Connect for 1Series Custom
Protocol | mplementation Guide

Document Version 1.1.2
September 2001

page 1

Introduction 4

Connect for iSeries Product Architecture 4
Overview of the Gateway ... e e i 5
HT T PSerVlet Servlet ... e e e e 6
Gateway FlOWS . 6
The Gateway and Custom Protocols ... i 7
Gateway Flow design guidelinesfor acustom protocol ..., 7
Tasks Required to Define a Custom Protocol ..., 8
Custom Protocol Implementation-Learning by

EXample 9
0. Clearly understand what your objective is for the new protocol. 10
1. Determine the name, subtype and version of your new protocol 15
2. Create a new directory that will be the location for all of the artifacts

you will be creating for your custom protocol. i, 15

3. Create one or more Document Type Definition files (DTD) to define
the request/response data that you want to send/receive via your new
protocol. (Obviously, this step can be skipped if you already have a

DTD Created) ...ttt ettt et e e e e e e 16
4. Generate an example xml request/response file that adheres to the
DTD created in Step #3. .o e 17

5. Create a Request/Response Message Format (file extension

“RequestMsg”) for each defined request type that describes the

ProtoCol ruNtime MapPPiNgS. ..ot e e e i e 18
6. Determine the flow steps necessary for proper handling of the

requests coming into your custom protocol. The steps considered will

be influenced by how you answered question O (who the trading

partner(s) is (are), system topology, etC.) ..o 19
7. Create an AppConnector definition file for each of the Gateway

(T] a] aT=Tod (o gl 0] oo I = 1 0 1= 19
8. Create the ProtocolFlow file e 22
9. Write the java connector programs to fulfill the necessary flow steps

for your custom protOCOl. ... i e 24
10. Create a Protocol Data Model definitionfile oot 27
11. Create an XML file called ProtocolDefinition.xml. 29
12. Add support for the new protocol to your Connect installation. 32
13. Create a new instance with the new protocol it 33
14) Create and deploy a process flow that runs in the Flowmanager 36
15. Start the new instance and testit.o 36
BRI Og oo 37
Example 2:Adding Authentication and

Authorization 38

page 2

0) Clearly understand your objective for your new protocol. 38

1) Determine the name, subtype and version of your new protocol. 38
2) Create a new directory that will be the location for all of the artifacts
you will be creating for your custom protocol. 38

3) Create a Document Type Definition file (DTD) to define the
request/response data that you want to send/receive via your new

PrOtOC Ol o e 39
4) Generate an example XML request/response file that adheres to the
DTD created in Step #3. .o e e 40

5) Create a Request/Response Message Format (file extension

“RequestMsg”) for each defined request type that describes the

ProtoCol ruUNtiMe MaPPINgS. oottt et e et 40
6) Determine the flow steps necessary for proper handling of the

requests coming into your custom protocol. The steps considered will

be influenced by how you answered question O (who the trading

partner(s) is (are), system topology, etC.) ..o 41
7) Create an AppConnector definition file for each of the Gateway

(X] a] aT=Tod (o gl 0] oo I = 10 1= 42
8) Create the ProtocolFlow fileo e 42
9) Write the Java connector programs to fulfill the necessary flow

steps for your custom protocol. 44
10) Create a Protocol Data Model definitionfile L. 44
11) Create an XML file called, ProtocolDefinition.xml. 45
12) Add support for the new protocol to your Connect installation. 46
13) Create a new instance with the new protocol 46
14) Create and deploy a process flow that runs in the Flowmanager 48
15)Start the new instance and testit i 438
BRI Og oo 49

page 3

Introduction

Connect for iSeries (referred to as Connect in this document) is alicensed program product that
became generdly available in February 2001 (version 1.0). It provides aframework to easily connect
business applications with supported BtoB Marketplace protocols such as Ariba s cXML and
Metiom'smXML. InVerson 1.1 (Available 3Q01), function is provided for customers and ISVsto
implement their own custom protocols, alowing connectivity to gpplications and/or marketplaces not yet
supported by Connect. This document will examine the custom protocol capabilities of Connect and
provide step-by-step ingtructions and examples on how to create and deploy a custom protocol. This
document assumes the reader isfamiliar with internet technologies such as Java, HTTP servers, serviet
engines, sarvlet programming, XML and the Connect for iSeries product.

Connect for iSeries Product Architecture

To gain understanding of custom protocols and implementing them via Connect, let’s start by taking a
brief look at the Connect product architecture. Connect for iSeriesislogicaly divided into two haves.
The firgt haf is caled the Delivery Gateway, or Gateway for short. The Gateway accepts requests from
remote trading partners in currently-supported trading partner “language’ (protocol), like cXML or
mXML. (Note: throughout this paper we use the term “trading partner” to describe both customers and
marketplaces). The second part is the Fow Manager. The Flow Manager handles connecting
(mapping) the protocol “payload” (the information sent within the protocol request) to your existing
business processes.

iISeries Connect: The Big Picture

Tools
Configure
Develop
Deploy
Manage

Templates
Standard
Customized

Core

——— p
J Business

Applications

WCs
Domino

Trading

MQ Series
etc

Front-end Back-end
Gateway Flow Manager
Services with with

F:foﬂggglse Connectors

Downloadable
Plugins/Connectors

page 4

This paper will concentrate on the cagpakiilities of the Gateway and how you can use it to implement a

custom protocol.

B2B Delivery Gateway Framework

] Flow
[g (RO Log Reuseable Gateway a‘;ﬁ:eer _m Manager
«m| Semiet Manager | | Connectors APIs g -—[I[II:II: Interface
Queues

> Connector Gatewa

gngVTet et Flow | __ 5 (PCML, JavA, D c ty
- u Processor Queue) st

(o] OV 0 °

o) o o o

o} o 0 o
| . El Connector G

ynC [gt ow L —> ——> ateway

PCML, JAVA,

| Seviet Blocessor (Sueus) Connector

" Handles the interfacing with various business partners over a
variety of business protocols e.g. cXML & mXML

" Does marketplace and protocol authentication

" Forwards request (and response template) to Flow Manager

¥ Sends the response back to the requester

H Protocol unique connectors handle authentication and
reguest/response processing

Overview of the Gateway

The purpose of the Gateway isto handle connecting to trading partners. As part of doing that, it should
relieve the Flow Manager and it's connectors from knowing anything about the particular protocol that
isbeng used.

Connect for iSeries was designed to handle BtoB protocols that use XML to describe the request. The
Gateway can handle other forms of data, such as EDI, if the datais converted to an XML form once
it'sreceived, but typicaly BtoB protocolswill use XML. The Gateway handles al aspects of the BtoB
request from receiving the request to sending the response. The Gateway’ s design is very Smilar to the
Flow Manager in that they share acommon FHow Engine. Both use aseriesof connectors to process
the BtoB request. The Gateway is implemented as a set of servlets that run in aservlet engine which can
be provided by Lotus Domino or Webshpere Application Server.

Now, let’stake areal smplelook at what the Gateway does. BtoB requests are sent to the Gateway
usng the HTTP protocol. The Gateway serviets receive the BtoB requests, start up the Flow Engine

page 5

and hand off the request to a set of connectors to process the request. Once the request is processed
and aresponse is constructed, the Gateway servlets return the response to the caller.

HTTPServlet servlet

To receive inbound requests the Gateway uses a sarvlet caled the HTTPServiet. Thisserviet can be
used to receive data as name-vaue pairs, POST data, or no dataat al. Let'slook at each case
individualy.

Name-ValuePair (nvp)

Some BtoB protocols pass data to the recaiving HTTP server, in our case the Gateway, by passing
name-vaue pars. Typicaly, thisisused on cataog type requests. The remote trading partner isgiven a
URL to agenerd catalog and the specific supplier and buyer identities are passed to the catalog
gpplication as name-value pairs on the URL. For instance, a URL might look likethis
http://btob.mybusi ness.com/servl ets/catal og?supplier=mybusiness& buyer=mybuyer. The URL and
name-vaue pars are typicaly configured in either the marketplace software or in the buyers
procurement software. The name-vaue pairs are converted to nvpML by the HTTPSarviet. The

nvpML isthen placed in the “input message byte array” for processing by the Gateway connectors.

POST data

By far the mgority of BtoB requests send their data to the Gateway by using POST data and the most
common form of POST datais XML. A good example of thisuseiscXML. When the HTTPServiet
receives a cXML request it takes the POST data and copiesiit into the input message byte array for
processing by the Gateway connectors. For an example of using POST dataand XML seethe cXML
Users Guide available at http:/mww.cxml.org.

No Data

Some BtoB requests send their datain the HTTP headers. In this case the HTTPServlet doesn’'t do
any data processing. It’sleft up to the Gateway connectors to accessthe HTTP headers by retreiving
the HTTPServietRequest object and calling the appropriate access methods,

Gateway Flows

Once arequest is received through the HT TPServlet and the servlet has done the necessary processing,
the HTTPServlet sarts the Gateway Flow Engine and intiates a Gateway Flow. A Gateway flow isa
sequence of one or more Gateway connectors and/or copy/decision steps (copy/decision steps are
explained in detail in the Connect for i Series Programming Guide). The Gateway How Engine currently
only supports Java connectors, therefore only Java connectors are being used in the Gateway
throughout this paper.

A Gateway flow iscdled aflow cycle. The HTTPServlet is configured to start a single flow, however
multiple HT TPServlets can point to the same flow. The design of the flow cycles are based on the

page 6

capabilities of procurement software used and the contents of the data that is sent to the Gateway. For
ingtance, the procurement software may alow one URL to be configured for each request or it may
place redrictions on the configuration and only alow a single URL to be configured for dl requests.
These redtrictions or flexibility will decide how the protocol may be implemented in the Gateway. Let's
look at cXML as an example. cXML defines the ProfileRequest that is called to return the URLS that
handle al the other cXML requests. With this flexibility, we might use separate URLs for each request
or we might handle multiple requests with the same flow cycle. We choseto implement cXML in
Connect for iSeriesasasingle URL because the XML structure shares acommon XML header across
all requests, each request was easily determined by the XML header and the way we processed each
request would be very smilar.

The Gateway and Custom Protocols

Gateway Flow design guiddinesfor a custom protocol

Although each BtoB protocol is different and each request is unique, Gateway flow cycles should follow
abasic desgn structure. WE Il break down the Gateway flow into a sequence of typica steps and then
discuss each individualy. The Gateway flow cycle could be implemented as one big Java connector
that performs al of the flow steps by itsdlf. However, it's more desrable to implement each step asa
separate connector, looking for commondity and reusing connectors across different requests and
across different protocols. Asagenerd guiddine, we suggest that each of the following steps be
implemented as its own connector when building your own protocol flow:

e XML vdidation and parsng of incoming request
* Inbound Logging

e Authentication

* Authorization

* Request DOM Header Generation (setting buyer/supplier and request information)
* Response DOM Element Priming

* Queue the request/response

* Error Checking

e Sat Outbound Status

e Outbound Logging

* Error Handling

* Returntothe serviet

Whilethis seemslike alarge list of connectorsto write, it is our intent that you shouldn’t have to write
them al from scraich and hopefully, use some of the connectors provided with the product asis. Later
in the document as we go through an example custom protocol implementation, the connectors will be
described in greater detail. Thiswill enable you to better assess which connectors you will need to
implement. It will dso help you decide (for those connectors that you DO choose to implement) if they
can be used asis or how they need to be modified.

page 7

Enough already!! How do we do this?

So far we' ve talked about Connect’ s architecture, how the Gateway works and also stated some
generic guiddines for which steps a custom protocol must perform. These steps are the heart of the
protocol where the real work gets done during runtime. To get to the point where you have written
connectors and integrated them into your Connect runtime environment, you must perform a series of
higher level tasks. These tasks are what will be described in this paper (among these taskswill be a
description of how to write connectors). Here are the custom protocol implementation tasks that will be
described in this document:

Tasks Required to Define a Custom Protocol
0) Clearly understand your objective for your new protocol.
1) Determine the name, subtype and version of your new protocol.

2) Cregte anew directory that will be the location for al of the artifacts you will be creating for your
custom protocol.

3) Create a Document Type Definition file (DTD) to define the request/response data that you want to
send/receive viayour new protocol. (Obvioudy, this step can be skipped if you dready haveaDTD
created)

4) Generate an example XML request/response file that adheres to the DTD created in step #3.

5) Create a Request/Response M essage Format (file extension “RequestMsy”) for each defined request
type that describes the protocol runtime mappings.

6) For each request in your custom protocol, determine the flow steps necessary for proper handling of
the request. The steps considered will be influenced by how you answered question O (who the trading

partner(s) is (are), system topology, €tc.)

7) Create an AppConnector definition file for each of the Gateway connector programs.

8) Assemble the flow steps defined in step 6 to create the Protocol Flow file

9) Write the java connector programs to fulfill the necessary flow steps for your custom protocol.

10) Decide what data should be collected by the Buyer and Supplier GUI and create a Protocol Data

Modd definition file

page 8

11) Creste an XML file cdled, Pratocol Definitionxml. (This XML document describes the protocol
that will be added to the Connect ingtdlation for use by Connect instances. The DTD for thisfileisthe
Protocol.DTD that is shipped with Connect.)

12) Add support for the new protocol to your Connect ingtalation.
13) Creste a new instance with the new protocol
14) Create and deploy a process flow that runs in the Flowmanager

15)Start the new ingance and test it

Custom Protocol Implementation-Learning by
Example

At this point, you are ready to start down the exciting road of cresting your own BtoB protocol for
Connect. Please note that this document is making a big assumption that you must make sureis correct.
That assumption isthat you have already installed Connect on your iSeries and that you have
successfully run the samplesthat are shipped with the product to verify that you have a solid,
working installation of Connect. Itisinyour best interest to make sure that this has been done. If
nat, it could lead you down tangents of debug effort that would be difficult, time consuming and
irrdlevant. Obvioudy, this should be avoided if at dl possble, so please do not continue until you've
donethat. (For additiona information on how to ingal, configure and run the samples, seethe
documentation for the Connect for iSeries Verson 1.1 relesse.

In order to more clearly describe the steps involved with writing a custom protocol, an example has
been created. This example will start off a the most basic leve--just making something work. Following
that will be some additiond steps--making modifications/enhancements to what was done previoudy,
ultimately resulting in afull custom protocol design. While these examples cannot cover dl possible
custom protocol designs, it isintended thet there is enough information here to cover amgority of things
that implementers will encounter when creating their own custom protocol. It is aso intended to help
the implementer become familiar enough with the Connect flow design such that they will be ableto
solve the things that aren’t covered here.

Custom Protocol Example: A smple request/response protocol
Complexity Level: Thisisthe*hello world” program of custom protocol creation

Following are the detail s behind the custom protocol steps that we took to implement our very own
protocol to handle a request and provide aresponse. The smple request consists of querying the

page 9

amount of insurance coverage that a particular person has. For this case, the response generated by the

flowmanger aways returns an amount of $50,000. (the response generated by the flowmanager is uninteresting
because by the time the flowmanager is involved, the gateway has done the necessary steps to support the new protocol. Since
this document is specifically addressing custom protocol development, the responses generated by the flowmanager in these

examples will consist of the minimum amount of function to provide meaningful responses to portray the protocol.) Keep in
mind that thisis amost basic example that redly won't make any sense to insurance experts. However,
that is not the god of this example so it doesn't redlly matter. What does matter is that by going through
this example the concepts are clearly portrayed such that the reader can gain a basic understanding of
the steps required to successfully implement a valid custom protocol of their own. More complex
exampleswill follow, but it isimportant to get the basics down firg. “Walk before you run”, “Rome was
not built in aday”, etc., etc., etc. With that, let’s get started.

