
Open-Source Security

A s Linux has continued to penetrate the market-
place, customers, especially in the government
sector, have exerted considerable pressure on
Linux developers to obtain some form of secu-

rity certification. All of Linux’s commercial competitors
have already obtained certification, and for Linux to con-
tinue to aggressively compete with them, it must obtain
certification as well. For these reasons, and after careful
analysis, IBM decided to sponsor a Common Criteria-
based security certification for Linux.

An international group of experts developed the
Common Criteria to assess the security functions of com-
puter products. In 1999, the International Organization
for Standards (ISO) adopted the Common Criteria as ISO
standard 15408.1 The governments of 20 nations, includ-
ing the US, Canada, Germany, France, Japan, and the
United Kingdom, have officially adopted the Common
Criteria. Since July 2002, the United States has required a
Common Criteria or Federal Information Processing
Standard (FIPS) 140 certification for cryptographic func-
tions (see http://csrc.nist.gov/cryptval) for all IT products
used for processing security-critical data within US gov-
ernment systems.

As far as we know, no open-source program has received
a Common Criteria security certification—until now. Al-
though some people believed that an open-source program
couldn’t receive a Common Criteria security certification,
IBM and atsec have proved otherwise by obtaining this cer-
tification for Linux. It’s also generally believed that security
certifications are time consuming, often taking years to ac-
complish. We obtained the Common Criteria certification
of Linux in four months. This article describes our experi-
ence with the certification process and examines several as-

pects of Linux
open source.

Security implications
of open-source code
An open-source program’s license lets users run the pro-
gram for any purpose, study and modify the program, and
redistribute copies of either the original program or the
modified program, without having to pay royalties to
previous developers. Two of the most visible open-source
projects are the Linux operating system and the Apache
Web server. Although this article focuses on Linux, most
of the strategies we describe are applicable to all open-
source software.

Linux is a member of the large family of Unix-like
operating systems from companies such as AT&T, Digi-
tal, IBM, Hewlett-Packard, and Sun. Linux, however,
isn’t a commercial operating system, and no one vendor
controls it. Linus Torvalds, who developed Linux in
1991, initially designed it for the IBM PC based on the
Intel microcomputer. Today, however, Linux runs on just
about any hardware platform. In addition, Linux has in-
spired the development of countless free software pro-
grams, including MySQL, Python, Open LDAP, and
open-source implementations of Kerberos.

Since the beginning of open-source development,
debate has raged over whether open-source software is
more secure than other software, but with no definite
conclusion. Open-source software gives attackers and de-
fenders the same advantage.2 If a defender does nothing
about security, open-source software essentially gives the
advantage to the attacker. However, open-source soft-
ware also offers the defender great advantages by provid-

K.S. (DOC)
SHANKAR

IBM

HELMUT KURTH

atsec
Information
Security

Certifying Open Source—
The Linux Experience

28 PUBLISHED BY THE IEEE COMPUTER SOCIETY ■ 1540-7993/04/$20.00 © 2004 IEEE ■ IEEE SECURITY & PRIVACY

The Common Criteria is an international standard for

evaluating the security functions of IT products. The

authors describe how they obtained this security

certification for Linux, the first open-source product to

receive such certification.

Open-Source Security

ing access to security techniques and knowledge that are
rarely available with closed-source software. For example,
most programmers who contribute to open-source soft-
ware take extra precautions to ensure their code is secure,
as their reputations are at stake. In addition, open-source
code is subject to community-wide review and audit (al-
though simply publishing code doesn’t guarantee that
people will examine it for security flaws).

Another advantage of open-source software is the speed
with which developers make patches available when bugs
are found. Many open-source developers consider it a per-
sonal challenge to develop and release fixes to the open-
source community, sometimes within a few hours—a
speed unheard of in closed-source development.

Certification process
The Common Criteria allow for several assurance levels,
ranging from Evaluation Assurance Level 1 (the lowest
level requiring only a minimal set of documentation and
testing of the security functions) to EAL7 (the highest
level requiring formally specified security functions, ex-
tensive testing of all details of those functions, and a so-
phisticated vulnerability analysis). Many of Linux’s com-
mercial competitors have been certified at EAL4.

