

��Microsoft® Word for Windows™

Converting Word Version 2.x Macros���

To order this product or for more �information, see your reseller today.�To find a reseller near you, or to order by phone, inside the U.S. call (800) 426�9400. Outside the U.S. contact your Microsoft subsidiary. Additional comments or questions: �	�	�	�Submitted by Microsoft Field �Representative:	�Phone:	
�� TOC \o "1-2" �¡Error!No se encuentran elementos de tabla de contenido.���

�Microsoft® Word converts the macros in a Word 2.x template the first time you open the template, create a new document based on the template, or attach the template to a document using the Templates command (File menu). (Note that Word 6.0 cannot convert Word 1.x macros directly; open Word 1.x templates first in Word 2.x, and then in Word 6.0.) After converting a template, you must save it to save the conversion. If you don’t save the template, Word converts the macros again the next time you use the template.
If you want complete control over converting macros (that is, if you don’t want Word to automatically convert your macros), you can convert your macros manually. To do so, open each macro in Word 2.x, copy the code to a normal document, and save the document. In Word 6.0, open the document and in either the Normal template or a new custom template, create a macro for each of your original macros, then copy the text from the document into the macro editing window. Debug each macro to identify which parts of your code should be changed to produce the same behavior you programmed in Word 2.x.
When Word converts your macros automatically, you may need to modify parts of them by hand to complete the conversion. This document attempts to identify areas of your macro to which you may need to pay special attention to produce the behavior you want from your macro.
WW2_ statements and functions
For improved compatibility, a number of Word 2.x WordBasic statements and functions have been carried over to Word 6.0 and given the “WW2_” prefix (for example, WW2_CountMenuItems() and WW2_EditFind). When the macro converter encounters one of these Word 2.x statements or functions, it substitutes the WW2_ name.
WW2_ functions provide Word 2.x syntax, but they do not behave under Word 2.x assumptions. For example, WW2_Insert adheres to the setting of the Smart Cut And Paste setting in Word 6.0, and WW2_EditFind must use Word 6 codes to search for special characters.
Here is the full list of WW2_ statements and functions:
�WW2_ChangeCase�WW2_ChangeRulerMode�WW2_CountMenuItems()�WW2_EditFind�WW2_EditFindChar�WW2_EditReplace�WW2_EditReplaceChar�WW2_FileFind�WW2_FileTemplates�WW2_Files$()�WW2_FootnoteOptions�WW2_FormatBordersAndShading�WW2_FormatCharacter�WW2_FormatDefineStyleChar�WW2_GetToolButton()�WW2_GetToolMacro$()�WW2_Insert�WW2_InsertFootnote�WW2_InsertIndex�WW2_InsertSymbol�WW2_InsertTableOfContents�WW2_KeyCode�WW2_MenuMacro$()�WW2_MenuText$()�WW2_PrintMerge�WW2_PrintMergeCheck�WW2_PrintMergeCreateDataSource�WW2_PrintMergeCreateHeaderSource�WW2_PrintMergeHelper�WW2_PrintMergeSelection�WW2_PrintMergeToDoc�WW2_PrintMergeToPrinter�WW2_RenameMenu�WW2_RulerMode�WW2_TableColumnWidth�WW2_TableRowHeight�WW2_ToolsHyphenation�WW2_ToolsMacro�WW2_ToolsOptionsGeneral�WW2_ToolsOptionsKeyboard�WW2_ToolsOptionsMenus�WW2_ToolsOptionsPrint�WW2_ToolsOptionsToolbar�WW2_ToolsOptionsView�WW2_ToolsRevisionsMark�WW2_ViewZoom
�Note that CommandValid() takes a string that specifies a command name. Word 6 does not convert this string to a valid Word 6 command name, nor does it append “WW2_.” Check all occurrences of this function in a converted macro to ensure the name of the command being tested is valid (for example, change “InsertBookmark” to “WW2_InsertBookmark” or “EditBookmark”).
Keep in mind the following details about the behavior of some Word 2.x and WW2_ commands compared to the corresponding Word 6.0 commands.
WW2_Files$() returns the filename only, while the Word 6.0 Files$() function returns the path and filename.
WW2_Insert has the same effect as the Word 6.0 Insert statement except when text is selected. If the current selection includes a section break at the end of the selection, WW2_Insert overwrites it; the Word 6.0 Insert statement does not. If a word is selected, including the space character following it, WW2_Insert replaces the trailing space character; the Word 6.0 Insert statement does not.
Word 6.0 provides compatibility in find and replace macro operations by including the Word 2.x versions of these statements as WW2_EditFind and WW2_EditReplace. Note that the Word 2.x special character codes continue to work in WW2_EditFind and WW2_EditReplace. However, specifying ANSI character 34 (straight quotation mark) as the find text in WW2_EditFind, WW2_EditReplace, EditFind, or EditReplace in Word 6.0 finds both straight and “smart” quotation marks (ANSI 147 and 148); in Word 2.x macros, ANSI 34 finds only straight quotation marks.
For more information on changes to finding and replacing, see “Finding and replacing text,” later in this document.
The Word 2.x statement ViewHeaderFooter is supported in Word 6.0 as the NormalViewHeaderArea statement; however, you cannot display the Word 2.x dialog box with NormalViewHeaderArea.
The Word 2.x statement IconBarMode is supported in Word 6.0, but has no effect.
Some WW2_ statements correspond to dialog boxes in Word 2.x. A subset of these statements cannot be used to display the Word 2.x dialog boxes in Word 6.0 (though the statements may still be used to set options or return information through dialog records). Converted Word 2.x macros that attempt to display a dialog box associated with any of the following statements will need to be updated by hand.
�NormalViewHeaderArea�WW2_EditFindChar�WW2_EditReplaceChar�WW2_FormatDefineStyleChar�WW2_PrintMerge�WW2_PrintMergeCheck�WW2_PrintMergeHelper�WW2_PrintMergeSelection�WW2_PrintMergeToDoc�WW2_PrintMergeToPrinter�WW2_ToolsOptionsGeneral�WW2_ToolsOptionsKeyboard�WW2_ToolsOptionsMenus�WW2_ToolsOptionsToolbar�WW2_ToolsOptionsView�WW2_ViewZoom
�Working with paragraph marks
In Word 2.x, the two ANSI characters 13 and 10 specified a paragraph mark. In Word 6.0, the single ANSI character 13 represents a paragraph mark. Any Word 2.x macro that assumes the following:
para$ = Chr$(13) + Chr$(10)

