Fibre Channel HBA API

SNIA FC Working Group
HBA API Subgroup
Chair: Benjamin F. Kuo,
Troika Networks, Inc.

1.0
9/11/2000

 Version | Date B l Author
1.0 9/11/2000 1.0 Final Benjamin Kuo

HBA API Proposal 1 9/14/00

B ON -

(070] 01 (o101 (o] =N 4

T 1o [8 o3 1] o IR 5
HBA APTIMOGEL ...ttt ettt e et e e ettt e ettt e e e mt et e e sne e e e e anbeee e et e e snneeeeaneneeeanns 6
HBA Information DefinitioNScooueiiiiiiie ettt sttt e et e e et e e saeeeeeaneeeeeanes 7
4.1 HBA Information DefiNItIONSccoiuiiiiiiie et e e 7
411 Adapter AHDULES ...t e e e e e e e e e e e e e e e aannas 9
4.1.2 o] Nt 1oV (= TP UURPR 10
4.1.3 POt StatiStiICSeeeieii et e e e e e e e e e nnraea e e e e nneae 11
414 POrt FCP AIIDULES ..ottt e e et e e e e e e e aeeeaeennees 12
4.1.5 FC-3 Management AttriDULESooiiiiii e 13
4.2 Data Structures DEfiMItIONooiiiiiiii e 13
421 HANAIE 10 DIBVICE. ... ettt ettt et e st e e st e e e st e e e enneeeesaneeean 13
4.2.2 Status RetUMN ValIUBSoiiiii ettt et e e e e e e aneeeennes 13
423 Port Operational MOAES VAIUEScocooiiiiiiiiii et e e e erane e e e e e 13
424 Class Of SEIVICE ValUESeiiiiiiie ettt e e e e e et e e e e e e e anneaeeeeenn 14
4.2.5 FCATYPES VAIUEScoiieiiie ettt ettt et e et e e e e s b e e e e et e e e 14
42.6 [F T (o Y o1 PSRRI 14
4.2.7 Adapter AHIDULES ...t e et e e e e e e e e e e e e e e e eeeeeeas 14
428 POIE ALIHDULES ... ettt e e e et e e e e neee s 15
429 0] = (£ o7 PR S 15
4.2.10 POrt FCP AHMDULES ...ttt s e e eenee e e 15
4211 FC-3 Management ArTDULESuviiiiiic e e 16
4212 HBA Library FUNCION Table ... 17
HBA CoMMON AP ettt oottt e e e e ettt et e e e e e e e s aaeeeeaaeeeaannnseeeeaaeeaaseeeaaeaaaannes 18
5.1 OVEIVIEW ...ttt ettt e ettt e e e oottt et e e e e e e e s taeeeaeeeaaamaneeeeeaaeeaannnseeeeaaeeaaannsbeneaesannnnnneeeaaaan 18
5.1.1 General Vendor-Implemented FUNCHONSooiiiiiiiiiiii e 18
51.2 Informational FUNCHONS.oooiii e e 18
51.3 FC-3 Management FUNCHONS............ooiiiiiiiiiiiie ettt e e e e e e e e e n e e e e e e eaaas 19
514 FCP Information FUNCHONSoiiiiiiieeiiie et e et 19
5.1.5 SCSI INformation FUNCHONSoiiiiiiiiiiiiii et e et e e 20
5.1.6 (7] a1 17e] I ¥ {313 (o] o - TSP SRR 20
HBA Common API REFEIENCEttt e e e e e e e e e e eeee e annees 21
6.1 HBA_UINT32 HBA _GEtVEISION(); . rveeeaueeeeiaiiieaaiieeeeeteeeseieeeesteeeessaeaessnseeaaasneeaeansseeesanseeaeanseeeens 21
6.2 HBA_STATUS HBA_RegisterLibrary(PHBA_ENTRYPOINTS HBAINfO);ccevivieeiiiiieiieeeeciieene 24
6.3 HBA_UINT32 HBA_GetNumberOfAdapters(); ... uueeerrrieiieee ettt 25
6.4 HBA_STATUS HBA_GetAdapterName(UINT32 adapterindex, char *adaptername);..................... 26
6.5 HBA_HANDLE HBA_OpenAdapter(char* adaptername);.........ccccccuviiereiiiieciiiiieiee e 27
6.6 void HBA_ CloseAdapter(HBA_HANDLE handl€);cccuiiiiieiieeiciieiee et 28
6.7 HBA_STATUS HBA_GetAdapterAttributes(HBA_HANDLE handle, PHBA_ADAPTERATTRIBUTES
E= o E=T o] (=] =T (4] o UL (Y= PSP PUPRRR 29
6.8 HBA_STATUS HBA_GetAdapterPortAttributes(HBA_HANDLE handle, HBA_UINT32 portindex,
HBA_PORTATTRIBUTES *PpOrtattribDUtES);.....cceieiieeeiiiie et e e e e e eneee s 30
6.9 HBA_STATUS HBA_GetPortStatistics(HBA_HANDLE handle, HBA_UINT32 portindex,
HBA_PORTSTATISTICS *POrtStatiStiCS); ...eeeieeiieiiieiiie ettt e e e bana e 31
6.10 HBA_STATUS HBA_GetDiscoveredPortAttributes(HBA_HANDLE handle, HBA_UINT32
portindex, HBA_UINT32 discoveredportindex, HBA_PORTATTRIBUTES *portattributes); 32
6.11 HBA_STATUS HBA_GetPortAttributesByWWN(HBA_HANDLE handle, HBA_WWN PortWWN,
HBA_PORTATTRIBUTES *PportattribDUtES);.....cceiviieeeiiiie ettt e e e e e ea e enaee s 33
6.12 void HBA_Refreshinformation(HBA_HANDLE handle);ccccoiiiiiiiniiiiec e 34
6.13 void HBA_ResetStatistics(HBA_HANDLE handle, HBA_UINT32 portindex);..........cccoecvveeerinneeenn 35
6.14 HBA_STATUS HBA_GetFcpTargetMapping(HBA_HANDLE handle,
PHBA_FCPTARGETMAPPING MaPPING); --+teeettteeeeatuteeiteeeeaitteeeeateeessmeeeesanseeesanseeesaneeeesnnseessanseeessnnees 36
6.15 HBA_STATUS HBA_GetFcpPersistentBinding(HBA_HANDLE handle, PHBA_FCPBINDING
o1 Lo 13T) SO PP 37
6.16 HBA_STATUS HBA_GetEventBuffer(HBA_HANDLE handle, PHBA_EVENTINFO EventBuffer,
HBA_UINT32 *EVENtBUIEISIZE);eee ittt 38
6.17 HBA_STATUS HBA_SendCTPassThru(HBA_HANDLE handle, void * pReqBuffer, HBA_UINT32
ReqBufferSize, void * pRspBuffer, HBA_UINT32 RspBUFferSize);cocceviiiiiiieeec e 39
6.18 HBA_STATUS HBA_SetRNIDMgmtinfo(HBA_HANDLE handle, HBA_ MGMTINFO info); 40
6.19 HBA_STATUS HBA_GetRNIDMgmtinfo(HBA_HANDLE handle, HBA_MGMTINFO *pinfo); 41

HBA API Proposal 2 9/14/00

6.20 HBA_STATUS HBA_SendRNID (HBA_HANDLE handle, HBA_WWN wwn, HBA_ WWNTYPE
wwntype, void * pRspBuffer, HBA_UINT32 *RspBUferSize);cocciiiiiiiiiii e 42
6.21 HBA_STATUS HBA_SendScsilnquiry (HBA_HANDLE handle, HBA_WWN PortWWN,
HBA_UINT64 fcLUN, void * pRspBuffer, HBA_UINT32 RspBufferSize, void * pSenseBuffer, HBA_UINT32

SENSEBUIEISIZE); ..cei ittt e e e e e ettt e e e e e e s ataeeeeaee e e st araeeeaaanaraeeeaaeeeaanre 44
6.22 HBA_STATUS HBA_SendReportLUNs (HBA_HANDLE handle, HBA_WWN portWWN, void *
pRspBuffer, HBA_UINT32 RspBufferSize, void * pSenseBuffer, HBA_UINT32 SenseBufferSize); 45

6.23 HBA_STATUS HBA_SendReadCapacity (HBA_HANDLE handle, HBA_WWN portWWN,
HBA_UINT64 fcLUN, void * pRspBuffer, HBA_UINT32 RspBufferSize, void * pSenseBuffer,

HBA_UINT32 SeNSEBUFErSIZE); ..oeeiiiiiiieieee e 46
7 Appendix A: Multi Vendor Interoperability 47

71

7.2
8 Appendix B: Naming, Handles and Their Usage ...ttt 49
9 Appendix C: FUtUre ENNANCEMENTSc.coiiiiiiiiiiiie et e e e e e s e e e e e e e e ennraaaeeeean 50
10 E] 1= =Y (o7 SRR 51

HBA API Proposal 3 9/14/00

1 Contributors

Companies instrumental in helping to define this API include:

Agilent Technologies
Emulex Corporation
JNI Corporation
QLogic Corporation
Troika Networks, Inc.

