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Chapter 1. Background issues in statistics 

1.1. Statistical terminology* 

Important definitions in statistics 

It is not unusual for students to forget important concepts learned in an earlier course. 
This set of definitions is intended to stir memories of those wonderful times when you 
were learning statistics and econometrics. It is not intended to replace a statistics course 
but to provide you with a handy guide to the denfinition of some important terms in the 
statistical tools used by economists. 

Random variables 
Random experiment 

A random experiment is an experiment whose outcome is uncertain. 

Outcome space 
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The outcome space (also sometimes referred to as the sample space) is the list of all 
possible outcomes of a random experiment. 

Example 1.1. Single toss of a coin.  

Consider the toss of a coin. Since the outcome is uncertain, tossing the coin is an example 
of a random experiment. The outcome space consists of a heads and a tails. If we let X be 
0 if the outcome is a heads and let X equal 1 if the outcome is a tails, then X is a random 
variable. Since X only can take on integer values (0 or 1), it is a discrete random variable. 

 
Random variable 

A random variable is a number that can be assigned to an outcome of a random 
experiment. A discrete random variable has a finite number of possible values while a 
continuous random variable has an infinite number of potential values. 

Non-stochastic variable 

A non-stochastic variable is any variable that is not a random variable; i.e., does not 
represent the outcome of a random experiment. 



Example 1.2. Multiple tosses of a coin.  

Let x equal the number of heads that occur when a coin is tossed n times. The tossing of 
the coin n times is a random experiment. The outcome space of this random experiment 
is an integar between 0 and n. Since the value x is equal represents the outcome of a 
random experiment, it is a random variable. 

 
Random sample 

A random sample of size n out of a population of size N has the characteristic that every 
member of the population is equally likely to be chosen. 

Example 1.3. Height of college age women.  

Consider a random sample of the population of college age women. The height, x, of any 
woman chosen from this population is a random variable with a value somewhere in the 
outcome space, where the outcome space is a number between (say) 24 and 96 inches. 
Since in theory we can have as accurate a measurement as we might like, x can be 
thought of as being a continuous random variable. 



 

Probability 

General terms 

Probability distribution for a discrete random variable.  

Consider a discrete random variable x i that represents an outcome of the n potential 
outcomes of a random experiment—that is, the set of potential outcomes is represented 

by Any function is a probability if and only if (1) 

(2) for all i and j, and (3) 

An example of a discrete distribution is in Example 4.  

Example 1.4.  

Discrete distribution. 
Figure 1 illustrates a discrete probability distribution where x i goes from 1 to 8. The areas 
in the shaded rectangles sum to 1. 



Figure 1.1. A discrete probability function 

 

The areas of the rectangles sum to 1.  

 

 
Probability density function.  

If x i is a continuous random variable, the concept of a probability distribution is replaced 
by a probility density function (pdf). A function, f( x ), is a pdf for the continuous random 



variable x if and only if (1) f( x ) ≥ 0 for – ∞ < x < ∞; (2) and (3) f( x ) has a 

finite number of discontinuities. By definition Example 5 offers 
an example of a pfd.  

Example 1.5. Probability distribution function for a continuous random variable.  

Figure 1.2.  



 

The red line is the pdf for the random variable x. The shaded in area under the pdf is 
equal to the probability that x falls between a and b. The total area under the pdf is equal 

to 1.  

 



 
Cumulative distribution function (cdf). 

The cumulative distribution function is given by F( x ) = Pr( X ≤ x ). For a discrete variable 

the cdf is For a continuous distribution, the cdf is 
Example 6 illustrates the calculation of the cumulative distribution function for a 
continuous random variable.  

Example 1.6. The cumulative distributon function. 

Let f( x ) = x 2 be the pdf for the random variable x defined between 0 and 1. The 

cumulative distribution function for any a is  

 

Mathematical expectation 

Mathematical expectation for a function. 



The mathematical expectation of the function g( x ) is where x is a 
random variable. Example 7 shows the calculation of the expected value of a function. 

Example 1.7. Expected value calculation. 

Let f( x ) = x a be a pdf for 0 ≤ x ≤ 1 and a > 0. Let g( x ) = x 3 . We can calculate 

 

 
The mean of a distribution. 

The population mean, μ, of a random variable, x, with a pdf of f( x ) is defined to be the 

expected value of x: Example 8 illustrates the calculation of the 
population mean. 

Example 1.8. Calculation of the population mean. 



Assume we have the same pdf used in Example 7. The population mean for this 

distribution is  

 
The variance of a distribution. 

The population variance, σ 2 , of a distribution is Example 9 shows a 
shortcut way to calculate the population variance. 

Example 1.9. Calculation of the population variance using the expected value operator. 

Define the variance operator, V, to be:  

 

Then, 

 



Squaring the term in the integral gives:  

Expand of the left-hand-side of this equality: 

 

Thus, we have established that:  

 

Evaluating the last two terms gives  

 

and 

 

or, since that Thus, or 

 



For example, in Example 8 we found that The expected value of x 2 is  

 

Thus, the variance of the distribution is  

 

or  

 
Expected value operation rules. 

As shown in Example 9, the expected value operation allows several linear operations. Let 
a and b be a non-stochastic variables and x be a random variable. Then we have 

1. E( a ) = a,  



2.  

3. E( a x + b ) = a μ + b,  

These rules work both for discrete and continuous random variables.  

Joint distributions 

The joint pdf for two random variables. 

Any function, f( x,y ), that has the characteristics  

1. f( x,y ) ≥ 0 for all x and y and  

2.  

is a joint pdf. This definition can be extended easily to include more than two random 
variables.  

Covariance between two random variables. 



If x and y are random variables, then the covariance between the two variables, C o v( x,y 

) or σ xy , is defined to be Expansion gives the alternative 
definition that σ xy = E( xy ) − μ x μ y .  

Stochastic independence. 

The random variables x and y are stochastically independent if and only if σ xy = 0. An 
equivalent definition of independence is that x and y are stochastically independent if 
and only if f( x,y ) = f( x )f( y ), or, in words, if the joint pdf of the two random variables is 
equal to the product of the pdf of each random variable. From the definition of 
covariance it is easy to see that if two random variables are stochastically independent 
then E( xy ) = μ x μ y .  

Correlation coefficient. 

The correlation coefficient, ρ, is defined to be The correlation coefficient is a 
unitless number that varies between -1 and +1. Clearly, two random variables are 
stochastically independent if and only if ρ xy = 0.  



Discrete distributions 

Binomial distribution. 

The discrete random variable x has a binomial distribution if 

where For the binomial 
distribution, μ = n p and σ 2 = n p( 1 − p ).  

Uniform distribution. 

The discrete random variable x has a uniform distribution if 

The mean and variance of the uniform distribution are and  

Poisson distribution. 



The discrete random variable x has a Poisson distribution if 

For the Poisson distribution μ = σ 2 = m. The Poisson 
distribution is used quite often in queuing theory to, among other things, describe the 
arrival of customers at a cashier's station. 

Continuous distributions 

Expotential distribution. 

The continuous random variable x has an exponential distribution if 

The cumulative exponential distribution is given by F( x ) = 1 − 
e − λ x , for x ≥ 0. The exponential distribution describes the times between events that 
occur continuously and independently at a constant rate (as in a Poisson process). The 
mean and variance of an exponential distribution are μ = λ − 1 and σ 2 = λ − 2 .  

Cauchy distribution. 



A random variable x, where − ∞ < x < ∞, has a Cauchy (or Cauchy-Lorentz) distribution if 

its pdf is The parameter x 0 locates the peak of the pdf while γ 
specifies the half-width of the pdf at the half maximum. Figure 3 shows the pdf and 
cumulative function for two values of these two parameters.  

Figure 1.3. The Cauchy distribution. 



 



The two panels represent the Cauchy distribution for two sets of values of x0 and γ.  

 

Normal distribution. 

The continuous random variable x has a normal distribution with a mean of μ and a 

variance of σ 2 if its pdf is for − ∞ ≤ x ≤ ∞. The distribution is 
symmetric around the mean. 

Log normal distribution. 

The continuous random variable x has log normal distribution if y has a normal 

distribution and x = e y . Thus, if then the pdf of a log normal distribution is 



The mean and variance of x are and 

Because the distribution is skewed downward for variances over 
1, the log normal distribution is sometimes used to describe income distributions (where 
there are relatively few very wealthy people and incomes generally are positive. Figure 4 
shows the graphs of the pdf and cumulative functions for the log normal distributions for 
two values of σ. 

Figure 1.4. The log-normal distribution. 



 



The two panels illustrate the log-normal distribution for two values of σ..  

 

Gamma distribution. 

A positive random variable x has a gamma distribution if its pdf is 

for x > 0 and 0 elsewhere. Γ( α ) is known as the gamma function 

and is defined to be The gamma function is often 
used to model waiting times like waiting for death. Its mean and variance are given by μ = 
α β and σ 2 = α β 2 .  

Chi-square distribution. 

A chi-square distribution ( χ 2 ( k)) is the sum of k independent standard normal random 

variables and is a special case of the gamma distribution (with and β = 2 ). The pdf 



of a chi-square distribution with k degrees of freedom is where 

x > 0. Its mean and variance are μ = k and σ 2 = 2k. If where the xi 's are 
independently drawn from the standard normal distribution (N(1, 0)), then y i ∼ χ 2 ( k ).  

Student's t-distribution. 

Consider two random variables, x and v. Assume that x ∼ N( 0,1 ) and v ∼ χ 2 ( r ) and are 

stochastically independent. Then the random variable has the t-distribution with r 
degrees of freedom. The pdf and cumulative function of t are 

and The mean and variance of the 

distribution are 0 for r > 1 and for t > 2, respectively.[1] The t-distribution plays a 



prominent role in hypothesis testing that is well-known to all undergraduate economics 
majors. 

F distribution. 

Consider two stochastically independent chi-square random variable such that 

and and u,v > 0. The new random variable has a F-
distribution with r 1 and r 2 degrees of freedom. The pdf for the F-distribution is 

The F-distribution is used in testing if population 
variances are equal and in performing likelihood ratio tests. 

Multinomial distribution. 



Consider the n random variables x 1 ,x 2 ,⋯,x n where each variable has a normal 

distribution—that is, and the covariance between of the variables is 

We can arrange the variances and covariances into a n-by-n 

matrix where that is known as the variance-covariance matrix. 

Define the vector and as its transpose. Then, 

where σ ii = σ i 
2 . If is the 

determinant of the variance-covariance matrix, then the pdf for the joint distribution of 



these random variables is If the 
random variables are stochastically independent the covariances are equal to 0 and the 

pdf becomes If the n random 
variables are all drawn from the same normal distribution with a mean of μ and a 
variance of σ 2 , then the pdf simplifies to 

 

Characteristics of an estimator of a population parameter θ 



Finite estimators 

Bias. 

The bias of an estimator is defined to be An estimator is unbiased if 

and only if  

Mean square error. 

The mean square error (MSE) of an estimator is defined to be It 

is relatively easy to show that Often a biased estimator 
with a smaller MSE may be preferred to an unbiased estimator with a relatively larger 
MSE. 

Efficiency. 



An estimator is relatively more efficient than if and only if Generally, 
we would prefer to use the most efficient estimator available (if it is unbiased).  

Asymtoptic estimators 

plim. 

x n converges to a constant, c, if for any positive ε. We can 
write this relationship as plimx n = c.  

Example 1.10.  

Greene[2] offers this example of plim: Suppose x n equals 0 with probability and n 

with probability As n increases, the second point becomes more remote from the 
first point. However, at the same time the probability of observing the second point 
becomes more and more unlikely. This effect is shown in Figure 5 where as n increases 
the probability distribution concentrates more and more on 1. 



Figure 1.5. Example of plim. 

 

The probability x = 1 is the area of the gray box centered on 1 for n = 5; the gray area plus 
the blue area for n = 10; and the sum of the gray, blue, and red areas for n = 20; the 

probability x = n is the area of the box centered on n.  

 



 
Consistency. 

The estimator is a consistent estimator of θ if and only if  

Asymmtotically unbiased. 

An estimator is an asymtotically unbiased estimator of θ if  

1.2. The maximum likelihood estimation method* 

The Maximum Likelihood Method 

Introduction 

The maximum likelihood (ML) method is an alternative to ordinary least squares (OLS) 
and offers a more general approach to the problem of finding estimators of unknown 
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population parameters. In these notes we present an intuitive introduction to the ML 
technique. We begin our discussion with a description of continuous random variables. 

Continuous random variables 

Assume that x is a continuous random variable over the interval − ∞ ≤ x ≤ ∞. Because of 
the assumption of continuity we need some special definitions. 

Probability density function. Any function f( x ) that has the following characteristics is a 

probability density function (pdf): (1) f( x ) > 0 and (2) The probability that 

x has a value between a and b is given by Here are two 
examples of the probability density functions (pdf) of continuous random variables. 

Example 1.11. Uniform distribution 



Let for 0 ≤ x ≤ α and 0 elsewhere, where α > 0. A graph of the pdf for this 
distribution is shown in Figure 1. 

Figure 1.6. Probability distribution function of a uniform distribution. 

 

The probability x falls between a and b is given by the colored in area.  

 



It is easy to see from the graph that and 

Moreover, as shown in Figure 1, the area under 
the pdf curve between a and b is equal to the probability that x lies between a and b; that 

is,  

The calculation of the mean and variance of this distribution is relatively simple. The 

population mean is given by or  



The population variance[3] is given by Thus, 

or 

 

 

Because of the simple mathematical form of the uniform pdf, the calculations in Example 
1 are relatively straight forward. While the calculations for random variables with a pdf 
that has a more complicated form are generally more difficult (if algebraically possible), 
the basic methodology remains the same. Example 2 considers the case of a more 
complicated pdf. 

Example 1.12. The Normal distribution. 



A random variable with a mean of μ and a variance of σ 2 that has a normal distribution—

that is, has the pdf A typical graph of this pdf is 
given in Figure 2. The area under the curve between values of x of a and b is equal to the 
probability that x falls between a and b.  

Figure 1.7. Probability distribution function of a Normal distribution. 



 

The probability x falls between a and b is given by the shaded area.  

 

 

Joint distributions of samples and the ML method. 



Most of the statistical work that economists use involves the use of a sample of 
observations. It is usual to assume that the members of the sample are drawn 
independently of each other. The implication of this assumption is that the pdf of the 
joint distribution is equal to the product of the pfd of each observation; i.e., 

(1.1) 

 

The pdf of the joint distribution shown in (1) is known as the likelihood function. If the 
sample were not independently drawn, the pdf of joint distribution could not be written 
in such a simple form because of the covariance among the members of the sample 
would not be equal to zero. The logarithm of this function (or as it is referred to, the log 
of the likelihood function) is given by the sum 

The maximum 
likelihood method involves choosing as estimators of the unknown parameters of the 
distribution the values that maximize the likelihood function. However, because the 
logarithm is a monotonically increasing function[4], maximizing the log of the likelihood 
function is equivalent to maximizing the likelihood function. The following example of 
this procedure illustrates how to derive ML estimators. 



Example 1.13. The ML estimator of the population mean and population variance. 

Assume that Consider a sample of size n drawn independently from this 
distribution. The likelihood function is the product of the pdf of each observation or:  

(1.2) 

 

Thus, the log of the likelihood function of this sample is 

In the ML method we want to find 

the estimators of the mean and variance, and , that maximize the log of the 
likelihood function. Substituting in the parameter estimates into the log of the likelihood 
function gives our problem as: 



(1.3) 

 

Setting the derivatives of the log of the likelihood function with respect to and 
equal to 0 gives: 

(1.4) 

 

(1.5) 

 

Solving these two equations simultaneously gives: 

(1.6) 



 

Notice the fact that the estimator of the population mean is equal to the sample mean, a 
result that is the same as the one you found in your introductory statistics course. 
However, the unbiased estimator of the population variance used in that course is 

 

Thus, one of the common "problems" with using a ML estimator is that quite often they 
are biased estimators of a population parameter. On the other hand, under very general 
conditions ML estimators are consistent, are asymptotically efficient, and have an 
asymptotically normal distribution (these are desirable large sample size characteristics of 
potential estimators and are discussed in advanced statistics courses).[5]  

 

Application of the ML method to regressions 



The discussion above illustrates the basics of the ML method—you form the log of the 
likelihood function and then find the values of the parameter estimates that maximize 
this function. In most cases the maximization will not yield answers in closed form—that 
is, you cannot find a neat algebraic formula as we did for the population mean. However, 
you can use computer programs to search for the values of the parameter estimates that 
maximize this function. Thus, in most cases in advanced regression models you often will 
treat the ML method as a “black box” and not concern yourself with the estimation 
details. However, I illustrate one more example of the ML technique. 

Example 1.14. The ML estimators for a simple regression. 

Assume that we want to estimate the population parameters for the regression model y i 
= β x i + ε i , where we assume that  

1.  

2. for i ≠ j,  

3. and (this assumption allows us to ignore the estimation of the 
intercept term), and  



4. x i is a non-stochastic variable. 

The assumption of a normally distributed error term implies that 

Thus, the pdf of the error term is and, thus, the likelihood 
function[6] is: 

(1.7) 

 

and the log of the likelihood function is 

 



We find the estimators and in the same manner as we did for the sample mean 
and variance. Differentiating the log of the likelihood function and setting these first 
derivatives equal to 0 gives the following two first-order conditions:  

(1.8) 

 

and 

(1.9) 

 

Thus, the ML estimators are: 



 

Notice that in this simple case the ML estimator of β is the same as the OLS estimator of β 
. Also, notice that the ML estimator of σ 2 is biased—the (unbiased) OLS estimator of σ 2 is 

 

 

You can use the examples in this module as the basis of your understanding of the ML 
method. When you see that the ML method is used in a computer program, you can be 
fairly certain that the program uses one of the many optimizing subroutines to find the 
maximum of the log of the likelihood program. You can consult the help files with the 
computer program to see what underlying distribution is used to set up the log of the 
likelihood function. A concept related to the maximum likelihood estimation method 



worth exploring is the likelihood ratio test (see the module by Don Johnson entitled The 
Likelihood Ratio Test for an introduction to this key statistical test.) 

Exercises 

Exercise 1.2.1. 

Consider the following functions. For each of them, (1) prove that the function is a pdf; (2) 
calculate the mean and variance of each distribution, and (3) find the maximum 
likelihood estimator of the parameter θ. Sketch a graph of each of the distributions for a 
representative value of θ.  

 

1. f( x;θ ) = ( θ + 1 )x θ where  0 ≤ x ≤ 1 and θ > 0.  

2. f( x;θ ) = θ e − θ x where 0 ≤ x < ∞ and θ > 0.  

 

 

http://cnx.org/content/m11234/latest/
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[1] The mean of the t-distribution is undefined for t ≤ 1. The variance of the distribution is 
∞ for 1 < r ≤ 2 and undefined for r ≤ 1.  

[2] Greene, William H. (1990). Econometric Analysis (New York: Macmillan Publishing 
Company): 103. 

[3] Quite often, as in the exercises at the end of this module, it is easier to calculate the 
variance of a distribution using the alternative formula for the variance: 

where  

[4] The function g( y ) is monotonically increasing for y if g ′ ( y ) > 0. Because 

the logarithm function is monotonically increasing for positive 
values of x.  

[5] Intuitively, what these concepts mean is that as the sample size increases the estimator 
becomes more precise (the variance becomes smaller and an bias disappears) and the 
distribution of the estimator approaches the normal distribution. The formal definitions 
of these terms involve advanced statistical concepts that are reported here only in the 



interest of completeness. An estimator of the parameter θ is consistent if and only if 

This estimator has an asymptotically normal distribution if 

An unbiased estimator is more efficient that another unbiased 
estimator if it has a smaller variance than the alternative estimator. An asymptotically 
efficient is an estimator whose mean square error tends to zero as the sample size 
increases. The mean square error (MSE) is defined to be 

An estimator is asymptotically efficient if 

See any advanced statistics text or Statistical terminology for further 
information on these concepts. 

[6] The symbol is equivalent to the product x 1 x 2 ⋯x n .  
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Chapter 1. Background issues in statistics 

1.1. Statistical terminology* 

Important definitions in statistics 

It is not unusual for students to forget important concepts learned in an earlier course. This set of definitions is intended to stir 
memories of those wonderful times when you were learning statistics and econometrics. It is not intended to replace a statistics 
course but to provide you with a handy guide to the denfinition of some important terms in the statistical tools used by economists. 

Random variables 
Random experiment 

A random experiment is an experiment whose outcome is uncertain. 

Outcome space 

The outcome space (also sometimes referred to as the sample space) is the list of all possible outcomes of a random experiment. 

Example 1.1. Single toss of a coin.  

Consider the toss of a coin. Since the outcome is uncertain, tossing the coin is an example of a random experiment. The outcome 
space consists of a heads and a tails. If we let X be 0 if the outcome is a heads and let X equal 1 if the outcome is a tails, then X is a 
random variable. Since X only can take on integer values (0 or 1), it is a discrete random variable. 

 
Random variable 

A random variable is a number that can be assigned to an outcome of a random experiment. A discrete random variable has a finite 
number of possible values while a continuous random variable has an infinite number of potential values. 
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Non-stochastic variable 

A non-stochastic variable is any variable that is not a random variable; i.e., does not represent the outcome of a random 
experiment. 

Example 1.2. Multiple tosses of a coin.  

Let x equal the number of heads that occur when a coin is tossed n times. The tossing of the coin n times is a random experiment. 
The outcome space of this random experiment is an integar between 0 and n. Since the value x is equal represents the outcome of a 
random experiment, it is a random variable. 

 
Random sample 

A random sample of size n out of a population of size N has the characteristic that every member of the population is equally likely 
to be chosen. 

Example 1.3. Height of college age women.  

Consider a random sample of the population of college age women. The height, x, of any woman chosen from this population is a 
random variable with a value somewhere in the outcome space, where the outcome space is a number between (say) 24 and 96 
inches. Since in theory we can have as accurate a measurement as we might like, x can be thought of as being a continuous random 
variable. 

 

Probability 

General terms 

Probability distribution for a discrete random variable.  



Consider a discrete random variable x i that represents an outcome of the n potential outcomes of a random experiment—that is, 

the set of potential outcomes is represented by Any function is a probability if and only if (1) 

(2) for all i and j, and (3) An example of a discrete 
distribution is in Example 4.  

Example 1.4.  

Discrete distribution. 

Figure 1 illustrates a discrete probability distribution where x i goes from 1 to 8. The areas in the shaded rectangles sum to 1. 

Figure 1.1. A discrete probability function 

 

The areas of the rectangles sum to 1.  

 

 
Probability density function.  



If x i is a continuous random variable, the concept of a probability distribution is replaced by a probility density function (pdf). A 

function, f( x ), is a pdf for the continuous random variable x if and only if (1) f( x ) ≥ 0 for – ∞ < x < ∞; (2) and (3) f( x ) 

has a finite number of discontinuities. By definition Example 5 offers an example of a pfd.  

Example 1.5. Probability distribution function for a continuous random variable.  

Figure 1.2.  

 

The red line is the pdf for the random variable x. The shaded in area under the pdf is equal to the probability that x falls between a 
and b. The total area under the pdf is equal to 1.  

 



 
Cumulative distribution function (cdf). 

The cumulative distribution function is given by F( x ) = Pr( X ≤ x ). For a discrete variable the cdf is For a 

continuous distribution, the cdf is Example 6 illustrates the calculation of the cumulative distribution function 
for a continuous random variable.  

Example 1.6. The cumulative distributon function. 

Let f( x ) = x 2 be the pdf for the random variable x defined between 0 and 1. The cumulative distribution function for any a is 

 

 

Mathematical expectation 

Mathematical expectation for a function. 

The mathematical expectation of the function g( x ) is where x is a random variable. Example 7 shows the 
calculation of the expected value of a function. 

Example 1.7. Expected value calculation. 



Let f( x ) = x a be a pdf for 0 ≤ x ≤ 1 and a > 0. Let g( x ) = x 3 . We can calculate 

 

 
The mean of a distribution. 

The population mean, μ, of a random variable, x, with a pdf of f( x ) is defined to be the expected value of x: 
Example 8 illustrates the calculation of the population mean. 

Example 1.8. Calculation of the population mean. 

Assume we have the same pdf used in Example 7. The population mean for this distribution is 

 

 
The variance of a distribution. 

The population variance, σ 2 , of a distribution is Example 9 shows a shortcut way to calculate the population 
variance. 

Example 1.9. Calculation of the population variance using the expected value operator. 

Define the variance operator, V, to be:  

 



Then, 

 

Squaring the term in the integral gives:  

Expand of the left-hand-side of this equality: 

 

Thus, we have established that:  

 

Evaluating the last two terms gives  

 

and 

 

or, since that Thus, or 

 

For example, in Example 8 we found that The expected value of x 2 is  

 



Thus, the variance of the distribution is  

 

or  

 
Expected value operation rules. 

As shown in Example 9, the expected value operation allows several linear operations. Let a and b be a non-stochastic variables and 
x be a random variable. Then we have 

1. E( a ) = a,  

2.  

3. E( a x + b ) = a μ + b,  

These rules work both for discrete and continuous random variables.  

Joint distributions 

The joint pdf for two random variables. 

Any function, f( x,y ), that has the characteristics  

1. f( x,y ) ≥ 0 for all x and y and  

2.  



is a joint pdf. This definition can be extended easily to include more than two random variables.  

Covariance between two random variables. 

If x and y are random variables, then the covariance between the two variables, C o v( x,y ) or σ xy , is defined to be 

Expansion gives the alternative definition that σ xy = E( xy ) − μ x μ y .  

Stochastic independence. 

The random variables x and y are stochastically independent if and only if σ xy = 0. An equivalent definition of independence is that x 
and y are stochastically independent if and only if f( x,y ) = f( x )f( y ), or, in words, if the joint pdf of the two random variables is 
equal to the product of the pdf of each random variable. From the definition of covariance it is easy to see that if two random 
variables are stochastically independent then E( xy ) = μ x μ y .  

Correlation coefficient. 

The correlation coefficient, ρ, is defined to be The correlation coefficient is a unitless number that varies between -1 
and +1. Clearly, two random variables are stochastically independent if and only if ρ xy = 0.  

Discrete distributions 

Binomial distribution. 

The discrete random variable x has a binomial distribution if where For 
the binomial distribution, μ = n p and σ 2 = n p( 1 − p ).  

Uniform distribution. 



The discrete random variable x has a uniform distribution if The mean and variance of the uniform 

distribution are and  

Poisson distribution. 

The discrete random variable x has a Poisson distribution if For the Poisson distribution μ = σ 2 = m. 
The Poisson distribution is used quite often in queuing theory to, among other things, describe the arrival of customers at a cashier's 
station. 

Continuous distributions 

Expotential distribution. 

The continuous random variable x has an exponential distribution if The cumulative exponential 
distribution is given by F( x ) = 1 − e − λ x , for x ≥ 0. The exponential distribution describes the times between events that occur 
continuously and independently at a constant rate (as in a Poisson process). The mean and variance of an exponential distribution 
are μ = λ − 1 and σ 2 = λ − 2 .  

Cauchy distribution. 

A random variable x, where − ∞ < x < ∞, has a Cauchy (or Cauchy-Lorentz) distribution if its pdf is The 
parameter x 0 locates the peak of the pdf while γ specifies the half-width of the pdf at the half maximum. Figure 3 shows the pdf and 
cumulative function for two values of these two parameters.  



Figure 1.3. The Cauchy distribution. 

 

The two panels represent the Cauchy distribution for two sets of values of x0 and γ.  

 

Normal distribution. 



The continuous random variable x has a normal distribution with a mean of μ and a variance of σ 2 if its pdf is 

for − ∞ ≤ x ≤ ∞. The distribution is symmetric around the mean. 

Log normal distribution. 

The continuous random variable x has log normal distribution if y has a normal distribution and x = e y . Thus, if then 

the pdf of a log normal distribution is The mean and variance of x are and 

Because the distribution is skewed downward for variances over 1, the log normal distribution is sometimes 
used to describe income distributions (where there are relatively few very wealthy people and incomes generally are positive. 
Figure 4 shows the graphs of the pdf and cumulative functions for the log normal distributions for two values of σ. 

Figure 1.4. The log-normal distribution. 



 

The two panels illustrate the log-normal distribution for two values of σ..  

 

Gamma distribution. 



A positive random variable x has a gamma distribution if its pdf is for x > 0 and 0 elsewhere. Γ( α ) is known 

as the gamma function and is defined to be The gamma function is often used to model waiting 
times like waiting for death. Its mean and variance are given by μ = α β and σ 2 = α β 2 .  

Chi-square distribution. 

A chi-square distribution ( χ 2 ( k)) is the sum of k independent standard normal random variables and is a special case of the gamma 

distribution (with and β = 2 ). The pdf of a chi-square distribution with k degrees of freedom is 

where x > 0. Its mean and variance are μ = k and σ 2 = 2k. If where the xi 's are independently drawn from the standard 
normal distribution (N(1, 0)), then y i ∼ χ 2 ( k ).  

Student's t-distribution. 

Consider two random variables, x and v. Assume that x ∼ N( 0,1 ) and v ∼ χ 2 ( r ) and are stochastically independent. Then the 

random variable has the t-distribution with r degrees of freedom. The pdf and cumulative function of t are 

and The mean and variance of the distribution are 0 for r > 1 and for t > 2, 
respectively.[1] The t-distribution plays a prominent role in hypothesis testing that is well-known to all undergraduate economics 
majors. 

F distribution. 



Consider two stochastically independent chi-square random variable such that and and u,v > 0. The new 

random variable has a F-distribution with r 1 and r 2 degrees of freedom. The pdf for the F-distribution is 

The F-distribution is used in testing if population variances are equal and in performing 
likelihood ratio tests. 

Multinomial distribution. 

Consider the n random variables x 1 ,x 2 ,⋯,x n where each variable has a normal distribution—that is, and the 

covariance between of the variables is We can arrange the variances and covariances into a n-by-n 

matrix where that is known as the variance-covariance matrix. Define the vector and 

as its transpose. Then, where σ ii = σ i 
2 . If is the determinant of the 

variance-covariance matrix, then the pdf for the joint distribution of these random variables is 

If the random variables are stochastically independent the covariances are 



equal to 0 and the pdf becomes If the n random variables are all drawn 
from the same normal distribution with a mean of μ and a variance of σ 2 , then the pdf simplifies to 

 

Characteristics of an estimator of a population parameter θ 

Finite estimators 

Bias. 

The bias of an estimator is defined to be An estimator is unbiased if and only if  

Mean square error. 

The mean square error (MSE) of an estimator is defined to be It is relatively easy to show that 

Often a biased estimator with a smaller MSE may be preferred to an unbiased estimator with a 
relatively larger MSE. 

Efficiency. 



An estimator is relatively more efficient than if and only if Generally, we would prefer to use the most efficient 
estimator available (if it is unbiased).  

Asymtoptic estimators 

plim. 

x n converges to a constant, c, if for any positive ε. We can write this relationship as plimx n = c.  

Example 1.10.  

Greene[2] offers this example of plim: Suppose x n equals 0 with probability and n with probability As n increases, the 
second point becomes more remote from the first point. However, at the same time the probability of observing the second point 
becomes more and more unlikely. This effect is shown in Figure 5 where as n increases the probability distribution concentrates 
more and more on 1. 

Figure 1.5. Example of plim. 



 

The probability x = 1 is the area of the gray box centered on 1 for n = 5; the gray area plus the blue area for n = 10; and the sum of 
the gray, blue, and red areas for n = 20; the probability x = n is the area of the box centered on n.  

 

 
Consistency. 

The estimator is a consistent estimator of θ if and only if  

Asymmtotically unbiased. 

An estimator is an asymtotically unbiased estimator of θ if  

1.2. The maximum likelihood estimation method* 
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The Maximum Likelihood Method 

Introduction 

The maximum likelihood (ML) method is an alternative to ordinary least squares (OLS) and offers a more general approach to the 
problem of finding estimators of unknown population parameters. In these notes we present an intuitive introduction to the ML 
technique. We begin our discussion with a description of continuous random variables. 

Continuous random variables 

Assume that x is a continuous random variable over the interval − ∞ ≤ x ≤ ∞. Because of the assumption of continuity we need some 
special definitions. 

Probability density function. Any function f( x ) that has the following characteristics is a probability density function (pdf): (1) f( x ) > 

0 and (2) The probability that x has a value between a and b is given by Here are two 
examples of the probability density functions (pdf) of continuous random variables. 

Example 1.11. Uniform distribution 

Let for 0 ≤ x ≤ α and 0 elsewhere, where α > 0. A graph of the pdf for this distribution is shown in Figure 1. 

Figure 1.6. Probability distribution function of a uniform distribution. 



 

The probability x falls between a and b is given by the colored in area.  

 

It is easy to see from the graph that and Moreover, as shown in Figure 1, the 
area under the pdf curve between a and b is equal to the probability that x lies between a and b; that is, 

 

The calculation of the mean and variance of this distribution is relatively simple. The population mean is given by 

or  



The population variance[3] is given by Thus, or 

 

 

Because of the simple mathematical form of the uniform pdf, the calculations in Example 1 are relatively straight forward. While the 
calculations for random variables with a pdf that has a more complicated form are generally more difficult (if algebraically possible), 
the basic methodology remains the same. Example 2 considers the case of a more complicated pdf. 

Example 1.12. The Normal distribution. 

A random variable with a mean of μ and a variance of σ 2 that has a normal distribution—that is, has the pdf 

A typical graph of this pdf is given in Figure 2. The area under the curve between values of x of a and b is 
equal to the probability that x falls between a and b.  

Figure 1.7. Probability distribution function of a Normal distribution. 



 

The probability x falls between a and b is given by the shaded area.  

 

 

Joint distributions of samples and the ML method. 

Most of the statistical work that economists use involves the use of a sample of observations. It is usual to assume that the 
members of the sample are drawn independently of each other. The implication of this assumption is that the pdf of the joint 
distribution is equal to the product of the pfd of each observation; i.e., 

(1.1) 

 

The pdf of the joint distribution shown in (1) is known as the likelihood function. If the sample were not independently drawn, the 
pdf of joint distribution could not be written in such a simple form because of the covariance among the members of the sample 
would not be equal to zero. The logarithm of this function (or as it is referred to, the log of the likelihood function) is given by the 



sum The maximum likelihood method involves choosing as 
estimators of the unknown parameters of the distribution the values that maximize the likelihood function. However, because the 
logarithm is a monotonically increasing function[4], maximizing the log of the likelihood function is equivalent to maximizing the 
likelihood function. The following example of this procedure illustrates how to derive ML estimators. 

Example 1.13. The ML estimator of the population mean and population variance. 

Assume that Consider a sample of size n drawn independently from this distribution. The likelihood function is the 
product of the pdf of each observation or:  

(1.2) 

 

Thus, the log of the likelihood function of this sample is In the ML method we 

want to find the estimators of the mean and variance, and , that maximize the log of the likelihood function. Substituting 
in the parameter estimates into the log of the likelihood function gives our problem as: 

(1.3) 

 



Setting the derivatives of the log of the likelihood function with respect to and equal to 0 gives: 

(1.4) 

 

(1.5) 

 

Solving these two equations simultaneously gives: 

(1.6) 

 

Notice the fact that the estimator of the population mean is equal to the sample mean, a result that is the same as the one you 
found in your introductory statistics course. However, the unbiased estimator of the population variance used in that course is 

 

Thus, one of the common "problems" with using a ML estimator is that quite often they are biased estimators of a population 
parameter. On the other hand, under very general conditions ML estimators are consistent, are asymptotically efficient, and have an 
asymptotically normal distribution (these are desirable large sample size characteristics of potential estimators and are discussed in 
advanced statistics courses).[5]  

 



Application of the ML method to regressions 

The discussion above illustrates the basics of the ML method—you form the log of the likelihood function and then find the values 
of the parameter estimates that maximize this function. In most cases the maximization will not yield answers in closed form—that 
is, you cannot find a neat algebraic formula as we did for the population mean. However, you can use computer programs to search 
for the values of the parameter estimates that maximize this function. Thus, in most cases in advanced regression models you often 
will treat the ML method as a “black box” and not concern yourself with the estimation details. However, I illustrate one more 
example of the ML technique. 

Example 1.14. The ML estimators for a simple regression. 

Assume that we want to estimate the population parameters for the regression model y i = β x i + ε i , where we assume that  

1.  

2. for i ≠ j,  

3. and (this assumption allows us to ignore the estimation of the intercept term), and  

4. x i is a non-stochastic variable. 

The assumption of a normally distributed error term implies that Thus, the pdf of the error term is 

and, thus, the likelihood function[6] is: 

(1.7) 

 



and the log of the likelihood function is  

We find the estimators and in the same manner as we did for the sample mean and variance. Differentiating the log of the 
likelihood function and setting these first derivatives equal to 0 gives the following two first-order conditions:  

(1.8) 

 

and 

(1.9) 

 

Thus, the ML estimators are: 

 



Notice that in this simple case the ML estimator of β is the same as the OLS estimator of β . Also, notice that the ML estimator of σ 2 

is biased—the (unbiased) OLS estimator of σ 2 is  

 

You can use the examples in this module as the basis of your understanding of the ML method. When you see that the ML method is 
used in a computer program, you can be fairly certain that the program uses one of the many optimizing subroutines to find the 
maximum of the log of the likelihood program. You can consult the help files with the computer program to see what underlying 
distribution is used to set up the log of the likelihood function. A concept related to the maximum likelihood estimation method 
worth exploring is the likelihood ratio test (see the module by Don Johnson entitled The Likelihood Ratio Test for an introduction to 
this key statistical test.) 

Exercises 

Exercise 1.2.1. 

Consider the following functions. For each of them, (1) prove that the function is a pdf; (2) calculate the mean and variance of each 
distribution, and (3) find the maximum likelihood estimator of the parameter θ. Sketch a graph of each of the distributions for a 
representative value of θ.  

 

1. f( x;θ ) = ( θ + 1 )x θ where  0 ≤ x ≤ 1 and θ > 0.  

2. f( x;θ ) = θ e − θ x where 0 ≤ x < ∞ and θ > 0.  

 

 

http://cnx.org/content/m11234/latest/


[1] The mean of the t-distribution is undefined for t ≤ 1. The variance of the distribution is ∞ for 1 < r ≤ 2 and undefined for r ≤ 1.  

[2] Greene, William H. (1990). Econometric Analysis (New York: Macmillan Publishing Company): 103. 

[3] Quite often, as in the exercises at the end of this module, it is easier to calculate the variance of a distribution using the 

alternative formula for the variance: where  

[4] The function g( y ) is monotonically increasing for y if g ′ ( y ) > 0. Because the logarithm function is 
monotonically increasing for positive values of x.  

[5] Intuitively, what these concepts mean is that as the sample size increases the estimator becomes more precise (the variance 
becomes smaller and an bias disappears) and the distribution of the estimator approaches the normal distribution. The formal 
definitions of these terms involve advanced statistical concepts that are reported here only in the interest of completeness. An 

estimator of the parameter θ is consistent if and only if This estimator has an asymptotically normal distribution if 

An unbiased estimator is more efficient that another unbiased estimator if it has a smaller variance than the 
alternative estimator. An asymptotically efficient is an estimator whose mean square error tends to zero as the sample size 

increases. The mean square error (MSE) is defined to be An estimator is 

asymptotically efficient if See any advanced statistics text or Statistical terminology for further information on 
these concepts. 

[6] The symbol is equivalent to the product x 1 x 2 ⋯x n .  

ch01.html#m34535


Chapter 2. Advanced topics in econometrics 

2.1. Logit and Probit Regressions* 

Logit and Probit models 

Introduction 

Consider a model that “explains” whether a wife enters the work force. It is straight 
forward to think of potential explanatory variables—her potential wage rate, the income 
of her partner, the number of children under the age of 6 in the household, and the 
number of children in the household between the ages of 6 and 18 are candidates to be 
independent variables used to explain the wife’s decision to enter the labor force. The 
dependent variable, Y, however, is a dummy variable because the wife chooses either to 
enter the labor force ( Y = 1 ) or not to enter the labor force ( Y = 0 ). An OLS model of the 
form: 

(2.1) Y i = β 0 + β 1 x i + ε i  
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does not make sense. Figure 1 shows what the data of this model might look like when 
graphed against one of the explanatory variables. Figure 1 also includes the regression 
line that an OLS estimation of (1) will yield. It is easy to see one problem with this 
approach—the predicted values of Y that can be greater than 1 and less than 0. In 
addition, special properties must be attributed to the error term and it is the simple 
properties ascribed to the error term that make the OLS model so attractive.[7]  

Figure 2.1. Linear regression line for a discrete dependent variable 

 



The linear regression line can be a poor representation of a discrete dependent variable. 

 

The logit model 

There does exist another approach to the modeling problem—assume that the 
dependent variable is the probability that the wife is in the labor force. For instance we 
might assume that we have a linear probability model of the form 

This model can be estimated reasonably successfully if the 
observed frequencies are well away from their bounds of 0 and 1.[8] However, is more 
appealing to assume that the probability varies monotonically with x and remains within 
the bounds of [0,1], as shown in Figure 2. This S-shaped curve is known as the sigmoid 

curve and can be represented algebraically for some variable z by:  

Figure 2.2. The signoid function. 



 

The signoid function forces the dependent variable to be between 0 and 1. 

 

We can simplify our analysis by using a bit of algebra. First, the inverse probability is 

Thus,  



(2.2) 

 

Taking the natural logarithm of (2) gives Assuming that z is a linear 
function of x (and, more generally, of other variables) gives the logit model: 

(2.3) 

 

We can estimate the parameters of this model using maximum likelihood methods. In the 
probit model the error term is assumed to be normally distributed with a mean of zero 
and a unit variance.[9] In the logit model the error term is assumed to have a standardized 
logistic distribution. This distribution has a mean of 0 and a variance of 1 and is very 
similar to a normal distribution with the same mean and variance.[10] While the choice of 
which model to use generally is personal, it should be noted that the ratio of the 
parameter of a logit model to the parameter of a probit model (using the same data set) 

ch01.html#m34539


usually varies between 1.6 and 2.0. We focus on the logit model in the balance of this 
discussion. 

Interpretation of the logit model parameters 

The interpretation of the economic meaning of the parameter values in a logit model is 
not very obvious.[11] One simple, but not often used, interpretation comes from taking the 
first-derivative of (3) with respect to x: 

(2.4) 

 

Thus, in the labor force participation model one interpretation is that β 1 is equal to the 
change in the natural logarithm of the odds that the wife is in the labor force due to a one 
unit change in the independent variable x. This interpretation is both awkward and not 
really economically informative.  

Stata offers two command for estimating a logit regression—logit and logistic. The logit 
command returns the parameter estimates as shown in (3). The logistic command returns 
the odds ratio rather than the parameter estimates. The odds ratio is equal to e β 

1
 . Thus, 



one can go from the odds ratio reported by the logistic command to the parameter 
estimates merely by taking the natural logarithm of the odds ratio. The interpretation of 
the odds ratio is straightforward. For example, assume that y = 1 means that the birth 
weight of an individual is less than 2,500 grams and y = 0 means that the birth weight is 
greater than 2,500 grams. A logit parameter estimate of -0.27 is equivalent to an odds 
ratio of 0.97 (i.e., e − 0.27 = 0.97 ). An odds ratio of 0.97 means that odds of a baby being 
underweight are 0.97 times those of the odds of a baby being of normal weight. To see 
what is being said re-write (2.3) as:  

 

A one unit change in x implies that:  

 

or 

 



or 

 

Thus, is equal to the percent change in the odds that y equals 1 (a baby is born 

underweight) due to a one unit change in x. The logistic command reports while 

the logit command reports Because of the ease of interpretation of the odds ratio, 
Stata argues that the logistic command is the proper one to use.  

Elasticities 

Another route to follow is to try to find something that can be interpreted as an elasticity. 
Elasticities are important enough topic in economics for us to discuss them here in some 
detail. The reason they are so attractive to economists is that they have no units and, 
thus, can be compared across different commodities. For instance, it is quite reasonable 
to compare the demand elasticity for apples with the demand elasticity for pearl 



necklaces in spite of the fact that the units of measuring apples and necklaces are 
different. There are a few important ways that elasticities appear in regressions. 

Linear regression elasticities 

In a linear regression of the form (ignoring the subscripts and the error term)  

Y = β 0 + β 1 x,  

we would calculate the elasticity of Y with respect to x to be  

 

Clearly, researchers need to choose the levels of Y and x at which to report this elasticity; 
it is traditional to calculate the elasticity at the means. Thus, economists typically report  

 

Constant elasticities 



Consider the following demand equation: 

(2.5) q = α p − β e ε ,  

where q is the quantity demanded, p is the price the good is sold at, α,β > 0, and ε is an 
error term. The price elasticity of demand is given by  

 

In other words, this demand curve has a constant price elasticity of demand equal to − β. 
Moreover, we can convert the estimation of this equation into a linear regression by 
taking the natural logarithm of both sides of (5) to get lnq = lnα − βlnp + ε.  

The logit equation and the quasi-elasticity 

It is not appropriate to use the normal formula for an elasticity with (3) because the 
dependent variable is itself a number without units between 0 and 1. As an alternative it 
makes more sense to calculate the quasi-elasticity, which is defined as: 

(2.6) 



 

Since  

 

we can calculate this elasticity as follows: 

 

Focusing on the left-hand-side, we get: 

 

or 



 

or 

(2.7) 

 

Thus, we see from (6) that the quasi-elasticity is given by: 

(2.8) 

 

The quasi-elasticity measures the percentage point change in the probability due to a 1 
percent increase of x. Notice that it is dependent on what value of x it is evaluated at. It is 
usual to evaluate (8) at the mean of x. Thus, the quasi-elasticity at the mean of x is:  

 

where  



 

Hypothesis testing 

The researcher using the logit model (and any regression estimated by ML) has three 
choices when constructing tests of hypotheses about the unknown parameter 
estimates—(1) the Wald test statistic, (2) the likelihood ratio test, or (3) the Lagrange 
Multiplier test. We consider them in turn. 

The Wald test 

The Wald test is the most commonly used test in econometric models. Indeed, it is the 
one that most statistics students learn in their introductory courses. Consider the 
following hypothesis test: 

(2.9) 

 



Quite often in these test researchers are interested in the case when β = 0 —i.e., in 
testing if the independent variable’s estimated parameter is statistically different from 
zero. However, β can be any value. Moreover, this test can be used to test multiple 
restrictions on the slope parameters for multiple independent variables. In the case of a 
hypothesis test on a single parameter, the t-ratio is the appropriate test statistic. The t-
statistic is given by  

 

where k is the number of parameters in the mode that are estimated. The F-statistic is the 
appropriate test statistic when the null hypothesis has restrictions on multiple 
parameters. See Cameron and Trivedi (2005: 224-231) for more detail on this test. 
According to Hauck and Donner (1977) the Wald test may exhibit perverse behavior when 
the sample size is small. For this reason this test must be used with some care. 

The likelihood ratio test 

The likelihood ratio test is based on a comparison of the maximum log of likelihood 
function for the unrestricted model with the maximum log of likelihood function for the 



model with the restrictions implied by the null hypothesis. Consider the null hypothesis 
given in (9). Let L( β ) be the value of the likelihood function when β 1 be the value of the 

likelihood function when is restricted to being equal to β and be the value of the 
likelihood function when there is no restriction on the value of β. Then the appropriate 
test statistic is  

 

The likelihood ratio statistic has the Chi-square distribution χ 2 ( r ), where r is the number 
of restrictions. Thus, using a likelihood ratio test involves two estimations—one with no 
restrictions on the model and one with the restrictions implied by null hypothesis. Since 
the likelihood ratio test does not appear to exhibit perverse behavior with small sample 
sizes, it is an attractive test. Thus, we will run through an example of how to execute the 
test using Stata. The example we are using is from the Stata manual, volume 2, pp. 353-
355. 

Example 2.1. Underweight births. 
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In this model we estimate a model that explains the likelihood that a child will be born 
with a weight under 2,500 grams (low). The eight explanatory variables used in the model 
are listed in Table 1. The model to be estimated is: 

(2.10) 

 

Also, we want to test the null hypothesis that the coefficients on Age, Lwt, Ptl, and Ht are 
all zero. The first step is to estimate the unrestricted regression using the command: 

. logistic low age lwt raceb raceo smoke ptl ht ui  

Variable 
name 

Definition 

Age Age of mother 

Lwt Weight at last menstrual period 



RaceB Dummy variable =1 if mother is black; 0 otherwise 

RaceO Dummy variable = 1 if mother in neither white or black; 0 otherwise 

Smoke Dummy variable = 1 if mother smoked during pregnancy; 0 otherwise 

Ptl Number of times mother had premature labor 

Ht Dummy variable = 1 if mother has a history of hypertension; 0 otherwise 

Ui 
Dummy variable = 1 there is presence in mother of uterine irritability; 0 
otherwise 

Ftv Number of visits to physician during first trimester 

Table 2.1. Definition of the explanatory variables. 

The results of this estimation are shown in column 2 of Table 2. Next we save the results 
of this regression with the command: 

. estimates store full  



where “full” is the name that we will refer to when we want to recall the estimation 
results from this regression. Now we estimate the logistic regression with the omitting 
the variables whose parameters are to be restricted to being equal to zero: 

. logistic low raceb raceo smoke ui  

The results of this estimation are reported in column 3 of Table 2. Finally we run the 
likelihood ratio test with the command: 

. lrtest full .  

Notice that we refer to the first regression with the word “full” and to the second 
regression with the second period. The results of this command are as follows: 

Likelihood-ratio test LR chi2(4) = 14.42  

(Assumption: . nested in full) Prob > chi2 = 0.0061  

The interpretation of these results is that the omitted variables are statistically significant 
at the 0.6 percent level.[12]  

Explanatory variable Unrestricted Restricted 



model model 

Age of mother -0.9732636 — 

  (-0.74)   

Weight at last menstrual period -0.9849634 — 

  (-2.19)   

Dummy variable =1 if mother is black; 0 otherwise 3.534767 3.052746 

  (2.40) (2.27) 

Dummy variable = 1 if mother in neither white or black; 
0 otherwise 

2.368079 2.922593 

  (1.96) (2.64) 

Dummy variable = 1 if mother smoked during 
pregnancy; 0 otherwise 

2.517698 2.945742 

  (2.30) (2.89) 



Number of times mother had premature labor 1.719161 — 

  (1.56)   

Dummy variable = 1 if mother has a history of 
hypertension; 0 otherwise 

6.249602 — 

  (2.64)   

Dummy variable = 1 if there is presence in mother of 
uterine irritability; 0 otherwise 

2.1351 2.419131 

  (1.65) (2.04) 

Log likelihood -100.724 -107.93404 

Number of observations 189 189 

pseudo-R2  0.1416 0.0801 

Table 2.2. Estimation results for (2.10). 

Note: Parameter estimates are odds ratios; z statistics are shown in parentheses. 



 

The Lagrange multiplier test 

The intuition behind the Lagrange multiplier (LM) test (or score test) is that the gradient 
of the log of the likelihood function is equal to zero at the maximum of the likelihood 
function.[13] If the null hypothesis in (2.9) is correct, then maximizing the log of the 
likelihood function for the restricted model is equivalent to maximizing the log of the 
likelihood function with the constraint specified by the null hypothesis. The LM test 
measures how close the Lagrangian multipliers of this constrained maximization problem 
are to zero—the closer they are to zero, the more likely that the null hypothesis can be 
rejected. 

Economists generally do not make use of the LM test because the test is complicated to 
compute and the LR test is a reasonable alternative. Thus, as a practical matter the Wald 
test and the LR test are reasonable alternative test statistics to use to test most linear 
restrictions on the parameters. Moreover, since the calculations are relatively easy, it 
may make sense to calculate both test statistics to be sure they produce consistent 
conclusions. However, when the sample size is small, the LM test probably is preferred. 



Goodness-of-fit measures 

The standard measure of goodness-of-fit in the linear OLS regression model is R 2 . No 
such measure exists for non-linear models like the logit model. Several potential 
alternatives have been developed in the literature and are known collectively as pseudo-
R2. Many of these measures are discussed in McFadden (1974), Amemiya (1981), and 
Maddala (1983). In case any reader really cares about the pseudo-- R 2 , a practical 
approach is to report the value that the computer program reports. 

