Compiler Utilization: Tracking and

Reporting

<|lI!

Compiler Utilization: Tracking and

Reporting

<|lI!

Note
FBefore using this information and the product it supports, read the information in ['Notices” on page 41|

Second edition

This edition applies to IBM XL C/C++ Enterprise Edition for AIX, V9.0 with the November 2010 PTE, IBM XL
C/C++ for AIX, V10.1 with the October 2010 PTF , IBM XL C Enterprise Edition for AIX, V9.0 with the November
2010 PTE, IBM XL C for AIX, V10.1 with the October 2010 PTF, IBM XL Fortran Enterprise Edition for AIX, V11.1
with the November 2010 PTF or IBM XL Fortran for AIX, V12.1 with the October 2010 PTF.

© Copyright IBM Corporation 2010.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About thisdocumentV

ConventionsV
Documentation. vii
Technical supportvii

Chapter 1. Tracking and reportlng
compilerusage a1

Chapter 2. Prerequisites for tracking and
reporting your compiler utilization . . . 3

Chapter 3. Understanding utilization
tracking and reporting .. .5
Overview5
Four usage scenarios. . 6
Scenario: One machine, one shared cuf f11e . 6
Scenario: One machine, multiple .cuf files. . . .8
Scenario: Multiple machines, one shared .cuf file 10
Scenario: Multiple machines, multiple .cuf files 12

Chapter 4. Preparing to use this feature 15

Time synchronization15
License types and user mformatlon15
Central configuration15
Concurrent user considerations.16
Usage file considerations17

Usage file location17

© Copyright IBM Corp. 2010

The number of usage files17
Usage files on multiple machines18
Usage file size . . . I &
Regular utilization checkmg B

Chapter 5. Testing utilization tracking 21

Chapter 6. Configuring utilization
tracking 23

Editing utilization tracking conflguratlon flle entries 23

Chapter 7. Understanding the
utilization reportingtool 27
Utilization reporting tool command-line options . . 27

Chapter 8. Generating usage reports 33
Understanding usage reports33

Chapter 9. Pruning usage files 37

Chapter 10. Diagnostic messages from
utilization tracking and reporting . . . 39

Notices4

Trademarks and service marks43

iii

iv Compiler Utilization: Tracking and Reporting

About this document

This document contains overview and basic usage information for the compiler
utilization and reporting feature for the IBM® XL C/C++ for ATX® compiler, V9.0
or V10.1, the IBM XL C for AIX, compiler V9.0 or V10.1, or the IBM XL Fortran for
AIX, compiler V11.1 or V12.1.

Who should read this document

This document is intended for people who want to track XL C, XL C/C++ or XL
Fortran compiler utilization in their organization and produce reports about their
compliance with their license requirements for concurrent users. To track and
create reports about your compiler utilization, you must have installed the
appropriate compiler PTF and have downloaded the associated shared library and
reporting tool. For details, see [Chapter 2, “Prerequisites for tracking and reporting]
[your compiler utilization,” on page 3|

How to use this document

Throughout this document, the xlf, xlc and xlc++ compiler invocations are used to
describe the actions of the compiler. You can, however, substitute other forms of
the compiler invocation command if your particular environment requires it, and
compiler option usage will remain the same unless otherwise specified.

The XL compilers provide several compiler invocation commands depending on
source code languages and language levels. However, for convenience, this
document uses only the basic xlc, xlc++, or x1f, invocation commands.

While this document covers information on the compiler utilization tracking and
reporting feature of the compilers, you will need to access the main library of
documentation for all other compiler information.

Conventions

© Copyright IBM Corp. 2010

Typographical conventions

The following table explains the typographical conventions used in this document.

Table 1. Typographical conventions

Typeface Indicates Example

bold Lowercase commands, executable |The compiler provides basic
names, compiler options, and invocation commands, xl¢, x1C
directives. (xle++) or xIf, along with several

other compiler invocation commands
to support various programming
language levels and compilation

environments.
italics Parameters or variables whose Make sure that you update the size
actual names or values are to be | parameter if you return more than
supplied by the user. Italics are the size requested.

also used to introduce new terms.

vi

Table 1. Typographical conventions (continued)

Typeface

Indicates

Example

underlining

The default setting of a parameter
of a compiler option or directive.

nomaf | maf

monospace

Programming keywords and
library functions, compiler builtins,
examples of program code,
command strings, or user-defined
names.

To compile and optimize
myprogram.C, enter: x1C myprogram.c
-03.

Qualifying elements (icons)

Most features described in this information apply to C, C++ and Fortran
languages. In descriptions of language elements where a feature is exclusive to one
language, or where functionality differs between languages, this information uses
icons to delineate segments of text as follows:

Table 2. Qualifying elements

Qualifier/Icon

Meaning

C compiler

The text describes a feature that is only for the XL C compiler

C++ compiler
C++

The text describes a feature that is only for the XL C/C++ compiler

Fortran compiler

The text describes a feature that is only for the XL Fortran compiler

Syntax diagrams

Throughout this information, diagrams illustrate compiler syntax. This section will
help you to interpret and use those diagrams.
* Read the syntax diagrams from left to right, from top to bottom, following the
path of the line.
The »»—— symbol indicates the beginning of a command, directive, or statement.
The — symbol indicates that the command, directive, or statement syntax is
continued on the next line.
The »— symbol indicates that a command, directive, or statement is continued
from the previous line.
The —< symbol indicates the end of a command, directive, or statement.
Fragments, which are diagrams of syntactical units other than complete
commands, directives, or statements, start with the |— symbol and end with
the —| symbol.
* Required items are shown on the horizontal line (the main path):

»»>—keyword—required argument

* Optional items are shown below the main path:

»»—keyword

|—opt ional_argumen t—l

: Compiler Utilization: Tracking and Reporting

* If you can choose from two or more items, they are shown vertically, in a stack.

If you must choose one of the items, one item of the stack is shown on the main
path.

»—keyword—[requi red_argumentl >
required_argumen t2—|

If choosing one of the items is optional, the entire stack is shown below the
main path.

»»>—keyword
|:<O)ptiona l_argumen tl:‘

ptional_argument2

A\
A

e An arrow returning to the left above the main line (a repeat arrow) indicates
that you can make more than one choice from the stacked items or repeat an
item. The separator character, if it is other than a blank, is also indicated:

v

»»—keyword

A\
A

repeatable_argument

¢ The item that is the default is shown above the main path.

A\
A

efault_argumen t—|
»»—keyword lternate_argument

* Keywords are shown in nonitalic letters and should be entered exactly as shown.

* Variables are shown in italicized lowercase letters. They represent user-supplied
names or values.

* If punctuation marks, parentheses, arithmetic operators, or other such symbols
are shown, you must enter them as part of the syntax.

Sample syntax diagram

The following syntax diagram example shows the syntax for the #pragma
comment directive.

(1) (2) (3) (4) (5) \ (9) (10)

prag omment. (ompiler:

at
timestamp
(6)
copyright:
aser— I_ (7) (8)

"—token_sequence—"

Notes:
This is the start of the syntax diagram.
The symbol # must appear first.
The keyword pragma must appear following the # symbol.

1
2
3
4 The name of the pragma comment must appear following the keyword pragma.
5 An opening parenthesis must be present.

6

The comment type must be entered only as one of the types indicated:
compiler, date, timestamp, copyright, or user.

About this document Vil

7 A comma must appear between the comment type copyright or user, and an
optional character string.

8 A character string must follow the comma. The character string must be
enclosed in double quotation marks.

9 A closing parenthesis is required.

10 This is the end of the syntax diagram.
The following examples of the #pragma comment directive are syntactically correct
according to the diagram shown above:

#pragma comment (date)

#pragma comment (user)
#pragma comment (copyright,"This text will appear in the module")

Documentation

Documentation for this feature of the XL compilers is provided in the following:

* There is an installable man page for the utilization reporting tool that is
available with the download.

¢ This PDF file.

There is a library of documentation available for your compiler. This includes both
an information center of searchable HITML files and PDF documents. The library
pages also include links to IBM Redbooks® publications, white papers, tutorials,
and other articles. You can find links to these from your compiler library pages at:

+ XL C for AIX library pagel

+ XL C/C++ for AIX library page|

* XL Fortran for AIX library page|

e For C/C++ users, there is additional information about boosting performance,

productivity, and portability on the |C/C++ café

Technical support

viii

Additional technical support is available from the compiler support page for your
compiler:

+ XL C for AIX support]

+ XL C/C++ for AIX support|

+ XL Fortran for AIX support]

This page provides a portal with search capabilities to a large selection of
Technotes and other support information.

