

 IBM WebFacing Tool
Performance Update using

WebSphere Application Server
V5.0

Dean Henkel
IBM eServer Solutions Enablement

Rochester, MN
Updated September 2003

© Copyright IBM Corporation, 2003. All Rights Reserved.
All trademarks or registered trademarks mentioned herein are the property of their
respective holders.

IBM WebFacing Tool Performance Update

 2

Table of Contents

Introduction.. 1

Expectations ... 2

Getting Started.. 2

Hardware Prerequisites for HTTP Server and WebSphere Application Server 3

Basic WebSphere Tuning.. 4

CUM and Group PTFs... 4

WebSphere Application Server Initial Heap Size Setting .. 4

Memory Pool Setting .. 5

IBM WebFacing Tool Optimizations ... 7

WebSphere Development Studio Client Version V4 and V5 7

Delivering Optimal Performing IBM WebFaced Applications 8

JSP Batch Compiler.. 8

JSP Pre-Touch... 10

What is JSP Pre-Touch? ... 10

When to use JSP Pre-Touch... 10

When not to use JSP Pre-Touch.. 10

JSP Compilation... 10

prepareJSPs ... 11

prepareJSPAttribute.. 11

prepareJSPThreadCount ... 11

Configuring the Pre-Touch Attributes... 11

ByteCode Cache File .. 13

When to Use ByteCode Caching... 13

Using the User Classloader Cache... 14

IBM WebFacing Tool Performance Update

 3

os400.define.class.cache ... 14

Additional User Class Loader Cache Settings .. 14

os400.define.class.cache.hours.. 14

os400.define.class.cache.maxpgms.. 15

When not to use ByteCode Caching.. 16

Just-In-Time compilation... 16

Additional Performance Enhancements .. 18

Version 5.0 of the WebFacing Tool... 18

Compression... 18

Display File Record I/O Processing... 18

Tuning the Record Definition Cache... 19

Cache Management — Definition Cache Content Viewer 21

Cache Management — Record Definition Loader.. 23

WSADMIN and WebSphere Application Server Scripts..................................... 24

WSADMIN ... 25

crtwasinst.. 26

startServer, stopServer.. 26

Browser Caching .. 26

IBM HTTP Server Powered By Apache to Serve Static Content 26

Add a Directory to the Web.. 27

Change Permissions on the deployed application.. 28

Set fileServingEnabled for the deployed application.. 28

Regen the WebSphere Plugin .. 29

Application Deployment Options ... 31

Deploying a new application.. 31

IBM WebFacing Tool Performance Update

 4

Precompile all JSPs on development server.. 31

Copy the Compiled JSPs .. 31

Use the EARExpander tool repackage .EAR file .. 34

Network Connection Speeds and Compression... 35

PC Client.. 38

Timings ... 39

Conclusion.. 46

Special Thanks.. 47

Reference Web Sites... 47

Trademarks .. 48

Introduction

There has been a lot of excitement in the IBM® eServer™ iSeries™ community
regarding IBM’s new WebFacing Tool and its promise to quickly move 5250
green-screen applications to the Internet. It is not necessary to be a Java®
programmer to get an application to the Internet, but one should have a good
understanding about how web applications perform and how to make them
perform well.

When looking at performance, there are several aspects to consider — how long
does the application take to start up, how well does the application server perform
at the server level, and perhaps the most important, how well does the application
perform to the end user.

There are and will be differences in performance between a traditional green-
screen application and a browser-based application. This is inherent to all
browser-based applications and is a result of the introduction of additional
networking components consisting of the client pc, Intranet/Internet connection
speeds, network hops, browser interface, etc.

What does this mean for Web-enabled applications? Solution developers and
customers need to consider several factors when creating and deploying a Web-
enabled application. Some of these factors are:
? Realistic performance expectations — Green-screen applications versus

browser-based applications.
? Adequate server hardware — It is important to remember that new workloads

use system resources.
? Reliable fast Internet/Intranet connection — A slow pipeline can be a

bottleneck.
? Adequate client hardware — This is to accommodate for the significant

amount of work done by browsers.

This paper was written to assist solution developers and customers with
performance issues of a Web-enabled version of their application, and to provide
them with some tips on how to get the best performance possible.

This is the second edition of the original white paper. The first version focused on
the improvements using WebSphere® Development Tools Version 4 to both
WebSphere Application Server V3.5 and 4.0. This edition focuses specifically on
deployment of an application deployed to WebSphere Application Server -
Express V5.0 using the WebSphere Development Studio Client V4 and V5.

New enhancements to this paper include a more detailed approach on when and
how to use the JSP PreTouch tool, packaging and deploying an IBM WebFaced
Application with precompiled JavaServer Pages™, and using the IBM HTTP
Server powered by Apache to serve static content. In addition to runtime
performance, this edition includes topics on using the WebSphere scripts to
decrease installation and server startup times. Issues that are not directly tied to

IBM WebFacing Tool Performance Update

 2

runtime performance but impact performance perceptions and usability are also
discussed.

Developers who want a comprehensive look at the IBM WebFacing Tool that
includes an end-to-end look at the tool should consider reading the IBM Redbook,
IBM WebFacing Tool: Converting 5250 Applications to Browser-based GUIs
(SG24-6801-00).

Expectations
Traditional green-screen applications are very fast because the data transmitted
is very small. In a worse case scenario for a green screen application in which
every field were changed, a 2K Buffer transmission would occur.

Browser applications transmit more data. Examine any Internet web site, such as
ibm.com, and it is very common to see over 50,000 bytes of data per second
being transmitted from the server to a browser. Over a dial-up or other slow
speed Internet connections, the transmission time on the wire for one page can
be significant. Multiply that by multiple users and other applications using network
bandwidth, and some organizations may find out that the 256K byte frame relay
pipe is not sufficient.

Each type of interface has advantages and disadvantages. Typically, data entry
speed will be superior on green-screen applications. The ability to type ahead
several levels of screens for experienced users is something a browser cannot
compete with. Browser-based application have the advantage of the more
modern look-and-feel as well as allowing access to multiple device types,
including wireless phones and handheld devices.

The IBM WebFacing Tool is an excellent way to quickly modernize a 5250-based
application. Page transition times of one to three seconds are quite normal on
adequate server hardware, a fast Internet connection (minimum of 1.5MB
connection speed), and a client running a browser configured for static content
caching. If the advantages of a browser are appealing, the IBM WebFacing Tool is
a great place to start.

Getting Started

There are five different basic performance considerations:
? Server Hardware Prerequisites for HTTP Server and WebSphere
? Basic WebSphere Tuning
? IBM WebFacing Tool Optimizations
? Using IBM HTTP Server Powered By Apache to Server Static Content
? LAN Connection Speed
? Client Hardware

Each category is discussed in the following sections and should help in getting
the most out of a Web-enabled application.

IBM WebFacing Tool Performance Update

 3

Hardware Prerequisites for HTTP Server and WebSphere Application
Server
WebSphere Application Server has minimum server-side hardware requirements.
Make sure that the system under test meets those requirements. For complete
information on the various versions of WebSphere Application Server, see the
WebSphere Application Server for iSeries Web site at:
ibm.com/eserver/iseries/websphere

The new WebSphere Application Server - Express V5.0 for iSeries has lowered
the server-side requirements to 300 CPW with a minimum of 512MB RAM. This
is basically enough to get WebSphere Application Server started and running a
small application with a small number of users. NOTE: These requirements are
just a minimum guideline. A good rule of thumb is to have a minimum of 512MB
RAM dedicated just for WebSphere Application Server. This brings the system
minimum RAM to 768M which will be much more acceptable to users on a
dedicated system. This is particularly important if the Apache Integrated GUI is
being used to manage a WebSphere Application Server - Express V5.0 server
instance. This GUI is an easy way for customers to manage the WebSphere
Application Server - Express environment. However, the Integrated GUI runs in a
separate application server requiring additional system resources, and in
particular, increased memory resources.

This is not to say that a system with 768M of RAM will run web application and
have it perform well. There are many factors that vary from customer to customer
such as additional workloads, number of users, and application complexity that
will determine a true iSeries system minimum hardware specification. Readers
interested in accurately sizing an iSeries server can use the IBM Workload
Estimator tool for assistance. The Workload Estimator Tool can be found at:
www-912.ibm.com/servlet/EstimatorServlet

IBM WebFacing Tool Performance Update

 4

Basic WebSphere Tuning
A common question from developers is: “How can I tune WebSphere Application
Server to make my application run faster?” This is fairly easy and straightforward
for a Web-enabled application:
? Make sure the latest OS400 CUM Package is loaded on the server
? Make sure the latest Group PTFs for WebSphere, Database, Java, HTTP

server are loaded on the server.
? Verify the Initial Heap Size Setting
? Verify that the memory pool used by the WebSphere application server has

enough RAM

For additional details, refer to the WebSphere Performance Considerations Guide
located at:
ibm.com/eserver/iseries/software/websphere/wsappserver/docs/WS40PerfCon.
pdf
CUM and Group PTFs
Why load the latest CUM and Group PTFs? Simple, IBM is continuously making
functional and performance improvements to these products. It is easy to take
advantage of these improvements by installing the latest PTFs. To determine the
latest PTFs for supported operating systems, check out
ibm.com/eserver/iseries/support

WebSphere Application Server Initial Heap Size Setting
Setting the Initial Heap size is the single most important WebSphere Application
Server setting that can help improve performance. Think of the initial heap size
setting as the garbage collection threshold on an iSeries server. This means that
when the free memory available in the heap is less than the initial heap size
setting, garbage collection support will run to free memory. The setting varies
based on the amount of memory in the memory pool, the number of processors,
and the number of applications running within WebSphere. There is no real
scientific way for setting the heap. Try different settings to see what works best.
With the release of WebSphere Application Server V5.0, the default heap size
setting was increased to 96MB. Previous versions of WebSphere Application
Server defaulted the heap to 32MB which, in most cases, did not provide the best
performance.