I'd like to thank the following individuals for their contributions to shaping this paper:

Duane Baldwin, Tivoli Systems

David Chambiliss, IBM Research Division

Don Deel, Prisa Networks

Mike Dutch, Troika Networks Inc.
Jeff Goldner, Microsoft

Ying Ping Lok, Qlogic Corporation
Tuan Lam, Qlogic Corporation
Alan Land, JNI Corporation

Chris Mercier, Intersan

Arun Mittal, Qlogic Corporation
Bob Nixon, Emulex Corporation
le Wei Njoo, Agilent Technologies
Darrell Smith, JNI Corporation
Predrag Spasic, Hewlett Packard
Bill Terrell, Troika Networks Inc.
Paul Timmins, StorageNetworks
Dan Willie, Emulex Corporation
Steve Wilson, Brocade

HBA API Proposal

9/14/00

2 Introduction

A Fibre Channel Host Bus Adapter is a piece of hardware, typically on a host system and sometimes
embedded on a RAID controller or other storage device, which interfaces a system to the Fibre Channel
Network. An adapter can support multiple FC-4 types, including FCP-SCSI, IPFC, and FC-VI.

The problem exists today where, in order to operate, upper level software applications require information
which is not available from host bus adapters in a consistent manner across operating systems, vendors,
and platforms, and in some cases not at all.

Current workarounds to this problem have been HBA vendor specific; that is, when a software application
needs access to certain Fibre Channel parameters (i.e. WWN or attached LUNSs), special drivers or OS
specific calls have had to be utilized to get to this information. This results in long qualification times, difficult
integration across platforms, and inconsistency between HBA vendors. This makes implementation of SAN
applications almost impossible for upper level software applications in an efficient and consistent manner.

Current existing CIM level models, although useful for management, are at a much higher level than this
proposal which is targeted at providing lower level operational information to applications. This information is
a superset of the current CIM model and should be migrated over the long term into the CIM model.

This is a proposal to adopt a low level, consistent HBA standard interface for accessing information in a
Fibre Channel Storage Area Network, which would be implemented across vendors as a standard 'C' API
supported by vendor specific library instances.

Some specific operations which an HBA API needs to support are:
= Ability to query local HBA properties and port information
Ability to correlate a WWN of a device to the local SCSI address
Ability to discover the WWNs of discovered end nodes
Ability to query properties of discovered end nodes
Ability to retrieve LUN mappings of an HBA

HBA API Proposal 5 9/14/00

3 HBA API Model

The HBA APl is a single C-style library interface. At the upper level, a common HBA library provides the
ability to handle multiple vendor implementations of the HBA API through dynamic loading of libraries. At the
intermediate level, an identical but vendor-provided library provides vendor-specific implementations of the
HBA API. Calls at the common HBA library API are identical in form to the Vendor Implemented HBA
Libraries at the API interface, but implementation of how to provide information to the APl is left to each
vendor.

L| Applications
|
:.....‘..............
. . HBA API
Y . a .
i . . DS'ShpeF'ﬂ': All supported host bus
(',:) = = ::E':U;Enég{gg Select HBA adapters are accessed
5 . . , . - using a single interface
= . . load specific Libraries to cormrmon functions
= . . HBA libraries
- + + [S
" " " Vendor API
S = 2 — || N = Wendors support a
2 = = o i P common APl to
4 = = o o o vendor-specific HBA
e o o L L L lirary implementations
= £ £ a = =
i S5
. A
Ty

Fram one ar more vendors

HBA API Proposal 6 9/14/00

4 HBA Information Definitions

All Fibre Channel HBAs have certain information in common, regardless of manufacturer. Upper level

applications need access to this information, which needs to be presented in a consistent manner.

4.1 HBA Information Definitions

Overview:

Adapter Attributes
Manufacturer
Serial Number
Model
Model Description
Node WWN
Node Symbolic Name
Hardware Version
Driver Version
Option ROM Version
Firmware Version
Vendor Specific ID
Number Of Ports
Driver Name

Port Attributes
Node WWN
Port WWN
Port Symbolic Name
Port Fcld
Port Type (Point-to-Point, N-port, L-port, NL-port)
Port State
Port Supported Class of Service
Port Supported Fc4Types
Port Active Fc4Types
Port Supported Speed
Port Speed
Port Max Frame Size
OS Device Name
Number of Discovered Ports
Fabric Name

Port Statistics
Seconds Since Statistics Reset
TxFrames
RxFrames
TxWords
RxWords
LIPCount
NOSCount
ErrorFrames
DumpedFrames
LinkFailureCount
LossOfSyncCount
LossOfSignalCount
PrimitiveSeqgProtocolErrCount
InvalidTxWordCount
InvalidCRCCount

Port FCP Attributes
Node WWN
Port WWN
Fcld
FcpLun
OSDeviceName
ScsiBusNumber
ScsiTargetNumber
ScsiOSLun
FCP Binding Type

HBA API Proposal

9/14/00

FC-3 Management Attributes
WWN
unittype
Portld
NumberOfAttachedNodes
IPVersion
UDPPort
IPAddress
TopologyDiscoveryFlags
TimeStamp
EventCode

HBA API Proposal 8 9/14/00

411 Adapter Attributes

4111 Manufacturer

The Manufacturer is an ASCII string indicating the manufacturer of an HBA. This attribute is a null-
terminated ASCII string with length from 1 to 64 bytes (including the null).

Example:
Emulex

41.1.2 Serial Number

The Serial Number is an ASCII string indicating the serial number of an HBA. This attribute is a null-
terminated ASCII string with length from 1 to 64 bytes (including the null).

Example:
A012345

4113 Model

The Model is a textual description of the model. This attribute is a null-terminated ASCII string with length
from 1 to 256 bytes (including the null).

Example:
QLA2200

4114 Model Description

The Model Description is a longer textual description of the model. This attribute is a null-terminated ASCI|
string with length from 1 to 256 bytes (including the null).

Example:
Agilent Tachlite Fibre Channel Adapter

41.1.5 Node WWN
The Node WWN is an 8 byte value indicating the Node WWN of this HBA.

41.1.6 Node Symbolic Name

The Node Symbolic Name is a null terminated ASCII string corresponding to the Fibre Channel Node
Symbolic Name. This attribute is a null-terminated ASCII string with length from 1 to 256 bytes (including the
null).

4117 Hardware Version

The Hardware Version is a vendor specific null terminated ASCII string indicating the hardware revision
level of the HBA. This string may differ from manufacturer to manufacturer, and cannot be parsed.

4118 Driver Version

The Driver Version is a vendor specific string indicating the driver version controlling this HBA. This string
may differ from manufacturer to manufacturer, and cannot be parsed. This attribute is a null-terminated
ASCII string with length from 1 to 256 bytes (including the null).

4119 Option ROM Version

The Option ROM Version is a vendor specific ASCII string indicating the option ROM or BIOS version of the
HBA, if any. This string may differ from manufacturer to manufacturer, and cannot be parsed. This attribute
is a null-terminated ASCII string with length from 1 to 256 bytes (including the null).

HBA API Proposal 9 9/14/00

4.1.1.10 Firmware Version

The Firmware Version is a vendor specific ASCII string indicating the firmware version of the HBA, if any.
This string may differ from manufacturer to manufacturer, and cannot be parsed. This attribute is a null-
terminated ASCII string with length from 1 to 256 bytes (including the null).

41111 Vendor Specific ID
The Vendor Specific ID is a vendor specific field.

4.1.1.12 Number of Ports
The Number of Ports is the number of ports on this adapter.

4.1.1.13 Driver Name

The Driver Name is an ASCII string denoting the file name for the the driver binary file. In the case of some
operating systems that implement a generic driver name (such as Driver.o in Unixware) an absolute path
could be included in the driver name. This attribute is a null-terminated ASCII string with length from 1 to
256 bytes (including the null).

Example:

For NT 4.0 or Win2000 environment, it is the SCSI miniport driver name for the HBA. For example,
AFCW2K.SYS is the name of the binary file for the SCSI miniport for the Agilent FC HBA.

For UnixWare that uses generic driver name Driver.o, the full/absolute path could be used.
Example: /etc/conf/pack.d/Agilent/Driver.o

4.1.2 Port Attributes

41.21 Node WWN

The Node WWN is an 8-byte value corresponding to the Fibre Channel Node WWN associated with this
port.

41.2.2 Port WWN
The Port WWN is an 8-byte value corresponding to the Fibre Channel Port WWN of this port.

41.2.3 Port Symbolic Name

The Port Symbolic name is a null terminated ASCII string which corresponds to the Fibre Channel Port
Symbolic Name. This attribute is a null-terminated ASCII string with length from 1 to 256 bytes (including the
null).

4124 PortFcld
The Port Fcld is a 3-byte identifier which corresponds to the current Fibre Channel address of the port.

41.2.5 Port Type
The Port Type is an enumerated type which corresponds to the current operational mode of the port.

41.2.6 Port State
The Port State is an enumerated type which corresponds to the current state of the port.

41.2.7 Port Supported Class of Service
The supported Class of Service is a bitmask of the supported class of service of this port.

