
42 MIDRANGE COMPUTING MARCH 2001

When you are designing e-business
applications, you must decide how
and where to manage an applica-

tion’s user information. One management
method is via a repository called a user registry.
In this article, I will investigate using the
Lightweight Directory Access Protocol (LDAP)
directory included with OS/400 V4R3 (and
later) for this purpose. I will show you that
introducing a JavaBean as an accessor to an
LDAP server enables Java Server Pages (JSPs)
and servlets to use a user registry. I will also
explore the use of the XML standards to struc-
ture data that is interchanged between Web
site components.

What Is a User Registry?
A user registry is simply a place where informa-
tion about users is kept. The information may
be collected via Web-based applications or
internal corporate applications. This infor-
mation may be used by applications for authen-
tication, marketing purposes, or corporate
telephone books. The user registry data is kept
in a repository that may be implemented using
text files in a file system, tables in a database, or
in a directory, as I’ll discuss.

A Web Site Example
For my example, I’ll discuss a fictional Web site
for a local pet store site that provides informa-
tion about pets available for adoption by local
customers. Site visitors register before viewing
the information about available animals. The

by Pat Fleming

WEB BONUS! Find a sidebar for this article at www.midrangecomputing.com/mc.

Using LDAP
for an E-business User Registry

Manage your
Web site visitor
information using
a registry created
with LDAP.

Web site’s implementation registers visitors by
using a Web browser-based form and a server-
side Web application to store this information
in a user registry. The user registry’s repository
is an LDAP directory, which is a directory in the
DB2 UDB for iSeries 400 (DB2 UDB) database
that is accessible using LDAP.

Implementing the user registry in the LDAP
directory on the iSeries or AS/400 provides the
following potential options for the Web site’s
use of the user registry:
• HTTP servers, such as the HTTP server for

iSeries 400 and now the Apache HTTP Web
server, can be configured to use an LDAP
directory when authenticating Web users. By
configuring the HTTP server to use the LDAP
directory-based user registry, visitors can be
restricted to selected Web pages.

• Web application servers, such as the IBM
WebSphere Application Server for iSeries 400,
can be configured to use an LDAP directory
when authenticating Web users. By configur-
ing a Web application server to use the LDAP
directory-based user registry, visitors can be
restricted to specific functions or operations
provided by the Web site.

• Since LDAP directories are hierarchical, you
can maintain multiple user registries in the
same LDAP directory, but they are in different
directory partitions or branches of the hier-
archy. You can also organize the structure of
each user registry based on information
entered by the visitor.

• OS/400 directory services provides LDAP
standard utilities for extracting information
from the directory. Both workstation- and
OS/400-based utilities can query for informa-
tion about Web site visitors for marketing
purposes.

• Since most Web browsers are LDAP-enabled,
you can view the contents of the user registry
directly from a browser. For example, the
following URL would display the contents of
the pet store’s user registry stored in the LDAP
directory on the system called myiSeries400:

Ldap://myiseries400:389/cn=Visitors,ou=Us
erRegistry,o=PetStore??sub

• Changes to the visitor registration form require
corresponding changes to the user
registry’s schema or data definition. Later in this

article, you’ll see how easy it is to make these
changes to the LDAP directory. Changes can be
made by either editing the LDAP server’s
schema files in OS/400 V4R3 and V4R4—or,
starting in OS/400 V4R5, changes can be made
while the LDAP server is running, either by a
command line utility or by using a GUI.

Implementation Overview
In this section I’ll look at some of the tech-
nologies used in the implementation of the
Web site and show how they fit together in the
implementation. The implementation is based
on the following guidelines:
• Provide an introduction to various tech-

nologies used to implement server-side Web
applications. A partial implementation is
provided showing the use of HTML, JSPs,
servlets, JavaBeans, LDAP, and available
OS/400 technologies working together to
implement a simple Web site.