0. Clearly understand what your objective is for the new
protocol.

It was once said “ If you can’t write it down, you can’t programit” . When developing custom
protocols, thisis most certainly true. (Note to reader: This may be one of the more time-consuming
steps. Being absolutely sure of your environment and request/response definition will make for a
better protocol design and an easier implementation.) So, beforewe REALLY get into building our
own protocol, it isimperative that we answer the following questions.

What isthe system topology? (behind the same firewal, same company? On our own company’s
secure intranet? On the internet?)

The following paragraphs discuss the different topology scenarios that may exist within your target
environment and what things you need to consider for each scenario.

Application to Application Within a Sngle System

Y ou may require to “connect” to different applications on the same system. For example, you may want
to tie your Enterprise Resource Planning gpplication with your Supply Chain Management gpplication.
In this case, it would be beneficia to use Connect for i Series for its data mapping functiondity. You
may or may not need to develop an authentication or authorization phase of the custom protocol
(possibly relying on object level security)

page 10

ERP Application

SCM Application

Using Connect between applications on the same system.

Two Systems on the Same Company Intranet

This topology might be used when you are attempting to automate a business process that will require
the use of different software packages, i.e. the output from one gpplication is input to the other. The
need for authentication, authorization and a firewdl depends upon your ingdlation. It isadways

recommended that you use a secure communication method between systems such as TCP/IP Secure
Sockets Layer (SSL).

Two Systems Over the Internet

In this example, you can assume that you must authenticate and authorize any requests coming in due to
the openness of theinternet. 'Y ou may or may not have afirewal set up to protect your system from
unwanted access.

Y our business may require a topology where your business gpplication and access to the internet are
located on separate systems to further protect your core business data from unauthorized access.
Connect for iSeries could be ingtaled on both supplier systems where the Gateway and HTTP server
are located outside the firewdl in the Demilitarized Zone (DM Z) and the back-end flow manager would
resdeingde the firewall.

[ve)
c
<
]
F’B
]
3
S 4
& T
]

Supplier

I

Buyer/supplier Communication with DMZ configuration with Connect.

a
i
i
|
i
|
1
(to s
i
i
P
|
i
Firewall

~—DMZ™™

Multiple Buyers Over the Internet

page 11

Because you are again communicating over the internet, you must authenticate and authorize any
requests coming in.

Multiple Buyers and one Supplier

In many Stuations, a supplier, in order to fulfill an order request, dso functions as a buyer requistioning
an order to another supplier.

Buyer

Supplier Supplier

Buyer
Request

Buyer

Buyer

Using Connect to connect to multiple buyers also to pass a buyer request to another supplier through the Internet.

In this case, your custom protocol can be used to communicate between you and your buyers and the
business gpplication which isfulfilling the order request can pass the request along to another i Series that
has Connect for iSeries deployed. In the case of the buyers to supplier and supplier/buyer to supplier, a
custom protocol can be defined to the specifications that are required.

Our Answer for this example: Behind our own firewall.

What if it reached outside our firewal to the internet? This would change how closely you have to guard access for incoming
requests. |If there’saway that anyone could be coming in through a non-secure connection, you would have to provide the
appropriate amount of authentication to insure the proper security. Because we are behind our own firewall, we are assured that
no rogue requests will come in from an outside source.

Who arethe requester srespondersin your environment (1-to-1 or 1-to-many relationship?)

Y ou will need to set the stage for how your custom protocol solution is going to be deployed. If you
are asupplier, who will you be working with to make your product (goods or services) available? Isit

page 12

sangle or multiple trading partners? If multiple partners, can you create just one custom protocol that will
work for al of them or do you need unique ones for each partner?

The answer for thisfirst example: A trusted 1-to-1 relationship (a single partner).

What if it was a 1-to-many relationship? A 1-to-many relationship introduces complexities that typically require authorization
checking to insure that the requester coming in istruly allowed to make the requests that they are requesting. Because our
exampleisa trusted 1-to-1 relationship, no authentication checking is done.

What types of requests/responses do you want to send and receive?

What types of request and responses are going to be passed between you and your partner? Is your
business application such that you recelve and fulfill orders? Or, do you receive requests for quotes or
reports to be delivered viaonline, fax or postage mail? Y ou will want to work out the details of the
requests and responses that will flow between you and your trading partners.

Here are some exampl e request/response pairs.

Request Response
GetlnsuranceQuote Insurance Quote

passin medical liability, deductible, comprehensive return cost of insurance
GetlnsuranceCoverageRequest I nsuranceCoverageAmount

passin policy number or name return policy coverage amount
GetAutomotivePartCostEstimate PartCostEstimateResponse

passin part ID or serial number and quantity return part estimate quote
Pharmaceutical ReOrder OrderResponse

pass in drug name, ID, quantity return cost, quantity, status

Our Answer: The example in this document demonstrates an insurance application that uses an
XML protocol as the communication between companies. We want to define one
reguest/response combination as follows:

Request/response name: Get | nsuranceCover ageRequest/Getl nsuranceCover ageResponse

Data in request:
Request type
A person’s name

Data in response:
Coverage amount in dollars
Date request submitted
Response status code

Step 0 Complete. Continuing on...
Working out the details to al of these questions takes significant thought and effort. But now, after

clearly answering these questions, we can continue on with a much better understanding of the solution
we desire.

page 13

The ensuing steps talk about a number of different artifacts that comprise a Connect for iSeries custom
protocal. It may be helpful to see the high leve picture and description of what dl of the artifacts are,
how they relate to one another and what their purposeis. By underdanding the “big picture’, it will
hopefully allow you to better comprehend what you are doing on each step and why. Hereit is.

Custom Protocol Artifacts

DTD File :))
defines | RequestMsg Fl'; | attribute of | protocolDefinition.xml

defines an implementation of

- - Protocol Data
example incoming Model Definiti
request xml file install/update protocol
Connector
program

AppConnector defines
@ [0| -

ProtocolFlow File Connector
defines program G IO b al

the flow AppConnector defines .
— I ! Registry
program

Connector

AppConnector defines

O

~
©
@
<
=
c
n
@
=
O
)
2
O
o
=
=]
(9]
@
[
[y
S
)
=
@
5
=
0O
o
=)
>
(9]
Q
-
g
&
A
=]
=
o
—
o
Q
2
Z
Q
3
(v]
V

/QIBM/Userdata/Connect110/Protocols/<protocolName>

': section of this document that describes this

DTD file-Document Type Definition (DTD) fileisthe definition of the XML dements and attributes the
protocol abides by. Although this picture does not show it, multiple DTD files could be created for your
protocol. For example, you may have one DTD for each request/response combination, or one DTD
for each request and one DTD for each response, etc. XML schemas are another way to define the

XML format, but are not supported by Connect at thistime.

RequestM g file-Connect tool-generated file that defines the elements and attributes that comprise a
specific request/response for the protocol. Thisfileis used by Connect tools when mapping fields
between the request/response and the connectors used to process the request. Depending on how you
architect your request and responses, you may have multiples of these files with each pertaining to

specific requests/responses.

example file-An example xml file that istypica of the xml requests the protocol would be receiving in
production mode. Thisfileis used for testing/devel opment purposes only.

page 14

Protocol Defintion.xml-Fle that defines the configuration of the custom protocol in amanner thet is
consumable by Connect. The code jar files, RequestM sg files, serviet parameters/properties and
buyer/supplier definition files are dl specified here.

Protocol Flow files-Files that describe the order of the flow for the connector programs for your
protocoal.

AppConnectors-Hles that describe the class name, properties file and input/outputs for one protocol
connector program.

Connector-A program that performs afunction desired as part of the protocol runtime flow. Typicdly
thiswill be a Java connector.

1. Determine the name, subtype and version of your new

protocol

In this example, we chose:
Name=I nsuranceXM L
Subtype=L ifePartners
Verdon=1.01

“Name’ isthe forma name of the custom protocol.

“Subtype’ is used to distinguish a particular implementation of the forma protocol. For example, our
cXML implementationis“cXML, Ariba, 1.2”. “Ariba’ is used for the subtype because it has been
tested againgt Ariba s software. Other marketplaces may choose to use cXML and could potentidly
implement cXML following the standard, yet be different enough from Ariba s software that connectors
would have to change to be compatible.

“Verson” delinestes between modifications/fixes made to a particular protocol.

2. Create a new directory that will be the location for all of the

artifacts you will be creating for your custom protocol.
We created a new directory on our iSeries cdled:

/QIBM/User Data/Connect110/Protocols/l nsuranceXM L-LifePartners-1.01

(Note to reader: The name you give your protocol should be the name of the directory you create and
the directory must be under /QIBM/UserData/Connect110/Protocol s)

page 15

FYI for the future: If you plan on devel oping more than one protocol and ever wonder what the
difference is between the protocols in the /QI BM/User Data/Connect110/Protocolsdirectory and
the /QI BM/User Data/Connect110/Gateway/Connectors directory, it isthis: under the
...[Protocolsdirectory is where you put the things that you devel op for your custom protocol.
These are the new protocols that can be added or updated to your Connect installation. The
...|Gateway/Connector s directory contains the working versions of the custom protocols that
have already been deployed under your installation of Connect and are managed by the Connect
administration tools.

3. Create one or more Document Type Definition files (DTD)
to define the request/response data that you want to
send/receive via your new protocol. (Obviously, this step

can be skipped if you already have a DTD created)
We created afile named InsuranceXML_101.DTD
Hereisthe DTD that we created for our example:

<2xml version="1.0" encoding="UTF-8"?>

<|__ hhkkkhkkkhhkhhhhhhhhhhhdhhhhdhhdhhddhhdhhdhhdrhdxdhrdhxd

Helpful reminders:

? denotes element appears once or not at all
+ denotes element appears 1 or more times
* denotes element appears 0 or more times

InsuranceXML_101.DTD defines the following hierarchy:
<InsuranceXML>
<Request>
<GetlnsuranceCoverageRequest>
<Name>
<Response>
<Status>
<Date Time>
<GetlnsuranceCoverageResponse>
<CoverageAmount>

hhkkkhkkhhkhkhhhdhhhhhdhdhhdhhdhhhhdhdhddhhdhhddxhdrddrddxddxidsxx >

<IENTITY InsuranceXML.version "1.01" >

<IENTITY % InsuranceX ML.requests "GetlnsuranceCoverageRequest” >
<IENTITY % InsuranceXML.responses "GetlnsuranceCoverageResponse” >

<IELEMENT InsuranceX ML (Request*, Response*)>

<IELEMENT Request ((%lnsuranceX ML .requests;))>

<IELEMENT GetlnsuranceCoverageRequest (Name)>

<IELEMENT Name (#PCDATA) >

<IELEMENT Response (Status?, Date_Time?,(%IlnsuranceX ML .responses;)*)>
<IELEMENT Status ANY>

page 16

<IELEMENT Date Time ANY>
<IELEMENT GetlnsuranceCoverageResponse (CoverageAmount)>
<IELEMENT CoverageAmount (#PCDATA) >

Thisis not a paper about how to write DTDs and XML, so wewon't go into the details of syntax, etc.
If you are unfamiliar with DTDs and XML, then you should take the time to do some reading and
undergtanding of them before continuing. Something that would make working with DTDs and XML
easer would be to obtain an XML editor. The editor would present your XML in amore user-friendly
format than aline editor. It would aso use your DTD for syntax and vdidation checking, helping you to
avoid time-consuming XML parsing errors that would be discovered during runtime. Two editors that
we used were:

IBM XML and Web Services Development Environment (WSDE)

Note that WSDE not only contains an XML editor that |everages your DTD when editing your XML, it also contains
aDTD creation tool that helps get you started with your DTD.

At the time of thiswriting, you could obtain it as follows:
http://www.al phawor ks.ibm.com/tech/wsde
at the bottom of the screen, click "download"

select file xml-wsDE.zip and download it

The xml-wsDE.zip fileis large (88MB) but contains much more than an XML editor, so it may be worth your while to
try it out. It can aso be downloaded as 9 small, individual files. It aso has a 90-day evaluation period limit.

XEENA from Alphaworks

At the time of thiswriting, you could obtain it as follows:

http://www.al phawor ks.ibm.convtech/xeena
at the bottom of that page, click "download"
select file Xeena-1.2EA .exe and download it

run Xeena-1.2EA .exe to install it.

4. Generate an example xml request/response file that
adheres to the DTD created in step #3.

This XML fileis used prior to deployment of the new protocol for testing purposes. Using an XML
editor would help insure thet thefile is valid according to the DTD. Here's a sample xml request that we
wrote to do a “GetlnsuranceCoverageRequest™

<xml version="1.0" encoding="UTF-8"?>
<IDOCTYPEInsuranceXML SYSTEM "InsuranceXML_101.DTD">
<InsuranceXML>

page 17

<Request>
<Getl nsuranceCoverageRequest>
<Name>Johnny J. Johnson</Name>
</GetlnsuranceCoverageRequest>

</Request>

</InsuranceXML>

Note that in this example we defined <Request> e ements but not <Response> elements. The response
eements in the example are only contained in the actud response. Here is an example of what the
response will look like:

<xml version="1.0" encoding="UTF-8"?>
<IDOCTYPEInsuranceXML SYSTEM "InsuranceXML_101.DTD">
<InsuranceXML>
<Response>
<Status>Successful </Status>
<Date Time>Mon Jul 16 15:33:08 CDT 2001</Date_Time>
<GetlnsuranceCoverageResponse>
<CoverageAmount>$50000</CoverageAmount>
</GetlnsuranceCoverageResponse>
</Response>
</InsuranceXML>

5. Create a Request/Response Message Format (file
extension “RequestMsg”) for each defined request type that
describes the protocol runtime mappings.

A RequestMgg fileisan XML document that identifies the input and output fields associated with a
given request. Each type of request must have a corresponding RequestMsg file: The RequestM sy
identifiesthe XML DTD and aso defines the subsat of dementsin that DTD that are applicable for that
request.

From a gsh screen on the i Series, you can create a RequestM g file by running the crtRMFFile tool that
comes with the connect product. See the tools documentation for Connect Version 1.1 product for
more information about thistool. Here are the commands we ran to accomplish this:

cd /qgi bnf userdat a/ connect 110/ prot ocol s/ I nsuranceXM.- Li fePartners-1.01

/ gi bm proddat a/ connect 110/ tool s/runtime/crt RMFFi | e | nsuranceXM._101. DTD
/1 nsuranceXM./ Request / Get | nsur anceCover ageRequest | nsuranceXM._101. DTD
/1 nsuranceXM./ Response Get | nsuranceCover ageRequest . Request Msg

Hereisthefileit produced, (Getl nsuranceCoverageRequest.RequestM sg):
page 18

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTY PE requestmessageformat SYSTEM "RMF.DTD">
<requestmessageformat RMFVersion="1.1">
<reguestschematype="DTD">
<field FMAccess="Read" GWAccess="Write" context="Request"
count="one" display="yes" label="InsuranceXML" ref="/InsuranceXML">
<field FMAccess="Read" GWAccess="Write" context="Request"
count="multiple" display="yes" label="Request" ref="/InsuranceXML/Request">
<field FMAccess="Read" GWA ccess="Write" context="Request"
count="one" display="yes" label="GetInsuranceCoverageRequest" ref="/InsuranceX M L/Request/GetInsuranceCoverageRequest">
<field FMAccess="Read" GWAccess="Write" context="Request"
count="one" display="yes" label="Name" ref="/InsuranceX M L/Request/GetI nsuranceCoverageRequest/Name"/>
</field>
<ffield>
<[field>
</reguestschema>
<responseschematype="DTD">
<field FMAccess="Write" GWAccess="Write" context="Response"
count="one" display="yes" label="InsuranceXML" ref="/InsuranceXML">
<field FMAccess="Write" GWAccess="Write" context="Response"
count="multiple" display="yes" label="Response" ref="/InsuranceXML/Response">
<field FMAccess="Write" GWA ccess="Write" context="Response"
count="one" display="yes" label="Status" ref="/InsuranceX ML/Response/Status'/>
<field FMAccess="Write" GWA ccess="Write" context="Response"
count="one" display="yes" label="Date_Time" ref="/InsuranceXML/Response/Date_Time"/>
<field FMAccess="Write" GWA ccess="Write" context="Response"
count="one" display="yes" label="Getl nsuranceCoverageResponse"
ref="/InsuranceX M L/Response/Getl nsuranceCoverageResponse' >
<field FMAccess="Write" GWAccess="Write" context="Response"
count="one" display="yes" label="CoverageAmount"
ref="/InsuranceX M L/Response/Getl nsuranceCoverageResponse/ CoverageAmount"/>
<[field>
<ffield>
<[field>
</responseschema>
</regquestmessageformat>

6. Determine the flow steps necessary for proper handling of
the requests coming into your custom protocol. The steps
considered will be influenced by how you answered question
0 (who the trading partner(s) is (are), system topology, etc.)