41.2.8 Port Supported Fc4Types
The PortSupportedFc4Types is a bitmask of the supported FC4 types of this port.

HBA API Proposal 10 9/14/00

41.29 Port Active Fc4Types
The PortActiveFc4Types is a bitmask of the current FC4 types on this port.

4.1.2.10 Port Supported Speed
The PortSupportedSpeed is a bitmask of the supported speeds of this interface.

4.1.211 Port Speed
The Port Speed is a bitmask of the current speed of the interface.

41.212 Port Max Frame Size
The Port Max Frame Size is the maximum frame size of this port.

4.1.213 OS Device Name

The OS Device Name is a null terminated ASCII string describing the device name that this port is visible
from on the operating system, if known. This attribute is a null-terminated ASCII string with length from 1 to
256 bytes (including the null).

4.1.2.14 Number Of Discovered Ports

For a local port, the number of discovered ports that this port can communicate with. For discovered ports
this value is not used.

4.1.2.15 Fabric Name
The WWN for the fabric to which the port is attached, if known.

4.1.3 Port Statistics

4.1.31 SecondsSincelLastReset
SecondsSincelLastReset is number of seconds since the statistics were last reset.

41.3.2 TxFrames
TxFrames is number of total Transmitted Fibre Channel frames across all protocols and classes.

41.3.3 RxFrames
RxFrames is the number of total Received Fibre Channel frames across all protocols and classes.

4134 TxWords
TxWords is the number of total Transmitted Fibre Channel words across all protocols and classes.

4.1.3.5 RxWords
RxWords is the number of total Received Fibre Channel words across all protocols and classes.

41.3.6 LIPCount
LIPCount is the number of LIP events that have occurred on a arbitrated loop.

4.1.3.7 NOSCount
NOSCount is the number of NOS events that have occurred on the switched fabric.

4.1.3.8 ErrorFrames
ErrorFrames is the number of frames which have been received in error.

41.3.9 DumpedFrames
DumpedFrames is the number of frames which were dumped due to a lack of host buffers available.

HBA API Proposal 11 9/14/00

4.1.3.10 LinkFailureCount
LinkFailureCount is the number of times a link error has occurred.

41.3.1 LossOfSyncCount
LossOfSyncCount is the number of times loss of synch has occurred.

4.1.3.12 LossOfSignalCount
LossOfSignalCount is the number of times loss of signal has occurred.

4.1.3.13 PrimitiveSeqProtocolErrCount
Primitive Sequence Protocol Error Count is the number of primitize sequence protocol errors.

4.1.3.14 InvalidTxWordCount
InvalidTxXWordCount is the number of invalid transmitted words.

4.1.3.15 Invalid CRC Count
InvalidCRCCount is the number of frames received with invalid CRC.

41.4 Port FCP Attributes

4.1.41 Node WWN
The Node WWN of the end device.

4.1.4.2 Port WWN
The Port WWN of the end device.

4143 Fcld
The Fcld of the device in a binding context.

4144 FcpLun
The full FC Lun value of this device.

4.1.4.5 OSDeviceName

The device name of this LUN as presented at the operating system, if known. This attribute is a null-
terminated ASCII string with length from 1 to 256 bytes (including the null).

41.4.6 ScsiBusNumber
The SCSI bus number of this LUN as presented at the operating system, if known.

41.4.7 ScsiTargetNumber
The SCSI Target Number of this LUN as presented to the operating system.

4148 ScsiOSLun
The operating system LUN this FC LUN is presented as to the operating system.

41.4.9 FCP Binding Type
The type of binding - to the WWN or to the Fcld of this LUN.

HBA API Proposal 12 9/14/00

41.5 FC-3 Management Attributes

41.51 WWN
Corresponds with RNID WWN field, indicating the world wide name of this node.

41.5.2 unittype
Corresponds with RNID unit type field, describing the type of equipment this HBA represents.

4153 Portld
Corresponds with RNID Port ID field.

41.54 NumberOfAttachedNodes
Corresponds with RNID Number of Attached Nodes field.

4.1.5.5 IPVersion

Corresponds with the RNID IP Version field, indicating whether the following IP address is a IPv4 or IPv6
address.

41.5.6 UDPPort
Corresponds with the RNID UDP Port field, indicating the management UDP port.

41.5.7 IPAddress
Corresponds to the RNID IP address field, indicating the management IP address.

41.5.8 TopologyDiscoveryFlags
Corresponds to the RNID Topology Discovery Flags field.

4159 TimeStamp

Time Stamp contains a time stamp of events received from the adapter. This value is the number of
seconds since the last driver reboot when the event occurred.

41.510 EventCode
Event Code contains an event code describing the event that occurred.

4.2 Data Structures Definition

4.2.1 Handle to Device
typedef HBA UINT32 HBA HANDLE;

4.2.2 Status Return Values
typedef HBA UINT32 HBA STATUS;

#define HBA STATUS_ OK

#define HBA STATUS ERROR

#define HBA STATUS ERROR _NOT SUPPORTED
#define HBA STATUS ERROR INVALID HANDLE
#define HBA STATUS ERROR ARG

#define HBA STATUS ERROR ILLEGAL WWN
#define HBA STATUS ERROR TLLEGAI, INDEX
#define HBA STATUS ERROR MORE DATA

/* Error */

/* Function not supported.*/
/* invalid handle */

/* Bad argument */

/* WWN not recognized */

/* Index not recognized */
/* Larger buffer required */

<ok WD EHEOo

4.2.3 Port Operational Modes Values

typedef HBA UINT32 HBA PORTTYPE;

HBA API Proposal 13 9/14/00

#define HBA PORTTYPE UNKNOWN 1 /* Unknown */

#define HBA PORTTYPE OTHER 2 /* Other */

#define HBA PORTTYPE NOTPRESENT 3 /* Not present */

#define HBA PORTTYPE NPORT 5 /* Fabric */

#define HBA PORTTYPE NLPORT 6 /* Public Loop */

#define HBA PORTTYPE FLPORT 7

#define HBA PORTTYPE FPORT 8 /* Fabric Port */

#define HBA_PORTTYPE_EPORT 9 /* Fabric expansion port */
#define HBA PORTTYPE GPORT 10 /* Generic Fabric Port */
#define HBA_PORTTYPE_LPORT 20 /* Private Loop */
#define HBA PORTTYPE PTP 21 /* Point to Point */

typedef HBA UINT32 HBA PORTSTATE;

#define HBA PORTSTATE UNKNOWN 1 /* Unknown */
#define HBA_ PORTSTATE_ONLINE 2 /* Operational */
#define HBA PORTSTATE OFFLINE 3 /* User Offline */
#define HBA PORTSTATE BYPASSED 4 /* Bypassed */
#define HBA PORTSTATE_DIAGNOSTICS 5 /* In diagnostics mode */
#define HBA PORTSTATE LINKDOWN 6 /* Link Down */
#define HBA PORTSTATE ERROR 7 /* Port Error */
#define HBA PORTSTATE LOOPBACK 8 /* Loopback */
typedef HBA UINT32 HBA PORTSPEED;

#define HBA PORTSPEED 1GBIT 1 /* 1 GBit/sec */
#define HBA PORTSPEED 2GBIT 2 /* 2 GBit/sec */
#define HBA PORTSPEED 10GBIT 4 /* 10 GBit/sec */

4.2.4 Class of Service Values

typedef HBA_UINT32 HBA_COS;
See GS-2 Spec.

4.2.5 Fc4Types Values

typedef struct HBA_fc4types {

HBA_UINTS bits[32]; /* 32 bytes of FC-4 per GS-2 */
} HBA_FCATYPES, *PHBA_FCATYPES;
See GS-2 Spec.

