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Abstract 

This paper examines the Service Oriented Architecture (SOA) performance in the Linux
®
 environment. 

IBM
®
 has defined five SOA Foundation Entry Points to help businesses get started with SOA.  This paper 

focuses on the performance tuning for Web services (Reuse entry point), service mediations (Connectivity 
entry point), and business processes (Process entry point) in the Linux environment.  The paper also 
provides some discussion on the two remaining SOA People and Information entry points.  In addition, we 
also look at the impact of server virtualization and WebSphere Virtual Enterprise’s dynamic operations on 
the performance of business processes in the Linux environment.  WebSphere Virtual Enterprise provides 
a capability to manage a dynamic cluster of application servers that can be activated on a pool of physical 
servers in response to changes in the workload mix to meet user-defined performance goals.  We include 
IBM X-Architecture

®
 servers as well as IBM Power™ servers with PowerVM™ virtualization technology in 

our study.  For performance measurements, we use a benchmark which models the business processes 
and Web services provided for a typical automobile insurance company. 
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1. Introduction  

IBM has defined five Service Oriented Architecture (SOA) Foundation Entry Points to help businesses get 
started with SOA in their enterprise environment.  These five entry points are People, Process, 
Information, Connectivity, and Reuse [1].  This paper focuses on the following entry points: 
 

• Reuse entry point, which is the enablement of Web services and how they can be reused throughout 
the SOA implementation 

 

• Connectivity entry point, which encompasses the transformation and routing service mediations on 
the Enterprise Service Bus (ESB) 

 

• Process entry point, which encompasses the Business Process and Service Choreography aspect of 
SOA 

 

This paper examines how we can tune hardware, Linux, WebSphere, and DB2 components to achieve 
optimal performance for an SOA benchmark which models the Web services, business processes, and 
service routing mechanisms for a typical automobile insurance company.  We will conclude with a set of 
specific recommendations for each of the SOA entry points.  Additionally, we will briefly discuss the 
components of the People and Information entry points and provide some references to tuning guides for 
these entry points. 
 

2. Background Information & Performance Evaluation Methodology 

In this paper, we evaluate the performance of Web services, transformation and routing mediations on the 
service requests, as well as business processes hosted on the WebSphere Process Server (WPS) V6.1.  
Let us first discuss some basic WebSphere terminology and structure. 
 
WebSphere Process Server is an SCA-compliant runtime element that provides a fully converged, 
standards-based process engine [3].  The foundation of WPS is the WebSphere Application Server 
(WAS).  WAS is the IBM implementation of the Java® 2 Enterprise Edition (J2EE) platform, which 
conforms to V1.4 of the J2EE specifications [2]. 

 

2.1. WebSphere Application Server (WAS) Structure 
 
A base WebSphere Application Server (WAS) installation includes everything needed for a single 
application server instance.  Additional server definitions can be logically grouped into nodes.  A node can 
contain many application servers, but cannot span multiple physical servers.  A single physical server can 
have multiple nodes installed on it, each with multiple managed application servers.  Multiple nodes can 
be grouped together into a node group or into another logical grouping called a cluster.  A cell contains 
one or more node groups and/or clusters. 
 
A WebSphere Network Deployment installation provides centralized administration and workload 
management for a cell.  A cell has a master administrative repository that holds the configuration 
information for all nodes in the cell.  There is a Deployment Manager through which all nodes in the cell 
can be managed.  The Deployment Manager has a GUI called the Integrated Solutions Console through 
which a WebSphere administrator can perform everything from managing a node to deploying an 
application to any node or cluster in the cell.  The Deployment Manager communicates to each node 
through a node agent.  The node agent, which is a specialized application server, must be started on a 
node before the Deployment Manager can “see” it. 
 
WebSphere Virtual Enterprise extends the Network Deployment environment, providing on-demand 
capabilities which allow a dynamic cluster of application servers to respond in real time to changing 
workload demands, thereby improving the operational efficiency of the servers. 
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2.2. WebSphere Process Server (WPS) Environment 
 
Every WebSphere Process Server (WPS) environment involves three fundamental layers:  WPS 
applications, a messaging infrastructure, and one or more relational databases.  More specifically: 
 

• WPS applications include the process server infrastructure code, such as the Business Process 
Choreographer (BPC) and any user applications that exploit the process server functions.  These 
applications require a WPS application server to be installed and run. 

 
• A messaging infrastructure is required for WPS and uses four WebSphere Service Integration 

(SI) buses: 
o Two buses for the Service Component Architecture (SCA) support (SCA.SYSTEM and 

SCA.APPLICATION buses) 
o One bus for the BPC (BPC SI bus) 
o One bus for Common Event Infrastructure (CEI) asynchronous event publishing (CEI 

bus) 
 
When an application server (or a cluster of application servers) is added to a SI bus, a Message 
Engine (ME) is created.  The ME is the component in the WAS process which implements the 
logic of the messaging infrastructure. 
 

• Relational databases are required for WPS and the messaging infrastructure to store certain 
application configurations, runtime information, and persistent data.  There are two main 
databases that must handle much traffic in a WPS environment: 

o The Business Process Choreographer database (BPEDB) which stores data objects 
related to business processes 

o The Service Integration Bus database (SIBDB) which stores data objects for events and 
message persistence 

 

2.3. WebSphere Virtual Enterprise (WVE) Environment 
 
In our setup, we also use WebSphere Virtual Enterprise (WVE) V6.1, which provides application server 
virtualization, resource management, and a host of advanced operational facilities, such as performance 
and health monitoring.  This combination of capabilities is sometimes collectively referred to as dynamic 
operations.  One key feature of dynamic operations is that they can respond in real time to changes in the 
workload mix (without human intervention if so desired) to ensure that performance goals set by the user 
can be met.  Following are the key elements and features of WVE: 
 

• A dynamic cluster of application servers which run the same applications.  Applications are first 
installed and configured on the dynamic cluster.  They are then propagated to all active 
application servers in the cluster. 

 
• A service policy that defines a performance goal for one or more applications.   

 
• An On-Demand Router (ODR) which is a gateway through which Web service requests flow to 

the back-end dynamic cluster of application servers.  The ODR’s primary functions include 
classification of incoming requests (based on rules defined by the user) and intelligent request 
routing based on sense and response mechanisms from the back-end servers. 

 
• A Web server which is placed in front of the ODR as a trusted proxy server.  In this study, we 

choose to use the IBM HTTP Server. 
 

• Web service requests will flow through the Web server and be intelligently routed to active 
application servers in the dynamic cluster by the ODR based on the performance information 
collected from the cluster members.  Workload will be balanced across all servers in the cluster in 
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order to achieve the performance goals specified in the service policy.  This dynamic workload 
balancing is based on load distribution, service policy, and available resources.  This capability is 
provided by three autonomic managers associated with the ODR:  the Application Placement 
Controller (APC), Dynamic Workload Manager (DWLM), and Autonomic Request Flow Manager 
(ARFM).  They make decisions on health management, traffic shaping, and application placement 
for the ODR. 

 
Dynamic clustering in the WVE environment involves the clustering of WPS applications and the 
messaging infrastructure.  Conceptually, the clustering of WPS applications is not very different from 
clustering plain J2EE applications in the WebSphere Application Server environment.  WebSphere 
clustering techniques in the static environment are also applicable to the dynamic WVE environment.  
These techniques are discussed in [4].  However, clustering the messaging infrastructure is significantly 
more complex. 
 
If a cluster of application servers is added to a Service Integration (SI) bus, each server in the cluster is 
capable of running the Message Engine (ME) created for that cluster.  However, only one server can 
have an active instance of the Message Engine at any given time.  There are two approaches that a 
Message Engine can be configured to work with WPS applications: 
 

• The Message Engine is “local” to the cluster of WPS applications.  In this case, the ME runs 
within the same application cluster as the WPS applications. 

• The Message Engine is located in its own cluster, separate from the WPS applications.  This is 
also called the “Silver” topology in a classification of WebSphere clustering topologies [4]. 

 
In this study, we consider both approaches. 
 

2.4. Benchmark 
 
In this study, we use a benchmark that models the business processes and Web services provided for a 
typical automobile insurance company [10].  The benchmark specifies a macro workload whose driver 
can generate an end-to-end workload similar to that of an actual production system in an SOA 
environment.  Figure 2.1 shows the components of the benchmark. 

 

The benchmark makes extensive use of IBM SOA platform products in the following areas: 
• Enablement of Web services, using IBM WebSphere Application Server (WAS) 
• Business process choreography, using integration and choreography features of IBM WebSphere 

Process Server (WPS) 
• Integration of Web services, using IBM WebSphere Enterprise Service Bus (WESB) or 

DataPower appliances 
 
Each of the areas mentioned above can be included or excluded from performance evaluations.  The use 
of DataPower appliances is out of the scope of this paper. 
 
In the benchmark, the Web services are implemented as part of a ClaimServices application.  These Web 
services represent typical services that are involved in the processing of an automobile insurance claim, 
such as creating a claim, updating a claim, approving or denying a claim, checking insurance coverage, 
generating a list of approved repair shops, selecting a repair shop, and informing the customer.  Some 
business logic is embedded in the implementation of these services.  However, the presence of business 
logic might hinder us in evaluating the performance of the underlying middleware layers supporting Web 
services as well as investigating potential problems that might occur.  As a result, we decided to run the 
benchmark in Infrastructure Mode which keeps the business logic in the Web services to a minimum; it 
only performs minimal calculations and returns responses.   
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Figure 2.1 – Architecture of benchmark used in our evaluation 
 
For service mediations, we consider both routing and transformation mediations.  Transformation 
mediations can be performed on service requests, and in some cases, responses, using Extensible 
Stylesheet Language Transformations (XSLT).  XSLT is an XML-based language used for the 
transformation of XML documents into other XML or human-readable documents.  There are different 
levels of complexity for these transformations, and we will consider the following: 
 

• XSLT Value Transformation, which transforms the value of a single element in the service 
request message using XSLT. 

• XSLT Namespace Transformation, which transforms service requests and responses from one 
schema to another using XSLT.  In this case, the schemas are largely the same but the name of 
an element differs and the two schemas have different namespaces. 

• XSLT Schema Transformation, which transforms service request and response messages from 
one schema to another using XSLT.  In this case, the schemas are completely different, but they 
contain similar data which is mapped from one to the other.  In addition to the transformation, a 
value from the service request is transferred to the response message by storing it in a context 
header. 

• Composite Module mediation consists of three mediation primitives wired together inside a single, 
composite mediation module.  The three mediation primitives are authorization (a routing 
mediation which checks a password field in the body of the service request), route on body, and 
transform.  The composite module approach is good for performance because it saves the 
overhead of inter-module calls, but at the expense of the ability to individually administer the 
pieces of the overall mediation. 

 
Routing mediations route requests to different Web services based on content.  In particular, we will 
examine route-on-body mediation which routes each request to the appropriate Web service based on 
the content of a field in the body of that request. 
 

The processing of auto insurance claims is done through a BPEL application called HandleClaim.  Figure 
2.2 illustrates the HandleClaim application, which is implemented using the business process 
choreography features provided by WebSphere Process Server (WPS).  After a customer submits a 
claim, the HandleClaim process calls an SCA component called FraudCheck to determine whether the 
claim is fraudulent or not.  If a claim is fraudulent, it is rejected, and the processing of the claim is 
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completed.  On the other hand, if the claim is found to be valid, an Adjuster is called upon to evaluate and 
update the claim.  Next there is a business rule which determines whether the value of the claim is less 
than $500.  If so, the claim is approved automatically; otherwise, it would have to be approved in person 
by an Underwriter.  The actions of Adjusters and Underwriters are simulated by another application – the 
HumanTaskSimulator – which polls and performs the roles of adjusters and underwriters.  After much 
experimentation, we found that setting the HumanTaskSimulator’s parameters to the following values was 
more than adequate for the workloads considered in this study: 

• Number of Adjusters = 30 
• Number of Underwriters = 20 
• Polling period for Adjusters = 200 ms 
• Polling period for Underwriters = 400 ms 

 
After a claim is approved, a check is sent to the customer, and the processing of the claim is completed.  
The underlying business logic of the claim services, such as creating, updating, rejecting, approving, and 
completing a claim, is performed by calling the Web services implemented in the ClaimServices 
application.  In Figure 2.2, the claim services are represented by the boxes in blue. 
 