One addition measure of goodness-of-fit is a measure called percentage correctly 
predicted. This variable is computed in one of several ways. One way is to use the 
observed values of the independent variable to forecast the probability the dependent 
variable equal one. Then, if the predicted probability is above some critical value, you 
assume that the predicted value of the dependent value is one. If it is below this value, 
you assume the predicted value of the dependent variable is zero. Then you construct a 
table that compares the predicted values of the dependent variable with the actual value 
of the dependent as shown in Table 3. 

  Predicted 



Actual 
  

Y = 0  n 00  n 01  

Y = 1  n 10  n 11  

Table 2.3. Percent correctly predicted. 

The percentage correctly predicted is equal to the sum of the diagonal elements, that is, n 

00 + n 11 , over the sample size. The main problem with this measure is that the choice of 
the cutoff point is arbitrary. Traditionally, a cutoff point used has been 0.5. However, 
there is no reason why this cutoff is the appropriate one. Cramer (2003, 67) suggests that 

a more appropriate cutoff point is the sample frequency—that is, 
The bottom line is that the uncertainty about the proper choice of cutoff point is a major 
problem with using the percentage correctly predicted as a measure of goodness-of-fit.  

Additional notes on binary variable models 



One of the key choices in the various binary variable models involves the cumulative 
distribution function. The Table 4 shows the four commonly used binary outcome models 
along with the cumulative distribution functions: 

Model 
Probability 
density function 

Cumulative distribution 
function 

Marginal effects, 

 

Logit Logistic 
 

 

Probit Normal* 
 

 

Linear probability   
 

β j  

Complementary 
log-log 

  
 

 



Table 2.4. Commonly used binary outcome models. 

* ϕ( ⋅ ) is the probability density function (pdf) of the normal distribution.  

The logit, probit, and complementary log-log models are symmetric around zero and 
restrict 0 ≤ p ≤ 1. The linear does not impose either of these restrictions. Use of the 
complementary log-log regression sometimes is recommended when the sample is 
skewed such that there is a high proportion of ones and zeros. In general, economists use 
either the logit or probit models a majority of the time. Interestingly, there is no need to 
use robust estimation techniques for the logit and probit models if they are correctly 
specified. If use of the vce(robust) option produces substantially different parameter 
estimates than the estimates without the robust option, then it is likely that the models 
are misspecified. The linear model is inherently heteroskedastistic, implying that the 
vce(robust) option should be used. 

The parameter estimates are comparable across the first three models in Table 4. In 
particular,  

1.  



2.  

3.  

Example 2.2. Supplementary health insurance coverage. 

These data come from wave 5 (2002) of the Health and Retirement Study (HRS), a panel 
survey sponsored by the National Institute of Aging. The sample is restricted to Medicare 
beneficiaries; there are 3,206 observations. The elderly can obtain supplementary 
insurance coverage either by purchasing it themselves or by joining employer-sponsored 
plans. The data is in the file Example.xls. The variables included are listed in Table ?. 

Variable Definition 

Binary variables    

(ins 
= 1 if individual has purchased supplementary insurance from any 
source 



retire = 1 if individual is retired 

hstatusg 
= 1 if individual assess his/her health status either as good, very 
good, or excellent 

married = 1 if married 

hisp = 1 if hispanic 

female = 1 if female 

white = 1 if white 

sretire = 1 if a retired spouse is present in household 

Continuous 
variables  

  

age Age of individual in years 

hhincome Household income 

educyear Years of education 

chronic Total number of chronic conditions 



adl Number of limitations on daily activity (up to 5) 

Table 2.5. Definition of the variables used in Example 2. 

Stata commands 

Place the data into the editor and then create a list of the independent variables. Now 
create a new variable equal to the log of income: 

.generate linc = ln(hhinc)  

[notice that 9 observations are eliminated.] 

Create list of "extra" variables in order to shorten future commands: 

. global extralist linc female white chronic adl sretire  

Summarize the variables in order to check for obvious typos (output is suppressed): 

.summarize ins retire $xlist $extralist  

Estimate logit regression (output is shown in Figure 3): 

.logit ins retire $xlist  



Figure 2.3. Stata regression output. 

 

 



Estimate and save results from several models (the Stata command "quietly" suppresses 
the output from the command): 

. estimates store blogit  

.quietly probit ins retire $xlist  

.estimates store bprobit  

.quietly regress ins retire $xlist  

.estimates store bols  

.quietly logit ins retire $list, vce(robust)  

. estimates store blogitr  

.quietly probit ins retire $xlist, vce(robust)  

.estimates store bprobitr  

.quietly regress ins retire $xlist, vce(robust)  

.estimates store bolsr  

We can create table for comparing the models (output is suppressed): 



.estimates table blogit blogitr bprobit bprobitr bols bolsr, t stats(N ll) b(%8.4f) 
stfmt(%8.2f)  

We now test for the presence of interaction variables: 

.generate age2 = age*age  

.generate agefem = age*fem  

.generate agewhite = age*white  

.generate agechronic = age*chronic  

.global intlist age2 agefem agewhite agechronic  

.quietly logit ins retire $xlist $intlist  

.test $intlist  

( 1) [ins]age2 = 0 

( 2) [ins]agefem = 0 

( 3) [ins]agewhite = 0 

( 4) [ins]agechronic = 0 

chi2( 4) = 7.45 



Prob > chi2 = 0.1141 

Likelihood ratio test 

.quietly logit ins retire $xlist $intlist  

.estimates store B  

.quietly logit ins retire $xlist  

.lrtest B  

Likelihood-ratio test LR chi2(4) = 7.57 

(Assumption: . nested in B) Prob > chi2 = 0.1088 

Comparison with using the logistic command: 

. logistic ins retire $xlist  

The marginal effects at the mean will yield more useful results when the model is non-
linear: 

.quietly logit ins retire $xlist  

.mfx  

Let’s put the table comparing parameter estimates into a cleaned up table: 



  Logit 
Robust 
Logit 

Probit 
Robust 
Probit 

OLS 
Robust 
OLS 

Individual retired  0.1969 0.1969 0.1184 0.1184 0.0409 0.0409 

  (2.34) (2.32) (2.31) (2.30) (2.24) (2.24) 

Age of individual  -0.0146 -0.0146 -0.0089 -0.0089 -0.0029 -0.0029 

  (-1.29) (-1.29) (-1.29) (-1.32) (-1.20) (-1.25) 

Health status 0.3123 0.3123 0.1977 0.1977 0.0656 0.0656 

  (3.41) (3.40) (3.56) (3.57) (3.37) (3.45) 

Household income 0.0023 0.0023 0.0012 0.0012 0.0005 0.0005 

  (3.02) (2.01) (3.19) (2.21) (3.58) (2.63) 

Years of education 0.1143 0.1143 0.0707 0.0707 0.0234 0.0234 

  (8.05) (7.96) (8.34) (8.33) (8.15) (8.63) 

Individual married 0.5786 0.5786 0.3623 0.3623 0.1235 0.1235 



  (6.20) (6.15) (6.47) (6.16) (6.38) (6.62) 

Individual is an 
Hispanic 

-0.8103 -0.8103 -0.4731 -0.4731 -0.1210 -0.1210 

  (-4.14) (-4.18) (-4.28) (-4.36) (-3.59) (-4.49) 

Intercept -1.7156 -1.7156 -1.0693 -1.0693 0.1271 0.1271 

  (-2.29) (-2.36) (-2.33) (-2.40) (0.79) (0.83) 

Sample size 3,206 3,206 3,206 3,206 3,206 3,206 

Log of the likelihood 
function  

-
1994.88 

-1994.88 
-
1993.62 

-1993.62 
-
2104.75 

-2104.75 

Table 2.6. Comparison of Logit, Probit and OLS regressions with Insurance as the 
dependent variable.  

(t-ratio or z-values in parentheses.) 

As a last exercise use the following commands to generate a graph of the predicted 
values: 



. quietly logit ins hhincome  

. predict plogit, pr  

. quietly probit ins hhincome  

. predict pprobit, pr  

. quietly regress ins hhincome  

. predict pols, xb  

. summarize ins plogit pprobit pols  

. sort hhincome  

.twoway (scatter ins hhincome, msize(vsmall)) (line plogit hhincome, lcolor(blue) lpattern  

> (solid)) (line pprobit hhincome, lcolor(red) lpattern(tight_dot)) (line pols hhincome,  

> lcolor(green) lpattern(longdash_shortdash)), ytitle(Predicted Probability) 
xtitle(Household income)  

Note: save file as a .tif file if you want to insert the graph directly into a word file. 

 



Exercises 

Exercise 2.1.1. 

The determinants of physician advice. Physicians are expected to give lifestyle advice as a 
part of their normal interaction with their patients. Sometimes doctors choose not to 
comment on a patient’s lifestyle because they do not have time for personal comments, 
they feel the advice will be unwelcome, they feel that lifestyle choices are not any 
business of the physician, they find the discussion of lifestyle issues to be embarrassing, 
or they are not aware of the patient’s actual lifestyle choices. In this project we are 
interested in understanding when physicians choose to give advice concerning the 
consumption of alcohol. 

 

The MS Excel file ktdata contains the responses to the 1990 National Health Interview 
Survey core questionnaire and special supplements from 2,467 males who were current 
drinkers in 1990. Individuals who are lifetime abstainers or who are former drinkers who 
have not consumed any alcohol in the past year are excluded from the sample. Table 7 
contains the names and definitions of the variables collected in the survey. 

m34543/ktdata.xls


Variable Definition 

Drinks Total number of drinks taken in the past two weeks 

Advice Did your physician give you advice about alcohol consumption? Yes = 1, No = 0 

Income Monthly income in $1,000 (there are 5 missing values denoted by a “.”) 

Age30 Dummy variable equal to 1 if 30 < Age ≤ 40and 0 otherwise 

Age40 Dummy variable equal to 1 if 40 < Age ≤ 50 and 0 otherwise 

Age50 Dummy variable equal to 1 if 50 < Age ≤ 60 and 0 otherwise 

Age60 Dummy variable equal to 1 if 60 < Age ≤ 70 and 0 otherwise 

AgeGT70 
Dummy variable equal to 1 if individual’s age is greater than 70 and 0 
otherwise 

Educ Number of years of schooling (0 to 18) 

Black Dummy variable equal to 1 if the individual is a black and 0 otherwise 

Other Dummy variable equal to 1 if the individual is non-white and non-black and 0 



otherwise 

Married Dummy variable equal to 1 if the individual is married and 0 otherwise 

Widow Dummy variable equal to 1 if the individual is a widow and 0 otherwise 

DivSep 
Dummy variable equal to 1 if the individual is either divorce or separated and 
0 otherwise 

Employed 
Dummy variable equal to 1 if the individual is currently employed and 0 
otherwise 

Unemploy 
Dummy variable equal to 1 if the individual is currently unemployed and 0 
otherwise  

NE 
Dummy variable equal to 1 if the individual lives in the Northeast US and 0 
otherwise 

MW 
Dummy variable equal to 1 if the individual lives in the Midwest US and 0 
otherwise 

South Dummy variable equal to 1 if the individual lives in the South and 0 otherwise 

Medicare Dummy variable equal to 1 if the individual receives Medicare and 0 



otherwise 

Medicaid 
Dummy variable equal to 1 if the individual receives Medicaid and 0 
otherwise 

Champus 
Dummy variable equal to 1 if the individual has military insurance and 0 
otherwise 

HlthIns 
Dummy variable equal to 1 if the individual has health insurance and 0 
otherwise 

RegMed 
Dummy variable equal to 1 if the individual has a regular source of medical 
care and 0 otherwise 

DRI 
Dummy variable equal to 1 if the individual sees the same doctor and 0 
otherwise 

MajorLim 
Dummy variable equal to 1 if the individual has limits on major daily activity 
and 0 otherwise 

SomeLim 
Dummy variable equal to 1 if the individual has limits on some daily activity 
and 0 otherwise 

Diabetes Dummy variable equal to 1 if the individual has diabetes and 0 otherwise 



Heart 
Dummy variable equal to 1 if the individual has a heart condition and 0 
otherwise 

Stroke Dummy variable equal to 1 if the individual has had a stroke and 0 otherwise 

Table 2.7. Definition of the variables in the Excel worksheet ktdata. 

You are to estimate a logit regression of the form: where 
p is the probability that a patient received advice about his level of consumption of 
alcohol and x i are the explanatory variables.  

Provide the following information: 

1. Make a table of the means of all of the variables. 

2. Offer an economic justification for the inclusion of each explanatory variable you use 
in your regression (including a prediction of its expected sign). 



3. Make a table reporting the results of the estimation of (1) an OLS linear estimation, (2) 
a probit estimation, and (3) a logit estimation. Also include a column with the ratio of 
each of the logit parameters to the probit parameter. Do not use the abbreviated 
name of the explanatory variables in the table. 

4. Present a table of results of a logit model with all of the variables and with whatever 
other models you feel are suggested by your empirical results. Discuss the results of 
the estimation and what the estimation tells you about how physicians decide 
whether to give advice on alcohol consumption to their male patients. 

Exercise 2.1.2. 

The Supply of Married Women in the Workforce. We are interested in understanding the 
decision of married women to enter the labor force. We have available two data sets, one 
using data from the United States and the other using data from Portugal. You are to 
estimate a logit regression for married women for each of the two data sets. 

 

Variable Definition 



Working dummy variable = 1 if a married woman works during the year 

Fulltime dummy variable = 1 if a married woman works more than 1000 hours in a year 

Other the other household income in $100 (not in $1000) 

Age age of the wife 

Educ education years of the wife 

C0005 number of children for ages 0 to 5 

C0613 number of children for ages 6 to 13 

C1417 number of children for ages 14 to 17 

NW 1 if non-white, and 0 otherwise. 

HOwn 1 if the home is owned by the household, and 0 otherwise 

HMort 1 if the home is on mortgage, and 0 otherwise 

Prof 1 if the husband is manager or professional, and 0 otherwise 

Sales 1 if the husband is sales worker or clerical or craftsman, and 0 otherwise 



Farm 1 if the husband is farm-related worker 

Unem local unemployment rate in % 

Table 2.8. US Data on Married Women. 

Data Set 1: The data for this project are in the MS Excel file FLABOR. These data are 
observations on married females drawn from the 1987 wave of Michigan Panel Study of 
Income Dynamics (PSID). The data set has observations for 3,382 individuals.  

Data Set 2: These data are from Portugal. The data set is a sample from Portuguese 
Employment Survey, from the interview year 1991, and has been provided by the 
Portuguese National Institute of Statistics (INE). The data are in the Excel file Martins. 
This file is organized into seven columns, corresponding to seven variables, with 2,339 
observations. 

Variable Definition 

Works Dummy variable equal to 1 if the woman works, 0 otherwise 

m34543/FLABOR.xls
m34543/Martins.xls


Child18 The number of children younger than 18 living in the family 

Child03 The number of children younger than 3 living in the family 

Age The woman’s age 

LogWomanWageRate The log of women's hourly wage rate (measured in escudos) 

Education 
The women's educational level, measured in years of 
schooling 

LogHusbandMonthlyWages 
The log of the husband's monthly wage (measured in 
escudos) 

Table 2.9. The Portuguese data set. 

Answer the following questions: 

1. What factors other than wage levels determine the number of hours that a wife will 
spend in the work force? Remember to use economic theory in answering this 
question. 



2. Clearly, one of the major factors in determining if a wife will enter the labor force is 
the wage level she can earn. The US data set does not include the wife’s wage level. Is 
there any other variable in the data set that economic theory suggests will be a good 
proxy for wage levels? 

3. The variable Age is a proxy for the work (or life) experience of a woman. We would 
expect that its effect on the probability that a woman will enter the labor force will be 
non-linear—that is, its marginal impact will be positive and decreasing. This reasoning 
suggests that you should use Age and Age2 as explanatory variables. Can the same 
reasoning be used with the variable Education? What are your expectations about the 
signs of the parameters of these two explanatory variables? The same reasoning can 
be used about the number of years of education. 

4. Estimate and report in a table the following two logit regressions: (1) US women enter 
the labor force at all and (2) US women enter the labor force for at least 1,000 hours if 
they enter the labor force,. In each of these cases, compare your results to a linear 
model. 

5. The Portuguese data set has a different problem. We have reported the wage rate of 
women who are working, but no wage level for women who are not working. We will 
get around this problem by first using the data for women who actually work to 



estimate the relationship between wage rates and the age and education of the 
women. We will then use this relationship to predict the wage rate for both women 
who do work and women who do not work. We will then use this predicted wage rate 
data series as an independent variable in a logit model explaining the probability that 
a married woman will enter the labor force. When completing the logit regression be 
sure that you separate all of the children in a family into those 3 and under and those 
between 4 and 18. Also, include the years of education in this regression to see if a 
Portuguese married woman’s taste for participation in the labor force increases or 
decreases with the level of her education. 

6. Is it reasonable to compare your results for the two countries? 
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Introduction 

This module offers a brief introduction of some of the issues that arise in the analysis of 
time-series. Most of the topics covered are those that we attacked first by statisticians 
and economists. As such they do not demand the more sophisticated tools used by the 
more modern approaches to time-series. In spite of these shortcomings, they should give 
you some understanding of the issues that arise with the use of times-series in 
econometric analyses. One final note of explanation is necessary. These notes are 
designed to give you a brief introduction to how Stata handles time-series data. These 
notes are not a substitute for reading the Stata manual, completing a forecasting course, 
or reading standard texts on the rather complicated field. 

Time-series analysis in Stata  

Throughout this module we work with US macroeconomic data included in the MS Excel 
file Macro data.xls. The variables are real level of investments (RINV), real gross national 
product (RGNP), and real interest rate (RINTRATE). The real interest rate is approximated 
by the difference between the nominal interest rate and the rate of change of the price 
index from the previous year. The data are for the years 1963 to 1982. You can replicate 
the analysis done here by copying this data set into a Stata file. 

m34544/Macro%20data.xls


The first step after entering the data set into Stata, is to declare that the data set is a 
time-series. The command to do this is: 

. tsset year  

The data set can be broken into any number of time periods including daily, weekly, 
monthly, quarterly, halfyearly, yearly and generic.[14]  

Assume that we want to estimate the following regression: 

(2.11) R I N V t = β 0 + β 1 R G N P t + β 2 R I N T R A T E t + ε t  

using the data set in the appendix. Figure 1 shows this regression command and the 
resultant output. 

Figure 2.4.  



 

OLS estimates for Equation (1). 

 

On the surface the estimates seem “reasonable” because the signs on the two 
explanatory variables are what theory predicts they should be and the parameter for real 
GNP is statistically different from zero. However, an examination of the residuals shown 
in Figure 2 suggest that the error terms might exhibit autocorrelation. 



Figure 2.5.  

 

The residuals appear to be autocorrelated.  



 

There are several issues that arise here. First, what sort of models can we use to account 
for autocorrelation? Second, what sorts of tests exist for detecting the existence of 
autocorrelation? We begin with the first of these questions by introducing the concept of 
first-order autocorrelation. Consider the following model: 

(2.12) y t = β 0 + β 1 x t + ε t .  

We say that this model exhibits first-order autocorrelation if the error terms can be 
written as: 

(2.13) ε t = ρ ε t − 1 + μ t ,  

where Equation (3) implies that the error terms in (2) are correlated with 
each other. It is rather easy to show that, while the estimates of the unknown parameters 
are unbiased, the estimates of the standard errors are biased—downward if 1 > ρ > 0 and 
upward if − 1 < ρ < 0. This conclusion holds as long as the source of the autocorrelation is 
due to (3). If, on the other hand, the source of autocorrelation among the error terms in 
(2) is due to omitted explanatory variables (whose effects are absorbed in the error 
term), we have a potentially more serious problem. In particular, if the omitted 



explanatory variables are correlated with the included explanatory variables (as is often 
true in time-series), then the estimates of the unknown slope parameters are also biased. 

For the moment we will assume that Equations (2) and (3) are true representations of the 
world. What then can we do to estimate (2)? What we need to do is find a way to 
transform (2) so that the error term of whatever regression we estimate does not exhibit 
autocorrelation. In time period t − 1 we have: 

(2.14) y t − 1 = β 0 + β 1 x t − 1 + ε t − 1 .  

Multiply (4) by ρ to get: 

(2.15) ρ y t − 1 = ρ β 0 + ρ β 1 x t − 1 + ρ ε t − 1 .  

Now subtracting (5) from (4) gives:  

 

or, equivalently,  

 



Let  

y t 
∗ = y t − 1 − ρ y t − 1 ,  

β 0 ∗ = β 0 ( 1 − ρ ),  

and 

x t 
∗ = x t − 1 − ρ x t − 1 .  

Remember that (3) implies that μ t = ε t − ρ ε t − 1 . Thus, we have: 

(2.16) y t 
∗ = β 0 ∗ + β 1 x t 

∗ + μ t ,  

where Thus, we have a regression for which the OLS estimates will be BLUE 
(Best Linear Unbiased Estimator) if we only knew the true value of ρ.  

Cochran and Orcutt [1949] use this algebra to suggest one way to estimate (6). The 
estimation entails several steps. First, you use OLS to estimate (2). Second, you estimate 
(3) using the residuals from the first stage to approximate ε t . This regression gives an 
estimate of ρ. In the third step, you use the estimate of ρ to construct estimates of y t 

∗ 
and x t 

∗ . In the fourth step, you use the estimates of y t 
∗ and x t 

∗ to estimate (6); this will 



yield new estimates of β 0 and β 1 . You then repeat step (2) using these new estimates of 
β 0 and β 1 to calculate the residuals and then repeat with steps (3) and (4). You continue 
the process until the estimate of ρ does not change anymore (i.e., until the change in the 
estimate of ρ is less than some value chosen by the researcher). There are a multitude of 
alternative ways of estimating ρ. [See Greene (1990): Chapter 15 for a full discussion of 
these methods.] Once you have an estimator for ρ, there exist two major ways of 
completing the estimation—the Cochran-Orcutt procedure described above and the 
Prais-Winsten (1954) estimator. The latter estimation procedure does not involve 
dropping the first observation (as does the Cochran-Orcutt) estimator. In large samples 
these two estimation techniques are likely to be very similar. In small samples the two 
techniques may produce estimates that are substantially different.  

We now turn to the issue of detecting the existence of autocorrelation. In what follows 
we focus mainly on the detection of first-order autocorrelation as shown in Equation (3). 
We can use the Durbin-Watson test to see if our suspicions are correct. The Durbin-
Watson statistic tests the hypothesis: 

(2.17) 

 



Figure 2.6.  

 



Limiting distributions for the Durbin-Watson statistic. 

 

The details of the test statistic can be found in any econometrics textbook and need not 
detain us here. What you need to know about the DW-statistic are (1) it has a mean value 
of 2; (2) because its distribution lies between two limiting distributions, we need to look 
at two critical values. For this reason there are two critical values—one for each of the 
limiting distributions. Figure 3 illustrates the probability distribution function (pdf) for the 
Durbin-Watson statistic. The true pdf lies somewhere between the blue pdf and the red 
pdf. What is shown in the figure is the point below which, say, 5 percent of the 
distribution lies for each distribution. The true critical point lies somewhere between d L 

and d U These values are relevant to testing the null hypothesis of no autocorrelation 
against the alternative hypothesis of positive autocorrelation ( i. e., ρ > 0 ).  

If d < d L , we can reject the null hypothesis of no autocorrelation; if d U < d < 4 − d U , we 
cannot reject the null hypothesis; and if d L < d < d U , the results of the test are uncertain. 
Moreover, since the distributions are symmetric around 2 and between 0 and 4, the 
critical values for the alternative hypothesis of negative autocorrelation ( i. e., ρ > 0 ) are 
4 minus either the upper or lower critical values, as shown in Figure 3. Critical values for 



the Durbin-Watson statistic can be found in the appendices of most econometric 
textbooks.  

Figure 2.7.  

 

Command for calculating the Durbin-Watson statistic in Stata.  

 

The command for the test and the resultant DW-statistics for the estimate of Equation (2) 
are shown in Figure 4. The 5 percent level critical values for the Durbin-Watson statistic 
for a sample size of 19 with two parameters (less the intercept) estimated are 1.074 and 
1.536—if the observed value of the DW-statistic is between 1.536 and 2.464, we can 
accept the null hypothesis that the residuals do not exhibit autocorrelation. Our value of 
1.32 falls in the uncertain region where we are not sure if we can or cannot reject the null 
hypothesis. 



At this point we can try the Cochran-Orcutt estimate. Figure 5 reports the results of using 
the Cochran-Orcutt estimation procedure. Notice that it took 7 iterations for the estimate 
of ρ to converge. If we use the Prais-Winsten estimation technique, we get the results 
shown in Figure 6. It is reassuring to see that the two estimation techniques do not yield 
estimates of the standard errors that are substantially different from each other. 

Figure 2.8.  



 

Estimation of Equation (1) using the Cochran-Orcutt method.  



 

Figure 2.9.  



 

Estimation of Equation (1) using the Prais-Winsten estimator.  



 

Using either the Cochran-Orcutt or the Prais-Winstn estimator is dependent on the 
assumption that the error terms exhibit first-order autocorrelation. Unfortunately, there 
is no particular reason (from a theoretical viewpoint) to believe in this assumption. Why, 
for instance, couldn't the error terms of Equation (2) exhibit second-order autocorrelation 
of the form: 

(2.18) ε t = ρ 1 ε t − 1 + ρ 2 ε t − 2 + μ t ?  

There is a more troubling possible explanation for the low Durbin-Watson statistic: the 
model may be misspecified. In particular, there may be important explanatory variables 
omitted from the regression. These omitted explanatory variables may exhibit 
autocorrelation and, thus, may be the source of autocorrelation in the error term. If the 
omitted explanatory variables are correlated with the included explanatory variables, 
then the parameter estimates are biased. The large difference in the estimate of 
parameter for real interest rates for the OLS regression and the Cochran-Orcutt estimate 
is suggestive of model misspecification.[15]  

More modern time-series models 



ARMA models 

The model we described above is assumed to have first-order autoregressive error 
disturbances. Such a process is referred to as AR(1). The error structure in (8) is AR(2). If 
we apply this concept to a data series, we would call the following an AR(p) process: 

(2.19) 

 

Another approach available to us is to think of a data as a weighted average of some 
error terms that are assumed to have a mean of zero, have a fixed variance, and be 
uncorrelated over time[16]: 

(2.20) 

 

A data series exhibiting this pattern is called a moving average process or MA(q). The 
error tern is known in the literature as white noise. A data series that has both 



autoregressive and moving average characteristics is call an autoregressive moving 
average (ARMA) series; an ARMA(p, q) is: 

(2.21) 

 

It may help to show two series constructed to have different ARMA patterns. Figure 7 
shows one of the potential time series generated by the ARMA(2,1) process: 

(2.22) y t = 0.67y t − 1 + 0.33y t − 2 + 0.1ε t + 0.05ε t − 1 .  

Figure 2.10.  



 

Graph of a ARMA(2,1) process.  

 



Figure 8 shows one potential time series generated by the ARMA(1,1) process: 

(2.23) y t = 0.67y t − 1 + 0.1ε t + 0.05ε t − 1 .  

Figure 2.11.  



 

Graph of a ARMA(1,1) process.  

 



Stationarity 

Consider the time-series y t . We define this stochastic process as covariance stationary if 

(2.24) 

 

(2.25) 

 

(2.26) 

 

The last term, γ s , is known as the autocovariance. A time-series is defined to be 
covariance stationary if its mean and all its autocovariances are unaffected by a change of 
time origin. We define the autocorrelation between y t and y t − s as: 

(2.27) 

 



Quite often you can create a stationary time-series from a non-stationary time-series by 
taking the first-differences of the non-stationary series. If the first difference does not 
produce a stationary series, then one continues to take first differences until you find a 
stationary series. For instance, the time-series shown in Figure 7 appears to be non-
stationary. The first differences of this series is shown in Figure 9. Using the imperfect 
eye, it would appear that the first differences of (13) is stationary. However, we really 
cannot tell anything for sure from the graph of a data set. We need to use the restrictions 
of the parameters derived in advanced texts to determine if a data set is stationary.[17]  

Figure 2.12.  



 

First-differences of the time-series of the ARMA(2,1) data.  

 



The autocorrelation function 

One of the major ways to identify the structure of a time series is to look at the 
autocorrelation function. The autocorrelation function, ρ s , is the correlation between y t 

and y t − s . Stata uses the following formula to estimate it [StataCorp: p. 60] for a time-
series:  

The researcher then has to compare the actual autocorrelation function with the 
theoretical autocorrelation for comparable data series. To see to use the autocorrelation 
function consider the following five time series[18]: 

(2.28) 

 

(2.29) AR(1): y t = 0.7y t − 1 + ε t ,  

(2.30) AR(1): y t = − 0.7y t − 1 + ε t ,  



(2.31) MA(1): y t = ε t − 0.7ε t − 1 ,  

(2.32) ARMA( 2, 1 ): y t = 0.7y t − 1 − 0.49y t − 2 + ε t , and  

(2.33) ARMA( 1, 2 ): y t = − 0.7y t − 1 + ε t − 0.7ε t − 1 .  

Each of these functions has a theoretical autocorrelation function; graphs of these 
autocorrelation functions are shown in the left column of Figure 10.[19]  

Figure 2.13.  



 



Examples of autocorrelation and partial autocorrelation functions.  

 

There is additional function we can use to help identify the nature of a time-series. 
Consider the following regressions: 

(2.34) y t 
∗ = ϕ 11 y ∗ t − 1 + e t , y t 

∗ = ϕ 21 y ∗ t − 1 + ϕ 22 y ∗ t − 2 + e t , etc.,  

where  

Our interpretation of the ϕ ii parameters is that they are the correlation between y t and y 

t − i controlling for all of the y j where j = 2,…,( i − 1 ). Because these correlation coefficients 
control for values of y’s observed between y t and y t − i , they are known as the partial 
autocorrelations. The theoretical partial autocorrelations are shown in the right column 
of Figure 10. Stata uses the command .corrgram varname to calculate the 
autocorrelations and partial autocorrelations for the time-series varname. Figure 11 
shows the output when using this command on the real levels of investment. The 
autocorrelation function for this data set looks like the theoretical one for an AR(1) 
process. However, the partial autocorrelation function does not look like any of the 



partial autocorrelation functions shown in Figure 11. Thus, it would not be safe to assume 
that real investment follows an AR(1) process.  

Figure 2.14.  

 

Autocorrelation and partial autocorrelation functions for real investment.  

 

You can generate prettier graphs of the autocorrelation functions using the .ac varname 
command. For instance, the command .ac rinv generates the graph shown in Figure 12. 
The .pac varname generates a graph for the partial autocorrelations as is shown in Figure 
13. 



Figure 2.15.  

 

Another graph of the autocorrelation function for real investment.  



 

Figure 2.16.  



 

Partial autocorrelations for real investments.  



 

There are several generalizations one can use to help identify the process underlying a 
data series. Table 1 [Enders (2005): p. 85] offers a brief summary of these properties of 
the autocorrelation and partial autocorrelation functions. 

Process Autocorrelation function Partial autocorrelation function 

White-noise All ρ s = 0  All ϕ ss = 0  

AR(1): α 1 > 0  Direct exponential decay ϕ 11 = ρ 1 ; ϕ ss = 0 for s ≥ 2  

AR(1): α 1 > 0  
Decays toward zero. Coefficients 
may oscillate 

ϕ 11 = ρ 1 ; ϕ ss = 0 for s ≥ 2  

AR(p) 
Decays toward zero; Coefficients 
may oscillate 

Spikes through lag p. All ϕ ss = 0 for s > 
p  

MA(1): β > 0  
Negative spike at lag 1. ρ s = 0 for s 
≥ 2  

Oscillating decay: ϕ 11 < 0  

MA(1): β < 0  Positive spike at lag 1. ρ s = 0 for s Decay: ϕ 11 > 0  



≥ 2  

ARMA(1, 1): 
α 1 > 0  

Exponential decay beginning at lag 

1. Sign ρ 1 = sign  

Oscillating decay beginning at lag 1. ϕ 

11 = ρ 1  

ARMA(1, 1): 
α 1 < 0  

Oscillating decay beginning at lag 

1. Sign ρ 1 = sign  

Exponential decay beginning at lag 1. ϕ 

11 = ρ 1 and sign = sign  

ARMA(p, q) 
Decay (either direct or oscillatory) 
beginning at lag q  

Decay (either direct or oscillatory) 
beginning at lag p  

Table 2.10. Properties of the autocorrelation and partial functions. 

Estimation of ARMA models 

The estimation of ARMA models are relatively easy in Stata. The basic command to 
estimate an ARMA model is: .arima depvar [varlist], ar( numlist ) ma( numlist ).[20] The 
first thing to notice in the command that this command can apply to either to a single 
variable or to an equation. If [varlist] is omitted, Stata will produce an estimate of the 



ARMA model for that variable; if the list is included, it will estimate the model with the 
disturbances allowed to have the ARMA structure specified in the command. Figure 14 
reports the estimation of an ARMA model for real investment levels. Notice that we write 
AR(1/2) so that Stata knows to include both the first and second autoregressive term. A 
command of AR(2) would include only the second autoregressive term. In Figure 15 we 
report the ARMA (2, 1) estimation of (1). 

Figure 2.17.  



 



Estimation of an ARMA(2, 2) model of real investment.  

 

Figure 2.18.  



 



Estimation of Equation (1) using an ARMA(2, 1) model.  

 

  ARMA(1, 1) ARMA(2, 1) AR(1) AR(2) MA(1) 

Intercept 185.307 185.6556 184.8208 185.2092 189.373 

  (10.06) (10.83) (9.27) (10.25) (18.09) 

AR (L1) 0.70936 1.76342 0.80307 0.95257 — 

  (3.12) (5.27) (5.51) (4.47) — 

AR (L2) — -0.81715 — -0.18963 — 

    (-3.21)   (-0.91)   

MA (L1) 0.26236 -0.99998 — — 0.87262 

  (0.90) (-0.00)     (2.97) 

Log likelihood -86.1791 -85.8702 -86.47780 -86.21224 -88.48713 



Wald χ2 26.96 422.60 30.36 31.65 8.81 

Probability > χ2 0.0000 0.0000 0.0000 0.0000 0.0000 

Sample size 19 19 19 19 19 

(14,1) 1964-1982 1964-1982 1964-1982 1964-1982 1964-1982 

Table 2.11. Estimation of various ARMA models of real investment. 

The interpretation of these results is not obvious. We check the sensitivity of these 
results by estimation some other models. The results of these estimations are reported in 
Table 2 and Table 3. Based purely on ML tests, it would appear that AR(1) model in Table 
2 is as good as any of the models describing the ARMA structure of real investments. On 
the other hand, the results reported in Table 3 suggests that the ARMA(2, 1) appears to 
be the best model to assume for the disturbance term in the estimates of Equation (1). 

  AR(1) ARMA(1, 1) ARMA(2, 1) 



Intercept -14.49489 -13.37455 -16.89182 

  (-0.26) (-0.23) (-1.68) 

Real GNP 0.17006 0.16912 0.17253 

  (3.96) (3.78) (20.18) 

Real interest rate -0.82517 -0.92007 -0.33692 

  (-0.46) (-0.33) (-0.25) 

AR (L1) 0.27953 -0.02028 0.85619 

  (0.60) (-0.02) (1.46) 

AR (L2) — — -0.70702 

      (-2.64) 

MA (L1) — 0.41151 -1.00000 

    (0.42) (-2.98) 

Log likelihood -78.7868 -78.4279 -72.94569 



Wald χ2  26.30 31.86 980.18 

Probability > χ2  0.0000 0.0000 0.0000 

Sample size 19 19 19 

Sample period 1964-1982 1964-1982 1964-1982 

Table 2.12. Various ARMA estimates of Equation (1). 

Other time-series concepts 

There are a large number of additional time-series methods and issues that are not 
discussed in this module. These topics include, among others, ARCH and GARCH 
estimators, unit roots, the Dickey-Fuller test, and vector autoregression (VAR) models. 
There is no way to do justice to these topics in notes as short as these are. Moreover, it is 
necessary to discuss difference equations (the discrete version of differential equations) if 
one wants to understand many of these topic at anything more than an intuitive level. 
Those interested in these topics should enroll in the forecasting course (Economics 422) 



or, if they cannot, plan to read several textbooks on whatever econometric tool they 
need to understand. 

Exercise 

Exercise 2.2.1. 

This exercise is designed to be sure you know how to use Stata in analyzing time-series 
data sets; there is no economic content in the exercise. The MS Excel file Rabun County 
Temperature Data reports the morning temperature (MornTemp) observed in Rabun 
County, Georgia for every day between March 15, 2005 to November 2, 2008. The data 
set includes a variable “edate” that is the daily date in Stata notation. The data set also 
includes dummy variables for the season, the month, and the year of each observation 
(with the Winter, the December, and the 2008 dummy variables omitted).  

 

a. Create a graph of (a) the data set morntemp, (2) the autocorrelations of morntemp, 
and (3) the partial autocorrelations of morntemp (you will have to set the matrix size to 
some number greater than 43 using the command .set matsize #). 

m34544/Rabun%20County%20Temperature%20Data.xls
m34544/Rabun%20County%20Temperature%20Data.xls


b. Estimate the following models: 

1. ARMA(2,2) for morntemp. 

2. ARMA(2,2) for morntemp as a function of the season dummy variables. 

3. ARMA(2,2) for morntemp as a function of the monthly dummy variables. 

4. ARMA(2,2) for morntemp as a function of the monthly dummy variables and the 
annual dummy variables. 

5. ARMA(1,2) for morntemp as a function of the monthly dummy variables and the 
annual dummy variables. 

6. ARMA(1,1) for morntemp as a function of the monthly dummy variables and the 
annual dummy variables. 

c. Arrange the parameter estimates in a table and comment on them. Include the results 
of estimating (6) using OLS; what is the DW-statistic for this regression? 
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Panel data methods are appropriate when the researcher has available observations that 
are both cross-sectional and time series. For example, one could form a panel data set 
with observations on the per capita consumption of tobacco for a set of OECD countries 
over the period 1960 to 2005. Usually the data is “stacked”—that is, all of the 
observations for country A is listed together in order of year before the data for country 
B, etc. It is also possible to stack the data by year—countries A to Z for 1960, countries A 
to Z for 1961, and so on through 2005. 

Let y it be the per capita consumption of tobacco for country i in year t. We wish to model 
the per capita consumption of tobacco as a function of a set of observable independent 
variables like the price of tobacco, income, restrictions on tobacco advertising, and 
restrictions on tobacco consumption. Of course there are several sources of unobserved 
heterogeneity in that data set. In particular, we might expect that systematic differences 
in consumption patterns would exist due to differences in the customs and mores of the 
various countries in the sample. It also would be reasonable to assume that these 
country-level differences are be relatively stable over time. Additionally, we might expect 
that there would be differences the per capita consumption of tobacco over time due to 
changes in our understanding of the long run health effects of tobacco consumption. 
These changes might affect both (1) the level of consumption and (2) the responsiveness 
of the consumption of tobacco to changes in the explanatory variables. 



In these notes we describe some of the ways of modeling panel data sets and discuss 
some of the issues associated with the estimation of these models. We also discuss how 
to use Stata to analyze panel data sets. We begin by considering some of the types of 
panel data model specifications. 

Model specification 

There are four general specifications of the panel data model available. The differences in 
these models reflect differing assumptions one might make and are listed below. 

1. Slope coefficients are constant and the intercept varies over the individuals: 

(2.35) 

 

2. Slope coefficients are constant and the intercept varies over the individuals and over 
time: 

(2.36) 



 

3. All coefficients vary over individuals: 

(2.37) 

 

4. All coefficients vary over time and individuals: 

(2.38) 

 

These four models can be classified further, depending on whether the researcher 
assumes that the coefficients of the model are fixed or random. However, most research 
in economics is restricted to estimation of (1) and (2) because they strike a reasonable 



balance between being general enough without introducing unnecessary assumptions 
that can render estimation extremely difficult. 

Estimation issues 

Hsiao (2003: 27-30) discusses a convenient example of a panel data model that illustrates 
many of the important issues that arise with panel data. We make use of this example in 
what follows. Assume that we want to estimate a production function for farm 
production in order to determine if the farm industry exhibits increasing returns to scale. 
Assume the sample consists of observations for N farms over T years, giving a total 
sample size of N T . For simplicity, we assume that the Cobb-Douglas production is an 
adequate description of the production process. The general form of the Cobb-Douglas 
production function is: 

(2.39) q = α 0 I 1 β 
1

 ⋯I k 
β 

k ,  

where q is output and I j is the quantity of the j-th input (for example, land, machinery, 
labor, feed, and fertilizer). The parameter, β j , is the output elasticity of the j-th input; the 
farms exhibit constant returns to scale if the output elasticities sum to one and either 
increasing or decreasing returns to scale if they sum to a value greater than or less than 
one, respectively. is the quantity of the j-th input (for example, land, machinery, labor, 



feed, and fertilizer). The parameter, is the output elasticity of the j-th input; the farms 
exhibit constant returns to scale if the output elasticities sum to one and either increasing 
or decreasing returns to scale if they sum to a value greater than or less than one, 
respectively. 

Taking the natural logarithm of (5) gives lnq = lnα 0 + β 1 lnI 1 + ⋯ + β k lnI k . We can re-
write this equation (adding an error term, as well as farm and year subscripts) giving: 

(2.40) y it = β 0 + β 1 x 1i t + ⋯ + β k x kit + ε i t ,  

where y it = lnq it , , β 0 = lnα 0 , x jit = lnI jit , for j = 1,…,k and ε it is an error term. One way to 
account for year and time effects is to assume: 

(2.41) ε it = λ F i + η P t + υ it ,  

where Fi is a measure of the unobserved farm specific effects on productivity and Pt is a 
measure of the unobserved changes in productivity that are the same for all farms but 

vary annually. Substitution of (7) into (6) gives: 
or  



(2.42) 

 

where α it = β 0 + λ F i + η P t . Thus, (8) is equivalent to (2). Moreover, if we assume that η = 
0 , we get  

(2.43) 

 

where α i = β 0 + λ F i . Thus, (9) is equivalent to (1).  

Fixed-effects models 

A natural way to make (9) operational is to introduce a dummy variable, Di , for each farm 
so that the intercept term becomes: 

(2.44) 



 

where D j = 1 if j = i and 0 otherwise. This substitution is equivalent to replacing the 
intercept term with a dummy variable for each farm and letting the farm dummy variable 
“sweep out” the farm-specific effects. In this specification the slope terms are the same 
for every farm while the intercept term is given for farm j by α 1 + α j . Clearly, the 
intercept term for the first farm is equal to just α 1 . This specification is known as the 
fixed effect model and is estimated using ordinary least squared (OLS). We can extend the 
fixed-effects model to fit (8) by including a dummy variable for each time period except 
one. 

In sum, fixed-effects models assume either (or both) that the omitted effects that are 
specific to cross-sectional units are constant over time or that the effects specific to time 
are constant over the cross-sectional units. This method is equivalent to including a 
dummy variable for all but one of the cross-sectional units and/or a dummy variable for 
all but one of the time periods. 

Random-effects models 



An alternative approach to treating the α i in (1) as fixed constants over time is to treat it 
as a random variable. Returning to (1) where the intercepts vary due to individual level 

differences, we have Treating α i as a random variable is 
equivalent to setting the model up as: 

(2.45) 

 

For simplicity we consider only the case when λ t = 0. Thus, the error term for (11) is 

We assume that 

(2.46) 



 

We also assume that all of the elements of the error term are uncorrelated with the 
explanatory variables, x j .  

The key econometric issue is that the presence of α i in the error term means that the 
correlation among the residual of the same cross-sectional unit is not zero; the error 
terms for one farm, for instance, are correlated with each other. Therefore, the error 
terms exhibit heteroskedasticity. The appropriate estimation technique is generalized-
least-squares, a technique that attempts to adjust the parameter estimates (and their 
standard error estimates) for heteroskedasticity and autocorrelation. Alternatively one 
can assume that α i and ε it are normally distributed and use a ML estimator. Hsiao [2003: 
35-41] and Cameron and Trivedi [2005: 699-716] offer greater detail on the estimation of 
the parameters of both the fixed-effects and the random-effects models. It is enough for 



our purposes to accept that the econometricians have found a number of ways to 
estimate these parameters. 

Random-effects or fixed effect model? 

Economists generally prefer to use fixed-effects models. The decision to use fixed-effects 
or random-effects does not matter when T is large because the two methods will yield 
the same estimates of the parameters. When the number of individual categories (N) is 
large and the number of time periods (T) is small, the choice of which model to use 
becomes unclear. Hsiao summarized this somewhat arcane issue with the following 
observations: 

If the effects of omitted variables can be appropriately summarized by a random 
variable and the individual (or time) effects represent the ignorance of the 
investigator, it does not see reasonable to treat one source of ignorance () as fixed 
and the other source of ignorance () as random. It appears that one way to unify the 
fixed-effects and random-effects models is to assume from  

the outset that the effects are random. The fixed-effects model is viewed as one in 
which investigators make inferences conditional on the effects that are in the 
sample. The random-effects model is viewed as one in which investigators make 



unconditional or marginal inferences with respect to the population of all effects. 
There is really no distinction in the “nature (of the effect).” It is up to the investigator 
to decide whether to make inference with respect to population characteristics or 
only with respect to the effects that are in the sample. Hsiao [2003: 43] 

Needless to say, Hsiao’s advice may well leave many researchers without any idea of 
whether to use a random-effects or a fixed-effects model. In your own research I suggest 
that you consult an econometrician for advice. 

There is one problem that arises when using a fixed-effects model. Assume that you have 
a sample of observations for a large number of individuals over a period of years. If you 
use a fixed-effects model, you will not be able to find parameter estimates for any 
variable like race or sex that do not change over the time period of the sample. The 
reason for this limitation is that the time-constant variables are perfectly correlated with 
the dummy variables used for the fixed-effects. A similar problem arises if the fixed-
effects are for years (rather than individuals). You cannot include a variable is constant 
for all individuals in any given year. Quite often the individual-constant (or time-constant) 
variable is not of interest and nothing is lost by not having the parameter estimate. On 
the other hand, the random-effects model does not have this problem because the 
estimation makes use of differences amongst the individuals to estimate a parameter for 



the individual-constant variable.[21] We discuss in the next section an example in which 
this “problem” arises. 

What would be nice is if there were a statistical test that allows us to decide if the 
random-effects model is the appropriate model? The Hausman test offers such a 
statistical test. The Hausman (specification) test exploits the fact that the parameters for 
the random-effects model should be not be statistically different from those found using 
a fixed-effects specification. If one observes a chi-squared value greater than the critical 
value you can conclude that the parameter estimates for the random-effects model are 
statistically different from the parameter estimates for a model using an assumption of 
fixed-effects, then you can conclude that the random-effects model is misspecified. 
Unfortunately, the misspecification could be due to the fact that the fixed-effects model 
is appropriate or it could be due to the unobserved error terms being correlated with the 
included explanatory variables. If the latter is the case, then one might consider 
augmenting the model with an appropriate measure of the part of the unobserved effect 
that is correlated with the error term. What we are describing is that same thing that 
happens when omitted variables are correlated with the error term—the parameter 
estimates are biased. We include an example of how to use Stata to perform the 
Housman specification test. 



Estimation of panel data models in Stata 

General comments 

There are three commands that matter in setting up the panel data. The first two 
commands precede the regression command because they establish which variable 
denotes the time period and which variable denotes the cross-sectional unit. These 
commands are: 

.iis [variable name]  

.tis [variable name]  

The command for estimating the fixed-effects model is: 

. xtreg depvar [varlist], fe  

The command for estimating the random-effects model is: 

. xtreg depvar [varlist], re  



If the part of the command with the comma and either re or fe is omitted, Stata will 
assume that you want to estimate the random-effects model. 

Understanding Stata output 

To understand the Stata output we need to return to the algebra of the model. Assume 
that we are fitting a model of the following form: 

(2.47) 

 

We can sum (13) over t (holding the individual unit constant) and divide by T to get: 

(2.48) 

 



where and Thus, (14) uses the mean values for 
each cross-sectional unit. We can subtract (14) from (13) to get: 

(2.49) 

 

Equations (13), (14), and (15) are the basis of Stats’s estimates of the parameters of the 
model. In particular, the command xtreg, fe uses OLS to estimate (15); this is known as 
the fixed-effects estimator (or the within estimator). The command xtreg, be uses OLS to 
estimate (14) and is known as the between estimator. The command xtreg, re—the 
random-effects estimator—is a weighted average of the between and within estimators, 
where the weight is a function of the variances of and ( and respectively).[22]  

In general, you will not make use of the between estimator. However, these three 
equations do lie at the basis of the goodness-of-fit measures that Stata reports. In 
particular, Stata output reports three “R-squareds”[23]—the overall-R2 the between-R2 and 



the within-R2 These three R-squareds are derived using one of the three equations. In 
particular, the overall-R2 uses (13); the between-R2 uses (14); and the within-R2 uses (15). 

Example 2.3. A panel data analysis using Stata  

In this example we follow the example offered in the Stata manual and use a large data 
set from the National Longitudinal Survey of wage data on 28,534 women who were 
between 14 and 26 years of age in 1968. The women were surveyed in each of the 21 
years between 1968 and 1988 except for the six years 1974, 1976, 1979, 1981, 1984, and 
1986. The study is focused on the determinants of wage levels, as measured by the 
natural logarithm of real wages. 

Figure 2.19.  



 



Loading in the data set into Stata with a description of the data.  

 

Figure 1 shows the commands used to put the data into Stata. The first command (set 
memory 5m) increases the size of the memory that the program uses; I did this because 
of the large sample size. The use command accesses that data from the Stata web site. 
The describe command calls up a description of the variables. Figure 2 presents a 
summary of the data using the command summerize. 

Figure 2.20.  



 
Summary of the data.  



 

There are several transformations of the variables that we will need. In particular, we 
want to include the squares of several of the variables in our regression—age (age), work 
experience (ttl_exp), and job tenure (tenure). The reason we want to use the square of 
these variables is that we have reason to believe that wages have a non-linear 
relationship with these variables. For instance, consider the number of years a worker has 
been on the job, Tenure. Theory suggests that wages increase over a worker’s work-life at 
a decreasing rate. Thus, if the equation we are estimating is y = lnw = β 0 + β 1 T e n u r e + 

β 2 T e n u r e 2 + ⋯, what we expect is that: and 

The only way that this last equation can be true is if β 2 < 0. 
Moreover, if this is true, the first-derivative implies that β 1 > − 2β 2 T e n u r e > 0. Also, 
notice that we can determine the number of years in a job when wages reach a peak; y 

reaches a maximum at the age where . or when 



The fact that guarantees that this point is indeed 
a maximum.  

Additionally, because race is a categorical variable that has three potential values—1 if 
white, 2 if black, and 3 otherwise—we have to create a dummy variable in order to use 
this variable. The transformations we use are shown in Figure 3.  

Figure 2.21.  

 

Transformations of the variables to create new variables.  

 



The last step before estimating the regressions is to identify the data set as a panel data. 
shows the two commands that must be entered in order for Stata to know that idcode is 
the individual category and that year is the time series variable. Figure 4 shows these two 
commands. 

Figure 2.22.  

 

Declaring the category and time identifiers.  

 

We are now ready to estimate the model (the natural logarithm of wages as a function of 
various variables). We begin with the random-effects model. Figure 5 shows the 
command and the results of the estimation of the random-effects model. There are 
several things to note here. First, in the command we are able to refer to all variables that 
have age in them by using age*, the * tells Stata to use and variable that begins with the 



letters age. Second, we will need to use the estimation results in the Hausman test. Thus, 
we have stored these results in “random_effects” using the command estimates store 
random_effects. 

Figure 2.23.  



 
The random-effects estimation.  



 

Notice that three R-squared values are reported in Figure 5. Also, wages reach a peak 

when the woman is years old and after 9.795857 years on 
the job. The interpretation of the other variables demands a bit of algebra. For instance, 
the fact that black is a dummy variable affects our interpretation; when an individual is a 
black, her wage level is: lnw B = β 0 + β 1 + ⋯. When she is nonblack, her wage level is lnw 

NB = β 0 + ⋯. Thus, we have: lnw B − lnw NB = β 1 or 
Thus, the wage level of a black is, everything else held constant, 94.8 percent of the wage 
level of a nonblack.  

If we assume that grade is a continuous variable (it really is not), we have the following 

interpretation of the parameter: lnw = β 0 + β 1 g r a d e + ⋯ implies that . 
Thus, in our case a increase of 1 year of schooling causes wages to increase by 6.46 
percent.  

