
SystemML Algorithms Reference

August 22, 2014

1 Descriptive Statistics

Descriptive statistics are used to quantitatively describe the main characteristics
of the data. They provide meaningful summaries computed over different ob-
servations or data records collected in a study. These summaries typically form
the basis of the initial data exploration as part of a more extensive statistical
analysis. Such a quantitative analysis assumes that every variable (also known
as, attribute or column) in the data have a specific level of measurement.

The measurement level of a variable, often called as variable type, can
either be scale or categorical. A scale variable represents the data measured on
an interval scale or ratio scale. Examples of scale variables include ‘Height’,
‘Weight’, ‘Salary’, and ‘Temperature’. Scale variables are often referred to as
continuous variables. In contrast, a categorical variable denotes the data with a
limited number of distinct values or categories. Examples of categorical variables
include ‘Gender’, ‘Region’, ‘Hair color’, ‘Zipcode’, and ‘Level of Satisfaction’.
Categorical variables can further be classfified into two types, nominal and ordi-
nal, depending on whether the categories in the variable can be ordered via an
intrinsic ranking. For example, there is no meaningful ranking among distinct
values in ‘Hair color’ variable, while the categories in ‘Level of Satisfaction’ can
be ranked from highly dissatisfied to highly satisfied.

1.1 Univariate Statistics

Description

Univariate statistics are the simplest form of Descriptive Statistics in quanti-
tative analysis. They are used to quantitatively describe the main characteristics
of each variable or column in the data. For a given data set, the Univariate.dml
script computes all relevant univariate statistics for each variable in the data.
The variable type governs the exact set of statistics computed for that variable.
For example, the statistic average can only be computed on a continuous vari-
able like ‘Height’ and ‘Temperature’. It does not make sense to compute an
average of a categorical attribute like ‘Hair Color’.

For a scale or continuous variable, the Univariate.dml script computes the
following univariate statistics:

1

• Order statistics:

– minimum: The smallest among all values.

– maximum: The largest among all values.

– range: The difference between the largest and the smallest value. It
provides information about the spread of values.

– median: The middle or center value that separates higher half of
the data (in a sorted order) from the lower half. Note that there
can be a unique median only when the total number of data points
is odd. When the number of data points is even, the median is
computed as the mean of two middle values. For example, the median
of {1, 5, 6, 8, 10} is 6 whereas the median of {1, 5, 6, 8, 10, 14} is 6+8

2 =
7. Median is same as the 50th percentile or 2nd quartile.

– 1st and 3rd quartiles: Quartiles are the data points that divide an
ordered/sorted set of data points into four equal groups. The 1st

quartile or the 25th percentile splits sorted data into lowest 25%
and highest 75%. In other words, it is the middle number between
the smallest value and the median. Similarly, the 3rd quartile or the
75th percentile divides the sorted data into lowest 75% and highest
25% – i.e., it is the middle number between the median and the
largest value in the data set.

• Measures of Central Tendency:

– mean: The sample mean of values in the variable, which is computed
as the ratio between sum of values and the number of values. It is
also often referred to as average. Mean is often used as a “typical”
value – for example, while imputing missing values.

– standard error in mean: It is the standard deviation of the sample
mean, which is an estimate of population’s true mean. It is com-
puted using the following formula: sd√

n
, where sd is the estimate of

population standard deviation that is computed using sample values,
and n is the sample size i.e., number of values in the data set.

– Inter Quartile Mean: It is the mean of values between 1st and 3rd

quartiles i.e., lowest 25% and the highest 25% of the values are not
considered for the computation of this measure.

• Measures of Dispersion:

– variance: It measures how the values in the given data set are spread
out around the mean. Variance is same as the the second central
moment.

– standard deviation: It is the square root of variance.

2

– skewness: It measures how symmetrically the values are spread out
around the mean. If the left tail (the distribution of given values
below mean) is longer than the right tail then the value of skewness
will be negative. On the other hand, a positive value indicates the
right tail is longer than the left tail. Skewness is a function of third
centeral moment. For a perfectly normal distribution of values, the
value of skewness will be close to zero.

– standard error in skewness: The ratio of skewness to its standard
error can be used as a test of normality (that is, you can reject
normality if the ratio is less than -2 or greater than +2). A large
positive value for skewness indicates a long right tail; an extreme
negative value indicates a long left tail.

– kurtosis: kurtosis is also a measure of shape of the distribution of val-
ues. In particular, it measures the “peakedness” of the distribution.
In other words, it quantifies how tall and sharp the central peak is,
relative to a standard bell curve. It is a function of fourth central
moment.

– standard error in kurtosis: The ratio of kurtosis to its standard error
can be used as a test of normality (that is, you can reject normality
if the ratio is less than -2 or greater than +2). A large positive value
for kurtosis indicates that the tails of the distribution are longer
than those of a normal distribution; a negative value for kurtosis
indicates shorter tails (becoming like those of a box-shaped uniform
distribution).

Usage

-f path/univar-stats.dml -nvargs X=path/file TYPES=path/file
STATS=path/file

Arguments

• X: Location (on HDFS) of input data.

• TYPES: Location (on HDFS) of a 1-row matrix whose ith column contains
the type (measurement level) of the ith attribute in the data. See details
to find out how to indicate what type.

• STATS: Location directory (on HDFS) where all computed statistics will
be stored.

Details

Given an input matrix X, this script computes the set of all relevant uni-
variate statistics for each attribute or column in X. The list of statistics to be
computed depends on the type or measurement level of each column. TYPES
argument specifies the type of all columns in a 1 row matrix. The types must
be provided as per the following convention:

3

• For scale, 1.

• For nominal, 2.

• For ordinal, 3.

STATS argument points to the location on HDFS where the output matrix
of computed statistics is stored.

Returns

The output matrix containing all computed statistics is of size 17 rows and
as many columns as in the input matrix X. Each row corresponds to a particular
statistic, according to the following convention:

• Row 1: Minimum.

• Row 2: Maximum.

• Row 3: Range.

• Row 4: Mean.

• Row 5: Variance.

• Row 6: Standard deviation.

• Row 7: Standard error of mean.

• Row 8: Coefficient of variation.

• Row 9: Skewness.

• Row 10: Kurtosis.

• Row 11: Standard error of skewness.

• Row 12: Standard error of kurtosis.

• Row 13: Median.

• Row 14: Inter quartile mean.

• Row 15: Number of categories.

• Row 16: Mode.

• Row 17: Number of modes.

The first 14 statistics are applicable for scale columns, and the last 3 statistics
(including ‘Number of categories’, ‘Mode’, and ‘Number of modes’) are appli-
cable for categorical i.e., nominal and ordinal columns.

Examples

hadoop jar SystemML.jar -f univar-stats.dml -nvargs X=/user/biadmin/X.mtx

TYPES=/user/biadmin/types.mtx

STATS=/user/biadmin/stats.mtx

4

1.2 Bivariate Statistics

Description

The bivar-stats.dml script computes common bivariate statistics, such as
Pearson’s-r correlation and chi-squared statistic, for many pairs of variables.

Usage

-f path/bivar-stats.dml -nvargs X=path/file index1=path/file index2=path/file
types1=path/file types2=path/file OUTDIR=path/file

Arguments

• X: Location (on HDFS) of the data whose inter-column correlations are
required.

• index1: Location (on HDFS) of a 1-row matrix whose ith column contains
the first index of the ith pair whose correlation needs to be computed.

• index2: Location (on HDFS) of a 1-row matrix whose ith column contains
the second index of the ith pair whose correlation needs to be computed.

• types1: Location (on HDFS) of a 1-row matrix whose ith column contains
the type of the first column in the ith pair whose correlation needs to be
computed. See details to find out how to indicate what type.

• types2: Location (on HDFS) of a 1-row matrix whose ith column contains
the type of the second column in the ith pair whose correlation needs to
be computed. See details to find out how to indicate what type.

• OUTDIR: Location directory (on HDFS) where all results will be stored.

Details

This script takes an input matrix X and can perform for each pair of columns
the relevant correlation computation. In general, numerous kinds correlations
have been proposed. Most of these test how strongly or weakly correlated the
values in the two columns are and thus, are also referred to as statistical signif-
icance tests. This script includes the following statistical significance tests:

• For a pair of scale columns (numeric values including fractions), Pearson’s-
R.

• For a pair of nominal columns (with finite-sized, fixed, unordered do-
mains), chi-squared test.

• For a pair consisting of one scale column and one nominal column, F-test.

• For a pair of ordinal columns (ordered domains depicting ranks), Spear-
man’s Rho.

5

Type Code

Scale 1
Nominal 2
Ordinal 3

Table 1: Types with their codes.

Name Row=1 Row=2 Specialized Rows

bivar.scale.scale.stats Column ID 1 Column ID 2 Pearson’s R (Row 3)

bivar.nominal.nominal.stats Column ID 1 Column ID 2

Chi-squared statistic (Row 3)
Degrees of freedom (Row 4)

P-value (Row 5)
Cramer’s V (Row 6)

bivar.nominal.scale.stats Column ID 1 Column ID 2
Eta (Row 3)

F statistic (Row 4)
bivar.ordinal.ordinal.stats Column ID 1 Column ID 2 Spearman’s Rho (Row 3)

Table 2: Description of output matrices containing significance test results.

A user can feed as input the matrix X containing all columns whose corre-
lations need to be computed. Using the index1 and index2 arguments, one can
pass in a set of indices referring to the columns in X whose correlations are of
interest. Note that both index1 and index2 should consist of 1 row each. In each
iteration, the script will pick an index from index1 and index2 and access those
columns from X. Correspondingly, the types of each pair should be provided in
the types1 and types2 arguments which should also each consist of 1 row. Table
1 lists the types the script supports.

The script orgainizes its results into (potentially) four output matrices, one
per type of test. The type of the test is defined using the types of the columns
that were used for the test. Table 2 describes what each column in each output
matrix contains.

Note that, in Table 2 “Column ID 1” and “Column ID 2” refer to column
indices of the data matrix X which were used to perform the test. Moreover, if
the output matrix does not contain a value in a certain cell then it should be
interpreted as a 0 (sparse matrix representation).

Returns

A collection of (potentially) 4 matrices. Each matrix contains correlations
resulting from a different type of test. There’s one each for scale-scale (Pearson’s
R), nominal-nominal (chi-squared test), nominal-scale (F-test) and ordinal-
ordinal (Spearman’s Rho) correlation results. If any of these matrices is not
produced then no pair of columns required the corresponding type of test.

Examples

hadoop jar SystemML.jar -f bivar-stats.dml -nvargs X=/user/biadmin/X.mtx

6

Month of the year October November December Oct – Dec
Customers, millions 0.6 1.4 1.4 0.6 3.0 1.0 5.0 3.0
Promotion (0 or 1) 0 1 0 1 0 1 0 1
Avg. sales per 1000 0.4 0.5 0.9 1.0 2.5 2.6 1.8 1.3

Table 3: Stratification example: the effect of the promotion on average sales
becomes reversed and amplified (from +0.1 to −0.5) if we ignore the months.

index1=/user/biadmin/S1.mtx

index2=/user/biadmin/S2.mtx

types1=/user/biadmin/K1.mtx

types2=/user/biadmin/K2.mtx

OUTDIR=/user/biadmin/stats.mtx

1.3 Stratified Bivariate Statistics

Description

The stratstats.dml script computes common bivariate statistics, such as
correlation, slope, and their p-value, in parallel for many pairs of input vari-
ables in the presence of a confounding categorical variable. The values of this
confounding variable group the records into strata (subpopulations), in which
all bivariate pairs are assumed free of confounding. The script uses the same
data model as in one-way analysis of covariance (ANCOVA), with strata repre-
senting population samples. It also outputs univariate stratified and bivariate
unstratified statistics.

To see how data stratification mitigates confounding, consider an (artificial)
example in Table 3. A highly seasonal retail item was marketed with and
without a promotion over the final 3 months of the year. In each month the
sale was more likely with the promotion than without it. But during the peak
holiday season, when shoppers came in greater numbers and bought the item
more often, the promotion was less frequently used. As a result, if the 4-th
quarter data is pooled together, the promotion’s effect becomes reversed and
magnified. Stratifying by month restores the positive correlation.

The script computes its statistics in parallel over all possible pairs from two
specified sets of covariates. The 1-st covariate is a column in input matrix X
and the 2-nd covariate is a column in input matrix Y ; matrices X and Y may be
the same or different. The columns of interest are given by their index numbers
in special matrices. The stratum column, specified in its own matrix, is the
same for all covariate pairs.

Both covariates in each pair must be numerical, with the 2-nd covariate
normally distributed given the 1-st covariate (see Details). Missing covariate
values or strata are represented by “NaN”. Records with NaN’s are selectively
omitted wherever their NaN’s are material to the output statistic.

Usage

7

-f path/ stratstats.dml -nvargs X=path/file Xcid=path/file Y=path/file
Ycid=path/file S=path/file Scid=int O=path/file fmt=format

Arguments

X: Location (on HDFS) to read matrix X whose columns we want to use as the
1-st covariate (i.e. as the feature variable)

Xcid: (default: " ") Location to read the single-row matrix that lists all index
numbers of the X-columns used as the 1-st covariate; the default value
means “use all X-columns”

Y: (default: " ") Location to read matrix Y whose columns we want to use as
the 2-nd covariate (i.e. as the response variable); the default value means
“use X in place of Y ”

Ycid: (default: " ") Location to read the single-row matrix that lists all index
numbers of the Y -columns used as the 2-nd covariate; the default value
means “use all Y -columns”

S: (default: " ") Location to read matrix S that has the stratum column. Note:
the stratum column must contain small positive integers; all fractional
values are rounded; stratum IDs of value≤ 0 or NaN are treated as missing.
The default value for S means “use X in place of S”

Scid: (default: 1) The index number of the stratum column in S

O: Location to store the output matrix defined in Table 4

fmt: (default: "text") Matrix file output format, such as text, mm, or csv; see
read/write functions in SystemML Language Reference for details.

