplication operation (∗)

The operations need to have all the properties of given below. Closure is usually the most important to
show.

15.2.2 Vector Spaces

If the scalars α are real, S is called a real vector space.
If the scalars α are complex, S is called a complex vector space.
If the "vectors" in S are functions of a continuous variable, we sometimes call S a linear function space

15.2.2.1 Properties

We de�ne a set V to be a vector space if

1. x+ y = y + x for each x and y in V
2. x+ (y + z) = (x+ y) + z for each x, y, and z in V
3. There is a unique "zero vector" such that x+ 0 = x for each x in V (0 is the �eld additive identity)
4. For each x in V there is a unique vector −x such that x+−x = 0
5. 1x = x (1 is the �eld multiplicative identity)
6. (c1c2)x = c1 (c2x) for each x in V and c1 and c2 in C
7. c (x+ y) = cx+ cy for each x and y in V and c in C
8. (c1 + c2)x = c1x+ c2x for each x in V and c1 and c2 in C

15.2.2.2 Examples

• Rn = real vector space
• Cn = complex vector space
• L1 (R) =

{
f (t) , f (t) |

∫∞
−∞ |f (t) |dt <∞

}
is a vector space

• L∞ (R) = {f (t) , f (t) | f (t) is bounded} is a vector space

• L2 (R) =
{
f (t) , f (t) |

∫∞
−∞ (|f (t) |)2

dt <∞
}

= finite energy signals is a vector space

4This content is available online at <http://cnx.org/content/m10767/2.6/>.
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• L2 ([0, T ]) = finite energy functions on interval [0,T]
• `1 (Z), `2 (Z), `∞ (Z) are vector spaces
• The collection of functions piecewise constant between the integers is a vector space

Figure 15.2

• R+
2 =


 x0

x1

 ,

 x0

x1

 | (x0 > 0) and (x1 > 0)

 is not a vector space.

 1

1

 ∈ R+
2, but

α

 1

1

 /∈ R+
2 , α < 0

• D = {z ∈ C , |z| ≤ 1 } is not a vector space. (z1 = 1) ∈ D, (z2 = j) ∈ D, but (z1 + z2) /∈ D,
|z1 + z2| =

√
2 > 1

note: Vector spaces can be collections of functions, collections of sequences, as well as collections
of traditional vectors (i.e. �nite lists of numbers)

15.3 Norms5

15.3.1 Introduction

This module will explain norms, a mathematical concept that provides a notion of the size of a vector.
Speci�cally, the general de�nition of a norm will be discussed and discrete time signal norms will be presented.

5This content is available online at <http://cnx.org/content/m10768/2.6/>.
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15.3.2 Norms

The norm of a vector is a real number that represents the "size" of the vector.

Example 15.1
In R2, we can de�ne a norm to be a vectors geometric length.

Figure 15.3

x = (x0, x1)T , norm ‖ x ‖=
√
x0

2 + x1
2

Mathematically, a norm ‖ · ‖ is just a function (taking a vector and returning a real number)
that satis�es three rules.

To be a norm, ‖ · ‖ must satisfy:

1. the norm of every vector is positive ‖ x ‖> 0 , x ∈ S
2. scaling a vector scales the norm by the same amount ‖ αx ‖= |α| ‖ x ‖ for all vectors x and scalars α
3. Triangle Property: ‖ x+ y ‖≤‖ x ‖ + ‖ y ‖ for all vectors x, y. "The "size" of the sum of two vectors

is less than or equal to the sum of their sizes"

A vector space (Section 15.2) with a well de�ned norm is called a normed vector space or normed
linear space.

15.3.2.1 Examples

Example 15.2

Rn (or Cn), x =


x0

x1

. . .

xn−1

, ‖ x ‖1 =
∑n−1
i=0 |xi|, Rn with this norm is called `1 ([0, n− 1]).
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Figure 15.4: Collection of all x ∈ R2 with ‖ x ‖1 = 1

Example 15.3

Rn (or Cn), with norm ‖ x ‖2 =
(∑n−1

i=0 (|xi|)2
) 1

2
, Rn is called `2 ([0, n− 1]) (the usual "Eu-

clidean"norm).

Figure 15.5: Collection of all x ∈ R2 with ‖ x ‖2 = 1

Example 15.4
Rn (or Cn, with norm ‖ x ‖∞ = maxi {i, |xi|} is called `∞ ([0, n− 1])
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Figure 15.6: x ∈ R2 with ‖ x ‖∞ = 1

15.3.2.2 Spaces of Sequences and Functions

We can de�ne similar norms for spaces of sequences and functions.
Discrete time signals = sequences of numbers

x [n] = {. . . , x−2, x−1, x0, x1, x2, . . . }

• ‖ x (n) ‖1 =
∑∞
i=−∞ |x [i] |, x [n] ∈ `1 (Z)⇒ (‖ x ‖1 <∞)

• ‖ x (n) ‖2 =
(∑∞

i=−∞ (|x [i] |)2
) 1

2
, x [n] ∈ `2 (Z)⇒ (‖ x ‖2 <∞)

• ‖ x (n) ‖p =
(∑∞

i=−∞ (|x [i] |)p
) 1
p , x [n] ∈ `p (Z)⇒

(
‖ x ‖p <∞

)
• ‖ x (n) ‖∞ = sup

i
|x [i] |, x [n] ∈ `∞ (Z)⇒ (‖ x ‖∞ <∞)

For continuous time functions:

• ‖ f (t) ‖p =
(∫∞
−∞ (|f (t) |)pdt

) 1
p

, f (t) ∈ Lp (R)⇒
(
‖ f (t) ‖p <∞

)
• (On the interval) ‖ f (t) ‖p =

(∫ T
0

(|f (t) |)pdt
) 1
p

, f (t) ∈ Lp ([0, T ])⇒
(
‖ f (t) ‖p <∞

)

15.4 Inner Products6

15.4.1 De�nition: Inner Product

You may have run across inner products, also called dot products, on Rn before in some of your math
or science courses. If not, we de�ne the inner product as follows, given we have some x ∈ Rn and y ∈ Rn

6This content is available online at <http://cnx.org/content/m10755/2.8/>.
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De�nition 15.2: standard inner product
The standard inner product is de�ned mathematically as:

< x, y > = yTx

=
(
y0 y1 . . . yn−1

)


x0

x1

...

xn−1


=

∑n−1
i=0 xiyi

(15.9)

15.4.1.1 Inner Product in 2-D

If we have x ∈ R2 and y ∈ R2, then we can write the inner product as

< x, y >=‖ x ‖‖ y ‖ cos (θ) (15.10)

where θ is the angle between x and y.

Figure 15.7: General plot of vectors and angle referred to in above equations.

Geometrically, the inner product tells us about the strength of x in the direction of y.

Example 15.5
For example, if ‖ x ‖= 1, then

< x, y >=‖ y ‖ cos (θ)

Figure 15.8: Plot of two vectors from above example.
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The following characteristics are revealed by the inner product:

• < x, y > measures the length of the projection of y onto x.
• < x, y > is maximum (for given ‖ x ‖, ‖ y ‖) when x and y are in the same direction ( (θ = 0) ⇒

(cos (θ) = 1)).
• < x, y > is zero when (cos (θ) = 0)⇒ (θ = 90 ◦), i.e. x and y are orthogonal.

15.4.1.2 Inner Product Rules

In general, an inner product on a complex vector space is just a function (taking two vectors and returning
a complex number) that satis�es certain rules:

• Conjugate Symmetry:
< x, y >= < (x, y) >∗

• Scaling:
< αx, y >= α < (x, y) >

• Additivity:
< x+ y, z >=< x, z > + < y, z >

• "Positivity":
< x, x >> 0 , x 6= 0

De�nition 15.3: orthogonal
We say that x and y are orthogonal if:

< x, y >= 0

[Media Object]7

15.5 Hilbert Spaces8

15.5.1 Hilbert Spaces

A vector space S with a valid inner product (Section 15.4) de�ned on it is called an inner product space,
which is also a normed linear space. A Hilbert space is an inner product space that is complete with
respect to the norm de�ned using the inner product. Hilbert spaces are named after David Hilbert9 , who
developed this idea through his studies of integral equations. We de�ne our valid norm using the inner
product as:

‖ x ‖=
√
< x, x > (15.11)

Hilbert spaces are useful in studying and generalizing the concepts of Fourier expansion, Fourier transforms,
and are very important to the study of quantum mechanics. Hilbert spaces are studied under the functional
analysis branch of mathematics.

7This media object is a LabVIEW VI. Please view or download it at
<InnerProductCalc.llb>

8This content is available online at <http://cnx.org/content/m10840/2.6/>.
9http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Hilbert.html



334 APPENDIX

15.5.1.1 Examples of Hilbert Spaces

Below we will list a few examples of Hilbert spaces10. You can verify that these are valid inner products at
home.

• For Cn,

< x, y >= yTx =
(
y0
∗ y1

∗ . . . yn−1
∗
)


x0

x1

...

xn−1

 =
n−1∑
i=0

xiyi
∗

• Space of �nite energy complex functions: L2 (R)

< f, g >=
∫ ∞
−∞

f (t) g (t)∗dt

• Space of square-summable sequences: `2 (Z)

< x, y >=
∞∑

i=−∞
x [i] y [i]∗

15.6 Cauchy-Schwarz Inequality11

15.6.1 Introduction

Any treatment of linear algebra as relates to signal processing would not be complete without a discussion of
the Cauchy-Schwarz ineqaulity, a relation that enables a wide array of signal procesing applications related
to pattern matching through a method called the matched �lter. Recall that in standard Euclidean space,
the angle θ between two vectors x, y is given by

cos (θ) =
< x, y >

||x||||y||
. (15.12)

Since cos (θ) ≤ 1, it follows that

| < x, y > |2 ≤< x, x >< y, y > . (15.13)

Furthermore, equality holds if and only if cos (θ) = 0, implying that

| < x, y > |2 =< x, x >< y, y > (15.14)

if and only if y = ax for some real a. This relation can be extended to all inner product spaces over a real
or complex �eld and is known as the Cauchy-Schwarz inequality, which is of great importance to the study
of signals.

10"Hilbert Spaces" <http://cnx.org/content/m10434/latest/>
11This content is available online at <http://cnx.org/content/m10757/2.7/>.
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15.6.2 The Cauchy-Schwarz Inequality

15.6.2.1 Statement of the Cauchy-Schwarz Inequality

The general statement of the Cauchy-Schwarz inequality mirrors the intuition for standard Euclidean space.
Let V be an inner product space over the �eld of complex numbers C with inner product < ·, · >. For every
pair of vectors x, y ∈ V the inequality

| < x, y > |2 ≤< x, x >< y, y > (15.15)

holds. Furthermore, the equality

| < x, y > |2 =< x, x >< y, y > (15.16)

holds if and only if y = ax for some a ∈ C. That is, equality holds if and only if x and y are linearly
dependent.

15.6.2.2 Proof of the Cauchy-Schwarz Inequality

Let V be a vector space over the real or complex �eld F , and let x, y ∈ V be given. In order to prove the
Cauchy-Schwarz inequality, it will �rst be proven that | < x, y > |2 =< x, x >< y, y > if y = ax for some

a ∈ F . It will then be shown that | < x, y > |2 < < x, x >< y, y > if y 6= ax for all a ∈ F .
Consider the case in which y = ax for some a ∈ F . From the properties of inner products, it is clear that

| < x, y > |2 = | < x, ax > |2

= |a< x, x > |2.
(15.17)

Hence, it follows that

| < x, y > |2 = |a|2| < x, x > |2

= |a|2< x, x >2.
(15.18)

Similarly, it is clear that

< x, x >< y, y > =< x, x >< ax, ax >

=< x, x > aa < x, x >

= |a|2< x, x >2.

(15.19)

Thus, it is proven that | < x, y > |2 =< x, x >< y, y > if x = ay for some a ∈ F .
Next, consider the case in which y 6= ax for all a ∈ F , which implies that y 6= 0 so < y, y >6= 0. Thus, it

follows by the properties of inner products that, for all a ∈ F , < x− ay, x− ay >> 0. This can be expanded
using the properties of inner products to the expression

< x− ay, x− ay > =< x, x− ay > −a < y, x− ay >
=< x, x > −a < x, y > −a < y, x > +|a|2 < y, y >

(15.20)

Choosing a = <x,y>
<y,y> ,

< x− ay, x− ay > =< x, x > −<y,x><y,y> < x, y > −<x,y><y,y> < y, x > +<x,y><y,x>
<y,y>2 < y, y >

=< x, x > −<x,y><y,x><y,y>

(15.21)

Hence, it follows that < x, x > −<x,y><y,x><y,y> > 0. Consequently, < x, x >< y, y > − < x, y > < x, y >> 0.

