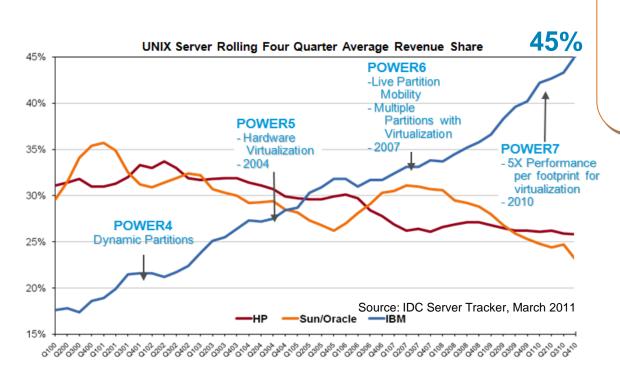
Competitive Update Against HP and Oracle/SUN

IBM Power Systems

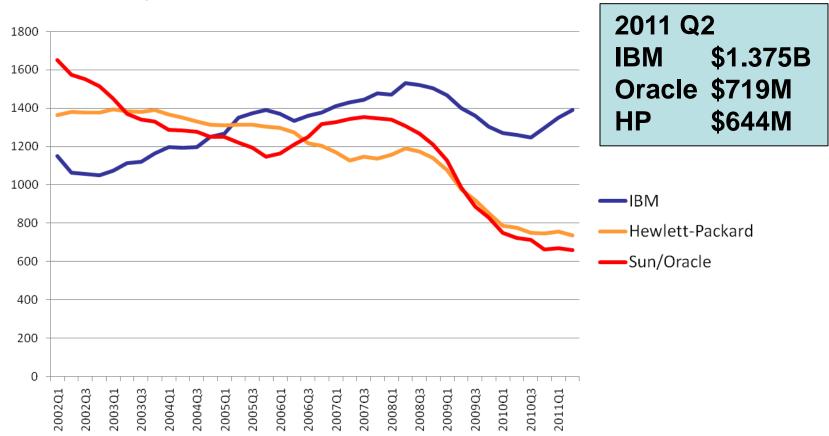

IBM Power Systems with POWER7

IBM's ten-year march to UNIX leadership

The largest shift of customer spending in UNIX history

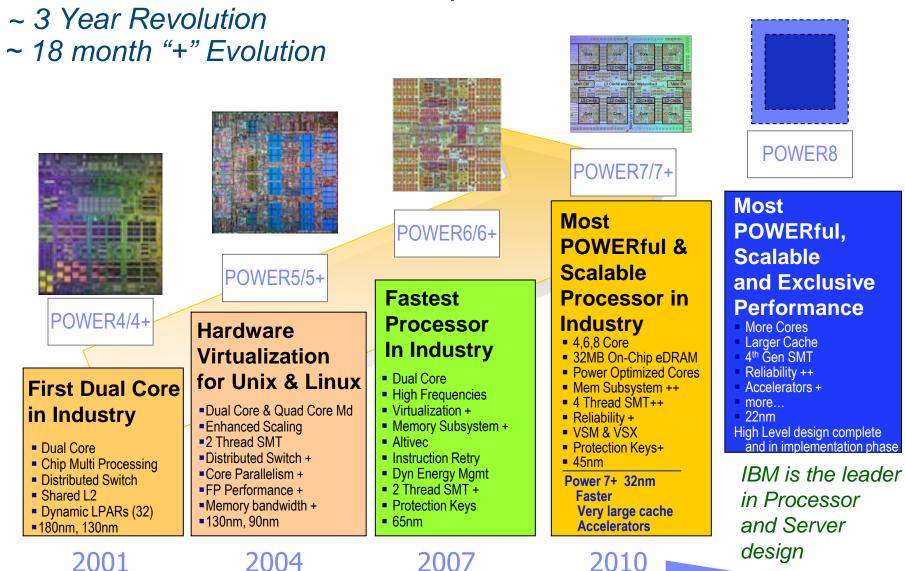
http://www.ibm.com/systems/migratetoibm/factory/

3,500+


Successful Power migrations to date.

- The pace is accelerating & exceeding expectations: 500+ migrations to Power in 2009, over 1,000 in 2010
- Over 90% come from HP-UX or Oracle Solaris, along with x86 consolidations
- POWER grew 5% in 4Q10, to 45% market share

Numbers don't lie


Ten Year Unix Systems Revenue - 4QRA

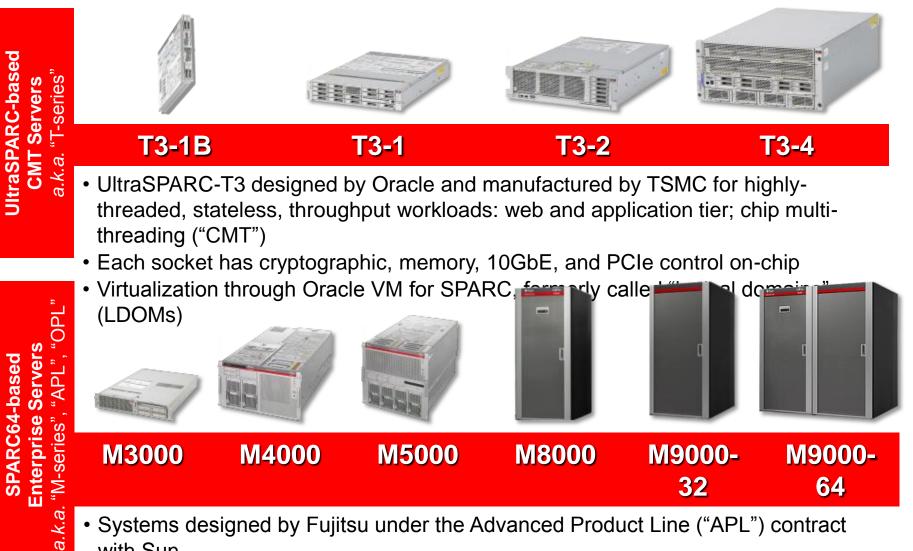
IBM is a growth platform with rising star increased investment HP and Sun continue decline with cash cow divest strategy

IBM POWER Processor Roadmap

Binary Compatible & Increased Core Performance

© 2011 IBM Corporation

Oracle SPARC/Solaris Pain Points



- SPARC split-personality problem makes it difficult to position and sell
- No capacity-on-demand or utility pricing immediately hands that conversation over to IBM
- Very rudimentary virtualization capabilities are insufficient for systems with many cores and threads
- Poor per-core performance keeps ISV licensing costs high
- Upcoming Solaris 11 migration will be an administrative nightmare, and breaks Sun's legendary binary compatibility contract for the first time in 20 years
- SPARC/Solaris market share has been plummeting: for the last two years, SPARC hasn't been selling as well as Itanium!

