IBM Connect for iSaries 1.1: Java Connector Sample

"‘ IBM Connect

h\‘-"" _ for iSeries

IBM Connect for iSeries 1.1

Java Connector Sample

September, 2001

Contents

¢ License and disclaimer
¢ Qvenview
° Java connector skeleton
° Input request static tree
Define the interface between the Flow Manager and Java connector application
Navigate the runtime tree
Retrieve the value of a field
¢ [nstall the JConSam1 package
¢ Configure iSeries Connect for JavaConnectorSamplel
Test JavaConnectorSamplel
Compile a Java connector application
Appendix A: Create the AppConnector and ProcessFlow documents
Appendix B: Common problems

License and disclaimer

This material contains IBM copyrighted sample programming source code ("Sample Code"). IBM grants you a
nonexclusive license to compile, link, execute, display, reproduce, distribute and prepare derivative works of this
Sample Code. The Sample Code has not been thoroughly tested under all conditions. IBM, therefore, does not
guarantee or imply its reliability, serviceability, or function. IBM provides no program services for the Sample Code.

All Sample Code contained herein is provided to you "AS IS" without any warranties of any kind. THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT
ARE EXPRESSLY DISCLAIMED. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED
WARRANTIES, SO THE ABOVE EXCLUSIONS MAY NOT APPLY TO YOU. IN NO EVENT WILL IBM BE LIABLE
TO ANY PARTY FOR ANY DIRECT, INDIRECT, SPECIAL OR OTHER CONSEQUENTIAL DAMAGES FOR ANY
USE OF THE SAMPLE CODE INCLUDING, WITHOUT LIMITATION, ANY LOST PROFITS, BUSINESS
INTERRUPTION, LOSS OF PROGRAMS OR OTHER DATA ON YOUR INFORMATION HANDLING SYSTEM OR
OTHERWISE, EVEN IF WE ARE EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

(C) Copyright IBM CORP. 2001
All rights reserved.
US Government Users Restricted Rights -- Use, duplication, or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

1d 16

IBM Connect for iSaries 1.1: Java Connector Sample

Overview

The basic functions that a Java connector application must perform are:

¢ Retrieve the input fields passed to it by the flow manager
¢ Convert the input field into the form that is expected by the application

° Process the input fields or pass them to another back-end application for processing.
¢ Return feedback to the flow manager

Note: This sample program assumes a purchase order request. The order response does not include output fields.
For this reason, this document focuses on input fields only. Future sample programs will illustrate the use of output
fields when appropriate.

Top

Java connector skeleton

The Java connector application is a Java class that implements the JavaConnectorinterface. When the iSeries
Connect flow manager determines that the request received from the marketplace must be processed by your Java
connector application, it invokes the run() method of the JavaConnectorinterface that your Java connector application
instantiates.

When coding a Java connector, use this class skeleton as your starting point:

i mport comibm connect.fl owranager.interfaces. *;
i mport comibm connect. fl owmranager . met adat a. Fi el d;
import java.util.Enunmeration;inport java.util.Vector;

public class JavaConnector Sanpl el i npl enents JavaConnectorlnterface

{

publ i ¢ JavaConnector Result run(Connect or Parm par ns)

{
JavaConnectorResult result = new JavaConnectorResult();
resul t. set Ret ur nCode(0);
return result;

¢ The run() method is called by the flow manager. The run() method is the heart of your Java connector
application. It must implement the logic of accessing the input and output fields provided in the ConnectorParm
object.

¢ The ConnectorParm object provides a set of interfaces that your program can use to:
o [nstantiate a set of Field objects to represent the set of input and output fields defined in the input and
output field specification. You define the input and output fields from the request and response

documents (for example, cXML document) that your Java connector application will use, in the PCML or
XML document specified in the Application Connector.

Note: This sample Java connector program only uses input fields.
° Navigate through the input request document to retrieve the values for this particular request.