Thus, it can be concluded that | < x, y > |2 < < x, x >< y, y > if y 6= ax for all a ∈ F .
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Therefore, the inequality

| < x, y > |2 ≤< x, x >< y, y > (15.22)

holds for all x, y ∈ V , and equality

| < x, y > |2 =< x, x >< y, y > (15.23)

holds if and only if y = ax for some a ∈ F .

15.6.2.3 Additional Mathematical Implications

Consider the maximization of
∣∣∣< x
||x|| ,

y
||y|| >

∣∣∣ where the norm || · || =< ·, · > is induced by the inner product.

By the Cauchy-Schwarz inequality, we know that
∣∣∣< x
||x|| ,

y
||y|| >

∣∣∣2 ≤ 1 and that
∣∣∣< x
||x|| ,

y
||y|| >

∣∣∣2 = 1 if and

only if y
||y|| = a x

||x|| for some a ∈ C. Hence,
∣∣∣< x
||x|| ,

y
||y|| >

∣∣∣ attains a maximum where y
||y|| = a x

||x|| for some

a ∈ C. Thus, collecting the scalar variables,
∣∣∣< x
||x|| ,

y
||y|| >

∣∣∣ attains a maximum where y = ax. This result

will be particulaly useful in developing the matched �lter detector techniques.

15.6.3 Matched Filter Detector

15.6.3.1 Background Concepts

A great many applications in signal processing, image processing, and beyond involve determining the
presence and location of a target signal within some other signal. A radar system, for example, searches for
copies of a transmitted radar pulse in order to determine the presence of and distance to re�ective objects
such as building or aircraft. A communication system searches for copies of waveforms representing digital
0s and 1s in order to receive a message.

As has already been shown, the expression
∣∣∣< x
||x|| ,

y
||y|| >

∣∣∣ attains its upper bound, which is 1, when

y = ax for some scalar a in a real or complex �eld. The lower bound, which is 0, is attained when x and y
are orthogonal. In informal intuition, this means that the expression is maximized when the vectors x and
y have the same shape or pattern and minimized when x and y are very di�erent. A pair of vectors with
similar but unequal shapes or patterns will produce relatively large value of the expression less than 1, and a
pair of vectors with very di�erent but not orthogonal shapes or patterns will produce relatively small values
of the expression greater than 0. Thus, the above expression carries with it a notion of the degree to which
two signals are �alike�, the magnitude of the normalized correlation between the signals in the case of the
standard inner products.

This concept can be extremely useful. For instance consider a situation in which we wish to determine
which signal, if any, from a set X of signals most resembles a particular signal y. In order to accomplish
this, we might evaluate the above expression for every signal x ∈ X, choosing the one that results in maxima
provided that those maxima are above some threshold of �likeness�. This is the idea behind the matched
�lter detector, which compares a set of signals against a target signal using the above expression in order to
determine which among them are most like the target signal. For a detailed treatment of the applications of
the matched �lter detector12 see the liked module.

12http://cnx.org/content/m34670/latest/
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15.6.3.2 Signal Comparison

The simplest variant of the matched �lter detector scheme would be to �nd the member signal in a set X of
signals that most closely matches a target signal y. Thus, for every x ∈ X we wish to evaluate

m (x, y) =
∣∣∣∣< x

||x||
,
y

||y||
>

∣∣∣∣ (15.24)

in order to compare every member of X to the target signal y. Since the member of X which most closely
matches the target signal y is desired, ultimately we wish to evaluate

xm = argmaxx∈X

∣∣∣∣< x

||x||
,
y

||y||
>

∣∣∣∣ . (15.25)

Note that the target signal does not technically need to be normalized to produce a maximum, but gives
the desirable property that m (x, y) is bounded to [0, 1].

The element xm ∈ X that produces the maximum value of m (x, y) is not necessarily unique, so there
may be more than one matching signal in X. Additionally, the signal xm ∈ X producing the maximum value
of m (x, y) may not produce a very large value of m (x, y) and thus not be very much like the target signal
y. Hence, another matched �lter scheme might identify the argument producing the maximum but only
above a certain threshold, returning no matching signals in X if the maximum is below the threshold. There
also may be a signal x ∈ X that produces a large value of m (x, y) and thus has a high degree of �likeness�
to y but does not produce the maximum value of m (x, y). Thus, yet another matched �lter scheme might
identify all signals in X producing local maxima that are above a certain threshold.

Example 15.6
For example, consider the target signal given in Figure 15.9 (Template Signal) and the set of two
signals given in Figure 15.10 (Candidate Signals). By inspection, it is clear that the signal g2 is most
like the target signal f . However, to make that conclusion mathematically, we use the matched
�lter detector with the L2 inner product. If we were to actually make the necessary computations,
we would �rst normalize each signal and then compute the necessary inner products in order to
compare the signals in X with the target signal f . We would notice that the absolute value of the
inner product for g2 with f when normalized is greater than the absolute value of the inner product
of g1 with f when normalized, mathematically stated as

g2 = argmaxx∈{g1,g2}

∣∣∣∣< x

||x||
,
f

||f ||
>

∣∣∣∣ . (15.26)

Template Signal

Figure 15.9: We wish to �nd a match for this target signal in the set of signals below.
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Candidate Signals

(a) (b)

Figure 15.10: We wish to �nd a match for the above target signal in this set of signals.

15.6.3.3 Pattern Detection

A somewhat more involved matched �lter detector scheme would involve attempting to match a target time
limited signal y = f to a set of of time shifted and windowed versions of a single signal X = {wStg|t ∈ R}
indexed by R. The windowing funtion is given by w (t) = u (t− t1) − u (t− t2) where [t1, t2] is the interval
to which f is time limited. This scheme could be used to �nd portions of g that have the same shape as
f . If the absolute value of the inner product of the normalized versions of f and wStg is large, which is
the absolute value of the normalized correlation for standard inner products, then g has a high degree of
�likeness� to f on the interval to which f is time limited but left shifted by t. Of course, if f is not time
limited, it means that the entire signal has a high degree of �likeness� to f left shifted by t.

Thus, in order to determine the most likely locations of a signal with the same shape as the target signal
f in a signal g we wish to compute

tm = argmaxt∈R

∣∣∣∣< f

||f ||
,
wStg

||wStg||
>

∣∣∣∣ (15.27)

to provide the desired shift. Assuming the inner product space examined is L2 (R (similar results hold for
L2 (R [a, b)), l2 (Z), and l2 (Z [a, b))), this produces

tm = argmaxt∈R

∣∣∣∣ 1
||f ||||wStg||

∫ ∞
−∞

f (τ)w (τ) g (τ − t)dτ
∣∣∣∣ . (15.28)

Since f and w are time limited to the same interval

tm = argmaxt∈R

∣∣∣∣ 1
||f ||||wStg||

∫ t2

t1

f (τ) g (τ − t)dτ
∣∣∣∣ . (15.29)

Making the subsitution h (t) = g (−t),

tm = argmaxt∈R

∣∣∣∣ 1
||f ||||wStg||

∫ t2

t1

f (τ)h (t− τ) dτ
∣∣∣∣ . (15.30)

Noting that this expression contains a convolution operation

tm = argmaxt∈R

∣∣∣∣ (f ∗ h) (t)
||f ||||wStg||

∣∣∣∣ . (15.31)

where h is the conjugate of the time reversed version of g de�ned by h (t) = g (−t).
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In the special case in which the target signal f is not time limited, w has unit value on the entire real
line. Thus, the norm can be evaluated as ||wStg|| = ||Stg|| = ||g|| = ||h||. Therefore, the function reduces

to tm = argmaxt∈R
(f∗h)(t)
||f ||||h|| where h (t) = g (−t). The function f[U+2606]g = (f∗h)(t)

||f ||||h|| is known as the

normalized cross-correlation of f and g.
Hence, this matched �lter scheme can be implemented as a convolution. Therefore, it may be expedient

to implement it in the frequency domain. Similar results hold for the L2 (R [a, b)), l2 (Z), and l2 (Z [a, b])
spaces. It is especially useful to implement the l2 (Z [a, b]) cases in the frequency domain as the power of
the Fast Fourier Transform algorithm can be leveraged to quickly perform the computations in a computer
program. In the L2 (R [a, b)) and l2 (Z [a, b]) cases, care must be taken to zero pad the signal if wrap-around
e�ects are not desired. Similar results also hold for spaces on higher dimensional intervals with the same
inner products.

Of course, there is not necessarily exactly one instance of a target signal in a given signal. There could be
one instance, more than one instance, or no instance of a target signal. Therefore, it is often more practical
to identify all shifts corresponding to local maxima that are above a certain threshold.

Example 15.7
The signal in Figure 15.12 (Longer Signal) contains an instance of the template signal seen in
Figure 15.11 (Pattern Signal) beginning at time t = s1 as shown by the plot in Figure 15.13
(Absolute Value of Output). Therefore,

s1 = argmaxt∈R

∣∣∣∣< f

||f ||
,
wStg

||wStg||
>

∣∣∣∣ . (15.32)

Pattern Signal

Figure 15.11: This function shows tha pattern we are looking for in the signal below, which occurs at
time t = s1.

Longer Signal

Figure 15.12: This signal contains an instance of the above signal starting at time t = s1.
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Absolute Value of Output

Figure 15.13: This signal shows a sketch of the absolute value of the matched �lter output for the
interval shown. Note that this was just an "eyeball approximation" sketch. Observe the pronounced
peak at time t = s1.

15.6.4 Cauchy-Schwarz Inequality Video Lecture

Proof of the Cauchy-Schwarz Inequality

This media object is a Flash object. Please view or download it at
<http://www.youtube.com/v/r2PogGDl8_U&hl=en_US&fs=1&rel=0>

Figure 15.14: Video lecture on the proof of the Cauchy-Schwarz inequality from Khan Academy. Only
part of the theorem is proven.

15.6.5 Cauchy-Schwarz Inequality Summary

As can be seen, the Cauchy-Schwarz inequality is a property of inner product spaces over real or complex
�elds that is of particular importance to the study of signals. Speci�cally, the implication that the absolute
value of an inner product is maximized over normal vectors when the two arguments are linearly dependent
is key to the justi�cation of the matched �lter detector. Thus, it enables the use of matched �lters for such
pattern matching applications as image detection, communications demodulation, and radar signal analysis.

15.7 Common Hilbert Spaces13

15.7.1 Common Hilbert Spaces

Below we will look at the four most common Hilbert spaces (Section 15.4) that you will have to deal with
when discussing and manipulating signals and systems.

13This content is available online at <http://cnx.org/content/m10759/2.7/>.
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15.7.1.1

Rn (reals scalars) and Cn (complex scalars), also called `2 ([0, n− 1])

x =


x0

x1

. . .

xn−1

 is a list of numbers (�nite sequence). The inner product (Section 15.4) for our two spaces

are as follows:

• Standard inner product Rn:
< x, y > = yTx

=
∑n−1
i=0 xiyi

(15.33)

• Standard inner product Cn:
< x, y > = yT

∗
x

=
∑n−1
i=0 xiyi

∗
(15.34)

Model for: Discrete time signals on the interval [0, n− 1] or periodic (with period n) discrete time signals.
x0

x1

. . .

xn−1



Figure 15.15

15.7.1.2

f ∈ L2 ([a, b]) is a �nite energy function on [a, b]
Inner Product

< f, g >=
∫ b

a

f (t) g (t)∗dt (15.35)
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Model for: continuous time signals on the interval [a, b] or periodic (with period T = b−a) continuous time
signals

15.7.1.3

x ∈ `2 (Z) is an in�nite sequence of numbers that's square-summable

Inner product

< x, y >=
∞∑

i=−∞
x [i] y [i]∗ (15.36)

Model for: discrete time, non-periodic signals

15.7.1.4

f ∈ L2 (R) is a �nite energy function on all of R.
Inner product

< f, g >=
∫ ∞
−∞

f (t) g (t)∗dt (15.37)

Model for: continuous time, non-periodic signals

15.7.2 Associated Fourier Analysis

Each of these 4 Hilbert spaces has a type of Fourier analysis associated with it.

• L2 ([a, b]) → Fourier series
• `2 ([0, n− 1]) → Discrete Fourier Transform
• L2 (R) → Fourier Transform
• `2 (Z) → Discrete Time Fourier Transform

But all 4 of these are based on the same principles (Hilbert space).

Important note: Not all normed spaces are Hilbert spaces

For example: L1 (R), ‖ f ‖1 =
∫
|f (t) |dt. Try as you might, you can't �nd an inner product that induces

this norm, i.e. a < ·, · > such that

< f, f > =
(∫

(|f (t) |)2
dt
)2

= (‖ f ‖1)2
(15.38)

In fact, of all the Lp (R) spaces, L2 (R) is the only one that is a Hilbert space.
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Figure 15.16

Hilbert spaces are by far the nicest. If you use or study orthonormal basis expansion (Section 15.9) then
you will start to see why this is true.