will not work properly in a Word 6.0 document. Word 2.x macros often use this assumption to search for paragraph marks or to test a selection to see if it contains a paragraph mark. Changing this assumption in any converted Word 2.x macro will remedy this incompatibility with Word 6.0 documents.
However, paragraph marks in Word 2.x and text-only documents opened in Word 6.0 are still equivalent to ANSI characters 13 and 10; only when a Word 2.x or text-only document is finally saved in Word 6.0 format are the paragraph marks converted to ANSI character 13. If your macro needs to work on documents in both formats, make sure to check the current format before setting the assumption for which ANSI character or characters comprise a paragraph mark.
Modifying startup options
Startup options for Word 6.0 are now in WINWORD6.INI. Macros that specify a Word section (“Microsoft Word 2.0,” “Microsoft Word,” “MSWord Text Converters,” or “MSWord Editable Sections”) in a GetProfileString$() or SetProfileString instruction will return or set information in WINWORD6.INI instead of WIN.INI. If you need to return or set options in Word 2.x sections of WIN.INI, use GetPrivateProfileString$() and SetPrivateProfileString, which allow you to explicitly specify an INI file.
Error checking
Because error messages in Word 6.0 are more specific than those in Word 2.x, you may need to update error-handling routines to trap new errors. For example, if the insertion point or selection is not in a table, the StartOfRow and EndOfRow statements will generate an error message. Also, keep the following points in mind:
Routines that manipulate dialog boxes without using GetCurValues may generate errors in Word 6.0 that did not occur in Word 2.x.
Word 6.0 now displays an error if an array variable specified in a dialog box definition has not been defined.
Limits in Word
You may want to fix assumptions your macros make about Word limits that have changed (for example, the maximum number of open document windows has changed from nine to whatever number available memory allows). A change to consider when converting Word 2.x macros is that the number of nesting levels for Call instructions to other macros and subroutines has been reduced. But as in Word 2.x, available memory often limits the number of nesting levels before a macro can reach the internal maximum, around 9 in Word 6.0.
For more information on new limits and other changes in Word 6.0, see the What’s New in WordBasic topic in WordBasic Help, and Chapter 6, “Switching from a Previous Version of Word,” in Microsoft Word Quick Results.
Creating and displaying dialog boxes
In Word 2.x, option buttons and check boxes are vertically centered within the rectangle defined by the width and height arguments in OptionButton and CheckBox instructions. In Word 6.0, option buttons and check boxes are aligned at the top of the rectangle. If the rectangle was larger than necessary in the Word 2.x macro, the option button or check box may be out of place when the dialog box definition is converted. If necessary, paste the dialog box definition into the Dialog Editor and resize the controls.
In Word 6.0, list boxes no longer recognize empty strings. If a macro includes an empty string in an array to be assigned to a list box, the list of entries is truncated after the empty string. For example, if you create the following array:
ListBox1$(0) = "hello"�ListBox1$(1) = ""�ListBox1$(2) = "hello"

and then assign it to a list box in a dialog box definition, no text will appear in the list box after “hello” when the dialog box is displayed. To fix the dialog box, either eliminate the empty string from the array or add a space to each empty string. For example:
ListBox1$(1) = " "

In Word 6.0, a custom dialog box with no Cancel button cannot be closed using the dialog Control menu. Two approaches can be taken to address this: Use the MsgBox command instead of a custom dialog box (note that a message box can only display 256 characters), or include a Cancel button to the dialog box definition and then create a dialog box function that hides the Cancel button on initialization.
In Word 2.x, input boxes displayed with InputBox$() set the focus on the OK button; to choose OK using the keyboard, the user pressed ENTER, and to insert a new line break in the text box, the user pressed SHIFT+ENTER. In Word 6.0, input boxes displayed with InputBox$() set the focus on the text box. When the user presses ENTER, Word inserts a new line in the text box; to choose OK using the keyboard, the user must press TAB to set the focus on the OK button and then press ENTER.
If you want to maintain the Word 2.x InputBox$() behavior in your macro, you need to create a custom dialog box to display with a Dialog or Dialog() instruction instead of using InputBox$(). If you do use the Word 6.0 InputBox$() function, you can make your macro more robust by evaluating the returned string to ensure that it is usable in your macro, cleaning it up if the user inadvertently pressed ENTER while trying to choose OK.
Cutting and pasting text
The Edit panel in the Options dialog box (Tools menu) contains a new editing option, Use Smart Cut And Paste, that removes unneeded spaces when you delete text and adds spaces when you insert text. In macros that delete, cut, or paste text, use ToolsOptionsEdit to control this option, making sure the setting of the option corresponds to your macro’s assumptions. For Word 2.x macros, the assumption will most likely be that this feature is not available, so add the following instructions to your macro to make sure it behaves the same in Word 6.0:
Sub MAIN
Dim dlg As ToolsOptionsEdit
GetCurValues dlg
reset = dlg.SmartCutPaste
dlg.SmartCutPaste = 0
ToolsOptionsEdit dlg
' Word 2.x macro instructions
ToolsOptionsEdit .SmartCutPaste = reset
End Sub
Using SendKeys
The macro converter does not change the keystrokes specified in SendKeys statements to accommodate changes to access keys for menus, menu items, and dialog box controls in Word 6.0. For example, in Word 2.x, the instruction
SendKeys "%ob"