SPARC Has a Split-Personality Problem

- Systems designed by Fujitsu under the Advanced Product Line ("APL") contract with Sun
- SPARC64-VII+ microprocessor designed by Fujitsu and manufactured by TSMC
- Designed for single-threaded, latency-driven workloads: DW. BA. large Ot 271P BNS MoTation

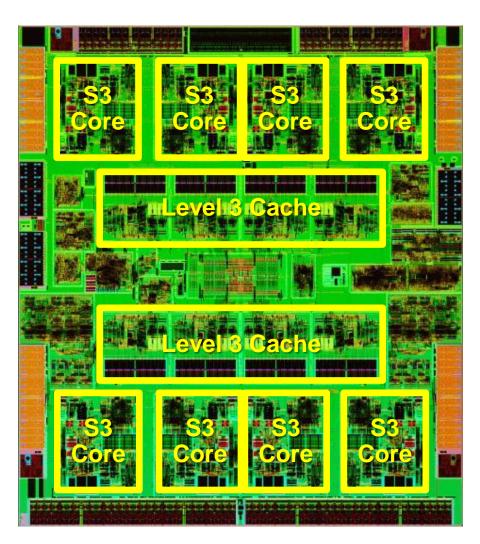
No more "M-Series"/"T-Series": Is this a new combined, dynamic threading model? Welcome to

ORACLE

POWER5 technology, 10 years late!

All trajectory comparisons are wishful objectives done relative to Sun's existing SPARC baseline, not to POWER or x86! IBM and Intel blow SPARC away today, does Oracle think that the competition will stand still for the next five

SPARC Enterprise Servers Maximizing Results



FORKLIFT UPGRADE

FORKLIFT UPGRADE?

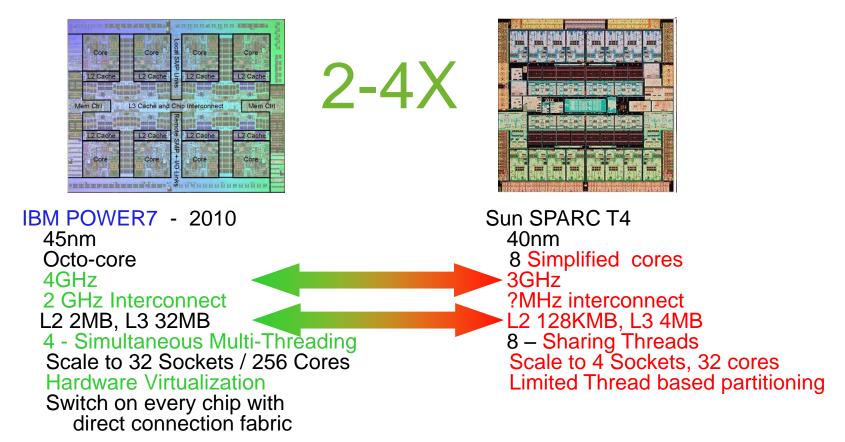
UltraSPARC-T4

- A transitional SPARC processor based on a new "S3" (formerly "VT") core, pin-compatible with T3
 - Only the cores and L3 cache changed
 - Half the number of cores vs. T3
 - The rest of the chip is identical to T3
 - Designed for fast time-to-market
- Designed specifically for multi-threaded, throughput-oriented workloads like web and app servers
 - Many cores and threads
 - Very small caches
 - Will probably handle small or medium OLTP workloads reasonably well
 - Definitely not suited for data warehousing or business analytics
- However, Oracle will position T4 systems as a general-purpose computing platform suitable for a growing variety of workloads

IBM Power7 vs. Fujitsu SPARC64 APL

IBM Chip Technology Lead

Core Core 12 Cache L2 Cache Mem Ctrl L2 Cache 12 Cache L2 Cache Core L2 Cache Core Core Core Core Core L2 Cache Core Core Core Core	Χ	FUJITSU SPARC64 ^{**} VII Massies-contrologi Technology
IBM POWER7 45nm Octo Core 4GHz 32MB eDRAM L3 4 Simultaneous Threads / Core 2GHz Distributed Switch DDR3 Scale to 32 Sockets Virtual Machines >1000 threads Extensive Reliability features	2X 1.3X 2.6X 2X 3.8X 1.5X	Fujitsu SPARC64 VII+ (Last chip) 65nm Quad Core (four SPARC64VI cores) 3GHz L2 12MB, no L3 2 Simultaneous Threading 530MHz interconnect DDR2 Scale to 64 Sockets No built in virtualization Reliability based on HW partitions *No future chips*


IBM POWER is the undisputed leader in server technology

IBM Chip technology vs. Oracle SPARC CMT T4

IBM Chip Technology Lead

IBM POWER is the undisputed leader in server technology

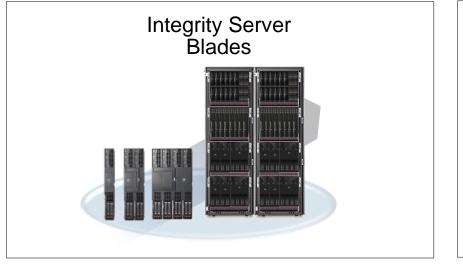
UltraSPARC-T4 / POWER7 Chip Comparison

	UltraSPARC-T4	POWER7
Cores, Clocks, and Sockets	 8 cores @ ~3GHz, 40nm 4-way socket scalability 	 8 cores @ 2.4-4.1GHz, 45nm TurboCore / MaxCore configurations 32-way socket scalability
Thread Model	 Chip Multithreading (CMT) 64 CMT threads / socket 	 Symmetric Multithreading (SMT) 32 SMT threads / socket
Thread Enhancements	Critical Thread APIDynamic threads	SMT/SMT2/SMT4Intelligent threads
Cache	 16K L1 I&D caches / core 128K L2 unified I&D cache / core 4MB L3 / <u>socket</u> SRAM 	 32K L1 I&D caches / core 256K L2 unified I&D cache / core 4MB L3 / core; 32MB L3 shared eDRAM
Virtualization	Hypervisor-based Oracle VM for SPARC, <i>a.k.a.</i> Logical Domains: Rudimentary partition mobility	Hypervisor-based PowerVM [™] : Live Partition Mobility, Micropartitions, Shared Processor Pools, Active Memory Sharing, Active Memory Expansion
Power and RAS	No memory mirroring, no ChipKill, no power save or capping options	Active Memory Mirroring for Hypervisor, ChipKill™, EnergyScale™ dynamic power save and capping
Additional	 PCIe, 10GbE, crypto functions exactly the same as on T3 2 DDR3 memory controllers, ~50GB/socket 	2 DDR3 memory controllers, 90GB/socket

SPARC is still seriously behind POWER, and POWER isn't standing still

Itanium-based systems are in the news, again

Recent developments in the Itanium market have put HP's customers in a precarious position and created an opportunity for IBM and its partners to capture new opportunity ...