The benchmark’s Workload Driver is a stand-alone, multi-threaded HTTP client which can generate 
concurrent insurance claim requests to the HandleClaim application using the Service Oriented Access 
Protocol (SOAP) implemented on top of the HTTP transport protocol [9]. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 – Insurance claim processing workflows 
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optimization level for compiles, thus resulting in faster runtime performance, but at the expense of slower 
server startups. 
 

3. Systems Configurations 

3.1. Hardware 
 
As mentioned previously, we consider both IBM X-Architecture and Power Architecture server platforms 
for hosting the benchmark’s Web services and business processes. 
 
3.1.1. IBM X-Architecture Servers 
 
In this study, we employ the IBM System x3850 M2 (Table 3.1), which implements the IBM eX4 chipset 
[7,8], to host WebSphere, DB2, and the benchmark’s Web services and business process components. 
 

Server IBM System x3850 M2 

CPU 4 x 64-bit Quad-Core Intel® Xeon® Processor X7350 (2.93 GHz) 

Memory 64 GB (667 MHz DDR2) 

Network Integrated Dual-Port Gigabit Ethernet w/ TCP-IP off-load engine 

Table 3.1 – IBM System x3850 M2 Configuration 
 
The benchmark’s Workload Driver runs on an IBM System x3650 (Table 3.2). 
 
Workload Driver IBM System x3650 

CPU 2 x 64-bit Quad-Core Intel® Xeon® X5460 (3.16 GHz) 

Memory 24 GB (667 MHz DDR2) 

Network Integrated Dual-port Gigabit Ethernet 

Table 3.2 – IBM System x3650 Configuration 
 
3.1.2. IBM Power Architecture Servers 
 
For the Power platform, we use an IBM Power 570 (Table 3.3) [5] with POWER6 processors [6] to host 
WebSphere and the benchmark’s applications in some tests and two IBM OpenPower 720 servers (Table 
3.4) [11] with POWER5 processors in other tests. 
 

Server IBM Power 570 

CPU 
2 x 64-bit Dual-Core IBM® POWER6® (4.7 GHz), 4 MB L2 cache per 
core, 32 MB L3 cache shared per two cores 

Memory 32 GB (667 MHz DDR2) 

Network Dual-Port Gigabit Ethernet 

Internal Storage 1 x SAS controller with 2 x 300 GB, 15K rpm SAS drives 

Threading Simultaneous Multi-Threading (SMT)™ Technology 

Table 3.3 – IBM Power 570 Configuration 
 

Server IBM OpenPower 720 

CPU 
2 x 64-bit Dual-Core IBM® POWER5® (1.5 GHz), 1.9 MB L2 cache, 36 
MB L3 cache 

Memory 16 GB 
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Network Dual-Port Gigabit Ethernet 

Internal Storage 1 x SAS controller with 4 x 36 GB / 72 GB 15K rpm SAS drives 

Threading Simultaneous Multi-Threading (SMT)™ Technology 

Table 3.4 – IBM OpenPower 720 Configuration 
 
All servers are connected to a Cisco Systems® Catalyst® 3750 Series Gigabit Switch (Model WS-
C3750G-24TS-S). 
 

3.2. Software 
 

The Linux operating system on the IBM System x3850 M2 server is Novell SUSE Linux Enterprise Server 
(SLES) 10 Service Pack (SP) 1 for AMD64 & EM64T (x86_64). 
 

The Linux operating system on the IBM Power 570 and OpenPower 720 is Novell SUSE Linux Enterprise 
Server (SLES) 10 Service Pack (SP) 1 for PPC (ppc64). 
 

The operating system on the workload driver system (IBM System x3650) is Novell SUSE Linux 
Enterprise Server (SLES) 10 Service Pack (SP) 2 for AMD64 & EM64T (x86_64). 
 

All servers run with WebSphere Application Server (WAS) V6.1.0.17, WebSphere Process Server (WPS) 
V6.1.0.2, and WebSphere Virtual Enterprise V6.1.0.4. 
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4. Performance Results  

First let us look at how we can tune Linux and WebSphere components for Web services.  We then 
examine how we can tune those components for routing and transformation mediations on Web services.  
Finally, we discuss how to create an optimal environment for business processes using those Web 
services. 
 

4.1. Tuning Web Services 
 

For tuning Web services, let us consider the setup illustrated in Figure 4.1.1.  The Workload Driver 
generates Web service requests to the benchmark’s ClaimServices application using the Service 
Oriented Access Protocol (SOAP) implemented on top of the HTTP transport protocol [9]. The Workload 
Driver uses up to 50 concurrent threads to generate as many service requests as the ClaimServices 
application can handle.  The server hosting the Web services (i.e. running WPS and the ClaimServices 
application) is an IBM Power 570 server with POWER6 processors. Alternatively, we also configure an 
x86 server – an IBM x3850 M2 server – as the Web server.  While we focus on the performance results 
obtained on the Power 570 server, we will note the performance data obtained on the x3850 M2 server as 
well.  The Workload Driver runs on a separate x86 server (an IBM System x3650). 
 
 
 
 
 
 
 
 
 
Figure 4.1.1 – Setup for tuning Web services 
 
Figure 4.1.2 shows the geometric means of the service request rates obtained for each of the tuning 
items considered in this section. 
 

• “Out-Of-The-Box” Configuration.  The leftmost column in Figure 4.1.2 shows the geometric 
mean of the Web service request rates in the “out-of-the-box” configuration – with all default 
settings for WebSphere Application Server (WAS) and Linux.  Note that the default profile for 
WAS has administrative security enabled.  Enforcing security involves additional overhead for 
authentication and access validation.   

 
Result: This configuration has a geometric mean score of 7254.90 requests per second on the 
Power 570 server. 

 
• Without WAS Administrative Security.  As mentioned previously, the default profile for 

WebSphere Application Server has administrative security enabled.  Enforcing security involves 
additional overhead for authentication and access validation.  If there is no requirement to enforce 
administrative security, it is better to create a WAS profile with administrative security disabled.   

 
Result:  As shown in Figure 4.1.2, the geometric mean score is 7445.44 requests per second on 
the Power 570 server – a 2.6 % improvement over the Out-Of-The-Box configuration.  On an x86 
server (x3850 M2), disabling WAS Administrative Security yields an 8.6% improvement over the 
Out-Of-The-Box configuration. 
 

• WAS JVM Heap Tuning.  In the world of Java, the JVM heap configuration has a significant 
impact on performance.  There are several parameters available for tuning the JVM heap for 
better performance.  Two basic JVM heap parameters are the size of the heap and the garbage 
collection policy. 
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The size of the WAS JVM heap is probably the most important factor for its performance.  A too-
small heap causes garbage collection to happen more frequently.  A too-large heap causes 
garbage collection to happen less frequently, or to take longer to compact the large heap.  There 
are several tools available, such as the Tivoli® Performance Viewer (included with WebSphere), 
that can help analyze and monitor the heap usage and garbage collection so that the heap can 
be specifically tuned for a particular workload.  

 
The default size of the JVM heap is typically too small.  In our tests, by looking at the number of 
memory pages allocated to the heap that are actually in use while the Web service scenarios are 
being run, we find that the heap usage is between 1536 MB and 2048 MB.  As a result, we set 
the JVM heap size for WAS at 2048 MB.  This larger heap gives us a significant performance 
improvement over the default heap size.  Since the Power 570 server has 32 GB of physical 
memory, which is more than adequate for our tests, we decided to set the minimum and 
maximum heap size to the same value (2048 MB) to avoid the overhead of frequent heap size 
changes and ensure optimal performance. 

 
In addition to the JVM heap size, the garbage collection policy can also affect performance.  The 
WAS JVM supports four different garbage collection policies.  The default garbage collection 
policy is optthruput.  During a garbage collection cycle under the optthruput policy, all 
application threads are stopped for mark, sweep, and compaction if needed.  The garbage 
collector scans all the objects in the heap, marking any object that is in use, sweeps up the 
unused objects, reclaims their memory, and then compacts the remaining memory to reduce 
fragmentation.  The entire process can take some time.  All application threads are paused while 
the garbage is collected.  Consequently, the optthruput policy results in longer garbage 
collection pause times, but more often than not, it yields the best overall throughput.  However, 
we decided to use the gencon (Generation Concurrent) garbage collection policy, which handles 

short-lived objects differently from long-lived objects, because our testing shows that the gencon 
policy is more suitable for Web service scenarios.  Under the gencon policy, the heap is split into 
new and old segments. Long-lived objects are promoted to the old space while short-lived objects 
are garbage collected quickly in the new space (called a nursery).   

 
We set the size of the nursery to 1536 MB (75% of the total heap size) by going through the WAS 
Administration Console:  

o Go to Servers → Application Servers → server name → Server Infrastructure → Java 
and Process Management → Process Definition → Additional Properties → Java Virtual 
Machine 

o Enter –––– Xgcpolicy:gencon –Xmn1536M in the “Generic JVM arguments” box.  Note 
that the JVM heap’s maximum and minimum sizes can also be set on this page; in our 
test, both the minimum and maximum heap sizes were set to 2048 MB 

 
Result:  The WAS JVM Heap Tuning column in Figure 4.1.2 shows the geometric mean of the 
Web service request rates on the Power 570 server with the WAS JVM heap size of 2048 MB, 
gencon garbage collection policy, and 1536-MB nursery.  The geometric mean score is 9797.22 
requests per second – an improvement of more than 35% over the “out-of-the-box” configuration.  
On an x86 server (x3850 M2), increasing the WAS JVM heap size to 2048 MB results in a 
whopping 75% performance improvement over the “out-of-the-box” configuration and switching 
the garbage collection policy to gencon yields another 7% performance gain. 

 
• Huge Page Support in Linux.  One of the factors to consider in system performance is memory 

access.  Processors keep a cache of mappings from virtual addresses to physical addresses in a 
Translation Look-aside Buffer (TLB) so that they don't have to walk through the page tables for 
every virtual address used.  The TLB holds a fixed number of entries.  When the processor 
encounters a virtual address that is not in the TLB, called a TLB miss, it must walk the virtual 
address through the page tables to get its physical address.  The new mapping is then written to 
the TLB, overriding an existing entry.  Linux has support for huge pages (sometimes also known 
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as large pages).  Normal pages are 4 KB in size, but the size of each huge page is 16 MB in the 
Power architecture and 2 MB in the x86 architecture.  The use of huge pages can improve 
memory performance in two ways.  First, with huge pages, a single entry in the TLB maps to 
more memory, so fewer TLB entries are needed to map an area of memory.  With fewer TLB 
entries, the frequency of TLB misses is reduced.  Secondly, the page table setup for mapping 
huge pages uses one fewer table to determine the physical addresses, thus making virtual-to-
physical-address mapping for huge pages faster than for normal pages. 
 
Since the WAS JVM heap size is set to 2048 MB (larger than the default size), the CPU overhead 
of managing and keeping track of memory in this large heap can be reduced by exploiting the 
huge page support provided in the Linux kernel. 
 
To allow WAS JVM heap to use huge pages, we must first enable Linux to create and maintain a 
pool of huge pages.  On the Power 570 server, we created a pool of 3 GB of huge pages (a total 
of 192 of 16 MB huge pages) by adding the following lines to the /etc/sysclt.conf file: 
 
#Number of huge pages (192 x 16 MB = 3 GB) 
vm.nr_hugepages = 192 
#Size of shared memory is set to 4 GB (4294967296 bytes) 
kernel.shmmax = 4294967296 
kernel.shmall = 4294967296 

 
(Note that we set the amount of shared memory to 4 GB so that there would be enough room for 
the 3 GB of huge pages in the shared memory pool.) 
 
Result:  The Huge Page Support column in Figure 4.1.2 shows the result obtained by exploiting 
the Linux huge page support on the Power 570 server.  The geometric mean of the Web service 
request rates is now 9999.53 requests per second, which is another 2.1% improvement over what 
we are able to achieve by tuning the WAS JVM heap.  Cumulatively, the WAS JVM heap tuning 
and the huge page support yield a total of 38% performance improvement over the “out-of-the-
box” configuration on the Power 570.  On an x86 (x3850 M2) server, with the huge page size of 
only 2 MB, we find that huge pages only help when the Java heap is constrained to a size that 
cannot accommodate all objects; if the heap could be made large enough, huge pages would not 
make much difference. 
 

