
PowerVM Processor Virtualization

Conceptos y capacity planning

Cesar Diniz Maciel
Executive IT Specialist – IBM Power Systems
Global Techline – Latin America
cmaciel@us.ibm.com

mailto:cmaciel@us.ibm.com

 Virtualization

– POWER7 & SMT

– Micro-partitioning

– Virtual processors

– shared pools

– Tools

– Tuning

3

POWER7 Processor Chip
 567mm2 Technology: 45nm lithography,

Cu, SOI, eDRAM

 2.7B equivalent transistors

– Actual count 1.2B

– eDRAM leads to energy efficiency

 Eight processor cores

– 12 execution units per core

– 4 Way SMT per Core

– 32 Threads Chip

– 256KB L2 per Core

 32MB on chip eDRAM shared L3

 Dual DDR3 Memory Controllers

– 100GB/s Memory Bandwidth per
Chip sustained

 Scalability up to 32 Sockets

– 360GB/s SMP Bandwidth/Chip

– 20,000 operations in flight

 Hardware instruction and data pre-fetch

 Binary Compatibility with POWER6

* Statements regarding SMP servers

do not imply that IBM will introduce

a system with this capability.

POWER7
CORE

L2 Cache

POWER7
CORE

L2 Cache

POWER7
CORE

L2 Cache

POWER7
CORE

L2 Cache

POWER7
CORE

L2 Cache

POWER7
CORE

L2 Cache

POWER7
CORE

L2 Cache

POWER7
CORE

L2 Cache

L3 Cache and
Chip Interconnect

MC1 MC0

Local SMP Links

Remote SMP & I/O Links

F
A
S
T

L3 REGION

Transition to POWER7

POWER6

Memory+

GX+
Bridge

Memory+

GX Bus Cntrl M
e
m

o
ry

C

n
tr

l

M
e
m

o
ry

C

n
tr

l

Fabric Bus
Controller

P6
 Core

Alti

Vec

L3
Ctrl

L3
L3
Ctrl

L3

P6
 Core

Alti

Vec

4 MB
L2

4 MB
L2

P7
Core

L2

P7
Core

L2

Memory Interface

P7
Core

L2

P7
Core

L2

P7
Core

L2

P7
Core

L2

P7
Core

L2

P7
Core

L2

G
X

S
M
P

F
A
B
R
I
C

P
O
W
E
R

B
U
S

POWER7

Memory++

L3 Cache

Simultaneous Multi-Threading

 Simultaneous Multi-threading refers to the ability of a single core to support
multiple hardware execution threads

– This technology allows for a core to execution more instructions per cycle

– The number of threads can be controlled dynamically via the smtctl command

 Dedicated Processor Partitions switch from simultaneous multi-threaded mode
(SMT) to single-threaded mode (ST) automatically at low multi-programming
levels

– On POWER5, Micro Partitions do not switch SMT/ST modes automatically

 POWER6 had key technical improvements over POWER5 in multi-threading
which dramatically reduce SMT effects in Micro partitions

– On POWER6 Micro partitions do switch SMT/ST modes automatically

– On POWER6, on each cycle the hardware core may dispatch instructions for both
hardware threads

 POWER7 extends this capability from two to four simultaneous threads

3rd Generation Multi-threading Capabilities: SMT4

FX0

FX1

FP0

FP1

LS0

LS1

BRX

CRL

Single thread Out of Order

FX0

FX1

FP0

FP1

LS0

LS1

BRX

CRL

S80 Hardware Muti-thread

FX0

FX1

FP0

FP1

LS0

LS1

BRX

CRL

POWER5 2 Way SMT

FX0

FX1

FP0

FP1

LS0

LS1

BRX

CRL

POWER7 4 Way SMT

Thread 1

Executing

Thread 0

Executing

No Thread

Executing

Thread 3

Executing

Thread 2

Executing

ST vs SMT in Micro partitions – POWER6 example

 Generally, see perhaps 1%

impact from running in SMT

mode in Micro partitions on

POWER6

 Example code from

Northwestern University

Minebench 1.0, a single-

threaded “CPU hog”

