Integrating IP telephony with the 3Com
SDK

Undersanding and using the 3Com I P te ephony WWEb-services solution
developer kit

Jon Rush
| SV Business Srategy and Enablement
September 2007

[l
IHIF
o
il

Table of Contents

N 1] 1 = T U UUTUPURRUR 1
T a1 0o LU [o] 4 o] o USRI 1
P EQUISITES ittt e e e ettt et e e e e e e ottt e e e e e e e e bbb e e e e e e e e a s 1
L@ Y= QT SRR 2
B SIS T (S £ = 3
(Do o101 1 a1=T o ¢= 14 (o] o PR PRPPTTPR 3

R LCR Lo =] =T o] a o T 0} VAT A B ST 6
SettiNng UP the JAVA IDEo e e e e e e e e et r e e e e e e e e aaaa e e eeeeees 7
gl oo)il lo i g T=TS] I < PEPR PSR 7
RUNNING the SAMPIE PrOGIAIMt e e e e e e s sttt e e e e e e e s sanbreeeeaaeeesaannnrees 30

L £ o A g P 30

USING the IDE TUN ...ttt ettt e e e e e st a e e e e e e e e e annbnaeeeaeas 32

Migrating and running the Sample 0N SYSEM T......ciiiiiiiiiiii e 34
EXPOrtiNg the COUE.......coiiie e e e e e as 34

Setting up the Java enVIFONMENT...........ocuiiiiiiii e 35

Setting up System i remote-graphics capabilitiesccccoecviieiiie e 35

RUNNING the SAMPIE.... et e e e e reeeaeas 36

USING the IDE WSDL @Iueiiiiiiiiiee ittt ettt e e s et e e e snbne e e e snnneee s 41
Customizing the SDK for your environment (Optional)..........cceveeiiiiiiiiiiiiciee e 43
Modifying the IPTelephony WSDL file ... 43

Generating the client-Service StUDSueiiiiii i 45

Building a new IPTelephony client JAR file ... 51

Y= 0 1] o = PP 54
Setting up System i keyed-data QUEUES...........ooiiiiii it 56

I g TeR oo o Loy T | SRR SP 58
The test driver program (IPTelTransactionDataQueueDIiVer)cccceviiiiieeieneeeinnnns 58

The messaging layer (IPTelephonyDQHaNAIEr)c.ovvvivveeiiiiciiiieeee e 59

The server gateway (IPTelephonyServerGateWay)ccccoeeiiiuuiiiiieeeeeiiiiieieee e 62

Web-service client stub (IPTelephonyServiceStub) ..o 63

RUNNING the SAMPIE ... e e e e e e e e e s s et e e e e e e e s sasateraeeeeaeeesannrnreees 64
SUMIMIAIY i teieetit ettt ettt ettt ettt ettt ettt ettt et e st e s e et s s e e s s e e e st e s s et s st e s et e e e e et e e e e b e e e b e e bbb e e 69
ST o] o =1 ST TRUPPPUPTTTPRRPR 70
ADOUL TN AUTNOT e a e aaaeeas 70

Trademarks and SPeCial NOTICES......coiiciiiiiii e e e e e e e e e e e eeenes 71

[l
IHIF
o
il

Abstract

Integrating existing IBM System i applications with the 3Com IP Telephony for IBM System i product
offering is a natural progression from the first step of using the new IP telephony and voice over
Internet protocol (VolP) capabilities on System i to running in parallel with those business
applications. This white paper lays out what is needed to make this second phase a reality.

Introduction

The 3Com IP Telephony for IBM System i product offers an integrated, highly secure and reliable
communications and voice over Internet protocol (VolP) solution that runs on the IBM® System i™
platform, allowing your business applications to run along with new telephony solutions that leverage
existing IT infrastructures. This white paper provides guidance on integrating the business processes
related to your applications with the telephony capabilities delivered with the 3Com IP Telephony for IBM
System i product.

This white paper discusses the following topics:

e What the 3Com Solution Developer Kit (SDK) is

e What development tools are needed to use this product

e How to import and use the SDK in a development tool

e How to understand the coding examples provided in this white paper

Prerequisites

To fully benefit from the information in this white paper, you need to have the following prerequisites:

e A basic understanding of Java™ programming

e A good knowledge of the System i platform and its Java environment

e Familiarity and knowledge of Eclipse-based development-tool environments

e To test the coding samples, a working 3Com IP Telephony solution needs to be installed and
available on a System i model with IP telephony phones and hardware

e Anintegrated development environment for examining and modifying the samples that support
IBM JDK 1.5. IBM WebSphere® Application Server Toolkit Version 6.1 that comes with the
WebSphere offering was used for the testing done for this white paper. IBM Rational®
Application Developer V7 also is a viable choice.

e Apache Axis 2 for Java v1.1.1, which includes the Web Services Description Language (WSDL)
to Java tooling (downloadable at http://ws.apache.org/axis2/download/1_1_1/download.cgi)

e A System i model with the IBM i5/0S® V5R4 operating system and the following features:
e 57223V1 *BASE IBM Developer Kit for Java

e 5722JV1 5 Java Developer Kit 1.3
e 5722IV1 6 Java Developer Kit 1.4
o 57223V1 7 Java Developer Kit 5.0
e 5722JV1 8 Java 2 Platform, Standard Edition (J2SE) 5.0 32 bit

e To run the samples outlined in the section entitled “Migrating and running the sample on System
i,” you need to install the System i Tools for Developers PRPQ (5799PTL) (which is
downloadable from www14.software.ibm.com/webapp/download/preconfig.jsp?id=2004-08-
18+12%3A25%3A25.057448R&S_TACT=104CBW71&S_CMP=&s=).

||
It
|IIII
1]

Overview

The 3Com Web services SDK is a Java toolkit that contains the following components:

e The WSDL files that allow applications to consume and use the services defined in the Web-
service definition-language (WSDL) file

e A Web-service client-side JAR file that contains classes for use on the client to invoke the 3Com
Web service

e A graphical sample application to test the Web service

The 3Com software is installed and runs in a dedicated System i Linux partition, allowing remote
applications to use the following service points, programmatically:

e Call control
e Initiate a phone call
e Transfer a call
e Conduct a conference call
e Hold acall
e Endacall
e Phone configuration
Enable hands-free operation
Mute the phone
Enable or disable Do Not Disturb (DND)
e Enable or disable forwarding of voice malil
e Phone status
e Get the phone state
e Getthe DND state
e Get the voice-malil state

[l
IHIF
i
il

The SDK itself

The first step is to register with the 3Com Open Networks Partner program (www.open.3com.com/tcom/).
This registration permits you to download the SDK toolkit. After downloading, unzip the file to a directory
that is accessible to your workstation. Remember this directory because it is used in subsequent sections
relating to the development tools and sample code.

Documentation

The SDK for 3Com IP Telephony contains documentation, including an SDK User Guide (in PDF file
format) and HTML files that describe each Web-service endpoint with the required input and output
parameters. To access the documentation, perform the following steps:

1. Navigate to the docs directory that was unzipped onto your workstation, and open the index.htmi
file in the Web browser of your choice. This opens the document tree for all the Web-service
capabilities included in the SDK as shown in Figure 1.

3 VA2007 3COMMVCX WebServices SDK-7_2_61_61\docs\index himl - Microsoft Intemnet Explorer

J Fle Edit Mew Favortes Tools Help | l';'
J D Back - &) - |x] (8])| 3¢ Favorites &) | &
JAerESS I@ V12007 3COMWCX WebServices SDK-7.2.61.61\docs\index html j Go

IIERM XSD Types Index | o WSDL ™

Show all | Filter Files

JLIth-JISEI’ViCE VI URL:

file/C-NViews/knelli_ibmappsioicesdkiwebsenice/IPTelephonySDK/wsdldoc/wsdldoc]. 0/1PTelephonySenice wsdl

Target Namespace - http:/fws.coms_com/iptelephony/

LaS b Service : [PTelephonySenvice
= Service

EIPTelephonySernvice Binding : |PTelephonySenice
=l PortType

H IPTelephonySernvice Port Type : |[PTelephonySenice
= Message

[callControlRequest

HcallControlResponse o XSD

[ConnectionFailure
[DestinationMotAvailable

O InternalServerError UR_I::_ .] o -] . . .])
© MuttiplzContactsNotSupported file/C:NViews/knelli_ibmappsioicesdk/websenvice/IPTelephonySDK/wsdldoc/wsdldoct. 0/1PTelephonyService wsdl

[phoneConfigRequest Target Namespace : http://ws.coms.com/iptelephony/
[phoneConfigResponse
[PhoneConnectFailure
[phoneStatusRequest
[phoneStatusResponse
[RequestorMotAuthorized
[ServiceValidation
= Binding
H IPTelephonySernvice

4 | 2l ;
] [[T [[[4ntme 7

Figure 1. HTML Web-services documentation

2. For example, to understand the Web-service parameters to run a call-control request, in the
browser window with the index page of the telephony documentation, click callControlRequest in
the left-hand navigation frame (labeled number 1 in Figure 2) and then click callControlRequest in
the main frame (labeled 2 in Figure 2).

43 Message callControlRequest - Microsoft Internet Explorer =13

J Fle Edit View Favoites Tools Help | ;,'

J (PBack - () - x| |&] 4| Favorites € -3

JMGFESS I@ V2007 3COMWVCX WebServices SDK-7.2.61.61'docs\index html j Go

|nks 8] Google (=3 JAVA-Tech Support (=3 LINUX (= Personal) Redbooks (=jUDB (WebSphere (=jXML] Customize Links >
WXSD Types Index hittpifws.coms.comliptelephony! = callControlRequest LOCATION: fileC:Views/knelli_ibmappshicesdidwebsenicelPTelephor] |
Show all | Eilter Files SECTIONS: Basic| Paris | XML | Reference Cverview | TOC | No TOC | Help

ISer\n’ce 'l
AT E http:/Aws.coms.comiiptelephonyl

The callControlRequest Message

" Group by Namespace
= Service
OIPTelephonySenvice = Parts
= PortType
HIPTelephonySenvice Name TypalBlomont,, S y
[l Message 1. callControlRequest @E) quest 2.
HcallControlKesponse [=] XML

[ConnectionFailure

[DestinationNotAvailable
InternalServerError

I MultipleContactsMotSupported

-<wsdl:message name="callControlRequest”>
=wsdlpart element="tns:callControlRequest” name="callControlRequest” />
<hvsdl:message>=

HphoneConfigRequest

[phoneConfigResponse

[PhoneConnectFailure

[phoneStatusRequest Hl Used By

[phoneStatusResponse PortType Operation Usage
&I RequestorNotAuthorized IPTelephonySenice callControlRequest input

[ServiceValidation
= Binding
HIPTelephonySenvice

4 | bl | _'lll

[{&] file:/1V-/2007 % 203COM/VC X" 20WebServices . 20SDK-7 2 61.61/docs/xed/ 1/element /calControl Request html [T [memet ¢

Figure 2. Finding parameters for a call-control request

The documentation now shows you the parameters required to invoke a call-control request of
the 3Com Web service. You can see that the first parameter is the actionType, then the
credentials, followed by destinationNumber and serviceValidator.

3. To further determine what action types are available, click CallControlActionType in the main
frame, as shown in Figure 3.