15.8 Types of Bases14

15.8.1 Normalized Basis

De�nition 15.4: Normalized Basis
a basis (Section 14.1.3: Basis) {bi} where each bi has unit norm

‖ bi ‖= 1 , i ∈ Z (15.39)

note: The concept of basis applies to all vector spaces (Section 15.2). The concept of normalized
basis applies only to normed spaces (Section 15.3).

14This content is available online at <http://cnx.org/content/m10772/2.8/>.



344 APPENDIX

You can always normalize a basis: just multiply each basis vector by a constant, such as 1
‖bi‖

Example 15.8
We are given the following basis:

{b0, b1} =


 1

1

 ,

 1

−1


Normalized with `2 norm:

∼
b0 =

1√
2

 1

1


∼
b1 =

1√
2

 1

−1


Normalized with `1 norm:

∼
b0 =

1
2

 1

1


∼
b1 =

1
2

 1

−1



15.8.2 Orthogonal Basis

De�nition 15.5: Orthogonal Basis
a basis {bi} in which the elements are mutually orthogonal

< bi, bj >= 0 , i 6= j

note: The concept of orthogonal basis applies only to Hilbert Spaces.

Example 15.9
Standard basis for R2, also referred to as `2 ([0, 1]):

b0 =

 1

0



b1 =

 0

1


< b0, b1 >=

1∑
i=0

b0 [i] b1 [i] = 1× 0 + 0× 1 = 0
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Example 15.10
Now we have the following basis and relationship:

 1

1

 ,

 1

−1

 = {h0, h1}

< h0, h1 >= 1× 1 + 1×−1 = 0

15.8.3 Orthonormal Basis

Pulling the previous two sections (de�nitions) together, we arrive at the most important and useful basis
type:

De�nition 15.6: Orthonormal Basis
a basis that is both normalized and orthogonal

‖ bi ‖= 1 , i ∈ Z

< bi, bj > , i 6= j

Notation: We can shorten these two statements into one:

< bi, bj >= δij

where

δij =

 1 if i = j

0 if i 6= j

Where δij is referred to as the Kronecker delta function (Section 1.6) and is also often written as
δ [i− j].

Example 15.11: Orthonormal Basis Example #1

{b0, b2} =


 1

0

 ,

 0

1


Example 15.12: Orthonormal Basis Example #2

{b0, b2} =


 1

1

 ,

 1

−1


Example 15.13: Orthonormal Basis Example #3

{b0, b2} =

 1√
2

 1

1

 ,
1√
2

 1

−1
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15.8.3.1 Beauty of Orthonormal Bases

Orthonormal bases are very easy to deal with! If {bi} is an orthonormal basis, we can write for any x

x =
∑
i

αibi (15.40)

It is easy to �nd the αi:

< x, bi > = <
∑
k αkbk, bi >

=
∑
k αk < (bk, bi) >

(15.41)

where in the above equation we can use our knowledge of the delta function to reduce this equation:

< bk, bi >= δik =

 1 if i = k

0 if i 6= k

< x, bi >= αi (15.42)

Therefore, we can conclude the following important equation for x:

x =
∑
i

< (x, bi) > bi (15.43)

The αi's are easy to compute (no interaction between the bi's)

Example 15.14
Given the following basis:

{b0, b1} =

 1√
2

 1

1

 ,
1√
2

 1

−1


represent x =

 3

2


Example 15.15: Slightly Modi�ed Fourier Series
We are given the basis {

1√
T
ejω0nt

}
|∞n=−∞

on L2 ([0, T ]) where T = 2π
ω0
.

f (t) =
∞∑

n=−∞
<
(
f, ejω0nt

)
> ejω0nt

1√
T

Where we can calculate the above inner product in L2 as

< f, ejω0nt >=
1√
T

∫ T

0

f (t) ejω0nt∗dt =
1√
T

∫ T

0

f (t) e−(jω0nt)dt
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15.8.3.2 Orthonormal Basis Expansions in a Hilbert Space

Let {bi} be an orthonormal basis for a Hilbert space H. Then, for any x ∈ H we can write

x =
∑
i

αibi (15.44)

where αi =< x, bi >.

• "Analysis": decomposing x in term of the bi

αi =< x, bi > (15.45)

• "Synthesis": building x up out of a weighted combination of the bi

x =
∑
i

αibi (15.46)

15.9 Orthonormal Basis Expansions15

15.9.1 Main Idea

When working with signals many times it is helpful to break up a signal into smaller, more manageable
parts. Hopefully by now you have been exposed to the concept of eigenvectors (Section 14.2) and there use
in decomposing a signal into one of its possible basis. By doing this we are able to simplify our calculations
of signals and systems through eigenfunctions of LTI systems (Section 14.5).

Now we would like to look at an alternative way to represent signals, through the use of orthonormal
basis. We can think of orthonormal basis as a set of building blocks we use to construct functions. We will
build up the signal/vector as a weighted sum of basis elements.

Example 15.16

The complex sinusoids 1√
T
ejω0nt for all −∞ < n <∞ form an orthonormal basis for L2 ([0, T ]).

In our Fourier series16 equation, f (t) =
∑∞
n=−∞ cne

jω0nt, the {cn} are just another representa-
tion of f (t).

note: For signals/vectors in a Hilbert Space, the expansion coe�cients are easy to �nd.

15.9.2 Alternate Representation

Recall our de�nition of a basis: A set of vectors {bi} in a vector space S is a basis if

1. The bi are linearly independent.
2. The bi span (Section 14.1.2: Span) S. That is, we can �nd {αi}, where αi ∈ C (scalars) such that

x =
∑
i

αibi , x ∈ S (15.47)

where x is a vector in S, α is a scalar in C, and b is a vector in S.

15This content is available online at <http://cnx.org/content/m10760/2.6/>.
16"Fourier Series: Eigenfunction Approach" <http://cnx.org/content/m10496/latest/>
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Condition 2 in the above de�nition says we can decompose any vector in terms of the {bi}. Condition
1 ensures that the decomposition is unique (think about this at home).

note: The {αi} provide an alternate representation of x.

Example 15.17
Let us look at simple example in R2, where we have the following vector:

x =

 1

2


Standard Basis: {e0, e1} =

{
(1, 0)T , (0, 1)T

}
x = e0 + 2e1

Alternate Basis: {h0, h1} =
{

(1, 1)T , (1,−1)T
}

x =
3
2
h0 +

−1
2
h1

In general, given a basis {b0, b1} and a vector x ∈ R2, how do we �nd the α0 and α1 such that

x = α0b0 + α1b1 (15.48)

15.9.3 Finding the Coe�cients

Now let us address the question posed above about �nding αi's in general for R2. We start by rewriting
(15.48) so that we can stack our bi's as columns in a 2×2 matrix.(

x
)

= α0

(
b0

)
+ α1

(
b1

)
(15.49)

(
x
)

=


...

...

b0 b1
...

...


 α0

α1

 (15.50)

Example 15.18
Here is a simple example, which shows a little more detail about the above equations. x [0]

x [1]

 = α0

 b0 [0]

b0 [1]

+ α1

 b1 [0]

b1 [1]


=

 α0b0 [0] + α1b1 [0]

α0b0 [1] + α1b1 [1]

 (15.51)

 x [0]

x [1]

 =

 b0 [0] b1 [0]

b0 [1] b1 [1]

 α0

α1

 (15.52)
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15.9.3.1 Simplifying our Equation

To make notation simpler, we de�ne the following two items from the above equations:

• Basis Matrix:

B =


...

...

b0 b1
...

...


• Coe�cient Vector:

α =

 α0

α1


This gives us the following, concise equation:

x = Bα (15.53)

which is equivalent to x =
∑1
i=0 αibi.

Example 15.19

Given a standard basis,


 1

0

 ,

 0

1

, then we have the following basis matrix:

B =

 0 1

1 0


To get the αi's, we solve for the coe�cient vector in (15.53)

α = B−1x (15.54)

Where B−1 is the inverse matrix17 of B.

15.9.3.2 Examples

Example 15.20
Let us look at the standard basis �rst and try to calculate α from it.

B =

 1 0

0 1

 = I

Where I is the identity matrix. In order to solve for α let us �nd the inverse of B �rst (which is
obviously very trivial in this case):

B−1 =

 1 0

0 1


Therefore we get,

α = B−1x = x

17"Matrix Inversion" <http://cnx.org/content/m2113/latest/>
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Example 15.21

Let us look at a ever-so-slightly more complicated basis of


 1

1

 ,

 1

−1

 = {h0, h1} Then

our basis matrix and inverse basis matrix becomes:

B =

 1 1

1 −1



B−1 =

 1
2

1
2

1
2

−1
2


and for this example it is given that

x =

 3

2


Now we solve for α

α = B−1x =

 1
2

1
2

1
2

−1
2

 3

2

 =

 2.5

0.5


and we get

x = 2.5h0 + 0.5h1

Exercise 15.9.1 (Solution on p. 369.)

Now we are given the following basis matrix and x:

{b0, b1} =


 1

2

 ,

 3

0


x =

 3

2


For this problem, make a sketch of the bases and then represent x in terms of b0 and b1.

note: A change of basis simply looks at x from a "di�erent perspective." B−1 transforms x from
the standard basis to our new basis, {b0, b1}. Notice that this is a totally mechanical procedure.

15.9.4 Extending the Dimension and Space

We can also extend all these ideas past just R2 and look at them in Rn and Cn. This procedure extends nat-
urally to higher (> 2) dimensions. Given a basis {b0, b1, . . . , bn−1} for Rn, we want to �nd {α0, α1, . . . , αn−1}
such that

x = α0b0 + α1b1 + · · ·+ αn−1bn−1 (15.55)

Again, we will set up a basis matrix

B =
(
b0 b1 b2 . . . bn−1

)
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where the columns equal the basis vectors and it will always be an n×n matrix (although the above matrix
does not appear to be square since we left terms in vector notation). We can then proceed to rewrite (15.53)

x =
(
b0 b1 . . . bn−1

)
α0

...

αn−1

 = Bα

and
α = B−1x

15.10 Function Space18

We can also �nd basis vectors (Section 15.9) for vector spaces (Section 15.2) other than Rn.
Let Pn be the vector space of n-th order polynomials on (-1, 1) with real coe�cients (verify P2 is a v.s.

at home).

Example 15.22
P2 = {all quadratic polynomials}. Let b0 (t) = 1, b1 (t) = t, b2 (t) = t2.
{b0 (t) , b1 (t) , b2 (t)} span P2, i.e. you can write any f (t) ∈ P2 as

f (t) = α0b0 (t) + α1b1 (t) + α2b2 (t)

for some αi ∈ R.

Note: P2 is 3 dimensional.

f (t) = t2 − 3t− 4

Alternate basis

{b0 (t) , b1 (t) , b2 (t)} =
{

1, t,
1
2
(
3t2 − 1

)}
write f (t) in terms of this new basis d0 (t) = b0 (t), d1 (t) = b1 (t), d2 (t) = 3

2b2 (t)− 1
2b0 (t).

f (t) = t2 − 3t− 4 = 4b0 (t)− 3b1 (t) + b2 (t)

f (t) = β0d0 (t) + β1d1 (t) + β2d2 (t) = β0b0 (t) + β1b1 (t) + β2

(
3
2
b2 (t)− 1

2
b0 (t)

)
f (t) = β0b0 (t) + β1b1 (t) +

3
2
β2b2 (t)

so

β0 −
1
2

= 4

β1 = −3

3
2
β2 = 1

then we get

f (t) = 4.5d0 (t)− 3d1 (t) +
2
3
d2 (t)

18This content is available online at <http://cnx.org/content/m10770/2.6/>.
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Example 15.23
ejω0nt|∞n=−∞ is a basis for L2 ([0, T ]), T = 2π

ω0
, f (t) =

∑
n Cne

jω0nt.
We calculate the expansion coe�cients with

"change of basis" formula

Cn =
1
T

∫ T

0

(
f (t) e−(jω0nt)

)
dt (15.56)

note: There are an in�nite number of elements in the basis set, that means L2 ([0, T ]) is in�nite
dimensional (scary!).

In�nite-dimensional spaces are hard to visualize. We can get a handle on the intuition by recognizing
they share many of the same mathematical properties with �nite dimensional spaces. Many concepts
apply to both (like "basis expansion"). Some don't (change of basis isn't a nice matrix formula).

15.11 Haar Wavelet Basis19

15.11.1 Introduction

Fourier series20 is a useful orthonormal representation (Section 15.9) on L2 ([0, T ]) especiallly for inputs into
LTI systems. However, it is ill suited for some applications, i.e. image processing (recall Gibb's phenomena
(Section 6.7)).