 Shows the ratio of the test

running in a Micro partition in

SMT mode / ST mode

 It just works – no tuning

required

SMT/ST elapsed time

0.994475138

0.9 0.95 1 1.05 1.1

ScalParc

 LPARs are defined to be dedicated or shared
ƒDedicated partitions use whole number of CPUs

ƒShared partitions use whole or fractions of CPUs (smallest increment is 0.1, can be greater than 1.0)

 Shared processor pools - subset (or all) of physical CPUs in a system
 Desire is to have all of the installed processors in the shared pool and no dedicated CPU LPARs.

 Entitled capacity expressed in the form of number of 10% CPU units
ƒDesired: Size of partition at boot time

ƒMinimum: Partition will start will less than desired, but won‟t start if Minimum capacity not

available

ƒMaximum: DLPAR changes to desired cannot exceed this capacity

ƒDivided among all of the LPARs within a shared processor pool

ƒUncapped capacity cannot exceed number of virtual processors for an LPAR

 Capped vs uncapped
ƒCapped: CPU Capacity limited to desired setting.

ƒUncapped: CPU Capacity limited by unused capacity in „pool‟ and cannot exceed number of

virtual processors (not related to maximum processing units)

 Shared Pool LPARs run in „virtual‟ processors
 Time slicing of CPUs between partitions

 Priority weighting to determine preference for spare cycles
 Automatic Load Balancing (default is 128, 0 implies no use of spare cycles, 255 is max priority)

Shared Processor LPARs (Micro-partitions) - Definitions

AIX 5.3

LPAR

AIX 6.1

LPAR

SMT=on

AIX 5.3

Micro

Partition

SMT=on

AIX 6.1

Micro

Partition

SMT=off

AIX 7

Micro

Partition

SMT=on

 V V V V V V V V V

13 CPU Shared Processor Pool*

L L L L L L L L L L L L L L

2.1 Proc. Units 0.8 Proc Units 1.2 Proc Units

2 CPUs

(dedicated)

1 CPU

(dedicated)

16 CPU SMP Server

Think “PVL “ P=Physical V=Virtual L=Logical (SMT)

Physical, Logical, Virtual Layers

Virtual

L L

Logical

Physical
 Shared Pool 0 Pool 1

Micropartitions Summary

splpar 2

virtual CPU

splpar1

Dispatch

Wheel (10ms)

Dispatched

virtual timebase

virtual timebase

virtual timebase

virtual timebase

splpar 1

virtual timebase

splpar 4

virtual timebase

splpar 3

virtual timebase

100 units

physical CPU

timebase

Shared Processor concepts

Partitions run on a Virtual Processor

(VP).

VP runs on Physical Processors (PP)

only part of the time.

A VP has one or two logical processor

depending on the SMT state.

Minimum size of a partition is .1 with

increments of 1/100th of a processing

unit.

A partition‟s capacity is defined by the

entitlement and for uncapped partition

by the number of VPs.

Phyp (hypervisor) is responsible for

scheduling & dispatching VPs on PPs.

Using a 10msec dispatch wheel.

Partition‟s time become “virtual”,

which is maintained by the phyp in the

partition‟s PURR.

Hypervisor Dispatch Algorithm

splpar 2

virtual CPU

splpar1

Dispatch

Wheel (10ms)

Dispatched

virtual timebase

virtual timebase

virtual timebase

virtual timebase

splpar 1

virtual timebase

splpar 4

virtual timebase

splpar 3

virtual timebase

100 units

physical CPU

timebase

LPAR # Entitlement

/ # of VP

1 .2 / 1

2 .2 / 1

3 .1 / 1

4 .5 / 1

The diagram illustrates the hypervisor

dispatch algorithm, which can be viewed

using the metaphor of a “wheel” with a fixed

rotation period of 10 ms to guarantee that

each VP will receive it‟s share of entitlement

in a timely fashion.

 At time period 0 a new 10 ms dispatch

window and splpar 4‟s VP is dispatched

to a physical processor, and will run of 5

msecs.