When using WebSphere Application Server V5.0, try the default setting first and
see how the application performs. If performance is not acceptable, change the
default heap setting to 128MB, “-Xms128m” — it may have a positive impact on
user response times. For WebSphere Application Server V5 and WebSphere
Application Server – Express V5.0, the heap setting is changed in the WebSphere
Console under JVM Properties.

IBM WebFacing Tool Performance Update

 5

Figure 1 - Setting the Initial Heap Size using the WebSphere Application Server V5
Console

Setting the heap size too big may not yield any additional performance, but it
could steal system resources and could actually cause the performance to
worsen. Try different settings to optimize performance and system resources.

Memory Pool Setting
By default, WebSphere Application Server runs in the base memory pool, Base.
Depending on what other applications are running within *BASE, it may not be
necessary to setup a dedicated memory pool for WebSphere Application Server.

Users just starting to use WebSphere Application Server should leave the
application server running in the base memory pool and see how it performs. If
performance is acceptable, leave it alone. If performance is not acceptable, check
to see how much memory is dedicated to *BASE — there may be that not
enough memory has been allocated to *BASE to support WebSphere running in
the pool. WebSphere Application Server needs a minimum of 512MB. Depending
on the size and complexity of the installed application, it may require 1GB or more
to the desired page response times.

Should it be necessary to allocate a dedicated pool for WebSphere Application
Server, first check to insure that there is sufficient memory to reallocate from
other memory pools. Improperly allocating and configuring memory pools can
actually decrease performance. To learn about setting memory pools, visit the
iSeries Information Center Web site at:
http://publib.boulder.ibm.com/pubs/html/as400/infocenter.html

A very quick check can be made to determine if the pool WebSphere Application
Server has sufficient memory. The WRKSYSSTS command displays system

IBM WebFacing Tool Performance Update

 6

status. With the proper assistance level, users can view the page faulting rate
occurring on the system. Using this command while running the application,
observer the number of NonDB pages per second. As a rule of thumb, a pool
averaging over 50 NonDB Page faults may mean more memory is need in the
pool. Figure 2 is an example of heavy page faulting in *BASE. In the Machine Pool,
the page faulting rate should be kept to an absolute minimum, generally less than
five per second.

As shown in Figure 2, this system only has 512MB total system RAM. It is a
minimum configured system with only 394M of memory in the pool where
WebSphere Application Server is running. Running a small application under light
load resulted in acceptable page response times. Running a larger number of
users resulted in excessive NonDB page faulting. In this situation, increasing the
memory size by adding additional RAM to the system would reduce faulting and
improve page response times.

Figure 2 - WRKSYSSTS Screen showing significant NonDB page faulting

IBM WebFacing Tool Performance Update

 7

IBM WebFacing Tool Optimizations

Consider IBM WebFacing Tool optimizations as one of the following:
? WebSphere Development Studio Client V4 or V5 with latest service pack
? Precompiling JavaServer Pages
? Creating and using a ByteCode Cache File
? Using IBM HTTP Server Powered By Apache to serve static Content

WebSphere Development Studio Client Version V4 and V5
The WebSphere Studio Development Client Version 4.0 contains many
performance improvements over the earlier release of the IBM WebFacing Tool
released in the Websphere Development Tools. Testing proved approximately a
one-half second screen transition improvement compared to a similar application,
using an earlier release of the tool. Dial-up connection performance
improvements were even more significant.

Customers who are just starting with the IBM WebFacing Tool or are willing to
migrate to the new tool should use the WebSphere Studio Development Client
Version 5.0. From a runtime perspective, V5.0 provides equal or slightly better
performance as compared to V4.0. There have been specific changes to optimize
memory usage of the Webfacing runtime to improve scalability. However, these
changes require that the caching support is configured optimally in order to
achieve the best performance. If this is not done, V5.0 requires significantly more
CPU than V4.0. Please refer to the section ‘Memory Optimization for Record IO
Processing’ for how to configure the associated cache support.

In addition, compression support, similar to Apache mod-deflate, has been added
to provide significant response times gains on slower internet connections. Refer
to the section ‘Network Connection Speeds and Compression’ for more
information and how to ‘turn on/off’ compression.
Regardless of what version is used, make sure the latest service pack is
installed. Service packs can be found at:
ibm.com/software/ad/wds400/support/

More information about WebSphere Development Studio Client Version 4.0 &
Version 5.0 can be found at: ibm.com/software/ad/wds400/

IBM WebFacing Tool Performance Update

 8

Delivering Optimal Performing IBM WebFaced Applications
JavaServer Pages (JSPs) are HTML pages containing embedded Java code
capable of providing dynamic content. Unlike static HTML, the Java code within a
JSP must be compiled into Java class files. The WebFacing Tool generates
JSPs from the DDS source. Applications with large numbers of DDS screens will
generate large numbers of JSP files. Each of these files needs to be compiled
before they can be run.

When a screen change occurs, WebSphere Application Server makes sure that
the compiled Java code is associated with the JSP. If it does, WebSphere
Application Server executes the compiled Java code very quickly. If the compiled
class does not exist, Websphere Application Server compiles the JSP file and
any other JSP files that may be required to execute the request. This compilation
is a very expensive operation at run time and can significantly delay the response
time the first time a JSP is touched.

First impressions are very important. Ideally, an .EAR or .WAR file should be
distributed to a customer with all JSPs precompiled. Creating an .EAR or .WAR
file with precompiled JSPs is discussed in a later section of this paper. The
following section describes how it is possible to compile and distribute the JSP
files in an .EAR or .WAR file.

JSP Batch Compiler
WebSphere Application Server ships with two JSP batch compilers. The first
batch compiler can be enabled using the Integrated GUI for WebSphere
Application Server - Express or in the WebSphere Application Console and is an
easy way to compile all of the JSP files.

The downside to the GUI version of the JSP Batch Compiler is that it is a
synchronous operation at application installation time. This means that the
installation process will not complete until all JSPs are compiled. This is a good
option for small applications but can be cumbersome for large applications.

Figure 3 shows the JSP compiler option that can be checked during application
installation.

IBM WebFacing Tool Performance Update

 9

Figure 3 — Precompile JSPs option checked during application installation

Information on how to compile JSPs using the batch compiler for WebSphere
Application Server - Express V5 can be found in the WebSphere Information
Center at:
http://publib.boulder.ibm.com/iseries/v5r2/ic2924/index.htm?info/rzamy/50/expres
s.htm

For compiling JSP files when using WebSphere Application Server 4.0
information, see:
http://publib.boulder.ibm.com/was400/40/AE/english/docs/jsp11bcp.html

The second JSP batch compiler that ships with WebSphere Application Server is
the script version. For WebSphere Application Server – Express, the JSP batch
compiler is located in the \QIBM\WebASE\ASE5\bin directory on the Integrated
File System (IFS) file structure. Using Qshell, this command can be invoked to
compile all of the JSP files for an installed application.

When using the JspBatchCompiler script to compile an entire enterprise
application, run the script from a temporary IFS directory. The script creates
temporary files so running it from its home directory may cause problems if *RW
permission has not been granted.

This is an example of running the JspBatchCompiler script from Qshell from a
temporary directory that has *RW permission.

> /Qibm/ProdData/WebASE/ASE5/bin/JspBatchCompiler -enterpriseapp.name
ibmorder -webmodule.name ibmorder.war -instance MyInstance -server.name
MyInstance -verbose true

Running the same command in batch from an OS400 command script can be
done as follows:

SBMJOB CMD(QSH CMD('cd /mycompile;/QIBM/ProdData/WebASE/ASE5/bin/JspBatchCompiler -
enterpriseapp.name ibmorder -server.name MyInstance -instance MyInstance')) JOB(BATCHCMPL)

Information on how to compile JSPs using the JSP batch compiler for
WebSphere Application Server - Express V5 can be found in the WebSphere
Information Center at:

IBM WebFacing Tool Performance Update

 10

http://publib.boulder.ibm.com/iseries/v5r2/ic2924/info/rzamy/50/program/jspbatch.
htm

JSP Pre-Touch
WebSphere Application Server for iSeries has a unique feature known as JSP
Pre-Touch. JSP Pre-Touch can be a confusing topic so let’s try to simplify what it
is, when to use it, and when to turn it off.

What is JSP Pre-Touch?
JSP Pre-Touch is a tool for compiling and loading JSPs during application startup.
It is configured via a series of initialization parameters that are added to a web
module’s ibm-web-ext.xmi file and operates in a separate thread from the
application server. Therefore, the application startup process is unaffected.

The reason that JSP Pre-Touch was created is to help reduce the amount of time
it takes to invoke a JSP after an application is first started (called “first touch”),
even when the JSP has already been compiled. The increased time during first
touch is spent class loading the JSP class and optimizing the class (known as
JIT, or Just-In-Time compilation). When the JSPs are class loaded, a step called
byte code verification (which is quite costly) takes. The byte code verification time
can nearly be eliminated by caching the results of verification using the byte code
cache. Like other types of caching, however, the verification process must occur
once in order to fill the cache.