Wavelets, discovered in the last 15 years, are another kind of basis for L2 ([0, T ]) and have many nice
properties.

15.11.2 Basis Comparisons

Fourier series - cn give frequency information. Basis functions last the entire interval.

19This content is available online at <http://cnx.org/content/m10764/2.9/>.
20"Fourier Series: Eigenfunction Approach" <http://cnx.org/content/m10496/latest/>
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Figure 15.17: Fourier basis functions

Wavelets - basis functions give frequency info but are local in time.
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Figure 15.18: Wavelet basis functions

In Fourier basis, the basis functions are harmonic multiples of ejω0t

Figure 15.19: basis =
n

1√
T
ejω0nt

o

In Haar wavelet basis21, the basis functions are scaled and translated versions of a "mother wavelet"
ψ (t).

21"The Haar System as an Example of DWT" <http://cnx.org/content/m10437/latest/>
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Figure 15.20

Basis functions {ψj,k (t)} are indexed by a scale j and a shift k.

Let φ (t) = 1 , 0 ≤ t < T Then
{
φ (t) , 2

j
2ψ
(
2jt− k

)
, φ (t) , 2

j
2ψ
(
2jt− k

)
| j ∈ Z and

(
k = 0, 1, 2, . . . , 2j − 1

)}
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Figure 15.21

ψ (t) =

 1 if 0 ≤ t < T
2

−1 if 0 ≤ T
2 < T

(15.57)
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Figure 15.22

Let ψj,k (t) = 2
j
2ψ
(
2jt− k

)

Figure 15.23

Larger j → "skinnier" basis function, j = {0, 1, 2, . . . }, 2j shifts at each scale: k = 0, 1, . . . , 2j − 1
Check: each ψj,k (t) has unit energy
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Figure 15.24

(∫
ψj,k

2 (t) dt = 1
)
⇒
(
‖ ψj,k (t) ‖2 = 1

)
(15.58)

Any two basis functions are orthogonal.

(a) (b)

Figure 15.25: Integral of product = 0 (a) Same scale (b) Di�erent scale
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Also, {ψj,k, φ} span L2 ([0, T ])

15.11.3 Haar Wavelet Transform

Using what we know about Hilbert spaces (Section 15.4): For any f (t) ∈ L2 ([0, T ]), we can write

Synthesis

f (t) =
∑
j

∑
k

wj,kψj,k (t) + c0φ (t) (15.59)

Analysis

wj,k =
∫ T

0

f (t)ψj,k (t) dt (15.60)

c0 =
∫ T

0

f (t)φ (t) dt (15.61)

note: the wj,k are real

The Haar transform is super useful especially in image compression
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15.11.4 Haar Wavelet Demonstration

Figure 15.26: Interact (when online) with a Mathematica CDF demonstrating the Haar Wavelet as an
Orthonormal Basis.
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15.12 Orthonormal Bases in Real and Complex Spaces22

15.12.1 Notation

Transpose operator AT �ips the matrix across it's diagonal.

A =

 a1,1 a1,2

a2,1 a2,2



AT =

 a1,1 a2,1

a1,2 a2,2


Column i of A is row i of AT

Recall, inner product23

x =


x0

x1

...

xn−1



y =


y0

y1

...

yn−1



xT y =
(
x0 x1 . . . xn−1

)


y0

y1

...

yn−1

 =
∑
i

xiyi =< y, x >

on Rn
Hermitian transpose AH , transpose and conjugate

AH = AT
∗

< y, x >= xHy =
∑
i

xiyi
∗

on Cn
Now, let {b0, b1, . . . , bn−1} be an orthonormal basis (Section 15.8.3: Orthonormal Basis) for Cn

i = {0, 1, . . . , n− 1} < bi, bi >= 1 ,

(
i 6= j,< bi, bj >= bj

Hbi = 0
)

22This content is available online at <http://cnx.org/content/m10765/2.8/>.
23"Conclusion" <http://cnx.org/content/m10775/latest/>
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Basis matrix:

B =


...

...
...

b0 b1 . . . bn−1

...
...

...


Now,

BHB =


. . . b0

H . . .

. . . b1
H . . .
...

. . . bn−1
H . . .




...
...

...

b0 b1 . . . bn−1

...
...

...

 =


b0
Hb0 b0

Hb1 . . . b0
Hbn−1

b1
Hb0 b1

Hb1 . . . b1
Hbn−1

...

bn−1
Hb0 bn−1

Hb1 . . . bn−1
Hbn−1


For orthonormal basis with basis matrix B

BH = B−1

( BT = B−1 in Rn ) BH is easy to calculate while B−1 is hard to calculate.
So, to �nd {α0, α1, . . . , αn−1} such that

x =
∑
i

αibi

Calculate (
α = B−1x

)
⇒
(
α = BHx

)
Using an orthonormal basis we rid ourselves of the inverse operation.

15.13 Plancharel and Parseval's Theorems24

15.13.1 Parseval's Theorem

Continuous Time Fourier Series preserves signal energy
i.e.:

T∫
0

|f (t) |2dt = T
∑∞
n=−∞ |Cn|

2
with unnormalized basis ej

2π
T nt

T∫
0

|f (t) |2dt =
∑∞
n=−∞ |C '

n|
2

with unnormalized basis ej
2π
T
nt

√
T

||f ||22︸ ︷︷ ︸
L2[0,T )energy

= ||C '
n||22︸ ︷︷ ︸

l2(Z)energy

(15.62)

24This content is available online at <http://cnx.org/content/m10769/2.10/>.
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15.13.1.1 Prove: Plancherel theorem

Given f (t) CTFS→ cn

g (t) CTFS→ dn

Then
T∫
0

f (t) g∗ (t) dt = T
∑∞
n=−∞ cnd

∗
n with unnormalized basis ej

2π
T nt

T∫
0

f (t) g∗ (t) dt =
∑∞
n=−∞ c'n

(
d'n
)∗

with normalized basis ej
2π
T
nt

√
T

1f, g2L2(0,T ] = 1c, d2l2(Z)

(15.63)

15.13.1.2 Periodic Signals Power

Energy = ||f ||2 =
∞∫
−∞
|f (t) |2dt =∞

Power = lim
T→∞

Energy in [0,T )
T

= lim
T→∞

T
P
n|cn|

2

T

=
∑
n∈Z |cn|

2
(unnormalized FS)

(15.64)

Example 15.24: Fourier Series of square pulse III � Compute the Energy

Figure 15.27
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f (t) =
∑∞
n=−∞ cne

j 2π
T nt

FS→ cn = 1
2

sinπ2 n
π
2 n

energy in time domain: ||f ||22 =
T∫
0

|f (t) |2dt = T
2

apply Parseval's Theorem: T
∑
n |cn|

2

= T
4

∑
n

(
sinπ2 n
π
2 n

)2

= T
4

4
π2

∑
n

(sinπ2 n)2

n2

= T
π2

π2

4 +
∑

n odd

1
n2︸ ︷︷ ︸

π2
4


= T

2�

15.13.2 Plancharel Theorem

Theorem 15.1: Plancharel Theorem
The inner product of two vectors/signals is the same as the `2 inner product of their expansion

coe�cients.
Let {bi} be an orthonormal basis for a Hilbert Space H. x ∈ H, y ∈ H

x =
∑
i

αibi

y =
∑
i

βibi

then

< x, y >H =
∑
i

αiβi
∗

Example
Applying the Fourier Series, we can go from f (t) to {cn} and g (t) to {dn}∫ T

0

f (t) g (t)∗dt =
∞∑

n=−∞
cndn

∗

inner product in time-domain = inner product of Fourier coe�cients.

Proof:

x =
∑
i

αibi

y =
∑
j

βjbj

< x, y >H =<
∑
i

αibi,
∑
j

βjbj >=
∑
i

αi <

bi,∑
j

βjbj

 >=
∑
i

αi
∑
j

βj
∗ < (bi, bj) >=

∑
i

αiβi
∗

by using inner product rules (p. 333)
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note: < bi, bj >= 0 when i 6= j and < bi, bj >= 1 when i = j

If Hilbert space H has a ONB, then inner products are equivalent to inner products in `2.
All H with ONB are somehow equivalent to `2.

Point of interest: square-summable sequences are important

15.13.3 Plancharels Theorem Demonstration

Figure 15.28: Interact (when online) with a Mathematica CDF demonstrating Plancharels Theorem
visually. To Download, right-click and save target as .cdf.

15.13.4 Parseval's Theorem: a di�erent approach

Theorem 15.2: Parseval's Theorem
Energy of a signal = sum of squares of its expansion coe�cients

Let x ∈ H, {bi} ONB

x =
∑
i

αibi

Then

(‖ x ‖H)2 =
∑
i

(|αi|)2

Proof:
Directly from Plancharel

(‖ x ‖H)2 = < x, x >H =
∑
i

αiαi
∗ =

∑
i

(|αi|)2
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Example 15.25
Fourier Series 1√

T
ejw0nt

f (t) =
1√
T

∑
n

cn
1√
T
ejw0nt

∫ T

0

(|f (t) |)2
dt =

∞∑
n=−∞

(|cn|)2

15.14 Approximation and Projections in Hilbert Space25

15.14.1 Introduction

Given a line 'l' and a point 'p' in the plane, what's the closest point 'm' to 'p' on 'l'?

Figure 15.29: Figure of point 'p' and line 'l' mentioned above.

Same problem: Let x and v be vectors in R2. Say ‖ v ‖= 1. For what value of α is ‖ x − αv ‖ 2

minimized? (what point in span{v} best approximates x?)

Figure 15.30

The condition is that x− ^
α v and αv are orthogonal.

25This content is available online at <http://cnx.org/content/m10766/2.9/>.
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15.14.2 Calculating α

How to calculate
^
α?

We know that ( x− ^
α v) is perpendicular to every vector in span{v}, so

< x− ^
α v, βv >= 0 , ∀ (β)

β∗ < (x, v) > − ^
α β∗ < (v, v) >= 0

because < v, v >= 1, so (
< (x, v) > − ^

α= 0
)
⇒
(
^
α=< x, v >

)
Closest vector in span{v} = < (x, v) > v, where < (x, v) > v is the projection of x onto v.

We can do the same thing in higher dimensions.

Exercise 15.14.1 (Solution on p. 369.)

Let V ⊂ H be a subspace of a Hilbert space (Section 15.4) H. Let x ∈ H be given. Find the y ∈ V
that best approximates x. i.e., ‖ x− y ‖ is minimized.

Example 15.26

x ∈ R3, V = span





1

0

0

 ,


0

1

0



, x =


a

b

c

. So,

y =
2∑
i=1

< (x, bi) > bi = a


1

0

0

+ b


0

1

0

 =


a

b

0


Example 15.27
V = {space of periodic signals with frequency no greater than 3w0}. Given periodic f(t), what is
the signal in V that best approximates f?

1. { 1√
T
ejw0kt, k = -3, -2, ..., 2, 3} is an ONB for V

2. g (t) = 1
T

∑3
k=−3 <

(
f (t) , ejw0kt

)
> ejw0kt is the closest signal in V to f(t) ⇒ reconstruct

f(t) using only 7 terms of its Fourier series26.

Example 15.28
Let V = {functions piecewise constant between the integers}

1. ONB for V.

bi =

 1 if i− 1 ≤ t < i

0 otherwise

where {bi} is an ONB.

26"Fourier Series: Eigenfunction Approach" <http://cnx.org/content/m10496/latest/>



368 APPENDIX

Best piecewise constant approximation?

g (t) =
∞∑

i=−∞
< (f, bi) > bi

< f, bi >=
∫ ∞
−∞

f (t) bi (t) dt =
∫ i

i−1

f (t) dt

Example 15.29
This demonstration explores approximation using a Fourier basis and a Haar Wavelet basis.See
here27 for instructions on how to use the demo.

This media object is a LabVIEW VI. Please view or download it at
<Approximation.llb>

27"How to use the LabVIEW demos" <http://cnx.org/content/m11550/latest/>



APPENDIX 369

Solutions to Exercises in Chapter 15

Solution to Exercise 15.1.1 (p. 325)
z + z∗ = a+ jb+ a− jb = 2a = 2Re (z). Similarly, z − z∗ = a+ jb− (a− jb) = 2jb = 2 (j, Im (z))
Solution to Exercise 15.1.2 (p. 325)
To convert 3 − 2j to polar form, we �rst locate the number in the complex plane in the fourth quadrant.

The distance from the origin to the complex number is the magnitude r, which equals
√

13 =
√

32 + (−2)2
.

The angle equals −arctan
(

2
3

)
or −0.588 radians (−33.7 degrees). The �nal answer is

√
13∠ (−33.7) degrees.

