
Microsoft® Visio® 2000
Developer Tools for UML
White Paper

Published: April 2000

Table of Contents
Visualizing Software Development Projects ... 2

The Value of a Visual Approach .. 2

The Unified Modeling Language in Microsoft Visio 2000 ... 3

UML Design Scenario: A Car Rental Software System .. 4

Microsoft Visio 2000 Developer Tools: Two Levels of UML Support ... 6

Microsoft Visio 2000 and Microsoft Repository .. 8

Conclusion .. 9

For More Information ... 9

Developer Tools for UML 2

Visualizing Software Development Projects
Successful software development goes beyond writing good code; it starts with effective communica-
tion between information technology teams and business decision-makers. Software design that is
captured in flowcharts, diagrams, or words can communicate how the software will work, what it will do,
when it will do it, and how people, data, hardware, and other software will interact with it.

Four industry-standard tools make it possible to depict and share this information graphically. These
tools are:

· Unified Modeling Language (UML), a common notation for visually describing and interpreting
the pieces, relationships, and actions that a software application comprises.

· Microsoft® Visio® 2000 Professional Edition and Microsoft Visio 2000 Enterprise Edition,
flexible IT design and development tools that speak the UML notation fluently.

· Microsoft Repository, a tool that enables developers to store and retrieve vital model compo-
nents so that the information can be shared across teams.

This paper discusses the value of a visual approach to software design, summarizes the Unified
Modeling Language, presents a detailed scenario of Visio 2000-based UML diagramming, describes the
role of Microsoft Repository in software design, and explains how Visio 2000 developer tools facilitate
easy, accessible software design and documentation.

The Value of a Visual Approach
A software model is a collection of diagrams that describe how a software-based system behaves and
interacts with the world around it. A software model can depict precise interactions between the
system and entities such as users, PCs, mainframes, servers, and other software. A software model
can also depict object-oriented components such as events, objects, and classes. Some examples of
software systems that can be modeled using UML include computer games, library information
systems, and a process for assembling microchips.

Build better software
A single model can offer different views that provide a big-picture look at how complex components
interrelate. Or it can help developers focus on one aspect of development. The simple act of abstraction
required to specify the design up-front can enable developers to think more clearly about a problem and
visualize unexpected solutions. Whether used as part of a formal process or informally on a case-by-
case basis, Visio 2000 developer tools—with built-in, comprehensive support for UML-based software
design—can expose better ways to build applications, reveal errors and mistaken assumptions, and help
developers clarify their ideas and understand all parts of a project.

Meet project requirements
Graphical models are a proven means for conveying complex concepts to various audiences. Like
flowcharts, software diagrams act as visual checkpoints to ensure that a system’s design meets
requirements and customer expectations. Using the Visio 2000 developer tools for UML, teams can
create complete documentation that supports reusable code components, enhances project planning,
and helps achieve buy-in from management, marketing, and others. Initial and ongoing diagramming
can enhance communication with end users and team members to ensure that project requirements
are met.

Save time and money
Software designs can be created before coding begins and they can be updated and extended through-
out development. Because it enables developers to capture requirements early, a visual view of the
software can shorten development cycles and save money by preventing costly design errors. Powerful
tools like Visio 2000 can even reverse engineer legacy code into a visual model. This enables develop-
ers to more rapidly understand the structure of existing code and more easily enhance earlier versions.
In addition, Visio 2000 provides dynamic, language-specific error checking for more efficient compiling.

Developer Tools for UML 3

Enhance collaboration
Another feature of high-performance modeling and documentation tools like Visio 2000 Enterprise
Edition is the ability to export models and their component parts to a storehouse called a repository.
Once in the repository, the model can be easily accessed by other developers using any compatible tool.
Visio 2000 program’s support for documenting and diagramming software in the major object-oriented
notations further ensures that developers divided by department, function, time, or geography can easily
share diagrams and work together.

Make diagramming easy
Drag-and-drop shapes and automated, intuitive drawing tools enable any developer to start diagramming
instantly. Intelligent shapes—organized by diagram type for quick access—are preprogrammed to behave
like the objects and classes they represent. When you change the attributes in one instance of a shape,
its attributes change in all instances automatically. The UML Navigator window shows elements in a
tree structure for quick overviews and easy drill-downs. The Microsoft Visio 2000 interface integrates
standard Microsoft Windows® commands and features. Comprehensive online help for the Visio 2000
application and its UML solution is built-in.