Details

Suppose we have n records of format (i, x, y), where i ∈ {1, . . . , k} is a
stratum number and (x, y) are two numerical covariates. We want to analyze
conditional linear relationship between y and x conditioned by i. Note that x,
but not y, may represent a categorical variable if we assign a numerical value
to each category, for example 0 and 1 for two categories.

We assume a linear regression model for y:

yi,j = αi + βxi,j + εi,j , where εi,j ∼ Normal(0, σ2) (1)

Here i = 1 . . . k is a stratum number and j = 1 . . . ni is a record number in
stratum i; by ni we denote the number of records available in stratum i. The
noise term εi,j is assumed to have the same variance in all strata. When ni> 0,
we can estimate the means of xi,j and yi,j in stratum i as

x̄i =
(∑ni

j=1
xi,j

)
/ni ; ȳi =

(∑ni

j=1
yi,j

)
/ni

If β is known, the best estimate for αi is ȳi − βx̄i, which gives the prediction
error sum-of-squares of∑k

i=1

∑ni

j=1

(
yi,j − βxi,j − (ȳi − βx̄i)

)2
= β2 Vx − 2β Vx,y + Vy (2)

8

Col.# Meaning Col.# Meaning

1
-s

t
co

va
ri

a
te

01 X-column number

2
-n

d
co

va
ri

a
te

11 Y -column number
02 presence count for x 12 presence count for y
03 global mean (x) 13 global mean (y)
04 global std. dev. (x) 14 global std. dev. (y)
05 stratified std. dev. (x) 15 stratified std. dev. (y)
06 R2 for x ∼ strata 16 R2 for y ∼ strata
07 adjusted R2 for x ∼ strata 17 adjusted R2 for y ∼ strata
08 p-value, x ∼ strata 18 p-value, y ∼ strata

09–10 reserved 19–20 reserved

y
∼
x

,
N

O
st

ra
ta

21 presence count (x, y)

y
∼
x

A
N

D
st

ra
ta

31 presence count (x, y, s)
22 regression slope 32 regression slope
23 regres. slope std. dev. 33 regres. slope std. dev.

24 correlation = ±
√
R2 34 correlation = ±

√
R2

25 residual std. dev. 35 residual std. dev.
26 R2 in y due to x 36 R2 in y due to x
27 adjusted R2 in y due to x 37 adjusted R2 in y due to x
28 p-value for “slope = 0” 38 p-value for “slope = 0”
29 reserved 39 # strata with ≥ 2 count
30 reserved 40 reserved

Table 4: The stratstats.dml output matrix has one row per each distinct pair
of 1-st and 2-nd covariates, and 40 columns with the statistics described here.

where Vx, Vy, and Vx,y are, correspondingly, the “stratified” sample estimates
of variance Var(x) and Var(y) and covariance Cov(x, y) computed as

Vx =
∑k

i=1

∑ni

j=1

(
xi,j − x̄i

)2
; Vy =

∑k

i=1

∑ni

j=1

(
yi,j − ȳi

)2
;

Vx,y =
∑k

i=1

∑ni

j=1

(
xi,j − x̄i

)(
yi,j − ȳi

)
They are stratified because we compute the sample (co-)variances in each stra-
tum i separately, then combine by summation. The stratified estimates for
Var(X) and Var(Y) tend to be smaller than the non-stratified ones (with the
global mean instead of x̄i and ȳi) since x̄i and ȳi fit closer to xi,j and yi,j
than the global means. The stratified variance estimates the uncertainty in xi,j
and yi,j given their stratum i.

Minimizing over β the error sum-of-squares (2) gives us the regression slope

estimate β̂ = Vx,y/Vx, with (2) becoming the residual sum-of-squares (RSS):

RSS =
∑k

i=1

∑ni

j=1

(
yi,j − β̂xi,j − (ȳi − β̂x̄i)

)2
= Vy

(
1 − V 2

x,y/(VxVy)
)

The quantity R̂2 = V 2
x,y/(VxVy), called R-squared, estimates the fraction of

stratified variance in yi,j explained by covariate xi,j in the linear regression

model (1). We define stratified correlation as the square root of R̂2 taken with
the sign of Vx,y. We also use RSS to estimate the residual standard deviation σ

9

in (1) that models the prediction error of yi,j given xi,j and the stratum:

β̂ =
Vx,y
Vx

; R̂ =
Vx,y√
VxVy

; R̂2 =
V 2
x,y

VxVy
; σ̂ =

√
RSS

n− k − 1

(
n =

k∑
i=1

ni

)
The t-test and the F -test for the null-hypothesis of “β = 0” are obtained

by considering the effect of β̂ on the residual sum-of-squares, measured by the
decrease from Vy to RSS. The F -statistic is the ratio of the “explained” sum-of-
squares to the residual sum-of-squares, divided by their corresponding degrees
of freedom. There are n− k degrees of freedom for Vy, parameter β reduces that
to n− k− 1 for RSS, and their difference Vy−RSS has just 1 degree of freedom:

F =
(Vy − RSS)/1

RSS/(n− k− 1)
=

R̂2 (n− k− 1)

1− R̂2
; t = R̂

√
n− k− 1

1− R̂2
.

The t-statistic is simply the square root of the F -statistic with the appropriate
choice of sign. If the null hypothesis and the linear model are both true, the
t-statistic has Student t-distribution with n− k− 1 degrees of freedom. We can
also compute it if we divide β̂ by its estimated standard deviation:

st.dev(β̂)est = σ̂ /
√
Vx =⇒ t = R̂

√
Vy / σ̂ = β / st.dev(β̂)est

The standard deviation estimate for β is included in stratstats.dml output.

Returns

The output matrix format is defined in Table 4.

Examples

hadoop jar SystemML.jar -f stratstats.dml -nvargs

X=/user/biadmin/X.mtx Xcid=/user/biadmin/Xcid.mtx

Y=/user/biadmin/Y.mtx Ycid=/user/biadmin/Ycid.mtx

S=/user/biadmin/S.mtx Scid=2 O=/user/biadmin/Out.mtx fmt=csv

hadoop jar SystemML.jar -f stratstats.dml -nvargs

X=/user/biadmin/Data.mtx Xcid=/user/biadmin/Xcid.mtx

Ycid=/user/biadmin/Ycid.mtx Scid=7 O=/user/biadmin/Out.mtx

2 Classification

2.1 Multinomial Logistic Regression

Description

Our logistic regression script performs both binomial and multinomial lo-
gistic regression. The script is given a dataset (X,Y) where matrix X has
m columns and matrix Y has one column; both X and Y have n rows. The
rows of X and Y are viewed as a collection of records: (X,Y) = (xi, yi)

n
i=1

where xi is a numerical vector of explanatory (feature) variables and yi is a

10

categorical response variable. Each row xi in X has size dimxi = m, while its
corresponding yi is an integer that represents the observed response value for
record i.

The goal of logistic regression is to learn a linear model over the feature vector
xi that can be used to predict how likely each categorical label is expected to
be observed as the actual yi. Note that logistic regression predicts more than
a label: it predicts the probability for every possible label. The binomial case
allows only two possible labels, the multinomial case has no such restriction.

Just as linear regression estimates the mean value µi of a numerical response
variable, logistic regression does the same for category label probabilities. In
linear regression, the mean of yi is estimated as a linear combination of the
features: µi = β0 + β1xi,1 + . . .+ βmxi,m = β0 + xiβ1:m. In logistic regression,
the label probability has to lie between 0 and 1, so a link function is applied
to connect it to β0 + xiβ1:m. If there are just two possible category labels, for
example 0 and 1, the logistic link looks as follows:

Prob[yi = 1 | xi;β] =
e β0+xiβ1:m

1 + e β0+xiβ1:m
; Prob[yi = 0 | xi;β] =

1

1 + e β0+xiβ1:m

Here category label 0 serves as the baseline, and function exp(β0+xiβ1:m) shows
how likely we expect to see “yi = 1” in comparison to the baseline. Like in a
loaded coin, the predicted odds of seeing 1 versus 0 are exp(β0 + xiβ1:m) to 1,
with each feature xi,j multiplying its own factor exp(βjxi,j) to the odds. Given
a large collection of pairs (xi, yi), i = 1 . . . n, logistic regression seeks to find
the βj ’s that maximize the product of probabilities Prob[yi | xi;β] for actually
observed yi-labels (assuming no regularization).

Multinomial logistic regression [1] extends this link to k ≥ 3 possible cat-
egories. Again we identify one category as the baseline, for example the k-th
category. Instead of a coin, here we have a loaded multisided die, one side
per category. Each non-baseline category l = 1 . . . k− 1 has its own vector
(β0,l, β1,l, . . . , βm,l) of regression parameters with the intercept, making up a
matrix B of size (m+ 1) × (k− 1). The predicted odds of seeing non-baseline
category l versus the baseline k are exp

(
β0,l +

∑m
j=1 xi,jβj,l

)
to 1, and the

predicted probabilities are:

l < k : Prob[yi = l | xi;B] =
exp

(
β0,l +

∑m
j=1 xi,jβj,l

)
1 +

∑k−1
l′=1 exp

(
β0,l′ +

∑m
j=1 xi,jβj,l′

) ; (3)

Prob[yi =k | xi;B] =
1

1 +
∑k−1
l′=1 exp

(
β0,l′ +

∑m
j=1 xi,jβj,l′

) . (4)

The goal of the regression is to estimate the parameter matrix B from the pro-
vided dataset (X,Y) = (xi, yi)

n
i=1 by maximizing the product of Prob[yi | xi;B]

over the observed labels yi. Taking its logarithm, negating, and adding a regu-
larization term gives us a minimization objective:

f(B;X,Y) = −
n∑
i=1

log Prob[yi | xi;B] +
λ

2

m∑
j=1

k−1∑
l=1

|βj,l|2 → min (5)

11

The optional regularization term is added to mitigate overfitting and degeneracy
in the data; to reduce bias, the intercepts β0,l are not regularized. Once the βj,l’s
are accurately estimated, we can make predictions about the category label y
for a new feature vector x using Eqs. (3) and (4).

Usage

-f path/ MultiLogReg.dml -nvargs X=path/file Y=path/file B=path/file
Log=path/file icpt=int reg=double tol=double moi=int mii=int
fmt=format

Arguments

X: Location (on HDFS) to read the input matrix of feature vectors; each row
constitutes one feature vector.

Y: Location to read the input one-column matrix of category labels that corre-
spond to feature vectors in X. Note the following:
– Each non-baseline category label must be a positive integer.
– If all labels are positive, the largest represents the baseline category.
– If non-positive labels such as −1 or 0 are present, then they represent
the (same) baseline category and are converted to label max(Y) + 1.

B: Location to store the matrix of estimated regression parameters (the βj,l’s),
with the intercept parameters β0,l at position B[m+ 1, l] if available. The
size of B is (m+ 1)× (k− 1) with the intercepts or m× (k− 1) without the
intercepts, one column per non-baseline category and one row per feature.

Log: (default: " ") Location to store iteration-specific variables for monitoring
and debugging purposes, see Table 5 for details.

icpt: (default: 0) Intercept and shifting/rescaling of the features in X:
0 = no intercept (hence no β0), no shifting/rescaling of the features;
1 = add intercept, but do not shift/rescale the features in X;
2 = add intercept, shift/rescale the features in X to mean 0, variance 1

reg: (default: 0.0) L2-regularization parameter (lambda)

tol: (default: 0.000001) Tolerance (epsilon) used in the convergence criterion

moi: (default: 100) Maximum number of outer (Fisher scoring) iterations

mii: (default: 0) Maximum number of inner (conjugate gradient) iterations,
or 0 if no maximum limit provided

fmt: (default: "text") Matrix file output format, such as text, mm, or csv; see
read/write functions in SystemML Language Reference for details.

Details

We estimate the logistic regression parameters via L2-regularized negative
log-likelihood minimization (5). The optimization method used in the script
closely follows the trust region Newton method for logistic regression described
in [6]. For convenience, let us make some changes in notation:

• Convert the input vector of observed category labels into an indicator
matrix Y of size n× k such that Yi,l = 1 if the i-th category label is l and
Yi,l = 0 otherwise;

12

Name Meaning

LINEAR TERM MIN The minimum value of X %∗%B, used to check for overflows
LINEAR TERM MAX The maximum value of X %∗%B, used to check for overflows
NUM CG ITERS Number of inner (Conj. Gradient) iterations in this outer iteration
IS TRUST REACHED 1 = trust region boundary was reached, 0 = otherwise
POINT STEP NORM L2-norm of iteration step from old point (matrix B) to new point
OBJECTIVE The loss function we minimize (negative regularized log-likelihood)
OBJ DROP REAL Reduction in the objective during this iteration, actual value
OBJ DROP PRED Reduction in the objective predicted by a quadratic approximation
OBJ DROP RATIO Actual-to-predicted reduction ratio, used to update the trust region
IS POINT UPDATED 1 = new point accepted; 0 = new point rejected, old point restored
GRADIENT NORM L2-norm of the loss function gradient (omitted if point is rejected)
TRUST DELTA Updated trust region size, the “delta”

Table 5: The Log file for multinomial logistic regression contains the above
per-iteration variables in CSV format, each line containing triple (Name, Itera-
tion#, Value) with Iteration# being 0 for initial values.