° Convert the input values (all Strings) to other Java types (for example, ints and Floats) expected by the

2016

IBM Connect for iSaries 1.1: Java Connector Sample

back end application.

¢ The JavaConnectorResult object is returned by the run() method in your Java connector application to
indicate the success or failure of its invocation.

Input request static tree

The main goal of your Java connector application is to process information received from a marketplace. To isolate the
Java connector application from the different protocols that may come in from different marketplaces, the incoming
request information is mapped from the protocol-specific format into the ConnectorParm object.

It is convenient to draw the incoming request static tree (as opposed to the runtime tree) to understand how to
implement the navigation through the request document. Each node in the tree represents an input field in our sample

application. The position of the field (node) in the static tree and its characteristics are important because the rules
that you must follow to navigate the runtime tree and retrieve the field values depend on them.

Note: The terms node and field are used synonymously.

The static tree that represents the order request in the sample application is shown below.

Figure 1. Static tree for an order request

| # = Mot structure, not repesating
Root m = Member

| | | | * = Structure, repesting

requestType# arderlD® itern

'rtemfdescriptiu:un#m itemiprice#m temiguantity

L 'rtemndentifier# i 'rtemﬂineNumber# i

It is through this view that the Java connector application accesses the values in the request document.

This table summarizes the characteristics of the sample Java connector application's input fields.

Field Name |Structure Repeating | Member

requestType no no no
orderlD no no no
item yes yes no
item/description | no no yes
item/quantity no no yes
item/price no no yes
item/identifier no no yes
item/lineNumber | no no yes

Define the interface between the flow manager and Java connector application

3016

IBM Connect for iSaries 1.1: Java Connector Sample

This interface definition to your application is provided in the form of an application connector document
(AppConnector). The AppConnector is created by using the application connector editor (click Application
Connector) under the Deployment tab in the iSeries Connect configuration tool.

The input used to create this application connector document is a document provided by you that defines a set of
input and output fields. iSeries Connect supports three techniques for defining these fields: a PCML document, an
XML document, or an ACDFieldSet document. In the sample Java connector application, a PCML document is used
as input to define the set of input fields required by the Java connector program, JavaConnectorSamplel. The sample
PCML document JavaConnectorSamplel.pcml is shown below:

<pcm version="1.0">
<l-- PCM. use to define ACD for JavaConnectorSanplel -->
<pr ogr am nanme="JavaConnect or Sanpl el" path="/xxx">
<data nanme="incount" type="int" |ength="4" usage="input" />
<data nane="order| D" type="char" |ength="6" usage="input" />
<dat a nane="request Type" type="char" | ength="6" usage="input" />
<struct nane="itenl' usage="input" count="JavaConnector Sanpl el.incount" >
<dat a name="li neNunmber" type="int" |ength="4" usage="input" />
<data nane="identifier" type="char" |ength="16" usage="input" />
<data name="quantity" type="int" |ength="4" usage="input" />
<data nane="price" type="float" |ength="4" usage="input" />
<dat a name="description"” type="char" |ength="64" usage="input" />
</struct>
</ program>
</ pcm >

Note: In the case of the Java connector, the PCML file is only used to define the input and output fields to the
application, and not to call the program. The <program> tag is required, but the "path" attribute (which defines the
actual program to be called) is only used by the PCML connector. The path attribute is displayed here only because
it is required by the syntax.

The Field object
The ConnectorParm object is passed to your Java connector program in the run() method:

publ i c JavaConnector Result run(ConnectorParm par ns)

Before retrieving a value from the request document, the connector program must acquire the associated Field object
from the ConnectorParms. If the field is not a member of a structure, get the Field object using the getinputField()
method. To obtain the Field objects for members of a structure, use the getinputFieldList() method.

The field "name" attribute is used by your Java connector application to retrieve input values. The st ruct and

r epeat i ng attributes are important to determine how your Java connector program must retrieve an input value. They
are the attributes that indicate whether or not the element is a structure and whether the element repeats in the tree.
Struct elements are structures and data elements are not. Elements which have a count attribute in the PCML are
considered repeating; those without a count attribute are not. A repeating field can appear a number of times in the
request document.

