
  

 

Integrating IP telephony with the 3Com 
SDK 

Understanding and using the 3Com IP telephony Web-services solution 
developer kit  

 
 
 
 

. 

 

 
 
 
 
 
 
 
 
 

Jon Rush 
ISV Business Strategy and Enablement 

September 2007 
 
 

© Copyright IBM Corporation, 2007. All Rights Reserved. 
All trademarks or registered trademarks mentioned herein are the property of their respective holders 



  
 

Table of Contents 
Abstract........................................................................................................................................1 
Introduction .................................................................................................................................1 
Prerequisites ...............................................................................................................................1 
Overview ......................................................................................................................................2 
The SDK itself..............................................................................................................................3 

Documentation ....................................................................................................................................... 3 
The IP telephony WSDL......................................................................................................................... 6 

Setting up the Java IDE ..............................................................................................................7 
Importing the SDK.................................................................................................................................. 7 
Running the sample program............................................................................................................... 30 

Using Ant ......................................................................................................................... 30 
Using the IDE run ............................................................................................................ 32 

Migrating and running the sample on System i .................................................................................... 34 
Exporting the code........................................................................................................... 34 
Setting up the Java environment..................................................................................... 35 
Setting up System i remote-graphics capabilities ........................................................... 35 
Running the sample......................................................................................................... 36 

Using the IDE WSDL editor.................................................................................................................. 41 
Customizing the SDK for your environment (optional)......................................................................... 43 

Modifying the IPTelephony WSDL file............................................................................. 43 
Generating the client-service stubs ................................................................................. 45 
Building a new IPTelephony client JAR file..................................................................... 51 

Sample .......................................................................................................................................54 
Setting up System i keyed-data queues............................................................................................... 56 
The code itself ...................................................................................................................................... 58 

The test driver program (IPTelTransactionDataQueueDriver) ........................................ 58 
The messaging layer (IPTelephonyDQHandler) ............................................................. 59 
The server gateway (IPTelephonyServerGateway) ........................................................ 62 
Web-service client stub (IPTelephonyServiceStub) ........................................................ 63 

Running the sample ............................................................................................................................. 64 
Summary....................................................................................................................................69 
Resources..................................................................................................................................70 
About the author .......................................................................................................................70 
Trademarks and special notices..............................................................................................71 

Integrating 3Com IP telephony 
 

 



 
  

1

Abstract 
Integrating existing IBM System i applications with the 3Com IP Telephony for IBM System i product 
offering is a natural progression from the first step of using the new IP telephony and voice over 
Internet protocol (VoIP) capabilities on System i to running in parallel with those business 
applications. This white paper lays out what is needed to make this second phase a reality. 

Introduction 
The 3Com IP Telephony for IBM System i product offers an integrated, highly secure and reliable 
communications and voice over Internet protocol (VoIP) solution that runs on the IBM® System i™ 
platform, allowing your business applications to run along with new telephony solutions that leverage 
existing IT infrastructures. This white paper provides guidance on integrating the business processes 
related to your applications with the telephony capabilities delivered with the 3Com IP Telephony for IBM 
System i product.  

This white paper discusses the following topics: 

• What the 3Com Solution Developer Kit (SDK) is 
• What development tools are needed to use this product 
• How to import and use the SDK in a development tool 
• How to understand the coding examples provided in this white paper 

Prerequisites 
To fully benefit from the information in this white paper, you need to have the following prerequisites: 

• A basic understanding of Java™ programming 
• A good knowledge of the System i platform and its Java environment 
• Familiarity and knowledge of Eclipse-based development-tool environments 
• To test the coding samples, a working 3Com IP Telephony solution needs to be installed and 

available on a System i model with IP telephony phones and hardware 
• An integrated development environment for examining and modifying the samples that support 

IBM JDK 1.5. IBM WebSphere® Application Server Toolkit Version 6.1 that comes with the 
WebSphere offering was used for the testing done for this white paper. IBM Rational® 
Application Developer V7 also is a viable choice. 

• Apache Axis 2 for Java v1.1.1, which includes the Web Services Description Language (WSDL) 
to Java tooling (downloadable at http://ws.apache.org/axis2/download/1_1_1/download.cgi) 

• A System i model with the IBM i5/OS® V5R4 operating system and the following features: 
• 5722JV1    *BASE   IBM Developer Kit for Java  
• 5722JV1    5        Java Developer Kit 1.3      
• 5722JV1    6        Java Developer Kit 1.4      
• 5722JV1    7        Java Developer Kit 5.0      
• 5722JV1    8        Java 2 Platform, Standard Edition (J2SE) 5.0 32 bit     

• To run the samples outlined in the section entitled “Migrating and running the sample on System 
i,” you need to install the System i Tools for Developers PRPQ (5799PTL) (which is 
downloadable from www14.software.ibm.com/webapp/download/preconfig.jsp?id=2004-08-
18+12%3A25%3A25.057448R&S_TACT=104CBW71&S_CMP=&s=).    

Integrating 3Com IP telephony 
 

 



 
  

2

Overview 
The 3Com Web services SDK is a Java toolkit that contains the following components: 

• The WSDL files that allow applications to consume and use the services defined in the Web-
service definition-language (WSDL) file 

• A Web-service client-side JAR file that contains classes for use on the client to invoke the 3Com 
Web service 

• A graphical sample application to test the Web service 

The 3Com software is installed and runs in a dedicated System i Linux partition, allowing remote 
applications to use the following service points, programmatically: 

• Call control 
• Initiate a phone call 
• Transfer a call 
• Conduct a conference call 
• Hold a call 
• End a call 

• Phone configuration 
• Enable hands-free operation 
• Mute the phone 
• Enable or disable Do Not Disturb (DND) 
• Enable or disable forwarding of voice mail 

• Phone status 
• Get the phone state 
• Get the DND state 
• Get the voice-mail state 

 

 

Integrating 3Com IP telephony 
 

 



 
  

3

The SDK itself 
The first step is to register with the 3Com Open Networks Partner program (www.open.3com.com/tcom/). 
This registration permits you to download the SDK toolkit. After downloading, unzip the file to a directory 
that is accessible to your workstation. Remember this directory because it is used in subsequent sections 
relating to the development tools and sample code.  

