
IBM Software Group 

© 2009 IBM Corporation 

 

 

An IBM Proof of Technology 

IBM Data Studio pureQuery For DBAs  
and Application Developers (v2.1) 

 

Lab Exercises 

 



 

 

PoT.IM.08.1.059.05 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright International Business Machines Corporation, 2008, 2009. All rights reserved.  

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP 
Schedule Contract with IBM Corp. 



IBM Software 

Contents 

LAB 1 INTRODUCTION TO DATA STUDIO DEVELOPER ..........................................................................3 
1.1 REQUIRED INITIAL SETUP...........................................................................................................3 
1.2 OPEN DATA STUDIO DEVELOPER ...............................................................................................4 
1.3 CONNECT TO A DATABASE AND EXPLORE THE TABLES .................................................................5 
1.4 CREATING A TABLE..................................................................................................................11 
1.5 DEBUG A STORED PROCEDURE ...............................................................................................13 

LAB 2 CREATE PUREQUERY PROJECT ..................................................................................................22 
2.1 CREATING A NEW JAVA PROJECT .............................................................................................22 
2.2 ENABLE JAVA PROJECT FOR PUREQUERY.................................................................................23 
2.3 ENABLE DATA EXPLORER VIEW IN JAVA PROJECT.....................................................................24 

LAB 3 EXPLORE PUREQUERY TOOLS ....................................................................................................26 
3.1 GENERATE PUREQUERY CODE FROM DATABASE TABLES ...........................................................26 
3.2 QUICK OVERVIEW AND RUNNING THE PUREQUERY TEST CLASSES .............................................31 
3.3 EXPLORE PUREQUERY OUTLINE VIEW.......................................................................................34 
3.4 EXPLORE PUREQUERY CONTEXT ASSIST CAPABILITIES ..............................................................38 
3.5 GENERATE PUREQUERY CODE FOR A SQL PROCEDURE ...........................................................40 
3.6 GENERATE PUREQUERY CODE FROM SQL SCRIPTS .................................................................44 

LAB 4 EXPLORE PUREQUERY API...........................................................................................................47 
4.1 PRACTICE CODE GENERATION.................................................................................................48 
4.2 USING METHOD-STYLE PROGRAM............................................................................................54 
4.3 USING AN INLINE-STYLE PROGRAM...........................................................................................57 

LAB 5 EXPLORE PUREQUERY RUNTIME ................................................................................................59 
5.1 EXPLORE PUREQUERY OUTLINE VIEW......................................................................................59 
5.2 BIND PACKAGES FOR A PUREQUERY PROJECT ..........................................................................61 
5.3 TURN DYNAMIC SQL INTO STATIC SQL ...................................................................................64 
5.4 BIND A SINGLE INTERFACE USING PUREQUERY TOOLS ..............................................................66 
5.5 BIND PACKAGES THROUGH COMMAND LINE..............................................................................66 
5.6 DB2BINDER COMMAND TO REBIND A PACKAGE.......................................................................68 
5.7 CUSTOMIZE BIND OPTIONS FOR DB2 PACKAGES......................................................................69 

LAB 6 PUREQUERY EXPLAIN ...................................................................................................................72 
6.1 EXPLAIN PLAN FOR SQLS IN JAVA PROGRAMS .........................................................................72 
6.2 EXPLAIN PLAN FOR NEW METHODS...........................................................................................77 
6.3 EXPLAIN PLAN WITH DIFFERENT QUERY OPTIMIZATION .............................................................79 

LAB 7 OPTIMIZE AN EXISTING JDBC APPLICATION USING PUREQUERY.........................................80 
7.1 CREATE A JAVA PROJECT........................................................................................................80 
7.2 SQL PROFILING WHEN SOURCE IS AVAILABLE ...........................................................................82 
7.3 OPTIMIZATION WHEN SOURCE IS AVAILABLE ..............................................................................85 
7.4 OPTIMIZATION WHEN SOURCE IS NOT AVAILABLE .......................................................................93 

LAB 8 PUREQUERY ADVANCED CONCEPTS..........................................................................................99 
8.1 GENERATE JPA COMPLIANT XML ............................................................................................99 
8.2 EXAMPLES OF THE RESULTHANDLER ........................................................................................100 
8.3 USE OF THE HOOK FOR BUILT-IN PERFORMANCE MONITOR ......................................................105 

APPENDIX A. NOTICES .........................................................................................................................................106 
APPENDIX B. TRADEMARKS AND COPYRIGHTS..............................................................................................108 

Contents Page 1 



 

 

THIS PAGE INTENTIONALLY LEFT BLANK 

 

 

 

 

 

 

 

 

 

 

 



  IBM Software 

Lab 1  Introduction to Data Studio Developer 

In this lab, you will open IBM® Data Studio and learn how to open the Java™ and Data perspectives.  
You will see how to connect to a database and sample the contents of the tables in the database.  Finally 
you will learn how to debug and profile a stored procedure. 

1.1 Required Initial Setup 

__1.  Open up DB2 command window.  

Click on DB2 Command Window icon on the desktop. NOTE: This is NOT just a Windows 
Command prompt window.  It is a DB2 command line processor window for executing DB2 
commands.  

   OR 

Click on Start  All Programs  IBM DB2  DB2COPY1 (Default)  Command 
Line Tools  Command Window 

  

 

 

Note:  Please do not try to run DB2 commands in regular Window Command window as it 
will fail with an error that “Command line environment in not initialized”. Please make 
sure that you open a command window as shown above. 

You will see DB2 command window as shown below and change directory to 
C:\POT_PDQ\01INTRO. 

__2.  Review and run INTRO01.CMD command to create a GSDB database and the necessary tables 
and other objects for the lab exercises for this PoT.   When the script finishes, continue with the 
next section.   

 

Lab 1 – Introduction to Data Studio Developer Page 3 



IBM Software  

1.2 Open Data Studio Developer 

__3.  Open the IBM Data Studio Developer by clicking on this icon. 

 

OR…You can open the IBM Data Studio Developer by clicking:  

Start  All Programs  IBM Data Studio    Data Studio Developer 

__4.  Make sure that your workspace points C:\POT_PDQ\99WORKSPACE directory.  Click <OK> and 
wait for the Data Studio Developer to launch. 

 

__5.  You will see splash screen showing 3 products shell sharing with each other using a single 
package. 

 

__6.  If you get to a welcome screen, close it. 

 

Page 4 IBM Data Studio pureQuery For DBAs and Application Developers (v2.1) 



  IBM Software 

You will now be in the Data Studio Developer in a perspective called Data.  You can see the 
perspectives on the top right corner of your screen. 

 

1.3 Connect to a database and explore the tables 

__7.  Now we will connect to the GSDB database we just created by running that DB2 script. 

__a.  In the Data Source Explorer, right click on GSDB in the Database Connections folder. 
Choose:  Connect 

 

__b.  Enter the following in the Driver Properties: 

User name:  dbapot 

Password:  dbapot123 

Check:   Save password 

URL:   Add:  :currentSchema=GOSALES; at the end. (Include semicolon also) 

 

Lab 1 – Introduction to Data Studio Developer Page 5 



IBM Software  

__c.  We now have a connection and the database icon changes to reflect that. 

 

__d.  We can now use Data Studio Developer to explore the GSDB database objects. 

__8.  Select GSDB database in Data Source Explorer and right click on it to select Properties. 

 

__9.  Click on the option Connect every time the workbench is started and hit OK. 

 

__10.  In the Data Source Explorer, expand Connections  GSDB  GSDB 

 

Page 6 IBM Data Studio pureQuery For DBAs and Application Developers (v2.1) 



  IBM Software 

Again expand Schemas  GOSALES  Tables 

 

See a visual relationship between tables  

__11.  Do the following to see a relationship between tables. 

__a.  Click on the PRODUCT table 

__b.  Hold shift key and click on the PRODUCT_TYPE table. By doing so, you will select all 
tables as shown below.  Now right click (to show the context menu) and choose: Add to 
overview diagram. 

 

__c.  Check Infer implicit relationships, then OK in <Next> screen and you should see the 
overview diagram.  

 

Lab 1 – Introduction to Data Studio Developer Page 7 



IBM Software  

__d.  Double click on the title of the screen to maximize the window to see the relationships 
diagram for the selected tables in full screen mode. 

 

__12.  After viewing this, double click on the title to minimize the window.   

__13.  Now close this overview diagram window (click on the X in the tab).  

Sample some data from a table.   

__14.  In the Data Source Explorer, Tables folder, find the table PRODUCT.  Right click on PRODUCT, 
then choose:  Data  Sample Contents 

__15.  View the contents of the PRODUCT table in the SQL Results view.  This view is in the bottom 
right corner of your Data perspective.  Maximize it if you need to see more columns from the 
table by double clicking on the title.  Double click again to minimize when finished. 

 

Update statistics on a table 

In the Data Source Explorer, Tables folder, right click on table PRODUCT, then choose: 
Update Statistics. Review the SQL Results view to see how this was accomplished. 

 

Page 8 IBM Data Studio pureQuery For DBAs and Application Developers (v2.1) 



  IBM Software 

Lab 1 – Introduction to Data Studio Developer Page 9 

Generate DDL for a table 

__16.  In the Data Source Explorer, Tables folder, right click on table PRODUCT, then choose: 
Generate DDL. 

The output looks like this.  Notice you can save this to run later if you like. 

 

Look at value distributions 

__17.  In the Data Source Explorer, Tables folder, right click on table PRODUCT, then choose: Value 
Distributions  Multivariate 

The output looks like this: 

 



IBM Software  

Page 10 IBM Data Studio pureQuery For DBAs and Application Developers (v2.1) 

Compare objects 

__18.  In the Data Source Explorer, Sequences folder, right click on both: ORG_SEQ and PROD_SEQ 
Then choose: Compare With  Each Other 

 

__19.  Go to the Type screen and notice that the max values for the sequences are very different.  Can 
you figure out why ORG_SEQ can be so large?  (Hint: generate DDL for them both and see 
which data types they are defined to.) 

 

 

 

 

 



  IBM Software 

Lab 1 – Introduction to Data Studio Developer Page 11 

1.4 e Creating a tabl

__20.  Make sure you stay in the GOSALES schema in the Data Source Explorer, right click on the 
Tables folder itself then:  Create  Table 

 

__21.  This invokes a choice of editors.  For now we will be using the data object editor.  The Change 
Management Script Editor is for another lab. 