4.2.6 Basic Types

typedef struct HBA_wwn {
HBA_UINT8 wwn[8];
} HBA_WWN, *PHBA_WWN;

typedef struct HBA ipaddress {
int ipversion;
union

{

/I see enumerations in RNID

unsigned char ipv4address[4];
unsigned char ipv6address[16];
} ipaddress;
} HBA_IPADDRESS, *PHBA_IPADDRESS;

4.2.7 Adapter Attributes
typedef struct HBA_AdapterAttributes {

HBA API Proposal 14

9/14/00

char Manufacturer[64]; [*Emulex */

char SerialNumber[64]; I* A12345 */

char Model[256]; * QLA2200 */

char ModelDescription[256]; /* Agilent TachLite */

HBA_WWN NodeWWN;

char NodeSymbolicName[256]; /* From GS-2 */

char HardwareVersion[256]; /* Vendor use */

char DriverVersion[256]; /* Vendor use */

char OptionROMVersion[256]; /* Vendor use - i.e. hardware boot ROM*/
char FirmwareVersion[256]; /* Vendor use */

HBA_UINT32 VendorSpecificlD; /* Vendor specific */

HBA_UINT32 NumberOfPorts;

char DriverName[256]; /* Binary path and/or name of driver file. */

} HBA_ADAPTERATTRIBUTES, *PHBA_ADAPTERATTRIBUTES;

4.2.8 Port Attributes
typedef struct HBA_PortAttributes {

HBA_WWN NodeWWN;

HBA_WWN PortWWN;

HBA_UINT32 PortFcld;

HBA_PORTTYPE PortType; [*PTP, Fabric, etc. */
HBA_PORTSTATE PortState;

HBA_COS PortSupportedClassofService;
HBA_FCATYPES PortSupportedFc4Types;

HBA_FCATYPES PortActiveFc4 Types;

char PortSymbolicName[256];

char OSDeviceName[256]; /* \device\ScsiPort3 */
HBA_PORTSPEED PortSupportedSpeed;

HBA_PORTSPEED PortSpeed;

HBA_UINT32 PortMaxFrameSize;

HBA_WWN FabricName;

HBA_UINT32 NumberofDiscoveredPorts;

} HBA_PORTZ\TTRIBUTES, *PHBA_PORTATTRIBUTES;

4.2.9 Port Statistics

typedef struct HBA_PortStatistics {

HBA_INT64 SecondsSincelLastReset;
HBA_INT64 TxFrames;

HBA_INT64 TxWords;

HBA_INT64 RxFrames;

HBA_INT64 RxWords;

HBA_INT64 LIPCount;

HBA_INT64 NOSCount;

HBA_INT64 ErrorFrames;
HBA_INT64 DumpedFrames;
HBA_INT64 LinkFailureCount;
HBA_INT64 LossOfSyncCount;
HBA_INT64 LossOfSignalCount;
HBA_INT64 PrimitiveSeqProtocolErrCount;
HBA_INT64 InvalidTxWordCount;
HBA_INT64 InvalidCRCCount;

} HBA_PORTSTATISTICS, *PHBA_PORTSTATISTICS;
4.2.10 Port FCP Attributes

typedef enum HBA_fcpbindingtype { TO_D_ID, TO_WWN } HBA_FCPBINDINGTYPE;

typedef struct HBA_Scsild {

HBA API Proposal 15 9/14/00

char OSDeviceName[256]; /* \device\ScsiPort3 */

HBA_UINT32 ScsiBusNumber; /* Bus on the HBA */
HBA_UINT32 ScsiTargetNumber; /* SCSI Target ID to OS */
HBA_UINT32 ScsiOSLun;

} HBA_SCSIID, *PHBA_SCSIID;

typedef struct HBA_Fcpld {

HBA_UINT32 Feld;
HBA_WWN NodeWWN;
HBA_WWN PortWWN;
HBA_UINT64 FepLun;

} HBA_FCPID, *PHBA_FCPID;

typedef struct HBA_FcpScsiEntry {
HBA_SCSIID Scsild;
HBA_FCPID Fcpld;

} HBA_FCPSCSIENTRY, *PHBA_FCPSCSIENTRY;

typedef struct HBA_FCPTargetMapping {
HBA_UINT32 NumberOfEntries;

HBA_FCPSCSIENTRY entry[1]; /* Variable length array containing mappings*/

} HBA_FCPTARGETMAPPING, *PHBA_FCPTARGETMAPPING;

typedef struct HBA_FCPBindingEntry {
HBA_FCPBINDINGTYPE type;
HBA_SCSIID Scsild;
HBA_FCPID Fepld;

} HBA_FCPBINDINGENTRY, *PHBA_FCPBINDINGENTRY;

typedef struct HBA_FCPBinding {
HBA_UINT32 NumberOfEntries;

HBA_FCPBINDINGENTRY entry[1]; /* Variable length array */
} HBA_FCPBINDING, *PHBA_FCPBINDING;

4.2.11 FC-3 Management Atrributes

typedef enum HBA_wwntype { NODE_WWN, PORT_WWN } HBA_WWNTYPE;

typedef struct HBA_Mgmtinfo {

HBA_WWN wwn;

HBA_UINT32 unittype;

HBA_UINT32 Portld;

HBA_UINT32 NumberOfAttachedNodes;

HBA_UINT16 IPVersion;

HBA_UINT16 UDPPort;

HBA_UINT8 IPAddress[16];

HBA_UINT16 reserved;

HBA_UINT16 TopologyDiscoveryFlags;
} HBA_MGMTINFO, *PHBA_MGMTINFO;
#define HBA_EVENT_LIP_OCCURRED 1
#define HBA_EVENT_LINK_UP 2
#define HBA_EVENT_LINK_DOWN 3
#define HBA_EVENT_LIP_RESET_OCCURRED 4
#define HBA_EVENT_RSCN 5
#define HBA_EVENT_PROPRIETARY OxFFFF

typedef struct HBA_Link_Eventinfo {
HBA_UINT32 PortFcld; /* Port which this event occurred */
HBA_UINT32 Reserved[3];

} HBA_LINK_EVENTINFO, *PHBA_LINK_EVENTINFO;

HBA API Proposal 16

9/14/00

typedef struct HBA_RSCN_Eventinfo {
HBA_UINT32 PortFcld; /* Port which this event occurred */
HBA_UINT32 NPortPage; /* Reference FC-FS for
RSCN ELS "Affected N-Port Pages"*/
HBA_UINT32 Reserved|[2];
} HBA_RSCN_EVENTINFO, *PHBA_RSCN_EVENTINFO;

typedef struct HBA_Pty Eventinfo {
HBA_UINT32 PtyData[4]; /* Proprietary data */
}HBA_PTY_EVENTINFO, *PHBA_PTY_EVENTINFO;

typedef struct HBA_Eventinfo {
HBA_UINT32 EventCode;
union {
HBA_LINK_EVENTINFO Link_Eventinfo;
HBA_RSCN_EVENTINFO RSCN_Eventinfo;
HBA_PTY_EVENTINFO Pty _Eventinfo;
} Event;
} HBA_EVENTINFO, *PHBA_EVENTINFO;

4.2.12 HBA Library Function Table

typedef HBA_UINT32 (* HBAGetVersionFunc)();

typedef HBA_STATUS (* HBALoadLibraryFunc)();

typedef HBA_STATUS (* HBAFreeLibraryFunc)();

typedef HBA_UINT32 (* HBAGetNumberOfAdaptersFunc)();

typedef HBA_STATUS (* HBAGetAdapterNameFunc)(HBA_UINT32, char*);

typedef HBA_HANDLE (* HBAOpenAdapterFunc)(char*);

typedef void (* HBACloseAdapterFunc)(HBA_HANDLE);

typedef HBA_STATUS (* HBAGetAdapterAttributesFunc)(HBA_HANDLE,
PHBA_ADAPTERATTRIBUTES);

typedef HBA_STATUS (* HBAGetAdapterPortAttributesFunc)(HBA_HANDLE, HBA_UINT32,
PHBA_PORTATTRIBUTES);

typedef HBA_STATUS (* HBAGetPortStatisticsFunc)(HBA_HANDLE, HBA_UINT32,
PHBA_PORTSTATISTICS);

typedef HBA_STATUS (* HBAGetDiscoveredPortAttributesFunc)(HBA_HANDLE, HBA_UINT32,
HBA_UINT32, PHBA_PORTATTRIBUTES);

typedef HBA_STATUS (* HBAGetPortAttributesByWWNFunc)(HBA_HANDLE, HBA_WWN,
PHBA_PORTATTRIBUTES);

typedef HBA_STATUS (* HBASendCTPassThruFunc)(HBA_HANDLE, void *, HBA_UINT32, void *,

HBA_UINT32);
typedef void (* HBARefreshInformationFunc)(HBA_HANDLE);
typedef void (* HBAResetStatisticsFunc)(HBA_HANDLE, HBA _UINT32);

typedef HBA_STATUS (* HBAGetFcpTargetMappingFunc) (HBA_HANDLE,
PHBA_FCPTARGETMAPPING);

typedef HBA_STATUS (* HBAGetFcpPersistentBindingFunc) (HBA_HANDLE, PHBA_FCPBINDING);
typedef HBA_STATUS (* HBAGetEventBufferFunc)(HBA_HANDLE, PHBA_EVENTINFO, HBA_UINT32

);
typedef HBA_STATUS (* HBASetRNIDMgmtinfoFunc) (HBA_HANDLE, PHBA_MGMTINFO);
typedef HBA_STATUS (* HBAGetRNIDMgmtinfoFunc)(HBA_HANDLE, PHBA_MGMTINFO);
typedef HBA_STATUS (* HBASendRNIDFunc) (HBA_HANDLE, HBA_WWN, HBA_WWNTYPE, void *,
HBA_UINT32 *);
typedef HBA_STATUS (* HBASendScsilnquiryFunc)
(HBA_HANDLE,HBA_WWN,HBA_UINT64,HBA_UINT8, HBA_UINT32, void *, HBA_UINT32,void
*HBA_UINT32);
typedef HBA_STATUS (* HBASendReportLUNsFunc) (HBA_HANDLE, HBA_WWN,void *,
HBA_UINT32,void *,HBA_UINT32);
typedef HBA_STATUS (* HBASendReadCapacityFunc) (HBA_HANDLE, HBA_WWN,HBA_UINT64,
void *, HBA_UINT32,void *,HBA_UINT32);

typedef struct HBA_EntryPoints {

HBA API Proposal 17 9/14/00

} HBA_ENTRYPOINTS, *PHBA_ENTRYPOINTS;