When to use JSP Pre-Touch
The JSP Pre-Touch mechanism should be used when all JSPs need to be
compiled asynchronously and/or the cache file needs to be primed.
When using the JSP Pre-Touch tool to prime the byte code cache, it is highly
recommended that the JSP Pre-Touch tool is used as the mechanism for
compiling the JSPs. The reason for this is that by using the JSP Pre-Touch tool to
compile the JSPs, some additional code will be added to the compiled JSP
classes to speed up the JSP Pre-Touch processing.

A secondary use is to class load ALL JSPs for an application into WebSphere
Application Server. This removes the class load penalty paid by the first user to
access a JSP file.

When not to use JSP Pre-Touch
Avoid running the Pre-Touch tool at application startup in production
environments. Loading large numbers of infrequently used JSPs up front is not
without tradeoffs. It can significantly increase the JVM heap size which can cause
memory bottlenecks at startup and during garbage collection cycles. For
instance, assume that an application has 20,000 JSP files. Assume that most
customers, in normal running production environments, use about 2,000 of those
JSPs for their job. Using the Pre-Touch will class load all 20,000 JSP files into
WebSphere Application Server. As a result, running the JSP Pre-Touch during
every application startup is neither practical nor very beneficial in this scenario. It
may be desirable to run JSP Pre-Touch only once to prime the byte code cache.
Or depending on the customer’s situation, it may simply make more sense to let
the byte code verification happen on a per-JSP basis as each JSP is invoked.

JSP Compilation

IBM WebFacing Tool Performance Update

 11

To enable the JSP Pre-Touch, there are three possible attributes that can be
configured. Each of the attribute settings reside in the ibm-web-ext.xmi file of a
web module (found in the WEB-INF directory). Setting the parameters in this file
can be achieved using the WebSphere Development Studio Tools, the Application
Assembly Tool, or any text editor.

The two most important attributes are prepareJSPs and prepareJSP Attribute.
The third attribute, prepareJSPThreadCount, can be used on multi-processor
systems.

prepareJSPs
When the attribute, prepareJSP, is present, all JSP files will be compiled on
WebSphere Application Server startup. This process happens in a separate
thread, so the WebSphere Application Server may, depending on the quantity and
size of JSP that the application has, finish starting up before the JSP files are
finished compiling. If starting and running the Web-enabled application seems
slow, it could be because the JSP files are still compiling. Check the server log
files to know when all of the JSP files have been compiled before doing any
timings.

The numeric attribute value represents the minimum size (in kilobytes) that a JSP
must be in order to also be class loaded and JIT-compiled. The default is 0, which
causes all JSPs to be class loaded and JIT-compiled.

prepareJSPAttribute
Set the prepareJSP attribute to a value that is a request parameter composed of
an alphanumeric that the JSP never expects to otherwise receive. This attribute is
used to perform a quick exit from the service method of each JSP when they are
prepared by this tool. This enables the tool to work much faster and prevent
exceptions from showing in the WebSphere Application Server logs as a result of
executing the JSP at startup.

If this attribute is not set on a Web-enabled application but the prepareJSP
attribute is set, exceptions will be thrown by the application when the service
method for the JSP is called because the WebFacing runtime has not been
initialized. This will put many error messages in the log, use heap space, and
cause the garbage collector to run. Here is a good rule of thumb — if
precompiling the JSP, use the prepareJSP attribute setting as well.

prepareJSPThreadCount
Set the prepareJSPThreadCount numeric attribute to the number of threads that
the user would like the JSP Pre-Touch tool to run in when processing the JSPs.
Since a single thread makes use of just one processor, multi-processor systems
may better utilize the JSP Pre-Touch tool by specifying a value equal to the
number of processors on the system. The default setting for this attribute is 1,
representing the number of threads that are created to perform pre-touch
processing for this Web module.

Configuring the Pre-Touch Attributes
The Pre-Touch attributes can be configured in three different ways.
? Using the WebSphere Development Studio Client
? Using a text editor to edit the deployed ibm-web-ext.xmi file

IBM WebFacing Tool Performance Update

 12

? Using the Application Assembly Tool shipped with WebSphere Application
Server Base V5 (see product documentation).

Figure 4 shows an example of what the WebSphere Development Studio Client
with the prepare attributes set from the WebFacing Tool looks like.

Figure 4 — WebSphere Development Studio Client V5 with the prepare attributes
set for the WebFacing Tool

It is possible to add or remove the JSP Pre-Touch attributes in the ibm-web-
ext.xmi file. Be sure to modify the correct ibm-web-ext.xmi file if making changes
to a deployed application. CAUTION: The ibm-web-ext.xmi file for a deployed
application resides in two places — under the deployed application and under the
cells directory when using a WebSphere Application Server V5.x. When modifying
the file manually, make sure to modify the file under the cells directory path for the
deployed application. For example:

\QIBM\UserData\WebASE\ASE5\MYINSTNTANCE\config\cells\MYSYSTEM_
MYINSTANCE\applications\ibmorder.ear\deployments\ibmorder\ibmorder.wa
r\WEB-INF\ibm-web-ext.xmi

would be the location of the deployed location of the XMI file where attributes could
be added or removed for WebSphere Application Server - Express V5.

Figure 5 shows the resulting ibm-web-ext.xmi file settings created from the
WebSphere Development Studio Client Tools to edit the ibm-web-ext.xmi file as
shown in Figure 4.0

IBM WebFacing Tool Performance Update

 13

Figure 5 — Displaying the contents of ibm-web-ext.xmi file highlighting the JSP
attribute settings

During compilation, the JSP Pre-Touch tool writes information to the
SystemOut.log file indicating progress was made. When all JSPs have finished
compilation, a final message indicating that ALL JSP files have been compiled will
exist in the log. Figure 6 (below) is a sample from the SystemOut.log file showing
that in this example, ALL JSP files have finished out of 22.

Figure 6 — Segment of SystemOut.log file from WebSphere Application Server -
Express V5 showing “all JSP files finished” message

Once all JSP files have been compiled, these attributes can, and in many cases
should, be removed from the deployed application. This will improve overall
system performance upon subsequent server restarts since the WebSphere
Application Server will skip the step of checking all JSP files for recompilation.

ByteCode Cache File
The ByteCode cache file is only available on an iSeries server. The cache file is
an empty jar file that contains Java programs that can improve the startup
performance of classes loaded by user class loaders. This is done by allowing
the Java Program objects (JVAPGMs) created by user classloaders to be cached
for reuse, avoiding JVAPGM creation and bytecode verification during the initial
class load. WebSphere components (servlets and JSPs) are loaded by user
classloaders and can take advantage of this feature.

When to Use ByteCode Caching
Consider the techniques described below if the system is experiencing
performance problems in the following areas:
? Application server startup and termination
? Component runtime during first-touch of a JSP

The user classloader cache improves performance in two ways:
? Avoiding bytecode verification — If the program is already in the cache,

bytecode verification is not performed again.
? Avoiding temporary creation of JVAPGMs — If the program is already in the

cache, the existing JVAPGM is used. Since any optimization level can be
stored in the cache, it is more practical to consider higher optimization levels.

<webappext:WebAppExtension xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:webappext="webappext.xmi" xmlns:webapplication="webapplication.xmi"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmi:id="WebAppExtension_1" reloadInterval="5"
reloadingEnabled="true" defaultErrorPage="error.jsp" additionalClassPath="" fileServingEnabled="false"
directoryBrowsingEnabled="false" serveServletsByClassnameEnabled="true">
 <webApp href="WEB-INF/web.xml#WebApp_ID"/>
 <jspAttributes xmi:id="JSPAttribute_1" name="prepareJSPs" value="0"/>
 <jspAttributes xmi:id="JSPAttribute_2" name="prepareJSPAttribute" value="JunkEntryPoint"/>
</webappext:WebAppExtensions>

IBM WebFacing Tool Performance Update

 14

In both cases, the first time the class is loaded (for example, before the cache is
primed or after a class is changed), these functions are performed and the load is
slower. A key point worth noting is that the byte code verification is permanent
when using the cache file. Once the class is already in the cache, subsequent
loads are much quicker.

Using the User Classloader Cache
To enable the user classloader cache, there is one Java System property that
must be set, os400.define.class.cache.file. This setting is changed in the Custom
Properties panel of the WebSphere Application Server administrative console.

os400.define.class.cache
The os400.define.class.cache setting specifies the full path name of a valid JAR
file that holds the Java Program objects. This JAR file must contain a valid JAR
entry. There are two ways to create a valid cache JAR file:
? Copy the /QIBM/ProdData/Java400/QDefineClassCache.jar file to an IFS

directory and rename as desired
? Create a new cache JAR file as follows:

o Start Qshell by entering the command STRQSH.

o Switch to the directory where the JAR file will reside. Make the
directory first, if necessary.

o mkdir /cache
o cd /cache

o Create a dummy file to place in the JAR. The name can be anything,
this example uses example.

o touch example

o Build the JAR file. This example names the JAR file MyAppCache.jar
o jar -cf MyAppCache.jar example

o Cleanup the dummy file
o rm example

Additional User Class Loader Cache Settings
The additional class loader cache settings are optional and only valid if the cache
file setting is used. For many customers, the default values are adequate and
setting these parameters are unnecessary. The properties are:
? os400.define.class.cache.hours
? os400.define.class.cache.maxpgms

os400.define.class.cache.hours
The os400.define.class.cache.hours JVM setting specifies how long (in hours) an
unused JVAPGM persists in the cache. When a JVAPGM has not been used and
this timeout is reached, the JVAPGM is removed from the cache. The default
value is 168 hours (one week). The maximum value is 9999 hours (about 59
weeks).