In the example, there are three fields that are not members of a structure: requestType, orderID, and item. To acquire
their associated Field object:

Field itenFld = parnms.getlnputField("itenl);

In the example, there are five Field object members of the item structure (under "item"), regardless of how many times
the item structure may be repeated in a particular request document. To acquire their associated Field object:

40 16

IBM Connect for iSaries 1.1: Java Connector Sample
Vect or nenberfl ds = parmns. getlnputFi el dLi st (itenFld);

Navigate the runtime tree

At runtime, the tree looks like the following:
Figure 2. Runtime tree of the Java connector sample

Foot

I
requestType orderiD item item
Hew DO1234

temfidescription temfrice temiguantity temddertifier temlinetumber
hello, tem 1 1.34 2 1233244 1

itermidescription temiarice itemfquantity temidentifier temlineMumber
ltem 2 description 19.34 2 1222222 2

The runtime tree is populated from the input request document. Only nodes at the end of a branch have values. You
must navigate the tree until you arrive at the field that contains the value you want to extract.

iSeries Connect introduces the concept of a cursor, which is a pointer to a node in the tree. The cursor sets the
starting navigation point in the runtime tree. It is implemented by the class MapCursor.

To extract the value of a field in the input request document, your Java connector application must have a cursor that
points to the node above it. For example, to extract the requestType value from the request document, the connector
program must have a cursor that points to the root node. For convenience, the ConnectorParms object always
contains a default cursor that points to the root node.

Cursors are very important when the tree includes repeating structures. In the example, the request document
contains two items. Since "item" is also a structure, each item node has identical nodes below it. When the
connector program retrieves a value for item/price, it must have a way to specify which item/price it wants. It does this
by positioning a cursor on the item node above the item/price node that contains the value that it wants to retrieve.
Follow these rules to navigate the runtime tree to the location of the field to specify which value you want to extract:

1. Build the static tree of Field objects as shown in The Field object.

2. Acquire a cursor associated with the node above the field you want to get to (only for structures).

3. Bind the corresponding Field object (the one you want to get to) to the cursor acquired in step 2.

Acquiring a cursor for "item" (step 2)

There are four steps that the connector program must perform to acquire a cursor to a particular node:

Tip: Acquire a cursor to a node that is a structure.

1. It has a MapCursor object that represents a cursor to the node above it. Because the default cursor (which
always points to the root node) is available, any node can be reached through a number of recursions. This
step is not necessary for nodes under the root. Because "item" is under the root, this step is skipped.

50f 16

IBM Connect for iSaries 1.1: Java Connector Sample

N

It has a Field object the represents the node/input field. See The Field object.
3. It binds the node to the cursor:

par ms. bi ndl nfi el dToCursor (itenFl d);

4. It calls the getFieldAsStructure() method on the ConnectorParms object. This returns an array of MapCursor
objects if the node is a repeating node, a single MapCursor object otherwise.

MapCursor[] cursorlist = parnms.getFi el dAsStruct(itenFld);
Once the connector program has acquired the cursor, it is free to access the nodes below it.
Bind a field to a cursor for "item/price" (step 3)

It has been shown how the connector program can use cursors to identify a specific node in the tree for any input
request. Now it is time to get the value. But before retrieving the value, the connector must "bind" the node it is
interested in to the cursor, which must be positioned on the node above. This operation is performed with 2 steps.

1. It has a Field object that represents the node/input field. Call the getinputFieldList() method on the
ConnectorParms object to get the Field object that represents the node/input field under "item". In the
JavaConnectorSamplel sample, all Field objects (built static tree) are obtained at the beginning of the
program:

Vect or nmenber Fl ds = parms. getl nput Fi el dLi st (itenFl d);

2. Call the bindInfieldToCursor() method on the ConnectionParms object:

parns. bi ndl nfi el dToCursor (itenPriceFld, cursorlist[i]);

Although there is no specific reason to do this, it is necessary to prepare the object to retrieve the value. All items at
the top level can be bound to the default cursor which is contained within the ConnectorParms object.