displays the Bullets And Numbering dialog box (Tools menu). In Word 6.0, the same instruction displays the Borders And Shading dialog box (Format menu). Search your converted Word 2.x macros for all SendKeys instructions to verify that they will still function as expected in Word 6.0.
Finding and replacing text
The EditFind and EditReplace statements have been updated for Word 6.0. The new versions use different values for .Direction and use the new .Wrap argument to control prompts (for details, see WordBasic Help). Also, a few of the character codes used when searching for and replacing special characters have changed (for example, “^m” instead of “^d” for a manual page break).
For these reasons, Word 6.0 provides compatibility in find and replace macro operations by including the Word 2.x versions of these statements as WW2_EditFind and WW2_EditReplace. Note that the Word 2.x special character codes continue to work in WW2_EditFind and WW2_EditReplace.
In a Word 2.x EditFind instruction, you set .Direction to 2 to search toward the end of the document and prevent Word from displaying a prompt if the end of the document is reached. If there is a selection when the search begins, Word 2.x searches the selection first, and then continues the search after the selection. A WW2_EditFind instruction in Word 6.0 does not continue the search after the selection. Unless your macro makes sure that there is no selection before the WW2_EditFind instruction is run, you may want to rewrite the instruction using the Word 6.0 version of EditFind, setting .Direction to 0 (zero) and the new .Wrap argument to 1.
The font name and ANSI code of symbols inserted using the Word 6.0 InsertSymbol command are hidden; Word recognizes these symbols as ANSI character 40 (left parenthesis). Be aware that converted Word 2.x macros that search for left parentheses will also find symbols inserted with InsertSymbol in Word 6.0 documents.
Searching for fields
In Word 2.x, fields are inserted with no space between the opening field character and the field name. In Word 6.0, a space is inserted after the opening field character and before the closing field character. If you have macros that search for specific fields and perform some action on them, you’ll need to take this into account. Consider the following macro converted from Word 2.x. Notice that in the find text, there is no space between ^19 and DATE.
REM UnlinkDateFields -- unlinks each DATE field in the document
Sub MAIN
StartOfDocument
EditFindClearFormatting
WW2_EditFind .Find = "^19DATE", .Direction = 2, .Format = 0, .MatchCase = 0
While EditFindFound()
	UnlinkFields
	WW2_EditFind .Find = "^19DATE", .Direction = 2, .Format = 0, .MatchCase = 0
Wend
End Sub

You should assume that documents contain fields with varying numbers of spaces after the opening field character, especially if the document began as a Word 2.x document. To account for this, the macro above could be rewritten to include two loops: one for DATE fields with no space after the opening field character and one for DATE fields with one or more spaces (^w) after the opening field character. Note that he following macro uses the Word 6.0 versions of EditFind and EditReplace, in which you can specify ^d for a field character.
REM UnlinkDateFields -- unlinks each DATE field in the document
Sub MAIN
EditFindClearFormatting
ViewFieldCodes 1
EditFind .Find = "^dDATE", .Direction = 0, .Wrap = 1, .Format = 0, .MatchCase = 0
While EditFindFound()
	UnlinkFields
	EditFind .Find = "^dDATE", .Direction = 0, .Wrap = 1
Wend
EditFind .Find = "^d^wDATE", .Direction = 0, .Wrap = 1
While EditFindFound()
	UnlinkFields
	EditFind .Find = "^d^wDATE", .Direction = 0, .Wrap = 1
Wend
End Sub

You should also be aware that there are four fields whose names have changed in Word 6.0. However, when you open a Word 2.x document containing one or more of these fields in Word 6.0, Word does not update the field names. The fields continue to work as before, but their names don’t change to the Word 6.0 names unless you edit the field codes. The following table lists these four fields.
�Word 2.x name	Word 6.0 name
INCLUDE	INCLUDETEXT
IMPORT	INCLUDEPICTURE
FTNREF	NOTEREF
GLOSSARY	AUTOTEXT
If you have a macro that searches for one of these fields, you may want to add code that accounts for the possibility that both field names appear in the same document.
Working with headers and footers
In Word 6.0, the most common way to work with headers and footers is to display them with the ViewHeader statement in page layout view. One limitation of this method is that Word can only display the headers and footers of pages that exist in the document (that is, pages that can be displayed in page layout view).
To work with headers and footers for documents with little or no text (for example, a template on which much longer book-like documents will be based), you should use the NormalViewHeaderArea statement to display any header or footer in the header/footer pane in normal view. The NormalViewHeaderArea statement corresponds to the Word 2.x ViewHeaderFooter statement. The arguments are the same, and you can use a dialog record and GetCurValues to return the current values of NormalViewHeaderArea; however, in Word 6.0, you cannot display the Word 2.x ViewHeaderFooter dialog box.
The following to Word 6.0 macro instructions are equivalent:
FilePageSetup .DifferentFirstPage = 1, .OddAndEvenPages = 1
NormalViewHeaderArea .FirstPage = 1, .OddAndEvenPages = 1

