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Abstract 

 
This paper is the second in a series of white papers on Service Oriented Architecture (SOA) performance 
in the Linux® environment.  IBM® has defined five SOA Foundation Entry Points to help a business get 
started with SOA.  This paper focuses on the second entry point – the Connectivity Entry Point.  More 
specifically, this paper examines the transformation and routing service mediations, which can be 
performed on service requests and responses between clients and Web servers, and how we can tune 
WebSphere® and Linux to achieve better performance for these service mediations.   We will take a 
close look at the impact of several parameters and features in WebSphere®, such as Java heap size, 
garbage collection policy, thread pools, persistent HTTP connections, and performance monitors, as well 
as in Linux, such as the huge page support, on the performance of service mediation applications.  We 
consider two servers with different architectures to host the Web services and the WebSphere Enterprise 
Service Bus (WESB): an IBM System x3850 M2 built on the eX4 chipset, which is the latest generation of 
IBM X-Architecture®, and an IBM Power™ 570 built on the POWER6™ processor technology.  The 
paper shows the cumulative effect of tuning these parameters on the Web service request rates. 
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1. Introduction  

IBM has defined five Service Oriented Architecture (SOA) Foundation Entry Points to help businesses get 
started with SOA in their enterprise environment.  These five entry points are People, Process, 
Information, Connectivity, and Reuse [1].  This paper—the second in a series of white papers on SOA 
performance in the Linux environment—focuses on the Connectivity entry point, which encompasses the 
Enterprise Service Bus (ESB).  In particular, this paper takes a close look at the performance issues of 
transformation and routing service mediations on the ESB and how we can tweak WebSphere and Linux 
to optimize the performance of Web service mediations in the Linux SOA environment. 
 

2. Performance Evaluation Methodology 

In this paper, we evaluate the performance of various transformation and routing mediations and Web 
service bindings implemented on IBM WebSphere Application Server (WAS) and WebSphere Enterprise 
Service Bus (WESB) v6.1.  WAS is the IBM implementation of the Java® 2 Enterprise Edition (J2EE) 
platform, which conforms to V1.4 of the J2EE specifications [2].  WAS and WESB are the foundation for 
WebSphere Process Server (WPS), which is an SCA-compliant runtime element that provides a fully 
converged, standards-based process engine [3].  In our setup, we installed WPS v6.1. 
 
We used a benchmark that models the Web services provided for a typical automobile insurance 
company [4].  This benchmark specifies a macro workload whose driver can generate an end-to-end 
workload similar to that of an actual production system in an SOA environment.  It makes extensive use 
of IBM SOA platform products in the following areas: 

• Enablement of Web services, using IBM WebSphere Application Server (WAS) 

• Business process choreography, using integration and choreography features of IBM WebSphere 
Process Server (WPS) 

• Integration of Web services, using IBM WebSphere Enterprise Service Bus (WESB) or 
DataPower appliances 

 
Each of the areas mentioned above can be included or excluded from performance evaluations.  In this 
paper, we only consider the third area: the integration of Web services using WESB and WAS, which 
maps to the SOA Connectivity Entry Point defined by IBM.  The use of DataPower appliances is not 
considered in this paper. 
 
In our benchmark, the Web services are implemented as part of a ClaimServices application.  These Web 
services represent typical services that are involved in the processing of an automobile insurance claim, 
such as creating a claim, updating a claim, approving or denying a claim, checking insurance coverage, 
generating a list of approved repair shops, selecting a repair shop, and informing the customer.  Some 
business logic is embedded in the implementation of these services.  However, the presence of business 
logic might hinder us in evaluating the performance of the underlying middleware layers supporting Web 
services as well as investigating potential problems that might occur.  As a result, we decided to keep the 
business logic in the Web services to a minimum; it only performs minimal calculations and returns 
responses.   
 
For service mediations, we consider both routing and transformation mediations.  Transformation 
mediations can be performed on service requests, and in some cases, responses, using Extensible 
Stylesheet Language Transformations (XSLT).  XSLT is an XML-based language used for the 
transformation of XML documents into other XML or human-readable documents.  There are different 
levels of complexity for these transformations, and we will consider the following: 
 

• XSLT Value Transformation, which transforms the value of a single element in the service 
request message using XSLT. 

• XSLT Namespace Transformation, which transforms service requests and responses from one 
schema to another using XSLT.  In this case, the schemas are largely the same but the name of 
an element differs and the two schemas have different namespaces. 
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• XSLT Schema Transformation, which transforms service request and response messages from 
one schema to another using XSLT.  In this case, the schemas are completely different, but they 
contain similar data which is mapped from one to the other.  In addition to the transformation, a 
value from the service request is transferred to the response message by storing it in a context 
header. 

• Composite Module mediation consists of three mediation primitives wired together inside a single, 
composite mediation module.  The three mediation primitives are authorization (a routing 
mediation which checks a password field in the body of the service request), route on body, and 
transform.  The composite module approach is good for performance because it saves the 
overhead of inter-module calls, but at the expense of the ability to individually administer the 
pieces of the overall mediation. 

 
Routing mediations route requests to different Web services based on content.  In particular, we will 
examine route-on-body mediation which routes each request to the appropriate Web service based on 
the content of a field in the body of that request. 
 
The benchmark’s workload driver generates Web service requests to the benchmark’s ClaimServices 
application running on WAS using the Service Oriented Access Protocol (SOAP) implemented on top of 
the HTTP transport protocol [9], as shown in Figure 2.1.  The workload driver is a stand-alone multi-
threaded HTTP client, which uses up to 50 threads with 20 maximum transactions to generate SOAP 
service requests to the ClaimServices application.   In other words, our Web service mediation tests have 
the following characteristics: 

• Stand-alone, multi-threaded HTTP client to produce SOAP service requests 

• Synchronous SOA (XML) / HTTP request / response invocation 

• XSLT transformation and route-on-body service mediations 

• ClaimServices application hosts Web services 
 
We will consider both x86 and IBM Power Architecture® platforms for the server hosting the Web 
services and the Enterprise Service Bus (i.e., running WPS v6.1 and the ClaimServices application).  The 
workload driver runs on a separate x86 server (an IBM System x3650). 
 