• Append an extra column of all ones, i.e. (1, 1, . . . , 1)T , as the m+ 1-st
column to the feature matrix X to represent the intercept;

• Append an all-zero column as the k-th column to B, the matrix of regres-
sion parameters, to represent the baseline category;

• Convert the regularization constant λ into matrix Λ of the same size as B,
placing 0’s into the m+ 1-st row to disable intercept regularization, and
placing λ’s everywhere else.

Now the (n× k)-matrix of predicted probabilities given by (3) and (4) and the
objective function f in (5) have the matrix form

P = exp(XB) /
(

exp(XB) 1k×k
)

f = −
∑

Y · (XB) +
∑

log
(

exp(XB) 1k×1
)

+ (1/2)
∑

Λ ·B ·B

where operations · , /, exp, and log are applied cellwise, and
∑

denotes the sum
of all cells in a matrix. The gradient of f with respect to B can be represented
as a matrix too:

∇f = XT (P − Y) + Λ ·B
The Hessian H of f is a tensor, but, fortunately, the conjugate gradient inner
loop of the trust region algorithm in [6] does not need to instantiate it. We only
need to multiply H by ordinary matrices of the same size as B and ∇f , and
this can be done in matrix form:

HV = XT
(
Q − P · (Q 1k×k)

)
+ Λ · V, where Q = P · (XV)

At each Newton iteration (the outer iteration) the minimization algorithm ap-
proximates the difference ∆f(S;B) = f(B+S;X,Y) − f(B;X,Y) attained in
the objective function after a step B 7→ B+S by a second-degree formula

∆f(S;B) ≈ (1/2)
∑

S · HS +
∑

S · ∇f

13

This approximation is then minimized by trust-region conjugate gradient itera-
tions (the inner iterations) subject to the constraint ‖S‖2 ≤ δ. The trust region
size δ is initialized as 0.5

√
m/maxi ‖xi‖2 and updated as described in [6]. Users

can specify the maximum number of the outer and the inner iterations with in-
put parameters moi and mii, respectively. The iterative minimizer terminates
successfully if ‖∇f‖2 < ε ‖∇fB=0‖2, where ε > 0 is a tolerance supplied by the
user via input parameter tol.

Returns

The estimated regression parameters (the β̂j,l) are populated into a matrix
and written to an HDFS file whose path/name was provided as the “B” input

argument. Only the non-baseline categories (1 ≤ l ≤ k− 1) have their β̂j,l in the
output; to add the baseline category, just append a column of zeros. If icpt=0
in the input command line, no intercepts are used and B has size m × (k− 1);
otherwise B has size (m+ 1)×(k− 1) and the intercepts are in the m+ 1-st row.
If icpt=2, then initially the feature columns in X are shifted to mean = 0 and
rescaled to variance = 1. After the iterations converge, the β̂j,l’s are rescaled
and shifted to work with the original features.

Examples

hadoop jar SystemML.jar -f MultiLogReg.dml -nvargs

X=/user/biadmin/X.mtx Y=/user/biadmin/Y.mtx

B=/user/biadmin/B.mtx fmt=csv icpt=2 reg=1.0 tol=0.0001

moi=100 mii=10 Log=/user/biadmin/log.csv

References

• A. Agresti. Categorical Data Analysis. Wiley Series in Probability and
Statistics. Wiley-Interscience, second edition, 2002.

2.2 Support Vector Machines

2.2.1 Binary-class Support Vector Machines

Description
Support Vector Machines are used to model the relationship between a

categorical dependent variable y and one or more explanatory variables denoted
X. This implementation learns (and predicts with) a binary class support
vector machine (y with domain size 2).

Usage

-f path/l2-svm.dml -nvargs X=path/file Y=path/file icpt=int tol=double
reg=double maxiter=int model=path/file
Log=path/file fmt=csv |text

-f path/l2-svm-predict.dml -nvargs X=path/file Y=path/file icpt=int model=path/file
scores=path/file accuracy=path/file
confusion=path/file fmt=csv |text

14

Arguments

• X: Location (on HDFS) to read the matrix of feature vectors; each row
constitutes one feature vector.

• Y: Location to read the one-column matrix of (categorical) labels that
correspond to feature vectors in X. Binary class labels can be expressed
in one of two choices: ±1 or 1/2. Note that, this argument is optional for
prediction.

• icpt (default: 0): If set to 1 then a constant bias column is added to X.

• tol (default: 0.001): Procedure terminates early if the reduction in objec-
tive function value is less than tolerance times the initial objective function
value.

• reg (default: 1): Regularization constant. See details to find out where
lambda appears in the objective function. If one were interested in drawing
an analogy with the C parameter in C-SVM, then C = 2/lambda. Usually,
cross validation is employed to determine the optimum value of lambda.

• maxiter (default: 100): The maximum number of iterations.

• model: Location (on HDFS) that contains the learnt weights.

• Log: Location (on HDFS) to collect various metrics (e.g., objective func-
tion value etc.) that depict progress across iterations while training.

• fmt (default: text): Specifies the output format. Choice of comma-
separated values (csv) or as a sparse-matrix (text).

• scores: Location (on HDFS) to store scores for a held-out test set. Note
that, this is an optional argument.

• accuracy: Location (on HDFS) to store the accuracy computed on a held-
out test set. Note that, this is an optional argument.

• confusion: Location (on HDFS) to store the confusion matrix computed
using a held-out test set. Note that, this is an optional argument.

Details
Support vector machines learn a classification function by solving the fol-

lowing optimization problem (L2-SVM):

argminw
λ

2
||w||22 +

∑
i

ξ2i

subject to: yiw
>xi ≥ 1− ξi ∀i

where xi is an example from the training set with its label given by yi, w is the
vector of parameters and λ is the regularization constant specified by the user.

15

To account for the missing bias term, one may augment the data with a
column of constants which is achieved by setting intercept argument to 1 (C-J
Hsieh et al, 2008).

This implementation optimizes the primal directly (Chapelle, 2007). It uses
nonlinear conjugate gradient descent to minimize the objective function coupled
with choosing step-sizes by performing one-dimensional Newton minimization
in the direction of the gradient.

Returns
The learnt weights produced by l2-svm.dml are populated into a single

column matrix and written to file on HDFS (see model in section Arguments).
The number of rows in this matrix is ncol(X) if intercept was set to 0 during
invocation and ncol(X) + 1 otherwise. The bias term, if used, is placed in
the last row. Depending on what arguments are provided during invocation,
l2-svm-predict.dml may compute one or more of scores, accuracy and confusion
matrix in the output format specified.

Examples

hadoop jar SystemML.jar -f l2-svm.dml -nvargs X=/user/biadmin/X.mtx

Y=/user/biadmin/y.mtx

icpt=0 tol=0.001 fmt=csv

reg=1.0 maxiter=100

model=/user/biadmin/weights.csv

Log=/user/biadmin/Log.csv

hadoop jar SystemML.jar -f l2-svm-predict.dml -nvargs X=/user/biadmin/X.mtx

Y=/user/biadmin/y.mtx

icpt=0 fmt=csv

model=/user/biadmin/weights.csv

scores=/user/biadmin/scores.csv

accuracy=/user/biadmin/accuracy.csv

confusion=/user/biadmin/confusion.csv

References

• W. T. Vetterling and B. P. Flannery. Conjugate Gradient Methods in
Multidimensions in Numerical Recipes in C - The Art in Scientific Com-
puting. W. H. Press and S. A. Teukolsky (eds.), Cambridge University
Press, 1992.

• J. Nocedal and S. J. Wright. Numerical Optimization, Springer-Verlag,
1999.

• C-J Hsieh, K-W Chang, C-J Lin, S. S. Keerthi and S. Sundararajan. A
Dual Coordinate Descent Method for Large-scale Linear SVM. Interna-
tional Conference of Machine Learning (ICML), 2008.

16

• Olivier Chapelle. Training a Support Vector Machine in the Primal.
Neural Computation, 2007.

2.2.2 Multi-class Support Vector Machines

Description
Support Vector Machines are used to model the relationship between a

categorical dependent variable y and one or more explanatory variables denoted
X. This implementation supports dependent variables that have domain size
greater or equal to 2 and hence is not restricted to binary class labels.

Usage

-f path/m-svm.dml -nvargs X=path/file Y=path/file icpt=int classes=int
tol=double reg=double maxiter=int model=path/file
Log=path/file fmt=csv |text

-f path/m-svm-predict.dml -nvargs X=path/file Y=path/file icpt=int model=path/file
scores=path/file accuracy=path/file
confusion=path/file fmt=csv |text

Arguments

• X: Location (on HDFS) containing the explanatory variables in a matrix.
Each row constitutes an example.

• Y: Location (on HDFS) containing a 1-column matrix specifying the cate-
gorical dependent variable (label). Labels are assumed to be contiguously
numbered from 1 . . . #classes. Note that, this argument is optional for
prediction.

• icpt (default: 0): If set to 1 then a constant bias column is added to X.

• classes: Number of classes in the data.

• tol (default: 0.001): Procedure terminates early if the reduction in objec-
tive function value is less than tolerance times the initial objective function
value.

• reg (default: 1): Regularization constant. See details to find out where
lambda appears in the objective function. If one were interested in drawing
an analogy with C-SVM, then C = 2/lambda. Usually, cross validation is
employed to determine the optimum value of lambda.

• maxiter (default: 100): The maximum number of iterations.

• model: Location (on HDFS) that contains the learnt weights.

• Log: Location (on HDFS) to collect various metrics (e.g., objective func-
tion value etc.) that depict progress across iterations while training.

17

• fmt (default: text): Specifies the output format. Choice of comma-
separated values (csv) or as a sparse-matrix (text).

• scores: Location (on HDFS) to store scores for a held-out test set. Note
that, this is an optional argument.

• accuracy: Location (on HDFS) to store the accuracy computed on a held-
out test set. Note that, this is an optional argument.

• confusion: Location (on HDFS) to store the confusion matrix computed
using a held-out test set. Note that, this is an optional argument.

Details
Support vector machines learn a classification function by solving the fol-

lowing optimization problem (L2-SVM):

argminw
λ

2
||w||22 +

∑
i

ξ2i

subject to: yiw
>xi ≥ 1− ξi ∀i

where xi is an example from the training set with its label given by yi, w is the
vector of parameters and λ is the regularization constant specified by the user.

To extend the above formulation (binary class SVM) to the multiclass set-
ting, one standard approache is to learn one binary class SVM per class that
separates data belonging to that class from the rest of the training data (one-
against-the-rest SVM, see C. Scholkopf, 1995).

To account for the missing bias term, one may augment the data with a
column of constants which is achieved by setting intercept argument to 1 (C-J
Hsieh et al, 2008).

This implementation optimizes the primal directly (Chapelle, 2007). It uses
nonlinear conjugate gradient descent to minimize the objective function coupled
with choosing step-sizes by performing one-dimensional Newton minimization
in the direction of the gradient.

Returns
The learnt weights produced by m-svm.dml are populated into a matrix that

has as many columns as there are classes in the training data, and written to
file provided on HDFS (see model in section Arguments). The number of rows
in this matrix is ncol(X) if intercept was set to 0 during invocation and ncol(X)
+ 1 otherwise. The bias terms, if used, are placed in the last row. Depending
on what arguments are provided during invocation, m-svm-predict.dml may
compute one or more of scores, accuracy and confusion matrix in the output
format specified.

Examples

hadoop jar SystemML.jar -f m-svm.dml -nvargs X=/user/biadmin/X.mtx

18

Y=/user/biadmin/y.mtx

icpt=0 classes=10 tol=0.001

reg=1.0 maxiter=100 fmt=csv

model=/user/biadmin/weights.csv

Log=/user/biadmin/Log.csv

hadoop jar SystemML.jar -f m-svm-predict.dml -nvargs X=/user/biadmin/X.mtx

Y=/user/biadmin/y.mtx

icpt=0 fmt=csv

model=/user/biadmin/weights.csv

scores=/user/biadmin/scores.csv

accuracy=/user/biadmin/accuracy.csv

confusion=/user/biadmin/confusion.csv

References

• W. T. Vetterling and B. P. Flannery. Conjugate Gradient Methods in
Multidimensions in Numerical Recipes in C - The Art in Scientific Com-
puting. W. H. Press and S. A. Teukolsky (eds.), Cambridge University
Press, 1992.

• J. Nocedal and S. J. Wright. Numerical Optimization. Springer-Verlag,
1999.

• C-J Hsieh, K-W Chang, C-J Lin, S. S. Keerthi and S. Sundararajan. A
Dual Coordinate Descent Method for Large-scale Linear SVM. Interna-
tional Conference of Machine Learning (ICML), 2008.

• Olivier Chapelle. Training a Support Vector Machine in the Primal.
Neural Computation, 2007.

• B. Scholkopf, C. Burges and V. Vapnik. Extracting Support Data for a
Given Task. International Conference on Knowledge Discovery and Data
Mining (ICDM), 1995.