For our smple example, we will implement a subset of the steps from the origind list presented in the
overview of this document (the ones we used/implemented are in large, bold characters). Thisisa
minimal number of sepsto actualy get something to function (which isal we want to accomplish with
this example).

* XML validation and parsing of incoming request
* Inbound Logging

® Authentication

® Authorization

* Request DOM Header Generation (setting buyer/supplier and request infor mation)

page 19

* Response DOM Element Priming
* Queuetherequest/response

e Error Checking

e Sat Outbound Status

e Outbound Logging

e Error Handling

* Return totheservlet

7. Create an AppConnector definition file for each of the

Gateway connector programs.

Now that it’'s been decided what the steps are going to be for the flow, it's time to get more specific
with what each step is going to be doing. This means we should start writing AppConnector filesfor
each step. The AppConnector fileisan iSeries Connect artifact that defines a connector. It states what
the name of the connector program is, what (if any) the properties files are for that program, and what
the input and output datais. For more information on AppConnectors, please refer to the iSeries
Connect Programmer’s Guide. According to the flow that was decided for our sample program, this
would lead usto bdlieve that we should create nine AppConnector files-one for each step we decided
to implement. That's quite afew for asmple example, so here's some good news...we only have to
crete five. Hereé swhy:

XML validation and parsing of incoming request Weare going to use the connector program provided
with the Connect product. However, we must create an AppConnector for this program that specifies the correct
propertiesfileto be used, so thisis AppConnector number ONE that we must write.

Inbound Logging We aregoing to use the connector program provided with the Connect product. The program and
AppConnector already exist and we will use those.

Authentication

Authorization

Request DOM Header Generation Thisstep isnot a program call, it' s a copy step, so no AppConnector
needed.

Response DOM Element Priming Thisisa connector program that we are creating for our example,. It will
need an AppConnector file, so we must writeit.....that’'s TWO

Queue the requeﬂ/r €5P0NSe We are going to use the connector program provided with the Connect product. The
program and AppConnector already exist and we will use those.

Error Checking We are going to use the connector program provided with the Connect product. However, we must
create an AppConnector for this program that specifiesthe correct propertiesfileto be used, so thisis AppConnector
number THREE that we must write.

page 20

Set OutboundStatus Thisis a connector program that we are creating for our example,. It will need an
AppConnector file, so we must writeit.....that's FOUR

Outbound L oggi Ng We are going to use the connector program provided with the Connect product. The program
and AppConnector already exist and we will use those.

Error Handling We need to have a program that catches any errorsthat occur during the protocol flow, so we will
write a simple connector program and accompanying AppConnectorthat’s FIVE.

Here are the five AppConnector files that we wrote for our example:

XML Validation and Parsing
XMLToDOM .AppConnector
<?xml version="1.0" encoding="UTF-8"?>
<IDOCTY PE Connector SY STEM "JavaConnector.DTD">
<Connector ACDVersion="1.1" Type="%JavaACDType" Name="XMLToDOM">
<Properties>
<ClassName>com.ibm.connect.gateway.connector.X ML ToDOM Connector</ClassName>

<PropertyFileName>gateway/connectors/InsuranceX M L-L ifePartners-1.01/X ML ToDOM Connector.properties</PropertyFileN
ame>
<InputFieldTemplate/>
<OutputFieldTemplate/>
</Properties>
<Input/>
<Output/>

</Connector>

Response DOM Element Priming
ResponseDOM Priming.AppConnector
<?ml version="1.0" encoding="UTF-8"?>
<IDOCTY PE Connector SY STEM "JavaConnector.DTD">
<Connector ACDVersion="1.1" Type="%JavaACDType" Name="ResponseDOM PrimingConnector">
<Properties>
<ClassName> I nsuranceX M L.ResponseD OM PrimingConnector</ClassName>
<PropertyFileName></PropertyFileName>
<InputFieldTemplate/>
<OutputFieldTemplate/>
</Properties>
<Input>

</Input>
<Output>

</Output>
</Connector>

Set Outbound Status
SetOutboundStatus. AppConnector
<xml version="1.0" encoding="UTF-8"?>

page 21

<IDOCTY PE Connector SY STEM "JavaConnector.DTD">
<Connector ACDVersion="1.1" Type="%JavaACDType" Name="SetOutboundStatusConnector">
<Properties>
<ClassName>I nsuranceX M L. SetOutboundStatusConnector</ClassName>
<PropertyFileName></PropertyFileName>
<InputFieldTemplate/>
<OutputFieldTemplate/>
</Properties>
<Input>

</Input>
<Output>

</Qutput>
</Connector>

Error Checking
XMLBuilder .AppConnector
<?xml version="1.0" encoding="UTF-8"?>
<IDOCTY PE Connector SY STEM "JavaConnector.DTD">
<Connector ACDVersion="1.1" Type="%JavaACDType" Name="XMLBuilder">
<Properties>
<ClassName>com.ibm.connect.gateway .connector.X M L Buil derConnector</ClassName>

<PropertyFileName>gateway/connectors/I nsuranceX ML -LifePartners-1.01/X M L BuilderConnector.properties</PropertyFileNa
me>
<InputFieldTemplate/>
<OutputFieldTemplate/>
</Properties>
<Input>

</Input>
<Output>

</Output>
</Connector>

Error Handling
ExceptionHandler AppConnector
<?ml version="1.0" encoding="UTF-8"?>
<IDOCTY PE Connector SY STEM "JavaConnector.DTD">
<Connector ACDVersion="1.1" Type="%JavaACDType" Name="ExceptionHandlerConnector">
<Properties>
<ClassName>I nsuranceX M L .ExceptionHandl erConnector</ClassName>
<PropertyFileName>?</PropertyFileName>
<InputFieldTemplate/>
<OutputFieldTemplate/>
</Properties>
<Input>

</Input>
<Output>

page 22

</Qutput>
</Connector>

8. Create the ProtocolFlow file

Now that you have decided what the new protocol’ s work flow should be, it is necessary to create a
Protocol Flow file to describe it. A Protocol Flow file describes the sequence of connectors that need to
run in order to fulfill a protocol’s desired function. Here s the file we created

(InsuranceCoverageRequest.Protocol Flow), followed by explanation. (in the future, tools will generate this file
for you, but at the time of this writing, these tools are not available yet. In order to create thisfile, we suggest using your favorite
editor or one of the XML editors mentioned previously.)

<xml version="1.0" encoding="UTF-8"?>
<IDOCTY PE ProcessFlowModel SYSTEM "PFM.DTD">
<ProcessFlowModel PFMVersion="1.1">
<Protocol Protocol="InsuranceXML" Protocol Subtype="L ifePartners" ProtocolVersion="1.01"
Request="InsuranceCoverageRequest" RequestType="Get"/>
<ProcessFlow FirstStepName="XMLToDOM" FlowName="InsuranceCoverageRequest" Restartable="No">
<Step Name="XMLToDOM" NextStepName="InboundL ogger" ErrorStepName="ExceptionHandler">
<Connector ACDRef="XMLToDOM _.AppConnector"/>
</Step>
<Step Name="InboundL ogger" NextStepName="SetContentRequest" ErrorStepName="ExceptionHandler">
<Connector ACDRef="InboundL ogger.AppConnector"/>
</Step>
<Step Name="SetContentRequest" NextStepName="ResponseDOMPriming" ErrorStepName="ExceptionHandler">
<Copy>
<Source>
<Operand DataType="String" Default="GetlnsuranceCoverageRequest"/>
</Source>
<Destination>
<Operand Context="MessageHeader" DataType="String" Reference="com_ibm_connect_header_contentRequest"/>
</Destination>
</Copy>
<Copy>
<Source>
<Operand DataType="String" Default="Get"/>
</Source>
<Destination>
<Operand Context="MessageHeader" DataType="String" Reference="com_ibm_connect_header_contentRequestType"/>
</Destination>
</Copy>
</Step>
<Step Name="ResponseDOMPriming" NextStepName="FMComm" ErrorStepName="ExceptionHandler">
<Connector ACDRef="ResponseDOM Priming.AppConnector"/>
</Step>
<Step Name="FMComm" NextStepName="XMLBUuilder" ErrorStepName="ExceptionHandler">
<Connector ACDRef="FM Comm.A ppConnector"/>
</Step>
<Step Name="XMLBuilder" NextStepName="SetOutboundStatus" ErrorStepName="ExceptionHandler">

page 23

<Connector ACDRef="XMLBuilder.AppConnector"/>

</Step>

<Step Name="SetOutboundStatus' NextStepName="OutboundL ogger" ErrorStepName="ExceptionHandler">
<Connector ACDRef="SetOutboundStatus.AppConnector"/>

</Step>

<Step Name="OutboundL ogger" ErrorStepName="ExceptionHandler">
<Connector ACDRef="0utboundL ogger.AppConnector"/>

</Step>

<Step Name="ExceptionHandler" NextStepName="XMLBuilderE">
<Connector ACDRef="ExceptionHandler.AppConnector"/>

</Step>

<Step Name="XMLBuilderE" NextStepName="OutboundL oggerE">
<Connector ACDRef="XMLBuilder.AppConnector"/>

</Step>

<Step Name="OutboundL oggerE">
<Connector ACDRef="0utboundL ogger.AppConnector"/>

</Step>

</ProcessFlow>
</ProcessF owM odel>

Thefirg threelines of the file are “boilerplate’ lines that would apply to any .Protocol Flow file that you
would create.

The next line defines your protocol and the request and request types that are handled by thisflow. The
protocol name, subtype and version should be what you decided they would be in an earlier step.
Request isthe name of the requests that will utilize thisflow. Specific flows could be defined for
different requests. Recall what was talked about in the Gateway Flows section earlier in this paper
whereit stated “ With this flexibility, we might use seperate URLs for each request or we might
handle multiple requests with the same flow cycle.” Thiswould be akey part to accomplishing that,
but for our ample example, we won't delveinto it a thistime.

RequestType is used to categorize Requests. In this example, we set RequestTypeto “ Get”. We chose
“Get” to denote dl requests that are asking for information so that if we wanted to define new requests
for our insurance environment, (e.g. “InsuranceCoverageRequest”, “InsuranceQuoteRequest”,
“InsuranceClamRequest”, etc.), they could al be of request type “Get”. Thisway, we could aso define
these same requests with type “ Submit” or “Put” aso (when these requests are sending in information).
If you wanted more generic definition, you could specify a RequestType of *ALL. This meansthat, in
our example, any insurance coverage request would be accepted by this flow.

The rest of the file defines aflow name and the stepsto take and in what order. Here' s a breakdown of

one of the steps:
<Step Name="XMLToDOM" NextStepName="InboundLogger" ErrorStepName="ExceptionHandler">
<Connector ACDRef="XMLToDOM _.AppConnector"/>
</Step>
Name-Name of this step
NextStepName-the next step in the flow to execute

page 24

ErrorStepName-step to execute if an error is encountered during invocation of this step (this
would be a connector invocation error or an unmonitored error that causes this connector to
fail-not any kind of try/catch type of error that this connector would handle)

Connector ACDRef-the name of the file (AppConnector--we' |l talk about those next!) that defines
the connector program to be called during this step.

Y ou might notice that step3 and step (step to be added) are alittle different. These are “copy” steps
that don't call any connector program, but instead will copy a specified piece of information to afield in
one of the Structures available in the FlowState of the Connect instance (more on these structures | ater).
In step3, for ingance, the request name (Getl nsuranceCoverageRequest) is being written to the
MessageHeader structure. This must be done in order that the FlowManager can successfully determine
the flow that it should execute once the request ispassed to it. If you were to do your own smple
example like this, you could do the exact same step--the only difference being you would specify your
desired request vaue (the “Default=" value). For more complex Request DOM Header setup, another
connector program could be used, but in this example, a copy step is sufficient. For more information on
the copy step and other step types, please refer to the i Series Connect Programmer’ s Guide. The
gyntax and function for Protocol Flows is the same as that provided for ProcessH ows.

Going back to our earlier list of steps, let’ sre-list them here and how they correlate to the stepsin our
Protocol Flow file

* XML validation and parsing of incoming request (step “XMLToDOM")

Inbound Logging (step “InboundLogger”)

Authentication
Authorization

Request DOM Header Generation (setting buyer/supplier and request information) (step
“SetContentRequest”)

* Response DOM Element Priming (step “ResponseDOM Priming”)

* Queuethe request/response (step “FMComm”)

e Error Checking (step “XMLBuilder”)

e Set Outbound Status (step “ SetOutboundStatus”)

e Outbound L ogging (step “OutboundL ogger”)

e Error Handling (step “ExceptionHandler”)

e Returntotheservlet (nostep..happensafter thelast step is completed)

9. Write the java connector programs to fulfill the necessary
flow steps for your custom protocol.

The good news in the previous section was that because we used some of what was provided with
Connect to support our flow, we only had to write five AppConnectors. There saso good newsin this
section. We only have three programs to write. Before we get to the specifics of the code that was
written for our example, it would be good to establish an understanding of the basics of the architecture
surrounding the connector programs. So, to do that, let’ stake aquick......

page 25

Time out!!

Remember the earlier gatement: “ If you can’t write it down, you can’t program it” ? We' ve dready
taken the time to write down/articulate what we want to do--avery necessary step. Now what we
need to do is know how to write corresponding code that properly integrates with the Connect
framework. Before we start cranking out code, we need to understand how our connector programs
can access and work with the request/response data that will flow through the custom protocol. So,
let’s start with some basic Q& A’ s to help understand how the openness of the Connect framework
dlowsusto do this.

Q: Thefirst connector program that we need to write satisfiesthe step, “ Response DOM
element priming”. We named the program for thisstep
ResponseDOMPrimingConnector.java and added it to the Protocol Flowfile and wrote the
corresponding AppConnector. But, how’sit going to get invoked---what kind of interfaces
doesit need to implement?

A: Every Gateway connector program must be a Java class that implements the
JavaProgramConnectorinterface interface. The method that will get called in your connector program
will be

JavaConnectorResult run (ProgramConnectorParm parameters)
At runtime, the Gateway flow engine will ingantiate this class and invoke this run() method.

Q: What's thisProgramConnector Par m thingy that gets passed to my connector program?

A: The ProgramConnectorParm object that’ s passed in supports dl of the APIs available to
programmatically accessthe “flow date’ data. The flow state datais dl the datathat is revant to the
Connect instance and the current request that’ s being handled. 1t is strongly suggested that you read
the Connect for iSeries programming guideto gain better under standing of the flow state and
functionality therein. It will greetly increase your proficiency in writing your connectors and
understanding what you will need to do.

Q: What’sthat JavaConnectorResult I’'m supposed to pass back on return?

A: The JavaConnectorResult object provides a standard way for the connector program to pass back
result information to the Gateway flow engine. It provides the capability of setting areturn code and o
a dring object containing other result information deemed important by the connector program. The
return code hdlps the flow engine determine if the connector program was successful and whether or not
it should continue with the flow or abort. The return code must be set. It isimplied by the flow engine
that areturn code of zero indicates success and a non-zero return code indicates failure. The
ReturnString could be anything pertinent to helping the user understand the flow activity from step to
step (whether errors occur or not). JavaConnectorResult has two interfaces that support this. They are:

page 26

public void setReturnCode(int newReturnCode)
public void setReturnString(java.lang.String newRetur nString)

Y ou will see examples of how to use thisin the connector source code shown in Appendix A.