IBM WebFacing Tool Performance Update

 15

os400.define.class.cache.maxpgms
The os400.define.class.cache.maxpgms JVM setting specifies the maximum
number of JVAPGMs the cache can hold. If this value is reached, the least
recently used JVAPGMs is replaced first. The default value is 5000. The
maximum value is 40000.

Figure 7 is an example of what a WebSphere Application Server 5.0 console with
byte code caching parameters set looks like.

Figure 7 — WebSphere Application Server 5.0 console byte code cache

parameters

Figure 8 is a high- level view of how the JSP Pre-Touch tool works with or without
the byte code caching option.

In the compile step, the JSP compiler determines if compilation is required. If the
compiled JSP does not exist or is out of date with the class file, the JSP compiler
will compile the JSP, saving the class file to disk.

The Class Load/Verification step loads the class file into memory. If the class is
loaded from the Java class file, it must be byte code verified. If caching is enabled
and the class can be loaded from the cache, the verification step is skipped. If
caching is enabled and the file in the cache is out of date or does not exist, the
class file is then written to the cache for future use.

The process is then repeated for the next JSP in the application until all JSPs are
processed.

IBM WebFacing Tool Performance Update

 16

Figure 8 —High-level view of how the JSP Pre-Touch tool works with or without the
bytecode caching option

When not to use ByteCode Caching
The downside to using the ByteCode cache is that the cache file itself consumes
disk resources and that there is no way to partially prime the cache. The choices
are to prime the cache while running the application or configuring the JSP Pre-
Touch tool, restarting the application server, and priming the cache with all class
files for the application.

Priming the cache while running the application may not be a good option on low-
end hardware models because the response times when priming the cache on
first touch may be unacceptable to the customer.

It is very difficult to make a blanket statement to use or not use the cache file.
Most applications experience a slight gain (1.25 seconds) using the cache file the
first time a JSP is touched versus not using the cache file.

Before using bytecode caching, test the application with precompiled JSPs only. If
the first touch of the JSPs within an application are acceptable, using the
ByteCode Cache file may not be necessary.

Just-In-Time compilation
Just-in-Time Compilation (JIT) is a method used by the Java Virtual Machine to
speed up the execution of Java programs. Testing has shown that turning on the
JIT compiler for a Web-enabled application does improve performance and it
provides about 10% better performance as the direct execution environment on
iSeries. Users who enable the JIT compiler can expect a performance hit of

IBM WebFacing Tool Performance Update

 17

approximately two seconds when accessing their application for the first time.
This is due to the JIT compiling WFRun.jar, (the WebFacing Runtime classes).
The default setting for JIT is enabled. Users who do not wish to experience the JIT
compilation penalty at first should disable JIT compilation. Disabling the jit
Compiler is done in the WebSphere Application Server Console.

Figure 9 is an example of what a WebSphere Application Server V5.0 console
with JIT Disabled.

Figure 9 — WebSphere Application Server Version 5.0 Console with JIT Compiler
Disabled

IBM WebFacing Tool Performance Update

 18

Additional Performance Enhancements

Version 5.0 of the IBM WebFacing Tool
There have been a significant number of enhancements delivered with V5.0 of the
IBM WebFacing Tool including:
? Support for viewing and printing spooled files (WebSphere Development

Studio Client V5 Advanced Edition Only)
?????Struts-compliant code generated by the IBM WebFacing Tool conversion

process which sets the foundation for extending the IBM Webfaced
applications using struts-compliant action architecture (WebSphere
Development Studio Client Advanced Edition Only)

? Automatic configuration for UTF-8 support when deployed to WebSphere
Application Server V5.0

? Support for function keys within window records
? Enhanced hyperlink support
? Support to enable compression to improve response times on slow

connections
? Improved memory optimization for record I/O processing

The two important enhancements from a performance perspective will be
discussed below. For other information related to the IBM WebFacing Tool V5.0,
please refer to the following Web site:
ibm.com/software/awdtools/wdt400/about/webfacing.html

Compression
WebFacing has been enhanced to support compression in version 5.0 of the IBM
WebFacing Tool.

Display File Record I/O Processing
Display file record I/O processing has been optimized to decrease the
WebSphere Application Server runtime memory utilization. This has been
accomplished by enhancing the Webfacing runtime to better utilize the Java
objects required for processing display I/O requests for each end user
transaction. Formerly on each record I/O, Webfacing had to create a record data
bean object to describe the I/O request, and then create the record bean using
this definition to pass the I/O data to the associated JSP. These definition objects
were not reused and were created for each user. With the optimization
implemented in V5.0, the record bean definitions are now reused and cached so
that one instance for each display file record can be shared by all users.

This optimization has decreased the overall memory requirements for the IBM
WebFacing Tool V5.0 versus V4.0. This memory savings helps reduce the total
memory required by the WebSphere Application Server, which is referred to as
the JVM Heap Size. The amount of memory savings depends on a number of
parameters, such as the complexity of the screens (based on number of fields
per screen), the transaction rate, and the number of concurrent end users. On
measurements made with approximately 250 users and varying screen
complexity, the JVM Heap decreased by approximately 5% for simple to moderate

IBM WebFacing Tool Performance Update

 19

screens (99 fields per screen) and up to 20% for applications with more complex
screens (600 fields per screen). When looking at the overall memory
requirements for an application, the JVM Heap size is just one component. When
running the back-end application on the same server as the WebSphere
Application server, the overall decrease in system memory required for the
Webfaced application will be less.

In terms of CPU utilization, this optimization has provided some benefit by a
decrease of up to 10% less for complex workloads. However, when taking into
account the overall CPU utilization for a Webfaced application (Webfacing plus
the application), expect equal or slightly better performance with the WebFacing
Tool V5.0.

Tuning the Record Definition Cache
In order to best use the optimization provided by this enhancement, servlet utilities
have been included in the Webfacing support to assess cache efficiency, set the
cache size, and preload it with the most frequently accessed record definitions. If
the Record Definition Cache is not used or tuned improperly, there will be
degraded performance of the IBM WebFacing Tool V5.0 versus V4.0.

When set to an appropriate level for the Webfaced application, the Record
Definition Cache can provide a decrease in memory usage, and slightly
decreased processor usage. The number of record definitions that the cache will
retain is set by an initialization parameter in the Webfaced application’s
deployment descriptor (web.xml). By changing the cache size, the Webfaced
application can be tuned for best performance and minimum memory
requirements. The cache size determines the number of record data definitions
that will be retained in the cache. There is one record data definition for each
record format.

Cache Size Effect
Too small When the cache size is set too small for the Webfaced

application, it will adversely affect the performance. In
this case, the definitions would be cached then
discarded before being re-used. There is significant
overhead to create the record definitions.

Correct With the cache set correctly, 90% of all accessed
record data definitions would be retained in the cache
with few cache misses for not commonly used
records.

Too large If the cache is set too large then all record data
definitions for the Webfaced application would be
cached likely consuming memory for seldom used
definitions.

In order to determine what the correct size for a given Webfaced application, the
number of commonly used record formats needs to be estimated. This can be
used as a starting point for setting the cache size. The default size, if no size is
specified, would be 600 record data definitions. To set the cache size to
something other than the default size, add a session context parameter in the

IBM WebFacing Tool Performance Update

 20

Webfaced applications web.xml file. In the following example, the cache size is
set to 200 elements, which may be appropriate for a very small application, like
the Order Entry example program.

<context-param>
 <param-name>WFBeanCacheSize</param-name>
 <param-value>200</param-value>
 <description>WebFacing Record Definition Bean Cache Size</description>
</context-param>

NOTE: For information on defining a session context parameter in the web.xml
file, refer to the WebSphere Application Server Information Center. It is also
possible to edit the web.xml file of a deployed application. Typically, this file will be
located in the following directory for WebSphere Application Server V5.0
applications:

/QIBM/UserData/WebAS5/Base/<application-server>/config/cells/..../WEB_INF

It can also be found in the following directory for WebSphere Application Server -
Express V5.0 applications:

 /QIBM/UserData/WebASE/ASE5/<application-server>/config/cells/..../WEB_INF

IBM WebFacing Tool Performance Update

 21

Cache Management — Definition Cache Content Viewer
To assist with managing the Record Definition Cache, two servlets can be
enabled. One is used to display the elements currently in the cache and the other
can be used to load the cache. Both of these servlets are not normally enabled in
a WebFacing application in order to prevent misuse or exposure of data.

To enable the servlet that will display the contents of the cache, first add the
following segments to the Webfaced application’s web.xml:

<servlet>
 <servlet-name>CacheDumper</servlet-name>
 <display-name>CacheDumper</display-name>
 <servlet-
class>com.ibm.etools.iseries.webfacing.diags.CacheDumper</servle
t-class>
</servlet>

<servlet-mapping>
 <servlet-name>CacheDumper</servlet-name>
 <url-pattern>/CacheDumper</url-pattern>
</servlet-mapping>

This servlet can then be invoked with a URL like:
http://<server>:<port>/<webapp>/CacheDumper.