"On Oracle dumping Itanium: ... In a report that I wrote last April I said: 'If I'm running an Oracle database, Oracle infrastructure, or Oracle business applications, I'd be a little concerned about the kind of support and tuning I'd be getting from Oracle on Itanium in the long run.' It is time to dump Itanium ..."

HP's new Integrity Servers

HP stresses commonality as capability continues to lag

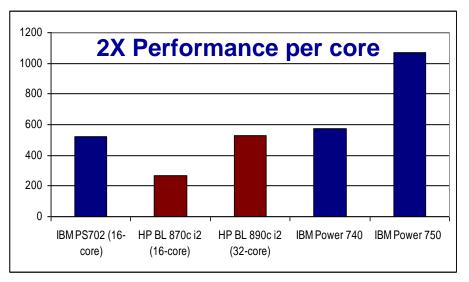
- 27% better performance per core than previous 32-core Integrity servers
- 50% of the performance of a 32-core Power 750

- •13.7% better performance per core than previous 64-core SuperDome on TPC-H
- •128-core in 1H2011, 256-core ?
- •16-core HP VMs in 1H2011

Migrating HP Integrity to the Power Express Family

HP Integrity Server Blades

IBM Power Express Family The highest performing, most energy efficient systems in the industry



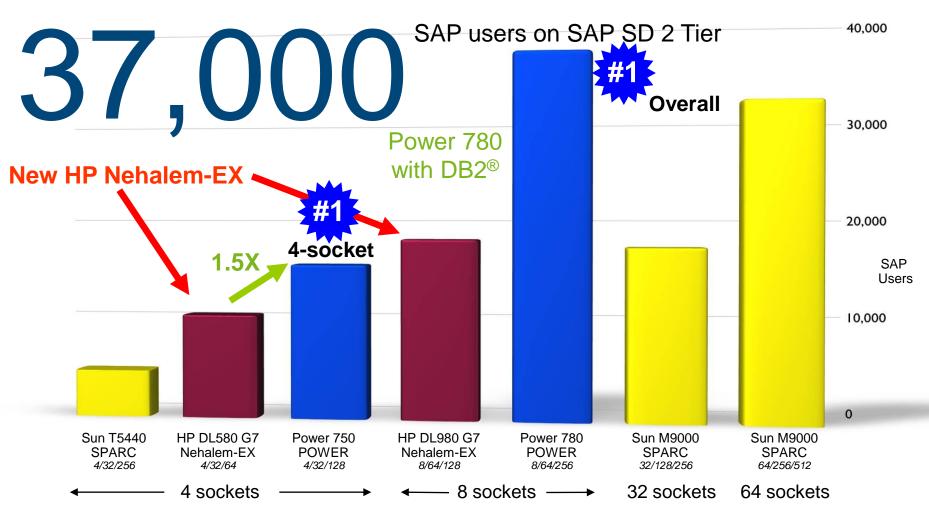
Power 750 Modular growth through processor card upgrades

Power 720/740 Choice of footprint, more performance at lower price

Power 710/730 High performance, dense and energy efficient

Based on SPECint_rate results as of 7/24/2010. Power 740 results based on projections.

www.spec.org



Power Blades

Blade vs. Blade with similar performance in ½ the cores and density.... at a faction of the price

More SAP performance than any system in the industry

20% more performance ... one-fourth the number of cores vs. Sun M9000

Systems are listed with processor chips/core/threads under system name; IBM Power System 780, 8p / 64–c / 256–t, POWER7, 3.8 GHz, 1024 GB memory, 37,000 SD users, dialog resp.: 0.98s, line items/hour: 4,043,670, Dialog steps/hour: 12,131,000, SAPS: 202,180, DB time (dialog/ update):0.013s / 0.031s, CPU utilization: 99%, OS: AIX 6.1, DB2 9.7, cert# 2010013; SUN M9000, 64p / 256-c / 512–t, 1156 GB memory, 32,000 SD users, SPARC64 VII, 2.88 GHz, Solaris 10, Oracle 10g, cert# 2009046; All results are 2-tier, SAP EHP 4 for SAP ERP 6.0 (Unicode) and valid as of 7/13/2010; Source: http://www.sap.com/solutions/benchmark/sd2tier.epx - See Power 780 benchmark details for more information

Inflection Point: Oracle Is Forcing a Migration on Their Customers

Existing SPARC on Solaris 8/9/10

- Well-understood, existing system administration skills
- Binary compatible with existing software

Oracle's preferred migration path

Exadata

- Very disruptive migration
- Small/medium/large only
- No re-use of existing storage
- No integration into existing backup infrastructure
- Workload optimized for nothing in particular, no virtualization
- Very poor market acceptance: only 1000 "installed" after 3 years of sales^[1]

Solaris 11 on SPARC

• Solaris 11 is an entirely new operating system, inside and out

If the customer

absolutely insists

- Major administrative changes around file system management, networking, and software and patching infrastructure
- Binary compatibility breaks^[2]
- Plummeting market share:
 <u>Itanium</u> has been out-selling
 SPARC for the last two years^[3]

[1] Oracle president Mark Hurd: http://www.thestreet.com/_nasdaq/story/11164061/1/oracle-beats-but-hardware-salesdisappoint.html?&cm_ven=nasdaq&cm_cat=free&cm_ite=na
[2] http://www.oracle.com/technetwork/systems/end-of-notices/eonsolaris11-392732.html
[3] Source: IDC Server Tracker, 2009-2011 [·] Systems