End of Time out.

Aswe determined earlier (through construction of the Protocol Flow and the writing of the
AppConnector documents), we will need to provide three connector programs to support our custom
protocol. Along with these programs are two property files for two existing connector programs. Here's
the comprehensive list of programs and properties files needed:

XML Validation and Parsing of incoming request
Created properties file XMLToDOMConnector.properties
(needed a propertiesfile to state where the DTD files are that this program should be using for request parsing and validation)

Response DOM Element Priming
Wrote program InsuranceX M L.ResponseDOM PrimingConnector.java

Set Outbound Status
Wrote program InsuranceX M L. SetOutboundStatusConnector.java

Error Checking
Created properties file XM LBuilderConnector.properties
(needed a propertiesfile to state where the DTD files are that this program should be using for response parsing and validation)

Error Handling
Wrote program InsuranceX ML .ExceptionHandler.java

The source for these programs and the propertiesfiles are included in Appendix A of this document. It,
aong with dl other source discussed in this document, is dso available from our website at
http: //www-1.ibm.com/server s/eser ver/iseries/btob/connect/.

Compiling all connector programs and create the jar file containing them

For thisexample, atrivid shell script was written to cal the Java compiler with the gppropriate classpath
vaues. This seemed much easer asthe classpathis quite large (a " shotgun” approach was used here as

more ja files were liged than required, however by doing this, the command file should work for future,
more complex connector program compiling). The source for this shell script and an equivadent

page 27

commeand file (if you are running from mapped drives on a PC) are included in Appendix A. Once the
shell script was written, here' s an example of how we ran it from gsh on an iSeries:

> cd /qi bm userdat a/ connect 110/ prot ocol s/ I nsuranceXM.- Li f ePart ners-1. 01
$
> conpi | econnector . ResponseDOVPri m ngConnector.java
Connector conpilation finished
$

Since we created our connector program to be in the “InsuranceXML” package, our compile step
created a subdirectory named ‘ InsuranceXML’ with our .classfilein it. So, to create the jar file for our
protocol, we issued the following command:

jar cvf InsuranceXM.jar |nsuranceXM./*.cl ass

10. Create a Protocol Data Model definition file

The Protocol DataModd definition fileisan XML document that defines the text to be displayed and
the data to be collected on the Supplier Marketplace Association and Buyer Marketplace Association
pages for the corresponding Protocol. Thisis the file referenced in the TPADataM odel dement in the
Protocol Definition. These pages are ble under the Supplier and Buyer links in the Connect
Adminigtration GUI. The datainput on these pages represent how the registered requestors (buyers)
and target (supplier) will beidentified in the protocol flow and optiondly any logon information required
to authenticate the incoming request. Because the example being illustrated hereis not doing any
authentication or authorization checks in the process flow (see process flow outlined previoudy) , this
exampleis quitetrivid, requiring no data. Here is the buyer-supplier screen mode definition file
(InsuranceX ML -LifePartners-1.01.xml) we crested for our example followed by descriptions of the
fidldsavailable in a screen mode definition (for acomprehensive lig of fidds, please seethe
supplierbuyerscreenmodd .dtd file shipped with the Connect Version 1.1 product):

<xml version="1.0"?>
<IDOCTY PE SupplierBuyerScreenModel SY STEM "supplierbuyerscreenmodel .dtd">
<SupplierBuyerScreenModel name="InsuranceX M L-LifePartners-1.01" version="V1R1M0">
<context name="supplierprotocol">
<frame name="supplieraccess" order="1" title="(no supplier Information required)">
</frame>
</context>
<context name="buyerprotocol">
<frame name="buyeraccess" order="1" title="(no buyer information required)">
</frame>
</context>
</SupplierBuyerScreenM odel >

page 28

The fird three lines of the file are “boailerplate’ lines that would goply to any datamodd definition file
that you would creste.

The root dement is" SupplierBuyerScreenModd"”. The "verson” atribute should be set to the verson of
Connect that

this modd isto be used with. The verson is"V1R1IMO" for thisrelease. The "name" attribute should be
used to specify a short description of the user defined protocol that thisfile is used with. The suggested
vaueis "Protocol Name - verson'.

The protocol data model will have two contexts. One for Supplier Marketplace Association and one for
Buyer Marketplace Associaion. A context is defined within a"context” dement. The "name" attribute
specifies which context is being used. The context name "supplierprotocol” denotes this context isto be
used for the Supplier Marketplace Association data model. The "buyerprotocol” context name denotes
the context is for the Buyer Marketplace Association data mode!.

Within a context there will be aset of "frame'’ dements. Each "frame”’ element corresponds to a page in
the Marketplace Association wizard for this protocol. At a minimum one frame must be included. The
"name" aitribute on the frame mugt be unique to dl frames within the context. The "order” atribute
specifies the order of the frames in the context. The value for the "titl€" atribute is the text displayed in
thetitle area of the page.

A framewill optionaly contain text fields and input fields.
A text fidd is defined within a"text" element. It is used to put informationd text onto the page.

Aninput field is defined with a"field" dement. A "fidd" eement describes the data that is collected and
the property name that the data is stored under.

The field dement has many attributes. Thisisalist of the required attributes. Check the DTD for more
information about additiona field attributes.

"order” - Used to ensure thisinput field isin the correct location
on the page with relation to other input and text fields.

"varname' - The property name that the vaue for thisfield is stored
under in the protocol data base table.

"length" - Thelongest string of characters that is acceptable for
input to thisfidd. Set to "-1" for no limit.

"type" - The kind of checking performed againgt data entered in this
field. "dphanumericsymbal™ will dlow the user to enter any
data aslong as the length is within the vaue st for the
length attribute. Other vaues for this attribute that can be
used for data checking include "dpha’, "numeric",

page 29

"dphanumeric’, and "timestamp”.
There are 3 vaues for type that cause the field to behave
differently:
"password" - is apassword field, text entered is"*" out.
"hidden" - thefidld is not displayed, but it is stored.
"noentry" - the field is displayed but the user can't change
it.
The "defaultva" attribute should be set in order for the last
two to have any vaue.
"required”’ - If thisvaueis set to "yes' then the user must provide a
vaue for thisfidd. Set to "no" if thefidd is optiond.
"defaultvad” - If this attribute is set the value will gppeer in the
text entry box for the field if no other valueis s&t.

11. Create an XML file called ProtocolDefinition.xml.

This XML document describes the protocol that will be added to the Connect ingtallation for use by
Connect ingtances. The DTD for thisfile isthe Protocol . DTD that is shipped with Connect.

Here isthe ProtocolDefinition XML file we created for our example followed by descriptions of each
fidd:

<xml version="1.0" encoding="UTF-8"?>
<IDOCTY PE Protocol SYSTEM "ignored.dtd">
<Protocol
DeployDestination="InsuranceXML-LifePartners-1.01"
DeployType="UserData' Name="InsuranceXML" SubType="LifePartners" Version="1.01">
<TPADataM odel>Protocol DataM odel -InsuranceX ML -LifePartners-1.01.xml</TPADataM odel >
<Jars>
<Jar>/QIBM/UserData/Connect110/Gateway/Connectors/| nsuranceX M L-LifePartners-1.01/InsuranceX ML ,jar</Jar>
</Jars>
<Servlets>
<Servlet
Class="com.ibm.connect.gateway.servlet. HT TPServlet" DefaultName="InsuranceXML-LifePartners-1.01">
<ServletParameter Editable="No"
Name="FlowName" Required="Y es"'>InsuranceCoverageRequest</ServletParameter>
<ServletParameter Editable="No"
Name="RequestMethod" Required="Y es'>POST </ServletParameter>
<Requests>
<Request Name="GetlnsuranceCoverageRequest" Required="NO">
<RequestType Name="Get">
<M essagefFormat
Name="/QIBM/UserData/ Connect110/Gateway/Connectors/InsuranceX M L - LifePartners-1.01/Getl nsuranceCoverageRequest.Re
questMsg''/>

page 30

<MessageFormat Name="/QIBM/ProdData/Connect110/Gateway/Connectors/I nternal Headerv11l.RequestM sg" />
<MessageFormat Name="/QIBM/ProdData/Connect110/Gateway/Connectors/M essageHeaderv11.RequestM sg"/>
<MessageFormat Name="/QIBM/ProdData/ Connect110/Gateway/Connectors/BuyerSuppliervll.RequestMsg"/>
</RequestType>
</Request>
</Requests>
</Servlet>
</Servlets>
</Protocol>

Heading statements:
<?xml version="1.0" encoding="UTF-8" ?>
<IDOCTYPEProtocol SYSTEM *“ignored.dtd”>

Thesetwo linesare standard linesthat belong in thefront of any Protocol Definition.xml file. The “ignored.dtd”
entry isput there becausethe DTD parser that’sbeing used requiresa namevalueto bethere, but doesnot actually
usethat name. So, to satisfy the parser, a“dummy” valueisput there.

Protocol

Root element for a protocol definition

Name = "value" Name of the protocol

SubType = "value" Subtype of the protocol

Version = "value" Version identifier of the protocol

DeployDestination = “value” destination location of this protocol’s artifacts

DeployType ="UserData" I dentifier to indicate that thisis deployed under ProdData or User Data. We strongly
recommend always using User Data to insure per servation and migration of your protocol between releases. Only
the protocols shipped with the Connect product should be in ProdData.

TPADataM odel

Name of the Protocol Data Model XML file that describes how buyers and supplier areidentified in the protocol
(usually in the terminol ogy of the protocol, like a DUNS number or Insurance agent number, etc) and optionally if
there isany logon information to be authenticated against via the incoming request. Logon information would
correspond tologon id(s) and a password.

Jars

Section for thejar filesrequired to support this protocol. These jar files will contain any specific connector
programs written for this protocol.

Jar
Name of a jar filerequired to support this protocol. Note that thisjar file and all otherslisted under the Jars
element for your protocol will automatically be added to your classpath.

Requests
Section for the requests that this protocol supports.

DefaultFlow
FlowName = "value" Name of the .Protocol Flow file that supports the requests listed here. Creation of this
.Protocol Flow file was described in an earlier section of this document

Request

page 31

Name = "value" Name of the request (eg. “ OrderRequest”)

Required ="YES' Isthisrequest required in all request/response flows through this protocol ? Yes or no.
FlowName = "value" Name of the .Protocol Flow file that supports this request. Creation of this.Protocol Flow file
was described in an earlier section of this document

RequestType

Name = "value" Name of the request type (eg. “ create”)

M essageFor mat
Name ="value" Name of the .RequestMsg file that defines the message format used for this request

Servlets

Section for the servletsthat are defined for this protocol.

Servlet
Class="value" Name of the classfilethat isthis servlet. Currently only

com.ibm.connect.gateway.servliet. HTTPServlet is support)

Authentication = "BASIC" Type of HTTP authentication to be done. BASIC or NONE. Most of the time thiswill be
NONE because authentication will be done at the protocol level in the XML vsat the transport level by the HTTP
servlet. Either way is secure, it just depends on how the protocol is defined.

DefaultName = "value" Default name to be associated with this serviet

ServletPar ameter

Name - Name of the parameter

Required - Isthis parameter required, Yes or No

Editable- Isthis parameter editable via the Connect GUI (for future use), Yes or No.

(character data) The actual parameter value being passed in

When Name="RequestM ethod” , value is POST, NVP, GET or NONE. If the XML isPOSTed by the sender it should
be POST. If the sender is sending in name-value pairsit should be NVP. If the sender isdoing anHTTP GET it
should be GET. When XML datais sent it should be POST. NONE isalso valid.

Checkpoint!! Al the artifacts required to install the InsuranceXML-LifePartners-1.01
protocol now exist in the custom protocol directory. Here' sthelist:

Directory: /QIBM/User Data/Connect110/Protocols/InsuranceXML-LifePartner-1.01
ExceptionHandler.AppConnector

ExceptionHandlerConnector.java

GetlnsuranceCoverageRequest. RequestM g

GetlnsuranceCoverageRequest.xml

I nsuranceCoverageRequest. Protocol Flow

InsuranceXML.jar

InsuranceXML_101.DTD

Protocol DataM odd -I nsuranceX ML -LifePartner-1.01.xml

page 32

Protocol Definition.xml

ResponseDOM Priming.A ppConnector
ResponseDOM PrimingConnector.java
SetOutboundStatus.A ppConnector
SetOutboundStatusConnector.java
XML BuilderConnector.AppConnector
XML BuilderConnector.properties
XMLToDOM.AppConnector
XMLToDOMConnector.properties

12. Add support for the new protocol to your Connect

installation.

In order to make our protocol useable by Connect, we have to register it as an available protocol. The
adding and updating of anew BtoB protocol screen is available off of the Customize task link on the
Connect Instances screen. It supports ingdling or updating a custom protocol and making it available
for use by Connect indances. Theligt of protocols to work with is built internaly by scanning the
/QIBM/UserData/ Connect110/Protocols/ subdirectory. The protocol status depends on whether the
protocol has aready been added. A protocol that has aready been added can be updated at any time
aslong as al Connect instances that use that protocol are not running. If any of those indtances are
running, they will need to be stopped prior to updating that custom protocol. After a protocol has been
added, it isthen avallable for use by any existing Connect instances via the Edit Connect instance
function. The new custom protocol can aso be used when creating new Connect ingtances. Hereisthe
customize screen that is displayed upon selecting “customize’ from the “Instances” menu. Asyou can
see, the new protocol, InsuranceX ML, is now available to be ingtalled:

page 33

EIBM Connect For iSeries Adnnmshiltmn RCHASBEE - dubbels - Microsoft Internet Expl.... . =/|-

Customize Instance Configuration Saervar; RCHASEEE
Instance: mpk?a01 .

4 Protocol '

Salect a protocol to iretall or update To install @ protocol, sslkect ore with e supported statis To update a protocod thad
has alresady been installed, select an irstallsd protocal

Protocols:

& |InsurancexmL | LifePartrers |1 01 Qf::uuur‘ted F[BMKUEHQE&?KCGTECH 10/ Gataway Connectors. A reura noakid

¢ Close | Add Support | ® Update

As mentioned earlier, ingtaling anew protocol includes creating anew set of directoriesin
/QIBM/UserData/Connect110 to contain the ingtalled protocol. For this example, the directory
sructure that was created during protocol installation was:

/QIBM/UserDatal Connect110/Gateway/ Connectors/InsuranceXML-LifePartners-1.01/

13. Create a new instance with the new protocol
(It isassumed that you are familiar with using Connect and doing instance creation.) Normal instance crestion
can now be done using the new protocol. A couple of screen pictures are shown here to highlight the
differences you will see when using the new protocol.

page 34

A IBM Connecl For iSeries Administration - RCHASBEE - dubbels - Microsoft Internel Explorer

Marketplace Information Sarvar FOHAEEEE
Instanca: Mona

Erter a name for this new BB instanos and its essoniated manetplbos. Selaot the manedpbos protocals to support. To changa the list of avaiabls menetnlbce

protocals, sas the Cstomiza page for instancss. From the Prodoccls 1ab you can add your custom proboocks to tha list of avalable p

EZE instance rame!