• WAS HTTP Connection Settings.  There are several WAS Web Container settings that can be 
tweaked for maximum concurrency in our tests.  If there are not enough HTTP connections 
available, incoming clients will not be able to connect until a connection is freed.  If the server's 
CPUs are not fully utilized, there is no memory constraint, and there is available network 
bandwidth, the number of persistent HTTP connections for each port can be increased from the 
default value of 100 to improve the server’s performance. In our tests, setting the maximum 
number of HTTP persistent requests to unlimited gave us a noticeable performance improvement 
over what we had with WAS JVM tuning and huge page support.  The results are shown in Figure 
4.1.2. 
 
To change the number of HTTP connections available for a given port, we used the WAS 
Administration Console as follows: 

o Go to Servers → Application Servers → server name → Communications and click on 
the Ports link 

o Find the port number in the table and click on “View associated transports” for that port 
o Click on the transport chain that is listed 
o Click on “HTTP inbound channel (HTTP_n),” where “n” denotes channels 1 to 4 
o Either click on “Maximum persistent requests per connection” and enter a number in the 

“Specify maximum number of persistent requests” box, or click on “Unlimited persistent 
requests per connection” 
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Result:  As shown in the Unlimited HTTP Connections column in Figure 4.1.2, the geometric 
mean of the Web service request rates on the Power 570 is 10,607.97 requests per second, 
which is another 6.1% improvement over what we are able to achieve by tuning the WAS JVM 
heap and exploiting the huge page support.  Together with the WAS JVM heap tuning and huge 
page support, the unlimited HTTP connection setting cumulatively yields a total of 46% 
performance improvement over the “out-of-the-box” configuration on the Power 570 server.  On 
an x86 (x3850 M2) server, the unlimited HTTP connection setting produces an 8.3% 
improvement. 
 

 

 

Figure 4.1.2 – Performance impact of tuning items 
 

• WAS Thread Pool Settings.   There is another area that we can tune for maximum concurrency: 
the number of threads available to service requests from the clients.  For example, threads in the 
Web Container thread pool are used for handling incoming HTTP and Web service requests.  
These thread pools are shared by all applications deployed on the server, so in many cases, 
these pools need to be larger than their default sizes.  We experiment with larger maximum 
numbers of threads in the default thread pool as well as the Web container thread pool.  These 
numbers partly depend on the number of CPUs on the Web server since the more CPUs we 
have, the more threads can be executed concurrently.  In our test setup, the Power 570 server 
has two dual-core POWER6 processors, and if we take Simultaneous Multi-Threading (SMT) into 
account, we would actually have 8 “logical” processors that can be seen by Linux.  Based on 
recommendations from the WebSphere Performance Team, with 8 “logical” processors, we set 
the maximum number of threads in the default thread pool to 200 (default value is 20) and in the 
Web container thread pool to 100 (default value is 50).  However, we find that, in our tests, just 
increasing the thread pool maximum values alone would actually degrade the performance since 
the JVM heap would become too small to accommodate the higher number of threads that can be 
executed concurrently.  To get any performance benefit from the larger thread pools, we would 
need a larger JVM heap.  Our test results confirm this: larger thread pools together with a larger 
3-GB WAS JVM heap yield a small, but noticeable, performance improvement over the 
configuration described in the preceding section.   
 
Changing the number of threads in a thread pool can be done through the WAS Administration 
Console as follows:  
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o Go to Servers → Application Servers → server name → Additional Properties → Thread 
Pools 

o Click on the thread pool you want to change and enter new values in the “Maximum Size” 
boxes 

 
Result:  The Thread Pool Tuning column in Figure 4.1.2 shows the cumulative performance 
impact of WAS JVM heap tuning (including the larger 3-GB heap), huge page support, Web 
container tuning, and larger thread pools on the Web services (in terms of average requests per 
second).  The geometric mean of the Web service request rates on the Power 570 is now 
10,793.84 requests per second – another 1.8% improvement over what the preceding 
configuration.  All of our tuning items so far have yielded a total of 49% performance improvement 
over the “out-of-the-box” configuration on the Power 570 server.  On the x3850 M2 server, 
however, we find that larger thread pools do not make much performance difference. 
 

• Disabling Performance Monitoring Infrastructure (PMI).  To further optimize the performance 
of Web services in our tests, we next decided to turn off all performance monitoring, tracing, and 
logging.  These are often necessary when setting up a server or when debugging problems or 
issues, but they do introduce some performance overhead.  As a result, it is recommended that 
tracing and monitoring be used judiciously, and whenever possible, turned off entirely to ensure 
optimal performance.  Disabling the WAS Performance Monitoring Infrastructure (PMI) can be 
done through the WAS Administration Console as follows:  

o Go to Monitoring and Tuning → Performance Monitoring Infrastructure (PMI) → server 
name 

o Uncheck the “Enable Performance Monitoring Infrastructure (PMI)” box, and in the 
“Currently Monitored Statistic Set” box, select ”None” 

 
Result:  The Disabling PMI column in Figure 4.1.2 shows the performance of Web services when 
we disable all performance monitoring, tracing, and logging (on top of the previous tunings that 
we have done).  The geometric mean of the Web service request rates on the Power 570 is now 
10,878.47 requests per second – another 0.8% improvement over the preceding configuration.  
On the x3850 M2 server, disabling PMI only results in a negligible 0.4% performance 
improvement.   
 

Summary:  All of the tuning items discussed in this section have yielded a cumulative total of 50% 
performance improvement over the “out-of-the-box” configuration on the Power 570 server.  On the x3850 
M2 server, the same tuning items produce 120% improvement over the “out-of-the-box” configuration – 
thanks to the 75% performance improvement when the WAS JVM heap is increased to 2048 MB.  From 
the data shown in Figure 4.1.2, it is clear that tuning the WAS JVM heap (increasing the heap size to 2 
GB, using gencon garbage collection policy with a nursery size of 1.5 GB) gives us the most 
performance gain, followed by setting the maximum number of persistent HTTP connections for Web 
container ports to unlimited.  Other tuning items produce discernable, but not significant, performance 
benefits.  
 
Finally, we want to see if there is any performance bottleneck in the most optimal configuration – with all 
tuning items applied – in our setup.  Although it varies a little during different Web service invocations, the 
CPU utilization on the Power 570 server never goes past 80%.  The network throughput between the 
Workload Driver and the Power 570 server always remains below 50 Mbytes/sec – well within the 
available bandwidth of the private Gigabit Ethernet network in our lab.  As for the physical memory usage 
on the Power 570 server, the entire workload uses only 6 GB of the 32 GB of physical memory available.  
The disk I/O traffic is fairly negligible – less than 100 Kbytes/sec on the Power 570 server.  Similarly, 
there is no performance bottleneck observed on the x3850 M2 Web server. 
 

4.2. Tuning Routing and Transformation Service Mediations 
 
For tuning routing and transformation service mediations, let us consider the setup illustrated in Figure 
4.2.1.  The Workload Driver generates Web service requests which go through the service mediations 
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provided by the Enterprise Service Bus (ESB) before getting to the benchmark’s ClaimServices 
application hosted on WAS.  The Workload Driver is a stand-alone, multi-threaded HTTP client, which 
uses up to 50 threads with 20 maximum transactions to generate SOAP service requests to the 
ClaimServices application.   The service mediations include XSLT transformation and route-on-body 
mediations.  In other words, the Web service mediation tests have the following characteristics: 

• Stand-alone, multi-threaded HTTP client to produce SOAP service requests 
• Synchronous SOA (XML) / HTTP request / response invocation 
• XSLT transformation and route-on-body service mediations 
• ClaimServices application hosts Web services 

 
The Web services and the ESB’s service mediations are hosted on an IBM Power 570 server with 
POWER6 processors.   We also consider an IBM x3850 M2 for this role and its performance data will be 
noted in this section along with the data for the Power 570 server.  The Workload Driver runs on another 
server – an IBM x3650. 

 

 

Figure 4.2.1 – Setup for tuning Web service mediations 
 
Our testing indicates that WebSphere Java Virtual Machine (JVM) heap optimization, Linux huge page 
support, and tuning for maximum concurrency appear to yield the most performance improvement for 
service mediation scenarios.  Let us first look at the service mediation performance with the payload size 
set to 3 KB for both service request and response messages. 
 

• WAS JVM Heap Tuning.  In Section 4.1, we found that the WAS JVM heap configuration had a 
significant impact on the performance of Web services, so we are going to start by looking at the 
JVM heap configuration for the mediation scenarios here.  As in Section 4.1, in order to change 
the WebSphere JVM heap size or set the garbage collection policy, we can use the WebSphere 
Application Server (WAS) Administrative Console as follows: 

o Go to Servers → Application Servers → server name → Server Infrastructure → Java 
and Process Management → Process Definition → Additional Properties → Java Virtual 
Machine 

o Enter new sizes in the “Initial Heap Size “and “Maximum Heap Size” boxes (the size 
should be specified in MB) 

o Enter appropriate JVM command line option for the garbage collection policy into the 
“Generic JVM arguments” box.  For example, if we want to use the gencon garbage 

collection policy with a nursery size of 1536 MB, we would enter “-Xgcpolicy:gencon 
-Xmn1536M” into the “Generic JVM arguments” box. 

 
Result:  With payload size for both requests and responses set to 3 KB and with the default 
WebSphere JVM settings, we could only achieve an average Web service request rate of 111.03 
requests per second in the Composite Module mediation scenario, as shown in Table 4.2.1.  To 
optimize the JVM heap, we first consider the default GC policy (optthruput).  By setting both 
the initial JVM heap size and the maximum heap size to 2048 MB, we immediately get a 
significant performance boost to 664.26 requests per second – almost 600% improvement!  The 
overall garbage collection overhead is 5%, which is quite acceptable. 
 
Increasing the JVM heap size to 3072 MB yields another 6% performance improvement.  
However, increasing the JVM heap size to 4096 MB and beyond does not seem to make much 
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difference.  As a result, we decide to keep the heap size at 3072 MB, but try to see if we could 
optimize the heap usage further by switching to another garbage collection policy.   
 
The WebSphere JVM supports four different garbage collection policies, as shown in Table 4.2.2.  
With the JVM heap size kept at 3072 MB, the Generational Concurrent (gencon) garbage 
collection policy delivers the best performance for the Composite Module mediation scenario – as 
shown in Table 4.2.1.  The optavgpause policy delivers the worst performance.  The subpool 

policy, which is available only on IBM System p and z servers, produces approximately the same 
performance as the default policy (optthruput), but not as good as the gencon policy.   

 
Based on the data in Table 4.2.1, we can conclude that the gencon garbage collection policy, 

together with the JVM heap size of 3072 MB, represent the most optimal JVM heap configuration 
for the Composite Module mediation scenario (with payload size = 3KB for both requests and 
responses) on the Power 570 server.  In fact, as Figure 4.2.1 shows, this optimal WAS JVM heap 
configuration accounts for the largest performance gain across all Web service mediation 
scenarios considered in our study.  However, on the x3850 M2 server, we find that the best WAS 
JVM heap configuration requires a much larger heap – 6144 MB – with the gencon garbage 
collection policy. 
 

 

 
Table 4.2.1 – Impact of tuning on Composite Module mediation scenario with payload size = 3 KB on the 
Power 570 server 
 
 

GC Policy JVM Command Line Option Description 
Optimize for throughput -Xgcpolicy:optthroughput (default) This is the default policy. It is typically used for 

applications where raw throughput is more 
important than short GC pauses. The 
application is paused every time while garbage 
is being collected. 

Optimize for pause time -Xgcpolicy:optavgpause This policy trades high throughput for shorter 
GC pauses by performing some of the garbage 
collection concurrently. The application is 
paused for shorter periods. 

Generational concurrent -Xgcpolicy:gencon This policy handles short-lived objects 
differently from long-lived objects. Applications 
that have many short-lived objects can see 
shorter pause times with this policy while still 
producing good throughput. 

Subpooling -Xgcpolicy:subpool This policy uses an algorithm similar to the 
default policy, but employs an allocation 
strategy that is more suitable for multiprocessor 
machines. This policy is recommended for SMP 
machines with 16 or more processors. This 
policy is only available on IBM pSeries® and 
zSeries® platforms. Applications that need to 
scale on large machines can benefit from this 
policy. 