T Bement callControlRequest - Microsoft Intemet Explorer =13
j o= Uz mroes T Hap | »

| @Back ~ © ~ |x] 2] |y Favoites &) (- '

JMdress I@V 12007 3COMVCX WebServices SDK-7.2.61.61\docs\index html j Go

|nks 2] Google (-3 JAVA-Tech Support (5 LINUX (5 Personal) Redbooks = UDB (5 WebSphere XML &] Customize Links z

WXSD TYDES Index hitp:/iws.coms.comliptelephony! = callControlRequest LOCATION: file:/C:Views/knelli_ibmappshoicesdkiwebservice/lPTelephor]| |

Show all | Filter Flles SECTIONS: Basic | XML Instance | Attributes | XML | Reference Querview | TOC | Mo TOC | Help

IS i 'l
QD] —ervice hitp:ihws.coms.comliptelephony/

The callControlRequest Element

[Group by Namespace
Local elements (4)

Ese?j_r_ml N—— actionType credentials destinationNumber seniceValidator
E1PTelephonySenice
= PortType
®|PTelephonySenice Element callControlRequest : Jocal complex type
= Message

The callControlRequest element cannot have "xsi-nil* as an attribute. The callControlRequest element in XML instance can be

EcallControlRequest
HcallControlResponse

[ConnectionFailure

[DestinationNotAvailable
EInternalServerError

substituted with other elements. -

EMultipleContactsMNotSupported I [E] XML Instance
[phoneConfigRequest
HphoneConfigResponse <callControlRequest>
EPhoneConnectFailure _Beain Seq 19
[phoneStatusRequest egin Sequence [1_1]
[phoneStatusResponse <actiunTVD;{>tns CallControlActionType<{actionType= [1..1]
EIRequestorNotAuthorized <credentials=tns Actioniredentials=/credentials= [1..1]
o B?“Sdzial::]ce\fahdatlon <destinationMumber=xsd-string</destinationfumber= [1..1]
® |PTelephonySenice <seniceValidator APVersion="xsd:string” >tns:SeniceType</seniceValidator> [1..1]

End Sequence
</callControlRequest>

21| | W=l | ;ILI

] [T T T T @nemt
Figure 3. Selecting CallControlActionType

[l
IHIF
i
il

As you can see, the allowable action types include makeCall and transferCall. Figure 4 shows all
the allowable action types.

| He Edt View Favortes Tooks Hep \ &

J (P Back -) - |x] [#] 1|5 ¢ Favorites € | =

| Aderess [€1 V12007 3COMIVCX WebSenvices SDK-7.2 61 6 T\docslindex htmi |86
JLinks 2] Google (0 JAVA-Tech Support (0 LINUX (2 Personal () Redbooks (3 UDB () WebSphere (XML €] Customize Links »

A0 XSD Types Index hittp:/iws.coms.comiiptelephony! = CallControlActionType LOCATION: file:/C:Viewsiknelli_ibmappsioicesdkiwebsenicelPTelept] |
Show all | Filter Files SECTIONS: Basic | XML | Reference Ovenview | TOC | Mo TOC | Help

! ISer\n’ce 'l
Jump to hitp.ifws.coms.comiiptelephony!

The CallControlActionType Simple Type

™ Group by Namespace string
|
= Service R- CallControlActionType
[IPTelephonySenice
= PortType

Simple Type CallControlActionType
#IPTelephonySenvice 3L L

El Message CallControlActionType is derived from string type. There are several restrictions on the value. The schema processor presenes
[callControlRequest
CcallControlResponse
[ConnectionF ailure
[DestinationNotAvailable
ElinternalServerErrar

value's whitespace. Enumeration values are ™ (conferenceCall | disconnectCall | holdCall | makeCall | transferCall).

O MultipleContactsNotSupported BrEL -
EphoneConfigRequest
[phoneConfigResponse —<simpleType name="CallControlActionType"=
EPhoneConnectFailure -<restriction base="xsd:string">
[phoneStatusRequest <enumeration value="conferenceCall" />
E phoneStatusResponse <enumeration vaIue=:ldlsconn?cftCEII' I=
EIRequestorotAuthorized <enumeratian valuef“huldCaH f.>

. R <enumeration value="makeCall" /=
I_Z!St.amce\‘ahdatlun <enumeration value="transferCall" /=

ElBinding <restriction

H|PTelephonySernvice </simpleType>

[=] Uses _|;I
1] | Dl

| v
5] [T T o iemet 7

Figure 4. Allowed action types

This documentation allows you to determine what parameters are required for any of the Web-service
endpoints provided by the 3Com IP Telephony Web service.

The IP telephony WSDL

As discussed in this section, the 3Com SDK lets you access the specific capabilities exposed to control
calls and configure the 3Com IP telephones, as well as to get the state of those phones. These
capabilities are exposed externally through the IPTelephony.wsdl XML file. The following section
describes the steps needed to get this toolkit into a development tool that you can use to
programmatically integrate and build applications that exploit the IP telephony services.

[l
IHIF
o
il

Setting up the Java IDE

You can import the SDK into the integrated development environment (IDE) of your choice, but for this
white paper, the WebSphere Application Server Toolkit IDE is used for building the samples. Note that
the IDE must support the IBM JDK 1.5 runtime environment. Rational Application Developer version 6 or
IBM WebSphere Development Studio Client V5 do not support JDK 1.5 and do not allow the 3Com SDK
samples to run. IBM Rational Application Developer (RAD) V7 (and, therefore, WebSphere Development
Studio Client V7, which is based on RAD V7 and which has System i extensions) does support the IBM
JDK 1.5 runtime environment. It should therefore work, although it was not used for this white paper and
has not been tested with the 3Com SDK.

Importing the SDK

Importing the 3Com SDK into one of the IDEs involves the following processes:

Creating a new Java project

Importing the SDK from the file system where you unzipped the downloaded toolkit
Updating the project properties to use the JAR files included in the project’s Java build path
Making a package name correction

To validate the success of the importing effort, you can run the graphical sample that is provided with the
SDK (as you will see later in this white paper):

1. Create a new Java project in the IDE, as shown in Figure 5 through Figure 8. For illustrative
purposes in this document, WebSphere Application Server Toolkit V6.1 is used.

Java - IBM WebSphere Application Server Toolkit. V6.1

(it

Figure 5. Creating a new project

Integrating 3Com IP telephony

8

4k New Project
Select a wizard
Create a Java project [

Wizards:

-2 CV5
-z Data
[Eclipse Modeling Framewark

(= EJB

@ Jav
... Java Project from Existing Ant Buildfile

- Jython

[Plugin Development

~[= Portal

~[== Simple

- 5P

~[= Web

-[= Examples

< Back Mest = Einmt Cancel

Figure 6. Selecting the Java project

gk New Java Project
Create a Java project
Create a Java project in the waonkspace or in an estemal location.

Figure 7. Selecting the Java project (continued)

Integrating 3Com IP telephony

10

Java - IBM WebSphere Application Server Toolkit, V61

[Fle e fec-

[;L_*‘ sl C]

Figure 8. Completing the new Java project

Integrating 3Com IP telephony

11

Java - IBM WebSphere Application Server Toolkit, V6.1

| & & G

[R R

= P plorer X

Import

2. After the new, empty project is completed, import the SDK, as shown in Figure 9 and Figure 10.

Figure 9. Selecting to import the SDK

Integrating 3Com IP telephony

12

4 Import
Select \
Import resources from the local file system into an existing project. H - 5 i

Select an impaort source:

(4, App Client JAR file =
[Archive file

;.f' Checkout Projects from CVS

ﬂ Datapool

(E EAR file

&, EJB JAR file

] Existing Projects into Workspace
Ltk Extemnal Features

% Bxdemal Plugins and Fragments
File system
ﬁz_‘ HTTF Recording

4 JUnit tests to TPTP
=, Log File

L Preferences

LG, Profiling file

18 Profiling fitter

E Project Interchange
&| RAR fil=

Ik, SAR File

¢ Hack Mest = Eiraret Cancel

Figure 10. Selecting an import source from the file system

13

3. Recalling where the SDK zip file was placed in your directory tree, click Browse (see Figure 11).

4 Import

File system
Source must not be empty.

Figure 11. Importing from the file system

Integrating 3Com IP telephony

14

It
i
1T

Jjnmi]
Il
Ih
Ill
in

4. Select the directory where you placed the 3Com Web service SDK in the workstation (as shown in
Figure 12). In this example, VCX Webservices SDK-7.2.61.61 is selected) and then click OK.

Import from directory & B3

Select a directory to import from,

= 22 jrush on 'rehfs.rchland.ibm.comihome’ (V) [
= 2006 3COM
= 2006 Davalen J

= 2006 EDS SOLCORP
= 2006 Multitask
= 2006 NSC
= 2007 3COM
EHVCXSIPSDK7.18&7.2
= VCX WebSernvices SDK-7.2.56.56
ERET\/CX WebSenvices SDK-7.2.61.61
I= docs
= lib
I resources
= Samples
= 2007 Infor

o E= ANNT _IMA LI

OB #

Falder: I WCX WebServices SDK-7.2,61.61

Make New Folder | oK I Cancel |

Figure 12. Directory where SDK was unzipped

15

[l
IHIF
i
il

5. Inthe window that is shown in Figure 13, expand the directory and click lib to select all JAR files
from the SDK.

6. Click resources to select the WSDL files from the SDK (see Figure 13).

7. Expand the Samples directory and select the java subdirectory as well as the build, pathrefs, and
properties XML files (see Figure 13).

8. Ensure that the Create selected folders only option is selected. Then click Finish (see Figure 13).

4p Import
File system —
Import resources from the local file system. f"f .-'-'
-
From directory: IV:"‘-EDDT ICOMWWCX WebServices SDK-7.2.61.61 j Browse... |

Bl 7] = VX WebServices SDK-7.2.61.61

- [& docs .
M = lib |¥] properties xml
E3 v == resources

= 71 (= Samples

- [&> buid
[& dotnet

- [= Java
Fiter Types... | Select Al | Desclect Al
Into folder: |3ComSDK Browse... |
Options

[T Overwrite existing resources without waming
™ Create complete folder structure
% Create selected folders only

< Back Hews [Emsh] cancel

Figure 13. Selecting an artifact for the import

16

9. After the import has been completed, expand the project and you will see a workspace similar to

that in Figure 14.
&P Java - IBM WebSphere Application Server Toolkit. V6.1

Ico- 0 @ % -0 -2-Q- |
i Explorer X =
-=B|lgs T

- H3 Samples java.src.com.coms.ws.|P Telephony Sample
=, JRE System Library [eclipse]

Figure 14. Workspace after import

Integrating 3Com IP telephony

17

10. Next, move the XML files under the root of the project, as shown starting in Figure 15

a. Expand the Samples project and select all the XML files.
b. Right-click and select Refactor and then select Move.

Java - IBM WebSphere Application Server Toolkit. V6.1

[m & |5 -

Package Bplorer M

Figure 15. Moving XML files

Integrating 3Com IP telephony

18

i
1T

Jjnmi]
Il
Ih

Ill

in

c. Select the destination for the three XML files that you just selected to move. (In this case, the
destination is the 3Com IP Telephony sample directory.) Then, click OK (see Figure 16).
gk Move
Choose destination for 3 selected elemernts:
SDK:
...... B ({default package)
------ H resources
------ HL Samples
------ B Samples java
------ B Samples java snc
------ B Samples java snc.com

B Samples java snc.com.coms

B Samples java.snc.com.coms ws
B Samples java src.com.coms ws.|PTelephory Sample

QK I Cancel

Figure 16. Selecting the destination for the project

19

Figure 17 shows how the project looks after moving the XML files into the 3Com IP Telephony sample
directory.

&P Java - IBM WebSphere Application Server Toolkit. V6.1

lBee- |0 |eElefco. -

activation-1.1 jar
axiom-api-1.2.2 jar
axiom-mpl-1.2.2 jar
awisZ-adb-1.1.1jar
axis 24eemel-1.1.1 jar
awizZ-zagj-1.1.1 jar
commons-codec-1.3 jar
commons-httpclient-3.0.7 jar
commonsdogging-1.1 jar
|PTelephonyClisnt jar
stecapi-1.0.1jar
wsd4j-1.6.2jar
WS Securty jar

¥mlSchema-1.2 jar
= H resources
i~ [X] IPTelephonyService.wsd|
[X] WSSscurty wsdl
amples java.src.com .coms.ws.|P Telephony Sample:
m IPTelephonySampls java
-2 JRE System Library [eclipse]
..] build sanl
m pathrefs xml
@ propettiss xml

Figure 17. Project after moving XML files

Integrating 3Com IP telephony

20

You must put the JAR files that were imported to the lib directory in the project into the project’'s Java
build path so that the sample program can find the required classes that allow the samples to run. Steps
to do this start with Figure 18.

11. Right-click the 3ComSDK directory and select Properties (see Figure 18).

Java - IBM WebSphere Application Server Toolkit, V6.1

| M&[F] -

e Explorer X

Properties Alt+Erter

Figure 18. Changing project properties

Integrating 3Com IP telephony

21

[l
IHIF

||I|I
il

12. From the Properties for 3ComSDK screen (see Figure 19), click Java Build Path and then select
Add JARs.

& Properties for 3ComSDK (O]

[pefitertad =] Java Build Path P -

----- Beaninfo Path (% Source | L Projects =i Libraries | %%, Order and Bxport |

N Ejgd;:plmem JARs and class folders on the build path:
..... Java Euild Path &=, JRE System Library [eclipse] Bdd JARs"

H--Java Code Style
- Java Compiler Add Edemal JARs...