10 Reasons IBM POWER7 Systems are Better for Oracle

	IBM POWER7® Systems	Oracle Exadata
	IDWI FOWER7® Systems	
1. Configuration and price flexibility	Custom, client-focused configurations for multiple needs – including OLTP and Data Warehouse – and multiple price points	Rigid configuration with lack of customization to client's workload with a high initial purchase price that is very expensive to scale
2. Storage technology	Enterprise-strength storage technologies such as RAID-6	Missing key storage technology and options support
3. Performance	Industry-leading performance and benchmarks	No published benchmarks
4. Scalability	Capability and flexibility to scale up and scale out	Only scale-out capa Oracle 1. Expensive
5. Reliability	Extremely reliable system and storage technology	Uncertain reliability 2. Lock in 3. Risk
6. Virtualization	Marries resource efficiency and virtualization	
7. OS flexibility	Choice of AIX®, IBM i, Red Hat or SUSE Linux Only proprietary Oracle Li distributions, Oracle Solar 2011	
8. Software levels	Supports all currently available Oracle Database Server versions through 11gR2Only supports Oracle Database Server 11gR2	
9. Roadmap	History of success and a clear roadmap	Uncertain roadmap and direction
10. Business risk	Proven platform	Risky platform © 2011 IBM Corporation

OLTP and Data Warehouse Have Different Design Needs

IBM believes that designing and building systems optimized for specific workloads is the best approach

- **OLTP** Systems
 - Run the business by processing the transactions that are critical to the organization
 - Utilization is driven by the number of users, not complexity of SQL
 - Smaller block I/O 8K
 - Higher write updated online, many index lookups
 - Buffer, log and cache management are key to performance in clusters
- Data Warehouse Systems
 - Analyze the transaction data to provide strategic and competitive differentiation ACLE DOES
 - Larger more complex gueries with more table joins, complex SQL
 - Lots of large block I/O 16-32K
 - 90-95% reads
 - Tends to consume entire environments
- Mixing OLTP and Data Warehouse databases within the same OS is not generally recommended

Would you configure OLTP and Data Warehouse systems identically?

with Exadata!

Power Systems[™] Express servers offers balanced systems designs that <u>automatically optimize</u> workload performance and capacity at either a system or VM level

- Intelligent Threads utilize more threads when workloads benefit
- Intelligent Cache technology optimizes cache utilization flowing it from core to core
- Intelligent Energy Optimization maximizes performance when thermal conditions allow
- ✓ Active Memory[™] Expansion provides more memory
- Solid State Drives optimize high I/O access applications

Workload-Optimizing Features make POWER7 #1 in Transaction and Throughput Computing

IBM Power Systems

Implement Lower-Cost Solutions Suited to Your Business Needs

IBM POWER7 Systems offer custom, client-focused configurations for YOUR specific workload with choice of processor speed, storage type, virtualization and the ability to scale both up and out!

— IBM POWER7 Systems — Flexibility for OLTP and Data Warehouse Workload deployment

Upgrade existing systems OR integrate new systems into your environment based on your workload needs

Leverage virtualization in application servers and development/test environment

POWER7 Leads Exadata in All Platform Categories

	Exadata X2-2	Exadata X2-8	Power Systems
Sockets/Node	2	8	1 to 32
Cores/Node	12	64	4 to 256
Max Cores/Rack	96	128	256 with 795 320 with 730/750 448 with PS701 blades
Threads/Node	24	128	16 to 1024
Memory/Node	96 GB	1TB	Up to 8TB
OS Support	Oracle Linux, Solaris 11	Oracle Linux, Solaris 11	AIX, IBM i, Red Hat and SUSE Linux
Oracle DB Support	11gR2	11gR2	10gR2, 11gR1, 11gR2
Virtualization	None	None	IBM PowerVM [™] built in
VMs/node	None	None	Up to 1,000

IBM POWER7 Systems are the wise choice to run Oracle Database software. Make the smart decision!

POWER7 is Reliable. Is Exadata?

RAS Feature	POWER7	EXADATA X2- 2	EXADATA X2- 8
Live Partition Mobility	Yes	No	No
Live Application Mobility	Yes	No	No
OS-independent First Failure Data Capture with dedicated service processors	Yes	No	No
Memory Keys (including OS exploitation)	Yes	No	No
Voltage Regulator Output Redundancy – N+2	Power 770/780	No	No
Processor Instruction Retry	Yes	?	?
Alternate Processor Recovery	Yes	No	No
Dynamic Processor De-allocation	Yes	?	?
Dynamic Processor Sparing	Yes	?	?
Hypervisor Critical Data Memory Mirroring	Yes	?	?
Dynamic DRAM Sparing	Yes	?	?
I/O Extended Error Handling	Yes	?	?
I/O Adapter Isolation (PCI-Bus and TCEs)	Power 770/780/795	?	?

BM Corporation

"Superclusters": The Appliance Model for SPARC Begins

Compute Nodes

 Choice of SPARC T3-2, T3-4, or M5000 servers

Storage Servers

 Sun ZFS Storage 7420 Appliances

InfiniBand QDR Unified Server and Storage Network

Software Included

• Oracle Solaris 10 9/10 (U9)

Software Not Included

- Clustering software
- Everything else

- Oracle announced "Gold Standard Configurations" on December 2, 2010
 - The rest of the industry calls these "reference configurations"
 - Designed to save Oracle maintenance costs, not to benefit clients
- Oracle claims it's a general-purpose compute platform ...
- ... True, because it's just a bunch of servers in a

http://www.oracle.com/us/solutionsrandsupersident

software

© 2011 IBM Corporation

Nothing you cannot do à

Solaris 11 Migration Impacts Systems Administrators

What Changes	Impact
Forced migration from UNIX File System (UFS) to ZFS: all system directories (/, /usr, /var, /opt, etc.) now must be on ZFS	 Many customers do not yet use ZFS ZFS management requires new administrative skills Administrative scripts that use UFS tools (newfs(1M), snapfs(1M), fsck(1M), etc.) must be rewritten ZFS has poor write performance due to its copy-on-write architecture, so performance on update-intensive directories like /var, /var/tmp, or /tmp may suffer
All software installation, patching, and management is now done through the new Image Packaging System (IPS)	 IPS requires new administrative skills pkgadd(1M), pkgrm(1M), etc., are present but cannot manage the primary package database Third-party configuration management and provisioning tools will need to be updated to support IPS Entirely new image repository infrastructure may need to be set up behind firewalls for the security-conscious
Support for legacy UltraSPARC I, II, IIe, III, IIIi, III+, IV and IV+ has been dropped	 Systems administrators will need to operate two different patch and configuration management infrastructures or face swapping out all legacy SPARC gear at once