Documentation 

The SDK for 3Com IP Telephony contains documentation, including an SDK User Guide (in PDF file 
format) and HTML files that describe each Web-service endpoint with the required input and output 
parameters. To access the documentation, perform the following steps: 

1. Navigate to the docs directory that was unzipped onto your workstation, and open the index.html 
file in the Web browser of your choice. This opens the document tree for all the Web-service 
capabilities included in the SDK as shown in Figure 1. 

 
Figure 1. HTML Web-services documentation 

Integrating 3Com IP telephony 
 

 



 
  

4

2. For example, to understand the Web-service parameters to run a call-control request, in the 
browser window with the index page of the telephony documentation, click callControlRequest in 
the left-hand navigation frame (labeled number 1 in Figure 2) and then click callControlRequest in 
the main frame (labeled 2 in Figure 2).  

 
Figure 2. Finding parameters for a call-control request 

Integrating 3Com IP telephony 
 

 



 
  

5

The documentation now shows you the parameters required to invoke a call-control request of 
the 3Com Web service. You can see that the first parameter is the actionType, then the 
credentials, followed by destinationNumber and serviceValidator.  

3. To further determine what action types are available, click CallControlActionType in the main 
frame, as shown in Figure 3. 

 
Figure 3. Selecting CallControlActionType 

Integrating 3Com IP telephony 
 

 



 
  

6

As you can see, the allowable action types include makeCall and transferCall. Figure 4 shows all 
the allowable action types. 

 
Figure 4. Allowed action types 

This documentation allows you to determine what parameters are required for any of the Web-service 
endpoints provided by the 3Com IP Telephony Web service. 

The IP telephony WSDL 

As discussed in this section, the 3Com SDK lets you access the specific capabilities exposed to control 
calls and configure the 3Com IP telephones, as well as to get the state of those phones. These 
capabilities are exposed externally through the IPTelephony.wsdl XML file. The following section 
describes the steps needed to get this toolkit into a development tool that you can use to 
programmatically integrate and build applications that exploit the IP telephony services. 

 

Integrating 3Com IP telephony 
 

 



 
  

7

Setting up the Java IDE 
You can import the SDK into the integrated development environment (IDE) of your choice, but for this 
white paper, the WebSphere Application Server Toolkit IDE is used for building the samples. Note that 
the IDE must support the IBM JDK 1.5 runtime environment. Rational Application Developer version 6 or 
IBM WebSphere Development Studio Client V5 do not support JDK 1.5 and do not allow the 3Com SDK 
samples to run. IBM Rational Application Developer (RAD) V7 (and, therefore, WebSphere Development 
Studio Client V7, which is based on RAD V7 and which has System i extensions) does support the IBM 
JDK 1.5 runtime environment. It should therefore work, although it was not used for this white paper and 
has not been tested with the 3Com SDK. 

Importing the SDK 

Importing the 3Com SDK into one of the IDEs involves the following processes: 

• Creating a new Java project 
• Importing the SDK from the file system where you unzipped the downloaded toolkit 
• Updating the project properties to use the JAR files included in the project’s Java build path 
• Making a package name correction  

To validate the success of the importing effort, you can run the graphical sample that is provided with the 
SDK (as you will see later in this white paper):  

Integrating 3Com IP telephony 
 

 



 
  

8

1. Create a new Java project in the IDE, as shown in Figure 5 through Figure 8. For illustrative 
purposes in this document, WebSphere Application Server Toolkit V6.1 is used. 

 
Figure 5. Creating a new project 

Integrating 3Com IP telephony 
 

 



 
  

9

 
Figure 6. Selecting the Java project 

Integrating 3Com IP telephony 
 

 



 
  

10

 
Figure 7. Selecting the Java project (continued) 

Integrating 3Com IP telephony 
 

 



 
  

11

 
Figure 8. Completing the new Java project 

Integrating 3Com IP telephony 
 

 



 
  

12

2. After the new, empty project is completed, import the SDK, as shown in Figure 9 and Figure 10. 

 
Figure 9. Selecting to import the SDK 

Integrating 3Com IP telephony 
 

 



 
  

13

 
Figure 10. Selecting an import source from the file system 

Integrating 3Com IP telephony 
 

 



 
  

14

3. Recalling where the SDK zip file was placed in your directory tree, click Browse (see Figure 11).  

 
Figure 11. Importing from the file system 

Integrating 3Com IP telephony 
 

 



 
  

15

4. Select the directory where you placed the 3Com Web service SDK in the workstation (as shown in 
Figure 12). In this example, VCX Webservices SDK-7.2.61.61 is selected) and then click OK. 

 
Figure 12. Directory where SDK was unzipped 

Integrating 3Com IP telephony 
 

 



 
  

16

5. In the window that is shown in Figure 13, expand the directory and click lib to select all JAR files 
from the SDK. 

6. Click resources to select the WSDL files from the SDK (see Figure 13). 

7. Expand the Samples directory and select the java subdirectory as well as the build, pathrefs, and 
properties XML files (see Figure 13).  

8. Ensure that the Create selected folders only option is selected. Then click Finish (see Figure 13). 

 
Figure 13. Selecting an artifact for the import 

Integrating 3Com IP telephony 
 

 



 
  

17

9. After the import has been completed, expand the project and you will see a workspace similar to 
that in Figure 14. 

 
Figure 14. Workspace after import  

Integrating 3Com IP telephony 
 

 



 
  

18

10. Next, move the XML files under the root of the project, as shown starting in Figure 15: 

a. Expand the Samples project and select all the XML files. 
b. Right-click and select Refactor and then select Move. 