Top

Retrieve the value of a field

When the connector program has identified to the specific non-structure node which value it wants to extract, and has
bound it to a cursor, it can retrieve the value from the request document. Depending on the data type of the field, it
uses one of the following methods on the ConnectorParms object:

¢ getFieldAsint

¢ getFieldAsByte

¢ getFieldAsDouble

¢ getFieldAsFloat

¢ getFieldAsBigDecimal
¢ getFieldAsByteArray
¢ getFieldAsLong

¢ getFieldAsShort

¢ getFieldAsBoolean

¢ getFieldAsString

These methods return an array of the objects. If there was only one value, the array contains only one item:

float [] itemPriceVal = parns. getFiel dAsFl oat (itenPriceFl d);

60 16

IBM Connect for iSaries 1.1: Java Connector Sample

Install the JConSam1 package

1. Map a network drive to the root directory of your iSeries integrated file system.

2. Download the self-extracting, executable file jconsam1_110.exe.

3. Run the file to install the package. During installation, select to install the package to a unique directory in the
integrated file system on your iSeries by modifying the location to save files.

For example, if F: is your mapped drive to the integrated file system, it is recommended you specify
F:\connsanil as the target directory. This directory is created for you if it does not already exist.

Note: The directory connsaml1 is referenced throughout this document as this unique directory that you
specify.

When the installation is complete, you will have all the files for the Java connector application in a subdirectory called
JConSaml. Here are the files:

¢ JavaConnectorSamplel.java: Source code for the Java connector application.

¢ JavaConnectorSamplel.class: Compiled Java class.

¢ JavaConnectorSamplel.pcml: PCML file that defines the input fields for the sample JavaConnectorSamplel
Java connector program.

In addition, the package includes the application connector and process flow documents that were generated using
the iSeries Connect configuration tool. Here are the sample application connector and process flow documents:

¢ JavaConnectorSamplel.AppConnector
¢ JavaConnectorSamplel.ProcessFlow

Configure iSeries Connect for JavaConnectorSamplel

To configure iSeries Connect for the Java connector sample, perform the following steps:

1. Create a B2B instance. This table lists the field values that you should use:

7016

IBM Connect for iSaries 1.1: Java Connector Sample

Field Value

B2B instance name: JConSaml

Supplier URL for marketplace: | aribaorders

HTTP port 4083 (must be an unused port on your system)
Supplier DUNS 123222888

Supplier Id 123222888

Supplier Id Domain DUNS

Supplier Logon Information

Supplier Log-on Id 123222888

Domain DUNS

Password/Shared Secret: secret

Buyer Organization Id 321222888

Buyer Organization Id Domain | DUNS

2. Create the application connector and process flow documents necessary for this Java connector. You may use
the ones included with the sample or see Appendix A for information about creating your own.

If you choose to deploy the process flow using the AppConnector and ProcessFlow documents supplied with
this sample, copy these sample files from the /ConnSam11/JConSam1 directory to the
/QIBM/UserData/Connect110/JConSam1/Connector directory:

° JavaConnectorSamplel.AppConnector

° JavaConnectorSamplel.ProcessFlow

3. Deploy the process flow using the Deployment function in the iSeries Connect configuration tool.

Click Instances, and then select your B2B instance name (JConSam1).

Click the Deployment tab, and then click Add Flow.

Select the protocol to use. Click Next.

Select OrderRequest/new and JavaConnectorSamplel from the drop-down list.
Click Next.

Select All Suppliers and All Buyers.

Click Finish to deploy this flow.

Q@ 2200

In the iSeries Connect configuration tool, the completed deployment look similar to Figure 3. Note that the
status is "Deployed."

Note: If deployment is successful, the file RuntimeMeta.xml is created in the
/QIBM/UserData/Connect110/JConSam1/Connector directory.