Solaris 11 Migration Impacts Systems Administrators

What Changes	Impact
The entire networking administrative interface (wificonfig(1M), /etc/hostname.*, etc.) has changed	 Systems administrators will need to learn the new dladm(1M), ipadm(1M), routeadm(1M), etc. interfaces Administrative scripts based on manipulating the old files will break
Support for xVM hypervisor has been removed	 Systems administrators will be forced to migrate to Oracle VM Server for x86 or Oracle VM Virtualbox
Support for many SCSI, RAID, and ethernet adapters has been dropped	 Systems administrators may need to purchase and install newer adapters
The LP print subsystem has been replaced by CUPS	 Administrators unfamiliar with CUPS (for example, from Linux) will require new administrative skills Scripts based on the LP system will break
sysidtool(1M), sys-unconfig(1M), etc. have been removed	 Systems administrators will have to learn to do Solaris identification and configuration through the Service Management Facility (SMF) Existing JumpStart profiles will have to be scrapped

Solaris 11 Migration Impacts Developers

What Changes	Impact
MySQL 5.0 support has been dropped	 Developers must migrate and re-certify to MySQL 5.1 or to the Oracle database
PostgreSQL support has been dropped entirely	 Developers must find another database (guess which one Oracle will recommend?)
OpenGL support for SPARC has been removed	 Developers must go to third parties for headers, libraries, and support or code to a different interface
The widely-used rdist(1M) utility, popular for synchronizing development environments, has been removed	 Developers must find alternatives Scripts used for configuration management may break
Many development libraries (see following slide) have been removed	Developers must find alternatives and re-write their code
Command-line options for many utilities like sort(1) and vi(1) have changed; some commands like crypt(1) have been eliminated	 Shell scripts may break, either catastrophically or (worse) silently

http://www.oracle.com/technetwork/systems/end-of-notices/eonsolaris11-392732.html

Solaris 11 Migration Breaks Binary Compatibility

What Changes

The OpenSSL interface has been upgraded from 0.9.7 to 1.0.0 (openssl.org broke this interface)

OpenWindows libraries and toolkits have been removed

libmle, the multi-lingual environment library used in several input method framework and language engines, has been removed.

The ICU (International Components for Unicode) v2 and v3 libraries have been removed

The Remote Shared Memory API (RSM API) has been removed

The libinetcfg library interfaces have been removed

The Asian legacy libraries (libkle, libcle, and libhle), including their xctype macros, are no longer supported

Solaris 1.x (SunOS 4.x) binaries will no longer run

Impact

- Legacy Solaris code will no longer run natively in Solaris
 11, breaking the legendary
 Solaris binary compatibility
 contract for the first time since
 the Solaris 1 to Solaris 2
 transition of the early 1990s
- Oracle will force customers who wish to run existing troublesome binaries to run them in Solaris 10 containers, almost certainly with additional Solaris 10 licenses and maintenance, until Oracle drops support for Solaris 10 entirely in the near future

27

Don't Let Oracle Downplay the Effort Involved ...

Solaris 9 to Solaris 10 was an upgrade Solaris 10 to Solaris 11 will be a migration

AIX Binary Compatibility Guarantee

AIX Version 6.1 Binary Compatibility

Dear System p clients:

We listened and we have delivered for you, and in fact we hope you have been ecstatic with the recent announcements on the ADX® V6.1 and POWER6TM products. Not only can the new POWER6 servers run AIX V5.2, V5.3 and AIX V6.1–with binary compatibility for many applications–but AIX V6.1 will even run on older hardware, based on POWER5TM, and POWER4TM processors. This broad support for multiple levels of the AIX operating system on multiple generations of POWER systems is the strongest that we have ever had.

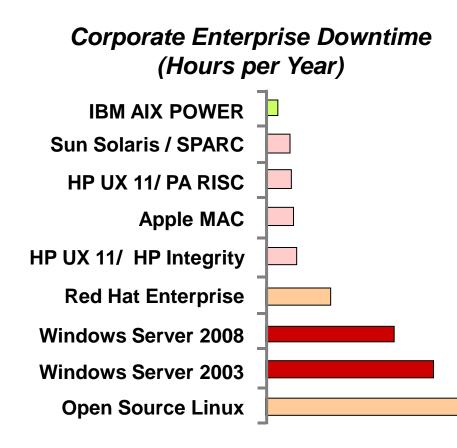
But some clients have said that they want to hear it from me. We've said we will offer binary compatibility and we mean it. We are offering a guarantee that your applications, whether written in house or supplied by an application provider, will run on AIX V6.1 if they currently run on AIX 5.2 or 5.3–without recompilations or modification.

Take us up on that challenge. We assume (and require) that these applications comply with reasonable programming standards (see ibm com/systems/p/os/aix/compatibility/conditions), but if they do and the applications will not run on AIX V6.1, contact us. We will investigate and assign our developers to work on the binary compatibility problem. I don't anticipate anyone will call but I wanted to assure you that we are committed to the binary compatibility of AIX V6.1.

The qualities of the AIX operating system—virtualization, security, performance, and quality have won many new clients to AIX, AIX V6.1 will be the next step forward in the evolution of UNIX, while allowing many existing applications to continue to run. AIX is and <u>will remain</u> the strategic UNIX operating system for IBM.

Thank you for your continued confidence in IBM System p servers and in the AIX operating system. Keeping your applications up and running is one of our primary goals. I want you to rest assured that we are talking great care to insure that when you upgrade to AIX V6.1, your applications will not only run unmodified, but you will also be able to take advantage of the new innovations in AIX V6.1

Sincerely,

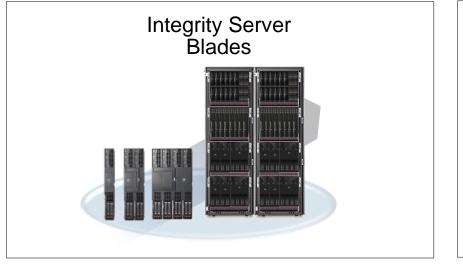

Nosa.