2.3 Naive Bayes

Description
Naive Bayes is very simple generative model used for classifying data. This

implementation learns a multinomial naive Bayes classifier which is applicable
when all features are counts of categorical values.

Usage

-f path/naive-bayes.dml -nvargs X=path/file Y=path/file classes=int laplace=double
prior=path/file conditionals=path/file
accuracy=path/file fmt=csv |text

19

-f path/naive-bayes-predict.dml -nvargs X=path/file Y=path/file prior=path/file
conditionals=path/file fmt=csv |text
accuracy=path/file confusion=path/file
probabilities=path/file

Arguments

• X: Location (on HDFS) to read the matrix of feature vectors; each row
constitutes one feature vector.

• Y: Location (on HDFS) to read the one-column matrix of (categorical)
labels that correspond to feature vectors in X. Classes are assumed to
be contiguously labeled beginning from 1. Note that, this argument is
optional for prediction.

• classes: Number of classes in the data.

• laplace (default: 1): Laplace smoothing specified by the user to avoid
creation of 0 probabilities.

• prior: Location (on HDFS) that contains the class prior probabilites.

• conditionals: Location (on HDFS) that contains the class conditional fea-
ture distributions.

• fmt (default: text): Specifies the output format. Choice of comma-
separated values (csv) or as a sparse-matrix (text).

• probabilities: Location (on HDFS) to store class membership probabilities
for a held-out test set. Note that, this is an optional argument.

• accuracy: Location (on HDFS) to store the training accuracy during learn-
ing and testing accuracy from a held-out test set during prediction. Note
that, this is an optional argument for prediction.

• confusion: Location (on HDFS) to store the confusion matrix computed
using a held-out test set. Note that, this is an optional argument.

Details
Naive Bayes is a very simple generative classification model. It posits that

given the class label, features can be generated independently of each other.
More precisely, the (multinomial) naive Bayes model uses the following equation
to estimate the joint probability of a feature vector x belonging to class y:

Prob(y, x) = πy
∏
i∈x

θ
n(i,x)
iy

where πy denotes the prior probability of class y, i denotes a feature present in x
with n(i, x) denoting its count and θiy denotes the class conditional probability

20

of feature i in class y. The usual constraints hold on π and θ:

πy ≥ 0,
∑
y∈C

πy = 1

∀y ∈ C : θiy ≥ 0,
∑
i

θiy = 1

where C is the set of classes.
Given a fully labeled training dataset, it is possible to learn a naive Bayes

model using simple counting (group-by aggregates). To compute the class con-
ditional probabilities, it is usually advisable to avoid setting θiy to 0. One way
to achieve this is using additive smoothing or Laplace smoothing. Some authors
have argued that this should in fact be add-one smoothing. This implementa-
tion uses add-one smoothing by default but lets the user specify her/his own
constant, if required.

This implementation is sometimes referred to as multinomial naive Bayes.
Other flavours of naive Bayes are also popular.

Returns
The learnt model produced by naive-bayes.dml is stored in two separate

files. The first file stores the class prior (a single-column matrix). The
second file stores the class conditional probabilities organized into a matrix
with as many rows as there are class labels and as many columns as there
are features. Depending on what arguments are provided during invocation,
naive-bayes-predict.dml may compute one or more of probabilities, accuracy
and confusion matrix in the output format specified.

Examples

hadoop jar SystemML.jar -f naive-bayes.dml -nvargs

X=/user/biadmin/X.mtx

Y=/user/biadmin/y.mtx

classes=5 laplace=1 fmt=csv

prior=/user/biadmin/prior.csv

conditionals=/user/biadmin/conditionals.csv

accuracy=/user/biadmin/accuracy.csv

hadoop jar SystemML.jar -f naive-bayes-predict.dml -nvargs

X=/user/biadmin/X.mtx

Y=/user/biadmin/y.mtx

prior=/user/biadmin/prior.csv

conditionals=/user/biadmin/conditionals.csv

fmt=csv

accuracy=/user/biadmin/accuracy.csv

probabilities=/user/biadmin/probabilities.csv

confusion=/user/biadmin/confusion.csv

21

References

• S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall, 2009.

• A. McCallum and K. Nigam. A comparison of event models for naive bayes
text classification. AAAI-98 workshop on learning for text categorization,
1998.

3 Clustering

3.1 K-Means Clustering

Description

Given a collection of n records with a pairwise similarity measure, the goal
of clustering is to assign a category label to each record so that similar records
tend to get the same label. In contrast to multinomial logistic regression, clus-
tering is an unsupervised learning problem with neither category assignments
nor label interpretations given in advance. In k-means clustering, the records
x1, x2, . . . , xn are numerical feature vectors of dimxi = m with the squared
Euclidean distance ‖xi − xi′‖22 as the similarity measure. We want to partition
{x1, . . . , xn} into k clusters {S1, . . . , Sk} so that the aggregated squared distance
from records to their cluster means is minimized:

WCSS =

n∑
i=1

∥∥xi −mean(Sj : xi ∈ Sj)
∥∥2
2
→ min (6)

The aggregated distance measure in (6) is called the within-cluster sum of
squares (WCSS). It can be viewed as a measure of residual variance that re-
mains in the data after the clustering assignment, conceptually similar to the
residual sum of squares (RSS) in linear regression. However, unlike for the RSS,
the minimization of (6) is an NP-hard problem [2].

Rather than searching for the global optimum in (6), a heuristic algorithm
called Lloyd’s algorithm is typically used. This iterative algorithm maintains
and updates a set of k centroids {c1, . . . , ck}, one centroid per cluster. It defines
each cluster Sj as the set of all records closer to cj than to any other centroid.
Each iteration of the algorithm reduces the WCSS in two steps:

1. Assign each record to the closest centroid, making mean(Sj) 6= cj ;

2. Reset each centroid to its cluster’s mean: cj := mean(Sj).

After Step 1 the centroids are generally different from the cluster means, so we
can compute another “within-cluster sum of squares” based on the centroids:

WCSS C =

n∑
i=1

∥∥xi − centroid(Sj : xi ∈ Sj)
∥∥2
2

(7)

22

This WCSS C after Step 1 is less than the means-based WCSS before Step 1
(or equal if convergence achieved), and in Step 2 the WCSS cannot exceed the
WCSS C for the same clustering; hence the WCSS reduction.

Exact convergence is reached when each record becomes closer to its cluster’s
mean than to any other cluster’s mean, so there are no more re-assignments and
the centroids coincide with the means. In practice, iterations may be stopped
when the reduction in WCSS (or in WCSS C) falls below a minimum thresh-
old, or upon reaching the maximum number of iterations. The initialization of
the centroids is also an important part of the algorithm. The smallest WCSS
obtained by the algorithm is not the global minimum and varies depending on
the initial centroids. We implement multiple parallel runs with different initial
centroids and report the best result.

Scoring Our scoring script evaluates the clustering output by comparing it
with a known category assignment. Since cluster labels have no prior corre-
spondence to the categories, we cannot count “correct” and “wrong” cluster
assignments. Instead, we quantify them in two ways:

1. Count how many same-category and different-category pairs of records
end up in the same cluster or in different clusters;

2. For each category, count the prevalence of its most common cluster; for
each cluster, count the prevalence of its most common category.

The number of categories and the number of clusters (k) do not have to be equal.
A same-category pair of records clustered into the same cluster is viewed as a
“true positive,” a different-category pair clustered together is a “false positive,”
a same-category pair clustered apart is a “false negative” etc.

Usage: K-means Script

-f path/ Kmeans.dml -nvargs X=path/file C=path/file k=int runs=int
maxi=int tol=double samp=int isY=int Y=path/file fmt=format
verb=int

Usage: K-means Scoring/Prediction

-f path/ Kmeans-predict.dml -nvargs X=path/file C=path/file
spY=path/file prY=path/file fmt=format O=path/file

Arguments

X: Location to read matrix X with the input data records as rows

C: (default: "C.mtx") Location to store the output matrix with the best avail-
able cluster centroids as rows

k: Number of clusters (and centroids)

runs: (default: 10) Number of parallel runs, each run with different initial cen-
troids

maxi: (default: 1000) Maximum number of iterations per run

tol: (default: 0.000001) Tolerance (epsilon) for single-iteration WCSS C
change ratio

23

samp: (default: 50) Average number of records per centroid in data samples
used in the centroid initialization procedure

Y: (default: "Y.mtx") Location to store the one-column matrix Y with the best
available mapping of records to clusters (defined by the output centroids)

isY: (default: 0) 0 = do not write matrix Y , 1 = write Y

fmt: (default: "text") Matrix file output format, such as text, mm, or csv; see
read/write functions in SystemML Language Reference for details.

verb: (default: 0) 0 = do not print per-iteration statistics for each run, 1 =
print them (the “verbose” option)

Arguments — Scoring/Prediction

X: (default: " ") Location to read matrix X with the input data records as
rows, optional when prY input is provided

C: (default: " ") Location to read matrix C with cluster centroids as rows,
optional when prY input is provided; NOTE: if both X and C are provided,
prY is an output, not input

spY: (default: " ") Location to read a one-column matrix with the externally
specified “true” assignment of records (rows) to categories, optional for
prediction without scoring

prY: (default: " ") Location to read (or write, if X and C are present) a column-
vector with the predicted assignment of rows to clusters; NOTE: No prior
correspondence is assumed between the predicted cluster labels and the
externally specified categories

fmt: (default: "text") Matrix file output format for prY, such as text, mm, or
csv; see read/write functions in SystemML Language Reference for details

O: (default: " ") Location to write the output statistics defined in Table 6, by
default print them to the standard output

Details

Our clustering script proceeds in 3 stages: centroid initialization, parallel
k-means iterations, and the best-available output generation. Centroids are
initialized at random from the input records (the rows of X), biased towards
being chosen far apart from each other. The initialization method is based on
the k-means++ heuristic from [3], with one important difference: to reduce the
number of passes throughX, we take a small sample ofX and run the k-means++
heuristic over this sample. Here is, conceptually, our centroid initialization
algorithm for one clustering run:

1. Sample the rows of X uniformly at random, picking each row with prob-
ability p = ks/n where

• k is the number of centroids,

• n is the number of records, and

• s is the samp input parameter.

24

Name CID Meaning

TSS Total Sum of Squares (from the total mean)
WCSS M Within-Cluster Sum of Squares (means as centers)
WCSS M PC Within-Cluster Sum of Squares (means), in % of TSS
BCSS M Between-Cluster Sum of Squares (means as centers)
BCSS M PC Between-Cluster Sum of Squares (means), in % of TSS

WCSS C Within-Cluster Sum of Squares (centroids as centers)
WCSS C PC Within-Cluster Sum of Squares (centroids), % of TSS
BCSS C Between-Cluster Sum of Squares (centroids as centers)
BCSS C PC Between-Cluster Sum of Squares (centroids), % of TSS

TRUE SAME CT Same-category pairs predicted as Same-cluster, count
TRUE SAME PC Same-category pairs predicted as Same-cluster, %
TRUE DIFF CT Diff-category pairs predicted as Diff-cluster, count
TRUE DIFF PC Diff-category pairs predicted as Diff-cluster, %
FALSE SAME CT Diff-category pairs predicted as Same-cluster, count
FALSE SAME PC Diff-category pairs predicted as Same-cluster, %
FALSE DIFF CT Same-category pairs predicted as Diff-cluster, count
FALSE DIFF PC Same-category pairs predicted as Diff-cluster, %

SPEC TO PRED + For specified category, the best predicted cluster id
SPEC FULL CT + For specified category, its full count
SPEC MATCH CT + For specified category, best-cluster matching count
SPEC MATCH PC + For specified category, % of matching to full count
PRED TO SPEC + For predicted cluster, the best specified category id
PRED FULL CT + For predicted cluster, its full count
PRED MATCH CT + For predicted cluster, best-category matching count
PRED MATCH PC + For predicted cluster, % of matching to full count

Table 6: The O-file for Kmeans-predict provides the output statistics in CSV
format, one per line, in the following format: (NAME, [CID], VALUE). Note:
the 1st group statistics are given if X input is available; the 2nd group statistics
are given if X and C inputs are available; the 3rd and 4th group statistics are
given if spY input is available; only the 4th group statistics contain a nonempty
CID value; when present, CID contains either the specified category label or the
predicted cluster label.

If ks ≥ n, the entire X is used in place of its sample.

2. Choose the first centroid uniformly at random from the sampled rows.

3. Choose each subsequent centroid from the sampled rows, at random, with
probability proportional to the squared Euclidean distance between the
row and the nearest already-chosen centroid.

The sampling of X and the selection of centroids are performed independently
and in parallel for each run of the k-means algorithm. When we sample the
rows of X, rather than tossing a random coin for each row, we compute the
number of rows to skip until the next sampled row as dlog(u)/ log(1−p)e where
u ∈ (0, 1) is uniformly random. This time-saving trick works because

Prob[k − 1 < log1−p(u) < k] = p(1− p)k−1 = Prob[skip k − 1 rows]

25

However, it requires us to estimate the maximum sample size, which we set
near ks+ 10

√
ks to make it generous enough.