Figure 3. Deployed flow for the Java connector sample

80f 16

IBM Connect for iSaries 1.1: Java Connector Sample

23 IBM Connect For iSeries Administration - MYSYSTEM - USRPRF - Microsoft Internet E xplorer

J File Edit iew Favortez Tools Help |

j SN (a) ‘ Q E @ | & T
Back foriand Stop Refrezh Home Search Favarites Histary Size
J-‘-“-EIEITESS @ http: sy sterm: 2002/BtoB /Connect j o

Connect for iSeries
Home Instances Suppliers Buyers Catalog (71T LT &

Add Flow Application Connectors Prucess Flows Edit Prompts Update Flow Manager

| 0|

Deployment Flows Server: MYSYSTEM

Marketplace: |Ariba "I

Protocol | Request ype| _ Process Flow _|Supplier|Buyer Status
& cHM-1.1-Arba OrdErRequest new JavaConnectorSample 1 *ALL |[*ALL |Deployed

& Edit ©¢ Delete @ Deploy ¢ Suspend

|@ E‘E Lacal intranet

S

4. Configure the path to your Java connector application:
a. In the Manage B2B Instances page, select your instance and click Properties.
b. Click the Flow Manager tab.
c. Atthe end of the existing Java virtual machine classpath, add the path where
JavaConnectorSamplel.class. The sample uses the /ConnSam11/JConSam1l directory.

Figure 4. Update the flow manager classpath

90f 16

23 IBM Connect For iSeries Administration - MYSYSTEM - USRPRF - Microsoft Internet Explorer

J File Edit iew Favortez Toolz Help |

IBM Connect for iSaries 1.1: Java Connector Sample

c

I b
@ o= D o Q@ HE @ |4
Back Forard Stop Refrezh Home Search Favonter History Size
J.-’-'-.gldress @ http: Ay ey stem: 2002/BhoB /Connect j E‘I?
Connect for iSeries =
Home Suppliers Buyers Catalog Deployment 0 =

(OB ProdData’Connect] 10tools TP Aftpa. jar =

-
& [(fOIBMProdData’Connect1 1 0ftools TP Aftpaap jar
O fOIBM T serDatalConnect1 10,5 AT T 1iconnector
IS

|£cunnsam11fJCDnSam1 Browse |

Addl Impn:urtl Femove bdone Lip hdone Ciowen |

OK | @ Cancel

€]

E‘! Lacal intranet o

5.

Start your instance:

a. Click the Instancestab.
b. Select JConSam1.
c. Click Start.

d. Select all the instance components, and click Start.

3

Test JavaConnectorSamplel

Use the Drive Connect application to simulate an OrderRequest/new using your instance as configured for the Java
connector sample. The Drive Connect application is integrated into the iSeries Connect configuration tool.

oM wNE

Click the Instances tab, and ensure that your instance is still selected.

Click Test Drive Connect.

Click Next.

Select OrderRequest on the Request Type page.

Click Next.

On the Request Options page, if your instance is set up for a supplier with a DUNS of 123222888 and a buyer
with DUNS 321222888, select Yes, use the following file for the test:. There is no need to change the
default value of "/QIBM/ProdData/Connect110/Samples/Driver” for directory and "OrderRequest.xml" for file.
Click Next.

100 16

IBM Connect for iSaries 1.1: Java Connector Sample

This page shows you the XML that is used to run the request. You can edit it here to change the DUNS
numbers, as well as other things. If you followed the field values you were given for creating the instance,
JConSaml, there is no reason to change anything in order for the sample to run.

8. Click Next.

A summary of the request information is displayed. If everything matches the instructions given above, select
Send Request.