Then, a Web page like that shown below will be displayed. Notice that the total
number of cache hits and misses are displayed, as are the hits for each record
definition.

IBM WebFacing Tool Performance Update

 22

Figure 10 — Web page displaying the contents of the cache

Refer to the following table for the functionality provided by the Cache Viewer
servlet. NOTE: The D V F column heading stand for Data, Feedback, View and
have no significance related to performance.

Cache Viewer Button operations
Button Operation
Reset Counters Resets the cache hit-and-miss counters back to

0
Set Limit Temporarily sets the cache limit to a new value.

Setting the value lower than the current value will
cause the cache to be cleared as well.

Refresh Refresh the display of cache elements
Clear Cache Drop all the cached definitions
Save List Save a list of all the cached record data

definitions. This list is saved in the RecordJSPs
directory of the Webfaced application. The actual
record definitions are not saved, just the list of
what record definitions are cached. Once the
cache is optimally tuned, this list can be used to
preload the Record Definition cache.

IBM WebFacing Tool Performance Update

 23

Cache Management — Record Definition Loader
As a companion to the Cache Content Viewer tool, there is also a Record
Definition Cache Loader tool, which is often referred to as the Bean Loader. This
servlet can be used to preload the cache to aid in the determination of the optimal
cache size, and then finally, to preload the cache for production use. To enable
this servlet, add the following two xml segments in the web.xml file.

<servlet>
 <servlet-name>BeanLoader</servlet-name>
 <display-name>BeanLoader</display-name>
 <servlet-
class>com.ibm.etools.iseries.webfacing.diags.BeanLoader</servlet-class>
</servlet>

<servlet-mapping>
 <servlet-name>BeanLoader</servlet-name>
 <url-pattern>/BeanLoader</url-pattern>
</servlet-mapping>

Invoking this servlet will present a Web page similar to the following:

Figure 11 — Record Definition Cache Loader tool

Refer to the following table for the functionality provided by the Record Definition
Loader servlet.

IBM WebFacing Tool Performance Update

 24

Record Definition Loader Button operations

Button Operation
Infer from JSP
Names

Will cause the loader servlet to infer record
definition names from the names or the JSPs
contained in the RecordJSPs directory. It will not
find all the record definitions but it will get most of
them.

Load from File Will load the record definitions listed in a file in the
RecordJSPs directory. Typically, this file is
created with the CacheDumper servlet previously
described.

The Record Definition Loader servlet can also be used to preload the bean
definitions when the Webfaced application is started. To enable this, the servlet
definition in the web.xml needs to be updated to define two init parameters:
FileName and DisableUI. The FileName parameter indicates the name of the file
in the RecordJSPs directory that contains the list of definitions to preload the
cache with. The DisableUI parameter indicates that the Web UI (as presented
above) would be disabled so that the servlet can be used to safely preload the
definitions without exposing the Webfaced application.

<servlet>
 <servlet-name>BeanLoader</servlet-name>
 <display-name>BeanLoader</display-name>
 <servlet-
class>com.ibm.etools.iseries.webfacing.diags.BeanLoader</servlet-
class>
 <init-param>
 <param-name>FileName</param-name>
 <param-value>cachedbeannames.lst</param-value>
 </init-param>
 <init-param>
 <param-name>DisableUI</param-name>
 <param-value>true</param-value>
 </init-param>
 <load-on-startup>10</load-on-startup>
 </servlet>

WSADMIN and WebSphere Application Server Scripts
The release of WebSphere Application Server - Express V5.0 for iSeries brought
a new age to usability with the Apache Integrated GUI. This GUI is an easy way for
customers to create, start, stop, and install WebSphere Application Server
applications. The reviews for ease-of-use have been outstanding and many users
find this interface superior in many ways.

The caveat to using the Integrated GUI for creating, starting, stopping, and
installing applications is that it too consumes system resources. The Integrated
GUI runs in a separate application server, running TomCat. On a system with

IBM WebFacing Tool Performance Update

 25

limited memory, having two application servers running at the same time may
cause some significant performance problems.

Customers trying to run and manage applications within the WebSphere
Application Server environment on a minimum configuration of 512MB of memory
should consider an alternative to the Integrated GUI. This can be done using the
scripting support provided by WSADMIN.

More information about WSADMIN and the scripts can be found in InfoCenter at:
http://publib.boulder.ibm.com/iseries/v5r2/ic2924/index.htm?info/rzamy/50/expres
s.htm

WSADMIN
WebSphere Application Server - Express V5.0 provides a command line
administrative tool named wsadmin, which can be used to run administrative
commands interactively or through the use of Jacl script files. The wsadmin tool
uses the Bean Scripting Framework (BSF), which supports a variety of scripting
languages to configure and control WebSphere Application Server - Express. In
WebSphere Application Server - Express, wsadmin supports only the Jacl
scripting language.

The wsadmin launcher makes Java objects available through language specific
interfaces. Scripts use these objects for application management, configuration,
operational control, and communication with MBeans running in WebSphere
Application Server processes.

WebSphere Application Server - Express System Management separates
administrative functions into these categories:
? Configuration — Related to the configuration of WebSphere Application

Server - Express installations
? Operation — Related to the currently running objects in WebSphere

Application Server - Express installations.
? Application management — Related to installing, uninstalling, and managing

enterprise applications.

To install an application using WSADMIN, first start a wsadmin session.
1. Enter the Start Qshell (STRQSH) command on an OS/400 command line.
2. Use the cd command to change to the bin directory of the product installation

root:
cd /QIBM/ProdData/WebASE/ASE5/bin

3. At the Qshell prompt, enter this command:
wsadmin -instance instance
where instance is the name of the instance to administer.

In WebSphere Application Server - Express V5, this is the application server
name specified when the server was created using the Integrated GUI. When
using WebSphere Application Server V5, specify ‘default’ if using the default
instance; otherwise, use the instance name specified using the crtwasinst
command.

IBM WebFacing Tool Performance Update

 26

4. This command uses the EAR file and command option information to install
the application
$AdminApp install earfile {-server myAppSvr}
where earfile is the fully qualified path of the EAR file that is installed and
myAppSvr is the name of WebSphere Application Server instance.

5. Before exiting the interactive session, run the command below to save the
configuration changes:
$AdminConfig save

crtwasinst
WebSphere Application Server V5 (all version) supply an instance creating script
called crtwasinst for creating a new Application Server Instance. It can be run
from QSHELL. Executing the crtnewinst job on the QSHELL command line will
actually run the script in the interactive memory pool. If that pool is starved for
memory, running it probably will not help.

There are several different ways to force a Qshell command to run into pool 2 if
needed. For instance:

SBMJOB CMD(STRQSH CMD('cd
/QIBM/ProdData/WebASE/ASE5/bin;crtwasinst –instance MyInstance)

runs the crtwasinst Qshell command as a batch job running in pool 2.

startServer, stopServer
The startServer and stopServer scripts can be used for starting and stopping
WebSphere Application Server instances from Qshell. The command can be
started similar as above to guarantee the memory pool it runs in.

Browser Caching
The most efficient way to retrieve statistical content is to have it cached at the
browser. Microsoft Internet Explorer has four different setting for caching static
content. The automatic setting within Internet Explorer is the recommended
setting. The “automatic” cache setting means that when a page is visited for the
first time, static content is cached. When the page is visited again within the
same browser session, no request for the static content is made to the server —
it is retrieved from the browser cache file instead. This results in fewer requests
to the server and reduces network bandwidth. If a page is visited again from a
different browser session, a request is made for the content. If the browser has
the most recent copy of the content in cache, the server responses back with a
very short "304-Not Changed" response instead of responding with the actual
static content. In most circumstances, the 304 response is much smaller than
the static content being requested.

IBM HTTP Server Powered By Apache to Serve Static Content
With the birth of J2EE, developers were introduced to WebArchive and Enterprise
Application Resource files. These files are self contained entities that make it
easy to distribute and install into a WebSphere Application Server.

Many developers install the .EAR or .WAR files into WebSphere application
server and configure the HTTP server to forward all requests to the WebSphere
Application Server. It is much faster to serve static HTML content with a

IBM WebFacing Tool Performance Update

 27

WebServer (Apache) than it is with a WebApplication Server (WebSphere
Application Server).

When an IBM WebFaced application is generated, by default, the tool sets a flag
“fileServingEnabled” in the ibm-web-ext.xmi file to true. This impacts the plugin-
cfg.xml file and causes the HTTP plugin code to forward all requests to the
WebSphere Application Server, including static content requests. This makes it
easy to deploy the application to the Web Application Server, but may not yield
optimal performance.

To configure the HTTP Server to serve up static content, the basic steps are as
follows (additional information is included in the subsequent sections):

? Run the “Add a Directory to the Web” wizard from the HTTP Configuration
? Change permissions on the deployed application allowing QTMHTTPSVR

read/execute access to static content
? Set fileServingEnabled = false for the deployed application
? Regen the WebSphere Plugin

Add a Directory to the Web
Adding a directory for the IBM HTTP Server Powered by Apache Web server is
simple when using the built-in wizard. There are two key points to remember
when configuring the HTTP Server to serve static content from an IBM WebFaced
Application:

1. When prompted for which directory to serve from, select the directory
ending in the .war extension. For example, if an application is installed
within WebSphere Application Server - Express on a system called
MYSYSTEM, the proper directory would be:

/QIBM/UserData/WebASE/ASE5/WASEXPRESS/installedApps/MYSYST
EM_WASEXPRESS/ibmorder.ear/ibmorder.war/

2. When prompted for the directory alias, use the same context-root as the
deployed application.

Figure 12 is an example of what the URL mappings may look like with an
application deployed to WebSphere Application Server - Express V5.