----- Javadoc Location Add Variable...
----- Profile Compliance and Wi
----- Project References Add Library. ..
----- Routine Development

I+l

Add Class Folder...

----- SGL) Applications
..... Task Tags Bdit,,.
----- Walidation

----- WS-l BSP Compliance

Eemaye

Default output folder:

o |3ComSDK Browse... |

Figure 19. Adding JARs

22

Jlm]
IHIF
!!}lllll
il

13. Select the JAR archives that you want to add to the build path. In this example, all the JAR archives
are selected (see Figure 20). Then click OK.

&k JAR Selection H=l

Choose jar archives to be added to the build path:

=127 3ComSDK
E|I.x;b lib

activation-1.1jar

adzMeemel-1.1.1 jz
axis2-sag-1.1.1jar

commons-codec-1 :jEIF
commons-httpclient-3.0.1 jar
commonzdogging-1.1 jar
IPTelepharyClient jar
gtanc-api-1.0.1 jar
wedldj-1.6.2 jar
W5Security jar

QK I Cancel

Figure 20. Selecting all JAR archives to add them to the build path

23

I
1
I

Jjm]|
Il
Ih
al]
mn

14. Review the newly displayed Java build path to see that all the JARs and class folders are included
(see Figure 21). Then click OK.

& Properties for 3ComSDK (O]
Java Build Path =R =
----- Beaninfo Path (% Source | L Projects =i Libraries | %%, Order and Bxport |
N Ejgdg:mmem JARs g;d class folders on the build path:
..... Jzva Build Path H-) activation-1.1jar - 3omSD Kb Add JARs... |
- Java Code Style () axiom-api-1.2.2jar - 3omSDK/lib
(- Java Compiler () axiom-mpl-1.2.2 jar - 3ComSDKAib Add Egemal JARSs... |
..... Javadoc Location - () axis2-adb-1.1.1 jar - 3ComSDKib _
_____ Profile Compliance and Vi | ||| B~ () @is2kemel-1.1.1 jar - 3ComSDK/lib pdd Varable... |
_____ Project References Q ads-saai-1.1.1jar - 3omSDKAib Add Libraxry... |
..... Routine Development -) commongs-codec-1.3jar - 3ComSDKAb
..... Capver) commons-ttpclient-3.0.1jar - 3ComSDK/lib Add Class Folder... |
..... SQL) Applications () commonsdogging-1.1jar - 3ComSDKib
_____ Task Tags - () IPTelephonyClient jar - 3ComSDK/ib e |
_____ Validation - () stax-api-1.0.1jar - 3ComSDK/ib —
_____ WS- BSP Compliance - () wadl4-1.6.2jar - 3ComSDK/Aib Remave |
) WSSecurity jar - 3ComSDKAbL
- () wstx-asl-3.2.0jar - 3ComSDKAib
(- () ¥mlSchema-1.2 jar - 3ComSDK/ib
-2, JRE System Library [eclipse]
Default output folder:
(| o |3ComSDK Browse.. |
ok | Cancel |

Figure 21. Reviewing the new Java build path

24

Figure 22 shows what the project looks like after you have successfully added the 3Com JARs.

& Java - IBM WebSphere Application Server Toolkit. V6.1

EEe- 8|y @ ma- -

- £ Samples java src.com coms ws.|P TelephorySample
[J] IPTelephonySample java
=i, JRE System Library [eclipse]
activation-1.1jar
axiom-api-1.2.2 jar
adom-mpl-1.2.2 jar
axis2-adb-1.1.1jar
ais2dkemel-1.1.1 jar
ais2-sagj-1.1.1jar
commons-codec-1.3 jar
commons-httpclient-3.0.1 jar
commonsdogging-1.1jar
IPTelephonyClient jar
stax-api-1.0.1 jar
wsd|4j-1.6.2jar
WS Security jar
wete-agl-3 2.0 jar
¥mlSchema-1.2 jar

FoOOOoOOOOOoOn00

Figure 22. Project after adding 3Com JARs

Integrating 3Com IP telephony

25

15. In the left-hand navigator, expand the Samples.java.src.com.coms.ws.IPTelephony package.

16. Double-click the IPTelephonySample.java file to open it in the IDE editor in the main panel. As
shown in Figure 23, there is a red X in the left column of the main-panel editor beside the line,

* |P Telephony Web Service Sample.

17. Expand the code section by clicking the plus (+) sign beside the line and pointing the cursor to the
red X (the cursor is indicated by a light bulb symbol) and right-click.

4P Java - IPTelephonySample java - IBM WebSphere Application Server Toolkit. V6.1
File Edt Source Refactor MNavigste Search Project Run Window Help

T ol 00 R E G|
Hieﬁrd’w|Navigator| =0
s BE Y

[# Package Explorer 52

ol coms.ws.|PTelg
El-f> 3ComSDK
B

-F2, resources
|¥] IPTelephonyService wsdl
%] WSSecurity wsdl
E‘EEE Samples java.src com.coms ws.|P Telephony Sample
@ IPTelephony Sample java
-, JRE System Library [eclipze]
activation-1.1 jar
axdom-api-1.2 2 jar
adom+mpl-1.2.2 jar
adsZ-adb-1.1.1jar
as24eemel-1.1.1 jar
axis2-saa-1.1.1jar
commans-codec-1.3 jar
commons-httpclient-3.0.1 jar
commonsdogging-1.1 jar
IPTelephonyClient jar
stax-api-1.0.1jar
wadl4j-1.6.2jar
WSSecurity jar
webe-asl-3.2.0jar
f FmlSchema-1.2 jar
382 build sl
- || pathrefsxml
- |H| properties xml s

JButton

g o T T o o o o o T T [

4]

[The declared package does not match the expected package Samples java.src.com,
hory Sampl

actionBtn.setFont (new Font ("Arial",

i’;

Ja]

1 class

ut “lelass ControlBtn extends JButton {
IPTelephonySample ipt = noll;

actionBtn = new JButtoni():

= public ControlBtn (final IPTelephonySample ipt, !

final CallControlictionType ac

this.ipt = ipt:

actionBtn.setlabel (title);
actionBtn.setBounds (rect)

Font.PLA.

actionBtn.addActionListener (new java.awt.ewvel

public void actionPerformed (ActionEvent ¢
-

S —— p,nnwm_,_,,;mmm\.—l_l
| 3

19 [=1
[orar R A e &
=0 gEOuﬂineK{ =0

Bwsfe wt”

I':'l'"-@_l> IPTelephory Sample

4

= import declarations =

b @ getJButton()

e & ipt: IPTelephorySz

ControlBtn

- & ipt : IPTelephonySz
- & actionBtn : JButton
- @ CortrolEtn{IP Telepl
@ new ActionLis

CorfigBtn

-~ & ipt : IPTelephonySe—
- & actionBtn : JButton
- @ © Confightn(IPTeleph
Q new ActionlLis
~ @ getdButton)
StatusBtn

- & ipt : IPTelephonySz
- & actionBtn : JButton
o © StatusBtn(IPTelepk
@--GA new ActionLis
@ getJButton()
FeatureBtn

-~ & actionBtn : JButton
-@® Feature Btn(IP Telep
B G new ActionLis
- @ getJButton()

nSIF HSPACE : int o
*

Figure 23. Selecting the IPTelephonySample file

26

18. Select Quick Fix from the options pop-up menu, as shown in Figure 24.

tﬁ: Java - IPTelephonySample java - IBM WebSphere Appli:

File Edit Source Refactor

[wi -

|2 Package Explorer 53

Hierarchy | Navigator |

=0

S SN

n;
(i)

T [- P [[e [T]

El-f> 3ComSDK
E.

- fE resources
|¥] IPTelephonyService wsdl
|X] WSSecurty wsdl

-3 Samples java src.com coms.ws.|PTelephony Sample

- @ IPTelephonySample java

- 2, JRE System Library [eclipse]

) activation-1.1jar

- (] =xiom-api-1.2.2 jar

- () axiom-mpl-1.2.2 jar

-) aisZ-adb-1.1.1jar

[axis2kemel-1.1.1 jar

-) ewisZ-sagi-1.1.1jar

- (] commons-codec-1.3 jar
() commons-httpcliert-2.0.1 jar
- 1) commongdogaging-1.1jar
- () IPTelephonyClient jar
stax-api-1.0.1jar
wedl4j-1.6.2jar
WSSecurity jar
webe-asl-3.2.0jar

| XmlSchema-1.2 jar

&1 build xaml

g 1 1 e o o o o

- |¥| pathrefs

%] propertiesxml

Figure 24. Correcting package name

MNavigate Search Project Run Window Help

O m -0 9% |EHE- |

ﬁ 3}’ Javs

e
Toggle Breakpoint ce Sample
Erable Ereskpaimt
Breakpoint Fiapertiss.
Run As - 2007
Debug As 3
Profile As 3
Team 3
Compare With b rhony . IPTelephonyServiceStul
Replace With [3
Review [
JButton {
Add Bookmark .. = noll;
Add Task... lew JButton ()
v Show Guick Diff Cirl+Shift+Q] i
Show Line Numbers nal IPTelephonySample ipt, !
Folding » nal CallControlActionType ac
Preferences..

actionBtn.seslabel (title) ;
actionBtn.setBounds (rect);
actionBtn.setFont (new Font ("Arial"™, Font.PFLAa:
= actionBtn.addActionlistener (new java.awt.evel
e = public woid actionPerformed (RActionEvent ¢

-
int nrocasefallBacpestfactionTimel .
< | »

EE Outline &2 =0

BRe w™

import declarations =
ControlBtn

a ipt : IPTelephonySe

& actionBtn : JButton

@ © CortrolBtn({IPTelepl
Q riew Actionlis

ipt : IPTelephonySz—
& actionBtn : JButton
© © ConfigBin(IPTelept
new ActionLis

4 ipt : IPTelephonySz
& actionBtn : JButton
@ © StatusEtn{IPTeleph
B @ new Actionlis

a ipt : IPTelephonySe
& actionBtn : JButton
@ " FeatursBin{IFTelep
new ActionLis
@ getJButton()
El----@b |PTelephorySample

nSIF HSPACE ;int B

4 »

27

19. The pop-up list shown in Figure 25 gives you two choices to resolve the problem. Select Move
IPTelephonySample.java to the default package.

&P Java - IPTelephonySample java - IBM WebSphere Appl
MNavigate Search Project Hun Window Help

RN e

Hle Edit Source Refactor

[

RGNS A 2

[# Package Explorer 53

Hierarchy ‘ Na\ﬂgalor|

= O

ion Server Toolkit. V6.1

I8 [=1E3

Gl=to Gt

= aJ Java

I sl dlo @[]

= EWFE OQutline &3 = EIW
lm] AR s o w7

H Add package declaration *Samples java src.com coms.ws.|PTe package Samples java.src.com.coms.ws. IPTelephonySam)

@4 Move ‘IPTelephorySample java'to the default package [~

* IP Telephorny Web Service Sample

). @ © CarfigBin{P Telepk

1 class

Wl “lclass ControlBtn extends JButton {
IPTelephonySample ipt = nmll;

JButton actionBtn

= puoblic ControlBtn

= new JButton();

(final IPTelephonySample ipt, !

Q new ActionLis
few @ getdButtonf)
(@ StatusBin
i & ipt: IPTelephorySe
4 actionBtn : JButton
© " StatusBin(F Telept

- || properties xml

B Els
B 3ComSDK

= {4 resources

|%] IPTelephonyService wsdl

|X] WSSecurty wsdl
= EE Samples java.src.com coms.ws.|P TelephonySample

+)- [J] IPTelephanySample java
[+ JRE System Library [eclipse]
[() activation-1.1jar
[+~ El adiom-api-1.2.2 jar
- () =domimpl-1.2 2jar
[TI ais2-adb-1.1.1jar
[() ads2kemel-1.1.1 jar
[El adis2-sag-1.1.1jar
[() commons<codec-1.3jar
[El commons-ttpclient-3.0.1 jar
- () commansdogging-1.1jar
[El IPTelephoryClient jar
[() staeapi-1.0.1jar
[El wsdl4j-1.6.2 jar
- () WSSecurity jar
[El wsbcasl-3.2.0jar
B) ¥miSchema-1.2 jar
2] build aml
- |¥] pathrefs xml

final CallControlhctionType af

this.ipt = ipt:

actionBtn.seslakel (title)
actionBtn.setBounds (rect);
actionBtn.setFont (new Font ("Arial"™, Font.PLA
actionBtn.addActionListener (new java.awt.evel

Q new ActionLis
few @ getdButtonf)
E-(@ FeatureBin
& ipt : IPTelephonySe
4 actionBtn : JButton
@ ° FeatureBin(IP Teler
Q new ActionLis
few @ getdButtonf)

= S public void actionPerformed (ActionEvent ¢ El---@b IPTelephorySample
int nracsserallBampest (actinnTimel o &7 HSPACE :int o
4 2l | v
BA Problems &3 Javaduc‘ Declaration | Pmpelti&s|Ccnsole| }:9 ¥ =0

0 emors, 0 wamings, 0 infos

4]

I Description

| Resource | In Folder

[] The declared package does not match the exp . ples java src.com coms ws IPTelephonySample | Writable

Smart Insert 1:2

Figure 25. Correcting package name (continued)

That should remove the red X and resolve the package-name issue.