 

__22.  Use the General screen of the Data Object Editor to create a table called: NEWTABLE  

 



IBM Software  

Page 12 IBM Data Studio pureQuery For DBAs and Application Developers (v2.1) 

__23.  Explore through each s
Every option is availab

creen of the editor to get a feel for how it prompts you to create the table.  
le for you to take full advantage of the DB2 CREATE TABLE definition.   

 example of what you might do: 
__24.  On the columns screen, add a few new columns.  It doesn’t matter what you call them or what 

they are, just learn the interface.  Below is an

 

__25.  Preview and then Run DDL.  This same technique can be used to create any database object. 

  

 

 



  IBM Software 

Lab 1 – Introduction to Data Studio Developer Page 13 

1.5 Debug a Stored Procedure 
In this section, you will create a data project. A data project is used to save SQL scripts, stored 

stored procedures, or if you develop SQL for any reason, you should give this a look. 

Create a Project 

__26.  Create a new data project.  In the drop down menu at the top of the Data Studio Developer, 
select File, then: New  Project.    

__27.  Expand the Data folder, the choose: Data Development Project 

procedure code, UDF code and so on.   Data projects are usually used for application development, so 
many DBAs may never create a data project.  Still, if you are a DBA that would develop and debug 

 

a. In <Next> screen, specify PDQPOT as the project name and GOSALES as the schema 
name and click <Next>. 

 

b. Choose the GSDB database.  <Next> 

 



IBM Software  

Page 14 IBM Data Studio pureQuery For DBAs and Application Developers (v2.1) 

c. Choose GOSALES as the default schema.  <Finish> 

 

__28.  In the top left quadrant of your data perspective, you will see your Data Project Explorer.  Here is 
where your projects are managed.  We’ll be using it next to put our stored procedure code.  

 

Customize your Editor Settings 

__29.  Go to the Data Studio Developer drop down menu bar and find Window, then choose: 
Preferences 

 



  IBM Software 

Lab 1 – Introduction to Data Studio Developer Page 15 

__30.  Find the Data Management section, then find: SQL D
Editor. Change the Default statement terminator to a @.  Make sure all validation

evelopment>SQL and XQuery 
s options are 

checked. 

 

__31.  Click: <Apply> <OK> 

Bring stored procedure code into your project 

__32.  In your Data Source Explorer, find the GSDB database schema called GOSALESCT.   

__33.  In this schema, find stored procedure GET_CUSTOMER_NAME.  Right click on it then choose: 
Open  With Routine Editor… 

 

__34.  Choose the project you just created (PDQPOT) as the target to place this code and click 
<Finish>.   

 

 

 



IBM Software  

Page 16 IBM Data Studio pureQuery For DBAs and Application Developers (v2.1) 

__35.  Notice in the Data Project Explorer, the SQL PL for this stored procedure has been placed in 
your project PDQPOT.  Also, the SQL PL editor has this code loaded and is ready for you to start 
work with this code.  

 

Debug your stored procedure 

__36.  In your Data Project Explorer (Please note: Not Data Source Explorer), find the stored p
GET_CUSTOMER_NAME again. Right click on it then choose: Deploy. 

rocedure 

 

__37.  In the Deploy Routines assistant, the Deploy Options screen, do the following: 

Select:  Use current database.   

 source to the database 
Select:  Target Schema: GOSALESCT.   
Check:  Deploy

   

 



  IBM Software 

Lab 1 – Introduction to Data Studio Developer Page 17 

__38.  In the next Routine Options screen, make sure you check: Enable debugging. Then 
<Finish>.  You will now be able to debug this stored procedure from the Data Project 
Explorer.  

 

__39.  The stored procedure code is now in your database, with the debug capability turned on.  You 
should be able to see the successful deploy in your SQL Results view.  

 

__40.  Next, set any breakpoint you might need in the SQL editor itself.  Do this by double clicking on 
the yellow boarder to the left of your code. A blue breakpoint dot will appear. 

 

 



IBM Software  

Page 18 IBM Data Studio pureQuery For DBAs and Application Developers (v2.1) 

__41.  Next, right click on GOSALESCT.GET_CUSTOMER_NAME stored procedure in Data Project 
Explorer view and choose: debug. 

 

__42.  In < > window, accept the default and click on  button. Next Debug

 

 

 

 



  IBM Software 

Lab 1 – Introduction to Data Studio Developer Page 19 

__43.  Since this stored procedure expects an input parameter, you will see a window asking for a value 
for the CUSTOMERID parameter. Specify a value of 101 and click on <OK>. 

 

__44.  Data Studio Developer is now doing something you haven’t seen before.  It is switching 
perspectives.  It will now open the Debug perspective if you let it.  Say Yes to open this 
perspective. 

 

__45.  Look in the upper right hand corner of the screen and notice you now have a Debug and a Data 
perspective opened.  You can switch between them now if you want to.  Stay in the debug 
perspective for the rest of this exercise. 

 



IBM Software  

Page 20 IBM Data Studio pureQuery For DBAs and Application Developers (v2.1) 

__46.  Go to Debug view in the Debug Perspective and either press F5 to go from line to line or use the 
icon shown below to “Step Into” the code.   Watch the variables change as 

.  The code we are
you go through you 

code.  Learn to use F6 and F7 for “Step Return” and “Step Over”  working with 
here is fairly simple, but try to image a very large many-lined stored procedure you can debug. 

 

__47.  If you run all the way through the code and the session is terminated, then just right click on the 
terminated session itself and choose:  relaunch. 

 

__48.  Close the debug perspective when done. 

on your stored procedure in the Data Project 
Explorer and then:  Run Profiling 

Profile a stored procedure 

__49.  Profiling allows you to see each line of code and how many times it is executed for a particular 
running of that code.  To see this right click 

 



  IBM Software 

Lab 1 – Introduction to Data Studio Developer Page 21 

__50.  Choose all defaults and all options.  After it runs, double click on the SQL Results view to see 
your profiling in full screen mode. 

 

Notice you can run a stored procedure with profiling to break down each line of code to see how 
many times it ran, how long it took and so on. 

 

** End of pureQuery lab 01:  Introduction to Data Studio Developer 



IBM Software 

Lab 2  Create pureQuery Project 

Introduction: 

During this lab you will create a new java project using IBM Data Studio Developer. You will enable a 
Java Project for pureQuery. 

2.1 Creating a new Java Project 

__1.  Make sure that the Data Studio is open in the Java Perspective. 

If Data Studio is not in the Java Perspective you can open one from the top left window of the 
Data Studio window and choose:  

Window  Open Perspective  Java   

You should now see: 

           
__2.  Now create a new Java project by going to:  

 File  New  Java Project.  
 Name the project pureQueryLabs.  Make sure options are chosen as shown below, so  

make sure you click on Create separate source and output folders: 

 

 
 Click <Next>. 

 Click <Finish> again and it may come up with a dialog box saying that this type of project 
is associated with Java perspective. Click <Yes>.  

Page 22 IBM Data Studio pureQuery For DBAs and Application Developers (v2.1) 



 IBM Software 

 The newly created project pureQueryLabs along with the source folder, src, will now 
appear in the Data Studio in the Package Explorer: 

 

2.2 Enable Java project for pureQuery 

__3.  Right click on pureQueryLabs java project in Package Explorer view and click on pureQuery 
and click again on “Add pureQuery Support”.  

  

__4.  Select GSDB database and click <Next> 

 

__5.  Check default schema GOSALES and click <Finish>. 

 

Lab 2 – Create pureQuery Project Page 23 



IBM Software 

__6.  You should now see pdq.jar, pdqmgmt.jar, db2jcc.jar  and 
db2jcc_license_cisuz.jar files added to the referenced libraries. A new 
pureQueryFolder directory is also added to the project. The java project is now enabled with 
pureQuery support.  

 

 

2.3 Enable Data Explorer View in Java project 

__7.  Now we want to add the Data Source Explorer View to this perspective.  To do this we will drag 
and drop this view to the package explorer. 

__8.  Drag and drop: Inside perspectives, we can drag and drop the various views to be placed where 
they are the most helpful to us.  To drag and drop a view, left click on the tab of that view, hold 
down the mouse button and drag the view to where you want it to be within that perspective. 

__9.  Drag and drop the Data Source Explorer View right below the Package Explorer for a better view 
of the connections. The Data Source Explorer View will show all the available connections, if 
any, of your default database.  

 

 

Page 24 IBM Data Studio pureQuery For DBAs and Application Developers (v2.1) 



 IBM Software 

Lab 2 – Create pureQuery Project Page 25 

__10.  Expand the database connections to see all that are available to you 

 

__11.  If you are not connected, connect to the GSDB database by right-clicking on it in the Data Source 
Explorer and choosing Connect. You can also ping the database without connecting. 

 

 

You are now ready to begin working with pureQuery code from the GSDB database. 

 

** End of lab 02: Create pureQuery Project  



IBM Software 

Lab 3  Explore pureQuery Tools 

3.1 Generate pureQuery code from database tables 

__1.  Expand database GSDB, then expand Schemas, then GOSALES, and finally Tables. Select all 
tables. (Click on the first table, hold the shift key and click on the last table). 

 

 

 

Page 26 IBM Data Studio pureQuery For DBAs and Application Developers (v2.1) 



 IBM Software 

__2.  Right click on any one of the selected tables and click on Generate pureQuery Code. 

 

__3.  The Generate pureQuery Code for a Table window will open. 

 Specify name of the package as com.ibm.pureQueryDemo. 

 
 

 While you are on this tab, browse through tabs on Test Code Generation, Bean 
Fields and SQL Statements. You can make high level selections that will be applicable 
to all tables we selected in our previous step. Here we will select options for Test Code 
Generation so that they are applicable to all tables selected. 
 
 
 
 
 
 
 
 

 

Lab 3 – Explore pureQuery Tools Page 27 



IBM Software 

 Check radio button to Generate test class for annotated-method interface 
for table and make sure that you have also selected option for Include connection 
information in test. 
 

 
 

 Click <Next> button to go to the next screen.   
 

 
 

 In this screen, you will see selected tables on the left hand side and same options shown 
above on the right pane. Here you can do customizations for each table for the java source 
code that will be generated. 

    

 

Page 28 IBM Data Studio pureQuery For DBAs and Application Developers (v2.1) 



 IBM Software 

 Browse through Bean Fields tab and you will notice that you can map database column 
names to the java attributes as per your choice. We will map column INVENTORY_YEAR of 
the INVENTORY_LEVEL table to the java bean attribute name inventoryYear.  

 

 The inventoryYear is mapped to the database column INVENTORY_LEVEL 
.INVENTORY_YEAR by adding the following annotations to the variable and to the setter 
and getter methods.  (The following is an example of that mapping which will happen after 
you are done doing this step): 

@Column(name="INVENOTORY_YEAR") protected short inventoryYear; 

…and… 

@Column(name="INVENOTORY_YEAR") public String getInventoryYear() { 
return inventoryYear; 
} 

 
 Browse through last tab of SQL Statements and notice the type of statements supported 

for which code generation will happen. 
 

 
 

 Now click <Finish>. 

Lab 3 – Explore pureQuery Tools Page 29 



IBM Software 

__4.  Notice that a java package com.ibm.pureQueryDemo has been created with 40 classes for 10 
tables selected in the previous step. There are 4 classes for each of the table. 