If you cannot find what you need, you can send e-mail to compinfo@ca.ibm.com.

For the latest information about your compiler, visit the product information site
at:

e XL C for AIX

« XL C/C++ for AIX|
* XL Fortran for AIX|

: Compiler Utilization: Tracking and Reporting

http://www.ibm.com/software/awdtools/xlc/aix/library/
http://www-01.ibm.com/software/awdtools/xlcpp/aix/library/
http://www-01.ibm.com/software/awdtools/fortran/xlfortran/aix/library/
http://www-949.ibm.com/software/rational/cafe/community/ccpp
http://www.ibm.com/software/awdtools/xlc/aix/support/
http://www.ibm.com/software/awdtools/xlcpp/aix/support/
http://www.ibm.com/software/awdtools/fortran/xlfortran/aix/support/
http://www-01.ibm.com/software/awdtools/xlc/aix/
http://www-01.ibm.com/software/awdtools/xlcpp/aix/
http://www-01.ibm.com/software/awdtools/fortran/xlfortran/aix/

Chapter 1. Tracking and reporting compiler usage

You can use the utilization tracking and reporting feature to record and analyze
which users in your organization are using the compiler and the number of users
using it concurrently. This information can help you determine whether your
organization's use of the compiler exceeds your compiler license entitlements.

To use this feature, follow these steps:

1. Understand how the feature works. See [Chapter 3, “Understanding utilization|
[fracking and reporting,” on page 5| for more information.

2. Investigate how the compiler is used in your organization, and decide how you
track the compiler usage accordingly. See [Chapter 4, “Preparing to use this|
[feature,” on page 15| for more information.

3. Configure and enable utilization tracking. See [Chapter 6, “Configuring|
[utilization tracking,” on page 23| for more information.

4. Use the utilization reporting tool to generate usage reports or prune usage files.
See [Chapter 8, “Generating usage reports,” on page 33| or [Chapter 9, “Pruning]
[usage files,” on page 37| for more information.

© Copyright IBM Corp. 2010 1

2 Compiler Utilization: Tracking and Reporting

Chapter 2. Prerequisites for tracking and reporting your
compiler utilization

Ensure that you have the correct compiler versions and PTFs installed. You also
need to download and install the Tibutll.a shared library and the urt binary file.

To install the PTFs and the associated download packages, you must have root
access.

Compiler PTFs

The compilers and the associated PTF level that can use this feature are:

e IBM XL C for AIX, V10.1 with October 2010 PTF

e IBM XL C/C++ for AIX, V10.1 with October 2010 PTF

e IBM XL Fortran for AIX, V12.1 with October 2010 PTF

* IBM XL C Enterprise Edition for AIX, V9.0 with November 2010 PTF

* IBM XL C/C++ Enterprise Edition for AIX, V9.0 with November 2010 PTF
* IBM XL Fortran Enterprise Edition for AIX, V11.1 with November 2010 PTF

Utilization tracking library download

To track compiler utilization, you must download a shared library. The 1ibutll.a
shared library is contained in the 1ibutll fileset. This fileset is contained in the
Tibutll.tar.Z download. The download site is |http://www-01.ibm.com/support/|
[docview.wss?uid=swg24027640}

This download includes the following installp filesets:
libut11
libut1l.licAgreement

It also contains License Agreement PDF files and a README file. The shared
library installs into the /usr/1ib/1ibutll/ directory.

Utilization reporting tool download

To generate reports on compiler utilization, you must also have installed the
utilization reporting tool. The urt binary file and its associated runtime library,
message catalogs, man pages and readme files are contained in the urtll.tar.z
download. This tool is available from the download site

This download includes the following installp filesets:
urtll
urt.man.Lang where Lang is the language locale
urt.msg.Lang

The utilization reporting tool is installed into the /opt/ibmurt/1.1/ directory.

© Copyright IBM Corp. 2010 3

http://www-01.ibm.com/support/docview.wss?uid=swg24027640
http://www-01.ibm.com/support/docview.wss?uid=swg24027640

4 . Compiler Utilization: Tracking and Reporting

Chapter 3. Understanding utilization tracking and reporting

The utilization tracking and reporting feature provides a mechanism for you to
detect whether your organization's use of the compiler exceeds your compiler
license entitlements. This section introduces the feature, describes how it works,
and illustrates its typical usage scenarios.

Overview

© Copyright IBM Corp. 2010

When utilization tracking is enabled, all compiler invocations are recorded in a file.
This file is called a usage file and it has the .cuf extension. You can then use the
utilization reporting tool to generate a report from one or more of these usage files,
and optionally prune the usage files.

You can use the utilization tracking and reporting feature in various ways based
on how the compiler is used in your organization. [“Four usage scenarios” on page|
El illustrates the typical usage scenarios of this feature.

The following sections introduce the configuration of the utilization tracking
functionality and the usage of the utilization reporting tool.

Utilization tracking

A utilization tracking configuration file is included with the compiler PTF that
includes this feature. You can use this file to enable utilization tracking and control
different aspects of the tracking. The name of this file depends on which compiler
version you have installed. For example the following configuration files might be
installed:

. urtx1c0900aix.cfg is shipped with XL C Enterprise Edition for AIX,
V9.0, and urtx1cl00laix.cfg is shipped with XL C for AIX, V10.1

. urtxlc_cpp0900aix.cfg is shipped with XL C/C++ Enterprise Edition
for AIX, V9.0, and urtxTc_cppl00laix.cfg is shipped with XL C/C++ for AIX,
V10.1

. urtx1f110laix.cfg is shipped with XL Fortran Enterprise Edition for
AIX, V11.1, and urtx1f1201laix.cfg is shipped with XL Fortran for AIX, V12.1

A symlink urt_client.cfg is also included in the default compiler installation. It
points to the location of the utilization tracking configuration file. If you want to
put the utilization tracking configuration file in a different location, you can
modify the symlink accordingly.

For more information, see [Chapter 6, “Configuring utilization tracking,” on page|

Note: Utilization tracking is disabled by default.

Utilization reporting tool

The utilization reporting tool generates compiler usage reports based on the
information in the usage files. You can optionally prune the usage files with the
tool. For more information, see [Chapter 8, “Generating usage reports,” on page 33|

and [Chapter 9, “Pruning usage files,” on page 37

Four usage scenarios

6

This section describes four possible scenarios for managing the compiler usage, for
recording the compiler usage information and for generating reports from this
information.

The following scenarios describe some typical ways that your organization might
be using the compiler and illustrates how you can use this feature to track

compiler usage in each case.

Note: Actual usage is not limited to these scenarios.

[‘Scenario: One machine, one shared .cuf file”|

[‘Scenario: One machine, multiple .cuf files” on page §|

[“Scenario: Multiple machines, one shared .cuf file” on page 10|

[“Scenario: Multiple machines, multiple .cuf files” on page 12|

Scenario: One machine, one shared .cuf file

This scenario describes an environment where all the compilations are done on one
machine and all users share one .cuf file.

The advantage of using the approach in this scenario is that it simplifies report
generation and usage file pruning, because the utilization report tool only need to
access one .cuf file. The disadvantage is that all compiler users need to compete
for access to this file. Because the file might become large, it might have an impact
on performance. Some setup work is also required to create the shared .cuf file
and to give all compiler users write access. The [“The number of usage files” on|
section provides detailed information about using a single usage file for all
compiler users.

In this scenario, two compiler users run the compiler on the same machine and
their utilization information is recorded in a shared .cuf file. The utilization
tracking configuration file for the compiler is modified to point to the location of
the .cuf file. When the compiler is invoked, it writes the utilization information to
that file. You can then use the utilization reporting tool to retrieve the utilization
information from the file and generate usage reports.

The following diagram illustrates this scenario.