28

The workspace will look similar to Figure 26.

ion Server Toolkit. V6.1

Fle Edit Source Refactor Mavigate Search Project Bun Window Help

[i @3 -0--G - |[Ese-|d @& o[/ -l & | & dava
Hierarchy‘ Na\ﬂgator| = 8| [J] IPTelephorySample java 52 =0 EE Outline &2 =0
F | = <L=€> = @ * IP Telephony Web Service Sample[] i’E laz 5] 3\5 e s ¥

E-[=8 3Com5DK

o 3 (dsfault packags)

m IPTelephonySampls java
- resources

Call

Control Button class

#import com.coms.ws.iptelephony.IPTelephonyServiceStul

import declarations =
ControlBtn

& ipt : IPTelephonySz

& actionBin : JButton

|%] IPTelephonyService wsdl ui “lclass ControlBtn extends JButton { @ © CortrolBtn(IP Telepl
x| WSSecurity wsdl IPTelephonySample ipt = nmll; ; Q new ActionLis
[+ 2 W RE System Library [eclips JButton actionBtn = new JButton(): e @ getJButton()
[+~ El activation-1.1jar [—]Q CorfigBtn
Bl [adom-api-1.2.2jar = public ControlBtn (final IPTelephonvSample ipt, & 4 ipt : IPTelephonySz—
- () aiomimph1.2.2 jar final CallControlActionType a¢ & actionfin - JButton
- () ads2adb-1.1.1jar @ © CorfigBin(|PTelepk
[+ Eu ais24cemel-1.1.1jar this.ipt = ipt: Q new ActionLis
- () =ds2sazj-1.1.1jar e @ getJButton()
- () commons<codec-1.3Jar actionErn Label(title): [—]Q StatusBtn
B () commans-httpelient-3.0.1 jar . ;) o . & ipt : IPTelephonySz
B () commonsdogging-1.1jar acc%on“t’n' setBounds (rect) ; et 1w & actionBtn ; JButton
- [IPTelephonyCient jar act.:_.onBt.n.set.Fon? (nev_v Font (Arla_'!. , Font.PLa B ©° StatusBin{|PTeleph
- E' stav-ani-1.0.1 jar = actionBtn.addActionlistener (new java.awt.evel e new Action Lis
® Eu wsdl4-1.5.2jar = = public void actionPerformed (ActionEwvent ¢ & getdButton])
B () WSSecurty jar ipt.processCallRequest (actionType) ; FeatureBin
- () wsbeasl-3.2.0ar ¥ & ipt : IPTelephanySz
- () ¥mlSchema-1.2 jar i & actionBtn ; JButton
2] build xml i @ FeatureBtn{IP Telep
- || pathnefs xml new ActionLis
[X] properties xml = public JButton getJButton()} @ getJButton)
return actionBtn; EI---GP IPTelephony Sample
1 i L T HEPACE it ¥
J | o | o
B_\ Problems 23 Javadoc‘ Declaration | F'mpefties|ConsoIe| T =0
0 emors, 0 wamings, Oinfos
I Description | Resource | In Folder

<]

|

Figure 26. Project workspace after fixing package name

There might still be some warnings, but there is no concern with those at this point.

29

[l
IHIF
o
il

Running the sample program

With the IDE properly configured, it is possible to run the sample program in one of two ways:

e One method involves using Apache Ant (which stands casually for another neat tool). Ant is a
build tool that is based on Java and that is also similar to the make and makefile commands for C
programs. The 3Com SDK was built using Ant and ships with build.xml files for preparing,
compiling and running the sample programs.

e The other method uses the IBM IDE Java application-run capabilities.

Using Ant

Before continuing, it is important to make some changes to the properties.xml file so that the Ant
builds work properly. (See Figure 27; changes are highlighted in italicized, bold, red letters.)

<l-- This is an xm entity included in |IPTel ephonyService build files -->
<property nane="sanpl e. nane" val ue="1PTel ephonySanpl e"/ >
<property name="wsdl . nanme" val ue="1 PTel ephonyServi ce"/ >

<property environnent="env"/>

<l-- set project directories -->

<property nanme="root.dir" val ue="."/>

<property name="lib.dir" value="${root.dir}/lib"/>
<property nane="build.dir" val ue="${root.dir}/build"/>
<property nane="build.lib" value="${build.dir}/1ib"/>
<property nanme="buil d. cl ass" val ue="${build.dir}/cl asses"/>
<property name="java.dir" value="${root.dir}"/>

<property name="res.dir" val ue="${root.dir}/resources"/>
<l-- Gve user a chance to override without editing this file -->

<property file="${root.dir}/build. properties"/>
<property file="${user. hone}/buil d.properties"/>

<l-- debug flag for ant javac, values are "on" and "off" -->
<property nane="debug" val ue="on" />

<property nanme="nowarn" val ue="of f" />

<property nanme="optim ze" val ue="on" />

<l-- what gets pulled in to the binaries: everything -->
<property nane="debugl evel " val ue="1l1i nes, vars, source" />
<property nane="deprecation" val ue="true" />

<property nanme="source" val ue="1.0" />

<property nane="target" val ue="1.0" />

<property nane="build.file" val ue="build. xm" />

<property nane="excl ude. | og4j.configuration” value="true"/>

Figure 27. Changes required to the properties.xml file

30

20.
21.
22.

23.

To run the sample using Ant, right-click the BUILD.XMLfile.

Select Run As = Ant Build...

When the Ant dialog box appears, select the run check box and clear any others that might be

selected.

Click Apply and, then Run. The GUI window (as shown in Figure 28) is presented.

a. On this user interface, change the Web Service URL to be the URL of your 3Com VCX. That
is, replace http://localhost/axis2/services/IPTelephonyService with the host name of your
VCX. For example, http://<your VCX host name>/axis2/services/IPTelephonyService.

(Note: The URI portion remains the same as axis2/services/IPTelephoneService.)

b. For the Security Header fields of Username and Password, the shipped defaults are wsuser
and wspwd, respectively. The Origination Number, Phone Password and Destination
Number fields are specific to your 3Com VCX hardware configuration.

i IPTelephony Sample App

Weh Service URL

Security Header

Payload Body

Call Control

Phone Config

Phone Status

Messages

Clear Wessages

IP Telephony Service

|htlp:IIIucalhustfaxisziservices!lPTeIepthvSer\rice |

Jsername Passward

Qrigination Mumber Phone Passward Diastination Mumkber

| hake Call | | conference | | Disconnect | | Hold |
| Transfer |

tute Phaone		Hands Free		HuntGrp Login		HuntGrp Logout
Set DND		ResetbmD		SetFwdMail		ResetFwdMail
crBconfia		cFucenfig		CFRMAConfg		

| Phonestate | | DwDStae | | FwdMailState | | HuntGrpLogin |
| CFBState | | cFustate | | CFRWState |

R

|

Figure 28. Sample program

31

Using the IDE run

Figure 29 shows how to start the GUI sample application using the IDE Java run capability.

Java - IPTelephonySample java - IBM WebSphere Appli:

File Edit Source Refactor

Mavigate Search Project

Run

Window Help

e G s 6 - e R S s R RS e = [
ackage Explorer X Higrarchy| — O m IPTelephonySample java &8 =0 EE Outiine 23 =0
Sl - _ BB oM
E‘:;‘J 3ComSDK N Sampie import declarations =
- (default package) " ControlBtn
T‘ID MNew - :' fidential 4 ipt IPTelephonySz
- £ lib & actionBtn : JButton
B f resources) Open F3 @ ¢ CorﬂmIBtn[IFTelePl
- 3} Samples Pul\d Open With » 5@ new Adtionlis
I:I Sﬁ JS;rEnpS\::t_JavaL_ T = Cerd.ggttJBurtonl}
em orfigBtn
[I:I aC‘.ti\-'EﬁDI.ﬂ-'l A = Copy Cir+C coms.ws.iptelephony. IPTelephonyServiceStub: & ipt IPTelephormySe—
B) adom-api-1.2. “ Past GtV coms . ws.iptelephony. IPTelephonyServiceStub.*; & actionftn : JButton
- .;. aiom-impl-1.2 ; sste L oms . ws . wssecurity.”; ef gnﬁgﬁtn[\PTelepl'
B) aisZ-adb-1.1 Delete Delete 3 new Actionlis
=
B0 axst—kenjeH Build Path * lapache.axis2.client.ServiceClient; © getButton]
- 0 ams2—saaj-‘|_“l:| Source Bb+Shifts5 * StatuthnIPTI s
P . .
7 0 ot S L ee
- 0
= b . swing.event.®; c .
g -8 T;:Ton:ﬁ?cg g Import... @ E;atuthnlgeleEr
- 0) IPTelepho (& new ActionLis
B () stax-api-1.0.1) 1 Export.. FToh @ getJButton()
B) wsdldi-1.62jz Reforsnces Nl L SEais ekt Featur=Bin
Bl () WSSecurity jz X 2B net.URL; & ipt : IPTelephonySz
F () wstcasl-3.2.0 Declarations .lang.System: 4 actionBtn : JButton
- Eu ¥mlSchema-1| - Refresh F5 .util.ArraylList; @ ° FeatureBtn{IPTelep
oo

Q new ActionLis
@ getButton()

SlRnmsee A
Debug As Gl = & |IPTelephonySample
< {7 2 Java Application Alt=Shift=X, J - $F HSPACE -int -
Profile As L4 P | N | ! »
Launch Universal Test Client 5 ava Bean S - =
Team » [4 SWT Application Alt+Shift=X, S 3o m|
Compare With * 5| 5 Administrative Script Alt+Shift+X, N
Replace With » | Resource | In Folder | Loc;
Restore from Local History... ‘ersionllID field of type long IPTelepho 3ComSDK line:
Web Services » a alVersionUID field of type long IPTelepho... | 3ComSDK line
T » [Bs StatusBin does not declare a static final seralVersionUID field of type long IPTelepho... | 3ComSDK line
FeatureBtn does not declare a static final seralVersionUID field of typelong | IPTelepho... | 3ComSDK line
Properties Alt+Enter EstindexValue is never read IPTelepho... | 3ComSDK line
| IO |3 i ©l

IPTelephanySample java - 3ComSOK

Figure 29. Running the sample

32

It
i
1T

Jjnmi]
Il
Ih
lll
in

Note: The first time you run this program, the panel shown in Figure 30 might look somewhat different
than it does here. If the panel highlights Eclipse Application, select Java Application and then click New,
Which opens the panel shown in Figure 30.

4k Run
Create, manage, and run configurations ‘/—
Run a Java application [I/");

Configurations: Name: |IPTeIephnrrySarane
=14 Eclipse Application

‘... 48 New_corfiguration
------ f Generic Server
------ f Generic Server — Project:

& Main |(><)= ﬁrgumentsl =1 JHEI S [Jasspathl B Sourcel P& Environment | ©J Qommonl

------ EG Java Applet
B[] Java Application IIDmSDK s
e EaE | F TelephonySampl
...... % Java Bean — Main class
""" JLl JUnit
|IPTelephorySample Search...

------ ff.' JUnit Plug-n Test I LD L |
------] SWT Application ™ Includg libraries when searching for a main class

""" Ei Test ™ Include inherited mains when searching for a main class

------ p| WebSphere Administrat

------ i85 WebSphere v6.1 Applic I Sigp n main

Figure 30. Running the sample (continued)
24. Click Run and the GUI shown previously in Figure 28 now appears:

a. On this user interface, you must change the Web Service URL to be the URL of your 3Com
product. That is, replace http://localhost/axis2/services/IPTelephonyService with the host
name of your 3Com software. For example, http://<your VCX host
name>/axis2/services/IPTelephonyService.