 

__5.  The following four classes have now been created for each table in the pureQueryLabs src 
folder under package com/ibm/pureQueryDemo. 

 Inventory_levels.java 
The java file containing a one to one mapping from the 
data in the INVENTORY_LEVELS table to the Java object. 

An interface containing the abstraction of the data access 
layer for the querying of data or data manipulation.  Inventory_levelsData.java 

The implementation of the interface created above.  Inventory_levelsDataImpl.java

Sample class on showing pureQuery’s functionality using 
the method-style. 

 Inventory_levelsDataTest.java

__6.  Notice several XML files created for each table. We will come back to these later. 

 

Page 30 IBM Data Studio pureQuery For DBAs and Application Developers (v2.1) 



 IBM Software 

3.2 Quick overview and running the pureQuery Test Classes 
The tool generated a test class for each table. These test classes are created to give the 
developer quick code samples of how to create a connection, create a bean instance or create a 
call method from the interface. 

__7.  Select the Inventory_levelsDataTest.java file: 

 

__8.  Description of the Class – a review: 

 The main(String[] args) method expects to be passed one argument: the password to the 
database. If no arguments are passed, it will print to the console: “All required 
arguments were not provided.” 

 

 The class contains the code instantiating an object to call the methods defined in the 
Inventory_levelsData interface.  This object has the Inventory_levelsData class, 
the connection string to the database and the username passed as arguments. The 
password will be passed as an argument when running the class. Did you notice 
currentSchema as part of the connection string? This is here since we specified it as a part 
of connection URL.  

 

Lab 3 – Explore pureQuery Tools Page 31 



IBM Software 

 Developers have control over the connection auto-commit mode so that the transactions may 
be committed individually, automatically or explicitly using commit(). The following line 
sets the connection auto-commit mode to false: 

 

 Now the method, declared on the Inventory_levelsData interface to retrieve all 
Inventory Levels getInventory_levelss(), is called and its’ return object is assigned to 
the getInventory_levelss Iterator.  It then checks if any records were returned by 
trying to retrieve the first element in the Iterator.  If the Iterator is empty, it outputs 
“result set is empty,” and does a rollback and stops executing the sample program. If 
the Iterator is not empty (there was at least one record returned) it assigns that record to 
the object bean of type Inventory_level. 

 

 The following code deletes the bean that was retrieved in the previous example.  An integer 
is returned with the number of records that were affected by the transaction. 

 

 Finally, the Inventory_level deleted in the previous example is recreated, retrieved and 
its information is printed to the console.  
 

 
 

 All the transactions are committed in the last statement. 

 

Page 32 IBM Data Studio pureQuery For DBAs and Application Developers (v2.1) 



 IBM Software 

__9.  Now that we understand what it is doing, we will run this test Class: 

 Right-click anywhere on the Inventory_levelsDataTest.java class and select: 
Run As  Java Application. 

 

__10.  You will notice “All required arguments were not provided.” in the console. It was 
expected since we did not specify the argument while running this test class. 

  

__11.  Again right click anywhere on the the Inventory_levelsDataTest.java class and select 
Run As  Run Configurations. (Please look at exhibit in item # 9.) This will open a Run 
Configurations dialog and select Inventory_levelsDataTest in the left hand side pane and click on 
Arguments tab on the right hand side pane to provide password as program arguments. 

1. Type in password dbapot123: 

       
 

 Click <Run> 
 
 
 
 

Lab 3 – Explore pureQuery Tools Page 33 



IBM Software 

 You will see the results on the Console: 

 

3.3 Explore pureQuery outline view 

__12.  You can view SQL statements used in a class (or projects in a workspace) with the help of 
pureQuery outline view. Click on pureQuery Outline view in the bottom pane. 

 

__13.  After refreshing the outline view, you will see a view as shown below. 

 

Page 34 IBM Data Studio pureQuery For DBAs and Application Developers (v2.1) 



 IBM Software 

__14.  Explore each view and you can easily see the relationships between java classes, SQL 
statements and database using different views. 

 

Lab 3 – Explore pureQuery Tools Page 35 



IBM Software 

__15.  Explore Java view   to see SQL statements used in Java classes. 
Expand pureQueryDemo package and select all java interface data access classes and right 
click. Select Export SQL to File... Save the file using any name you like and open it in an 
editor.   

 

 

 

 

Page 36 IBM Data Studio pureQuery For DBAs and Application Developers (v2.1) 



 IBM Software 

__16.  Right click anywhere in the SQL file and choose option Set Statement Terminator and 
specify semicolon.  

  

__17.  In same Java view, expand ProductData.java and select SELECT statement and right click 
on it. Select Run SQL. 

 

__18.  The results can be viewed on SQL Results window. 

 

 

 

 

 

 

 

Lab 3 – Explore pureQuery Tools Page 37 



IBM Software 

__19.  Explore SQL view to explore SQL statements in DB2 packages. Please note that these packages 
are not yet created. 

 

3.4 Explore pureQuery context assist capabilities 
The pureQuery tools integrate the SQL editor inside the Java Editor providing developers a 
boost in productivity.  Developers can now run SQL statements embedded in their Java 
programs as well as have SQL errors reported while typing the SQL statement inside the Java 
Editor. 

__20.  In the Package Explorer, double click on Inventory_levelsData.java to open the interface. 

 

Page 38 IBM Data Studio pureQuery For DBAs and Application Developers (v2.1) 



 IBM Software 

__21.  Click at the beginning of the first SQL and then right click. Select  pureQuery  Run SQL 

 

         

See the results of your query in the Data Output View in the bottom of the Data Studio: 

 

 

__22.  While typing a SQL statement, errors will be underlined in red, just as in Java. 

 Delete the letter “R” from INVENTORY_YEAR on the SQL statement. Notice that the editor 
underlines it in red displaying the message that it cannot find the column “INVENTORY_YEA” 
in the table INVENTORY_LEVELS: 

 

__23.  Using SQL Content Assist within the Java Editor: 

 After deleting the “R” from INVENTORY_YEAR in the previous example, put your cursor after 
“INVENTORY_YEA” and press the <Ctrl> key and the <spacebar> at the same time. This 
will change “INVENTORY_YEA” to INVENTORY_YEAR. 

 

Lab 3 – Explore pureQuery Tools Page 39 



IBM Software 

__24.  If a developer wants to know the data type of a specific column or whether the column is nullable 
he/she can easily check with the help of the pureQuery tool. 

 Double-click on UNIT_COST so that it will be highlighted.  Now right-click and go to 
pureQuery  Show in  Data Source Explorer. 

 

__25.  You will see the Data Source Explorer expanding the INVENTORY_LEVELS table and showing 
the information for the columns with the UNIT_COST highlighted. The developer now knows that 
the UNIT_COST column is of type DECIMAL(19,2)and is Nullable: 

 

 

3.5 Generate pureQuery code for a SQL Procedure 

__26.  Expand the Stored Procedure folder under the GOSALESCT Schema (This is different 
schema than GOSALES) in the Data Source Explorer: 

 

 Right-Click on the stored procedure GET_CUSTOMER_NAME and select Generate 
pureQuery Code… 
 

Page 40 IBM Data Studio pureQuery For DBAs and Application Developers (v2.1) 



 IBM Software 

 Fill the pop-up window as below.   

 

 Click <Next>. 
 Check on Generate a simple test and Include connection information in 

test and again click <Next>: 
 

 
 
 
 

 The next screen allows you to modify mapping between parameters and bean attributes. 
Click on <Next> to go to the next screen. 
 

 

 In this screen, we are given a chance to discover result sets if stored procedure returns 
some result. Since our selected stored procedure does not return any result set, Click 
<Finish>. 

 You will notice that 4 java classes have been created for this stored procedure. 
 

Lab 3 – Explore pureQuery Tools Page 41 



IBM Software 

 Get_customer_nameData.java Interface for data access 
Implementation layer generated  Get_customer_nameDataImpl.java 
Test class for stored procedure  Get_customer_nameDataTest.java 
Parameters bean  Get_customer_nameParam.java 

3.5.1 Calling a stored procedure 

__27.  Double click get_customer_nameDataTest.java in package explorer and this will open the 
Java test program in the editor view. We will need to do a simple change to modify schema 
name from GOSALES to GOSALESCT. Complete change as shown below. 

 

__28.  Right click anywhere in Java source file and choose Run  Java Application.  You will see 
console output stating that All required arguments were not provided. But doing so, you 
have created an instance of this application that can now be modified to specify input 
parameters. 

 

__29.  Right click on same java source again and choose Run As  Run Configurations.. 
which will open up Run Configurations window. 

 

__30.  Go to the Arguments tab and specify dbapot123 and 100. The first argument is the password 
and second is the customer code for which the stored procedure will return a first name, last 
name and phone number. Click on <Run>. 

 

__31.  You will see the results in the Console. 

Page 42 IBM Data Studio pureQuery For DBAs and Application Developers (v2.1) 



 IBM Software 

 

__32.  Please review the Java source file Get_customer_nameData.java to see method  
callGet_CUSTOMER_NAME which was annotated with a CALL statement to the stored 
procedure. The implementation of this method was auto-generated and is shown in 
Get_customer_nameDataImpl.java. 

 

 

Lab 3 – Explore pureQuery Tools Page 43 



IBM Software 

3.6 Generate pureQuery code from SQL Scripts 

__33.  You can generate pureQuery code from SQL defined in a file. Navigate to 
C:\POT_PDQ\03TOOLS folder using your Windows Explorer and double click on 
CustomQueries.sql file to view the SQL statements. 

 

__34.  Right click on pureQueryLabs project in the package explorer and click on New  Other … 

  

__35.  Expand the Data section and select the pureQuery Annotated-method Interface from 
next window click on <Next>. 

 

Page 44 IBM Data Studio pureQuery For DBAs and Application Developers (v2.1) 



 IBM Software 

__36.  Select pureQuery Annotated-method Interface from next window click on <Next>. 
Type in name of the package as com.ibm.pureQueryDemo.CustomQueries and name as 
QueriesData and click on <Next>. 

 

__37.  In SQL statements window, click on Import button and select file CustomQueries.sql from 
folder C:\POT_PDQ\03TOOLS. 

 

__38.  You will see 3 SELECT statements imported in this window with default bean names as Bean1, 
Bean2 and Bean3. Click on <Next> and then on <Finish> button to generate pureQuery code 
for these 3 SQL statements. 

 

__39.  After generating pureQuery code, double click on QueriesDataTest.java in package 
explorer.  

  

Lab 3 – Explore pureQuery Tools Page 45 



IBM Software 

Page 46 IBM Data Studio pureQuery For DBAs and Application Developers (v2.1) 

__40.  Right click anywhere in the QueriesDataTest.java and choose Run  Java Application. 
You will see console output stating that All required arguments were not provided.  