: Compiler Utilization: Tracking and Reporting

Utilization tracking

@ User: useri Invoke——» Compiler Write
the compiler to file in
| IxXyz
Read
Utilization tracking
configuration file .cuf -«
Read
@ User: user2 Invoke——» Compiler Write
the compiler to file in
Ixyz
Utilization reporting _
Read > Report
‘ report
@ User: user3
Generate
H Invoke urt with -qusagefileloc=/xyz
> urt Read
Relad
urt configuration
file

1. Both userl and user2 need write access to the .cuf file in /xyz.

2. user3 needs read access to the .cuf file in/xyz to generate the usage report, and write access to prune the .cuf
file.

3. A cron job can be created to run urt automatically on a regular basis.

Figure 1. Compiler users use a single machine, with a shared .cuf file

The diagram reflects the following points:

1. userl and user2 use the same utilization tracking configuration file, which
manages the tracking functionality centrally. A common location /xyz is created
to keep a shared .cuf file.

2. When userl and user2 invoke the compiler, the utilization information is
recorded in the .cuf file under the common directory /xyz.

Chapter 3. Understanding utilization tracking and reporting 7

8

3. user3 invokes urt with -qusagefileloc=/xyz to generate usage reports.

Note: Regular running of the utilization reporting tool can prevent these files from
growing too big, because you can prune the usage files with this tool.

Scenario: One machine, multiple .cuf files

This scenario describes an environment where all the compilations are done on one
machine and all users have their own .cuf files.

The approach in this scenario has the following advantages:

* Compiler users do not have to compete for access to a single .cuf file, and this
might result in better performance.

* You do not need to set up write access to a single common location for all
compiler users. They already have write access to their own home directories.

However, using multiple .cuf files that are automatically created in each user's
home directory might have the following issues:

* Compiler users might not know that the file has been created or what it is when
they see the file. In this case, they might delete the file.

* Some users' home directories might be on file systems that are mounted from a
remote system. This causes utilization tracking to use a remote file, which might
affect performance.

* Compiler users might not want .cuf files to take up space in their /home
directories.

Instead of using each user's home directory, the .cuf files for each user can be
created in a common location. The [“Usage file location” on page 17| section
provides detailed information about how to create these files in a common
location.

In this scenario, two compiler users run the compiler on the same machine and
they have their own .cuf files. When the compiler is invoked, it automatically
creates a .cuf file for each user and writes the utilization information to that file.
You can then use the utilization reporting tool to retrieve the utilization
information from the file and generate usage reports.

The following diagram illustrates this scenario.

: Compiler Utilization: Tracking and Reporting

Utilization tracking

@ User: user —Invoke——» Compiler —— Write———» .cuf «—
the compiler to file in
| /home/useri
Read
Utilization tracking
configuration file
Read
@ User:user2 —|nyoke—— Compiler Write > .cuf
the compiler to file in 7Y
/home/user2
Utilization reporting _
Read > Report
‘ report
@ User: user3
Generate
Invoke urt with
-qusagefileloc=/home/user1:/home/user2
Read
> urt
Read
Read

urt configuration
file

1. user3 needs read access to .cuf files in /home/userl and /home/user2 to generate the usage report, and write
access to prune the usage files.

2. A cron job can be created to run urt automatically on a regular basis.

Figure 2. Compiler users use one machine, with separate .cuf files

This diagram reflects the following points:

1. userl and user2 use the same utilization tracking configuration file, which
manages the tracking functionality centrally.

2. When userl and user2 invoke the compiler, the utilization information is
recorded in the two .cuf files under their respective home directories,
/home/userl and /home/user2.

3. user3 invokes urt with -qusagefileloc=/home/userl:/home/user2 to generate
usage reports.

Chapter 3. Understanding utilization tracking and reporting 9

10

Note: If you need to find out which home directories contain usage files, you
can invoke urt as follows:

urt -qusagefileloc=/home -gmaxsubdirs=1

In this case, urt looks for .cuf files in all users' home directories.

Scenario: Multiple machines, one shared .cuf file

This scenario describes an environment where the compilations are done on
multiple machines but all users share a single .cuf file.

The advantage of the approach in this scenario is that using one .cuf file can
simplify the report generation and the usage file pruning process. The section
[number of usage files” on page 17| provides detailed information about using a
single usage file for all compiler users. The .cuf file is already on the machine
where the utilization reporting tool is installed. You do not need to copy the file to
that machine or install the tool on multiple machines to prune the .cuf files.

This approach has the following disadvantages:

* The compiler users must compete for access to one usage file. Because the file
might become large, it might have an impact on performance.

* Some setup work is required to create the shared .cuf file and to give all
compiler users write access on a network file system.

¢ The efficiency of the whole process depends on the speed and reliability of the
network file system, because the compilers and the .cuf file are on different
machines. For example, some file systems are better than others in supporting
file locking, which is required for concurrent access by multiple users.

In this scenario, two compiler users run the compilers on separate machines and
they use one shared .cuf file on a network file system, such as NFS, DFS, or AFS.
When the compiler is invoked, it writes the utilization information to that file. You
can then use the utilization reporting tool to retrieve the utilization information
from the file and generate usage reports.

The following diagram illustrates this scenario.

: Compiler Utilization: Tracking and Reporting

Utilization tracking

Machine A
@ User:user! ——Invoke——% Compiler — Read —p Utilization tracking
the compiler configuration file
|
Write to file in /xyz
P hl
I
: cuf i NFS
| —— | T
-7 N I
- |
|
l
|
Machine B l
|
|
l
o q . |
@ User:user2 ——Invoke——» Compiler — Read —» Utilization tracking |
the compiler configuration file !
| I
Write to file in /xyz :
|
P }' T :
L N e S
L= :
N~ - I
I
I
I
_________________________________ I
i
Utilization reporting n
I
I
Machine C !
I
v
.cuf
Iy
Re|ad
@ User:user3 ——Invoke urt —» urt — Read —» urt configuration
file
|
Generate
Read 2 Report
report

1. On Machine A and Machine B, mount point /xyz is created to Machine C. All compiler utilization is recorded in
the .cuf file, from which the usage report is generated.

Figure 3. Compiler users use multiple machines, with a shared .cuf file

This diagram reflects the following points:
1.

Utilization tracking is configured respectively on Machine A and Machine B.

Chapter 3. Understanding utilization tracking and reporting

11

12

Notes:

* Although each machine has its own configuration file, the contents of these
files must be the same.

* Centrally managing the utilization tracking functionality can reduce your
configuration effort and eliminate possible errors. The

fconfiguration” on page 15|section provides detailed information about how
you can use a common configuration file shared by compiler users using
different machines.

2. A network file system is set up for the central management of the .cuf files.
When userl and user2 invoke the compilers from Machine A and Machine B,
the utilization information of both compilers is written to the .cuf file on
Machine C.

3. user3 invokes urt to generate usage reports from the .cuf file on Machine C.

Note: You can use the utilization reporting tool to prune the usage files regularly
to prevent them from growing too big.

Scenario: Multiple machines, multiple .cuf files

This scenario describes an environment where the compilations are done on
multiple machines and all users have their own usage files.

In this scenario, two compiler users run the compilers on separate machines and
they have their own .cuf files. When the compiler is invoked, it writes the
utilization information to that file. You can then use the utilization reporting tool to
retrieve the utilization information from the file and generate usage reports. This
tool can be run on either of the machines on which the compiler is installed or on
a different machine.

Note: The utilization reporting tool requires access to all the .cuf files.
You can use either of the following methods to make the files accessible in this
example:

* Use a network file system, such as NFS, DFS, or AFS.

¢ Copy the files from their original locations to the machine where you plan to
run the utilization reporting tool. You can use ftp, rcp, rsync or any other remote
copy command to copy the files.

The following diagram illustrates this scenario.

: Compiler Utilization: Tracking and Reporting

Utilization tracking

Machine A
@ User:userl ——Invoke——» Compiler — Read —» Utilization tracking
the compiler configuration file

|
Write to file in home/user1

.cuf — Copy
Machine B
@ User:user2 ——Invoke———» Compiler — Read —» Utilization tracking
the compiler configuration file

Write to file in /home/user2

.cuf - Copy
Utilization reporting
Machine C
.cuf
I\
Re|ad
@ User:user3 ~ ——Invoke urt —» urt — Read — urt configuration
file
I
Generate
Read P> Report
report

1. user3 copies the .cuf files to Machine C. A cron job can be created to copy the files automatically on a regular
basis.