• Provide a separation of various components.
This separation allows for reuse of compo-
nents, ease of implementation using special-
ized skills, and faster enhancements. The
implementation closely follows the well-
known Model-View-Controller (MVC)
framework. As its name suggests, it is made up
of three components.

• The model is responsible for the underlying
data and transactions that can be associated
with it. This is the business logic. In the exam-
ple implementation, the model is composed of
JSPs and servlets.

• The view is responsible for displaying the data.
In the example implementation, the view is
the Web browser.

• The controller is responsible for decoupling
the interactions between the model and the
outside world. This is the interaction control
and need have no knowledge of how the View
works. In the example implementation, the
controller is composed of JavaBeans, Java
Naming and Directory Interface (JNDI), and
an LDAP server.

• Provide a means for data interchange between
components. The implementation uses XML,
HTTP, and LDAP for data interchange
between various components.

• Figure 1 shows both the components of the
implementation and a simple function flow.

In the sections below I’ll discuss the compo-
nents, technologies, and the flow.

Component Overview
On the workstation, the Web browser is the
only component present. Since this is a server-
side implementation, no data or HTML files are
stored on the workstation. For the server-side
implementation, the following components,
listed by technology, are implemented on the
iSeries 400:
• JSPs—The UserRegistration JSP provides the

presentation logic by building the HTML form
used for visitor registration. JSPs are text files
stored in the AS/400 Integrated File System
(AS/400 IFS) and used by the IBM WebSphere
Application Server when a Web browser refer-
ences a URL that contains the name of the JSP.

• Servlets—The UserRegistration servlet pro-
vides the presentation logic for processing the
registration form’s data. The servlet is invoked
by the IBM WebSphere Application Server
when the form is submitted because the form’s
action URL references the servlet.

UserRegistration separates the presentation
and business logic. The servlet transposes form
data into XML and invokes the UserRegistry
Bean.
• JavaBeans—Implementation consists of two

JavaBeans, UserRegistry and LDAPBean, that
implement the business logic. Together, these
JavaBeans implement the accessor to the user
registry data stored in the LDAP directory.
Since JavaBeans provide access to the user
registry, the Web site’s JSP and servlet devel-
opers are not involved with working with an
LDAP directory. At this time, the UserRegistry
Bean is invoked only by the UserRegistration
servlet, but in the future, expect additional
JSPs and servlets to use this Bean to access the
user registry.

IBM’s LDAPBean can be used to access
LDAP directories using JNDI. JNDI consists of
Sun Microsystems’ API and IBM’s JNDI
service provider. Use LDAPBean as is, and
implement all user registration specifics in the
UserRegistration Bean.
• LDAP—For Web site visitor information,

instead of using HTTP session information
stored as cookies on the workstation, use an
LDAP directory for centralized management.

MARCH 2001 MIDRANGE COMPUTING 43

FO
C
U
S

Figure 1: Upgrade your Web site user registry using XML, Java applications, and an LDAP directory.

WORKSTATION AS/400

Presentation Logic
JSPs & Servlets

Presentation
Web Browser Pages

Business Logic
JavaBeans

Business Data
LDAP Directory

LDAP ServerLDAPBean

UserRegistry

UserRegistration.jsp

UserRegistration.class

6

5

4
3

1

2
UserRegistry

Schemna
Register JN

DI

XSL

DSML LDAP
XML

http

44 MIDRANGE COMPUTING MARCH 2001

Use of an LDAP directory allows more control
and options for using the information about
Web site visitors, as discussed earlier.

Two of the LDAP components, JNDI and
the LDAP server, are provided with OS/400
and implement the data management of the
business logic. JNDI interacts with the LDAP
server using LDAP (protocol). The LDAP
server’s data repository is the local OS/400
UDB DB2 database.

Implementation Flow
Before diving into the implementation details,
I’ll take a look at the simple flow implemented
so far for this pet store’s Web site by following
the steps shown in Figure 1.