Microsoft Visio 2000 developer tools make it possible
The Visio 2000 developer tools provide full-fledged support for documenting, designing, and developing
software applications using UML. Although Visio 2000 drawing tools are renowned for their ease of use
and informality, Visio 2000 diagrams can also be built upon complex underlying models and used to
convey rigorous, precise meanings. Developers who need a quick solution for visualizing existing and
proposed systems—as well as developers who want a modeling solution that enables them to design
first and then generate code—will find the ideal solution in Visio 2000.

The Unified Modeling Language in Microsoft Visio 2000
The Unified Modeling Language (UML) is used to specify, construct, visualize, and document a software
system. A model is an abstraction that reveals all or part of the system from a specific perspective. A
model typically refers to a particular phase of development. Like blueprints, UML models help teams
visualize a system’s architecture. One system may include many diagrams. UML notation, meanwhile, is
a kind of visual vocabulary. Its shapes and symbols allow the user to create diagrams, each of which
provides a unique view of a model. UML notation enables the creation of these eight diagram types.

Visio 2000 Professional Edition and Enterprise Edition are ideal for modeling, diagramming, and
documenting software using all UML diagram types. The following scenario demonstrates how the
structure of a particular software system can be more effectively visualized using UML diagrams created
in Visio 2000.

Diagram Type Purpose
Use Case Shows someone or something interacting with the system.
Static Structure (Class) Describes the static view of a system in terms of classes and relationships.
Sequence Shows how objects interact with each other over time.
Collaboration Shows the relationships and interactions between particular objects.
Statechart Shows the sequence of states that an object can go through.
Activity Captures actions and their results in terms of changes in objects� states.
Component Shows how high-level software components make up the system�s structure.
Deployment Shows how hardware and software in the system are physically configured.

Developer Tools for UML 4

UML Design Scenario: A Car Rental Software System
This scenario discusses how the eight UML diagram types might be used to model a car rental agency’s
software system. Beginning with three simple use cases, the examples capture the core processes in
the system.

Use case diagram
A use case specifies an interaction between an actor and the system. One property of a use case is
that it achieves a goal for an actor. A typical software system might include hundreds of simple use
cases. Some use cases applicable to the rental agency’s system are:

I. Customer reserves car

Before obtaining a car, a customer must make a reservation. The
customer contacts the rental agency and makes a request. The
agency accepts or declines the request based on a number of
criteria, such as the availability of cars or the customer’s rental
history. If the reservation is accepted, the agency completes a form
containing customer details. Payment of a deposit completes the
reservation.

II. Customer picks up car
When the customer arrives at the agency, the model of car the
customer requested is allocated, depending on current stock levels.
After paying the full fee, the customer receives the car.

III. Customer returns car
The customer returns the car to the agency on the day specified in the rental agreement.

Static structure (class) diagram
The next task is to classify the objects involved and their relationships. Examining use cases helps

identify classes. Classes of objects are modeled using static
structure diagrams that show the overall structure of the system,
as well as relational and behavioral properties.

In a class diagram (Figure 2), the objects involved in the car rental
system are grouped into classes. Each class contains a name
section and an attribute section. Some classes also include an
operations section, which specifies how objects within that class
may behave.

In the Customer class, attributes include name, phone number,
and address. The date of birth is required to determine that the
customer meets the minimum age requirement to rent a vehicle.
The rental company must also record each customer’s driver’s
license number. The Customer class also stores operations, such
as reserves.

Class diagrams support inheritance. In Figure 2, for example, the Mechanic and Rental Agent classes
inherit attributes like name and address from the Employee class.

Figure 2: Static structure (class) diagram.
Visio 2000 supports the creation of inte-
grated system models based on UML 1.2
notation. UML Properties dialog boxes al-
low the user to easily add or change at-
tributes, operations, and other properties
of UML elements. In Microsoft Visio 2000
Enterprise Edition, developers can gener-
ate fully customizable Microsoft Visual
Basic, C++, and Java code skeletons from
class diagrams.

Figure 1: Use case diagram. The Visio
2000 UML solution provides a complete li-
brary of SmartShapes symbols for all eight
UML diagram types. Users drag and drop
the intelligent shapes onto the page to rep-
resent elements in UML notation. The
shapes are programmed to behave in ways
that are consistent with UML semantics.

Car Rental
System

Customer

Reserves
Car

Picks Up
Car

Returns Car

Car Rental
System

Customer

Reserves
Car

Picks Up
Car

Returns Car

Developer Tools for UML 5

Sequence diagram
A sequence diagram shows an interaction arranged in a time
sequence. The participants are shown as lifelines with messages
passing between them. Sequence diagrams are drill-down views
of use cases, but they show the flow of messages from a different
viewpoint. Sequence diagrams help to document the flow of logic
within an application. In a comprehensive software system, the
sequence diagram can be quite detailed and can include thou-
sands of messages.