Solution to Exercise 15.1.3 (p. 326)

zz∗ = (a+ jb) (a− jb) = a2 + b2. Thus, zz∗ = r2 = (|z|)2
.

Solution to Exercise 15.9.1 (p. 350)
In order to represent x in terms of b0 and b1 we will follow the same steps we used in the above example.

B =

 1 2

3 0



B−1 =

 0 1
2

1
3

−1
6


α = B−1x =

 1
2
3


And now we can write x in terms of b0 and b1.

x = b0 +
2
3
b1

And we can easily substitute in our known values of b0 and b1 to verify our results.
Solution to Exercise 15.14.1 (p. 367)

1. Find an orthonormal basis (Section 15.8.3: Orthonormal Basis) {b1, . . . , bk} for V
2. Project x onto V using

y =
k∑
i=1

< (x, bi) > bi

then y is the closest point in V to x and (x-y) ⊥ V ( < x− y, v >= 0 , ∀ (v) ∈ V
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Appendix C: Analysis Topics Overview

16.1 Introduction to Metric Spaces1

16.1.1 Introduction

In may courses, concepts such as continuity and convergence are invoked without much discussion of their
formal de�nitions, instead relying on the reader's intuitive understanding of these matters. However, for
purposes of proofs, including some in the main body of material for this course, a greater rigor is required.
This module will discuss metric spaces, a mathematical construct that provide a framework for the study
continuity, convergence, and other related ideas in their most concrete but still formal senses. This is
accomplished by formalizing a notion of the distance between two elements in a set. The intent in this and
subsequent modules in this chapter is not to give a complete overview of the basic topics of analysis but to
give a short introduction to those most important to discussion of signal processing in this course.

16.1.2 Metric Spaces

16.1.2.1 A Notion of Distance

In many situations in signal processing it is often useful to have a concept of distance between the points
in a set. This notion is mathematically formalized through the idea of a metric space. A metric space
(M,d) is a set M together with a function d : M ×M → R that assigns distances between pairs of elements
in M while satisfying three conditions. First, for every x, y ∈ M , d (x, y) ≥ 0 with d (x, y) = 0 if and
only if x = y. Second, for every x, y ∈ M , d (x, y) = d (y, x) symmetrically. Third, for every x, y, z ∈ M ,
d (x, y) + d (x, z) ≥ d (y, z), which is known as the triangle inequality.

There are, of course, several di�erent possible choices of de�nitions for distances in a given set. Our
typical intuitive understanding of distance in Rn �ts within this framework as the standard Euclidean metric

d (x, y) = ||x− y||2 (16.1)

as does the taxicab or Manhatten metric

d (x, y) = ||x− y||1 (16.2)

that sums individual components of vectors, representing, for example, distances traveled walking around
city blocks. Another simple yet more exotic example is provided by the discrete metric on any set de�ned
by

d (x, y) = {
0 x = y

1 x 6= y
(16.3)

in which all pairs of distinct points are equidistant from eachother but every point is distance zero from
itself. One can check that these satisfy the conditions for metric spaces.

1This content is available online at <http://cnx.org/content/m34616/1.2/>.

371



372 APPENDIX

16.1.2.2 Relationship with Norms

It is not surprising that norms, which provide a notion of size, and metrics, which provide a notion of
distance, would have a close relationship. Intuitively, one way of de�ning the distance between two points
in a metric space could be the size of their di�erence. In other words given a vector space V over the �eld
F with norm || · ||, we might ask if the function

d (x, y) = ||x− y|| (16.4)

for every x, y ∈ V satis�es the conditions for (V, d) to be a metric space.
Let V be a vector space over the �eld F with norm || · ||, and let d (x, y) = ||x − y||. Recall that since

|| · || is a norm, ||x|| = 0 if and only if x = 0 and ||ax|| = |a|||x|| for all a ∈ F and x ∈ V . Hence ||x− y|| ≥ 0
for all x, y ∈ V and ||x− y|| = 0 if and only if x = y. Since y− x = − (x− y) and || − (x− y) || = ||x− y|| it
follows that ||x − y|| = ||y − x|| for all x, y ∈ V . Finally, ||x|| + ||y|| ≥ ||x + y|| by the properties of norms,
so ||x − y|| + ||x − z|| ≥ ||y − z|| for all x, y, z ∈ V . Thus, (V, d) does indeed satisfy the conditions to be a
metric space and is discussed as the metric space induced by the norm || · ||.

16.1.3 Metric Spaces Summary

Metric spaces provide a notion of distance and a framework with which to formally study mathematical
concepts such as continuity and convergence, and other related ideas. Many metrics can be chosen for a
given set, and our most common notions of distance satisfy the conditions to be a metric. Any norm on a
vector space induces a metric on that vector space and it is in these types of metric spaces that we are often
most interested for study of signals and systems.

16.2 Convergence of Sequences2

16.2.1 Introduction

Insert paragraph text here.

16.2.2 Sequences

De�nition 16.1: sequence
A sequence is a function gn de�ned on the positive integers 'n'. We often denote a sequence by
{gn} |∞n=1

Example
A real number sequence:

gn =
1
n

Example
A vector sequence:

gn =

 sin
(
nπ
2

)
cos
(
nπ
2

)


Example
A function sequence:

gn (t) =

 1 if 0 ≤ t < 1
n

0 otherwise

2This content is available online at <http://cnx.org/content/m10883/2.6/>.
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note: A function can be thought of as an in�nite dimensional vector where for each value of 't'
we have one dimension

16.2.3 Convergence of Real Sequences

De�nition 16.2: limit
A sequence {gn} |∞n=1 converges to a limit g ∈ R if for every ε > 0 there is an integer N such that

|gi − g| < ε , i ≥ N

We usually denote a limit by writing
limit
i→∞

gi = g

or
gi → g

The above de�nition means that no matter how small we make ε, except for a �nite number of gi's, all
points of the sequence are within distance ε of g.

Example 16.1
We are given the following convergent sequence:

gn =
1
n

(16.5)

Intuitively we can assume the following limit:

limit
n→∞

gn = 0

Let us prove this rigorously. Say that we are given a real number ε > 0. Let us choose N = d 1
ε e,

where dxe denotes the smallest integer larger than x. Then for n ≥ N we have

|gn − 0| = 1
n
≤ 1
N

< ε

Thus,
limit
n→∞

gn = 0

Example 16.2
Now let us look at the following non-convergent sequence

gn =

 1 if n = even

−1 if n = odd

This sequence oscillates between 1 and -1, so it will therefore never converge.
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16.3 Convergence of Sequences of Vectors3

16.3.1 Convergence of Vectors

We now discuss pointwise and norm convergence of vectors. Other types of convergence also exist, and one
in particular, uniform convergence (Section 16.4), can also be studied. For this discussion , we will assume
that the vectors belong to a normed vector space (Section 15.3).

16.3.1.1 Pointwise Convergence

A sequence (Section 16.2) {gn} |∞n=1 converges pointwise to the limit g if each element of gn converges to
the corresponding element in g. Below are few examples to try and help illustrate this idea.

Example 16.3

gn =

 gn [1]

gn [2]

 =

 1 + 1
n

2− 1
n


First we �nd the following limits for our two gn's:

limit
n→∞

gn [1] = 1

limit
n→∞

gn [2] = 2

Therefore we have the following,
limit
n→∞

gn = g

pointwise, where g =

 1

2

.
Example 16.4

gn (t) =
t

n
, t ∈ R

As done above, we �rst want to examine the limit

limit
n→∞

gn (t0) = limit
n→∞

t0
n

= 0

where t0 ∈ R. Thus limit
n→∞

gn = g pointwise where g (t) = 0 for all t ∈ R.

16.3.1.2 Norm Convergence

The sequence (Section 16.2) {gn} |∞n=1 converges to g in norm if limit
n→∞

‖ gn − g ‖= 0. Here ‖ · ‖ is the norm
(Section 15.3) of the corresponding vector space of gn's. Intuitively this means the distance between vectors
gn and g decreases to 0.

Example 16.5

gn =

 1 + 1
n

2− 1
n


3This content is available online at <http://cnx.org/content/m10894/2.4/>.
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Let g =

 1

2


‖ gn − g ‖ =

√(
1 + 1

n − 1
)2 +

(
2− 1

n

)2
=

√
1
n2 + 1

n2

=
√

2
n

(16.6)

Thus limit
n→∞

‖ gn − g ‖= 0 Therefore, gn → g in norm.

Example 16.6

gn (t) =

 t
n if 0 ≤ t ≤ 1

0 otherwise

Let g (t) = 0 for all t.

‖ gn (t)− g (t) ‖ =
∫ 1

0
t2

n2 dt

= t3

3n2 |1n=0

= 1
3n2

(16.7)

Thus limit
n→∞

‖ gn (t)− g (t) ‖= 0 Therefore, gn (t)→ g (t) in norm.

16.3.2 Pointwise vs. Norm Convergence

Theorem 16.1:
For Rm, pointwise and norm convergence are equivalent.

Proof: Pointwise ⇒ Norm

gn [i]→ g [i]

Assuming the above, then

(‖ gn − g ‖)2 =
m∑
i=1

(gn [i]− g [i])2

Thus,

limit
n→∞

(‖ gn − g ‖)2 = limit
n→∞

∑m
i=1 2

=
∑m
i=1 limit

n→∞
2

= 0

(16.8)

Proof: Norm ⇒ Pointwise

‖ gn − g ‖→ 0

limit
n→∞

∑m
i=1 2 =

∑m
i=1 limit

n→∞
2

= 0
(16.9)

Since each term is greater than or equal zero, all 'm' terms must be zero. Thus,

limit
n→∞

2 = 0
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forall i. Therefore,
gn → g pointwise

note: In in�nite dimensional spaces the above theorem is no longer true. We prove this with
counter examples shown below.

16.3.2.1 Counter Examples

Example 16.7: Pointwise [U+21CF] Norm
We are given the following function:

gn (t) =

 n if 0 < t < 1
n

0 otherwise

Then limit
n→∞

gn (t) = 0 This means that,

gn (t)→ g (t)

where for all t g (t) = 0.
Now,

(‖ gn ‖)2 =
∫∞
−∞ (|gn (t) |)2

dt

=
∫ 1
n

0
n2dt

= n→∞

(16.10)

Since the function norms blow up, they cannot converge to any function with �nite norm.

Example 16.8: Norm [U+21CF] Pointwise
We are given the following function:

gn (t) =

 1 if 0 < t < 1
n

0 otherwise
if n is even

gn (t) =

 −1 if 0 < t < 1
n

0 otherwise
if n is odd

Then,

‖ gn − g ‖=
∫ 1

n

0

1dt =
1
n
→ 0

where g (t) = 0 for all t. Therefore,
gn → g in norm

However, at t = 0, gn (t) oscillates between -1 and 1, and so it does not converge. Thus, gn (t) does
not converge pointwise.
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16.4 Uniform Convergence of Function Sequences4

16.4.1 Uniform Convergence of Function Sequences

For this discussion, we will only consider functions with gn where

R→ R

De�nition 16.3: Uniform Convergence
The sequence (Section 16.2) {gn} |∞n=1 converges uniformly to function g if for every ε > 0 there is
an integer N such that n ≥ N implies

|gn (t)− g (t) | ≤ ε (16.11)

for all t ∈ R.
Obviously every uniformly convergent sequence is pointwise (Section 16.3) convergent. The di�erence

between pointwise and uniform convergence is this: If {gn} converges pointwise to g, then for every ε > 0
and for every t ∈ R there is an integer N depending on ε and t such that (16.11) holds if n ≥ N . If {gn}
converges uniformly to g, it is possible for each ε > 0 to �nd one integer N that will do for all t ∈ R.

Example 16.9

gn (t) =
1
n

, t ∈ R

Let ε > 0 be given. Then choose N = d 1
ε e. Obviously,

|gn (t)− 0| ≤ ε , n ≥ N

for all t. Thus, gn (t) converges uniformly to 0.

Example 16.10

gn (t) =
t

n
, t ∈ R

Obviously for any ε > 0 we cannot �nd a single function gn (t) for which (16.11) holds with g (t) = 0
for all t. Thus gn is not uniformly convergent. However we do have:

gn (t)→ g (t) pointwise

Conclusion: Uniform convergence always implies pointwise convergence, but pointwise conver-
gence does not guarantee uniform convergence.

4This content is available online at <http://cnx.org/content/m10895/2.7/>.
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17.1 Viewing Embedded LabVIEW Content in Connexions1

17.1.1 Introduction

In order to view LabVIEW content embedded in Connexions modules, you must install and enable the Lab-
VIEW 8.0 and 8.5 Local VI Execution Browser Plug-in for Windows. Step-by-step installation instructions
are given below. Once installation is complete, the placeholder box at the bottom of this module should
display a demo LabVIEW virtual instrument (VI).