Table 4.2.2 – Garbage collection policies supported in WebSphere 6.1. 
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Figure 4.2.1 – Cumulative performance impact of WAS JVM heap tuning, Linux huge page support, and 
WAS concurrency tuning 

 

• Huge Page Support in Linux.  With the WebSphere JVM heap size now set to 3072 MB, the 
CPU overhead of managing and keeping track of memory in this large heap can be reduced by 
exploiting the Huge (Large) Page support provided in the Linux kernel.  The Power processors 
support huge page size of 16 MB while x86 processors support only 2-MB huge page size.  Huge 
pages are configured in Linux by adding the following lines to the /etc/sysctl.conf file: 
 
vm.nr_hugepages = <number of pages> 
kernel.shmmax = <number of bytes> 
kernel.shmall = <number of bytes> 
 
In our study, we want to configure enough huge pages for the WebSphere JVM heap. To allow 
the WebSphere JVM heap to use huge pages, we must first enable Linux to create and maintain 
a pool of huge pages.  In our tests, we create a 4-GB pool of huge pages by adding the following 
lines to the /etc/sysctl.conf file: 

 
#Number of huge pages (256 x 16 MB = 4 GB) 
vm.nr_hugepages = 256 
#Size of shared memory is set to 6 GB (6442450944 bytes) 
kernel.shmmax = 6442450944 
kernel.shmall = 6442450944 

 
(Note that we set the amount of shared memory to 6 GB so that there would be enough room for 
4-GB pool of huge pages in the shared memory pool.) 
 
The WebSphere JVM can then be configured to use huge pages by adding the parameter -Xlp 
in the same “Generic JVM arguments” box where the garbage collector parameters are set. 
 
The data in Figure 4.2.1 shows that the huge page support does not result in any significant 
performance improvement for the transformation mediation scenarios with 3-KB payload size, 
although it does yield a noticeable (8%) performance gain for the routing mediation scenario.  
This is rather expected as transformation operations on 3-KB payloads are not expected to cross 
normal 4-KB page boundaries too frequently.  On the other hand, route-on-body service 
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mediations involve fetching certain values in the message bodies, and then, based on those 
values, jumping to different web services in memory at comparatively higher service request rates 
(more than 2,000 requests per second).  This would cause more cache and TLB misses than 
other mediation types, so the huge page support is expected to help here.  Indeed, it provides an 
8% performance improvement for routing mediation scenarios.  Similar behavior is also observed 
on the x3850 M2 server. 

• Tuning for Maximum Concurrency.  After optimizing the JVM heap memory usage, the next 
area for potential performance improvement is concurrency.  There are several WebSphere Web 
Container settings that can be tweaked for maximum concurrency.  If there are not enough HTTP 
connections available, incoming service requests will not be able to connect until a connection is 
freed.  If the server's CPUs are not fully utilized, there is no memory constraint, and there is 
available network bandwidth, the number of persistent HTTP connections for each port can be 
increased from the default value of 100 to improve the server’s performance.  In our tests, we 
found that setting the maximum number of HTTP persistent requests to unlimited gave us a 
noticeable performance gain. 

To change the number of HTTP connections available for a given port, we used the WAS 
Administration Console as follows: 

o Go to Servers → Application Servers → server name → Communications and click on 
the Ports link 

o Find the port number in the table and click on “View associated transports” for that port 

o Click on the transport chain that is listed 

o Click on “HTTP inbound channel (HTTP_n),” where “n” denotes channels 1 to 4 

o Either click on “Maximum persistent requests per connection” and enter a number in the 
“Specify maximum number of persistent requests” box, or click on “Unlimited persistent 
requests per connection” 

There is another area that we can tune for maximum concurrency: the number of threads 
available to service requests from the clients.  For example, threads in the Web Container thread 
pool are used for handling incoming HTTP and Web service requests.  These thread pools are 
shared by all applications deployed on the server, so in many cases, these pools need to be 
larger than their default sizes.   

Changing the number of threads in a thread pool can be done through the WAS Administration 
Console as follows:  

o Go to Servers → Application Servers → server name → Additional Properties → Thread 
Pools 

o Click on the thread pool you want to change and enter new values in the “Maximum Size” 
boxes 

We experiment with larger maximum numbers of threads in the default thread pool as well as the 
Web Container thread pool.  These numbers partly depend on the number of CPUs on the server 
since the more CPUs we have, the more threads can be executed concurrently.  The Power 570 
server has 2 dual-core POWER6 processors with Simultaneous Multi-Threading (SMT) enabled, 
so that’s 8 logical processors working in parallel.  To ensure that we have enough available 
threads in the thread pools, we increase the maximum number of threads in the default thread 
pool to 200 (default value is 20) and in the Web Container thread pool to 100 (default value is 50). 

To further optimize the performance of Web service mediation scenarios in our tests, we decided 
to turn off all performance monitoring, tracing, and logging.  These are often necessary when 
setting up a server or when debugging problems or issues, but they do introduce some 
performance overhead.  As a result, it is recommended that tracing and monitoring be used 
judiciously, and whenever possible, turned off entirely to ensure optimal performance. 

Disabling the WebSphere Performance Monitoring Infrastructure (PMI) can be done through the 
WAS Administration Console as follows:  
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o Go to Monitoring and Tuning → Performance Monitoring Infrastructure (PMI) → server 
name 

o Uncheck the “Enable Performance Monitoring Infrastructure (PMI)” box, and in the 
“Currently Monitored Statistic Set” box, select ”None” 

 
Figure 4.2.1 shows the cumulative impact of increasing the maximum number of persistent HTTP 
connections, the maximum number of threads in the default and Web Container thread pools, as 
well as disabling PMI.  These tweaks provide the most performance gain for the Transform Value 
mediation scenario – 6% gain over what we are able to achieve with optimal JVM heap 
configuration and huge page support.  The Transform Value mediation scenario is the least 
compute-intensive of all scenarios considered in our study, and therefore, it can sustain relatively 
high service request rates, so setting up for maximum concurrency resulted in a sizable 
performance boost.  In contrast, the other transformation mediation scenarios are much more 
compute-intensive and have relatively low service request rates, so tuning for maximum 
concurrency does not help much.  Similar observations can be made on the x3850 M2 server. 
 

• Impact of Large Payload Sizes.  Let us now look at the performance of the Web service 
mediation scenarios with payload (message) sizes greater than 3 KB.  Figures 4.2.2 through 
4.2.6 show the impact of the tuning items on these mediation scenarios with payload sizes 
greater than 3 KB.   

 
As payload size increases, the Web service rates (throughput) drop – as expected.  The size of 
the drop in throughput depends on the amount of processing that is required to perform the 
mediation on the payload in the service requests and responses.  For example, Figure 4.2.2 
shows that the Composite Module mediation scenario posts approximately the same throughput 
for both {Request = 3KB, Response = 10 KB} and {Request = 10 KB, Response = 3 KB} 
configurations because the same amount of mediation processing is done on both requests and 
responses.  On the other hand, the fact that the Transform Value mediation scenario posted 
approximately the same throughput for both {Request = 10KB, Response = 3KB} and {Request = 
10KB, Response = 10KB} configurations, as shown in Figure 4.2.3, indicates that the Transform 
Value mediation is only performed on requests (not responses) because the difference in the 
response payload size does not affect throughput.  The relatively high throughput for the 
Transform Value and Route-On-Body mediation scenarios indicates that the amount of 
processing required to perform these mediations is less than the processing required by the other 
mediations. 
 
It is important to note that the default WebSphere settings does not have enough capacity to even 
support payload sizes greater than 3 KB (all scenarios would fail after some time).  Setting the 
initial and maximum JVM heap sizes to 1024 MB is the minimal step that allows all mediation 
scenarios to complete successfully.   Indeed, the JVM heap optimizations discussed earlier in this 
section account for the largest performance improvement across all mediation scenarios – 
regardless of payload sizes. 
 
For many mediation scenarios, such as Composite Module and Transform Schema, the Linux 
huge page support provides larger performance gains at payload sizes greater than 3 KB.  This is 
expected because performing transformations on payloads larger than 3 KB would cross normal 
4-KB page boundaries more frequently, so huge pages would help in these cases. 
 
Concurrency tuning, which includes setting the maximum persistent HTTP connections to 
unlimited, increasing the sizes of the default and Web Container thread pools, as well as 
disabling all performance monitoring, tracing, and logging, provides larger benefits at higher 
throughput.  In fact, based on the data in Figures 4.2.2 through 4.2.5, it appears that concurrency 
tuning only provides noticeable performance gains at service request rates higher than 600 
requests per second. 
 
Figure 4.2.7 shows the optimized performance for transformation mediation scenarios at different 
payload sizes.  As the payload size increases, the Web service request rate drops due to larger 
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computational requirements for performing transformation and routing mediations on larger 
payloads.  In fact, as we increase the payload size to 100 KB for both requests and responses, 
the 8 processor cores on the Power 570 server starts to become the limiting factor:  the CPU 
utilization approaches 99%, preventing us from obtaining higher throughput.   
 
Similar observations can also be made on the x3850 M2 server – with the exception of the 
Transform Value mediation scenario.  The Transform Value scenario requires the least amount of 
computational power as it is the simplest among the mediation scenarios considered in our study, 
and therefore, it can sustain relatively high service request rates.  On the x3850 M2, with its 16 
processor cores, the network actually becomes the performance limiting factor before the CPUs 
in the Transform Value scenario with 100-KB payloads:  the network traffic between the client and 
the server is measured approaching 500 Mbps, limiting the x3850 M2’s CPU utilization to less 
than 80%. 
 

Summary: On the Power 570 server, the default WebSphere and Linux settings can only support 3-KB 
payloads in the service requests and responses for the Web service mediation scenarios considered in 
our study.  Setting the WAS JVM heap size to 3072 MB and using the Generational Concurrent (gencon) 
garbage collection policy yield more than 600% performance improvement.  The Linux huge page support 
provides another 8% performance boost for routing mediations, and the concurrency tuning yields an 
average of 6% performance improvement for all mediation scenarios across different payload sizes.  
However, as we increase the payload size to 100 KB, the CPU utilization on the Power 570 server 
approaches 99%, so the server CPUs become the limiting factor, preventing us from obtaining higher 
throughput.  Similar observations can be made on the x3850 M2 server – except for the Transform Value 
mediation scenario where the network actually becomes the performance bottleneck before the CPUs as 
the payload size is increased to 100 KB. 
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Figure 4.2.2 – Impact of tuning on Composite Module mediation at different payload sizes 
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Figure 4.2.3 – Impact of tuning on Transform Value mediation at different payload sizes 
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Figure 4.2.4 – Impact of tuning on Transform Namespace mediation at different payload sizes 
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Figure 4.2.5 – Impact of tuning on Transform Schema mediation at different payload sizes 
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Figure 4.2.6 – Impact of tuning on Route On Body mediation at different payload sizes 
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Figure 4.2.7 – Optimized performance for transformation mediation scenarios across different payload 
sizes 
 

4.3. Tuning Business Process Management (No Clustering) 
 
First, let us consider the setup as illustrated in Figure 4.3.1 where everything runs on a single IBM Power 
570 server.  In this setup, both WPS and DB2 are installed on an IBM Power 570 with dual POWER6 
processors (a total of 4 Processing Units or cores).  Both HandleClaim and ClaimServices applications 
are also installed and executed on this server.  There is a single disk where the BPEDB, SIBDB, and all 
WPS logs for transaction and compensation services reside.  The data for this configuration is shown in 
the first two rows in Table 4.3.1 – under Configurations 1 and 1.1. 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.3.1 – Single server setup (Configurations 1 & 1.1) 
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Table 4.3.1 – Tuning Business Process Management (non-cluster) 
 

As you can see in Table 4.3.1: 
 

• Default Configuration:  Configuration 1 shows the “out-of-the-box” configuration where there is 
no tuning. 
 
Result:  In this configuration, the benchmark cannot even run.  The default configuration for the 
WAS JVM is too small to handle the necessary processing for the benchmark used in our study. 
 