__41.  Right click on same java source again and choose Run As  Run Configurations.. 
which will open up Run Configurations window. Type-in dbapot123 in the Arguments tab. 

 

__42.  Click on Run and you should see output from the GetBean1 method. 

 

 

** End of Lab3 – Explore pureQuery Tools 



 IBM Software 

Lab 4  Explore pureQuery API 

Prerequisites: 

We need to copy the java source files to the workspace.  

__1.  Go to Windows Explorer and navigate to C:\POT_PDQ\04API directory. 

__2.  Double click on script API01.CMD. This script copies java programs to the pureQueryLabs 
project and we will use MethodStyle.java and InlineStyle.java to explore Method and 
Inline style APIs in this lab. 

 

__3.  Refresh the Java project so that the files copied in the previous step are reflected in Package 
Explorer. 

 

__4.  After you hit F5, you should see apiDemo package showing up in the Package Explorer. We 
created this package by double clicking on API0.CMD in the previous step. You also notice a 
small cross icon on both the packages indicating errors. Do not worry about these errors and 
fixing them is part of this lab exercise.   

 

Lab 4 – Explore pureQuery API Page 47 



IBM Software 

4.1 Practice Code Generation  

__5.  Expand apiDemo package and open InlineStyle.java by double clicking on it. We will fix 
some errors by creating beans from SQL statements. 

 

__6.  Go to the 1st SQL statement or the first error marked in the file. We are referencing a missing 
WebCatalogProduct bean here. This bean maps to the SQL statement and we will generate it 
from the SQL. Double click on WebCatalogProduct to select it and hit CTRL-C to copy this in 
clipboard. Position your cursor at the beginning of the SELECT statement in the next line and hit 
Shift-F8 to open pureQuery code generation dialog.  

 

__7.  Type-in WebCatalogProduct bean name as shown and make sure that Generate bean 
for result set is selected and Generate annotated-method interface for SQL 
statement is also checked. Click <Finish> to generate bean for the SQL statement. 

 

 

Page 48 IBM Data Studio pureQuery For DBAs and Application Developers (v2.1) 



 IBM Software 

__8.  The above action will generate WebCatalogProduct.java bean and will open it up for you. 
Review and close this and go back to the InlineStyle.java program. 

__9.  Go to the 2nd SQL statement and position your cursor at the start of the SELECT statement and 
hit SHIFT-F8.  

 

__10.  In the pureQuery Code Generation screen, our choices will be different than the previous 
step.  

 We will use the bean that we created in the previous step. 

 We will also reuse the interface layer by appending new methods to it. 

__11.  Click on Use existing bean and click on Browse button to select the bean class. 

 

__12.  Type-in WebC to reduce the number of beans and select WebCatalogProduct bean and hit OK. 

 

 

Lab 4 – Explore pureQuery API Page 49 



IBM Software 

__13.  When you come back to the same screen from the previous step, you should give the method 
name as getWebCatalogProductByNumber. You need to just add ByNumber at the end of 
already given name of getWebCatalogProduct. We already created the interface in the 
previous step and we are using the same one, so it is also necessary that you check If 
interface exists, insert new methods into the interface. Click <Finish> to 
generate additional method in WebCatalogProductData.java file. Open the file, review it 
and close it and go back to InlineStyle.java program. 

 

__14.  Go to the 3rd SQL statement in InlineStyle.java and position your cursor at the start of the 
SELECT statement and press SHIFT-F8 to open pureQuery Code Generation screen. 

 

__15.  Click on the Browse button to select existing WebCatalogProduct bean and append ByType 
to the method name and click <Finish> to append the pureQuery code to the existing 
WebCatalogProductData interface. 

 

Page 50 IBM Data Studio pureQuery For DBAs and Application Developers (v2.1) 



 IBM Software 

__16.  Go to the 4th SQL statement in InlineStyle.java and position your cursor at the start of the 
INSERT statement and press SHIFT-F7 to view this table in Data Source Explorer. 

 

__17.  Go to the Data Source Explorer and right click on table CUST_ORD and click on Generate 
pureQuery Code. 

     

__18.  In pureQuery Code Generation screen, check Generate annotated-method 
interface for table and If Interface exists, insert new methods into 
interface check boxes. Replace Interface name from the default value of Cust_OrdData 
to WebCatalogProductData. Click <Next> to go to the next screen. 

 

 

 

Lab 4 – Explore pureQuery API Page 51 



IBM Software 

__19.  In the next screen, keep both the check boxes unchecked for creating test classes. Click 
<Next> two times to go to the last screen of SQL Statements. 

 

__20.  In SQL Statements screen, check option for Generate the SQL statements specified 
below and check 2 options for Select row by object and Create row by object and 
click <Finish> to append methods to fetch and create the customer order in an existing 
WebCatalogProductData data interface. 

 

__21.  After completing above steps to create two missing beans and five annotation methods, we 
should see error free InlineStyle.java and MethodStyle.java with additional file in the package. 

 

 
Note:   Review what we did in previous steps before going to the next step.  

Page 52 IBM Data Studio pureQuery For DBAs and Application Developers (v2.1) 



 IBM Software 

 Created WebCatalogProduct bean from 1st SQL statements. 
 Created WebCatalogProductData interface containing annotation method API for the 1st 

SQL statement. 
 Created additional two annotation methods for 2nd and 3rd SQL statement in 

WebCatalogProductData interface by using same bean created for the 1st SQL 
statement. 

 Created a bean for CUST_ORD table and added two methods for getting and creating a 
customer order in the existing WebCatalogProductData interface.  

__22.  Close all open files in the editor and open InlineStyle.java, MethodStyle.java and 
WebCatalogProductData.java and review them. The InlineStyle.java contains inline 
SQL statements for which we created annotation methods in previous steps. Both the java 
programs provide same output but by using inline and annotation APIs. 

Lab 4 – Explore pureQuery API Page 53 



IBM Software 

4.2 Using Method-style Program 

Introduction: 

The pureQuery Annotated Method Style provides data accessor and update methods. These methods 
are declared in a user-created Java interface using annotations that express the specific query or update 
operations in standard SQL. Using Java annotated class definitions; a generator automatically creates 
the implementation of the specified methods. This style offers the advantage of separating the data 
access declarations and the associated SQL from the application’s business logic. The application simply 
invokes the methods defined in the interface and uses familiar Java objects, beans and collections for 
providing parameters to the method and for receiving query results. 

__23.  Open the MethodStyle.java class by double-clicking the file and review the methods. 

 

__24.  Review method getWebCatalogProduct. Click on the method name inside the body of the 
method and hit F3 which will take you to the definition of the method in the Interface class. 

 

__25.  Review the method in the interface class. The method name getWebCatalogProduct is 
annotated with the SQL statements.  

 

 

Page 54 IBM Data Studio pureQuery For DBAs and Application Developers (v2.1) 



 IBM Software 

__26.  Click anywhere inside the SQL statement and press SHIFT-F6 to run the SQL statement. You 
will see the output from SQL statement in the SQL Results window in the lower bottom pane. 

  

__27.  The implementation of method getWebCatalogProduct is in 
getWebCatalogProductDataImpl.java. This implementation file gets generated 
whenever any change is made to the interface file by adding or removing the methods. 

__28.  Open getWebCatalogProductDataImpl.java and review the generated code. 

__29.  Go back to MethodStyle.java and review the main method. We will test each of the method 
through the main routine. 

 

 

 

 

Lab 4 – Explore pureQuery API Page 55 



IBM Software 

__30.  Right click anywhere in the program and click on Run As  Java Application. You will 
see the console output as shown: 

 

__31.  Go to the Package Explorer and expand pureQueryFolder folder and open 
WebCatalogProductData_pdq.xml file. This XML file contains all the SQL statements 
referenced in the WebCatalogProductData interface. The SQL in this XML is also called 
named query which is same as JPA standard. We will review this again when we go through 
pureQuery runtime. 

 

 

Page 56 IBM Data Studio pureQuery For DBAs and Application Developers (v2.1) 



 IBM Software 

4.3 Using an Inline-style Program 

Introduction: 

The pureQuery Inline-Style provides a complete set of Java methods for executing queries and update 
operations. These methods take an SQL statement and associated parameters as input and, where 
appropriate, return the results in numerous forms including a variety of Java collection types, as well as 
user-defined Bean types or as scalar and primitive values. With this style, the SQL query or update 
statement can be coded inline in the application and appears as a parameter on the method invocation. 
This programming style offers simplicity and tight integration between the SQL and the Java language. 

__32.  Open the InlineStyle.java class by double-clicking the file and review the methods. 

 

__33.  Review all 4 SQL statements and associated in-line style pureQuery APIs to process the SQL 
statement. 

 

__34.  Select Java tab in pureQuery Outline view and expand apiDemo package.  Expand 
InlineStyle.java and you can see line numbers at which SQL statements are used. 

  

Lab 4 – Explore pureQuery API Page 57 



IBM Software 

Page 58 IBM Data Studio pureQuery For DBAs and Application Developers (v2.1) 

__35.  Expand pureQuery Folder in pureQueryLabs project in the Package Explorer. Expand 
InLineStyle.xml under the analysis folder. The methods used in InLineStyle.java are 
saved in this XML file. We will come back to this later. 

 

__36.  Review main method and run the program. Right click anywhere in the program and click on 
Run As  Java Application. The console output for each of the method will be same as 
you did in the method style exercise. 

__37.  Change the value of choice parameter from 1 to 4 and run the program each time.  

 

 

** End of lab 4: Explore pureQuery API  



 IBM Software 

Lab 5   Explore pureQuery Runtime 

 

Note:   By running the next command, you are setting the Data Studio pureQueryLabs project 
as if you have completed the 03 Tools lab and the 04 API labs correctly. If you are a 
DBA and have come to this lab by skipping 03 TOOLS and 04 API labs, wait for few 
seconds to allow workspace to compile and build java source. 

__1.  Go to the Windows Explorer and locate C:\POT_PDQ\05RUNTIME and double click on 
Runtime01.CMD file.  (This will refresh your project as if you completed labs 03 and 04) 

 

__2.  Click on pureQueryLabs project in the Package explorer and hit F5 to refresh the project. 

 

5.1 Explore pureQuery Outline View 

__3.  Go to the pureQuery Outline view and click on refresh icon to rebuild it. 

 

 

Note:  If you do not see pureQuery Outline view, right click on pureQueryLabs project in 
Package Explorer and click on pureQuery  Show pureQuery Outline. 

Lab 5 – Explore pureQuery Runtime Page 59 



IBM Software  

__4.  In pureQuery Outline view, click on the SQL tab at the bottom. You will see a list of the future 
DB2 packages that are ready for bind or deploy. 

 

__5.  Click on Java tab at the bottom of the pureQuery Outline view and select all java data access 
classes. Right click and export SQLs to a file to view them. 