But in a document with no text or page breaks, the following instruction displays the odd header in the header/footer pane in normal view:
NormalViewHeaderArea .Type = 4

while the following instruction can only display the first-page header in page layout view:
ViewHeader

When enough text is added to create two page breaks (or if page breaks are added using InsertBreak), a ViewHeader instruction would be able to display the odd header in page layout view.
Macros converted from Word 2.x will automatically use the NormalViewHeaderArea statement, just as they used ViewHeaderFooter before. To duplicate Word 2.x functionality in new Word 6.0 macros, you should use NormalViewHeaderArea as well. If you want your Word 6.0 macro to use ViewHeader in page layout view, regardless of the number of pages in the active document or template, write code to insert one or two temporary page breaks, modify the headers and footers, and then remove the temporary page breaks.
New formatting implementations
Word 6.0 has many new formatting features and has revised some Word 2.x formatting statements and functions for greater usability. When converting Word 2.x macros, you may need to rewrite some code that applies formatting if you want to duplicate Word 2.x formatting behavior. Here are some specific situations you might look out for.
Word 6.0 now has Superscript, Subscript, and Small Caps formats based on the typographical information stored in the specified font. Word 2.x macros that created superscript and subscript text by raising text and reducing its font size manually are converted to do the same in Word 6.0. However, instructions that use this technique can be modified manually to take advantage of the new font formatting capabilities of Word.
The .LineSpacing argument of the Word 2.x FormatParagraph statement has been split into two arguments in the Word 6.0 FormatParagraph statement: .LineSpacingRule and .LineSpacing. To specify exact line spacing in Word 2.x, you would specify a negative value for the .LineSpacing argument (for example, “–10 pt”). To apply the same formatting in Word 6.0, you can do one of two things: specify Exactly (value 4) for .LineSpacingRule and a positive value for .LineSpacing (for example, “10 pt”); or specify a negative value for the .LineSpacing argument (for example, “–10 pt”). In this way, Word 2.x instructions that apply this formatting are converted without error.
However, after Word 6.0 runs an instruction that assigns .LineSpacing a negative value, the value of .LineSpacingRule is set to 4 (“Exactly”) and the value of .LineSpacing is changed to a positive value. Therefore, if your macro contains any conditional statements (such as If...Then...Else or While...Wend) that test for a negative .LineSpacing value in a Word 6.0 FormatParagraph dialog record, they will always return false. Each conditional statement that tests for a negative .LineSpacing value should be modified to test for either a positive .LineSpacing value, a .LineSpacingRule value of 4, or both, depending on the information required.
Word 6.0 provides two kinds of style: paragraph and character. The name of the current style, returned by the StyleName$() function, depends on where the insertion point or selection is located. For example, if a word is selected in a Normal paragraph and no character styles are applied to the word, StyleName$() returns “Normal.” However, if the word has a character style, such as ArialBold, applied to it, StyleName$() returns “ArialBold.” To make sure StyleName$() returns the underlying paragraph style, regardless of the any character styles applied to the current selection, use the following code:
EditBookmark "tmp"
SelType 1
reset$ = StyleName$()
Style "Default Paragraph Font"
parastyle$ = StyleName$()
Style reset$
EditGoto "tmp"
EditBookmark "tmp", .Delete

In Word 6.0, the Organizer command can be used in macros to copy multiple styles, AutoText entries, toolbars, and macros; a macro simply establishes a loop based on the number of items counted by a function such as CountStyles() and runs an Organizer instruction for each item.
As in Word 2.x, macros in Word 6.0 can use the FormatStyle statement to merge all styles to or from documents or templates using the .FileName, .Source, and .Merge arguments. Word 2.x macros that use this method are converted with little or no modification into Word 6.0.
Replacing Windows API calls with new statements and functions
Some new WordBasic statements and functions provide the functionality of common Windows™ API calls used in Word 2.x with Declare statements. When converting a macro from Word 2.x to Word 6.0, you might consider which Windows API calls the macro made before could be converted to new built-in WordBasic functionality.
For example, the application control statements such as AppSize, AppMove, and AppMinimize can be used in Word 6.0 to control the state of any Windows-based application, not just Word. If your macro attempts to modify the state of non-Word applications using Windows API calls, you might consider replacing the API calls with the corresponding WordBasic statements. Also, new statements such as AppGetNames, AppCount(), and AppIsRunning() extend the ability of macros to modify or return information about the entire Windows environment.
AppSendMessage is a powerful statement added to Word 6.0 that allows macros to send any Windows API message and its associated parameters (described in the Microsoft Windows 3.1 Software Development Kit) to any running Windows-based application. If you are converting a Word 2.x macro that attempted to do the same thing using Windows API function calls, you can modify the macro to take advantage of AppSendMessage.
Word 6.0 has added two statements, ScreenUpdating and ScreenRefresh, to provide some display control that could only be found in calls to the Windows API EchoOff function. Note that ScreenUpdating does not provide the same functionality as EchoOff; toolbars can be hidden and displayed, the status bar can be updated, message boxes can prompt for information, and so on. If you have a Word 2.x macro that used the Windows API EchoOff function, you might consider using the Word 6.0 screen updating statements instead if they satisfy the needs of the macro.
In Word 6.0, you can use GetPrivateProfileString$() and SetPrivateProfileString to return and modify settings in any initialization file: WIN.INI, WINWORD6.INI, an initialization file for any other Windows-based application, or even your own initialization file such as MACROVAR.INI. If you are converting a Word 2.x macro that uses Windows API calls to functions of the same name, you might consider whether the built-in statement and function can be used to accomplish the same task.
Issues of context when calling macros and subroutines
In both Word 2.x and Word 6.0, you can call one macro from another by using a ToolsMacro instruction or by using the following syntax:
[Call] MacroName[.SubName] [ArgumentList]
Occasionally, more than one macro with the specified name are available to run. In such cases, Word 6.0 uses different rules than Word 2.x when deciding which macro to run. In general, Word 2.x resolves naming conflicts in favor of the active template and Word 6.0 resolves naming conflicts in favor of the template that contains the calling macro. An example will illustrate this point.
Consider the template MY.DOT containing the macro Welcome.
'Welcome macro (MY.DOT)
Sub Main
MsgBox "I am the Welcome macro in MY.DOT"
End Sub