Note: The URI portion remains the same as axis2/services/IPTelephoneService.

b. For the Security Header fields of Username and Password, the shipped defaults are wsuser
and wspwd, respectively. The Origination Number, Phone Password and Destination
Number fields are specific to your 3Com hardware configuration.

33

[l
IHIF
o
il

Migrating and running the sample on System i

Running the sample GUI program on the System i itself is optional, but the section on “Setting up the
Java IDE” that starts on page 7 is a required step for running the non-GUI sample code in the “Sample

section on page 54.

Exporting the code

To run the sample on the System i platform, you must export the project from the IDE to the
integrated file system (IFS) on your System i model.

1. Select the Java project and proceed to export it to the file system, as shown in Figure 31.

2. The directory specified in the To directory field must on the System i model that has TCP/IP
network access to the System i model with the 3Com telephony partition. In Figure 31, the K: drive

is a mapped drive to the System i IFS.

File system [_|7
Export resources to the local file system. L d
1

= [= 3ComSDK
-] o
- A & b
- [#] (= resources

Select Types... | Select Al Deselect Al
To directory: |K:\homeirush\3ComSDK\lib ~| Browss.. |
Options

[T Overwrite existing files without waming
" Create directory structure for files
¥ Create only selected directories

< Back tew> || Bmsh] cancel

Figure 31. Exporting the project to the System i IFS

34

[l
IHIF
o
il

Setting up the Java environment

Assuming you have mapped a drive letter to the System i IFS, in Microsoft® Windows® Explorer,
move the lib directory contents (the lib directory from the “Exporting the code” step on page 34) to
the /QIBM/UserData/Javad400/ext directory. These JAR files are then added to the class path and
their classes are loaded by the extensions class loader.

Log on to the System i model that was the target of the export.

Create or modify the SystemDefault.properties file in your home directory to look like the following
code. The java.class.path file must minimally contain a period (.). You can add your specific JARs
and directories, also.

0s400. awm . nati ve=true
j ava. cl ass. pat h=.

Setting up System i remote-graphics capabilities

Before the sample program can work properly, the System i host must have Native Abstract
Windowing Toolkit (NAWT) installed and running. This white paper uses the Virtual Network
Computing (VNC) server that is included in the System i Tools for Developers PRPQ (5799PTL). This
section details how to set up the VNC server so that the IPTelephonySample program remotely
streams the GUI through the VNC server to the VNC client that runs on the workstation desktop,
either in the VNCviewer client or a Web browser. (Refer to
http://publib.boulder.ibm.com/infocenter/iseries/v5rd/index.jsp, search on VNCviewer).

35

Running the sample
1. Start the VNC client in a Web browser, as shown in Figure 32.

Note: The port number (5899 in Figure 32) is 5800 plus the VNC display number that was
configured in the VNC-setup step discussed in the previous section.

¥ jrush’s X desktop (SES20B2_RCHLAND_IBM_COM:99) - Mozilla Firefox: I1BM Edition

File Edit Mew Higstory Bookmarks Tools Help

Il ICH Goos-

& - B - (@ L9 G} | D hipsses2002:5899/

Google |) JAVA-Tech Support |) LINUX |) Personal |) Redbooks |) UDB |) WebSphers |] XML m indexjsp |] IBM

0 hittp://publib bouide. ies/v5rdfindexisp | || jrush’s X desktop (SES20B2.RC... [|

Bieconnect| Ostions | [Cipboad | EenaC e

VNC Authentication

Password: I OK |

&I_I;

1]
| Applet vnoviewer started

Figure 32. Starting the VNC client in a Web browser

36

[l
IHIF
o
il

2. Add an environment variable for JAVA_HOME and set it to be
/QOpenSys/QIBM/ProdData/JavaVM/jdk50/32bit as illustrated in Figure 33 and Figure 34.

=i SE520B2 1 [=]

Fle Edit Wew Communication Actions Window Help

B B3 2% BlE| &) bt 2] &2

Work with Environment Vars (xJOE)

Type options, press Enter.
1=Add 2=Change 4=Remove 5=Display details 6=Print

Name Value

JAVA HOME

IBM_VYE_LOCATION "/QIBM/ProdData/VE’
XAUTHORITY "/home/jrush/.Xauthority’
SKIPWASPLUGIN "1

LANG "/QSYS.LIB/EN_US.LOCALE
DISPLAY "localhost: 99’

Parameters or command

F3=Exit F4=Prompt F5=Refresh F9=Retrieve Fll=Display CCSIDs
F12=Cancel F16=Print 1list F17=Top F18=Bottom F22=Display entire field
Environment variable removed.

MA a
34" [1902 - Session successfully started

Figure 33. JAVA_HOME environment variable

37

i
1T

Jjnmi]
Il
Ih

lll

in

=i SE520B2 1 [=]
Window Help

Fle Edit Mew Communication Actions
B B 2%] | et 3] @le
Add Environment Variable (ADDENVVAR)

Type choices, press Enter.

Environment variable > " JAVA_HOME'

Initial value

Additional Parameters

> xJOB xJOB, xSYS

Bottom
Fl12=Cancel

F10=Additional parameters
F13=How to use this display F24=More keys
a 08/079

F3=Exit F4=Prompt F5=Refresh

MA

34" [1902 - Session successfully started

Figure 34. JAVA_HOME environment variable (continued)

38

[l
IHIF
o
il

3. Invoke the STRQSH command and then enter j ava —ver si on to see the Java virtual machine

(JVM) version, as shown in Figure 35.
=1 SE52082 = [O]x]
Fle Edi View Communication Actions Window Help

bR 2 BE =) b 2 S @l

mand Entry

(.profile ted)... current directory i hames jrus

ild jc
061061 (JIT enabled)

4" [1902 - Session successfully stared

Figure 35. QSH
Change to the directory where the IPTelephonySample.class is.

39

4. Onthe command line, enter j ava | PTel ephonySanpl e. The GUI shows up in the VNC client as
seen in Figure 36.

jrush's X desktop (SE52082. RCHLAND IBM_COM:99) - Mozilla Firefox: IEM Edition

File Edt

@-w- @ i fu} | http://se52062:5838/
Google |) JAVA-Tech Support |) LINUX |) Personal |) Redbooks |) UDB |) WebSphere |) XML [indexjsp |) IEM
Bl hitp://publib boulde . ries./v5ré/indexjsp || | [} jnssh’s X desktop (SE520B2RC_.. (3 |

View History Bookmarks Tools Help

Disconnedl Options | Clipboardl Send Ctrl-Alt-Del |

IPTelephony Sample App [_ (O]
IP Telephony Service

Weh Service URL |httr:|:,f,flucalhust,faxisz,fservices,fIPTelephun\Eer\fice |

Security Header Username Password

Payload Body Qrigination Mumber Phone Password Destination Mumkber A

Call Control | Make Call | | Conference | | Disconnect | | Hold |
| Transfer |

Phone Config | Mute Phone | | Hands Free | | HuntCrp Login | HuntCrp Logout |
| Set DND | | Reseono | | Set FwoMail | Reset FwdMail |
[cracontig | [cruconfig | | CFRMAConfig]

Phone Status | Fhone State | | DD State | | FuwcdM ail State | | HuntGrp Login |
| CFE State | | CFU State | [crRastae |

Messages el

Clear Meszages

Figure 36. Sample GUI in Web browser

40

Using the IDE WSDL editor

The WebSphere Application Server Toolkit IDE includes a graphical viewer and editor for WSDL files.
Within this editor, there is the ability to expand the WSDL to view input and output parameters that are
defined and required by the telephony service points. As shown in Figure 37, the WSDL definition file for
IP Telephony Web-service points has three categories: call control, phone configuration and phone state.

&P Java - IPTelephonyService wsdl - IBM WebSphere Application Server Toolkit. V6.1
Fle Edit Source MNavigate Search Project Bun WSDL Editor Window Help

It 1 e [0 -2 - [EEe- |5 ||| ar - o[seva
m |IPTelephornySample java 4% |PTelephonyServicewsdl X =F
~ N
Definition
Imports | Types
‘ = [§] http:fiws.coms.com/iptelephony/
Services Bindings Port Types Messages
i5 IPTelephonyService = |PTelephonyService B €9 IFTelephonyService |——) B callControlRequest|
—[|| wsdlsoap hinding |— 3 callControlRequest [callControl Response
= @ callControlRequest: &% phoneConfigRequest [:] ConnectionFailure
| phoneCorfigRequest % phoneStatusRequest [7] Destination Mot Available caliControlRequest
| phone StatusRequest [IntemalServerEmor type = <anonymous:
[2] MuttipleCortactsMot Supparted
[] NotEnoughContacts
[7] phoneCorfigRequest
[] phoneCorfigResponse
[-] PhoneConnect Failure
[1 phone StatusRequest
[7] phoneStatusResponse
[] RequestorNotAuthorized
[ServiceValidation
< I -l

Source | Graph
P | | | |

Figure 37. IP Telephony WSDL in the WebSphere Application Server Toolkit IDE

41

1. For example, to see the parameters needed for a call-control request, you can expand

callControlRequest in the Port Types box and expand the callControlRequest blue box to see

the parameters, as shown in Figure 38.

&P Java - IPTelephonyService wsdl - IBM WebSphere Application Server Toolkit. V6.1
Hle Edit Source MNavigate Search Project Bun WSDL Edtor Window Help

o [35-0-8-Q- |BE 6. |5 |®5 0] -

[

m |IPTelephornySample java

S

= 3? Java

4% |PTelephonyServicewsdl X

‘ Types

‘ = @ http:/fws.coms. com/iptelephony/

Port Types

Messages

O & calControlRequest

|'_) [callControlRequest {tns:callControlRequestly

[4] callControlResponse

il
g

P 5%] input —
output

[Service Validation
[PhoneConnect Failure
[MuttipleContactsNot Supported
['gh Requestorhot Authorized
[Connection Failure
[Intemal ServerEmor
[g NotEnoughCortacts
['g Destination NotAvailable
48 phoneConfigRequest
4% phoneStatusRequest

[-7] ConnectionFailure

[:] Destination Mot Available
[] IntemalServerEmor

[] MuttipleContactsNot Supported
[7] NotEnoughContacts

[+] phoneCorfigRequest
[7] phoneCorfigResponse
[:] PhoneConnect Failure
[7] phoneStatusRequest
[] phoneStatusRespanse
[2] RequestorMot Authorized
[-1 ServiceValidation

actionType

caliControlRequest

e S

K

|

Source | Graph

Figure 38. Parameters for a call-control request

In this example, the parameters are as follows:

serviceValidator

e actionType

e credentials

e destinationNumber
e serviceValidator

There is an in-depth discussion of these parameters in the “Sample” section.

42

[l
IHIF
o
il

Customizing the SDK for your environment (optional)

Now that you have imported the SDK successfully into the IDE, you can make some customizations that
are specific to the local 3Com environment.

1.

Modifying the IPTelephony WSDL file

The SDK comes with the service endpoint set to http://localhost/axis2/services/IPTelephonyService/.
You can change this to be the URL of your 3Com, but the client stub shipped in the SDK allows this

to be programmatically set to your 3Com host upon instantiation of the Web-service client object. To
change the endpoint, perform the following steps:

Double-click the IPTelephony.wsdl file in the IDE in the resources directory in the project you
created in the toolkit. The WSDL file opens in the WSDL editor, as shown in Figure 3940.

Click the Source tab, as illustrated in Figure 3940 (labeled number 2).

Move to the bottom of the file and find the section starting with
<wsdl : servi ce name="1PTel ephonyServi ce” >

and click the line that begins with
<soap: addr ess...

as shown in Figure 3940 (labeled number 3).

In the properties tab, change the value of the location property to contain your 3Com address, as
illustrated in Figure 3940 (labeled 4).

Save the WSDL file changes.