 At time period 5, splpar 3‟s VP is

dispatched for 1 msecs

 At time period 6, splpar 2‟s VP is

dispatched for 2 msecs

 Finally, at the end of the 10 ms dispatch

window, splpar 1‟s VP is dispatched for 2

msecs

0 1 2 3 4 5 6 7 8 9 10

Physical

Processor

Dispatch Window

Virtual Processors and Processing Unit Relationship

Virtual Processors

Assigned to LPAR

Range Of

Processing Units

that the LPAR can

utilize

1 0.1 - 1

2 0.2 - 2

3 0.3 - 3

4 0.4 - 4

… …10x range

Example: An LPAR has 2 virtual

processors. This means that it’s

minimum must be 0.2 or higher (0.1

per virtual processor). The max proc.

units that it can utilize is 2.0.

If we want this LPAR to use more

than 2.0 physical CPUs worth of

cycles, we need to dynamically add

more virtual processors, perhaps 2

more. This would make its new

minimum 0.4 and it max utilization

4.0.

The “desired” number of virtual processors establishes the maximum number of

processing units that an LPAR can access.

Virtual Processors and Processing Unit Relationship

Consider the peak processing requirements when setting the desired number of virtual processors. In

addition, the quantity of virtual processors can be adjusted to match the number of processes/threads

present in the workload.

AIX 5.3

LPAR

V V V V

1.6 Proc. Units

AIX 5.3

LPAR

V V

1.6 Proc Units

Each virtual processor will receive 0.4

processing units

Max processing units accessible to

handle peak workload is 4

Individual processes/threads

 may run slower

Workloads with a lot of

processes/threads may run faster

Each virtual processor will receive

0.8 processing units

Max processing unit accessible to

handle peak workload is 2

Individual processes/threads

 may run faster

Workloads with a lot of

processes/threads may run slower

Different number of

virtual processors

Same amount of

processing units

Virtual Processors and Processing Unit Relationship

AIX 5.3

LPAR

V V V V

4.0 Proc. Units

AIX 5.3

LPAR

V V

2.0 Proc Units

Each virtual processor will receive 1.0

processing units

Max processing units accessible to

handle peak workload is 4

Virtual processors receive 1 full CPU

worth of processing units.

Workloads with a lot of

processes/threads may run faster due to

larger number of virtual processors.

Each virtual processor will receive 1.0

processing units

Max processing unit accessible to

handle peak workload is 2

Virtual processors receive 1 full CPU

worth of processing units.

Workloads with a lot of

processes/threads may run slower due

to lower number of virtual processors.

Different number of

virtual processors

Excess processing

Unit Capacity

Available

Sizing Processing Units and Virtual Processors

Peak requirement is 3.5 CPUs (processing units)

Normal requirement is 0.9 CPUs (processing units)

Processing Units Sizing:

 Need to size desired processing units to address non-peak, normal workload.

 Desired = 0.9 (set to match 0.9 processing units, normal requirement)

 Minimum = Starting point might be 0.5, or approx. ½ of Desired.

 Maximum = 4+

 Set as uncapped

Virtual Processor Sizing:

 We need to size desired number of virtual processors to be able to handle peak load.

 Desired = 4 (round 3.5, peak requirement up to next whole number)

 Minimum = minimum as required by the capacity (in this case, 1 VP).

 Maximum = 4+

P
ro

ce
ss

in
g
 U

n
it

s
(C

P
U

s)

Time

0

1

2

3

4

Operating within the Shared Processor Pool
P

ro
ce

ss
in

g
 U

n
it

s
(C

P
U

s)

Time

0

1

2

3

4

CPU Utilization

P
ro

ce
ss

in
g
 U

n
it

s
(C

P
U

s)

Time

0

1

2

3

4

CPU Utilization

P
ro

ce
ss

in
g
 U

n
it

s

(C
P

U
s)

Time

0

1

2

3

4

Desired Proc. Units

P
ro

ce
ss

in
g
 U

n
it

s

(C
P

U
s)

Time

0

1

2

3

4

User of extra Proc. Units

P
ro

ce
ss

in
g
 U

n
it

s

(C
P

U
s)

Time

0

1

2

3

4

Donor of extra Proc. Units

The goal is to match Users and Donors so that the planned overall

shared processing pool CPU utilization does not exceed 100%.