 
Figure 15. Moving XML files 

Integrating 3Com IP telephony 
 

 



 
  

19

c. Select the destination for the three XML files that you just selected to move. (In this case, the 
destination is the 3Com IP Telephony sample directory.) Then, click OK (see Figure 16). 

 
Figure 16. Selecting the destination for the project  

 

Integrating 3Com IP telephony 
 

 



 
  

20

Figure 17 shows how the project looks after moving the XML files into the 3Com IP Telephony sample 
directory. 

 
Figure 17. Project after moving XML files 

Integrating 3Com IP telephony 
 

 



 
  

21

You must put the JAR files that were imported to the lib directory in the project into the project’s Java 
build path so that the sample program can find the required classes that allow the samples to run. Steps 
to do this start with Figure 18. 

11. Right-click the 3ComSDK directory and select Properties (see Figure 18). 

 
Figure 18. Changing project properties 

Integrating 3Com IP telephony 
 

 



 
  

22

12. From the Properties for 3ComSDK screen (see Figure 19), click Java Build Path and then select 
Add JARs. 

 
Figure 19. Adding JARs 

 

Integrating 3Com IP telephony 
 

 



 
  

23

13. Select the JAR archives that you want to add to the build path. In this example, all the JAR archives 
are selected (see Figure 20). Then click OK. 

 
Figure 20. Selecting all JAR archives to add them to the build path 

Integrating 3Com IP telephony 
 

 



 
  

24

14. Review the newly displayed Java build path to see that all the JARs and class folders are included 
(see Figure 21). Then click OK. 

 
Figure 21. Reviewing the new Java build path 

Integrating 3Com IP telephony 
 

 



 
  

25

 
Figure 22 shows what the project looks like after you have successfully added the 3Com JARs. 

 
Figure 22. Project after adding 3Com JARs 

Integrating 3Com IP telephony 
 

 



 
  

26

15. In the left-hand navigator, expand the Samples.java.src.com.coms.ws.IPTelephony package.  

16. Double-click the IPTelephonySample.java file to open it in the IDE editor in the main panel. As 
shown in Figure 23, there is a red X in the left column of the main-panel editor beside the line,  
* IP Telephony Web Service Sample.  

17. Expand the code section by clicking the plus (+) sign beside the line and pointing the cursor to the 
red X (the cursor is indicated by a light bulb symbol) and right-click.  

 
Figure 23. Selecting the IPTelephonySample file 

 

Integrating 3Com IP telephony 
 

 



 
  

27

18. Select Quick Fix from the options pop-up menu, as shown in Figure 24.  

 
Figure 24. Correcting package name 

 

Integrating 3Com IP telephony 
 

 



 
  

28

19. The pop-up list shown in Figure 25 gives you two choices to resolve the problem. Select Move 
IPTelephonySample.java to the default package. 

 
Figure 25. Correcting package name (continued) 

That should remove the red X and resolve the package-name issue.  

Integrating 3Com IP telephony 
 

 



 
  

29

The workspace will look similar to Figure 26. 

 
Figure 26. Project workspace after fixing package name 

There might still be some warnings, but there is no concern with those at this point.  

Integrating 3Com IP telephony 
 

 



 
  

30

Running the sample program 

With the IDE properly configured, it is possible to run the sample program in one of two ways:  

• One method involves using Apache Ant (which stands casually for another neat tool). Ant is a 
build tool that is based on Java and that is also similar to the make and makefile commands for C 
programs. The 3Com SDK was built using Ant and ships with build.xml files for preparing, 
compiling and running the sample programs.  

• The other method uses the IBM IDE Java application-run capabilities. 

Using Ant 

Before continuing, it is important to make some changes to the properties.xml file so that the Ant 
builds work properly. (See Figure 27; changes are highlighted in italicized, bold, red letters.) 

<!-- This is an xml entity included in IPTelephonyService build files --> 
 
<property name="sample.name"      value="IPTelephonySample"/> 
<property name="wsdl.name"        value="IPTelephonyService"/> 
 
<property environment="env"/> 
 
<!-- set project directories --> 
<property name="root.dir"       value="."/> 
<property name="lib.dir"        value="${root.dir}/lib"/> 
 
<property name="build.dir"      value="${root.dir}/build"/> 
<property name="build.lib"      value="${build.dir}/lib"/> 
<property name="build.class"    value="${build.dir}/classes"/> 
<property name="java.dir"       value="${root.dir}"/> 
<property name="res.dir"        value="${root.dir}/resources"/> 
 
<!-- Give user a chance to override without editing this file --> 
<property file="${root.dir}/build.properties"/> 
<property file="${user.home}/build.properties"/> 
 
<!-- debug flag for ant javac, values are "on" and "off" --> 
<property name="debug"          value="on" /> 
<property name="nowarn"         value="off" /> 
<property name="optimize"       value="on" /> 
 
<!-- what gets pulled in to the binaries: everything --> 
<property name="debuglevel"     value="lines,vars,source" /> 
<property name="deprecation"    value="true" /> 
<property name="source"         value="1.0" /> 
<property name="target"         value="1.0" /> 
 
<property name="build.file"     value="build.xml" /> 
 
<property name="exclude.log4j.configuration" value="true"/> 

Figure 27. Changes required to the properties.xml file 

Integrating 3Com IP telephony 
 

 



 
  

31

20. To run the sample using Ant, right-click the BUILD.XMLfile.  

21. Select Run As  Ant Build…  

22. When the Ant dialog box appears, select the run check box and clear any others that might be 
selected.  

23. Click Apply and, then Run. The GUI window (as shown in Figure 28) is presented.  

a. On this user interface, change the Web Service URL to be the URL of your 3Com VCX. That 
is, replace http://localhost/axis2/services/IPTelephonyService with the host name of your 
VCX. For example, http://<your VCX host name>/axis2/services/IPTelephonyService.  
(Note: The URI portion remains the same as axis2/services/IPTelephoneService.)  

b. For the Security Header fields of Username and Password, the shipped defaults are wsuser 
and wspwd, respectively. The Origination Number, Phone Password and Destination 
Number fields are specific to your 3Com VCX hardware configuration. 