• WAS JVM Heap Tuning:  Configuration 1.1 shows what happens when we tune the WAS JVM 
heap configuration.  Two basic JVM heap parameters are the size of the heap and the garbage 
collection policy.  There are several tools available, such as the Tivoli® Performance Viewer 
(included with WebSphere), that can help analyze and monitor the heap usage and garbage 
collection so that the heap can be specifically tuned for a particular workload. In our tests, by 
looking at the number of memory pages allocated to the heap that are actually in use while the 
benchmark scenarios are being run, we find that the heap usage is mostly at 2048 MB.  As a 
result, we set the JVM heap size for WAS at 2048 MB.  Since the Power 570 server has 32 GB of 
physical memory, which is more than adequate for our tests, we decided to set the minimum and 
maximum heap size to the same value (2048 MB) to avoid the overhead of frequent heap size 
changes.  In addition to the JVM heap size, the garbage collection policy can also affect 
performance.  The WAS JVM supports four different garbage collection policies.  The default 
garbage collection policy is optthruput.  However, we decided to use the gencon (Generation 
Concurrent) garbage collection policy, which handles short-lived objects differently from long-lived 
objects, because our earlier testing for Web service scenarios showed that the gencon policy 

was more suitable for Web service scenarios [12].  Under the gencon policy, the heap is split into 
new and old segments. Long-lived objects are promoted to the old space while short-lived objects 
are garbage collected quickly in the new space (called a nursery).  We also set the size of the 
nursery to 1536 MB (75% of the total heap size) through the Integrated Solution Console (ISC):  

 
o Go to Servers → Application Servers → server name → Server Infrastructure → Java 

and Process Management → Process Definition → Additional Properties → Java Virtual 
Machine 

o Set the “Initial Heap Size” and “Maximum Heap Size” boxes to 2048 MB 

o Enter –––– Xgcpolicy:gencon –Xmn1536M in the “Generic JVM arguments” box 
 
Result:  Tuning the WAS JVM heap configuration allows the benchmark to run, but its overall 
throughput (Business Transactions Per Second or BTPS) is only 2.59.  The data in Table 4.3.1 
for Configuration 1.1 shows that the CPU utilization for the IBM Power 570 server is 53% while 
the disk utilization for the single disk is 99.6%.  This single disk is obviously the system 
performance bottleneck. 
 

• Adding Another Server for DB2:  Configuration 2 in Table 4.3.1 shows the result of our effort 
to remove the single disk as the system performance bottleneck.  First, we use another server – 
the IBM x3850 M2 – as the DB2 server and move the BPEDB and SIBDB databases over to the 
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x3850 M2’s disk arrays.  This is illustrated in Figure 4.3.2.  More specifically, we partition the 
workload as follows: 

 
o The x3850 M2 server runs the HumanTaskSimulator, DB2, and hosts the databases on 

its disk arrays: 
� BPEDB on a 24-disk array attached to the IBM System Storage DS3400 

controller 
� BPE Logs on a 12-disk array attached to the IBM ServeRAID MR10M controller 
� SIBDB on a 12-disk array attached to the same IBM ServeRAID MR10M 

controller 
 

o The Power 570 server now only runs WPS and the benchmark’s HandleClaim and 
ClaimServices applications.  We also make some additional improvements on this 
server’s configuration: 

� One disk for transaction logs 
� Another separate disk for compensation (recovery) logs 
� The WAS JVM heap size is increased from 2048 MB to 4096 MB with the 

nursery size set to 3072 MB (75% of the heap size) 
 
Result:  With these changes, the overall benchmark throughput is now 21.7 BTPS – a significant 
improvement over 2.59 BTPS for Configuration 1.1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.3.2 – Separate WPS & DB2 servers (Configurations 2, 2.1, 2.2, and 3) 
 

• WAS/WPS Concurrency Optimization:  Configuration 2.1 in Table 4.3.1 shows the 
performance impact of additional WAS and WPS tuning that maximizes concurrency.  These are 
recommended by the WebSphere Performance Teams [13].  In particular, since the Power 570 
server has a total of 4 cores or 8 logical CPUs with Simultaneous Multi-Threading (SMT), we 
follow the recommendations for 8 CPUs: 

o Thread pools: 
� Default thread pool max = 200 
� Web container’s thread pool max = 100 

o Connection pools: 
� BPEDB data source’s connection pool max = 150 
� CEI ME data source’s connection pool max = 80 
� SIBDB System data source’s connection pool max = 30 
� SIBDB BPC data source’s connection pool max = 50 

o J2C connection factories: 
� BPECF connection pool max = 40 
� BPECFC connection pool max = 40 
� HTMCF connection pool max = 20 

o J2C activation specifications: 
� BPEInternalActivationSpec � Custom properties � maxConcurrency = 60 
� <Benchmark> � Custom properties � maxConcurrency = 40 

REC
LOG

TX 
LOG

IBM Power 570

Java-
based 

Workload 
Driver

IBM x3650

BPEDB
SIBDB
BPE 

LOGS

Disk Arrays

WPS DB2

IBM x3850 M2

HandleClaim

ClaimServices BPEDB
SIBDB
BPE 

LOGS

BPEDB
SIBDB
BPE 
LOG

REC
LOG

TX 
LOG

IBM Power 570

Java-
based 

Workload 
Driver

IBM x3650

BPEDB
SIBDB
BPE 

LOGS

Disk Arrays

WPS DB2

IBM x3850 M2

HandleClaim

ClaimServices BPEDB
SIBDB
BPE 

LOGS

BPEDB
SIBDB
BPE 
LOG



SOA Performance on Linux 
Page 27 

 
Result:  With the concurrency optimizations, we essentially double the benchmark’s overall 
throughput to 45.7 BTPS (as compared to 21.7 BTPS for Configuration 2). 
 

• DB2 Tuning:  Configuration 2.2 in Table 4.3.1 shows the performance impact of applying DB2 
tunings to optimize the log data rates.  We set the following DB2 parameters: 

o Max storage for lock list (4KB) = 400 
o Log buffer size (4KB) = 512 
o Log file size (4KB) = 8000 
o Number of primary log files = 10 
o Number of secondary log files = 10 
o Maximum number of active applications = 250 
o Average number of active applications = 50 
o Percent log file reclaimed before soft checkpoint = 300 
o Percentage of lock lists per application = 20 
o Buffer pool size (pages) = 64000 

 
Result:  As can be seen in Table 4.3.1, tuning DB2 yields a benchmark throughput rate of 46.28 
BTPS – only a small improvement (1.3%) over what we are able to get for Configuration 2.1.  
Table 4.3.1 also shows that this Configuration 2.2 has the CPU utilization of the WPS server 
(Power 570) at 97% and the disk utilization at 67% and 60%, respectively, for transaction and 
compensation (recovery) logs.  This indicates that the system performance bottleneck is no 
longer the disk subsystem, but rather, the Power 570’s two dual-core POWER6 processors. 
Adding more processors to the WPS Server would certainly increase the benchmark throughput – 
provided that some J2C Connection Factories and Activation Specifications would also be 
increased to accommodate the higher number of processors as recommended by the 
WebSphere Performance Team [13]. 
 

• Cache mirroring in the IBM System Storage DS3400:   Configurations 3 and 3.1 in Table 
4.3.1 show the performance impact of the cache mirroring capability in the DS3400.  Starting with 
Configuration 3, we also use a more powerful Power 570 server.  Cache mirroring, which is the 
default setting on the DS3400, can be left enabled for reliability / availability reasons.  In our 
setup, the BPEDB disk array is attached to the DS3400 controller.  In Configuration 3, in order to 
achieve higher benchmark throughput, we disable cache mirroring.  In Configuration 3.1, we 
leave the cache mirroring enabled (the default setting). 
 
Result:  As we can see in Table 4.3.1, with cache mirroring enabled, the disk array utilization for 
BPEDB jumps from 30% to 47%, and the benchmark throughput drops from 61.12 BTPS to 55.84 
BTPS – an 8.6% performance drop.  This is a classic trade-off between performance and 
reliability / availability. 
 

• Reducing WAS JVM Heap Size in Memory-Constrained Environment:  Configuration 3.2 in 
Table 4.3.1 shows the impact of reducing the WAS JVM heap size from 4096 MB to just 2048 
MB.  This could be necessary in memory-constrained environments. 
 
Result:  Reducing the WAS JVM heap from 4096 MB to 2048 MB drops the benchmark’s overall 
throughput from 55.84 BTPS to 44.56 BTPS – a significant 20% performance drop.  As a result, it 
is highly recommended that the WAS JVM heap be adjusted accordingly after adding CPUs to 
the WPS server. 
 

• Write-Back Caching in IBM ServeRAID MR10M controller:  Configuration 3.3 in Table 4.3.1 
shows what happens when we use write-through caching policy in the MR10M disk array 
controller (instead of write-back).  Write-back caching is always good for the performance of disk 
writes since the disk write operations are considered done as soon as the data is written to the 
cache (instead of physical disks).  Data in cache would then be written (“flushed”) to physical 
disks at a later time.  However, in an environment where there is no battery backup for the 
controller and/or the disk subsystem, write-through caching could help protect the integrity of data 
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when there is a power outage.  In our setup, the SIBDB and BPE Log disk arrays are attached to 
the MR10M controller. 

 
Result:  Using write-though caching policy for the SIBDB disk array results in a 6% performance 
drop – from 44.56 BTPS with write-back caching in Configure 3.2 to 41.79 BTPS with write-
through caching in this Configuration 3.3.  Note that, for Configuration 3.3 in Table 4.3.1, the 
utilization of the disk array for BPEDB jumps to 70% because we now use a single 24-disk aray 
for both BPEDB and BPE Logs.  However, our test data (not shown in Table 4.3.1) indicates that 
this does not have any noticeable impact on the benchmark throughput.  This is because, even at 
70% utilization, the disk I/O queue depth for the 24-disk array is still less than 1, indicating that 
the disk array is not the performance bottleneck.  In fact, this is lower than the CPU utilization 
(75%) for the WPS server. 
 

• Linux Logical Disk Striping:  in Configurations 3 and 3.1, the utilization for the disks holding the 
transaction log and compensation (recovery) log on the WPS server is quite high – around 80% 
for transaction log and 75% for compensation log.  While this is still lower than the CPU 
utilization, it would be interesting to see if somehow we could lower the disk utilization and see if 
that would have any impact on the benchmark’s overall throughput.  We don’t have any extra disk 
array controller that could be installed in the WPS server, but we are able to find two extra disks 
that could be used to set up a 4-disk logical array through the Linux Logical Volume Manager 
(LVM) to handle both transaction and compensation log traffic. 

 
Result:  Table 4.3.2 shows the results.  For a 4-disk logical array, the stripe size of 64 KB 
provides better performance than smaller stripe sizes of 4 KB and 16 KB, given the size of each 
log data write is between 4 KB and 5 KB.  The utilization of the device manager is found to be 
over 90% while the utilization of each individual disk ranges from 27% to 36%.  However, 
dedicating a single disk to each log, without any logical disk striping, produces the best 
benchmark throughput – even though we use only 2 disks and each disk is utilized more than 
75% of the time.  This indicates that the overhead of the Linux Logical Volume Manager in 
managing a logical disk array has a negative performance impact when it comes to transaction 
and compensation logs on the WPS server.  As a result, for the rest of our study, we dedicate a 
single physical disk for each WPS log. 

 

 

 
Table 4.1.2 – Logical Disk Striping (Linux Logical Volume Manager) 

 
• Linux Large (Huge) Page Support:  We configure large (huge) pages (16-MB page size) on the 

Power 570 server (WPS server) for the WAS JVM heap and find that it does not result in any 
performance improvement.  In fact, with large pages support, the benchmark’s overall throughput 
goes down from 61.12 BTPS (Configuration 3) to 59.70 BTPS – a performance degradation of 
about 2%.  As a result, for the remainder of this study, we do not configure large pages. 

 
Figure 4.3.3 shows the cumulative performance improvement as we go from the default (“out-of-the-box”) 
configuration to tuning DB2.  The tuning items are shown in a chronological order from left to right in the 
figure. 
 
It should also be noted that the x3650 server hosting the benchmark’s Workload Driver does not have any 
impact on our performance results because the CPU utilization of this server is less than 5% and the 
utilization of the only disk used on this server is less than 6%. 
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Figure 4.3.3 – Cumulative Impact of BPM Tuning Actions in Non-Clustered Environment 
 

4.4. Tuning Dynamic Operations with WebSphere Virtual Enterprise (WVE) 
 
In this section, we will evaluate a virtual, goals-driven, autonomic environment for SOA applications like 
the benchmark used in this study.  We’ll use WebSphere Virtual Enterprise (WVE) to create this 
environment, which is illustrated in Figure 4.4.1. 
 