Figure 4. Compiler users use multiple machines, with multiple .cuf files

This diagram reflects the following points:
1. Utilization tracking is configured respectively on Machine A and Machine B.

Chapter 3. Understanding utilization tracking and reporting 13

Notes:

* Although each machine has its own configuration file, the contents of these
files must be the same.

* Centrally managing the utilization tracking functionality can reduce your
configuration effort and eliminate possible errors. The

fconfiguration” on page 15|section provides detailed information about how
you can use a common configuration file shared by compiler users using
different machines.

2. When userl and user2 invoke the compilers, the utilization information is
recorded in the two .cuf files under their respective home directories,
/home/userl and /home/user?2.

Note: These .cuf files can also be created in another common location, for
example, /var/tmp. The [“Usage file location” on page 17] section provides
detailed information about how to create these files in a common location.

3. user3 copies the two .cuf files from Machine A and Machine B to Machine C.
4. user3 invokes urt to generate usage reports from the .cuf files on Machine C.

Related information

* [Chapter 4, “Preparing to use this feature,” on page 15|

* [Chapter 6, “Configuring utilization tracking,” on page 23|
* |Chapter 8, “Generating usage reports,” on page 33|

* [Chapter 9, “Pruning usage files,” on page 37

14 Compiler Utilization: Tracking and Reporting

Chapter 4. Preparing to use this feature

Before enabling utilization tracking within your organization, you must consider
certain factors related to how the compiler is used in your organization.

The following sections describe those considerations in detail:

Time synchronization

If you plan to track the utilization of the compiler on more than one machine, you
must consider synchronizing the time across the machines.

The usage report generated by the utilization reporting tool lists the time when the
compiler invocations start and end. The report also determines which invocations
are concurrent. This information is much less reliable and useful if time is not
synchronized across these machines.

If you are unable to synchronize time across different machines, you can use the
option to instruct the utilization reporting tool to adjust the times

that have been recorded.

License types and user information

Before you start to use this feature, you need the number and type of license
entitlements for your organization.

The license and user information that you need is as follows:

¢ The number of Concurrent User licenses that you have for this compiler. This
information is required for the [qgmaxconcurrentusers|entry in the utilization
tracking configuration file.

¢ The users who have their own Authorized User license for this compiler. This
information is used for the -gexemptconcurrentusers|entry in the utilization
tracking configuration file.

* The users who use the compiler with multiple accounts. This information is used
for the option for the utilization reporting tool.

Note: It is not mandatory to specify the users who have their own Authorized
User license and the users who use the compiler with multiple accounts, but it
improves the accuracy of the usage reports generated by the utilization reporting
tool. For detailed information, see [“Concurrent user considerations” on page 16.

Central configuration

Configuring utilization tracking the same for all compiler users is very important,
because it can ensure the accuracy of your utilization tracking, and minimize your
configuration and maintenance effort. You can achieve this by ensuring that all
users use the same utilization tracking configuration file.

If you have only one installation of the compiler, you can directly edit the

utilization tracking configuration file. Every compiler user can automatically use
that configuration file.

© Copyright IBM Corp. 2010 15

If you have multiple installations of the compiler, you need to maintain a single
utilization tracking config file and reference it from all installations. Any changes
you make to the utilization tracking configuration file, including enabling or
disabling utilization tracking, can automatically apply to all compiler installations
when users invoke the compiler. In each installation, there is a symlink named
urt_client.cfg, located in usr/vacpp/urt, usr/vac/urt, or /usr/Tpp/x1f/urt.
Modify the symlink to point to this shared instance of the configuration file.

If the compiler is installed on multiple machines, the utilization tracking
configuration file needs to be placed on a network file system, such as NFS, DFS,
or AFS, to be used by the compiler on each machine.

Note: If it is not possible for you to use a single utilization tracking configuration
file for all compiler users, you must ensure all utilization tracking configuration
files for each compiler installation are consistent. Using different configurations for
the same compiler is not supported.

Concurrent user considerations

16

Invocations of the compiler are considered concurrent when their start time and
end times overlap. This section provides the information about how the utilization
reporting tool counts concurrent users and the ways to increase the accuracy of the
usage reports.

When the utilization reporting tool counts concurrent users, it looks at the user
account information that has been captured in the usage files. The account
information consists of a user name, a user ID, and a host name. By default, each
unique combination of this account information is considered and counted as a
different user. However, invocations of the compiler by the following users must
not be included in the count of concurrent users:

* Users who have their own Authorized User license are considered exempt users,
because their use of the compiler does not consume any Concurrent User
licences.

* Users who have multiple accounts. Because the accounts belong to the same
user, invocations of the compiler while logged on using those accounts are
counted as usage by a single user.

The utilization reporting tool can account for the above situations if you provide it
with information regarding exempt users and users with multiple accounts. Here is
how you can provide the information:

* Specify the -gexemptconcurrentusers| entry in the utilization tracking
configuration file. This entry specifies users with Authorized User licenses.

* Specify the urt command-line option. This option specifies users

with multiple accounts.

Notes:

* When the number of concurrent users is adjusted with -qexemptconcurrentusers
or -gsameuser, the utilization reporting tool generates a message to indicate that
the concurrent usage information is adjusted.

* The number of concurrent users might be zero if all concurrent invocations are
invoked by exempt users. The tool also generates a message with this
information.

: Compiler Utilization: Tracking and Reporting

Usage file considerations

Usage (.cuf) files are used to store compiler usage information. This section
provides information that helps you decide how you want to generate and use
these files.

Usage file location

Usage files can be created in each user's home directory, or they can be created in a
central location for all users.

With utilization tracking enabled, when a compiler user compiles a program, a
.cuf file is automatically created in the user's home directory in case the file does
not exist. This is convenient for testing the utilization tracking feature because
users already have write access to their own home directories, which means no
additional setup is required. However, this might have the following issues:

¢ Compiler users might not know that the file has been created or what it is when
they see the file. In this case, they might delete the file.

¢ Some users' home directories might be on file systems that are mounted from a
remote system. This causes utilization tracking to use a remote file, which might
affect performance.

* Compiler users might not want usage files to take up space in the /home
directory.

A good alternative is to set up a central location where the usage files can be
created, and provide appropriate access to that location for both the compiler users
and the utilization reporting tool users. This can be set up by using the
other/world permissions or by using group permissions.

For example, if the central location is a directory named /var/tmp/
track_compiler_use, you can modify the entry in the utilization
tracking configuration file as follows:

-qusagefileloc=/var/tmp/track _compiler_use/$LOGNAME.cuf

This creates a .cuf file for each user in the specified location, such as userl.cuf or
user2.cuf. It is easier to run the utilization reporting tool to generate the usage
report from the .cuf files in this central location. You only need to pass the path of
the location, /var/tmp/track_compiler_use to the utilization reporting tool , and
then the tool can read all the .cuf files in that location.

If the compiler users are running the compiler on more than one machine, you
need to add $HOSTNAME to the entry to ensure that there are no
collisions in the file names. For example, you can specify the -qusagefileloc entry
as follows:

-qusagefileloc=/var/tmp/track_compiler_use/$HOSTNAME_$LOGNAME.cuf

This creates a .cuf file for each user, and the name of that .cuf file also contains
the name of the host on which the compiler is used, such as hostl_userl.cuf.

The number of usage files

You can use one usage file or separate usage files for different compiler users.
Using separate usage files for different compiler users

The advantages of using separate usage files are as follows:

Chapter 4. Preparing to use this feature 17

18

It might provide better performance because compiler users access their own
usage files instead of competing for access to a shared one and separate usage
files are usually smaller.

» Usage file for a user can be automatically created when the user uses the
compiler to compile a program. There is no need to explicitly create a usage file
for each user beforehand. For more information, see [“Usage file location” on|

* When generating utilization reports, you usually include all compiler users.
However, if there are circumstances in which you want to exclude some users,
you can simply omit their usage files when you invoke the utilization reporting
tool. For example, you might want to omit users who have their own
Authorized User license.

The disadvantage is that you might have to maintain separate usage files for
different users.

Using a single usage file for all compiler users

The advantage of using a shared usage file for all users is that you only need to

maintain a single file instead of multiple files. However, with a single usage file,

you lose the flexibility and possible performance benefits of using multiple usage
files, as described in the preceding subsection.