We can compare the results of using the re option with using the mle option (which 
directs Stata to use maximum likelihood techniques to estimate the parameters of the 



system. The mle parameter estimates, shown in Figure 6, are the same as those 
generated using the re command. However, the estimates of the standard errors (and, 
thus, the z-values) are different. 

Figure 2.24.  



 



The maximum likelihood estimation.  

 

The estimation of the fixed-effects model is straightforward and is shown in Figure 7. The 
command is the same as in the random-effects model but with the re replaced by fe. 
Notice from the results that the variables grade and black are dropped from the 
estimation results. They are dropped because the amount of schooling and race of an 
individual is fixed over all observations. These two variables, thus, are perfectly 
correlated with the dummy variables that hold constant the individual level 
characteristics. The effects of education and race differences are absorbed into the 
residual. 

Figure 2.25.  



 
The fixed-effects estimation.  



 

The estimates of the parameter values for the fixed-effects model are very similar to 
those found for the random-effects model with the exception for the parameters 
associated with not living in an SMSA (not_smsa) and with living in the South (south). The 
random-effects model suggests that the wage level for someone living outside of a SMSA 
is 87.6 percent of the wage level of someone living in an SMSA; in the fixed-effects model, 
the wage level outside the SMSA is estimated to be 91.5 percent of the wage level of a 
woman living in a SMSA. The random-effects model estimates wages in the South are 
91.6 percent the level of wages outside the South; the fixed-effects model fixes this wage 
premium at 91.6 percent. 

Figure 2.26.  



 

The Hausman test results.  

 



The final issue we discuss in this example is the Hausman specification test. If the model 
is correctly specified and if ν i is uncorrelated with the explanatory variables, then the 
parameter estimates in the two models should not be statistically different. As shown in 
Figure 8, we first must same the results of the fixed-effects estimation using the 
command estimates store fixed_effects. The null hypothesis is that the the difference in 
that parameter estimates is not systematic. The appropriate test statistic is the χ 2(8), 
where the degrees of freedom are equal to the number of parameters in the model (8). 
The chi-squared statistic of 149.44 is greater than the critical value and we must reject the 
null hypothesis. The Stata offers this interpretation of this result: 

What does this mean? We have an unpleasant choice: we can admit that our model 
is misspecified—that we have not parameterized it correctly—or we can hold to our 
specification  

being correct, in which case the observed differences must be due to the zero-
correlation of and the assumption. [StataCorp: 202] 

 

Exercises 



Exercise 2.3.1. 

Estimation of a Labor Supply Function. An important issue in labor economics is the 
responsiveness of the number of hours worked to wages. Because labor supply curves 
can, in theory, be backward-bending, the sign and size of the impact of wages on the 
amount of labor supplied is an empirical issue. In this project you are to estimate the 
demand for labor curve for a cross-section of adult males. 

 

(2.50) 
The model to be estimated is: 

y it = β 0 + β 1 h it + β 2 A g e it + β 3 A g e 2 it + β 4 N C it + β 5 H I it + ε it  

where: 

y it = natural logarithm of individual i’s wage rate in year t, 

h it = natural logarithm of total number of hours worked by individual i in year t, 

Age it = age of individual i in year t, 



NC it = number of children of individual i in year t, and 

HI it = an dummy variable equal to 1 if individual i in year t has bad health and 0 
otherwise. 

The data are from Ziliak, James P. (1997) “Efficient Estimation with Panel Data When 
Instruments Are Predetermined: An Empirical Comparison of Moment-Condition 
Estimators,” Journal of Business & Economic Statistics 15(4): 419-431. Ziliak (p. 423) 
describes his data as follows: 

The data used to estimate the life-cycle labor-supply parameters come from Waves 
XII-XXI (calendar years 1978-1987) of the PSID. The sample is selected on many 
dimensions and is similar to other research studying life-cycle models of labor 
supply. The sample is restricted to continuously married, continuously working, 
prime-age men aged 22-51 in 1978 from the Survey Research Center random 
subsample of the PSID. In addition the individual must either be paid an hourly wage 
rate or must be salaried, and he cannot be a piece-rate worker or self-employed. This 
selection process resulted in a balanced panel of 532 men over 10 years or 5,320 
observations. The real wage rate, wit,. is the hourly wage reported by the panel 
participant rather than the average wage (annual earnings over annual hours) to 
minimize division bias (Borjas 1981). 



The data are available in the any of the three files , , and .  

1. Provide scatter plots among the dependent variable (Natural logarithm of hours) 
against each of the explanatory variables Natural logarithm of real wages, Age, 
Number of children, and Health. (Label these Figures 1 to 4.) 

2. Present a table of the summary statistics for all of the variables in this data set (except 
ID and Year). 

3. Provide a histogram of each of the following variables: Natural logarithm of hours, 
Natural logarithm of real wages, Age, and Number of children. (Label these Figures 5 
to 8). 

4. Estimate Equation (1) using (1) OLS (sometimes called a “pooled model”), (2) a 
“between” model (where the observations in the regression are the averages over the 
10 years of each variable for each individual, (3) a fixed effects model, (4) a MLE 
random effects model and (5) a GLS random effects model. Present the results of your 
estimations in a single table and offer an interpretation for each parameter you 
estimate. Use Table 1 as shown below as a template for the table to present your 
results. 
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(1) 
Pooled 

(2) 
Between 

(3) Fixed 
Effects 

(4) MLE 
Random Effects 

(5) GLS 
Random 
Effects 

Natural logarithm 
of real wages 

          

  ( ) ( ) ( ) ( ) ( ) 

Age           

  ( ) ( ) ( ) ( ) ( ) 

Age2            

  ( ) ( ) ( ) ( ) ( ) 

Number of children           

  ( ) ( ) ( ) ( ) ( ) 

Health indicator           

  ( ) ( ) ( ) ( ) ( ) 



Intercept           

  ( ) ( ) ( ) ( ) ( ) 

R2        — — 

σμ  — —       

σε  — —       

Sample size           

Table 2.13. Hours and wages: Summary of linear panel model estimations (Dependent 
variable is the natural logarithm of total hours worked in a year; the observations consist 

of 532 adult males over the 10 year period 1978-1987). 

Exercise 2.3.2. 

The Effectiveness of Advertising Bans on Smoking. Anti-smoking activists often push for a 
total ban on cigarette advertisements. Indeed, one of the basic assumptions of the groups 
pushing the 1996 proposed settlement with the tobacco companies is that the amount of 
tobacco consumed is positively affected by the amount of tobacco advertising. There are 



two mechanisms that might underlie such a relationship. The first mechanism suggests 
that the advertising increases the amount of cigarettes smoked by current smokers. Many 
economists doubt that the tobacco advertising increases the consumption of current 
smokers, arguing that the total consumption of cigarettes is unresponsive to 
advertisement. Instead, they argue that advertising is an effort by cigarette companies to 
affect the brand of cigarettes that current smokers consume. The second mechanism 
suggests that advertising is an effort by cigarette companies to induce non-smokers 
(especially children) to try cigarettes. The main reason that cigarette companies want 
non-smokers to try smoking, so the argument goes, is that some percentage of non-
smokers who try cigarettes will become addicted and will form the future demand for 
cigarettes. 

 

The effect of a total ban on advertising would be completely different if cigarette 
companies advertise with the hope of increasing the number of people addicted to 
cigarettes. In particular, the ban should have a small or negligible effect on current 
cigarette demand. Instead, the cigarette companies would face a steadily decreasing 
demand for their product. Such a decrease in demand would reduce future profits for 
these companies. If future profits fell enough, some of the companies might be forced out 



of business. Clearly, it is this result that anti-smoking activists have in mind with their 
proposals to ban cigarette advertisements.  

Finally, if advertising only induces current smokers to increase the number of cigarettes 
they consume, then the total ban on advertising should cause a one-time reduction in 
cigarette consumption that will reduce the profits of cigarette companies. However, 
which of these three mechanisms (if any) is correct is an empirical question. 

Six European countries adopted a complete ban on cigarette advertising in the period 
after 1970. It this project we use annual data on smoking consumption in 22 developed 
countries for the 27 years between 1964 and 1990 to test the effect of a complete 
smoking ban on cigarette demand (giving us 594 observations). Moreover, since we have 
no a priori reason to choose one model specification over another, we check the stability 
of the estimated impact of an advertising ban on cigarette demand under several 
alternative model specifications. 

We estimate three types of specifications of the model — the linear model, the log-linear 
model, and the log-log model. In general whether one uses a variable or the logarithm of 
the variable is the main difference in these three specifications. The linear model does 
not transform either the dependent or the independent variables. A variation on the 
linear models allows the use of the square and product of some of the independent 



variables in order to take care of any non-linearity in the data. The log-linear model takes 
the same form as the linear model except that the dependent variable is the logarithm of 
variable under study. Finally, in the log-log model both the dependent and independent 
variables are, if possible, in logarithm form.  

For example, for this problem the dependent variable in any of these specifications is 
either the per capita consumption of tobacco or the logarithm of the per capita 
consumption of tobacco. The dependent variables might include (1) the real price of 
tobacco in each country for each year, (2) a measure of the per capita income level of the 
country for each year, (3) the unemployment rate of the country for each year, (4) a 
measure of the age distribution of the population to measure smoking intensity by age, 
(5) a trend variable to account for the rising awareness of the health costs of smoking, (6) 
a dummy variable equal to one for years that a country has a complete ban on cigarette 
advertising, and (7) a set of 21 dummy variables identifying the country. Let T it be the 
measure of per capita cigarette consumption in country i for year t; P it, the price of 
tobacco; I it, the measure of per capita income level; U it, country i’s unemployment rate 
in year t; A it, country i’s age distribution in year t; Year, a trend variable; B it, the dummy 
variable for the ban; and C i, the dummy variable for country i. 

Examples of the three models are: 



1. Linear: T it = β 0 + β 1 P it + β 2 I it + β U it + β 4 A it + β 5 Y e a r t + β 6 B it + ε it  

2. Log-Linear:  

3. Log-Log:  

In models (1) and (2) it is possible to include additional explanatory variables that are the 
square of some of the currently included explanatory variables. In all three models it is 
possible to include as explanatory variables the product of the ban dummy and any of the 
currently included explanatory variables. Finally, in equation (2) we cannot take the 
logarithm of the unemployment rate because the data we have report zero levels of 
unemployment. 

The data you will use in this project are in the MS Excel file Smkdata.xls. The variables 
included in the file are as follows: 

Column Variable Definition 

A Country Name of country 
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B 
Country 
ID 

Integar from 1 to 22, each designating a country 

C Year Year of observation (1964, …, 1990) 

D Tobacco Total grams of tobacco sold per individual 15 years or older 

E Price 
Real price of 20 grams of tobacco in 1990 US cents (= Nominal price 
per E 20 grams of tobacco divided by the Gross Domestic Price 
deflator) 

F Consump Per capita private final consumption expenditures in 1990 US dollars 

G Unemp Number of unemployed persons per 1000 members of the workforce 

H AgeDist 

Age distribution. This variable attempts to measure the differences in 
intensity of smoking as a function of age. It is equal to the relative 
consumption rate of tobacco in the UK observed between 1966 and 
1981 by age group times the percentage of the population in the 
country in that age group. 

I Ban 
Dummy variable equal to 1 if the country has a complete ban on 
tobacco advertising. The six countries in the sample with a complete 



ban and the first year of the ban are: Iceland (1972), Norway (1976), 
Finland (1979), Portugal (1984), Italy (1984), and Canada (1989). 

J BanTime 
The number of years since the ban was put in place (if ban went into 
effect in 1972, then years 1964-1972 are equal to 0, year 1973 equals 
1, year 1974 equals 2, etc.) 

Table 2.14. Definition of the cigarette consumption data set. 

(a) How do these variables match the ones suggested in the discussion of equations (1), 
(2), and (3)?  

(b) Estimate the fixed effects models of the following versions of equations (1), (2), and 
(3): 

1. Equations (1), (2), and (3) as specified above. 

2. Equations (1) and (2) with squared terms for the price, income, unemployment rate, 
and the age distribution included. This regression is designed to test for non-linearity. 



3. Equations (1) and (2) with the squared terms mentioned in 2 that are statistically 
significant plus the following new variables: Ban*Time, Ban*Price, and Ban*Consump. 
(You must create these variables) This regression allows for an effect of the Ban on the 
slopes of the other explanatory variables. 

4. Equation (3) with the following new variables: Ban*Log(Time), Ban*Log(Price), and 
Ban*Log(Consump). 

5. Equations (1), (2), and (3) as estimated in 3 and 4 with a variable that counts the 
number of years that a total ban has been in effect (BanTime) and its square 
(BanTime2). This regression allows for a changing impact of a ban the longer it is in 
effect. 

Report the results of your regressions in a table that allows you to comment on the 
stability of your estimation results over specifications.  

(c) Do these results support any of the theories suggested above?  

(d) What, if any, policy conclusions would you make given your estimations?  



(e) Assume for the moment that you “believe” your results you got in (5). Sketch out a 
strategy you would follow to forecast the impact of a ban in a country that does not 
currently have a ban. 

Note: The data in this problem are from Stewart, Michael J. (1993) “The Effect on Tobacco 
Consumption of Advertising Bans in OECD Countries,” International Journal of Advertising 
12(2): 155-180. The data set can be downloaded from the author's website. 
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2.4. Sample selectivity bias* 

Sample Selection Bias 

Introduction 

These notes discuss how to handle one of the more common problems that arise in 
economic analyses—sample selection bias. Essentially, sample selection bias can arise 
whenever some potential observations cannot be observed. For instance, the students 
enrolled in an intermediate microeconomics course are not a random sample of all 
undergraduates. Students self-select when they enroll in any class or choose a major. 
While we do not know all of the reasons for this self-selection, we suspect that students 
choosing to take advanced economics courses have more quantitative skills than students 
choosing courses in the humanities. Since we do not observe the grades that students 
who did not enroll in the intermediate microeconomics class would have made had they 
enrolled, we can never observe the grades that they would have made. Under certain 
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circumstances the omission of potential members of a sample will cause ordinary least 
squares (OLS) to give biased estimates of the parameters of a model. 

In the 1970s James Heckman developed techniques that will correct the bias introduced 
by sample selection bias. Since then, most econometric computer programs include a 
command that automatically used Heckman’s method. However, blind use of these 
commands can lead to errors that would be avoided by a better understanding of his 
correction technique. This module is intended to provide this understanding. 

In the first section I discuss the sources of sample selection bias by examining the basic 
economic model used to understand the problem. In the second section I present the 
estimation strategy first developed by Heckman. In the third section I discuss how to 
estimate the Heckman model in Stata. In the final section I examine an extended example 
of the technique. An exercise is included at the end of the discussion. 

The model 

Assume that there is an unobserved latent variable, y i ∗ , and an unobserved latent index, 
d i ∗ , such that:  

(2.51) 



 

(2.52) 

 

(2.53) 

 

(2.54) y i = y i ∗ d i .  

The matrix notation above means (1) that  

1.  



2.  

Substituting (1), (2) and (3) into (4) gives: 

(2.55) 

 

Note that N is the total sample size and n is the number of observations for which d i = 1.  

Since y i ∗ is not observed for ( N − n ), the question becomes why are these observations 
missing. A concrete example of such a model is a model of female wage determination. 
Equation (1) would model the wage rate earned by women in the labor force and 
Equation (2) would model the decision by a female to enter the labor force. In this case, y 

i , the wage rate woman i receives, is a function of the variables in however, women 
not in the labor force are not included in the sample. If these missing observations are 
drawn randomly from the population, there is no need for concern. Selectivity bias arises 



if the ( N − n ) omitted observations have unobserved characteristics that affect the 
likelihood that d i = 1 and are correlated with the wage the woman would receive had she 
entered the labor force. For instance, a mentally unstable female is likely to earn 
relatively low wages and might be more unlikely to enter the labor force. In this case, the 
error terms, ε i and ν i would be independent and identically distributed N( 0,∑ ), where 

(2.56) 

 

and are independent of z i . The selectivity bias arises because σ εν ≠ 0. In effect the 
residual ε i includes the same unobserved characteristics as does the residual ν i causing 
the two error terms to be correlated. OLS estimation of equation (1) would have a 
missing variable—the bias created by the missing observations (due to wage data not 
being available for women not in the work force). As in other cases of omitted variables, 

the estimates of the parameters of the model, would be biased. Heckman (1979) 
notes in his seminal article on selectivity bias:  



One can also show that the least squares estimator of the population variance is 
downward biased. Second, a symptom of selection bias is that variables that do not 
belong in the true structural equation (variables in not in may appear to be 
statistically significant determinants of when regressions are fit on selected samples. 
Third, the model just outlined contains a variety of previous models as special cases. 
...For a more complete development of the relationship between the model 
developed here and previous models for limited dependent variables, censored 
samples and truncated samples, see Heckman (1976). Fourth, multivariate 
extensions of the preceding analysis, while mathematically straightforward, are of 
consider-able substantive interest. One example is offered. Consider migrants 
choosing among K possible regions of residence. If the self selection rule is to choose 
to migrate to that region with the highest income, both the self selection rule and 
the subsample regression functions can be simply characterized by a direct extension 
of the previous analysis. (Notation has been altered to match the notation used in 
this module, see Heckman, 1979: 155) 

Estimation Strategy 



Heckman (1979) suggests a two-step estimation strategy. In the first step a probit 
estimate of equation (2) is used to construct a variable that measures the bias. This 
variable is known as the “inverse Mills ratio.” Heckman and others demonstrate that 

(2.57) 

 

where and are the probability density function and the cumulative 

distribution functions, respectively, evaluated at [24] The ratio in the brackets in 
equation (7) is known as the inverse Mills ratio. We will use an estimate of the inverse 
Mills ratio in the estimation of equation (5) to measure the sample selectivity bias. 

The Heckman two-step estimator is relatively easy to implement. In the first step you use 

a maximum likelihood probit regression on the whole sample to calculate from 

equation (2). You then use to estimate the inverse Mills ratio:  

(2.58) 



 

In the second step, we estimate: 

(2.59) 

 

using OLS and where Thus, a t-ratio test of the null hypothesis H 0 : μ = 0 is 
equivalent to testing the null hypothesis H 0 : σ εν = 0 and is a test of existence of the 
sample selectivity bias.  

An alternative approach to the sample selectivity problem is to use a maximum likelihood 
estimator. Heckman (1974) originally suggested estimating the parameters of the model 
by maximizing the average log likelihood function: 

(2.60) 
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where ϕ εν is the probability density function for the bivariate normal distribution. 
Fortunately, Stata offers a single command for calculating either the two-step or the 
maximum likelihood estimators.  

Estimation in Stata  

Estimation of the two versions of the Heckman sample selectivity bias models is 
straightforward in Stata. The command is: 

.heckman depvar [varlist], select(varlist_s) [twostep]  

or 

.heckman depvar [varlist], select(depvar_s = varlist_s) [twostep]  

The syntax for maximum-likelihood estimates is: 



.heckman depvar [varlist] [weight] [if exp] [in range], select([depvar_s =] varlist_s [, 
offset(varname) noconstant]) [ robust cluster(varname) score(newvarlist|stub*) 
nshazard(newvarname) mills(newvarname) offset(varname) noconstant 
constraints(numlist) first noskip level(#) iterate(0) nolog maximize_options ]  

The predict command has these options, among others: 

xb, the default, calculates the linear predictions from the underlying regression equation. 

ycond calculates the expected value of the dependent variable conditional on the 
dependent variable being observed/selected; E(y | y observed). 

yexpected calculates the expected value of the dependent variable (y*), where that value 
is taken to be 0 when it is expected to be unobserved; y* = P(y observed) * E(y | y 
observed). The assumption of 0 is valid for many cases where nonselection implies non-
participation (e.g., unobserved wage levels, insurance claims from those who are 
uninsured, etc.) but may be inappropriate for some problems (e.g., unobserved disease 
incidence). 

Examples of these two commands are: 

. heckman wage educ age, select(married children educ age)  



. predict yhat  

These two command would use the maximum likelihood estimate of the equations (1) 
wage as a function of education and age using a selection equation that used marital 
status, number of children, education level, and age to explain which individuals are 
participating in the labor force. The help file in Stata provides additional information on 
the structure of the Heckman command and is well worth printing out if you are dealing 
with a sample selectivity bias problem. 

Example 2.4. Example from Stata  

We will illustrate various issues of selection bias using the data set available from the 
Stata site. Retrieve the data set by entering: 

. use http://www.stata-press.com/data/imeus/womenwk, clear  

This data set has 2,000 observations of 15 variables. We can use the describe command 
(.describe) to get a brief description of the data set: 

obs: 2,000         



vars: 15 9 Nov 2004 20:23       

size: 142,000 (86.5% of memory free)       

Variable Name Storage Type Display Format Value Label Variable Label 

c1 double %10.0g     

c2 double %10.0g     

u double %10.0g     

v (7,2) %10.0g     

country float %9.0g     

age int %8.0g     

education int %8.0g     

married byte %8.0g     

children int %8.0g     

select float %9.0g     



wageful float %9.0g     

wage float %9.0g     

lw float %9.0g     

work float %9.0g     

lwf float %9.0g     

Table 2.15. Description of variables included in the data set from http://www.stata-
press.com/data/imeus/womenwk. 

We are interested in only a subset of these data. Table 2 reports the definitions of 
variables that are relevant for our analysis. We can get further insight into the data set 
using the summarize command. Table 3 reports the summary statistics for the data set. 

Variable 
name 

Definition 



country County of residence (categorical variable equal to 0, 1, ..., 9) 

age Age of the woman 

education Number of years of education of the woman 

married Dummy variable equal to 1 if the woman is married and 0 otherwise 

children Number of children that the woman has in their household 

wage Hourly wage rate of the woman 

lw Natural logarithm of hourly wage rate 

work 
Dummy variable equal to 1 if the individual is in the workforce and 0 
otherwise 

Table 2.16. Definition of the relevant variables in the data set. 

Variable Obs Mean Std. Dev Min Max 

Age 2000 36.208 8.28656 20 59 

education 2000 13.084 3.045912 10 20 



married 2000 .6705 .4701492 0 1 

children 2000 1.6445 1.398963 0 5 

wage 1343 23.69217 6.305374 5.88497 45.80979 

lw 1343 3.126703 .2865111 1.772402 3.824498 

work 2000 .6715 .4697852 0 1 

Table 2.17. Summary statistics of the relevant variables in the data set (using the 
command: .summarize age education married children wage lw work). 

We are interested in modeling two things: (1) the decision of the woman to enter the 
labor force and (2) determinants of the female wage rate. It might be reasonable to 
assume that the decision to enter the labor force by a woman is a function of age, marital 
status, the number of children, and her level of education. Also, the wage rate a woman 
earns should be a function of her age and education. 

The decision to enter the labor force 

We can use a probit regression to model the decision of a woman to enter the labor 
force. The results of this estimation are reported in Table 4. However, we can use the 



predict command to produce some results that we can use to be sure that we understand 
what the regression results mean. In particular, type in the following two commands: 

.predict zbhat, xb  

.predict phat, p  

These two commands will predict (1) the linear prediction (zbhat) and (2) the predicted 
probability that the woman will be in the workforce (phat). Table 5 reports the values of 
these two variables for observations 1 through 10.  

. probit work age education married children 

  
     

Iteration 0: log likelihood = -1266.2225 

Iteration 4: log likelihood = -1027.0616 

  
     

Probit estimates Number of obs = 2000 



LR chi2(4) = 478.32 

Prob > chi2 = 0.0000 
     

Log likelihood = -1027.0616 
Pseudo R2 = 0.1889      

  
     

work Coef. Std. Err. z P>z [95% Conf. Interval] 

age .0347211 .0042293 8.21 0.000 .0264318 .0430105 

education .0583645 .0109742 5.32 0.000 .0368555 .0798735 

married .4308575 .074208 5.81 0.000 .2854125 .5763025 

children .4473249 .0287417 15.56 0.000 .3909922 .5036576 

_cons 
-
2.467365 

.1925635 
-
12.81 

0.000 
-
2.844782 

-
2.089948 

Table 2.18. Probit estimation of the decision to enter the labor force. 



Observation zbhat phat 

1 -0.68900 0.24541 

2 -0.20290 0.41961 

3 -0.48067 0.31538 

4 -0.16818 0.43322 

5 0.34859 0.63630 

6 0.58758 0.72159 

7 0.97357 0.83486 

8 0.45978 0.67716 

9 0.01799 0.50718 

10 0.32628 0.62790 

Table 2.19. Predicted values of zbhat and phat for observations 1 through 10. 



The interpretation of the numbers in Table 5 is straightforward. Consider individual 1. The 
z-value predicted for this individual is -0.68. Using the standard normal tables reported in 
Table 11 it is easy to see: 

(2.61) Φ( z ≤ − 0.69 ) = Pr( Individual 1 is in the labor force )  

(2.62) 

 

The difference between this number and the value reported for phat in Table 5 is due to 
rounding error. 

A little later we will want to calculate the inverse Mills ratio. As noted in (8), the formula 
for the inverse Mills ratio is: 

(2.63) 

 



The variable phat is equal to Stata offers an easy way to calculate 
with the function “normden(zbhat)” as follows:  

.generate imratio = normden(zbhat)/phat  

Table 6 repeats Table 5 with the estimate of the inverse Mills ratio for the first 10 
observations. 

Observation zbhat phat Inverse Mills Ratio 

1 -0.6889973 0.2454125 1.2821240 

2 -0.2029016 0.4196060 0.9313837 

3 -0.4806706 0.3153753 1.1269680 

4 -0.1681804 0.4332207 0.9079438 

5 0.3485867 0.6363002 0.5900134 

6 0.5875849 0.7215945 0.4652062 



7 0.9735670 0.8348642 0.2974918 

8 0.4597758 0.6771615 0.5300468 

9 0.0179909 0.5071769 0.7864666 

10 0.3262833 0.6278950 0.6024283 

Table 2.20. Calculation of the inverse Mills ratio for the first 10 observations. 

 

The two Heckman estimates 

One of the great advantages of using an econometrics program like Stata is that the 
authors quite often have created a command that does all of the work for the user. In our 
case, the commands we need to run to generate the maximum likelihood estimate of the 
Heckman model are: 

. global wage_eqn wage educ age  



. global seleqn married children age education  

. heckman $wage_eqn, select($seleqn)  

Notice that we have used the global command to create a shortcut for referring to each of 
the two equations in the estimation. The command for the Heckman two-stage estimate 
is: 

.heckman $wage_eqn, select($seleqn) twostage  

.predict mymills, mills  

(1) Explanatory variable 
(2) Maximum 
likelihood estimate 

(3) Heckman 
two-step 

(4) Probit estimate of the 
selection equation 

Wage Equation        

Education 0.9899537 0.9825259 — 

  (18.59) (18.23)   

Age 0.2131294 0.2118695 — 



  (10.34) (9.61)   

Intercept 0.4857752 0.7340391 — 

  (0.45) (0.59)   

Selection equation        

Married 0.4451721 0.4308575 0.4308575 

  (6.61) (5.81) (5.81) 

Children 0.4387068 0.4473249 0.4473249 

  (15.79) (15.56) (15.56) 

Age 0.0365098 0.0347211 0.0347211 

  (8.79) (8.21) (8.21) 

Education 0.0557318 0.0583645 0.0583645 

  (5.19) (5.32) (5.32) 

Intercept -2.491015 -2.467365 -2.467365 



  (-13.16) (-12.81) (-12.81) 

σ  0.7035061 0.67284 — 

λ  6.004797 5.9473529 — 

( Mills )λ  4.224412 4.001615 — 

    (6.60)   

Observations 2000 2000 2000 

Number of women not 
working 

657 657 657 

Number of women 
working 

1343 1343 1343 

Log likelihood -5178.304 — -1027.0616 

Wald χ 2 ( 2 )  508.44 — — 

Probability >  χ 2  0.0000 — — 

Wald χ 2 ( 4 )  — 551.37 — 



Probability >  χ 2  — 0.0000 — 

LR test of independent 
equations (ρ = 0) 

      

χ 2 ( 1 )  61.20 — 478.32 

Probability > χ 2  0.0000 — 0.0000 

Table 2.21. Comparison of Heckman Maximum-Likelihood and the Heckman Two-Step 
Estimates with the Probit Estimates of the Selection Equation. 

The second command reports the estimates of the inverse Mills ratio; we have retrieved 
these values in order to check our earlier calculations. Table 7 reports the results of these 
two estimations. Column 2 reports the maximum-likelihood estimates; Column 3 reports 
the Heckman two-step estimates; and Column 3 reports the probit estimate of selection 
equation as reported in Table 4. The estimates for the two methods are very similar. Of 
course, the probit estimates in Column 4 exactly match the results reported for the 
selection equation in Column 3. As a final check, Table 8 reports the values of the inverse 
Mills ratio reported in Table 6 with the values of the inverse Mills ratio calculated in the 



Heckman two-step method. The two estimates are identical except for some rounding 
errors. 

Observation As calculated from probit estimate As reported by the Heckman two-step 

1 1.2821240 1.2821240 

2 0.9313837 0.9313837 

3 1.1269680 1.1269680 

4 0.9079438 0.9079438 

5 0.5900134 0.5900134 

6 0.4652062 0.4652061 

7 0.2974918 0.2974918 

8 0.5300468 0.5300469 

9 0.7864666 0.7864666 

10 0.6024283 0.6024283 



Table 2.22. Inverse Mills Ratio Comparison. 

Exercise 

Exercise 2.4.1. The supply of married women in the workforce. 

We are interested in understanding the decision of married Portugese women to enter 
the labor force. We have available data from Portugal. The data set is a sample from 
Portuguese Employment Survey, from the interview year 1991, and has been provided by 
the Portuguese National Institute of Statistics (INE). The data are in the Excel file Martins. 
This file is organized in the following way. There are seven columns, corresponding to 
seven variables, and 2,339 observations. 

 

a) Estimate the following equation using OLS: using the 
observations for women actually working. 



b) What is the potential source of selection bias? 

c) Estimate a wage equation for the Portuguese data three ways: (1) using OLS, (2) using 
the Heckman two-step method, and (3) using the ML method. Report all three estimates 
in a single table. For consistency, we will assume that the appropriate explanatory 
variables for wages are (1) age, (2) the square of age, and (3) the years of education. 
Further, assume that women do not enter the labor force because (1) presence of 
children under the age of 3, (2) presence of children between 3 and 18, (3) husband's 
wage level, (4) the level of education of the woman, and (5) the age of the woman. 

Appendix A. 

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

0.0 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0359 

0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0753 

0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141 

0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443 0.1480 0.1517 



0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879 

0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224 

0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2517 0.2549 

0.7 0.2580 0.2611 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.2852 

0.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133 

0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389 

1.0 0.3413 0.3438 0.3461 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621 

1.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830 

1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4015 

1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4147 0.4162 0.4177 

1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4279 0.4292 0.4306 0.4319 

1.5 0.4332 0.4345 0.4357 0.4370 0.4382 0.4394 0.4406 0.4418 0.4429 0.4441 

1.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545 



1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633 

1.8 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0.4699 0.4706 

1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.4750 0.4756 0.4761 0.4767 

2.0 0.4772 0.4778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817 

2.1 0.4821 0.4826 0.4830 0.4834 0.4838 0.4842 0.4846 0.4850 0.4854 0.4857 

2.2 0.4861 0.4864 0.4868 0.4871 0.4875 0.4878 0.4881 0.4884 0.4887 0.4890 

2.3 0.4893 0.4896 0.4898 0.4901 0.4904 0.4906 0.4909 0.4911 0.4913 0.4916 

2.4 0.4918 0.4920 0.4922 0.4925 0.4927 0.4929 0.4931 0.4932 0.4934 0.4936 

2.5 0.4938 0.4940 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952 

2.6 0.4953 0.4955 0.4956 0.4957 0.4959 0.4960 0.4961 0.4962 0.4963 0.4964 

2.7 0.4965 0.4966 0.4967 0.4968 0.4969 0.4970 0.4971 0.4972 0.4973 0.4974 

2.8 0.4974 0.4975 0.4976 0.4977 0.4977 0.4978 0.4979 0.4979 0.4980 0.4981 

2.9 0.4981 0.4982 0.4982 0.4983 0.4984 0.4984 0.4985 0.4985 0.4986 0.4986 



3.0 0.4987 0.4987 0.4987 0.4988 0.4988 0.4989 0.4989 0.4989 0.4990 0.4990 

Table 2.23. Normal Distribution. 

z~N(0, 1).  

Figure 2.27. The Normal Distribution 
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2.5. Endogenous explanatory variables* 

Endogenous Explanatory Variables 

Introduction 

One of the most common problems complicating the research of an economist is created 
by the inclusion of endogenous variables as an explanatory variable. The variable on the 
left-hand-side of a regression is an endogenous variable; its level is determined by the 
levels of the explanatory variables—that is, the variables on the right-hand-side of the 
equation. In OLS we assume that the explanatory variables are independent of the error 
term. However, if the level of one of these explanatory variables is determined by the 
levels of the other variables in the model, that explanatory variable actually is an 
endogenous variable. In a nutshell the problem with having endogenous explanatory 
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variables is that these endogenous variables cause the error term in the model to be 
correlated with the explanatory variables thus causing the OLS estimator to be biased. 
This problem is also known as simultaneous equation bias and it is a problem that is 
subtly different from sample selection bias. See "What is the difference between 
'endogeneity' and 'sample selection bias"'?" for an excellent discussion of the difference 
between these two econometric problems. 

In this module we explore both the statistical and algebraic issues raised by the inclusion 
of endogenous explanatory variables in a model. This introduction is too sketchy to give 
you a thorough understanding of the many problems raised by simultaneous equation 
bias. Hopefully, by the time you finish the module along with the problem set, you will 
have an least an intuitive understanding of the problem and will be able to recognize it 
when you come across the problem in your own research. If you think the model you are 
estimating may have simultaneous equation bias, you should seek the advice of an 
econometrician.  

The Statistical Problem 

Imagine we know with certainty that the following model fully describes the true state of 
the supply and demand for wheat. First, the demand for wheat in any year, q t , is a 

http://www.stata.com/support/faqs/stat/bias.html
http://www.stata.com/support/faqs/stat/bias.html


function of the price of wheat, p t 
w , the income of the average individual, I t , and the 

price of corn, p t 
c . Second, in any year the price of wheat is a function of the amount of 

wheat brought to market, q t , and a weather index, W t , that is positively related to the 
amount of wheat that is harvested. Third, the error terms in the supply and demand 
functions are due purely to measurement errors—that is, there are no omitted variables 
in the model. Thus, we have the following two equation model: 

(2.64) 
Demand:  

q t = α 0 + α 1 p t 
w + α 2 I t + α 3 p t 

c + ε t  

and 

Supply: 

p t 
w = β 0 + β 1 q t + β 2 W t + η t .  

We assume that the error terms each are normally distributed with a mean of zero and a 
constant variance. Moreover, we assume that the two error terms are independent of 
each other—that is, we are assuming that: 



(2.65) 

 

Finally, we assume that income, the price of corn, and the weather index are non-
stochastic variables—i.e., these variables are independent of the two error terms. Clearly, 
the price of wheat and the quantity of wheat are stochastic variables.[25]  

What we have here is an ideal model in the sense that we know and can measure all of 
the variables in the model. The model as written has two endogenous variables—q t and p 

t 
w —and three exogenous variables— I t , p t 

c , and W t . Equations (1) and (2) are known as 
structural equations. What makes this model useful for our purposes is that there is an 
endogenous explanatory variable in each of the two structural equations.  

What we ultimately want to know is if we can use ordinary least squares (OLS) to obtain 
unbiased estimates of the parameters in Equations (1) and (2). One of the assumptions of 
OLS is that each of the explanatory variables are independent of the error term, ε t ; if this 
assumption is violated, OLS will produce biased estimates of the slope parameters. Thus, 



what we need to do is see if the error term in each equation is independent of the 
endogenous variable on the right-hand-side of that equation. That is, we want to see if 

and  

It is convenient in answering our question to use the two structural equations to find 
what are known as the reduced form equations—that is, one equation for each 
endogenous variable in which the endogenous variable is written as a function solely of 
exogenous variables and error terms. We can find the reduce form equations by solving 
the structural equations simultaneously for the endogenous variables. Substituting (2) 
into (1), we get: 

 

q t = α 0 + α 1 β 0 + α 1 β 1 q t + α 1 β 2 W t + α 1 η t + α 2 I t + α 3 p t 
c + ε t  

 

or 

(2.66) 



 

Substituting (1) into (2) yields: 

 

p t 
w = β 0 + β 1 α 0 + α 1 β 1 p t 

w + α 2 β 1 I t + α 3 β 1 p t 
c + β 1 ε t + β 2 W t + η t  

or 

(2.67) 

 

Equations (4) and (5) are the reduced form equations for this model. We can use them to 

calculate and In particular,  

 



 

or 

(2.68) 

 

Factoring out the non-stochastic terms from the expected value operators gives: 

 

Moreover, by assumption and Thus, we get:  

(2.69) 

 



A similar analysis yields: 

(2.70) 

 

Equations (6) and (7) are what create the endogeneity problem (or simultaneous equation 
bias)—using OLS to estimate the parameters of equations that have an endogenous 
variable as an explanatory variable yields biased estimates of the unknown parameters. 
Figure 1 illustrates the endogeneity problem. In this figure we have demand and supply 
equations that have both risen due to changes in exogenous variables. What the 
researcher observes are two (red) points: (1) the intersection of the old demand and 
supply curves and (2) the intersection of the new demand and supply curves.  

Figure 2.28.  



 

The simultaneous equation problem.  

 



The thick red line shows the regression that would result from using OLS to estimate 
either of the two structural equations. As illustrated, an OLS estimate of the slope 
estimate will be biased. We need to use some other estimation technique than OLS. 

Estimation 

As noted earlier, the basic problem created by the endogeneity problem is that the 
endogenous explanatory variable is correlated with the error term. The most logical 
approach would be to replace this variable with one that is not correlated with the error 
term but highly correlated with the endogenous variable. Consider the value of the price 
predicted by the reduced form equation (5):  

(2.71) 

 

where is the OLS estimate of and 

 



Clearly, is correlated with p t 
w . It also is true that the covariance between 

and ε t goes to zero as the sample size increasing. Thus, we can use (8) to construct a 
variable that will produce a consistent estimator of α 1 . It is this conclusion that underlies 
the strategy of both two-stage least squares (TSLQ) and instrumental variable (IV) 
estimators.  

Two-stages least squares 

The easiest way to understand two-stage least squares is to think of the estimation 
process as being in the following two steps (although the computer programs calculate 
the estimators in one step): 

Stage 1: obtain a OLS predictions for any endogenous variable on the right-hand side of 
the equation to be estimated using as the explanatory variables all of the exogenous 
variables in the system. 

Stage 2: estimate the parameters of the equation using OLS and replacing the 
endogenous variable on the right-hand side of the equation by the its predictions as 
obtained in step 1. 



For obvious reasons he TSLS method works best when the full model is specified or when 
you know and can measure all of the exogenous variables in the system. 

Instrumental variables (IV) 

While the use of instrumental variable (IV) estimators is appropriate in a large number of 
situations, the two situations where they are most commonly used are (1) in the presence 
of endogenous explanatory variables and (2) in cases when errors arise in the 
measurement of an explanatory variable (or the errors-in-variables problem). Since I have 
already described the endogeneity problem, I now turn to a brief discussion of errors-in-
variables. 

Consider the following simple model: 

(2.72) y i = β 1 x i ∗ + ε i and x i = x i ∗ + μ i .  

In this model the researcher observes x i but not the desired x i ∗ because of some random 
measurement error. Using OLS to estimate (9) using the observable x i instead of the 
correct x i ∗ is equivalent to estimating: 

(2.73) 



 

The important thing to note in estimating (10) using OLS is that the explanatory variable, 

x i , is correlated with the error term, As was the case with the endogeneity 
problem, the OLS estimate of β 1 is biased. Murray (2006) summarizes the situation as 
follows:  

In both examples, ordinary least squares estimation is biased because an 
explanatory variable in the regression is correlated with the error term in the 
regression. Such a correlation can result from an endogenous explanator, a 
mismeasured explanator, an omitted explanator, or a lagged dependent variable 
among the explanators. I call all such explanators “troublesome.” Instrumental 
variable estimation can consistently estimate coefficients when ordinary least 
squares cannot—that is, the instrumental variable estimate of the coefficient will 
almost certainly be very close to the coefficient’s true value if the sample is 
sufficiently large—despite troublesome explanators. [Murray (2006a): 112] 

Consider a regression that includes a “troublesome explanator,” like x i ∗ in (9). Assume 
that there exists a variable z i (or set of variables) that (1) is correlated with the 
“troublesome explanator,” (2) is uncorrelated with the error term—like ε i in (9), and (3) is 



not one of the explanatory variables in the equation to be estimated. Greene (1990: 300) 
offers the following example of such a variable. Self-reported income tends to be a very 
“noisy” variable because sometimes people forget to report minor sources of income and 
sometimes they deliberately misreport their income. If the regression you are estimating 
uses income as explanatory variable of consumption, OLS will yield biased estimates. On 
the other hand, the number of checks written in a month by the household head might 
serve as an instrumental variable. Clearly, the number of checks written might well be 
positively correlated with income and there is no reason to assume that it is correlated 
with the error term in the consumption equation.[26]  

It is usually fairly easy to identify instances when IV estimation methods are appropriate. 
This is especially true when one of the explanatory variables is possibly an endogenous 
variable. The real problem arises in finding an instrumental variable or a set of 
instrumental variables. However, assuming you have one or more instrumental variables, 
the IV method follows the same steps as described above for TSLS. In the first stage you 
estimate a regression of the “troublesome variable” as a function of the instruments and 
the exogenous variables in the equation—i.e., you estimate the reduced form equation. 
In the second stage you use OLS to estimate the original equation with the value of the 
“troublesome variable” predicted by the first stage regression substituted for the actual 
values of the “troublesome variable.” 



In a sense TSLS is a IV estimation. The exogenous variables not in a particular regression 
play the role of the instruments. Thus, in the IV estimation of (1), the weather index is the 
instrument. In the estimation of (2) the price of corn and the income level are the IVs. 
Thus, in a fully specified model, the exogenous variables excluded from the regression 
play the role of instrumental variables. In other situations the choice of an appropriate 
instrument can be very difficult. The selection process demands creativity both in finding 
the instrument and in defending the choice. 

The use either of IV or TSLS comes at a cost. First, the OLS estimators are more precise 
(i.e., have a smaller standard error) than the TSLS or IV estimators. Second, selecting 
invalid or weak instruments can create results that are not meaningful. So how does one 
know if they have chosen a good set of instruments? There is no easy answer to this 
question. Murray (2006a: 116-117) discusses some possible tests of the validity of an 
instrumental variable. In the end, however, the “success” of your instrument may depend 
more on how convincing your justifications are than any statistical test. Some 
economists, like Steven Levitt, make a living coming up with and justifying the use of 
some very creative instrumental variables. Murray (2006a) offers a detailed discussion of 
IV and should be read by any student planning to make use either of TSLS or IV regression 
estimators. 



The identification problem 

There is an additional issue that arises with estimating systems of equations—
identification. Essentially, identification is an algebraic problem. Consider the reduced 
form equations given earlier in (4) and (5): 

 

and 

 

OLS estimation of both of these equations yields unbiased estimates of the parameters in 
the reduced form equations. Identification asks if we can retrieve the parameters of the 
structural equations from the reduced form equations. Say, for instance, that we re-write 
the reduced form equations as: 

(2.74) q t = δ 10 + δ 11 W t + δ 12 I t + δ 13 p t 
c + γ 1  



and 

(2.75) p t 
w = δ 20 + δ 21 I t + δ 22 p t 

c + δ 23 W t + δ 2 .  

Table 1 shows each of the parameters in (11) and (12) in terms of the parameters of the 
two reduced form equations. We can recover the parameters of the structural equations 
by algebraic manipulation of the relationships in Table 1. (This method of estimation—
that is, estimating the reduced form equations of a model using OLS and then solving 
algebraically for the parameters of the structural equations is referred to in the literature 
as indirect least squares.) For instance, 

 

and 

 



Explanatory variable Equation (11) Equation (12) 

Intercept 
  

I t  
  

p t 
c  

 

 

W t  
 

 

Error term 
 

 

Table 2.24. Parameters of the structural and reduced form equations. 



One can continue in a likewise manner to find formulae for other of the structural 
parameters. However, an interesting problem does arrive in that it is also true that 

Since there is no a priori reason to believe that we have two 
estimates of β 1 . This result illustrates the point that there are three possibilities when 
calculating the structural parameters from the reduced form equations—first, there may 
be more than one formula for a structural parameter; second, there may be only one 
formula for a structural parameter; or third, there may be no formula for a structural 
parameter. We say in the first case that the equation is over-identified; is exactly 
identified in the second case; and is under-identified in the third case. It turns out that in 
the case of an over-identified equation we can to use TSLS to estimate the structural 
parameters. However, in the case of an exactly identified equation, the TSLS estimators 
are equal to the indirect-least-squares estimators that can be calculated using estimates 
of the reduced form equations. Finally, an under-identified equation cannot be estimated 
by any technique.  

Clearly, we need to know how to identify if an equation is either over-identified, exactly 
identified, or under-identified. A necessary rule is that the number of exogenous 
variables in a system of equation that are not included in a particular regression must be 
greater than or equal to the number of endogenous variables on the right-hand-side of 



the equation for the equation to be either exactly or over identified. Consider the 
following three-equation model, where the endogenous variables are y 1 , y 2 , and y 3 and 
the exogenous variables are represented by x 1 with i = 1,…,5 :  

(2.76) y 1 = β 10 + β 12 y 2 + β 13 y 3 + α 11 x 1 + α 12 x 2 + α 15 x 5 ,  

(2.77) y 2 = β 20 + β 21 y 1 + α 23 x 3 , and  

(2.78) y 3 = β 30 + β 31 y 1 + α 31 x 1 + α 32 x 2 + α 33 x 3 + α 34 x 4 + α 35 x 5 .  

The error terms in these three equations are omitted because they are irrelevant to 
determining if an equation is identified—remember, identification is an algebraic 
problem, not a statistical issue. There are 3 endogenous variables in the system and 3 
equations in the system. Also, there are 5 exogenous variables in the system of 
equations. Equation (13) is exactly identified; Equation (14) is over-identified; and 
Equation (15) is under-identified. What this means is (1) Equation (13) can be estimated 
directly from the reduced form equation (using indirect-least-squares) or using TSLS; (2) 
Equation (14) must be estimated using TSLS; and Equation (15) cannot be estimated. 
Table 2 summarizes how to determine if an equation is or is not identified. Basically, if 
the number in column 2 equals the number in column 3, the equation is exactly 
identified. If the number in column 2 is less than the number in column 3, the equation is 



over-identified. Finally, if the number in column 2 is greater than the number in column 3, 
the equation is under-identified.[27]  

Equation 

Number of endogenous 
variables on right-hand-
side 

Number of exogenous 
variables excluded from 
the equation Identification 

y 1 = β 10 + β 12 y 2 + β 

13 y 3 + α 11 x 1 + α 12 x 2 
+ α 15 x 5  

2 2 Exactly 

y 2 = β 20 + β 21 y 1 + α 

23 x 3  
1 4 Over 

y 1 = β 10 + β 12 y 2 + β 

13 y 3 + α 12 x 2 + α 13 x 3 
+ α 15 x 5  

1 0 Under 

Table 2.25. Identification of the equations in the example model. 



One other thing to notice is the similarity of TSLS to IV estimation. The exogenous 
variables play the role of instruments in TSLS estimation. By implication, the instruments 
in an IV estimation must not include any of the exogenous variables in the equation.[28] 
Similarly, one of the  

ways to isolate potential instruments in a regression is to think of what system of 
equation the equation is and then ask what exogenous variables in that system are not 
included in the equation. These excluded exogenous variables are potential instruments. 

TSLS and IV in Stata 

The command for estimating an equation in Stata using two-stages least squares (TSLS) is 
a bit tricky. Assume that you want to estimate equations (13) and (14) in the model 
discussed above.[29] For simplicity assume that each variable assumes the name for it in 
Table 2. Thus, in our Stata commands Y1 refers to variable Thus, in our Stata commands 
Y1 refers to variable y 1 and so on. The command to estimate either a TSLS or an IV 
regression is the same.[30] The command, ivreg, consists of three major parts—(1) the 
name of the dependent variable is followed by (2) a list of the names of the exogenous 
variables that are being used as explanatory variables and then followed in parentheses 
by (3) the information needed to estimate the first stage (the list of the endogenous 



variables that are explanatory variables along with the names of the exogenous variables 
in the system that are excluded from the equation or, in the case of IV, a list of the 
instruments).[31]  

Equation to be estimated Stata command 

y 1 = β 10 + β 12 y 2 + β 13 y 3 + α 12 x 2 + α 13 x 3 + α 15 x 5  .ivreg y1 x2 x3 x5 (y2 y3 = x1 x4)  

y 2 = β 20 + β 21 y 1 + α 23 x 3  .ivreg y2 x3 (y1 = x1 x2 x4 x5)  

Table 2.26. Stata command for estimating TSLS and IV regressions. 

Example 2.5.  

An example from Stata. The Stata manual offers the following example analysis. Assume 
that you want to use state level data from the 1980 census to estimate the following 
system of equations: 

(2.79) h s n g v a l = α 0 + α 1 f a i n c + α 2 r e g2 + α 3 r e g3 + α 4 r e g4 + ε  



and 

(2.80) r e n t = β 0 + β 1 h s n g v a l + β 2 p c t u r b a n + ν,  

where hsngval is the median dollar value of owner-occupied housing; rent is the median 
monthly gross rent; fainc is family income; pcturban is the percent of the state population 
living in an urban area; and reg2, reg3, and reg4 are dummy variables that designate the 
region of the country where the state is located. In this example we focus on estimating 
(17). 

We begin by loading the data set and describing the data. 

. use http://www.stata-press.com/data/r8/hsng2  

(1980 Census housing data) 

.describe  

Contains data from http://www.stata-press.com/data/r8/hsng2.dta 
 

obs: 50 1980 Census housing data 



vars: 16 3 Sep 2002 12:25 
 

size: 3,600 (99.7% of memory free)   

  
  

variable 
name 

storage 
type 

display 
format 

value 
label 

variable label 

state str14 % 14s   State 

division int % 8.0g division Census division 

region int % 8.0g region Region 

pop long % 10.0g   Population in 1980 

popgrow float % 6.1f   Pop. growth 1970-80 

popden int % 6.1f   Pop/sq. mile 

pcturban float % 8.1f   Percent urban 

faminc long % 8.2f   Median family inc., 



1979 

hsng long % 10.0g   Hsng units 1980 

hsnggrow float % 8.1f   % housing growth 

hsngval long % 9.2f   Median hsng value 

rent long % 6.2f   Median gross rent 

reg1 float % 9.0g     

reg2 float % 9.0g     

reg3 float % 9.0g     

reg4 float % 9.0g     
 

Sorted by: state 
 

Table 2.27. Description of the Stata data set used in the example. 

Now we estimate equation (17) using TSLS as shown in Figure 2. 



Figure 2.29. Two-stages least square estimate of the example. 

 

 

The manual continues the example to include some testing of the model including the 
Hausman test. Students using TSLS and IV should read the discussion in the Stata manual 

thoroughly. 



 

Exercises 

Exercise 2.5.1. 

Cigarette advertising and sales. A great deal of controversy exists over the issue of 
whether advertising expenditures affect sales. This controversy is particularly sharp when 
it affects policy decisions. An example of this phenomenon is the controversy over the 
impact of cigarette advertising on advertising sales. While many public policy experts 
advocate bans on cigarette advertising, a majority of economists caution against bans on 
cigarette advertising. The economists point out that there is little theoretical reasons to 
believe that cigarette advertising affects total demand for cigarettes. Instead, economists 
argue that cigarette advertising only affects brand choice and not the number of 
cigarettes that people smoke. Moreover, these economists point out that there is also 
little empirical evidence that supports the argument that cigarette advertising affects the 
demand for cigarettes. Given the negative impact advertising bans have on freedom of 
speech, most economists conclude that the negative effects of cigarette advertising bans 
outweigh the benefits of the bans. 



 

In this exercise we address this issue by using data used originally by Richard 
Schmalensee (1972) in his Ph.D. dissertation. You will use these data to estimate a simple 
two-equation model of the cigarette advertising industry. 