HBAGetVersionFunc
HBALoadLibraryFunc
HBAFreeLibraryFunc
HBAGetNumberOfAdaptersFunc
HBAGetAdapterNameFunc
HBAOpenAdapterFunc
HBACIloseAdapterFunc
HBAGetAdapterAttributesFunc
HBAGetAdapterPortAttributesFunc
HBAGetPortStatisticsFunc
HBAGetDiscoveredPortAttributesFunc
HBAGetPortAttributesByWWNFunc
HBASendCTPassThruFunc
HBARefreshinformationFunc
HBAResetStatisticsFunc
HBAGetFcpTargetMappingFunc
HBAGetFcpPersistentBindingFunc
HBAGetEventBufferFunc
HBASetRNIDMgmtinfoFunc
HBAGetRNIDMgmtinfoFunc
HBASendRNIDFunc
HBASendScsilnquiryFunc
HBASendReportLUNsFunc
HBASendReadCapacityFunc

5 HBA Common API

5.1 Overview

The following functions are available in the API for managing a Fibre Channel HBA. This API would be
exposed to upper level applications to control SAN functionality.

5.1.1

General Vendor-Implemented Functions

GetVersionHandler;
LoadLibraryHandler;
FreelLibraryHandler;
GetNumberOfAdaptersHandler;
GetAdapterNameHandler;
OpenAdapterHandler;
CloseAdapterHandler;
GetAdapterAttributesHandler;
GetAdapterPortAttributesHandler;
GetPortStatisticsHandler;
GetDiscoveredPortAttributesHandler;
GetPortAttributesByWWNHandler;
SendCTPassThruHandler;
RefreshinformationHandler;
ResetStatisticsHandler;
GetFcpTargetMappingHandler;
GetFcpPersistentBindingHandler;
GetEventBufferHandler;
SetRNIDMgmtinfoHandler;
GetRNIDMgmtinfoHandler;
SendRNIDHandler;
ScsilnquiryHandler;
ReportLUNsHandler;
ReadCapacityHandler;

HBA STATUS HBA RegisterLibrary (PHBA ENTRYPOINTS entrypoints) ;

HBA UINT32 HBA GetVersion() ;

HBA STATUS HBA LoadLibrary() ;

HBA STATUS HBA Freelibrary() ;

HBA UINT32

HBA STATUS

HBA HANDLE HBA OpenAdapter (

char* adaptername

)i

void HBA CloseAdapter (

5.1.2

HBA HANDLE handle
)i

Informational Functions

HBA STATUS HBA GetAdapterAttributes(

HBA HANDLE handle,

HBA ADAPTERATTRIBUTES *hbaattributes

)i

HBA API Proposal

HBA GetNumberOfAdapters() ;

HBA GetAdapterName (HBA UINT32 adapterindex,

18

char *adaptername) ;

9/14/00

HBA STATUS HBA GetAdapterPortAttributes (
HBA HANDLE handle,
HBA UINT32 portindex,
HBA PORTATTRIBUTES *portattributes
)i

HBA STATUS HBA GetPortStatistics(

HBA HANDLE handle,
HBA UINT32 portindex,
HBA PORTSTATISTICS *portstatistics,

)i

HBA STATUS HBA GetDiscoveredPortAttributes (

HBA HANDLE handle,

HBA UINT32 portindex,

HBA UINT32 discoveredportindex,
HBA PORTATTRIBUTES *portattributes
)i

HBA STATUS HBA GetPortAttributesByWWN (
HBA HANDLE handle,
HBA WWN POTrtWWN,
HBA PORTATTRIBUTES *portattributes
)i

5.1.3 FC-3 Management Functions

HBA STATUS HBA SendCTPassThru (
HBA HANDLE handle,
void * pReqgBuffer,
HBA UINT32 ReqgBufferSize,
void * pRspBuffer,
HBA UINT32 RspBufferSize
) ;

HBA STATUS HBA GetEventBuffer(
HBA HANDLE handle,
PHBA EVENTINFO EventBuffer,
HBA UINT32 *EventCount) ;

HBA API HBA STATUS HBA SetRNIDMgmtInfo(
HBA HANDLE handle,
HBA MGMTINFO *pInfo);

HBA API HBA STATUS HBA GetRNIDMgmtInfo(
HBA HANDLE handle,
HBA MGMTINFO *pInfo);

HBA STATUS HBA SendRNID (
HBA HANDLE handle,
HBA WWN wwn,
HBA WWNTYPE wnntype,
void * pRspBuffer,
HBA UINT32 *RspBufferSize
)

5.1.4 FCP Information Functions
HBA STATUS HBA GetFcpTargetMapping (

HBA API Proposal 19

9/14/00

HBA HANDLE handle,
PHBA FCPTARGETMAPPING mapping;

)i

HBA STATUS HBA GetFcpPersistentBinding (

5.1.5

HBA HANDLE handle,
PHBA FCPBINDING binding

)i

SCSI Information Functions

HBA STATUS HBA SendScsiInquiry (

HBA HANDLE handle,

HBA WWN POrtWWwN,

HBA UINTé64 fcLUN,

HBA UINT8 EVPD,

HBA UINT32 PageCode,

void * pRspBuffer,

HBA UINT32 RspBufferSize,
void * pSenseBuffer,

HBA UINT32 SenseBufferSize);

HBA STATUS HBA SendReportLUNs (

HBA HANDLE handle,

HBA WWN portWWwN,

void * pRspBuffer,

HBA UINT32 RspBufferSize,
void * pSenseBuffer,

HBA UINT32 SenseBufferSize

)i

HBA STATUS HBA SendReadCapacity (

5.1.6

HBA HANDLE handle,

HBA WWN portWWN,

HBA UINTé64 fcLUN,

void * pRspBuffer,

HBA UINT32 RspBufferSize,
void * pSenseBuffer,

HBA UINT32 SenseBufferSize

)i

Control Functions

void HBA RefreshInformation (HBA HANDLE handle) ;

void HBA ResetStatistics (HBA HANDLE handle, HBA UINT32

HBA API Proposal 20

portindex) ;

9/14/00

6 HBA Common API Reference

6.1 HBA_UINT32 HBA_GetVersion();

Description
Returns the version which the common HBA API library is compatible with.

Arguments
None.

Return Values
A return value of 1 indicates version 1 of this API. No other return value is
currently valid.

Example
HBA UINT32 version;
version = HBA GetVersion() ;

printf ("Running version %d of the HBA API library.", version);

HBA API Proposal 21 9/14/00

6.2 HBA_STATUS HBA_LoadLibrary();

Description
Loads the HBA Library. Must be called before calling any HBA library
functions.

Arguments
None.

Return Values
A return value of HBA_STATUS_OK indicates the library loaded properly.
A return value of HBA _STATUS_ ERROR indicates a problem with
loading.

Example
HBA STATUS status;

status = HBA LoadLibrary() ;

printf ("Successfully loaded HBA library.\n");

HBA API Proposal 22 9/14/00

6.3 HBA_STATUS HBA_FreeLibrary();

Description
Frees the HBA Library. Must be called after all HBA library functions to
free all resources.

Arguments
None.

Return Values
A return value of HBA_STATUS_OK indicates the library was able to free
all resources. A return value of HBA STATUS ERROR indicates a
problem with freeing resources.

Example
HBA STATUS status;

status = HBA FreeLibrary() ;

printf ("Successfully freed HBA library.\n");

HBA API Proposal 23 9/14/00

6.4 HBA_STATUS HBA_RegisterLibrary(PHBA_ENTRYPOINTS HBAInfo);

Description

Registers a specific vendor implementation of this library with the common

API. This is only implemented for a vendor library and called by the
Common HBA API layer.

Arguments

HBAInfo.

Return Values

A library should return HBA_STATUS_OK for calls to this function.

Example

/* Initialize pointers to our versions of the common HBA API */

HBA ENTRYPOINTS HBAInfo;

memset (&HBAInfo, 0, sizeof (HBA INFO)) ;

HBAInfo
HBAInfo
HBAInfo
HBAInfo.
HBAInfo.
HBAInfo
HBAInfo
HBAInfo
HBAInfo

.GetVersionHandler = MYGetVersion;
.GetNumberOfAdaptersHandler = MYGetNumberOfAdapters;
.GetAdapterNameHandler = MYGetAdapterName;

OpenAdapterHandler = MYOpenAdapter;
CloseAdapterHandler = MYCloseAdapter;

.GetAdapterAttributesHandler = MYGetAdapterAttributes;
.GetAdapterPortAttributesHandler = MYGetAdapterPortAttributes;
.GetPortStatisticsHandler = MYGetPortStatistics;
.GetDiscoveredPortAttributesHandler =

MYGetDiscoveredPortAttributes;

HBAInfo.
HBAInfo.
HBAInfo
HBAInfo
HBAInfo
HBAInfo
HBAInfo.
HBAInfo
HBAInfo.
HBAInfo
HBAInfo.
HBAInfo.