Ross A. Mauri General Manager

IBM Power Systems

AIX on POWER is the most reliable OS among UNIX, Linux and Windows

IBM leadership


- ✓ 99.997% uptime*
- ✓ 2.3X better than next UNIX
- ✓ >10X better than x86-based platforms

HP's new Integrity Servers

HP stresses commonality as capability continues to lag

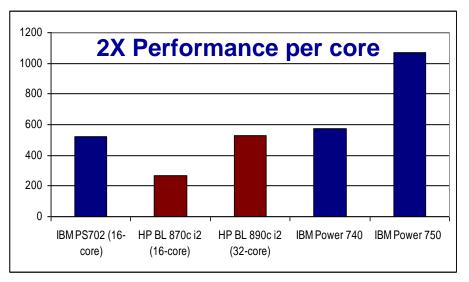
- 27% better performance per core than previous 32-core Integrity servers
- 50% of the performance of a 32-core Power 750

- •13.7% better performance per core than previous 64-core SuperDome on TPC-H
- •128-core in 1H2011, 256-core ?
- •16-core HP VMs in 1H2011

Migrating HP Integrity to the Power Express Family

HP Integrity Server Blades

IBM Power Express Family The highest performing, most energy efficient systems in the industry



Power 750 Modular growth through processor card upgrades

Power 720/740 Choice of footprint, more performance at lower price

Power 710/730 High performance, dense and energy efficient

Based on SPECint_rate results as of 7/24/2010. Power 740 results based on projections.

www.spec.org

Power Blades

Blade vs. Blade with similar performance in ½ the cores and density.... at a faction of the price

Power 780 versus HP Superdome

IBM Power 780 delivers significant performance advantage over HP SuperDome

- ✓ Power 780 delivers over 4.6X the performance per core based on TPC-C
- ✓ Over **3X** the performance per core based on SPECint_rate
- ✓ Over **5X** the performance per core based on SPECjbb2006

Intelligent Energy Optimization

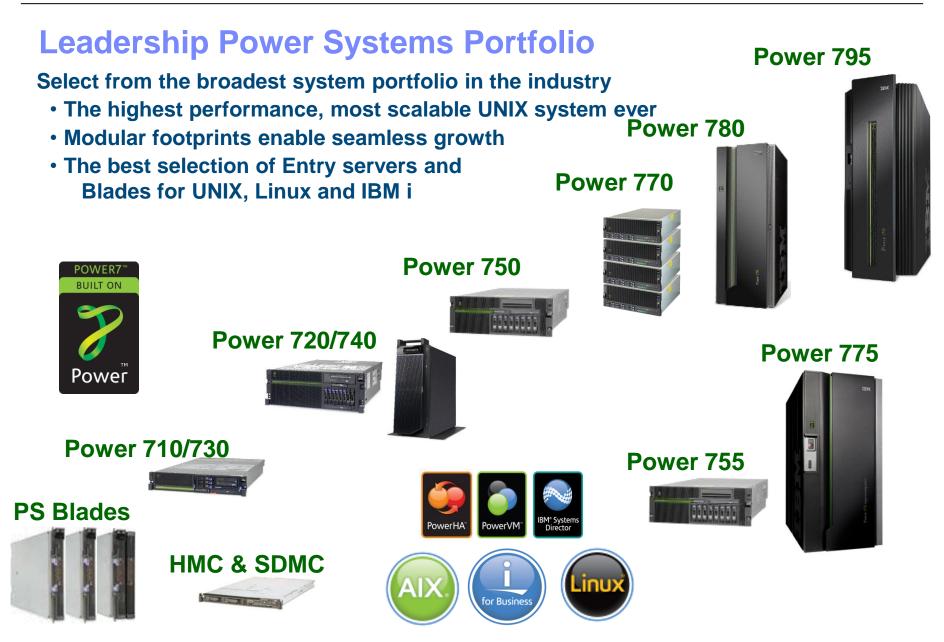
✓ Power 780 delivers over 5.8X the performance per watt based on SPECint_rate

Virtualization without Limits

- ✓ Power 780 with PowerVM enables partition sizes up to 8X HP's IVM virtualization software
- \checkmark Dynamic CPU sharing and support for dedicated I/O

After years of development and anticipation, HP's newest Tukwila version of Superdome provides 13.7% performance increase over previous versions based on HP's TPC-H publish

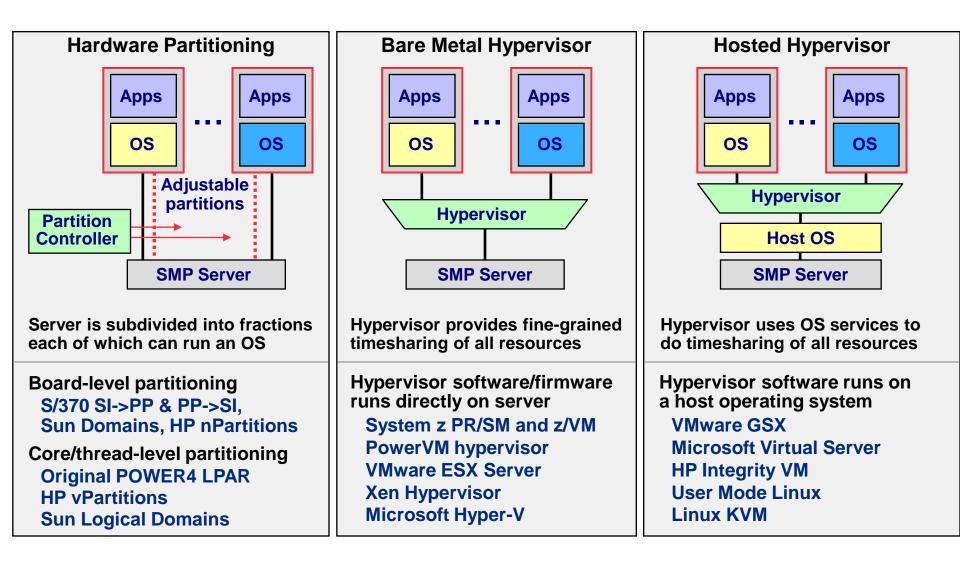
IBM Competitive Migration Factory has never been busier!


Itanium-based systems are in the news, again

Recent developments in the Itanium market have put HP's customers in a precarious position and created an opportunity for IBM and its partners to capture new opportunity ...

"On Oracle dumping Itanium: ... In a report that I wrote last April I said: 'If I'm running an Oracle database, Oracle infrastructure, or Oracle business applications, I'd be a little concerned about the kind of support and tuning I'd be getting from Oracle on Itanium in the long run.' It is time to dump Itanium ..."

POWER7 with PowerVM for Virtualization Without Limits



Higher system utilization means fewer idle resources, lower total power requirements and maximum value obtained from per-CPU licenses!