 
Figure 28. Sample program 

 

Integrating 3Com IP telephony 
 

 



 
  

32

Using the IDE run 

Figure 29 shows how to start the GUI sample application using the IDE Java run capability. 

 
Figure 29. Running the sample 

Integrating 3Com IP telephony 
 

 



 
  

33

Note: The first time you run this program, the panel shown in Figure 30 might look somewhat different 
than it does here. If the panel highlights Eclipse Application, select Java Application and then click New, 
Which opens the panel shown in Figure 30.  

 
Figure 30. Running the sample (continued) 

24. Click Run and the GUI shown previously in Figure 28 now appears:  

a. On this user interface, you must change the Web Service URL to be the URL of your 3Com 
product. That is, replace http://localhost/axis2/services/IPTelephonyService with the host 
name of your 3Com software. For example, http://<your VCX host 
name>/axis2/services/IPTelephonyService.  
Note: The URI portion remains the same as axis2/services/IPTelephoneService.  

b. For the Security Header fields of Username and Password, the shipped defaults are wsuser 
and wspwd, respectively. The Origination Number, Phone Password and Destination 
Number fields are specific to your 3Com hardware configuration. 

Integrating 3Com IP telephony 
 

 



 
  

34

Migrating and running the sample on System i 

Running the sample GUI program on the System i itself is optional, but the section on “Setting up the 
Java IDE” that starts on page 7 is a required step for running the non-GUI sample code in the “Sample” 
section on page 54. 

Exporting the code 

To run the sample on the System i platform, you must export the project from the IDE to the 
integrated file system (IFS) on your System i model.  

1. Select the Java project and proceed to export it to the file system, as shown in Figure 31.  

2. The directory specified in the To directory field must on the System i model that has TCP/IP 
network access to the System i model with the 3Com telephony partition. In Figure 31, the K: drive 
is a mapped drive to the System i IFS. 

 
Figure 31. Exporting the project to the System i IFS 

Integrating 3Com IP telephony 
 

 



 
  

35

Setting up the Java environment 

1. Assuming you have mapped a drive letter to the System i IFS, in Microsoft® Windows® Explorer, 
move the lib directory contents (the lib directory from the “Exporting the code” step on page 34) to 
the /QIBM/UserData/Java400/ext directory. These JAR files are then added to the class path and 
their classes are loaded by the extensions class loader. 

2. Log on to the System i model that was the target of the export. 

3. Create or modify the SystemDefault.properties file in your home directory to look like the following 
code. The java.class.path file must minimally contain a period (.). You can add your specific JARs 
and directories, also. 

os400.awt.native=true 
java.class.path=. 

Setting up System i remote-graphics capabilities 

Before the sample program can work properly, the System i host must have Native Abstract 
Windowing Toolkit (NAWT) installed and running. This white paper uses the Virtual Network 
Computing (VNC) server that is included in the System i Tools for Developers PRPQ (5799PTL). This 
section details how to set up the VNC server so that the IPTelephonySample program remotely 
streams the GUI through the VNC server to the VNC client that runs on the workstation desktop, 
either in the VNCviewer client or a Web browser. (Refer to 
http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp, search on VNCviewer). 

Integrating 3Com IP telephony 
 

 



 
  

36

Running the sample 

1. Start the VNC client in a Web browser, as shown in Figure 32.  
 
Note: The port number (5899 in Figure 32) is 5800 plus the VNC display number that was 
configured in the VNC-setup step discussed in the previous section. 

 
Figure 32. Starting the VNC client in a Web browser 

Integrating 3Com IP telephony 
 

 



 
  

37

2. Add an environment variable for JAVA_HOME and set it to be 
/QOpenSys/QIBM/ProdData/JavaVM/jdk50/32bit as illustrated in Figure 33 and Figure 34.  

 
Figure 33. JAVA_HOME environment variable 

Integrating 3Com IP telephony 
 

 



 
  

38

 
Figure 34. JAVA_HOME environment variable (continued) 

 

Integrating 3Com IP telephony 
 

 



 
  

39

3. Invoke the STRQSH command and then enter java –version to see the Java virtual machine 
(JVM) version, as shown in Figure 35.   

 
Figure 35. QSH 

Change to the directory where the IPTelephonySample.class is. 

Integrating 3Com IP telephony 
 

 



 
  

40

4. On the command line, enter java IPTelephonySample. The GUI shows up in the VNC client as 
seen in Figure 36. 

 
Figure 36. Sample GUI in Web browser 

Integrating 3Com IP telephony 
 

 



 
  

41

Using the IDE WSDL editor 

The WebSphere Application Server Toolkit IDE includes a graphical viewer and editor for WSDL files. 
Within this editor, there is the ability to expand the WSDL to view input and output parameters that are 
defined and required by the telephony service points. As shown in Figure 37, the WSDL definition file for 
IP Telephony Web-service points has three categories: call control, phone configuration and phone state.  

 
Figure 37. IP Telephony WSDL in the WebSphere Application Server Toolkit IDE 

Integrating 3Com IP telephony 
 

 



 
  

42

1. For example, to see the parameters needed for a call-control request, you can expand 
callControlRequest in the Port Types box and expand the callControlRequest blue box to see 
the parameters, as shown in Figure 38. 

 
Figure 38. Parameters for a call-control request 

In this example, the parameters are as follows:  

• actionType 
• credentials 
• destinationNumber 
• serviceValidator 

There is an in-depth discussion of these parameters in the “Sample” section. 

Integrating 3Com IP telephony 
 

 



 
  

43

Customizing the SDK for your environment (optional) 

Now that you have imported the SDK successfully into the IDE, you can make some customizations that 
are specific to the local 3Com environment. 