Once we selected the initial centroid sets, we start the k-means iterations
independently in parallel for all clustering runs. The number of clustering runs
is given as the runs input parameter. Each iteration of each clustering run
performs the following steps:

• Compute the centroid-dependent part of squared Euclidean distances from
all records (rows of X) to each of the k centroids using matrix product;

• Take the minimum of the above for each record;

• Update the current within-cluster sum of squares (WCSS) value, with
centroids substituted instead of the means for efficiency;

• Check the convergence criterion: WCSSold −WCSSnew < ε ·WCSSnew

as well as the number of iterations limit;

• Find the closest centroid for each record, sharing equally any records with
multiple closest centroids;

• Compute the number of records closest to each centroid, checking for
“runaway” centroids with no records left (in which case the run fails);

• Compute the new centroids by averaging the records in their clusters.

When a termination condition is satisfied, we store the centroids and the WCSS
value and exit this run. A run has to satisfy the WCSS convergence criterion
to be considered successful. Upon the termination of all runs, we select the
smallest WCSS value among the successful runs, and write out this run’s cen-
troids. If requested, we also compute the cluster assignment of all records in X,
using integers from 1 to k as the cluster labels. The scoring script can then be
used to compare the cluster assignment with an externally specified category
assignment.

Returns

We output the k centroids for the best available clustering, i. e. whose WCSS
is the smallest of all successful runs. The centroids are written as the rows of
the k×m-matrix into the output file whose path/name was provided as the “C”
input argument. If the input parameter “isY” was set to 1, we also output
the one-column matrix with the cluster assignment for all the records. This
assignment is written into the file whose path/name was provided as the “Y”
input argument. The best WCSS value, as well as some information about
the performance of the other runs, is printed during the script execution. The
scoring script Kmeans-predict prints all its results in a self-explanatory manner,
as defined in Table 6.

Examples

hadoop jar SystemML.jar -f Kmeans.dml -nvargs

X=/user/biadmin/X.mtx k=5 C=/user/biadmin/centroids.mtx

fmt=csv

hadoop jar SystemML.jar -f Kmeans.dml -nvargs

X=/user/biadmin/X.mtx k=5 runs=100 maxi=5000

26

tol=0.00000001 samp=20 C=/user/biadmin/centroids.mtx isY=1

Y=/user/biadmin/Yout.mtx verb=1

To predict Y given X and C:
hadoop jar SystemML.jar -f Kmeans-predict.dml -nvargs

X=/user/biadmin/X.mtx C=/user/biadmin/C.mtx

prY=/user/biadmin/PredY.mtx O=/user/biadmin/stats.csv

To compare “actual” labels spY with “predicted” labels given X and C:
hadoop jar SystemML.jar -f Kmeans-predict.dml -nvargs

X=/user/biadmin/X.mtx C=/user/biadmin/C.mtx

spY=/user/biadmin/Y.mtx O=/user/biadmin/stats.csv

To compare “actual” labels spY with given “predicted” labels prY:
hadoop jar SystemML.jar -f Kmeans-predict.dml -nvargs

spY=/user/biadmin/Y.mtx prY=/user/biadmin/PredY.mtx

O=/user/biadmin/stats.csv

References

• D. Aloise, A. Deshpande, P. Hansen, and P. Popat. NP-hardness of
Euclidean sum-of-squares clustering. Machine Learning, 75(2):245–248,
May 2009.

• D. Arthur and S. Vassilvitskii. k-means++: The advantages of careful
seeding. In Proceedings of the 18th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA 2007), pages 1027–1035, New Orleans LA,
USA, January 7–9 2007.

4 Regression

4.1 Linear Regression

Description

Linear Regression scripts are used to model the relationship between one
numerical response variable and one or more explanatory (feature) variables.
The scripts are given a dataset (X,Y) = (xi, yi)

n
i=1 where xi is a numerical

vector of feature variables and yi is a numerical response value for each training
data record. The feature vectors are provided as a matrix X of size n×m,
where n is the number of records and m is the number of features. The observed
response values are provided as a 1-column matrix Y , with a numerical value yi
for each xi in the corresponding row of matrix X.

In linear regression, we predict the distribution of the response yi based on a
fixed linear combination of the features in xi. We assume that there exist con-
stant regression coefficients β0, β1, . . . , βm and a constant residual variance σ2

such that

yi ∼ Normal(µi, σ
2) where µi = β0 + β1xi,1 + . . .+ βmxi,m (8)

Distribution yi ∼ Normal(µi, σ
2) models the “unexplained” residual noise and

is assumed independent across different records.

27

The goal is to estimate the regression coefficients and the residual variance.
Once they are accurately estimated, we can make predictions about yi given xi
in new records. We can also use the βj ’s to analyze the influence of individual
features on the response value, and assess the quality of this model by comparing
residual variance in the response, left after prediction, with its total variance.

There are two scripts in our library, both doing the same estimation, but
using different computational methods. Depending on the size and the sparsity
of the feature matrix X, one or the other script may be more efficient. The
“direct solve” script LinearRegDS is more efficient when the number of features
m is relatively small (m ∼ 1000 or less) and matrix X is either tall or fairly dense
(has �m2 nonzeros); otherwise, the “conjugate gradient” script LinearRegCG

is more efficient. If m > 50000, use only LinearRegCG.

Usage

-f path/ LinearRegDS.dml -nvargs X=path/file Y=path/file B=path/file
O=path/file icpt=int reg=double fmt=format

-f path/ LinearRegCG.dml -nvargs X=path/file Y=path/file B=path/file
O=path/file Log=path/file icpt=int reg=double tol=double maxi=int
fmt=format

Arguments

X: Location (on HDFS) to read the matrix of feature vectors, each row consti-
tutes one feature vector

Y: Location to read the 1-column matrix of response values

B: Location to store the estimated regression parameters (the βj ’s), with the
intercept parameter β0 at position B[m+ 1, 1] if available

O: (default: " ") Location to store the CSV-file of summary statistics defined
in Table 7, the default is to print it to the standard output

Log: (default: " ", LinearRegCG only) Location to store iteration-specific vari-
ables for monitoring and debugging purposes, see Table 8 for details.

icpt: (default: 0) Intercept presence and shifting/rescaling the features in X:
0 = no intercept (hence no β0), no shifting or rescaling of the features;
1 = add intercept, but do not shift/rescale the features in X;
2 = add intercept, shift/rescale the features in X to mean 0, variance 1

reg: (default: 0.000001) L2-regularization parameter λ ≥ 0; set to nonzero for
highly dependent, sparse, or numerous (m & n/10) features

tol: (default: 0.000001, LinearRegCG only) Tolerance ε ≥ 0 used in the con-
vergence criterion: we terminate conjugate gradient iterations when the
β-residual reduces in L2-norm by this factor

maxi: (default: 0, LinearRegCG only) Maximum number of conjugate gradient
iterations, or 0 if no maximum limit provided

fmt: (default: "text") Matrix file output format, such as text, mm, or csv; see
read/write functions in SystemML Language Reference for details.

28

Name Meaning

AVG TOT Y Average of the response value Y
STDEV TOT Y Standard Deviation of the response value Y
AVG RES Y Average of the residual Y − pred(Y |X), i.e. residual bias
STDEV RES Y Standard Deviation of the residual Y − pred(Y |X)
DISPERSION GLM-style dispersion, i.e. residual sum of squares / #deg. fr.
PLAIN R2 Plain R2 of residual with bias included vs. total average
ADJUSTED R2 Adjusted R2 of residual with bias included vs. total average
PLAIN R2 NOBIAS Plain R2 of residual with bias subtracted vs. total average
ADJUSTED R2 NOBIAS Adjusted R2 of residual with bias subtracted vs. total average
PLAIN R2 VS 0 ∗Plain R2 of residual with bias included vs. zero constant
ADJUSTED R2 VS 0 ∗Adjusted R2 of residual with bias included vs. zero constant

∗ The last two statistics are only printed if there is no intercept (icpt=0)

Table 7: Besides β, linear regression scripts compute a few summary statistics
listed above. The statistics are provided in CSV format, one comma-separated
name-value pair per each line.

Name Meaning

CG RESIDUAL NORM L2-norm of conjug. grad. residual, which is A %∗% β − t(X) %∗% y
where A = t(X) %∗%X + diag(λ), or a similar quantity

CG RESIDUAL RATIO Ratio of current L2-norm of conjug. grad. residual over the initial

Table 8: The Log file for LinearRegCG script contains the above per-iteration
variables in CSV format, each line containing triple (Name, Iteration#, Value)
with Iteration# being 0 for initial values.

Details

To solve a linear regression problem over feature matrix X and response
vector Y , we can find coefficients β0, β1, . . . , βm and σ2 that maximize the joint
likelihood of all yi for i = 1 . . . n, defined by the assumed statistical model (8).
Since the joint likelihood of the independent yi ∼ Normal(µi, σ

2) is proportional
to the product of exp

(
− (yi − µi)2/(2σ2)

)
, we can take the logarithm of this

product, then multiply by −2σ2 < 0 to obtain a least squares problem:

n∑
i=1

(yi − µi)2 =

n∑
i=1

(
yi − β0 −

m∑
j=1

βjxi,j

)2
→ min (9)

This may not be enough, however. The minimum may sometimes be attained
over infinitely many β-vectors, for example if X has an all-0 column, or has
linearly dependent columns, or has fewer rows than columns (n < m). Even
if (9) has a unique solution, other β-vectors may be just a little suboptimal1,
yet give significantly different predictions for new feature vectors. This results
in overfitting : prediction error for the training data (X and Y) is much smaller
than for the test data (new records).

1Smaller likelihood difference between two models suggests less statistical evidence to pick
one model over the other.

29

Overfitting and degeneracy in the data is commonly mitigated by adding a
regularization penalty term to the least squares function:

n∑
i=1

(
yi − β0 −

m∑
j=1

βjxi,j

)2
+ λ

m∑
j=1

β2
j → min (10)

The choice of λ > 0, the regularization constant, typically involves cross-
validation where the dataset is repeatedly split into a training part (to estimate
the βj ’s) and a test part (to evaluate prediction accuracy), with the goal of max-
imizing the test accuracy. In our scripts, λ is provided as input parameter reg.

The solution to least squares problem (10), through taking the derivative
and setting it to 0, has the matrix linear equation form

A

[
β1:m
β0

]
=
[
X, 1

]T
Y, where A =

[
X, 1

]T [
X, 1

]
+ diag(λ, . . . , λ︸ ︷︷ ︸

m

, 0) (11)

where [X, 1] is X with an extra column of 1s appended on the right, and the
diagonal matrix of λ’s has a zero to keep the intercept β0 unregularized. If the
intercept is disabled by setting icpt=0, the equation is simply XTXβ = XTY .

We implemented two scripts for solving equation (11): one is a “direct solver”
that computes A and then solves Aβ = [X, 1]TY by calling an external package,
the other performs linear conjugate gradient (CG) iterations without ever mate-
rializing A. The CG algorithm closely follows Algorithm 5.2 in Chapter 5 of [9].
Each step in the CG algorithm computes a matrix-vector multiplication q = Ap
by first computing [X, 1] p and then [X, 1]T [X, 1] p. Usually the number of such
multiplications, one per CG iteration, is much smaller than m. The user can
put a hard bound on it with input parameter maxi, or use the default maximum
of m+ 1 (or m if no intercept) by having maxi=0. The CG iterations terminate
when the L2-norm of vector r = Aβ − [X, 1]TY decreases from its initial value
(for β = 0) by the tolerance factor specified in input parameter tol.

The CG algorithm is more efficient if computing [X, 1]T
(
[X, 1] p

)
is much

faster than materializing A, an (m+ 1)×(m+ 1) matrix. The Direct Solver (DS)
is more efficient if X takes up a lot more memory than A (i.e. X has a lot more
nonzeros than m2) and if m2 is small enough for the external solver (m . 50000).
A more precise determination between CG and DS is subject to further research.

In addition to the β-vector, the scripts estimate the residual standard devi-
ation σ and the R2, the ratio of “explained” variance to the total variance of
the response variable. These statistics only make sense if the number of degrees
of freedom n−m− 1 is positive and the regularization constant λ is negligible
or zero. The formulas for σ and R2 are:

R2
plain = 1− RSS

TSS
, σ =

√
RSS

n−m− 1
, R2

adj. = 1− σ2(n− 1)

TSS

where

RSS =

n∑
i=1

(
yi − µ̂i −

1

n

n∑
i′=1

(yi′ − µ̂i′)
)2

; TSS =

n∑
i=1

(
yi −

1

n

n∑
i′=1

yi′
)2

30

Here µ̂i are the predicted means for yi based on the estimated regression coeffi-
cients and the feature vectors. They may be biased when no intercept is present,
hence the RSS formula subtracts the bias.

Lastly, note that by choosing the input option icpt=2 the user can shift and
rescale the columns of X to have zero average and the variance of 1. This is
particularly important when using regularization over highly disbalanced fea-
tures, because regularization tends to penalize small-variance columns (which
need large βj ’s) more than large-variance columns (with small βj ’s). At the
end, the estimated regression coefficients are shifted and rescaled to apply to
the original features.

Returns

The estimated regression coefficients (the β̂j ’s) are populated into a matrix
and written to an HDFS file whose path/name was provided as the “B” in-
put argument. What this matrix contains, and its size, depends on the input
argument icpt, which specifies the user’s intercept and rescaling choice:

icpt=0: No intercept, matrix B has size m× 1, with B[j, 1] = β̂j for each j
from 1 to m = ncol(X).

icpt=1: There is intercept, but no shifting/rescaling of X; matrix B has size

(m+ 1)×1, with B[j, 1] = β̂j for j from 1 to m, and B[m+ 1, 1] = β̂0, the
estimated intercept coefficient.

icpt=2: There is intercept, and the features in X are shifted to mean = 0 and
rescaled to variance = 1; then there are two versions of the β̂j ’s, one for
the original features and another for the shifted/rescaled features. Now
matrix B has size (m+ 1) × 2, with B[·, 1] for the original features and
B[·, 2] for the shifted/rescaled features, in the above format. Note that
B[·, 2] are iteratively estimated and B[·, 1] are obtained from B[·, 2] by
complementary shifting and rescaling.