[]
B2 stance descrigtion: | E

Wartatplace nama this BEE instanos supparts: = |

Supphar URL for markstplacs * bt/ /[ACHASBEE RCHLAN, Erre B2E Instancs Mame. | -
(o Ariba 1

Merlatplace protoccl * (10 |l Arita 13
5 :
O [Irewrance ki LifeFarinera| 101 :)

InsuranceXML is now available as anew entry in the protocol list to choose from.

page 35

M IEBM Connect For iSeries Adminisiration - RCHASBEE - dubbels - Microsolt Inlernet Explorer

LB
K

|
e

Marketplace Pratocol Request Infermation Barver: RGHASBEE

Inutanca: ool

Babaot the markstplacs protoool requessts woi woul ks tosuport for this B2B mnstancs Thesa protoool moussts will be harded by the speoified supplar LR
https /RCHAS BEE RGHLAND I BWICON /Bte8,/jdd 1 Aurd

Markatplace Protocol Feguests — Inssanoe XML
M OetlreurarmsCowsregs Reguesi

Bach | HWext | Cancel

When viewing/sdlecting Request types, you can now see the request that we defined for
InsuranceXML.

In the next two screens (when defining buyers and suppliers), note that the screens reflect what we
defined in our protocol datamodd file (Protocol DataM odel- InsuranceX ML-LifePartners-1.01.xml).
Since this example contains no authentication and authorization checking, it was not necessary to define
any buyer or supplier accessinformation. So the screens were defined to not have any.

page 36

A IEM Connecl For iSeries Administration - RCHASBEE - dubbels - Microsoft Internel Explorer

{no supplier Information required) Gerver ROHASBEE
Inmtancs: j=d00
Supplist: aupphsdl
Iarke=ipleces od (1 medoest (resresne=shl LisFarnems 1012

a3 -

{no buyer information required) Barusr RCHASHEE
Inminnen: a0t [
Buwer: =]
Spplists supplier]
Warksiplecs: oAl ekt Orsorance b LsPartners 1002

14) Create and deploy a process flow that runs in the
Flowmanager

It is assumed that you are dready familiar with cregting and deploying process flows, so we won't go
into the specifics of the connector program at this point. We basicaly just put together a quick program
that catches the request and shoots back a canned answer (as described in our introduction to this
example). The source of the connector program and the PCML file that describesit isincduded in
appendix A. It should be noted for this example that when you create the ProcessH ow for this “quick
program”, you should deploy the flow for all suppliers and all buyers (see the following screen as an

page 37

example of where to do this). Making the modifications to the protocol connectors that cater to specific
suppliers and buyers will be covered in the next example.

3 IBM Connect For iSeries Administration - RCHASPEP - DUBBELS - Microsoft Internet Explorer

I R E S

Add Deployment Flow — Suppliers Sareer Fu:H.!.SlpEp
rI!I'I.lrbEE'.rn!l'In:.
Salect the suppliers for the specified flow
& Al Suppliers

chelected Suppliers

Back © Next © Cancel

15. Start the new instance and test it.

Now that you have an instance created using the new custom protocol, you can art and test the new
ingance using the example XML request file you created in step 4. This can be accomplished as
follows

Go to the Connect “Instances’ browser page, salect your ingtance and click on “start” at the bottom of
the page.

page 38

Once you've got the HTTP, web server and flowmanager started, go back to your instances page and
(with your ingtance till selected), click on “Test Drive Connect” at the top of the page. The following
screen shows where to find “Test Drive Connect” on the instances page:

Connect for iSeries
@ Home ‘Suppliers Buyers Catalog Deployment]

Hew Instnce | Migrate Configurations | Test Drive Connect | Customize
——————

Server: EBCCO4
Instance: Ty '

e
ek

EECC04 RCHLAND IBRL.COM | T eatreo: Matketplace

¢ Refresh | @ Start | @ Stop | @ Delete | € Properties

Once you have clicked on “Test Drive Connect”, you should proceed through the screensin the
following way (there will be afew verification screens that you need to go through also--just click “next’
to navigate through those).

In this next screen, the path that you should enter should be:
/QIBM/UserData/ Connect110/protocol s/l nsuranceX ML -LifePartners-1.01

...then click “Change Directory” and then select GetlnsuranceCoverageRequest.xml

page 39

3 IBM Canneck For iS

F) PV 0 iy, £l o |) WAL T

u
i Servar: ROHASPER
Request Options s EoAUsE
Cha wou hava the regeest information stored in a file?

« ¥au, use tha follesing file for the tast

[rectary [OEWka T 10wk [g neaty
Fila a

Eventudly you will come to this screen, a which you will click “ Send Request™:

3 IBM Connect For iScrics Adminsiration - RCHASPEP - DUBBELS - Micresoll Inlernel Explerer

S

Send Reguest Server RCHASPER

Imntancmmydnn B
Click Sand Reguest 1o test the lollowing reguest information.
BZE instance mame: mylns
Markeiplace: mylrsiarket
Protocal: InsurancexXiML
Regquast GetlnsuranceCoveraps Request
UHL:

https S RCHASPER. RCHLANDIEM COM- 7273/ Bt/ mylnswr_Insurance XML-LifePartners—1.0H

page 40

The output from this request should be equivadent to what was described in step 4 of this document,
showing the coverage dollar amount response for the submitted request, as shown in this screen:

inistra thon - RCHASPER - DURDELS - Microsol t Tnternet Explorer

Test Results Sarver RCHASFER
Iy s banoe: gl B

Frotooolk Insuranos kL

Reguast: Gatinzurance CoveragaReguant

LURL: Fittee. A ROCHASPERP ROHLANDIBEM. COM: T2 TE /BraB Smyvln s url Inscrance XML -L fePactnars— 1 00
Response Time: 4.365 sac.

=Tenl worgion="1.0" esncoding="UTF-8"T=
< !DCCTYPE InmursncedML EYETEN © InouranceXM_101.0TD"=
ML=

= lnaursnceX

usrEuceansiul = S lalue=
=Daie 11 Koo Eop |8 IGBIGTIAS EMT-00:00 20=/Daic_T|nes
wEai Insu eaCover s paPannonga®
=Covaraosetnoun t 2 B0D0 G Cover agehnouni>
= Get Inouranoelover sgeHes cong e
. “fHesponger
“rinsuranceXHL

T —_—
STYSTEM " lnpuranceXM_101 QTR :

s P

Aaw Ragusst | Sard Racussst Agsim | Closs

Epilog

At this point, you should now have aworking custom protocol that performs a smple request/response
exchange. If you have problems, please refer to the product documentation that talks about log files,
tracing and debugging for assstance. Y ou may find it helpful to copy and modify the examples given
here to help save time and effort when implementing your own custom protocol. The source for these
programsisincluded in Appendix A of this document. It, dong with al other source discussed in this
document, is also available from our website at

http: //www-1.ibm.com/server s/eserver/iseries/btob/connect/.

page 41

Example 2:Adding Authentication and
Authorization

Now that we have aworking (abeit smple) protocol, let’s add some function to it. In this case, we will
add authentication and authorization checking as additiona connector stepsin the custom protocol flow.
Thisexample will be adeltabased off the previous example, therefore it will consst of re-listing our
origind steps, but only showing the differences/additions to what was done here versus in the previous
example. So, let’s gart through the steps necessary to build a custom protocol with this additiona
function, leveraging what we ve aready done.

Stepsto Define a Custom Protocol

0) Clearly understand your objective for your new protocol.

In our first example, we stated that our deployment solution was a 1-to-1, trusted relationship within the
confines of our own firewall, so no authertication or authorization needed to be done. In this case, the
scenario is much more open. There is a 1-to-many relaionship that is exposed outside of our firewall.
Therefore we will need to guard againgt submitted requests that do not satisfy our security criteria plus
insure that those that are alowed access stay within the guidelines of their designated authority.

1) Determine the name, subtype and version of your new

protocol.
To keep our existing protocal in tact, let’s create a new version of our protocal.....
Name=InsuranceXML, subtype=LifePartners, verson=1.02.

2) Create a new directory that will be the location for all of the
artifacts you will be creating for your custom protocol.

Created directory /QIBM/User Data/Connect110/Pr otocols/I nsuranceXM L -L ifePartners-1.02

page 42

3) Create a Document Type Definition file (DTD) to define the
request/response data that you want to send/receive via your
new protocol.

Created anew DTD file named InsuranceXML_102.DTD. We added the fields we determined were
necessary to perform adequate authentication and authorization checking. These new fields provide
identification for the requester viauserlD, location and password and for the target supplier via
company name and insurance type. Hereit is. What changed from the previous exampleisin bold
characters:

<2xml version="1.0" encoding="UTF-8"?>

<|__ hhkkkhhkkkhhkhkhhhhhhhhhhhhhhdhhdhhdhhdrhdhhdrhdrhdhrdhxd

Helpful reminders:

? denotes element appears once or not at all
+ denotes element appears 1 or more times
* denotes element appears 0 or more times

InsuranceXML_102.DTD defines the following hierarchy:
<InsuranceXML>
<Request>
<GetlnsuranceCoverageRegquest>
<User| D>
<Domain>
<SharedPasswor d>
<InsuranceCompanyName>
<InsuranceType>
<Name>
<Response>
<Status>
<Date Time>
<GetlnsuranceCoverageResponse>
<CoverageAmount>

hhkkkhhkkhhkhkhhhdhhdhhdhhdhhhhhhhhhhhdhhdhhdrhdrhdrhdhrhdrddxx >

<IENTITY InsuranceXML.version "1.02" >

<IENTITY % InsuranceXML.requests "GetlnsuranceCoverageRequest” >
<IENTITY % InsuranceXML.responses "GetlnsuranceCoverageResponse” >
<IELEMENT InsuranceX ML (Request*, Response*)>

<IELEMENT Request ((%lnsuranceX ML .requests;))>

<IELEMENT GetlnsuranceCoverageRequest (UserID, Location, SharedPassword, | nsuranceCompanyName,
InsuranceType, Name)>

<IELEMENT UserID (#PCDATA) >

<IELEMENT Location (#PCDATA) >

<IELEMENT SharedPassword (#PCDATA) >

<IELEMENT InsuranceCompanyName (#PCDATA) >

<IELEMENT InsuranceType (#PCDATA) >

<IELEMENT Name (#PCDATA) >

<IELEMENT Response (Status?, Date_Time?, (%l nsuranceX ML .responses;)*)>

page 43

<IELEMENT Status ANY>

<IELEMENT Date Time ANY>

<IELEMENT GetlnsuranceCoverageResponse (CoverageAmount)>
<IELEMENT CoverageAmount (#PCDATA) >

4) Generate an example XML request/response file that
adheres to the DTD created in step #3.

Note the additions of the User 1D, location, password and insurance company name and type elements.
These dements were added to pass in the authorization and authentication data:

<xml version="1.0" encoding="UTF-8"?>
<IDOCTYPEInsuranceXML SYSTEM "InsuranceXML_102.DTD">
<InsuranceXML>
<Request>
<Getl nsuranceCoverageRequest>
<User| D>ins01</User | D>
<L ocation>r ochester </L ocation>
<Shar edPasswor d>secr et</Shar edPasswor d>
<InsuranceCompanyName>Big | nsur ance</I nsuranceCompanyName>
<InsuranceType>life</InsuranceT ype>
<Name>Johnny J. Johnson</Name>
</GetInsuranceCoverageRequest>
</Regquest>
</InsuranceXML>

5) Create a Request/Response Message Format (file
extension “RequestMsqg”) for each defined request type that
describes the protocol runtime mappings.

Tool generated asin the fird example, hereit is.
crtRMFFilelnsuranceXML_102.DTD /I nsuranceXML/Request/Getl nsuranceCoverageRequest

InsuranceXML_102.DTD /I nsuranceXM L/Response Getl nsuranceCoverageRequest.RequestM sg

<?ml version="1.0" encoding="UTF-8"?>
<IDOCTY PE requestmessageformat SYSTEM "RMF.DTD">
<requestmessageformat RMFVersion="1.1">
<requestschematype="DTD">
<field FMAccess="Read" GWAccess="Write" context="Request"
count="one" display="yes" label="InsuranceXML" ref="/InsurancexML">
<field FMAccess="Read" GWAccess="Write" context="Regquest"
count="multiple" display="yes" label="Request" ref="/InsuranceX ML/Request">
<field FMAccess="Read" GWA ccess="Write" context="Request"
count="one" display="yes" |abel="GetlnsuranceCoverageRequest"
ref="/InsuranceX M L/Request/GetlnsuranceCoverageRequest">
<field FMAccess="Read" GWA ccess="Write" context="Request"
count="one" display="yes" label="UserID" ref="/InsuranceX M L/Request/Getl nsuranceCoverageRequest/User|D"/>

page 44

<field FMAccess="Read" GWA ccess="Write" context="Request"
count="one" display="yes" label="Location" ref="/InsuranceX M L/Request/Getl nsuranceCoverageRequest/L ocation"/>
<field FMAccess="Read" GWA ccess="Write" context="Request"
count="one" display="yes" |abel="SharedPassword"
ref="/InsuranceX M L/Request/ Getl nsuranceCoverageRequest/SharedPassword" />
<field FMAccess="Read" GWA ccess="Write" context="Request"
count="one" display="yes" |abel="InsuranceCompanyName"
ref="/InsuranceX M L/Request/Getl nsuranceCoverageRequest/| nsuranceCompanyName'/>
<field FMAccess="Read" GWA ccess="Write" context="Request"
count="one" display="yes" |abel="InsuranceType"
ref="/InsuranceX M L/Request/Getl nsuranceCoverageRequest/InsuranceType'/>
<field FMAccess="Read" GWA ccess="Write" context="Request"
count="one" display="yes" label="Name" ref="/InsuranceX M L/Request/Getl nsuranceCoverageRequest/Name"/>
<ffield>
<ffield>
<ffield>
</requestschema>
<responseschematype="DTD">
<fild FMAccess="Write" GWA ccess="Write" context="Response"
count="one" display="yes" label="InsuranceXML" ref="/InsuranceXxML">
<field FMAccess="Write" GWA ccess="Write" context="Response"
count="multiple" display="yes" |abel="Response" ref="/InsuranceX ML/Response">
<field FMAccess="Write" GWA ccess="Write" context="Response"
count="one" display="yes" label="Status" ref="/InsuranceX ML/Response/Status'/>
<field FMAccess="Write" GWA ccess="Write" context="Response"
count="one" display="yes" label="Date_Time" ref="/InsuranceX ML/Response/Date_Time"/>
<field FMAccess="Write" GWA ccess="Write" context="Response"
count="one" display="yes" |abel="GetlnsuranceCoverageResponse"
ref="/InsuranceX M L/Response/Getl nsuranceCoverageResponse”>
<field FMAccess="Write" GWAccess="Write" context="Response"
count="one" display="yes" |abel="CoverageAmount"
ref="/InsuranceX M L/Response/Getl nsuranceCoverageResponse/ CoverageAmount”/>
<ffield>
<ffield>
<ffield>
</responseschema>

</requestmessageformat>

6) Determine the flow steps necessary for proper handling of
the requests coming into your custom protocol. The steps
considered will be influenced by how you answered question
0 (who the trading partner(s) is (are), system topology, etc.)

Based on our basic ligt of flow steps, we are adding three new connector sepsto the flow. The
authentication and authorization connectors are obvious choices to add (since that’ s the purpose of this
example). So what about UniqueRefno? It isnot directly related to authorization and authentication, but
does make use of the same criteria that authentication and authorization uses. so it is an easy addition to
make. What is UniqueRefno? If you recdl in the first example, in step 14 it was stated that you should

page 45

deploy the process flow for all suppliersand all buyers. If you want to salect specific buyers and/or
suppliers to be associated with a process flow, you need to pass buyer/supplier-specific information
aong with the request. UniqueRefno is a generic connector provided with the Connect product that
obtains this information based on mapping of what was passed in on the request. It then places this
information in the request header so it sincluded as the request flows to the flow manager. If you don't
care about designing flows for specific buyers or suppliers, then you could leave this step out. It is not
absolutely necessary and could be added later.

e XML validation and parsing of incoming request
* Inbound Logging

* Authentication

e Authorization

* UniqueRefno

* Request DOM Header Generation (setting buyer/supplier and request infor mation)
* Response DOM Element Priming

* Queuetherequest/response

e Error Checking

e Sat Outbound Status

e Outbound Logging

e Error Handling

* Returntotheservlet

7) Create an AppConnector definition file for each of the

Gateway connector programs.
No changes needed here. Using the authentication and authorization AppConnector files that shipped
with the Connect product.