The compiler provides an empty usage file urtstub.cuf in the usr/vac/urt or
usr/1pp/x1f/urt/ directory. You can create a usage file for all compiler users by

copying the empty usage file to a directory where they all have write access. In
this case, you need to change the entry in the utilization tracking

configuration file to point to the location of the usage file.

Usage files on multiple machines

If you use the compiler on multiple machines, you need to decide how to make the
usage files available for the utilization reporting tool.

You can use various methods to make the usage files available for the utilization
reporting tool to generate usage reports and prune the usage files. Choose one of
the following approaches to manage usage files on multiple machines:

* Copy the usage files from the machines where the compiler is used to the
machine where the utilization reporting tool is installed. You can use any remote
copy command, for example, ftp, rcp, scp, and rsync. In this case, the usage files
are being accessed locally by both the compiler, for utilization tracking, and by
the utilization reporting tool, for generating the usage report. Accessing the files
locally yields the best performance.

* Use a distributed file system to export the file system from the machines where
the compiler is used, and mount those file systems on the machine where the
utilization reporting tool is installed. When you run the utilization reporting
tool, it can access the usage files remotely via the mounted file systems.

* You can also export the file system from the machine where the utilization
reporting tool is installed, and mount that file system on each machine where
the compiler is used, using it as the location of the usage files where the
compiler is recording its utilization. In this approach, the compiler records
utilization in a remote usage file, and the utilization reporting tool reads the
usage file locally.

: Compiler Utilization: Tracking and Reporting

Note: If you find this degrades the performance of the compiler, consider using
one of the first two approaches instead.

Usage file size

You need to consider the fact that the size of the usage files might grow quickly,
especially when you use a shared file for all compiler users. If the usage file gets
too large, it might affect utilization tracking performance.

To keep the usage files from growing quickly, you can optionally prune the usage
files when you generate usage reports. You can also prune the files regularly using
cron.

For more information about how to prune files, see [Chapter 9, “Pruning usage|
[files,” on page 37

Regular utilization checking

You can run the utilization reporting tool on a regular basis to verify whether the
usage of the compiler is compliant with the Concurrent User licenses you have
purchased. You can create a cron job to do this automatically.

If the usage files need to be copied to the machine where the utilization reporting
tool is running, you can also automate the copying task with a cron job.

Another reason for running the tool regularly is to prune the usage files to control
the size of these files.

Note: To reduce contention for read and write access to the usage files, run the

utilization reporting tool or copy the usage files when the compiler is not being
used.

Chapter 4. Preparing to use this feature 19

20 Compiler Utilization: Tracking and Reporting

Chapter 5. Testing utilization tracking

Before you begin to track the compiler usage for all users in your organization,
you can test the feature with a limited number of users or with a separate compiler
installation. During this testing, you can try different configurations so as to decide
the best setup for your organization.

Testing with a limited humber of users

To enable compiler utilization tracking for a limited number of users, you can use
a separate utilization tracking configuration file and ask only these users to use the
file. Other users of the same installation use the default utilization tracking
configuration file in which utilization tracking is disabled, and their use of the
compiler is therefore not recorded.

The default compiler configuration file, such as vac.cfg.61, contains two entries,
xlurt_cfg_path and xlurt_cfg_name, which specify the location of the utilization
tracking configuration file. You need to perform the following tasks to let the
specified users use the separate utilization tracking configuration file:

1. Create a separate compiler configuration file or stanza, in which the
xlurt_cfg_path and xlurt_cfg_name entries specify the location of the utilization
tracking configuration file you want to use.

2. Ask these users to use the following compiler option or environment variable
to instruct the compiler to use the separate compiler configuration file or
stanza, which in turn allows them to use the separate utilization tracking
configuration file.

* The -F option
¢ The XLC_USR_CONFIG (for XL C or XL C/C++ compilers) or
XLF_USR_CONFIG (for XL Fortran compilers) environment variable.

Note: This approach is only for testing the utilization tracking feature. Do not use
it for tracking all compiler utilization in your organization unless you can ensure
that all compiler invocations are done with the -F option or the
XLC_USR_CONFIG (for XL C or XL C/C++ compilers) or XLF_USR_CONFIG
(for XL Fortran compilers) enironment variable set.

Testing with a separate compiler installation

You can install a separate instance of the compiler for testing utilization tracking.
In this case, you can directly modify the utilization tracking configuration file in
that installation to enable and configure utilization tracking. The compiler users
involved in the testing do not need to perform any task for the tracking.

When you are satisfied that you have found the best utilization tracking
configuration for your organization, you can enable it for all compiler users in
your organization.

Related information
* |Chapter 6, “Configuring utilization tracking,” on page 23|

© Copyright IBM Corp. 2010 21

22 . Compiler Utilization: Tracking and Reporting

Chapter 6. Configuring utilization tracking

You can use the utilization tracking configuration file to enable and configure the
utilization tracking functionality.

The file name and default location of the configuration file for your compiler is:
. urtx1c0900aix.cfg or urtx1cl00laix.cfg in /usr/vac/urt,

. urtxlc_cpp0900aix.cfg or urtxlc_cpplO0laix.cfg in /usr/vacpp/urt,
or

. urtx1f1101aix.cfg or urtx1f1201laix.cfg in /usr/1pp/x1f/urt

The compiler uses a symlink to specify the location of the utilization tracking
configuration file. The symlink is also located in /usr/vacpp/urt, /usr/vac/urt, or
/usr/1pp/x1f/urt and its name is urt_client.cfg. In the following situations, you
might need to change the symlink:

* If you want to use a utilization tracking configuration file in a different location,
change the symlink to point to this location.

* If you have multiple installations of the same compiler, and you plan to use a
single utilization tracking configuration file, change the symlink in each
installation to point to that file. For more information, see
[configuration” on page 15

Note: Installing a PTF update does not overwrite the utilization tracking
configuration file.

You can use the entries in the utilization tracking configuration file to configure
many aspects of the way compiler usage is tracked. For details about the specific
entries in that file and how they can be modified, see [“Editing utilization tracking]
[configuration file entries.”|

Editing utilization tracking configuration file entries

You can configure different aspects of utilization tracking by editing the entries in
the utilization tracking configuration file.

The entries are divided into two categories.

1. The entries in the Product information category identify the compiler. Do not
modify these entries.

2. The entries in the Tracking configuration category can be used to configure
utilization tracking for this product. Changes to these entries take effect in the
usage file upon the next compiler invocation. In this case, the compiler emits a
message to indicate that the new configuration values have been saved in the
usage file. When you generate a report from the usage file, the new values are
used.

The following rules apply when you modify the entries:

* The following entries are written to the usage files whenever you change them,
and they are used the next time the utilization reporting tool generates a report
from the usage files. These configuration entries must be the same for all
compiler users.

© Copyright IBM Corp. 2010 23

— -qmaxconcurrentusers
- -qexemptconcurrentusers
— -qqualhostname

* If -qqualhostname is changed, you must discard any existing usage files and
start tracking utilization again with new usage files. Otherwise some invocations
are recorded with qualified host names and some are recorded with unqualified
host names.

Notes:

¢ The entries are not compiler options. They can only be used in the utilization
tracking configuration file.

* If the -qexemptconcurrentusers entry is specified multiple times in the
utilization tracking configuration file, all the specified instances are used. If other
entries are specified multiple times, the value of the last one overrides previous
ones.

¢ The compiler generates a message if you specify the above entries with different
values for different users when using more than one utilization tracking
configuration file. You must modify the entries to keep them consistent, or make
sure all compiler users use a single utilization configuration file.

Product information

-qprodId=product_identifier_string
Indicates the unique product identifier string.

-qprod Ver=product_uversion
Indicates the product version.

-qprodRel=product_release
Indicates the product release.

-qprodName=product_name
Indicates the product name.

-qconcurrentusagescope=prod | ver | rel
Specifies the level at which concurrent users are counted, and their numbers
are limited. The suboptions are as follows:

* prod indicates the product level.
e ver indicates the version level.
e rel indicates the release level.

Default: -qconcurrentusagescope=prod

Tracking configuration
-qmaxconcurrentusers=number

Specifies the maximum number of concurrent users. It is the number of
Concurrent User license that you have purchased for the product. When the
utilization reporting tool generates a report from the usage file, it determines
whether your compiler usage in your organization has exceeded this maximum
number of concurrent users.