 

Figure 2.1 – Service Mediations 
 
In our tests, we always started a warm-up run prior to actual data collection to ensure optimal and 
consistent results.  Warm-up runs were especially needed because, by default, the IBM Java Virtual 
Machine (JVM) in WAS uses a higher optimization level for compiles, resulting in faster runtime 
performance, but at the expense of slower server startups. 
 
In our study, we investigated the performance impact of many configuration parameters and settings for 
both WebSphere and the Linux operating system.  However, in this paper, we will identify only those 
parameters and recommendations that result in a discernable performance improvement.  Section 4 
presents these parameters and their cumulative performance impact, building up to the most optimal 
configuration that we believe is possible based on our testing results toward the end of Section 4.  There 
were quite a few parameters that we thought would give us good performance benefits, but if those 
benefits were not reflected in our tests in any discernable way, they would be excluded from this paper.    
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3. Systems Configurations 

3.1. Hardware 
 
As mentioned previously, we considered both x86 and IBM Power Architecture platforms for hosting Web 
services and the Enterprise Service Bus (i.e., hosting WPS v6.1 and the ClaimServices application). 
 
3.1.1. x86 Architecture-Based WAS / WESB Server 
 
For the x86 platform, we used the IBM System x3850 M2 (Table 3.1), which implements the IBM eX4 
chipset [7, 8].   
 

Web Server IBM System x3850 M2 

CPU 4 x 64-bit Quad-Core Intel® Xeon® Processor X7350 (2.93 GHz) 

Memory 64 GB (667 MHz DDR2) 

Network Integrated Dual-Port Gigabit Ethernet w/ TCP-IP off-load engine 

Table 3.1 – IBM System x3850 M2 Configuration 
 
3.1.2. IBM Power Architecture-Based WAS / WESB Server 
 
For the Power platform, we used an IBM Power 570 (Table 3.2) [5] with POWER6 processors [6].  
 

Web Server IBM Power 570 

CPU 
2 x 64-bit Dual-Core IBM® POWER6® (4.7 GHz), 4 MB L2 cache per 
core, 32 MB L3 cache shared per two cores 

Memory 32 GB (667 MHz DDR2) 

Network Dual-Port Gigabit Ethernet 

Internal Storage 1 x SAS controller with 2 x 300 GB, 15K rpm SAS drives 

Threading Simultaneous Multi-Threading (SMT)™ Technology 

Table 3.2 – IBM Power 570 Configuration 
 
3.1.3. Workload Driver 
 
The workload driver was an IBM System x3650 (Table 3.3). 
 
Workload Driver IBM System x3650 

CPU 2 x 64-bit Quad-Core Intel® Xeon® X5460 (3.16 GHz) 

Memory 24 GB (667 MHz DDR2) 

Network Integrated Dual-port Gigabit Ethernet 

Table 3.3 – IBM System x3650 Configuration 
 
All servers were connected to a Cisco Systems® Catalyst® 3750 Series Gigabit Switch (Model WS-
C3750G-24TS-S). 
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3.2. Software 
 

The Linux operating system on the IBM System x3850 M2 was Novell SUSE Linux Enterprise Server 
(SLES) 10 Service Pack (SP) 1 for AMD64 & EM64T (x86_64). 
 

The Linux operating system on the IBM Power 570 was Novell SUSE Linux Enterprise Server (SLES) 10 
Service Pack (SP) 1 for PPC (ppc64). 
 

Both servers ran WebSphere Process Server (WPS) v6.1.0 with the following fixes:    
 
6.1.0.0-WS-WAS-IFPK61306, 6.1.0.0-WS-WBI-IFJR27892, 6.1.0.0-WS-WBI-IFJR27979, 
6.1.0.0-WS-WBI-IFJR27983, 6.1.0.0-WS-WBI-IFJR27984, 6.1.0.0-WS-WBI-IFJR27985, 
6.1.0.0-WS-WBI-IFJR27986, 6.1.0.0-WS-WBI-IFJR27987, 6.1.0.0-WS-WBI-IFJR27993, 
6.1.0.0-WS-WBI-IFJR27994, 6.1.0.0-WS-WBI-IFJR28005, 6.1.0.0-WS-WBI-IFJR28008, 
6.1.0.0-WS-WBI-IFJR28018, 6.1.0.0-WS-WBI-IFJR28019, 6.1.0.0-WS-WBI-IFJR28020, 
6.1.0.0-WS-WBI-IFJR28034, 6.1.0.0-WS-WBI-IFJR28039, 6.1.0.0-WS-WBI-IFJR28042, 
6.1.0.0-WS-WBI-IFJR28044, 6.1.0.0-WS-WBI-IFJR28045, 6.1.0.0-WS-WBI-IFJR28047, 
6.1.0.0-WS-WBI-IFJR28048, 6.1.0.0-WS-WBI-IFJR28055, 6.1.0.0-WS-WBI-IFJR28056, 
6.1.0.0-WS-WPS-IFJR27977, 6.1.0.0-WS-WPS-IFJR27981, 6.1.0.0-WS-WPS-IFJR27992, 
6.1.0.0-WS-WPS-IFJR28023, and 6.1.0.0-WS-WPS-IFJR28041. 
 

The operating system on the workload driver system (IBM System x3650) was Novell SUSE Linux 
Enterprise Server (SLES) 10 Service Pack (SP) 2 for AMD64 & EM64T (x86_64). 
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4. Performance Results  

First we look at the performance of the Web service mediations on the IBM System x3850 M2 server.   
 