IBM and atsec first considered obtaining an EAL4 certi-
fication for Linux. Although this security level was techni-
cally attainable, achieving it would have taken about three
years. Given the market pressure, our objective became to
demonstrate that Linux could be certified at a meaningful
level fairly quickly (that is, in about six months). We consid-
ered EAL3 certification next. Because lifecycle assurance
requirements start at EAL3, open-source code would have
difficulty meeting those requirements in the first certifica-
tion step. In addition, we didn’t want to develop any signifi-
cant software for security functionality that would further
slow the certification effort. In other words, IBM and atsec
wanted to certify Linux as-is. Therefore, as a start, we chose
the SUSE Linux Enterprise Server 8, a widely used Linux
distribution, as the target of evaluation (TOE) and selected
EAL2 as our first step. (Since this article’s writing, we’ve
evaluated both SUSE Linux and Red Hat Linux at the
EAL3 assurance level with full compliance to the controlled
access protection profile.3) We can further augment EAL2
to obtain higher assurance levels and meet the requirements
for more elaborate protection profiles.

EAL2 analysis and requirements
The EAL2 certification process involves analyzing the
operating system’s functional and interface specifications,
guidance documentation, and high-level design to un-
derstand its security behavior. EAL2 analysis also includes

• Independent security function testing
• Evidence of developer testing based on functional spec-

ification

• Selective independent confirmation of developer test
results

• Strong function analysis
• Evidence of developer search for obvious vulnerabilities
• Verification that all functional specification, high-level

design, and guidance documentation is consistent with
the system’s actual operation

• Configuration list for the Linux distribution chosen (in
this case, SUSE Linux Enterprise Server 8)

• Evidence of secure delivery procedures

The EAL2 assurance requirements fall into six
categories:

• Configuration management specifies methods for estab-
lishing that the Linux implementation meets the func-
tional requirements. We met these objectives by requir-
ing discipline and control in the refinement and
modification processes of the Linux distribution and
the related documentation. Basically, the configuration
management system must let us track changes and en-
sure that all of the changes are authorized.

• Delivery and operations provide requirements for the
evaluated Linux distribution’s correct delivery, installa-
tion, generation, and startup.

• Development encompasses requirements for represent-
ing the TOE security function (TSF) at various abstrac-
tion levels, from the functional interface to the imple-
mentation representation. EAL2 analysis requires
correspondence between the functional specification
and high-level design.

• Guidance documents describe all relevant aspects for the
secure administration and use of Linux.

• Security testing confirms that the security functions op-
erate according to the operating system’s specification,
and thus that the tested Linux distribution satisfies the
security requirements. In this class, the aspects of cover-
age (completeness) and depth (level of detail) are sepa-
rated for flexibility.

• Vulnerability assessment defines requirements for identi-
fying exploitable vulnerabilities. Specifically, this class
addresses any vulnerability introduced by the construc-
tion, operation, misuse, or incorrect configuration of
the evaluated Linux distribution.

We felt confident that we could meet those require-
ments with Linux and complete the evaluation within
six months.

Security target
The Common Criteria lets you choose the security func-
tions to be evaluated. The security target is a document that
details the security functions; it must show that this set of
functions is useful and consistent. It must also describe the
threats these function are designed to counter as well as

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 29

Open-Source Security

the security requirements for the operational environ-
ment (such as physical protection and trust of the users
administering the system).

As stated previously, our intention was to evaluate

Linux as-is, without developing additional security func-
tions. The evaluation targeted a server system, not a
client, to emulate how commercial enterprises and gov-
ernment agencies use Linux for handling critical data.
Rather than evaluate a wide set of security-related func-
tions, we wanted to evaluate the basic security functions
used in almost all Linux implementations. We’ll include
additional security functions in later evaluations.

In the first evaluation, the security target included the
following security functions:

• Password-based user identification and authentication. We in-
cluded the pluggable authentication module (PAM)
framework in the evaluated configuration with several
modules that enforce a strong password policy for pass-
word-based authentication. We excluded other user au-
thentication methods, leaving them for future evaluation.

• Discretionary access control for files and interprocess communi-
cation (IPC) objects. The evaluated configuration in-
cludes the ext3 file system, which supports POSIX-
compatible access-control lists. Support for ext3 allows
for a more flexible access-control policy than is available
with the standard Unix permission bits. We’ve also
evaluated access-control mechanisms for IPC objects.