17.1.2 Installing the LabVIEW Run-time Engine on Microsoft Windows

1. Download and install the LabVIEW 8.0 Runtime Engine found at:
http://zone.ni.com/devzone/cda/tut/p/id/43462 .

2. Download and install the LabVIEW 8.5 Runtime Engine found at:
http://zone.ni.com/devzone/cda/tut/p/id/66333 .

3. Dowload the LVBrowserPlugin.ini �le from http://zone.ni.com/devzone/cda/tut/p/id/82884 , and
place it in the My Documents\LabVIEW Data folder. (You may have to create this folder if it doesn't
already exist.)

4. Restart your computer to complete the installation.
5. The placeholder box at the bottom of this module should now display a demo LabVIEW virtual

instrument (VI).

17.1.3 Example Virtual Instrument

This media object is a LabVIEW VI. Please view or download it at
<DFD_Utility.llb>

Figure 17.1: Digital �lter design LabVIEW virtual instrument from
http://cnx.org/content/m13115/latest/5.

17.2 Getting Started With Mathematica6

17.2.1 What is Mathematica?

Mathematica is a computational software program used in technical �elds. It is developed by Wolfram
Research. Mathematica makes it easy to visualize data and create GUIs in only a few lines of code.

17.2.2 How can I run, create, and �nd Mathematica �les?

Run
The free CDF Player7 is available for running non-commercial Mathematica programs. The option exists

1This content is available online at <http://cnx.org/content/m34460/1.4/>.
2http://zone.ni.com/devzone/cda/tut/p/id/4346
3http://zone.ni.com/devzone/cda/tut/p/id/6633
4http://zone.ni.com/devzone/cda/tut/p/id/8288
5http://cnx.org/content/m13115/latest/
6This content is available online at <http://cnx.org/content/m36728/1.12/>.
7http://www.wolfram.com/cdf-player/
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of downloading source �les and running on your computer, but the CDF-player comes with a plug-in for
viewing dynamic content online on your web browser!
Create
Mathematica 8 is available for purchase8 from Wolfram. Many universities (including Rice) and companies
already have a Mathematica license. Wolfram has a free, save-disabled 15-day trial version9 of Mathematica.
Find
Wolfram has thousands of Mathematica programs (including source code) available at the Wolfram Demon-
strations Project10 . Anyone can create and submit a Demonstration. Also, many other websites (including
Connexions) have a lot of Mathematica content.

17.2.3 What do I need to run interactive content?

Mathematica 8 is supported on Linux, Microsoft Windows, Mac OS X, and Solaris. Mathematica's free
CDF-player is available for Windows and Mac OS X, and is in development for Linux; the CDF-Player
plugin is available for IE, Firefox, Chrome, Safari, and Opera.

17.2.4 How can I upload a Mathematica �le to a Connexions module?

Go to the Files tab at the top of the module and upload your .cdf �le, along with an (optional) screenshot
of the �le in use. In order to generate a clean bracket-less screenshot, you should do the following:

• Open your .cdf in Mathematica and left click on the bracket surrounding the manipulate command.
• Click on Cell->Convert To->Bitmap.
• Then click on File->Save Selection As, and save the image �le in your desired image format.

Embed the �les into the module in any way you like. Some tags you may �nd helpful include image,
�gure, download, and link (if linking to an .cdf �le on another website). The best method is to create an
interactive �gure, and include a fallback png image of the cdf �le should the CDF image not render properly.
See the interactive demo/image below.
Convolution Demo

<figure id="demoonline">
<media id="CNXdemoonline" alt="timeshiftDemo">
<image mime-type="image/png" src="Convolutiondisplay-4.cdf" thumbnail="Convolution4.0Display.png" width="600"/>
<object width="500" height="500" src="Convolutiondisplay-4.cdf" mime-type="application/vnd.wolfram.cdf" for="webview2.0"/>
<image mime-type="application/postscript" for="pdf" src="Convolution4.0Display.png" width="400"/>
</media>
<caption>Interact (when online) with a Mathematica CDF demonstrating Convolution. To Download, right-click and save target as .cdf.%lt;/caption>
</figure>

8http://www.wolfram.com/products/mathematica/purchase.html
9http://www.wolfram.com/products/mathematica/experience/request.cgi

10http://demonstrations.wolfram.com/index.html
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Figure 17.2: Interact (when online) with a Mathematica CDF demonstrating Convolution. To Down-
load, right-click and save target as .cdf.

Alternatively, this is how it looks when you use a thumbnail link to a live online demo.

Figure 17.3: Click on the above thumbnail image (when online) to view an interactive Mathematica
Player demonstrating Convolution.

17.2.5 How can I learn Mathematica?

Open Mathematica and go to the Getting Started section of the "Welcome to Mathematica" screen, or check
out Help: Documentation Center.

The Mathematica Learning Center11 has lots of screencasts, how-tos, and tutorials.
When troubleshooting, the error messages are often unhelpful, so it's best to evaluate often so the problem

can be easily located. Search engines like Google are useful when you're looking for an explanation of speci�c
error messages.

11http://www.wolfram.com/learningcenter/
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Glossary

B Basis

A basis for Cn is a set of vectors that: (1) spans Cn and (2) is linearly independent.

D di�erence equation

An equation that shows the relationship between consecutive values of a sequence and the
di�erences among them. They are often rearranged as a recursive formula so that a systems
output can be computed from the input signal and past outputs.

Example:

y [n] + 7y [n− 1] + 2y [n− 2] = x [n]− 4x [n− 1] (12.52)

domain

The group, or set, of values that are de�ned by a given function.

Example: Using the rational function above, 12 , the domain can be de�ned as any real number
x where x does not equal 1 or negative 3. Written out mathematical, we get the following:

{x ∈ R | (x 6= −3) and (x 6= 1)} (12.50)

domain

The group, or set, of values that are de�ned by a given function.

Example: Using the rational function above, 13 , the domain can be de�ned as any real number
x where x does not equal 1 or negative 3. Written out mathematically, we get the following:

{x ∈ R | (x 6= −3) and (x 6= 1)} (11.37)

E eigenvector

An eigenvector of A is a vector v ∈ Cn such that

Av = λv (14.2)

where λ is called the corresponding eigenvalue. A only changes the length of v, not its
direction.

L limit

A sequence {gn} |∞n=1 converges to a limit g ∈ R if for every ε > 0 there is an integer N such that

|gi − g| < ε , i ≥ N
We usually denote a limit by writing

limit
i→∞

gi = g

or
gi → g

12http://cnx.org/content/m10593/latest/
13http://cnx.org/content/m34530/latest/
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Linearly Independent

For a given set of vectors, {x1, x2, . . . , xn}, they are linearly independent if

c1x1 + c2x2 + · · ·+ cnxn = 0

only when c1 = c2 = · · · = cn = 0

Example: We are given the following two vectors:

x1 =

 3

2



x2 =

 −6

−4


These are not linearly independent as proven by the following statement, which, by
inspection, can be seen to not adhere to the de�nition of linear independence stated above.

(x2 = −2x1)⇒ (2x1 + x2 = 0)

Another approach to reveal a vectors independence is by graphing the vectors. Looking at these
two vectors geometrically (as in 14 ), one can again prove that these vectors are not linearly
independent.

N Normalized Basis

a basis15 {bi} where each bi has unit norm

‖ bi ‖= 1 , i ∈ Z (15.39)

O Orthogonal Basis

a basis {bi} in which the elements are mutually orthogonal

< bi, bj >= 0 , i 6= j

orthogonal

We say that x and y are orthogonal if:

< x, y >= 0

Orthonormal Basis

a basis that is both normalized and orthogonal

‖ bi ‖= 1 , i ∈ Z

< bi, bj > , i 6= j

P poles

1. The value(s) for s where Q (s) = 0.
14http://cnx.org/content/m10734/latest/
15http://cnx.org/content/m10772/latest/
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2. The complex frequencies that make the overall gain of the �lter transfer function in�nite.

poles

1. The value(s) for z where Q (z) = 0.

2. The complex frequencies that make the overall gain of the �lter transfer function in�nite.

R rational function

For any two polynomials, A and B, their quotient is called a rational function.

Example: Below is a simple example of a basic rational function, f (x). Note that the
numerator and denominator can be polynomials of any order, but the rational function is
unde�ned when the denominator equals zero.

f (x) =
x2 − 4

2x2 + x− 3
(11.35)

S sequence

A sequence is a function gn de�ned on the positive integers 'n'. We often denote a sequence by
{gn} |∞n=1

Example: A real number sequence:

gn =
1
n

Example: A vector sequence:

gn =

 sin
(
nπ
2

)
cos
(
nπ
2

)


Example: A function sequence:

gn (t) =

 1 if 0 ≤ t < 1
n

0 otherwise

note: A function can be thought of as an in�nite dimensional vector where for each
value of 't' we have one dimension

Span

The span16 of a set of vectors {x1, x2, . . . , xk} is the set of vectors that can be written as a linear
combination of {x1, x2, . . . , xk}

span ({x1, . . . , xk}) = {α1x1 + α2x2 + · · ·+ αkxk , αi ∈ Cn }

Example: Given the vector

x1 =

 3

2


the span of x1 is a line.

16http://cnx.org/content/m10734/latest/
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Example: Given the vectors

x1 =

 3

2


x2 =

 1

2


the span of these vectors is C2.

standard inner product

The standard inner product is de�ned mathematically as:

< x, y > = yTx

=
(
y0 y1 . . . yn−1

)


x0

x1

...

xn−1


=

∑n−1
i=0 xiyi

(15.9)

U Uniform Convergence

The sequence17 {gn} |∞n=1 converges uniformly to function g if for every ε > 0 there is an integer
N such that n ≥ N implies

|gn (t)− g (t) | ≤ ε (16.11)

for all t ∈ R.

V Vector space

A vector space S is a collection of "vectors" such that (1) if f1 ∈ S ⇒ αf1 ∈ S for all scalars α
(where α ∈ R, α ∈ C, or some other �eld) and (2) if f1 ∈ S, f2 ∈ S, then (f1 + f2) ∈ S

Z zeros

1. The value(s) for s where P (s) = 0.

2. The complex frequencies that make the overall gain of the �lter transfer function zero.

zeros

1. The value(s) for z where P (z) = 0.

2. The complex frequencies that make the overall gain of the �lter transfer function zero.

17http://cnx.org/content/m10895/latest/
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Index of Keywords and Terms

Keywords are listed by the section with that keyword (page numbers are in parentheses). Keywords
do not necessarily appear in the text of the page. They are merely associated with that section. Ex.
apples, � 1.1 (1) Terms are referenced by the page they appear on. Ex. apples, 1

A acausal, � 10.7(200)
ADC, � 10.7(200)
algebra, � 15.1(323)
alias, � 10.5(195), � 10.6(198)
aliasing, � 7.2(122), 125, � 10.5(195),
� 10.6(198), � 10.7(200)
almost everywhere, � 6.7(112)
analog, � 1.1(1), 2, � 10.7(200)
analysis, � 6.2(90)
angle, 325
angle of complex number, � 15.1(323)
Anti-Aliasing, � 10.6(198), � 10.7(200)
anti-imaging, � 10.7(200)
anticausal, � 1.1(1), 3, � 10.7(200)
aperiodic, � 1.1(1), 88, 121, � 8.1(155), 155,
� 9.1(169), 171
approximation, � 15.14(366)

B bandlimited, � 10.7(200)
bases, � 14.1(303)
basis, � 7.2(122), 125, � 14.1(303), 306, 306,
306, � 15.8(343), � 15.9(347), 347,
� 15.10(351), � 15.11(352), � 15.12(361)
basis matrix, � 15.9(347), 349
best approximates, 367
BIBO, � 3.6(57), � 4.6(79)
bilateral Laplace transform pair, 205
bilateral Z transform pair, 245
bits, � 10.7(200)
bounded, � 3.6(57)
bounded input, � 3.6(57), � 4.6(79)
bounded output, � 3.6(57), � 4.6(79)
butter�y, 287, � 13.3(290), 291