4.1. Results on the IBM System x3850 M2 server 
 
Our testing indicated that WebSphere Java Virtual Machine (JVM) heap optimization, Linux huge page 
support, and tuning for maximum concurrency appear to yield noticeable performance improvement for 
service mediation scenarios.  Let us first look at the service mediation performance with the payload size 
set to 3 KB for both service request and response messages. 
 

4.1.1. Service Mediation Performance with 3-KB Payloads 
 
Figure 4.1.1 shows the performance of WESB transformation and routing mediation scenarios and the 
performance gains achieved by WebSphere JVM heap tuning, Linux huge page support, and concurrency 
tuning with payload size set to 3 KB.   
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Figure 4.1.1 – Impact of JVM heap tuning, Linux huge page support, and concurrency tuning 
 
Let us first look at the WebSphere JVM heap optimizations. 
 

4.1.1.1. WebSphere JVM Heap Tuning 

 
In the world of Java, the JVM heap configuration has a significant impact on performance.  There are 
several parameters available for tuning the JVM heap for better performance.  Two basic JVM heap 
parameters are the size of the heap and the garbage collection (GC) policy. 
 

The size of the WebSphere JVM heap is probably the most important factor for the JVM performance.  A 
too-small heap causes garbage collection to happen more frequently.  A too-large heap size causes 
garbage collection to happen less frequently, or to take longer to compact the large heap.  There are 
several tools available, such as the Tivoli® Performance Viewer (included with WebSphere), that can help 
analyze and monitor the heap usage and garbage collection so that the heap can be specifically tuned for 
a particular workload.  
 



SOA Performance on Linux: Connectivity Entry Point 
Page 9 
 
In addition to the JVM heap size, the garbage collection (GC) policy can also affect performance.  The 
WebSphere JVM supports four different garbage collection policies, as shown in Table 4.1.1.1.1.  The 

default policy is optthruput.  During a garbage collection cycle under the optthruput policy, all 

application threads are stopped for mark, sweep, and compaction if needed.  The garbage collector scans 
all objects in the heap, marking any object that is in use, sweeps up the unused objects, reclaims their 
memory, and then compacts the remaining memory to reduce fragmentation.  The entire process can 
take some time.  All application threads are paused while the garbage is being collected.  Consequently, 
the optthruput policy results in longer garbage collection pause times, but in many cases, it yields the 

best overall throughput.  In contrast, the optavgpause policy trades high throughput for shorter garbage 

collection pauses by performing some of the garbage collection concurrently.  This is good for GUI 
applications where user interactive performance is critical.  For transaction-based applications involving 
many short-lived objects, the gencon (Generational Concurrent) garbage collection policy should be 

better.  Under the gencon policy, the JVM heap is split into new and old segments:  long-lived objects are 

promoted to the old segment while short-lived objects are garbage collected quickly in the new segment 
(called a nursery).  The subpool garbage collection policy is not available on IBM System x servers, so it 

is not considered in this section. 
 

GC Policy JVM Command Line Option Description 
Optimize for throughput -Xgcpolicy:optthroughput (default) This is the default policy. It is typically used for 

applications where raw throughput is more 
important than short GC pauses. The 
application is paused every time while garbage 
is being collected. 

Optimize for pause time -Xgcpolicy:optavgpause This policy trades high throughput for shorter 
GC pauses by performing some of the garbage 
collection concurrently. The application is 
paused for shorter periods. 

Generational concurrent -Xgcpolicy:gencon This policy handles short-lived objects 
differently from long-lived objects. Applications 
that have many short-lived objects can see 
shorter pause times with this policy while still 
producing good throughput. 

Subpooling -Xgcpolicy:subpool This policy uses an algorithm similar to the 
default policy, but employs an allocation 
strategy that is more suitable for multiprocessor 
machines. This policy is recommended for SMP 
machines with 16 or more processors. This 
policy is only available on IBM pSeries® and 
zSeries® platforms. Applications that need to 
scale on large machines can benefit from this 
policy. 

Table 4.1.1.1.1 – Garbage collection policies supported in WebSphere 6.1. 
 
To change the JVM heap size or set the garbage collection policy in WebSphere, we can use the 
WebSphere Application Server (WAS) Administrative Console as follows: 

• Go to Servers → Application Servers → server name → Server Infrastructure → Java and 
Process Management → Process Definition → Additional Properties → Java Virtual Machine 

• Enter new sizes in the “Initial Heap Size “and “Maximum Heap Size” boxes (the size should be 
specified in MB) 

• Enter appropriate JVM command line option for the garbage collection policy (as shown in the 
middle column of Table 4.1.1.1.1) into the “Generic JVM arguments” box.  For example, if we 
want to use the gencon garbage collection policy with a nursery size of 1536 MB, we would enter 

“-Xgcpolicy:gencon -Xmn1536M” into the “Generic JVM arguments” box. 

 
Table 4.1.1.1.2 shows the impact of various JVM heap settings, including the garbage collection policy, 
on the performance of the Composite Module mediation scenario with the request and response payload 



SOA Performance on Linux: Connectivity Entry Point 
Page 10 
 
size set to 3 KB.  (To obtain data on the overall GC overhead and total GC pause times, we enabled the 
verbose GC output in the WebSphere JVM.) 
 

 

Table 4.1.1.1.2 – Impact of JVM heap settings on Composite Module mediation with payload size = 3KB. 
 

With the payload size for both requests and responses set to 3 KB and with the default JVM settings, we 
could only achieve an average Web service request rate of 38.54 requests per second in the Composite 
Module mediation scenario.  To optimize the JVM heap, we first considered the default GC policy 
(optthruput).  By setting both the initial JVM heap size and the maximum heap size to 1024 MB, we 

immediately got a significant performance boost to 592.34 requests per second – more than 15X 
improvement!   
 
However, the overall garbage collection overhead was 21%, which is too high.  For optimal JVM 
performance, it is recommended that the overall GC overhead should be less than 10%.  Increasing the 
JVM heap size to 4096 MB reduced the overall GC overhead to a more acceptable 9% and resulted in 
another 35% performance boost in the average service request rate. 
 