Figure 12 — Integrated GUI showing Alias pointing to WebSphere Application
Server - Express V5 directory

This image shows the URL Mappings for a deployed application to WebSphere
Application Server - Express V5.0. The url path, /ibmorder/ , is the context root of
the deployed application. The path it aliases is the deployed path of the .war
directory.

IBM WebFacing Tool Performance Update

 28

Change Permissions on the deployed application
The IBM HTTP Server Powered by Apache requires Read/Execute permissions
to be able to serve static content. By default, the application installed into
WebSphere Application Server will not have sufficient permissions to serve static
content. This is evident when trying to serve static content and receiving a 403
Permission Error in the browser.

The solution to this problem is quite easy — grant QTMHTTPSVR Read/Execute
permission to all static content of the deployed application. QTMHTTPSVR is the
user id used by the IBM HTTP Server Powered by Apache.

The easiest way to grant these permissions is to use the recursive “chgaut”,
(Change Authority), command. The example below shows how to change all .gif
files below the current directory to *RX for user QTMHHTTP.

find . -name '*.gif' -exec system "CHGAUT OBJ('{}') user(QTMHHTTP) DTAAUT(*RX)
OBJAUT(*NONE)" \;

Similar commands could be executed for other file types or for all files. For
security purposes, it is recommended to grant user QTMHHTTP only files that the
HTTP Server will be serving.

Set fileServingEnabled for the deployed application
When the IBM WebFaced application is generated, by default, the tool sets a flag
“fileServingEnabled” in the ibm-web-ext.xmi file to true. This setting forces all
requests of the context-root to be served by WebSphere Application Server.

Solution developers using the HTTP Server to serve up static content will want to
distribute the ibm-web-ext.xmi file with the fileServingEnabled setting set to false.
There are two reasons for this

1. Editing deployed files can be risky for untrained users
2. Websphere Application Server V5.0 (Express, Base, Network

Deployment) copy this file at installation time to the cells directory
structure. Changing this file at runtime to the deployed application
directory will have no effect. It must be changed in the proper cells
directory structure and can be confusing to a new user.

It is possible to change the fileServingEnabled attribute in the ibm-web-ext.xmi file.
Be sure to modify the correct ibm-web-ext.xmi file if making changes to a
deployed application. CAUTION: The ibm-web-ext.xmi file for a deployed
application resides in two places — under the deployed application and under the
cells directory when using a WebSphere Application Server V5.x. When modifying
the file manually, make sure to modify the file under the cells directory path for the
deployed application. For example, the following would be the location of the
deployed location of the XMI file where attributes could be added or removed for
WebSphere Application Server - Express V5.

IBM WebFacing Tool Performance Update

 29

\QIBM\UserData\WebASE\ASE5\MYINSTNTANCE\config\cells\MYSYSTEM_MYIN
STANCE\applications\ibmorder.ear\deployments\ibmorder\ibmorder.war\WEB-
INF\ibm-web-ext.xmi

Figure 13 displays a line in the ibm-web-ext.xmi file highlighting the
fileServingEnabled parameter.

Figure 13 — fileServingEnabled parameter in ibm-web-ext.xmi file

This setting is very easy to change from the WebSphere Development Studio
Client tools. Simply switch to the Web Perspective and open the project’s \WEB-
INF\lib\ibm-web-ext.xmi file. Change the fileServingEnabled attribute as needed.
Figure 14 is a screen shot of the ibm-web-ext.xmi file opened in the Web
Perspective of an IBM WebFaced Application. Notice the fileServingEnabled
parameter and how easy it is to modify.

Figure 14 — Setting the fileServingEnabled parameter using the WebSphere
Development Studio Client’s Web Perspective

Regen the WebSphere Plugin
The WebSphere Application Server plugin file plugin-cfg.xml, is an XML file that is
used by the application server plugin code to determine if the WebSphere
Application Server is responsible for serving the content.

If the fileServingEnabler setting is set to true in the ibm-web-ext.xmi file, when the
plugin file is generated, it will contain an entry for the Webfacing application that
indicates that ALL content associated with the context root is to be served by
WebSphere Application Server.

Figure 15 shows what the plugin-cfg.xml file contains when the fileServingEnabler
value is set to true for a deployed application. Notice the entry /ibmorder/*. This
tells the plugin code that WebSphere Application Server can handle all URIs
containing /ibmorder. For all intensive purposes, all content.

IBM WebFacing Tool Performance Update

 30

Figure 15 — plugin-cfg.xml file for and IBM WebFaced application when
fileServingEnabled = true

Changing the fileServingEnabler setting to false in the ibm-web-ext.xml file and
then regenerating the plugin file will change the plugin to contain entries to
dynamic content that can be served by WebSphere Application Server only.
Figure 16 below shows what the plugin-cfg.xml file looks like after changing the
fileServingEnabler value to false for the same application. Notice how the
\ibmorder* has been replaced with specific entries and specific URIs for serving
dynamic content.

Figure 16 — plugin-cfg.xml file for an IBM WebFaced Application when
fileServingEnabled = false for the same IBM WebFaced application

An excellent article in the WebSphere Developers Journal entitled “Handling Static
Content in WebSphere Application Server” provides details on the performance
gains by using the IBM HTTP Server Powered by Apache to serve static content.
This article can be found at:
ibm.com/software/wsdd/techjournal/0211_brown/brown.html

IBM WebFacing Tool Performance Update

 31

Application Deployment Options
When discussing deployment options of Web enabled applications, think about
both new deployments and updates to running environments. New deployments
are just that new. Think of new deployments as installing an .EAR file containing
all of the JSPs, servlets, and compiled JSPs that make up an application to a
customer for the first time.

Updated deployments are updates to a running production environment. Consider
the situation where a customer has installed an application and has been running
in a production environment for some time. Since then either the customer or
solution developer may have updated the application. Possibly the DDS source
has changed or additional customization has been added. What procedure works
best for providing a smooth transition to the new application code in a production
environment?

Deploying a new application
Earlier in this paper, it was demonstrated that precompiling JSPs significantly
improves the first touch page response time of a JSP. It is possible to ship
precompiled JSP files with an .EAR or .WAR deployment file so that the overhead
of recompiling is not necessary at a customer site. The steps necessary to
package up an application with precompiled JSPs are as follows:
1. Precompile all JSPs on a development machine using either the JSP Batch or

JSP Pre-Touch mechanism
2. Copy all of the compiled JSP files from the temp directory to the deployed

application directory
3. Use the EARExpander tool repackage .EAR file

Precompile all JSPs on development server
As described earlier, there are a couple of techniques to precompile all of the JSP
files. Whatever technique the developer chooses, the result is that all compiled
JSP files end up residing in the temp directory of the deployed application. For
WebSphere Application Server - Express that directory would look similar to this:
\QIBM\UserData\WebASE\ASE5\MYINSTNTANCE\Temp\MYSYSTEM_MYINSTA
NCE\MYINSTANCE\MYAPPLICATOIN.ear\MYAPPLICATION.war

(Substitute MYSYSTEM, MYINSTANCE, and MYAPPLICATION for actual system,
instance, and application names.)

Copy the Compiled JSPs
The next step in the process is to copy the compiled JSP directories to the
deployed application directories. This can be accomplished in several ways. A
simple way is to map a network drive on a PC to the IFS directory structure and
drag-and-drop directories.

Figure 17 shows the directory structure for an application called ibmorder.ear
deployed to WebSphere Application Server - Express V5. The full path is:
\QIBM\UserData\WebASE\ASE\MYINSTANCE\installedApps.

Below the installedApps directory is a directory consisting of the
MYSYSTEM_MYINSTANCE, then all of the .ear directories for the installed
applications. Below the ibmorder.ear directory is a .war directory and a series of

IBM WebFacing Tool Performance Update

 32

directories below that. Notice in the WEB-INF directory, there are a series of
directories containing the WebFaced JSPs and Java Servlet code.

Figure 17 — Directory Structure of Deployed Application without precompiled JSPs

Figure 18 shows the directory structure under the temp directory where all of the
precompiled JSPs have been compiled. The full path is:
\QIBM\UserData\WebASE\ASE\MYINSTANCE\temp.
Below the temp directory is a directory consisting of the
MYSYSTEM_MYINSTANCE\MYINSTANCE and then all of the directories for the
installed applications without the .ear extensions. Below the ibmorder directory is
a MYINSTANCE.war directory and directories below that. All of the directories
below the MYINSTANCE.war directory should be copied to the classes directory
for the deployed application:
\QIBM\UserData\WebASE\ASE\MYINSTANCE\installedApps\MYSERVER_MYINS
TANCE\MYAPP.ear\MYAPP.war\WEB-INF\classes

IBM WebFacing Tool Performance Update

 33

Figure 18 — Directory Structure of precompiled JSPs without precompiled JSPs

Figure 19 displays the results of copying the RecordJSPs and styles directories
to the classes directory of the deployed application.

Figure 19 — Directory Structure of precompiled JSPs with precompiled JSPs

Notice how Figure 18 differs from Figure 19. The RecordJSPs and styles
directories now exist under the
\QIBM\UserData\WebASE\ASE\MYINSTANCE\installedApps\MYSYSTEM_MYINS
TANCE\MYAPP.ear\MYAPP.war\WEB-INF\classes directory. At server startup,
WebSphere Application Server V4 and V5 will check for up-to-date compiled
JSPs from this directory structure and use them if they are up-to-date. If not, it will
recompile the JSP and place them below the temp directory tree.