Note: You must update this entry to reflect the actual number of Concurrent
User licenses that you have purchased.

Default: 0

24 . Compiler Utilization: Tracking and Reporting

-qexemptconcurrentusers ="user_account_info_1 [| user_account_info_2 | ... |
user_account_info_n]"

Specify exempt users who have their own Authorized User license. Exempt
users can have as many concurrent invocations of the compiler as they want,
without affecting the number of Concurrent User licenses available in your
organization. When the utilization reporting tool generates a usage report, it
does not include such users in the count of concurrent users.

user_account_info can be any combination of the following items:
* name(user_name)

* uid(user_ID)

* host(host_name)

Users whose information matches the specified criteria are considered exempt

users. For example, to indicate that user1@host1 and user2@host1 are exempt

users, you can specify this entry in either of the following forms:

e -gexemptconcurrentusers="name(userl)host(hostl)"
-gexemptconcurrentusers="name (user2)host (host1)"

* -gexemptconcurrentusers="name(userl)host(hostl) | name(user2)host(hostl)"

For user_name, user_ID, and host_name, you can also use a list of user names,
user IDs, or hostnames separated by a space within the parentheses. For
example:

-gexemptconcurrentusers="name(userl user2)host(host1)"
This is equivalent to the previous examples.

Note: Specifying this entry does not exempt users from compiler utilization
tracking. It only exempts them from being counted as concurrent users. To
optimize utilization tracking performance, the format of the specified value is
not validated until the report is produced. For more information about
counting concurrent users, see [“Concurrent user considerations” on page 16

-qqualhostname | -qnoqualhostname

Specifies whether host names that are captured in usage files and then listed in
compiler usage reports are qualified with domain names.

If all compiler usage within your organization is on machines within a single
domain, you can reduce the size of the usage files by using -qnoqualhostname
to suppress domain name qualification.

Default: -qqualhostname, which means the host names are qualified with
domain names.

-qenabletracking | -qnoenabletracking

Enables or disables utilization tracking.

Default: -qnoenabletracking, which means utilization tracking is disabled.
-qusagefileloc=directory_or_ file_name

Specifies the location of the usage file.

By default, a .cuf file is automatically created for each user in their home
directory. You can set up a central location where the files for each user can be
created. For more information, see ['Usage file location” on page 17

The following rules apply when you specify this entry:

Chapter 6. Configuring utilization tracking 25

26

* If a file name is specified, it must have the .cuf extension. If the file is a
symlink, it must point to a file with the.cuf extension. If the specified file
does not exist, a .cuf file is created, along with any parent directories that
do not already exist.

* If a directory is specified, there must be exactly one file with the .cuf
extension in the directory. A new file is not created in this case.

* The path of the specified directory can be a relative or an absolute path.
Relative paths are relative to the compiler user's current working directory.

Note: If a compiler user cannot access the file, for example, because of
insufficient permissions to use or create the file, the compiler generates a
message and the compilation continues.

You can use the following variables for this option:
* $HOME for the user's home directory. This allows each user to have a .cuf
file in their home directory or a subdirectory of their home directory.

¢ $USER or SLOGNAME for the user's login user name. You can use this
variable to create a .cuf file for each user and include the user's login name
in the name of the .cuf file or in the name of a parent directory.

* $HOSTNAME for the name of the host on which the compiler runs. This can
be useful when you track utilization across different hosts.
-qfileaccessmaxwait=number_of_milliseconds

Specifies the maximum number of milliseconds to wait for accessing the usage
file.

Note: This entry is used to account for unusual circumstances where the
system is under extreme heavy load and there is a delay in accessing the usage
file.

Default: 3000 milliseconds

Notes:
* These entries are not compiler options. They can only be used in the utilization
tracking configuration file.

¢ If the -qexemptconcurrentusers entry is specified multiple times in the
utilization tracking configuration file, all the specified instances are used. If other
entries are specified multiple times, the value of the last one overrides previous
ones.

: Compiler Utilization: Tracking and Reporting

Chapter 7. Understanding the utilization reporting tool

You can use the utilization reporting tool to generate compiler usage reports from
the information in one or more usage files, and optionally prune the usage files
when you generate the reports.

The tool is located in the /opt/ibmurt/1.1/bin directory. You can use the urt
command to invoke it. The syntax of the urt command is as follows:

—yrt— B] ><
command_line_options

The generated report is displayed on the standard output. You can direct the
output to a file if you want to keep the report.

Command-line options control how usage reports are generated. For more
information about the options, see [“Utilization reporting tool command-line|

options.”

A default configuration file ibmurt.cfg is provided in the /opt/ibmurt/1.1/config
directory. Entries in this file take the same form as the command-line options and
have the same effect. You can also create additional configuration files and use the

option to specify their names.

You can specify the options in one or more of the following places:
1. The default configuration file

2. The additional configuration file specified with -qconfigfile

3. The command line

The utilization reporting tool uses the options in the default configuration file
before it uses the options on the command line. When it encounters a -qconfigfile
option on the command line, it reads the options in the specified configuration file
and puts them on the command line at the place where the -qconfigfile option is
used.

If an option is specified multiple times, the last specification that the tool
encounters takes effect. Exceptions are [-qconfigfile| and |-qsameuser} For these two
options, all specifications take effect.

Utilization reporting tool command-line options

The utilization reporting tool command-line options control the generation of the
compiler utilization report.

Use these command-line options to modify the details of your compiler utilization
report.

-qreporttype=detail | maxconcurrent

Specifies the type of the usage report to generate.

© Copyright IBM Corp. 2010 27

28

¢ detail specifies that all invocations of the compiler are listed in the usage
report. With this suboption, you can get a detailed report, in which the
invocations that have exceeded the allowed maximum number of concurrent
users are indicated.

* maxconcurrent specifies that only the compiler invocations that have
exceeded the allowed maximum number of concurrent users are listed. With
this suboption, you can get a compact report, which does not list those
invocations within the maximum number of allowed concurrent users.

Note: The allowed maximum number of concurrent users is specified with the
[gmaxconcurrentusers| entry in the utilization tracking configuration file.

Default: -qreporttype=maxconcurrent.

-qrptmaxrecords=num | nomax

Specifies the maximum number of records to list in the report for each product.
num must be a positive integer.

Default: -qrptmaxrecords=nomax, which means all the records are listed.

-qusagefileloc=directory_or_file_name

Specifies the location of the usage files for report generation or pruning. It can
be a list of directories or file names, or both, separated by colons.

The following rules apply when you specify this option:

* If one or more directories are specified, all files with the .cuf extension in
those directories are used. Subdirectories can also be searched by using the
-qmaxsubdirs option.

* The path of the specified directory can be relative or absolute. Relative paths
are relative to the compiler user's current working directory.

* A symlink does not require the .cuf extension but the file to which it points
must have that extension.

Note:

* The entry in the utilization tracking configuration file tells the

compiler which usage files to use for recording compiler utilization. This
-qusagefileloc option tells the utilization reporting tool where to find those
usage files.

Default: .:$HOME, which means the utilization reporting tool looks for usage
files in your current working directory and your home directory.

-qmaxsubdirs=num | nomax

Specifies whether to search subdirectories for usage files, and how many levels
of subdirectories to search. num must be a non-negative integer.

If nomax is specified, all the subdirectories are searched. If 0 is specified, no
subdirectories are searched.

Default: 0.

-qconfigfile=file_path

Specifies the user defined configuration file that you want to use.

For more information about how the utilization reporting tool uses the
configuration file, see [Chapter 7, “Understanding the utilization reporting]
[tool,” on page 27/

: Compiler Utilization: Tracking and Reporting

Note: If you specify this option multiple times, all specified instances are used.
-qsameuser=user_account_info

Specifies different user accounts that belong to the same compiler user. Use
this option when a user accesses the compiler from more than one user ID or
machine to avoid having that user reported as multiple users. Invocations of
the compiler by these different accounts are counted as a single user instead of
multiple different users.

user_account_info can be any combination of the following items:
* name(user_name)
* uid(user_ID)

* host(host_name)

There are two ways to pass these rules to the utilization reporting tool. You
can supply specific lists of the user_names, user_IDs orhost_names that are
shared by the same user or you can use a more generic (=) syntax.