1. The JSP UserRegistration was invoked by a
URL reference to the JSP. This reference was
probably from a New Visitor link on the Web
site’s home page. This link was processed by
the browser, which passed the reference to
the OS/400 HTTP Web server, which then
passed the reference to the OS/400 applica-
tion server, IBM WebSphere Application
Server, which then invoked the JSP. The JSP
built a simple form allowing users to register
information about themselves and then
returned the form to the Web browser.

2. When the visitor clicks on the form’s
Submit button, the data is sent to the
UserRegistration servlet. UserRegistration
extracts the form data and structures it into
an XML document using an XML schema
specific to the Web site. Refer to my side-
bar “Configuring LDAP as an E-business
Registry: Additional Implementation
Details” atwww.midrangecomputing.
com/mc for more information on how this
is accomplished. For the pet store Web site,
user information is first converted in an
XML document using this XML schema.
This provides for structured data to be
interchanged between the server-side com-
ponents of the Web site.

3. The Web site is implemented using the
UserRegistry Bean, which provides a set of

simple operations for JSPs and servlets to use
when accessing the user registry. The
UserRegistration servlet invokes the add
method of UserRegistry Bean to add the
visitor’s information to the user registry. The
visitor’s information is then passed as a struc-
tured Directory Services Markup Language
(DSML) document.

4. The UserRegistry Bean’s add method pars-
es the DSML document and invokes the
LDAPBean requesting a directory entry to
be created.

5. LDAPBean uses JNDI to request the LDAP
server to add a new user to the user reg-
istry. LDAPBean hides many of the details
of using JNDI such as connecting to the

LDAP server, formatting input data, and
handling responses.

6. The LDAP server creates the directory entry
by using DB2 UDB interfaces to update the
OS/400 database.

Updating the LDAP Schema
An LDAP server uses an LDAP schema to iden-
tify the attributes and object classes allowed
when creating directory entries. In support of
the user registry, you’ll need to enhance the
default LDAP schema shipped with OS/400
directory services so that additional attributes
can be used when creating directory entries for
the users. Most of the attributes needed for
visitor information are already defined and
contained in the object class iNetOrgPerson, an
object class defined by an Internet standard and
shipped with most LDAP servers.

To manage the visitor information in the
OS/400’s LDAP directory, add one more
attribute, animalInterests, and the additional
object class, AFVisitor, containing this new
attribute. Methods for modifying the schema
vary depending on your version of the LDAP
server, which corresponds to the OS/400
release. IBM recommends enhancing the
existing schema by adding only new attributes
and object classes and not modifying the exist-
ing definitions.

For OS/400 V4R3 and V4R4, the LDAP Ver-
sion 2-compatible schema modifications are
applied to text files stored in the iSeries IFS.
Attribute changes should be appended to
the end of /qibm/userdata/os400/dirsrv/
UsrAt.txt. Object class modifications should be
appended to the end of /qibm/userdata/
os400/dirsrv/UsrOC.txt.

The following code shows the changes added
to UsrAt.txt to define one additional attribute
called animalInterests, with a syntax of case
ignore string (cis), a maximum length of 256
bytes, and normal access control permission:

attribute animalInterests cis
animalInterests 256 normal

The changes to be added to UsrOC.txt to
define the AFVisitor object class that allows the
optional attribute animalInterests are as follows:

objectclass AFVisitor allows
animalInterests

For OS/400 V4R5, the LDAP Version
3-compatible schema modifications are applied
by one of the following methods:
• Use the Directory Management Tool (DMT),

a workstation-based Java application. DMT is
useful for making a small number of dynamic
changes to an LDAP schema. Refer to the
Download and Installation section for infor-
mation on installing DMT. Once installed,
DMT can be launched as follows: Start/
Program/IBM SecureWay Directory/Directory
Management Tool.

• Modify LDAP server’s schema text files as
mentioned earlier. Note that this requires
restarting the server after changes are made.