Modifying the IPTelephony WSDL file 

The SDK comes with the service endpoint set to http://localhost/axis2/services/IPTelephonyService/. 
You can change this to be the URL of your 3Com, but the client stub shipped in the SDK allows this 
to be programmatically set to your 3Com host upon instantiation of the Web-service client object. To 
change the endpoint, perform the following steps: 

1. Double-click the IPTelephony.wsdl file in the IDE in the resources directory in the project you 
created in the toolkit. The WSDL file opens in the WSDL editor, as shown in Figure 3940.  

2. Click the Source tab, as illustrated in Figure 3940 (labeled number 2).  

3. Move to the bottom of the file and find the section starting with  
 <wsdl:service name=”IPTelephonyService”> 
and click the line that begins with  
 <soap:address…  
as shown in Figure 3940 (labeled number 3).  

4. In the properties tab, change the value of the location property to contain your 3Com address, as 
illustrated in Figure 3940 (labeled 4).  

5. Save the WSDL file changes. 

Integrating 3Com IP telephony 
 

 



 
  

44

 
Figure 39. Modifying the IPTelephony WSDL file 

  

Integrating 3Com IP telephony 
 

 



 
  

45

Generating the client-service stubs 

This step is optional and is not required to integrate and build applications that use the 3Com Web 
services in your environment. If you want to analyze the Web-services client code used by the 3Com 
SDK (or if you modify the IPTelephony WSDL as described in section “Modifying the IPTelephony 
WSDL file” to change the service endpoint from http://localhost/axis2/services/IPTelephonyService/ to 
your 3Com VCX host name), then you need to regenerate the client stubs and rebuild the 
IPTelephonyClient JAR.  

The SDK includes the IPTelephonyClient.jar file, which contains the Java classes that were 
generated by 3Com to be used to invoke and call the Web-service endpoints. After modifying the 
IPTelephony.wsdl file to point to your 3Com host, you must regenerate the IPTelephony client-side 
classes by using the Ant build.xml code that is included with the SDK.  

The first step is to make the Axis 2 JAR files available to the development environment. These JAR 
files include utilities that are used to create Java source files from the IPTelephony.wsdl file.  

1. Right-click your project and import the Axis 2 JARs that you downloaded as part of the 
prerequisites, as illustrated beginning in Figure 40 and Figure 41.  

 
Figure 40. Importing Axis 2 JARs 

Integrating 3Com IP telephony 
 

 



 
  

46

 
Figure 41. Importing Axis 2 JARs (continued) 

Note: As you proceed through this process, select No to all when prompted to replace or overwrite 
the JAR files that already exist. The lib directory will then contain the Axis 2 JAR file that was 
downloaded from the Apache Axis Web site, as shown in Figure 44.  

Integrating 3Com IP telephony 
 

 



 
  

47

2. Add the AXIS2_HOME environment variable to your system by right-clicking the My Computer 
icon on your desktop and selecting Properties.  

3. Click the Advanced tab and then click Environment Variables at the bottom of the panel to open 
the window as shown in Figure 42.  

 
Figure 42. New system environment variable 

4. Click New and add the AXIS2_HOME, as shown in Figure 43 — the Variable value is where you 
put the downloaded Axis 2 files.  

5. You must then exit the IDE and restart it so that it picks up the AXIS2_HOME environment variable. 

 
Figure 43. New AXIS2_HOME variable 

Integrating 3Com IP telephony 
 

 







 
  

50

Figure 46 shows the GUI after hitting the Run key. 

 
Figure 46. After w2j 

Note: You can ignore the red Xs here that signal errors because the generated Ant build.xml is used 
under the client package/folder to create the IPTelephonyClient JAR file. 

Integrating 3Com IP telephony 
 

 



 
  

51

Building a new IPTelephony client JAR file 

The next step is to build a test JAR file from the Java source created by the w2j Ant build step (the 
WSDL2JAVA utility that ran to create the client Java stubs).  

1. Select the build.xml file under the client directory, as shown in Figure 47.  

2. Right-click Run As -> Ant Build…  
Note: Select the Ant Build with the ELIPSES (…).  

 
Figure 47. Client stub BUILD.XML 

Integrating 3Com IP telephony 
 

 



 
  

52

3. Click only JAR client (default) to generate the test IPTelephonyClient JAR and select Run  
(see Figure 48). 

 
Figure 48. Ant options for client build 

Integrating 3Com IP telephony 
 

 



 
  

53

Upon successful completion, an IPTelephonyService-test-client.jar file is built (see Figure 49). You 
can export this file to the System i platform, and modify the SystemDefault.properties file to put this 
new JAR file into the classpath. Then, you can test the success of this process by running the sample 
again. 

 
Figure 49. After building the client JAR file 

 

Integrating 3Com IP telephony 
 

 



 
  

54

Sample  
The sample code included here is architected to use a messaging layer on the System i platform that is 
implemented by using keyed-data queues. These data queues accept messages from external programs 
to run 3Com Web-service requests and receive responses back from the 3Com platform. These external 
programs can be any System i program object that can interact with data queues. Alternatively, they can 
be Java servlets running in a WebSphere container. Although Java servlets can directly call the 3Com 
Web services, using this proposed methodology can seem to be more than is necessary. However, this 
architecture was chosen for this example because any System i application program can use it in a 
general way to integrate VoIP functions. By using data queues, with which all System i program objects 
can interact, you can use this example in many application scenarios, RPG, COBOL, C and CL, as well 
as Java and WebSphere Java applications. 

A Java server program monitors the data queues for transactions. It is this Java program that instantiates 
the IP telephony client stubs that were generated from the IPTelephony.wsdl file in the IDE. Depending 
on the message on the request data queue, the Java program invokes the appropriate Web service 
through the client-stub object. A transaction response is posted back to the response data queue from 
3Com. (See Figure 50.) 