43

dp Java - IPTelephonyService wsdl - IBM WebSphere Application Server Toolkit. V6.1 = =1E3

Fle Edt Source MNavigate Search Project Bun WSDL Editor Window Help

Iti--lalms-0-9-4- | EHFc- (|3 [@s |0 [& - | &ldave | $5Debug >

[# Package Explorer £3 * =0 =0 (EE O%@
e — T ——— = - e
i =] <'===D ¥ :faulc> ;I
5]'7‘1 3ComSipProject <wsdl:fault name="InternalServerError">
JCaIIBIockingSampIe <wsdlsoap:fault use="literal” name="InternalServerError™
'bj i55toredProc </wsdl: fault>
= justafun <wsdl:fault name="MultipleContactsNotSupported™:>
'BJtESt <wsdlsoap:fault use="literal” name="MultipleContactsHotS5
B-l== WebServices3Com|PTelephony P R ———
EE I_de.fault package) . <wsdl:fault name="NotEnoughContacts">
£ build classes.com.coms ws iptele

<wsdlscap:fault use="literal" name="NotEnoughContacts"/:
</wadl:faulc>
1 <wsdl:fault name="PhoneConnectFailure">
<wsdlsoap:fault use="literal" name="PhoneConnectFailure™
</wadl:faulc>

- |%| IPTelephonyService wsdl
TR TS oECuny e
) activation-1.1jar

-zl JRE System Library [eclipse]

- E‘, axiom-api-1.2.2 jar <wsdl:fault name="RequestorNotAuthorized">
- .f. axiom4mpl-1.2 2 jar <wsdlsoap:fault use="literal" name="RequestorNotAuthoriz
[() axisZ-adb-1.1.1jar </wsdl:fault>
[() axis2eemel-1.1.1jar <wsdl:fault name="ServiceValidation">
[Eu ais2-sag-1.1.1jar <wsdlsoap:fault use="literal" name="ServiceValidation"/>
[El commons-codec-1.3jar </wsdl:faulc>
B () commons-httpeliert-3.0.1 jar </wsdl:operation>
[Eu commons-dogging-1.1 jar
=) ;
[#]- IEI stax-api-1.0.1jar </wsdl:binding>
B () wsdl4-1.6.2jar
el the
S '5' .‘\i'sSb(Sec;u;t;.JDa!' <wsdl:service name="IPTelephonyService":>
B 1 meIS-:;en'.la.‘IJ;r'ar <wsdl:port binding="tns:IPTelephonyService” name="IFTelephonySer 3
) - 1.2
- IEI IPTeIephorﬁ'Gieerjar l <=zoap:address locl?.t,ion="'nt,t,p:f,-’selpbx,-"axisZ,-"services,-"IPTelep I
: TITDOTT
[
3]

) }400jar -C\ SAELEL
=i, Server Classpath Container
F- (= client </wsdl:definitions>
----- 2 build xml 5 hd
..... %] pathrefs xml | | »
----- |%]| properties xml Source |k3raph|
F‘roblems| Javad; |E |arati .|I" L Explorer|5ervers|Console(E| Properties 22 ¥ =0
General I address
Documentation Property - |
location I hitp://selpbx/mxis2/services/|P Telephony Service, I
required
4
o | ©
Writable: Smart Insert 443:30

Figure 39. Modifying the IPTelephony WSDL file

44

It
i
1T

Jjnmi]
Il
Ih
lll
in

Generating the client-service stubs

This step is optional and is not required to integrate and build applications that use the 3Com Web
services in your environment. If you want to analyze the Web-services client code used by the 3Com
SDK (or if you modify the IPTelephony WSDL as described in section “Modifying the IPTelephony
WSDL file” to change the service endpoint from http://localhost/axis2/services/IPTelephonyService/ to
your 3Com VCX host name), then you need to regenerate the client stubs and rebuild the
IPTelephonyClient JAR.

The SDK includes the IPTelephonyClient.jar file, which contains the Java classes that were
generated by 3Com to be used to invoke and call the Web-service endpoints. After modifying the
IPTelephony.wsdl file to point to your 3Com host, you must regenerate the IPTelephony client-side
classes by using the Ant build.xml code that is included with the SDK.

The first step is to make the Axis 2 JAR files available to the development environment. These JAR
files include utilities that are used to create Java source files from the IPTelephony.wsdl file.

1. Right-click your project and import the Axis 2 JARs that you downloaded as part of the
prerequisites, as illustrated beginning in Figure 40 and Figure 41.

&p Java - IBM WebSphere Application Server Toolkit. V6.1 M=k
File Edi Source Refactor Mavigate Search Project Run Window Help
ij' ‘OI_DJ%"Q'Q'%'J%U’Y@'JJJQ\JJJJ S K [| 8 Java
i Package Explorer X Hiemrd'w|Navigator| =0 =0 EE Outling &3 ¥ =0
| Bl 5 An outiing is nt avaiable.
New 2
Go Into
[] Open in New Window
C Open Type Hierarchy F4
e
B =| Copy Cir+C
GRS =) Paste Cir+V
g % Delete Delste
) Build Path ’
& Source Alt+5hift+3 ¥
- Refactor Alt+Shift+T »
B () IPTele
M- () wedldi pf) Export
H-- () WSSe
B () wsbea! Build Project
B] ¥miSel (& Refresh F5
] builda Close Project
. [X] pathrel
- |¥] proper Run As 14
Debug As L3
Profile As L4
Add SQLJ Support..
Team 2
Compare With L4 = =
Restore from Local History Problems | Ja\raduc| Dedamiion| Properties (E Console E3 SR O
Review 3 A console is not available.
FDE Tools L4
Properties Alt+Enter
| 3comsok

Figure 40. Importing Axis 2 JARs

45

It
i
1T

[
|

4 Import

File system —
Impart resounces from the local file system. i“’ .-;

From directory: |C\ais2-1.1.1 v| Browse.. |

B [R O £l INSTALL b
- [& bin O [LICENSE e
(- [& conf [2 NOTICE
S g b [2 README e
-1 repogitony
; | otes htmi
5] & sampes O & releazenotes htm
rl E? hlehapp

Fiter Types... | Select Al | Deselect Al
Into folder: |3C|:|mSDI{ Browse... |

Options
[T Owerwiite existing resources without waming
" Create complete folder structure

¥ Create selected folders only

< Back s | Frish | Cancsl

Figure 41. Importing Axis 2 JARs (continued)

Note: As you proceed through this process, select No to all when prompted to replace or overwrite
the JAR files that already exist. The lib directory will then contain the Axis 2 JAR file that was
downloaded from the Apache Axis Web site, as shown in Figure 44.

46

2. Add the AXIS2_HOME environment variable to your system by right-clicking the My Computer
icon on your desktop and selecting Properties.

3. Click the Advanced tab and then click Environment Variables at the bottom of the panel to open
the window as shown in Figure 42.

'Environment Variables ﬁﬂ

User variables for jrush

Variahle Value
TEMP C:\Documents and Settings\Administra,., |
T™MP C:\Documents and Settings\administra. ..

new | Edt || Deete |
System variables
Variable Value [s]
AXIS2_HOME C:lawis2-1.1.1
CLASSPATH 4C\PROGRA ~INBM\SCLLIBjava\db2...
ComSpec C:\WINDOWS\system32Yomnd. exe
DBE2INSTAMNCE DB2
DEZTEMPDIR. C:\PROGRA ~1\EMISQLLIBY [R]
—
| mew |) Edt |[Deete |
[(6]4]’ Cancel]

Figure 42. New system environment variable

4. Click New and add the AXIS2_HOME, as shown in Figure 43 — the Variable value is where you
put the downloaded Axis 2 files.

5. You must then exit the IDE and restart it so that it picks up the AXIS2_HOME environment variable.

New System Variable

[X]

Variable name:

Variable value:

AXISZ2_HOME

c:\axis 2dir

| o

] [Cancel

Figure 43. New AXIS2_HOME variable

47

Figure 46 shows the GUI after hitting the Run key.

& Java - IBM WebSphere Application Server Toolkit, V6.1 g@ﬁ
File Edit Source Refactor Navigate Search Project Run Window Help
civ |#vO~v@&~va~ |EHe~ |8 &850 v - B & Java

:' 'témPal:i(age Expluurer 2 Hlerarchy = 1L = -ﬁ: EI Outllne " ¥ b Ei:
ElL& % |An outline is not
T=l \available.

= i (default package)
+- 11| IPTelephonySample.java
s Cent
=-&# client.src.com.coms.ws.iptelephony
+-&| ConnectionFailureException.java
+ ¢ DestinationNotAvailableException.java
) InternalServerErrorException.java
7 IPTelephonyServiceCallbackHandler.java
@ IPTelephonyServiceStub.java
& MultipleContactsNotSupportedException.java
& NotEnoughContactsException.java
& PhoneConnectFailureException.java
1 RequestorNotAuthorizedException.java
= 4| ServiceValidationException.java
& client.test
=& lib
+ -1 resources
Bt Samples.java.src.com.coms.ws.IPTelephonySam|

CHELIRE e et —PTODTEINS TaVator Daaratom = Comsole 7|
a8 dvtion:1. by <terminated> 3ComSDK build.xml [Ant Build] C |

B e I S e 3 e o R

i

+ () axiom-api-1.2.2 jar S s

w0 axiom-impl-1.2.2 jar [iaval

=0 axis2-adb-1.1.1 jar biiisit e picee

=0 axis2-kernel-1.1.1.jar | SR " =
| w0 axis2-saai-1.1.1.7ar =20 1]
3] m | 2 Jlled 12
o | 3comsDK

Figure 46. After w2j

Note: You can ignore the red Xs here that signal errors because the generated Ant build.xml is used
under the client package/folder to create the IPTelephonyClient JAR file.

50

Building a new IPTelephony client JAR file

The next step is to build a test JAR file from the Java source created by the w2j Ant build step (the
WSDL2JAVA utility that ran to create the client Java stubs).

1. Select the build.xml file under the client directory, as shown in Figure 47.

2. Right-click Run As -> Ant Build...
Note: Select the Ant Build with the ELIPSES (...).

@ Java - IBM WebSphere Application Server Toolkit, V6.1 B@ﬁ

File Edit Source Refactor Navigate Search Project Run Window Help

i [E>O v @@~ EHGEG~ @ |~ v & | 8 1ava

| Fg..Pad.(age Explul}rer 53 } 'I'-_Ii'_r'e_r_g_rchyé = i = E'_ Ef Outiine '8'3" e El_
= |An outline is not

|available.

C

=-#t (default package)

+ 1) IPTelephonySample.java
= @& client

%I build.xml

-t client.src.com.coms.ws.iptelephony

| ConnectionFailureException.java

+-#| DestinationNotAvailableException.java

+] InternalServerErrorException.java

#-i| IPTelephonyServiceCallbackHandler.java

+-#| IPTelephonyServiceStub.java

+-@| MultipleContactsNotSupportedException.java

+ 1] NotEnoughContactsException.java

= PhoneConnectFailureException.java

+-#| RequestorNotAuthorizedException.java

+-#| ServiceValidationException.java

B client.test
« 2 lib
=& resources

B Samples.java..src.com.cn.jms.ws.]PTeIephonySam| 3Prﬂblems:.Javadoc:.Declaration "B Consoli 53 - =g
HomL IRE Systen |ibrany: fechise] \<terminated> 3ComSDK build.xml [Ant Build] C - : '
+- () activation-1.1.jar [TavaT INroT rIre
=0 axiom-api-1.2.2 jar [iaval
=0 axiom-impl-1.2.2 jar o] STNER
£ |BUILD SUCCESSFUL
-0 aXisz'adb'l-l-l-jar |Toral time: 2 seconds * :

+- 1 axis2-kernel-1.1.1.1ar) _!V!__
&l |] =l : 2l

3ComSDK

Figure 47. Client stub BUILD.XML

51

3. Click only JAR client (default) to generate the test IPTelephonyClient JAR and select Run

(see Figure 48).

:ﬁ: 3ComSDK build xml (4)
Modify attributes and launch.
Fun an Ant buildfile.

Figure 48. Ant options for client build

Integrating 3Com IP telephony

52

Upon successful completion, an IPTelephonyService-test-client.jar file is built (see Figure 49). You
can export this file to the System i platform, and modify the SystemDefault.properties file to put this
new JAR file into the classpath. Then, you can test the success of this process by running the sample
again.