• Use OS/400 Operations Navigator to import
the schema modifications while the LDAP
server is down. The schema modifications
must be defined in a text file in LDAP Data
Interchange Format (LDIF).

• Use the ldapmodify utility from a workstation
command line, OS/400 command line, or
OS/400 Qshell command line. The schema
modifications must be defined in a text file in
LDIF. The command from OS/400 Qshell
would be as follows:

ldapmodify -d <admin_name> -w
<admin_password> -f <ldif_pathname>

Note that when using ldapmodify from the
OS/400 command line, the text file must
be located in the AS/400 IFS and the -h
(hostname) and -p (port number) options are
not required. Figure 2 shows the LDIF file to
modify the schema. LDAP Version 3 requires
an object identifier (OID) to be included in the
schema. For this example, a text string is used to
represent the OID of the new attribute and the
new object class.

User Registration Servlet
The UserRegistry servlet is invoked by an

dn:cn=schema
changetype: modify
add: attributetypes
attributetypes: (animalInterests-oid NAME 'animalInterests' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15)
ibmattributetypes: (animalInterests-oid ACCESS-CLASS normal LENGTH 256)

Dn:cn=schema
Changetype:modify
add: objectclasses
objectclasses: (AFVisitor-oid NAME 'AFVisitor' SUP top AUXILIARY MAY (animalInterests))

Figure 2: Personalize your Web site with visitor-specific information using LDIF files to
make schema modifications.

User registry data is kept in a
repository that may be in a directory.

MARCH 2001 MIDRANGE COMPUTING 45

action of the visitor registration form. The
servlet uses XMLTransform’s methods
to convert the form’s data into an XML
document, and then it transforms the XML
document into a DSML document. The
DSML document is then passed to the
UserRegistry Bean’s add method to update
the user registry with the new visitor’s infor-
mation. UserRegistry dynamically creates and
returns an HTML page with the results of the
registration to the Web browser.

UserRegistry Bean
UserRegistry is a nonvisual JavaBean specific to
the user registry. It provides properties that
allow JSPs and servlets to customize a user reg-
istry. For example, setUserRegistryParentDN()
allows a servlet to override the user registry’s
default location in the directory hierarchy. The
UserRegistry servlet uses the add method
of UserRegistry to add new users. After setting
several properties, UserRegistry Bean invokes
LDAPBean’s add method to add a user. User-
Registry’s event listener receives events from
LDAPBean, translates the events into messages,
and sets a status property.

Working Together
The examples in this article demonstrate
many of the newest Internet technologies
available from an iSeries that can work
together to maintain a Web site’s user registry
in an LDAP directory. These examples can be
expanded to provide additional user manage-
ment facilities, such as updating existing
visitor information. JSP and servlet develop-
ers will find it much easier to work with a
user registry through the use of XML to
structure data and JavaBeans as accessors. For
additional implementation details and Instal-
lation and Configuration instructions, be sure
to read the sidebar “Configuring LDAP as an
E-business Registry: Additional Implementa-
tion Details” on the MC Web site at
www.midrangecomputing.com/mc.

Pat Fleming is a senior software engineer for the

iSeries at IBM in Rochester, Minnesota. He is

currently an IBM WebSphere Application Server for

iSeries architect. Prior to that, he was an OS/400

Directory Services (LDAP) architect. He can be reached

at flemingp@us.ibm.com.

REFERENCES AND RELATED MATERIALS

• IBM HTTP Server page: www.as400.ibm.com/

products/http/httpindex.htm

• IBM WebSphere page: www.as400.ibm.

com/Websphere

• iSeries 400 Directory Services (LDAP) Web page:

www.as400.ibm.com/ldap

• XML Bible. Elliotte Rusty Harold. New York City:

Hungry Minds, 1999

• Zvon XSL Tutorial Web site: www.zvon.org/

HTMLonly/XSLTutorial/Books/Book1/index.html

FO
C
U
S

Real Vision
2/3 Vertical