If the OrderRequest is successful, you receive the following response:

<?xm version="1.0" encodi ng="UTF-8"?>
<! DOCTYPE cXM. SYSTEM "http://xm .cXM. org/ schemas/cXM./ 1. 1. 006/ cXM.. dt d" >
<cXM. payl oadl D="9804549191052@WSYSTEM | BM COM'
ti mestanp="2001-01-25T20: 35: 19+00: 00" version="1.1.007">
<Response>
<Status code="200" text="0OK"/>

</ Response>

</ cXM.>

9. Additionally, the JavaConnectorSamplel application writes its output to a spool file in the flow manager job. To
print or display the output:

a. End the flow manager:
1. Select your instance (JConSam1l)
2. Click Stop
3. Select IBM Connect Flow Manager
4. Click Stop.

b. The spool file is under the B2B instance user profile. Enter the command Work with Spool Files
(WRKSPLF) command on the iSeries command line:

VRKSPLF JCONSAML

Here are sample contents of the spool file:

Loadi ng PARSEACC

PARSEACC | oaded

Loadi ng DATAACC

DATAACC | oaded

I n JavaConnect or Sanpl el connector application:
running java connector code!

Order 1D = DO1234

Request type = new

Total number of items in the order: 1
Itemidentifier = 1233244

Item|ine number not found

Item quantity = 2

I[temprice = 1.34

Item description = hello

1o 16

IBM Connect for iSaries 1.1: Java Connector Sample

Compile a Java connector application

To compile the Java connector application if you change it, follow these steps:

1.
2.

Start Qshell Interpreter with the STRQSH command.

Set your the classpath environment variable. On the Qshell command line, enter this command as one
continuous line:

export -s CLASSPATH=.:/Q BM ProdDat a/ Connect 110/ Cl asses/ f| owranager api . j ar
Change to the JConSam1 directory:

cd /connsamll/ JConSaml

Compile the application with the javac utility:

javac JavaConnect or Sanpl el. j ava

Appendix A: Create the AppConnector and ProcessFlow
documents

Create the AppConnector and ProcessFlow documents with the iSeries Connect configuration tool:

BN =

On the Manage B2B Instances page, select the JConSam1 instance from the list of B2B instances.
Click the Deployment tab.
Click Application Connectors.
Select Create new Application Connector document.
Click Next.
Enter these following values on the New Application Connector page:
° Class Name: JavaConnectorSamplel
° Input field Template: JavaConnectorSamplel.pcml
o Qutput field Template: JavaConnectorSamplel.pcml

There are no output fields to define, so click Next until you reach the end of the wizard. Click Finish.

Figure5. Application connector for the Java connector sample

120 16

IBM Connect for iSaries 1.1: Java Connector Sample

a IBM Connect For i5eries Administration - MYSYSTEM - USRPRF - Microsoft Internet Explorer [l[=] B3

J File Edit “iew Favortes Tools _ﬂelp |

« .+ .0 A @ G @ @
Back Fonward Stop Refresh Home Search Favorites History Size
J Address @ hittp: //mysystem: 2002/BtoB/Conmect j J Links

Connect for iSeries
Home |Instances Suppliers Buyers Catalog [0J00TCTE D

New Application Connector

Connectar name is

Connector name: IJavaCDnnectDrSamp lel -4 JavaConnectorSample1
: Select Java for the

Connector type: | Java J e Cannectartipe
MG Series Akl

Fath: WS erias Connect] 1075 AT lfConnectorfl
b Call ; Leave the Path field empty so the I

YT, L AppConnector file is putinta the
Finally, click Next | JOBC instance's Connectar directary
: Data Clueus

' Back ¢ MNext ¢ Cancel

|@ E‘g Lozal intranet 2

Note: When this finishes successfully, the following message displays in the message area at the bottom of the
configuration tool, "The file JavaConnectorSamplel.AppConnector was successfully created.".

Under the Deployment tab, follow these steps:

Click Process Flows.
Select Create a new process flow document.
Click Next.
Enter theses values for this New Process Flow:
° Flow Name: JavaConnectorSamplel
° Protocol: cXML/Ariba/1.1
° Request: OrderRequest/new
° First Step Name: JavaConnectorSamplel

Rl A o

Click Next.