A virtualization Study – Websphere Portal Server

 Websphere Portal provide a single access point to Web provided content
and applications, and can be personalized to individual user preferences.

 A typical Websphere Portal implementation consists of at least three
components

– Websphere Portal Server

• Can be split HTTP server into another partition, but we combine them for this
exercise

– A database instance

• DB2 for these tests

– An identity management (LDAP) instance

• IBM Directory Server for these tests

 Because a Websphere Portal implementation combines multiple
components, it is an ideal candidate for virtualization

– We can take a single system and partition it to provide a complete portal
environment

AIX 5.3

WebServer

WebSphere/

WebPortal/

DB2 Client

 2 cores

Power5+ Hypervisor

AIX 5.3

DB2

Server

1 core

AIX 5.3

Tivoli LDAP

Server/DB2

Server/

WebSphere

Express

1 core

POWER5+ 4way 550 1.9GHz 32GB system

Websphere Portal Server – Dedicated partitions

File storage

 for

 wps db

File storage

 for

Ldap db

LR LR LR LR

LAN

Generator Generator Generator Controller/Generator

First Test – Dedicated Partitions

 3 dedicated partitions

– Portal – 2 processors, 16GB of memory

– DB2 – 1 processor, 8GB of memory

– LDAP – 1 processor, 8GB of memory

– Interpartition communications via
physical Ethernet adapters

 The peak number of vusers supported
in this test is 1500

– Peak is maximum throughput with
acceptable response time

 At peak virtual users, the Portal
partition is essentially 100% CPU busy.

 At peak, the DB2 and LDAP partitions
are 5% and 3% CPU busy respectively

– Most of the CPU capacity in these two
partitions is idle

Dedicated partitions - Response time

0

0.5

1

1.5

2

2.5

800 900 1000 1100 1200 1300 1400 1500

Number of virtual users

A
v
e
ra

g
e
 r

e
s
p

o
n

s
e
 t

im
e

Page navigation

Do login

Dedicated partitions - Processor capacity used

0

0.5

1

1.5

2

2.5

800 900 1000 1100 1200 1300 1400 1500

Number of virtual users

P
ro

c
e
s
s
o

r
c
a
p

a
c
it

y

WPS partition

DB2 partition

LDAP partition

AIX 5.3

WebServer

WebSphere/

WebPortal/

DB2 Client

4 CPUs (Shared Pool)

Power5+ Hypervisor

AIX 5.3

DB2

Server

AIX 5.3

Tivoli LDAP

Server/DB2

Server/

WebSphere

Express

POWER5+ 4way 550 1.9GHz 32GB system

Websphere Portal Server - Micropartitions

File storage

 for

 wps db

File storage

 for

Ldap db

LR LR LR LR

LAN

Controller/Generator Generator Generator Generator

Micro Partitions – Response times and user levels

 3 Micro partitions

– Portal – 3.0 processors entitlement, 4
vcpu‟s, uncapped

– DB2 – 0.5 processor entitlement, 1
vcpu, uncapped

– LDAP – 0.5 processor entitlement, 1
vcpu, uncapped

– Same memory/communications as
dedicated partitions case

 The peak number of vusers supported
in this test is 2100

 At peak virtual users, the Portal
partition is consuming 3.68 processors
CPU capacity on average

 At peak, the DB2 and LDAP partitions
consume 0.053 and 0.063 processors
respectively on the average

 Workload peaks in some cases
consume the full CPU capacity of the
system

Micro partitions - Processor Capacity Used

0

0.5

1

1.5

2

2.5

3

3.5

4

1500 1600 1700 1800 1900 2000 2100

Number of virtual users

P
ro

c
e
s
s
o

r
c
a
p

a
c
it

y

WPS Partition

DB2 Partition

LDAP Partition

Micro partitions - response time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1100 1300 1500 1700 1900 2100