Consider a macro of the same name in NORMAL.DOT.
'Welcome macro (NORMAL.DOT)
Sub Main
MsgBox "I am the Welcome macro in NORMAL.DOT"
End Sub

Now consider another macro in the Normal template which creates a document based on MY.DOT, and then runs Welcome.
'Macro in NORMAL.DOT that runs NORMAL.DOT version of Welcome
Sub Main
FileNew .Template = "MY.DOT"
Welcome
End Sub

When the Welcome macro runs, MY.DOT is active. In Word 2.x, the MY.DOT version of Welcome runs because naming conflicts are resolved in favor of the active template. In Word 6.0, where the version in the template containing the calling macro takes precedence over the version in the active template, the NORMAL.DOT version of Welcome runs.
How can you override this behavior in Word 6.0 macros without renaming all of your macros and subroutines to use unique names? There are two ways: use ToolsMacro instead of Call, or include the WW2CallingConvention statement.
If you want to run the main subroutine of a macro in the active template regardless of which template contains the calling macro (and you don’t need to pass any values), use a ToolsMacro instruction and set .Show to 3 (the value for active template context).
'Macro in NORMAL.DOT that runs MY.DOT version of Welcome
Sub Main
FileNew .Template = "MY.DOT"
ToolsMacro .Name = "Welcome", .Show = 3, .Run
End Sub

Note that whenever you call a macro with ToolsMacro, it’s a good idea to specify .Show. Otherwise, the context will be determined by whatever context was last selected in the Macro dialog box. This is different from the Word 2.x version of ToolsMacro, where, if you omitted .Show, Word looked for the macro first in the active template, then in the Normal template, and finally in built-in commands.
Use WW2CallingConvention if you want Word 6.0a to resolve naming conflicts the same way Word 2.x resolved them. With WW2CallingConvention, your macros can use Call to call macros or subroutines within macros in an active template if a macro by the same name already exists in the calling template. You must include WW2CallingConvention if you want to pass values to a macro with a conflicting name that you might otherwise call with a ToolsMacro statement that has .Show set to 3, as described above.

Note The WW2CallingConvention statement is an addition to Word 6.0a, available to Word 6.0 users as the Word 6.0a Patch from Microsoft. Note that anyone using a macro that contains WW2CallingConvention must also have Word 6.0a for the macro to perform as intended. Including a CommandValid() check in your macros that include WW2CallingConvention will prevent a user from trying to run the new statement when it is not available in their version of Word.
For information on the Word 6.0a Patch, contact your Microsoft representative, Microsoft Customer Services, or the Microsoft Support Network.
Taking advantage of global templates
If you are converting a complex suite of macros in multiple templates from Word 2.x to Word 6.0, you should consider taking advantage of global templates in Word 6.0 for the following reasons:
In Word 2.x, it was common practice to distribute macros in a template that ran a process using MacroCopy to copy some or all of the macros to a user’s Normal template so those macros would be available at all times. In Word 6.0, you need only distribute a template containing all of your macros and instruct the user to load the template as a global template, using the Templates And Add-ins dialog box (File menu). With global templates, you don’t have to touch your user’s Normal template.
If you distributed multiple Word 2.x templates, each with its own set of macros, you can reorganize those templates to take advantage of global templates. The macros for manipulating a new document based on any given template do not need to be stored in the specific template; rather, they can all reside in one authoritative global template. You can also avoid cross-template naming conflicts by storing macros in one global template.
The change from juggling templates in Word 2.x to loading a single global template in Word 6.0 to automatically customize a user’s Word environment requires some recoding and reorganizing of existing Word 2.x template suites. However, the global-template model for customizing Word will pay off by giving converted Word 2.x templates long-term stability in Word 6.0 and later versions.
Miscellaneous “gotchas”
Look for the following assumptions in your Word 2.x macros when you convert them to Word 6.0. A change in Word 6.0 behavior may cause your macro to behave unexpectedly or incorrectly if it operates under one of these conditions.
The predefined bookmarks “\Para” and “\Page” no longer select the last paragraph mark in a document if that paragraph mark is adjacent to the rest of the bookmark. For example, in Word 2.x, an EditGoto instruction that specified “\Page” would select the last paragraph mark in the document if the insertion point or selection was in the last page; in Word 6.0, the paragraph mark is excluded. You need to modify a converted Word 2.x macro if it continues after such an instruction with the assumption that the paragraph mark is part of the selection.
In Word 2.x, if your macro used FileSaveAs to save the active document in a file format other than Word Document, Word saved the new version of the file but left the original active document active. In Word 6.0, Word saves the new version of the file, closes the original active document (if it had already been saved), and makes the new version of the file in the foreign format the active document.
If your converted Word 2.x macro assumes that any editing done after saving a file in a foreign format is being done on the original Word Document file, it will behave incorrectly; it will actually modify the content of the foreign-format file, which is active. Modify your Word 2.x macro in Word 6.0 to close the foreign-format file and re-open the original Word Document file if it needs to continue modifying the Word Document version of the file.
A macro that includes an OnTime instruction will run the specified macro regardless of whether Word is the active application when the specified time occurs. Word 2.x, if the specified time passed while Word was inactive, Word ran the macro as soon as it became the active application. Any Word 2.x macro that assumed Word would be the active application when the specified macro ran as a result of OnTime should be modified to work with the new assumption or use another kind of delay routine.
Naming variables, subroutines and user-defined functions
You may need to change names of variables, subroutines, and user-defined functions if the names have become reserved words in Word 6.0 (such as statement or function names).
You cannot call a subroutine or user-defined function stored in another macro if the name of the subroutine or function is the same as the name of an argument for a WordBasic statement that corresponds to a dialog box. For example, if you have a macro called “Library” that contains a subroutine called “Wrap,” you cannot call the subroutine from another macro in the same template. The instruction
Library.Wrap