@ Java - IBM WebSphere Application Server Toolkit, V6.1 Q@ﬁ
File Edit Navigate Search Project Run Window Help
i~ [~ 0~ @~Q~ |[EHFE~ P@ |5 v B | &'Java
2 Package Explorer 2 - Hierarchy| | = OJ(8= Outline ¥ = O]
= |An outline is not
= &2 3ComSDK (=] \available.
+ f# (default package) [
B build.classes.com.coms.ws.iptelephony
= client
% build.xml
&5 i i |
=& client.build.lib |
[IPTelephonyService-test-client.jar
=@ Cllent.src.com.coms. ws.iptelephony
=@ ConnectionFailureException.java
&) DestinationNotAvailableException.jave|
+-#| InternalServerErrorException.java
+-i| IPTelephonyServiceCallbackHandler je|
+-4| [PTelephonyServiceStub.java
&) MultipleContactsNotSupportedExceptid
+] NotEnoughContactsException.java
+ 1] PhoneConnectFailureException.java
= RequestorNotAuthorizedException.jav
+-#| ServiceValidationException.java
+ Eg::ilt']ent'mt [Problems | Javadoc Declaration | El Console & %GBl B~rixy =0
i <terminated> 3ComSDK build.xml (1) [Ant Build] c:\Program Files\IBM\WebSphere\AS
B Samples.java.src.com.coms.ws.IPTeleph o AScHOE 5 . = Eohc il
@ =4 JRE System Library [WebSphere v6.1 JRI [Sc22-ezasspash.Broblen:
-0 activationfl.l.jar Total time: 3 seconds o1
+- (1 axiom-api-1.2.2.iar (1) A4
E3] 33 | 12

Figure 49. After building the client JAR file

53

[l
IHIF
o
il

Sample

The sample code included here is architected to use a messaging layer on the System i platform that is
implemented by using keyed-data queues. These data queues accept messages from external programs
to run 3Com Web-service requests and receive responses back from the 3Com platform. These external
programs can be any System i program object that can interact with data queues. Alternatively, they can
be Java servlets running in a WebSphere container. Although Java servlets can directly call the 3Com
Web services, using this proposed methodology can seem to be more than is necessary. However, this
architecture was chosen for this example because any System i application program can use it in a
general way to integrate VolP functions. By using data queues, with which all System i program objects
can interact, you can use this example in many application scenarios, RPG, COBOL, C and CL, as well
as Java and WebSphere Java applications.

A Java server program monitors the data queues for transactions. It is this Java program that instantiates
the IP telephony client stubs that were generated from the IPTelephony.wsdl file in the IDE. Depending
on the message on the request data queue, the Java program invokes the appropriate Web service
through the client-stub object. A transaction response is posted back to the response data queue from
3Com. (See Figure 50.)

54

e M

Business Transaction- Queue
application request handler
(RPG, C, queue
COBOL, 1
Java or
WebSphere)
- / L
: ~ | N
Transaction- Telephony
response Web
gqueue service
gateway
- J

/

/

3Com System |
Linux VCX

IP telephony Web services

5 D |

Figure 50. Sample logic flow

55

[l
IHIF
o
il

Setting up System i keyed-data queues

The samples require that the request and response keyed-data queues are already created on the
System i model. You use the i5/0S CRTDTAQ command (through a 5250 session) to create these
gueues, as Figure 51 and Figure 52 illustrate.

=i SE520B2
Fle Edit Wew Communication Actions Window Help

Type choices, press Enter.
Data queue
Library
Type e
Maximum entry length
Force to auxiliary storage
Sequence
Key length
Include sender ID
Queue size:
Maximum number of entries
Initial number of entries
Automatic reclaim
Text 'description’

F3=Exit

F4=Prompt
F24=More keys

MA a

34! [1902 - Session successfully started

B B3 2% BlE| @ b & o] e

Create Data Queue (CRTDTAQ)

F5=Refresh

> IPTELREQ

> YOURLIB |

xSTD

>| 256
*NO_

> xKEYED
8
*NO_

xMAX 16MB
16

XNO_

REQUEST DATA

Fl12=Cancel

Name
Name, x
*STD, x
1-64512
*NO, xY
*xFIFO,
1-256
*NO, xY

Number,
Number
*NO, xY
QUEUE

CURLIB
DDM

ES
xLIFO,

ES

xMAX16MB,

ES

ISi[=1E3

xKEYED

xMAX2GB

More. ..

F13=How to use this display

Figure 51. Creating a request keyed-data queue

56

[l
IHIF
o
il

=i SE520B2
Fle Edit Wew Communication Actions Window Help

Type choices, press Enter.

Data queue
Library
Type
Maximum entry length
Force to auxiliary storage
Sequence
Key length
Include sender ID
Queue size:
Maximum number of entries
Initial number of entries
Automatic reclaim
Text 'description’

F3=Exit

F4=Prompt
F24=More keys

MA a
34" [1902 - Session successfully started

B B3 2% BlE| &) bt 2| o el

Create Data Queue (CRTDTAQ)

F5=Refresh

IPTELRESP
YOURLIB

xSTD

256

*NO

xKEYED

8

xNO

*MAX16MB
16
xNO

"RESPONSE DATA

Fl2=Cancel

Name
Name, *
*STD, x
1-64512
xNO, xY
*xFIFO,
1-2586
*NO, xY

Number,
Number
*NO, xY

QUEUE’

CURLIB
DDM

ES
xLIFO,

ES

xMAX16MB,

ES

I [=1 3

xKEYED

xMAX2GB

More. ..

F13=How to use this display

Figure 52. Creating a response keyed-data queue (continued)

o7

[l
IHIF
o
il

The code itself

This section reviews the various segments of the sample code.

The test driver program (/PTelTransactionDataQueueDriver)

This module is used to place the transaction on the request keyed-data queue. The key of the
message on the queue is the originating telephone number, and the message is formatted as follows:

1. STRING: nekeCal |, tranCall, getState, shutdown
Note: The first parameter must be eight characters long.

2. STRING: ori gi nati on phone nunber

3. STRING: ori gi nati on phone password
Note: This string is configured as part of the 3Com setup.

4. STRING: desti nati on nunber

Figure 53 shows the code that places these transactions on the request keyed-data queue.

public static void main(String[] args) {

Systemout.println("**Putting " + args[0] + ", " + args[1] + ", " + args[2] + ",
+ args[3] + " ON DATA QUEUE**");
try {

AS400 sys = new AS400("se520b2.rchl and. i bm cont', "<useri d>", " <password>");

sys. set Gui Avai | abl e(true);

KeyedDat aQueue requestdq = new KeyedDat aQueue(sys,

"/ QSYS. LI B/ JRUSH. LI B/ | PTELREQ. DTAQ') ;

KeyedDat aQueue responsedq = new KeyedDat aQueue(sys,
"/ QSYS. LI B/ JRUSH. LI B/ | PTELRESP. DTAQ') ;

/*Wite the transaction to the queue with the second paraneter, the origination
phone nunber, as the key.*/

requestdg.wite(args[1l], args[O]+" " +args[1l]+" " +args[2]+" " +args[3]);

/*WAI'T for response on the response keyed data queue with a key that matches the
origination nunmber we used as the key on the wite to the request keyed data queue
above. */

Dat aQueueEntry dgData = responsedq.read(args[1], -1, "EQ');

Systemout. println(dgData. getString());

System out . printl n(" TRANSACTI ON COVPLETE") ;

} catch (Exception e) {

Systemout. println(e);

}

}

Figure 53. The test-driver program (IPTelTransactionDataQueueDriver)

58

It
i
1T

Jjnmi]
Il
Ih
lll
in

The messaging layer (/PTelephonyDQHandler)

This code interacts with the keyed request-data queue and accepts incoming requests from external
programs, such as the IPTelTransactionDataQueueDriver program in the previous section. This layer

instantiates a new server-gateway object.
Instantiate the IPTelephonyServerGateway (see Figure 54).

1.
public class | PTel ephonyDQHandl er {
static | PTel ephonyServer Gat eway ipt = new
| PTel ephonySer ver Gat eway(nul | , "wsuser", "wspwd") ;

Figure 54. Instantiating the IPTelephonyServerGateway
2. Create a new AS400 system object for connectivity to the System i model that hosts the keyed-data
gueues. Create the request and response keyed-data queue objects (see Figure 55).

Note: The code does not create the data queues on System i, as they were already created.

(This was discussed in the “Setting up System i keyed-data queues” section.) The
KeyedDataQueue objects that have been created are the objects that communicate with the

gueues on System i.

AS400 sys = new AS400("se520b2. rchl and. i bm cont',
KeyedDat aQueue requestdq = new KeyedDat aQueue(sys,
"/ QSYS. LI B/ JRUSH. LI B/ | PTELREQ. DTAQ') ;

KeyedDat aQueue responsedq = new KeyedDat aQueue(sys,

"/ QSYS. LI B/ JRUSH. LI B/ | PTELRESP. DTAQ') ;

"<userid>", "<password>");

Figure 55. Creating the KeyedDataQueue objects
3. Loop through the code while there are transactions on the request queue and shut down when a kill
transaction is requested. Read the request queue when the key is greater than, or equal to, zero. If

there is no request, wait until there is a transaction (see Figure 56).

while (listen == true) {
Systemout. println("**WAl TI NG FOR | P TELEPHONY TRANSACTI ON ON DATA QUEUE**");
/*Wait on any entry on the data queue with key > or = "0". In this sanpl e we
are using the originating phone nunber/extension as the key*/
"GE');

KeyedDat aQueueEntry dgData = requestdq.read("0", -1,

Figure 56. Using loop while code

59

||
{IE|
|IIII
1]

4. Process the entry that was read from the keyed-data queue. In this sample, the phone numbers are
all four characters in length (parameters 2 and 4 in the data-queue message). Your environment
might be different, so you might have to change the code shown in bold or underlined font (in
Figure 57). Based on the type of transaction requested (the first parameter in the data-queue
message), the appropriate subroutine is called. For example, the makeCall(a) method is called for a
make-call request that passes the other parameters to the subroutine in a string array. The returned
response is placed on the response keyed-data queue with the same key that was initially used to
place the transaction on the request queue. This is done so that the requesting program (which
made the request) can differentiate its response from other request responses that might be placed
on the same response queue. This is illustrated with the code: responsedq.write(keyString,
respString). (See Figure 57.)

String dgEntry = dgData.getString();

/*Save the key so when we put response on the response keyed data queue it

mat ches the key we used/put on the request keyed data queue. */

keyString = dgDat a. get KeyString();

String a[] = { dgEntry. substring(9, 13),
dgEntry. substring(14, 19),
dgEntry. substring(20, 24) };

| PTel Directive = (dgbData.getString().charAt(0));

switch (I PTel Directive) {

/'l make call

case 'ni:

nakeCal | (a);

/[PUT RESPONSE ON RESPONSE DATA QUEUE
responsedq. wite(keyString, respString);
br eak;

/1 disconnect call

case 'd":

di sconnect Cal | (a);
responsedq. wite(keyString, respString);
br eak;

/1 get phone state

case 'g':

get PhoneSt at us(a) ;
responsedq. wite(keyString, respString);
br eak;

/1 transfer call

case 't':

transferCall (a);
responsedq. wite(keyString, respString);
br eak;

/'l shut down

case 's':

listen = fal se;
responsedq. wite(keyString, "Shutting down");
br eak;

def aul t:

br eak;
}

}

} catch (Exception e) {
Systemout.println(e);

}

}

Figure 57. Processing the entry that was read from the keyed-data queue

60

[l
IHIF
o
il

For example, if the transaction on the queue is makecall 3001 12345 3002, the switch statement (in
Figure 57) passes control to the makeCall method. This method creates a 3Com Telephony action-
type object. The IPTelephonyService WSDL from the SDK defines three action types:

e CallControlActionType (makeCall, transferCall, disconnectCall and others)
e PhoneConfigActionType (mutePhone, handsFree, fwdMailSet and others)
e PhoneStatusActionType (getPhoneState, getFwdMailState, getDndState and others)

The WSDL-to-Java generator created objects for each of these action types that are used to invoke
the Web service from the IPTelephonyServerGateway sample code in Figure 58. It then invokes the
processCallRequest of the IPTeleponyServerGateway object and gets a response string back from

the method invocation. Figure 58 shows the makeCall method.

public static void makeCall (String[] args) {

try {
actionType = Call Control Acti onType. nakeCal | ;
respString i pt.processCal | Request (actionType, args[0],args[1], args[2]);
} catch (Exception e) {
e.printStackTrace();
}

}

Figure 58. Using the makeCall method

The methodology for handling the other action types is similar to the makeCall action.