Number of virtual users

A
ve

ra
g

e
re

sp
o

n
se

 t
im

e

Page navigation

Do login

Comparing Response Times of dedicated processor
partitions and shared processor partitions

 Because the Micro partition
test can supply more
processing power to the CPU-
intensive portal partition, it is
difficult to do a direct
comparison

 However, the response times
of the Micro partitioned test
are relatively equivalent or
better than those in the
dedicated processor
partitions

Dedicated versus Micro partition response times

0

0.5

1

1.5

2

2.5

800 1000 1200 1400 1600 1800 2000

Number of virtual users

R
e
s
p

o
n

s
e

T

i
m

e

i
n

s
e
c
o

n
d

s

Dedicated - Page

navigation

Dedicated - Do login

Micro Partition -

Page navigation

Micro Partition - Do

login

Micro Partitioning Best Practices

 The CPU time used by a partition is spread
over virtual CPU‟s

– The operating system running in the partition
dispatches work to virtual CPUs

– For performance, it never makes sense to
have more virtual CPUs in a partition than
there are physical CPUs in the shared pool

– AIX will reduce the number of virtual CPUs it is
dispatching work toward at lower utilization
points (processor folding)

– Even with processor folding, reducing the
number of virtual CPUs to match the partition
entitlement can help wring the most
performance from the server

 Capped or uncapped?

– Most workloads have higher “peak” utilizations
than average utilizations (see graph at right)

– Using uncapped partitions allows the
Hypervisor to use available processor
resources to address short spikes in partition
utilization

CPU Utilization for 1700 vusers

0

20

40

60

80

100

120

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69

Time (seconds
%

 C
P

U
 U

ti
li

z
a

ti
o

n

Shared

Virtual Processors - Folding

 Dynamically adjusting active Virtual Processors

– System consolidates loads onto a minimal number of VPs

• Scheduler computes utilization of VPs every second

– If VPs needed to host physical utilization is less than the current active VP count, a VP is
put to sleep

– If VPs needed are greater than the current active VPs, more are enabled

– On by default in AIX 5.3 ML3 and later

• vpm_xvcpus tunable

 Increases processor utilization and affinity

– Inactive VPs don‟t get dispatched and waste physical CPU cycles

– Fewer VPs can be more accurately dispatched to physical resources by Hypervisor

 When to adjust

– Burst/Batch workloads with short response-time requirements may need sub-second
dispatch latency

• Disable or manually tune the number of VPs

– # schedo –o vpm_xvcpus=[-1 | N]

– Where N specifies the number of VPs to enable in addition to the number of VPs
needed to consume physical CPU utilization

Virtual Processors - Sizing
 Capped

– Start with minimum number of virtual processors

– Monitor application behavior, adjust as needed

 Uncapped

– Unless you know the workloads peaks very well, don‟t make the aggregate of
partitions VP > 1.5 the total number of physical processors in the shared pool

– Good: workloads from partitions sharing pool do not peak at same times

– Bad: workloads from partitions sharing pool peak simultaneously

• Partitions that have dependency, such as DB/App Server tend to peak simultaneously

– Uncapped Weights

• Hypervisor-based weighting of available cycles to uncapped partitions

• Set within HMC

• Use default of 128 for new partitions

• Adjust carefully based on consistent over utilization and application priority
needs

• See next chart for suggestions

 Try to minimize the number of VPs for anticipated loads

– Too many VPs can cause high context switching, cache misses, lock contention

• Try disabling SMT to see if lock contention can be reduced

• Reduce the number of VPs

– Too few VPs on uncapped partitions cannot use all of available resources

– VP folding can help, but it isn‟t perfect

Variable Weight Example

Variable Weight Recommendations

0

50

100

150

200

250

V
a
ri

a
b

le
 w

e
ig

h
t

ra
n

g
e
s

Production VIOS

Production Database

Production Application

Development VIOS

Development Database

Development Application

Enable Monitoring of the shared pool usage

 Make sure at least one
partition on the CEC can do
pool monitoring!