For example, to indicate that userl and user2 are both user names belonging to
the same person who uses the compiler on the host1 machine, use the syntax in
which you specify these user names and the host name explicitly:

-gsameuser="name (userl)host (hostl) | name(user2)host(host1)"

or
-gsameuser="name (userl user2)host(hostl)"

Both of these examples use specific user names and host names to indicate
accounts that belong to the same user, but they do so in slightly different ways.
The first example uses a vertical bar to separate the different user accounts that
belong to this user, while the second example uses a list of user names within
the parentheses instead of repeating the same host information twice. They
both convey the same account information, but the second example is more
concise.

As an example of the more generic (=) syntax, you can indicate that all user
accounts with the same user name and uid belong to the same user as follows:
-gsameuser="name(=)uid(=)"

With this option, you are not specifying specific user names or uids as you did
in the previous example. User accounts that have the same user name and uid
are considered as belonging to the same user, regardless of what the specific
user names and uids are, and regardless of what the host name is. This
establishes a general rule that applies to all accounts in your organization
instead of specific ones.

The following rules apply when you specify this option:

* Each instance of the -qsameuser option must use either the list or generic
(=) syntax. You cannot combine them in the same instance of the option but
you can use multiple instances of the -qsameuser option to refine the report.

* The utilization reporting tool matches the user information based on the
order that the -qsameuser option values are specified. Once it finds a match
it stops matching the same user information against any subsequent options.

The following examples illustrates the differences:
— If you specify the -qsameuser option as follows:

-gsameuser="name(userl)" -gsameuser="uid(=)"

Chapter 7. Understanding the utilization reporting tool 29

30

Specifying the -qsameuser option in this order means that user accounts
with the user name user] matches the first option and is not evaluated
against the second option. User accounts userl and user2 are not
considered the same user even if they have the same wuid.

— If you specify the -qsameuser option as follows:
-qsameuser="uid(=)" -qsameuser="name (userl)"

Specifying the -qsameuser option in this order means that user accounts
with the same uid are always considered to be the same user, and in
addition, any user accounts with a user name of userl should be
considered belonging to the same user even if they do not match by uid.

Note: Specifying this option does not prevent user information from being
listed in the usage report. For more information about concurrent users, see
[‘Concurrent user considerations” on page 16,

-qadjusttime=time_adjustments

Adjusts the time that have been recorded in the usage files for the specified
machines. time_adjustments is a list of entries with the format of machine name +
| - number of seconds, separated by colons.

The following rules apply when you use this option:

* An entry of the form machine name + number of seconds causes the specified
number of seconds to be added to the start and end times of any invocations
recorded for the specified machine.

* An entry of the form machine name - number of seconds causes the specified

number of seconds to be subtracted from the start and end times of any
invocations recorded for the specified machine.

For example:
-gadjusttime="hostA+5:hostB-3"

Five seconds are added to the start and end times of the invocations on hostA,
and three seconds are subtracted from the start and end times of the
invocations on hostB.

Only use this option if the usage files contain utilization information from two
or more machines, and time is not synchronized across those machines. The
adjustments specified by this option compensate for the lack of
synchronization

Notes:

* The specified adjustments are only used for the current run of the urt
command. Specifying this option does not change the invocation information
recorded in the usage files.

* Do not specify the same machine name more than once with this option.

-qusagefilemaxage=number_of _days | nomax

Prunes the usage files by removing all invocations older than the specified
number of days.

Every usage file specified by the -qusagefileloc option is pruned. The usage
report contains this information to indicate the number of records that have
been pruned.

Default: -qusagefilemaxage=nomax, which means no pruning is performed.

: Compiler Utilization: Tracking and Reporting

-qusagefilemaxsize=number_of MB | nomax

Prunes the usage files to keep them under the specified size. It prunes the files
by removing the oldest invocations.

Every usage file specified by the -qusagefileloc option is pruned. The usage
report contains this information to indicate the number of records that have
been pruned.

Default: -qusagefilemaxsize=nomax, which means no pruning is performed.

-qtimesort=ascend | descend

Specifies the chronological order in which the usage report information is
sorted.

* Specifying ascend means new information is listed after the older
information.

* Specifying descend means the newest information is at the top of the report.

Default: -qtimesort=ascend.

Chapter 7. Understanding the utilization reporting tool 31

32 . Compiler Utilization: Tracking and Reporting

Chapter 8. Generating usage reports

You can use the utilization reporting tool to generate compiler usage reports based
on the usage information stored in the usage files.

To generate a report, use the command-line options or the urt configuration file to
specify how you want a report to be generated. For more information about these
options, see |“Utilization reporting tool command-line options” on page 27

Notes:

* You can set up a cron service to run the utilization reporting tool on a regular
basis. If the usage files from which the tool generate reports need to be copied to
the machine where the tool is running, you can also automate this copying task
with cron.

* To reduce contention for read and write access to the usage files, do not run the
tool or copy the usage files when the compiler is being used.

The generated report is displayed on the standard output. You can direct the
output to a file if you want to keep the report.

After a usage report is generated, the utilization reporting tool uses the following

exit codes to indicate the compliance status of your compiler license:

 Exit code ="1".
The utilization reporting tool has detected that the number of Concurrent User
license entitlements specified in the [gqmaxconcurrentusers| entry in the
utilization tracking configuration file has been exceeded. See the generated
report for details and contact your IBM representative to purchase additional
Concurrent User licenses.

* Exit code ="0".

The compiler utilization is within the number of Concurrent User license
entitlements specified.

For more information about the urt command, see [Chapter 7, “Understanding the]
[utilization reporting tool,” on page 27|

Understanding usage reports

You can use the report that the utilization report tool generates to analyze the
compiler usage in your organization.

The report has a REPORT SUMMARY section that lists the following information:
1. The date and time when the report is generated.
2. The .cuf file or a list of all .cuf files used to generate the report.

3. The options that have been passed to the urt command, with default values for
any unspecified options.

4. Possible messages categorized as ERROR, WARNING, or INFO. For detailed
information about possible messages, see [Chapter 10, “Diagnostic messages|
[from utilization tracking and reporting,” on page 39

After the summary section, there is a REPORT DETAILS section for each compiler
version. This section lists all of the compiler invocations recorded in the usage files.

© Copyright IBM Corp. 2010 33

The content of these sections varies depending on the report tiie that iou have
9, D

specified. For detailed information about the report types, see |-q
Here are the sample reports generated with the two different report types:

Sample 1: A sample report generated with -qreporttype=detail
REPORT SUMMARY

DATE: 12/18/09 TIME: 01:30:24
OPTIONS USED (* indicates that a default value was used):

reporttype=detail

maxsubdirs=0
configfile="/opt/ibmurt/1.1/config/ibmurt.cfg"
rptmaxrecords=nomax

*adjusttime=
usagefileloc="/home/testrun/ibmx1compiler.cuf"
*sameusers=

timesort=ascend

usagefilemaxsize=nomax

usagefilemaxage=nomax

FILES USED:
/home/testrun/ibmx1compiler.cuf

REPORT DETAILS

USAGE INFORMATION FOR PRODUCT: IBM XL C for AIX 10.1
Max. Concurrent Users Exceeded? : *x* YES %«

Max. Concurrent Users Allowed: 1 Max. Concurrent Users Recorded: 5
Exempt Users:

Product invocations:

Start Time End Time User Number of Concurrent Users
12/17/09 16:56:44 12/17/09 16:57:13 userl®hostl.ibm.com
12/18/09 00:58:29 12/18/09 00:58:32 user2@host2.ibm.com
12/18/09 01:16:01 12/18/09 01:16:02 user3@host3.ibm.com
12/18/09 01:16:02 12/18/09 01:16:26 user2@host2.ibm.com
12/18/09 01:16:08 12/18/09 01:16:08 user3@host2.ibm.com
12/18/09 01:16:12 12/18/09 01:16:12 user2@hostl.ibm.com
12/18/09 01:16:24 12/18/09 01:16:28 userl@host2.ibm.com
12/18/09 01:26:11 12/18/09 01:27:46 user3@host3.ibm.com
12/18/09 01:26:27 12/18/09 01:27:46 userl@hostl.ibm.com
12/18/09 01:29:59 12/18/09 01:30:00 user2@hostl.ibm.com
12/18/09 01:30:00 12/18/09 01:30:00 user2@host2.ibm.com
12/18/09 01:30:14 12/18/09 01:30:15 user3@hostl.ibm.com
12/18/09 01:30:14 12/18/09 01:30:14 user2@host2.ibm.com