We use annual data for the period 1955 to 1967 to estimate the impact of cigarette 
advertising on aggregate demand for cigarettes and the impact of cigarette consumption 
on cigarette advertising. We begin with a model of the demand for cigarettes. We assume 
that the demand for cigarettes is given by: 

(2.81) 

 

where 

qt = cigarettes consumed per person over age 15, 

pct = retail price of cigarettes, 

yt = real disposable personal income per capita (1958 dollars), 



At = real advertising expenditures per individual over age 15 (1960 dollars), and 

D64 = a dummy variable equal to 1 for the years 1964 through 1967 and zero otherwise. 

We include the dummy variable for years after 1964 to pick up the negative impact on 
cigarette sales of the 1964 report of the US Surgeon General’s Advisory Committee (1964) 
announcing that the government believed that there was enough evidence available to 
conclude that cigarette smoking causes cancer. We expect the signs of the parameters 
with the price of cigarettes and the dummy variable to be negative. We expect that the 
sign of the parameters with income and advertising to be positive. 

Next we turn to a model of the supply of advertising. We assume: 

(2.82) 

 

where: 

pat = advertising price index, and 

mt = gross profits as a percentage of gross sales. 



The last variable needs a bit of explaining. The amount of advertising in the industry 
should be a function of degree of competition in the industry. If the market were 
perfectly competitive, there would be no reason for any firm to advertise. If the firm were 
a monopoly, there also would be no reason to advertise. However, if the market is an 
oligopoly, then a firm would advertise in an effort to gain market share by differentiating 
its product from the product of its competitors. 

The traditional measure of the degree of monopoly power that a firm has is the ratio of 
its marginal profits to its marginal cost: 

(2.83) 

 

where p is output price, mc is marginal cost, and m is the measure of monopoly power. 
Since we cannot observe the firms’ marginal costs, we approximate m by the ratio of 
gross profits to gross sales. We expect the impact of the degree of monopoly to have a 
non-linear impact on advertising expenditures. 

The data used to estimate our two equations are listed in Table 5 and are available in the 
MS Excel file Cigarette sales and advertising data.xls. These data are with the exception of 

m34550/Cigarette%20sales%20and%20advertising%20data.xls


disposable personal income from Schmalensee (1972: 273-290). The disposable personal 
income data are from the Department of Commerce (1975: Table F26, page 225). 

Specification of the Model. Equations (18) and (19) are, as written, very general and need 
further specification before they can be estimated. We will assume that the two 
equations take a log-log form. In particular, we assume that we want to estimate: 

(2.84) 

 

and 

(2.85) 

 

Year 

Cigarettes 
Sold per 
Person Over 
Age 15 

Retail Price 
of 
Cigarettes 

Real 
Advertising 
per Person 
Over Age 15 

Advertising 
Price Index 

Degree of 
Monopoly 

Disposable 
Personal 
Income in 
1958 dollars 



1955 3163.090 93.9693 0.96100 95.4775 18.595 1659 

1956 3230.517 94.7049 1.09969 94.3800 19.207 1673 

1957 3313.033 94.2535 1.22180 96.2125 20.165 1683 

1958 3479.063 94.7712 1.40471 97.8300 21.736 1666 

1959 3584.930 98.1779 1.45816 98.2800 22.042 1735 

1960 3676.912 100.0000 1.37863 100.0000 22.04 1749 

1961 3743.354 99.8677 1.31871 102.0400 22.465 1756 

1962 3733.504 99.6761 1.35467 102.9725 22.226 1814 

1963 3775.886 101.3630 1.51345 103.9525 22.848 1867 

1964 3648.211 102.3110 1.73665 103.4775 23.168 1948 

1965 3710.075 105.7510 1.59761 103.7225 23.598 2047 

1966 3689.386 108.0450 1.71062 104.2200 25.085 2127 

1967 3652.016 109.2490 1.71444 104.6125 26.310 2164 



Table 2.28. Cigarette Industry Data, 1955-1967. 

Answer the following six questions: 

a) Which variables in the model are exogenous and which are endogenous? 

b) Check and see if equations (18) and (19) are underidentified, exactly identified, or 
overidentified. 

c) Estimate equations (21) and (22) using ordinary least squares. 

d) Estimate equations (21) and (22) using two-stage least squares. Present the results in a 
table that for comparison reasons includes the results from the OLS estimation. Be sure to 
include the R2 and the Durbin-Watson statistic. 

e) Which side of the advertising-sales controversy do your results appear to support? 

f) How well-specified does your model appear to be? Why? 

Exercise 2.5.2. 



Exercise 2. Demand and supply of commercial loans. We are interested in estimating the 
demand for commercial loans by business firms and the supply of commercial loans by 
banks. We have available in Table 6 monthly data from the U. S. commercial loan market 
for the period from January, 1979 through December, 1984 and available in the MS Excel 
file Exercise 2.xls.[32] Define: 

 

Q t = total commercial loans (billions of dollars) 

R t = average prime rate charged by banks 

RS t = 3-month Treasury bill rate (represents an alternative rate of return for banks) 

RD t = Aaa corporate bond rate (represents the price of alternative financing to firms) 

X t = industrial production index (represents firms’ expectation about future economic 
activity) 

y t = total bank deposits (billions of dollars) (represents a scale variable). 

The demand and supply equations to be estimated, respectively, are as follows: 

m34550/Exercise%202.xls


(2.86) Q t = β 0 + β 1 R t + β 2 R D t + β 3 X t + μ t  

and 

(2.87) Q t = α 0 + α 1 R t + α 2 R S t + α 3 y t + ε t .  

Questions  

a) What are the endogenous and exogenous variables in this model? 

b) Solve for the two “reduced form” equations of this model. Estimate these two 
equations using the data in Table 6. 

c) Check the “order” condition for identification of each equation of the model. 

d) Estimate equations (23) and (24) using ordinary least squares using the data in Table 6. 

e) Estimate equations (23) and (24) using two-stage least squares. Report the results of 
the estimations for part 4 and 5 in a single table. Be sure to include the t-ratios, R2’s, and 
Durbin-Watson statistics for each of the equations estimated. 

f) Perform the Hausman Specification Test on both equations.[33]  



g) When presenting this model, Maddala notes “*T+he model postulated here is not 
necessarily the right model for the problem of analyzing the commercial loan market.” Is 
there anything in the results reported above that suggests that the model may be mis-
specified? 

N  Date Q  R  RD  X  RS  y  

1 January-79 251.8 11.75 9.25 150.8 9.35 994.3 

2 February-79 255.6 11.75 9.26 151.5 9.32 1002.5 

3 March-79 259.8 11.75 9.37 152.0 9.48 994.0 

4 April-79 264.7 11.75 9.38 153.0 9.46 997.4 

5 May-79 268.8 11.75 9.50 150.8 9.61 1013.2 

6 June-79 274.6 11.65 9.29 152.4 9.06 1015.6 

7 July-79 276.9 11.54 9.20 152.6 9.24 1012.3 

8 August-79 280.5 11.91 9.23 152.8 9.52 1020.9 



9 September-79 288.1 12.90 9.44 151.6 10.26 1043.6 

10 October-79 288.3 14.39 10.13 152.4 11.70 1062.6 

11 November-79 287.9 15.55 10.76 152.4 11.79 1058.5 

12 December-79 295.0 15.30 11.31 152.1 12.64 1076.3 

13 January-80 295.1 15.25 11.86 152.2 13.50 1063.1 

14 February-80 298.5 15.63 12.36 152.7 14.35 1070.0 

15 March-80 301.7 18.31 12.96 152.6 15.20 1073.5 

16 April-80 302.0 19.77 12.04 152.1 13.20 1101.1 

17 May-80 298.1 16.57 10.99 148.3 8.58 1097.1 

18 June-80 297.8 12.63 10.58 144.0 7.07 1088.7 

19 July-80 301.2 11.48 11.07 141.5 8.06 1099.9 

20 August-80 304.7 11.12 11.64 140.4 9.13 1111.1 

21 September-80 308.1 12.23 12.02 141.8 10.27 1122.2 



22 October-80 315.6 13.79 12.31 144.1 11.62 1161.4 

23 November-80 323.1 16.06 11.94 146.9 13.73 1200.6 

24 December-80 330.6 20.35 13.21 149.4 15.49 1239.9 

25 January-81 330.9 20.16 12.81 151.0 15.02 1223.5 

26 February-81 331.3 19.43 13.35 151.7 14.79 1207.1 

27 March-81 331.6 18.04 13.33 151.5 13.36 1190.6 

28 April-81 336.2 17.15 13.88 152.1 13.69 1206.0 

29 May-81 340.9 19.61 14.32 151.9 16.30 1221.4 

30 June-81 345.5 20.03 13.75 152.7 14.73 1236.7 

31 July-81 350.3 20.39 14.38 152.9 14.95 1221.5 

32 August-81 354.2 20.50 14.89 153.9 15.51 1250.3 

33 September-81 366.3 20.08 15.49 153.6 14.70 1293.7 

34 October-81 361.7 18.45 15.40 151.6 13.54 1224.6 



35 November-81 365.5 16.84 14.22 149.1 10.86 1254.1 

36 December-81 361.4 15.75 14.23 146.3 10.85 1288.7 

37 January-82 359.8 15.75 15.18 143.4 12.28 1251.5 

38 February-82 364.6 16.56 15.27 140.7 13.48 1258.3 

39 March-82 372.4 16.50 14.58 142.7 12.68 1295.0 

40 April-82 374.7 16.50 14.46 141.5 12.70 1272.1 

41 May-82 379.3 16.50 14.26 140.2 12.09 1286.1 

42 June-82 386.7 16.50 14.81 139.2 12.47 1325.8 

43 July-82 384.4 16.26 14.61 138.7 11.35 1307.3 

44 August-82 384.5 14.39 13.71 138.8 8.68 1321.7 

45 September-82 395.0 13.50 12.94 138.4 7.92 1335.5 

46 October-82 393.7 12.52 12.12 137.3 7.71 1345.2 

47 November-82 398.9 11.85 11.68 135.7 8.07 1358.1 



48 December-82 395.3 11.50 11.83 134.9 7.94 1409.7 

49 January-83 392.4 11.16 11.79 135.2 7.86 1385.4 

50 February-83 392.3 10.98 12.01 137.4 8.11 1412.6 

51 March-83 395.9 10.50 11.73 138.1 8.35 1419.5 

52 April-83 393.5 10.50 11.51 140.0 8.21 1411.0 

53 May-83 391.7 10.50 11.46 142.6 8.19 1413.1 

54 June-83 395.3 10.50 11.74 144.4 8.79 1443.8 

55 July-83 397.7 10.50 12.15 146.4 9.08 1438.1 

56 August-83 400.6 10.89 12.51 149.7 9.34 1461.4 

57 September-83 402.7 11.00 12.37 151.8 9.00 1448.9 

58 October-83 405.3 11.00 12.25 153.8 8.64 1459.0 

59 November-83 412.0 11.00 12.41 155.0 8.76 1499.4 

60 December-83 420.1 11.00 12.57 155.3 9.00 1508.9 



61 January-84 424.4 11.00 12.20 156.2 8.90 1504.1 

62 February-84 428.8 11.00 12.08 158.5 9.09 1499.3 

63 March-84 433.1 11.21 12.57 160.0 9.52 1494.5 

64 April-84 439.7 11.93 12.81 160.8 9.69 1501.5 

65 May-84 447.3 12.39 13.28 162.1 9.83 1541.3 

66 June-84 452.9 12.60 13.55 162.8 9.87 1532.9 

67 July-84 454.4 13.00 13.44 164.4 10.12 1535.5 

68 August-84 455.2 13.00 12.87 165.9 10.47 1539.0 

69 September-84 459.9 12.97 12.66 166.0 10.37 1549.9 

70 October-84 467.7 12.58 12.63 165.0 9.74 1578.9 

71 November-84 468.7 11.77 12.29 164.4 8.61 1578.2 

72 December-84 476.8 11.06 12.13 164.8 8.06 1631.2 



Table 2.29. Monthly Data for the U.S. Commercial Loan Market, January 1979 to 
December 1984. 
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Introduction 

One of the most important first steps in a science experiment is to replicate the results of 
earlier research. For a variety of reasons (most of them practical and not theoretically 
sound) economists generally do not undertake this step; what they tend to do is report 
the results of earlier papers and then compare their results with the earlier results 
without asking the question of whether these earlier results were reported accurately. 
Omitting this step in a world of honest careful researchers might seem to be a minor 
problem. However, there is enough casual evidence to suggest that a large portion of the 
econometric results reported in the journals cannot be replicated because the original 
researcher (1) does not have the data set used in the research because it has been lost for 
a variety of reasons, (2) cannot share the data set because it is proprietory, (3) is 
unwilling to share the data set because there are other issues they wish to investigate 
using the data set, or (4) just are unwilling to share the data set. For this reason much of 
the published econometrics research has never been replicated. In recognization of this 
problem several journals like the Journal of Applied Econometrics now require that 
authors submit the data set they used to the journal to be posted on the web for use by 
any other researcher. Whether this effort has been successful will not be clear unless 
someone undertakes to replicate the work in this journal to see if all of the data 
necessary to replicate an article have been posted and if the regressions included in the 



article actually can be replicated. It is very unlikely anyone would undertake such an 
effort given the fact that no journal will publish results that are merely a replication of 
previously published articles. 

In this module we explore some of the difficulties that exist in replicating existing 
research by undertaking to replicate some of the results reported in the Butler, Finegan, 
and Siegfried (1998) (BFS, hereafter) article analyzing the effect of a student's calculus 
background on the grade he or she earns in intermediate microeconomics or in 
intermediate macroeconomics.[34] The goal of this module is to (1) help students to learn 
how to read in detail an article that appears in a typical economics trade journal, (2) 
introduce them to ordered probit, an advanced econometrics tool, and (3) teach them 
how to present and discuss the results of an estimation of a model in an economics 
paper. While most of the discussion in this module focuses on using Stata in this 
replication, one can use most any econometrics program they are comfortable with to 
replicate some of the results reported in the BFS article. 

Butler, Finegan, and Siefried (1998). 

The obvious first step is to find and print a copy of the article by Butler, Finegan, and 
Siefried. In fact, do not proceed any further in reading this module until you have read 



the article. We will discuss in class what the authors do in the paper and how clearly they 
present their conclusions. In this first pass at the article you are to pay attention to how 
convincing you find their arguments to be. Since everyone in the class has completed an 
intermediate microeconomics course, your discussion of their conclusions should reflect 
your own experiences. Also, you need to be able to discuss in class the estimation 
strategy they use in the paper. In particular, you will need to be able to identify what the 
source of the data is and what equations did they estimate. Also, try to determine how 
the estimations in the "first" stage are used in the estimations of the "second" stage. 
Why did the authors use a two-stage estimation strategy? 

Also, what do you think the authors mean in their description of their estimation strategy 
by their statement about the estimation methods they use: 

Estimation Methods and Expectations 

To cope with the selection bias problem, we use a two-stage estimation procedure. 
The first stage employs an ordered probit model to predict the highest level of 
calculus attained by each student prior to taking each intermediate economic theory 
course.... In the second stage, the student's grade in MICRO-2 ... (the `outcome') is 
regressed on the actual level of calculus attained, the grade earned in that calculus 
course, the predicted residual in the grade equation that we would expect on the 



basis of the actual level of calculus attained, and a roster of control variables 
reflecting ability and motivation. Individuals are the unit of observation. Ordinary 
least squares estimation is used because there are twelve categories of grades which 
are commonly interpreted as cardinal measures of performance (as is implied by the 
calculation of `grade point averages'). (Butler, Finegan, and Siegfried, 1998: 188) 

The ordered-probit model 

In what follows you are to “replicate” the equations the authors estimate in the paper for 
the intermediate microeconomics course. In order to complete this assignment you will 
need to figure out several things including (1) what an ordered-probit model is and (2) 
how to use Stata to estimate an ordered-probit model. In this section of the module we 
introduce the ordered-probit model. I strongly encourage you to consult Greene (1990: 
703-706) for an excellent and clear discussion of the ordered-probit model. The discussion 
here follows Greene closely. 

It is common for surveys to have questions that require the responder to choose one of 
several categories that have an innate order to them. For instance, most course 
evaluations ask the respondent to choose an answer to a question that reflects their 
agreement with a statement about the course. For instance, the question might read, 
"The Professor was interested in the material taught in the class" where the student 



completing the evaluation would choose a number from 1 to 9 where a 1 indicates 
complete disagreement with the statement and a 9 reflects complete agreement with the 
statement. Thus, there is an order to the potential answers. Using a logit, probit, or 
multilogit model would completely ignore this order. A linear regression is inappropriate 
because OLS treats the difference between answers of 1 and 2 as being the same as the 
difference between a 7 and and 8, when in fact the numbers only provide a ranking. 

Consider a latent variable, y*, that is not observed but where We want to 

estimate the β k ' s in the vector [35] We may not observe y* but we 
do observe: 

The μ i 's in (1) are parameters that must be estimated along with As usual, we assume 
that the error term ε is normally distributed (with a normalized mean and variance 
arbitrarily set to 0 and 1, respectively). It is trivial to estimate the model with the error 
terms having a logistic distribution, but this chance in assumptions appears to make 
virtually no difference in practice).[36] With the normal distribution, we have: 

(2.88) 



 

(2.89) 

 

where is the cumulative normal function. In order for all of the probabilities to be 
positive, we need μ 1 < μ 2 < ⋯ < μ J − 1 , as shown in Figure 1. One thing to note in Figure 1 
is that the cutoff locations change when the values of the explanatory variables change. 

Figure 2.30.  



 

Distribution of the error term in the ordered-probit model.  

 

The estimation strategy from here follows the usual maximum likelihood method. The 
computer program forms the likelihood function and then chooses the values of the 
parameters (including the cutoffs) that maximize this likelihood function. 

The estimated coefficients are not equal to the marginal effects of a change in one of the 
explanatory variables (as is also true with the logit and probit models). Consider the 



simple example Greene (1990, 704) describes. Assume that there are three categories. 
Then (2) becomes: 

(2.90) 

 

Figure 2 shows this situation. The solid curve shows the distribution of y and y*. 

Increasing one of the x's while holding the β constant (that is, changing to is 

the same as shifting the entire distribution of y and y* to the right with remaining 
constant. As a result the probabilities that y takes on the values of 0, 1, and 2 change. 
Clearly, as shown in Figure 2, Pr( y = 0 ) decreases and Pr( y = 2 ) increases. The Pr( y = 1 ), 
on the other hand, may increase or decrease and, thus, the effect of an increase in one of 
the explanatory variables is ambiguous. It is easy to show this result algebraically. The 

marginal effects for the 3 probabilities in (3) are, assuming  

(2.91) 



 

Figure 2.31.  

 



A rise in one of the explanatory variables whose parameter is positive will shift the 
probability distribution of the outcome to the right (from the solid line to the dashed 

line).  

 

In general, only the sign's of the change Pr( y = 0 ) and Pr( y = J ) are unambiguous. Greene 
(1990, 705) cautions that "“[w]e must be very careful in interpreting the coefficients in 
this model.... Indeed, without a fair amount o extra calculation, it is quite unclear how 
the coefficients in the ordered-probit model should be interpreted.”"  

The BFS Dataset 

The data used by BFS are available at the Journal of Applied Econometrics data website or 
in the MS Excel file Vanderbilt data set.xls . Table 1 identifies the variables in the dataset. 

Column Code Variable definition 

A Obs Observation number 

http://qed.econ.queensu.ca/jae/1998-v13.2/butler-finegan-siegfried/
m34552/Vanderbilt%20data%20set.xls


B SID Student ID 

C Grade Grade earned in Economics 231, A = 4, A- = 3.7, etc. 

D SelCorr Variable correcting for selection bias 

E Soph Dummy variable = 1 if student is a sophomore 

F Senior Dummy variable = 1 if student is a senior 

G Same 
Dummy variable = 1 if student took both intermediate classes the 
same year 

H Skip 
Dummy variable = 1 if student took the intermediate classes at 
least one semester apart 

I HighestMath 
Highest level of math attained (the dependent variable, 0-6 
corresponding to Math 170, 171a, 172a, 171b, 172b, 221a, 221b) 

J M170 
Dummy variable = 1 if student's highest level of math was Math 
170 

K M171a 
Dummy variable = 1 if student's highest level of math was Math 
171A 



L M172a 
Dummy variable = 1 if student's highest level of math was Math 
172a 

M M171b 
Dummy variable = 1 if student's highest level of math was Math 
171b 

N M172b 
Dummy variable = 1 if student's highest level of math was Math 
172b 

O M221a 
Dummy variable = 1 if student's highest level of math was Math 
221a 

P M221b 
Dummy variable = 1 if student's highest level of math was Math 
221b 

Q GE100 Grade in Economics 100 

R GDE100 Individual instructor grade deflator in Economics 100 

S GE101 Grade in Economics 101 

T GDE101 Individual instructor grade deflator in Economics 101 

U GDE231 Individual instructor grade deflator in Economics 231 



V Size Class size 

W FGPA Freshman GPA 

X Female Dummy variable =1 if student is a female 

Y MSAT Score on Math section of the SAT 

Z VSAT Score on Verbal section of the SAT 

AA TE231 Teacher of Economics 231 (numerical code) 

AB SE231 Section of Economics 231 (numerical code) 

AC GM170 Grade in highest math class: Math 170 

AD GM171a Grade in highest math class: Math 171a 

AE GM172a Grade in highest math class: Math 172a 

AF GM171b Grade in highest math class: Math 171b 

AG GM172b Grade in highest math class: Math 172b 

AH GM221a Grade in highest math class: Math 221a 



AI GM221b Grade in highest math class: Math 221b 

AJ GHM Grade in highest math class 

AK Foreign 
Dummy variable = 1 if student passed foreign language proficiency 
test 

AL EMEcon Dummy variable = 1 if expected major is economics 

AM EMOSS Dummy variable = 1 if expected major is another social science 

AN EMNS Dummy variable = 1 if expected major is a natural science 

AO EMH Dummy variable = 1 if expected major is in the humanities 

AP AM1 
Dummy variable = 1 if student completed 1 year of advanced math 
in high school 

AQ AM2 
Dummy variable = 1 if student completed 2 years of advanced 
math in high school 

AR AM3 
Dummy variable = 1 if student completed 3 years of advanced 
math in high school 

AS Phy1 Dummy variable = 1 if student completed 1 course in physics in 



high school 

AT Phy2 
Dummy variable = 1 if student completed 2 courses in physics in 
high school 

AU Chem1 
Dummy variable = 1 if student completed 1 course in chemistry in 
high school 

AV Chem2 
Dummy variable = 1 if student completed 2 courses in chemistry in 
high school 

Table 2.30. Definition of the variables included in the Vanderbilt data set. 

Replication of the Ordered Probit Regression 

At this point we are ready to begin the replication. Since it is easy to get lost in the 
process, I have created a list of steps that include both instructions on what to do and 
questions you need to answer. As part of this exercise you will be asked to complete 
several tables of results. In order to make this effort easier, I have provided a MS Word 
file, Tables for ordered probit discussion.doc, with the tables to be completed in it. 

1. Load the data in Stata from Excel. 

m34552/Tables%20for%20ordered%20probit%20discussion.doc


2. Convert MSAT and VSAT to MSAT/100 and VSAT/100, respectively, using the 
commands: 

.replace msat = msat/100  

.replace vsat = vsat/100  

3. Common sense dictates that we should calculate the means and standard deviations of 
the variables to be sure that there are no entry errors. We need to construct a table that 
compares the means and standard deviations reported in BFS with those in our dataset. 
Table 2, which has the means and standard deviations reported by BFS, gives a place to 
put the means and standard deviations for the variables in our dataset. Fill in the 
information missing from Table 2. 

  Our data Butler, et al. 

Variable Mean Std. Dev. Mean Std. Dev. 

msat     6.25 0.60 

foreign     0.11 0.32 



female     0.39 0.49 

emecon     0.34 0.48 

emoss     0.17 0.38 

emns     0.21 0.41 

emh     0.07 0.25 

am1     0.49 0.50 

am2     0.45 0.50 

am3     0.01 0.11 

phy1     0.67 0.47 

Phy2     0.02 0.14 

chem1     0.82 0.39 

chem2     0.12 0.32 



Table 2.31. Means and standard deviations of the data. 

4. Estimate the ordered probit regression using (in Stata) the commands: 

.global indvar msat foreign female emecon emoss emns emh am1 am2 am3 phy1 phy2 
chem1 chem2  

.oprobit highestmath $indvar  

5. Use the result of this estimation to complete Table 3.[37]  

highestmath Coef. Std. Err. z P>z [95% Conf. Interval]  

msat1             

foreign             

female             

emecon             



emoss             

emns             

emh             

am1             

am2             

am3             

phy1             

Phy2             

chem1             

chem2             

              

_cut1       

_cut2             



_cut3             

_cut4             

_cut5             

_cut6             

Observations             

Log likelihood             

LR χ2(14)             

Prob > χ2              

Pueudo-R2              

Table 2.32. Results of Stata ordered-probit regression. 

6. Compare your results with the table reported in the article. The table in the article is 
Table II on page 193 and is reproduced in Figure 3. What we are interested in is 



comparing column 4 in Figure 3 with columns 2 and 4 in Table 3. Table 4 below offers a 
model for this comparison. 

Figure 2.32.  



 



Results of ordered probit regression as reported in Butler, et al.  

 

Table 4. Comparison of ordered probit estimations. 

  Our estimates Butler, et al. estimates 

  Estimate z Estimate t-value 

msat1     0.05 6.12 

foreign     0.02 0.14 

female     0.25 2.59 

emecon     -0.11 0.86 

emoss     -0.29 1.99 

emns     0.43 3.10 

emh     -0.37 1.78 



am1     0.24 1.07 

am2     0.93 4.04 

am3     0.77 1.70 

phy1     0.26 2.71 

Phy2     0.38 1.07 

chem1     -0.12 0.69 

chem2     0.17 0.75 

Intercept     -3.09 5.48 

_cut1     0.27 7.29 

_cut2     0.33 8.16 

_cut3     1.52 20.32 

_cut4     1.79 23.07 

_cut5     2.04 23.72 



_cut6         

Table 2.33. Comparison of ordered-probit estimations. 

7. It is easy to see from Table 4 is that almost without exception the estimates of the 
parameters and their t-ratios are very similar. The exception arises with the estimates of 
the truncation points (_cut# in the Stata results). We will have to figure out what these 
are estimates of in order to make sense of them. Figure 1 shows the "cutoffs" that are 
being estimated. Footnote c in the BFS Table II on page 193 (shown in Figure 3) offers a 
useful observation:  

In an ordered probit, an underlying, normally distributed, latent variable has a mean 
which is a function of observable variables. The latent variable gives rise to a set of 
observed dummy variables for ordered categories based on ranges between 
unobserved but estimable truncation points which correspond to levels of effort, 
ability, or other factors reflected in the explanatory variables. If L categories are 
observed, there are L − 1 truncation points, of which the first is normalized to be 
zero, so that L − 2 truncation points are estimated and reported in the table. The 
values correspond to standard deviations of the latent normally distributed variable. 



The key idea is that the values of cutoffs are relative and can be normalized around any 
value. Notice that the Stata results do not report an intercept term but do report six 
cutoff values. Moreover, the difference between the estimate by Stata for the first cutoff 
(3.08402) and the estimate for the second cutoff (3.356916) is equal to 0.272896, which is 
itself equal to the first truncation point reported by BFS (1998: 193). Use Table 5 to report 
the difference between the first cutoff value and each of the cutoff points reported by 
Stata. 

Cutoff Estimate Estimate - _cut1 BFS Truncation Points 

_cut1 3.0840     

_cut2 3.3569   0.27 

_cut3 3.4146   0.33 

_cut4 4.6013   1.52 

_cut5 4.8774   1.79 

_cut6 5.1202   2.04 



Table 2.34. Reconciling Stata estimates of cutoff points with Butler, et al.'s truncation 
points. 

The second part of the reconciliation of the two sets of results is to compute the t-ratios. 
To do this we need to compute the standard deviation of the estimates of the cutoff 
points reported by Stata. To do this we need to retrieve the variance-covariance matrix 

from the regression. First, let's see what we are interested in computing. Let be the 

estimate of the i th cutoff point. In column 3 of Table 5 you computed for i = 
2,…,6 . The variance of the new variable is: 

(2.92) 

 

The variance-covariance matrix will give us estimates of these variances and covariances. 
When there are j parameters in a regression equation, this matrix is defined to be: 



 

If you type the command .vce, Stata will report as shown in Figure 4. We need the 
section of this matrix shown in Part A of Table 6. Use equation (5) to estimate the 
standard errors of the estimates of the cutoff points and complete Part B of Table 6 and 
compares the t-ratios with the values reported by Butler, et al. (and shown in the last 
column 4 of Table 6). Are you satisfied that we have been able to come reasonably close 
to the results reported in the article? 

Figure 2.33.  



 



Stata estimate of the variance-covariance matrix.  

 

Part A. Relevant portion of the variance-covariance matrix. 

  _cut1 _cut2 _cut3 _cut4 _cut5 _cut6 

_cut1 0.329           

_cut2 0.329 0.330         

_cut3 0.329 0.330 0.331       

_cut4 0.332 0.333 0.334 0.341     

_cut5 0.333 0.334 0.334 0.341 0.343   

_cut6 0.333 0.334 0.335 0.342 0.343 0.345 

Part B. Calculation of the t-ratios (with comparison of values reported in BFS) 



  V( ) St. Dev.(  t-ratio BFS t-ratio 
  

_cut2       7.29   
 

_cut3       8.16   
 

_cut4       20.32   
 

_cut5       23.07   
 

_cut6       23.72   
 

Table 2.35. Calculation of the t-ratios for the cutoff estimates. 

8. The next step in the process is to generate the term we will use in the estimation of the 
grade regression to account for the potential sample selection bias. To do this we will 
need to find a reference in the literature that offers a clear description of what we need 
to do. As it turns out, a reasonable explanation of the appropriate estimation technique is 
available in Jimenez and Kugler (1987). Since much of what follows comes directly from 
this article, I highly recommend you read it yourself. 



The gist of the method suggests that the potential sample bias is accounted for by an 
inverse Mills ratio for each of the categories. What we need to do is calculate: 

(2.93) 

 

for the category that the individual actually is in. What we will do is calculate (6) for all of 
the categories and then sum the product of this number and a dummy variable indicating 
if a course is the highest math class completed by an individual. Since the dummy 
variables will equal 0 for math categories an individual is not in, the resulting sum will 
preserve the value of (6) that is associated with the category the individual does belong 
to. 

It is clear from (6) that we will need to retain the 6 cutoffs. We can do this with the 
commands: 

. generate cutoff1 = _b[_cut1]  

. generate cutoff2 = _b[_cut2]  



. generate cutoff3 = _b[_cut3]  

. generate cutoff4 = _b[_cut4]  

. generate cutoff5 = _b[_cut5]  

. generate cutoff6 = _b[_cut6]  

Technically, this step is not necessary since the parameter estimates are preserved until 
the next regression is estimated; I suggest doing this purely as a precaution. 

9. Preserve the predicted values of the ordered-probit using the command: 

. predict zhat, xb  

. predict phat1 phat2 phat3 phat4 phat5 phat6 phat7, p  

These two commands will generate for each observation the predicted mean category of 
math classes and the probability that this individual will fall in each category. To see what 
is going on we will retrieve some representative values of these variables and then graph 
them for one individual. Table 7 reports these values for 10 individuals in the sample. 
Now consider individual 2. Fitting a normal distribution with a mean of 4.25 and using the 



critical values from our estimation yields the probabilities that the individual is in each of 
the categories. For example, the probability that individual 1 will have completed no 
math classes is equal to 0.1223. Figure 5 illustrates the results for individual 1. The dashed 
vertical lines are the six cutoff values that are the same for each individual. The solid 
vertical line is the zhat for individual 1. The heavy blue line represents the normal 
probability density function for this individual. While, there is, of course, a different 
probability distribution for each individual, the cutoff values are the same for all 
members of the sample. 

Observation 
Highest 
Math Class zhat Pr(0) Pr(1) Pr(2) Pr(3) Pr(4) Pr(5) Pr(6) 

1 3 3.9657 0.1890 0.0824 0.0194 0.4467 0.0816 0.0568 0.1241 

2 0 4.2507 0.1217 0.0640 0.0158 0.4355 0.0975 0.0731 0.1923 

165 0 3.5982 0.3036 0.1011 0.0225 0.4149 0.0575 0.0364 0.0640 

166 6 4.6914 0.0540 0.0370 0.0098 0.3633 0.1097 0.0922 0.3340 

214 3 3.4533 0.3560 0.1056 0.0229 0.3900 0.0483 0.0294 0.0478 



215 3 4.0840 0.1587 0.0749 0.0180 0.4459 0.0887 0.0637 0.1501 

225 3 3.5250 0.3296 0.1036 0.0228 0.4031 0.0528 0.0328 0.0553 

226 3 3.6990 0.2693 0.0969 0.0219 0.4285 0.0641 0.0417 0.0776 

453 3 3.9713 0.1875 0.0820 0.0194 0.4468 0.0819 0.0571 0.1253 

454 5 4.1650 0.1399 0.0697 0.0170 0.4422 0.0932 0.0684 0.1697 

495 3 4.4168 0.0913 0.0533 0.0135 0.4151 0.1043 0.0816 0.2409 

496 0 2.9811 0.5410 0.1055 0.0212 0.2797 0.0236 0.0127 0.0162 

526 0 2.9247 0.5633 0.1039 0.0207 0.2653 0.0214 0.0114 0.0141 

527 3 3.9757 0.1863 0.0817 0.0193 0.4469 0.0822 0.0574 0.1262 

Table 2.36. Predicted values of the ordered probit regression. 

Now we are ready to calculate (6). The commands are: 

.generate lambda0 = (-normden(cutoff1-zhat))/(norm(cutoff1-zhat)-norm(-zhat))  



.generate lambda1 = (normden(cutoff1-zhat)-normden(cutoff2-zhat))/(norm(cutoff2-
zhat)-norm(cutoff1-zhat))  

.generate lambda2 = (normden(cutoff2-zhat)-normden(cutoff3-zhat))/(norm(cutoff3-
zhat)-norm(cutoff2-zhat))  

.generate lambda3 = (normden(cutoff3-zhat)-normden(cutoff4-zhat))/(norm(cutoff4-
zhat)-norm(cutoff3-zhat))  

.generate lambda4 = (normden(cutoff4-zhat)-normden(cutoff5-zhat))/(norm(cutoff5-
zhat)-norm(cutoff4-zhat))  

.generate lambda5 = (normden(cutoff5-zhat)-normden(cutoff6-zhat))/(norm(cutoff6-
zhat)-norm(cutoff5-zhat))  

.generate lambda6 = (normden(cutoff6-zhat))/(1-norm(cutoff6)-norm(cutoff5-zhat))  

.generate lambda = m170*lambda0 + m171a*lambda1 + m172a*lambda2 + 
m171b*lambda3 + m172b*lambda4 + m221a*lambda5+m221b*lambda6  

One thing to notice in these calculations is that cutoff0 is assumed to be − ∞ and cutoff7 
is assumed to be ∞.  



Figure 2.34.  



 



The probability distribution of math class category for individual 2.  

 

10. Now we are ready to estimate our regression explaining the grade that each 
individual received in intermediate microeconomics. Use Table 8 to report the regression 
results for four specifications of the model. The first question is can the null hypothesis of 
sample selection bias be rejected? How does this conclusion compare with BFS's 
conclusions? (See Table 9.) Second, since many of the potential explanatory variables like 
class size and scores on the SATs do not seem to be statistically significant, it is 
reasonable to focus our comments on the results reported in column (4) of Table 8. 

What can you conclude about the impact of calculus on how well a student will do in 
intermediate microeconomics? Do the final grades earned in a majority of the math 
classes impact the grade earned in intermediate microeconomics? Do the grades earned 
in any of the math classes positively and significantly affect the grade earned in 
intermediate microeconomics? Can you explain the impact of the freshman GPA on the 
grade earned in intermediate microeconomics? What, if any, is your bottom line 
conclusions about what matters in determining the grades earned in intermediate 
microeconomics? 



Explanatory variables Model (1) Model (2) Model (3) Model (4) 

Lambda     — — 

          

Sophomore   —   — 

          

Senior   —   — 

          

Same         

          

Skip   —   — 

          

M171a         

          



M172a         

          

M171b         

          

M172b         

          

M221a         

          

M221b         

          

GE100         

          

GDE100         



          

GE101         

          

GDE101       — 

          

GDE231         

          

Size       — 

          

FGPA         

          

Female         

          



MSAT       — 

          

VSAT       — 

          

Grade in highest Math  —   — — 

class         

GM170   —     

          

GM171a   —     

          

GM172a   —     

          

GM171b   —     



          

GM172b   —     

          

GM221a   —     

          

GM221b   —     

          

Intercept         

          

F( 28, 580)   — — — 

Prob > F   — — — 

F( 27, 581) — —   — 

Prob > F — —   — 



F( 20, 588)   — —   

Prob > F   — —   

F( 19, 589) —   — — 

Prob > F —   — — 

R-Squared         

Root MSE         

Sample Size 609 609 609 609 

Table 2.37. Determinants of Final Grade in Intermediate Microeconomics. 

Robust t-ratios are in parentheses. 

    MICRO-2 

Variablea  Expected sign Mean (SD) Coefficient(t-value) 

Intercept — — -1.64 



      (3.48) 

Selection bias correction + -0.00 0.10 

(Predicted residual)   (0.92) (1.29) 

Level of calculus attained: 

Math 171A + 0.08 0.39 

    (0.27) (1.04) 

Math 172A + 0.02 -0.18 

    (0.13) (0.21) 

Math 171B + 0.37 1.02b  

    (0.48) (3.49) 

Math 172B + 0.07 1.52 b  

    (0.25) (3.53) 

Math 221A + 0.05 1.33c  



    (0.22) (2.27) 

Math 221B or 222 + 0.14) 0.75c  

    (0.35 (1.67) 

Grade in last calculus course: 

Math 170 + 3.06 0.36b  

    (0.70) (4.36) 

Math 171A + 2.22  0.26c  

    (0.86) (2.21) 

Math 172A + 2.94 0.42 

    (0.80) (1.54) 

Math 171B + 2.62 0.10c  

    (0.93) (1.85) 

Math 172B + 2.63 -0.01 



    (0.90) (0.10) 

Math 221A + 3.10 -0.09 

    (0.77) (0.55) 

Math 221B or 222 + 3.15 0.11 

    (0.76) (1.04) 

Grade deflator of instructor in 
intermediate theory  

+ -0.16 0.88b 

course   (0.27) (8.28) 

Taken in Sophomore year ? 0.32 0.07 

    (0.47) (0.94) 

Taken in Senior year - 0.06 -0.02 

    (0.24) (0.13) 

MICRO-1 and MICRO-2 in same 
academic year 

+ 0.35 0.04 



    (0.48) (0.46) 

At least one semester between 
MICRO-1 and  

- 0.27 0.13 

MICRO-2   (0.44) (1.85) 

Grade in MACRO-1 + 2.73 0.20b  

    (0.73) (3.93) 

Grade in MICRO-1 + 2.67 0.29b  

    (0.74) (5.93) 

Instructor's grade deflator: 

  

MACRO-1 - -0.32 -0.33c  

    (0.20) (2.20) 

MICRO-1 - -0.29 -0.11 

    (0.16) (0.53) 



Class size (intermediate theory course) ? 28.2 -0.002 

    (5.5) (0.45) 

Freshman Grade Point Average + 2.79 0.29b  

    (0.46) (3.04) 

Sex (female = 1; male = 0) ? 0.39 0.13c  

    (0.49) (2.09) 

SAT-Math score x 10-2  + 6.25 0.12c  

    (0.60) (1.75) 

SAT-Verbal score x 10-2  + 5.56 0.04 

    (0.67) (0.78) 

OVERALL RESULTS 

Mean (SD) of dependent variable       

        



Adjusted R2    0.44   

Number of observations   609   

Table 2.38. Results reported in BFS (p. 195). 
a Omitted reference groups in MICRO-2 regression: attained Math 170; took MICRO-2 in 
Junior year; took MICRO-1 in spring, MICRO-2 next fall. b Significant at 0.01 level, one- or 

two-tailed test as appropriate. c Significant at 0.05 level, one- or two-tailed test as 
appropriate. 

Exercises 

Exercise 2.6.1. 

Quite often health professionals request that a patient a report their perception of their 
health status on a scale of 0 to 10, where 0 is the lowest possible health status and 10 is 
the highest health status. This type of data set is best analyzed using ordered probit. In 
this exercise you will analyze a data set of responses to a survey made in Germany 
between 1984 and 1995. The question we are interested in analyzing is the respondent’s 
perception of their own health status.  

 



The file Riphahn, Wambach, Million data.xls is an MS Excel file that contains 27,326 
observations on 25 variables, one observation per line. The data are from Riphahn, 
Wambach, and Million (2003) and are also available on the web. The variables are 
defined in Table 10. As a first step you will need to load these data into Stata. However, 
due to the large sample size you will need to first expand the size of the memory that is 
available to Stata with the command: . set memory 1G. Here I have increased the 
memory to 1 gigabyte. This amount may be overkill but it seemed to be big enough on my 
computer to handle the data. 

Column Variable Variable definition 

A ID individual's ID number 

B Female female = 1; male = 0 

C Year calendar year of the observation  

D Age age in years  

E HSAT health satisfaction, coded 0 (low) - 10 (high) 

F Handdum  handicapped = 1; otherwise = 0 

m34552/Riphahn,%20Wambach,%20Million%20data.xls
http://qed.econ.queensu.ca/jae/2003-v18.4/riphahn-wambach-million/


G Handper  degree of handicap in percent (0 - 100) 

H HhnINC  household nominal monthly net income in German marks / 1000 

I HHKIDS  children under age 16 in the household = 1; otherwise = 0 

J Educ years of schooling  

K Married married = 1; otherwise = 0 

L Haupts highest schooling degree is Hauptschul degree = 1; otherwise = 0 

M Reals  highest schooling degree is Realschul degree = 1; otherwise = 0 

N FachHS  highest schooling degree is Polytechnical degree = 1; otherwise = 0 

O Abitur highest schooling degree is Abitur = 1; otherwise = 0 

P Univ highest schooling degree is university degree = 1; otherwise = 0 

Q Working  employed = 1; otherwise = 0 

R BlueC  blue collar employee = 1; otherwise = 0 

S WhiteC white collar employee = 1; otherwise = 0 



T Self self employed = 1; otherwise = 0 

U Beamt  civil servant = 1; otherwise = 0 

V DocVis  number of doctor visits in last three months  

W HospVis  number of hospital visits in last calendar year  

X Public  insured in public health insurance = 1; otherwise = 0 

Y Addon  insured by add-on insurance = 1; otherwise = 0 

Table 2.39. Variables in the German Socioeconomic Panel Data Set. 

Figure 2.35.  



 



Distribution of responses on health status.  

 

One of the major problems with survey indices is that the numbers seem to mean 
different things to respondents. One way to reduce this problem is to collapse the index 
into fewer outcomes by combining some of the responses together. However, anyway we 
do this is going to be ad hoc. Figure 6 shows a histogram of the responses to this 
question. Based on this graph, we will create 5 categories—(0) HSat = 0, 1, or 2; (1) HSat = 
3, 4 or 5; (2) HSat = 6, 7, or 8; (3) HSat = 9; and (4) HSat = 10. We can create a new 
categorical variable called hsatnew with the command: 

. recode hsat (0/2 = 0) (3/5 = 1) (6/8 = 2) (9 = 3) (10 = 4), generate(hsatnew)  

Figure 7 shows the histogram of the new variable. 

Figure 2.36.  



 



The collapsed distribution of health status responses.  

 

1. Create a table of summary statistics for (1) health status, (2) age, (3) household 
income, (4) years of education, (5) marital status, and (6) number of children by year 
and sex. (You might want to use the command .bysort year female, list of variables). 

2. Estimate an ordered probit regression for 1988 for health status (the new variable) 
using age, income, education, married, and kids as the explanatory variables. Here you 
might want to used the command: .oprobit hsatnew age hninc educ married hhkids if 
year==1988. 

3. Use the predict newvariable, xb command to calculate the predicted mean values for 
each individual for the 1988 observations. Compare this histogram to one using the 
1988 regression parameters to estimate xb for all years. 

4. Estimate the ordered probit model for all of the years in the sample and put the 
results into a table like Table 11. (Here you might want to make use of the command: 
.bysort year: oprobit hsatnew varlist)  
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Variable 1984 1985 1986 1987 1988 1991 1994 

age               

income               

education               

married               

kids               

_cut1               

_cut2               

_cut3               

_cut4               

Observations               

LR χ2(5)               

Prob > χ2                



Log likelihood               

Pseudo-R2                

Table 2.40. Sample table for part (d) of Exercise 1. 

t-ratios are in parentheses. 
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[7] J. S. Cramer (2003) Logit Models from Economics and Other Fields (Cambridge: 
Cambridge University Press): 10. 

[8] For a full discussion of this model see Ladd, G. W. (1966) “Linear Probability Functions 
and Discriminant Functions,” Econometrica 34: 873-888. 

[9] The assumption that the variance is equal to 1 is due to technical considerations. See 
[Cramer, 22]. 

[10] The pdf of a logistic distribution is , where . See 
Cramer, 24-26 for a fuller discussion of the logistic distribution.  

[11] See Stata Library, Categorical and Count Data Analysis Utilities for useful utilities and 
an excellent discussion of how to interpret categorical and count regression results at 
http://www.ats.ucla.edu/stat/stata/library/longutil.htm/ (accessed July 19, 2009). 



[12] The phrase “(Assumption: . nested in full)” tells you the name of the regression is the 
unrestricted model (full) and offers you a hyperlink to call this regression up to the 
screen. 

[13] The gradient is a vector of first-derivatives. In this case it is a vector of the first-

derivatives with respect to each parameter estimate To obtain the ML 
estimate, we have to set these first-derivatives equal to zero. 

[14] See StataCorp [2003:119-130] for more detail on this command. 

[15] If the OLS parameter estimates are unbiased but the standard error estimates are, 
then applying the Cochran-Orcutt adjustment should change the estimates of the 
standard errors without changing the estimates of the equation parameters substantially. 

[16] That is, we assume , where the distribution is not specified, and 

for all i ≠ j .  



[17] These methods make use of the mathematics of difference equations. See advanced 
texts like Enders (1995: pp. 68-77) for examples of the derivation of the conditions 
necessary for an ARMA(p, q) time-series to be stationary. 

[18] AR(1) is the same as ARMA(1, 0) 

[19] This set of graphs is from Enders (2005: p. 79). 

[20] ARIMA means AutoRegressive Integrated Moving Average. See Enders (2005: 67) for a 
discussion of what integrated means. We can ignore it given our limited purposes. 

[21] Another way to think about this point is to remember that, unlike the fixed-effects 
model, the random-effects does not use dummy variables to summarized the unknown 
characteristics; thus, there is no problem with multicollinearity. 

[22] See Cameron and Trivedi (2005: 705] for a detailed discussion of the random-effects 
estimator. 

[23] R-squared is in quotes in this line because these R-squareds do not have all the 
properties of OLS R-squareds. 



[24] Because the mean and variance of the standard normal distribution are 0 and 1, 
respectively, its probability density function (pdf) is and the cumulative probability 
function is . 

[25] A stochastic variable is a random variable—i.e., a variable whose value is determined 
as a result of a process involving an uncertain outcome. 

[26] Greene suggested this example in 1990 when most people paid their bills with checks. 
Currently it would not be such a good example because of the development of electronic 
payment of bills. 

[27] In these notes I discuss only what is known in the literature as the order condition for 
identification. The order condition is necessary for identification. Another condition—the 
rank condition—is a sufficient condition. See Greene (1990: Chapter 19, especially pp. 
600-609) for a fuller discussion of simultaneous-equation models and the identification 
problem. 

[28] Using one of the exogenous variables in an equation as an instrument will create 
perfect multicollinearity in the first stage regression. 



[29] We exclude Equation (15) from this discussion because it is under-identified and, thus, 
cannot be estimated. 

[30] The advantage of the ivreg command is that it allows you to estimate a single equation 
of a system of equations without fully specifying the equations in the rest of the model. 
Use the command reg3 if you want to specify the whole model or use Three-Stage Least 
Squares. 

[31] The description of the command “ivreg depvar *varlist1+ (varlist2=varlist_iv)” in the 
Stata help file is “ivreg fits a linear regression model using instrumental variables (or two-
stage least squares) of depvar on varlist1 and varlist2 using varlist_iv (along with varlist1) 
as instruments for varlist2. In the language of two-stage least squares, varlist1 and 
varlist_iv are the exogenous variables and varlist2 the endogenous variables.”  

[32] The model and data for this problem first appeared in Maddala, G. S. (1988) 
Introductory Econometrics (New York: Macmillan Publishing Company): 331-317. 

[33] See Berndt, Ernst R. (1991) The Practice of Econometrics (Reading, MA: Addison-
Wesley Publishing Company): 375-380. 



[34] Butler, J. S., T. Aldrich Finegan, and John J. Siegfried (1998). Does more calculus 
improve student learning in Intermediate Micro- and Macroeconomic Theory? Journal of 
Applied Econometrics 13(2):185-202. 

[35] This particular notation implies that there are k − 1 explanatory variables. 

[36] See Greene (1990): 704. 

[37] One way to make the conversion from the Stata output to the neater table relatively 
easily is to follow these steps: (1) replace each double space by a single space until there 
were none left; (2) replace each space with a tab (^t); (3) convert the material into a table 
using the "Insert/Table" command with a tab as the separator; and (4) clean up the table 
by moving the data into an Excel file, fixing the formatting, and returning the data to the 
Word file (alternatively, you can use formatting commands in Stata to control how the 
output appears). 



Chapter 2. Advanced topics in econometrics 

2.1. Logit and Probit Regressions* 

Logit and Probit models 

Introduction 

Consider a model that “explains” whether a wife enters the work force. It is straight forward to think of potential explanatory 
variables—her potential wage rate, the income of her partner, the number of children under the age of 6 in the household, and the 
number of children in the household between the ages of 6 and 18 are candidates to be independent variables used to explain the 
wife’s decision to enter the labor force. The dependent variable, Y, however, is a dummy variable because the wife chooses either 
to enter the labor force ( Y = 1 ) or not to enter the labor force ( Y = 0 ). An OLS model of the form: 

(2.1) Y i = β 0 + β 1 x i + ε i  

does not make sense. Figure 1 shows what the data of this model might look like when graphed against one of the explanatory 
variables. Figure 1 also includes the regression line that an OLS estimation of (1) will yield. It is easy to see one problem with this 
approach—the predicted values of Y that can be greater than 1 and less than 0. In addition, special properties must be attributed to 
the error term and it is the simple properties ascribed to the error term that make the OLS model so attractive.[7]  

Figure 2.1. Linear regression line for a discrete dependent variable 
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The linear regression line can be a poor representation of a discrete dependent variable. 

 

The logit model 

There does exist another approach to the modeling problem—assume that the dependent variable is the probability that the wife is 

in the labor force. For instance we might assume that we have a linear probability model of the form This 
model can be estimated reasonably successfully if the observed frequencies are well away from their bounds of 0 and 1.[8] However, 
is more appealing to assume that the probability varies monotonically with x and remains within the bounds of [0,1], as shown in 
Figure 2. This S-shaped curve is known as the sigmoid curve and can be represented algebraically for some variable z by: 

 

Figure 2.2. The signoid function. 



 

The signoid function forces the dependent variable to be between 0 and 1. 

 

We can simplify our analysis by using a bit of algebra. First, the inverse probability is Thus,  

(2.2) 

 

Taking the natural logarithm of (2) gives Assuming that z is a linear function of x (and, more generally, of other 
variables) gives the logit model: 

(2.3) 



 

We can estimate the parameters of this model using maximum likelihood methods. In the probit model the error term is assumed to 
be normally distributed with a mean of zero and a unit variance.[9] In the logit model the error term is assumed to have a 
standardized logistic distribution. This distribution has a mean of 0 and a variance of 1 and is very similar to a normal distribution 
with the same mean and variance.[10] While the choice of which model to use generally is personal, it should be noted that the ratio 
of the parameter of a logit model to the parameter of a probit model (using the same data set) usually varies between 1.6 and 2.0. 
We focus on the logit model in the balance of this discussion. 

Interpretation of the logit model parameters 

The interpretation of the economic meaning of the parameter values in a logit model is not very obvious.[11] One simple, but not 
often used, interpretation comes from taking the first-derivative of (3) with respect to x: 

(2.4) 

 

Thus, in the labor force participation model one interpretation is that β 1 is equal to the change in the natural logarithm of the odds 
that the wife is in the labor force due to a one unit change in the independent variable x. This interpretation is both awkward and 
not really economically informative.  