The dynamic cluster of WPS servers, called “application cluster” in Figure 4.4.1, consists of WPS servers 
on which the benchmark’s applications are deployed.  These applications include HandleClaim and 
ClaimServices applications, denoted as “B” and “S”, respectively.  In response to an increase in workload 
demands or an on-going failure to meet a service policy’s performance objective, WebSphere Virtual 
Enterprise’s autonomic managers can start an instance of WPS server on the x3850 M2 server or on any 
of the two Logical Partitions (LPARs) on the OpenPower 720 server.  Based on what we learn in the 
previous Section 4.3, each instance of the WPS server has a single disk for transaction log and another 
single disk for compensation (recovery) log.  In Figure 4.4.1, the LPARs are virtualized with PowerVM 
technology, so I/O operations to these (virtual) disks must go through the Virtual I/O Server (VIOS).  The 
LPARs use shared, capped virtual CPUs. In general, it is recommended that we configure shared, 
uncapped virtual CPUs across the LPARs; however, in this study, the number of (virtual) CPUs that each 
LPAR is allowed to use is capped so we can more accurately measure the workload impact on each 
LPAR and the performance impact of logical partitioning.  
 
By default, there can only be one WPS server instance maximum per node for the dynamic application 
cluster. 
 
The service policy in WVE only allows two types of performance goals to be specified – the average 
response time or the percentile response time goals.  In this study, we have decided to use the average 
response time goal for simplicity.  To set a reasonable response time goal, we examine the response 
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times reported in Table 4.4.1 for all configurations that we evaluate in this study.  We note that the best 
response time that we are able to achieve is about 14 ms.  As a rule of thumb (best practices), the 
average response time goal should be at least 2X higher than the best response time observed on a 
lightly loaded cluster.  Consequently, we set the average response time goal in the service policy to be 30 
ms.  This should enable the autonomic managers to activate additional WPS servers (instances) when 
the average response time for claim requests exceeds 30 ms (the performance goal).  Setting the 
average response time goal too close to 14 ms would never result in additional servers to be started 
because the autonomic managers would determine that starting additional servers would not improve the 
chances of meeting the performance goal. 
 
We specify the service policy to be applicable to HTTP & SOAP requests handled by the benchmark’s 
applications.  We also assign the highest priority to this service policy.   
 
We use the default settings for the On-Demand Router (ODR) and its associated autonomic managers. 
 
As described in Section 2.3, there are two approaches to cluster the Message Engines (MEs): 

• The Message Engines are “local” to the dynamic application cluster 
• The Message Engines are in their own cluster (called MECluster), separate from the dynamic 

application cluster 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.4.1 – Dynamic Application Cluster with Separate Cluster for Message Engines 
 
In this section, we consider both approaches and see which one performs better.  In those configurations 
where MECluster is configured, it runs on the x3850 M2 server.  As such, the MECluster is a static 
cluster. 
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In general, for the configurations considered in this section, the physical servers host the following 
components (see Figure 4.4.1): 
 

• IBM x3650 server 
o Benchmark’s Java-based Workload Driver 
o WebSphere Deployment Manager 
o IBM HTTP Server (Web Server) 
o WebSphere On-Demand Router (ODR) 
o WebSphere Node Agent 

 
• IBM x3850 M2 server 

o DB2, hosting SIBDB and BPEDB databases (including their logs) 
o Benchmark’s HumanTaskSimulator, simulating the actions of Adjusters and Underwriters 
o WPS Server (initial instance – unless otherwise specified), hosting the benchmark’s 

HandleClaim and ClaimServices applications 
o WebSphere Node Agent 
o ME Cluster (if configured) 

 
• IBM OpenPower 720 (VIOS with 0.5 POWER5 core, LPAR1 with 1.5 POWER5 cores, LPAR2 

with 2.0 POWER5 cores) 
o Virtual I/O Server (VIOS) 
o LPAR1:  WPS Server (one instance max) + WebSphere Node Agent 
o LPAR2:  WPS Server (one instance max) + WebSphere Node Agent 

 
On the x3850 M2 server, the BPEDB database is hosted on a 24-disk array managed by the IBM System 
Storage DS3400 controller.  Because of the large amount of disk writes, the BPEDB log resides on a 
separate 12-disk array attached to the IBM ServeRAID MR10M adapter.  The SIBDB database and its log 
are hosted on another 12-disk array attached to the same MR10M adapter.  As in Section 4.3, each WPS 
server has two disks, one dedicated for transaction log and one for compensation (recovery) log.  For 
optimal performance, cache mirroring is disabled for the DS3400 controller and write-back caching policy 
is used for the MR10M controller.  In addition, all of the WPS and DB2 tuning items discussed in Section 
4.3 are applied to the WVE environment. 
 
For the remainder of this paper, we will denote the maximum number of concurrent insurance claim 
requests generated by the benchmark’s Workload Driver as MaxTx and the number of threads used to 
generate this traffic as simply Threads.  We will look at two performance measurements:  the Business 
Transactions Per Second (BTPS) as reported by the benchmark and the average response time for 
service requests as reported by WebSphere Virtual Enterprise. 
 
Let us first consider the configurations with the Message Engines in a separate cluster (MECluster).  The 
performance results for these configurations are shown in Table 4.4.1. 
 

• Single Node Performance (with separate ME Cluster):  Configuration 5 in Table 4.4.1 shows 
what can be achieved with a single node (the x3850 M2 server) in the dynamic cluster.  The 
dynamic application cluster is put in Manual Mode, so that the ODR’s autonomic managers do not 
attempt to activate additional WPS servers on the other nodes – even when the average 
response time exceeds the performance goal of 30 ms.   
 
Result:  With the Workload Driver using 2 threads to generate a maximum of 60 concurrent 
requests (MaxTx = 60, Threads = 2), the x3850 M2 is able to handle an average of 28.29 BTPS.  
The CPU utilization on the x3850 M2 is 83% and the disk subsystem still has quite a bit of 
bandwidth available (the disk I/O queue depth is less than 0.60).  The average response time for 
the claim requests ranges from 22.85 ms with MaxTx = 20 to 52.74 ms with MaxTx = 60.  Setting 
the max number of concurrent requests higher than 60 introduces some instability:  only a few 
runs are completed successfully as the CPU utilization moves past 90%. 
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Table 4.4.1 – Performance Data for Dynamic Cluster Configurations 

 
• Multi-Node Performance (with separate ME Cluster):  Configuration 5.1 in Table 4.4.1 shows 

that we can achieve higher service rates when we put the dynamic application cluster in 
Automatic Mode.  This allows the On-Demand Router’s autonomic managers to activate 
additional servers on the OpenPower 720’s LPARs automatically (without human intervention) to 
help handle the workload generated by the benchmark’s Workload Driver.  This configuration is 
illustrated in Figure 4.4.1.   
 
Initially, after we turn on the benchmark’s Workload Driver (with MaxTx = 20, Threads =1), the 
initial WPS server running on the x3850 M2 takes a while to warm up.  During this warm-up 
period, the average response time for service requests exceeds the service goal of 30 ms for 
more than 30 seconds, as shown in Figure 4.4.2.  The autonomic managers sense this condition, 
and generate a run-time task to activate additional WPS servers on the cluster’s remaining 
nodes.  The run-time task appears on the Integrated Solutions Console (ISC)’s System 
Administration View at approximately 2 minutes after the start of the run.  Since the application 
cluster is in Automatic Mode, the run-time task starts immediately without further human 
intervention after it appears on the ISC.  It takes about 2 minutes for the new WPS servers to be 
activated on the two LPARs on the OpenPower 720 server.  Finally, about 4 minutes after the 
start of the run, the WPS servers on the LPARs start running.  Of course, these new servers need 
time to warm up and that’s the reason for the initial high response times recorded on these 
servers.  In the mean time, as the new WPS servers are starting on the LPARs, their Message 
Engines are starting to run in the ME cluster on the x3850 M2, causing the average response 
time on the x3850 M2 server to jump higher as well.  However, after about 90 seconds, the 
average response time on the x3850 M2 starts to stabilize and falls to around 18.77 ms – well 
below the service goal of 30 ms and better than the best average response time in the single-
node configuration (Configuration 5).  This shows the benefit of “off-loading” the workload to new 
additional servers in the dynamic cluster.  However, on the OpenPower 720, the LPARs (with 1.5 
POWER5 cores for LPAR1 and 2.0 POWER5 cores for LPAR2) hosting the new servers are not 
powerful enough to achieve a response time of less than 30 ms for the service requests sent to 
them.  Because of this, the maximum throughput data collected at each node indicates that the 
On-Demand Router does route more service requests to the more powerful x3850 M2 server than 
to the two POWER5 LPARs. 
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Figure 4.4.2 – WebSphere Virtual Enterprise’s Autonomic Managers activating additional WPS 
servers 
 
Once everything settles down, the best benchmark throughput we can get for this multi-node 
configuration is 35.56 BTPS – a 25% improvement over the single-node configuration.  In 
addition, as can be seen in Table 4.4.1, the multi-node configuration provides more stability at 
much higher workloads (up to MaxTx = 160, Threads = 4) than the single-node configuration.  At 
the highest workloads (MaxTx = 160, Threads = 4), the CPU utilization is 92%, 93%, and 86% for 
LPAR1, LPAR2, and x3850 M2 servers, respectively, indicating that we are running out of CPU 
bandwidth on the LPARs.  The disk subsystem is still OK, with the max I/O queue depth of 1.04 
and the disk with the highest utilization (70%) being the compensation log disk in LPAR2.   
 
Figure 4.4.6 shows the throughput contributed by each node in the dynamic cluster.  As the 
workload increases, the throughput at the LPARs begins to level off, running out of CPU 
bandwidth.  However, with 16 processor cores, the x3850 M2 just keeps going as the ODR sends 
more requests to it. 
 

• Multi-Node Performance (with separate ME Cluster and without PowerVM):  Configuration 
5.2 in Table 4.4.1 shows the benchmark throughput when we effectively remove the PowerVM 
virtualization layer from the OpenPower 720 server.  In the previous Configuration 5.1, since we 
are running out of CPU bandwidth and the disk utilization is pretty high on the LPARs with MaxTx 
= 160 and Threads = 4, removing the virtualization layer might result in higher benchmark 
throughput.  To do this, we only configure a single LPAR on the OpenPower 720 server, assign 
all CPUs (4 cores) and memory to this single LPAR, and remove the Virtual I/O Server (VIOS).  
All I/O operations now go directly to the disk subsystem without going through the VIOS, reducing 
the I/O latency.  This configuration is illustrated in Figure 4.4.3. 
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Figure 4.4.6 – Node throughput as reported by WebSphere Virtual Enterprise 

 
Result:  As can be seen in Table 4.4.1, this configuration is now able to support up to 6 threads 
with MaxTx = 160, and the overall benchmark throughput is now 40.47 BTPS – a 14% 
improvement over the previous Configuration 5.1.  The CPU utilization on the x3850 M2 server 
now moves past 90%, but the disk subsystem still has available bandwidth as the disk I/O queue 
depth is 1.26 and the highest disk utilization is only 50%.  If we look at the data for MaxTx = 160, 
Threads = 4 and compare it against the data for the same workload in the previous configuration, 
we see that the average response time on the single 4-core LPAR is less than half the response 
times observed on the 1.5-core LPAR1 and 2-core LPAR2 in the previous configuration.  While 
the maximum throughput observed at the single 4-core LPAR is about 10% higher than the sum 
of maximum throughput for both LPAR1 and LPAR2 in the previous configuration, it is interesting 
to note that the performance of the WPS server running on the x3850 M2 is better too (i.e. lower 
average response time, higher maximum throughput).  This indicates that a single 4-core LPAR 
can “off-load” more workload from the x3850 M2 than both the 1.5-core LPAR1 and 2-core 
LPAR2 can in the previous configuration.  Later on in this paper, we will measure the 
performance impact of the Virtual I/O Server (VIOS) more accurately. 
 

• Single-Node Performance (with Local Message Engines):  Configuration 6 in Table 4.4.1 
shows the performance data when using only a single node (x3850 M2) with “local” Message 
Engines running in the same dynamic cluster as the WPS servers. 