GetPortAttributesByWWNHandler = MYGetPortAttributesByWWN;
RefreshInformationHandler = MYGetRefreshInformation;

.InitiateLIPHandler = NULL; /* Not supported */
.GetFcpTargetMappingHandler = NULL;
.GetFcpPersistentBindingHandler = NULL;
.GetEventBufferHandler = NULL;

SetRNIDMgmtAddressHandler= NULL;

.GetRNIDMgmtAddressHandler = NULL;

SendRNIDHandler= NULL;

.ScsiInquiryHandler= NULL;

ReportLUNsHandler= NULL;
ReadCapacityHandler= NULL;

return HBA STATUS OK;

HBA API Proposal

24 9/14/00

6.5 HBA_UINT32 HBA_GetNumberOfAdapters();

Description
Returns the number of HBAs supported by the library. This returns the
current number of HBAs, even if this changes.

Arguments
None.

Return Values
This function returns the number of adapters supported by this library. If
no adapters are supported, the library should return O.

Example

HBA UINT32 version;

int 1i;

HBA STATUS status;

char adaptername [256] ;

number of adapters = HBA GetNumberOfAdapters() ;

for (i = 0; 1 < number of adapters; i++) {

status = HBA GetAdapterName (i, &adaptername) ;
if (status == HBA STATUS OK) {
printf ("Adapter %d is named %s\r\n", i, adaptername) ;

HBA API Proposal 25 9/14/00

6.6 HBA_STATUS HBA_GetAdapterName(UINT32 adapterindex, char
*adaptername);

Description

Returns the text string which describes this adapter and which is used to
open the adapter with the library.

Arguments
adapterindex The index to which adapter to retrieve the name.
adaptername A text description, used to open an adapter as well as

for a human-readable identification of an adapter

instance in the form:
mfg-model-adapterindex

Examples:
glogic-qla2200-1
troika-zentai-1
emulex-Ip8000-1
agilent-tachlite-1
jni-emerald-1

Return Values
This function returns HBA_STATUS_OK on success, and returns the
string corresponding to the index of adapter in adaptername.

Example

HBA UINT32 version;

int 1i;

HBA STATUS status;

char adaptername[256];

number of adapters = HBA GetNumberOfAdapters() ;

for (1 = 0; i < number of adapters; i++) {

status = HBA GetAdapterName (i, &adaptername) ;
if (status == HBA STATUS OK) {
printf ("Adapter %d is named %s\r\n", i, adaptername) ;

HBA API Proposal 26 9/14/00

6.7 HBA_HANDLE HBA_OpenAdapter(char* adaptername);

Description
Opens a named adapter. By opening an adapter, an upper level

application is ensuring that all access to an HBA_HANDLE between an
open and a close is to the same adapter. An HBA_OpenAdapter does not

necessarily imply a driver "open", which is vendor implementation

dependent.

Arguments

adaptername A text description of an adapter as retrieved from

HBA GetAdapterName.

Return Values

This function returns a valid HBA_HANDLE on success, 0 on failure.

Example

int 1i;

HBA STATUS status;

HBA HANDLE adapterhandle;
char adaptername[256];

number of adapters = HBA GetNumberOfAdapters() ;

for (1 = 0; i < number of adapters; i++) {
status = HBA GetAdapterName (i, &adaptername) ;
if (status == HBA STATUS OK) {

adapterhandle = HBA OpenAdapter (adaptername) ;
if (adapterhandle != NULL) ({

printf ("Successfully opened %$s\r\n",adaptername) ;

HBA CloseAdapter (adapterhandle) ;

HBA API Proposal 27

9/14/00

6.8 void HBA_CloseAdapter(HBA_HANDLE handle);

Description
Closes an open adapter.

Arguments
handle HBA_HANDLE to a previously opened adapter.

Return Values
None.

Example

adapterhandle = HBA OpenAdapter (adaptername) ;

if (adapterhandle != NULL) ({
printf ("Successfully opened %$s\r\n",adaptername) ;
HBA CloseAdapter (adapterhandle) ;

HBA API Proposal 28 9/14/00

6.9 HBA_STATUS HBA_GetAdapterAttributes(HBA_HANDLE handle,
PHBA_ADAPTERATTRIBUTES adapterattributes);

Description
Retrieves the attributes for an adapter.

Arguments
handle HBA_HANDLE to a previously opened adapter.

Return Values
HBA_GetAdapterAttributes returns HBA_STATUS_OK if it is able to
retrieve the attributes of an adapter.

HBA_ADAPTERATTRIBUTES includes:

Manufacturer
SerialNumber
Model
ModelDescription
NodeWWN
NodeSymbolicName
HardwareVersion
DriverVersion
OptionROMVersion
FirmwareVersion
VendorSpecificlD
NumberOfPorts
DriverName

Example
HBA STATUS status;
HBA ADAPTERATTRIBUTES adapterattributes;
status = HBA GetAdapterAttributes (adapterhandle, &adapterattributes);

printf ("Manufacturer: %$s\r\n", adapterattributes.Manufacturer) ;
printf ("Serial Number: %s\r\n", adapterattributes.SerialNumber) ;

HBA API Proposal 29 9/14/00

6.10 HBA_STATUS HBA_GetAdapterPortAttributes(HBA_HANDLE handle,
HBA_UINT32 portindex, HBA_PORTATTRIBUTES *portattributes);

Description
Retrieves the attributes for a specified port on an adapter.

Arguments
handle HBA_HANDLE to a previously opened adapter.
portindex index of the port to query.

Return Values
HBA GetAdapterPortAttributes returns HBA _STATUS OKifitis able to
retrieve the attributes of a port on an adapter.

HBA_PORTATTRIBUTES includes:

NodeWWN

PortWWN

PortFcld

PortType

PortState
PortSupportedClassofService
PortSupportedFc4Types
PortActiveFc4Types
OSDeviceName
PortSpeed
NumberofDiscoveredPorts
PortSymbolicName
PortSupportedSpeed
PortMaxFrameSize
FabricName

Example

HBA STATUS status;
HBA ADAPTERATTRIBUTES adapterattributes;
HBA PORTATTRIBUTES portatt ributes;

status = HBA GetAdapterAttributes (adapterhandle, &adapterattributes);
for (i = 0; 1 < adapterattributes.NumberOfPorts; i++) {

status = HBA GetAdapterPortAttributes(adapterhandle, i,
&portattributes) ;

if (status == HBA STATUS OK) {

printf ("Port %d has a Port FcID of %d",
i, portattributes.PortFcId) ;

HBA API Proposal 30 9/14/00

6.11 HBA_STATUS HBA_GetPortStatistics(HBA_HANDLE
handle, HBA_UINT32 portindex, HBA PORTSTATISTICS
*portstatistics);

Description
Retrieves the statistics for a specified port on an adapter.

Arguments
handle HBA_HANDLE to a previously opened adapter.
portindex index of the port to query.

Return Values
HBA GetPortStatistics returns HBA _STATUS_ OK if it is able to retrieve
the statistics of a port on an adapter. If an HBA does not support a specific
statistic it should return return an All-Ones unsigned integer.

HBA_PORTSTATISTICS includes:

SecondsSincelLastReset
TxFrames

TxWords

RxFrames

RxWords

LIPCount

NOSCount

ErrorFrames
DumpedFrames
LinkFailureCount
LossOfSyncCount
LossOfSignalCount
PrimitiveSeqProtocolErrCount
InvalidTxWordCount
InvalidCRCCount

Example
HBA STATUS status;
HBA PORTSTATISTICS portstats;

status = HBA GetPortStatistics(adapterhandle, portindex,
&portstats) ;

if (status == HBA STATUS OK) {

printf ("Port %d has sent %d frames.",
portindex, portstats.TxFrames) ;

HBA API Proposal 31 9/14/00

6.12 HBA_STATUS HBA_GetDiscoveredPortAttributes(HBA_HANDLE
handle, HBA_UINT32 portindex, HBA_UINT32 discoveredportindex,
HBA_PORTATTRIBUTES *portattributes);

Description
Retrieves the attributes for a specified port discovered in the network.

Arguments
handle HBA_HANDLE to a previously opened adapter.
portindex index of the port to query.
discoveredportindex index of the discovered port to query

Return Values
HBA_GetDiscoveredPortAttributes returns HBA_STATUS_OK if it is able
to retrieve the attributes of a port discovered on a network.

HBA_PORTATTRIBUTES includes:

NodeWWN

PortWWN

PortFcld

PortType

PortState
PortSupportedClassofService
PortSupportedFc4Types
PortActiveFc4Types
OSDeviceName
PortSpeed
NumberofDiscoveredPorts
PortSymbolicName
PortSupportedSpeed
PortMaxFrameSize
FabricName

In the case of HBA_GetDiscoveredPortAttributes
NumberOfDiscoveredPorts is always 0.