Since increasing the JVM heap from 3072 MB to 4096 MB resulted in a very small performance boost 
(0.5%), we believe that increasing the JVM heap size further would not do much good.  Instead, we 
wanted to see if we could optimize the heap usage further by switching to another garbage collection 
policy.  As the data in Table 4.1.1.1.2 indicates, the Generational Concurrent (gencon) policy, with the 

nursery occupying 75% of the total heap, outperformed the default optthruput policy for heap sizes 

ranging from 2048 MB to 4096 MB.  More specifically, with the heap size set to 4096 MB, the gencon GC 

policy resulted in 7% performance gain over the default policy. The gencon policy also outperformed the 

optavgpause policy; in fact, the optavgpause policy yielded even worse performance than the default 

optthruput policy.  Therefore, it is safe to conclude from this data that the gencon policy is the most 

suitable garbage collection policy for Web service mediation scenarios. 
 
Using the gencon GC policy, we increased the JVM heap size to 5120 MB and received a noticeable 

performance boost.  Increasing the heap to 6144 MB also resulted in another sizable performance boost.  
However, increasing the JVM heap beyond 6144 MB did not yield any noticeable performance gain.  As a 
result, we believe that the optimal JVM heap size is 6144 MB with the gencon garbage collection policy.  

In fact, as Figure 4.1.1 shows, this optimal JVM heap configuration accounted for the largest performance 
improvement across all Web service mediation scenarios considered in our study. 
 
We also found that enabling the verbose garbage collection output, which was needed for analyzing the 
garbage collection performance, did not appear to adversely impact the Web service rate.  In fact, with 
the JVM heap size set to 6144 MB under the gencon garbage collection policy, the verbose GC output 

only resulted in approximately 0.5% performance overhead. 
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4.1.1.2. Huge Page Support in Linux 
 
One of the factors to consider in server performance is memory access overhead.  Processors keep a 
cache of mappings from virtual addresses to physical addresses in a Translation Look-aside Buffer (TLB) 
so that they don't have to walk through the page tables for every virtual address used.  The TLB holds a 
fixed number of entries.  When the processor encounters a virtual address that is not in the TLB, i.e., a 
TLB miss, it must walk the virtual address through the page tables to get its physical address.  The new 
mapping is then written to the TLB, overriding an existing entry. 
 
Linux has support for huge pages (also known as large pages in many processor hardware manuals).  In 
the x86 architecture, normal pages are 4 KB in size and huge pages are 2 MB. The use of huge pages 
can improve memory performance in two ways.  First, since a single entry in the TLB maps to more 
memory (2 MB instead of 4 KB), fewer TLB entries are needed to map a given area of memory.  With 
fewer TLB entries, the occurrence of TLB misses is reduced.  Second, the page table setup for mapping 
huge pages uses one fewer table to determine the physical address, making virtual-to-physical-address 
mapping faster than for normal pages. 
 
Huge pages are configured in Linux by adding the following lines to the /etc/sysctl.conf file: 
 

vm.nr_hugepages = <number of pages> 
kernel.shmmax = <number of bytes> 
kernel.shmall = <number of bytes> 
 
In our study, we wanted to configure enough huge pages for the WebSphere JVM heap. As we discussed 
in the preceding section, the most optimal JVM heap size for Web service mediation scenarios was 6 GB.  
To be on the safe side, we configured 8 GB worth of huge pages (8 GB / 2 MB per huge page = 4096 
huge pages).  We set the amount of shared memory to 10 GB so that there would be enough room for the 
8 GB of huge pages in the shared memory pool (10 GB is 10737418240 bytes).  We added the following 
lines to the /etc/sysctl.conf file: 

 
vm.nr_hugepages = 4096 
kernel.shmmax = 10737418240 
kernel.shmall = 10737418240    
 
The WebSphere JVM was then configured to use huge pages by adding the parameter -Xlp in the same 

“Generic JVM arguments” box where the garbage collector parameters were set. 
 
The data in Figure 4.1.1 shows that the huge page support did not result in any significant performance 
improvement for transformation mediation scenarios with 3-KB payload size, although it did yield a 16% 
performance gain for route-on-body service mediation.  This is rather expected because the 
transformation operations on 3-KB messages are not expected to cross normal 4-KB page boundaries 
too frequently.  As we will see later, with payload sizes larger than 3 KB, the huge page support did 
provide some noticeable performance advantage.  Route-on-body service mediations involve fetching 
certain values in the message bodies, and then, based on those values, jumping to different web services 
in memory at comparatively higher service request rates (more than 2,000 requests per second).  This 
would cause more cache and TLB misses than for other mediation types, so huge page support would 
help here – providing a 16% performance improvement for routing mediation scenarios. 
 
4.1.1.3. Tuning for Maximum Concurrency 
 
After optimizing the JVM heap memory usage, the next area for potential performance improvement is 
concurrency.  There are several WebSphere Web Container settings that can be tweaked for maximum 
concurrency in our tests.  If there are not enough HTTP connections available, incoming service requests 
will not be able to connect until a connection is freed.  If the server's CPUs are not fully utilized, there is 
no memory constraint, and there is available network bandwidth, the number of persistent HTTP 
connections for each port can be increased from the default value of 100 to improve the server’s 
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performance.  In our tests, we found that setting the maximum number of HTTP persistent requests to 
unlimited gave us a noticeable performance gain. 

 
To change the number of HTTP connections available for a given port, we used the WAS Administration 
Console as follows: 

• Go to Servers → Application Servers → server name → Communications and click on the Ports 
link 

• Find the port number in the table and click on “View associated transports” for that port 

• Click on the transport chain that is listed 

• Click on “HTTP inbound channel (HTTP_n),” where “n” denotes channels 1 to 4 

• Either click on “Maximum persistent requests per connection” and enter a number in the “Specify 
maximum number of persistent requests” box, or click on “Unlimited persistent requests per 
connection” 

 
There is another area that we can tune for maximum concurrency: the number of threads available to 
service requests from the clients.  For example, threads in the Web Container thread pool are used for 
handling incoming HTTP and Web service requests.  These thread pools are shared by all applications 
deployed on the server, so in many cases, these pools need to be larger than their default sizes.   
 