61

[l
IHIF
o
il

The server gateway (/PTelephonyServerGateway)

This is the object code that handles requests coming from the messaging layer. This object
instantiates a Web-service client stub (IPTelephonyServiceStub), which was supplied with the SDK or
generated in the “Generating the client-service stubs” section. The IPTelephonyServerGateway class
is derived from the IPTelephonySample class that was supplied with the 3Com SDK. This class
contains the methods that validate the parameters being passed to the Web services. it also contains
the methods to create the required objects and Web-service parameters that invoke the SDK client-
service stub to invoke the Web services.

1. For example, the code sections in Figure 59 show the code that makes a call. It then passes the
response from the Web service back to the IPTelephonyDQHandler.

/* Process a Call Control request */
public String processCal | Request (Cal | Control Acti onType request,
String orig, String tel epasswd, String dest) {
origination = orig;
phonePasswd = tel epasswd;
destination = dest;
String call Response = null;
cal | ParansVal id = val i dateCal | Parans();
if (callParansValid) {
try {
cal | Response = sendCal | Control Request (request);
/| PASS RESPONSE BACK
return cal | Response;
/1 Systemout.println("\n" + call Response);
} catch (Exception ee) {
/1 Systemout.println("\n" + ee.getMessage());
return ee.get Message();

} else {
return "Paraneters |nvalid";
}

}

Figure 59. The server-gateway code that makes a call and passes the response to IPTelephonyDQHandler

62

It
i
1T

Jjnmi]
Il
Ih
lll
in

2. The next section of code creates the objects necessary to build the SOAP Web-service request and
then creates a service object to perform and route the request to the 3Com Web-service server
(see Figure 60).

/* Send the Call Control request */
public String sendCal | Control Request (Cal | Control Acti onType acti onType)
throws Exception {
/1 build request body
ActionCredentials cred = new ActionCredential s();
cred. set Ori gi nNunber (ori gi nati on);
cred. set Passwor d(phonePasswd) ;
Servi ceType ver = new ServiceType();
ver.set String("Version");
ver.set APl Versi on("V1");
Cal | Cont rol Request req = new Cal | Cont rol Request ();
req. set Acti onType(acti onType);
req. set Credenti al s(cred);
req. set Desti nati onNunber (desti nati on);
req. set Servi ceVal i dat or (ver);
/1 init the client
| PTel ephonyServi ceSt ub stub = new | PTel ephonySer vi ceSt ub(i pAddr ess);
ServiceCient serviceCient = stub. _getServiceCient();
/1 build security header
SecurityType sec = new SecurityType(usernane, appPasswd);
servi ced i ent. addHeader (sec.toEl enent());
/1 execute the request
Cal | Cont r ol Response response = stub. cal |l Control Request (req);
ActionResul t Type resul t Type = response. get Cal | Cont r ol Response();
return actionType.getValue() + " : " + resultType. getVal ue();

}

Figure 60. The server-gateway code that creates the objects to build SOAP Web-service requests

Web-service client stub (/PTelephonyServiceStub)

If you generated the stubs in the “Generating the client-service stubs” section, these are the classes
contained in the IPTelephonyClient.jar or the IPTelephonyService-test-client.jar files that are the
generated interfaces to the 3Com Web services.

1. The SDK comes with a pregenerated stub file that was generated from the IPTelphonyService.wsdl
file. It contains the classes required to create a request that is handled by the Web service. The
classes include the three request types:

e CallControlRequest for making or transferring calls
e PhoneConfigRequest for setting phone features
e PhoneStatusRequest for querying the state of a 3Com attached phone

The IPTelephonyServerGateway class instantiates a new service stub for each request it reads
from the data queue.

63

It
i
1T

Jjnmi]
Il
Ih
lll
in

Running the sample

To run the sample, it is necessary to export the IPTelphonyDQHandler and IPTelephonyServerGateway
classes to the System i model. The IPTelephonyServiceStub class might already be on the System i
model if you went through running the sample GUI program provided by 3Com in the “Migrating and
running the sample on System i” section.

1. If not, follow the steps in the “Exporting the code” step in the “Migrating and running the sample on
System i” section. Make sure to create an environment variable on the System i JAVA_HOME call
and set it to /QOpenSys/QIBM/ProdData/JavaVM/jdk50/32bit. This causes the IBM 1.5 JVM to be
used when the sample runs.

2. Then, export the IPTelephonyDQHandler and IPTelephonyServerGatewway class files to a
directory on the System i model where they can be invoked with the Java IPTelephonyDQHandler
command in a Qshell environment on the System i model (as shown in Figure 61). The handler
starts and waits for an entry to be placed on the request keyed-data queue.

(20 Session A - [27 x 132] ™=

File Edit Vew Communication Actions Window Help

B B 2% BE w6 %% s S e

(5H Command Entry

v AGUrTERE gl

B61861 (JIT enabled)

=37 1902 - Session successhully started

Figure 61. Running the DQ handler and gateway on the System i model

64

3. Inthe IDE, the IPTelTransactionDataQueueDriver class runs with arguments to place a transaction
on the request queue. In the left-hand navigator, right-click IPTelTransactionDataQueueDriver;
select Run As = Run. You see the panel as shown in Figure 62.

= —
" —
Run
Create, manage, and run configurations
Run a Java application @
Configurations: Mame: | IPTelTransactionDataQueueDriver
& Edipse Application
E Generic Server = - - =
E Coneric Server & Main IM= Arguments | =1 JREi 4, Classpath | L'Ré’/ Sour::el = Erwironmentl =| gommonl
=4 Java Applet ~Project:
= Java Application .
A Web5 3ComIFTeleph Browse. ..
757 IPTelephonyDGHan | ehServices 3ComIPTelephary Ei |
i;% Java Bean —Main class
Ju JUnft) I IPTelTransactionDataQueueDriver Search. .. |
-Ju Junit Plug-in Test
@ SWT Application ™ Indude libraries when searching for a main dass
Ei Test [Indude inherited mains when searching for a main dass

[Pg WebSphere Administrat
%1

WebSph 6.1 fics
s i H Stop in main

Apply

<_| il | 3

Revert I

Run Close

Figure 62. Running the driver program in the IDE

65

4. On the Arguments tab, put in the parameters, as shown in Figure 63.
E Run X
Create, manage, and run configurations @

Run a Java application

Configurations: MName: | IFTelTransactionDataQueuslriver

; 4 Edipse Application
i E EZ:E::E z::::; & Main 0= Arguments |ﬂ JREI . Classpath | B Sour::el = Erwirnnmentl == gommonl
-] Java Applet ~Program arguments:
E'E' I%VEI P’;‘Z‘T’:;ﬂi’;ﬂwan getstate 3001 12345 3002

- [7] IPTelMransactionDa

: & Java Bean

Ju JUnit .

- J& JUnitPlug-n Test Variables... |
[SWT Application

b b Test (R v

] WebSphere Administrat
- higl webSphere v6. 1 Applic

Variables. .. |

—Working directory:

cEsal.oml- elepnony

v Use default working directory Workspace,., | Fle Systen, | Varjables, |
[il 1 [[i]
Mew | Delete | Apply | Rewvert |
Run Close |

Figure 63. Arguments for the driver program

66

g
|H||II|

||
Ih

5. Click Apply, then Run. The transaction is placed on the data queue. Figure 64 and Figure 65 are

displayed. On the System i server-gateway side:
=1

2] Session A - [27 x 132]

File Edit Wew Communication Actions

B B 2% B %N e & e
05H Command Entry

Window Help

NSACTION ON DATA QUELE %

DATA QUEL

nd entry

3" 1902 - Session successfully started

Figure 64. Server-transaction results

On the driver program side:
Problems | Javadoc | Declaration | B Console &2 Properties 5 % od | % = - O~ =B
<terminated > IPTelTransactionDataQueuelriver [Java Application] C:\Program Files\IBMiWebSphere\A5T \edipsetjre\bin'javaw. exe (Aug 3, 2007 2:00:45 FM)
#*Putting getstate, 3001, 12345, 3002 CN DATA QUEUE**

getPhoneState Success

No 5tate Information Awailable

TRANSACTION CCMFPFLETE

Figure 65. Client-transaction results

67

6. To shut down the server gateway, run the driver program again with the arguments as shown in
Figure 66. Click Apply, then Run.

& Run

X]

Run a Java application

Create, manage, and run configurations

w

Configurations:

4 Edipse Application
: Generic Server
ks E Generic Server
".[F Java Applet
=1-[3] Java Application
i [T 1PTelephonyDQHan
"..[T] 1PTelTransactionDa’
: 15 Java Bean
o Ju Uit
L 38 JUnit Plug-in Test
~-[7] SWT Application
B Ei Test
: % WebSphere Administrat
"I websphere vé. 1 Applic

Mame: |IP’TEITransacﬁonDa’mQueuajriver

& main = Arguments |ﬂ JREI . Classpath | L'-W Sourcel = Erwirnnmentl E=| gommonl

—Program arguments:

shutdown 3001 12345 3002

Variables. .. |

— %M arguments:

Variables. .. |

—Working directory;

I:r srkzoace locWehSer

v Use default working directory Workspace,,, | File Systen., I Vatiables, ., |
[il m | [i]
Mew | Delete | Apply | el I
Run Close |

Figure 66. Shutting down the server

68

I
|H||II|

||
Ih

Summary

The goal of this white paper was to guide you through the installation and use of the 3Com IP Telephony
SDK, allowing integration between business applications that run on the System i platform with the new

features of the 3Com voice over Internet Protocol (VolP) solution.

69

[l
IHIF
o
il

Resources

These Web sites provide useful references to supplement the information contained in this document:

IBM eServer i5 Information Center
http://publib.boulder.ibm.com/iseries/

IBM Publications Center
www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi?CTY=US

IBM System i on IBM PartnerWorld®
ibm.com/partnerworld/systems/i

IBM Redbooks®
ibm.com/redbooks

3Com Open Network
www.open.3com.com/tcom/

Web Services Description Language (WSDL) to Java tooling
http://ws.apache.org/axis2/download/1_1 1/download.cgi

System i Tools for Developers PRPQ (5799PTL)
www14.software.ibm.com/webapp/download/preconfig.jsp?id=2004-08-
18+12%3A25%3A25.057448R&S_TACT=104CBW71&S_CMP=&s=

Registration with the 3Com Open Networks Partner program
www.open.3com.com/tcom/

Using a VNCviewer client or a Web browser
http://publib.boulder.ibm.com/infocenter/iseries/v5rd/index.jsp (search on VNCviewer)

About the author

Jon Rush is a technical consultant in ISV Business and Solution Enablement. He is a senior software
engineer specializing in WebSphere, IBM Hypertext Preprocessor (PHP) and IP Telephony on the
System i platform. Jon has helped hundreds of System i solution providers enhance their applications to
use IBM e-business technologies such as IBM Net.Data®, WebSphere and PHP.

70

It
i
1T

[
|

Trademarks and special notices

© Copyright IBM Corporation 2007. All rights Reserved.

References in this document to IBM products or services do not imply that IBM intends to make them
available in every country.

i5/0S, IBM, the IBM logo, Net.Data, PartnerWorld, Rational, Redbooks, System i and WebSphere are
trademarks of International Business Machines Corporation in the United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.
Information is provided "AS IS" without warranty of any kind.

All customer examples described are presented as illustrations of how those customers have used IBM
products and the results they may have achieved. Actual environmental costs and performance
characteristics may vary by customer.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part
of the materials for this IBM product and use of those Web sites is at your own risk.

71

	Abstract
	Introduction
	Prerequisites
	Overview
	The SDK itself
	Documentation
	The IP telephony WSDL
	Setting up the Java IDE
	Importing the SDK
	Running the sample program
	Using Ant
	Using the IDE run

	Migrating and running the sample on System i
	Exporting the code
	 Setting up the Java environment
	Setting up System i remote-graphics capabilities
	Running the sample

	Using the IDE WSDL editor
	Customizing the SDK for your environment (optional)
	Modifying the IPTelephony WSDL file
	Generating the client-service stubs
	Building a new IPTelephony client JAR file

	Sample
	Setting up System i keyed-data queues
	The code itself
	The test driver program (IPTelTransactionDataQueueDriver)
	The messaging layer (IPTelephonyDQHandler)
	The server gateway (IPTelephonyServerGateway)
	Web-service client stub (IPTelephonyServiceStub)

	Running the sample

	Summary
	 Resources
	About the author
	Trademarks and special notices