 

__6.  Specify file name as pureQueryDemo.sql and extract all SQL statements from data access 
classes and view them in an editor. 

 

Page 60 IBM Data Studio pureQuery For DBAs and Application Developers (v2.1) 



 IBM Software 

__7.  Right click anywhere in the SQL file and choose option Set Statement Terminator and 
specify semicolon.  

  

5.2 Bind packages for a pureQuery project 

__8.  From the Package Explorer view right-click on the pureQueryLabs Java project and select 
pureQuery  Bind pureQuery Application. Select GSDB database when prompted. 

  

__9.  Look at the output in the Console view and you will notice that most of the package creation 
failed for SQL error -204 indicating undefined name. This is the most common error since our 
connection user id is not the owner of the tables. 

 

__10.  Go to the Package Explorer view and navigate to the pureQueryFolder of the 
pureQueryLabs project. Double click Default.bindProps file to open it in an editor.  

 Add defaultOptions and specify QUALIFIER option. 

 
 Save the file (right click, <Save>)   

Lab 5 – Explore pureQuery Runtime Page 61 



IBM Software  

__11.  Go back to the Package Explorer view and right-click on the pureQueryLabs Java project and 
select pureQuery  Bind pureQuery Application. Select GSDB database and wait for 
BIND process to finish. This time, the BIND should complete successfully. 

 

__12.  View the info of the packages through SQL:  

 Double-click the Runtime03.sql file under the pureQueryLabs project and select GSDB 
database when prompted. 

  

 Go to main menu and click on Script  Run SQL. 

       

 You should now see the following results: 

 

 

Page 62 IBM Data Studio pureQuery For DBAs and Application Developers (v2.1) 



 IBM Software 

__13.  Did you notice 4 packages created for the ProductData interface? This happened since we did 
not specify the ISOLATION LEVEL in Default.bindProps file. Go back to this file and add 
ISOLATION LEVEL and hit CTRL-S to save the file.  

 

__14.  We will need to drop these packages before we bind the application. Double click on 
Runtime05.sql to open it in an editor. Right click anywhere on the file and select Run SQL to 
generate the DROP statements. Go to the SQL Results view and hit CTRL-A to select all rows 
and right click to Copy row(s). 

 

__15.  Right click on GSDB database in Data Source Explorer and click on Open SQL Scrapbook. 

 

__16.  Hit CTRL-V to paste DROP statements. Right click anywhere and select Execute All to drop 
the packages. 

 

Lab 5 – Explore pureQuery Runtime Page 63 



IBM Software  

__17.  Check the status of the DROP command status in SQL Results view. 

 

__18.  Bind the data access classes from pureQueryLabs project to the database by right clicking on 
the project and select pureQuery  Bind pureQuery Application. After successful 
bind, go back to the Runtime03.sql.  Right click on your first SQL and run it. You should only 
see one package with ISOLATION LEVEL CS. 

 

5.3 Turn Dynamic SQL into Static SQL 
After binding the packages for data access classes, the SQL in the java application continues to 
run in dynamic mode unless we turn on the switch also known as executionMode. 

__19.  There are many ways to turn executionMode to STATIC or DYNAMIC. For example: 

Scope Method Description and how to set 

Global JVM 
Set the value as a JVM system property and is applicable to 
all of the pureQuery XML files in the application that you start 
with the java command. 

Global Property file 
Use pdq.properties and it is applicable to all connections 
for an application 

Connection 
Specific 

URL or DS 
property 

jdbc:db2://localhost:50000/GSDB:pdqProperties
=executionMode(STATIC) 

Class Specific Property file 
Modify the application to create a Properties object, set the 
property there, and pass it to the factory that creates the 
Interface implementation instance. 

 

__20.  We will use the JVM option to set this property. 

 Expand apiDemo package and double click MethodStyle.java to open it in an editor.  

 

Page 64 IBM Data Studio pureQuery For DBAs and Application Developers (v2.1) 



 IBM Software 

 Right click anywhere in the MethodStyle.java program and choose Run As  Java 
Application. 

 Again right click and choose Run As  Run Configurations… and go to the Arguments 
tab and specify -Dpdq.executionMode=STATIC in VM arguments window and click on 
<Run> button. 

  

 Notice the output on the Console is the same as if you were running dynamic SQL. 

 But how did you know if it ran using DB2 package or not? Go to the pureQuery Outline view 
and click on SQL tab at the bottom. Go to the WebCatalogProductdata package and right 
click on it. Click on Show in Data Source Explorer.  

 

 In the Data Source Explorer view, right click on WebCatalogProductdata package and 
click on Drop. Choose Data Object Editor when prompted and drop the package. 

 

 After dropping the package, run it again. 

 

 

Lab 5 – Explore pureQuery Runtime Page 65 



IBM Software  

 You will see SQL -805 error indicating that the WebCatalogProductdata package was not 
found. 

 

5.4 Bind a single Interface using pureQuery Tools 

In the previous step, we dropped WebCatalogProductdata DB2 package manually to see if 
we could run MethodStyle. We noticed SQL -805 error confirming that the 
WebCatalogProductdata package was not found.  Expand apiDemo package and right click 
on the WebCatalogProductdata data interface in the Package Explorer, and click on 
pureQuery  Bind… 

  

__21.  Select GSDB database when prompted and click <Finish>. You should see this interface bound 
to the database. 

 

5.5 Bind Packages through Command Line 
As a DBA, you might need to run Static Binder through command line if there is no option for a 
GUI tool like Data Studio to be deployed in a production environment. 

 

Page 66 IBM Data Studio pureQuery For DBAs and Application Developers (v2.1) 



 IBM Software 

__22.  In Windows Explorer, navigate to C:\POT_PDQ\05Runtime folder and right click on 
RunTime06.CMD. (Note: Do not double click to run it yet.) 

 

__23.  Review the contents of this file and notice how a Static Binder is invoked. 

 

__24.  Close this file and double click on RunTime07.txt option file where data interface classes are 
listed. 

 

 

 

Lab 5 – Explore pureQuery Runtime Page 67 



IBM Software  

__25.  Now double click on RunTime06.CMD and after it has completed the work, double click on 
Runtime06_OUTPUT.TXT and review the output. 

 

5.6 DB2Binder command to REBIND a package 

__26.  Under the pureQueryLabs project expand the db2jcc.jar file. 

__27.  Expand the com.ibm.db2.jcc package and notice the DB2Binder class. 

 

__28.  Right-click the DB2Binder class and select Run As  Java Application and you will see 
the help message. 

 

 

Page 68 IBM Data Studio pureQuery For DBAs and Application Developers (v2.1) 



 IBM Software 

__29.  In Windows Explorer, navigate to the C:\POT_PDQ\05RUNTIME folder. Right click on the file 
RUNTIME08.CMD and select Edit to review the file. This is an example script that can be used 
and customized to REBIND DB2 packages. 

 

__30.  Go ahead and close RUNTIME08.CMD. Double click it to run and review the 
RUNTIME08_OUTPUT.TXT to notice that the interface has been rebound to DB2. 

 

5.7 Customize BIND options for DB2 packages 

From Data Studio Developer, you can set a number of pureQuery properties to be associated 
with the project.  Several of these are input to the Interface implementation Generator, which 
creates a working version of the interface whenever that interface file is saved.  Some of those 
options are saved in the compiled implementation and become input to the BIND process.  The 
following step demonstrates how to modify those properties. 

__31.  Double-click on Default.genProps in pureQueryFolder of pureQueryLabs project. 

 

__32.  Add following this line in Default.bindProps file. 

defaultOptions= -isolationLevel CS 
 
 
 
 
 
 
 
 
 

Lab 5 – Explore pureQuery Runtime Page 69 



IBM Software  

__33.  Add following line in Default.genProps file to force collection schema to be PDQCOL instead 
of the default value of NULLID. You can use context sensitive help while selecting the interface 
name. 

 
com.ibm.pureQueryDemo.apiDemo.WebCatalogProductData = -collection PDQCOL 

__34.  After you save this file (right click, then Save) it will show a message indicating that the project 
will be rebuilt since options specified in this file are applicable to interfaces generated. Click 
<Yes>. 

 

__35.  Open WebCatalogProductData.java file.  Delete any character and re-type same character 
and save the file. 

__36.  Re-bind the interface by right clicking on it and selecting pureQuery  Bind. Select GSDB 
database when prompted. 

  

 

 

Page 70 IBM Data Studio pureQuery For DBAs and Application Developers (v2.1) 



 IBM Software 

Lab 5 – Explore pureQuery Runtime Page 71 

__37.  Go to the Package Explorer and double click Runtime04.sql file in an editor. Click on Script 
 Run SQL. 

 

__38.  View the output of the command in Results view. 

 

__39.  Go to pureQuery Outline view and go to the SQL tab (Located at the bottom of the pane) and 
right click on WebCatalogProductData package and right click to click on Show in 
Database Explorer. 

 

 

** End of Lab 5: Explore pureQuery Runtime 



IBM Software 

Lab 6   pureQuery Explain 

Introduction: 

With Data Studio Developer, you can see the explain plan of the SQL statements which are embedded in 
your java programs. Most importantly, neither you have to leave the Data Studio Developer nor reformat 
and copy SQL statements to any other tool. 

6.1 Explain Plan for SQLs in Java Programs 

__1.  Go to menu File  Close All to close all open editors. 

__2.  In your Package Explorer, expand apiDemo package and double click on MethodStyle.java 
to open it in an editor. 

 

__3.  Click anywhere in WebCatalogProductData and hit F3 to open the data interface file. 

 

 

 

Page 72 IBM Data Studio pureQuery For DBAs and Application Developers (v2.1) 



 IBM Software 

__4.  Click anywhere on the first SQL statement and right click to select pureQuery  Launch 
Visual Explain.  

 

__5.  When Visual Explain screen shows up, click <Finish> to launch it. Look at the explain plan in 
Access Plan Diagram in bottom right corner of the java perspective. 

  

__6.  Right click on a node and select Show Description to see details about a node. 

 

 

 

 

Lab 6 – pureQuery Explain Page 73 



IBM Software 

__7.  For example, you will be able to see CPU, I/O and computed cumulative explain cost along with 
values of the database parameters that affect a explain plan as shown below: 

  

__8.  In the Overview Diagram, click on View the SQL statement to see original and optimized 
SQL. You can save an explain plan in a XML file for viewing it later or sending it to the DBA. 

 

Page 74 IBM Data Studio pureQuery For DBAs and Application Developers (v2.1) 



 IBM Software 

__9.  Go back to the WebCatalogProductData.java program and see the explain plan for each of 
the SQL statement. For example, try to figure out why there are multiple index scans when 
inserting a row in CUST_ORD table. 

 

__10.  Look at the explain plan for the query associated with the getWebCatalog method and why 
there are full table scans on PRODUCT and PRODUCT_NAME_LOOKUP when indexes exist on the 
columns accessed in the query. 