Stata offers two command for estimating a logit regression—logit and logistic. The logit command returns the parameter estimates 
as shown in (3). The logistic command returns the odds ratio rather than the parameter estimates. The odds ratio is equal to e β 

1
 . 

Thus, one can go from the odds ratio reported by the logistic command to the parameter estimates merely by taking the natural 
logarithm of the odds ratio. The interpretation of the odds ratio is straightforward. For example, assume that y = 1 means that the 
birth weight of an individual is less than 2,500 grams and y = 0 means that the birth weight is greater than 2,500 grams. A logit 
parameter estimate of -0.27 is equivalent to an odds ratio of 0.97 (i.e., e − 0.27 = 0.97 ). An odds ratio of 0.97 means that odds of a 
baby being underweight are 0.97 times those of the odds of a baby being of normal weight. To see what is being said re-write (2.3) 
as:  
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A one unit change in x implies that:  

 

or 

 

or 

 

Thus, is equal to the percent change in the odds that y equals 1 (a baby is born underweight) due to a one unit change in x. 

The logistic command reports while the logit command reports Because of the ease of interpretation of the odds ratio, 
Stata argues that the logistic command is the proper one to use.  

Elasticities 

Another route to follow is to try to find something that can be interpreted as an elasticity. Elasticities are important enough topic in 
economics for us to discuss them here in some detail. The reason they are so attractive to economists is that they have no units and, 
thus, can be compared across different commodities. For instance, it is quite reasonable to compare the demand elasticity for 
apples with the demand elasticity for pearl necklaces in spite of the fact that the units of measuring apples and necklaces are 
different. There are a few important ways that elasticities appear in regressions. 



Linear regression elasticities 

In a linear regression of the form (ignoring the subscripts and the error term)  

Y = β 0 + β 1 x,  

we would calculate the elasticity of Y with respect to x to be  

 

Clearly, researchers need to choose the levels of Y and x at which to report this elasticity; it is traditional to calculate the elasticity at 
the means. Thus, economists typically report  

 

Constant elasticities 

Consider the following demand equation: 

(2.5) q = α p − β e ε ,  

where q is the quantity demanded, p is the price the good is sold at, α,β > 0, and ε is an error term. The price elasticity of demand is 
given by  

 

In other words, this demand curve has a constant price elasticity of demand equal to − β. Moreover, we can convert the estimation 
of this equation into a linear regression by taking the natural logarithm of both sides of (5) to get lnq = lnα − βlnp + ε.  

The logit equation and the quasi-elasticity 



It is not appropriate to use the normal formula for an elasticity with (3) because the dependent variable is itself a number without 
units between 0 and 1. As an alternative it makes more sense to calculate the quasi-elasticity, which is defined as: 

(2.6) 

 

Since  

 

we can calculate this elasticity as follows: 

 

Focusing on the left-hand-side, we get: 

 

or 

 

or 

(2.7) 



 

Thus, we see from (6) that the quasi-elasticity is given by: 

(2.8) 

 

The quasi-elasticity measures the percentage point change in the probability due to a 1 percent increase of x. Notice that it is 
dependent on what value of x it is evaluated at. It is usual to evaluate (8) at the mean of x. Thus, the quasi-elasticity at the mean of 
x is:  

 

where  

 

Hypothesis testing 

The researcher using the logit model (and any regression estimated by ML) has three choices when constructing tests of hypotheses 
about the unknown parameter estimates—(1) the Wald test statistic, (2) the likelihood ratio test, or (3) the Lagrange Multiplier test. 
We consider them in turn. 

The Wald test 

The Wald test is the most commonly used test in econometric models. Indeed, it is the one that most statistics students learn in 
their introductory courses. Consider the following hypothesis test: 

(2.9) 



 

Quite often in these test researchers are interested in the case when β = 0 —i.e., in testing if the independent variable’s estimated 
parameter is statistically different from zero. However, β can be any value. Moreover, this test can be used to test multiple 
restrictions on the slope parameters for multiple independent variables. In the case of a hypothesis test on a single parameter, the 
t-ratio is the appropriate test statistic. The t-statistic is given by  

 

where k is the number of parameters in the mode that are estimated. The F-statistic is the appropriate test statistic when the null 
hypothesis has restrictions on multiple parameters. See Cameron and Trivedi (2005: 224-231) for more detail on this test. According 
to Hauck and Donner (1977) the Wald test may exhibit perverse behavior when the sample size is small. For this reason this test 
must be used with some care. 

The likelihood ratio test 

The likelihood ratio test is based on a comparison of the maximum log of likelihood function for the unrestricted model with the 
maximum log of likelihood function for the model with the restrictions implied by the null hypothesis. Consider the null hypothesis 
given in (9). Let L( β ) be the value of the likelihood function when β 1 be the value of the likelihood function when is restricted to 

being equal to β and be the value of the likelihood function when there is no restriction on the value of β. Then the 
appropriate test statistic is  

 

The likelihood ratio statistic has the Chi-square distribution χ 2 ( r ), where r is the number of restrictions. Thus, using a likelihood 
ratio test involves two estimations—one with no restrictions on the model and one with the restrictions implied by null hypothesis. 
Since the likelihood ratio test does not appear to exhibit perverse behavior with small sample sizes, it is an attractive test. Thus, we 
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will run through an example of how to execute the test using Stata. The example we are using is from the Stata manual, volume 2, 
pp. 353-355. 

Example 2.1. Underweight births. 

In this model we estimate a model that explains the likelihood that a child will be born with a weight under 2,500 grams (low). The 
eight explanatory variables used in the model are listed in Table 1. The model to be estimated is: 

(2.10) 

 

Also, we want to test the null hypothesis that the coefficients on Age, Lwt, Ptl, and Ht are all zero. The first step is to estimate the 
unrestricted regression using the command: 

. logistic low age lwt raceb raceo smoke ptl ht ui  

Variable name Definition 

Age Age of mother 

Lwt Weight at last menstrual period 

RaceB Dummy variable =1 if mother is black; 0 otherwise 

RaceO Dummy variable = 1 if mother in neither white or black; 0 otherwise 

Smoke Dummy variable = 1 if mother smoked during pregnancy; 0 otherwise 

Ptl Number of times mother had premature labor 

Ht Dummy variable = 1 if mother has a history of hypertension; 0 otherwise 



Ui Dummy variable = 1 there is presence in mother of uterine irritability; 0 otherwise 

Ftv Number of visits to physician during first trimester 

Table 2.1. Definition of the explanatory variables. 

The results of this estimation are shown in column 2 of Table 2. Next we save the results of this regression with the command: 

. estimates store full  

where “full” is the name that we will refer to when we want to recall the estimation results from this regression. Now we estimate 
the logistic regression with the omitting the variables whose parameters are to be restricted to being equal to zero: 

. logistic low raceb raceo smoke ui  

The results of this estimation are reported in column 3 of Table 2. Finally we run the likelihood ratio test with the command: 

. lrtest full .  

Notice that we refer to the first regression with the word “full” and to the second regression with the second period. The results of 
this command are as follows: 

Likelihood-ratio test LR chi2(4) = 14.42  

(Assumption: . nested in full) Prob > chi2 = 0.0061  

The interpretation of these results is that the omitted variables are statistically significant at the 0.6 percent level.[12]  

Explanatory variable Unrestricted model Restricted model 

Age of mother -0.9732636 — 

  (-0.74)   

Weight at last menstrual period -0.9849634 — 



  (-2.19)   

Dummy variable =1 if mother is black; 0 otherwise 3.534767 3.052746 

  (2.40) (2.27) 

Dummy variable = 1 if mother in neither white or black; 0 otherwise 2.368079 2.922593 

  (1.96) (2.64) 

Dummy variable = 1 if mother smoked during pregnancy; 0 otherwise 2.517698 2.945742 

  (2.30) (2.89) 

Number of times mother had premature labor 1.719161 — 

  (1.56)   

Dummy variable = 1 if mother has a history of hypertension; 0 otherwise 6.249602 — 

  (2.64)   

Dummy variable = 1 if there is presence in mother of uterine irritability; 0 otherwise 2.1351 2.419131 

  (1.65) (2.04) 

Log likelihood -100.724 -107.93404 

Number of observations 189 189 

pseudo-R2  0.1416 0.0801 

Table 2.2. Estimation results for (2.10). 

Note: Parameter estimates are odds ratios; z statistics are shown in parentheses. 

 



The Lagrange multiplier test 

The intuition behind the Lagrange multiplier (LM) test (or score test) is that the gradient of the log of the likelihood function is equal 
to zero at the maximum of the likelihood function.[13] If the null hypothesis in (2.9) is correct, then maximizing the log of the 
likelihood function for the restricted model is equivalent to maximizing the log of the likelihood function with the constraint 
specified by the null hypothesis. The LM test measures how close the Lagrangian multipliers of this constrained maximization 
problem are to zero—the closer they are to zero, the more likely that the null hypothesis can be rejected. 

Economists generally do not make use of the LM test because the test is complicated to compute and the LR test is a reasonable 
alternative. Thus, as a practical matter the Wald test and the LR test are reasonable alternative test statistics to use to test most 
linear restrictions on the parameters. Moreover, since the calculations are relatively easy, it may make sense to calculate both test 
statistics to be sure they produce consistent conclusions. However, when the sample size is small, the LM test probably is preferred. 

Goodness-of-fit measures 

The standard measure of goodness-of-fit in the linear OLS regression model is R 2 . No such measure exists for non-linear models like 
the logit model. Several potential alternatives have been developed in the literature and are known collectively as pseudo-R2. Many 
of these measures are discussed in McFadden (1974), Amemiya (1981), and Maddala (1983). In case any reader really cares about 
the pseudo-- R 2 , a practical approach is to report the value that the computer program reports. 

One addition measure of goodness-of-fit is a measure called percentage correctly predicted. This variable is computed in one of 
several ways. One way is to use the observed values of the independent variable to forecast the probability the dependent variable 
equal one. Then, if the predicted probability is above some critical value, you assume that the predicted value of the dependent 
value is one. If it is below this value, you assume the predicted value of the dependent variable is zero. Then you construct a table 
that compares the predicted values of the dependent variable with the actual value of the dependent as shown in Table 3. 

  Predicted 

Actual 
  



Y = 0  n 00  n 01  

Y = 1  n 10  n 11  

Table 2.3. Percent correctly predicted. 

The percentage correctly predicted is equal to the sum of the diagonal elements, that is, n 00 + n 11 , over the sample size. The main 
problem with this measure is that the choice of the cutoff point is arbitrary. Traditionally, a cutoff point used has been 0.5. 
However, there is no reason why this cutoff is the appropriate one. Cramer (2003, 67) suggests that a more appropriate cutoff point 

is the sample frequency—that is, The bottom line is that the uncertainty about the proper choice of cutoff 
point is a major problem with using the percentage correctly predicted as a measure of goodness-of-fit.  

Additional notes on binary variable models 

One of the key choices in the various binary variable models involves the cumulative distribution function. The Table 4 shows the 
four commonly used binary outcome models along with the cumulative distribution functions: 

Model Probability density function Cumulative distribution function 
Marginal effects,  

Logit Logistic 
 

 

Probit Normal* 
 

 

Linear probability   
 

β j  



Complementary log-log   
 

 

Table 2.4. Commonly used binary outcome models. 

* ϕ( ⋅ ) is the probability density function (pdf) of the normal distribution.  

The logit, probit, and complementary log-log models are symmetric around zero and restrict 0 ≤ p ≤ 1. The linear does not impose 
either of these restrictions. Use of the complementary log-log regression sometimes is recommended when the sample is skewed 
such that there is a high proportion of ones and zeros. In general, economists use either the logit or probit models a majority of the 
time. Interestingly, there is no need to use robust estimation techniques for the logit and probit models if they are correctly 
specified. If use of the vce(robust) option produces substantially different parameter estimates than the estimates without the 
robust option, then it is likely that the models are misspecified. The linear model is inherently heteroskedastistic, implying that the 
vce(robust) option should be used. 

The parameter estimates are comparable across the first three models in Table 4. In particular,  

1.  

2.  

3.  

Example 2.2. Supplementary health insurance coverage. 

These data come from wave 5 (2002) of the Health and Retirement Study (HRS), a panel survey sponsored by the National Institute 
of Aging. The sample is restricted to Medicare beneficiaries; there are 3,206 observations. The elderly can obtain supplementary 
insurance coverage either by purchasing it themselves or by joining employer-sponsored plans. The data is in the file Example.xls. 
The variables included are listed in Table ?. 



Variable Definition 

Binary variables    

(ins = 1 if individual has purchased supplementary insurance from any source 

retire = 1 if individual is retired 

hstatusg = 1 if individual assess his/her health status either as good, very good, or excellent 

married = 1 if married 

hisp = 1 if hispanic 

female = 1 if female 

white = 1 if white 

sretire = 1 if a retired spouse is present in household 

Continuous variables    

age Age of individual in years 

hhincome Household income 

educyear Years of education 

chronic Total number of chronic conditions 

adl Number of limitations on daily activity (up to 5) 

Table 2.5. Definition of the variables used in Example 2. 

Stata commands 



Place the data into the editor and then create a list of the independent variables. Now create a new variable equal to the log of 
income: 

.generate linc = ln(hhinc)  

[notice that 9 observations are eliminated.] 

Create list of "extra" variables in order to shorten future commands: 

. global extralist linc female white chronic adl sretire  

Summarize the variables in order to check for obvious typos (output is suppressed): 

.summarize ins retire $xlist $extralist  

Estimate logit regression (output is shown in Figure 3): 

.logit ins retire $xlist  

Figure 2.3. Stata regression output. 



 

 

Estimate and save results from several models (the Stata command "quietly" suppresses the output from the command): 

. estimates store blogit  

.quietly probit ins retire $xlist  

.estimates store bprobit  

.quietly regress ins retire $xlist  

.estimates store bols  

.quietly logit ins retire $list, vce(robust)  

. estimates store blogitr  

.quietly probit ins retire $xlist, vce(robust)  



.estimates store bprobitr  

.quietly regress ins retire $xlist, vce(robust)  

.estimates store bolsr  

We can create table for comparing the models (output is suppressed): 

.estimates table blogit blogitr bprobit bprobitr bols bolsr, t stats(N ll) b(%8.4f) stfmt(%8.2f)  

We now test for the presence of interaction variables: 

.generate age2 = age*age  

.generate agefem = age*fem  

.generate agewhite = age*white  

.generate agechronic = age*chronic  

.global intlist age2 agefem agewhite agechronic  

.quietly logit ins retire $xlist $intlist  

.test $intlist  

( 1) [ins]age2 = 0 

( 2) [ins]agefem = 0 

( 3) [ins]agewhite = 0 

( 4) [ins]agechronic = 0 

chi2( 4) = 7.45 

Prob > chi2 = 0.1141 

Likelihood ratio test 

.quietly logit ins retire $xlist $intlist  

.estimates store B  



.quietly logit ins retire $xlist  

.lrtest B  

Likelihood-ratio test LR chi2(4) = 7.57 

(Assumption: . nested in B) Prob > chi2 = 0.1088 

Comparison with using the logistic command: 

. logistic ins retire $xlist  

The marginal effects at the mean will yield more useful results when the model is non-linear: 

.quietly logit ins retire $xlist  

.mfx  

Let’s put the table comparing parameter estimates into a cleaned up table: 

  Logit Robust Logit Probit Robust Probit OLS Robust OLS 

Individual retired  0.1969 0.1969 0.1184 0.1184 0.0409 0.0409 

  (2.34) (2.32) (2.31) (2.30) (2.24) (2.24) 

Age of individual  -0.0146 -0.0146 -0.0089 -0.0089 -0.0029 -0.0029 

  (-1.29) (-1.29) (-1.29) (-1.32) (-1.20) (-1.25) 

Health status 0.3123 0.3123 0.1977 0.1977 0.0656 0.0656 

  (3.41) (3.40) (3.56) (3.57) (3.37) (3.45) 

Household income 0.0023 0.0023 0.0012 0.0012 0.0005 0.0005 

  (3.02) (2.01) (3.19) (2.21) (3.58) (2.63) 

Years of education 0.1143 0.1143 0.0707 0.0707 0.0234 0.0234 



  (8.05) (7.96) (8.34) (8.33) (8.15) (8.63) 

Individual married 0.5786 0.5786 0.3623 0.3623 0.1235 0.1235 

  (6.20) (6.15) (6.47) (6.16) (6.38) (6.62) 

Individual is an Hispanic -0.8103 -0.8103 -0.4731 -0.4731 -0.1210 -0.1210 

  (-4.14) (-4.18) (-4.28) (-4.36) (-3.59) (-4.49) 

Intercept -1.7156 -1.7156 -1.0693 -1.0693 0.1271 0.1271 

  (-2.29) (-2.36) (-2.33) (-2.40) (0.79) (0.83) 

Sample size 3,206 3,206 3,206 3,206 3,206 3,206 

Log of the likelihood function  -1994.88 -1994.88 -1993.62 -1993.62 -2104.75 -2104.75 

Table 2.6. Comparison of Logit, Probit and OLS regressions with Insurance as the dependent variable.  

(t-ratio or z-values in parentheses.) 

As a last exercise use the following commands to generate a graph of the predicted values: 

. quietly logit ins hhincome  

. predict plogit, pr  

. quietly probit ins hhincome  

. predict pprobit, pr  

. quietly regress ins hhincome  

. predict pols, xb  

. summarize ins plogit pprobit pols  

. sort hhincome  



.twoway (scatter ins hhincome, msize(vsmall)) (line plogit hhincome, lcolor(blue) lpattern  

> (solid)) (line pprobit hhincome, lcolor(red) lpattern(tight_dot)) (line pols hhincome,  

> lcolor(green) lpattern(longdash_shortdash)), ytitle(Predicted Probability) xtitle(Household income)  

Note: save file as a .tif file if you want to insert the graph directly into a word file. 

 

Exercises 

Exercise 2.1.1. 

The determinants of physician advice. Physicians are expected to give lifestyle advice as a part of their normal interaction with their 
patients. Sometimes doctors choose not to comment on a patient’s lifestyle because they do not have time for personal comments, 
they feel the advice will be unwelcome, they feel that lifestyle choices are not any business of the physician, they find the discussion 
of lifestyle issues to be embarrassing, or they are not aware of the patient’s actual lifestyle choices. In this project we are interested 
in understanding when physicians choose to give advice concerning the consumption of alcohol. 

 

The MS Excel file ktdata contains the responses to the 1990 National Health Interview Survey core questionnaire and special 
supplements from 2,467 males who were current drinkers in 1990. Individuals who are lifetime abstainers or who are former 
drinkers who have not consumed any alcohol in the past year are excluded from the sample. Table 7 contains the names and 
definitions of the variables collected in the survey. 

Variable Definition 

Drinks Total number of drinks taken in the past two weeks 

Advice Did your physician give you advice about alcohol consumption? Yes = 1, No = 0 

m34543/ktdata.xls


Income Monthly income in $1,000 (there are 5 missing values denoted by a “.”) 

Age30 Dummy variable equal to 1 if 30 < Age ≤ 40and 0 otherwise 

Age40 Dummy variable equal to 1 if 40 < Age ≤ 50 and 0 otherwise 

Age50 Dummy variable equal to 1 if 50 < Age ≤ 60 and 0 otherwise 

Age60 Dummy variable equal to 1 if 60 < Age ≤ 70 and 0 otherwise 

AgeGT70 Dummy variable equal to 1 if individual’s age is greater than 70 and 0 otherwise 

Educ Number of years of schooling (0 to 18) 

Black Dummy variable equal to 1 if the individual is a black and 0 otherwise 

Other Dummy variable equal to 1 if the individual is non-white and non-black and 0 otherwise 

Married Dummy variable equal to 1 if the individual is married and 0 otherwise 

Widow Dummy variable equal to 1 if the individual is a widow and 0 otherwise 

DivSep Dummy variable equal to 1 if the individual is either divorce or separated and 0 otherwise 

Employed Dummy variable equal to 1 if the individual is currently employed and 0 otherwise 

Unemploy Dummy variable equal to 1 if the individual is currently unemployed and 0 otherwise  

NE Dummy variable equal to 1 if the individual lives in the Northeast US and 0 otherwise 

MW Dummy variable equal to 1 if the individual lives in the Midwest US and 0 otherwise 

South Dummy variable equal to 1 if the individual lives in the South and 0 otherwise 

Medicare Dummy variable equal to 1 if the individual receives Medicare and 0 otherwise 

Medicaid Dummy variable equal to 1 if the individual receives Medicaid and 0 otherwise 

Champus Dummy variable equal to 1 if the individual has military insurance and 0 otherwise 



HlthIns Dummy variable equal to 1 if the individual has health insurance and 0 otherwise 

RegMed Dummy variable equal to 1 if the individual has a regular source of medical care and 0 otherwise 

DRI Dummy variable equal to 1 if the individual sees the same doctor and 0 otherwise 

MajorLim Dummy variable equal to 1 if the individual has limits on major daily activity and 0 otherwise 

SomeLim Dummy variable equal to 1 if the individual has limits on some daily activity and 0 otherwise 

Diabetes Dummy variable equal to 1 if the individual has diabetes and 0 otherwise 

Heart Dummy variable equal to 1 if the individual has a heart condition and 0 otherwise 

Stroke Dummy variable equal to 1 if the individual has had a stroke and 0 otherwise 

Table 2.7. Definition of the variables in the Excel worksheet ktdata. 

You are to estimate a logit regression of the form: where p is the probability that a patient received 
advice about his level of consumption of alcohol and x i are the explanatory variables.  

Provide the following information: 

1. Make a table of the means of all of the variables. 

2. Offer an economic justification for the inclusion of each explanatory variable you use in your regression (including a prediction of 
its expected sign). 

3. Make a table reporting the results of the estimation of (1) an OLS linear estimation, (2) a probit estimation, and (3) a logit 
estimation. Also include a column with the ratio of each of the logit parameters to the probit parameter. Do not use the 
abbreviated name of the explanatory variables in the table. 



4. Present a table of results of a logit model with all of the variables and with whatever other models you feel are suggested by 
your empirical results. Discuss the results of the estimation and what the estimation tells you about how physicians decide 
whether to give advice on alcohol consumption to their male patients. 

Exercise 2.1.2. 

The Supply of Married Women in the Workforce. We are interested in understanding the decision of married women to enter the 
labor force. We have available two data sets, one using data from the United States and the other using data from Portugal. You are 
to estimate a logit regression for married women for each of the two data sets. 

 

Variable Definition 

Working dummy variable = 1 if a married woman works during the year 

Fulltime dummy variable = 1 if a married woman works more than 1000 hours in a year 

Other the other household income in $100 (not in $1000) 

Age age of the wife 

Educ education years of the wife 

C0005 number of children for ages 0 to 5 

C0613 number of children for ages 6 to 13 

C1417 number of children for ages 14 to 17 

NW 1 if non-white, and 0 otherwise. 

HOwn 1 if the home is owned by the household, and 0 otherwise 

HMort 1 if the home is on mortgage, and 0 otherwise 

Prof 1 if the husband is manager or professional, and 0 otherwise 



Sales 1 if the husband is sales worker or clerical or craftsman, and 0 otherwise 

Farm 1 if the husband is farm-related worker 

Unem local unemployment rate in % 

Table 2.8. US Data on Married Women. 

Data Set 1: The data for this project are in the MS Excel file FLABOR. These data are observations on married females drawn from 
the 1987 wave of Michigan Panel Study of Income Dynamics (PSID). The data set has observations for 3,382 individuals.  

Data Set 2: These data are from Portugal. The data set is a sample from Portuguese Employment Survey, from the interview year 
1991, and has been provided by the Portuguese National Institute of Statistics (INE). The data are in the Excel file Martins. This file is 
organized into seven columns, corresponding to seven variables, with 2,339 observations. 

Variable Definition 

Works Dummy variable equal to 1 if the woman works, 0 otherwise 

Child18 The number of children younger than 18 living in the family 

Child03 The number of children younger than 3 living in the family 

Age The woman’s age 

LogWomanWageRate The log of women's hourly wage rate (measured in escudos) 

Education The women's educational level, measured in years of schooling 

LogHusbandMonthlyWages The log of the husband's monthly wage (measured in escudos) 

Table 2.9. The Portuguese data set. 

m34543/FLABOR.xls
m34543/Martins.xls


Answer the following questions: 

1. What factors other than wage levels determine the number of hours that a wife will spend in the work force? Remember to use 
economic theory in answering this question. 

2. Clearly, one of the major factors in determining if a wife will enter the labor force is the wage level she can earn. The US data set 
does not include the wife’s wage level. Is there any other variable in the data set that economic theory suggests will be a good 
proxy for wage levels? 

3. The variable Age is a proxy for the work (or life) experience of a woman. We would expect that its effect on the probability that a 
woman will enter the labor force will be non-linear—that is, its marginal impact will be positive and decreasing. This reasoning 
suggests that you should use Age and Age2 as explanatory variables. Can the same reasoning be used with the variable 
Education? What are your expectations about the signs of the parameters of these two explanatory variables? The same 
reasoning can be used about the number of years of education. 

4. Estimate and report in a table the following two logit regressions: (1) US women enter the labor force at all and (2) US women 
enter the labor force for at least 1,000 hours if they enter the labor force,. In each of these cases, compare your results to a linear 
model. 

5. The Portuguese data set has a different problem. We have reported the wage rate of women who are working, but no wage level 
for women who are not working. We will get around this problem by first using the data for women who actually work to 
estimate the relationship between wage rates and the age and education of the women. We will then use this relationship to 
predict the wage rate for both women who do work and women who do not work. We will then use this predicted wage rate 
data series as an independent variable in a logit model explaining the probability that a married woman will enter the labor 
force. When completing the logit regression be sure that you separate all of the children in a family into those 3 and under and 
those between 4 and 18. Also, include the years of education in this regression to see if a Portuguese married woman’s taste for 
participation in the labor force increases or decreases with the level of her education. 

6. Is it reasonable to compare your results for the two countries? 
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2.2. Analysis of time series* 

Analysis of Time-Series  

Introduction 

This module offers a brief introduction of some of the issues that arise in the analysis of time-series. Most of the topics covered are 
those that we attacked first by statisticians and economists. As such they do not demand the more sophisticated tools used by the 
more modern approaches to time-series. In spite of these shortcomings, they should give you some understanding of the issues that 
arise with the use of times-series in econometric analyses. One final note of explanation is necessary. These notes are designed to 
give you a brief introduction to how Stata handles time-series data. These notes are not a substitute for reading the Stata manual, 
completing a forecasting course, or reading standard texts on the rather complicated field. 

Time-series analysis in Stata  
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Throughout this module we work with US macroeconomic data included in the MS Excel file Macro data.xls. The variables are real 
level of investments (RINV), real gross national product (RGNP), and real interest rate (RINTRATE). The real interest rate is 
approximated by the difference between the nominal interest rate and the rate of change of the price index from the previous year. 
The data are for the years 1963 to 1982. You can replicate the analysis done here by copying this data set into a Stata file. 

The first step after entering the data set into Stata, is to declare that the data set is a time-series. The command to do this is: 

. tsset year  

The data set can be broken into any number of time periods including daily, weekly, monthly, quarterly, halfyearly, yearly and 
generic.[14]  

Assume that we want to estimate the following regression: 

(2.11) R I N V t = β 0 + β 1 R G N P t + β 2 R I N T R A T E t + ε t  

using the data set in the appendix. Figure 1 shows this regression command and the resultant output. 

Figure 2.4.  

 

OLS estimates for Equation (1). 

m34544/Macro%20data.xls


 

On the surface the estimates seem “reasonable” because the signs on the two explanatory variables are what theory predicts they 
should be and the parameter for real GNP is statistically different from zero. However, an examination of the residuals shown in 
Figure 2 suggest that the error terms might exhibit autocorrelation. 

Figure 2.5.  

 

The residuals appear to be autocorrelated.  

 



There are several issues that arise here. First, what sort of models can we use to account for autocorrelation? Second, what sorts of 
tests exist for detecting the existence of autocorrelation? We begin with the first of these questions by introducing the concept of 
first-order autocorrelation. Consider the following model: 

(2.12) y t = β 0 + β 1 x t + ε t .  

We say that this model exhibits first-order autocorrelation if the error terms can be written as: 

(2.13) ε t = ρ ε t − 1 + μ t ,  

where Equation (3) implies that the error terms in (2) are correlated with each other. It is rather easy to show that, 
while the estimates of the unknown parameters are unbiased, the estimates of the standard errors are biased—downward if 1 > ρ > 
0 and upward if − 1 < ρ < 0. This conclusion holds as long as the source of the autocorrelation is due to (3). If, on the other hand, the 
source of autocorrelation among the error terms in (2) is due to omitted explanatory variables (whose effects are absorbed in the 
error term), we have a potentially more serious problem. In particular, if the omitted explanatory variables are correlated with the 
included explanatory variables (as is often true in time-series), then the estimates of the unknown slope parameters are also biased. 

For the moment we will assume that Equations (2) and (3) are true representations of the world. What then can we do to estimate 
(2)? What we need to do is find a way to transform (2) so that the error term of whatever regression we estimate does not exhibit 
autocorrelation. In time period t − 1 we have: 

(2.14) y t − 1 = β 0 + β 1 x t − 1 + ε t − 1 .  

Multiply (4) by ρ to get: 

(2.15) ρ y t − 1 = ρ β 0 + ρ β 1 x t − 1 + ρ ε t − 1 .  

Now subtracting (5) from (4) gives:  

 

or, equivalently,  



 

Let  

y t 
∗ = y t − 1 − ρ y t − 1 ,  

β 0 ∗ = β 0 ( 1 − ρ ),  

and 

x t 
∗ = x t − 1 − ρ x t − 1 .  

Remember that (3) implies that μ t = ε t − ρ ε t − 1 . Thus, we have: 

(2.16) y t 
∗ = β 0 ∗ + β 1 x t 

∗ + μ t ,  

where Thus, we have a regression for which the OLS estimates will be BLUE (Best Linear Unbiased Estimator) if we 
only knew the true value of ρ.  

Cochran and Orcutt [1949] use this algebra to suggest one way to estimate (6). The estimation entails several steps. First, you use 
OLS to estimate (2). Second, you estimate (3) using the residuals from the first stage to approximate ε t . This regression gives an 
estimate of ρ. In the third step, you use the estimate of ρ to construct estimates of y t 

∗ and x t 
∗ . In the fourth step, you use the 

estimates of y t 
∗ and x t 

∗ to estimate (6); this will yield new estimates of β 0 and β 1 . You then repeat step (2) using these new 
estimates of β 0 and β 1 to calculate the residuals and then repeat with steps (3) and (4). You continue the process until the estimate 
of ρ does not change anymore (i.e., until the change in the estimate of ρ is less than some value chosen by the researcher). There 
are a multitude of alternative ways of estimating ρ. [See Greene (1990): Chapter 15 for a full discussion of these methods.] Once you 
have an estimator for ρ, there exist two major ways of completing the estimation—the Cochran-Orcutt procedure described above 
and the Prais-Winsten (1954) estimator. The latter estimation procedure does not involve dropping the first observation (as does 
the Cochran-Orcutt) estimator. In large samples these two estimation techniques are likely to be very similar. In small samples the 
two techniques may produce estimates that are substantially different.  



We now turn to the issue of detecting the existence of autocorrelation. In what follows we focus mainly on the detection of first-
order autocorrelation as shown in Equation (3). We can use the Durbin-Watson test to see if our suspicions are correct. The Durbin-
Watson statistic tests the hypothesis: 

(2.17) 

 

Figure 2.6.  

 

Limiting distributions for the Durbin-Watson statistic. 



 

The details of the test statistic can be found in any econometrics textbook and need not detain us here. What you need to know 
about the DW-statistic are (1) it has a mean value of 2; (2) because its distribution lies between two limiting distributions, we need 
to look at two critical values. For this reason there are two critical values—one for each of the limiting distributions. Figure 3 
illustrates the probability distribution function (pdf) for the Durbin-Watson statistic. The true pdf lies somewhere between the blue 
pdf and the red pdf. What is shown in the figure is the point below which, say, 5 percent of the distribution lies for each 
distribution. The true critical point lies somewhere between d L and d U These values are relevant to testing the null hypothesis of no 
autocorrelation against the alternative hypothesis of positive autocorrelation ( i. e., ρ > 0 ).  

If d < d L , we can reject the null hypothesis of no autocorrelation; if d U < d < 4 − d U , we cannot reject the null hypothesis; and if d L < 
d < d U , the results of the test are uncertain. Moreover, since the distributions are symmetric around 2 and between 0 and 4, the 
critical values for the alternative hypothesis of negative autocorrelation ( i. e., ρ > 0 ) are 4 minus either the upper or lower critical 
values, as shown in Figure 3. Critical values for the Durbin-Watson statistic can be found in the appendices of most econometric 
textbooks.  

Figure 2.7.  

 

Command for calculating the Durbin-Watson statistic in Stata.  

 

The command for the test and the resultant DW-statistics for the estimate of Equation (2) are shown in Figure 4. The 5 percent level 
critical values for the Durbin-Watson statistic for a sample size of 19 with two parameters (less the intercept) estimated are 1.074 
and 1.536—if the observed value of the DW-statistic is between 1.536 and 2.464, we can accept the null hypothesis that the 
residuals do not exhibit autocorrelation. Our value of 1.32 falls in the uncertain region where we are not sure if we can or cannot 
reject the null hypothesis. 



At this point we can try the Cochran-Orcutt estimate. Figure 5 reports the results of using the Cochran-Orcutt estimation procedure. 
Notice that it took 7 iterations for the estimate of ρ to converge. If we use the Prais-Winsten estimation technique, we get the 
results shown in Figure 6. It is reassuring to see that the two estimation techniques do not yield estimates of the standard errors 
that are substantially different from each other. 

Figure 2.8.  

 

Estimation of Equation (1) using the Cochran-Orcutt method.  

 

Figure 2.9.  



 

Estimation of Equation (1) using the Prais-Winsten estimator.  

 

Using either the Cochran-Orcutt or the Prais-Winstn estimator is dependent on the assumption that the error terms exhibit first-
order autocorrelation. Unfortunately, there is no particular reason (from a theoretical viewpoint) to believe in this assumption. 
Why, for instance, couldn't the error terms of Equation (2) exhibit second-order autocorrelation of the form: 

(2.18) ε t = ρ 1 ε t − 1 + ρ 2 ε t − 2 + μ t ?  

There is a more troubling possible explanation for the low Durbin-Watson statistic: the model may be misspecified. In particular, 
there may be important explanatory variables omitted from the regression. These omitted explanatory variables may exhibit 
autocorrelation and, thus, may be the source of autocorrelation in the error term. If the omitted explanatory variables are 



correlated with the included explanatory variables, then the parameter estimates are biased. The large difference in the estimate of 
parameter for real interest rates for the OLS regression and the Cochran-Orcutt estimate is suggestive of model misspecification.[15]  

More modern time-series models 

ARMA models 

The model we described above is assumed to have first-order autoregressive error disturbances. Such a process is referred to as 
AR(1). The error structure in (8) is AR(2). If we apply this concept to a data series, we would call the following an AR(p) process: 

(2.19) 

 

Another approach available to us is to think of a data as a weighted average of some error terms that are assumed to have a mean 
of zero, have a fixed variance, and be uncorrelated over time[16]: 

(2.20) 

 

A data series exhibiting this pattern is called a moving average process or MA(q). The error tern is known in the literature as white 
noise. A data series that has both autoregressive and moving average characteristics is call an autoregressive moving average 
(ARMA) series; an ARMA(p, q) is: 

(2.21) 

 



It may help to show two series constructed to have different ARMA patterns. Figure 7 shows one of the potential time series 
generated by the ARMA(2,1) process: 

(2.22) y t = 0.67y t − 1 + 0.33y t − 2 + 0.1ε t + 0.05ε t − 1 .  

Figure 2.10.  

 

Graph of a ARMA(2,1) process.  

 

Figure 8 shows one potential time series generated by the ARMA(1,1) process: 

(2.23) y t = 0.67y t − 1 + 0.1ε t + 0.05ε t − 1 .  



Figure 2.11.  

 

Graph of a ARMA(1,1) process.  

 

Stationarity 

Consider the time-series y t . We define this stochastic process as covariance stationary if 

(2.24) 

 

(2.25) 



 

(2.26) 

 

The last term, γ s , is known as the autocovariance. A time-series is defined to be covariance stationary if its mean and all its 
autocovariances are unaffected by a change of time origin. We define the autocorrelation between y t and y t − s as: 

(2.27) 

 

Quite often you can create a stationary time-series from a non-stationary time-series by taking the first-differences of the non-
stationary series. If the first difference does not produce a stationary series, then one continues to take first differences until you 
find a stationary series. For instance, the time-series shown in Figure 7 appears to be non-stationary. The first differences of this 
series is shown in Figure 9. Using the imperfect eye, it would appear that the first differences of (13) is stationary. However, we 
really cannot tell anything for sure from the graph of a data set. We need to use the restrictions of the parameters derived in 
advanced texts to determine if a data set is stationary.[17]  

Figure 2.12.  



 

First-differences of the time-series of the ARMA(2,1) data.  

 

The autocorrelation function 

One of the major ways to identify the structure of a time series is to look at the autocorrelation function. The autocorrelation 
function, ρ s , is the correlation between y t and y t − s . Stata uses the following formula to estimate it [StataCorp: p. 60] for a time-
series:  

The researcher then has to compare the actual autocorrelation function with the theoretical autocorrelation for comparable data 
series. To see to use the autocorrelation function consider the following five time series[18]: 

(2.28) 



 

(2.29) AR(1): y t = 0.7y t − 1 + ε t ,  

(2.30) AR(1): y t = − 0.7y t − 1 + ε t ,  

(2.31) MA(1): y t = ε t − 0.7ε t − 1 ,  

(2.32) ARMA( 2, 1 ): y t = 0.7y t − 1 − 0.49y t − 2 + ε t , and  

(2.33) ARMA( 1, 2 ): y t = − 0.7y t − 1 + ε t − 0.7ε t − 1 .  

Each of these functions has a theoretical autocorrelation function; graphs of these autocorrelation functions are shown in the left 
column of Figure 10.[19]  

Figure 2.13.  



 



Examples of autocorrelation and partial autocorrelation functions.  

 

There is additional function we can use to help identify the nature of a time-series. Consider the following regressions: 

(2.34) y t 
∗ = ϕ 11 y ∗ t − 1 + e t , y t 

∗ = ϕ 21 y ∗ t − 1 + ϕ 22 y ∗ t − 2 + e t , etc.,  

where  

Our interpretation of the ϕ ii parameters is that they are the correlation between y t and y t − i controlling for all of the y j where j = 
2,…,( i − 1 ). Because these correlation coefficients control for values of y’s observed between y t and y t − i , they are known as the 
partial autocorrelations. The theoretical partial autocorrelations are shown in the right column of Figure 10. Stata uses the 
command .corrgram varname to calculate the autocorrelations and partial autocorrelations for the time-series varname. Figure 11 
shows the output when using this command on the real levels of investment. The autocorrelation function for this data set looks 
like the theoretical one for an AR(1) process. However, the partial autocorrelation function does not look like any of the partial 
autocorrelation functions shown in Figure 11. Thus, it would not be safe to assume that real investment follows an AR(1) process.  

Figure 2.14.  

 

Autocorrelation and partial autocorrelation functions for real investment.  

 



You can generate prettier graphs of the autocorrelation functions using the .ac varname command. For instance, the command .ac 
rinv generates the graph shown in Figure 12. The .pac varname generates a graph for the partial autocorrelations as is shown in 
Figure 13. 

Figure 2.15.  

 

Another graph of the autocorrelation function for real investment.  

 

Figure 2.16.  



 

Partial autocorrelations for real investments.  

 

There are several generalizations one can use to help identify the process underlying a data series. Table 1 [Enders (2005): p. 85] 
offers a brief summary of these properties of the autocorrelation and partial autocorrelation functions. 

Process Autocorrelation function Partial autocorrelation function 

White-noise All ρ s = 0  All ϕ ss = 0  

AR(1): α 1 > 0  Direct exponential decay ϕ 11 = ρ 1 ; ϕ ss = 0 for s ≥ 2  



AR(1): α 1 > 0  Decays toward zero. Coefficients may oscillate ϕ 11 = ρ 1 ; ϕ ss = 0 for s ≥ 2  

AR(p) Decays toward zero; Coefficients may oscillate Spikes through lag p. All ϕ ss = 0 for s > p  

MA(1): β > 0  Negative spike at lag 1. ρ s = 0 for s ≥ 2  Oscillating decay: ϕ 11 < 0  

MA(1): β < 0  Positive spike at lag 1. ρ s = 0 for s ≥ 2  Decay: ϕ 11 > 0  

ARMA(1, 1): α 1 
> 0  

Exponential decay beginning at lag 1. Sign ρ 1 = sign 

 
Oscillating decay beginning at lag 1. ϕ 11 = ρ 1  

ARMA(1, 1): α 1 
< 0  

Oscillating decay beginning at lag 1. Sign ρ 1 = sign 

 

Exponential decay beginning at lag 1. ϕ 11 = ρ 1 and sign 

= sign  

ARMA(p, q) 
Decay (either direct or oscillatory) beginning at lag 
q  

Decay (either direct or oscillatory) beginning at lag p  

Table 2.10. Properties of the autocorrelation and partial functions. 

Estimation of ARMA models 

The estimation of ARMA models are relatively easy in Stata. The basic command to estimate an ARMA model is: .arima depvar 
[varlist], ar( numlist ) ma( numlist ).[20] The first thing to notice in the command that this command can apply to either to a single 
variable or to an equation. If [varlist] is omitted, Stata will produce an estimate of the ARMA model for that variable; if the list is 
included, it will estimate the model with the disturbances allowed to have the ARMA structure specified in the command. Figure 14 
reports the estimation of an ARMA model for real investment levels. Notice that we write AR(1/2) so that Stata knows to include 
both the first and second autoregressive term. A command of AR(2) would include only the second autoregressive term. In Figure 15 
we report the ARMA (2, 1) estimation of (1). 

Figure 2.17.  



 

Estimation of an ARMA(2, 2) model of real investment.  

 

Figure 2.18.  



 



Estimation of Equation (1) using an ARMA(2, 1) model.  

 

  ARMA(1, 1) ARMA(2, 1) AR(1) AR(2) MA(1) 

Intercept 185.307 185.6556 184.8208 185.2092 189.373 

  (10.06) (10.83) (9.27) (10.25) (18.09) 

AR (L1) 0.70936 1.76342 0.80307 0.95257 — 

  (3.12) (5.27) (5.51) (4.47) — 

AR (L2) — -0.81715 — -0.18963 — 

    (-3.21)   (-0.91)   

MA (L1) 0.26236 -0.99998 — — 0.87262 

  (0.90) (-0.00)     (2.97) 

Log likelihood -86.1791 -85.8702 -86.47780 -86.21224 -88.48713 

Wald χ2 26.96 422.60 30.36 31.65 8.81 

Probability > χ2 0.0000 0.0000 0.0000 0.0000 0.0000 

Sample size 19 19 19 19 19 

(14,1) 1964-1982 1964-1982 1964-1982 1964-1982 1964-1982 

Table 2.11. Estimation of various ARMA models of real investment. 



The interpretation of these results is not obvious. We check the sensitivity of these results by estimation some other models. The 
results of these estimations are reported in Table 2 and Table 3. Based purely on ML tests, it would appear that AR(1) model in 
Table 2 is as good as any of the models describing the ARMA structure of real investments. On the other hand, the results reported 
in Table 3 suggests that the ARMA(2, 1) appears to be the best model to assume for the disturbance term in the estimates of 
Equation (1). 

  AR(1) ARMA(1, 1) ARMA(2, 1) 

Intercept -14.49489 -13.37455 -16.89182 

  (-0.26) (-0.23) (-1.68) 

Real GNP 0.17006 0.16912 0.17253 

  (3.96) (3.78) (20.18) 

Real interest rate -0.82517 -0.92007 -0.33692 

  (-0.46) (-0.33) (-0.25) 

AR (L1) 0.27953 -0.02028 0.85619 

  (0.60) (-0.02) (1.46) 

AR (L2) — — -0.70702 

      (-2.64) 

MA (L1) — 0.41151 -1.00000 

    (0.42) (-2.98) 

Log likelihood -78.7868 -78.4279 -72.94569 

Wald χ2  26.30 31.86 980.18 

Probability > χ2  0.0000 0.0000 0.0000 



Sample size 19 19 19 

Sample period 1964-1982 1964-1982 1964-1982 

Table 2.12. Various ARMA estimates of Equation (1). 

Other time-series concepts 

There are a large number of additional time-series methods and issues that are not discussed in this module. These topics include, 
among others, ARCH and GARCH estimators, unit roots, the Dickey-Fuller test, and vector autoregression (VAR) models. There is no 
way to do justice to these topics in notes as short as these are. Moreover, it is necessary to discuss difference equations (the 
discrete version of differential equations) if one wants to understand many of these topic at anything more than an intuitive level. 
Those interested in these topics should enroll in the forecasting course (Economics 422) or, if they cannot, plan to read several 
textbooks on whatever econometric tool they need to understand. 

Exercise 

Exercise 2.2.1. 

This exercise is designed to be sure you know how to use Stata in analyzing time-series data sets; there is no economic content in 
the exercise. The MS Excel file Rabun County Temperature Data reports the morning temperature (MornTemp) observed in Rabun 
County, Georgia for every day between March 15, 2005 to November 2, 2008. The data set includes a variable “edate” that is the 
daily date in Stata notation. The data set also includes dummy variables for the season, the month, and the year of each 
observation (with the Winter, the December, and the 2008 dummy variables omitted).  

 

a. Create a graph of (a) the data set morntemp, (2) the autocorrelations of morntemp, and (3) the partial autocorrelations of 
morntemp (you will have to set the matrix size to some number greater than 43 using the command .set matsize #). 

b. Estimate the following models: 

m34544/Rabun%20County%20Temperature%20Data.xls


1. ARMA(2,2) for morntemp. 

2. ARMA(2,2) for morntemp as a function of the season dummy variables. 

3. ARMA(2,2) for morntemp as a function of the monthly dummy variables. 

4. ARMA(2,2) for morntemp as a function of the monthly dummy variables and the annual dummy variables. 

5. ARMA(1,2) for morntemp as a function of the monthly dummy variables and the annual dummy variables. 

6. ARMA(1,1) for morntemp as a function of the monthly dummy variables and the annual dummy variables. 

c. Arrange the parameter estimates in a table and comment on them. Include the results of estimating (6) using OLS; what is the 
DW-statistic for this regression? 
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2.3. Panel Data Models* 

Equation Chapter 1 Section 1Notes on Panel Data Models 

Introduction 
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Panel data methods are appropriate when the researcher has available observations that are both cross-sectional and time series. 
For example, one could form a panel data set with observations on the per capita consumption of tobacco for a set of OECD 
countries over the period 1960 to 2005. Usually the data is “stacked”—that is, all of the observations for country A is listed together 
in order of year before the data for country B, etc. It is also possible to stack the data by year—countries A to Z for 1960, countries A 
to Z for 1961, and so on through 2005. 

Let y it be the per capita consumption of tobacco for country i in year t. We wish to model the per capita consumption of tobacco as 
a function of a set of observable independent variables like the price of tobacco, income, restrictions on tobacco advertising, and 
restrictions on tobacco consumption. Of course there are several sources of unobserved heterogeneity in that data set. In particular, 
we might expect that systematic differences in consumption patterns would exist due to differences in the customs and mores of 
the various countries in the sample. It also would be reasonable to assume that these country-level differences are be relatively 
stable over time. Additionally, we might expect that there would be differences the per capita consumption of tobacco over time 
due to changes in our understanding of the long run health effects of tobacco consumption. These changes might affect both (1) the 
level of consumption and (2) the responsiveness of the consumption of tobacco to changes in the explanatory variables. 

In these notes we describe some of the ways of modeling panel data sets and discuss some of the issues associated with the 
estimation of these models. We also discuss how to use Stata to analyze panel data sets. We begin by considering some of the types 
of panel data model specifications. 

Model specification 

There are four general specifications of the panel data model available. The differences in these models reflect differing 
assumptions one might make and are listed below. 

1. Slope coefficients are constant and the intercept varies over the individuals: 

(2.35) 

 

2. Slope coefficients are constant and the intercept varies over the individuals and over time: 



(2.36) 

 

3. All coefficients vary over individuals: 

(2.37) 

 

4. All coefficients vary over time and individuals: 

(2.38) 

 

These four models can be classified further, depending on whether the researcher assumes that the coefficients of the model are 
fixed or random. However, most research in economics is restricted to estimation of (1) and (2) because they strike a reasonable 
balance between being general enough without introducing unnecessary assumptions that can render estimation extremely 
difficult. 

Estimation issues 

Hsiao (2003: 27-30) discusses a convenient example of a panel data model that illustrates many of the important issues that arise 
with panel data. We make use of this example in what follows. Assume that we want to estimate a production function for farm 
production in order to determine if the farm industry exhibits increasing returns to scale. Assume the sample consists of 
observations for N farms over T years, giving a total sample size of N T . For simplicity, we assume that the Cobb-Douglas production 
is an adequate description of the production process. The general form of the Cobb-Douglas production function is: 



(2.39) q = α 0 I 1 β 
1

 ⋯I k 
β 

k ,  

where q is output and I j is the quantity of the j-th input (for example, land, machinery, labor, feed, and fertilizer). The parameter, β j 
, is the output elasticity of the j-th input; the farms exhibit constant returns to scale if the output elasticities sum to one and either 
increasing or decreasing returns to scale if they sum to a value greater than or less than one, respectively. is the quantity of the j-th 
input (for example, land, machinery, labor, feed, and fertilizer). The parameter, is the output elasticity of the j-th input; the farms 
exhibit constant returns to scale if the output elasticities sum to one and either increasing or decreasing returns to scale if they sum 
to a value greater than or less than one, respectively. 

Taking the natural logarithm of (5) gives lnq = lnα 0 + β 1 lnI 1 + ⋯ + β k lnI k . We can re-write this equation (adding an error term, as 
well as farm and year subscripts) giving: 

(2.40) y it = β 0 + β 1 x 1i t + ⋯ + β k x kit + ε i t ,  

where y it = lnq it , , β 0 = lnα 0 , x jit = lnI jit , for j = 1,…,k and ε it is an error term. One way to account for year and time effects is to 
assume: 

(2.41) ε it = λ F i + η P t + υ it ,  

where Fi is a measure of the unobserved farm specific effects on productivity and Pt is a measure of the unobserved changes in 
productivity that are the same for all farms but vary annually. Substitution of (7) into (6) gives: 

or  

(2.42) 

 

where α it = β 0 + λ F i + η P t . Thus, (8) is equivalent to (2). Moreover, if we assume that η = 0 , we get  

(2.43) 



 

where α i = β 0 + λ F i . Thus, (9) is equivalent to (1).  

Fixed-effects models 

A natural way to make (9) operational is to introduce a dummy variable, Di , for each farm so that the intercept term becomes: 

(2.44) 

 

where D j = 1 if j = i and 0 otherwise. This substitution is equivalent to replacing the intercept term with a dummy variable for each 
farm and letting the farm dummy variable “sweep out” the farm-specific effects. In this specification the slope terms are the same 
for every farm while the intercept term is given for farm j by α 1 + α j . Clearly, the intercept term for the first farm is equal to just α 1 
. This specification is known as the fixed effect model and is estimated using ordinary least squared (OLS). We can extend the fixed-
effects model to fit (8) by including a dummy variable for each time period except one. 

In sum, fixed-effects models assume either (or both) that the omitted effects that are specific to cross-sectional units are constant 
over time or that the effects specific to time are constant over the cross-sectional units. This method is equivalent to including a 
dummy variable for all but one of the cross-sectional units and/or a dummy variable for all but one of the time periods. 

Random-effects models 

An alternative approach to treating the α i in (1) as fixed constants over time is to treat it as a random variable. Returning to (1) 

where the intercepts vary due to individual level differences, we have Treating α i as a random variable is 
equivalent to setting the model up as: 



(2.45) 

 

For simplicity we consider only the case when λ t = 0. Thus, the error term for (11) is We assume that 

(2.46) 

 

We also assume that all of the elements of the error term are uncorrelated with the explanatory variables, x j .  