IBM WebFacing Tool Performance Update

 34

Use the EARExpander tool repackage .EAR file
The EARExpander tool shipped with WebSphere Application Server provides the
capability to create a new .EAR file from a deployed application. In effect to
collapse the deployed application, the tool is located in the
/QIBM/ProdData/WebASE/ASE5/bin directory for WebSphere Application Server -
Express V5 for iSeries. Creating a new .EAR or .WAR file from the deployed
application is relatively easy but there are a couple of steps along the process.

1. Create a temporary directory to hold the collapsed ear file
2. Start QSHELL
3. Change directories to /QIBM/ProdData/WebASE/ASE5/bin
4. Execute the EARExpander tool:

EARExpander –ear /temp/MYAPPLICATION.ear –operation collapse -
operationDir/QIBM/UserData/WebASE/ASE5/installedApps/MYSYSTEM_MYINSTNAC
E/MYAPPLICATION.ear

Running this command will then compress all of the directories and files for the
installed application and create a new .EAR file in the directory where the
command was run. Figure 20 is a screen shot of QSHELL running this
command.

Figure 20 — Example running EARExpander from QSHELL

In the example above, the result is an application in the /temp directory called
ibmorder.ear which contains the deployed application from the specified directory.
In this case since the precompiled JSPs were copied from the temp directory to
the deployed application, the resulting .ear file will contain the precompiled JSPs.

IBM WebFacing Tool Performance Update

 35

Network Connection Speeds and Compression
LAN connection speeds and Internet hops can have a large impact on page
response times. A fast server but slow LAN connection will yield slow end-user
performance and an unhappy customer.

It is very common for a browser page to contain 15-60K of data. Customers who
may have a current green-screen application over a 256K internet connection,
running e-mail, Print, and other applications might find results of a WebFaced
application unacceptable. If every screen averages 60K, the time for that data
spend on the wire is significant. Multiply that by several users simultaneously
using the application, and page response times will be reduced.

There are now two options available to support HTTP compression for Webfaced
applications, which will significantly improve response times over a slow internet
connection. As of July 1, 2003; compression support was added with the latest
set of PTFs for IBM HTTP Server (powered by Apache) for iSeries (5722-DG1).
Also, Version 5.0 of the IBM WebFacing Tool was updated to support
compression available in WebSphere Application Server. On an iSeries server,
the recommended WebSphere application configuration is to run Apache as the
web server and WebSphere Application Server as the application server.
Therefore, it is recommended that you configure HTTP compression support in
Apache. However, in certain instances, HTTP compression configuration may be
necessary using the IBM WebFacing Tool/WebSphere Application Server
support.

The overall performance in both cases is essentially equivalent. Both provide
significant improvement for end-user response times on slower Internet
connections, but also require additional HTTP/WebSphere Application Server
CPU resources. In measurements done with compression, the amount of CPU
required by HTTP/WebSphere Application Server increased by approximately 25-
30%. When compression is enabled, ensure that there is sufficient CPU to
support it. Compression is particularly beneficial when end users are attached via
a Wide Area Network (WAN) where the network connection speed is 256K or
less. In these cases, the end user will realize significantly improved response
times (see chart below). If the end users are attached via a 512K connection,
evaluate whether the realized response time improvements offset the increased
CPU requirements. Compression should not be used if end users are connected
via a local intranet due to the increased CPU requirements and no measurable
improvement in response time.

IBM WebFacing Tool Performance Update

 36

IBM WebFacing Tool- Compression

0

2

4

6

64K 128K 512K Local
Network Data Rate

Response
Time
(\Second)

Without
Compression
With
Compression

Figure 21 — IBM WebFacing Tool Compression

NOTE: The above results were achieved in a controlled environment and may not
be repeatable in other environments. Improvements depend on many factors.

With the IBM WebFacing Tool V5.0, compression is ‘turned on’ by default.
Customers in a local high speed intranet environment may want to change the
configuration to ‘turn off’ compression in order to reduce the CPU utilization. This
is particularly important if the CPU utilization of interactive types of users (Priority
20 jobs) is about 70-80% of the interactive capacity. In order to ‘turn off’
compression, edit the web.xml file for a deployed Web application. There is a filter
definition and filter mapping definition that defines compression should be used by
the WebFacing application (see below). These statements should be deleted in
order to ‘turn off’ compression. In a future service pack of the WebFacing Tool,
compression will be configurable from within WebSphere Development Studio
Client.

<filter id="Filter_1051910189313">
 <filter-name>CompressionFilter</filter-name>
 <display-name>CompressionFilter</display-name>
 <description>WebFacing Compression Filter</description>
 <filter-
class>com.ibm.etools.iseries.webfacing.runtime.filters.CompressionFilter</filter-
class>
 </filter>
 <filter-mapping id="FilterMapping_1051910189315">
 <filter-name>CompressionFilter</filter-name>
 <url-pattern>/WFScreenBuilder</url-pattern>
 </filter-mapping>

IBM WebFacing Tool Performance Update

 37

Enabling Compression in IBM HTTP Server (powered by Apache)

The HTTP compression support was added with the latest set of PTFs for IBM
HTTP Server for iSeries (5722-DG1). For V5R1, the PTFs are SI09287 and
SI09223. For V5R2, the PTFs are SI09286 and SI09224.

There is a LoadModule directive that needs to be added to the HTTP config file in
order to get compression based on this new support. It looks like this:

LoadModule deflate_module
/QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

The following directive will also need to be added to the container to be
compressed, or globally if the compression can always be done:

SetOutputFilter DEFLATE

There is mod_deflate documentation on the Apache Web site
(http://httpd.apache.org/docs-2.0/mod/mod_deflate.html) that has information
specific to setting up for compression. This is the best place to look for details.
The LoadModule and SetOutputFilter directives are required for mod_deflate to
work. Any other directives are used to further define how the compression is
done.

Since the compression support in Apache for iSeries is a recent enhancement,
the iSeries Information Center documentation for the HTTP compression support
is not currently available (as of September 2003). See the IBM HTTP Server for
iSeries Web site (http://ibm.com/eserver/iseries/software/http/) for when this
documentation has been completed. Until the documentation is available, the
information at: http://httpd.apache.org/docs-2.0/mod/mod_deflate.html can be
used as a reference for tuning how mod_deflate compression is done.

Enabling Compression using IBM WebFacing Tool and WebSphere
Application Server Support
You would configure compression using the IBM WebFacing Tool/WebSphere
support in environments where the internal HTTP server in WebSphere
Application Server is used. This may be the case in a test environment or in
environments running WebSphere Application Server — Express V5.0 on an
xSeries Server.

With the IBM WebFacing Tool V5.0, compression is ‘turned on’ by default. This
should be ‘turned off’ if compression is configured in Apache or if the LAN
environment is a local high speed connection. This is particularly important if the
CPU utilization of interactive types of users (Priority 20 jobs) is about 70-80% of
the interactive capacity. To ‘turn off’ compression, edit the web.xml file for a
deployed Web application. There is a filter definition and filter mapping definition
that defines compression should be used by the WebFacing application (see
below). These statements should be deleted in order to ‘turn off’ compression. In
a future service pack of the IBM WebFacing Tool, it is planned that compression
will be configurable from within the WebSphere Development Studio Client.

IBM WebFacing Tool Performance Update

 38

<filter id="Filter_1051910189313">
 <filter-name>CompressionFilter</filter-name>
 <display-name>CompressionFilter</display-name>
 <description>WebFacing Compression Filter</description>
 <filter-
class>com.ibm.etools.iseries.webfacing.runtime.filters.CompressionFilter</filter-
class>
 </filter>
 <filter-mapping id="FilterMapping_1051910189315">
 <filter-name>CompressionFilter</filter-name>
 <url-pattern>/WFScreenBuilder</url-pattern>
 </filter-mapping>

PC Client
The PC client has a bigger impact than most think. Many people think that the PC
client is just running a browser so an old Pentium® II processor should be enough.
However, a slow client PC can degrade the end-user response times of an
application significantly. Testing of the order entry application showed a 1/2
second page response time reduction on a slow client PC. This may mean that a
50% improvement in performance can be realized using the same application,
same network, but a faster PC client. In the timings section listed below, there are
some interesting results between a client Pentium II 450 MHz machine and a
1GHz Athelon. A client PC with a minimum of a Pentium III 600 MHz 512 MB RAM
should eliminate most client performance issues.

The fastest data transmitted is the data that is never transmitted. This can be
accomplished by making sure browser settings on the client are caching data
properly. HTML pages are really a series of requests for text and images. Much of
this data can be cached at the browser instead of being downloaded every time.
When testing, make sure that browser caching is turned on. This is done by
selecting the "Check for newer versions of stored pages: Automatically within
Internet Explorer Temporary Internet files" configuration button.

IBM WebFacing Tool Performance Update

 39

Timings
This section has some performance numbers to demonstrate much of what was
discussed earlier. These timings were taken in an unsophisticated way. A stop
watch was used between screen transitions and the number of seconds
recorded. While not sophisticated, the data is accurate enough to get a good idea
of the improvements that can be made on an application using the techniques
described above.