Integrating 3Com IP telephony 
 

 



 
  

55

 

Transaction-
request 
queue 

Business 
application 
(RPG, C, 
COBOL, 
Java or 

WebSphere) 

3Com System i 
Linux VCX 

Queue 
handler 

Telephony 
Web  

service 
gateway 

IP telephony Web services 

Transaction-
response 

queue 

Transaction-
request 
queue 

Transaction-
response 

queue 

Figure 50. Sample logic flow 

Integrating 3Com IP telephony 
 

 



 
  

56

Setting up System i keyed-data queues 

The samples require that the request and response keyed-data queues are already created on the 
System i model. You use the i5/OS CRTDTAQ command (through a 5250 session) to create these 
queues, as Figure 51 and Figure 52 illustrate. 

 
Figure 51. Creating a request keyed-data queue 

Integrating 3Com IP telephony 
 

 



 
  

57

 
Figure 52. Creating a response keyed-data queue (continued) 

Integrating 3Com IP telephony 
 

 



 
  

58

The code itself 

This section reviews the various segments of the sample code. 

The test driver program (IPTelTransactionDataQueueDriver) 

This module is used to place the transaction on the request keyed-data queue. The key of the 
message on the queue is the originating telephone number, and the message is formatted as follows: 

1. STRING: makeCall, tranCall, getState, shutdown  
   Note: The first parameter must be eight characters long. 

2. STRING: origination phone number 

3. STRING: origination phone password  
   Note: This string is configured as part of the 3Com setup. 

4. STRING: destination number 

Figure 53 shows the code that places these transactions on the request keyed-data queue. 

public static void main(String[] args) { 
System.out.println("**Putting " + args[0] + ", " + args[1] + ", " + args[2] + ", " 
+ args[3] + " ON DATA QUEUE**"); 
 try { 
  AS400 sys = new AS400("se520b2.rchland.ibm.com","<userid>",”<password>"); 
  sys.setGuiAvailable(true); 
  KeyedDataQueue requestdq = new KeyedDataQueue(sys, 
"/QSYS.LIB/JRUSH.LIB/IPTELREQ.DTAQ"); 
  KeyedDataQueue responsedq = new KeyedDataQueue(sys, 
"/QSYS.LIB/JRUSH.LIB/IPTELRESP.DTAQ"); 
  /*Write the transaction to the queue with the second parameter, the origination 
phone number, as the key.*/ 
  requestdq.write(args[1], args[0]+" " +args[1]+" " +args[2]+" " +args[3]); 
  /*WAIT for response on the response keyed data queue with a key that matches the 
origination number we used as the key on the write to the request keyed data queue 
above.*/ 
  DataQueueEntry dqData = responsedq.read(args[1], -1, "EQ"); 
  System.out.println(dqData.getString()); 
  System.out.println("TRANSACTION COMPLETE"); 
 } catch (Exception e) { 
    System.out.println(e); 
 } 
} 

Figure 53. The test-driver program (IPTelTransactionDataQueueDriver) 

Integrating 3Com IP telephony 
 

 



 
  

59

The messaging layer (IPTelephonyDQHandler) 
This code interacts with the keyed request-data queue and accepts incoming requests from external 
programs, such as the IPTelTransactionDataQueueDriver program in the previous section. This layer 
instantiates a new server-gateway object. 

1. Instantiate the IPTelephonyServerGateway (see Figure 54). 

public class IPTelephonyDQHandler { 
  static IPTelephonyServerGateway ipt = new    
IPTelephonyServerGateway(null,"wsuser","wspwd");   

Figure 54. Instantiating the IPTelephonyServerGateway 

2. Create a new AS400 system object for connectivity to the System i model that hosts the keyed-data 
queues. Create the request and response keyed-data queue objects (see Figure 55).  

Note: The code does not create the data queues on System i, as they were already created. 
(This was discussed in the “Setting up System i keyed-data queues” section.) The 
KeyedDataQueue objects that have been created are the objects that communicate with the 
queues on System i.  

AS400 sys = new AS400("se520b2.rchland.ibm.com", "<userid>", "<password>"); 
KeyedDataQueue requestdq = new KeyedDataQueue(sys, 
"/QSYS.LIB/JRUSH.LIB/IPTELREQ.DTAQ"); 
KeyedDataQueue responsedq = new KeyedDataQueue(sys, 
"/QSYS.LIB/JRUSH.LIB/IPTELRESP.DTAQ"); 

Figure 55. Creating the KeyedDataQueue objects 

3. Loop through the code while there are transactions on the request queue and shut down when a kill 
transaction is requested. Read the request queue when the key is greater than, or equal to, zero. If 
there is no request, wait until there is a transaction (see Figure 56).  

while (listen == true) {  
   System.out.println("**WAITING FOR IP TELEPHONY TRANSACTION ON DATA QUEUE**"); 
   /*Wait on any entry on the data queue with key > or = "0". In this    sample we 
are using the originating phone number/extension as the key*/ 
   KeyedDataQueueEntry dqData = requestdq.read("0", -1, "GE"); 

Figure 56. Using loop while code 

Integrating 3Com IP telephony 
 

 



 
  

60

4. Process the entry that was read from the keyed-data queue. In this sample, the phone numbers are 
all four characters in length (parameters 2 and 4 in the data-queue message). Your environment 
might be different, so you might have to change the code shown in bold or underlined font (in 
Figure 57). Based on the type of transaction requested (the first parameter in the data-queue 
message), the appropriate subroutine is called. For example, the makeCall(a) method is called for a 
make-call request that passes the other parameters to the subroutine in a string array. The returned 
response is placed on the response keyed-data queue with the same key that was initially used to 
place the transaction on the request queue. This is done so that the requesting program (which 
made the request) can differentiate its response from other request responses that might be placed 
on the same response queue. This is illustrated with the code: responsedq.write(keyString, 
respString). (See Figure 57.) 