 
Result:  The data indicates that, for this single-node configuration with “local” Message Engines, 
the benchmark throughput is much higher, and the average response time is much lower, than in 
Configuration 5 where we have “remote” Message Engines located in a separate cluster.  
Depending on the workload level, the extra latency in going to Message Engines in a remote 
cluster results in 30% to 60% drop in the benchmark throughput and 25% to 40% jump in the 
average service response time.  Consequently, having the Message Engines running locally in 
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the same cluster with the applications is faster in the single-node configuration, but it severely 
limits the scalability of a multi-node configuration – a fact that will be very obvious when we 
consider the next configuration. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.4.3 – Dynamic Application Cluster with Separate ME Cluster but without PowerVM 

 
• Multi-Node Performance (with Local Message Engines):  Configuration 6.1 in Table 4.4.1 

shows the performance data obtained for a 2-node application cluster with “local” Message 
Engines.  This application cluster is illustrated in Figure 4.4.4.  When we start the Workload 
Driver, the initial WPS server runs on a 2-core POWER5 LPAR.  As the CPU utilization on this 
LPAR quickly rises past 90%, and the average service response time is way above the service 
goal of 30 ms, the autonomic managers generate a run-time task to activate the remaining node 
(the x3850 M2) in the cluster.  However, even after a new WPS server is started on the x3850 
M2, most (approximately 80%) of the workload still goes to the initial node (the 2-core POWER5 
LPAR), leaving the second node (the x3850 M2) pretty much under-utilized – the CPU utilization 
on the x3850 M2 is only 13%.  The benchmark’s overall throughput (9.4 BTPS) is much smaller 
than in the case with “remote” Message Engines (35.56 BTPS).  This is because of a design 
limitation for the Service Integration (SI) buses:  if a Message-Driven Bean (MDB) has a local ME 
available, it is always forcibly “bound” to it, even if the ME is inactive.  Since there can only be 
one ME instance active at any given time, only one WPS server can have active instances of that 
MDB.  In other words, all but one of the WPS servers in the cluster is essentially in stand-by.  
This imposes serious limitation on the overall scalability of the dynamic cluster if we have long-
running business processes or asynchronous SCA invocations.  As a result, for multi-node 
dynamic clusters, we recommend configuring the Message Engines in a separate cluster.  In [4], 
the WebSphere clustering topologies are classified into three types: 

o “Bronze” topology where all components (WPS applications, Message Engines, CEI) are 
run in a single cluster 

o “Silver” topology where there are two separate clusters:  one for WPS applications and 
CEI and one for the Message Engines 
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o “Gold” topology where there are separate clusters for WPS applications, CEI, and 
Message Engines 

 
Since the benchmark used in this study does not generate many events, the “Silver” topology is 
the most suitable topology.  Figure 4.4.5 shows the impact of messaging infrastructure clustering 
on the benchmark throughput. 
 
In this Configuration 6.1, the WPS server running on the 2-core POWER5 LPAR is the initial 
node, so with local Message Engines, most of the traffic goes there, and the benchmark 
throughput is only a meager 9.40 BTPS.  What if we made the x3850 M2 the initial node?  In this 
case, most of the traffic would be routed to the x3850 M2, and since it is much more powerful 
than the 2-core POWER5 LPAR, the benchmark’s throughput is 34.62 BTPS – almost 4 times 
higher than in the case of the 2-core POWER5 LPAR being the initial node (with the exact same 
settings for the Workload Driver).  The CPU utilization is 65% and 9% on the x3850 M2 and the 
POWER5 LPAR, respectively, confirming that most of the traffic is indeed routed to the initial 
x3850 M2 node. 
 

• Virtual I/O Server (VIOS) Impact:  We know that the VIOS introduces additional latency to disk 
I/O operations.  In Configuration 6.2, we remove the VIOS partition, so disk writes to the 
transaction and compensation logs no longer go through VIOS.  At the same workload driver 
settings (MaxTx = 20, Threads = 1), the data in Table 4.4.1 indicates that removing the VIOS 
reduces the average service response time from 70.41 ms to 54.82 ms – a 22% improvement 
over the configuration with VIOS.  Let us take a closer look at the transaction and compensation 
log disks which are attached to the POWER5 LPARs.  Table 4.4.2 shows the disk performance 
statistics for Configuration 6.1 (with VIOS) and Configuration 6.2 (without VIOS).  The number of 
disk writes and the amount of written log data are similar in both configurations, as expected.  
However, without VIOS, we are able to obtain: 

o Higher overall throughput for the benchmark (11.27 BTPS vs. 9.40 BTPS) 
o Lower disk I/O queue depth 
o Lower I/O service times 
o Low disk utilization (as seen from Linux) 

 
However, it should be noted that PowerVM also allows us to configure the log disks as dedicated 
I/O devices to the LPARs, so disk writes to those disks do not have to go through VIOS.  We will 
look at the performance of the disk subsystem in more detail later in the paper. 

 
• Adding More CPUs (Or Using Shared, Uncapped LPAR Mode):  With the initial WPS Server 

running on a 2-core POWER5 LPAR, most of the workload traffic goes there, pushing the CPU 
utilization on the LPAR very close to 100%.  Configuration 6.3 in Table 4.4.1 shows what we are 
able to get when we assign more POWER5 cores to the LPAR.  This is effectively the same as if 
we configure the LPAR to run in shared, uncapped mode where the LPAR could use the 
remaining (idle) processor cores on the OpenPower 720 server if needed.  Indeed this is one of 
the key advantages of PowerVM as we can initially configure an LPAR with a small number of 
processor cores, and then as workload demand increases, this LPAR can grow to the full size of 
the physical server.  In this configuration, the LPAR now has a total of 4 POWER5 cores, and as 
a result, the CPU utilization drops from 92% to 55% while the average service response time on 
this LPAR drops from 54.82 ms to 37.46 ms – given the same settings for the Workload Driver. 

 
 

 
 

Table 4.4.2 – Impact of VIOS 
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Figure 4.4.4 – Dynamic Application Cluster with Local Message Engines 
 

• Disk I/O Performance:  Table 4.4.3 provides the disk I/O statistics for Configuration 5.1 (3 
nodes: 1.5-core POWER5 virtualized LPAR, 2-core POWER5 virtualized LPAR, 16-core x3850 
M2) and Configuration 5.2 (2 nodes:  4-core POWER5 LPAR without VIOS, 16-core x3850 M2).  
The data is provided for both light workload (MaxTx = 20, Threads = 1) and heavy workload 
(MaxTx = 160, Threads = 4).  Both configurations have Message Engines in a separate cluster.  
The data indicates that, for an SOA application such as the benchmark used in this study, from a 
performance perspective, it is better to use the entire OpenPower 720 server as a single partition 
without PowerVM than configuring LPARs with VIOS.  In addition, we note the following from the 
data: 

 
o For the disks attached to the virtualized LPARs, the extra latency in going through the 

Virtual I/O Server (VIOS) results in higher I/O service times and higher disk utilization (as 
seen from Linux).  With VIOS, the I/O service times can reach as high as 15 ms, whereas 
without VIOS, the I/O service times are always less than 4 ms.  Similarly, the disk 
utilization data (collected at the operating system level) can reach as high as 70% with 
VIOS while it always stays below 50% without VIOS.  However, the disk I/O queue depth 
in all cases is less than 1, indicating that this is strictly an I/O latency issue and that the 
disk subsystems are not really the performance bottleneck in the configurations that we 
consider in this study. 

o Even under the heaviest workload conditions considered in this study, there is still quite a 
bit of available bandwidth left on the disk arrays:  the disk I/O queue depth is mostly less 
than 1 and the utilization is mostly less than 50%.  Even under the heaviest workload, the 
queue dept is only 1.24. 

o Data writes to the BPEDB database tend to be “bursty” in nature (based on the disk I/O 
queue depth and the disk utilization data); in contrast, data writes to the SIBDB database 
and to the logs (BPE, transaction, compensation) occur evenly over time (i.e. the disk I/O 
queue depth data match well with the disk utilization data). 
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o Data writes to the disk arrays are in the sub-millisecond range, indicating that write-back 
caching is in effect and very effective, especially since there is not much I/O waiting in the 
queues.  However, the disk arrays attached to the MR10M controller deliver better 
performance (in terms of I/O service times) because its cache is located much closer to 
the server than in the case of the DS3400 controller where the controller is located 
remotely from the server over the fiber links. 

 
 

Impact of Messaging Infrastructure Clustering
3-Node = 16-core x3850 M2 + 1.5-core P5 LPAR + 2-core P5 LPAR
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Figure 4.4.5 – Impact of Message Engine Clustering on Overall Throughput 
 

• Tuning the On-Demand Router (ODR):  The WVE test team recommends that the JVM heap 
size for the ODR should be at least 1024 MB and that the garbage collection policy should be 
Generational Concurrent (gencon) with the noAdaptiveTenure setting. However, since the service 
request rates in this study are fairly small (less than 100), this ODR tuning do not make much 
difference in the benchmark’s overall throughput.  For this study, the default JVM heap 
configuration for the ODR works just as well. 

 
• Workload Driver:  The benchmark’s Workload Driver, the IBM HTTP Server, the On-Demand 

Router, and the WebSphere Node Agent are hosted on the x3650 server.  The CPU utilization of 
this server is less than 5% and the utilization of the only disk used on this server is less than 6%, 
indicating that this server does not have any negative impact on our performance results. 
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Table 4.4.3 – Performance statistics for disk subsystems 
 

 

5. SOA People Entry Point 

 
The SOA People entry point is a starting point for SOA, enabling people to interact with applications and 
information services that support business processes. Enabling people to access multiple applications 
and information sources and allowing them to work together efficiently – the main pillars of the People 
entry point – are critical to the success of SOA implementations.   
 
The People entry strategy to SOA can help: 

• Accelerate productivity 
• Reduce costs for access to multiple applications and information sources 
• Reduce time to deployment for new services 
• Increase access to process flexibility and orchestration 
• Enable collaboration inside and outside the enterprise 

 
IBM has introduced the IBM Portal Pack for SOA Configurations [14], which includes essential 
WebSphere Portal family components for optimal “people” interactions and collaboration in a SOA 
environment.  More specifically, the IBM Portal Pack includes the following products: 
 

• WebSphere Portal Server for portal services and development capabilities 
• IBM Lotus ActiveInsight for dashboarding and scorecarding 
• IBM Lotus Forms Server for intuitive human-centric forms interface 
 

For the People entry point, the most important component to be tuned for performance is the WebSphere 
Portal Server.  There is a rather comprehensive performance tuning guide for WebSphere Portal V6.1 
[15], which discusses tuning parameters and performance considerations for the base portal, Web 2.0 
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theme, DB2 database, Web content management, clustering, and portal caches in AIX, Linux, and 
Windows 2003 environments. 

 
6. SOA Information Entry Point 
 
Information as a service is an entry point to SOA that offers information access to complex, 
heterogeneous data sources within an enterprise as reusable services. By establishing information as a 
service, we can improve the availability and consistency of information, while simultaneously removing 
traditional barriers to information sharing.  Through this entry point, we can ensure consistent definitions, 
packaging, and governance of key business data.  Information services that can be easily reused across 
processes would lead to more business flexibility and increased IT resource productivity.  More 
specifically, the SOA Information entry point can help: 
 

• Collect, clean and make data accessible:  
o Develop a unified view of businesses with in-line access to analytical data for improved 

transparency and business insight 
o Generate and govern authoritative master data records with shared metadata and data 

quality services for master data management 
 

• Reduce cost and risk:  
o Reduce costs associated with infrastructure rationalization and migration by decoupling 

information from individual information sources 
o Reduce risk exposure through in-line analytics and auditable data quality for risk and 

compliance initiatives 
 

• Increase business agility:  
o Increase the agility for business transformation by providing reusable information 

services, spanning structured and unstructured information that can be plugged into 
applications, business processes, and portals 

o Reduce development costs associated with accessing and transforming data 
 
There is a whitepaper which focuses on designing appropriate solutions for high-value information 
services [16].  There is also an audio podcast from the International DB2 User Group (IDUG) on tuning a 
DB2 Data Warehouse [17], which is a key component for implementing information services. 
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7. Conclusions & Recommendations 
 
Based on the data analysis in Section 4, we can draw the following conclusions and recommendations: 
 

• Tuning Web Services (SOA Services and Reuse Entry Point) 
 

o Of the various tuning parameters examined in this paper, the size of the WAS JVM heap 
has the greatest performance impact on both x86 and Power Web servers.  It is very 
critical to have the heap sized appropriately for the workload.  It is also important to use a 
garbage collection policy that is suitable for the workload.  For the workload considered in 
this paper, the gencon garbage collection policy appears to be the most effective. 

 
o The performance benefit of huge (large) page support in Linux is mixed in our testing.  