Timing #1 — Demonstrate time required to compile JSP files and build
Byte Code Cache file of an IBM WebFacing Web-enabled Application
System — Model 800 FC# 0863 300 CPW, OS Version — V5R2
WebSphere Application Server - Express V5, 41MB Application, 96M Heap 1G
RAM, 890M In Base Memory Pool
IBM WebFacing Tool V4
100MB LAN Connection

All Tests taken after
initial server startup.
All tests have JIT
disabled.

No Precompiled
JSPs
No ByteCode
Cache File

Data A

Precompiled
JSPs
No ByteCode
Cache File

Data B

Precompiled
JSPs.
Creating
ByteCode
Cache File

Data C

Precompiled
JSPs
Use
ByteCode
Cache File

Data D

Page After Logon Minutes 13 125 17

Security Screen Minutes 3 21 1

Pick A Company Minutes 10 21 5

Change Orders Minutes 3 11 2

The timings above are to demonstrate the time required to both compile the
JSPs, and create the ByteCode Cache File on a first touch of a JSP. These
timings demonstrate the need to make sure JSPs are precompiled to achieve
acceptable first touch user response times Notice that using the ByteCode Cache
file does have a positive impact on first touch of JSP files except in the first case
which should be disregarded because of additional processing occurring by the
application.

IBM WebFacing Tool Performance Update

 40

Timing #2 — Demonstrate second and subsequent JSP touches of an IBM
WebFacing Web-Enabled Application
System — Model 800 FC# 0863 300 CPW, OS Version — V5R2
WebSphere Application Server - Express V5, 41MB Application, 96M Heap 1G
RAM, 890M In Base
IBM WebFacing Tool V4
100MB LAN Connection

All tests taken JSP
touched one-time
(Meaning JSP was
class loaded and
ByteCode verified)
All tests have JIT
disabled.

Precompiled
JSPs

Data A

Precompiled
JSPs Using
ByteCode Cache
File

Data B

Second
Touch

Data C

Page After Logon 13 17 9

Security Screen 3 1 1

Pick A Company 10 5 2

Change Orders 3 2 3

The timings above are to demonstrate that the second and all subsequent
touches of a JSP should perform faster than the first touch of a JSP. This is due
to the time it takes for the JSP class to be loaded into the WebSphere Application
Server and perform the ByteCode verification when the ByteCode Cache file is
not used.

IBM WebFacing Tool Performance Update

 41

Timing #3 - Demonstrate memory variable effects of an IBM WebFacing
Web-enabled Application for a Single User System — Model 800 FC# 0863
300 CPW, OS Version — V5R2
WebSphere Application Server — Express V5, 41MB Application, 96M Heap
IBM WebFacing Tool V4
100MB LAN Connection

All tests did not
use ByteCode
Cache File.
All tests used
Precompiled JSP
Files
All tests have JIT
disabled.
All times are in
seconds

512MB Total
Memory.
390MB In
WebSphere
Application
Server Memory
Pool.

First Touch

Data A

512MB Total
Memory.
390MB In
WebSphere
Application
Server Memory
Pool.

Second Touch

Data B

1G Total
Memory.
890MB In
WebSphere
Application
Server Memory
Pool.

First Touch

Data C

1G Total
Memory.
890MB In
WebSphere
Application
Server Memory
Pool.

Second Touch

Data D

Application Startup 300 180

Page After Logon 77 11 13 13

Security Screen 3 1 3 3

Pick A Company 12 2 10 4

Change Orders 4 2 3 2

The timings above are to demonstrate that the added memory to the pool where
WebSphere Application Server is running had a significant impact on both the
application startup and user response times, both on the first and subsequent
touches. Response times on second touch for Data B may be acceptable for a
single user. Data in Timings #4 demonstrates with added users that 512MB of
memory will not be acceptable for most users.

IBM WebFacing Tool Performance Update

 42

Timing #4— Demonstrate timing differences between V5R1 IBM
WebFacing Web-enabled Application and WebSphere Development Studio
Client on two different Client PC types.
System — Model 820 FC# 24AA 1100 CPW
OS Version — V5R1
WebSphere Application Server V4.0 1.5GB Base Memory Pool 256MB Heap
10MB LAN Connection

KEY:
V5R1 - V5R1 Version of WebFacing Tool
Pentium II - Pentium II 450MHZ 128M RAM
Athelon - 1GHZ 500MB RAM

 V5R1
Pentium II

V5R1
Athelon

WebSphere
Development
Studio Client V4
Pentium II

WebSphere
Development
Studio Client
V4Athelon

Customer Prompt 3.5 2.28 2.03 1.4
Select Customer 2.34 2.12 2 1.47
Part Number
Prompt

2.81 1.56 1.62 1.06

Select Part
Number

2.18 1.68 1.69 1.06

Change Part
Quantity

2.11 1.66 1.6 1.19

Accept Order 2.22 1.69 1.88 1.03
Invalid Customer 2.09 1.53 1.6 1.03
Exit 1.69 1.62 1.5 1.57

IBM WebFacing Tool Performance Update

 43

In this timing, both of the versions of the Web-enabled application and the PC
client had a significant impact on performance. In general, there was 1/2 a
second improvement using the WebSphere Development Studio Client version of
the WebFacing Tool, and an additional 1/2 second improvement using a PC client
of near modern capabilities. Clearly, using a combination of WebSphere
Development Studio Client and a well performing PC client provides better
performance.

Page Transitions
0.5

1

1.5

2

2.5

3

3.5

4 Response
times in
Seconds

V5R1 &
Pentium II
V5R1 & Athelon
WebSphere
Development
Studio Client &
Pentium II
WebSphere
Development
Studio Client &
Athelon Studio

WebFacing Version & PC Client Comparison

IBM WebFacing Tool Performance Update

 44

Timing #6 — Demonstrate timing differences Point-to-Point and Dial-up ISP
Connection
System — Model 270
OS Version — V5R1
WebSphere Application Server V3.5.6
WebSphere Development Studio Client early release

 28K Dial-up
using ISP

24K Dial-up
Point-to-Point
Connection

Customer
Prompt

13.14 5.01

Select
Customer

11.1 5.15

Part Number
Prompt

17.06 6.13

Select Part
Number

9.12 4.5

Change Part
Quantity

5.44 4.03

Accept Order 9.27 4.29
Invalid
Customer

9.3 4.17

The data collected in this example clearly shows the negative impact a poor ISP
connection can have on performance. The Point-to-Point connection performed
consistently better than the connection through an ISP. This does not mean that

Page Transitions

0

5

10

15

20

R
es

po
ns

e
tim

e
in

 S
ec

on
ds

ISP
PPP

ISP vs PPP Dialup

IBM WebFacing Tool Performance Update

 45

all ISP providers will provide poor performance. It demonstrates that performance
can be severely limited when the Internet connection is inadequate.

IBM WebFacing Tool Performance Update

 46

Conclusion
As this paper has shown, Web-based applications are different than traditional
green-screen applications. They require more horsepower at both the server and
client and transmit more data on the LAN. They utilize a connectionless protocol,
so there is no typing ahead like there is in green-screen applications. Because of
this, users who expect green-screen performance from Web-based applications
may be disappointed.

Can a WebFaced application perform as well as other browser-based
applications? Absolutely. There is no reason why one- to three-second screen
transition times should not be normal on properly configured server, LAN, client
hardware, and browser cache. If one- to three-second page transition response
times are acceptable to a customer, the benefit of a browser-based application
and freshness of a GUI would be a great addition to any company’s software
portfolio.

IBM WebFacing Tool Performance Update

 47

Special Thanks
A BIG thank you to the people who have provided input and reviews for this paper.
The combined knowledge and expertise of these people provided a much more
detailed and broader scope to the topics covered than could have been done by
any one individual.

Byron Bailey - IBM Rochester
Jim Beck - IBM Rochester
Charles Farrell - IBM Rochester
Scott Moore - IBM Rochester
Michael Sandberg - IBM Rochester

Reference Web Sites

IBM eServer Enablement
ibm.com/servers/enable

IBM Information Center
http://publib.boulder.ibm.com/pubs/html/as400/infocenter.html

WebSphere Development Studio Client for iSeries
ibm.com/software/ad/wds400/

WebSphere Development Studio Client for iSeries Support page
ibm.com/software/ad/wds400/support/

WebSphere Application Server for iSeries
ibm.com/eserver/iseries/software/websphere/wsappserver/

WebSphere Application Server - Express V5 for iSeries
http://publib.boulder.ibm.com/iseries/v5r2/ic2924/index.htm?info/rzamy/50/expres
s.htm

WebSphere Application Server V4.0 Advanced
http://publib.boulder.ibm.com/was400/40/AE/english/docs/pvindex3.html

WebSphere Performance Considerations
ibm.com/eserver/iseries/software/websphere/wsappserver/product/performance
ws50.html

IBM WebFacing Tool Performance Update

 48

Trademarks

IBM, eServer, iSeries, xSeries, pSeries, and WebSphere are trademarks or
registered trademarks of International Business Machines Corporation in the
United States and other countries.

Intel and Pentium are trademarks or registered trademarks of Intel Corporation or
its subsidiaries in the United States and other countries.

Microsoft and Windows are registered trademarks of Microsoft Corporation in the
United States and/or other countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other countries.

All other registered trademarks and trademarks are properties of their respective
owners.

IBM makes no commitment to make available any products referred to herein.

References in this publication to IBM products or services do not imply that IBM
intends to make them available in every country in which IBM operates.