• Object reuse to ensure that no process can access data left by an-
other process in an object (such as main memory or disk space).
Missing or incomplete preparation of objects for reuse is
a common security problem in many operating systems.
Our initial evaluation ensured that all storage objects in
memory or on disk contained no information from
their previous use when reallocated to another subject.

• Security management that defines the functions root users will
use to administer the Linux server. The security target de-
fines two roles: system administrator and normal user. A
system administrator is any user who is allowed to be-
come root (in the evaluated configuration, this is re-
stricted to trusted users). Direct log in to root is prohib-
ited. All other users are normal users.

• Mechanisms that protect the kernel and applications from inter-
ference and tampering by untrusted processes. We also evalu-
ated the kernel-enforced separation between processes
running with different user IDs. Because these mecha-
nisms rely on the underlying hardware capabilities, we

examined the hardware architecture and how it per-
forms memory management and process separation.

Our evaluation analyzed the Intel Pentium 4 and
XEON-based IBM xSeries systems, including both sin-
gle- and multiprocessor systems. Subsequent evaluations
will include more hardware platforms.

The evaluated configuration includes a few basic net-
work services running as trusted processes (processes with
root privileges) and also allows for other network proto-
cols served by untrusted processes on unprivileged ports.
For example, the evaluated configuration lets users run a
Web server as an untrusted process on ports above 1024.

The security target, which is publicly available on the
German Common Criteria certification body Web site
(www.bsi.de/zertifiz/zert/reporte/0216b.pdf), des-
cribes the security functions in more detail. The IBM
Web site also includes the security target as well as other
documents used for the evaluation (http://oss.
software.ibm.com/linux/pubs/?topic_id=5).

In developing the security target, we used the con-
trolled-access protection profile (CAPP)3 as far as possible
to describe the threats to be countered, the policies to fol-
low, the assumptions and requirements on the environ-
ment, and the requirements for the security functions
themselves. The main reason for this strategy was to iden-
tify the missing functions required for full compliance
with this protection profile and close the gaps by develop-
ing the missing security functions. CAPP is a US govern-
ment-defined standard for commercial operating system
security requirements, and has been the basis for evaluat-
ing other operating systems.

Required documentation and analyses
The Common Criteria require a set of design and guid-
ance documents on which to base the analysis. The first
document, the functional specification, defines the security
functions’ external interfaces. The functional specifica-
tion for Linux has three parts:

• kernel system calls,
• processes or programs running with root privileges (these

are either programs started as a daemon with root privi-
leges or programs that are owned by root, have the setuid-
bit set, and are executable by users other than root), and

• configuration files that influence security function
behavior.

In the Unix world, man pages describe the external in-
terfaces of system calls and programs, as well as the con-
figuration files. When we compared the list of system calls
in the SUSE Linux Enterprise Server 8 (which uses the
standard 2.4.19-kernel version) with the existing man
pages, we found that a significant number (59) of the calls
had no corresponding man pages, and the man pages for

30 IEEE SECURITY & PRIVACY ■ NOVEMBER/DECEMBER 2004

Our intention was to evaluate
Linux as-is, without developing
additional security functions.

Open-Source Security

some of the configuration files didn’t describe all the
available parameters. To close the documentation gap, we
developed man pages for the system calls that lacked
them. We also updated and enhanced some of the exist-
ing man pages for security-critical configuration files.

The Common Criteria also requires a high-level design
document describing the security functions’ implementa-
tion. Although many documents and books describe how
the kernel works, few provide enough detail about the im-
plementation of security-related aspects, such as the access-
control lists in the ext3 file system or access control for IPC
objects. In addition, documentation of some of the PAM
modules used in the evaluation failed to satisfy the Com-
mon Criteria’s requirements for a high-level design.

As the sponsor of the evaluation, IBM decided to de-
velop a new high-level design document for the SUSE
Linux Enterprise Server 8, focusing on the security func-
tions defined in the security target. People from IBM,
SUSE, and atsec have extensively reviewed the new doc-
ument throughout its development to ensure that it cor-
rectly describes the security functions and contains the
required level of detail.

To address the required administrator guidance for the
installation and management of the evaluated configura-
tion, we developed a security guide. The security guide
describes how to get to the evaluated configuration in the
installation process and gives guidance on managing the se-
curity functions so the system maintains its security level.