Changing the number of threads in a thread pool can be done through the WAS Administration Console 
as follows:  

• Go to Servers → Application Servers → server name → Additional Properties → Thread Pools 

• Click on the thread pool you want to change and enter new values in the “Maximum Size” boxes 
 
We experimented with larger maximum numbers of threads in the default thread pool as well as the Web 
Container thread pool.  These numbers partly depend on the number of CPUs on the server since the 
more CPUs we have, the more threads can be executed concurrently.  The x3850 M2 server has 4 quad-
core processors, so that’s 16 processor cores that can work in parallel.  To ensure that we have enough 
available threads in the thread pools, we increased the maximum number of threads in the default thread 
pool to 200 (default value is 20) and in the Web Container thread pool to 100 (default value is 50). 
 
To further optimize the performance of Web service mediation scenarios in our tests, we decided to turn 
off all performance monitoring, tracing, and logging.  These are often necessary when setting up a server 
or when debugging problems or issues, but they do introduce some performance overhead.  As a result, it 
is recommended that tracing and monitoring be used judiciously, and whenever possible, turned off 
entirely to ensure optimal performance. 
 
Disabling the WebSphere Performance Monitoring Infrastructure (PMI) can be done through the WAS 
Administration Console as follows:  

• Go to Monitoring and Tuning → Performance Monitoring Infrastructure (PMI) → server name 

• Uncheck the “Enable Performance Monitoring Infrastructure (PMI)” box, and in the “Currently 
Monitored Statistic Set” box, select ”None” 

 
Figure 4.1.1 shows the cumulative impact of increasing the maximum number of persistent HTTP 
connections, the maximum number of threads in the default and Web Container thread pools, as well as 
disabling all performance monitoring, tracing, and logging.  These tweaks provided the most performance 
gain (9%) over what we were able to achieve with optimal JVM heap configuration and huge page 
support for the Transform Value mediation scenario.  The Transform Value mediation scenario was the 
least compute-intensive of all mediation scenarios considered in our study, and therefore, it could sustain 
the highest service request rates.  As a result, setting up for maximum concurrency resulted in a 
significant performance boost for this mediation scenario.  In contrast, the other Transform mediation 
scenarios were much more compute-intensive, and therefore, could only handle relatively low service 
request rates, so tuning for maximum concurrency did not help much. 
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4.1.2. Impact of Large Payload Sizes 
 
Let us now look at the performance of the Web service mediation scenarios with payload (message) sizes 
greater than 3 KB.  Figures 4.1.2.1 through 4.1.2.5 show the impact of the tuning items that we discussed 
in Section 4.1.1 on these mediation scenarios with payload sizes greater than 3 KB.   
 
As payload size increased, the Web service rates (throughput) dropped – as expected.  The size of the 
drop in throughput depends on the amount of processing that is required to perform the mediation on the 
payload in the service requests and responses.  For example, Figure 4.1.2.1 shows that the Composite 
Module mediation scenario posted approximately the same throughput for both {Request = 3KB, 
Response = 10 KB} and {Request = 10 KB, Response = 3 KB} configurations because the same amount 
of mediation processing was done on both requests and responses.  On the other hand, the fact that the 
Transform Value mediation scenario posted approximately the same throughput for both {Request = 
10KB, Response = 3KB} and {Request = 10KB, Response = 10KB} configurations, as shown in Figure 
4.1.2.2, indicates that the Transform Value mediation was only performed on requests (not responses) 
because the difference in the response payload size did not affect throughput.  The relatively high 
throughput for the Transform Value and Route-On-Body mediation scenarios indicates that the amount of 
processing required to perform these mediations was less than the processing required by the other 
mediations. 
 
It is important to note that the default WebSphere settings did not have enough capacity to even support 
payload sizes greater than 3 KB (all scenarios would fail after some time).  Setting the initial and 
maximum JVM heap sizes to 1024 MB was the minimal step that would allow all mediation scenarios to 
complete successfully.   Indeed, the JVM heap optimizations discussed in Section 4.1.1 accounted for the 
largest performance improvement across all mediation scenarios – regardless of payload sizes. 
 
For many mediation scenarios, such as Composite Module and Transform Schema, the Linux huge page 
support provided larger performance gains at payload sizes greater than 3 KB.  This is expected because 
performing transformations on payloads larger than 3 KB would cross normal 4-KB page boundaries 
more frequently, so huge pages would help in these cases. 
 
Concurrency tuning, which includes setting the maximum persistent HTTP connections to unlimited, 

increasing the sizes of the default and Web Container thread pools, as well as disabling all performance 
monitoring, tracing, and logging, provided larger benefits at higher throughput.  In fact, based on the data 
in Figures 4.1.2.1 through 4.1.2.5, it appears that concurrency tuning only provided noticeable 
performance gains at service request rates higher than 600 requests per second. 
 