8) Create the ProtocolFlow file
A new Protocol Flow file was created. The steps were added to include cdling the authentication and
authorization connectors.

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTY PE ProcessFlowModel SYSTEM "PFM.DTD">
<ProcessFlowModel PFMVersion="1.1">
<Protocol Protocol="InsuranceXML" Protocol Subtype="LifePartners" ProtocolVersion="1.02" Request="InsuranceCoverageRequest"
RequestType="Get"/>
<ProcessFlow FirstStepName="XMLToDOM" FlowName="InsuranceCoverageRequest" Restartable="No">
<Step Name="XMLToDOM" NextStepName="InboundL ogger" ErrorStepName="ExceptionHandler">
<Connector ACDRef="XMLToDOM.AppConnector"/>
</Step>
<Step Name="InboundL ogger" NextStepName="SetContentRequest" ErrorStepName="ExceptionHandler">
<Connector ACDRef="InboundL ogger.AppConnector"/>
</Step>
<Step Name="SetContentRequest" NextStepName="Authenticate" ErrorStepName="ExceptionHandler">
<Copy>

page 46

<Source>
<Operand DataType="String" Default="GetlnsuranceCoverageRequest"/>
</Source>
<Destination>
<Operand Context="MessageHeader" DataType="String" Reference="com_ibm_connect_header_contentRequest"/>
</Destination>
</Copy>
<Copy>
<Source>
<Operand DataType="String" Default="Get"/>
</Source>
<Destination>
<Operand Context="MessageHeader" DataType="String" Reference="com_ibm_connect_header_contentRequestType"/>
</Destination>
</Copy>
</Step>
<Step Name="Authenticate" NextStepName="Authorize" ErrorStepName="ExceptionHandler">
<Connector ACDRef="Authentication.AppConnector">
<Mapln Name="InstanceName">
<Operand Context="MessageHeader" Reference="com_ibm_connect_header_gatewaylnstance" /></Mapln>
<Mapln Name="Marketplace">
<Operand Context="M essageHeader" Reference="com_ibm_connect_header_marketplace" /></Mapln>
<Mapln Name="Protocol">
<Operand Context="MessageHeader" Reference="com_ibm_connect_header_protocol Type" /></Mapln>
<Mapln Name="Protocol Subtype">
<Operand Context="M essageHeader" Reference="com_ibm_connect_header_protocol SubType" /></Mapln>
<Mapln Name="ProtocolVersion">
<Operand Context="MessageHeader" Reference="com_ibm_connect_header_protocolVersion" /></Mapln>
<Mapln Name="Logonld">
<Operator CommonName="Concat" >
<Operator CommonName="Concat">
<Operand Context="Request" Reference="/InsuranceX M L/Request/GetlnsuranceCoverageRequest/User|D" Type="String"/>
<Operand Default=":" Type="String"/>
</Operator>
<Operand Context="Request" Reference="/InsuranceX ML/Request/GetlnsuranceCoverageRequest/L ocation" Type="String"/>
</Operator>
</Mapln>
<Mapln Name="Password">
<Operand Context="Request" Reference="/InsuranceX ML/Request/Getl nsuranceCoverageRequest/SharedPassword" /></Mapln>
</Connector>
</Step>
<Step Name="Authorize" NextStepName="UniqueRefno" ErrorStepName="ExceptionHandler">
<Connector ACDRef="Authorization.AppConnector">
<Mapln Name="InstanceName">
<Operand Context="M essageHeader" Reference="com_ibm_connect_header_gateway|nstance" /></Mapln>
<Mapln Name="Marketplace">
<Operand Context="MessageHeader" Reference="com_ibm_connect_header_marketplace" /></Mapln>
<Mapln Name="Protocol">
<Operand Context="MessageHeader" Reference="com_ibm_connect_header_protocol Type" /></Mapln>
<Mapln Name="Protocol Subtype">
<Operand Context="MessageHeader" Reference="com_ibm_connect_header_protocol SubType" /></Mapln>
<Mapln Name="ProtocolVersion">
<Operand Context="M essageHeader" Reference="com_ibm_connect_header_protocolVersion" /></Mapln>
<Mapln Name="Supplierld">
<Operator CommonName="Concat" >
<Operator CommonName="Concat">
<Operand Context="Request" Reference="/InsuranceX M L/Request/Getl nsuranceCoverageRequest/InsuranceCompanyName"
Type="String"/>
<Operand Default=":" Type="String"/>
</Operator>

page 47

<Operand Context="Request" Reference="/InsuranceX M L/Request/GetlnsuranceCoverageRequest/| nsuranceType"
Type="String"/>
</Operator>
</Mapln>
<Mapln Name="Buyerld">
<Operator CommonName="Concat" >
<Operator CommonName="Concat">
<Operand Context="Request" Reference="/InsuranceX M L/Request/GetlnsuranceCoverageRequest/User|D" Type="String"/>
<Operand Default=":" Type="String"/>
</Operator>
<Operand Context="Request" Reference="/InsuranceX ML/Request/GetlnsuranceCoverageRequest/L ocation" Type="String"/>
</Operator>
</Mapln>
<Mapln Name="Request">
<Operand Context="MessageHeader" Reference="com_ibm_connect_header_contentRequest" /></Mapln>
<Mapln Name="RequestType">
<Operand Context="MessageHeader" Reference="com_ibm_connect_header_contentRequestType" /></Mapln>
</Connector>
</Step>
<Step Name="UniqueRefno" NextStepName="ResponseDOMPriming" ErrorStepName="ExceptionHandler">
<Connector ACDRef="UniqueRefno.AppConnector">
<Mapln Name="InstanceName">
<Operand Context="MessageHeader" Reference="com_ibm_connect_header_gatewaylnstance" /></Mapln>
<Mapln Name="Supplierld">
<Operator CommonName="Concat">
<Operator CommonName="Concat" >
<Operand Context="Request" Reference="/InsuranceX M L/Request/GetlnsuranceCoverageRequest/| nsuranceCompanyName"
Type="String"/>
<Operand Default=":" Type="String"/>
</Operator>
<Operand Context="Request" Reference="/InsuranceX ML/Request/GetlnsuranceCoverageRequest/InsuranceType"
Type="String"/>
</Operator>
</Mapln>
<Mapln Name="Buyerld">
<Operator CommonName="Concat">
<Operator CommonName="Concat">
<Operand Context="Request" Reference="/InsuranceX M L/Request/GetlnsuranceCoverageRequest/User|D" Type="String"/>
<Operand Default=":" Type="String"/>
</Operator>
<Operand Context="Request" Reference="/InsuranceX M L/Request/Getl nsuranceCoverageRequest/L ocation” Type="String"/>
</Operator>
</Mapln>
</Connector>
</Step>
<Step Name="ResponseDOMPriming" NextStepName="FMComm" ErrorStepName="ExceptionHandler">
<Connector ACDRef="ResponseDOM Priming.AppConnector"/>
</Step>
<Step Name="FMComm" NextStepName="XMLBuilder" ErrorStepName="ExceptionHandler">
<Connector ACDRef="FM Comm.AppConnector"/>
</Step>
<Step Name="XMLBuilder" NextStepName="SetOutboundStatus' ErrorStepName="ExceptionHandler">
<Connector ACDRef="XMLBuilder.AppConnector"/>
</Step>
<Step Name="SetOutboundStatus' NextStepName="0OutboundLogger" ErrorStepName="ExceptionHandler">
<Connector ACDRef="SetOutboundStatus.AppConnector"/>
</Step>
<Step Name="OutboundLogger" ErrorStepName="ExceptionHandler">
<Connector ACDRef="0utboundL ogger.AppConnector"/>
</Step>
<Step Name="ExceptionHandler" NextStepName="XMLBuilderE">

page 48

<Connector ACDRef="ExceptionHandler.AppConnector"/>

</Step>

<Step Name="XMLBuilderE" NextStepName="OutboundL oggerE">
<Connector ACDRef="XMLBuilder.AppConnector"/>

</Step>

<Step Name="OutboundL oggerE">
<Connector ACDRef="0utboundL ogger.AppConnector"/>

</Step>

</ProcessFlow>
</ProcessFlowModel>

9) Write the Java connector programs to fulfill the necessary

flow steps for your custom protocol.

No new code needed here. The authentication, authorization, UniqueRefno and RequestToken
AppConnector programs that are shipped with the Connect product are being used. Y ou will haveto
modify XML ToDOM Connector.properties and XML BuilderConnector.properties to point to the new
protocol directory name that contains the DTDs. The updated files are shown in Appendix B.

Unrelated to the Gateway, but necessary to make the gpplication function in the How Manager portion
of i1Series Connect, you will aso have to create the app connector and process flow and deploy it using
the GenericFM JavaConnector pcml and java files lised in Appendix A.

10) Create a Protocol Data Model definition file

Thisfileis quite different than in the previous example. In the previous example we weren't concerned
with buyers and suppliers and checking out who was who and who was dlowed to do what, so thisfile
conssted of basicaly a couple of titlesthat said “no information required”. In this example we now care
about who is who and who is alowed to do what, so we must define the registration screensto alow
input of the data required to accomplish this. (Note: Connect is initially designed for BtoB

mar ketplace relationships, so the paradigm of thinking isin terms of “ buyers’ , “ suppliers’ and
“ marketplaces’ . Therefore, the context names of “ supplierprotocol” and * buyerprotocol” are
fixed and must be exactly those valuesin order for Connect internals to work correctly. The
same istrue for “ Marketplace Protocol_IDn”, “ Marketplace Logon_IDn”, and

“ Marketplace Password”. Whereever you see these values, they must be that way for your
implementation too. “ Marketplace * _IDn” can be wherenisavaluefrom1 up to 5 and must
be listed in numerical order (ie. You can’'t have only Marketplace Protocol ID2...if there' s only
one, it must be Marketplace Protocol ID1). Thetermsdon't really apply to an insurance
example like this, but correlations can be made, such as supplier=insurance company and
buyer=insurance agent/client. Thisis exactly what we are doing here. Please keep in mind that
these guidelines are for the internal variables used when defining this screen. It isstrongly
suggested that you label the data on the screen in a manner that makes sense for the protocol
being deployed (thus insulating the user from this potentially confusing correlation). In this
example we have appropriate “ insurance” text and title fields defined and not anything
referencing buyers/suppliers.

page 49

One last note for clarification....authentication deals with Marketplace Logon I1Dn and
Marketplace Password prompts and authorization (identifying requestor/target relationships)
deals with Marketplace Protocol _IDn.)

So, what we ve done is defined insurance company name and coverage fields under the
“supplierprotocol” context (remember that the insurance company name and coverage fields were new
additionsto our DTD in step 1--they will comein as part of the request. Here we are defining screens
to dlow them to be registered under our connect instance, such that when they DO comein on the
request, we will recognize them). Under context “buyerprotocol”, we ve defined an insurance agent
user ID, location and password (again, just aswe defined in our DTD in step 1), enabling regigtration of
alowed buyersthat will be sending requests into Connect. Y ou may notice that we are requesting agent
user ID and location twice on the screen. Thisis due to the fact that thisinformation is required to set up
protocol ID (authorization) information (“Marketplace Protocol _IDn”) and logon (authentication)
information (*Marketplace_Logon_I1Dn"). We are aware that thisis redundant and working on a
solution for it. For now, please set up your datamode filesin smilar fashion. Please see the previous
example for a descriptions of the fidlds and vaues in a screen modd file.

<xml version="1.0"?>
<IDOCTY PE SupplierBuyerScreenModel SY STEM "supplierbuyerscreenmodel .dtd">
<SupplierBuyerScreenModel name="InsuranceXML-LifePartners-1.02" version="V1R1MO0">
<context name="supplierprotocol">
<frame name="supplieraccess" order="1" title="Insurance Supplier Information">
<text order="1" visibility="new">Insurance Company</text>
<group order="2">
<field order="1" varname="Marketplace_Protocol_ID1" length="30" required="yes" label="Name"/>
<field order="2" varname="Marketplace_Protocol_ID2" length="30" required="yes" label="Coverage'/>
</group>
</frame>
</context>
<context hame="buyerprotocol">
<frame name="buyeraccess" order="1" title="Insurance Agent">
<text order="1" visibility="new">Insurance Agent Protocol Information</text>
<group order="2">
<field order="1" varname="Marketplace_Protocol_ID1" length="30" required="yes" label="1D"/>
<field order="2" varname="Marketplace_Protocol_ID2" length="30" required="yes" label="L ocation"/>
</group>
<text order="3" visibility="new">Agent Logon Information</text>
<group order="4">
<field order="1" varname="Marketplace_Logon_ID1" length="20" required="yes" |abel="1D"/>
<field order="2" varname="Marketplace_Logon_|D2" length="30" required="yes" label="L ocation"/>
<field order="3" varname="Marketplace_Password" length="12" required="yes" type="password" label="Access
Password"/>
</group>
</frame>
</context>

</SupplierBuyerScreenM odel >

page 50

11) Create an XML file called, ProtocolDefinition.xml.

Thisfileisthe same asit was in the previous example except that the new protocol version is used
throughout the file.

<?ml version="1.0" encoding="UTF-8"?>
<IDOCTY PE Protocol SY STEM "ignored.dtd">
<Protocol
DeployDestination="InsuranceXML-LifePartners-1.02"
DeployType="UserData" Name="InsuranceXML" SubType="LifePartners’ Version="1.02">
<TPADataM odel>Protocol DataM odel-InsuranceX ML -LifePartners-1.02.xml </TPADataM odel >
<Jars>
<Jar>/QIBM/UserData/Connect110/Gateway/Connectors/I nsuranceX ML -LifePartners-1.02/InsuranceX ML .jar</Jar>
</Jars>
<Servlets>
<Servlet
Class="com.ibm.connect.gateway.servlet. HT TPServlet" DefaultName="InsuranceXML-LifePartners-1.02">
<ServletParameter Editable="No"
Name="FlowName" Required="Y es"'>InsuranceCoverageRequest</ServletParameter>
<ServletParameter Editable="No"
Name="ReguestMethod" Required="Y es'>POST</ServletParameter>
<Requests>
<Request Name="GetlnsuranceCoverageRequest" Required="NO">
<RequestType Name="Get">
<M essagefFormat
Name="/QIBM/UserData/ Connect110/Gateway/Connectors/InsuranceX ML -LifePartners-1.02/Getl nsuranceCoverageRequest.Re
questMsg"/>
<MessageFormat Name="/QIBM/ProdData/Connect110/Gateway/Connectors/| nternal Headerv11.RequestM sg"/>
<MessageFormat Name="/QIBM/ProdData/Connect110/Gateway/Connectors/M essageHeaderv11.RequestM sg"/>
<MessageFormat Name="/QIBM/ProdData/ Connect110/Gateway/Connectors/BuyerSuppliervll.RequestMsg"/>
</RequestType>
</Request>
</Requests>
</Servlet>
</Servlets>

</Protocol >

12) Add support for the new protocol to your Connect

installation.
Thisis done exactly asit was in the previous example.

13) Create a new instance with the new protocol

Credting anew ingtance is basicdly the same, however there is alittle more to do in terms of
buyer/supplier registration. The difference is the specific screens we defined in our protocol data
definition file that prompt for specid authentication/authorization information. Hereisis alook at the new

page 51

screens filled in with the content required to run the request for this example. Note that the buyer
information screen has an access password field that is represented as asterisks. For this example, the
vaue should be secret. Thisiswhat's dso passed in on the GetlnsuranceCoverageRequest.xml

3 1BM Connect For iSeries Administration - RCHASD]U - dubbels - Micresoft Infemek Expeial (=14

S 41 bty frcheschur 2002 Btoe Connect _|

Supplier Marketplace Association Properties Berver: RCHASDLIU

Inetance: -dsa5
S Insurance Supplier Information = = B ila i I
Supdlier: Big [n=warce
War=tplace: jodaal market tProtocol1 [nsurencs O
Marms # |Big Insurance |

Coverage # |Iif|: |

DK | Cancel

page 52

7} IBM Connect For iSeries Administration - RCHASDIU - dubbels - Microsoft Internet Explorer

Insurance Agent Server: RGHASDJU
Instanca: j-dazl .