Suppose that a customer wishes to reserve a car (Figure 3). The
rental agent must first check the customer’s records to ensure
that the customer may do so. If the customer has rented a car

from the company before, his or her rental history will already be recorded and the agent need only
ensure that all previous transactions ran smoothly. For example, the agent can confirm that the
customer’s previous rental cars were returned on time. Once the customer’s rental status is approved,
the car can be rented.

Collaboration diagram
A collaboration diagram is
another type of interaction
diagram. Like a sequence
diagram, it shows how a group
of objects in a use case
collaborate with one another.
In a collaboration diagram,
each message is
numbered (Figure 4).

Statechart diagram
An object’s state is defined as its attributes at a
particular moment. Objects move through various
states as they are influenced by outside stimuli. In
this example, the object is a car (Figure 5). As it
moves through the rental system, its many states
produce a complex but illuminating diagram.

For example, a car is first added to the fleet. It
remains in the state InStock until it is rented.
After renting, it is returned to the fleet and to the
InStock state. At various times in its commercial
life, the car may require repairs (InService). When

the car reaches the end of its usefulness, it is either sold or
scrapped to make way for a new vehicle. The statechart diagram
maps these states, as well as the triggering events that cause
the object to be in a particular state.

Activity diagram
An activity diagram is essentially a flowchart showing the logic that
occurs in response to internally generated actions. An activity
diagram relates to a specific class or use case, showing the steps
involved in carrying out a particular operation (Figure 6).

Figure 4: Collaboration diagram. As in
a sequence diagram, interactions between
objects are shown in order of occurrence.
Yet in a collaboration diagram, time is less
important than demonstrating which objects
interact with each other.

Customer 1. Contacts 2. Fills InRental Agent Rental Agreement

Deposit Car

Figure 5: Statechart diagram. The life
of a car as it might appear in a UML model of
a rental agency’s software system. At any
given moment, the car must be in one of the
states shown; arrows represent transitions
between states. Microsoft Visio 2000 Enter-
prise Edition checks UML models for seman-
tic errors, including circular references and
missing data.

Request()

CheckCarAvailability()

ApproveRental()

Update_carstatus()

CheckHistory()

Figure 3: Sequence diagram show-
ing one use case (Customer reserves car)
over time. The sequence of events is read
from top to bottom. Objects are shown in
boxes across the top. Each object’s life-
time, shown as a dotted line, extends
downward through time. The time period
in which an object is performing an action
is shown as a vertical bar; messages flow
horizontally between objects.

Figure 6: Activity Diagram. The logic
flow starts at the black dot at top. A cus-
tomer requests a rental car, and the rental
agent checks the customer’s details and
history. If the customer has been identified
as one the company will not rent to, a
refusal screen is displayed to the rental
agent. The customer does not rent a car
and the logic proceeds to a final state,
shown by the black dot at lower right. If
the rental is approved, a rental agreement
is completed, the deposit is paid, and the
logic again proceeds to the final state.

Sold/
Scrapped destroyed

rent

overdue return

back to stock

to service

add to stock InStock InRental

Overdue

InService

EvaluateCar

on
-t

im
e

re
tu

rn

de
st

ro
ye

d
by

 c
us

to
m

er

due date passed

dispose

Developer Tools for UML 6

Figure 7: Component diagram. These
subsystems comprise the rental software
system.

Figure 8: Deployment diagram. The
client-server architecture makes it possible
for different classes of users to access
and update the data in a central
database.

Component diagram
The software system is built on a centralized
database containing past rental records, car
details, service records, and customer and
employee details. It is critical that this data be
centralized in one database, because stock levels
vary by the hour and all parties must have up-to-
the-minute information. Keeping the data current
requires real-time updating of information by all
parties. A component diagram shows how various

software subsystems make up the overall structure of the system (Figure 7). The subsystems include
Car Records, Service Records, Sales Records, Customer Records, and Employee Records.

Deployment diagram
A deployment diagram shows how the
hardware and software in the system are
configured. The rental agency needs a
client-server system with a central
database of records that the staff can
access. Rental agents need access to
the data on vehicle availability. Mean-
while, mechanics need to be able to flag
a particular car as being InService.