Figure 4.1.2.6 shows the optimized performance for transformation mediation scenarios at different 
payload sizes.  As the payload sizes increased, the Web service request rates dropped due to larger 
computational requirements for performing transformation and routing mediations on larger payloads.  In 
fact, as we increased the payload size to 100 KB for both requests and responses, the 16 processor 
cores on the x3850 M2 server started to become the limiting factor:  the CPU utilization increased past 
90% – with the exception of the Transform Value mediation scenario (shown in Figure 4.1.2.7).  The 
Transform Value scenario required the least amount of computational power as it was the simplest 
among the mediation scenarios considered in our study, and therefore, it could sustain relatively high 
service request rates.  In this scenario, with 100-KB payload in both requests and responses, the amount 
of network traffic and latency – not the CPUs – quickly became the limiting factor:  the network traffic 
between the client and the server was measured approaching 500 Mbps, limiting the server CPU 
utilization to less than 80%.   
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Figure 4.1.2.1 – Impact of tuning on Composite Module mediation scenario with different workload sizes 
 

Impact of Tuning on Transform Value Mediation

(x3850 M2 Server)

0

500

1000

1500

2000

2500

3000

Baseline JVM Heap

Tuning

Huge Page

Support

Concurrency

Tuning

T
h
ro
u
g
h
p
u
t 
(R
e
q
s
/s
e
c
)

Req=3K, Resp=3K

Req=3K, Resp=10K

Req=10K, Resp=3K

Req=10K, Resp=10K

Req=100K, Resp=100K

 
Figure 4.1.2.2 – Impact of tuning on Transform Value Mediation with different workload sizes 
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Figure 4.1.2.3 – Impact of tuning on Transform Namespace Mediation with different workload sizes 
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Figure 4.1.2.4 – Impact of tuning on Transform Schema Mediation with different workload sizes 
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Figure 4.1.2.5 – Impact of tuning on Route On Body Mediation with different workload sizes 
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Figure 4.1.2.6 – Optimized performance of transformation mediations across different payload sizes 
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Figure 4.1.2.6 – Server CPU utilization for transformation mediations at different payload sizes 
 
4.1.3. Summary for Results on the IBM System x3850 M2 Server 
 

On the IBM System x3850 M2 server, the default WebSphere and Linux settings could only support 3-KB 
payload size for service requests and responses in the Web service mediation scenarios considered in 
our study.  Setting the WebSphere JVM heap size to 6144 MB and using the Generational Concurrent 
(gencon) garbage collection policy resulted in more than 23X performance improvement.  The Linux 

huge page support provided another 16% performance gain for routing mediations.  For transformation 
mediations, however, the huge page support did not yield any noticeable performance gain with payload 
size of 3 KB or less.  At larger payload sizes, the huge page support did yield a small, but noticeable, 
performance improvement for relatively complex mediation scenarios, such as Composite Module and 
Transform Schema, where mediation operations on large payloads often cross the normal 4-KB page 
boundaries.  The concurrency tuning only provided noticeable performance gains at service request rates 
greater than 600 requests per second. 
 

4.2. Results on the IBM Power 570 Server 
 
As with the x3850 M2 server, we found that WebSphere JVM heap optimization, Linux huge page 
support, and tuning for maximum concurrency yielded noticeable performance gains.  Let us first look at 
the service mediation performance with the request and response payload size set to 3 KB. 
 

4.2.1. Service Mediation Performance with 3-KB Payloads 
 
Figure 4.2.1 shows the performance gain achieved by each of the tuning items for various Web service 
mediation scenarios with payload size of 3 KB.   
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Figure 4.2.1 – Optimized performance of transform mediations across different payload sizes 
 
Let us first look at the WebSphere JVM heap optimizations. 
 

4.2.1.1. WebSphere JVM Heap Tuning 

 
As we found in the case with the x3850 M2 server, the JVM heap configuration had a significant impact 
on the performance of Web service mediation scenarios on the Power 570 server.  We followed the same 
tuning approach as discussed in Section 4.1.1.1.  The data for the Power 570 server is shown in Table 
4.2.1.1.   
 

 
Table 4.2.1.1 – Impact of tuning on Composite Module mediation scenario with payload size = 3 KB 
 
As discussed in Section 4.1.1.1, in order to change the WebSphere JVM heap size or set the garbage 
collection policy, we can use the WebSphere Application Server (WAS) Administrative Console as 
follows: 

• Go to Servers → Application Servers → server name → Server Infrastructure → Java and 
Process Management → Process Definition → Additional Properties → Java Virtual Machine 

• Enter new sizes in the “Initial Heap Size “and “Maximum Heap Size” boxes (the size should be 
specified in MB) 

• Enter appropriate JVM command line option for the garbage collection policy (as shown in the 
middle column of Table 4.1.1.1) into the “Generic JVM arguments” box.  For example, if we want 
to use the gencon garbage collection policy with a nursery size of 1536 MB, we would enter “-

Xgcpolicy:gencon -Xmn1536M” into the “Generic JVM arguments” box. 
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With payload size for both requests and responses set to 3 KB and with the default WebSphere JVM 
settings, we could only achieve an average Web service request rate of 111.03 requests per second in 
the Composite Module mediation scenario.  To optimize the JVM heap, we first considered the default GC 
policy (optthruput).  By setting both the initial JVM heap size and the maximum heap size to 2048 MB, 

we immediately got a significant performance boost to 664.26 requests per second – almost 6X 
improvement!  The overall garbage collection overhead was 5%, which is quite acceptable. 
 
Increasing the JVM heap size to 3072 MB yielded another 6% performance improvement.  However, 
increasing the JVM heap size to 4096 MB and beyond did not seem to make any difference.  As a result, 
we decided to keep the heap size at 3072 MB, but tried to see if we could optimize the heap usage better 
by switching to another garbage collection policy.   
 
The WebSphere JVM supports four different garbage collection policies, as shown in Table 4.1.1.1.1.  
Please refer to Section 4.1.1.1 for a more detailed description of these garbage collection policies.  With 
the JVM heap size kept at 3072 MB, the Generational Concurrent (gencon) garbage collection policy 

delivered the best performance for the Composite Module mediation scenario – as shown in Table 
4.2.1.1.  The optavgpause policy delivered the worst performance.  The subpool policy, which is 

available only on IBM System p and z servers, yielded approximately the same performance as the 
default policy (optthruput), but not as good as the gencon policy.   

 
Based on the data in Table 4.2.1.1., we can conclude that the gencon garbage collection policy, together 

with the JVM heap size of 3072 MB, represent the most optimal JVM heap configuration for the 
Composite Module mediation scenario (with payload size = 3KB for both requests and responses).  In 
fact, as Figure 4.2.1 shows, this optimal WebSphere JVM heap configuration accounted for the largest 
performance gain across all Web service mediation scenarios considered in our study. 
 