C cardinal, � 10.3(188)
Cartesian form, � 15.1(323)
Cartesian form of z, 324
cascade, � 2.2(35)
cauch-schwarz, � 15.6(334)
cauchy, � 15.6(334)
Cauchy-Schwarz inequality, � 13.4(292),
� 15.6(334)

causal, � 1.1(1), 3, � 2.1(31), � 10.7(200), 219,
264
characteristic polynomial, 233, 279
circular, � 6.5(107), � 7.5(144)
circular convolution, � 6.5(107), � 7.5(144), 144
coe�cient, � 3.7(59)
coe�cient vector, � 15.9(347), 349
common, � 7.3(130), � 9.3(175)
communication, � 13.4(292)
complex, � 1.4(14), � 1.5(16), � 7.2(122),
� 11.5(213), � 12.5(259)
Complex Conjugate, 125, 324
complex exponential, 15, 17, � 1.8(24),
� 1.9(27), � 3.5(56), � 4.5(78)
complex exponentials, 122, 172
complex number, � 15.1(323), 324
complex plane, � 1.8(24), � 1.9(27), 324
complex sinusoids, � 7.2(122)
complex vector space, 327
complex vector spaces, � 15.2(327)
complex-valued, � 1.4(14), � 1.5(16)
complex-valued function, 206, 206, 246, 246
complexity, 285, 288, � 13.3(290)
composite, 290, 292
computational advantage, 286, 290
considerations, � 10.7(200)
constant, � 3.7(59)
constant coe�cient, � 3.8(61), � 4.7(80),
� 4.8(82)
continuous, 1, 111, � 8.5(165), � 10.7(200),
� 11.4(210)
continuous frequency, � 8.2(156), � 9.2(172)
continuous time, � 1.1(1), � 1.2(8), � 1.4(14),
� 3.1(43), � 3.2(45), 47, � 3.3(48), � 3.5(56),
� 3.6(57), � 5.1(85), � 6.2(90), � 8.1(155),
� 8.2(156), � 8.3(160), � 8.4(161), � 10.1(183),
� 11.1(205), � 11.2(209), � 11.3(209),
� 11.6(220), � 11.9(235)
Continuous Time Convolution Integral, 47
Continuous Time Fourier Series, 90
Continuous Time Fourier Transform, 156, 156
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continuous-time, � 3.1(43)
Continuous-Time Fourier Transform, 157
control theory, 217, 262
converge, � 3.6(57), � 6.6(109), � 16.4(377)
convergence, � 6.6(109), � 16.2(372),
� 16.3(374), � 16.4(377)
converges, � 16.4(377)
converter, � 10.7(200)
Convolution, 47, � 3.3(48), � 3.4(53), 69,
� 4.3(70), � 4.4(75), � 6.5(107), � 7.5(144),
� 8.4(161), � 8.5(165), � 13.4(292)
convolution integral, 165
convolutions, � 7.5(144)
convolve, � 7.5(144)
Cooley-Tukey, � 13.1(285), � 13.3(290)
csi, � 15.6(334)
CTFS, � 6.2(90)
CTFT, � 8.2(156), � 8.5(165)
cuachy, � 15.6(334)
cuto� frequency, 237

D DAC, � 10.7(200)
de, � 3.1(43)
decompose, � 1.5(16), � 15.9(347), 348
delta function, � 4.2(67), � 15.8(343)
design, � 11.9(235), � 12.9(281)
detection, � 13.4(292)
determinant, � 14.2(308)
deterministic signal, 7
DFT, � 7.3(130), � 7.4(137), � 7.5(144),
� 13.2(286)
di�erence equation, � 4.1(65), 69, 235, 277, 277
Di�erence Equations, � 4.7(80), � 4.8(82)
di�erential, � 3.1(43), � 3.7(59), � 3.8(61)
di�erential equation, 47
di�erential equations, � 3.1(43), � 11.8(231)
digital, � 1.1(1), 2, � 10.7(200)
digital signal processing, � 4.1(65)
dirac delta function, � 1.4(14), � 1.6(19), 19
direct method, 232, 279
dirichlet, � 6.6(109)
dirichlet conditions, � 6.6(109), 111, 111
Discete Time Fourier Transform, 171
discontinuity, � 6.6(109), 111
discontinuous functions, 113
discrete, 1, � 7.1(119), � 7.2(122), � 7.3(130),
� 7.4(137), � 10.7(200), � 12.4(255), � 16.1(371)
discrete convolution, � 9.5(179)
discrete fourier transform, � 7.5(144)
discrete time, � 1.1(1), � 1.2(8), � 3.6(57),
� 4.2(67), 69, � 4.3(70), � 4.4(75), � 4.5(78),
� 4.6(79), � 5.1(85), � 7.4(137), � 9.1(169),

� 9.2(172), � 9.3(175), � 9.5(179), � 10.1(183),
� 12.9(281)
Discrete Time Complex Exponential, 125
Discrete Time Convolution Sum, 69
discrete time fourier series, � 7.2(122), 122
Discrete Time Fourier Transform, 172
discrete-time, � 1.5(16), � 9.4(176), � 12.1(245)
Discrete-Time Fourier Transform, 172
Discrete-Time Fourier Transform properties,
� 9.4(176)
discrete-time periodic signal, 119, 170
discrete-time systems, � 4.1(65)
domain, 230, 230, 276, 276
dot product, � 15.4(331)
dot products, 331
DSP, � 4.1(65), � 10.2(185)
DT, � 4.3(70)
dtfs, � 7.2(122), � 7.3(130), � 7.4(137)
DTFT, � 9.2(172), � 9.3(175), � 9.5(179)
dynamic content, � 17.1(380)

E eigen, � 14.4(316)
eigenfunction, � 3.5(56), � 4.5(78), � 6.2(90),
� 14.2(308), � 14.4(316), � 14.5(317), 318
eigenfunctions, � 14.4(316)
eigensignal, 318
eigenvalue, � 3.5(56), � 4.5(78), � 14.2(308),
383, 309, � 14.4(316), � 14.5(317)
eigenvalues, � 14.2(308), � 14.4(316)
eigenvector, � 3.5(56), � 4.5(78), � 14.2(308),
308, � 14.4(316), � 14.5(317)
eigenvectors, � 14.4(316)
ELEC 301, � 4.7(80)
embedded, � 17.1(380)
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Copyright: Ricardo Radaelli-Sanchez, Richard Baraniuk
License: http://creativecommons.org/licenses/by/3.0/

Module: "Discrete Time Periodic Signals"
By: Stephen Kruzick, Dan Calderon
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Copyright: Stephen Kruzick, Dan Calderon
License: http://creativecommons.org/licenses/by/3.0/
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By: Michael Haag, Justin Romberg
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Pages: 122-130
Copyright: Michael Haag, Justin Romberg
License: http://creativecommons.org/licenses/by/3.0/

Module: "Common Discrete Fourier Series"
By: Stephen Kruzick
URL: http://cnx.org/content/m34509/1.8/
Pages: 130-136
Copyright: Stephen Kruzick
License: http://creativecommons.org/licenses/by/3.0/

Module: "Properties of the DTFS"
By: Stephen Kruzick
URL: http://cnx.org/content/m34508/1.7/
Pages: 137-144
Copyright: Stephen Kruzick
License: http://creativecommons.org/licenses/by/3.0/

Module: "Discrete Time Circular Convolution and the DTFS"
By: Justin Romberg
URL: http://cnx.org/content/m10786/2.14/
Pages: 144-152
Copyright: Justin Romberg
License: http://creativecommons.org/licenses/by/3.0/

Module: "Continuous Time Aperiodic Signals"
By: Stephen Kruzick
URL: http://cnx.org/content/m34848/1.5/
Pages: 155-156
Copyright: Stephen Kruzick
License: http://creativecommons.org/licenses/by/3.0/
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Module: "Continuous Time Fourier Transform (CTFT)"
By: Richard Baraniuk, Melissa Selik
URL: http://cnx.org/content/m10098/2.16/
Pages: 156-160
Copyright: Richard Baraniuk, Melissa Selik
License: http://creativecommons.org/licenses/by/3.0/

Module: "Common Fourier Transforms"
By: Melissa Selik, Richard Baraniuk
URL: http://cnx.org/content/m10099/2.11/
Pages: 160-161
Copyright: Melissa Selik, Richard Baraniuk
License: http://creativecommons.org/licenses/by/1.0

Module: "Properties of the CTFT"
By: Melissa Selik, Richard Baraniuk
URL: http://cnx.org/content/m10100/2.15/
Pages: 161-165
Copyright: Melissa Selik, Richard Baraniuk
License: http://creativecommons.org/licenses/by/1.0

Module: "Continuous Time Convolution and the CTFT"
By: Stephen Kruzick
URL: http://cnx.org/content/m34849/1.4/
Pages: 165-167
Copyright: Stephen Kruzick
License: http://creativecommons.org/licenses/by/3.0/

Module: "Discrete Time Aperiodic Signals"
By: Stephen Kruzick, Dan Calderon
URL: http://cnx.org/content/m34850/1.4/
Pages: 169-172
Copyright: Stephen Kruzick, Dan Calderon
License: http://creativecommons.org/licenses/by/3.0/

Module: "Discrete Time Fourier Transform (DTFT)"
By: Richard Baraniuk
URL: http://cnx.org/content/m10108/2.18/
Pages: 172-175
Copyright: Richard Baraniuk
License: http://creativecommons.org/licenses/by/3.0/

Module: "Common Discrete Time Fourier Transforms"
By: Stephen Kruzick
URL: http://cnx.org/content/m34771/1.3/
Pages: 175-176
Copyright: Stephen Kruzick
License: http://creativecommons.org/licenses/by/3.0/
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Module: "Properties of the DTFT"
By: Don Johnson
URL: http://cnx.org/content/m0506/2.7/
Pages: 176-179
Copyright: Don Johnson
License: http://creativecommons.org/licenses/by/1.0

Module: "Discrete Time Convolution and the DTFT"
By: Stephen Kruzick, Dan Calderon
URL: http://cnx.org/content/m34851/1.6/
Pages: 179-182
Copyright: Stephen Kruzick, Dan Calderon
License: http://creativecommons.org/licenses/by/3.0/

Module: "Signal Sampling"
By: Stephen Kruzick, Justin Romberg
URL: http://cnx.org/content/m10798/2.8/
Pages: 183-185
Copyright: Stephen Kruzick, Justin Romberg
License: http://creativecommons.org/licenses/by/1.0

Module: "Sampling Theorem"
By: Justin Romberg, Stephen Kruzick
URL: http://cnx.org/content/m10791/2.7/
Pages: 185-188
Copyright: Justin Romberg, Stephen Kruzick
License: http://creativecommons.org/licenses/by/1.0

Module: "Signal Reconstruction"
By: Stephen Kruzick, Justin Romberg
URL: http://cnx.org/content/m10788/2.8/
Pages: 188-193
Copyright: Stephen Kruzick, Justin Romberg
License: http://creativecommons.org/licenses/by/1.0

Module: "Perfect Reconstruction"
By: Stephen Kruzick, Roy Ha, Justin Romberg
URL: http://cnx.org/content/m10790/2.6/
Pages: 193-195
Copyright: Stephen Kruzick, Roy Ha, Justin Romberg
License: http://creativecommons.org/licenses/by/1.0

Module: "Aliasing Phenomena"
By: Stephen Kruzick
URL: http://cnx.org/content/m34847/1.5/
Pages: 195-198
Copyright: Stephen Kruzick
License: http://creativecommons.org/licenses/by/3.0/
Based on: Aliasing
By: Justin Romberg, Don Johnson
URL: http://cnx.org/content/m10793/2.7/
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Module: "Anti-Aliasing Filters"
By: Justin Romberg, Stephen Kruzick
URL: http://cnx.org/content/m10794/2.6/
Pages: 198-200
Copyright: Justin Romberg, Stephen Kruzick
License: http://creativecommons.org/licenses/by/1.0

Module: "Discrete Time Processing of Continuous Time Signals"
By: Justin Romberg, Stephen Kruzick
URL: http://cnx.org/content/m10797/2.11/
Pages: 200-204
Copyright: Justin Romberg, Stephen Kruzick
License: http://creativecommons.org/licenses/by/1.0

Module: "The Laplace Transform"
Used here as: "Laplace Transform"
By: Richard Baraniuk, Dan Calderon
URL: http://cnx.org/content/m10110/2.17/
Pages: 205-209
Copyright: Richard Baraniuk, Dan Calderon
License: http://creativecommons.org/licenses/by/3.0/

Module: "Common Laplace Transforms"
By: Melissa Selik, Richard Baraniuk
URL: http://cnx.org/content/m10111/2.13/
Page: 209
Copyright: Melissa Selik, Richard Baraniuk
License: http://creativecommons.org/licenses/by/3.0/

Module: "Properties of the Laplace Transform"
By: Melissa Selik, Richard Baraniuk
URL: http://cnx.org/content/m10117/2.11/
Pages: 209-210
Copyright: Melissa Selik, Richard Baraniuk
License: http://creativecommons.org/licenses/by/1.0