The security functions must be extensively tested,
with tests covering all security functions and most of their
parameters and details. To satisfy this requirement, we sig-
nificantly extended the Linux Test Project (LTP) test suite
with security-function-related tests. We integrated the
tests into the LTP framework so that most of the tests are
now fully automated.

The Common Criteria also requires a vulnerability
analysis. At EAL2, it requires only a high-level vulnerabil-
ity analysis. IBM developed such a vulnerability analysis
that shows not only the vulnerabilities detected in the last
several years that have been addressed, but also the residual
vulnerabilities that hostile users could potentially exploit.

Successful completion of a Common Criteria secu-
rity evaluation doesn’t guarantee absolute security. The
Common Criteria security evaluation states that the
product has been analyzed with a specific level of rigor as
defined by the EAL. The evaluation also states that the
product, when operated in an environment compliant
with the restrictions in the security target, can be trusted
to enforce the security policy defined by the security
functions in the security target. Violating the assumptions
on the operational environment results in residual vulner-
abilities that can be exploited. Therefore, any user of an
evaluated product should cross-check the operational en-
vironment against the defined restrictions to verify that
the environment enforces those restrictions.

Lessons learned
Over the years, many people have asked whether per-
forming a Common Criteria security evaluation of an
open-source system is possible. We’ve demonstrated the
feasibility of obtaining an EAL2 certification.

Open source vs. commercial
At EAL2, the evaluation of open-source products is simi-
lar to that of commercial products. The development
processes of open-source and commercial products have
minimal differences at this level.

Nevertheless, the Common Criteria EAL2 require-
ments made it necessary to choose a defined distribution
as the evaluation’s target. The evaluation also assessed
development, configuration management, and flaw-
remediation procedures of the distributor (SUSE). With
the experience gathered in this initial evaluation, we’re
confident that open-source software managed and main-
tained by a distributor can satisfy the development-
process-related aspects of higher assurance levels.

We’ve also demonstrated that it’s possible to quickly
evaluate complex software such as Linux. The evaluation
took four months from the start of the evaluation until the
Common Criteria certification body accepted all of the
required technical reports. Of course, one reason the
process went quickly was that we used EAL2, a fairly low
level of assurance. Our strategy was to obtain a certificate
quickly and then move step-by-step to higher evaluation
levels. That the evaluators had many years of experience
in certification and had previously performed evaluations
of Unix-type operating systems also helped.

Lack of previous evaluations
Security evaluations are common in operating system-
type products. In fact, Linux was the only server oper-
ating system with a growing market share that hadn’t
undergone a security evaluation, simply because evalu-
ations cost money, which neither the open-source
community nor the existing Linux distributors have
been willing or were able to spend. A Linux evaluation
also requires that Linux adapt its security functionality
to commercial enterprise and government agency se-
curity requirements. The open-source community
hasn’t always regarded such adaptation as a high prior-
ity; the community is often more interested in techno-
logically challenging functions than in satisfying stan-
dard business requirements.

Auditing, for example, is an important requirement
for many business areas in which accountability is essen-
tial. Although Sun Solaris, IBM AIX, HP-UX, and Mi-
crosoft Windows 2000 Advanced Server all have exten-
sive audit capabilities that are compliant with CAPP
auditing requirements, Linux has only a few auditing
add-ons, most of which are prototypes in character, and
none that satisfies the CAPP requirements completely.

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 31

Open-Source Security

Main difficulties
The main difficulty encountered in the Linux evaluation
was the existing documentation’s status. This might seem
paradoxical considering the many documents on Linux
available online and in books, the man pages that are part
of most packages, and the body of Linux how-tos. What
was lacking was the design documentation required to
perform a security analysis quickly and efficiently. The
Linux Documentation Project (www.tldp.org) contains
Linux documentation, but the documents published
there focus primarily on guidance and only partly on de-
sign. Some useful documentation exists on the kernel;4,5

however, although these sources are detailed and up-to-
date, their focus isn’t security, and they lack some of the
implementation details. Moreover, little documentation
exists on nonkernel functions, such as the PAM frame-
work or the implementation of other security functions
running with root privileges. In addition, we identified
severe deficiencies in the man pages describing the system
calls and security-critical configuration files.