  

__11.  Try updating statistics on both tables and regenerate the explain plan. If plan does not change, 
can you think of a reason that why it still did not use indexes. 

 

Lab 6 – pureQuery Explain Page 75 



IBM Software 

__12.  Look at the explain plan for the query associated with the method 
getWebCatalogProductByNumber and notice the nested loop join when we query by a 
number which is on index. 

 

__13.  Look at the explain plan for the query associated with the method 
getWebCatalogProductByType where the search is based upon the type (not on the index) 
and access path uses hash loop join. 

 

 

 

Page 76 IBM Data Studio pureQuery For DBAs and Application Developers (v2.1) 



 IBM Software 

6.2 Explain Plan for new methods 

__14.  Go to the Package Explorer and click apiDemo package to select it. 

 

__15.  Go back to the MethodStyle.java program and double click on WebCatalogProductData 
to select it. 

  

__16.  Hit CTRL-N to open a new wizard. Expand Data and select pureQuery Annotated-method 
Interface. Click on <Next>. 

 

__17.  Make sure to expand the Advanced Settings and click on If Interface exists, 
insert new methods into interface. The other two values should already be selected 
for you. If not, type-in those values. Click <Next> 

 

Lab 6 – pureQuery Explain Page 77 



IBM Software 

Click on Import button and change directory to C:\POT_PDQ\06EXPLAIN and select 
Explain01.sql to import the SQL statements from this file. In the dialog box that appears, 
click on Bean1 under Bean Name and type name DiscontinuedProducts as the name of the 
bean. Hit TAB and the method name is generated automatically. Click <Finish> to generate a 
bean to hold the results and add method to an existing interface.  

 

__18.  The method getDiscontinuedProducts is added to WebCatalogProductData interface. 
Click anywhere on the SQL statement and right click to select pureQuery  Launch Visual 
Explain and hit <Finish> to generate an explain plan. The explain plan may look like following.  

 

 

Page 78 IBM Data Studio pureQuery For DBAs and Application Developers (v2.1) 



 IBM Software 

Lab 6 – pureQuery Explain Page 79 

6.3 Explain Plan with Different Query Optimization 

__19.  Again right click on the SQL statement and select pureQuery  Launch Visual Explain 
and click <Next> and select Current Query Optimization to 1 and click on <Finish>. 

 

__20.  Examine the explain plan and compare it with the previous one. 

  

 

** End of Lab 6: pureQuery Explain  



IBM Software  

Lab 7   Optimize an existing JDBC Application using pureQuery 

IBM Data Studio Developer pureQuery feature allows you to optimize existing JDBC applications. The 
pureQuery features allow you to optimize custom or packaged JDBC applications to execute SQL 
statements statically without a need to change the application in any way. 

7.1 Create a Java Project 

__1.  Switch your perspective to Java. Click menu Window  Open Perspective  Other… 
Click on Java and click OK.  

__2.  Create a new Java project. Click File  New  Java Project. Specify project name as 
pureQueryJDBC and click <Finish> to create the project. 

        

 
Note:   Please make sure that you type the name of the project exactly as given above.  

__3.  Specify name of the project as pureQueryJDBC and select radio button for Create separate 
folders for source and class files. Click <Finish> on this screen. 

__4.  In Windows explorer go to C:\POT_PDQ\07JDBC directory. 

__5.  Double click on JDBC01.CMD to copy JDBC02.java in the pureQueryJDBC java project. 

__6.  In Package Explorer view, select pureQueryJDBC project and hit F5 to refresh. 

 

__7.  Right click on pureQueryJDBC project, select pureQuery and Add pureQuery Support … 

 

 

Page 80 IBM Data Studio pureQuery For DBAs and Application Developers (v2.1) 



 IBM Software 

__8.  Select GSDB database and click <Next>. Use default schema GOSALES. Click <Finish> to add 
pureQuery support to the project. 

 

__9.  The project pureQueryJDBC is now enabled for the pureQuery. 

 

 

 

 

 

 

 

Lab 7 – pureQuery for JDBC Applications Page 81 



IBM Software  

7.2 SQL Profiling when source is available 
In this section, you will run SQL profiling for an existing Java application.  

__10.  Double click on JDBC02.java to open it in the editor. 

__11.  Go to the pureQuery Outline view and select Java tab at the bottom on the view. Click on refresh 
button and expand JDBC02.java under JDBC package.  

 

__12.  You will notice the line numbers where SQL is getting executed. This information is captured 
even though you have not run the program. 

__13.  Click on Toggle Profile button on the view to see the view for the SQL profiling. At this time, we 
will not see SQL profile data since we did not run the program. 

 

__14.  Right click within JDBC02.java program and select Run As  Run Configurations… 

   

Page 82 IBM Data Studio pureQuery For DBAs and Application Developers (v2.1) 



 IBM Software 

__15.  Click on pureQuery to select it first. Click on New launch configuration. You will see right 
hand side window populated with JDBC02.java information. 

    

__16.  Click on the Arguments tab and specify RPT and click Run to run the program. You will see 
following console. 

   

__17.  Go to the pureQuery Outline view and hit the refresh button. You will see a view similar as shown. 

 

Lab 7 – pureQuery for JDBC Applications Page 83 



IBM Software  

__18.  Click on menu Run  Run Configurations…. Click on Arguments tab and specify LST 
option. Click Run to run the program. 

  

__19.  Go to the pureQuery Outline view and hit the refresh button. You will see a view similar as shown. 

 

__20.  Click on menu Run  Run Configurations…. Click on Arguments tab and specify ADD 
TOOLS “This is a description”. Click Run to run the program. 

  

__21.  Go to the pureQuery Outline view and hit the refresh button. You will see a view similar as shown. 

 

Page 84 IBM Data Studio pureQuery For DBAs and Application Developers (v2.1) 



 IBM Software 

7.3 Optimization when source is available 
In this section, we will capture metadata to enable optimization using pureQuery. 

__22.  Click pureQueryJDBC project and hit ALT-ENTER to open properties. 

 

__23.  Click on pureQuery and select the check box for Enable SQL capturing and binding for 
JDBC applications.  

 

__24.  After we enable SQL capture, you will notice addition of 2 files in the java project as shown. 

  

__25.  We will be running this program using scripts given in C:\POT_PDQ\07JDBC so that you do not 
have to keep on modifying the program arguments for each and every step. This has been done 
for your convenience. This program uses JDBC calls to do SELECT, MERGE and DELETE against 
GOSALES.PRODUCT_NAME_LOOKUP table. We will run the program by using different test cases 
to capture SQL metadata through the command line. 

 

Lab 7 – pureQuery for JDBC Applications Page 85 



IBM Software  

7.3.1 Capture metadata 

__26.  Double click on pdq.properties to open it in an editor. It has pdq properties set to capture the 
SQL metadata. 

 

__27.  Go to Windows Explorer and navigate to C:\POT_PDQ\07JDBC and right click on JDBC03.CMD 
and click Edit. Review the contents of the file and close it.  

__28.  Double click on JDBC03.CMD to run the JDBC application with different test cases and to capture 
SQL metadata.  

 

__29.  Review JDBC03_OUTPUT.TXT file. This contains output from our custom JDBC application. 

__30.  Go to the Package Explorer and notice capture.pdqxml in pureQueryFolder. This file will 
contain SQL metadata when we run our custom JDBC application in the next step. (Press F5 to 
refresh your Package Explorer if you do not see this file.) 

     

Page 86 IBM Data Studio pureQuery For DBAs and Application Developers (v2.1) 



 IBM Software 

7.3.2 Browsing the captured metadata 

__31.  In the Package Explorer and hit F5 to refresh it. Expand folder pureQueryFolder and double 
click capture.pdqxml. You can view this file in two modes 1. In Edit mode and 2. In View 
Source mode.  

 In Edit mode. You can view each SQL statement captured and you can choose if you 
want to Bind that statement or not. You also have an ability to edit a SQL statement to 
replace original SQL statement with a new optimized without modifying the application. 
You can change the statement only to the extent where new SQL statement is equivalent 
to the original SQL if its input and output are identical. The new SQL statement is stored as 
a child node of the original statement.    

 Go ahead and modify SELECT count(CUST_CODE) statement to VALUES 100 where 
you replaced original statement with a fixed return value of 100.  

 

 In View Source mode  

 

Lab 7 – pureQuery for JDBC Applications Page 87 



IBM Software  

__32.  Navigate to the pureQuery Outline view. Explore the contents of the Java and SQL tabs to 
browse same information in different views. You will notice actual SQL statements now.   

 

 

__33.  You can do a number of activities on the SQL shown in the pureQuery Outline view. Right 
click on any SQL in any view to explore different actions. Try seeing explain plan for the MERGE 
statement used in the JDBC application. 

 

 

 

Page 88 IBM Data Studio pureQuery For DBAs and Application Developers (v2.1) 



 IBM Software 

__34.  The visual explain plan of the MERGE statement looks like following. 

 

__35.  You can double click the SQL statement or stack trace element to pen the source code in an 
editor window. The cursor will be positioned on the source line where the statement is being 
executed. 

 

Lab 7 – pureQuery for JDBC Applications Page 89 



IBM Software  

7.3.3 Configuring captured metadata 

__36.  Before captured metadata can be bound to a database in the form of a package, you will need to 
define the package properties. In the Package Explorer, make sure you are positioned in the 
pureQueryJDBC project, expand the folder pureQueryFolder and open the file 
Default.genProps by double clicking on it. Through this configuration file you can define 
package properties such as: 

 Package name prefix  
 Database collection id (or schema name containing package) 
 If packages are versioned  
 Maximum number of SQL statements that are to be included within a single package before 

a new one is created. 

__37.  In the pureQuery outline view, go to the SQL view. This view provides a preview of the packages 
that will be created based on the current configuration settings. You will notice the name of the 
package is [pureQu] and this name is selected since [-rootPkgName pureQu] is defined in the 
Default.genProps configuration file.  

__38.  Go and change this name to pureQueryJDBC in Default.genProps and save the 
configuration file. A warning will be displayed indicating that the configuration properties have 
been changed and a rebuild may be necessary. Click <Yes>. 

 

__39.  Go back to the SQL tab in the pureQuery Outline view and now you should see the package 
changed from [pureQu] to [pureQueryJDBC]. 

 

__40.  Go back to the Default.genProps file and if you hit <CTRL><SPACE> at the end of the line, 
you can see other options available. 

 

Page 90 IBM Data Studio pureQuery For DBAs and Application Developers (v2.1) 



 IBM Software 

__41.  Do not use any other property at this time and close the editor window containing 
Default.genProps file without saving it. 

__42.  Double click on the Default.bindProps file in pureQueryFolder in package explorer. To 
change the default options, enter defaultOptions= at the bottom of the file and hit 
<CTRL><SPACE> to invoke content assist and review the available options. Choose –
isolationLevel and set the value to CS. 