String dqEntry = dqData.getString(); 
/*Save the key so when we put response on the response keyed data queue it 
matches the key we used/put on the request keyed data queue.*/ 
keyString = dqData.getKeyString(); 
String a[] = { dqEntry.substring(9, 13), 
               dqEntry.substring(14, 19),  
               dqEntry.substring(20, 24) }; 
IPTelDirective = (dqData.getString().charAt(0)); 
switch (IPTelDirective) { 
// make call 
case 'm': 
    makeCall(a); 
    //PUT RESPONSE ON RESPONSE DATA QUEUE 
    responsedq.write(keyString, respString); 
    break; 
// disconnect call 
case 'd': 
    disconnectCall(a); 
    responsedq.write(keyString, respString); 
    break; 
// get phone state 
case 'g': 
    getPhoneStatus(a); 
    responsedq.write(keyString, respString); 
    break; 
// transfer call 
case 't': 
    transferCall(a); 
    responsedq.write(keyString, respString); 
    break; 
// shutdown 
case 's': 
    listen = false; 
    responsedq.write(keyString, "Shutting down"); 
    break; 
default: 
    break; 
} 
} 
} catch (Exception e) { 
      System.out.println(e); 
} 
} 

Figure 57. Processing the entry that was read from the keyed-data queue 

Integrating 3Com IP telephony 
 

 



 
  

61

For example, if the transaction on the queue is makecall 3001 12345 3002, the switch statement (in 
Figure 57) passes control to the makeCall method. This method creates a 3Com Telephony action-
type object. The IPTelephonyService WSDL from the SDK defines three action types:  

• CallControlActionType (makeCall, transferCall, disconnectCall and others) 
• PhoneConfigActionType (mutePhone, handsFree, fwdMailSet and others) 
• PhoneStatusActionType (getPhoneState, getFwdMailState, getDndState and others) 

The WSDL-to-Java generator created objects for each of these action types that are used to invoke 
the Web service from the IPTelephonyServerGateway sample code in Figure 58. It then invokes the 
processCallRequest of the IPTeleponyServerGateway object and gets a response string back from 
the method invocation. Figure 58 shows the makeCall method. 

public static void makeCall(String[] args) { 
try { 
    actionType = CallControlActionType.makeCall; 
    respString = ipt.processCallRequest(actionType,args[0],args[1], args[2]); 
    } catch (Exception e) { 
         e.printStackTrace(); 
    } 
} 

Figure 58. Using the makeCall method 

The methodology for handling the other action types is similar to the makeCall action. 

Integrating 3Com IP telephony 
 

 



 
  

62

The server gateway (IPTelephonyServerGateway) 
This is the object code that handles requests coming from the messaging layer. This object 
instantiates a Web-service client stub (IPTelephonyServiceStub), which was supplied with the SDK or 
generated in the “Generating the client-service stubs” section. The IPTelephonyServerGateway class 
is derived from the IPTelephonySample class that was supplied with the 3Com SDK. This class 
contains the methods that validate the parameters being passed to the Web services. it also contains 
the methods to create the required objects and Web-service parameters that  invoke the SDK client-
service stub to invoke the Web services.  

1. For example, the code sections in Figure 59 show the code that makes a call. It then passes the 
response from the Web service back to the IPTelephonyDQHandler. 

/* Process a Call Control request */ 
public String processCallRequest(CallControlActionType request, 
       String orig, String telepasswd, String dest) { 
       origination = orig; 
       phonePasswd = telepasswd; 
       destination = dest; 
       String callResponse = null; 
       callParamsValid = validateCallParams(); 
       if (callParamsValid) { 
          try { 
            callResponse = sendCallControlRequest(request); 
            // PASS RESPONSE BACK 
            return callResponse; 
           // System.out.println("\n" + callResponse); 
         } catch (Exception ee) { 
           // System.out.println("\n" + ee.getMessage()); 
           return ee.getMessage(); 
         } 
      } else { 
          return "Parameters Invalid"; 
      } 
} 

Figure 59. The server-gateway code that makes a call and passes the response to IPTelephonyDQHandler 

Integrating 3Com IP telephony 
 

 



 
  

63

2. The next section of code creates the objects necessary to build the SOAP Web-service request and 
then creates a service object to perform and route the request to the 3Com Web-service server 
(see Figure 60). 

/* Send the Call Control request */ 
public String sendCallControlRequest(CallControlActionType actionType) 
    throws Exception { 
// build request body 
    ActionCredentials cred = new ActionCredentials(); 
    cred.setOriginNumber(origination); 
    cred.setPassword(phonePasswd); 
    ServiceType ver = new ServiceType(); 
    ver.setString("Version"); 
    ver.setAPIVersion("V1"); 
    CallControlRequest req = new CallControlRequest(); 
    req.setActionType(actionType); 
    req.setCredentials(cred); 
    req.setDestinationNumber(destination); 
    req.setServiceValidator(ver); 
// init the client 
    IPTelephonyServiceStub stub = new IPTelephonyServiceStub(ipAddress); 
    ServiceClient serviceClient = stub._getServiceClient(); 
// build security header 
    SecurityType sec = new SecurityType(username, appPasswd); 
    serviceClient.addHeader(sec.toElement()); 
// execute the request 
    CallControlResponse response = stub.callControlRequest(req); 
    ActionResultType resultType = response.getCallControlResponse(); 
    return actionType.getValue() + " : " + resultType.getValue(); 
} 

Figure 60. The server-gateway code that creates the objects to build SOAP Web-service requests 

Web-service client stub (IPTelephonyServiceStub) 
If you generated the stubs in the “Generating the client-service stubs” section, these are the classes 
contained in the IPTelephonyClient.jar or the IPTelephonyService-test-client.jar files that are the 
generated interfaces to the 3Com Web services.  

1. The SDK comes with a pregenerated stub file that was generated from the IPTelphonyService.wsdl 
file. It contains the classes required to create a request that is handled by the Web service. The 
classes include the three request types: 

• CallControlRequest for making or transferring calls 
• PhoneConfigRequest for setting phone features 
• PhoneStatusRequest for querying the state of a 3Com attached phone 

The IPTelephonyServerGateway class instantiates a new service stub for each request it reads 
from the data queue.  