The key econometric issue is that the presence of α i in the error term means that the correlation among the residual of the same 
cross-sectional unit is not zero; the error terms for one farm, for instance, are correlated with each other. Therefore, the error terms 
exhibit heteroskedasticity. The appropriate estimation technique is generalized-least-squares, a technique that attempts to adjust 
the parameter estimates (and their standard error estimates) for heteroskedasticity and autocorrelation. Alternatively one can 
assume that α i and ε it are normally distributed and use a ML estimator. Hsiao [2003: 35-41] and Cameron and Trivedi [2005: 699-
716] offer greater detail on the estimation of the parameters of both the fixed-effects and the random-effects models. It is enough 
for our purposes to accept that the econometricians have found a number of ways to estimate these parameters. 

Random-effects or fixed effect model? 

Economists generally prefer to use fixed-effects models. The decision to use fixed-effects or random-effects does not matter when T 
is large because the two methods will yield the same estimates of the parameters. When the number of individual categories (N) is 



large and the number of time periods (T) is small, the choice of which model to use becomes unclear. Hsiao summarized this 
somewhat arcane issue with the following observations: 

If the effects of omitted variables can be appropriately summarized by a random variable and the individual (or time) effects 
represent the ignorance of the investigator, it does not see reasonable to treat one source of ignorance () as fixed and the other 
source of ignorance () as random. It appears that one way to unify the fixed-effects and random-effects models is to assume 
from  

the outset that the effects are random. The fixed-effects model is viewed as one in which investigators make inferences 
conditional on the effects that are in the sample. The random-effects model is viewed as one in which investigators make 
unconditional or marginal inferences with respect to the population of all effects. There is really no distinction in the “nature 
(of the effect).” It is up to the investigator to decide whether to make inference with respect to population characteristics or 
only with respect to the effects that are in the sample. Hsiao [2003: 43] 

Needless to say, Hsiao’s advice may well leave many researchers without any idea of whether to use a random-effects or a fixed-
effects model. In your own research I suggest that you consult an econometrician for advice. 

There is one problem that arises when using a fixed-effects model. Assume that you have a sample of observations for a large 
number of individuals over a period of years. If you use a fixed-effects model, you will not be able to find parameter estimates for 
any variable like race or sex that do not change over the time period of the sample. The reason for this limitation is that the time-
constant variables are perfectly correlated with the dummy variables used for the fixed-effects. A similar problem arises if the fixed-
effects are for years (rather than individuals). You cannot include a variable is constant for all individuals in any given year. Quite 
often the individual-constant (or time-constant) variable is not of interest and nothing is lost by not having the parameter estimate. 
On the other hand, the random-effects model does not have this problem because the estimation makes use of differences amongst 
the individuals to estimate a parameter for the individual-constant variable.[21] We discuss in the next section an example in which 
this “problem” arises. 

What would be nice is if there were a statistical test that allows us to decide if the random-effects model is the appropriate model? 
The Hausman test offers such a statistical test. The Hausman (specification) test exploits the fact that the parameters for the 
random-effects model should be not be statistically different from those found using a fixed-effects specification. If one observes a 
chi-squared value greater than the critical value you can conclude that the parameter estimates for the random-effects model are 
statistically different from the parameter estimates for a model using an assumption of fixed-effects, then you can conclude that the 



random-effects model is misspecified. Unfortunately, the misspecification could be due to the fact that the fixed-effects model is 
appropriate or it could be due to the unobserved error terms being correlated with the included explanatory variables. If the latter 
is the case, then one might consider augmenting the model with an appropriate measure of the part of the unobserved effect that is 
correlated with the error term. What we are describing is that same thing that happens when omitted variables are correlated with 
the error term—the parameter estimates are biased. We include an example of how to use Stata to perform the Housman 
specification test. 

Estimation of panel data models in Stata 

General comments 

There are three commands that matter in setting up the panel data. The first two commands precede the regression command 
because they establish which variable denotes the time period and which variable denotes the cross-sectional unit. These 
commands are: 

.iis [variable name]  

.tis [variable name]  

The command for estimating the fixed-effects model is: 

. xtreg depvar [varlist], fe  

The command for estimating the random-effects model is: 

. xtreg depvar [varlist], re  

If the part of the command with the comma and either re or fe is omitted, Stata will assume that you want to estimate the random-
effects model. 

Understanding Stata output 



To understand the Stata output we need to return to the algebra of the model. Assume that we are fitting a model of the following 
form: 

(2.47) 

 

We can sum (13) over t (holding the individual unit constant) and divide by T to get: 

(2.48) 

 

where and Thus, (14) uses the mean values for each cross-sectional unit. We can subtract 
(14) from (13) to get: 

(2.49) 

 

Equations (13), (14), and (15) are the basis of Stats’s estimates of the parameters of the model. In particular, the command xtreg, fe 
uses OLS to estimate (15); this is known as the fixed-effects estimator (or the within estimator). The command xtreg, be uses OLS to 
estimate (14) and is known as the between estimator. The command xtreg, re—the random-effects estimator—is a weighted 
average of the between and within estimators, where the weight is a function of the variances of and ( and respectively).[22]  

In general, you will not make use of the between estimator. However, these three equations do lie at the basis of the goodness-of-
fit measures that Stata reports. In particular, Stata output reports three “R-squareds”[23]—the overall-R2 the between-R2 and the 



within-R2 These three R-squareds are derived using one of the three equations. In particular, the overall-R2 uses (13); the between-
R2 uses (14); and the within-R2 uses (15). 

Example 2.3. A panel data analysis using Stata  

In this example we follow the example offered in the Stata manual and use a large data set from the National Longitudinal Survey of 
wage data on 28,534 women who were between 14 and 26 years of age in 1968. The women were surveyed in each of the 21 years 
between 1968 and 1988 except for the six years 1974, 1976, 1979, 1981, 1984, and 1986. The study is focused on the determinants 
of wage levels, as measured by the natural logarithm of real wages. 

Figure 2.19.  



 

Loading in the data set into Stata with a description of the data.  

 

Figure 1 shows the commands used to put the data into Stata. The first command (set memory 5m) increases the size of the 
memory that the program uses; I did this because of the large sample size. The use command accesses that data from the Stata web 
site. The describe command calls up a description of the variables. Figure 2 presents a summary of the data using the command 
summerize. 



Figure 2.20.  

 

Summary of the data.  

 

There are several transformations of the variables that we will need. In particular, we want to include the squares of several of the 
variables in our regression—age (age), work experience (ttl_exp), and job tenure (tenure). The reason we want to use the square of 
these variables is that we have reason to believe that wages have a non-linear relationship with these variables. For instance, 
consider the number of years a worker has been on the job, Tenure. Theory suggests that wages increase over a worker’s work-life 
at a decreasing rate. Thus, if the equation we are estimating is y = lnw = β 0 + β 1 T e n u r e + β 2 T e n u r e 2 + ⋯, what we expect is 

that: and The only way that this last equation can be true is if β 2 < 0. 



Moreover, if this is true, the first-derivative implies that β 1 > − 2β 2 T e n u r e > 0. Also, notice that we can determine the number of 

years in a job when wages reach a peak; y reaches a maximum at the age where . or when 

The fact that guarantees that this point is indeed a maximum.  

Additionally, because race is a categorical variable that has three potential values—1 if white, 2 if black, and 3 otherwise—we have 
to create a dummy variable in order to use this variable. The transformations we use are shown in Figure 3.  

Figure 2.21.  

 

Transformations of the variables to create new variables.  

 

The last step before estimating the regressions is to identify the data set as a panel data. shows the two commands that must be 
entered in order for Stata to know that idcode is the individual category and that year is the time series variable. Figure 4 shows 
these two commands. 

Figure 2.22.  

 



Declaring the category and time identifiers.  

 

We are now ready to estimate the model (the natural logarithm of wages as a function of various variables). We begin with the 
random-effects model. Figure 5 shows the command and the results of the estimation of the random-effects model. There are 
several things to note here. First, in the command we are able to refer to all variables that have age in them by using age*, the * 
tells Stata to use and variable that begins with the letters age. Second, we will need to use the estimation results in the Hausman 
test. Thus, we have stored these results in “random_effects” using the command estimates store random_effects. 

Figure 2.23.  

 
The random-effects estimation.  



 

Notice that three R-squared values are reported in Figure 5. Also, wages reach a peak when the woman is 

years old and after 9.795857 years on the job. The interpretation of the other variables demands a bit 
of algebra. For instance, the fact that black is a dummy variable affects our interpretation; when an individual is a black, her wage 
level is: lnw B = β 0 + β 1 + ⋯. When she is nonblack, her wage level is lnw NB = β 0 + ⋯. Thus, we have: lnw B − lnw NB = β 1 or 

Thus, the wage level of a black is, everything else held constant, 94.8 percent of the wage level 
of a nonblack.  

If we assume that grade is a continuous variable (it really is not), we have the following interpretation of the parameter: lnw = β 0 + 

β 1 g r a d e + ⋯ implies that . Thus, in our case a increase of 1 year of schooling causes wages to increase by 6.46 
percent.  

We can compare the results of using the re option with using the mle option (which directs Stata to use maximum likelihood 
techniques to estimate the parameters of the system. The mle parameter estimates, shown in Figure 6, are the same as those 
generated using the re command. However, the estimates of the standard errors (and, thus, the z-values) are different. 

Figure 2.24.  



 

The maximum likelihood estimation.  

 

The estimation of the fixed-effects model is straightforward and is shown in Figure 7. The command is the same as in the random-
effects model but with the re replaced by fe. Notice from the results that the variables grade and black are dropped from the 



estimation results. They are dropped because the amount of schooling and race of an individual is fixed over all observations. These 
two variables, thus, are perfectly correlated with the dummy variables that hold constant the individual level characteristics. The 
effects of education and race differences are absorbed into the residual. 

Figure 2.25.  

 

The fixed-effects estimation.  

 

The estimates of the parameter values for the fixed-effects model are very similar to those found for the random-effects model with 
the exception for the parameters associated with not living in an SMSA (not_smsa) and with living in the South (south). The 
random-effects model suggests that the wage level for someone living outside of a SMSA is 87.6 percent of the wage level of 



someone living in an SMSA; in the fixed-effects model, the wage level outside the SMSA is estimated to be 91.5 percent of the wage 
level of a woman living in a SMSA. The random-effects model estimates wages in the South are 91.6 percent the level of wages 
outside the South; the fixed-effects model fixes this wage premium at 91.6 percent. 

Figure 2.26.  

 

The Hausman test results.  

 

The final issue we discuss in this example is the Hausman specification test. If the model is correctly specified and if ν i is 
uncorrelated with the explanatory variables, then the parameter estimates in the two models should not be statistically different. 
As shown in Figure 8, we first must same the results of the fixed-effects estimation using the command estimates store 
fixed_effects. The null hypothesis is that the the difference in that parameter estimates is not systematic. The appropriate test 
statistic is the χ 2(8), where the degrees of freedom are equal to the number of parameters in the model (8). The chi-squared 



statistic of 149.44 is greater than the critical value and we must reject the null hypothesis. The Stata offers this interpretation of this 
result: 

What does this mean? We have an unpleasant choice: we can admit that our model is misspecified—that we have not 
parameterized it correctly—or we can hold to our specification  

being correct, in which case the observed differences must be due to the zero-correlation of and the assumption. [StataCorp: 
202] 

 

Exercises 

Exercise 2.3.1. 

Estimation of a Labor Supply Function. An important issue in labor economics is the responsiveness of the number of hours worked 
to wages. Because labor supply curves can, in theory, be backward-bending, the sign and size of the impact of wages on the amount 
of labor supplied is an empirical issue. In this project you are to estimate the demand for labor curve for a cross-section of adult 
males. 

 

(2.50) 
The model to be estimated is: 

y it = β 0 + β 1 h it + β 2 A g e it + β 3 A g e 2 it + β 4 N C it + β 5 H I it + ε it  

where: 

y it = natural logarithm of individual i’s wage rate in year t, 

h it = natural logarithm of total number of hours worked by individual i in year t, 

Age it = age of individual i in year t, 



NC it = number of children of individual i in year t, and 

HI it = an dummy variable equal to 1 if individual i in year t has bad health and 0 otherwise. 

The data are from Ziliak, James P. (1997) “Efficient Estimation with Panel Data When Instruments Are Predetermined: An Empirical 
Comparison of Moment-Condition Estimators,” Journal of Business & Economic Statistics 15(4): 419-431. Ziliak (p. 423) describes his 
data as follows: 

The data used to estimate the life-cycle labor-supply parameters come from Waves XII-XXI (calendar years 1978-1987) of the 
PSID. The sample is selected on many dimensions and is similar to other research studying life-cycle models of labor supply. The 
sample is restricted to continuously married, continuously working, prime-age men aged 22-51 in 1978 from the Survey 
Research Center random subsample of the PSID. In addition the individual must either be paid an hourly wage rate or must be 
salaried, and he cannot be a piece-rate worker or self-employed. This selection process resulted in a balanced panel of 532 men 
over 10 years or 5,320 observations. The real wage rate, wit,. is the hourly wage reported by the panel participant rather than 
the average wage (annual earnings over annual hours) to minimize division bias (Borjas 1981). 

The data are available in the any of the three files , , and .  

1. Provide scatter plots among the dependent variable (Natural logarithm of hours) against each of the explanatory variables 
Natural logarithm of real wages, Age, Number of children, and Health. (Label these Figures 1 to 4.) 

2. Present a table of the summary statistics for all of the variables in this data set (except ID and Year). 

3. Provide a histogram of each of the following variables: Natural logarithm of hours, Natural logarithm of real wages, Age, and 
Number of children. (Label these Figures 5 to 8). 

4. Estimate Equation (1) using (1) OLS (sometimes called a “pooled model”), (2) a “between” model (where the observations in the 
regression are the averages over the 10 years of each variable for each individual, (3) a fixed effects model, (4) a MLE random 
effects model and (5) a GLS random effects model. Present the results of your estimations in a single table and offer an 
interpretation for each parameter you estimate. Use Table 1 as shown below as a template for the table to present your results. 

m34551/HW%201%20Table.doc


  (1) Pooled (2) Between (3) Fixed Effects (4) MLE Random Effects (5) GLS Random Effects 

Natural logarithm of real wages           

  ( ) ( ) ( ) ( ) ( ) 

Age           

  ( ) ( ) ( ) ( ) ( ) 

Age2            

  ( ) ( ) ( ) ( ) ( ) 

Number of children           

  ( ) ( ) ( ) ( ) ( ) 

Health indicator           

  ( ) ( ) ( ) ( ) ( ) 

Intercept           

  ( ) ( ) ( ) ( ) ( ) 

R2        — — 

σμ  — —       

σε  — —       

Sample size           

Table 2.13. Hours and wages: Summary of linear panel model estimations (Dependent variable is the natural logarithm of total 
hours worked in a year; the observations consist of 532 adult males over the 10 year period 1978-1987). 



Exercise 2.3.2. 

The Effectiveness of Advertising Bans on Smoking. Anti-smoking activists often push for a total ban on cigarette advertisements. 
Indeed, one of the basic assumptions of the groups pushing the 1996 proposed settlement with the tobacco companies is that the 
amount of tobacco consumed is positively affected by the amount of tobacco advertising. There are two mechanisms that might 
underlie such a relationship. The first mechanism suggests that the advertising increases the amount of cigarettes smoked by 
current smokers. Many economists doubt that the tobacco advertising increases the consumption of current smokers, arguing that 
the total consumption of cigarettes is unresponsive to advertisement. Instead, they argue that advertising is an effort by cigarette 
companies to affect the brand of cigarettes that current smokers consume. The second mechanism suggests that advertising is an 
effort by cigarette companies to induce non-smokers (especially children) to try cigarettes. The main reason that cigarette 
companies want non-smokers to try smoking, so the argument goes, is that some percentage of non-smokers who try cigarettes will 
become addicted and will form the future demand for cigarettes. 

 

The effect of a total ban on advertising would be completely different if cigarette companies advertise with the hope of increasing 
the number of people addicted to cigarettes. In particular, the ban should have a small or negligible effect on current cigarette 
demand. Instead, the cigarette companies would face a steadily decreasing demand for their product. Such a decrease in demand 
would reduce future profits for these companies. If future profits fell enough, some of the companies might be forced out of 
business. Clearly, it is this result that anti-smoking activists have in mind with their proposals to ban cigarette advertisements.  

Finally, if advertising only induces current smokers to increase the number of cigarettes they consume, then the total ban on 
advertising should cause a one-time reduction in cigarette consumption that will reduce the profits of cigarette companies. 
However, which of these three mechanisms (if any) is correct is an empirical question. 

Six European countries adopted a complete ban on cigarette advertising in the period after 1970. It this project we use annual data 
on smoking consumption in 22 developed countries for the 27 years between 1964 and 1990 to test the effect of a complete 
smoking ban on cigarette demand (giving us 594 observations). Moreover, since we have no a priori reason to choose one model 
specification over another, we check the stability of the estimated impact of an advertising ban on cigarette demand under several 
alternative model specifications. 



We estimate three types of specifications of the model — the linear model, the log-linear model, and the log-log model. In general 
whether one uses a variable or the logarithm of the variable is the main difference in these three specifications. The linear model 
does not transform either the dependent or the independent variables. A variation on the linear models allows the use of the 
square and product of some of the independent variables in order to take care of any non-linearity in the data. The log-linear model 
takes the same form as the linear model except that the dependent variable is the logarithm of variable under study. Finally, in the 
log-log model both the dependent and independent variables are, if possible, in logarithm form.  

For example, for this problem the dependent variable in any of these specifications is either the per capita consumption of tobacco 
or the logarithm of the per capita consumption of tobacco. The dependent variables might include (1) the real price of tobacco in 
each country for each year, (2) a measure of the per capita income level of the country for each year, (3) the unemployment rate of 
the country for each year, (4) a measure of the age distribution of the population to measure smoking intensity by age, (5) a trend 
variable to account for the rising awareness of the health costs of smoking, (6) a dummy variable equal to one for years that a 
country has a complete ban on cigarette advertising, and (7) a set of 21 dummy variables identifying the country. Let T it be the 
measure of per capita cigarette consumption in country i for year t; P it, the price of tobacco; I it, the measure of per capita income 
level; U it, country i’s unemployment rate in year t; A it, country i’s age distribution in year t; Year, a trend variable; B it, the dummy 
variable for the ban; and C i, the dummy variable for country i. 

Examples of the three models are: 

1. Linear: T it = β 0 + β 1 P it + β 2 I it + β U it + β 4 A it + β 5 Y e a r t + β 6 B it + ε it  

2. Log-Linear:  

3. Log-Log:  

In models (1) and (2) it is possible to include additional explanatory variables that are the square of some of the currently included 
explanatory variables. In all three models it is possible to include as explanatory variables the product of the ban dummy and any of 
the currently included explanatory variables. Finally, in equation (2) we cannot take the logarithm of the unemployment rate 
because the data we have report zero levels of unemployment. 

The data you will use in this project are in the MS Excel file Smkdata.xls. The variables included in the file are as follows: 
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Column Variable Definition 

A Country Name of country 

B 
Country 
ID 

Integar from 1 to 22, each designating a country 

C Year Year of observation (1964, …, 1990) 

D Tobacco Total grams of tobacco sold per individual 15 years or older 

E Price 
Real price of 20 grams of tobacco in 1990 US cents (= Nominal price per E 20 grams of tobacco divided by the 
Gross Domestic Price deflator) 

F Consump Per capita private final consumption expenditures in 1990 US dollars 

G Unemp Number of unemployed persons per 1000 members of the workforce 

H AgeDist 
Age distribution. This variable attempts to measure the differences in intensity of smoking as a function of age. 
It is equal to the relative consumption rate of tobacco in the UK observed between 1966 and 1981 by age group 
times the percentage of the population in the country in that age group. 

I Ban 
Dummy variable equal to 1 if the country has a complete ban on tobacco advertising. The six countries in the 
sample with a complete ban and the first year of the ban are: Iceland (1972), Norway (1976), Finland (1979), 
Portugal (1984), Italy (1984), and Canada (1989). 

J BanTime 
The number of years since the ban was put in place (if ban went into effect in 1972, then years 1964-1972 are 
equal to 0, year 1973 equals 1, year 1974 equals 2, etc.) 

Table 2.14. Definition of the cigarette consumption data set. 

(a) How do these variables match the ones suggested in the discussion of equations (1), (2), and (3)?  

(b) Estimate the fixed effects models of the following versions of equations (1), (2), and (3): 



1. Equations (1), (2), and (3) as specified above. 

2. Equations (1) and (2) with squared terms for the price, income, unemployment rate, and the age distribution included. This 
regression is designed to test for non-linearity. 

3. Equations (1) and (2) with the squared terms mentioned in 2 that are statistically significant plus the following new variables: 
Ban*Time, Ban*Price, and Ban*Consump. (You must create these variables) This regression allows for an effect of the Ban on the 
slopes of the other explanatory variables. 

4. Equation (3) with the following new variables: Ban*Log(Time), Ban*Log(Price), and Ban*Log(Consump). 

5. Equations (1), (2), and (3) as estimated in 3 and 4 with a variable that counts the number of years that a total ban has been in 
effect (BanTime) and its square (BanTime2). This regression allows for a changing impact of a ban the longer it is in effect. 

Report the results of your regressions in a table that allows you to comment on the stability of your estimation results over 
specifications.  

(c) Do these results support any of the theories suggested above?  

(d) What, if any, policy conclusions would you make given your estimations?  

(e) Assume for the moment that you “believe” your results you got in (5). Sketch out a strategy you would follow to forecast the 
impact of a ban in a country that does not currently have a ban. 

Note: The data in this problem are from Stewart, Michael J. (1993) “The Effect on Tobacco Consumption of Advertising Bans in OECD 
Countries,” International Journal of Advertising 12(2): 155-180. The data set can be downloaded from the author's website. 
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2.4. Sample selectivity bias* 

Sample Selection Bias 

Introduction 

These notes discuss how to handle one of the more common problems that arise in economic analyses—sample selection bias. 
Essentially, sample selection bias can arise whenever some potential observations cannot be observed. For instance, the students 
enrolled in an intermediate microeconomics course are not a random sample of all undergraduates. Students self-select when they 
enroll in any class or choose a major. While we do not know all of the reasons for this self-selection, we suspect that students 
choosing to take advanced economics courses have more quantitative skills than students choosing courses in the humanities. Since 
we do not observe the grades that students who did not enroll in the intermediate microeconomics class would have made had they 
enrolled, we can never observe the grades that they would have made. Under certain circumstances the omission of potential 
members of a sample will cause ordinary least squares (OLS) to give biased estimates of the parameters of a model. 

In the 1970s James Heckman developed techniques that will correct the bias introduced by sample selection bias. Since then, most 
econometric computer programs include a command that automatically used Heckman’s method. However, blind use of these 
commands can lead to errors that would be avoided by a better understanding of his correction technique. This module is intended 
to provide this understanding. 

In the first section I discuss the sources of sample selection bias by examining the basic economic model used to understand the 
problem. In the second section I present the estimation strategy first developed by Heckman. In the third section I discuss how to 
estimate the Heckman model in Stata. In the final section I examine an extended example of the technique. An exercise is included 
at the end of the discussion. 
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The model 

Assume that there is an unobserved latent variable, y i ∗ , and an unobserved latent index, d i ∗ , such that:  

(2.51) 

 

(2.52) 

 

(2.53) 

 

(2.54) y i = y i ∗ d i .  

The matrix notation above means (1) that  

1.  

2.  

Substituting (1), (2) and (3) into (4) gives: 

(2.55) 



 

Note that N is the total sample size and n is the number of observations for which d i = 1.  

Since y i ∗ is not observed for ( N − n ), the question becomes why are these observations missing. A concrete example of such a 
model is a model of female wage determination. Equation (1) would model the wage rate earned by women in the labor force and 
Equation (2) would model the decision by a female to enter the labor force. In this case, y i , the wage rate woman i receives, is a 

function of the variables in however, women not in the labor force are not included in the sample. If these missing observations 
are drawn randomly from the population, there is no need for concern. Selectivity bias arises if the ( N − n ) omitted observations 
have unobserved characteristics that affect the likelihood that d i = 1 and are correlated with the wage the woman would receive 
had she entered the labor force. For instance, a mentally unstable female is likely to earn relatively low wages and might be more 
unlikely to enter the labor force. In this case, the error terms, ε i and ν i would be independent and identically distributed N( 0,∑ ), 
where 

(2.56) 

 

and are independent of z i . The selectivity bias arises because σ εν ≠ 0. In effect the residual ε i includes the same unobserved 
characteristics as does the residual ν i causing the two error terms to be correlated. OLS estimation of equation (1) would have a 
missing variable—the bias created by the missing observations (due to wage data not being available for women not in the work 

force). As in other cases of omitted variables, the estimates of the parameters of the model, would be biased. Heckman (1979) 
notes in his seminal article on selectivity bias:  

One can also show that the least squares estimator of the population variance is downward biased. Second, a symptom of 
selection bias is that variables that do not belong in the true structural equation (variables in not in may appear to be 
statistically significant determinants of when regressions are fit on selected samples. Third, the model just outlined contains a 
variety of previous models as special cases. ...For a more complete development of the relationship between the model 



developed here and previous models for limited dependent variables, censored samples and truncated samples, see Heckman 
(1976). Fourth, multivariate extensions of the preceding analysis, while mathematically straightforward, are of consider-able 
substantive interest. One example is offered. Consider migrants choosing among K possible regions of residence. If the self 
selection rule is to choose to migrate to that region with the highest income, both the self selection rule and the subsample 
regression functions can be simply characterized by a direct extension of the previous analysis. (Notation has been altered to 
match the notation used in this module, see Heckman, 1979: 155) 

Estimation Strategy 

Heckman (1979) suggests a two-step estimation strategy. In the first step a probit estimate of equation (2) is used to construct a 
variable that measures the bias. This variable is known as the “inverse Mills ratio.” Heckman and others demonstrate that 

(2.57) 

 

where and are the probability density function and the cumulative distribution functions, respectively, evaluated at 
[24] The ratio in the brackets in equation (7) is known as the inverse Mills ratio. We will use an estimate of the inverse Mills 

ratio in the estimation of equation (5) to measure the sample selectivity bias. 

The Heckman two-step estimator is relatively easy to implement. In the first step you use a maximum likelihood probit regression 

on the whole sample to calculate from equation (2). You then use to estimate the inverse Mills ratio:  

(2.58) 

 

In the second step, we estimate: 



(2.59) 

 

using OLS and where Thus, a t-ratio test of the null hypothesis H 0 : μ = 0 is equivalent to testing the null hypothesis H 0 : 
σ εν = 0 and is a test of existence of the sample selectivity bias.  

An alternative approach to the sample selectivity problem is to use a maximum likelihood estimator. Heckman (1974) originally 
suggested estimating the parameters of the model by maximizing the average log likelihood function: 

(2.60) 

 

where ϕ εν is the probability density function for the bivariate normal distribution. Fortunately, Stata offers a single command for 
calculating either the two-step or the maximum likelihood estimators.  

Estimation in Stata  

Estimation of the two versions of the Heckman sample selectivity bias models is straightforward in Stata. The command is: 

.heckman depvar [varlist], select(varlist_s) [twostep]  

or 

.heckman depvar [varlist], select(depvar_s = varlist_s) [twostep]  

The syntax for maximum-likelihood estimates is: 
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.heckman depvar [varlist] [weight] [if exp] [in range], select([depvar_s =] varlist_s [, offset(varname) noconstant]) [ robust 
cluster(varname) score(newvarlist|stub*) nshazard(newvarname) mills(newvarname) offset(varname) noconstant 
constraints(numlist) first noskip level(#) iterate(0) nolog maximize_options ]  

The predict command has these options, among others: 

xb, the default, calculates the linear predictions from the underlying regression equation. 

ycond calculates the expected value of the dependent variable conditional on the dependent variable being observed/selected; E(y 
| y observed). 

yexpected calculates the expected value of the dependent variable (y*), where that value is taken to be 0 when it is expected to be 
unobserved; y* = P(y observed) * E(y | y observed). The assumption of 0 is valid for many cases where nonselection implies non-
participation (e.g., unobserved wage levels, insurance claims from those who are uninsured, etc.) but may be inappropriate for 
some problems (e.g., unobserved disease incidence). 

Examples of these two commands are: 

. heckman wage educ age, select(married children educ age)  

. predict yhat  

These two command would use the maximum likelihood estimate of the equations (1) wage as a function of education and age 
using a selection equation that used marital status, number of children, education level, and age to explain which individuals are 
participating in the labor force. The help file in Stata provides additional information on the structure of the Heckman command 
and is well worth printing out if you are dealing with a sample selectivity bias problem. 

Example 2.4. Example from Stata  

We will illustrate various issues of selection bias using the data set available from the Stata site. Retrieve the data set by entering: 

. use http://www.stata-press.com/data/imeus/womenwk, clear  



This data set has 2,000 observations of 15 variables. We can use the describe command (.describe) to get a brief description of the 
data set: 

obs: 2,000         

vars: 15 9 Nov 2004 20:23       

size: 142,000 (86.5% of memory free)       

Variable Name Storage Type Display Format Value Label Variable Label 

c1 double %10.0g     

c2 double %10.0g     

u double %10.0g     

v (7,2) %10.0g     

country float %9.0g     

age int %8.0g     

education int %8.0g     

married byte %8.0g     

children int %8.0g     

select float %9.0g     

wageful float %9.0g     

wage float %9.0g     

lw float %9.0g     



work float %9.0g     

lwf float %9.0g     

Table 2.15. Description of variables included in the data set from http://www.stata-press.com/data/imeus/womenwk. 

We are interested in only a subset of these data. Table 2 reports the definitions of variables that are relevant for our analysis. We 
can get further insight into the data set using the summarize command. Table 3 reports the summary statistics for the data set. 

Variable name Definition 

country County of residence (categorical variable equal to 0, 1, ..., 9) 

age Age of the woman 

education Number of years of education of the woman 

married Dummy variable equal to 1 if the woman is married and 0 otherwise 

children Number of children that the woman has in their household 

wage Hourly wage rate of the woman 

lw Natural logarithm of hourly wage rate 

work Dummy variable equal to 1 if the individual is in the workforce and 0 otherwise 

Table 2.16. Definition of the relevant variables in the data set. 

Variable Obs Mean Std. Dev Min Max 

Age 2000 36.208 8.28656 20 59 



education 2000 13.084 3.045912 10 20 

married 2000 .6705 .4701492 0 1 

children 2000 1.6445 1.398963 0 5 

wage 1343 23.69217 6.305374 5.88497 45.80979 

lw 1343 3.126703 .2865111 1.772402 3.824498 

work 2000 .6715 .4697852 0 1 

Table 2.17. Summary statistics of the relevant variables in the data set (using the command: .summarize age education married 
children wage lw work). 

We are interested in modeling two things: (1) the decision of the woman to enter the labor force and (2) determinants of the female 
wage rate. It might be reasonable to assume that the decision to enter the labor force by a woman is a function of age, marital 
status, the number of children, and her level of education. Also, the wage rate a woman earns should be a function of her age and 
education. 

The decision to enter the labor force 

We can use a probit regression to model the decision of a woman to enter the labor force. The results of this estimation are 
reported in Table 4. However, we can use the predict command to produce some results that we can use to be sure that we 
understand what the regression results mean. In particular, type in the following two commands: 

.predict zbhat, xb  

.predict phat, p  

These two commands will predict (1) the linear prediction (zbhat) and (2) the predicted probability that the woman will be in the 
workforce (phat). Table 5 reports the values of these two variables for observations 1 through 10.  

. probit work age education married children 



  
     

Iteration 0: log likelihood = -1266.2225 

Iteration 4: log likelihood = -1027.0616 

  
     

Probit estimates Number of obs = 2000 

LR chi2(4) = 478.32 

Prob > chi2 = 0.0000 
     

Log likelihood = -1027.0616 Pseudo R2 = 0.1889 
     

  
     

work Coef. Std. Err. z P>z [95% Conf. Interval] 

age .0347211 .0042293 8.21 0.000 .0264318 .0430105 

education .0583645 .0109742 5.32 0.000 .0368555 .0798735 

married .4308575 .074208 5.81 0.000 .2854125 .5763025 

children .4473249 .0287417 15.56 0.000 .3909922 .5036576 

_cons -2.467365 .1925635 -12.81 0.000 -2.844782 -2.089948 

Table 2.18. Probit estimation of the decision to enter the labor force. 

Observation zbhat phat 

1 -0.68900 0.24541 

2 -0.20290 0.41961 



3 -0.48067 0.31538 

4 -0.16818 0.43322 

5 0.34859 0.63630 

6 0.58758 0.72159 

7 0.97357 0.83486 

8 0.45978 0.67716 

9 0.01799 0.50718 

10 0.32628 0.62790 

Table 2.19. Predicted values of zbhat and phat for observations 1 through 10. 

The interpretation of the numbers in Table 5 is straightforward. Consider individual 1. The z-value predicted for this individual is -
0.68. Using the standard normal tables reported in Table 11 it is easy to see: 

(2.61) Φ( z ≤ − 0.69 ) = Pr( Individual 1 is in the labor force )  

(2.62) 

 

The difference between this number and the value reported for phat in Table 5 is due to rounding error. 

A little later we will want to calculate the inverse Mills ratio. As noted in (8), the formula for the inverse Mills ratio is: 

(2.63) 

 



The variable phat is equal to Stata offers an easy way to calculate with the function “normden(zbhat)” as 
follows:  

.generate imratio = normden(zbhat)/phat  

Table 6 repeats Table 5 with the estimate of the inverse Mills ratio for the first 10 observations. 

Observation zbhat phat Inverse Mills Ratio 

1 -0.6889973 0.2454125 1.2821240 

2 -0.2029016 0.4196060 0.9313837 

3 -0.4806706 0.3153753 1.1269680 

4 -0.1681804 0.4332207 0.9079438 

5 0.3485867 0.6363002 0.5900134 

6 0.5875849 0.7215945 0.4652062 

7 0.9735670 0.8348642 0.2974918 

8 0.4597758 0.6771615 0.5300468 

9 0.0179909 0.5071769 0.7864666 

10 0.3262833 0.6278950 0.6024283 

Table 2.20. Calculation of the inverse Mills ratio for the first 10 observations. 

 



The two Heckman estimates 

One of the great advantages of using an econometrics program like Stata is that the authors quite often have created a command 
that does all of the work for the user. In our case, the commands we need to run to generate the maximum likelihood estimate of 
the Heckman model are: 

. global wage_eqn wage educ age  

. global seleqn married children age education  

. heckman $wage_eqn, select($seleqn)  

Notice that we have used the global command to create a shortcut for referring to each of the two equations in the estimation. The 
command for the Heckman two-stage estimate is: 

.heckman $wage_eqn, select($seleqn) twostage  

.predict mymills, mills  

(1) Explanatory variable 
(2) Maximum likelihood 
estimate 

(3) Heckman two-
step 

(4) Probit estimate of the selection 
equation 

Wage Equation        

Education 0.9899537 0.9825259 — 

  (18.59) (18.23)   

Age 0.2131294 0.2118695 — 

  (10.34) (9.61)   

Intercept 0.4857752 0.7340391 — 



  (0.45) (0.59)   

Selection equation        

Married 0.4451721 0.4308575 0.4308575 

  (6.61) (5.81) (5.81) 

Children 0.4387068 0.4473249 0.4473249 

  (15.79) (15.56) (15.56) 

Age 0.0365098 0.0347211 0.0347211 

  (8.79) (8.21) (8.21) 

Education 0.0557318 0.0583645 0.0583645 

  (5.19) (5.32) (5.32) 

Intercept -2.491015 -2.467365 -2.467365 

  (-13.16) (-12.81) (-12.81) 

σ  0.7035061 0.67284 — 

λ  6.004797 5.9473529 — 

( Mills )λ  4.224412 4.001615 — 

    (6.60)   

Observations 2000 2000 2000 

Number of women not working 657 657 657 

Number of women working 1343 1343 1343 

Log likelihood -5178.304 — -1027.0616 



Wald χ 2 ( 2 )  508.44 — — 

Probability >  χ 2  0.0000 — — 

Wald χ 2 ( 4 )  — 551.37 — 

Probability >  χ 2  — 0.0000 — 

LR test of independent equations (ρ 
= 0) 

      

χ 2 ( 1 )  61.20 — 478.32 

Probability > χ 2  0.0000 — 0.0000 

Table 2.21. Comparison of Heckman Maximum-Likelihood and the Heckman Two-Step Estimates with the Probit Estimates of the 
Selection Equation. 

The second command reports the estimates of the inverse Mills ratio; we have retrieved these values in order to check our earlier 
calculations. Table 7 reports the results of these two estimations. Column 2 reports the maximum-likelihood estimates; Column 3 
reports the Heckman two-step estimates; and Column 3 reports the probit estimate of selection equation as reported in Table 4. 
The estimates for the two methods are very similar. Of course, the probit estimates in Column 4 exactly match the results reported 
for the selection equation in Column 3. As a final check, Table 8 reports the values of the inverse Mills ratio reported in Table 6 with 
the values of the inverse Mills ratio calculated in the Heckman two-step method. The two estimates are identical except for some 
rounding errors. 

Observation As calculated from probit estimate As reported by the Heckman two-step 

1 1.2821240 1.2821240 

2 0.9313837 0.9313837 



3 1.1269680 1.1269680 

4 0.9079438 0.9079438 

5 0.5900134 0.5900134 

6 0.4652062 0.4652061 

7 0.2974918 0.2974918 

8 0.5300468 0.5300469 

9 0.7864666 0.7864666 

10 0.6024283 0.6024283 

Table 2.22. Inverse Mills Ratio Comparison. 

Exercise 

Exercise 2.4.1. The supply of married women in the workforce. 

We are interested in understanding the decision of married Portugese women to enter the labor force. We have available data from 
Portugal. The data set is a sample from Portuguese Employment Survey, from the interview year 1991, and has been provided by 
the Portuguese National Institute of Statistics (INE). The data are in the Excel file Martins. This file is organized in the following way. 
There are seven columns, corresponding to seven variables, and 2,339 observations. 

 

a) Estimate the following equation using OLS: using the observations for women actually working. 

b) What is the potential source of selection bias? 



c) Estimate a wage equation for the Portuguese data three ways: (1) using OLS, (2) using the Heckman two-step method, and (3) 
using the ML method. Report all three estimates in a single table. For consistency, we will assume that the appropriate explanatory 
variables for wages are (1) age, (2) the square of age, and (3) the years of education. Further, assume that women do not enter the 
labor force because (1) presence of children under the age of 3, (2) presence of children between 3 and 18, (3) husband's wage level, 
(4) the level of education of the woman, and (5) the age of the woman. 

Appendix A. 

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

0.0 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0359 

0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0753 

0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141 

0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443 0.1480 0.1517 

0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879 

0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224 

0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2517 0.2549 

0.7 0.2580 0.2611 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.2852 

0.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133 

0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389 

1.0 0.3413 0.3438 0.3461 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621 

1.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830 

1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4015 



1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4147 0.4162 0.4177 

1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4279 0.4292 0.4306 0.4319 

1.5 0.4332 0.4345 0.4357 0.4370 0.4382 0.4394 0.4406 0.4418 0.4429 0.4441 

1.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545 

1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633 

1.8 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0.4699 0.4706 

1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.4750 0.4756 0.4761 0.4767 

2.0 0.4772 0.4778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817 

2.1 0.4821 0.4826 0.4830 0.4834 0.4838 0.4842 0.4846 0.4850 0.4854 0.4857 

2.2 0.4861 0.4864 0.4868 0.4871 0.4875 0.4878 0.4881 0.4884 0.4887 0.4890 

2.3 0.4893 0.4896 0.4898 0.4901 0.4904 0.4906 0.4909 0.4911 0.4913 0.4916 

2.4 0.4918 0.4920 0.4922 0.4925 0.4927 0.4929 0.4931 0.4932 0.4934 0.4936 

2.5 0.4938 0.4940 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952 

2.6 0.4953 0.4955 0.4956 0.4957 0.4959 0.4960 0.4961 0.4962 0.4963 0.4964 

2.7 0.4965 0.4966 0.4967 0.4968 0.4969 0.4970 0.4971 0.4972 0.4973 0.4974 

2.8 0.4974 0.4975 0.4976 0.4977 0.4977 0.4978 0.4979 0.4979 0.4980 0.4981 

2.9 0.4981 0.4982 0.4982 0.4983 0.4984 0.4984 0.4985 0.4985 0.4986 0.4986 

3.0 0.4987 0.4987 0.4987 0.4988 0.4988 0.4989 0.4989 0.4989 0.4990 0.4990 

Table 2.23. Normal Distribution. 



z~N(0, 1).  

Figure 2.27. The Normal Distribution 
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2.5. Endogenous explanatory variables* 

Endogenous Explanatory Variables 

Introduction 
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One of the most common problems complicating the research of an economist is created by the inclusion of endogenous variables 
as an explanatory variable. The variable on the left-hand-side of a regression is an endogenous variable; its level is determined by 
the levels of the explanatory variables—that is, the variables on the right-hand-side of the equation. In OLS we assume that the 
explanatory variables are independent of the error term. However, if the level of one of these explanatory variables is determined 
by the levels of the other variables in the model, that explanatory variable actually is an endogenous variable. In a nutshell the 
problem with having endogenous explanatory variables is that these endogenous variables cause the error term in the model to be 
correlated with the explanatory variables thus causing the OLS estimator to be biased. This problem is also known as simultaneous 
equation bias and it is a problem that is subtly different from sample selection bias. See "What is the difference between 
'endogeneity' and 'sample selection bias"'?" for an excellent discussion of the difference between these two econometric problems. 

In this module we explore both the statistical and algebraic issues raised by the inclusion of endogenous explanatory variables in a 
model. This introduction is too sketchy to give you a thorough understanding of the many problems raised by simultaneous 
equation bias. Hopefully, by the time you finish the module along with the problem set, you will have an least an intuitive 
understanding of the problem and will be able to recognize it when you come across the problem in your own research. If you think 
the model you are estimating may have simultaneous equation bias, you should seek the advice of an econometrician.  

The Statistical Problem 

Imagine we know with certainty that the following model fully describes the true state of the supply and demand for wheat. First, 
the demand for wheat in any year, q t , is a function of the price of wheat, p t 

w , the income of the average individual, I t , and the 
price of corn, p t 

c . Second, in any year the price of wheat is a function of the amount of wheat brought to market, q t , and a 
weather index, W t , that is positively related to the amount of wheat that is harvested. Third, the error terms in the supply and 
demand functions are due purely to measurement errors—that is, there are no omitted variables in the model. Thus, we have the 
following two equation model: 

(2.64) 
Demand:  

q t = α 0 + α 1 p t 
w + α 2 I t + α 3 p t 

c + ε t  

and 

http://www.stata.com/support/faqs/stat/bias.html
http://www.stata.com/support/faqs/stat/bias.html


Supply: 

p t 
w = β 0 + β 1 q t + β 2 W t + η t .  

We assume that the error terms each are normally distributed with a mean of zero and a constant variance. Moreover, we assume 
that the two error terms are independent of each other—that is, we are assuming that: 

(2.65) 

 

Finally, we assume that income, the price of corn, and the weather index are non-stochastic variables—i.e., these variables are 
independent of the two error terms. Clearly, the price of wheat and the quantity of wheat are stochastic variables.[25]  

What we have here is an ideal model in the sense that we know and can measure all of the variables in the model. The model as 
written has two endogenous variables—q t and p t 

w —and three exogenous variables— I t , p t 
c , and W t . Equations (1) and (2) are 

known as structural equations. What makes this model useful for our purposes is that there is an endogenous explanatory variable 
in each of the two structural equations.  

What we ultimately want to know is if we can use ordinary least squares (OLS) to obtain unbiased estimates of the parameters in 
Equations (1) and (2). One of the assumptions of OLS is that each of the explanatory variables are independent of the error term, ε t ; 
if this assumption is violated, OLS will produce biased estimates of the slope parameters. Thus, what we need to do is see if the 
error term in each equation is independent of the endogenous variable on the right-hand-side of that equation. That is, we want to 

see if and  

It is convenient in answering our question to use the two structural equations to find what are known as the reduced form 
equations—that is, one equation for each endogenous variable in which the endogenous variable is written as a function solely of 
exogenous variables and error terms. We can find the reduce form equations by solving the structural equations simultaneously for 
the endogenous variables. Substituting (2) into (1), we get: 



 

q t = α 0 + α 1 β 0 + α 1 β 1 q t + α 1 β 2 W t + α 1 η t + α 2 I t + α 3 p t 
c + ε t  

 

or 

(2.66) 

 

Substituting (1) into (2) yields: 

 

p t 
w = β 0 + β 1 α 0 + α 1 β 1 p t 

w + α 2 β 1 I t + α 3 β 1 p t 
c + β 1 ε t + β 2 W t + η t  

or 

(2.67) 

 

Equations (4) and (5) are the reduced form equations for this model. We can use them to calculate and In 
particular,  

 

 



or 

(2.68) 

 

Factoring out the non-stochastic terms from the expected value operators gives: 

 

Moreover, by assumption and Thus, we get:  

(2.69) 

 

A similar analysis yields: 

(2.70) 

 

Equations (6) and (7) are what create the endogeneity problem (or simultaneous equation bias)—using OLS to estimate the 
parameters of equations that have an endogenous variable as an explanatory variable yields biased estimates of the unknown 
parameters. Figure 1 illustrates the endogeneity problem. In this figure we have demand and supply equations that have both risen 
due to changes in exogenous variables. What the researcher observes are two (red) points: (1) the intersection of the old demand 
and supply curves and (2) the intersection of the new demand and supply curves.  

Figure 2.28.  



 

The simultaneous equation problem.  

 

The thick red line shows the regression that would result from using OLS to estimate either of the two structural equations. As 
illustrated, an OLS estimate of the slope estimate will be biased. We need to use some other estimation technique than OLS. 

Estimation 

As noted earlier, the basic problem created by the endogeneity problem is that the endogenous explanatory variable is correlated 
with the error term. The most logical approach would be to replace this variable with one that is not correlated with the error term 
but highly correlated with the endogenous variable. Consider the value of the price predicted by the reduced form equation (5):  

(2.71) 

 



where is the OLS estimate of and  

Clearly, is correlated with p t 
w . It also is true that the covariance between and ε t goes to zero as the sample size 

increasing. Thus, we can use (8) to construct a variable that will produce a consistent estimator of α 1 . It is this conclusion that 
underlies the strategy of both two-stage least squares (TSLQ) and instrumental variable (IV) estimators.  

Two-stages least squares 

The easiest way to understand two-stage least squares is to think of the estimation process as being in the following two steps 
(although the computer programs calculate the estimators in one step): 

Stage 1: obtain a OLS predictions for any endogenous variable on the right-hand side of the equation to be estimated using as the 
explanatory variables all of the exogenous variables in the system. 

Stage 2: estimate the parameters of the equation using OLS and replacing the endogenous variable on the right-hand side of the 
equation by the its predictions as obtained in step 1. 

For obvious reasons he TSLS method works best when the full model is specified or when you know and can measure all of the 
exogenous variables in the system. 

Instrumental variables (IV) 

While the use of instrumental variable (IV) estimators is appropriate in a large number of situations, the two situations where they 
are most commonly used are (1) in the presence of endogenous explanatory variables and (2) in cases when errors arise in the 
measurement of an explanatory variable (or the errors-in-variables problem). Since I have already described the endogeneity 
problem, I now turn to a brief discussion of errors-in-variables. 

Consider the following simple model: 

(2.72) y i = β 1 x i ∗ + ε i and x i = x i ∗ + μ i .  



In this model the researcher observes x i but not the desired x i ∗ because of some random measurement error. Using OLS to estimate 
(9) using the observable x i instead of the correct x i ∗ is equivalent to estimating: 

(2.73) 

 

The important thing to note in estimating (10) using OLS is that the explanatory variable, x i , is correlated with the error term, 

As was the case with the endogeneity problem, the OLS estimate of β 1 is biased. Murray (2006) summarizes the 
situation as follows:  

In both examples, ordinary least squares estimation is biased because an explanatory variable in the regression is correlated 
with the error term in the regression. Such a correlation can result from an endogenous explanator, a mismeasured explanator, 
an omitted explanator, or a lagged dependent variable among the explanators. I call all such explanators “troublesome.” 
Instrumental variable estimation can consistently estimate coefficients when ordinary least squares cannot—that is, the 
instrumental variable estimate of the coefficient will almost certainly be very close to the coefficient’s true value if the sample 
is sufficiently large—despite troublesome explanators. [Murray (2006a): 112] 

Consider a regression that includes a “troublesome explanator,” like x i ∗ in (9). Assume that there exists a variable z i (or set of 
variables) that (1) is correlated with the “troublesome explanator,” (2) is uncorrelated with the error term—like ε i in (9), and (3) is 
not one of the explanatory variables in the equation to be estimated. Greene (1990: 300) offers the following example of such a 
variable. Self-reported income tends to be a very “noisy” variable because sometimes people forget to report minor sources of 
income and sometimes they deliberately misreport their income. If the regression you are estimating uses income as explanatory 
variable of consumption, OLS will yield biased estimates. On the other hand, the number of checks written in a month by the 
household head might serve as an instrumental variable. Clearly, the number of checks written might well be positively correlated 
with income and there is no reason to assume that it is correlated with the error term in the consumption equation.[26]  

It is usually fairly easy to identify instances when IV estimation methods are appropriate. This is especially true when one of the 
explanatory variables is possibly an endogenous variable. The real problem arises in finding an instrumental variable or a set of 
instrumental variables. However, assuming you have one or more instrumental variables, the IV method follows the same steps as 
described above for TSLS. In the first stage you estimate a regression of the “troublesome variable” as a function of the instruments 
and the exogenous variables in the equation—i.e., you estimate the reduced form equation. In the second stage you use OLS to 



estimate the original equation with the value of the “troublesome variable” predicted by the first stage regression substituted for 
the actual values of the “troublesome variable.” 

In a sense TSLS is a IV estimation. The exogenous variables not in a particular regression play the role of the instruments. Thus, in 
the IV estimation of (1), the weather index is the instrument. In the estimation of (2) the price of corn and the income level are the 
IVs. Thus, in a fully specified model, the exogenous variables excluded from the regression play the role of instrumental variables. In 
other situations the choice of an appropriate instrument can be very difficult. The selection process demands creativity both in 
finding the instrument and in defending the choice. 

The use either of IV or TSLS comes at a cost. First, the OLS estimators are more precise (i.e., have a smaller standard error) than the 
TSLS or IV estimators. Second, selecting invalid or weak instruments can create results that are not meaningful. So how does one 
know if they have chosen a good set of instruments? There is no easy answer to this question. Murray (2006a: 116-117) discusses 
some possible tests of the validity of an instrumental variable. In the end, however, the “success” of your instrument may depend 
more on how convincing your justifications are than any statistical test. Some economists, like Steven Levitt, make a living coming 
up with and justifying the use of some very creative instrumental variables. Murray (2006a) offers a detailed discussion of IV and 
should be read by any student planning to make use either of TSLS or IV regression estimators. 

The identification problem 

There is an additional issue that arises with estimating systems of equations—identification. Essentially, identification is an 
algebraic problem. Consider the reduced form equations given earlier in (4) and (5): 

 

and 

 



OLS estimation of both of these equations yields unbiased estimates of the parameters in the reduced form equations. 
Identification asks if we can retrieve the parameters of the structural equations from the reduced form equations. Say, for instance, 
that we re-write the reduced form equations as: 

(2.74) q t = δ 10 + δ 11 W t + δ 12 I t + δ 13 p t 
c + γ 1  

and 

(2.75) p t 
w = δ 20 + δ 21 I t + δ 22 p t 

c + δ 23 W t + δ 2 .  

Table 1 shows each of the parameters in (11) and (12) in terms of the parameters of the two reduced form equations. We can 
recover the parameters of the structural equations by algebraic manipulation of the relationships in Table 1. (This method of 
estimation—that is, estimating the reduced form equations of a model using OLS and then solving algebraically for the parameters 
of the structural equations is referred to in the literature as indirect least squares.) For instance, 

 

and 

 

Explanatory variable Equation (11) Equation (12) 

Intercept 
  



I t  
  

p t 
c  

 

 

W t  
 

 

Error term 
 

 

Table 2.24. Parameters of the structural and reduced form equations. 