On the Power Web server, we find that allocating huge 16-MB pages for the WAS JVM 
heap improves performance.  However, on the x86 Web server with much smaller huge 
page size (2 MB), we find that the use of huge pages for the heap is only beneficial if the 
heap is constrained; if an appropriately sized heap is configured, huge pages would be of 
little benefit.   

 
o Configuring adequate persistent HTTP connections delivers a modest improvement in 

performance on both platforms.   
 

o Disabling WAS logging and tracing has a small benefit after the other tuning items are in 
place. 

 
o In our testing, increasing the size of the WAS thread pools does not appear to yield much 

performance gain on the x86 Web server.  On the Power Web server, increasing the size 
of the WAS thread pools helps performance only if the WAS JVM heap is configured 
large enough to accommodate more concurrent threads.  This shows that it is important 
to consider the tuning of all parameters as a whole, since their effects can interact with 
one another. 

 
• Tuning Service Mediations (SOA Connectivity Entry Point) 

 
o For transformation and routing service mediations, the default WebSphere and Linux 

settings can only support payload (message) size of 3 KB or less for service requests 
and responses. 

 
o Optimizing the WebSphere JVM heap configuration delivers the greatest performance 

gain – up to 23X improvement on the x3850 M2 server hosting the mediations.  It is 
therefore very important to have the JVM heap sized appropriately for the workload.  
Generational Concurrent (gencon) garbage collection policy appears to be the most 
suitable for Web service mediations.   

 
o For routing mediations, the huge page support in Linux delivers 16% and 8% 

performance improvement on the x3850 M2 and Power 570 servers, respectively.  For 
transformation mediations, however, the huge page support does not yield any noticeable 
performance gain with payload size of 3 KB or less.  At larger payload sizes, it does yield 
a small, but noticeable, performance improvement for relatively complex mediation 
scenarios, such as Composite Module and Transform Schema, where mediation 
operations on large payloads often cross the normal 4-KB page boundaries. 

 
o On the x3850 M2 server, tuning for maximum concurrency only delivers noticeable 

performance gain when the service request rate is relatively high – more than 600 
requests per second.  (Concurrency tuning includes setting the maximum number of 
persistent HTTP connections to unlimited, increasing the sizes of the default and Web 



SOA Performance on Linux 
Page 42 

Container thread pools, as well as disabling all performance monitoring, tracing, and 
logging.)  On the Power 570 server, only the Transform Value mediation scenario could 
sustain a high enough service request rate for concurrency tuning to yield a small (6%) 
performance improvement; the remaining mediation scenarios did not see any 
performance gain.   

 
o As the payload size in the service request and response messages increases, the Web 

service rates (throughput) drops – as expected.  The size of the drop in throughput 
depends on the amount of processing that is required to perform the mediation on the 
message payloads.  On the x3850 M2 server, as we increase the payload size to 100 KB 
for both request and response messages, the server CPU utilization surges past 90%, 
becoming a performance bottleneck, for all WESB service mediation scenarios – with the 
exception of the Transform Value scenario.  In the Transform Value scenario, the network 
traffic and latency become the limiting factor before the server CPUs because of the high 
rate of service requests and responses, each with a large 100-KB payload.  However, on 
the Power 570 server, the server CPU utilization is always very high, and as the payload 
size increases to 100 KB, the server CPUs become the absolute bottleneck, preventing 
us from getting higher throughput. 

 

• Business Process Management (BPM) tuning in a non-clustered environment (SOA 
Process Entry Point) 
 

o As with other WebSphere facets, the WAS JVM heap configuration for the WPS server is 
important.  For the BPM scenarios considered in this paper, the default JVM heap size is 
too small; at least 2048 MB is recommended.  In some cases, increasing the JVM heap 
size from 2048 MB to 4096 MB can result in a 20% performance gain.  The WAS JVM 
heap size should also be adjusted accordingly after adding resources, such as 
processors, to the server or partition hosting the WPS server to accommodate more 
workload.  It is also recommended to use the Generational Concurrent (gencon) garbage 
collection policy as it is most suitable for Web service transactions. 

 
o With a large volume of disk write traffic to the SIBDB database, BPEDB database, and 

BPE log, it is recommended that they are hosted on physical disk arrays, such as those 
attached to the IBM ServeRAID MR10M and IBM System Storage DS3400 controllers 
used in this study.  If the disk arrays are attached to a host controller through a fiber-
channel interface (such as the DS3400 controller used in this study), it would be better to 
host the BPEDB database on its own separate disk array because, in our testing, the 
average disk I/O queue depth becomes greater than 1.0 under peak workload conditions 
even when we dedicate a 24-disk array to BPEDB. 

 
o For best performance, cache mirroring and cache write-through in the disk array 

controllers should be disabled.  However, this is a classic trade-off between performance 
and reliability / availability. 

 
o For data writes to WPS databases and logs, the IBM ServeRAID MR10M disk subsystem 

delivers better performance than the IBM System Storage DS3400 disk subsystem.  This 
can be attributed to the fact that the write-back cache on the MR10M is much closer to 
the WPS server than the cache in the DS3400 which is located remotely from the server 
over the fiber links. 

 
o It is better to have the DB2 component run on a separate physical server from the WPS 

server, especially when there are multiple WPS servers in a cluster configuration. 
 

o Business process modeling applications, such as the one used in our benchmark, are 
generally processor-intensive.  Adding more processors to the WPS Server would 
certainly increase the benchmark throughput – provided that some J2C Connection 
Factories and Activation Specifications would also be increased to accommodate the 
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higher number of processors as recommended by the WebSphere Performance Team 
[13]. 

 
o The transaction and compensation logs for each WPS server should be hosted on 

separate disks if physical disk arrays are not available.  These disks (or disk arrays) 
should be local to the WPS server.  Hosting the transaction and compensation logs on a 
remote server, even on disk arrays, would result in very low performance due to the large 
amount of disk writes involved and the latency requirements. Logical disk striping through 
the Linux Volume Manager is also not very effective in handling the log traffic. 

 
o The WAS and WPS concurrency parameters, such as thread pools (e.g. default, web 

container), connection pools (for BPEDB, CEI ME, SIBDB System, and SIBDB BPC data 
sources), J2C connection factories (for BPECF, BPECFC, HTMCF), and J2C Activation 
Specifications, should have appropriate values based on the number of processors (as 
seen by the operating system).  In this study, giving these parameters appropriate values 
essentially doubles the benchmark’s overall throughput. 

 
o Tuning DB2 log parameters, such as the maximum storage for lock list, log buffer size, 

log file size, etc., yields only minor (less than 2%) improvement in the overall business 
transaction rate. 

 
o The Linux Huge (Large) Page Support is not effective for BPM scenarios. 

 
• Tuning Dynamic Operations in a WebSphere Virtual Enterprise (WVE) Environment (SOA 

Process Entry Point) 
 

o WebSphere Virtual Enterprise with its On-Demand Router (ODR) and associated 
autonomic managers create a virtual, goal-driven, autonomic cluster environment for 
SOA applications that can optimize resource usage and provide the capability of 
responding in real-time to spikes in workload demands (without human intervention if 
Automatic Mode is used).  This capability includes the activation of new application 
server instances on available physical servers to handle the peak workload. 

 
o Through the use of Java, the application servers are really separated from the physical 

server hardware.  In our setup, application server instances are activated on different 
server hardware platforms (e.g. Power and x86 servers) to handle the same stream of 
service requests.  A single DB2 server instance on an x86 server can support multiple 
WPS server instances on that x86 server as well as on other Power servers. 

 
o For messaging infrastructure clustering, having the Message Engines running locally in 

the same dynamic cluster as the WPS applications is faster, but it severely limits the 
overall scalability of a multi-node configuration.  For multi-node configurations, it is 
recommended that the Message Engines run in their own cluster, separate from the 
application cluster.  Although desirable, it is not necessary for the Message Engine 
cluster to run on different physical server(s) from those hosting the application cluster(s) 
to achieve good scalability.  In our study, the Message Engine cluster runs on the x3850 
M2 server, which hosts DB2 and is also part of the dynamic application cluster. 

 
o Care should be taken when setting the performance goal in the service policy.  WVE V6.1 

only supports response-time-related service goals.  Setting the service goal too close to 
the minimum service response time on a lightly loaded configuration would never result in 
additional servers to be activated because the autonomic managers would determine that 
starting additional servers would not improve the capability of meeting the service goal 
anyway.  In our study, we set the service goal to be 2X the minimum service response 
time. 
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o It takes at least 3 to 4 minutes from the time a service goal is considered breached until 
additional servers are started and running.  Even then, it may take a few more minutes 
for the new servers to “warm up” and be able to handle service requests at optimal rates. 

 
o From a pure performance perspective, if a Power server is used to host WPS server(s), it 

is better to configure a single LPAR with all the resources on the physical server and use 
dedicated disks for transaction and recovery logs (as opposed to configuring multiple 
LPARs with PowerVM).  For the benchmark in this study, a single LPAR with all four 
POWER5 cores on an OpenPower 720 server delivers 14% more business transactions 
per second than two virtualized LPARs on the same server.  Alternatively, with PowerVM, 
we can start small and put the LPAR in shared, uncapped mode, so the LPAR can grow 
into the full size of the physical server as workload demand increases. 

 
o The Virtual I/O Server (VIOS) results in higher I/O service times and higher disk 

utilization.  We have seen the virtual I/O service time as high as 3X the dedicated I/O 
service time. The VIOS overhead is also responsible for 20% increase in the average 
service response time in this study.  However, PowerVM does allow us to configure the 
disks as dedicated I/O devices to the LPARs so I/O operations to these disks do not go 
through VIOS.  For WPS servers, if we need to use PowerVM for availability and other 
virtualization benefits, we should host the transaction and compensation logs on physical 
disks dedicated to each LPAR.   

 
o As we can see from the performance data in this study, PowerVM does have some 

performance overhead.  However, its features and benefits are quite many, among them: 
 

• Server consolidation of existing workloads onto Power servers, thereby 
addressing the challenges of reducing space, power, and overall life-cycle costs 

• High-Availability solutions with Live Partition Mobility (available for POWER6 
processors or later only) 

• WebSphere Virtual Enterprise can work with server provisioning solutions, such 
as the Tivoli Provisioning Manager (TPM) or Tivoli Intelligent Orchestrator (TIO), 
to dynamically allocate new (physical or virtual) servers on which application 
server instances can be activated to handle unexpected surges in workload 
demands 

• Low-cost application security and isolation with EAL4+ certification 
• Far better granularity than hardware partitioning techniques (e.g. multiple LPARs 

can be allocated within a single processor to a granularity of 1/100
th
 of a 

processor, with 1/10
th
 of a processor being the minimum for an LPAR) 

• I/O can be virtualized and reconfigurable, and a mix of shared and dedicated I/O 
is supported across LPARs 

• In shared, uncapped mode, an LPAR can grow to the full size of the physical 
server as long as resources are available to handle peak workload demands 

 
The last two features – the support of dedicated I/O and shared, uncapped LPAR mode – 
can help reduce some performance overhead of PowerVM in our setup.  For WPS 
servers, the transaction and compensation logs should be hosted on physical disks 
dedicated to each LPAR.  Instead of adding more processor cores to an LPAR, we can 
start small and put the LPAR in shared, uncapped mode where it can use additional 
available processors on the physical server as necessary.   

 
o For the business process scenarios considered in this study, the benchmark’s Workload 

Driver, the IBM HTTP Server, and the On-Demand Router do not consume much CPU or 
I/O resources at run time.  The default configurations for the IBM HTTP Server and the 
On-Demand Router are found to be more than adequate to support the request rates of 
less than 100 requests per second in this study. 
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• SOA People and Information Entry Points:  The SOA People entry point enables people to 
access multiple applications and information sources and allowing them to work together 
efficiently while the SOA Information entry point offers information access to complex, 
heterogeneous data sources within an enterprise as reusable services.  Both of these entry points 
are critical to the success of SOA implementations.  The two key components for these entry 
points are the WebSphere Portal Server and the DB2 Data Warehouse.  Performance tuning of 
the WebSphere Portal Server in the Linux environment can be found in the comprehensive 
performance tuning guide for WebSphere Portal Server V6.1 [15].  There is also an audio podcast 
from IDUG on optimizing the performance of a DB2 Data Warehouse [17]. 
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