Integrating 3Com IP telephony 
 

 



 
  

64

Running the sample 

To run the sample, it is necessary to export the IPTelphonyDQHandler and IPTelephonyServerGateway 
classes to the System i model. The IPTelephonyServiceStub class might already be on the System i 
model if you went through running the sample GUI program provided by 3Com in the “Migrating and 
running the sample on System i” section.  

1. If not, follow the steps in the “Exporting the code” step in the “Migrating and running the sample on 
System i” section. Make sure to create an environment variable on the System i JAVA_HOME call 
and set it to /QOpenSys/QIBM/ProdData/JavaVM/jdk50/32bit. This causes the IBM 1.5 JVM to be 
used when the sample runs.  

2. Then, export the IPTelephonyDQHandler and IPTelephonyServerGatewway class files to a 
directory on the System i model where they can be invoked with the Java IPTelephonyDQHandler 
command in a Qshell environment on the System i model (as shown in Figure 61). The handler 
starts and waits for an entry to be placed on the request keyed-data queue.  

 
Figure 61. Running the DQ handler and gateway on the System i model 

Integrating 3Com IP telephony 
 

 



 
  

65

3. In the IDE, the IPTelTransactionDataQueueDriver class runs with arguments to place a transaction 
on the request queue. In the left-hand navigator, right-click IPTelTransactionDataQueueDriver; 
select Run As  Run. You see the panel as shown in Figure 62. 

 
Figure 62. Running the driver program in the IDE 

Integrating 3Com IP telephony 
 

 



 
  

66

4.  On the Arguments tab, put in the parameters, as shown in Figure 63. 

 
Figure 63. Arguments for the driver program 

Integrating 3Com IP telephony 
 

 



 
  

67

5. Click Apply, then Run. The transaction is placed on the data queue. Figure 64 and Figure 65 are 
displayed. On the System i server-gateway side: 

 
Figure 64. Server-transaction results 

On the driver program side: 

 
Figure 65. Client-transaction results 

Integrating 3Com IP telephony 
 

 



 
  

68

6. To shut down the server gateway, run the driver program again with the arguments as shown in 
Figure 66. Click Apply, then Run. 

 
Figure 66. Shutting down the server 

Integrating 3Com IP telephony 
 

 



 
  

69

Summary 
The goal of this white paper was to guide you through the installation and use of the 3Com IP Telephony 
SDK, allowing integration between business applications that run on the System i platform with the new 
features of the 3Com voice over Internet Protocol (VoIP) solution.  

 

Integrating 3Com IP telephony 
 

 



 
  

70

Resources 
These Web sites provide useful references to supplement the information contained in this document: 

• IBM eServer i5 Information Center 
http://publib.boulder.ibm.com/iseries/ 

 
• IBM Publications Center 

www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi?CTY=US 
 

• IBM System i on IBM PartnerWorld® 
ibm.com/partnerworld/systems/i 

 
• IBM Redbooks® 

ibm.com/redbooks 
 

• 3Com Open Network 
www.open.3com.com/tcom/ 

 
• Web Services Description Language (WSDL) to Java tooling 

http://ws.apache.org/axis2/download/1_1_1/download.cgi 
 

• System i Tools for Developers PRPQ (5799PTL)  
www14.software.ibm.com/webapp/download/preconfig.jsp?id=2004-08-
18+12%3A25%3A25.057448R&S_TACT=104CBW71&S_CMP=&s= 
 

• Registration with the 3Com Open Networks Partner program 
www.open.3com.com/tcom/ 
 

• Using a VNCviewer client or a Web browser 
http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp (search on VNCviewer) 
 

About the author 
Jon Rush is a technical consultant in ISV Business and Solution Enablement. He is a senior software 
engineer specializing in WebSphere, IBM Hypertext Preprocessor (PHP) and IP Telephony on the 
System i platform. Jon has helped hundreds of System i solution providers enhance their applications to 
use IBM e-business technologies such as IBM Net.Data®, WebSphere and PHP. 

 

Integrating 3Com IP telephony 
 

 



 
  

71

Trademarks and special notices 
© Copyright IBM Corporation 2007. All rights Reserved. 

References in this document to IBM products or services do not imply that IBM intends to make them 
available in every country. 

i5/OS, IBM, the IBM logo, Net.Data, PartnerWorld, Rational, Redbooks, System i and WebSphere are 
trademarks of International Business Machines Corporation in the United States, other countries, or both.  

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other 
countries, or both. 

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the 
United States, other countries, or both.  

Other company, product, or service names may be trademarks or service marks of others.  

Information is provided "AS IS" without warranty of any kind. 

All customer examples described are presented as illustrations of how those customers have used IBM 
products and the results they may have achieved. Actual environmental costs and performance 
characteristics may vary by customer. 

Any references in this information to non-IBM Web sites are provided for convenience only and do not in 
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part 
of the materials for this IBM product and use of those Web sites is at your own risk. 

 

Integrating 3Com IP telephony 
 

 


	Abstract 
	Introduction 
	Prerequisites 
	Overview 
	The SDK itself 
	Documentation 
	The IP telephony WSDL 
	Setting up the Java IDE 
	Importing the SDK 
	Running the sample program 
	Using Ant 
	Using the IDE run 

	Migrating and running the sample on System i 
	Exporting the code 
	 Setting up the Java environment 
	Setting up System i remote-graphics capabilities 
	Running the sample 

	Using the IDE WSDL editor 
	Customizing the SDK for your environment (optional) 
	Modifying the IPTelephony WSDL file 
	Generating the client-service stubs 
	Building a new IPTelephony client JAR file 


	Sample  
	Setting up System i keyed-data queues 
	The code itself 
	The test driver program (IPTelTransactionDataQueueDriver) 
	The messaging layer (IPTelephonyDQHandler) 
	The server gateway (IPTelephonyServerGateway) 
	Web-service client stub (IPTelephonyServiceStub) 

	Running the sample 

	Summary 
	 Resources 
	About the author 
	Trademarks and special notices 