Microsoft Visio 2000 Developer Tools:
Two Levels of UML Support
Visio 2000 offers full support for creating object-oriented software system models. The Visio 2000
solution includes these features to help developers get up and running quickly:

· comprehensive support for UML 1.2

· complete library of SmartShapes® symbols for all UML diagram types

· shapes organized by diagram type for quick access

· automated, intuitive approach to drawing

· standard Microsoft Windows interface, commands, and features

· smooth integration with Microsoft Office

· built-in Microsoft Visual Basic® for Applications (VBA) 6.0 for creating custom solutions

· support for documenting and diagramming systems in all major object-oriented notations,
including Booch, Rumbaugh, Jacobson, Shlaer-Mellor, Yourdon and Coad, OLE, and COM.

Two-tiered functionality meets every team’s needs
Microsoft Visio 2000 Professional Edition and Enterprise Edition provide IT professionals with two
levels of functionality for designing and documenting enterprise-level software applications and with
two levels of integration with UML.

· Microsoft Visio 2000 Professional Edition is best used for visualizing the structure of existing
and proposed software systems. It supports UML 1.2 notation and reverse engineering to
UML diagrams.

· Microsoft Visio 2000 Enterprise Edition is ideal for designing software and leveraging software
diagrams to jump-start development by means of code generation. It includes complete Profes-
sional Edition functionality, as well as code generation, Microsoft Repository, and additional
UML support.

Sales &
Service

Server

Interface 1

Mechanics�
Screens

Client2

Agents� Screens

Client1

Rental Application

Employee Records

Customer Records
Sales Records

Car Records

Service Records

Developer Tools for UML 7

Both Visio 2000 Professional Edition and Enterprise Edition provide:
UML 1.2 notation support
Predefined templates and nearly 90 SmartShapes symbols representing UML elements enable the
construction of all UML diagram types. Also included are more than 250 additional methodology-specific
shapes, preprogrammed to behave according to the rules of each methodology.

UML Navigator
The UML Navigator allows developers to create,
view, and manage a system’s entire set of models
and diagram types by using a hierarchical tree. The
UML Navigator enables developers to move quickly
from one diagram to another and to view a
model’s complete structure while working on a
single diagram type. Model elements can be
added, deleted, and renamed directly in the
Navigator, and these changes are immediately
reflected in the elements on the drawing page. By
dragging and dropping items from the tree onto
the drawing page, users can display only the

components they want to manipulate. When a developer creates a UML static structure diagram by
reverse engineering a Microsoft Visual Studio® project, the model elements appear automatically in the
UML Navigator.

Reverse engineering to UML diagrams
The ability to auto generate diagrams from
Microsoft Visual C++®, Microsoft Visual J++®, and
Visual Basic source code to generate UML static
structure diagrams allows developers to easily
document their software projects before handing
them off, or to understand the structure of legacy
systems before embarking on system updates.
Following installation of either Visio 2000
Professional Edition or Enterprise Edition, Visual
Studio toolbars can be customized to show a Visio
2000 toolbar that provides on-demand reverse
engineering (Figure 10). This approach enables
Visio 2000 developer tools to access information
directly from the integrated development environ-
ment (IDE), yielding accurate UML models.

UML Properties dialog box
Developers can easily add attributes, operations,
and other properties to UML elements, and they
can add discretionary values (called tagged
values) to any UML element (Figure 11).

Extensive online and UML-specific help
Both Visio 2000 Professional Edition and
Enterprise Edition include the entire UML 1.2
specification for printing and reference. The
context-sensitive, online Help provides quick
access to UML-specific definitions, as well as help
on Visio 2000 shapes, specific diagram types, and
UML property values.

Built-in Microsoft Visual Basic for Applications 6.0 (VBA)
Developers can use VBA to easily customize existing solutions and build custom applications.

Figure 9: The Visio 2000 interface.
The UML Navigator, at right, gives devel-
opers a hierarchical view of all the ele-
ments in a model. UML diagram-specific
stencils provide nearly 90 intelligent, drag-
and-drop shapes—each programmed to
behave like the UML element it repre-
sents. The easy, Microsoft Windows–based
interface reduces ramp-up time and in-
creases productivity.

Figure 10: Visio toolbar in Microsoft
Visual Studio. On-demand generation
of software diagrams enables developers
to get a visual view of their software
directly from the integrated development
environment.

Figure 11: UML Properties dialog
box. Developers can easily add attributes
and discretionary values to UML elements.