Example

HBA STATUS status;
HBA PORTATTRIBUTES portattributes;

/* Get the attributes for the first discovered port
on first adapter port */
status = HBA GetDiscoveredPortAttributes (handle, 1, 1, &portattributes);
if (status == HBA STATUS OK) {
printf ("Port 1 on Adapter Port 1 has a Port FcID of %d4d",
portattributes.PortFcId) ;

HBA API Proposal 32 9/14/00

6.13 HBA_STATUS HBA_GetPortAttributesByWWN(HBA_HANDLE handle,
HBA_WWN PortWWN, HBA_PORTATTRIBUTES *portattributes);

Description
Retrieves the attributes for a specific discovered port by WWN.

Arguments
handle HBA_HANDLE to a previously opened adapter.
PortWWN WWN of the port to find.
portattributes HBA PORTATTRIBUTES structure to fill in.

Return Values
HBA_GetPortAttributesByWWN returns HBA_STATUS_OK if it is able to
retrieve the attributes of a port given its Port WWN.

Example

HBA API Proposal 33 9/14/00

6.14 void HBA_Refreshinformation(HBA_HANDLE handle);

Description
Refreshes information about an HBA.

Arguments
handle Handle to an open HBA.

Return Values
None.

Example

HBA RefreshInformation (adapterhandle) ;
status = HBA GetPortStatistics(adapterhandle, portindex,
&portstats) ;

HBA API Proposal 34 9/14/00

6.15 void HBA_ResetStatistics(HBA_HANDLE handle, HBA_UINT32
portindex);

Description
Reset statistics information on an HBA.

Arguments
handle Handle to an open HBA.

Return Values
None.

Example

HBA ResetStatistics (adapterhandle, portindex) ;
printf ("Reset statistics for adapter %d", portindex) ;

HBA API Proposal 35 9/14/00

6.16 HBA_STATUS HBA_GetFcpTargetMapping(HBA_HANDLE handle,
PHBA_FCPTARGETMAPPING mapping);

Description
Retrieves the mapping between FCP targets and OS SCSI information.

Arguments
handle Handle to an open HBA.
mapping Pointer to an HBA_FCPTARGETMAPPING structure.

The size of this structure is dependent on the
NumberOfEntries value within the structure, and can
be of arbitrary size. An upper level application can
either allocate a sufficiently large buffer and check
this value after a read, or do a read of the
NumberOfEntries value separately and allocate a new
buffer given the size to accommodate the entire
mapping structure.

Return Values
Return is HBA_STATUS_OK if the HBA is able to retrieve the information.
mapping contains the full mapping information of local SCSI LUNs to FCP
LUNSs for this HBA.

The value of the NumberOfEntries field of the returned structure will be the
total number of mappings the HBA has established even when the

function returns an error because the buffer is too small to return all of
them.

Example

HBA API Proposal 36 9/14/00

6.17 HBA_STATUS HBA_GetFcpPersistentBinding(HBA_HANDLE handle,
PHBA_FCPBINDING binding);

Description
Get persistent bindings between an FCP target and a SCSI ID.

Arguments
handle Handle to an open HBA.
binding Pointer to a HBA_FCPBINDING structure.

The size of this structure is dependent on the
NumberOfEntries value within the structure, and can
be of arbitrary size. An upper level application can
either allocate a sufficiently large buffer and check
this value after a read, or do a read of the
NumberOfEntries value separately and allocate a new
buffer given the size to accommodate the entire
mapping structure.

Return Values
Return is HBA_STATUS_OK if the HBA is able to retrieve the information.
binding contains the full binding information for of local SCSI LUNs to FCP
LUNSs for this HBA.

The value of the NumberOfEntries field of the returned structure will be the
total number of persistent bindings the HBA has established even when

the function returns an error because the buffer is too small to return all of
them.

Example

HBA API Proposal 37 9/14/00

6.18 HBA_STATUS HBA_GetEventBuffer(HBA_HANDLE handle,
PHBA_EVENTINFO EventBuffer, HBA_UINT32 *EventCount);

Description
Remove and return the next events from the HBA's event queue. The number of
events returned will be the lesser of the value of argument EventBufferSize at
call and the number of entries available in the event queue.

This provides a simple polled interface to a basic set of HBA-detected events.
An improved method of notification is intended for an early subsequent version of
this API.

The event queue internal implementation is not constrained but its behavior is a
circular queue of event records (structure HBA_EVENTINFO) which represent
RSCN, link status, or other events. Event records are added as events occur
and removed in order of occurrence as any application gets them. The size of
the queue is implementation dependent. If the queue becomes full, any newly
added records will replace the oldest records, causing the oldest records to be
lost. If multiple applications make overlapping sequences of
HBA_GetEventBuffer calls, the available events will each be delivered to only
one of the applications. The exact distribution is not predictable, but the
sequence of events delivered to any application will still be strictly in order of
event occurrence.

NOTE: The arrival of an RSCN ELS will be treated as a separate event for each
"Affected N-Port ID Page" carried by the RSCN.

Arguments
handle Handle to an open HBA.
EventBuffer Pointer to a buffer to receive events.
EventCount Number of event records in the buffer to receive events.

Set to the size (in event records) of the buffer for receiving
events on call, and returned as the number of events
actually delivered.
Return Values
Return is HBA_STATUS_OK if the HBA is able to retrieve the information.

Example

HBA API Proposal 38 9/14/00

6.19 HBA_STATUS HBA_SendCTPassThru(HBA_HANDLE handle, void *
pReqBuffer, HBA_UINT32 ReqBufferSize, void * pRspBuffer,
HBA_UINT32 RspBufferSize);

Description

Send a CT passthrough frame. An HBA should decode this CT_IU request
per the FS-GS3 specification, routing the CT frame in a fabric according to
the GS_TYPE field within the CT frame.

Arguments
handle Handle to an open HBA.
pReqBuffer Pointer to a buffer containing the full CT frame.
ReqBufferSize Size of the buffer of the send buffer in bytes.
pRspBuffer Pointer to a buffer containing the received CT frame.

RspBufferSize Size of the buffer for the received CT frame in bytes.
Return Values
Return is HBA_STATUS_OK if the HBA is able to execute the command.

Example

HBA API Proposal 39 9/14/00

6.20 HBA_STATUS HBA_SetRNIDMgmtinfo(HBA_HANDLE handle,
HBA_MGMTINFO info);

Description
Sets the RNID (Request Node Identification Information Data) returned
from the HBA.

Arguments
handle Handle to an open HBA.
info Management information.

Buffer Offset Size (Bytes) Description (Big Endian Format)

0 16 WWN (left justified)

16 4 Unit Type

20 4 Port ID

24 4 Number of Attached Nodes

28 2 IP Version

30 2 UDP Port Number

32 16 IP Address

48 2 Reserved

50 2 Topology Discovery Flags
52 Total Request Size in bytes

Return Values
Return is HBA _STATUS OK if the HBA is able to set the information.

Example

HBA API Proposal 40 9/14/00

6.21 HBA_STATUS HBA_GetRNIDMgmtinfo(HBA_HANDLE handle,

HBA_MGMTINFO *pinfo);
Description

Returns the RNID (Request Node Identification Information Data) from the

HBA.
Arguments
handle Handle to an open HBA.
plnfo Pointer to buffer in Big Endian format.

Return Values

Return is HBA _STATUS_OK if the HBA is able to retrieve the information.

The response buffer has the following format:

Buffer Offset Size (Bytes) Description (Big Endian Format)

0 16 WWN (left justified)

16 4 Unit Type

20 4 Port ID

24 4 Number of Attached Nodes

28 2 IP Version

30 2 UDP Port Number

32 16 IP Address

48 2 Reserved

50 2 Topology Discovery Flags
52 Total Request Size in bytes

Example

HBA API Proposal

41

9/14/00

6.22 HBA_STATUS HBA_SendRNID (HBA_HANDLE handle, HBA_WWN
wwn, HBA_WWNTYPE wwntype, void * pRspBuffer, HBA_UINT32
*RspBufferSize);

Description

Issues an ELS RNID (Request Node Identification Data) to another node.

Arguments
handle Handle to an open HBA.
wwn Fabric address of a device's name
wwntype The type of this address.
pRspBuffer Response buffer in Big Endian format.
RspBufferSize On call, set to length of pRspBuffer. On return, returns

the size of data written to pRspBuffer.

Return Values
Return is HBA _STATUS_OK if the HBA is able to retrieve the information.