– lparstat not displaying the
available pool processor
“app” value

– Required for lparstat to
see free pool resources,
but topas gets around this
because it can collect data
from remote agents and
calculate itself

– nmon recording will only
see app value if this is
enabled

Topas LPAR & CEC View

 Dashes represent data not available at OS level

 Can be provided via command-line

 Topas can be configured to collect via ssh

 to HMC

Topasrec or nmon can collect data

 TL-08 topas supports

 View of each shared pool, if AIX partitions

 CPU cycle donations made by dedicated partitions

topas –C

Upper section displays aggregated CEC information

Lower section displays shared/dedicated data – closely mimics lparstat

Topas CEC Monitor Interval: 10 Thu Jul 28 17:04:57 2006

Partition Info Memory (GB) Processor

Monitored : 6 Monitored :24.6 Monitored :1.2 Shr Physical Busy: 0.30

UnMonitored: - UnMonitored: - UnMonitored: - Ded Physical Busy: 2.40

Shared : 3 Available :24.6 Available : -

Dedicated : 3 UnAllocated: 0 UnAllocated: - Hypervisor

Capped : 1 Consumed : 2.7 Shared :1.5 Virt. Context Switch: 632

Uncapped : 1 Dedicated : 5 Phantom Interrupts : 7

 Pool Size : 3

 Avail Pool :2.7

Host OS M Mem InU Lp Us Sy Wa Id PhysB Ent %EntC Vcsw PhI

-------------------------------------shared---------------------------

ptoolsl3 A53 c 4.1 0.4 2 14 1 0 84 0.08 0.50 15.0 208 0

ptoolsl2 A53 C 4.1 0.4 4 20 13 5 62 0.18 0.50 36.5 219 5

ptoolsl5 A53 U 4.1 0.4 4 5 0 0 95 0.04 0.50 7.6 205 2

------------------------------------dedicated-------------------------

ptoolsl1 A53 S 4.1 0.5 4 20 10 0 70 0.30

ptoolsl4 A53 4.1 0.5 2 100 0 0 0 2.00

ptoolsl6 A52 4.1 0.5 1 5 5 12 88 0.10

APP = Pool Size -

Shared Physical Busy

LPAR View - nmon Analyser

Shared Pool Utilisation - waedshads1 6/10/2008

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

0
0
:0

0

0
0
:4

7

0
1
:3

4

0
2
:2

1

0
3
:0

8

0
3
:5

5

0
4
:4

2

0
5
:2

9

0
6
:1

6

0
7
:0

3

0
7
:5

0

0
8
:3

7

0
9
:2

4

1
0
:1

1

1
0
:5

8

1
1
:4

5

1
2
:3

2

1
3
:1

9

1
4
:0

6

1
4
:5

3

1
5
:4

0

1
6
:2

7

1
7
:1

4

1
8
:0

2

1
8
:4

9

1
9
:3

6

2
0
:2

3

2
1
:1

0

2
1
:5

7

2
2
:4

4

2
3
:3

1

PhysicalCPU PoolIdle OtherLPARs

Physical CPU vs Entitlement - waedshads1 6/10/2008

0.0

0.5

1.0

1.5

2.0

2.5

0
0
:0

0

0
0
:4

7

0
1
:3

4

0
2
:2

1

0
3
:0

8

0
3
:5

5

0
4
:4

2

0
5
:2

9

0
6
:1

6

0
7
:0

3

0
7
:5

0

0
8
:3

7

0
9
:2

4

1
0
:1

1

1
0
:5

8

1
1
:4

5

1
2
:3

2

1
3
:1

9

1
4
:0

6

1
4
:5

3

1
5
:4

0

1
6
:2

7

1
7
:1

4

1
8
:0

2

1
8
:4

9

1
9
:3

6

2
0
:2

3

2
1
:1

0

2
1
:5

7

2
2
:4

4

2
3
:3

1

PhysicalCPU entitled

Available Pool
Local LPAR

Physical Used

Other LPAR(s) Utilization of Pool =

Pool Size – APP – Local Utilization

Analyser can

only see:

- Pool Size

- APP

- Local

Utilization

LPAR(s) View - nmon Consolidator

CPU Capacity Utilisation by Time of Day (all nodes)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

0
0
:0

1

0
0
:4

6

0
1
:3

1

0
2
:1

6

0
3
:0

1

0
3
:4

6

0
4
:3

1

0
5
:1

6

0
6
:0

1

0
6
:4

6

0
7
:3

1

0
8
:1

6

0
9
:0

1

0
9
:4

6

1
0
:3

1

1
1
:1

6

1
2
:0

1

1
2
:4

6

1
3
:3

1

1
4
:1

6

1
5
:0

1

1
5
:4

6

1
6
:3

1

1
7
:1

6

1
8
:0

1

1
8
:4

6

1
9
:3

1

2
0
:1

6

2
1
:0

1

2
1
:4

6

2
2
:3

1

2
3
:1

6

LPAR1 LPAR2 LPAR3 LPAR4 LPAR5 LPAR6

View depends on partitions selected

Consolidator also provides graphs of estimated VP usage

 Deployment Choices

 No information on application behavior and utilization of resources?

– Size for peak processing requirements

• Minimize risk, but excess capacity is unused

• Collect performance data to determine suitability for reducing resources

– Use shared processors

• Allocate entitlement liberally, until resource behavior known

 Mixed applications, variable behavior

– Size to known peaks

• Enough application, benchmark or local performance information to model
expected behavior

• Size each to micro-partition, allocate extra shared pool and memory resources

– Collect performance data to validate model, free shared pool and
memory allocation to optimize

 Well-defined applications

– Detailed application knowledge allowing for partitions to be
individually over-committed (don‟t conflict for shared resources)

– Ideal usage of resources

Links, References and Sources

Links

 AIX Wiki

– http://www.ibm.com/developerworks/wikis/display/WikiPtype/Home

 AIX Performance Tools (nmon, nmon analyser/consolidator, etc)

– http://www.ibm.com/developerworks/wikis/display/WikiPtype/nmon

 AIX DeveloperWorks

– http://www.ibm.com/developerworks/aix

References

 AIX 6.1 Performance management and tuning
http://publib.boulder.ibm.com/infocenter/aix/v6r1/index.jsp?topic=/com.ibm.aix.doc/doc/base/performance.htm

 Huang, W., Cheng, L., Accapadi, M., Keung, N., (2005, July). CPU monitoring and tuning. Retrieved Sept
2005, from http://www-128.ibm.com/developerworks/eserver/articles/aix5_cpu/

 Frankek, F., (2004). Memory as a Programming Concept in C and C++. Cambridge University Press ISBN
052181720X. Retrieved Oct 2005 from http://www.books24x7.com.

 Braden, B., (2005-2008). Disk Sizing, Data Layout and Tuning Presentation.

 Barker, R., (2005). VIO Server Guidelines Presentation.

 Smolders, L., (2005-2008). Performance Tools Presentations.

 Mathis, H.M., Mericas, A.E, McCalpin J.D., Eickemeyer R. J., and Kunkel S.R.. Characterization of
simultaneous multithreading (SMT) efficiency in POWER5. IBM Journal of Research and Development
Volume 49, Number 4/5 2005. Retrieved November 2005 from
http://www.research.ibm.com/journal/rd/494/mathis.html

http://publib.boulder.ibm.com/infocenter/aix/v6r1/index.jsp?topic=/com.ibm.aix.doc/doc/base/performance.htmhttp://publib.boulder.ibm.com/infocenter/pseries/index.jsp?topic=/com.ibm.pseries.doc/hardware.htm
http://www-128.ibm.com/developerworks/eserver/articles/aix5_cpu/
http://www-128.ibm.com/developerworks/eserver/articles/aix5_cpu/
http://www-128.ibm.com/developerworks/eserver/articles/aix5_cpu/
http://www.books24x7.com/
http://www.research.ibm.com/journal/rd/494/mathis.html

Gracias!

cmaciel@us.ibm.com