One can continue in a likewise manner to find formulae for other of the structural parameters. However, an interesting problem 

does arrive in that it is also true that Since there is no a priori reason to believe that we have two estimates of 
β 1 . This result illustrates the point that there are three possibilities when calculating the structural parameters from the reduced 
form equations—first, there may be more than one formula for a structural parameter; second, there may be only one formula for a 
structural parameter; or third, there may be no formula for a structural parameter. We say in the first case that the equation is 
over-identified; is exactly identified in the second case; and is under-identified in the third case. It turns out that in the case of an 
over-identified equation we can to use TSLS to estimate the structural parameters. However, in the case of an exactly identified 
equation, the TSLS estimators are equal to the indirect-least-squares estimators that can be calculated using estimates of the 
reduced form equations. Finally, an under-identified equation cannot be estimated by any technique.  

Clearly, we need to know how to identify if an equation is either over-identified, exactly identified, or under-identified. A necessary 
rule is that the number of exogenous variables in a system of equation that are not included in a particular regression must be 
greater than or equal to the number of endogenous variables on the right-hand-side of the equation for the equation to be either 
exactly or over identified. Consider the following three-equation model, where the endogenous variables are y 1 , y 2 , and y 3 and 
the exogenous variables are represented by x 1 with i = 1,…,5 :  



(2.76) y 1 = β 10 + β 12 y 2 + β 13 y 3 + α 11 x 1 + α 12 x 2 + α 15 x 5 ,  

(2.77) y 2 = β 20 + β 21 y 1 + α 23 x 3 , and  

(2.78) y 3 = β 30 + β 31 y 1 + α 31 x 1 + α 32 x 2 + α 33 x 3 + α 34 x 4 + α 35 x 5 .  

The error terms in these three equations are omitted because they are irrelevant to determining if an equation is identified—
remember, identification is an algebraic problem, not a statistical issue. There are 3 endogenous variables in the system and 3 
equations in the system. Also, there are 5 exogenous variables in the system of equations. Equation (13) is exactly identified; 
Equation (14) is over-identified; and Equation (15) is under-identified. What this means is (1) Equation (13) can be estimated directly 
from the reduced form equation (using indirect-least-squares) or using TSLS; (2) Equation (14) must be estimated using TSLS; and 
Equation (15) cannot be estimated. Table 2 summarizes how to determine if an equation is or is not identified. Basically, if the 
number in column 2 equals the number in column 3, the equation is exactly identified. If the number in column 2 is less than the 
number in column 3, the equation is over-identified. Finally, if the number in column 2 is greater than the number in column 3, the 
equation is under-identified.[27]  

Equation 
Number of endogenous variables on 
right-hand-side 

Number of exogenous variables excluded 
from the equation Identification 

y 1 = β 10 + β 12 y 2 + β 13 y 3 + α 11 x 1 + 
α 12 x 2 + α 15 x 5  

2 2 Exactly 

y 2 = β 20 + β 21 y 1 + α 23 x 3  1 4 Over 

y 1 = β 10 + β 12 y 2 + β 13 y 3 + α 12 x 2 + 
α 13 x 3 + α 15 x 5  

1 0 Under 

Table 2.25. Identification of the equations in the example model. 



One other thing to notice is the similarity of TSLS to IV estimation. The exogenous variables play the role of instruments in TSLS 
estimation. By implication, the instruments in an IV estimation must not include any of the exogenous variables in the equation.[28] 
Similarly, one of the  

ways to isolate potential instruments in a regression is to think of what system of equation the equation is and then ask what 
exogenous variables in that system are not included in the equation. These excluded exogenous variables are potential instruments. 

TSLS and IV in Stata 

The command for estimating an equation in Stata using two-stages least squares (TSLS) is a bit tricky. Assume that you want to 
estimate equations (13) and (14) in the model discussed above.[29] For simplicity assume that each variable assumes the name for it 
in Table 2. Thus, in our Stata commands Y1 refers to variable Thus, in our Stata commands Y1 refers to variable y 1 and so on. The 
command to estimate either a TSLS or an IV regression is the same.[30] The command, ivreg, consists of three major parts—(1) the 
name of the dependent variable is followed by (2) a list of the names of the exogenous variables that are being used as explanatory 
variables and then followed in parentheses by (3) the information needed to estimate the first stage (the list of the endogenous 
variables that are explanatory variables along with the names of the exogenous variables in the system that are excluded from the 
equation or, in the case of IV, a list of the instruments).[31]  

Equation to be estimated Stata command 

y 1 = β 10 + β 12 y 2 + β 13 y 3 + α 12 x 2 + α 13 x 3 + α 15 x 5  .ivreg y1 x2 x3 x5 (y2 y3 = x1 x4)  

y 2 = β 20 + β 21 y 1 + α 23 x 3  .ivreg y2 x3 (y1 = x1 x2 x4 x5)  

Table 2.26. Stata command for estimating TSLS and IV regressions. 

Example 2.5.  

An example from Stata. The Stata manual offers the following example analysis. Assume that you want to use state level data from 
the 1980 census to estimate the following system of equations: 



(2.79) h s n g v a l = α 0 + α 1 f a i n c + α 2 r e g2 + α 3 r e g3 + α 4 r e g4 + ε  

and 

(2.80) r e n t = β 0 + β 1 h s n g v a l + β 2 p c t u r b a n + ν,  

where hsngval is the median dollar value of owner-occupied housing; rent is the median monthly gross rent; fainc is family income; 
pcturban is the percent of the state population living in an urban area; and reg2, reg3, and reg4 are dummy variables that designate 
the region of the country where the state is located. In this example we focus on estimating (17). 

We begin by loading the data set and describing the data. 

. use http://www.stata-press.com/data/r8/hsng2  

(1980 Census housing data) 

.describe  

Contains data from http://www.stata-press.com/data/r8/hsng2.dta 
 

obs: 50 1980 Census housing data 

vars: 16 3 Sep 2002 12:25 
 

size: 3,600 (99.7% of memory free)   

  
  

variable name storage type display format value label variable label 

state str14 % 14s   State 

division int % 8.0g division Census division 



region int % 8.0g region Region 

pop long % 10.0g   Population in 1980 

popgrow float % 6.1f   Pop. growth 1970-80 

popden int % 6.1f   Pop/sq. mile 

pcturban float % 8.1f   Percent urban 

faminc long % 8.2f   Median family inc., 1979 

hsng long % 10.0g   Hsng units 1980 

hsnggrow float % 8.1f   % housing growth 

hsngval long % 9.2f   Median hsng value 

rent long % 6.2f   Median gross rent 

reg1 float % 9.0g     

reg2 float % 9.0g     

reg3 float % 9.0g     

reg4 float % 9.0g     
 

Sorted by: state 
 

Table 2.27. Description of the Stata data set used in the example. 

Now we estimate equation (17) using TSLS as shown in Figure 2. 

Figure 2.29. Two-stages least square estimate of the example. 



 

 

The manual continues the example to include some testing of the model including the Hausman test. Students using TSLS and IV 
should read the discussion in the Stata manual thoroughly. 

 

Exercises 

Exercise 2.5.1. 

Cigarette advertising and sales. A great deal of controversy exists over the issue of whether advertising expenditures affect sales. 
This controversy is particularly sharp when it affects policy decisions. An example of this phenomenon is the controversy over the 
impact of cigarette advertising on advertising sales. While many public policy experts advocate bans on cigarette advertising, a 
majority of economists caution against bans on cigarette advertising. The economists point out that there is little theoretical 
reasons to believe that cigarette advertising affects total demand for cigarettes. Instead, economists argue that cigarette advertising 
only affects brand choice and not the number of cigarettes that people smoke. Moreover, these economists point out that there is 
also little empirical evidence that supports the argument that cigarette advertising affects the demand for cigarettes. Given the 



negative impact advertising bans have on freedom of speech, most economists conclude that the negative effects of cigarette 
advertising bans outweigh the benefits of the bans. 

 

In this exercise we address this issue by using data used originally by Richard Schmalensee (1972) in his Ph.D. dissertation. You will 
use these data to estimate a simple two-equation model of the cigarette advertising industry. 

We use annual data for the period 1955 to 1967 to estimate the impact of cigarette advertising on aggregate demand for cigarettes 
and the impact of cigarette consumption on cigarette advertising. We begin with a model of the demand for cigarettes. We assume 
that the demand for cigarettes is given by: 

(2.81) 

 

where 

qt = cigarettes consumed per person over age 15, 

pct = retail price of cigarettes, 

yt = real disposable personal income per capita (1958 dollars), 

At = real advertising expenditures per individual over age 15 (1960 dollars), and 

D64 = a dummy variable equal to 1 for the years 1964 through 1967 and zero otherwise. 

We include the dummy variable for years after 1964 to pick up the negative impact on cigarette sales of the 1964 report of the US 
Surgeon General’s Advisory Committee (1964) announcing that the government believed that there was enough evidence available 
to conclude that cigarette smoking causes cancer. We expect the signs of the parameters with the price of cigarettes and the 
dummy variable to be negative. We expect that the sign of the parameters with income and advertising to be positive. 

Next we turn to a model of the supply of advertising. We assume: 



(2.82) 

 

where: 

pat = advertising price index, and 

mt = gross profits as a percentage of gross sales. 

The last variable needs a bit of explaining. The amount of advertising in the industry should be a function of degree of competition 
in the industry. If the market were perfectly competitive, there would be no reason for any firm to advertise. If the firm were a 
monopoly, there also would be no reason to advertise. However, if the market is an oligopoly, then a firm would advertise in an 
effort to gain market share by differentiating its product from the product of its competitors. 

The traditional measure of the degree of monopoly power that a firm has is the ratio of its marginal profits to its marginal cost: 

(2.83) 

 

where p is output price, mc is marginal cost, and m is the measure of monopoly power. Since we cannot observe the firms’ marginal 
costs, we approximate m by the ratio of gross profits to gross sales. We expect the impact of the degree of monopoly to have a non-
linear impact on advertising expenditures. 

The data used to estimate our two equations are listed in Table 5 and are available in the MS Excel file Cigarette sales and 
advertising data.xls. These data are with the exception of disposable personal income from Schmalensee (1972: 273-290). The 
disposable personal income data are from the Department of Commerce (1975: Table F26, page 225). 

Specification of the Model. Equations (18) and (19) are, as written, very general and need further specification before they can be 
estimated. We will assume that the two equations take a log-log form. In particular, we assume that we want to estimate: 

(2.84) 

 

m34550/Cigarette%20sales%20and%20advertising%20data.xls
m34550/Cigarette%20sales%20and%20advertising%20data.xls


and 

(2.85) 

 

Year 
Cigarettes Sold per 
Person Over Age 15 

Retail Price of 
Cigarettes 

Real Advertising per 
Person Over Age 15 

Advertising 
Price Index 

Degree of 
Monopoly 

Disposable Personal 
Income in 1958 dollars 

1955 3163.090 93.9693 0.96100 95.4775 18.595 1659 

1956 3230.517 94.7049 1.09969 94.3800 19.207 1673 

1957 3313.033 94.2535 1.22180 96.2125 20.165 1683 

1958 3479.063 94.7712 1.40471 97.8300 21.736 1666 

1959 3584.930 98.1779 1.45816 98.2800 22.042 1735 

1960 3676.912 100.0000 1.37863 100.0000 22.04 1749 

1961 3743.354 99.8677 1.31871 102.0400 22.465 1756 

1962 3733.504 99.6761 1.35467 102.9725 22.226 1814 

1963 3775.886 101.3630 1.51345 103.9525 22.848 1867 

1964 3648.211 102.3110 1.73665 103.4775 23.168 1948 

1965 3710.075 105.7510 1.59761 103.7225 23.598 2047 

1966 3689.386 108.0450 1.71062 104.2200 25.085 2127 

1967 3652.016 109.2490 1.71444 104.6125 26.310 2164 

Table 2.28. Cigarette Industry Data, 1955-1967. 



Answer the following six questions: 

a) Which variables in the model are exogenous and which are endogenous? 

b) Check and see if equations (18) and (19) are underidentified, exactly identified, or overidentified. 

c) Estimate equations (21) and (22) using ordinary least squares. 

d) Estimate equations (21) and (22) using two-stage least squares. Present the results in a table that for comparison reasons 
includes the results from the OLS estimation. Be sure to include the R2 and the Durbin-Watson statistic. 

e) Which side of the advertising-sales controversy do your results appear to support? 

f) How well-specified does your model appear to be? Why? 

Exercise 2.5.2. 

Exercise 2. Demand and supply of commercial loans. We are interested in estimating the demand for commercial loans by business 
firms and the supply of commercial loans by banks. We have available in Table 6 monthly data from the U. S. commercial loan 
market for the period from January, 1979 through December, 1984 and available in the MS Excel file Exercise 2.xls.[32] Define: 

 

Q t = total commercial loans (billions of dollars) 

R t = average prime rate charged by banks 

RS t = 3-month Treasury bill rate (represents an alternative rate of return for banks) 

RD t = Aaa corporate bond rate (represents the price of alternative financing to firms) 

X t = industrial production index (represents firms’ expectation about future economic activity) 

y t = total bank deposits (billions of dollars) (represents a scale variable). 

m34550/Exercise%202.xls


The demand and supply equations to be estimated, respectively, are as follows: 

(2.86) Q t = β 0 + β 1 R t + β 2 R D t + β 3 X t + μ t  

and 

(2.87) Q t = α 0 + α 1 R t + α 2 R S t + α 3 y t + ε t .  

Questions  

a) What are the endogenous and exogenous variables in this model? 

b) Solve for the two “reduced form” equations of this model. Estimate these two equations using the data in Table 6. 

c) Check the “order” condition for identification of each equation of the model. 

d) Estimate equations (23) and (24) using ordinary least squares using the data in Table 6. 

e) Estimate equations (23) and (24) using two-stage least squares. Report the results of the estimations for part 4 and 5 in a single 
table. Be sure to include the t-ratios, R2’s, and Durbin-Watson statistics for each of the equations estimated. 

f) Perform the Hausman Specification Test on both equations.[33]  

g) When presenting this model, Maddala notes “*T+he model postulated here is not necessarily the right model for the problem of 
analyzing the commercial loan market.” Is there anything in the results reported above that suggests that the model may be mis-
specified? 

N  Date Q  R  RD  X  RS  y  

1 January-79 251.8 11.75 9.25 150.8 9.35 994.3 

2 February-79 255.6 11.75 9.26 151.5 9.32 1002.5 



3 March-79 259.8 11.75 9.37 152.0 9.48 994.0 

4 April-79 264.7 11.75 9.38 153.0 9.46 997.4 

5 May-79 268.8 11.75 9.50 150.8 9.61 1013.2 

6 June-79 274.6 11.65 9.29 152.4 9.06 1015.6 

7 July-79 276.9 11.54 9.20 152.6 9.24 1012.3 

8 August-79 280.5 11.91 9.23 152.8 9.52 1020.9 

9 September-79 288.1 12.90 9.44 151.6 10.26 1043.6 

10 October-79 288.3 14.39 10.13 152.4 11.70 1062.6 

11 November-79 287.9 15.55 10.76 152.4 11.79 1058.5 

12 December-79 295.0 15.30 11.31 152.1 12.64 1076.3 

13 January-80 295.1 15.25 11.86 152.2 13.50 1063.1 

14 February-80 298.5 15.63 12.36 152.7 14.35 1070.0 

15 March-80 301.7 18.31 12.96 152.6 15.20 1073.5 

16 April-80 302.0 19.77 12.04 152.1 13.20 1101.1 

17 May-80 298.1 16.57 10.99 148.3 8.58 1097.1 

18 June-80 297.8 12.63 10.58 144.0 7.07 1088.7 

19 July-80 301.2 11.48 11.07 141.5 8.06 1099.9 

20 August-80 304.7 11.12 11.64 140.4 9.13 1111.1 

21 September-80 308.1 12.23 12.02 141.8 10.27 1122.2 

22 October-80 315.6 13.79 12.31 144.1 11.62 1161.4 



23 November-80 323.1 16.06 11.94 146.9 13.73 1200.6 

24 December-80 330.6 20.35 13.21 149.4 15.49 1239.9 

25 January-81 330.9 20.16 12.81 151.0 15.02 1223.5 

26 February-81 331.3 19.43 13.35 151.7 14.79 1207.1 

27 March-81 331.6 18.04 13.33 151.5 13.36 1190.6 

28 April-81 336.2 17.15 13.88 152.1 13.69 1206.0 

29 May-81 340.9 19.61 14.32 151.9 16.30 1221.4 

30 June-81 345.5 20.03 13.75 152.7 14.73 1236.7 

31 July-81 350.3 20.39 14.38 152.9 14.95 1221.5 

32 August-81 354.2 20.50 14.89 153.9 15.51 1250.3 

33 September-81 366.3 20.08 15.49 153.6 14.70 1293.7 

34 October-81 361.7 18.45 15.40 151.6 13.54 1224.6 

35 November-81 365.5 16.84 14.22 149.1 10.86 1254.1 

36 December-81 361.4 15.75 14.23 146.3 10.85 1288.7 

37 January-82 359.8 15.75 15.18 143.4 12.28 1251.5 

38 February-82 364.6 16.56 15.27 140.7 13.48 1258.3 

39 March-82 372.4 16.50 14.58 142.7 12.68 1295.0 

40 April-82 374.7 16.50 14.46 141.5 12.70 1272.1 

41 May-82 379.3 16.50 14.26 140.2 12.09 1286.1 

42 June-82 386.7 16.50 14.81 139.2 12.47 1325.8 



43 July-82 384.4 16.26 14.61 138.7 11.35 1307.3 

44 August-82 384.5 14.39 13.71 138.8 8.68 1321.7 

45 September-82 395.0 13.50 12.94 138.4 7.92 1335.5 

46 October-82 393.7 12.52 12.12 137.3 7.71 1345.2 

47 November-82 398.9 11.85 11.68 135.7 8.07 1358.1 

48 December-82 395.3 11.50 11.83 134.9 7.94 1409.7 

49 January-83 392.4 11.16 11.79 135.2 7.86 1385.4 

50 February-83 392.3 10.98 12.01 137.4 8.11 1412.6 

51 March-83 395.9 10.50 11.73 138.1 8.35 1419.5 

52 April-83 393.5 10.50 11.51 140.0 8.21 1411.0 

53 May-83 391.7 10.50 11.46 142.6 8.19 1413.1 

54 June-83 395.3 10.50 11.74 144.4 8.79 1443.8 

55 July-83 397.7 10.50 12.15 146.4 9.08 1438.1 

56 August-83 400.6 10.89 12.51 149.7 9.34 1461.4 

57 September-83 402.7 11.00 12.37 151.8 9.00 1448.9 

58 October-83 405.3 11.00 12.25 153.8 8.64 1459.0 

59 November-83 412.0 11.00 12.41 155.0 8.76 1499.4 

60 December-83 420.1 11.00 12.57 155.3 9.00 1508.9 

61 January-84 424.4 11.00 12.20 156.2 8.90 1504.1 

62 February-84 428.8 11.00 12.08 158.5 9.09 1499.3 



63 March-84 433.1 11.21 12.57 160.0 9.52 1494.5 

64 April-84 439.7 11.93 12.81 160.8 9.69 1501.5 

65 May-84 447.3 12.39 13.28 162.1 9.83 1541.3 

66 June-84 452.9 12.60 13.55 162.8 9.87 1532.9 

67 July-84 454.4 13.00 13.44 164.4 10.12 1535.5 

68 August-84 455.2 13.00 12.87 165.9 10.47 1539.0 

69 September-84 459.9 12.97 12.66 166.0 10.37 1549.9 

70 October-84 467.7 12.58 12.63 165.0 9.74 1578.9 

71 November-84 468.7 11.77 12.29 164.4 8.61 1578.2 

72 December-84 476.8 11.06 12.13 164.8 8.06 1631.2 

Table 2.29. Monthly Data for the U.S. Commercial Loan Market, January 1979 to December 1984. 
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2.6. Replication of econometric studies* 

Replication 

Introduction 

One of the most important first steps in a science experiment is to replicate the results of earlier research. For a variety of reasons 
(most of them practical and not theoretically sound) economists generally do not undertake this step; what they tend to do is report 
the results of earlier papers and then compare their results with the earlier results without asking the question of whether these 
earlier results were reported accurately. Omitting this step in a world of honest careful researchers might seem to be a minor 
problem. However, there is enough casual evidence to suggest that a large portion of the econometric results reported in the 
journals cannot be replicated because the original researcher (1) does not have the data set used in the research because it has 
been lost for a variety of reasons, (2) cannot share the data set because it is proprietory, (3) is unwilling to share the data set 
because there are other issues they wish to investigate using the data set, or (4) just are unwilling to share the data set. For this 
reason much of the published econometrics research has never been replicated. In recognization of this problem several journals 
like the Journal of Applied Econometrics now require that authors submit the data set they used to the journal to be posted on the 
web for use by any other researcher. Whether this effort has been successful will not be clear unless someone undertakes to 
replicate the work in this journal to see if all of the data necessary to replicate an article have been posted and if the regressions 

apa.html#book.attribution.m34552


included in the article actually can be replicated. It is very unlikely anyone would undertake such an effort given the fact that no 
journal will publish results that are merely a replication of previously published articles. 

In this module we explore some of the difficulties that exist in replicating existing research by undertaking to replicate some of the 
results reported in the Butler, Finegan, and Siegfried (1998) (BFS, hereafter) article analyzing the effect of a student's calculus 
background on the grade he or she earns in intermediate microeconomics or in intermediate macroeconomics.[34] The goal of this 
module is to (1) help students to learn how to read in detail an article that appears in a typical economics trade journal, (2) 
introduce them to ordered probit, an advanced econometrics tool, and (3) teach them how to present and discuss the results of an 
estimation of a model in an economics paper. While most of the discussion in this module focuses on using Stata in this replication, 
one can use most any econometrics program they are comfortable with to replicate some of the results reported in the BFS article. 

Butler, Finegan, and Siefried (1998). 

The obvious first step is to find and print a copy of the article by Butler, Finegan, and Siefried. In fact, do not proceed any further in 
reading this module until you have read the article. We will discuss in class what the authors do in the paper and how clearly they 
present their conclusions. In this first pass at the article you are to pay attention to how convincing you find their arguments to be. 
Since everyone in the class has completed an intermediate microeconomics course, your discussion of their conclusions should 
reflect your own experiences. Also, you need to be able to discuss in class the estimation strategy they use in the paper. In 
particular, you will need to be able to identify what the source of the data is and what equations did they estimate. Also, try to 
determine how the estimations in the "first" stage are used in the estimations of the "second" stage. Why did the authors use a 
two-stage estimation strategy? 

Also, what do you think the authors mean in their description of their estimation strategy by their statement about the estimation 
methods they use: 

Estimation Methods and Expectations 

To cope with the selection bias problem, we use a two-stage estimation procedure. The first stage employs an ordered probit 
model to predict the highest level of calculus attained by each student prior to taking each intermediate economic theory 
course.... In the second stage, the student's grade in MICRO-2 ... (the `outcome') is regressed on the actual level of calculus 
attained, the grade earned in that calculus course, the predicted residual in the grade equation that we would expect on the 
basis of the actual level of calculus attained, and a roster of control variables reflecting ability and motivation. Individuals are 



the unit of observation. Ordinary least squares estimation is used because there are twelve categories of grades which are 
commonly interpreted as cardinal measures of performance (as is implied by the calculation of `grade point averages'). (Butler, 
Finegan, and Siegfried, 1998: 188) 

The ordered-probit model 

In what follows you are to “replicate” the equations the authors estimate in the paper for the intermediate microeconomics course. 
In order to complete this assignment you will need to figure out several things including (1) what an ordered-probit model is and (2) 
how to use Stata to estimate an ordered-probit model. In this section of the module we introduce the ordered-probit model. I 
strongly encourage you to consult Greene (1990: 703-706) for an excellent and clear discussion of the ordered-probit model. The 
discussion here follows Greene closely. 

It is common for surveys to have questions that require the responder to choose one of several categories that have an innate order 
to them. For instance, most course evaluations ask the respondent to choose an answer to a question that reflects their agreement 
with a statement about the course. For instance, the question might read, "The Professor was interested in the material taught in 
the class" where the student completing the evaluation would choose a number from 1 to 9 where a 1 indicates complete 
disagreement with the statement and a 9 reflects complete agreement with the statement. Thus, there is an order to the potential 
answers. Using a logit, probit, or multilogit model would completely ignore this order. A linear regression is inappropriate because 
OLS treats the difference between answers of 1 and 2 as being the same as the difference between a 7 and and 8, when in fact the 
numbers only provide a ranking. 

Consider a latent variable, y*, that is not observed but where We want to estimate the β k ' s in the vector 
[35] We may not observe y* but we do observe: 

The μ i 's in (1) are parameters that must be estimated along with As usual, we assume that the error term ε is normally 
distributed (with a normalized mean and variance arbitrarily set to 0 and 1, respectively). It is trivial to estimate the model with the 
error terms having a logistic distribution, but this chance in assumptions appears to make virtually no difference in practice).[36] 
With the normal distribution, we have: 

(2.88) 



 

(2.89) 

 

where is the cumulative normal function. In order for all of the probabilities to be positive, we need μ 1 < μ 2 < ⋯ < μ J − 1 , as 
shown in Figure 1. One thing to note in Figure 1 is that the cutoff locations change when the values of the explanatory variables 
change. 

Figure 2.30.  

 



Distribution of the error term in the ordered-probit model.  

 

The estimation strategy from here follows the usual maximum likelihood method. The computer program forms the likelihood 
function and then chooses the values of the parameters (including the cutoffs) that maximize this likelihood function. 

The estimated coefficients are not equal to the marginal effects of a change in one of the explanatory variables (as is also true with 
the logit and probit models). Consider the simple example Greene (1990, 704) describes. Assume that there are three categories. 
Then (2) becomes: 

(2.90) 

 

Figure 2 shows this situation. The solid curve shows the distribution of y and y*. Increasing one of the x's while holding the β 

constant (that is, changing to is the same as shifting the entire distribution of y and y* to the right with remaining 
constant. As a result the probabilities that y takes on the values of 0, 1, and 2 change. Clearly, as shown in Figure 2, Pr( y = 0 ) 
decreases and Pr( y = 2 ) increases. The Pr( y = 1 ), on the other hand, may increase or decrease and, thus, the effect of an increase in 
one of the explanatory variables is ambiguous. It is easy to show this result algebraically. The marginal effects for the 3 probabilities 

in (3) are, assuming  

(2.91) 

 



Figure 2.31.  

 

A rise in one of the explanatory variables whose parameter is positive will shift the probability distribution of the outcome to the 
right (from the solid line to the dashed line).  

 

In general, only the sign's of the change Pr( y = 0 ) and Pr( y = J ) are unambiguous. Greene (1990, 705) cautions that "“[w]e must be 
very careful in interpreting the coefficients in this model.... Indeed, without a fair amount o extra calculation, it is quite unclear how 
the coefficients in the ordered-probit model should be interpreted.”"  

The BFS Dataset 

The data used by BFS are available at the Journal of Applied Econometrics data website or in the MS Excel file Vanderbilt data set.xls 
. Table 1 identifies the variables in the dataset. 

Column Code Variable definition 

A Obs Observation number 

B SID Student ID 

http://qed.econ.queensu.ca/jae/1998-v13.2/butler-finegan-siegfried/
m34552/Vanderbilt%20data%20set.xls


C Grade Grade earned in Economics 231, A = 4, A- = 3.7, etc. 

D SelCorr Variable correcting for selection bias 

E Soph Dummy variable = 1 if student is a sophomore 

F Senior Dummy variable = 1 if student is a senior 

G Same Dummy variable = 1 if student took both intermediate classes the same year 

H Skip Dummy variable = 1 if student took the intermediate classes at least one semester apart 

I HighestMath 
Highest level of math attained (the dependent variable, 0-6 corresponding to Math 170, 171a, 172a, 171b, 
172b, 221a, 221b) 

J M170 Dummy variable = 1 if student's highest level of math was Math 170 

K M171a Dummy variable = 1 if student's highest level of math was Math 171A 

L M172a Dummy variable = 1 if student's highest level of math was Math 172a 

M M171b Dummy variable = 1 if student's highest level of math was Math 171b 

N M172b Dummy variable = 1 if student's highest level of math was Math 172b 

O M221a Dummy variable = 1 if student's highest level of math was Math 221a 

P M221b Dummy variable = 1 if student's highest level of math was Math 221b 

Q GE100 Grade in Economics 100 

R GDE100 Individual instructor grade deflator in Economics 100 

S GE101 Grade in Economics 101 

T GDE101 Individual instructor grade deflator in Economics 101 

U GDE231 Individual instructor grade deflator in Economics 231 

V Size Class size 



W FGPA Freshman GPA 

X Female Dummy variable =1 if student is a female 

Y MSAT Score on Math section of the SAT 

Z VSAT Score on Verbal section of the SAT 

AA TE231 Teacher of Economics 231 (numerical code) 

AB SE231 Section of Economics 231 (numerical code) 

AC GM170 Grade in highest math class: Math 170 

AD GM171a Grade in highest math class: Math 171a 

AE GM172a Grade in highest math class: Math 172a 

AF GM171b Grade in highest math class: Math 171b 

AG GM172b Grade in highest math class: Math 172b 

AH GM221a Grade in highest math class: Math 221a 

AI GM221b Grade in highest math class: Math 221b 

AJ GHM Grade in highest math class 

AK Foreign Dummy variable = 1 if student passed foreign language proficiency test 

AL EMEcon Dummy variable = 1 if expected major is economics 

AM EMOSS Dummy variable = 1 if expected major is another social science 

AN EMNS Dummy variable = 1 if expected major is a natural science 

AO EMH Dummy variable = 1 if expected major is in the humanities 

AP AM1 Dummy variable = 1 if student completed 1 year of advanced math in high school 



AQ AM2 Dummy variable = 1 if student completed 2 years of advanced math in high school 

AR AM3 Dummy variable = 1 if student completed 3 years of advanced math in high school 

AS Phy1 Dummy variable = 1 if student completed 1 course in physics in high school 

AT Phy2 Dummy variable = 1 if student completed 2 courses in physics in high school 

AU Chem1 Dummy variable = 1 if student completed 1 course in chemistry in high school 

AV Chem2 Dummy variable = 1 if student completed 2 courses in chemistry in high school 

Table 2.30. Definition of the variables included in the Vanderbilt data set. 

Replication of the Ordered Probit Regression 

At this point we are ready to begin the replication. Since it is easy to get lost in the process, I have created a list of steps that include 
both instructions on what to do and questions you need to answer. As part of this exercise you will be asked to complete several 
tables of results. In order to make this effort easier, I have provided a MS Word file, Tables for ordered probit discussion.doc, with 
the tables to be completed in it. 

1. Load the data in Stata from Excel. 

2. Convert MSAT and VSAT to MSAT/100 and VSAT/100, respectively, using the commands: 

.replace msat = msat/100  

.replace vsat = vsat/100  

3. Common sense dictates that we should calculate the means and standard deviations of the variables to be sure that there are no 
entry errors. We need to construct a table that compares the means and standard deviations reported in BFS with those in our 
dataset. Table 2, which has the means and standard deviations reported by BFS, gives a place to put the means and standard 
deviations for the variables in our dataset. Fill in the information missing from Table 2. 

m34552/Tables%20for%20ordered%20probit%20discussion.doc


  Our data Butler, et al. 

Variable Mean Std. Dev. Mean Std. Dev. 

msat     6.25 0.60 

foreign     0.11 0.32 

female     0.39 0.49 

emecon     0.34 0.48 

emoss     0.17 0.38 

emns     0.21 0.41 

emh     0.07 0.25 

am1     0.49 0.50 

am2     0.45 0.50 

am3     0.01 0.11 

phy1     0.67 0.47 

Phy2     0.02 0.14 

chem1     0.82 0.39 

chem2     0.12 0.32 

Table 2.31. Means and standard deviations of the data. 

4. Estimate the ordered probit regression using (in Stata) the commands: 



.global indvar msat foreign female emecon emoss emns emh am1 am2 am3 phy1 phy2 chem1 chem2  

.oprobit highestmath $indvar  

5. Use the result of this estimation to complete Table 3.[37]  

highestmath Coef. Std. Err. z P>z [95% Conf. Interval]  

msat1             

foreign             

female             

emecon             

emoss             

emns             

emh             

am1             

am2             

am3             

phy1             

Phy2             

chem1             

chem2             

              



_cut1       

_cut2             

_cut3             

_cut4             

_cut5             

_cut6             

Observations             

Log likelihood             

LR χ2(14)             

Prob > χ2              

Pueudo-R2              

Table 2.32. Results of Stata ordered-probit regression. 

6. Compare your results with the table reported in the article. The table in the article is Table II on page 193 and is reproduced in 
Figure 3. What we are interested in is comparing column 4 in Figure 3 with columns 2 and 4 in Table 3. Table 4 below offers a model 
for this comparison. 

Figure 2.32.  



 



Results of ordered probit regression as reported in Butler, et al.  

 

Table 4. Comparison of ordered probit estimations. 

  Our estimates Butler, et al. estimates 

  Estimate z Estimate t-value 

msat1     0.05 6.12 

foreign     0.02 0.14 

female     0.25 2.59 

emecon     -0.11 0.86 

emoss     -0.29 1.99 

emns     0.43 3.10 

emh     -0.37 1.78 

am1     0.24 1.07 

am2     0.93 4.04 

am3     0.77 1.70 

phy1     0.26 2.71 

Phy2     0.38 1.07 

chem1     -0.12 0.69 

chem2     0.17 0.75 



Intercept     -3.09 5.48 

_cut1     0.27 7.29 

_cut2     0.33 8.16 

_cut3     1.52 20.32 

_cut4     1.79 23.07 

_cut5     2.04 23.72 

_cut6         

Table 2.33. Comparison of ordered-probit estimations. 

7. It is easy to see from Table 4 is that almost without exception the estimates of the parameters and their t-ratios are very similar. 
The exception arises with the estimates of the truncation points (_cut# in the Stata results). We will have to figure out what these 
are estimates of in order to make sense of them. Figure 1 shows the "cutoffs" that are being estimated. Footnote c in the BFS Table 
II on page 193 (shown in Figure 3) offers a useful observation:  

In an ordered probit, an underlying, normally distributed, latent variable has a mean which is a function of observable 
variables. The latent variable gives rise to a set of observed dummy variables for ordered categories based on ranges between 
unobserved but estimable truncation points which correspond to levels of effort, ability, or other factors reflected in the 
explanatory variables. If L categories are observed, there are L − 1 truncation points, of which the first is normalized to be zero, 
so that L − 2 truncation points are estimated and reported in the table. The values correspond to standard deviations of the 
latent normally distributed variable. 

The key idea is that the values of cutoffs are relative and can be normalized around any value. Notice that the Stata results do not 
report an intercept term but do report six cutoff values. Moreover, the difference between the estimate by Stata for the first cutoff 
(3.08402) and the estimate for the second cutoff (3.356916) is equal to 0.272896, which is itself equal to the first truncation point 
reported by BFS (1998: 193). Use Table 5 to report the difference between the first cutoff value and each of the cutoff points 
reported by Stata. 



Cutoff Estimate Estimate - _cut1 BFS Truncation Points 

_cut1 3.0840     

_cut2 3.3569   0.27 

_cut3 3.4146   0.33 

_cut4 4.6013   1.52 

_cut5 4.8774   1.79 

_cut6 5.1202   2.04 

Table 2.34. Reconciling Stata estimates of cutoff points with Butler, et al.'s truncation points. 

The second part of the reconciliation of the two sets of results is to compute the t-ratios. To do this we need to compute the 
standard deviation of the estimates of the cutoff points reported by Stata. To do this we need to retrieve the variance-covariance 

matrix from the regression. First, let's see what we are interested in computing. Let be the estimate of the i th cutoff point. In 

column 3 of Table 5 you computed for i = 2,…,6 . The variance of the new variable is: 

(2.92) 

 

The variance-covariance matrix will give us estimates of these variances and covariances. When there are j parameters in a 
regression equation, this matrix is defined to be: 



 

If you type the command .vce, Stata will report as shown in Figure 4. We need the section of this matrix shown in Part A of Table 
6. Use equation (5) to estimate the standard errors of the estimates of the cutoff points and complete Part B of Table 6 and 
compares the t-ratios with the values reported by Butler, et al. (and shown in the last column 4 of Table 6). Are you satisfied that we 
have been able to come reasonably close to the results reported in the article? 

Figure 2.33.  



 

Stata estimate of the variance-covariance matrix.  

 

Part A. Relevant portion of the variance-covariance matrix. 

  _cut1 _cut2 _cut3 _cut4 _cut5 _cut6 

_cut1 0.329           



_cut2 0.329 0.330         

_cut3 0.329 0.330 0.331       

_cut4 0.332 0.333 0.334 0.341     

_cut5 0.333 0.334 0.334 0.341 0.343   

_cut6 0.333 0.334 0.335 0.342 0.343 0.345 

Part B. Calculation of the t-ratios (with comparison of values reported in BFS) 

  V( ) St. Dev.(  t-ratio BFS t-ratio 
  

_cut2       7.29   
 

_cut3       8.16   
 

_cut4       20.32   
 

_cut5       23.07   
 

_cut6       23.72   
 

Table 2.35. Calculation of the t-ratios for the cutoff estimates. 

8. The next step in the process is to generate the term we will use in the estimation of the grade regression to account for the 
potential sample selection bias. To do this we will need to find a reference in the literature that offers a clear description of what we 
need to do. As it turns out, a reasonable explanation of the appropriate estimation technique is available in Jimenez and Kugler 
(1987). Since much of what follows comes directly from this article, I highly recommend you read it yourself. 

The gist of the method suggests that the potential sample bias is accounted for by an inverse Mills ratio for each of the categories. 
What we need to do is calculate: 

(2.93) 



 

for the category that the individual actually is in. What we will do is calculate (6) for all of the categories and then sum the product 
of this number and a dummy variable indicating if a course is the highest math class completed by an individual. Since the dummy 
variables will equal 0 for math categories an individual is not in, the resulting sum will preserve the value of (6) that is associated 
with the category the individual does belong to. 

It is clear from (6) that we will need to retain the 6 cutoffs. We can do this with the commands: 

. generate cutoff1 = _b[_cut1]  

. generate cutoff2 = _b[_cut2]  

. generate cutoff3 = _b[_cut3]  

. generate cutoff4 = _b[_cut4]  

. generate cutoff5 = _b[_cut5]  

. generate cutoff6 = _b[_cut6]  

Technically, this step is not necessary since the parameter estimates are preserved until the next regression is estimated; I suggest 
doing this purely as a precaution. 

9. Preserve the predicted values of the ordered-probit using the command: 

. predict zhat, xb  

. predict phat1 phat2 phat3 phat4 phat5 phat6 phat7, p  

These two commands will generate for each observation the predicted mean category of math classes and the probability that this 
individual will fall in each category. To see what is going on we will retrieve some representative values of these variables and then 



graph them for one individual. Table 7 reports these values for 10 individuals in the sample. Now consider individual 2. Fitting a 
normal distribution with a mean of 4.25 and using the critical values from our estimation yields the probabilities that the individual 
is in each of the categories. For example, the probability that individual 1 will have completed no math classes is equal to 0.1223. 
Figure 5 illustrates the results for individual 1. The dashed vertical lines are the six cutoff values that are the same for each 
individual. The solid vertical line is the zhat for individual 1. The heavy blue line represents the normal probability density function 
for this individual. While, there is, of course, a different probability distribution for each individual, the cutoff values are the same 
for all members of the sample. 

Observation Highest Math Class zhat Pr(0) Pr(1) Pr(2) Pr(3) Pr(4) Pr(5) Pr(6) 

1 3 3.9657 0.1890 0.0824 0.0194 0.4467 0.0816 0.0568 0.1241 

2 0 4.2507 0.1217 0.0640 0.0158 0.4355 0.0975 0.0731 0.1923 

165 0 3.5982 0.3036 0.1011 0.0225 0.4149 0.0575 0.0364 0.0640 

166 6 4.6914 0.0540 0.0370 0.0098 0.3633 0.1097 0.0922 0.3340 

214 3 3.4533 0.3560 0.1056 0.0229 0.3900 0.0483 0.0294 0.0478 

215 3 4.0840 0.1587 0.0749 0.0180 0.4459 0.0887 0.0637 0.1501 

225 3 3.5250 0.3296 0.1036 0.0228 0.4031 0.0528 0.0328 0.0553 

226 3 3.6990 0.2693 0.0969 0.0219 0.4285 0.0641 0.0417 0.0776 

453 3 3.9713 0.1875 0.0820 0.0194 0.4468 0.0819 0.0571 0.1253 

454 5 4.1650 0.1399 0.0697 0.0170 0.4422 0.0932 0.0684 0.1697 

495 3 4.4168 0.0913 0.0533 0.0135 0.4151 0.1043 0.0816 0.2409 

496 0 2.9811 0.5410 0.1055 0.0212 0.2797 0.0236 0.0127 0.0162 

526 0 2.9247 0.5633 0.1039 0.0207 0.2653 0.0214 0.0114 0.0141 



527 3 3.9757 0.1863 0.0817 0.0193 0.4469 0.0822 0.0574 0.1262 

Table 2.36. Predicted values of the ordered probit regression. 

Now we are ready to calculate (6). The commands are: 

.generate lambda0 = (-normden(cutoff1-zhat))/(norm(cutoff1-zhat)-norm(-zhat))  

.generate lambda1 = (normden(cutoff1-zhat)-normden(cutoff2-zhat))/(norm(cutoff2-zhat)-norm(cutoff1-zhat))  

.generate lambda2 = (normden(cutoff2-zhat)-normden(cutoff3-zhat))/(norm(cutoff3-zhat)-norm(cutoff2-zhat))  

.generate lambda3 = (normden(cutoff3-zhat)-normden(cutoff4-zhat))/(norm(cutoff4-zhat)-norm(cutoff3-zhat))  

.generate lambda4 = (normden(cutoff4-zhat)-normden(cutoff5-zhat))/(norm(cutoff5-zhat)-norm(cutoff4-zhat))  

.generate lambda5 = (normden(cutoff5-zhat)-normden(cutoff6-zhat))/(norm(cutoff6-zhat)-norm(cutoff5-zhat))  

.generate lambda6 = (normden(cutoff6-zhat))/(1-norm(cutoff6)-norm(cutoff5-zhat))  

.generate lambda = m170*lambda0 + m171a*lambda1 + m172a*lambda2 + m171b*lambda3 + m172b*lambda4 + 
m221a*lambda5+m221b*lambda6  

One thing to notice in these calculations is that cutoff0 is assumed to be − ∞ and cutoff7 is assumed to be ∞.  

Figure 2.34.  



 

The probability distribution of math class category for individual 2.  

 

10. Now we are ready to estimate our regression explaining the grade that each individual received in intermediate 
microeconomics. Use Table 8 to report the regression results for four specifications of the model. The first question is can the null 
hypothesis of sample selection bias be rejected? How does this conclusion compare with BFS's conclusions? (See Table 9.) Second, 
since many of the potential explanatory variables like class size and scores on the SATs do not seem to be statistically significant, it 
is reasonable to focus our comments on the results reported in column (4) of Table 8. 



What can you conclude about the impact of calculus on how well a student will do in intermediate microeconomics? Do the final 
grades earned in a majority of the math classes impact the grade earned in intermediate microeconomics? Do the grades earned in 
any of the math classes positively and significantly affect the grade earned in intermediate microeconomics? Can you explain the 
impact of the freshman GPA on the grade earned in intermediate microeconomics? What, if any, is your bottom line conclusions 
about what matters in determining the grades earned in intermediate microeconomics? 

Explanatory variables Model (1) Model (2) Model (3) Model (4) 

Lambda     — — 

          

Sophomore   —   — 

          

Senior   —   — 

          

Same         

          

Skip   —   — 

          

M171a         

          

M172a         

          

M171b         



          

M172b         

          

M221a         

          

M221b         

          

GE100         

          

GDE100         

          

GE101         

          

GDE101       — 

          

GDE231         

          

Size       — 

          

FGPA         



          

Female         

          

MSAT       — 

          

VSAT       — 

          

Grade in highest Math  —   — — 

class         

GM170   —     

          

GM171a   —     

          

GM172a   —     

          

GM171b   —     

          

GM172b   —     

          

GM221a   —     



          

GM221b   —     

          

Intercept         

          

F( 28, 580)   — — — 

Prob > F   — — — 

F( 27, 581) — —   — 

Prob > F — —   — 

F( 20, 588)   — —   

Prob > F   — —   

F( 19, 589) —   — — 

Prob > F —   — — 

R-Squared         

Root MSE         

Sample Size 609 609 609 609 

Table 2.37. Determinants of Final Grade in Intermediate Microeconomics. 

Robust t-ratios are in parentheses. 

    MICRO-2 

Variablea  Expected sign Mean (SD) Coefficient(t-value) 



Intercept — — -1.64 

      (3.48) 

Selection bias correction + -0.00 0.10 

(Predicted residual)   (0.92) (1.29) 

Level of calculus attained: 

Math 171A + 0.08 0.39 

    (0.27) (1.04) 

Math 172A + 0.02 -0.18 

    (0.13) (0.21) 

Math 171B + 0.37 1.02b  

    (0.48) (3.49) 

Math 172B + 0.07 1.52 b  

    (0.25) (3.53) 

Math 221A + 0.05 1.33c  

    (0.22) (2.27) 

Math 221B or 222 + 0.14) 0.75c  

    (0.35 (1.67) 

Grade in last calculus course: 

Math 170 + 3.06 0.36b  

    (0.70) (4.36) 



Math 171A + 2.22  0.26c  

    (0.86) (2.21) 

Math 172A + 2.94 0.42 

    (0.80) (1.54) 

Math 171B + 2.62 0.10c  

    (0.93) (1.85) 

Math 172B + 2.63 -0.01 

    (0.90) (0.10) 

Math 221A + 3.10 -0.09 

    (0.77) (0.55) 

Math 221B or 222 + 3.15 0.11 

    (0.76) (1.04) 

Grade deflator of instructor in intermediate theory  + -0.16 0.88b 

course   (0.27) (8.28) 

Taken in Sophomore year ? 0.32 0.07 

    (0.47) (0.94) 

Taken in Senior year - 0.06 -0.02 

    (0.24) (0.13) 

MICRO-1 and MICRO-2 in same academic year + 0.35 0.04 

    (0.48) (0.46) 



At least one semester between MICRO-1 and  - 0.27 0.13 

MICRO-2   (0.44) (1.85) 

Grade in MACRO-1 + 2.73 0.20b  

    (0.73) (3.93) 

Grade in MICRO-1 + 2.67 0.29b  

    (0.74) (5.93) 

Instructor's grade deflator: 

  

MACRO-1 - -0.32 -0.33c  

    (0.20) (2.20) 

MICRO-1 - -0.29 -0.11 

    (0.16) (0.53) 

Class size (intermediate theory course) ? 28.2 -0.002 

    (5.5) (0.45) 

Freshman Grade Point Average + 2.79 0.29b  

    (0.46) (3.04) 

Sex (female = 1; male = 0) ? 0.39 0.13c  

    (0.49) (2.09) 

SAT-Math score x 10-2  + 6.25 0.12c  

    (0.60) (1.75) 



SAT-Verbal score x 10-2  + 5.56 0.04 

    (0.67) (0.78) 

OVERALL RESULTS 

Mean (SD) of dependent variable       

        

Adjusted R2    0.44   

Number of observations   609   

Table 2.38. Results reported in BFS (p. 195). 
a Omitted reference groups in MICRO-2 regression: attained Math 170; took MICRO-2 in Junior year; took MICRO-1 in spring, 

MICRO-2 next fall. b Significant at 0.01 level, one- or two-tailed test as appropriate. c Significant at 0.05 level, one- or two-tailed test 
as appropriate. 

Exercises 

Exercise 2.6.1. 

Quite often health professionals request that a patient a report their perception of their health status on a scale of 0 to 10, where 0 
is the lowest possible health status and 10 is the highest health status. This type of data set is best analyzed using ordered probit. In 
this exercise you will analyze a data set of responses to a survey made in Germany between 1984 and 1995. The question we are 
interested in analyzing is the respondent’s perception of their own health status.  

 

The file Riphahn, Wambach, Million data.xls is an MS Excel file that contains 27,326 observations on 25 variables, one observation 
per line. The data are from Riphahn, Wambach, and Million (2003) and are also available on the web. The variables are defined in 
Table 10. As a first step you will need to load these data into Stata. However, due to the large sample size you will need to first 
expand the size of the memory that is available to Stata with the command: . set memory 1G. Here I have increased the memory to 
1 gigabyte. This amount may be overkill but it seemed to be big enough on my computer to handle the data. 

m34552/Riphahn,%20Wambach,%20Million%20data.xls
http://qed.econ.queensu.ca/jae/2003-v18.4/riphahn-wambach-million/


Column Variable Variable definition 

A ID individual's ID number 

B Female female = 1; male = 0 

C Year calendar year of the observation  

D Age age in years  

E HSAT health satisfaction, coded 0 (low) - 10 (high) 

F Handdum  handicapped = 1; otherwise = 0 

G Handper  degree of handicap in percent (0 - 100) 

H HhnINC  household nominal monthly net income in German marks / 1000 

I HHKIDS  children under age 16 in the household = 1; otherwise = 0 

J Educ years of schooling  

K Married married = 1; otherwise = 0 

L Haupts highest schooling degree is Hauptschul degree = 1; otherwise = 0 

M Reals  highest schooling degree is Realschul degree = 1; otherwise = 0 

N FachHS  highest schooling degree is Polytechnical degree = 1; otherwise = 0 

O Abitur highest schooling degree is Abitur = 1; otherwise = 0 

P Univ highest schooling degree is university degree = 1; otherwise = 0 

Q Working  employed = 1; otherwise = 0 

R BlueC  blue collar employee = 1; otherwise = 0 

S WhiteC white collar employee = 1; otherwise = 0 



T Self self employed = 1; otherwise = 0 

U Beamt  civil servant = 1; otherwise = 0 

V DocVis  number of doctor visits in last three months  

W HospVis  number of hospital visits in last calendar year  

X Public  insured in public health insurance = 1; otherwise = 0 

Y Addon  insured by add-on insurance = 1; otherwise = 0 

Table 2.39. Variables in the German Socioeconomic Panel Data Set. 

Figure 2.35.  



 

Distribution of responses on health status.  

 

One of the major problems with survey indices is that the numbers seem to mean different things to respondents. One way to 
reduce this problem is to collapse the index into fewer outcomes by combining some of the responses together. However, anyway 
we do this is going to be ad hoc. Figure 6 shows a histogram of the responses to this question. Based on this graph, we will create 5 
categories—(0) HSat = 0, 1, or 2; (1) HSat = 3, 4 or 5; (2) HSat = 6, 7, or 8; (3) HSat = 9; and (4) HSat = 10. We can create a new 
categorical variable called hsatnew with the command: 



. recode hsat (0/2 = 0) (3/5 = 1) (6/8 = 2) (9 = 3) (10 = 4), generate(hsatnew)  

Figure 7 shows the histogram of the new variable. 

Figure 2.36.  

 

The collapsed distribution of health status responses.  

 



1. Create a table of summary statistics for (1) health status, (2) age, (3) household income, (4) years of education, (5) marital status, 
and (6) number of children by year and sex. (You might want to use the command .bysort year female, list of variables). 

2. Estimate an ordered probit regression for 1988 for health status (the new variable) using age, income, education, married, and 
kids as the explanatory variables. Here you might want to used the command: .oprobit hsatnew age hninc educ married hhkids if 
year==1988. 

3. Use the predict newvariable, xb command to calculate the predicted mean values for each individual for the 1988 observations. 
Compare this histogram to one using the 1988 regression parameters to estimate xb for all years. 

4. Estimate the ordered probit model for all of the years in the sample and put the results into a table like Table 11. (Here you 
might want to make use of the command: .bysort year: oprobit hsatnew varlist)  

Variable 1984 1985 1986 1987 1988 1991 1994 

age               

income               

education               

married               

kids               

_cut1               

_cut2               

_cut3               

_cut4               

Observations               

LR χ2(5)               

m34552/Tables%20for%20ordered%20probit%20discussion.doc


Prob > χ2                

Log likelihood               

Pseudo-R2                

Table 2.40. Sample table for part (d) of Exercise 1. 

t-ratios are in parentheses. 
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[7] J. S. Cramer (2003) Logit Models from Economics and Other Fields (Cambridge: Cambridge University Press): 10. 

[8] For a full discussion of this model see Ladd, G. W. (1966) “Linear Probability Functions and Discriminant Functions,” Econometrica 
34: 873-888. 