in another macro generates an error because .Wrap is a an argument of the EditFind statement.
The following is a complete alphabetical list of arguments for WordBasic statements that correspond to Word 6.0 dialog boxes. If you locate a Word 2.x macro that contains a subroutine or user-defined function with one of the following names, you should change the name of the subroutine or function to avoid the error described above.
�A
Accent�AcceptAll�AcceptRevisions�ActivateAs�Add�AddBelow�AddedStyles�AddRecipient�Address�AddrFromLeft�AddrFromTop�AddSlip�AddToDictionary�AddToDocument�AddToMru�AddToTemplate�AdjustEmptyParas�AdjustParaMarks�AdjustTabsSpaces�After�Align�Alignment�AlignRows�AllAtOnce�AllCaps�AllowAccentedUppercase�AllowRowSplit�Always�AlwaysSuggest�Anchors�AndOr1�AndOr2�AndOr3�AndOr4�AndOr5�Angle�Annotations�APPCOPYRIGHT�AppendPrFile�Application�Apply�ApplyColsTo�ApplyPropsTo�ApplyStylesBodyText�ApplyStylesHeadings�ApplyStylesLists�ApplyStylesOtherParas�ApplyTo�APPNAME�AppName�APPORGANIZATION�APPSERIALNUMBER�APPUSERNAME�APPVERSION�ArrowLength�ArrowStyle�ArrowWidth�AskOnce�Assign�Attach�AttributeControls�Author�AutoAttach�AutoCaption�AutoCorrectInitialCaps�AutoCorrectTyping�AutoDelete�AutoExpand�AutoFit�AutoHyphenation�AutoMark�AutoSave�AutoUpdate�AutoWordSelection
B
Background�BackgroundSpellChecking�BasedOn�Before�BlankLines�BlueScreen�Bold�BookMarks�Border�Borders�BordShadThinBlack�BottomBorder�BottomColor�BottomMargin�BottomWidth�Breadth�Button�ButtonFieldClicks
C
Calc1�CannotFind�Caps�Caption�CaseSensitive�Category�CategoryName�Change�ChangeAll�ChangeTo�ChapterNumber�Character�Characters�CharNum�CharPosition�CharSpace�CheckDefault�CheckErrors�CheckSize�CheckSpelling�CheckWidth�Class�Clear�ClearAll�ClearRecipients�ClearRouteSlip�ClearSlip�Collate�ColLine�Color�ColorButtons�Column�ColumnNo�Columns�ColumnSpacing�ColumnWidth�CommandKeyHelp�CommandValue�Comments�Company�ComparedTo1�ComparedTo2�ComparedTo3�ComparedTo4�ComparedTo5�ComparedTo6�CompareTo�Comparison�CompatOptions�CompOp1�CompOp2�CompOp3�CompOp4�CompOp5�CompOp6�Condition1�Condition2�Condition3�Condition4�Condition5�Confirm�ConfirmConversions�ConfirmFormat�Connection�Context�ContNotice�Control�ContSeparator�CONVENTIONALMEMORY�ConvertFrom�ConvertTo�ConvFrom�ConvMailMergeEsc�Copy�CountBy�CountFootnotes�Create�CreateBackup�Created�CreateDate�CropBottom�CropLeft�CropMarks�CropRight�CropTop�CrossReference�CrossReferenceAutoText�CursorBlink�CustomDict1�CustomDict10�CustomDict2�CustomDict3�CustomDict4�CustomDict5�CustomDict6�CustomDict7�CustomDict8�CustomDict9�CustomZoomPercent
D
DataSource�DataType�DateCreatedFrom�DateCreatedTo�DateSavedFrom�DateSavedTo�DateTimePic�Days�Default�DefaultBookmarkText�DefaultFillInText�DefaultFormat�DefaultLanguage�DefaultTray�Define�Definitions�DefTabs�Delete�DeletedText�DeletedTextColor�DeletedTextMark�DemoGuidance�DemoSpeed�Description�Destination�DfltTrueType�DifferentFirstPage�Direction�Directory�DISKSPACE�Display�DisplayAsPrinted�DisplayIcon�DisplayOut�DistanceFromText�DistFromText�DistVertFromText�DocNavKeys�DocTypes�DocumentPassword�DOHeight�DontHyphen�DontSortHdr�DOWidth�Draft�DraftFont�DragAndDrop�DrawingObjects�Drawings�Drive�Drop�DropHeight�Dump
E
Edit�EditPicture�EditSource�EditTime�Effects3d�EmbedFonts�Enable�EnableProt�EndContNotice�EndContSeparator�Endnotes�EndnotesAt�EndNumberAs�EndRestartNum�EndSeparator�EndStartingNum�Entry�EntryAutoText�EnvAddress�EnvCategory�EnvFeederInstalled�EnvHeight�EnvLabelCategory�EnvOmitReturn�EnvPaperSize�EnvReturn�EnvWidth�ErrorBeeps�EvenlySpaced�Exit�Explain�ExtractAddress
F