4.2.1.2. Huge Page Support in Linux 
 
Since the WebSphere JVM heap size was set to 3072 MB, which is much larger than the default size, the 
CPU overhead of managing and keeping track of memory in this large heap can be reduced by exploiting 
the Huge (Large) Page support provided by the Power architecture and supported by the Linux kernel.  
The Power processors support 16-MB huge pages, which cannot be demand-paged from a disk file or 
swapped out to the swap partition. 
 

To allow the WebSphere JVM heap to use huge pages, we must first enable Linux to create and maintain 
a pool of huge pages.  In our tests, we created a 4-GB pool of huge pages by adding the following lines to 
the /etc/sysctl.conf file: 
 

#Number of huge pages (256 x 16 MB = 4 GB) 
vm.nr_hugepages = 256 
#Size of shared memory is set to 6 GB (6442450944 bytes) 
kernel.shmmax = 6442450944 
kernel.shmall = 6442450944 
 
(Note that we set the amount of shared memory to 6 GB so that there would be enough room for 4-GB 
pool of huge pages in the shared memory pool.) 
 
The WebSphere JVM was then configured to use huge pages by adding the parameter -Xlp in the same 

“Generic JVM arguments” box where the garbage collector parameters were set. 
 
The data in Figure 4.2.1 shows that the huge page support did not result in any significant performance 
improvement for the transformation mediation scenarios with 3-KB payload size, although it did yield a 
noticeable (8%) performance gain for the routing mediation scenario.  This is rather expected as 
transformation operations on 3-KB payloads are not expected to cross normal 4-KB page boundaries too 
frequently.  On the other hand, route-on-body service mediations involve fetching certain values in the 
message bodies, and then, based on those values, jumping to different web services in memory at 
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comparatively higher service request rates (more than 2,000 requests per second).  This would cause 
more cache and TLB misses than for other mediation types, so huge page support would help here – 
providing an 8% performance improvement for routing mediation scenarios. 
 
4.2.1.3. Tuning for Maximum Concurrency 
 
As in the case with the x3850 M2 server, after optimizing the WebSphere JVM heap usage, the next area 
for potential performance improvement is concurrency.  As discussed in Section 4.1.1.3, we focused on 
the following:   

• Setting the maximum number of persistent HTTP connections to unlimited. 

• Increasing the maximum number of threads in the default and Web Container thread pools. The 
Power 570 server has 2 dual-core POWER6 processors with SMT (Simultaneous Multi-
Threading) enabled, so that’s 8 logical processors working in parallel.  To ensure that we had 
enough available threads in the thread pools, we increased the maximum number of threads in 
the default thread pool to 200 (default value is 20) and in the Web Container thread pool to 100 
(default value is 50). 

• Disabling the WebSphere Performance Monitoring Infrastructure (PMI). 
 
To change the number of HTTP connections available for a given port, we used the WAS Administration 
Console as follows: 

• Go to Servers → Application Servers → server name → Communications and click on the Ports 
link 

• Find the port number in the table and click on “View associated transports” for that port 

• Click on the transport chain that is listed 

• Click on “HTTP inbound channel (HTTP_n),” where “n” denotes channels 1 to 4 

• Either click on “Maximum persistent requests per connection” and enter a number in the “Specify 
maximum number of persistent requests” box, or click on “Unlimited persistent requests per 
connection” 

 
Changing the number of threads in a thread pool can be done through the WAS Administration Console 
as follows:  

• Go to Servers → Application Servers → server name → Additional Properties → Thread Pools 

• Click on the thread pool you want to change and enter new values in the “Maximum Size” boxes 
 
Disabling the WebSphere Performance Monitoring Infrastructure (PMI) can be done through the WAS 
Administration Console as follows:  

• Go to Monitoring and Tuning → Performance Monitoring Infrastructure (PMI) → server name 

• Uncheck the “Enable Performance Monitoring Infrastructure (PMI)” box, and in the “Currently 
Monitored Statistic Set” box, select ”None” 

 
Figure 4.2.1 shows the cumulative impact of increasing the maximum number of persistent HTTP 
connections, the maximum number of threads in the default and Web Container thread pools, as well as 
disabling PMI.  These tweaks provided the most performance gain for the Transform Value mediation 
scenario – 6% gain over what we were able to achieve with optimal JVM heap configuration and huge 
page support.  The Transform Value mediation scenario was the least compute-intensive of all scenarios 
considered in our study, and therefore, could sustain relatively high service request rates, so setting up 
for maximum concurrency resulted in a sizable performance boost.  In contrast, the other transformation 
mediation scenarios were much more compute-intensive and had relatively low service request rates, so 
tuning for maximum concurrency did not help much. 
 

4.2.2. Impact of Large Payload Sizes 
 
Let us now look at the performance of the Web service mediation scenarios running on the Power 570 
server with payload (message) sizes greater than 3 KB.  Figures 4.2.2.1 through 4.2.2.5 show the impact 
of the tuning items that we discussed in Section 4.2.1 on the Web service mediation scenarios with 
payload sizes greater than 3 KB.  It is important to note that the default WebSphere settings did not even 
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have enough capacity to support payload sizes greater than 3 KB (all scenarios would fail after some 
time). 
 
As payload size increased, the Web service rates (throughput) dropped – as expected.  The size of the 
drop in throughput depends on the amount of processing that is required to perform the mediation on the 
payload in the service requests and responses.  For example, Figure 4.2.2.1 shows that the Composite 
Module mediation scenario posted approximately the same throughput for both {Request = 3KB, 
Response = 10 KB} and {Request = 10 KB, Response = 3 KB} configurations because the same amount 
of mediation processing was done on both requests and responses.  On the other hand, the fact that the 
Transform Value mediation scenario posted approximately the same throughput for both {Request = 
10KB, Response = 3KB} and {Request = 10KB, Response = 10KB} configurations, as shown in Figure 
4.2.2.2, indicates that the Transform Value mediation was only performed on requests (not responses) 
because the difference in response payload size did not affect throughput.  The relatively high throughput 
for the Transform Value and Route-On-Body mediation scenarios indicates that the amount of processing 
required to perform these mediations was less than the processing required by the other mediations. 
 