5. Enter these values for the Insert New Step page:
o Step Name: JavaConnectorSamplel
¢ Step Type: Connector
° Connector: /connsam11/JConSam1/JavaConnectorSamplel.AppConnector

From the Insert New Step page, map the request input fields to the fields your application connector expects (see
instructions below to add a mapping). Here are all the mappings you need to do for this sample (Fields are on the left

130f 16

IBM Connect for iSaries 1.1: Java Connector Sample

of arrow, Map Into values are on the right):

¢ Request:/cXML/Request/OrderRequest/OrderRequestHeader/@orderlD --> /orderID

¢ Request://cXML/Request/OrderRequest/OrderRequestHeader/@type --> /requestType

¢ Request:/cXML/Request/OrderRequest/ItemOut --> /item

¢ Request://cXML/Request/OrderRequest/ltemOut/@lineNumber --> /item/lineNumber

¢ Regquest:/cXML/Request/OrderRequest/ltemOut/ItemID/SupplierPartID --> /item/identifier

¢ Request:/cXML/Request/OrderRequest/ltemOut/@quantity --> /item/quantity

¢ Request:/cXML/Request/OrderRequest/ItemOut/ItemDetail/UnitPrice/Money --> /item/price
¢ Request:/cXML/Request/OrderRequest/ItemOut/ItemDetail/Description --> /item/description

For each mapping listed above, you have to go through the following steps in the configuration tool on the Insert New
Step page:

1. Click Add Mapping to go to the Edit Input Mapping page.

2. Scroll to the right to see the Map Into list. Select the field you want to map. A list of possible Fields are
directly above. Scroll down the list until you find the field to map and select it.

3. Scroll left and click Insert Field.

4. Click OK on the Edit Input Mapping page to save your mapping.

5. Click Add Mapping to add the next mapping from the list above.

When done mapping, your JavaConnectorSamplel step appears on the page with the list of inputs and no outputs as
shown in Figure 6.

Figure 6. Process flow for Java connector

<3 IBM Connect For iSeries Administration - MYSYSTEM - USRPRF - Microsoft Internet Explorer

J File Edit “iew Favortezr Toolz Help |

j@,#.@@ﬁ%‘@@@%* -

Back Farard Stop Fefresh Haome Search Favortes History Size

J-"l"-erESS @ http: Ay stem: 2002/Bt0B AConnect LI nd |J Lirks **

— Connect for iSeries
- Home

Instances Suppliers Buyers Catalog 5000

Instance: 3AT011 ‘ =]
Flow natne: TavaConnectorSample1 Protocol: XML/ Aribarl 1
Path: fOIEM M serDataConnect1 10/5 AN 1/Connector’ Eecquest: OrderEequestinew
First step name: |Java0c|nnecmr5ample1 _:I Eestartable: © Tes & Mo
Step Name Type Detail

& |JavaConnectorSample 1 | Connector |/OQIBIMM T zerData/Connect] 1055 A0 1 1 onnectoriTavaConn

Eequest/c 2L Eequest/ OrderEequest/OrderEequestHeader
Eequest/cMWLEequestiOrderE equestiCrderE e questHeader
Eequest/c2 ML/ Fequest/OrderEequestTtemOut -= fitem

Eequest/c2LE e quest/OrderEequestTtermOut/ @lhneMNumby

Eequest/c 2 WML/ Eequest/OrderEequestTtemOutTrem [TV Supg
Fermieat e W WT MR ermeatiTrder R erme et Trerm Tt smiantibr -

Tnpat

140 16

IBM Connect for iSaries 1.1: Java Connector Sample

L e e T L e e L O AR] e L L
Eequest/c X MLEequest/OrderEequestTtem OutTtemDetad T
= fiternfprice

Eequest:/c X WLEequestiOrderEequestTrem CutTtemDetail T]
= fitern/description

¢ Insert ¢ Remove ¢ Edit ¢ Copy ¢ Move Up ¢ Move Down ¢ Save ¢ Cancel

Ctput =]

|@ E‘g Local intranet

i

When you are done mapping fields, click OK on the Insert New Step page, and then click Save.