The estimated summary statistics, including residual standard deviation σ and
the R2, are printed out or sent into a file (if specified) in CSV format as defined
in Table 7. For conjugate gradient iterations, a log file with monitoring variables
can also be made available, see Table 8.

Examples

hadoop jar SystemML.jar -f LinearRegCG.dml -nvargs

X=/user/biadmin/X.mtx Y=/user/biadmin/Y.mtx

B=/user/biadmin/B.mtx fmt=csv O=/user/biadmin/stats.csv icpt=2

reg=1.0 tol=0.00000001 maxi=100 Log=/user/biadmin/log.csv

hadoop jar SystemML.jar -f LinearRegDS.dml -nvargs

X=/user/biadmin/X.mtx Y=/user/biadmin/Y.mtx

B=/user/biadmin/B.mtx fmt=csv O=/user/biadmin/stats.csv icpt=2

reg=1.0

4.2 Generalized Linear Models (GLM)

Description

31

Generalized Linear Models [5, 7, 8] extend the methodology of linear and
logistic regression to a variety of distributions commonly assumed as noise effects
in the response variable. As before, we are given a collection of records (x1, y1),
. . . , (xn, yn) where xi is a numerical vector of explanatory (feature) variables
of size dimxi = m, and yi is the response (dependent) variable observed for
this vector. GLMs assume that some linear combination of the features in xi
determines the mean µi of yi, while the observed yi is a random outcome of a
noise distribution Prob[y | µi] 2 with that mean µi:

xi 7→ ηi = β0 +
∑m

j=1
βjxi,j 7→ µi 7→ yi ∼ Prob[y | µi]

In linear regression the response mean µi equals some linear combination
over xi, denoted above by ηi. In logistic regression with y ∈ {0, 1} (Bernoulli)
the mean of y is the same as Prob[y = 1] and equals 1/(1 + e−ηi), the logistic
function of ηi. In GLM, µi and ηi can be related via any given smooth monotone
function called the link function: ηi = g(µi). The unknown linear combination
parameters βj are assumed to be the same for all records.

The goal of the regression is to estimate the parameters βj from the observed
data. Once the βj ’s are accurately estimated, we can make predictions about y
for a new feature vector x. To do so, compute η from x and use the inverted
link function µ = g−1(η) to compute the mean µ of y; then use the distribution
Prob[y | µ] to make predictions about y. Both g(µ) and Prob[y | µ] are user-
provided. Our GLM script supports a standard set of distributions and link
functions, see below for details.

Usage

-f path/ GLM.dml -nvargs X=path/file Y=path/file B=path/file fmt=format
O=path/file Log=path/file dfam=int vpow=double link=int lpow=double
yneg=double icpt=int reg=double tol=double disp=double moi=int
mii=int

Arguments

X: Location (on HDFS) to read the matrix of feature vectors; each row consti-
tutes an example.

Y: Location to read the response matrix, which may have 1 or 2 columns

B: Location to store the estimated regression parameters (the βj ’s), with the
intercept parameter β0 at position B[m+ 1, 1] if available

fmt: (default: "text") Matrix file output format, such as text, mm, or csv; see
read/write functions in SystemML Language Reference for details.

O: (default: " ") Location to write certain summary statistics described in Ta-
ble 9, by default it is standard output.

Log: (default: " ") Location to store iteration-specific variables for monitoring
and debugging purposes, see Table 10 for details.

2Prob[y | µi] is given by a density function if y is continuous.

32

dfam: (default: 1) Distribution family code to specify Prob[y | µ], see Table 11:
1 = power distributions with Var(y) = µα; 2 = binomial or Bernoulli

vpow: (default: 0.0) When dfam=1, this provides the q in Var(y) = aµq, the
power dependence of the variance of y on its mean. In particular, use:
0.0 = Gaussian, 1.0 = Poisson, 2.0 = Gamma, 3.0 = inverse Gaussian

link: (default: 0) Link function code to determine the link function η = g(µ):
0 = canonical link (depends on the distribution family), see Table 11;
1 = power functions, 2 = logit, 3 = probit, 4 = cloglog, 5 = cauchit

lpow: (default: 1.0) When link=1, this provides the s in η = µs, the power link
function; lpow=0.0 gives the log link η = logµ. Common power links:
-2.0 = 1/µ2, -1.0 = reciprocal, 0.0 = log, 0.5 = sqrt, 1.0 = identity

yneg: (default: 0.0) When dfam=2 and the response matrix Y has 1 column,
this specifies the y-value used for Bernoulli “No” label (“Yes” is 1):
0.0 when y ∈ {0, 1}; -1.0 when y ∈ {−1, 1}

icpt: (default: 0) Intercept and shifting/rescaling of the features in X:
0 = no intercept (hence no β0), no shifting/rescaling of the features;
1 = add intercept, but do not shift/rescale the features in X;
2 = add intercept, shift/rescale the features in X to mean 0, variance 1

reg: (default: 0.0) L2-regularization parameter (lambda)

tol: (default: 0.000001) Tolerance (epsilon) used in the convergence criterion:
we terminate the outer iterations when the deviance changes by less than
this factor; see below for details

disp: (default: 0.0) Dispersion parameter, or 0.0 to estimate it from data

moi: (default: 200) Maximum number of outer (Fisher scoring) iterations

mii: (default: 0) Maximum number of inner (conjugate gradient) iterations,
or 0 if no maximum limit provided

Details

In GLM, the noise distribution Prob[y | µ] of the response variable y given
its mean µ is restricted to have the exponential family form

Y ∼ Prob[y | µ] = exp

(
yθ − b(θ)

a
+ c(y, a)

)
, where µ = E(Y) = b′(θ).

(12)
Changing the mean in such a distribution simply multiplies all Prob[y | µ]
by e yθ/a and rescales them so that they again integrate to 1. Parameter θ
is called canonical, and the function θ = b′ −1(µ) that relates it to the mean is
called the canonical link ; constant a is called dispersion and rescales the variance
of y. Many common distributions can be put into this form, see Table 11. The
canonical parameter θ is often chosen to coincide with η, the linear combination
of the regression features; other choices for η are possible too.

Rather than specifying the canonical link, GLM distributions are commonly
defined by their variance Var(y) as the function of the mean µ. It can be
shown from Eq. (12) that Var(y) = a b′′(θ) = a b′′(b′ −1(µ)). For example,

33

Name Meaning

TERMINATION CODE A positive integer indicating success/failure as follows:
1 = Converged successfully; 2 = Maximum # of iterations reached;
3 = Input (X, Y) out of range; 4 = Distribution/link not supported

BETA MIN Smallest beta value (regression coefficient), excluding the intercept
BETA MIN INDEX Column index for the smallest beta value
BETA MAX Largest beta value (regression coefficient), excluding the intercept
BETA MAX INDEX Column index for the largest beta value
INTERCEPT Intercept value, or NaN if there is no intercept (if icpt=0)
DISPERSION Dispersion used to scale deviance, provided in disp input argument

or estimated (same as DISPERSION EST) if disp argument is ≤ 0
DISPERSION EST Dispersion estimated from the dataset
DEVIANCE UNSCALED Deviance from the saturated model, assuming dispersion = 1.0
DEVIANCE SCALED Deviance from the saturated model, scaled by DISPERSION value

Table 9: Besides β, GLM regression script computes a few summary statistics
listed above. They are provided in CSV format, one comma-separated name-
value pair per each line.

for the Bernoulli distribution Var(y) = µ(1 − µ), for the Poisson distribution
Var(y) = µ, and for the Gaussian distribution Var(y) = a · 1 = σ2. It turns
out that for many common distributions Var(y) = aµq, a power function. We
support all distributions where Var(y) = aµq, as well as the Bernoulli and the
binomial distributions.

For distributions with Var(y) = aµq the canonical link is also a power func-
tion, namely θ = µ1−q/(1− q), except for the Poisson (q = 1) whose canonical
link is θ = logµ. We support all power link functions in the form η = µs,
dropping any constant factor, with η = logµ for s = 0. The binomial distri-
bution has its own family of link functions, which includes logit (the canonical
link), probit, cloglog, and cauchit (see Table 12); we support these only for the
binomial and Bernoulli distributions. Links and distributions are specified via
four input parameters: dfam, vpow, link, and lpow (see Table 11).

The observed response values are provided to the regression script as a ma-
trix Y having 1 or 2 columns. If a power distribution family is selected (dfam=1),
matrix Y must have 1 column that provides yi for each xi in the corresponding
row of matrix X. When dfam=2 and Y has 1 column, we assume the Bernoulli
distribution for yi ∈ {yneg, 1} with yneg from the input parameter yneg. When
dfam=2 and Y has 2 columns, we assume the binomial distribution; for each
row i in X, cells Y [i, 1] and Y [i, 2] provide the positive and the negative bino-
mial counts respectively. Internally we convert the 1-column Bernoulli into the
2-column binomial with 0-versus-1 counts.

We estimate the regression parameters via L2-regularized negative log-
likelihood minimization:

f(β;X,Y) = −
∑n

i=1

(
yiθi − b(θi)

)
+ (λ/2)

∑m

j=1
β2
j → min

where θi and b(θi) are from (12); note that a and c(y, a) are constant w.r.t. β

34

Name Meaning

NUM CG ITERS Number of inner (Conj. Gradient) iterations in this outer iteration
IS TRUST REACHED 1 = trust region boundary was reached, 0 = otherwise
POINT STEP NORM L2-norm of iteration step from old point (β-vector) to new point
OBJECTIVE The loss function we minimize (negative partial log-likelihood)
OBJ DROP REAL Reduction in the objective during this iteration, actual value
OBJ DROP PRED Reduction in the objective predicted by a quadratic approximation
OBJ DROP RATIO Actual-to-predicted reduction ratio, used to update the trust region
GRADIENT NORM L2-norm of the loss function gradient (omitted if point is rejected)
LINEAR TERM MIN The minimum value of X %∗% β, used to check for overflows
LINEAR TERM MAX The maximum value of X %∗% β, used to check for overflows
IS POINT UPDATED 1 = new point accepted; 0 = new point rejected, old point restored
TRUST DELTA Updated trust region size, the “delta”

Table 10: The Log file for GLM regression contains the above per-iteration
variables in CSV format, each line containing triple (Name, Iteration#, Value)
with Iteration# being 0 for initial values.

and can be ignored here. The canonical parameter θi depends on both β and xi:

θi = b′ −1(µi) = b′ −1
(
g−1(ηi)

)
=
(
b′ −1 ◦ g−1

) (
β0 +

∑m

j=1
βjxi,j

)
The user-provided (via reg) regularization coefficient λ ≥ 0 can be used to
mitigate overfitting and degeneracy in the data. Note that the intercept is
never regularized.

Our iterative minimizer for f(β;X,Y) uses the Fisher scoring approximation
to the difference ∆f(z;β) = f(β + z;X,Y) − f(β;X,Y), recomputed at each
iteration:

∆f(z;β) ≈ 1/2 · zTAz + GT z, where A = XTdiag(w)X + λI

and G = −XTu + λβ, with n× 1 vectors w and u given by

∀ i = 1 . . . n : wi =
[
v(µi) g

′(µi)
2
]−1
, ui = (yi − µi)

[
v(µi) g

′(µi)
]−1
.

Here v(µi) = Var(yi)/a, the variance of yi as the function of the mean, and
g′(µi) = dηi/dµi is the link function derivative. The Fisher scoring approxima-
tion is minimized by trust-region conjugate gradient iterations (called the inner
iterations, with the Fisher scoring iterations as the outer iterations), which
approximately solve the following problem:

1/2 · zTAz + GT z → min subject to ‖z‖2 ≤ δ

The conjugate gradient algorithm closely follows Algorithm 7.2 on page 171
of [9]. The trust region size δ is initialized as 0.5

√
m/maxi ‖xi‖2 and updated

as described in [9]. The user can specify the maximum number of the outer
and the inner iterations with input parameters moi and mii, respectively. The
Fisher scoring algorithm terminates successfully if 2|∆f(z;β)| < (D1(β) + 0.1)ε

35

INPUT PARAMETERS Distribution Link Cano-
dfam vpow link lpow family function nical?
1 0.0 1 -1.0 Gaussian inverse
1 0.0 1 0.0 Gaussian log
1 0.0 1 1.0 Gaussian identity Yes
1 1.0 1 0.0 Poisson log Yes
1 1.0 1 0.5 Poisson sq.root
1 1.0 1 1.0 Poisson identity
1 2.0 1 -1.0 Gamma inverse Yes
1 2.0 1 0.0 Gamma log
1 2.0 1 1.0 Gamma identity
1 3.0 1 -2.0 Inverse Gauss 1/µ2 Yes
1 3.0 1 -1.0 Inverse Gauss inverse
1 3.0 1 0.0 Inverse Gauss log
1 3.0 1 1.0 Inverse Gauss identity
2 * 1 0.0 Binomial log
2 * 1 0.5 Binomial sq.root
2 * 2 * Binomial logit Yes
2 * 3 * Binomial probit
2 * 4 * Binomial cloglog
2 * 5 * Binomial cauchit

Table 11: Common GLM distribution families and link functions. (Here “*”
stands for “any value.”)

where ε > 0 is a tolerance supplied by the user via tol, and D1(β) is the
unit-dispersion deviance estimated as

D1(β) = 2 ·
(

Prob[Y | saturatedmodel , a= 1] − Prob[Y | X,β, a= 1]
)

The deviance estimate is also produced as part of the output. Once the Fisher
scoring algorithm terminates, if requested by the user, we estimate the disper-
sion a from Eq. 12 using Pearson residuals

â =
1

n−m
·
n∑
i=1

(yi − µi)2

v(µi)
(13)

and use it to adjust our deviance estimate: Dâ(β) = D1(β)/â. If input argument
disp is 0.0 we estimate â, otherwise we use its value as a. Note that in (13)
m counts the intercept (m← m+ 1) if it is present.