 

__43.  Save the file (CTRL-S) and now you are ready to bind the captured SQL statements to DB2. 

7.3.4 Binding captured SQL statements 

__44.  In the Package Explorer navigate to the pureQueryFolder and select capture.pdqxml by 
clicking on it. 

__45.  Right click on it and select pureQuery  Bind … The bind wizard is displayed prompting for a 
database connection. Select GSDB database to bind the captured SQL statements from 
capture.pdqxml file to DB2 database. 

 

__46.  Check console view for the message. 

 

 

Lab 7 – pureQuery for JDBC Applications Page 91 



IBM Software  

__47.  Navigate to the pureQuery Outline view and go to the SQL tab. Right click on pureQueryJDBC 
package and select Show in Data Source Explorer. 

 

 

__48.  Click on the Properties view to see the package characteristics.  

 

 

Note:   If you do not see Properties view, go to Window  Show View  Other … 
Expand General and click on Properties. 

7.3.5 Run Application using static SQL 

Let us recap what we have done so far: 

 Enabled the java project for pureQuery JDBC. 
 Captured the SQL statements by setting properties in  pdq.properties 
 Browsed the SQL statements and their associated metadata. Configured Default.genProps to 

set the rootPkgName. 
 Bound the package 

__49.  Now, you will modify pdq.properties to set properties so that the application runs in the static 
SQL mode. In the Package Explorer double click the pdq.properties file to open it in an 
editor.  

Page 92 IBM Data Studio pureQuery For DBAs and Application Developers (v2.1) 



 IBM Software 

__50.  Change the value of captureMode from ON to OFF to disable statement capturing. Change the 
default value for the executionMode from DYNAMIC to STATIC to enable static execution. 

 

__51.  Save the changes and go to the Windows Explorer and navigate to C:\POT_PDQ\07JDBC. 
Double click JDBC03.CMD to run the application and view the JDBC03_OUTPUT.TXT to view the 
output. 

 

7.4 Optimization when source is not available 

In this section you will use the pureQuery command line utilities to capture, configure and bind SQL that 
is issued in a java application for which you do not have the source. We will use same program assuming 
that we do not have source. 

Launch Command Prompt and change directory to C:\POT_PDQ\07JDBC 

 

 

 

 

Lab 7 – pureQuery for JDBC Applications Page 93 



IBM Software  

__52.  For this lab, 5 administration scripts have been created for you. 

JDBC04.JAR This is our custom application JAR file 

JDBC05.CMD This script runs the custom application as it is 

JDBC06.CMD 
This script runs the application for different test cases and  captures 
SQL statements and puts them in capture.pdqxml 

JDBC07.CMD This script configures capture.pdqxml file for binding purposes. 

JDBC08.CMD 
This script binds the SQL statements from capture.pdqxml to the 
database 

JDBC09.CMD This script runs the custom application in STATIC mode. 

 

 

Note:  These above mentioned scripts are not part of Data Studio. These scripts have been 
provided to you in this PoT as samples for you to customize your profile in your JDBC 
applications.  

7.4.1 Run custom JDBC application as it is 

__53.  At your command prompt, run JDBC05 to execute custom JDBC program as shown below. 

C:\POT_PDQ\07JDBC\>JDBC05 

7.4.2 Capture SQL metadata 

__54.  To capture the SQL statements that are being issued by our custom application, we will modify a 
few runtime environment settings for the application. 

 Include the required DB2 JCC driver and pureQuery JAR files. 
 Enable pureQuery capabilities in the JDBC driver. 

__55.  In your Windows Explorer, right click on file JDBC06.CMD and click on Edit to open this file to 
review settings changes. 

 

 

 

Page 94 IBM Data Studio pureQuery For DBAs and Application Developers (v2.1) 



 IBM Software 

__56.  Notice following highlighted changes that were added to capture the SQL statements from the 
custom JDBC application program. 

 

The JDBC06.CMD script is very similar to JDBC05.CMD that was used in the previous section. 
The Java classpath was updated to include the required pureQuery runtime JAR files and a 
db2.jcc.pdqProperties property was passed to the JVM. Through this property, we signaled to the 
DB2 JCC driver to start capturing the SQL and create a capture.pdqxml file to store the 
metadata. Now, run the script to capture the SQL. 

C:\POT_PDQ\07JDBC\>JDBC06 
 

 

Note:  In a real life scenario, one would exercise all known use cases to capture as much SQL 
as possible. However, here we are not using DELETE on purpose to show other things 
in lab later.  

7.4.3 Configuring SQL metadata 

__57.  The command line utilities support batch configuration and binding of the captured metadata. 
These utilities are implemented as Java classes packaged together in pureQuery runtime JAR 
files. View JDBC07.CMD file and this script invokes Configure utility and it assigns a package 
prefix and a collection ID or schema name for the package. 

 

__58.  Go ahead and run JDBC07.CMD to make changes in the capture.pdqxml file.  

C:\POT_PDQ\07JDBC\>JDBC07 

 

Lab 7 – pureQuery for JDBC Applications Page 95 



IBM Software  

__59.  The Configure command provides many other options and you can see the help by running the 
following command in your command shell window. (See JDBC10.CMD for command) 

 

7.4.4 Bind SQL metadata 

__60.  Open JDBC08.CMD to view it.  The bind utility processes the previously captured and configured 
metadata and creates one or more packages in the database. You are invoking the 
StaticBinder utility to bind SQL and its metadata from capture.pdqxml file. 

 

__61.  Go ahead and run JDBC08.CMD from the command prompt and you can see the package 
created through Data Studio. 

 

 

Page 96 IBM Data Studio pureQuery For DBAs and Application Developers (v2.1) 



 IBM Software 

__62.  There are many options available with the StaticBinder and you can run following command 
to see them. (See JDBC10.CMD for command) 

 

7.4.5 Run Packaged Application in STATIC SQL mode 

__63.  Open JDBC09.CMD in an editor and review the options to run this custom JDBC application in 
STATIC mode. 

 

__64.  You will notice that we have specified captureMode OFF and executionMode has been 
specified as STATIC and dynamicSQL are still allowed. 

__65.  Go ahead and run JDBC09. 

C:\POT_PDQ\07JDBC\>JDBC09 
 

 

Note:   How would you know if you are really using SQLs in static mode or not? 

[Hint: Drop package PDQCOL.CUSTREGP2 and run one of the above command. You should 
get SQL -805 error indicating that the package was not found.] After your test, run JDBC08 
command again to bind the package. 

__66.  Open JDBC11.CMD in an editor and review the options. Notice, we modified the 
allowDynamicSQL from true to false and will try to delete one of the product that we 
registered before. 

 
Remember:  We did not capture the DELETE statement. 

 

Lab 7 – pureQuery for JDBC Applications Page 97 



IBM Software  

Page 98 IBM Data Studio pureQuery For DBAs and Application Developers (v2.1) 

__67.  Go ahead and run JDBC11.CMD. 

C:\POT_PDQ\07JDBC\>JDBC11 
 

 

__68.  The problem you have just seen is an indication that the application issued an SQL statement 
that was not captured previously. The driver has thrown an exception because it was configured 
to run all SQL statements statically but encountered a SQL statement for which no metadata was 
previously captured. There are several solutions to the problem. 

 Repeat the process (capture, configure and bind) to capture the missing SQL and re-run 
the application in static SQL mode. 

__i.  You can re-run your application in capture mode and exercise the use cases that 
were missed during the previous capture iteration using either one of the following 
two property settings: 

captureMode(ON), executionMode(DYNAMIC) 
captureMode(ON), executionMode(STATIC), allowDynamicSQL(TRUE) 

__ii.  The process is defined to as incremental capture. After a subsequent re-
configuration and rebind operation the JDBC application should be able to 
execute its SQL statically. 

 Run the application in static SQL execution mode but allow dynamic SQL execution to 
avoid application failures. 

__i.  This solution avoids the issue of not having captured all SQL statements by 
allowing for the execution of SQL in dynamic mode. The only difference between 
this solution and the previous one is that no incremental capture is performed. 

captureMode(OFF), executionMode(STATIC), allowDynamicSQL(TRUE) 

__ii.  The driver will execute an SQL statement statically if it has been captured before 
execute it dynamically and capture it if execution succeeds. 

__69.  Complete the lab by applying one of the solutions shown above and verify successful execution 
of all 3 registration commands with property executionMode(STATIC). 

 

** End of Lab 7: pureQuery for JDBC Applications  

 

 
  



IBM Software 

Lab 8 – pureQuery Advanced Concepts Page 99 

Lab 8  pureQuery Advanced Concepts 

This lab demonstrates some of the advanced features of the pureQuery. The following topics are 
covered in this lab: 

 Generate JPA compliant XML for annotated method SQL statements.  
 Custom ResultHandler to return a XML data structure. 
 Custom ResultHandler to map ResultSet into HTML output 
 Custom ResultHandler to populate nested beans. 
 Use of Hook callback as a built in performance monitor.  

 

8.1 Generate JPA compliant XML  
In this section you will explore how annotated method SQL works in an XML file.  Using annotated 
method SQL in an XML file allows you to organize / isolate SQL accessor methods into separate 
interface files.  It also allows easy deployment of static SQL as well as allowing application metadata to 
be gathered, stored and registered. 

__1.  In the Package Explorer, expand apiDemo package in the pureQueryLabs project.  Double 
click on WebCatalogProduct.java to open it. 

 

__2.  To  generate XML for the WebCatalogProduct bean, right click anywhere within 
WebCatalogProduct.java and select  pureQuery  Generate XML 

 



IBM Software 

Page 100 IBM Data Studio pureQuery For DBAs and Application Developers (v2.1) 

__3.  The attributes from the bean WebCatalogProduct are exported to the orm.xml file and it is 
opened for you. Verify bean attributes in the orm.xml file. 

 

 

Note:  The orm.xml file is created in the pureQueryFolder under the pureQueryLabs 
project. Did you know that why we exported attributes of the bean first before we go to 
the next step? 

__4.  Open interface file  WebCatalogProductData.java and  right click anywhere within it and 
select  pureQuery  Generate XML. The SQLs defined in the interface are exported in the 
orm.xml file. This is a JPA compliant XML file and is also known as named query methods. 

 

 

8.2 Examples of the ResultHandler  

__5.  Navigate to the C:\POT_PDQ\08ADVANCED directory in Windows Explorer. Double click on file 
ADVANCED01.CMD to copy java source files from this directory in the Java project 
pureQuerylabs. 

 

 



IBM Software 

Lab 8 – pureQuery Advanced Concepts Page 101 

__6.  Select src folder in pureQueryLabs project in your package explorer and hit F5 to refresh the 
view. 

 

8.2.1 XML handler 

The pureQuery allows you to define your result set handler to customize results in any way 
suitable to you. The only method in the ResultHandler API is 
handle(java.sql.ResultSet arg0), a generic method that given a ResultSet will 
produce a new Java object of class <T>. Therefore, in order for us to create a custom 
ResultHandler, we must implement the handle(…) method. 