- Live Partition Mobility with virtual machines of any size up to the entire system that can easily move between your POWER6 and POWER7 systems
- Scales seamlessly from 1/10 of a core to 256 cores and can use all resources of the host server
- ✓ Dynamic changes to any IT resource without reboot
- Integrated storage virtualization for simplified provisioning, management of virtual servers and advanced virtual networking
- Secure by design with zero common vulnerabilities exposures (CVEs) reported against PowerVM by <u>US CERT</u> or by <u>MITRE Corporation</u>

Server Virtualization Approaches

IBM PowerVM vs. Sun Dynamic Domains

IBM PowerVM Editions offers significant business advantages well beyond those offered by Sun's Dynamic Domains simple consolidation play.

Virtualization capability	IBM PowerVM Editions	Sun Dynamic Domains	Business Value
Linux OS Support	Yes	No ¹	Support for a broader range of applications
Support for Shared Processors	Yes	No ²	Higher server utilization and consolidation ratios
Partitioning Granularity	1/100 th of a CPU, 16 MB or RAM, fraction of an I/O adapter	¹ ⁄ ₄ of a system board (1 processor, 8 DIMMS, and ¹ ⁄ ₄ of I/O attached to the board) ³	Courser granularity prevents over allocating resources in a sub-optimal manner to workloads
Live Partition Mobility	Yes	No	Decrease downtime in your enterprise
Support for Shared I/O	Yes	No ²	Share a resource that is typically underutilized

(1) "Each Domain runs its own copy of the Solaris OS." From p. 3 of "Sun SPARC Enterprise Mx000 Servers Administration Guide", Part No. 819-3601-13, April 2008, Revision A http://dlc.sun.com/pdf/819-3601-13/819-3601-13.pdf

(2) "Each instance of the Solaris OS running in a Dynamic Domain has access to its own resources, providing complete isolation of one Solaris instance from any other instance running on the same server." From p. 1 of "Introduction to Dynamic Reconfiguration and Capacity On Demand For Sun SPARC Enterprise Servers", Part No. 820-2084-10, Revision 1.0, 4/22/07, Edition: April 2007, http://www.sun.com/blueprints/0407/820-2084.pdf

(3) "Each of the four XSBs contains one-quarter of the total board resources: 1 CPU 8 DIMMS, and I/O" From p. 49 of "Sun SPARC Enterprise Mx000 Servers Administration Guide"

IBM PowerVM vs. Sun Logical Domains

IBM PowerVM Editions Offers **Business Advantages** Compared to Sun Logical Domains for Clients Doing Server Consolidation

Virtualization capability	PowerVM Editions	Sun Logical Domains 1.0.3	Business Benefit
Support across entire product line	All POWER5, POWER6 and BladeCenter servers	Sun UltraSPARC T1, T2, and T2 Plus-based servers only ¹	Standardize on one virtualization solution across an entire line of servers
Graphical User Interface	Yes	No ² Easily change system configuration with getting carpel tunnel	
Dynamic Logical Partitioning	Yes	CPU only (no memory or I/O) ³	Adapt to changes without downtime
Support for Live Partition Mobility	Yes	No Decrease downtime in your enterprise	
Support for dedicated I/O	Yes	No ⁴	Superior performance for I/O intensive workloads

(1) Logical Domains 1.0.3 Release Notes, July 2008 Revision A p2 http://dlc.sun.com/pdf/820-4895-10/820-4895-10.pdf; (2) Logical Domains 1.0.3 Administration Guide, May 2008 Revision A p4 http://dlc.sun.com/pdf/820-4894-10.pdf "The Logical Domains Manager provides a command-line interface (CLI) for the system administrator to create and configure logical domains."; (3) Logical Domains 1.0.3 Administration Guide, May 2008 Revision A p6 http://dlc.sun.com/pdf/820-4894-10/820-4894-10/820-4894-10.pdf "Dynamic reconfiguration (DR) is the ability to add or remove resources while the operating system is running. The Solaris 10 OS supports only the adding and removing of virtual CPUs (vcpus). Dynamic reconfiguration of memory and input/output is not supported in the Solaris 10 OS."; (4) Logical Domains 1.0.3 Administration Guide, May 2008 Revision A p5 http://dlc.sun.com/pdf/820-4894-10/820-4894-10.pdf, "This lack of direct physical I/O device access is addressed by implementing a virtualized I/O model."

POWER7 Leads Exadata in Virtualization with PowerVM

	Feature	PowerVM	EXADATA (X2- 8)	
	Hypervisor is core firmware	Yes	No	
Architecture	Hypervisor is thin layer - not OS based	Yes	No	
	Max physical server CPUs / memory	256, 16TB	128, 2TB	
Scaling,	Maximum # of VMs per server	1000	0	
Performance	VM scalability (CPUs, memory)	256, 16TB	None	
	Hypervisor efficiency	High	None	
	Dynamic VM resources ("DLPAR")	Yes	None	
	Full, dynamic processor sharing	Yes	None	
Dynamic	Full, dynamic memory sharing	Yes	None	
Reconfigurati	Ability to dedicate all resources	Yes	None	
on	Ability to specify guaranteed capacity	Yes	None	
and Optimization	Capped & uncapped partitions/groups	Yes	None	
	Automatic VM N-way minimization	Yes	None	
	Memory compression	Yes	None	
	Hot-node add /cold-node repair / PFA	Yes	Limited	
RAS	Concurrent firmware maintenance	Yes	No	
(Virtualization	Selective memory mirroring	Yes	No	
Specific)	VM live mobility	Yes	No	
	Redundant virtual I/O server	Yes	No	

Oracle's lack of systems virtualization leads to over provisioning of the physical environment.

Do you want to waste resources and pay for what you don't need with Exadata?

IBM PowerVM vs. HP nPARs

IBM PowerVM Editions Offers **Business Advantages** Compared to HP nPARs for Clients Doing Server Consolidation

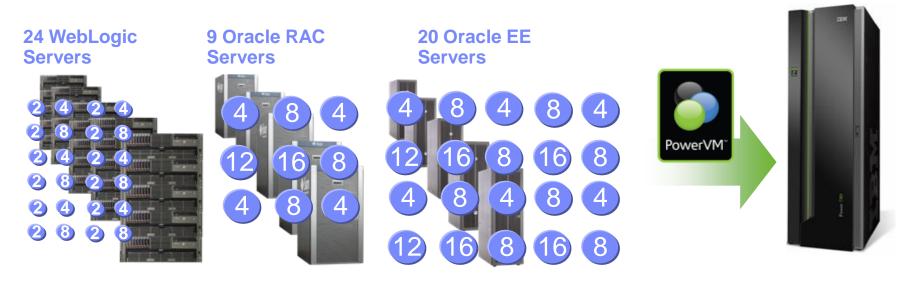
Virtualization capability	PowerVM Editions	HP nPARs	Business Benefit
Dynamic Logical Partitioning	Yes	nPAR Reboot ¹	Adapt to changes without downtime
Support for Shared Processors	Yes	No ²	Higher server utilization and consolidation ratios
Partitioning Granularity	1/100 th of a CPU, 16 MB or RAM, fraction of an I/O adapter	≥1 cell board (4 processor sockets, ≥16 DIMMS, all I/O attached to cell) ³	Smaller granularity prevents over allocating resources in a sub- optimal manner to workloads
Support for Shared I/O	Yes	No ²	Share a resource that is typically underutilized
Support for Live Partition Mobility	Yes	No	Decrease downtime in your enterprise

