Object Strategies: How They Compare

Object Model

Requirement�
Description and Explanation�
Microsoft

OLE�
IBM

SOM�
IBM

DSOM�
IBM/Apple

Open-

Doc�
HP

DOMF�
SUN

DOE�
NeXT

NeXT�
Taligent

Taligent3�
Novell

Appware4�
OMG

CORBA5�
�
Shipping Applications�
Interoperable, commercially available shrink-wrapped software�
��
��
�
��
�
�
��
�
�
��
�
Available on MS WindowsTM Family�
Interoperable, cross-platform support �
��
��
��
��
�
�
�
��
��
��
�
Available on Apple® Macintosh® System 7�
Interoperable, cross-platform support�
��
��
�
��
�
�
�
��
��
��
�
Available on UNIX®�
Interoperable, cross-platform support�
��
��
��
��
��
��
��
��
��
��
�
Application Framework1�
Class libraries to ease development�
��
��
��
��
�
�
��
��
��
�
�
High-Level Language

Support�
Shipping tools for end-user �object scripting�
��
�
�
��
�
�
�
�
��
�
�
Reusable Controls�
Lightweight, reusable components�
��
�
�
�
�
�
��
�
��
�
�
Object Persistence�
Rich object storage, beyond simple streams, including built-in file support for compound docs.�
��
�
�
��
��
��
�
�
�
�
�

Compound Document Support�
 Linking, embedding, drag/drop between apps, in-place editing, multiple nested objects�
��
�
�
��
�
�
�
�
�
�
�
�
Object scripting support�
��
�
�
��
�
�
�
�
�
�
�
Packaged Application�
Objects can be shared between processes�
��
�
�
�
�
�
��
�
�
�
�
Integration2�
Cross-application Object scripting�
��
�
�
��
�
�
�
�
�
�
�
Language Independent

Binding�
Binary standard for �connecting objects�
��
��
��
��
��
��
��
�
�
��
�
In-Process Model�
Supports objects in same address space�
��
��
�
��
�
�
��
�
�
�
�
Out-of-Process Model�
Different address space�
��
�
��
�
��
��
��
�
�
��
�
Distributed Model�
Different machine, different address space�
��
�
��
�
��
��
��
�
�
��
�
Robust System Object

Model�
Unique object IDs, object versioning, and thread model (no object deadlocks)�
��
�
�
�
��
��
�
�
�
�
�
DCE-Compatible RPC

System�
Communication channel �between processes�
��
�
�
�
��
�
�
�
�
�
�
Distributed Security

System�
Protection against tampering, modification�
��
�
�
�
��
��
��
�
�
�
�
KEY: 	 �				�				 � 		 BLANK		(1,2,3,4,5: Please see following page for notes)

		Shipping	Distributed to developers/or in beta testing		Promised	No Announced Plan�
Notes

1. Application Frameworks. The Microsoft Foundation Classes (MFC) are available today with complete support for building OLE 2.0-enabled objects. MFC ships with many C++ compilers and toolsets, including Microsoft Visual C++, Bluesky, Metaware, Symantec and Watcom. Borland and others will soon be supporting OLE 2.0 development in other popular application frameworks/development tools. Apple has stated that OpenDoc “parts” development will be supported by the OpenDoc Parts Framework (formerly the Bedrock framework), which is still under development.

2. Packaged Application Integration. OLE supports complete packaged application integration. A standalone, shrink-wrapped application can supply other shrink-wrapped applications with objects, and can incorporate objects from other applications. These objects can be freely shared between executable programs (across address spaces). OpenDoc will not allow objects to be shared in this manner. Instead, application vendors will have to create separate “parts” that are special versions of application objects to be used in compound documents. Special vendor-supplied “part handlers” will then load into the address space of a generic container that typically is to be supplied by the system vendor.

The implications are significant. Under OpenDoc, software vendors must create and distribute a set of parts that can be incorporated into the generic OpenDoc container (typically supplied by the system vendor). This is a radical shift in the software distribution model, and raises questions about the cost, support and eventual availability of OpenDoc-enabled applications. Unlike OLE, two different container applications cannot be integrated by users because OpenDoc does not allow objects to be shared scross different address spaces.

Even to display and print objects within a compound document, an OpenDoc application will have to load a special “part viewer” for each type of object the document contains. OLE-enabled applications can display objects within documents with no additional code loaded, since OLE displays and prints a graphical image of each object. Under OpenDoc, if a user creates a document with an embedded spreadsheet, for example, other users will not be able to display or print the document unless they also have the special “part viewer” for that spreadsheet installed on their machine. A different part viewer is required for each type of application-specific object within a compound document. Using OLE, a user can display and print a compound document even if the applications used to create the embedded objects are not installed on the machine. These applications are only needed when the user wants to edit the embedded objects.

In addition, an OpenDoc “part” can crash an entire application/compound document since all the parts load into one monolithic application within a single address space. OLE objects, on the other hand, receive their own, protected address spaces with complete transparency provided by the OLE system software.

3. Taligent. Taligent’s first released products will not include a complete object system model with accompanying object-enabling system software. Rather, Taligent plans to release an object-based application framework (class libraries).

4. Appware. Novell Appware will not be an object system model, and will provide no object-enabling system software. Rather, Appware will be a ‘virtual’ API to provide source code portability of applications across various platforms. The Appware development framework and environment will not be object-oriented or object-based, although the Appware API itself will be defined in C++.

5. CORBA. CORBA is a specification, not a shipping product. CORBA does not define all of the required elements to provide a working, cross-platform object model (it defines only about 15% of the required functionality). Therefore, no two shipping products that claim CORBA-compliance can interoperate using even basic CORBA-defined object services. Although there are “CORBA-compliant” products available, because none can interoperate with each other using the CORBA specification, platform support and shipping applications are listed as “promised” in all cases.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Information on other vendor’s products is based on publicly available information as of the date of this publication, and is subject to change. Because Microsoft must respond to changing market conditions it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This Document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESSED OR IMPLIED, IN THIS DOCUMENT. Copyright 1993 Microsoft Corporation. All rights reserved.

Microsoft is a registered trademark and Windows and Windows NT are trademarks of Microsoft Corporation.

Apple and Macintosh are registered trademarks, and OpenDoc is a trademark of Apple Computer, Inc.

UNIX is a registered trademark and Appware is a trademark of Novell, Inc.					Part No. 098-55636