In Linux, the code and design documentation devel-
opment processes aren’t strictly coupled. Often, the peo-
ple who develop the design documentation aren’t part of
the development team. Those who update the software
and those who update the design documentation aren’t
necessarily in sync. Except for the man pages, no rules or
guidelines for structuring and producing design docu-
mentation exist. Consequently, design documentation
differs significantly in the level of detail provided. In some
cases, information overlaps between sources; in other
cases, functions aren’t described at all.

Unlike developers of open-source operating systems,
most commercial developers have a defined process for
updating the design documentation when modifications
are made and maintain the design and user documenta-
tion under strict management control. To overcome the
documentation problem in the Linux evaluation, IBM
developed the missing man pages and created a new secu-
rity-focused high-level design document as input for the
evaluation. This approach will let us develop the design
document even further than necessary for EAL2 to ulti-
mately achieve higher evaluation levels.

The Linux Test Project (http://ltp.sourceforge.net),
which defines a suite of tests for Linux, made the testing
situation better than the documentation situation, and in
fact made the situation for Linux with respect to testing
comparable to the situation an evaluator finds when eval-
uating a commercial operating system for the first time.

Certain aspects of open-source software make evalu-
ating open-source operating systems easier than evaluat-
ing commercial operating systems. For example, the
open-source community responds to reported security
problems quickly. Although today’s security-aware ven-
dors also react quickly, open source still has a timing ad-
vantage over commercial products.

Another important positive aspect of open-source soft-
ware, especially at the lower Common Criteria assurance
levels (up to and including EAL4), is source code availabil-
ity. Only at EAL5 do the Common Criteria require the de-
veloper to provide the full source code to the evaluation fa-
cility. At EAL4, only a subset of the source code must be
provided, and at EAL1 through EAL3, no source code
need be provided. Because open-source products provide
access to the full source code, an evaluation facility can use
the code as additional input when assessing the product.
How useful this access is without corresponding up-to-
date low-level design documentation depends on the eval-
uators’ experience. In the Linux evaluation, all evaluators
had in-depth knowledge of Unix-type operating systems
in general and Linux in particular. The evaluators used the
source code extensively in identifying security-critical im-
plementation errors as well as assessing vulnerability. This
let them identify many security problems that would have
been difficult to identify without access to the source code.

Of the security problems identified and solved within
the evaluation, evaluators found that no man pages for
more than 50 system calls of the 2.4.19 kernel existed. IBM
developed the missing man pages and released them to the
open-source community. In addition, in the PAM frame-
work alone, evaluators detected a total of six security-criti-
cal implementation flaws. SUSE corrected all of these flaws
and included the corrections in the PAM update that was
part of the evaluated configuration. These flaws included

• a heap corruption problem that could cause a system crash;
• a false return code passed back to the caller, which

could cause a user’s password to be set to zero; and
• a flaw in the implementation of stacked modules caus-

ing those modules to omit some required checks,
which could lets a user access the system without the
correct password.

The main lesson learned in this project is that a Com-
mon Criteria evaluation is possible for open-source prod-
ucts, even those as complex as a full Linux distribution.
Evaluation of open-source products can take place rela-
tively quickly. The evaluation officially began 6 March
2003 and ended 10 July 2003. Within this time frame, the
design documentation and test documentation produced
by IBM and SUSE, and the evaluation documentation
produced by atsec amounted to more than 800 pages (see
the “Certification Process Resources” sidebar for more
on this documentation). In addition, we now have a bet-
ter understanding of how to achieve compliance with
higher Common Criteria assurance levels.

P erforming a security evaluation should never be a
one-time accomplishment. Maintaining the security

level achieved requires maintaining the security certifi-

32 IEEE SECURITY & PRIVACY ■ NOVEMBER/DECEMBER 2004

Open-Source Security

cate. In the case of Linux, we must go a step further: in-
crease, step-by-step, the assurance level and the security
functionality until Linux achieves the highest assurance
level of any commercial operating system product, while
offering the richest set of security functions.

We’ve already taken the next step in this direction.
Linux, like its commercial competitors, has been success-
fully evaluated for compliance with CAPP requirements.
We’ve also increased the evaluation assurance level to
EAL3, requiring an even stricter security analysis of
Linux. The security functionality included in the EAL3
evaluation went beyond that required by CAPP, includ-
ing a new subsystem for auditing security-relevant events.