Returns

The estimated regression parameters (the β̂j ’s) are populated into a ma-
trix and written to an HDFS file whose path/name was provided as the “B”
input argument. What this matrix contains, and its size, depends on the input
argument icpt, which specifies the user’s intercept and rescaling choice:

36

Name Link function Name Link function

Logit η = 1/
(
1 + e−µ

)
Cloglog η = log

(
− log(1− µ)

)
Probit µ =

1√
2π

∫ η

−∞
e−

t2

2 dt Cauchit η = tanπ(µ− 1/2)

Table 12: The supported non-power link functions for the Bernoulli and the
binomial distributions. (Here µ is the Bernoulli mean.)

icpt=0: No intercept, matrix B has size m× 1, with B[j, 1] = β̂j for each j
from 1 to m = ncol(X).

icpt=1: There is intercept, but no shifting/rescaling of X; matrix B has size

(m+ 1)×1, with B[j, 1] = β̂j for j from 1 to m, and B[m+ 1, 1] = β̂0, the
estimated intercept coefficient.

icpt=2: There is intercept, and the features in X are shifted to mean = 0 and
rescaled to variance = 1; then there are two versions of the β̂j ’s, one for
the original features and another for the shifted/rescaled features. Now
matrix B has size (m+ 1) × 2, with B[·, 1] for the original features and
B[·, 2] for the shifted/rescaled features, in the above format. Note that
B[·, 2] are iteratively estimated and B[·, 1] are obtained from B[·, 2] by
complementary shifting and rescaling.

Our script also estimates the dispersion â (or takes it from the user’s input)

and the deviances D1(β̂) and Dâ(β̂), see Table 9 for details. A log file with
variables monitoring progress through the iterations can also be made available,
see Table 10.

Examples

hadoop jar SystemML.jar -f GLM.dml -nvargs X=/user/biadmin/X.mtx

Y=/user/biadmin/Y.mtx B=/user/biadmin/B.mtx fmt=csv

dfam=2 link=2 yneg=-1.0 icpt=2 reg=0.01 tol=0.00000001

disp=1.0 moi=100 mii=10 O=/user/biadmin/stats.csv

Log=/user/biadmin/log.csv

See Also

In case of binary classification problems, consider using L2-SVM or binary
logistic regression; for multiclass classification, use multiclass SVM or multino-
mial logistic regression. For the special cases of linear regression and logistic
regression, it may be more efficient to use the corresponding specialized scripts
instead of GLM.

4.3 Regression Scoring and Prediction

Description

Script GLM-predict.dml is intended to cover all linear model based regres-
sions, including linear regression, binomial and multinomial logistic regression,

37

and GLM regressions (Poisson, gamma, binomial with probit link etc.). Hav-
ing just one scoring script for all these regressions simplifies maintenance and
enhancement while ensuring compatible interpretations for output statistics.

The script performs two functions, prediction and scoring. To perform pre-
diction, the script takes two matrix inputs: a collection of records X (without
the response attribute) and the estimated regression parameters B, also known
as β. To perform scoring, in addition to X and B, the script takes the matrix
of actual response values Y that are compared to the predictions made with X
and B. Of course there are other, non-matrix, input arguments that specify the
model and the output format, see below for the full list.

We assume that our test/scoring dataset is given by n×m-matrix X of
numerical feature vectors, where each row xi represents one feature vector of
one record; we have dimxi = m. Each record also includes the response vari-
able yi that may be numerical, single-label categorical, or multi-label categor-
ical. A single-label categorical yi is an integer category label, one label per
record; a multi-label yi is a vector of integer counts, one count for each pos-
sible label, which represents multiple single-label events (observations) for the
same xi. Internally we convert single-label categoricals into multi-label categor-
icals by replacing each label l with an indicator vector (0, . . . , 0, 1l, 0, . . . , 0). In
prediction-only tasks the actual yi’s are not needed to the script, but they are
needed for scoring.

To perform prediction, the script matrix-multiplies X and B, adding the
intercept if available, then applies the inverse of the model’s link function. All
GLMs assume that the linear combination of the features in xi and the betas
in B determines the means µi of the yi’s (in numerical or multi-label categorical
form) with dimµi = dim yi. The observed yi is assumed to follow a specified
GLM family distribution Prob[y | µi] with mean(s) µi:

xi 7→ ηi = β0 +
∑m

j=1
βjxi,j 7→ µi 7→ yi ∼ Prob[y | µi]

If yi is numerical, the predicted mean µi is a real number. Then our script’s
output matrix M is the n× 1-vector of these means µi. Note that µi predicts
the mean of yi, not the actual yi. For example, in Poisson distribution, the
mean is usually fractional, but the actual yi is always integer.

If yi is categorical, i.e. a vector of label counts for record i, then µi is a
vector of non-negative real numbers, one number µi,l per each label l. In this
case we divide the µi,l by their sum

∑
l µi,l to obtain predicted label proba-

bilities pi,l ∈ [0, 1]. The output matrix M is the n × (k+ 1)-matrix of these
probabilities, where n is the number of records and k+ 1 is the number of cat-
egories3. Note again that we do not predict the labels themselves, nor their
actual counts per record, but we predict the labels’ probabilities.

Going from predicted probabilities to predicted labels, in the single-label
categorical case, requires extra information such as the cost of false positive

3We use k+ 1 because there are k non-baseline categories and one baseline category, with
regression parameters B having k columns.

38

versus false negative errors. For example, if there are 5 categories and we
accurately predicted their probabilities as (0.1, 0.3, 0.15, 0.2, 0.25), just picking
the highest-probability label would be wrong 70% of the time, whereas picking
the lowest-probability label might be right if, say, it represents a diagnosis of
cancer or another rare and serious outcome. Hence, we keep this step outside
the scope of GLM-predict.dml for now.

Usage

-f path/ GLM-predict.dml -nvargs X=path/file Y=path/file B=path/file
M=path/file O=path/file dfam=int vpow=double link=int lpow=double
disp=double fmt=format

Arguments

X: Location (on HDFS) to read the n×m-matrix X of feature vectors, each
row constitutes one feature vector (one record)

Y: (default: " ") Location to read the response matrix Y needed for scoring
(but optional for prediction), with the following dimensions:
n× 1: acceptable for all distributions (dfam=1 or 2 or 3)
n× 2: for binomial (dfam=2) if given by (#pos, #neg) counts
n× k+ 1: for multinomial (dfam=3) if given by category counts

M: (default: " ") Location to write, if requested, the matrix of predicted re-
sponse means (for dfam=1) or probabilities (for dfam=2 or 3):
n× 1: for power-type distributions (dfam=1)
n× 2: for binomial distribution (dfam=2), col# 2 is the “No” probability
n× k+ 1: for multinomial logit (dfam=3), col# k+ 1 is for the baseline

B: Location to read matrix B of the betas, i.e. estimated GLM regression pa-
rameters, with the intercept at row# m+ 1 if available:
dim(B) = m× k: do not add intercept
dim(B) = m+ 1× k: add intercept as given by the last B-row
if k > 1, use only B[, 1] unless it is Multinomial Logit (dfam=3)

O: (default: " ") Location to store the CSV-file with goodness-of-fit statistics
defined in Table 13, the default is to print them to the standard output

dfam: (default: 1) GLM distribution family code to specify the type of distri-
bution Prob[y |µ] that we assume:
1 = power distributions with Var(y) = µα, see Table 11;
2 = binomial; 3 = multinomial logit

vpow: (default: 0.0) Power for variance defined as (mean)power (ignored if
dfam 6= 1): when dfam=1, this provides the q in Var(y) = aµq, the power
dependence of the variance of y on its mean. In particular, use:
0.0 = Gaussian, 1.0 = Poisson, 2.0 = Gamma, 3.0 = inverse Gaussian

link: (default: 0) Link function code to determine the link function η = g(µ),
ignored for multinomial logit (dfam=3):
0 = canonical link (depends on the distribution family), see Table 11;
1 = power functions, 2 = logit, 3 = probit, 4 = cloglog, 5 = cauchit

39

Name CID Disp? Meaning

LOGLHOOD Z + Log-likelihood Z-score (in st. dev.’s from the mean)
LOGLHOOD Z PVAL + Log-likelihood Z-score p-value, two-sided
PEARSON X2 + Pearson residual X2-statistic
PEARSON X2 BY DF + Pearson X2 divided by degrees of freedom
PEARSON X2 PVAL + Pearson X2 p-value
DEVIANCE G2 + Deviance from the saturated model G2-statistic
DEVIANCE G2 BY DF + Deviance G2 divided by degrees of freedom
DEVIANCE G2 PVAL + Deviance G2 p-value
AVG TOT Y + Y -column average for an individual response value
STDEV TOT Y + Y -column st. dev. for an individual response value
AVG RES Y + Y -column residual average of Y − pred.mean(Y |X)
STDEV RES Y + Y -column residual st. dev. of Y − pred.mean(Y |X)
PRED STDEV RES + + Model-predicted Y -column residual st. deviation
PLAIN R2 + Plain R2 of Y -column residual with bias included
ADJUSTED R2 + Adjusted R2 of Y -column residual w. bias included
PLAIN R2 NOBIAS + Plain R2 of Y -column residual, bias subtracted
ADJUSTED R2 NOBIAS + Adjusted R2 of Y -column residual, bias subtracted

Table 13: The above goodness-of-fit statistics are provided in CSV format, one
per each line, with four columns: (Name, [CID], [Disp?], Value). The columns
are: “Name” is the string identifier for the statistic, see the table; “CID” is an
optional integer value that specifies the Y -column index for per-column statis-
tics (note that a bi-/multinomial one-column Y-input is converted into multi-
column); “Disp?” is an optional Boolean value (TRUE or FALSE) that tells us
whether or not scaling by the input dispersion parameter disp has been applied
to this statistic; “Value” is the value of the statistic.

lpow: (default: 1.0) Power for link function defined as (mean)power (ignored if
link 6= 1): when link=1, this provides the s in η = µs, the power link
function; lpow=0.0 gives the log link η = logµ. Common power links:
-2.0 = 1/µ2, -1.0 = reciprocal, 0.0 = log, 0.5 = sqrt, 1.0 = identity

disp: (default: 1.0) Dispersion value, when available; must be positive

fmt: (default: "text") Matrix M file output format, such as text, mm, or csv;
see read/write functions in SystemML Language Reference for details.

Details

The output matrix M of predicted means (or probabilities) is computed by
matrix-multiplying X with the first column of B or with the whole B in the
multinomial case, adding the intercept if available (conceptually, appending an
extra column of ones to X); then applying the inverse of the model’s link func-
tion. The difference between “means” and “probabilities” in the categorical
case becomes significant when there are ≥ 2 observations per record (with the
multi-label records) or when the labels such as −1 and 1 are viewed and aver-
aged as numerical response values (with the single-label records). To avoid any
mix-up or information loss, we separately return the predicted probability of
each category label for each record.

40

When the “actual” response values Y are available, the summary statistics
are computed and written out as described in Table 13. Below we discuss each
of these statistics in detail. Note that in the categorical case (binomial and
multinomial) Y is internally represented as the matrix of observation counts for
each label in each record, rather than just the label ID for each record. The
input Y may already be a matrix of counts, in which case it is used as-is. But if
Y is given as a vector of response labels, each response label is converted into an
indicator vector (0, . . . , 0, 1l, 0, . . . , 0) where l is the label ID for this record. All
negative (e.g. −1) or zero label IDs are converted to the 1 + maximum label ID.
The largest label ID is viewed as the “baseline” as explained in the section on
Multinomial Logistic Regression. We assume that there are k ≥ 1 non-baseline
categories and one (last) baseline category.

We also estimate residual variances for each response value, although we do
not output them, but use them only inside the summary statistics, scaled and
unscaled by the input dispersion parameter disp, as described below.

LOGLHOOD Z and LOGLHOOD Z PVAL statistics measure how far the log-
likelihood of Y deviates from its expected value according to the model. The
script implements them only for the binomial and the multinomial distributions,
returning NaN for all other distributions. Pearson’s X2 and deviance G2 often
perform poorly with bi- and multinomial distributions due to low cell counts,
hence we need this extra goodness-of-fit measure. To compute these statistics,
we use:

• the n × (k+ 1)-matrix Y of multi-label response counts, in which yi,j is
the number of times label j was observed in record i;

• the model-estimated probability matrix P of the same dimensions that
satisfies

∑k+1
j=1 pi,j = 1 for all i = 1, . . . , n and where pi,j is the model

probability of observing label j in record i;

• the n× 1-vector N where Ni is the aggregated count of observations in
record i (all Ni = 1 if each record has only one response label).