Developer Tools for UML 8

Microsoft Visio 2000 Enterprise Edition also provides:
Microsoft Repository 2.0 support
Visio 2000 Enterprise Edition provides full, integrated compatibility with Microsoft Repository 2.0.
Support for Microsoft Repository allows users to compare and exchange diagrams and to import and
export information models regardless of the platform or modeling tool. Developers can easily pass UML
static structure models to and from Microsoft Repository for use in other visual modeling and CASE
(computer-aided software engineering) development tools.

Code generation
Microsoft Visio 2000 Enterprise Edition not
only allows users to automatically generate
diagrams from source code. It also generates
fully customizable Visual Basic, C++, and Java
code for any diagram that contains class
definitions. Fully customizable default tem-
plates for code formatting are provided.
Developers can select preferences like
language, classes, initializers, finalizers,
attributes, operations, and relationships to
determine the formatting and structure of the
resulting code (Figure 12). They can choose
whether to customize code on a per-class or

full-project basis before it is generated.

Dynamic semantic error checking
Microsoft Visio 2000 Enterprise Edition dynamically checks UML models for semantic accuracy to help
developers diagnose and fix errors as they work. For example, Enterprise Edition can detect circular
references, missing data, and improper use of UML notation. It can identify two elements that have been
assigned the same name, and it can check many other UML syntax rules. When an error is detected, the
associated item in the diagram is displayed in red, and its icon in the UML Navigator is selected. An error
message automatically appears on the Errors tab in the Status window, guiding the engineer toward a fix.

Language-specific code checking
Users can identify potential compilation errors by checking the syntax in models based on the
target language.

Reports
Software designers and developers can create customizable reports from UML static structure, activity,
and deployment diagrams, and print or export them as Rich Text Format (RTF) files.

Microsoft Visio 2000 and Microsoft Repository
Microsoft Repository is a software tool in which object-oriented software models can be stored,
retrieved, and exchanged. UML models stored in Microsoft Repository retain all the objects, interfaces,
data types, properties, and relationships expressed in object-oriented programming languages. The
repository manages storage, versions, and access for elements using check-in and check-out proce-
dures. Once a model is stored, engineers can access it with any CASE tool that supports the reposi-
tory—such as Microsoft Visio 2000 Enterprise Edition, Microsoft Visual Studio, and Rational Rose—to
rapidly generate framework code directly from model components. Teams using different modeling or
development tools can freely exchange and build on UML components and class diagrams.

In addition, Microsoft Repository 2.0 includes important team-based development features. Teams can
maintain multiple versions of the same models to create a historical record of changes. They can freeze
components against changes, and they can version or group objects. These features allow individuals
to develop a single software application in multiple, independent streams and then recombine the
streams when needed.

Figure 12: Code Generation Prefer-
ences dialog box. Developers can cus-
tomize the structure and format of Visual
Basic, C++, and Java code generated in
Visio 2000 Enterprise Edition.

Developer Tools for UML 9

Conclusion
In addition to the software design, documentation, and code generation described in this paper, both
Microsoft Visio 2000 Professional Edition and Enterprise Edition can be used to produce comprehen-
sive supporting documentation for all aspects of software system development, including project time
lines, data flow diagrams, database models, business process diagrams, and Microsoft Windows
interface design. The resulting diagrams can be printed, pasted into Microsoft Office documents,
published in HTML, or saved in a number of graphics formats to be included in specifications, reports,
and presentations.

For More Information
To see Visio 2000 in action, visit www.microsoft.com/office/visio.

The information contained in this document represents the current view of Visio Corporation and Microsoft Corporation on the issues
discussed as of the date of publication. Because Visio Corporation and Microsoft must respond to changing market conditions, it should not
be interpreted to be a commitment on the part of Visio Corporation or Microsoft Corporation, and neither Visio Corporation nor Microsoft
Corporation can guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. VISIO CORPORATION AND MICROSOFT CORPORATION MAKE NO WARRANTIES, EXPRESS
OR IMPLIED, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document
may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical,
photocopying, recording, or otherwise), or for any purpose, without the express written permission of Visio Corporation or Microsoft Corporation.

Microsoft Corporation may have patents, patent applications, trademarks, copyrights, or other intellectual-property rights covering subject
matter in this document. Except as expressly provided in any written license agreement from Visio Corporation or Microsoft Corporation, the
furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

The example companies, organizations, products, people, and events depicted herein are fictitious. No association with any real company,
organization, product, person, or event is intended or should be inferred.

©2000 Microsoft Corporation. All rights reserved.

Microsoft, the Four Shapes logo, the Office logo, SmartShapes, Visio, Visual Basic, Visual C++, Visual J++, Visual Studio, and Windows are either
registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners. Part No. 098-88444