(1) From nPartition Administrator's Guide "You must perform a reboot for reconfig of an active nPartition after you have added a cell to it." and "You must immediately perform a reboot for reconfig of an nPartition when you have removed an active cell from the nPartition." (2) From HP Partitioning Continuum for HP-UX11i on HP 9000 and HP Integrity servers "Because each nPar has its own CPU, memory, and I/O" (3) From nPartition Administrator's Guide, "Either one or two cells. Each cell has up to four processor sockets and up to 16 DIMMs" and "The Superdome 64-way/128-way server is a tightly interconnected dual-cabinet server that has from 4 to 16 cells, each with four processor sockets and up to 32 DIMMs." and "An nPartition includes one or more cells assigned to it (with processors and memory) and all I/O chassis connected to those cells."

IBM PowerVM vs. HP vPARs

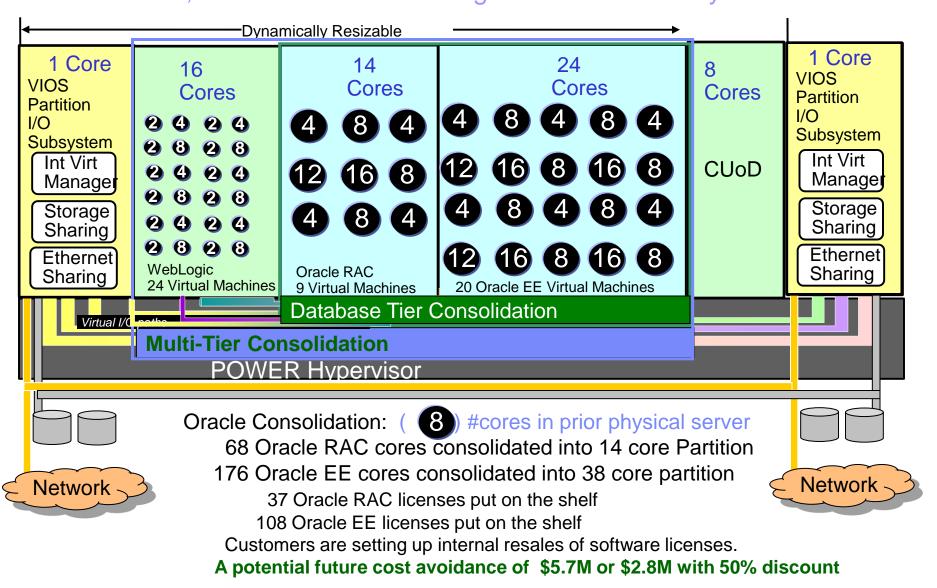
IBM PowerVM Editions Offers **Business Advantages** Compared to HP vPARs for Clients Doing Server Consolidation

Virtualization capability	PowerVM Editions	HP vPARs	Business Benefit	
Linux OS Support	Yes	No ¹	Support for open standards	
Support for Shared Processors	Yes	No²	Higher server utilization and consolidation ratios	
Dynamic Logical Partitioning	Yes	Limited ³	Adapt to changes without downtime	
Support for Shared I/O	Yes	No ⁴	Share a resource that is typically underutilized	
Support for Live Partition Mobility	Yes	No	Decrease downtime in your enterprise	


(1) From page 18 of HP-UX Virtual Partitions Administrator's Guide "vPars is a Virtual Partitions product that enables you to run multiple instances of HP-UX simultaneously on one hard partition by dividing that hard partition further into virtual partitions." <a href="http://docs.hp.com/en/T1335-90078/T1

Why is Virtualization and Scalability important?

The #1 reason IT managers deploy virtualization solutions is workload consolidation and software savings

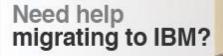

The more workloads that can be encapsulated within VMs and combined onto a single server, the higher the consolidation ratio, software license reduction and greater **cost reduction and cost avoidance** The integrated combination of POWER architecture and PowerVM makes possible far higher consolidation ratios than scale-out scenarios

8)) #cores in each physical server

Power Systems Virtualization – Proven, Pervasive and Providing Software Efficiency

What Migration Risks Concern Customers?

Have no fear: It's only migration


	Risk	Key Questions	
Technical		 Can it be done? Are required ISV products available on the target platform? What differences need to be addressed such as application APIs, threading and data formats? Are there tools available to help minimize the complexity and risk? 	
	Cost	Can it be done within the budget?How will the migration cost be funded?Does the business case have a positive ROI?	IBM Platforms
Platforms Skills ar Culture	Schedule	Can it be done on time?How much downtime will be required for transition?When can the business support this change?	
	Skills and Culture	 Are the required resources available? How will the existing systems administration and application development team skills be transitioned? How will retraining be performed? 	
	Operational	 How well will it work? How will the migrated workload be tested? Will the performance and reliability meet business requirements? Will it work the same way on the target platform or will changes in customer, supplier or user interfaces be required? 	

IBM Migration Factory Objectives

- To help minimize the cost of transition/ migration services so they do not become the main objection to moving to IBM
 - Provide and leverage many person-years of application migration knowledge & experience
 - -Focus on the use of tools, metrics and automation to reduce the cost of migrating from one platform to another
 - -Mitigate and reduce the risk in moving applications from one platform to another
 - -Reduce the cost of moving applications from one platform to another

-Support su Need help

Power Systems>40% World wideUNIX Market Share:>50% U.S. Market share

- Power provides cost reduction, cost avoidance and high Business Value
- Total Cost of Ownership and Business Value far outweigh Acquisition costs
- Power excels at data centric workloads
- Utilization rates are a price/performance advantage multiplier
- Power customers have consolidated hundreds of servers to single digits of servers

Power7 Consolidating hundreds of Systems
Private Cloud technology for mission critical

"The Heist" - Who stole

all the Servers?