Euyer in=
Sipplisr Eig Irsuranca
Markatplaos: jodaalmarket (Protooc] Insuranos 012

Inaurance Agent Protocol Information

[# finsll]
Location * Irudmvaha-r

Agent Logon [rformaticn

[* Iim_sm
Location * |r.u.l.:lpa.-5ta.r.
Accecs FPasswond * l"""

14) Create and deploy a process flow that runs in the

Flowmanager

Thisis done exactly asit was in the previous example with the exception that you could sdect specific
buyers and suppliersif you chose to add in the UniqueRefno connector step as opposed to saying all
buyers and all suppliers.

15)Start the new instance and test it

Thisis done exactly asit wasin the previous example with the minor change of specifying
InsuranceXML-LifePartners-1.02 instead of InsuranceXML-LifePartners-1.01 inthe
DriveConnect.properties file and in the java command that calsit.

Properties vaue:

page 53

ConnectURL =http://sssssssssss: pppp/BtoB/myl nstance/url _InsuranceXML-LifePartners-1.02

Line command:
java DriveConnect ..\gateway\connectors\InsuranceX ML -LifePartners-1.02\Getl nsuranceCoverageRequest

Epilog

No java coding was required for this example since we used the authentication, authorization (and
optiondly) UniqueRefno and RequestToken connectors that are part of the Connect product. Y ou
should now have a protocol working with authentication and authorization checking enabled.

page 54

Appendix A

Source for the compileconnector shell script:
#!/usr/bin/gsh

ifjavac -classpath
../gibm/proddata/connect110/classes’NCSO.jar:/qibm/proddata/connect110/cl asses/ QueueConnector .jar:/gibm/prodd
ata/connect110/classes/activation.jar:/qibm/proddata/connect110/classes/bridge.jar:/gibm/proddata/connect110/clas
ses/comibmconnect.jar:/qibm/proddata/connect110/classes/command.jar:/gibm/proddata/connect110/classes/config.j
ar:/qibm/proddata/connect110/classes/connpool .jar:/qibm/proddata/connect110/classes/flowmanager .jar:/gibm/prodd
ata/connect110/classes/flowmanagerapi .jar:/qibm/proddata/connect110/classes/| og.jar:/qibm/proddata/connect110/cl
asses/logging.jar:/qibm/proddata/connect110/cl asses/| oggingapi .jar:/qibm/proddata/connect110/classes/mail .jar:/qib
m/proddata/connect110/classes/queueing.jar:/qibm/proddata/connect110/classes/soap.jar:/qibm/proddata/connect11
O/classes/wcsconfigservices.jar:/qibm/proddata/connect110/classes/wcsiconnect.jar:/gibm/proddata/connect110/clas
ses/wcesruntime.jar:/qgibm/proddata/connect110/classes/xalan200.jar:/gibm/proddata/connect110/classes/xerces311.jar:
/qibm/proddata/connect110/tool s/tpaltpa.jar:/qibm/proddata/connect 110/tool s/tpaltpaapi.jar:/qibm/proddata/connect
110/tool s/tpaltpagui.jar:/qibm/proddata/connect110/tool S'tpa/tparuntime.jar:/qibm/proddata/connect 110/tool s/catal o
g/catal og.jar:/gibm/proddata/connect110/tool §/runtime/depl oy .jar:/qibm/proddata/connect110/tool s/runtime/tool smo
del.jar:/qibm/proddata/connect110/tool s/runtime/util .jar:/qibm/proddata/connect110/config/cwbuntpi .jar::/qibm/prodd
ata/connect110/gateway/gateway.jar:/qibm/proddata/connect110/gateway/gateway APl .jar:/qibm/proddata/connect11
O/gateway/connectors/gwConnector.jar -d $1 $1/$2)
then

echo Connector compilation finished
else

echo Connector compilation failed

fi

Source for the CompileConnector.cmd file:

@rem

@rem parml1=directory program resides in and should have compiler output stored in
@rem parm2=program to compile

@if .%2 == . goto helpme

@set codeDir=%1

@set srcDir=9%1

@rem RS RS E S S SRS SRS EEE S SRS RS RS E R SRR EEEEEEEEEE SRS

@rem Add product jars from "classes" directory to path list

@rern kkkhkkkkhkkhkkhkhkkhkhkkhhkhkhhkkhhkhkkhhkhkhhkhhkhkkhhkkhhhkkhkkhkhhkkhhkkhkkkhx*%

@set jarList=\qgibm\proddata\connect110\classes\NCSO.jar;

@set jarList=%jarList%\qgibm\proddata\connect110\classes\QueueConnector jar;
@set jarList=%,jarList%\qibm\proddata\connect110\classes\activation.jar;

@set jarList=%jarList%\qibm\proddata\connect110\classes\bridge.jar;

@set jarList=%jarList%\qibm\proddata\connect110\classes\comibmconnect.jar;
@set jarList=%jarList%\qgibm\proddata\connect110\classes\command.jar;

@set jarList=%jarList%\qgibm\proddata\connect110\classes\config.jar;

@set jarList=%jarL ist%\qibm\proddata\connect110\classes\connpool .jar;

@set jarList=%jarList%\qibm\proddatal\connect110\classes\flowmanager.jar;
@set jarList=%jarList%\qibm\proddata\connect110\classes\flowmanagerapi.jar;
@set jarList=%jarList%\qibm\proddata\connect110\classes\log.jar;

@set jarList=%jarList%\qibm\proddata\connect110\classes\logging.jar;

@set jarList=%jarList%\qibm\proddata\connect110\classes\|oggingapi.jar;

@set jarList=%jarList%\qgibm\proddata\connect110\classes\mail .jar;

page 55

@set jarList=%jarList%\qibm\proddata\connect110\classes\queueing.jar;

@set jarList=%jarList%\qgibm\proddata\connect110\classes\soap.jar;

@set jarList=%jarList%\qibm\proddata\connect110\classes\wcsconfigservices,jar;
@set jarList=%jarList%\qgibm\proddata\connect110\classes\wcsiconnect.jar;

@set jarList=%jarList%\gibm\proddata\connect110\classes\wcsruntime.jar;

@set jarList=%jarList%\gibm\proddata\connect110\classes\xalan200.jar;

@set jarList=%jarList%\qgibm\proddata\connect110\classes\xerces311.jar;

@rem

@rern LR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEES

@rem Add product jars from "tools\tpa" directory to path list

@rem RS R EE S SRR SRS RS EE SRR SRR EE SRR EEEEEEEEEEEEE S

@set jarList=%jarList%\qgibm\proddata\connect110\tool s\tpaltpa.jar;

@set jarList=%jarList%\qibm\proddatal\connect110\tool s\tpa\tpaapi.jar;
@set jarList=%jarList%\qibm\proddata\connect110\tool s\tpa\tpagui.jar;
@set jarList=%jarList%\qibm\proddata\connect110\tool s\tpa\tparuntime.jar;
@rem

@rern LR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEES

@rem Add product jars from "tools\catalog" directory to path list

@rem IR SRS S S S S S S E S SRS SRR SRR SRS RS E R R SRR SR EEEEEEEEES

@set jarList=%jarList%\qibm\proddata\connect110\tool s\catal og\catal og.jar;
@rem

@rern LRSS S S S S S S SRR SRS SR SRR SRR E R R R R EEE SRS

@rem Add product jars from "tools\runtime" directory to path list

@rem EEEEE R EE ST

@set jarList=%jarList%\gibm\proddata\connect110\tool s\runtime\deploy .jar;
@set jarList=%jarList%\gibm\proddata\connect110\tool s\runtime\tool smodel.jar;
@set jarList=%,jarList%\qibm\proddata\connect110\tool s\runtime\util .jar;

@rem

@rern EEEE R RS EEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEES

@rem Add product jars from "config" directory to path list

@rem IR SRS S S S S S S S E S SRS SRR SRR RS E SRR RS RS EEEEEEEEEES
@set jarList=%jarList%\qgibm\proddata\connect110\config\cwbuntpi.jar;;
@rem

@rern LRSS S S S S S SRS SRS SR SRR SRR SRR EEEEEEE SRS

@rem Add product jars from "gateway" directory to path list

@rem EEEEE R EE ST

@set jarList=%jarList%\qibm\proddata\connect110\gateway\gateway .jar;
@set jarList=%)jarList%\qibm\proddata\connect110\gateway\gateway APl jar;
@rem

@rem EEEEE R EES

@rem Add product jars from "gateway\connectors" directory to path list

@rern LRSS S S S S S SRS SRS SR SRR SRR SRR EEEEEEE SRS

@set jarList=%jarList%\qibm\proddata\connect110\gateway\connectors\gwConnector .jar;
@rem

@rern LR R R R EEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEES

@rem Do the compile

@rem RS EE S S SRR SRS RS EE SRR SRR EEEEEEEEEEEEEEEEEE S

@javac -classpath %codeDir%o;%jarList%,; -d %codeDir% %srcDir%\%2

@goto endlt

:helpme

@echo You must pass in adirectory name and a java file name

@echo example: CompileConnector i:\gibm\userdata\connect110\protocol s\myProtocol myConnectorPgm.java
:endlt

Source for XML ToDOM Connector.properties

#there are 3 properties

UserSpecifiedDTD -- do you want to specify aDTD, or use the one specified in the document
#if UserSpecifiedDTD = yes, then thereis

UserSpecifiedDTDType = [file| url]

UserSpecifiedDTDL ocation = [/path/to/file | http://www.blah.com/]

page 56

UserSpecifiedDTD = yes
UserSpecifiedDTDType =file
UserSpecifiedDTDL ocation = Gateway/Connectors/| nsuranceX ML -LifePartners-1.01/InsuranceXML_101.dtd

Source for XML BuilderConnector.properties
NoValidationDTD = Gateway/Connectors/NoValidation.DTD
LocaDTDName = Gateway/Connectors/InsuranceX M L-LifePartners-1.01/InsuranceXML_101.dtd

Source for ResponseDOM PrimingConnector.java program
/*
This material contains IBM copyrighted sample programming source code (" Sample Code"). IBM grantsyou a
nonexclusive license to compile, link, execute, display, reproduce, distribute and prepare derivative works of this

Sample Code. The Sample Code has not been thoroughly tested under all conditions. IBM, therefore, does not

guarantee or imply its reliability, serviceability, or function. IBM provides no program services for the Sample Code.

All Sample Code contained herein is provided to you "AS1S" without any warranties of any kind. THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NON-INFRINGEMENT ARE EXPRESSLY DISCLAIMED. SOME JURISDICTIONS DO NOT ALLOW THE
EXCLUSION OF IMPLIED WARRANTIES, SO THE ABOVE EXCLUSIONS MAY NOT APPLY TO YOU. IN NO
EVENT WILL IBM BE LIABLE TO ANY PARTY FOR ANY DIRECT, INDIRECT, SPECIAL OR OTHER
CONSEQUENTIAL DAMAGES FOR ANY USE OF THE SAMPLE CODE INCLUDING, WITHOUT LIMITATION,
ANY LOST PROFITS, BUSINESS INTERRUPTION, LOSS OF PROGRAMS OR OTHER DATA ON YOUR
INFORMATION HANDLING SYSTEM OR OTHERWISE, EVEN IF WE ARE EXPRESSLY ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

*/

package InsuranceXML;

import com.ibm.connect.logging.interfaces.*;
import com.ibm.connect.flowmanager.interfaces.*;
import com.ibm.connect.gateway.interfaces.*;
import com.ibm.connect.gateway.service.*;
import com.ibm.connect.bridge.*;

import org.w3c.dom.*;

import org.apache.xerces.dom.*;

/**

* ResponseDOM PrimingConnector primes the ResponseDOM aobject with whatever information it has
* at request timein order to offload DOM creation by the flowmanager.

*/

public class ResponseDOM PrimingConnector implements Header Constants,
JavaProgramConnectorlnterface, GatewayConstants {

private ProgramConnectorParm parms = null;

/**

* The Document form of the response document. Thisisthe root of the
* response document.

*/

protected Document!mpl document;

/**

* Generic Constructor

page 57

*/

public ResponseDOM PrimingConnector()
{

}

/* *
* This method builds the <code>DocType</code> statement, then calls the
* <code>createHeader</code> method to build the root element and a child status element.
* The root element is then appended to the
* <code>DocType</code> element.
*
* @param ProgramConnectorParm the data object passed to all connectors
* @return JavaConnectorResult containing the return code and text
*/
public JavaConnectorResult run(ProgramConnectorParm parms)
{
if (UserLogManager.isTracing) {
UserLogManager.trace(this, "run”, "Entering run method of ResponseDOM PrimingConnector.");
}
this.parms = parms;
JavaConnectorResult result = new JavaConnectorResult();
DocumentTypedocType = new DocumentTypel mpl (document, "ResponseDOM Doc", null,
(String) parms.flowDataAreaGet(GatewayConstants. REMOTE_DTD_NAME));

document = new DocumentI mpl(docType);
document.setErrorChecking(true);
document.appendChild(createHeader());

parms.setResponseDOM (document);

/* Move outbound transport type and encoding from header to

* TransportObject

*/

Transportl transportObject = (Transportl) parms.flowDataAreaGet(GatewayConstants. TRANSPORT _INTERFACE);

transportObject.setOutboundContentEncoding((String) parms.sendabl eM essageH eader Get(Header Constants. NBOUND_TRAN
SPORT_CONTENT_ENCODING));
result.setReturnCode(EXIT_SUCCESSFUL);
result.setReturnString(" ResponseD OM PrimingConnector exited successfully™);
if (UserLogManager.isTracing) {
UserLogManager.trace(this, "run”, "Exiting run method of ResponseDOM PrimingConnector.");
}

return result;

}

/* *
* This method creates the <code>InsuranceX ML </code> root element for the response.
*
* @return the <code>InsuranceX ML </code> Element
*/
protected Element createHeader()
{

Element rootElement = document.createElement("InsuranceXML");
rootElement.appendChil d(createResponseElement());

page 58

return rootElement;

}

/**

* This method creates the <code>Response</code> element.

* @return the <code>Response</code> Element

*/

protected Element createResponseElement()

{
Element responseElement = document.createElement("Response’);
responseEl ement.appendChild(createStatusElement());
responseEl ement.appendChild(createDateTimeElement());
return responseElement;

}

/**

* This method creates the <code>Status</code> element.

*

* @return the <code>Status</code> Element

*/

protected Element createStatusElement()

{ Element statusElement = document.createElement(" Status');
return statusElement;

}

/**

* This method creates the <code>Date_Time</code> element for the response.

*

* @return the <code>Date_Time</code> Element

*/

protected Element createDateTimeElement()

{
Element dateTimeElement = document.createElement("Date_Time");
return dateTimeElement;

}

}

Source for SetOutboundStatusConnector.java program
/*
This material contains IBM copyrighted sample programming source code (" Sample Code"). IBM grantsyou a
nonexclusive license to compile, link, execute, display, reproduce, distribute and prepare derivative works of this

Sample Code. The Sample Code has not been thoroughly tested under all conditions. IBM, therefore, does not

guarantee or imply itsreliability, serviceability, or function. IBM provides no program services for the Sample Code.