In the following example we will output to the console the Product Number, Name, Description, 
Cost and Image for a PID=1110. We will use the ResultHandler to format our output as 
XML. 

__7.  Open the MyXMLHandler.java class. We will not edit this file. 

 

Notice that the MyXMLHandler class implements ResultHandler of generic type String: 

 

The handle(…) method is executed when the query(…) method of the Data API is invoked.  
Within the handle(…) method, we form XML by formatting the column names as XML 
Elements and the column data as the XML Text: 

 



IBM Software 

Page 102 IBM Data Studio pureQuery For DBAs and Application Developers (v2.1) 

__8.  Double click on the WebCatalogProductXML.java and study how Resultset Handler has 
been used in the Query method. 

  

 

__9.  Right click anywhere in the WebCatalogProductXML.java and click on Run As  Java 
Application to run the program. You will see an output shown below: 

 

8.2.2 Nested bean handler 

__10.  Double-click on the CustomerOrder.java and this bean extends Cust_ord bean and 
contains Cust_ord_detl which contains details of the order. This bean represents one-to-
many relationship between Cust_ord and Cust_ord_detl. We do not need to edit this file. 

 



IBM Software 

Lab 8 – pureQuery Advanced Concepts Page 103 

__11.  Open custom result handler NestedCustomerOrderHandler.java. In it we declare a bean 
of CustomerOrder type and populate this through handle method which will be called by 
data APIs query method. 

__12.  Open NestedCustomerOrder.java and review following data API. 

 

__13.  Right click anywhere in NestedCustomerOrder.java and select Run As  Java 
Application. 

__14.  You should see results similar to one shown below.  

 

8.2.3 HTML table handler 

__15.  Open the HTMLHandler.java class in the editor.  It demonstrates the use of custom 
ResultHandler to format the output of a ResultSet in an HTML. The handler can be used 
with nearly any database query to format it into a displayable HTML representation of the query 
results. 

__16.  Open DisplayCatalogHTML.java. Right click anywhere in DisplayCatalogHTML.java 
and select Run As  Java Application. 

 



IBM Software 

Page 104 IBM Data Studio pureQuery For DBAs and Application Developers (v2.1) 

__17.  This will create an HTML file in the top level directory of the project.  Right click on 
pureQueryLabs project and click on <Refresh>.  Right click on WebCatalog.html file and 
select Open With  Web Browser and it will open in a browser, showing the HTML table. 

 

 

 



IBM Software 

Lab 8 – pureQuery Advanced Concepts Page 105 

8.3 Use of the Hook for built-in Performance Monitor 

The pureQuery API allows you to provide an exit to receive control before and after each 
method invocation.  This part of the lab uses that feature to implement a basic performance 
monitor.  The Hook exit that we will use exploits a capability in the IBM JDBC driver called the 
SystemMonitor.  It allows you to see how much time was spent in various parts of the 
processing like the driver, network and database server.  As each pureQuery operation is 
performed, these exits invoke the monitor and print the results to the console.  The exit could 
also be changed to print to a file. 

__18.  Open the SystemMonitorHook.java class in the editor.  However, as mentioned above, 
simple changes could be made to write the output to an external.  Notice that there are two 
methods:   A method named pre() which will be invoked before any pureQuery operation.  The 
other method named post() that will be invoked after each operation.  

In this Hook class, the pre() method enables and starts the JDBC SystemMonitor.  The 
post() method stops the monitor and prints the measurements. 

__19.  Open ShowPerformance.java program in an editor. To enable the Hook exits, we must 
register our SystemMonitorHook class with the Data object that will be used. 

 

__20.  Right click anywhere ShowPerformance.java and click using the Run As  Java 
Application. 

__21.  You will see an output similar to the one shown below: 

 

 

** End of pureQuery Lab 8: pureQuery Advanced Concepts 



IBM Software 

Appendix A. Notices 
This information was developed for products and services offered in the U.S.A.  

IBM may not offer the products, services, or features discussed in this document in other countries. 
Consult your local IBM representative for information on the products and services currently available in 
your area. Any reference to an IBM product, program, or service is not intended to state or imply that 
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or 
service that does not infringe any IBM intellectual property right may be used instead. However, it is the 
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.  

IBM may have patents or pending patent applications covering subject matter described in this 
document. The furnishing of this document does not grant you any license to these patents. You can 
send license inquiries, in writing, to:  

IBM Director of Licensing 
IBM Corporation 
North Castle Drive 
Armonk, NY 10504-1785 
U.S.A.  

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property 
Department in your country or send inquiries, in writing, to:  

IBM World Trade Asia Corporation 
Licensing 
2-31 Roppongi 3-chome, Minato-ku 
Tokyo 106-0032, Japan  

The following paragraph does not apply to the United Kingdom or any other country where such 
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES 
CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, 
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some 
states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this 
statement may not apply to you.  

This information could include technical inaccuracies or typographical errors. Changes are periodically 
made to the information herein; these changes will be incorporated in new editions of the publication. 
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this 
publication at any time without notice.  

Any references in this information to non-IBM Web sites are provided for convenience only and do not in 
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part 
of the materials for this IBM product and use of those Web sites is at your own risk. 

IBM may use or distribute any of the information you supply in any way it believes appropriate without 
incurring any obligation to you. 

Any performance data contained herein was determined in a controlled environment. Therefore, the 
results obtained in other operating environments may vary significantly. Some measurements may have 
been made on development-level systems and there is no guarantee that these measurements will be 
the same on generally available systems. Furthermore, some measurements may have been estimated 
through extrapolation. Actual results may vary. Users of this document should verify the applicable data 
for their specific environment.  

Page 106 IBM Data Studio pureQuery For DBAs and Application Developers (v2.1) 



IBM Software 

Information concerning non-IBM products was obtained from the suppliers of those products, their 
published announcements or other publicly available sources. IBM has not tested those products and 
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM 
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of 
those products. 

All statements regarding IBM's future direction and intent are subject to change or withdrawal without 
notice, and represent goals and objectives only. 

This information contains examples of data and reports used in daily business operations. To illustrate 
them as completely as possible, the examples include the names of individuals, companies, brands, and 
products. All of these names are fictitious and any similarity to the names and addresses used by an 
actual business enterprise is entirely coincidental. All references to fictitious companies or individuals are 
used for illustration purposes only. 

COPYRIGHT LICENSE:  

This information contains sample application programs in source language, which illustrate programming 
techniques on various operating platforms. You may copy, modify, and distribute these sample programs 
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing 
application programs conforming to the application programming interface for the operating platform for 
which the sample programs are written. These examples have not been thoroughly tested under all 
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these 
programs. 

Appendix Page 107 



IBM Software 

Page 108 IBM Data Studio pureQuery For DBAs and Application Developers (v2.1) 

Appendix B. Trademarks and copyrights 
The following terms are trademarks of International Business Machines Corporation in the United States, 
other countries, or both: 

IBM  AIX CICS ClearCase ClearQuest Cloudscape 

Cube Views DB2 developerWorks DRDA IMS IMS/ESA 

Informix Lotus Lotus Workflow MQSeries OmniFind System p 

Rational Redbooks Red Brick RequisitePro System i  

System z Tivoli WebSphere Workplace   

Adobe, Acrobat, Portable Document Format (PDF), and PostScript are either registered trademarks or 
trademarks of Adobe Systems Incorporated in the United States, other countries, or both. 

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the United States, other 
countries, or both and is used under license therefrom. 

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United 
States, other countries, or both. See Java Guidelines  

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the 
United States, other countries, or both.  

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel 
SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its 
subsidiaries in the United States and other countries. 

UNIX is a registered trademark of The Open Group in the United States and other countries.  

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both. 

ITIL is a registered trademark and a registered community trademark of the Office of Government 
Commerce, and is registered in the U.S. Patent and Trademark Office. 

IT Infrastructure Library is a registered trademark of the Central Computer and Telecommunications 
Agency which is now part of the Office of Government Commerce. 

Other company, product and service names may be trademarks or service marks of others. 



 

 



IBM Software

© 2009 IBM Corporation

 

 

 


	Cover
	Contents
	Lab 1 Introduction to Data Studio Developer
	1.1 Required Initial Setup
	1.2 Open Data Studio Developer
	1.3 Connect to a database and explore the tables
	1.4 Creating a table
	1.5 Debug a Stored Procedure

	Lab 2 Create pureQuery Project
	Introduction:
	2.1 Creating a new Java Project
	2.2 Enable Java project for pureQuery
	2.3 Enable Data Explorer View in Java project

	Lab 3 Explore pureQuery Tools
	3.1 Generate pureQuery code from database tables
	3.2 Quick overview and running the pureQuery Test Classes
	3.3 Explore pureQuery outline view
	3.4 Explore pureQuery context assist capabilities
	3.5 Generate pureQuery code for a SQL Procedure
	3.5.1 Calling a stored procedure

	3.6 Generate pureQuery code from SQL Scripts

	Lab 4 Explore pureQuery API
	Prerequisites:
	4.1 Practice Code Generation 
	4.2 Using Method-style Program
	Introduction:

	4.3 Using an Inline-style Program
	Introduction:


	Lab 5 Explore pureQuery Runtime
	5.1 Explore pureQuery Outline View
	5.2 Bind packages for a pureQuery project
	5.3 Turn Dynamic SQL into Static SQL
	5.4 Bind a single Interface using pureQuery Tools
	5.5 Bind Packages through Command Line
	5.6 DB2Binder command to REBIND a package
	5.7 Customize BIND options for DB2 packages

	Lab 6 pureQuery Explain
	Introduction:
	6.1 Explain Plan for SQLs in Java Programs
	6.2 Explain Plan for new methods
	6.3 Explain Plan with Different Query Optimization

	Lab 7 Optimize an existing JDBC Application using pureQuery
	7.1 Create a Java Project
	7.2 SQL Profiling when source is available
	7.3 Optimization when source is available
	7.3.1 Capture metadata
	7.3.2 Browsing the captured metadata
	7.3.3 Configuring captured metadata
	7.3.4 Binding captured SQL statements
	7.3.5 Run Application using static SQL

	7.4 Optimization when source is not available
	7.4.1 Run custom JDBC application as it is
	7.4.2 Capture SQL metadata
	7.4.3 Configuring SQL metadata
	7.4.4 Bind SQL metadata
	7.4.5 Run Packaged Application in STATIC SQL mode


	Lab 8 pureQuery Advanced Concepts
	8.1 Generate JPA compliant XML 
	8.2 Examples of the ResultHandler 
	8.2.1 XML handler
	8.2.2 Nested bean handler
	8.2.3 HTML table handler

	8.3 Use of the Hook for built-in Performance Monitor

	Appendices