Face�FacingPages�FalseAutoText�FalseText�FastSave�FastSaves�Field�FieldCodes�FieldFormat�FieldName�FieldNum�FieldNum2�FieldNum3�Fields�FieldShading�File�FileName�Files�FileSize�FillColor�FillPattern�FillPatternColor�Find�FindNext�FindPrevious�FindReplCancel�FineShading�FirstColumn�FirstIndent�FirstPage�FixedHeight�FixedHeightNew�FixedWidth�FixedWidthNew�FldType�Font�FootContNotice�FootContSeparator�FooterDistance�FootnoteReferenceMark�Footnotes�FootnotesAt�FootNumberAs�FootRestartNum�FootSeparator�FootStartingNum�Foreground�Format�FormatNumber�FormatOutline�FormatPolyline�FormatTextbox�Formatting�FormsData�Formula�From�FromColumn�FromLeft�FromText�FromTop�FullPage�FullScreen
G
Gap�GetData�GlobalDotPrompt�Goto�Gutter
H
Hang�HangingIndent�HeaderDistance�HeaderRecord�HeaderSource�HeadingParas�HeadingRows�HeadingSeparator�Height�HeightRule�HeightType�Help�HelpText�HelpType�Hidden�Hide�HideAutoFit�HideMarks�HorizBorder�HorizColor�Horizontal�HorizontalFrom�HorizontalPos�HorizWidth�HotZone�HRelativeTo�HRuler�HScroll�HyphenateAll�HyphenateCaps�HyphenateNow�HyphenationZone�Hyphens
I
Icon�IconFilename�IconNumber�IdleCount�IdleInterrupt�IdleMode�Ignore�IgnoreAll�IgnoreAllCaps�IgnoreCaps�IgnoreIndentsAndSpacing�IgnoreMixedDigits�Include�IncludeFields�IncludeNum�Increment�Indent�IndentRows�InitialCaps�InitialColWidth�Initials�Input�Insert�InsertAs�InsertAsField�InsertAsText�InsertedTextColor�InsertedTextMark�InsertLoop�InsertMode�InsForPaste�InsideBorder�InsideMargin�InternalMargin�Italic�Item
K
KeepFormatting�KeepTogether�KeepWithNext�Kerning�KerningMin�Key�KeyCode�KeyCode2�Keywords�KillLink
L
Label�LabelAcross�LabelAutoText�LabelColumn�LabelDotMatrix�LabelDown�LabelHeight�LabelHorPitch�LabelIndex�LabelListIndex�LabelRow�LabelSideMargin�LabelText�LabelTopMargin�LabelTray�LabelVertPitch�LabelWidth�Language�LargeButtons�LastColumn�LastPrintedDate�LastRow�LastSaved�LastSavedBy�LastSavedDate�Layout1�Layout2�Layout3�Layout4�Leader�LeftBorder�LeftColor�LeftIndent�LeftMargin�LeftWidth�Length�Level�LimitConsecutiveHyphens�Linebreaks�LineColor�LineNum�Lines�LineSpacing�LineSpacingRule�LineStyle�LineType�LineWeight�Link�LinkStyles�LinkToFile�LinkToSource�LinkToTemplate�ListBy�Location�LockAnchor�LockAnnot�Locked�LongCitation�LongCitationAutoText
M
Macro�MailAddress�MailAsAttachment�MailMerge�MailSubject�MainDic�MainDict�MainDoc�MakePicture�Mark�MarkAll�MarkCitation�MarkEntry�MarkRevisions�MatchCase�MATHCOPROCESSOR�Menu�MenuHelp�MenuSimulation�MenuText�MenuType�Merge�MergeCells�MergeField�MergeField1�MergeField2�MergeField3�MergeField4�MergeField5�MergeField6�MergeRec�Mergerecords�MergeRecords�MergeType�Message�MessageBeeps�MinHeight�MinimumRowHeight�Modify�MouseSimulation�MoveCol�MoveRow�MoveWithText�MSQuery�MultiplePages�MultLineSpace
N
Name�NativePictureFormat�Network�New�NewDict�NewDocument�NewName�NewPicture�NewTemplate�NewText�Next�NextCitation�NextCol�NextColumn�NextRow�NextStyle�No�NoColumnBalance�NoFormatting�NoLineNum�NoReset�NoSpaceRaiseLower�NoTabHangIndent�NoteType�NumChars�NumColumns�NumCopies�NumFormat�NumLines�NumMode�NumPages�NumParas�NumRestart�NumRows�NumWords
O
Object�ObjectType�OddAndEvenPages�OldRecipient�OneAfterAnother�Open�OpenSource�Option�Options�Order�Order2�Order3�Organizer�Orientation�Original�OrigWordTableRules�OtherPages�OtherSep�Outline�OutlineBorder�OutsideMargin�Overtype�OwnHelp�OwnStat
P
PageAttribControls�PageBreak�PageControls�PageHeight�Pages�PageSize�PageWidth�Pagination�Panel�PaperSize�Paragraph�Paragraphs�ParagraphWidth�Paras�PartialPages�Passim�Password�PasswordDoc�PasswordDot�Paste�Path�PatternMatch�PictureEditor�PicturePlaceHolders�Pictures�Points�Position�PositionHorz�PositionHorzNew�PositionHorzRel�PositionVert�PositionVertNew�PositionVertRel�PreserveIndentLevels�PreserveStyles�Preset�PrevCol�PrevColumn�Preview�PrevRow�Print�PrintBarCode�PrintColBlack�Printed�PrintEnvLabel�Printer�PrintFIMA�PrintRevisions�PrintToFile�Product�Prompt�Prompy�Protect�PrToFileName�Punctuation
Q
QueryOptions
R