All Sample Code contained herein is provided to you "AS IS" without any warranties of any kind. THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NON-INFRINGEMENT ARE EXPRESSLY DISCLAIMED. SOME JURISDICTIONS DO NOT ALLOW THE
EXCLUSION OF IMPLIED WARRANTIES, SO THE ABOVE EXCLUSIONS MAY NOT APPLY TO YOU. IN NO
EVENT WILL IBM BELIABLE TOANY PARTY FOR ANY DIRECT, INDIRECT, SPECIAL OR OTHER
CONSEQUENTIAL DAMAGES FOR ANY USE OF THE SAMPLE CODE INCLUDING, WITHOUT LIMITATION,
ANY LOST PROFITS, BUSINESS INTERRUPTION, LOSS OF PROGRAMS OR OTHER DATA ON YOUR
INFORMATION HANDLING SYSTEM OR OTHERWISE, EVEN IF WE ARE EXPRESSLY ADVISED OF THE

page 59

POSSIBILITY OF SUCH DAMAGES.
*/

package InsuranceX ML ;

import com.ibm.connect.logging.interfaces.*;
import com.ibm.connect.flowmanager.interfaces.*;
import com.ibm.connect.gateway.interfaces.*;
import com.ibm.connect.gateway.service.*;

/* *

* SetOutboundStatusConnector is a Java Connector that sets a successful status code for the

* outbound response. This connector is called near the end of the protocol flow (after all other

* steps that may have had problems have already successfully finished). Thisis necessary dueto

* the return code being set to an error value by default.

*/

public class SetOuthoundStatusConnector implements GatewayConstants, JavaProgramConnector|nterface {

/* *

* Default Constructor

*/

public SetOutboundStatusConnector()
{

}

/* *
* Connector interface method implementation.
* @param ProgramConnectorParm the data object passed to all connectors
* @return JavaConnectorResult containing the return code and text
*/
public JavaConnectorResult run(ProgramConnectorParm parms)
{
if (UserLogManager.isTracing) {
UserLogManager.trace(this, "run”, "Entering run method of SetOutboundStatusConnector.");
}
Transportl transportinterface = (Transportl)
parms.flowDataAreaGet(Gateway Constants. TRANSPORT _INTERFACE);
transportl nterface.setOutboundStatus(200);

JavaConnectorResult result = new JavaConnectorResult();
result.setReturnCode(GatewayConstants.EXIT_SUCCESSFUL);
result.setReturnString(" SetOutboundStatus Connector exited successfully");
if (UserLogManager.isTracing) {

UserLogManager.trace(this, "run”, "Exiting run method of SetOutboundStatusConnector.");
}

return result;

Source for ExceptionHandler Connector.java program

page 60

/*
This material contains IBM copyrighted sample programming source code ("Sample Code"). IBM grantsyou a
nonexclusive license to compile, link, execute, display, reproduce, distribute and prepare derivative works of this

Sample Code. The Sample Code has not been thoroughly tested under all conditions. IBM, therefore, does not

guarantee or imply its reliability, serviceahility, or function. IBM provides no program services for the Sample Code.

All Sample Code contained herein is provided to you "AS1S" without any warranties of any kind. THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NON-INFRINGEMENT ARE EXPRESSLY DISCLAIMED. SOME JURISDICTIONS DO NOT ALLOW THE
EXCLUSION OF IMPLIED WARRANTIES, SO THE ABOVE EXCLUSIONSMAY NOT APPLY TO YOU. IN NO
EVENT WILL IBM BE LIABLE TOANY PARTY FOR ANY DIRECT, INDIRECT, SPECIAL OR OTHER
CONSEQUENTIAL DAMAGES FOR ANY USE OF THE SAMPLE CODE INCLUDING, WITHOUT LIMITATION,
ANY LOST PROFITS, BUSINESS INTERRUPTION, LOSS OF PROGRAMS OR OTHER DATA ON YOUR
INFORMATION HANDLING SYSTEM OR OTHERWISE, EVEN IF WE ARE EXPRESSLY ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

*/

package InsuranceX ML ;

import com.ibm.connect.logging.interfaces.*;
import com.ibm.connect.flowmanager.interfaces.*;
import com.ibm.connect.flowmanager.*;

import com.ibm.connect.gateway.interfaces.*;
import com.ibm.connect.gateway.service.*;
import com.ibm.connect.bridge.*;

import org.w3c.dom.*;

import org.apache.xerces.dom.*;

import java.util.Date;

/**
* ExceptionHandlerConnector is a subclass of ResponseDOM PrimingConnector that gets control whenever an error occurred
* during aflow. This object creates a new output document consisting only of a
* response tag followed by a Status and Date_Time tag containing error information.
*/

public class ExceptionHandlerConnector extends ResponseD OM PrimingConnector implements JavaProgramConnector nterface

{

/* *
* This constructor calls the super class constructor method.
*
*/
public ExceptionHandlerConnector ()
{
super();
}
/* *
* This method looks in the FlowError and/or APPError from ProgramConnectorParm.
* Depending upon the error, a code and text are set.
* The super method is called to construct a Document. The Status element is modified to show the real error condition.
* Text is appended beneath the Status element, containing the long text from the ErrorlnfoString.
* Finally, the Document constructed here is placed in the FlowDataArea object to be passed back to the client.
*
* @param parms ProgramConnectorParm that is passed in for each connector
* @return JavaConnectorResult result object returned
*/

page 61

public JavaConnectorResult run(ProgramConnectorParm parms)
{
UserL ogM anager.logl nfoMessage(this, "run”, "Entering ExceptionHandlerConnector.");
/I The super method will build a simple response object with a Status and Date_Time field.
/I We haveto fill in the status file with the error condition
super.run(parms);
JavaConnectorResult result = new JavaConnectorResult();

/lnitialize the result to indicate success
result.setReturnCode(0);
result.setReturnString("");

/I make sure outbound statusiis set
Transportl transport = (Transportl) parms.flowDataAreaGet(GatewayConstants. TRANSPORT_INTERFACE);
transport.setOutboundStatus(200);

/I Get return code that might be set by the Connector
int appErrorCode = 0;
int flowErrorCode = 0
int errorCode = 0;
String errorText="";
flowErrorCode = parms.getFlowErrorinfoCode();
if (flowErrorCode!=0) {
/I Something failed
if (flowErrorCode == FlowManagerCodes.ERROR_JAVA_ CONNECTOR) {
/I Thefailureis set by the java connectors
appErrorCode = parms.getAPPErrorinfoCode();
errorCode = 500;
errorText = "Interna Server Error";
switch (appErrorCode) {
case GatewayConstants. ERROR_GW_INBOUND_MESSAGE_PARSING_FAILED:{
errorCode = 400;
erorText = "Bad Request";
break;

}

case GatewayConstants. ERROR_GW_AUTHENTICATION_FAILED: {
errorCode = 401,
erorText = "Unauthorized";
break;

}

case GatewayConstants. ERROR_GW_AUTHORIZATION_FAILED:{
errorCode = 403;
erorText = "Forbidden”;
break;

}
if (UserLogManager.isTracing) {
UserLogManager.trace(this, "run”, "Error origin is Connector, codeis" + appErrorCode + ", error text is
"+parms.getAPPErrorinfoString());
}
}

page 62

dse{
/I Thefailureis caused by some other flow internal error
if (UserLogManager.isTracing) {
UserLogManager.trace(this, "run”, "Error origin is Flow Manager, codeis" + flowErrorCode + ", error text is"+
parms.getFlowErrorinfoString());
}
}
}
ese{
Il flow error codeis zero, should have never got here because thisis an error step connector
if (UserLogManager.isTracing) {
UserL ogManager.trace(this, "run”, "Flow Error code not set, should have never got here.");
}

}
/I Crawl down through the response DOM hierarchy, beginning at the root,

// to find the status and datetime fields so they can be filled in with the error information.
Element root = document.getDocumentElement();
Element responseElement = findElement(root, "Response");
Element statusElem=findElement(responseElement, " Status™);
Element dateTimeElem=FfindElement(responseElement, "Date_Time");
stripText(statusElem);
stripText(dateTimeElem);
/I Create the new text value for the Status element
Text statusText=document.createTextNode(" ApplicationErrorCode="+appErrorCode+" "+"errorCode="+errorCode+"
errorText="+errorText+" "+parms.getA PPErrorInfoString()+" "+parms.getFlowErrorInfoString());
/I Create the new text value for the Date_Time eement
Date date=new Date();
Text dateTimeT ext=document.createT extNode(date.toString());
statusElem.appendChil d(statusText);
dateTimeElem.appendChild(dateTimeText);
/I set the response document
parms.setResponseDOM (document);
UserL ogManager.loglnfoM essage(this, "run", " ExceptionHandlerConnector run method finished.");
return result;
}
/* *
* Given an element and a name, this routine returns the child element with that name
*
* @param Element
* @param Element name
* @return Child element
*/
Element findElement(Element root, String desiredElementName) {
Element desiredElement=null;
Element currentElement=null;
if (root.hasChildNodes()) {
NodeL.ist children = root.getChildNodes();
for (int k=0; k<children.getLength(); k++) {
if (children.item(k).getNodeType() == org.w3c.dom.Node.ELEMENT_NODE) {
currentElement=(Element)children.item(k);
if (currentElement.getNodeName() == desiredElementName) {
desiredElement=currentElement;
break;

page 63

}
}
}
return desiredElement;
}

/**

* Given an element, this routine strips any text element from it
* @param Element name
* @return void
*/
void stripText(Element em) {
if (elem.hasChildNodes()) {
NodelL ist children2 = elem.getChildNodes();
for (int kk=0; kk<children2.getLength(); kk++) {
if (children2.item(kk).getNodeType() == org.w3c.dom.Node. TEXT_NODE) {
elem.removeChild((Text)children2.item(kk));
break;

Source for GenericFMJavaConnector.pcml program definition file
<pcml version="1.0">
<!-- PCML source for calling a punchout pgm -->
<program name="GenericFM JavaConnector" path="unused">
<struct name="InsuranceXML" usage="output">
<struct name="Response" usage="output">
<dataname="Status" type="char" length="32" usage="output" />
<dataname="DateTime" type="char" length="32" usage="output" />
<struct name="GetlnsuranceCoverageResponse" usage="output">
<dataname="CoverageAmount" type="char" length="32" usage="output" />
</struct>
</struct>
</struct>
</program>
</pcml>

Source for GenericFMJavaConnector.java program
/*
This material contains IBM copyrighted sample programming source code (" Sample Code"). IBM grantsyou a
nonexclusive license to compile, link, execute, display, reproduce, distribute and prepare derivative works of this

Sample Code. The Sample Code has not been thoroughly tested under all conditions. IBM, therefore, does not

guarantee or imply itsreliability, serviceability, or function. IBM provides no program services for the Sample Code.

All Sample Code contained herein is provided to you "AS IS" without any warranties of any kind. THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NON-INFRINGEMENT ARE EXPRESSLY DISCLAIMED. SOME JURISDICTIONS DO NOT ALLOW THE
EXCLUSION OF IMPLIED WARRANTIES, SO THE ABOVE EXCLUSIONS MAY NOT APPLY TO YOU. IN NO
EVENT WILL IBM BELIABLE TOANY PARTY FOR ANY DIRECT, INDIRECT, SPECIAL OR OTHER
CONSEQUENTIAL DAMAGES FOR ANY USE OF THE SAMPLE CODE INCLUDING, WITHOUT LIMITATION,
ANY LOST PROFITS, BUSINESS INTERRUPTION, LOSS OF PROGRAMS OR OTHER DATA ON YOUR
INFORMATION HANDLING SYSTEM OR OTHERWISE, EVEN IF WE ARE EXPRESSLY ADVISED OF THE

page 64

POSSIBILITY OF SUCH DAMAGES.

*/

import com.ibm.connect.flowmanager.interfaces.*;

import com.ibm.connect.flowmanager.metadata.Field;
import java.util. Enumeration;

import java.util.Vector;

import java.util.Date;

import com.ibm.connect.logging.interfaces.UserL ogManager;

/**

* <code>GenericFM JavaConnector</code> implements the Connector Interface to provide a simple and generic Flow Manager
* connector that supports the full request/response flow for the Connect custom protocol examples.

*/

public class GenericFM JavaConnector implements JavaConnectorlnterface {

Field statusField = null;

Field datetimeField = null;

Field coverageamountField = null;

fina String statusFieldName="InsuranceX M L/Response/Status”;

final String datetimeFieldName="InsuranceX ML/Response/DateTime";

final String coverageamountFiel dName="1nsuranceX M L/Response/Getl nsuranceCoverageResponse/ CoverageAmount”;
ConnectorParm myParms = null;

JavaConnectorResult result = new JavaConnectorResult();

/* *
* <code>run</code> actual implementation of the Connector Interface that gets called by the Flow Manager
*/
public JavaConnectorResult run(ConnectorParm parms) {
myParms = parms;

System.out.printin(" "):
System.out.printin("1n GenericFM JavaConnector code! ");

System.out.printin(" "):
try {

bindfields(parms.getOutputFieldList());
parms.setFiel dFromString(statusFiel d," Successful™);
Date date=new Date();
parms.setFiel dFromString(datetimeField,date.toString());
parms.setFiel dFromString(coverageamountFiel d," $50000");
result.setReturnCode(0);
result.setReturnString("Generic FM Connector program is now returning.”);
}
catch (SetFieldException €) {
e.printStack Trace();
result.setReturnCode(01);
result.setReturnString(e.getM essage());

}

/lnitialize the result to indicate success
return result;

}

/**

page 65

* <code>hindfields</code> is the method that gets called to do all of the field
* hinding for the corresponding connector program.
*/
private void bindfields(Vector fieldList) {
Enumeration enum=fieldList.elements();
while (enum.hasM oreElements()) {
bindfiel dsL oop((Field)enum.nextElement());
}
return;
}
/**
* <code>hindfieldsL oop</code> is the method that handles the does the actual binding of the fields or does
* recursive calls to handle any structures that are encountered.
*/
private void bindfieldsLoop(Field fld) {
try {
if (fld.isRepeating()) {
/I Need to add code here to handle this
}
if (fld.getType() == ConnectorConstants.STRUCT) {
bindfields(myParms.getOutputFieldList(fld));
}
if (UserLogManager.isTracing) {
UserL ogM anager.loglnfoM essage(this, "setfieldsLoop”, "Binding field " + fld.getName() + " to cursor...");
}
myParms.bindOutfieldToCursor(fld);
setSpecificField(fld);
}
catch (BindException) {
e.printStackTrace();
result.setReturnCode(01);
result.setReturnString(e.getM essage());
}
return;
}
/**
* <code>setSpecificField</code> is the method that sorts out which field is being worked with and preservesit under
* the corresponding field variable that representsit.
*/
private void setSpecificField(Field fld) {
String fldName=fld.getName();
if (fldName.equal s(statusFieldName)) {
statusField=fld;
}
eseif (fldName.equal s(datetimeFieldName)) {
datetimeField=fld;
}
elseif (fldName.equals(coverageamountFieldName)) {
coverageamountField=fld;
}
}
/**
* GenericFM JavaConnector constructor
*/

page 66

public GenericFM JavaConnector() {
super();
}
}

page 67

Appendix B

Source for XML ToDOM Connector.properties for example 2

#there are 3 properties

UserSpecifiedDTD -- do you want to specify aDTD, or use the one specified in the document

#if UserSpecifiedDTD = yes, then thereis

UserSpecifiedDTDType = [file| url]

UserSpecifiedDTDLocation = [/path/to/file | http://www.blah.com/]

UserSpecifiedDTD = yes

UserSpecifiedDTDType =file

UserSpecifiedDTDL ocation = Gateway/Connectors/InsuranceXML-LifePartners-1.02/InsuranceXML_102.DTD

Source for XML Builder Connector.propertiesfor example 2
NoValidationDTD = Gateway/Connectors/NoValidation.DTD
LocalDTDName = Gateway/Connectors/InsuranceX M L-LifePartners-1.02/InsuranceXML_102.dtd

page 68