[9] The assumption that the variance is equal to 1 is due to technical considerations. See [Cramer, 22]. 



[10] The pdf of a logistic distribution is , where . See Cramer, 24-26 for a fuller discussion of the 
logistic distribution.  

[11] See Stata Library, Categorical and Count Data Analysis Utilities for useful utilities and an excellent discussion of how to interpret 
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[14] See StataCorp [2003:119-130] for more detail on this command. 

[15] If the OLS parameter estimates are unbiased but the standard error estimates are, then applying the Cochran-Orcutt adjustment 
should change the estimates of the standard errors without changing the estimates of the equation parameters substantially. 

[16] That is, we assume , where the distribution is not specified, and for all i ≠ j .  

[17] These methods make use of the mathematics of difference equations. See advanced texts like Enders (1995: pp. 68-77) for 
examples of the derivation of the conditions necessary for an ARMA(p, q) time-series to be stationary. 

[18] AR(1) is the same as ARMA(1, 0) 

[19] This set of graphs is from Enders (2005: p. 79). 

[20] ARIMA means AutoRegressive Integrated Moving Average. See Enders (2005: 67) for a discussion of what integrated means. We 
can ignore it given our limited purposes. 



[21] Another way to think about this point is to remember that, unlike the fixed-effects model, the random-effects does not use 
dummy variables to summarized the unknown characteristics; thus, there is no problem with multicollinearity. 

[22] See Cameron and Trivedi (2005: 705] for a detailed discussion of the random-effects estimator. 

[23] R-squared is in quotes in this line because these R-squareds do not have all the properties of OLS R-squareds. 

[24] Because the mean and variance of the standard normal distribution are 0 and 1, respectively, its probability density function 
(pdf) is and the cumulative probability function is . 

[25] A stochastic variable is a random variable—i.e., a variable whose value is determined as a result of a process involving an 
uncertain outcome. 

[26] Greene suggested this example in 1990 when most people paid their bills with checks. Currently it would not be such a good 
example because of the development of electronic payment of bills. 

[27] In these notes I discuss only what is known in the literature as the order condition for identification. The order condition is 
necessary for identification. Another condition—the rank condition—is a sufficient condition. See Greene (1990: Chapter 19, 
especially pp. 600-609) for a fuller discussion of simultaneous-equation models and the identification problem. 

[28] Using one of the exogenous variables in an equation as an instrument will create perfect multicollinearity in the first stage 
regression. 

[29] We exclude Equation (15) from this discussion because it is under-identified and, thus, cannot be estimated. 

[30] The advantage of the ivreg command is that it allows you to estimate a single equation of a system of equations without fully 
specifying the equations in the rest of the model. Use the command reg3 if you want to specify the whole model or use Three-Stage 
Least Squares. 

[31] The description of the command “ivreg depvar *varlist1+ (varlist2=varlist_iv)” in the Stata help file is “ivreg fits a linear regression 
model using instrumental variables (or two-stage least squares) of depvar on varlist1 and varlist2 using varlist_iv (along with 
varlist1) as instruments for varlist2. In the language of two-stage least squares, varlist1 and varlist_iv are the exogenous variables 
and varlist2 the endogenous variables.”  
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[35] This particular notation implies that there are k − 1 explanatory variables. 

[36] See Greene (1990): 704. 

[37] One way to make the conversion from the Stata output to the neater table relatively easily is to follow these steps: (1) replace 
each double space by a single space until there were none left; (2) replace each space with a tab (^t); (3) convert the material into a 
table using the "Insert/Table" command with a tab as the separator; and (4) clean up the table by moving the data into an Excel file, 
fixing the formatting, and returning the data to the Word file (alternatively, you can use formatting commands in Stata to control 
how the output appears). 



Chapter 3. A sample Honors paper* 

Traditionally, empirical research papers in economics journals have five or more sections. In the first section, unimaginatively 
known as the introduction, the researcher briefly (1) describes what question he or she is attempting to answers, (2) indicates why 
the reader should be interested in the answer to the questions, and (3) often summarizes what the paper's conclusions. It is 
traditional in the second section for authors to discuss the instidutional background to the question and provide a theoretical model 
to be used in the estimation process. Quite often it makes more sense to refer to the variables in conceptual terms in this section 
and leave the actual specification of the variables in later parts of the paper. A traditional example of this is the ubiquitous 
"socioeconomic variables" included in many economic models. The reason for this generality is that perfect measures of the 
variables conceived in most models are not available and most researchers are forced to use proxies for the variables in the model 
when completing their empirical work. For this reason it is traditional in the third section of the paper to discuss what variables are 
used as proxies for the variables mentioned in the model. For instance, many papers use this section to specify what variables will 
proxy the "socioeconomic variables." It is appropriate to discuss shortcoming of the data set in the third section.  

Economists use the fourth section of the paper to describe the econometric model estimated along with the statistical issues 
created by the shortcomings of data and the model. The fourth section of the paper also usually includes a presentation of the 
empirical estimations and a discussion of the implications of the estimations for the central questions of the paper. The fifth section 
of the paper usually includes a recap of the research, a discussion of the implications of the empirical work, and suggestions for 
further research. 

Obviously, not all economics journal articles are split into the five sections described above; every author has his or her way of 
organizing their arguments. Indeed, how a paper is organized will reflect the story the author is trying to tell. It is as James Joyce 
noted in Protrait of an Artist as a Young Man, in art "the whole is related to the parts and the parts are related to the whole." In a 
well-crafted paper the author's message dictates the organizational structure of the paper and the material in each section must 
relate back to this message. In what follows we will outline what might go into each of these sections, leaving it to you to fill in the 
missing parts.  

3.1. Section 1. Introduction 

apa.html#book.attribution.m34830


In this hypothetical Honors paper we examine the impact of a law change on a desired outcome of the law. In particular, sometime 
during the years leading up to 2007 all of the states adopted a 0.08 per se rule on the blood alcohol content (BAC) of determining if 
a driver is drunk: after passage of the law any driver with a BAC of 0.08 or higher is presumed to be driving under the influence. 
Some of the states also have "zero tolerance for underaged drinking and driving" level that applies only to drivers under age 21. 
Defence of drivers accused of DUI is, not surprisingly, big business for lawyers. Table 1 reports the some of the current DUI laws by 
state as reported on the website of a law firm specializing in DUI cases. 

State 
Per se BAC 
Level  

Zero Tolerance 
BAC Level 

Enhanced Penalty 
BAC Level State 

Per se BAC 
Level  

Zero Tolerance 
BAC Level 

Enhanced Penalty 
BAC Level 

Alabama 0.08 0.02 N/A Montana 0.08 0.02 0.18 

Alaska 0.08 0.00 0.16 Nebraska 0.08 0.02 0.15 

Arizona 0.08 0.00 0.15 Nevada 0.08 0.02 0.18 

Arkansas 0.08 0.02 0.15 
New 
Hampshire 

0.08 0.02 0.16 

California 0.08 0.01 0.15 New Jersey 0.08 0.01 N/A 

Colorado 0.08 0.02 0.20 New Mexico 0.08 0.02 0.16 

Connecticut 0.08 0.02 0.16 New York 0.08 0.02 0.18 

Delaware 0.08 0.02 0.15 
North 
Carolina 

0.08 0.00 0.16 

DC 0.08 0.00 0.20 North Dakota 0.08 0.02 0.18 

Florida 0.08 0.02 0.15 Ohio 0.08 0.02 0.17 

Georgia 0.08 0.02 0.15 Oklahoma 0.08 0.00 0.15 

Hawaii 0.08 0.02 0.15 Oregon 0.08 0.00 N/A 



Idaho 0.08 0.02 0.20 Pennsylvania 0.08 0.02 0.16 

Illinois 0.08 0.00 0.16 Rhode Island 0.08 0.02 0.15 

Indiana 0.08 0.02 0.15 
South 
Carolina 

0.08 0.02 0.15 

Iowa 0.08 0.02 0.15 South Dakota 0.08 0.02 0.17 

Kansas 0.08 0.02 0.15 Tennessee 0.08 0.02 0.20 

Kentucky 0.08 0.02 0.18 Texas 0.08 0.00 0.15 

Louisiana 0.08 0.02 0.15 Utah 0.08 0.00 0.16 

Maine 0.08 0.00 0.15 Vermont 0.08 0.02 N/A 

Maryland 0.08 0.02 N/A Virginia 0.08 0.02 0.15 

Massachusetts 0.08 0.02 0.20 Washington 0.08 0.02 0.15 

Michigan 0.08 0.02 N/A West Virginia 0.08 0.02 N/A 

Minnesota 0.08 0.00 0.20 Wisconsin 0.08 0.00 0.17 

Mississippi 0.08 0.02 N/A Wyoming 0.08 0.02 0.15 

Missouri 0.08 0.02 0.15         

Table 3.1. Table 1. State drunk driving laws. (Source: http://www.totaldui.com/breathalyzers/bac/laws-by-state.aspx) 

The theoretical justifications for the per se BAC level rule is (1) that it will provide a disincentive for individuals to drive after 
drinking and (2) that it will reduce the cost of prosecuting DUI drivers. In terms of economics the law aims to reduce the negative 
externalities created by drunk drivers. The question to be examined in this paper is whether the per se laws have reduce the 
number of automobile fatalities. Persumably, if the law is successful in reducing the number of DUI drivers, it will reduce the 



number of accidents they cause and, thus, reduce the number of DUI fatalities. Whether the per se BAC law does reduce the number 
of automobile fatalities—and, thus, is a useful law—is the empirical issue this paper proposes to investigate. 

Exercises 

1. The introduction or section 2 should include a discussion of the current state of the literature. What, if anything, is written in 
economics journals about the impact of DUI laws on the automobile fatality rate? 

2. The introduction presented above is very "thin". How would you fill out this discussion? Is this the appropriate place to introduce 
a discussion of the institutional history of the adoption of the per se BAC law? 

3. How would your introduction be affected by the results you report later in the paper? 

4. A priori, do you think that the per se BAC law is an effective way of reduing drunk driving or is it just a placebo for voters upset 
with drunk drives (like MOM)? Does it "matter" to you as a researcher whether the per se BAC law is effective? 

3.2. Theoretical issues 

Any model of automobile fatalities is a function of the unit of observation. Since we are interested in the impact of state laws on 
automobile fatalities, it seems reasonable that we construct a model to explain the differences in automobile fatalities at the state 
level (although it is tempting to use county level data). There are interstate differences that potentially explain differences in 
fatalities. First, people drive more in phyically larger states and states with larger populations than they do in other states. since 
more driving increases the probability of an accident, we need to standardize our measure of fatalities by the vehicle miles driven in 
the state. It is traditional in the empirical literature to measure the number of fatalities as fatalities per 100 million vehicle miles 
driven rather than the number of fatalities; in the interest of simplicity we follow this tradition. 

A second phyical characteristic that affects the fatality rate is the type of road used in a state. In particular, it is well-known that in 
the United States perhaps the safest roads are rural interestate highways. Thus, in our model we will need to hold constant the type 
of highway in the state. An additional variable that potentially affects the fatality rate is the mix of drivers. In particular, given the 
propensity of insurance companies to charge higher rates to individuals under the age of 25, it is reasonable to assume that the 
more young drivers in the state the higher the fatality rate. Similarly, given the tendency of the elderly to have decreased reaction 
rates, it is possible that the presence of more elderly drivers would drive up the automobile accident rate. 



There are several behavioral variables that might affect driving habits and, thus, automobile accident rates. First, it seems 
reasonable to assume that the value of time and cost of death are higher for wealthier people than they are for less wealth drivers. 
However, the direction of the effect of income on driver behavior is unclear. A person with a higher value of time might be more 
willing to speed than one with a lower value of time because time spent driving is time not spent earning income or engaging in 
leisure. Additionally, and here the issue is very uncertain, a wealthier person may be less willing to engage in risky driving or 
drinking behavior because he or she has more income to lose than a poorer individual. 

A second variable that affects the behavior of individuals is the cost of gasoline. Higher gas prices will cause individuals to drive less 
and closer to the gas efficient speed. Most often driving closer to the gas efficient speed implies a slower and safer speed. 
Moreover, since all drivers are driven toward the gas efficient speed, the variance in speeds on the highways should be reduced. In 
either case, a higher price of gasoline should cause the number of automobile fatalities to fall. Since gasoline is purchased on the 
world market, the major source of differences in state-level gasoline prices is diffences among the state gasoline taxes. Similarly, we 
would expect things like state taxes on alcohol consumption and the strictness of the of the DUI laws to reduce both the amount of 
alcohol comsumption and the amount of driving under the influence. 

In the most general terms the model to be estimated is: 

(3.1) F P V M D  =  f( type of roads, mix of drivers, income, cost of gasoline, state laws ),  

where FPVMD is a measure of the number of automobile fatalities per vehicle mile driven annually in a state. In the next section of 
the paper we will make this model useable by chosing specific variables to proxy the explanatory variables 

Exercises 

1. The model described is incomplete (as are almost all useful models). What, if anything, would you add to the model? 

2. Often the models in economics papers involve constrained optimization models that yield the predictions that are tested in the 
empirical part of the paper. Are there any optimization models implicit in the description above? 

3.3. The data 

Many of the states adopted the 0.08 BAC per se standard between 1994 and 2008. In fact, all states adopted this standard by 2007. 
Thus, a panel data set of data from all of the 50 states and the District of Columbia should offer enough variance in the this variable 



to enable us to evaluate the effectiveness of the law. The Department of Transportation and the Census Bureau provide enough 
data to enable us to construct a reasonable data set for all of the states for this period. What should ensue here is a detailed 
description of all of the variables in the data set along with the sources used to collect the data. However, we leave the construction 
of this part of the paper to you and resort to summarizing the variables included in the data set in Table 2. The data are available in 
the file the "Data set" sheet in Auto_fatalities_data.xls; the definition of the FIPS codes are included in a sheet named "State FIPS 
codes" in the same file. Table 3 defines the variables included by column in the "Data set" sheet of Auto_fatalities_data.xls. 

Care needs to be taken when gathering the data because some sources list the states in alphabetical order by the full name of the 
state, the way that the FIPS codes orders the states. In this case Deleware preceeds the District of Columbia. In other sources the 
states are listed in alphabetical order of the each state's abreviated title. In these cases the District of Columbia preceeds Deleware 
because DC preceeds DE. This sorting of the states causes several states to appear in an order different than they appear in the FIPS 
codes. A similar problem occurs with working with county level data because some government sources list all county names 
beginning with Mc ahead of all other county names beginning with M while other sources list county names beginning with Mc after 
county names beginning with Ma. In both cases order all of the state or county data by their FIPS code prevents confusing the order 
of the observations. 

Variable Source Period 

FIPS code identifying each state http://www.census.gov/datamap/fipslist/AllSt.txt  
1994-
2008 

Fatalities from automobile accidents 
http://www-
fars.nhtsa.dot.gov/States/StatesFatalitiesFatalityRates.aspx  

1994-
2008 

Fatalities per 100 million vehicle miles driven www-fars.nhtsa.dot.gov  
1994-
2008 

State gas tax rate per gallon in dollars www.fhwa.dot.gov/policyinformation/statistics  
1994-
2008 

Real state gas tax rate per gallon in 2009 dollars 
State gas tax rate per gallon in dollars divided by the CPI with a base 
year of 2009 

1994-
2008 

http://cnx.org/content/Auto_fatalities_data.xls/latest/
http://www.census.gov/datamap/fipslist/AllSt.txt
http://www-fars.nhtsa.dot.gov/States/StatesFatalitiesFatalityRates.aspx
http://www-fars.nhtsa.dot.gov/States/StatesFatalitiesFatalityRates.aspx
http://www-fars.nhtsa.dot.gov/States/StatesFatalitiesFatalityRates.aspx
http://www.fhwa.dot.gov/policyinformation/statistics/2008/mf205.cfm


State cigarette tax per pack in dollars, 
State Sales, Gasoline, Cigarette, and Alcohol Tax Rates by State, 2000-
2010  

2000-
2008 

State tax on spirits 
State Sales, Gasoline, Cigarette, and Alcohol Tax Rates by State, 2000-
2010  

2000-
2008 

State tax wine 
State Sales, Gasoline, Cigarette, and Alcohol Tax Rates by State, 2000-
2010  

2000-
2008 

State tax on beer 
State Sales, Gasoline, Cigarette, and Alcohol Tax Rates by State, 2000-
2010  

2000-
2008 

Vehicle miles driven on state rural interstates Table VM-202 for various years on: http://www.fhwa.dot.gov  
1994-
2008 

Total vehicle miles driven on state rural roads Table VM-202 for various years on: http://www.fhwa.dot.gov  
1994-
2008 

Vehicle miles driven on state urban interstates Table VM-202 for various years on: http://www.fhwa.dot.gov  
1994-
2008 

Total vehicle miles driven on state urban roads Table VM-202 for various years on: http://www.fhwa.dot.gov  
1994-
2008 

Percent of the registered drivers under the age of 
20 

Table VM-202 for various years on: http://www.fhwa.dot.gov  
1994-
2008 

Percent of the registered drivers under the age of 
25 

Table DL-22 for various years on: http://www.fhwa.dot.gov  
1994-
2008 

Percent of the registered drivers over age 70 Table DL-22 for various years on: http://www.fhwa.dot.gov  
1994-
2008 

Percent of the registered drivers over age 75 Table DL-22 for various years on: http://www.fhwa.dot.gov  
1994-
2008 

http://www.taxfoundation.org/files/state_various_sales_rates_2000-2010.xls
http://www.taxfoundation.org/files/state_various_sales_rates_2000-2010.xls
http://www.taxfoundation.org/files/state_various_sales_rates_2000-2010.xls
http://www.taxfoundation.org/files/state_various_sales_rates_2000-2010.xls
http://www.taxfoundation.org/files/state_various_sales_rates_2000-2010.xls
http://www.taxfoundation.org/files/state_various_sales_rates_2000-2010.xls
http://www.taxfoundation.org/files/state_various_sales_rates_2000-2010.xls
http://www.taxfoundation.org/files/state_various_sales_rates_2000-2010.xls
http://www.fhwa.dot.gov/policy/ohpi/hss/hsspubs.cfm
http://www.fhwa.dot.gov/policy/ohpi/hss/hsspubs.cfm
http://www.fhwa.dot.gov/policy/ohpi/hss/hsspubs.cfm
http://www.fhwa.dot.gov/policy/ohpi/hss/hsspubs.cfm
http://www.fhwa.dot.gov/policy/ohpi/hss/hsspubs.cfm
http://www.fhwa.dot.gov/policy/ohpi/hss/hsspubs.cfm
http://www.fhwa.dot.gov/policy/ohpi/hss/hsspubs.cfm
http://www.fhwa.dot.gov/policy/ohpi/hss/hsspubs.cfm


Percent of the registered drivers over age 80 Table DL-22 for various years on: http://www.fhwa.dot.gov  
1994-
2008 

Percent of the registered drivers over age 85 Table DL-22 for various years on: http://www.fhwa.dot.gov  
1994-
2008 

State mean family income in 2009 dollars[a]  http://www.census.gov  
1994-
2008 

Dummy variable = 1 if the state has passed the 
0.08 per se BAC law; 0 otherwise 

NHTSA, Regional Office. Updated as of December 1, 2008. 
1994-
2008 

Table 3.2. Definitions and sources of the variables in the data set. 

Column Column title Variable 

A FIPS FIPS code identifying each state 

B Year Variable denoting the year and ranges from1994 to 2008 

C Fatalities Fatalities from automobile accidents 

D DPVM Fatalities per 100 million vehicle miles driven 

E SGasTax State tax on gasoline, $/gallon 

F RSGasTax Real state tax on gasoline, 2009$/gallon 

G CigTax State tax on cigarettes, dollars per 20-pack 

H SpTax State tax on spirits, dollars per gallon 

I WineTax State tax on wine, dollars per gallon 

J BeerTax State tax on beer, dollars per gallon 

K RuralInterstateVMD Vehicle-miles driven in a year on rural interstates, 100 million 

http://www.fhwa.dot.gov/policy/ohpi/hss/hsspubs.cfm
http://www.fhwa.dot.gov/policy/ohpi/hss/hsspubs.cfm
http://www.census.gov/did/www/saipe/data/statecounty/data/1989.html


L RuralTotalVMD Vehicle-miles driven in a year on all rural roadways, 100 million 

M UrbanInterstateVMD Vehicle-miles driven in a year on urban interstates, 100 million 

N UrbanTotalVMD Vehicle-miles driven in a year on all urban roadways, 100 million 

O PU20 Percent of licensed under the age of 20 

P PU25 Percent of licensed under the age of 25 

Q PO70 Percent of licensed over the age of 70 

R PO75 Percent of licensed over the age of 75 

S PO80 Percent of licensed over the age of 80 

T PO85 Percent of licensed over the age of 85 

U BACPS Dummy variable equal to 1 if the state has adopted the 0.08 BAC per se law; 0 otherwise 

V RMFI09 Median family income in a state in 2009 dollars 

Table 3.3. Data included in dataset. 

Exercises 

1. At this point in your thesis you would want to point out that each of the variables in the data set are proxies for the variables 
discussed in part 2 of your paper. As an exercise explain how each of the explanatory variables in Table 2 are proxies for the 
explanatory variables mentioned in the theory section. 

2. It would seem that the "cleanest" variable in the whole data set is "fatalities." Lookup the official definition of how a fatality 
from an automobile accident is measured. Does this variable still seem to have a clear and unequivocal meaning? 

3.4. Empirical estimation 



Now we are almost ready to present the estimation results from the model. There are a few things we need to cover before we 
move to presenting the estimation results. First, what, if any, are the econometric issues raised by the model and the data set? In 
this case we are using a panel data set to estimate the regression: 

(3.2) 

 

where fpvmd it is the number of fatalities per 100 million vehicle miles driven in state i in year t, the x jit is the jth explanatory 

variable in state i in year t, and is the dummy variable equal to 1 if state i has a 0.08 per se BAC law in year t. From a policy 
point of view what we are interested in is the sign of β k and if β k is statistically different from zero. At this point it would be 
appropriate to discuss whether you intend to use a fixed effects or a random effect model. In the interest is simplicity, we will use a 
fixed effects model but in your own research you would need to consider using either model. 

A second issue that needs to be considered is if you plan to use a linear model as specified above or if you might use the natural 
logarithm of the fatality rate. Since we have no a priori reason to believe that the relationship between the fatality rate and the 
explanatory variables are linear, we will estimate both log-linear and a log-log models. In this way we can test if our policy 
conclusions are sensitive to the mathematical specification of our model. 

Now we are ready to report the results of the estimation. The key here is to avoid writing a travelog of the estimations. Instead, 
report all of the regressions in one or more tables and then discuss the results presented in each table. 

Exercises 

1. In our estimations we use (a) a linear model, (b) a log-linear model, and (c) a log-log linear model. What are the economic 
interpretation of the estimated parameters in each of the models? Be sure to discuss both dummy variables and continuous 
variables. 

2. Why does it not make more sense to use an explanatory variable rather than the log of that explanatory variable when that 
explanatory variable is a percentage? 



3.5. Notes on the estimation of the model 

Since you will find it useful to replicate the estimation of the basic results, this section consists mainly of a set instructions in Table 4 
for use with Stata. 

  Instruction Stata commands 

1. 
Open Stata and copy the data in Auto_fatalities_data.xls into the 
data editor. You will have 765 observations of 22 variables. 

  

2. Tell Stata what variable denotes the state .iis 

3. Tell Stata what variable denotes the year .tis 

4. 
Create the new variable the percentage of the total vehicle miles 
driven that are on rural interstate roads 

.generate privmd = ruralinterstatevmd/(ruraltotalvmd + 
urbantotalvmd) 

5. 
Create the new variable the percent of the total vehicle miles 
driven that are on urban interstate roads 

.generate puivmd= 
urbaninterstatevmd/(ruraltotalvmd+urbantotalvmd) 

6. 
Create the logarithm transportation of all of the variables that are 
not percentages 

.generate lz = log(z), where z = dpvmd, sgastax, rsgastax, 
and rmfi09 

7a. 
Estimate the fixed effects model for the linear model (see output in 
Figure 1) 

.xtreg dpvm rsgastax pu25 po70 privmd puivmd rmfi09 
bacps, fe vce(robust) vsquish 

7b. 
Estimate the fixed effects model for the log-linear model (see 
output in Figure 2) 

.xtreg ldpvm rsgastax pu25 po70 privmd puivmd rmfi09 
bacps, fe vce(robust) vsquish 

7c. 
Estimate the fixed effects model for the log-log model (see output 
in Figure 3) 

.xtreg ldpvm lrsgastax pu25 po70 privmd puivmd lrmfi09 
bacps, fe vce(robust) vsquish 

8. 
Place the results into a table making it easier to compare your 
results; Table 5 is one such table. 

  



9a. 

The results in Table 5 suggest that the per se 0.08 BAC is a 
successful way to reduce automobile deaths. However the sign on 
the real gasoline tax rate is the opposite of what we might 
reasonably expect. Let's check the sensitivity of our results by 
rerunning the same three regressions with the real gasoline tax 
replaced by the nominal gasoline tax. See Table 6 for the results of 
these regressions. 

. xtreg dpvm sgastax pu25 po70 privmd puivmd rmfi09 
bacps, re vce(robust) vsquish 

9b.   
.xtreg ldpvm sgastax pu25 po70 privmd puivmd rmfi09 
bacps, fe vce(robust) vsquis 

9c.   
.xtreg ldpvm lsgastax pu25 po70 privmd puivmd lrmfi09 
bacps, fe vce(robust) vsquish 

Table 3.4. Instructions for further investigation of the stability of the regression estimates. 

Figure 3.1.  



 



Results of linear regression results. (t-ratios are in parentheses) 

 

Figure 3.2.  



 



Results of the log-linear regression. (t-ratios are in parentheses)  

 

Figure 3.3.  



 



Results of the log-log regression. (t-ratios are in parentheses)  

 

At this point is makes some sense to compare the parameter estimates for 0.08 BAC per se law; this comparison, shown in Table 5, 
suggests that the effect of the per se 0.08 BAC law was to reduce fatalities. Moreover, the estimates for each of the models is very 
stable whether one uses the real price of gasoline or the nominal price of gasoline, thus giving us some more confidence in our 
conclusions. 

  Linear Log-linear Log-log 

State tax of gasoline in 2009 dollars       

State has a 0.08 per se BAC law -0.1054 -0.0692 -0.0594 

  (-3.88) (-3.67) (-3.18) 

State tax of gasoline in current dollars       

State has a 0.08 per se BAC law -0.1191 -0.0778 -0.0762 

  (-4.83) (-4.54) (-4.52) 

Table 3.5. Comparison of the parameter estimates for each model with different measures of the cost of gasoline. 

The balance of this section of the paper would be devoted to further tests of the stability of our results under varying assumptions. 
Among other tests one would expect to see if the choice of a fixed-effects model affects your policy conclusions. 

Exercises 

1. Complete the Lagrange test for random effects for each of the three models, using the nominal price of gasoline. Organize the 
results of this test into a table. 



2. Re-estimate the three models replacing the percent of registered drivers under the age of 25 with the percent of drivers under 
20. Make the same same kind of replacement for the number of drivers over age 70 (i.e., experiment with the alternative age 
cutoffs—over 75, over 80, and over 85). Do any of your major conclusions change? 

3. What, if any, explanation can you give for the differences in the parameter estimates for the price of gasoline generated when 
the real price of gasoline is replaced by the nominal price of gasoline? 

3.6. Conclusions and further research 

This section of your paper should be devoted to a careful recapping of your results and providing suggestions for further research. 
Such a discussion might include some cautious guesses at why the 0.08 BAC per se standard appears to affect driver behavior. The 
discussion could also include some estimates of the number of lifes saved by the introduction of a per se standard. 



Chapter 3. A sample Honors paper* 

Traditionally, empirical research papers in economics journals have five or more sections. 
In the first section, unimaginatively known as the introduction, the researcher briefly (1) 
describes what question he or she is attempting to answers, (2) indicates why the reader 
should be interested in the answer to the questions, and (3) often summarizes what the 
paper's conclusions. It is traditional in the second section for authors to discuss the 
instidutional background to the question and provide a theoretical model to be used in 
the estimation process. Quite often it makes more sense to refer to the variables in 
conceptual terms in this section and leave the actual specification of the variables in later 
parts of the paper. A traditional example of this is the ubiquitous "socioeconomic 
variables" included in many economic models. The reason for this generality is that 
perfect measures of the variables conceived in most models are not available and most 
researchers are forced to use proxies for the variables in the model when completing 
their empirical work. For this reason it is traditional in the third section of the paper to 
discuss what variables are used as proxies for the variables mentioned in the model. For 
instance, many papers use this section to specify what variables will proxy the 
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"socioeconomic variables." It is appropriate to discuss shortcoming of the data set in the 
third section.  

Economists use the fourth section of the paper to describe the econometric model 
estimated along with the statistical issues created by the shortcomings of data and the 
model. The fourth section of the paper also usually includes a presentation of the 
empirical estimations and a discussion of the implications of the estimations for the 
central questions of the paper. The fifth section of the paper usually includes a recap of 
the research, a discussion of the implications of the empirical work, and suggestions for 
further research. 

Obviously, not all economics journal articles are split into the five sections described 
above; every author has his or her way of organizing their arguments. Indeed, how a 
paper is organized will reflect the story the author is trying to tell. It is as James Joyce 
noted in Protrait of an Artist as a Young Man, in art "the whole is related to the parts and 
the parts are related to the whole." In a well-crafted paper the author's message dictates 
the organizational structure of the paper and the material in each section must relate 
back to this message. In what follows we will outline what might go into each of these 
sections, leaving it to you to fill in the missing parts.  

3.1. Section 1. Introduction 



In this hypothetical Honors paper we examine the impact of a law change on a desired 
outcome of the law. In particular, sometime during the years leading up to 2007 all of the 
states adopted a 0.08 per se rule on the blood alcohol content (BAC) of determining if a 
driver is drunk: after passage of the law any driver with a BAC of 0.08 or higher is 
presumed to be driving under the influence. Some of the states also have "zero tolerance 
for underaged drinking and driving" level that applies only to drivers under age 21. 
Defence of drivers accused of DUI is, not surprisingly, big business for lawyers. Table 1 
reports the some of the current DUI laws by state as reported on the website of a law 
firm specializing in DUI cases. 

State 

Per 
se 
BAC 
Level  

Zero 
Tolerance 
BAC Level 

Enhanced 
Penalty 
BAC Level State 

Per 
se 
BAC 
Level  

Zero 
Tolerance 
BAC Level 

Enhanced 
Penalty 
BAC Level 

Alabama 0.08 0.02 N/A Montana 0.08 0.02 0.18 

Alaska 0.08 0.00 0.16 Nebraska 0.08 0.02 0.15 

Arizona 0.08 0.00 0.15 Nevada 0.08 0.02 0.18 



Arkansas 0.08 0.02 0.15 
New 
Hampshire 

0.08 0.02 0.16 

California 0.08 0.01 0.15 New Jersey 0.08 0.01 N/A 

Colorado 0.08 0.02 0.20 New Mexico 0.08 0.02 0.16 

Connecticut 0.08 0.02 0.16 New York 0.08 0.02 0.18 

Delaware 0.08 0.02 0.15 
North 
Carolina 

0.08 0.00 0.16 

DC 0.08 0.00 0.20 
North 
Dakota 

0.08 0.02 0.18 

Florida 0.08 0.02 0.15 Ohio 0.08 0.02 0.17 

Georgia 0.08 0.02 0.15 Oklahoma 0.08 0.00 0.15 

Hawaii 0.08 0.02 0.15 Oregon 0.08 0.00 N/A 

Idaho 0.08 0.02 0.20 Pennsylvania 0.08 0.02 0.16 

Illinois 0.08 0.00 0.16 Rhode Island 0.08 0.02 0.15 



Indiana 0.08 0.02 0.15 
South 
Carolina 

0.08 0.02 0.15 

Iowa 0.08 0.02 0.15 
South 
Dakota 

0.08 0.02 0.17 

Kansas 0.08 0.02 0.15 Tennessee 0.08 0.02 0.20 

Kentucky 0.08 0.02 0.18 Texas 0.08 0.00 0.15 

Louisiana 0.08 0.02 0.15 Utah 0.08 0.00 0.16 

Maine 0.08 0.00 0.15 Vermont 0.08 0.02 N/A 

Maryland 0.08 0.02 N/A Virginia 0.08 0.02 0.15 

Massachusetts 0.08 0.02 0.20 Washington 0.08 0.02 0.15 

Michigan 0.08 0.02 N/A 
West 
Virginia 

0.08 0.02 N/A 

Minnesota 0.08 0.00 0.20 Wisconsin 0.08 0.00 0.17 

Mississippi 0.08 0.02 N/A Wyoming 0.08 0.02 0.15 



Missouri 0.08 0.02 0.15         

Table 3.1. Table 1. State drunk driving laws. (Source: 
http://www.totaldui.com/breathalyzers/bac/laws-by-state.aspx) 

The theoretical justifications for the per se BAC level rule is (1) that it will provide a 
disincentive for individuals to drive after drinking and (2) that it will reduce the cost of 
prosecuting DUI drivers. In terms of economics the law aims to reduce the negative 
externalities created by drunk drivers. The question to be examined in this paper is 
whether the per se laws have reduce the number of automobile fatalities. Persumably, if 
the law is successful in reducing the number of DUI drivers, it will reduce the number of 
accidents they cause and, thus, reduce the number of DUI fatalities. Whether the per se 
BAC law does reduce the number of automobile fatalities—and, thus, is a useful law—is 
the empirical issue this paper proposes to investigate. 

Exercises 



1. The introduction or section 2 should include a discussion of the current state of the 
literature. What, if anything, is written in economics journals about the impact of DUI 
laws on the automobile fatality rate? 

2. The introduction presented above is very "thin". How would you fill out this 
discussion? Is this the appropriate place to introduce a discussion of the institutional 
history of the adoption of the per se BAC law? 

3. How would your introduction be affected by the results you report later in the paper? 

4. A priori, do you think that the per se BAC law is an effective way of reduing drunk 
driving or is it just a placebo for voters upset with drunk drives (like MOM)? Does it 
"matter" to you as a researcher whether the per se BAC law is effective? 

3.2. Theoretical issues 

Any model of automobile fatalities is a function of the unit of observation. Since we are 
interested in the impact of state laws on automobile fatalities, it seems reasonable that 
we construct a model to explain the differences in automobile fatalities at the state level 
(although it is tempting to use county level data). There are interstate differences that 
potentially explain differences in fatalities. First, people drive more in phyically larger 



states and states with larger populations than they do in other states. since more driving 
increases the probability of an accident, we need to standardize our measure of fatalities 
by the vehicle miles driven in the state. It is traditional in the empirical literature to 
measure the number of fatalities as fatalities per 100 million vehicle miles driven rather 
than the number of fatalities; in the interest of simplicity we follow this tradition. 

A second phyical characteristic that affects the fatality rate is the type of road used in a 
state. In particular, it is well-known that in the United States perhaps the safest roads are 
rural interestate highways. Thus, in our model we will need to hold constant the type of 
highway in the state. An additional variable that potentially affects the fatality rate is the 
mix of drivers. In particular, given the propensity of insurance companies to charge higher 
rates to individuals under the age of 25, it is reasonable to assume that the more young 
drivers in the state the higher the fatality rate. Similarly, given the tendency of the elderly 
to have decreased reaction rates, it is possible that the presence of more elderly drivers 
would drive up the automobile accident rate. 

There are several behavioral variables that might affect driving habits and, thus, 
automobile accident rates. First, it seems reasonable to assume that the value of time 
and cost of death are higher for wealthier people than they are for less wealth drivers. 
However, the direction of the effect of income on driver behavior is unclear. A person 



with a higher value of time might be more willing to speed than one with a lower value of 
time because time spent driving is time not spent earning income or engaging in leisure. 
Additionally, and here the issue is very uncertain, a wealthier person may be less willing 
to engage in risky driving or drinking behavior because he or she has more income to lose 
than a poorer individual. 

A second variable that affects the behavior of individuals is the cost of gasoline. Higher 
gas prices will cause individuals to drive less and closer to the gas efficient speed. Most 
often driving closer to the gas efficient speed implies a slower and safer speed. Moreover, 
since all drivers are driven toward the gas efficient speed, the variance in speeds on the 
highways should be reduced. In either case, a higher price of gasoline should cause the 
number of automobile fatalities to fall. Since gasoline is purchased on the world market, 
the major source of differences in state-level gasoline prices is diffences among the state 
gasoline taxes. Similarly, we would expect things like state taxes on alcohol consumption 
and the strictness of the of the DUI laws to reduce both the amount of alcohol 
comsumption and the amount of driving under the influence. 

In the most general terms the model to be estimated is: 

(3.1) F P V M D  =  f( type of roads, mix of drivers, income, cost of gasoline, state laws ),  



where FPVMD is a measure of the number of automobile fatalities per vehicle mile driven 
annually in a state. In the next section of the paper we will make this model useable by 
chosing specific variables to proxy the explanatory variables 

Exercises 

1. The model described is incomplete (as are almost all useful models). What, if anything, 
would you add to the model? 

2. Often the models in economics papers involve constrained optimization models that 
yield the predictions that are tested in the empirical part of the paper. Are there any 
optimization models implicit in the description above? 

3.3. The data 

Many of the states adopted the 0.08 BAC per se standard between 1994 and 2008. In fact, 
all states adopted this standard by 2007. Thus, a panel data set of data from all of the 50 
states and the District of Columbia should offer enough variance in the this variable to 
enable us to evaluate the effectiveness of the law. The Department of Transportation and 
the Census Bureau provide enough data to enable us to construct a reasonable data set 
for all of the states for this period. What should ensue here is a detailed description of all 



of the variables in the data set along with the sources used to collect the data. However, 
we leave the construction of this part of the paper to you and resort to summarizing the 
variables included in the data set in Table 2. The data are available in the file the "Data 
set" sheet in Auto_fatalities_data.xls; the definition of the FIPS codes are included in a 
sheet named "State FIPS codes" in the same file. Table 3 defines the variables included by 
column in the "Data set" sheet of Auto_fatalities_data.xls. 

Care needs to be taken when gathering the data because some sources list the states in 
alphabetical order by the full name of the state, the way that the FIPS codes orders the 
states. In this case Deleware preceeds the District of Columbia. In other sources the states 
are listed in alphabetical order of the each state's abreviated title. In these cases the 
District of Columbia preceeds Deleware because DC preceeds DE. This sorting of the 
states causes several states to appear in an order different than they appear in the FIPS 
codes. A similar problem occurs with working with county level data because some 
government sources list all county names beginning with Mc ahead of all other county 
names beginning with M while other sources list county names beginning with Mc after 
county names beginning with Ma. In both cases order all of the state or county data by 
their FIPS code prevents confusing the order of the observations. 

http://cnx.org/content/Auto_fatalities_data.xls/latest/


Variable Source Period 

FIPS code 
identifying each 
state 

http://www.census.gov/datamap/fipslist/AllSt.txt  
1994-
2008 

Fatalities from 
automobile 
accidents 

http://www-
fars.nhtsa.dot.gov/States/StatesFatalitiesFatalityRates.aspx  

1994-
2008 

Fatalities per 100 
million vehicle 
miles driven 

www-fars.nhtsa.dot.gov  
1994-
2008 

State gas tax rate 
per gallon in 
dollars 

www.fhwa.dot.gov/policyinformation/statistics  
1994-
2008 

Real state gas tax 
rate per gallon in 
2009 dollars 

State gas tax rate per gallon in dollars divided by the CPI with 
a base year of 2009 

1994-
2008 

http://www.census.gov/datamap/fipslist/AllSt.txt
http://www-fars.nhtsa.dot.gov/States/StatesFatalitiesFatalityRates.aspx
http://www-fars.nhtsa.dot.gov/States/StatesFatalitiesFatalityRates.aspx
http://www-fars.nhtsa.dot.gov/States/StatesFatalitiesFatalityRates.aspx
http://www.fhwa.dot.gov/policyinformation/statistics/2008/mf205.cfm


State cigarette tax 
per pack in 
dollars, 

State Sales, Gasoline, Cigarette, and Alcohol Tax Rates by 
State, 2000-2010  

2000-
2008 

State tax on 
spirits 

State Sales, Gasoline, Cigarette, and Alcohol Tax Rates by 
State, 2000-2010  

2000-
2008 

State tax wine 
State Sales, Gasoline, Cigarette, and Alcohol Tax Rates by 
State, 2000-2010  

2000-
2008 

State tax on beer 
State Sales, Gasoline, Cigarette, and Alcohol Tax Rates by 
State, 2000-2010  

2000-
2008 

Vehicle miles 
driven on state 
rural interstates 

Table VM-202 for various years on: http://www.fhwa.dot.gov  
1994-
2008 

Total vehicle 
miles driven on 
state rural roads 

Table VM-202 for various years on: http://www.fhwa.dot.gov  
1994-
2008 

Vehicle miles 
driven on state 

Table VM-202 for various years on: http://www.fhwa.dot.gov  
1994-
2008 

http://www.taxfoundation.org/files/state_various_sales_rates_2000-2010.xls
http://www.taxfoundation.org/files/state_various_sales_rates_2000-2010.xls
http://www.taxfoundation.org/files/state_various_sales_rates_2000-2010.xls
http://www.taxfoundation.org/files/state_various_sales_rates_2000-2010.xls
http://www.taxfoundation.org/files/state_various_sales_rates_2000-2010.xls
http://www.taxfoundation.org/files/state_various_sales_rates_2000-2010.xls
http://www.taxfoundation.org/files/state_various_sales_rates_2000-2010.xls
http://www.taxfoundation.org/files/state_various_sales_rates_2000-2010.xls
http://www.fhwa.dot.gov/policy/ohpi/hss/hsspubs.cfm
http://www.fhwa.dot.gov/policy/ohpi/hss/hsspubs.cfm
http://www.fhwa.dot.gov/policy/ohpi/hss/hsspubs.cfm


urban interstates 

Total vehicle 
miles driven on 
state urban roads 

Table VM-202 for various years on: http://www.fhwa.dot.gov  
1994-
2008 

Percent of the 
registered drivers 
under the age of 
20 

Table VM-202 for various years on: http://www.fhwa.dot.gov  
1994-
2008 

Percent of the 
registered drivers 
under the age of 
25 

Table DL-22 for various years on: http://www.fhwa.dot.gov  
1994-
2008 

Percent of the 
registered drivers 
over age 70 

Table DL-22 for various years on: http://www.fhwa.dot.gov  
1994-
2008 

Percent of the 
registered drivers 

Table DL-22 for various years on: http://www.fhwa.dot.gov  
1994-
2008 

http://www.fhwa.dot.gov/policy/ohpi/hss/hsspubs.cfm
http://www.fhwa.dot.gov/policy/ohpi/hss/hsspubs.cfm
http://www.fhwa.dot.gov/policy/ohpi/hss/hsspubs.cfm
http://www.fhwa.dot.gov/policy/ohpi/hss/hsspubs.cfm
http://www.fhwa.dot.gov/policy/ohpi/hss/hsspubs.cfm


over age 75 

Percent of the 
registered drivers 
over age 80 

Table DL-22 for various years on: http://www.fhwa.dot.gov  
1994-
2008 

Percent of the 
registered drivers 
over age 85 

Table DL-22 for various years on: http://www.fhwa.dot.gov  
1994-
2008 

State mean family 
income in 2009 
dollars[a]  

http://www.census.gov  
1994-
2008 

Dummy variable = 
1 if the state has 
passed the 0.08 
per se BAC law; 0 
otherwise 

NHTSA, Regional Office. Updated as of December 1, 2008. 
1994-
2008 

Table 3.2. Definitions and sources of the variables in the data set. 

http://www.fhwa.dot.gov/policy/ohpi/hss/hsspubs.cfm
http://www.fhwa.dot.gov/policy/ohpi/hss/hsspubs.cfm
http://www.census.gov/did/www/saipe/data/statecounty/data/1989.html


Column Column title Variable 

A FIPS FIPS code identifying each state 

B Year Variable denoting the year and ranges from1994 to 2008 

C Fatalities Fatalities from automobile accidents 

D DPVM Fatalities per 100 million vehicle miles driven 

E SGasTax State tax on gasoline, $/gallon 

F RSGasTax Real state tax on gasoline, 2009$/gallon 

G CigTax State tax on cigarettes, dollars per 20-pack 

H SpTax State tax on spirits, dollars per gallon 

I WineTax State tax on wine, dollars per gallon 

J BeerTax State tax on beer, dollars per gallon 

K RuralInterstateVMD 
Vehicle-miles driven in a year on rural interstates, 100 
million 

L RuralTotalVMD Vehicle-miles driven in a year on all rural roadways, 100 



million 

M UrbanInterstateVMD 
Vehicle-miles driven in a year on urban interstates, 100 
million 

N UrbanTotalVMD 
Vehicle-miles driven in a year on all urban roadways, 100 
million 

O PU20 Percent of licensed under the age of 20 

P PU25 Percent of licensed under the age of 25 

Q PO70 Percent of licensed over the age of 70 

R PO75 Percent of licensed over the age of 75 

S PO80 Percent of licensed over the age of 80 

T PO85 Percent of licensed over the age of 85 

U BACPS 
Dummy variable equal to 1 if the state has adopted the 
0.08 BAC per se law; 0 otherwise 

V RMFI09 Median family income in a state in 2009 dollars 



Table 3.3. Data included in dataset. 

Exercises 

1. At this point in your thesis you would want to point out that each of the variables in 
the data set are proxies for the variables discussed in part 2 of your paper. As an 
exercise explain how each of the explanatory variables in Table 2 are proxies for the 
explanatory variables mentioned in the theory section. 

2. It would seem that the "cleanest" variable in the whole data set is "fatalities." Lookup 
the official definition of how a fatality from an automobile accident is measured. Does 
this variable still seem to have a clear and unequivocal meaning? 

3.4. Empirical estimation 

Now we are almost ready to present the estimation results from the model. There are a 
few things we need to cover before we move to presenting the estimation results. First, 
what, if any, are the econometric issues raised by the model and the data set? In this case 
we are using a panel data set to estimate the regression: 

(3.2) 



 

where fpvmd it is the number of fatalities per 100 million vehicle miles driven in state i in 

year t, the x jit is the jth explanatory variable in state i in year t, and is the dummy 
variable equal to 1 if state i has a 0.08 per se BAC law in year t. From a policy point of 
view what we are interested in is the sign of β k and if β k is statistically different from 
zero. At this point it would be appropriate to discuss whether you intend to use a fixed 
effects or a random effect model. In the interest is simplicity, we will use a fixed effects 
model but in your own research you would need to consider using either model. 

A second issue that needs to be considered is if you plan to use a linear model as 
specified above or if you might use the natural logarithm of the fatality rate. Since we 
have no a priori reason to believe that the relationship between the fatality rate and the 
explanatory variables are linear, we will estimate both log-linear and a log-log models. In 
this way we can test if our policy conclusions are sensitive to the mathematical 
specification of our model. 



Now we are ready to report the results of the estimation. The key here is to avoid writing 
a travelog of the estimations. Instead, report all of the regressions in one or more tables 
and then discuss the results presented in each table. 

Exercises 

1. In our estimations we use (a) a linear model, (b) a log-linear model, and (c) a log-log 
linear model. What are the economic interpretation of the estimated parameters in 
each of the models? Be sure to discuss both dummy variables and continuous 
variables. 

2. Why does it not make more sense to use an explanatory variable rather than the log of 
that explanatory variable when that explanatory variable is a percentage? 

3.5. Notes on the estimation of the model 

Since you will find it useful to replicate the estimation of the basic results, this section 
consists mainly of a set instructions in Table 4 for use with Stata. 

  Instruction Stata commands 



1. 

Open Stata and copy the data 
in Auto_fatalities_data.xls 
into the data editor. You will 
have 765 observations of 22 
variables. 

  

2. 
Tell Stata what variable 
denotes the state 

.iis 

3. 
Tell Stata what variable 
denotes the year 

.tis 

4. 

Create the new variable the 
percentage of the total vehicle 
miles driven that are on rural 
interstate roads 

.generate privmd = 
ruralinterstatevmd/(ruraltotalvmd + urbantotalvmd) 

5. 

Create the new variable the 
percent of the total vehicle 
miles driven that are on urban 
interstate roads 

.generate puivmd= 
urbaninterstatevmd/(ruraltotalvmd+urbantotalvmd) 



6. 

Create the logarithm 
transportation of all of the 
variables that are not 
percentages 

.generate lz = log(z), where z = dpvmd, sgastax, 
rsgastax, and rmfi09 

7a. 
Estimate the fixed effects 
model for the linear model 
(see output in Figure 1) 

.xtreg dpvm rsgastax pu25 po70 privmd puivmd 
rmfi09 bacps, fe vce(robust) vsquish 

7b. 
Estimate the fixed effects 
model for the log-linear model 
(see output in Figure 2) 

.xtreg ldpvm rsgastax pu25 po70 privmd puivmd 
rmfi09 bacps, fe vce(robust) vsquish 

7c. 
Estimate the fixed effects 
model for the log-log model 
(see output in Figure 3) 

.xtreg ldpvm lrsgastax pu25 po70 privmd puivmd 
lrmfi09 bacps, fe vce(robust) vsquish 

8. 

Place the results into a table 
making it easier to compare 
your results; Table 5 is one 
such table. 

  



9a. 

The results in Table 5 suggest 
that the per se 0.08 BAC is a 
successful way to reduce 
automobile deaths. However 
the sign on the real gasoline 
tax rate is the opposite of 
what we might reasonably 
expect. Let's check the 
sensitivity of our results by 
rerunning the same three 
regressions with the real 
gasoline tax replaced by the 
nominal gasoline tax. See 
Table 6 for the results of these 
regressions. 

. xtreg dpvm sgastax pu25 po70 privmd puivmd 
rmfi09 bacps, re vce(robust) vsquish 

9b.   
.xtreg ldpvm sgastax pu25 po70 privmd puivmd 
rmfi09 bacps, fe vce(robust) vsquis 

9c.   .xtreg ldpvm lsgastax pu25 po70 privmd puivmd 



lrmfi09 bacps, fe vce(robust) vsquish 

Table 3.4. Instructions for further investigation of the stability of the regression 
estimates. 

Figure 3.1.  



 



Results of linear regression results. (t-ratios are in parentheses) 

 

Figure 3.2.  



 



Results of the log-linear regression. (t-ratios are in parentheses)  

 

Figure 3.3.  



 



Results of the log-log regression. (t-ratios are in parentheses)  

 

At this point is makes some sense to compare the parameter estimates for 0.08 BAC per 
se law; this comparison, shown in Table 5, suggests that the effect of the per se 0.08 BAC 
law was to reduce fatalities. Moreover, the estimates for each of the models is very 
stable whether one uses the real price of gasoline or the nominal price of gasoline, thus 
giving us some more confidence in our conclusions. 

  Linear Log-linear Log-log 

State tax of gasoline in 2009 dollars       

State has a 0.08 per se BAC law -0.1054 -0.0692 -0.0594 

  (-3.88) (-3.67) (-3.18) 

State tax of gasoline in current dollars       

State has a 0.08 per se BAC law -0.1191 -0.0778 -0.0762 



  (-4.83) (-4.54) (-4.52) 

Table 3.5. Comparison of the parameter estimates for each model with different 
measures of the cost of gasoline. 

The balance of this section of the paper would be devoted to further tests of the stability 
of our results under varying assumptions. Among other tests one would expect to see if 
the choice of a fixed-effects model affects your policy conclusions. 

Exercises 

1. Complete the Lagrange test for random effects for each of the three models, using the 
nominal price of gasoline. Organize the results of this test into a table. 

2. Re-estimate the three models replacing the percent of registered drivers under the age 
of 25 with the percent of drivers under 20. Make the same same kind of replacement 
for the number of drivers over age 70 (i.e., experiment with the alternative age 
cutoffs—over 75, over 80, and over 85). Do any of your major conclusions change? 



3. What, if any, explanation can you give for the differences in the parameter estimates 
for the price of gasoline generated when the real price of gasoline is replaced by the 
nominal price of gasoline? 

3.6. Conclusions and further research 

This section of your paper should be devoted to a careful recapping of your results and 
providing suggestions for further research. Such a discussion might include some cautious 
guesses at why the 0.08 BAC per se standard appears to affect driver behavior. The 
discussion could also include some estimates of the number of lifes saved by the 
introduction of a per se standard. 




















































