Range�Ranges�ReadOnly�RecentFileCount�RecentFiles�Recipients�RecommendReadOnly�Record�Record1�Record2�Record3�Record4�Record5�Record6�Reference�ReferenceItem�ReferenceKind�ReferenceType�RejectAll�RejectRevisions�RelativeHorz�RelativeTo�RelativeVert�Reload�Remove�RemoveAttachments�RemoveFrame�RemoveToolbars�Rename�RepeatAllPages�Replace�ReplaceAll�ReplaceBullets�ReplaceOne�ReplaceQuotes�ReplaceSelection�ReplaceSymbols�ReplaceText�Reset�ResetAll�ResetIgnoreAll�ResetSlip�ResetTool�RestartNum�RetAddrFromLeft�RetAddrFromTop�ReturnWhenDone�Reverse�Revert�Review�RevisedLinesColor�RevisedLinesMark�Revision�RevisionBar�RevisionNumber�RightAlignPageNumbers�RightBorder�RightColor�RightIndent�RightMargin�RightWidth�RoundCorners�RouteDocument�Ruler�RulerStyle�Run
S
SavedBy�SaveInterval�SavePictureInDoc�ScaleX�ScaleY�Search�SearchAgain�SearchName�SearchPath�SearchText�Section�SectionName�SectionStart�Select�Selected�SelectedFile�Selection�SendMailAttach�Sentence�SentenceCaps�Separator�Set�SetDefault�SetDesc�SetSize�Setting�Setup�Shading�ShadingColor�Shadow�Shift�ShiftCells�ShortCitation�Show�ShowAll�ShowCodes�ShowHidden�ShowMacro�ShowMarks�ShowPageNumbers�ShowRulers�ShowStatistics�SingleLabel�SizeX�SizeY�SmallCaps�SmartCutPaste�SmartQuotes�SnapToGrid�Sort�SortBy�SortColumn�SoundsLike�Source�Space�SpaceBetweenCols�Spaces�Spacing�SplitCells�SQLStatement�SQLStatement1�StartAt�StartAtBeginning�StartingNum�StartNewCol�StartupTips�StatText�StatusBar�Store�StoreGlsy�StoreMacro�Strikeout�Strikethrough�Strikethru�Style�StyleAreaWidth�StyleGallery�StyleSheets�SubDir�Subject�Subscript�SubstituteFont�Suggest�SuggestFromMainDictOnly�Suggestions�Summary�SummaryPrompt�Superscript�SuppDic�SuppDict�Suppression�SuppressSpBfAfterPgBrk�SuppressTopSpacing�Supression�Switch�SwitchKeyboard�Symbol�SynonymList�Synonyms�SysOptions
T
Tab�TableGridlines�TableHeader�TableId�Tabs�Task�Template�Test�Text�TextBoundaries�TextDefault�TextFormat�TextSize�TextType�TextWidth�Time�Title�TitleAutoText�To�Tool�Toolbar�ToolTips�TopBorder�TopColor�TopMargin�TopWidth�ToTemplate�TrackStatus�Transparent�TransparentMetafiles�TrueAutoText�TrueText�TwoPages�Type�Type2�Type3
U
UnAssign�UnavailableFont�Underline�Undo�UndoRevisions�Unframe�Ungroup�Units�Unlink�UnlinkMain�Unlocked�Update�UpdateFields�UpdateLinks�UpdateMode�UpdateNow�UseEnvFeeder�UsePathAsDefault�UserDict1�UserDict2�UserDict3�UserDict4�UserID�UsrDlg
V
ValueAutoText�ValueText�Variable�Verb�VertAlign�VertBorder�VertColor�Vertical�VerticalFrom�VerticalPos�VertWidth�View�ViewRevisions�VRelativeTo�VRuler�VScroll
W
Weight�Where�WholeWord�WidowControl�Width�WidthRule�WidthType�Window�With�Wizard�Word�WordField�Words�WPCommand�WPDocNavKeys�WPHelp�Wrap�WrapToWindow�WrapTrailSpaces�WritePassword�WritePasswordDoc�WritePasswordDot
X
XGrid�XOrigin�XReplace
Y
Yes�YES�YGrid�YOrigin
Z
ZoomPercent���
�
	CONVERSIONS WHITE PAPER

�

CONTENTS

CONVERTING WORD VERSION 2.X MACROS

� PAGE �14� Microsoft Word for Windows—December 1993

©1993 Microsoft Corporation. All rights reserved. Printed in the United States of America.
The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.
This technical overview is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS SUMMARY.
Companies, names, and data used in screens and diagrams are fictitious unless otherwise noted.
Microsoft Windows is a trademark of Microsoft Corporation.
11/93 Part. No. 098-53101

©1993 Microsoft Corporation. All rights reserved. Printed in the United States of America.
The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.
This technical overview is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS SUMMARY.
Companies, names, and data used in screens and diagrams are fictitious unless otherwise noted.
Microsoft is a registered trademark and Windows is a trademark of Microsoft Corporation.
12/93 Part. No. 098-54438