The main differences between EAL2 and EAL3 are ad-
ditional requirements for configuration management, de-
veloper security, more detailed high-level design, and more
rigorous testing. SUSE procedures have addressed the con-
figuration management and developer security require-
ments. IBM added detail to the high-level design docu-
ment produced for the EAL2 evaluation, test cases, as well
as demonstrations using the gcov tool to determine which
kernel internal interfaces are called by individual test cases,
have addressed the additional testing requirements. The
documents for this evaluation are available at the IBM Web
site (see the sidebar). The test plan and test cases used in the
evaluation are on the Linux Test Project Web site
(http://ltp.sourceforge.net/EAL3.html).

The result is a more useful system that allows cus-
tomers to place a higher level of trust in the correctness
and effectiveness of Linux’s security functions. EAL3 cer-
tification was another significant step in establishing
Linux as a trusted base for critical applications.

As a further step, atsec is currently evaluating Linux for
compliance with EAL4, which includes the development
of a low-level design of the Linux kernel (the evaluation
will be based on the 2.6 version of the kernel) and re-
quires a more sophisticated vulnerability analysis. The ex-
perience gathered in the EAL2 and EAL3 evaluations
have given us the confidence that we can achieve compli-
ance with EAL4 by the end of 2004. The project is well

on schedule. Given that the initial evaluation of other op-
erating systems for compliance with this level took more
than three years, our step-by-step approach seems quite
efficient. Having achieved compliance with EAL2 in
four months, compliance with EAL3 in another six
months, and compliance with EAL4 in an (estimated) ad-
ditional 12 months, the overall time frame to take Linux
to EAL4 will be less than two years.

References
1. ISO/IEC Standard 15408, Evaluation Criteria for IT Secu-

rity, parts 1 to 3, Int’l Organization for Standards, 1999.
2. C. Cowen, “Software Security for Open-Source Sys-

tems,” IEEE Security & Privacy, vol. 1, no. 1, Jan./Feb.
2003, pp. 38�45.

3. Controlled Access Protection Profile (CAPP), version 1.d,
Nat’l Inst. of Standards and Technology, validated pro-
tection profile, 1999; http://niap.nist.gov/cc-scheme/
pp/PP_CAPP_V1.d.html.

4. T. Aivazian, “Linux Kernal 2.4 Internals,” Linux Docu-
mentation Project, 2002; www.tldp.org/LDP/lki.

5. D.P. Bovet and M. Cesati, Understanding the Linux Ker-
nel, O’Reilly & Assoc., 2003.

Acknowledgments
This work represents the view of the authors and does not necessarily rep-
resent the view of IBM.

K.S. (Doc) Shankar is a security architect at IBM. His research
interests include public-key infrastructure; cryptographic frame-
works and systems; and operating system, workstation, and net-
work security. He received MS and PhD degrees in electrical
engineering and computer sciences from the University of Cali-
fornia at Berkeley. Contact him at dshankar@us.ibm.com.

Helmut Kurth is the cofounder, chief scientist, and head of the
Common Criteria Evaluation Facility at atsec information secu-
rity. His research interests include secure operating systems, cryp-
tographic protocols and smart card security. He has a master’s
in applied mathematics from the University of Bonn. He has been
a member of the steering committee of the European Sympo-
sium on Research in Computer Security (ESORICS) since it was
founded. Contact him at helmut@atsec.com.

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 33

To improve Linux security, we’ve made most of the documen-

tation developed within the evaluation generally available as part

of IBM’s open-source repository (http://oss.software.ibm.com/linux/

pubs/?topic_id=5). This documentation includes security target, new

man pages, high-level design, security guide, and test cases.

Other distributions can pick up this material, adapt it to their

systems, and undergo a Common Criteria evaluation without

having to invest a significant amount of time and money preparing

these documents.

We’ve not yet decided what to do with the vulnerability

analysis. Making the analysis public might benefit potential

hackers because not all vulnerabilities can be effectively elim-

inated. On the other hand, the vulnerability analysis can provide

additional information for those responsible for setting up and

managing a Linux-based environment. As is the case with open-

source software in general, there are pros and cons to publishing

the vulnerability analysis. The discussion is not so critical for the

current fairly high-level vulnerability analysis that was developed,

but the issue’s relevance will change with evaluation levels that

require in-depth vulnerability assessments.

Certification process resources

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0049004500450045002000580070006c006f0072006500200073007000650063007300200066006f0072002000440069007300740069006c006c0065007200200036002e0020004d0056>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