Response Buffer Format:

Buffer Offset Size (Bytes) Description (Big Endian Format)
0 1 Node Ildentification Data Format
1 1 Common Node Identification Data Length (0 or 16)
2 1 Reserved
3 1 Specific Node Identification Data Length = 52
4 0 or16 Common Node Identification Data
4 or 20 52 Specific Node Identification Data
56 or 72 Total Request Size in bytes

When the Common Node Identification Data Length indicates that Common Node Identification Data exists,
the field shall contain the unit's Worldwide Names (Port Name and Node Name) as follows:

Size in Bytes Format (Big Endian)
8 Port Name
8 Node Name

The Specific Node Identification Data for DataFmt = DFh (Topology Discovery) is as follows:

Size in Bytes Format (Big Endian)
16 Global ID (left justified)
4 Unit Type
4 Physical Port Number
4 Number of Attached Nodes
2 IP Version
2 UDP Port Number
16 IP Address
2 Reserved
2 Topology Discovery Flags

HBA API Proposal 42 9/14/00

Unit Type is defined as follows:

Value (hex) Type (Big Endian)
00000001 Unknown
00000002 Other (none of the following)
00000003 Hub
00000004 Switch
00000005 Gateway
00000006 Converter
00000007 HBA
00000008 Proxy-agent
00000009 Storage Device (disk, CD, tape, etc)
0000000A Host
0000000B Storage subsystem (raid, library, etc)
0000000C Module (subcomponent of a system)
0000000D Software Driver

00000000 Reserved
0000000E
through
FFFFFFFF

IP Version is defined as follows:

Value (hex) Version Description (Big Endian)
0000 None
0001 IP (IP version 4)
0002 IP6 (IP version 6)
3 Reserved
through
FFFF

Topology Discovery Flags are defined as follows:

Bit 0 Topology discovery Support (T): When set, the node supports further topology-discovery inquires.

Bit 1 Loop Position Valid (L): When set and multiple nodes are reported, the value signals that the Node
Identification Data records reported are in the order detected from the successful execution of a
Loop Initialization Report Primitive.

HBA API Proposal 43 9/14/00

6.23 HBA_STATUS HBA_SendScsilnquiry (HBA_HANDLE handle,
HBA_WWN PortWWN, HBA_UINT64 fcLUN, HBA_UINT8 EVPD,
HBA_UINT32 PageCode, void * pRspBuffer, HBA_UINT32
RspBufferSize, void * pSenseBuffer, HBA_UINT32 SenseBufferSize);

Description
Sends a SCSI inquiry to a remote WWN.

Arguments

handle Handle to an open HBA.

PortWWN Port WWN of an HBA

fcLUN Specific FC Lun to send the inquiry to.

EVPD Set to 0 to return the standard SCSI INQUIRY data.
Set to 1 to return the vital product data specified by
the page code.

PageCode If EVPD is 1, the Vital Product Data page code to
request.

pRspBuffer Pointer to a buffer to receive the response

RspBufferSize Size of the buffer to receive response

pSenseBuffer Pointer to buffer to receive sense data

SenseBufferSize Size of the buffer to receive sense information

Return Values

pRspBuffer Contains the response to the inquiry
pSenseBuffer Contains the sense data for the command
Example

HBA API Proposal 44 9/14/00

6.24 HBA_STATUS HBA_SendReportLUNs (HBA_HANDLE handle,
HBA_WWN portWWN, void * pRspBuffer, HBA_UINT32 RspBufferSize,
void * pSenseBuffer, HBA_UINT32 SenseBufferSize);

Description
Sends a SCSI report luns command to a remote WWN.

Arguments
handle Handle to an open HBA.
PortWWN Port WWN of an HBA
pRspBuffer Pointer to a buffer to receive the response
RspBufferSize Size of the buffer to receive response
pSenseBuffer Pointer to buffer to receive sense data

SenseBufferSize Size of the buffer to receive sense information

Return Values

pRspBuffer Contains the response to the report luns command
pSenseBuffer Contains the sense data for the command
Example

HBA API Proposal 45 9/14/00

6.25 HBA_STATUS HBA_SendReadCapacity (HBA_HANDLE handle,
HBA_WWN portWWN, HBA_UINT64 fcLUN, void * pRspBuffer,
HBA_UINT32 RspBufferSize, void * pSenseBuffer, HBA_UINT32
SenseBufferSize);

Description
Sends a read capacity to a remote WWN.

Arguments
handle Handle to an open HBA.
PortWWN Port WWN of an HBA
fcLUN Specific FC Lun to send the read capacity to.
pRspBuffer Pointer to a buffer to receive the response
RspBufferSize Size of the buffer to receive response
pSenseBuffer Pointer to buffer to receive sense data

SenseBufferSize Size of the buffer to receive sense information

Return Values

pRspBuffer Contains the response to the read capacity command
pSenseBuffer Contains the sense data for the command
Example

HBA API Proposal 46 9/14/00

7 Appendix A: Multi Vendor Interoperability

An important consideration in implementing this APl is to support a single API to query common information
from multiple adapters manufactured by different vendors are operating within a single server.

7.1 Win32

In a Win32 environment (Window NT, Windows 2000) the method for registering multiple vendors is the
following:

Under the Registry, an HBA vendor will install a registry key to indicate where the vendor library is installed.
\\HKEY_LOCAL_MACHINE\SOFTWARE\SNIA\HBA\vendorid

A value named LibraryFile of type REG_SZ will contain the full path to the vendor's library

vendorid is an arbitrary value which uniquely identifies the vendor library.

Example:
\\HKEY_LOCAL_MACHINE\SOFTWARE\SNIA\HBA\samplevendor
LibraryFile = "c:/Program Files/Samplevendor/Library.dll"

The following method will be used to load multiple vendors' libraries:

1. A HBA API "wrapper" will read the registry for library names

2. Using the Win32 routines LoadLibrary and GetProcAddress, the wrapper will open and discover the
appropriate vendors libraries.

3. The HBA API wrapper will use these libraries to discover the aggregate number of adapters and
report this to the upper level application.

4. The names of the lower level adapters will be passed through the HBA API wrapper.

5. A call to open an adapter will be "switched" by the HBA API wrapper, which will use the reserved
upper 16 bits of the HBA_HANDLE to determine which adapter to address on a given routine.

6. Remaining calls will be routed by the HBA API wrapper to the appropriate library given the
HBA_HANDLE.

7.2 Unix

In a Unix environment (Window NT, Windows 2000) the method for registering multiple vendors is the
following:

/etc/hba.conf contains the following:

#

This file contains names and references to HBA libraries
#

Format:

#

<library name> <library pathname>

#

The space between the name and path are

#

For example:

#

tachlite c:\system32\drivers\hba\tachlite.dll

ql2x00 c:\Program Files\QLogic Corporation\QSDMGT\Lib\QSDMGT.DLL
troika c:\system32\drivers\ hba\troika.dll

fci1063 c:\system32\drivers\ hba\fci1063.dll

HBA API Proposal 47 9/14/00

Ip8000 c:\system32\drivers\hba\lp8000.dlI

The Unix method for loading vendor libraries will be identical to the Win32 method, with the following

difference:

1. The routines for library loading will differ from Unix version-to-version. In the case of Solaris, the
routines are dlopen and disym.

HBA API Proposal 48 9/14/00

8 Appendix B: Naming, Handles and Their Usage

The concept of names and handles are used in this API as a generic way to reference an HBA. The use of
this handle is independent of the operating system.

A name is:
= Unique to an instance of an adapter
= I|dentifier for adapters you can open and manage
= Not guaranteed to be the same across reboots

A handle is:

= Persistent between and open and a close of an adapter
For an individual vendor the lower 16 bits are determined entirely by the vendor
Upper 16 bits are reserved for use by the HBA wrapper library
Related on a one-to-one basis between a specific instance of an HBA and a handle
Not guaranteed to be the same across reboots
Not guaranteed to be the same across opens

The following situations require vendor-specific handling to properly map adapters:
= Addition of a new HBA
= Aninstance of an HBA being removed
= An HBA being replaced

Addition of a new HBA
In the case of the addition of a new HBA, a new name should be assigned to the device which does not
conflict with previous names.

An instance of an HBA being removed
When an HBA is removed, it is suggested that the name of the device should not generally be re-used, in
order for upper level software to reliably reference the same device.

An HBA being replaced

In the case of an HBA being replaced, the functionality is up to the vendor's implementation. If an HBA is
replaced and there is no change in functionality, WWN, or any other HBA properties the same name is
appropriate. Any change in the properties, including WWN, should result in a new adapter being
instantiated.

HBA API Proposal 49 9/14/00

9 Appendix C: Future Enhancements

This appendix lists possible future enhancements for this spec.

Asynchronous Event Notification

Kernel mode operation

Control ability

Ability to initiate LIP

Ability to send low level ELS frames
Expansion of Management Server functions
Ability to do a target reset

Ability to send raw FCP-SCSI frames
Writeable RSCN information

Fabric login parameters

E_D_TOV

R_A_TOV

Connected media for a port

Loop position map for a port

I/Os for a port, on a per FC-4 basis

(and on a per LUN basis, for FCP)
Megabytes transferred for a port, on a per FC-4 basis
(and on a per LUN basis, for FCP)

HBA API Proposal 50

9/14/00

10 References
"Toward Binary Compatibility of VIA Implementations on WIN32", Jim Lyon, Microsoft Corp.
T11/98-435v1 FC-GS-2rev 5.3

"Qlogic SAN/Device Management API" Draft Version 1.3 05/26/00

"Fibre Alliance HBA Application Programming Interface Specification" Version 1.0 06/02/00

HBA API Proposal 51 9/14/00