Module: "The Inverse Laplace Transform"
Used here as: "Inverse Laplace Transform"
By: Dan Calderon
URL: http://cnx.org/content/m34857/1.1/
Pages: 210-213
Copyright: Dan Calderon
License: http://creativecommons.org/licenses/by/3.0/
Based on: Inverse Z-Transform
By: Benjamin Fite
URL: http://cnx.org/content/m10651/2.4/
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Module: "Understanding Pole/Zero Plots on the S-Plane"
Used here as: "Poles and Zeros in the S-Plane"
By: Dan Calderon
URL: http://cnx.org/content/m34855/1.4/
Pages: 213-220
Copyright: Dan Calderon
License: http://creativecommons.org/licenses/by/3.0/
Based on: Understanding Pole/Zero Plots on the Z-Plane
By: Michael Haag
URL: http://cnx.org/content/m10556/2.8/

Module: "Region of Convergence for the Laplace Transform"
By: Richard Baraniuk, Dan Calderon
URL: http://cnx.org/content/m10114/2.11/
Pages: 220-229
Copyright: Richard Baraniuk, Dan Calderon
License: http://creativecommons.org/licenses/by/3.0/

Module: "Rational Functions and the Laplace Transform"
By: Stephen Kruzick
URL: http://cnx.org/content/m34530/1.2/
Pages: 229-231
Copyright: Stephen Kruzick
License: http://creativecommons.org/licenses/by/3.0/
Based on: Rational Functions
By: Michael Haag
URL: http://cnx.org/content/m10593/2.7/

Module: "Di�erential Equations"
By: Stephen Kruzick
URL: http://cnx.org/content/m34510/1.3/
Pages: 231-235
Copyright: Stephen Kruzick
License: http://creativecommons.org/licenses/by/3.0/

Module: "Analog Filter Design"
Used here as: "Continuous Time Filter Design"
By: Dan Calderon, C. Sidney Burrus
URL: http://cnx.org/content/m34921/1.2/
Pages: 235-243
Copyright: Dan Calderon, C. Sidney Burrus
License: http://creativecommons.org/licenses/by/3.0/
Based on: Filter Design using the Pole/Zero Plot of a Z-Transform
By: Michael Haag
URL: http://cnx.org/content/m10548/2.9/
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Module: "The Z Transform"
Used here as: "Z-Transform"
By: Dan Calderon, Richard Baraniuk
URL: http://cnx.org/content/m34858/1.4/
Pages: 245-251
Copyright: Dan Calderon
License: http://creativecommons.org/licenses/by/3.0/
Based on: The Laplace Transforms
By: Richard Baraniuk
URL: http://cnx.org/content/m10110/2.13/

Module: "Common Z Transforms"
Used here as: "Common Z-Transforms"
By: Dan Calderon
URL: http://cnx.org/content/m34859/1.1/
Page: 252
Copyright: Dan Calderon
License: http://creativecommons.org/licenses/by/3.0/

Module: "Properties of the Z-Transform"
By: Stephen Kruzick
URL: http://cnx.org/content/m34477/1.2/
Pages: 252-255
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License: http://creativecommons.org/licenses/by/3.0/

Module: "The Inverse Z-Transform"
Used here as: "Inverse Z-Transform"
By: Benjamin Fite
URL: http://cnx.org/content/m10651/2.5/
Pages: 255-259
Copyright: Benjamin Fite
License: http://creativecommons.org/licenses/by/1.0

Module: "Understanding Pole/Zero Plots on the Z-Plane"
Used here as: "Poles and Zeros in the Z-Plane"
By: Michael Haag
URL: http://cnx.org/content/m10556/2.12/
Pages: 259-265
Copyright: Michael Haag
License: http://creativecommons.org/licenses/by/3.0/

Module: "Region of Convergence for the Z-transform"
By: Benjamin Fite, Dan Calderon
URL: http://cnx.org/content/m10622/2.8/
Pages: 265-274
Copyright: Benjamin Fite, Dan Calderon
License: http://creativecommons.org/licenses/by/3.0/
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Module: "Rational Functions and the Z-Transform"
By: Michael Haag
URL: http://cnx.org/content/m10593/2.8/
Pages: 274-276
Copyright: Michael Haag
License: http://creativecommons.org/licenses/by/1.0

Module: "Di�erence Equation"
Used here as: "Di�erence Equations"
By: Michael Haag
URL: http://cnx.org/content/m10595/2.6/
Pages: 277-281
Copyright: Michael Haag
License: http://creativecommons.org/licenses/by/1.0

Module: "Discrete Time Filter Design"
By: Michael Haag
URL: http://cnx.org/content/m10548/2.10/
Pages: 281-284
Copyright: Michael Haag
License: http://creativecommons.org/licenses/by/1.0

Module: "DFT: Fast Fourier Transform"
By: Don Johnson
URL: http://cnx.org/content/m0504/2.8/
Page: 285
Copyright: Don Johnson
License: http://creativecommons.org/licenses/by/1.0

Module: "The Fast Fourier Transform (FFT)"
By: Justin Romberg
URL: http://cnx.org/content/m10783/2.7/
Pages: 286-290
Copyright: Justin Romberg
License: http://creativecommons.org/licenses/by/1.0

Module: "Deriving the Fast Fourier Transform"
By: Don Johnson
URL: http://cnx.org/content/m0528/2.7/
Pages: 290-292
Copyright: Don Johnson
License: http://creativecommons.org/licenses/by/1.0

Module: "Matched Filter Detector"
By: Stephen Kruzick, Dan Calderon, Catherine Elder, Richard Baraniuk
URL: http://cnx.org/content/m34670/1.9/
Pages: 292-301
Copyright: Stephen Kruzick, Dan Calderon, Catherine Elder, Richard Baraniuk
License: http://creativecommons.org/licenses/by/3.0/
Based on: Cauchy-Schwarz Inequality
By: Michael Haag, Justin Romberg
URL: http://cnx.org/content/m10757/2.6/
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Module: "Linear Algebra: The Basics"
Used here as: "Basic Linear Algebra"
By: Michael Haag, Justin Romberg
URL: http://cnx.org/content/m10734/2.6/
Pages: 303-308
Copyright: Michael Haag, Justin Romberg
License: http://creativecommons.org/licenses/by/1.0

Module: "Eigenvectors and Eigenvalues"
By: Michael Haag, Justin Romberg
URL: http://cnx.org/content/m10736/2.9/
Pages: 308-313
Copyright: Michael Haag, Justin Romberg
License: http://creativecommons.org/licenses/by/1.0

Module: "Matrix Diagonalization"
By: Michael Haag
URL: http://cnx.org/content/m10738/2.6/
Pages: 313-316
Copyright: Michael Haag
License: http://creativecommons.org/licenses/by/1.0

Module: "Eigen-stu� in a Nutshell"
By: Michael Haag, Justin Romberg
URL: http://cnx.org/content/m10742/2.6/
Pages: 316-317
Copyright: Michael Haag, Justin Romberg
License: http://creativecommons.org/licenses/by/1.0

Module: "Eigenfunctions of LTI Systems"
By: Justin Romberg
URL: http://cnx.org/content/m10500/2.9/
Pages: 317-320
Copyright: Justin Romberg
License: http://creativecommons.org/licenses/by/1.0

Module: "Fields and Complex Numbers"
By: Stephen Kruzick
URL: http://cnx.org/content/m34514/1.4/
Pages: 323-327
Copyright: Stephen Kruzick
License: http://creativecommons.org/licenses/by/3.0/
Based on: Complex Numbers
By: Don Johnson
URL: http://cnx.org/content/m0081/2.27/

Module: "Vector Spaces"
By: Michael Haag, Steven J. Cox, Justin Romberg
URL: http://cnx.org/content/m10767/2.6/
Pages: 327-328
Copyright: Michael Haag, Steven J. Cox, Justin Romberg
License: http://creativecommons.org/licenses/by/1.0
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Module: "Norms"
By: Michael Haag, Justin Romberg
URL: http://cnx.org/content/m10768/2.6/
Pages: 328-331
Copyright: Michael Haag, Justin Romberg
License: http://creativecommons.org/licenses/by/1.0

Module: "Inner Products"
By: Michael Haag, Justin Romberg
URL: http://cnx.org/content/m10755/2.8/
Pages: 331-333
Copyright: Michael Haag, Justin Romberg
License: http://creativecommons.org/licenses/by/1.0

Module: "Hilbert Spaces"
By: Justin Romberg
URL: http://cnx.org/content/m10840/2.6/
Pages: 333-334
Copyright: Justin Romberg
License: http://creativecommons.org/licenses/by/1.0

Module: "Cauchy-Schwarz Inequality"
By: Michael Haag, Justin Romberg, Stephen Kruzick, Dan Calderon, Catherine Elder
URL: http://cnx.org/content/m10757/2.7/
Pages: 334-340
Copyright: Michael Haag, Justin Romberg, Stephen Kruzick, Dan Calderon, Catherine Elder
License: http://creativecommons.org/licenses/by/1.0

Module: "Common Hilbert Spaces"
By: Roy Ha, Justin Romberg
URL: http://cnx.org/content/m10759/2.7/
Pages: 340-343
Copyright: Roy Ha, Justin Romberg
License: http://creativecommons.org/licenses/by/1.0

Module: "Types of Bases"
By: Michael Haag, Justin Romberg
URL: http://cnx.org/content/m10772/2.8/
Pages: 343-347
Copyright: Michael Haag, Justin Romberg
License: http://creativecommons.org/licenses/by/3.0/

Module: "Orthonormal Basis Expansions"
By: Michael Haag, Justin Romberg
URL: http://cnx.org/content/m10760/2.6/
Pages: 347-351
Copyright: Michael Haag, Justin Romberg
License: http://creativecommons.org/licenses/by/1.0

Module: "Function Space"
By: Justin Romberg
URL: http://cnx.org/content/m10770/2.6/
Pages: 351-352
Copyright: Justin Romberg
License: http://creativecommons.org/licenses/by/1.0
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Module: "Haar Wavelet Basis"
By: Roy Ha, Justin Romberg
URL: http://cnx.org/content/m10764/2.9/
Pages: 352-361
Copyright: Roy Ha, Justin Romberg
License: http://creativecommons.org/licenses/by/3.0/

Module: "Orthonormal Bases in Real and Complex Spaces"
By: Justin Romberg
URL: http://cnx.org/content/m10765/2.8/
Pages: 361-362
Copyright: Justin Romberg
License: http://creativecommons.org/licenses/by/1.0

Module: "Plancharel and Parseval's Theorems"
By: Justin Romberg
URL: http://cnx.org/content/m10769/2.10/
Pages: 362-366
Copyright: Justin Romberg
License: http://creativecommons.org/licenses/by/3.0/

Module: "Approximation and Projections in Hilbert Space"
By: Justin Romberg
URL: http://cnx.org/content/m10766/2.9/
Pages: 366-368
Copyright: Justin Romberg
License: http://creativecommons.org/licenses/by/1.0

Module: "Introduction to Metric Spaces"
By: Stephen Kruzick
URL: http://cnx.org/content/m34616/1.2/
Pages: 371-372
Copyright: Stephen Kruzick
License: http://creativecommons.org/licenses/by/3.0/

Module: "Convergence of Sequences"
By: Richard Baraniuk
URL: http://cnx.org/content/m10883/2.6/
Pages: 372-373
Copyright: Richard Baraniuk
License: http://creativecommons.org/licenses/by/1.0

Module: "Convergence of Vectors"
Used here as: "Convergence of Sequences of Vectors"
By: Michael Haag
URL: http://cnx.org/content/m10894/2.4/
Pages: 374-376
Copyright: Michael Haag
License: http://creativecommons.org/licenses/by/1.0
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Module: "Uniform Convergence of Function Sequences"
By: Michael Haag, Richard Baraniuk
URL: http://cnx.org/content/m10895/2.7/
Page: 377
Copyright: Michael Haag
License: http://creativecommons.org/licenses/by/1.0

Module: "Viewing Embedded LabVIEW Content in Connexions"
By: Stephen Kruzick
URL: http://cnx.org/content/m34460/1.4/
Page: 380
Copyright: Stephen Kruzick
License: http://creativecommons.org/licenses/by/3.0/
Based on: Viewing Embedded LabVIEW Content
By: Matthew Hutchinson
URL: http://cnx.org/content/m13753/1.3/

Module: "Getting Started With Mathematica"
By: Catherine Elder, Dan Calderon
URL: http://cnx.org/content/m36728/1.12/
Pages: 380-382
Copyright: Catherine Elder, Dan Calderon
License: http://creativecommons.org/licenses/by/3.0/



Signals and Systems
This course deals with signals, systems, and transforms, from their theoretical mathematical foundations to
practical implementation in circuits and computer algorithms. At the conclusion of ELEC 301, you should
have a deep understanding of the mathematics and practical issues of signals in continuous and discrete time,
linear time invariant systems, convolution, and Fourier transforms.
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