(exceeds max. allowed)
(exceeds max. allowed)
(exceeds max. allowed)
(exceeds max. allowed)
(exceeds max. allowed)
(exceeds max. allowed)
(exceeds max. allowed)

(exceeds max. allowed)
(exceeds max. allowed)
(exceeds max. allowed)

WWWEFEMNMNOIOTOTO O

Sample 2: A sample report generated with -qreporttype=maxconcurrent
REPORT SUMMARY

DATE: 12/18/09 TIME: 01:32:53

OPTIONS USED (* indicates that a default value was used):

34 . Compiler Utilization: Tracking and Reporting

reporttype=maxconcurrent

maxsubdirs=0
configfile="/opt/ibmurt/1.1/config/ibmurt.cfg"
rptmaxrecords=nomax

*adjusttime=
usagefileloc="/home/testrun/ibmx1compiler.cuf"
*sameusers=

timesort=ascend

usagefilemaxsize=nomax

usagefilemaxage=nomax

FILES USED:
/home/testrun/ibmx1compiler.cuf

REPORT DETAILS

USAGE INFORMATION FOR PRODUCT: IBM XL C for AIX 10.1

Max. Concurrent Users Exceeded? : *x* YES #x=

Max. Concurrent Users Allowed: 1 Max. Concurrent Users Recorded:

Exempt Users:
Dates and times where usage exceeded the maximum allowed:

Date Time Number of Concurrent Users Users

12/18/09 01:16:01 5 user3@host3.ibm.
user2@host2.ibm.
user3@host2.ibm.
user2@hostl.ibm.
userl@host2.ibm.

12/18/09 01:16:02 5 user3@host3.ibm.
user2@host2.ibm.
user3@host2.ibm.
user2@hostl.ibm.
userl@host2.ibm.

12/18/09 01:16:08 5 user3@host3.ibm.
user2@host2.ibm.
user3@host2.ibm.
user2@hostl.ibm.
userl@host2.ibm.

12/18/09 01:16:12 5 user3@host3.ibm.
user2@host2.ibm.
user3@host2.ibm.
user2@hostl.ibm.
userl@host2.ibm.

12/18/09 01:16:24 5 user3@host3.ibm.
user2@host2.ibm.
user3@host2.ibm.
user2@hostl.ibm.

userl@host2.ibm.
12/18/09 01:26:11 2 user3@host3.ibm.
userl@hostl.ibm.
12/18/09 01:26:27 2 user3@host3.ibm.
userl@hostl.ibm.
12/18/09 01:30:00 3 user2@host2.ibm.

user2@hostl.ibm.
user3@hostl.ibm.
12/18/09 01:30:14 3 user2@host2.ibm.
user2@hostl.ibm.
user3@hostl.ibm.

Chapter 8. Generating usage reports

com
com
com
com
com
com
com
com
com
com
com
com
com
com
com
com
com
com
com
com
com
com
com
com
com
com
com
com
com
com
com
com
com
com
com

35

12/18/09 01:30:14 3 user2@host2.ibm.com
user2@hostl.ibm.com
user3@hostl.ibm.com

Note: There are circumstances under which an end time might not be recorded.
These might include:

* There was a major failure of the compiler, for example, power loss during a
compilation.

* The invocation had not ended at the time when the report was generated, or at
the time when the usage file was being copied.

* The permission to write to the usage file was revoked at some time before the
end time of the invocation was recorded.

An invocation with no end time recorded is not included in the count of
concurrent users.

36 Compiler Utilization: Tracking and Reporting

Chapter 9. Pruning usage files

Usage files grow with each compiler invocation. You can prune the usage files with
the utilization report tool.

When you generate a usage report, you can specify the following two options to
optionally prune the usage files:

* | qusagefilemaxage} Removes the invocations older than the specified number of
days. For example, to remove all entries in the usage files older than 30 days,
use the following command:

urt -qusagefilemaxage=30

* [qusagefilemaxsize} Removes the oldest invocations to keep the usage files
under the specified size. For example, to remove the oldest invocations to keep
the usage files under 30 MB, use the following command:

urt -qusagefilemaxsize=30

When usage files are pruned, the usage report includes an information message
that indicates the number of records that have been pruned. If you want to keep
the generated report after the files are pruned, you can redirect the output to a file.

To control the size of the usage files, you can prune the usage files on a regular
basis. You can create a cron job to do this automatically.

If you do not have the utilization reporting tool installed on each machine where
the usage files are located, you have the following options:

* Export the file system from each machine where the usage files exist and mount
it on the machine where the utilization reporting tool is installed. Then run the
tool to prune the usage files on the mounted network file system.

 After copying the usage files to the machine where the utilization reporting tool
is installed, delete the files and use new usage files to capture any subsequent
compiler invocations. This approach might also speed up the report generation
because the utilization reporting tool is not accessing the usage files remotely
and it is not spending time pruning the usage files.

Pruning usage files might slow down the usage report generation process,
especially when the number or the size of the usage files is large. If you do not
want to prune the files every time you generate reports, you can set the values for
the -qusagefilemaxage and -qusagefilemaxsize options as follows:

* If you generate the report daily, you can specify these two options with very
high values so pruning does not occur. The default value nomax can be used in
this case.

* You can set appropriate values for these two options and use a separate cron job
to prune the usage files weekly.

Note: To reduce contention for read and write access to the usage files, do not run
the utilization report tool or copy the usage files when the compiler is being used.

© Copyright IBM Corp. 2010 37

38 Compiler Utilization: Tracking and Reporting

Chapter 10. Diagnostic messages from utilization tracking and

reporting

The compiler generates diagnostic messages to indicate utilization tracking issues.
These messages can help you to fix the associated problems.

For example:

Utilization tracking configuration file could not be read due to
insufficient permissions.

This message indicates that you need read access for utilization tracking
configuration file.

When the utilization reporting tool is used to generate usage reports or prune
usage files, it also generates diagnostic messages. For example:

Unrecognized option -gmaxsubdir.
This message indicates that you have specified a wrong option.

Note: Possible error, warning, or information messages are also included in the
compiler usage report generated by the tool.

© Copyright IBM Corp. 2010 39

40 Compiler Utilization: Tracking and Reporting

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
US.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2010 41

42

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Lab Director

IBM Canada Ltd. Laboratory
8200 Warden Avenue
Markham, Ontario L6G 1C7
Canada

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM's application programming interfaces.

: Compiler Utilization: Tracking and Reporting

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. 2010. All rights reserved.

Trademarks and service marks

IBM, the IBM logo, ibm.com, and AIX are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at “Copyright and
trademark information” at fhttp://www.ibm.com/legal /us/en/copytrade.shtml|

Notices 43

http://www.ibm.com/legal/us/en/copytrade.shtml

44 . Compiler Utilization: Tracking and Reporting

Printed in USA

	Contents
	About this document
	Conventions
	Documentation
	Technical support

	Chapter 1. Tracking and reporting compiler usage
	Chapter 2. Prerequisites for tracking and reporting your compiler utilization
	Chapter 3. Understanding utilization tracking and reporting
	Overview
	Four usage scenarios
	Scenario: One machine, one shared .cuf file
	Scenario: One machine, multiple .cuf files
	Scenario: Multiple machines, one shared .cuf file
	Scenario: Multiple machines, multiple .cuf files

	Chapter 4. Preparing to use this feature
	Time synchronization
	License types and user information
	Central configuration
	Concurrent user considerations
	Usage file considerations
	Usage file location
	The number of usage files
	Usage files on multiple machines
	Usage file size

	Regular utilization checking

	Chapter 5. Testing utilization tracking
	Chapter 6. Configuring utilization tracking
	Editing utilization tracking configuration file entries

	Chapter 7. Understanding the utilization reporting tool
	Utilization reporting tool command-line options

	Chapter 8. Generating usage reports
	Understanding usage reports

	Chapter 9. Pruning usage files
	Chapter 10. Diagnostic messages from utilization tracking and reporting
	Notices
	Trademarks and service marks