Note: When this finishes successfully, the message "The file JavaConnectorSamplel.ProcessFlow was
successfully created" displays in the message area.

Appendix B: Common problems

This section lists some of the common problems that you may encounter during your tests.
Authentication error. Status code 401

¢ Symptom: OrderRequest fails with the following response:

<?xm version="1.0" encodi ng="UTF-8"?>
<I DOCTYPE cXM. SYSTEM "http://xm .cXM. org/ schemas/ cXM./ 1. 1. 006/ cXM.. dt d" >
<cXM. payl oadl D="9806140231182@NSYSTEM | BM COM'
ti mestanp="2001-01-27T16: 47: 03+00: 00" version="1.1. 007" >
<Response>
<St at us code="401" text="Unaut hori zed">Plug-In Error 42:
Aut hentication failed for nmarketplace Ariba Network,
protocol cXM., protocol subtype Ariba, protocol version 1.1,
user | D 923222888, and donai n DUNS. >
</ Response>
</ cXM.>

¢ Possible Cause:

° The supplier Logon Information in the instance configuration does not match the <To> <Credential>
element in the OrderRequest.xml file:

<To>
<Credential donai n="DUNS">
<l dentity>923222888</Identity>
</ Credenti al >
</ To>

° The supplier Logon Information Password/shared Secret does not match the <SharedSecret> in the

150 16

IBM Connect for iSaries 1.1: Java Connector Sample

<Sender> element of the OrderRequest.xml file:

<Sender >
<Credential domai n="Ari baNetworkUser| d">
<l dentity>adm n@upplier.conx/ldentity>
<Shar edSecr et >secr et 10</ Shar edSecr et >
</ Credenti al >

Authorization error. Status code 403.
¢ Symptom: OrderRequest fails with the following response:

<?xm version="1.0" encodi ng="UTF-8"?>
<I DOCTYPE cXM. SYSTEM "http://xm .cXM.. org/ schemas/ cXM./ 1. 1. 006/ cXM.. dt d" >
<cXM. payl oadl D="98061657938511@WSYSTEM | BM COM'
ti mest anp="2001-01-27T17: 29: 39+00: 00" version="1.1. 007" >
<Response>
<St at us code="403" text="Forbidden">Plug-In Error 38:
Aut horization failed for narketplace Ari ba Network, protocol
cXM., protocol subtype Ariba, protocol version 1.1, request
Order Request, request type new, supplier 123222888: DUNS, and
buyer 921222888: DUNS. Return code is 0</Status>
</ Response>

¢ Possible cause: The buyer information in the instance configuration does not match the <From> <Credential>
element in the OrderRequest.xml file:

<Fr onm
<Credential domai n="DUNS" >
<l dentity>921222888</Identity>
</ Credenti al >

Internal server error. Status code 500.

¢ Symptom: OrderRequest fails with the following response:

<?xm version="1.0" encodi ng="UTF-8"?>
<I DOCTYPE cXM. SYSTEM "http://xm .cXM. org/ schemas/ cXM./ 1. 1. 006/ cXM.. dt d" >
<cXM. payl oadl D="98063138525517@WSYSTEM | BM COM'
ti mest anp="2001- 01-27T21: 36: 25+00: 00" versi on="1.1. 007" >
<Response>
<Status code="500" text="Internal Server Error">Fl owManager
Error 2032: The application called by the connector returned
an error. The errorcode is: 2041 the errorstring is: An
error occurred while trying to instantiate and run the user
java connector class JavaConnector Sanplel. The error
information is: java.l ang. Cl assNot FoundExcepti on:
JavaConnect or Sanpl el

¢ Possible cause: The flow manager cannot find the Java connector application class specified in the process

flow:
° The Java virtual machine classpath for the flow manager in the instance configuration is incorrect.

° The class is not in the expected path.

160 16