As in the case with the x3850 M2 server, the JVM heap optimizations discussed in Section 4.2.1 
accounted for the largest performance gain across all mediation scenarios – regardless of payload sizes 
– on the Power 570 server.  The huge page support does not appear to provide any significant 
performance benefit on the Power 570 server – except for the route-on-body mediation scenario.  Tuning 
for maximum concurrency, which includes setting the maximum persistent HTTP connections to 
unlimited, increasing the sizes of the default and Web Container thread pools, as well as disabling 

PMI, provided an average of 6% performance improvement on top of what we were able to achieve with 
optimal JVM heap configuration and huge page support.  However, as shown in Figure 4.2.2.7, the CPU 
utilization on the Power 570 server was approaching 99% as we increased the payload size to 100 KB, so 
the server CPUs became the limiting factor, preventing us from obtaining higher throughput.   
 
Figure 4.2.2.6 shows the optimized performance for transformation mediation scenarios at different 
payload sizes.  As the payload sizes increased, the Web service request rates dropped due to larger 
computational requirements for performing transformation and routing mediations on larger payloads.   
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Figure 4.2.2.1 – Impact of tuning on Composite Module mediation at different payload sizes 
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Figure 4.2.2.2 – Impact of tuning on Transform Value mediation at different payload sizes 
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Figure 4.2.2.3 – Impact of tuning on Transform Namespace mediation at different payload sizes 



SOA Performance on Linux: Connectivity Entry Point 
Page 23 
 
 

Impact of Tuning on Transform Schema Mediation

(Power 570 Server)

0

100

200

300

400

500

600

700

800

900

Baseline JVM Heap

Tuning

Huge Page

Support

Concurrency

Tuning

T
h
ro
u
g
h
p
u
t 
(R
e
q
s
/s
e
c
)

Req=3K, Resp=3K

Req=3K, Resp=10K

Req=10K, Resp=3K

Req=10K, Resp=10K

Req=100K, Resp=100K

 

Figure 4.2.2.4 – Impact of tuning on Transform Schema mediation at different payload sizes 
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Figure 4.2.2.5 – Impact of tuning on Route-On-Body mediation at different payload sizes 
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Figure 4.2.2.6 – Optimized performance for transformation mediation scenarios across payload size 
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Figure 4.2.2.7 – Server CPU utilization for transformation mediations at different payload sizes 
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4.2.3. Summary of Results on the IBM Power 570 Server 
 
On the Power 570 server, the default WebSphere and Linux settings could only support 3-KB payloads in 
the service requests and responses for the Web service mediation scenarios considered in our study.  
Setting the WebSphere JVM heap size to 3072 MB and using the Generational Concurrent (gencon) 

garbage collection policy resulted in more than 6X performance improvement.  The Linux huge page 
support provided another 8% performance boost for routing mediations, and the concurrency tuning 
yielded an average of 6% performance improvement for all mediation scenarios across different payload 
sizes.  However, as we increased the payload size to 100 KB, the CPU utilization on the Power 570 
server was approaching 99%, so the server CPUs became the limiting factor, preventing us from 
obtaining higher throughput. 
 
 

5. Conclusions 
 
Based on the results of our testing with the Web service mediation scenarios, we can state the following 
conclusions: 
 

• For transformation and routing service mediations, the default WebSphere and Linux settings 
could only support payload size of 3 KB or less for service requests and responses. 

 
• Optimizing the WebSphere JVM heap configuration had the greatest performance impact – up to 

23X improvement on the x3850 M2 server.  It is therefore very important to have the JVM heap 
sized appropriately for the workload.  Generational Concurrent (gencon) garbage collection 

policy appears to be the most suitable for Web service mediations.   
 

• For routing mediations, the huge page support in Linux provided 16% and 8% performance gains 
on the x3850 M2 and Power 570 servers, respectively.  For transformation mediations, however, 
the huge page support did not yield any noticeable performance improvement with payload size 
of 3 KB or less.  At larger payload sizes, there was a small, but noticeable, performance 
improvement for relatively complex mediation scenarios, such as Composite Module and 
Transform Schema, where mediation operations on large payloads often cross the normal 4-KB 
page boundaries. 

 
• On the x3850 M2 server, tuning for maximum concurrency only delivered noticeable performance 

gain when the service request rate was relatively high (more than 600 requests per second).  On 
the Power 570 server, only the Transform Value mediation scenario could sustain a high enough 
service request rate for concurrency tuning to yield a small (6%) performance improvement; the 
remaining mediation scenarios did not see any performance gain.  (Concurrency tuning includes 
setting the maximum number of persistent HTTP connections to unlimited, increasing the 

sizes of the default and Web Container thread pools, as well as disabling all performance 
monitoring, tracing, and logging.) 

 
• As the payload size in the service request and response messages increased, the Web service 

rates (throughput) dropped – as expected.  The size of the drop in throughput depends on the 
amount of processing that is required to perform the mediation on the message payloads.  On the 
x3850 M2 server, as we increased the payload size to 100 KB for both request and response 
messages, the server CPU utilization increased past 90%, where the server CPUs started to 
become a performance bottleneck, for all WESB service mediation scenarios – with the exception 
of the Transform Value scenario.  In the Transform Value scenario, the network traffic and latency 
became the limiting factor before the server CPUs because of the high rate of service requests 
and responses, each with a large 100-KB payload.  However, on the Power 570 server, the 
server CPU utilization was always very high, and as the payload size increased to 100 KB, the 
server CPU became the absolute bottleneck, preventing us from getting higher throughput. 
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