We start by computing the multinomial log-likelihood of Y given P and N , as
well as the expected log-likelihood given a random Y and the variance of this
log-likelihood if Y indeed follows the proposed distribution:

`(Y) = log Prob[Y |P,N] =

n∑
i=1

k+1∑
j=1

yi,j log pi,j

EY `(Y) =

n∑
i=1

k+1∑
j=1

µi,j log pi,j =

n∑
i=1

Ni

k+1∑
j=1

pi,j log pi,j

VarY `(Y) =

n∑
i=1

Ni

k+1∑
j=1

pi,j
(

log pi,j
)2 −(k+1∑

j=1

pi,j log pi,j

)2
Then we compute the Z-score as the difference between the actual and the
expected log-likelihood `(Y) divided by its expected standard deviation, and its

41

two-sided p-value in the Normal distribution assumption (`(Y) should approach
normality due to the Central Limit Theorem):

Z =
`(Y)− EY `(Y)√

VarY `(Y)
; p-value(Z) = Prob

[∣∣Normal(0, 1)
∣∣ > |Z|]

A low p-value would indicate “underfitting” if Z � 0 or “overfitting” if Z � 0.
Here “overfitting” means that higher-probability labels occur more often than
their probabilities suggest.

We also apply the dispersion input (disp) to compute the “scaled” version
of the Z-score and its p-value. Since `(Y) is a linear function of Y , multiplying
the GLM-predicted variance of Y by disp results in multiplying VarY `(Y) by
the same disp. This, in turn, translates into dividing the Z-score by the square
root of the dispersion:

Zdisp =
(
`(Y) − EY `(Y)

) /√
disp ·VarY `(Y) = Z/

√
disp

Finally, we recalculate the p-value with this new Z-score.

PEARSON X2, PEARSON X2 BY DF, and PEARSON X2 PVAL: Pearson’s residual
X2-statistic is a commonly used goodness-of-fit measure for linear models [7].
The idea is to measure how well the model-predicted means and variances match
the actual behavior of response values. For each record i, we estimate the mean
µi and the variance vi (or disp · vi) and use them to normalize the residual:
ri = (yi−µi)/

√
vi. These normalized residuals are then squared, aggregated by

summation, and tested against an appropriate χ2 distribution. The computation
of X2 is slightly different for categorical data (bi- and multinomial) than it is
for numerical data, since yi has multiple correlated dimensions [7]:

X2 (numer.) =

n∑
i=1

(yi − µi)2

vi
; X2 (categ.) =

n∑
i=1

k+1∑
j=1

(yi,j −Nipi,j)2

Nipi,j

The number of degrees of freedom #d.f. for the χ2 distribution is n − m for
numerical data and (n − m)k for categorical data, where k = ncol(Y) − 1.
Given the dispersion parameter disp, the X2 statistic is scaled by division:
X2

disp = X2/disp. If the dispersion is accurate, X2/disp should be close

to #d.f. In fact, X2/#d.f. over the training data is the dispersion estimator
used in our GLM.dml script, see (13). Here we provide X2/#d.f. and X2

disp/#d.f.
as PEARSON X2 BY DF to enable dispersion comparison between the training data
and the test data.

NOTE: For categorical data, both Pearson’s X2 and the deviance G2 are
unreliable (i.e. do not approach the χ2 distribution) unless the predicted means
of multi-label counts µi,j = Nipi,j are fairly large: all ≥ 1 and 80% are at
least 5 [4]. They should not be used for “one label per record” categoricals.

DEVIANCE G2, DEVIANCE G2 BY DF, and DEVIANCE G2 PVAL: Deviance G2 is
the log of the likelihood ratio between the “saturated” model and the linear

42

model being tested for the given dataset, multiplied by two:

G2 = 2 log
Prob[Y | saturated model]

Prob[Y | tested linear model]
(14)

The “saturated” model sets the mean µsat
i to equal yi for every record (for

categorical data, psati,j = yi,j/Ni), which represents the “perfect fit.” For records
with yi,j ∈ {0, Ni} or otherwise at a boundary, by continuity we set 0 log 0 = 0.
The GLM likelihood functions defined in (12) become simplified in ratio (14)
due to canceling out the term c(y, a) since it is the same in both models.

The log of a likelihood ratio between two nested models, times two, is known
to approach a χ2 distribution as n → ∞ if both models have fixed parameter
spaces. But this is not the case for the “saturated” model: it adds more pa-
rameters with each record. In practice, however, χ2 distributions are used to
compute the p-value of G2 [7]. The number of degrees of freedom #d.f. and the
treatment of dispersion are the same as for Pearson’s X2, see above.

Column-wise statistics. The rest of the statistics are computed separately
for each column of Y . As explained above, Y has two or more columns in
bi- and multinomial case, either at input or after conversion. Moreover, each
yi,j in record i with Ni ≥ 2 is counted as Ni separate observations yi,j,l of
0 or 1 (where l = 1, . . . , Ni) with yi,j ones and Ni − yi,j zeros. For power
distributions, including linear regression, Y has only one column and all Ni = 1,
so the statistics are computed for all Y with each record counted once. Below
we denote N =

∑n
i=1Ni ≥ n. Here is the total average and the residual average

(residual bias) of yi,j,l for each Y -column:

AVG TOT Yj =
1

N

n∑
i=1

yi,j ; AVG RES Yj =
1

N

n∑
i=1

(yi,j − µi,j)

Dividing by N (rather than n) gives the averages for yi,j,l (rather than yi,j).
The total variance, and the standard deviation, for individual observations yi,j,l
is estimated from the total variance for response values yi,j using independence

assumption: Var yi,j = Var
∑Ni

l=1 yi,j,l =
∑Ni

l=1 Var yi,j,l. This allows us to esti-
mate the sum of squares for yi,j,l via the sum of squares for yi,j :

STDEV TOT Yj =

[
1

N − 1

n∑
i=1

(
yi,j −

Ni
N

n∑
i′=1

yi′,j

)2]1/2
Analogously, we estimate the standard deviation of the residual yi,j,l − µi,j,l:

STDEV RES Yj =

[
1

N −m′
n∑
i=1

(
yi,j − µi,j −

Ni
N

n∑
i′=1

(yi′,j − µi′,j)
)2]1/2

Here m′ = m if m includes the intercept as a feature and m′ = m + 1 if it
does not. The estimated standard deviations can be compared to the model-
predicted residual standard deviation computed from the predicted means by

43

R2 where the residual sum-of-squares includes the bias contribution:

PLAIN R2j = ADJUSTED R2j =

1−

n∑
i=1

(yi,j − µi,j)
2

n∑
i=1

(
yi,j −

Ni

N

n∑
i′=1

yi′,j

)2 1− N−1

N−m

n∑
i=1

(yi,j − µi,j)
2

n∑
i=1

(
yi,j −

Ni

N

n∑
i′=1

yi′,j

)2
R2 where the residual sum-of-squares is centered so that the bias is subtracted:

PLAIN R2 NOBIASj = ADJUSTED R2 NOBIASj =

1−

n∑
i=1

(
yi,j −µi,j −

Ni

N

n∑
i′=1

(yi′,j −µi′,j)
)2

n∑
i=1

(
yi,j −

Ni

N

n∑
i′=1

yi′,j

)2 1− N−1

N−m′

n∑
i=1

(
yi,j −µi,j −

Ni

N

n∑
i′=1

(yi′,j −µi′,j)
)2

n∑
i=1

(
yi,j −

Ni

N

n∑
i′=1

yi′,j

)2
Table 14: The R2 statistics we compute in GLM-predict.dml

the GLM variance formula and scaled by the dispersion:

PRED STDEV RESj =
[disp
N

n∑
i=1

v(µi,j)
]1/2

We also compute the R2 statistics for each column of Y , see Table 14 for details.
We compute two versions of R2: in one version the residual sum-of-squares
(RSS) includes any bias in the residual that might be present (due to the lack
of, or inaccuracy in, the intercept); in the other version of RSS the bias is
subtracted by “centering” the residual. In both cases we subtract the bias
in the total sum-of-squares (in the denominator), and m′ equals m with the
intercept or m+ 1 without the intercept.

Returns

The matrix of predicted means (if the response is numerical) or probabilities
(if the response is categorical), see “Description” subsection above for more
information. Given Y, we return some statistics in CSV format as described in
Table 13 and in the above text.

Examples

Note that in the examples below the value for “disp” input argument is set
arbitrarily. The correct dispersion value should be computed from the training
data during model estimation, or omitted if unknown (which sets it to 1.0).

Linear regression example:
hadoop jar SystemML.jar -f GLM-predict.dml -nvargs dfam=1

vpow=0.0 link=1 lpow=1.0 disp=5.67 X=/user/biadmin/X.mtx

B=/user/biadmin/B.mtx M=/user/biadmin/Means.mtx fmt=csv

Y=/user/biadmin/Y.mtx O=/user/biadmin/stats.csv

Linear regression example, prediction only (no Y given):
hadoop jar SystemML.jar -f GLM-predict.dml -nvargs

dfam=1 vpow=0.0 link=1 lpow=1.0 X=/user/biadmin/X.mtx

B=/user/biadmin/B.mtx M=/user/biadmin/Means.mtx fmt=csv

44

Binomial logistic regression example:
hadoop jar SystemML.jar -f GLM-predict.dml -nvargs

dfam=2 link=2 disp=3.0004464 X=/user/biadmin/X.mtx

B=/user/biadmin/B.mtx M=/user/biadmin/Probabilities.mtx

fmt=csv Y=/user/biadmin/Y.mtx O=/user/biadmin/stats.csv

Binomial probit regression example:
hadoop jar SystemML.jar -f GLM-predict.dml -nvargs

dfam=2 link=3 disp=3.0004464 X=/user/biadmin/X.mtx

B=/user/biadmin/B.mtx M=/user/biadmin/Probabilities.mtx

fmt=csv Y=/user/biadmin/Y.mtx O=/user/biadmin/stats.csv

Multinomial logistic regression example:
hadoop jar SystemML.jar -f GLM-predict.dml -nvargs

dfam=3 X=/user/biadmin/X.mtx B=/user/biadmin/B.mtx

M=/user/biadmin/Probabilities.mtx fmt=csv

Y=/user/biadmin/Y.mtx O=/user/biadmin/stats.csv

Poisson regression with the log link example:
hadoop jar SystemML.jar -f GLM-predict.dml -nvargs dfam=1

vpow=1.0 link=1 lpow=0.0 disp=3.45 X=/user/biadmin/X.mtx

B=/user/biadmin/B.mtx M=/user/biadmin/Means.mtx fmt=csv

Y=/user/biadmin/Y.mtx O=/user/biadmin/stats.csv

Gamma regression with the inverse (reciprocal) link example:
hadoop jar SystemML.jar -f GLM-predict.dml -nvargs dfam=1

vpow=2.0 link=1 lpow=-1.0 disp=1.99118 X=/user/biadmin/X.mtx

B=/user/biadmin/B.mtx M=/user/biadmin/Means.mtx fmt=csv

Y=/user/biadmin/Y.mtx O=/user/biadmin/stats.csv

References

[1] A. Agresti. Categorical Data Analysis. Wiley Series in Probability and
Statistics. Wiley-Interscience, second edition, 2002.

[2] D. Aloise, A. Deshpande, P. Hansen, and P. Popat. NP-hardness of Eu-
clidean sum-of-squares clustering. Machine Learning, 75(2):245–248, May
2009.

[3] D. Arthur and S. Vassilvitskii. k-means++: The advantages of careful seed-
ing. In Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2007), pages 1027–1035, New Orleans LA, USA, January
7–9 2007.

[4] W. G. Cochran. Some methods for strengthening the common χ2 tests.
Biometrics, 10(4):417–451, December 1954.

[5] J. Gill. Generalized Linear Models: A Unified Approach. Number 07-134
in Sage University Papers Series on Quantitative Applications in the Social
Sciences. Sage Publications, 2000.

45

[6] C.-J. Lin, R. C. Weng, and S. S. Keerthi. Trust region Newton method
for large-scale logistic regression. Journal of Machine Learning Research,
9:627–650, April 2008.

[7] P. McCullagh and J. A. Nelder. Generalized Linear Models. Number 37 in
Monographs on Statistics and Applied Probability. Chapman & Hall/CRC,
second edition, 1989.

[8] J. A. Nelder and R. W. M. Wedderburn. Generalized linear models. Journal
of the Royal Statistical Society, Series A (General), 135(3):370–384, 1972.

[9] J. Nocedal and S. Wright. Numerical Optimization. Springer Series in Oper-
ations Research and Financial Engineering. Springer, second edition, 2006.

46

	1 Descriptive Statistics
	1.1 Univariate Statistics
	1.2 Bivariate Statistics
	1.3 Stratified Bivariate Statistics

	2 Classification
	2.1 Multinomial Logistic Regression
	2.2 Support Vector Machines
	2.2.1 Binary-class Support Vector Machines
	2.2.2 Multi-class Support Vector Machines

	2.3 Naive Bayes

	3 Clustering
	3.1 K-Means Clustering

	4 Regression
	4.1 Linear Regression
	4.2 Generalized Linear Models (GLM)
	4.3 Regression Scoring and Prediction

