Lab: Introduction to rich-client
development

Elena Lowery

| SV Business Srategy and Enablement
June 2006

Table of contents

ADSTract and INTFOAUCTION ... e e e e e e e e e 1
10 To OO OPPPPPPPPPPPI 1
SKIll PrEr@QUISITES oiiiiiiiiiiiiie ettt ettt e e raaaaaaaaaaans 1
=L ST (U | o TSP PO PPPPPP 1
Part 1: ReVIEWING SWT CONTIOIS ..ooeiiiiiiiiiiiie ettt e e e e 2
104 01T 4 oo o | A0t TSRO PPRPRR 5
Part 2: Creating composites and shells with Visual Editor............cccccoee i 6
(04 aT=To) (o To] 1 | O O PSPPSR P PUPPP PP 20
Part 3: Import pre-implemented classes and JAR fIl€S ... 21
L0 31T 24 o T 1 | A SO 26
Part 4: Implementing basiC NAVIQAtiONcooeuiiiiii e e 27
L0 31T 24 o 1 | A SRR 36
Part 5: Integrating BUSINESS [0QIC ..o 37
104 01Tt 4 o0 o | A= ST P UPUUUTT PP 45

Trademarks and SPECIAl NOTICESuuiiiiiiiee i 46

Abstract and introduction

In this lab, you will create a stand-alone Standard Widget Toolkit (SWT) application for Eclipse 3.1 for
System i programmers. You will learn how to create SWT controls, invoke business logic, and display
results in a rich-client application.

Tools

This lab will use Eclipse 3.1, and not IBM WebSphere® Development Studio Client for IBM iSeries™,
because Eclipse 3.1 contains significant enhancements for SWT and the Eclipse Rich Client Platform
(RCP) application development. WebSphere Development Studio Client and IBM Rational® tooling
(Version 6) are currently based on Eclipse 3.0.

Eclipse 3.1 is an open source (free-of-charge) integrated development environment (IDE). You can
download Eclipse 3.1 from the Eclipse Web site, http://www.eclipse.org. You will use Visual Editor
(VE), an open source plug-in for SWT, JFace and Eclipse RCP development, to build your SWT
application. VE has to be installed into Eclipse 3.1 projects using the Eclipse Update feature. VE is
packaged with IBM Rational and WebSphere Studio tooling (with no additional installation required).

Skill prerequisites

Prerequisite skills for this lab consist of an understanding of Java™ programming language concepts
and beginner Java programming skKills.

Lab setup

1. Extract the RichClientLab.zip file to your C:\ drive.

2. Create the flght400C library on your IBM System i™ model (notice no “i” in the word flght).

3. Implement a File Transfer Protocol (FTP) and restore the custdb.savf save file on your System
i model by entering the following string:

RSTOBJ OBJ(*ALL) SAVLI B(FLGHT400C) DEV(*SAVF) SAVF(QGPL/ CUSTDB)
MBROPT(*ALL) ALWOBJDI F(*ALL)

http://www.eclipse.org

Part 1: Reviewing SWT controls

In this section, you will review SWT widgets. SWT widgets are building blocks of a rich-client

application:
1. Open the Eclipse 3.1 IDE. Double-click the Eclipse 3.1 icon on your desktop (see Figure 1).

(l'

2]

Figure 1. Eclipse 3.1 icon
2. Inthe Workspace field, type C. / | TSO Lab (see Figure 2).

Workspace Launcher

Select a workspace
Eclipse SDK stores your projects in a folder called a workspace.

Choose a workspace folder to use for this session.
;I Browse... |

Workspace: I C:\ITS0 Lab

[~ use thiz as the default and do not ask again

Cancel |

Figure 2. Select a workspace: C:\ITSO Lab
3. Onthe Welcome panel, click Samples. If the Welcome panel does not display, you can open it

by clicking Help -> Welcome (see Figure 3).

Samples

lopment through

eve
code samples

Explore Eclipse d

Figure 3. Samples selection

4. Under SWT, click he red round button (see Figure 4).

SWT
Run SWT samples using either the standalone SWT launcher or as an integrated workbench view

'_"‘\ Workbench views and standalone applications

P
The SWT Example launcher will allow you to launch a collection of SWT examples. Some of the examples can be run

-
- independent of the eclipse platform and others will be available as views inside the workbench.

Figure 4. Workbench views and stand-alone applications

5. On the Eclipse Samples window, click Finish (see Figure 5).

= Eclipse Samples
Project names
Select project names or accept the defaults. ﬂ

Project name #1: | org.edipse.swt.examples

Project name #£2: | org.edipse.swt.examples.launcher

Project name #£3: | org.edipse.swt.examples,browser

Project name £4: | org.edipse.swt.examples. controls

Project name #5: | org.edipse.swt.examples.layouts

Project name #6: | org.edlipse.swt.examples. paint

MNext = | Einish | Cancel

Figure 5. Click Finish

6. Verify that you are in the Java development perspective. If not, switch to the Java development
perspective by selecting Window -> Open Perspective -> Java (see Figure 6).

« Java - Eclipse SDK

File Edit Source Refactor MNavighte |5ear|:F| " Project Run Window Help

w - F-O0-Q- | BEFG- B =

Figure 6. The Java development perspective

7. In the Package Explorer tab, right-click org.eclipse.swt.examples. Click
Run as -> SWT Application (see Figure 7).

{% Package Explorer 3 Hierarchy

B org.edipse, swt.examples

B org.edipse, swt.examples.browser
E org.edipse. swt. examplesz. controls
Iﬁ' org.edipse. swt.examples.launcher
B org.edipse, swt.examples.layouts

- [[[[[

B org.edipse, swt.examples.paint

Figure 7: Package Explorer selections

8. On the Run Type dialog window, click ControlExample for the matching type and click OK
(see Figure 8).

= Run Type @

Choose a type (? = any character, * = any string):

Matching types:

. AddressBook ||
Gp.ﬂdvancedGraphics
G.}BrowserExample
G}CIipbnardExample
.k
G}Cusb:mCDnh'olExample
G}DNDExampIe

= FileViewer

G}GraphicsExample
GbHE”D'I.“J'DHdl
Gp.HE”D'I.“J'DHdz |

Qualifier:

1 org.edipse.swt.examples.controlexample - org.ed

Figure 8: ControlExample is the Run Type

9. A sample SWT application is displayed in Figure 9.

This application shows different types of SWT controls, their properties, and events. Try setting
different properties for SWT controls and observe the change in their visual appearance. On
the tabs that have Select Listeners enabled, observe when certain events are invoked on
controls.

If you are new to SWT programming, this application provides an excellent reference on how
you can use SWT controls to construct a rich-client application.

1 SWT Controls B@

Canvas} Combo | CoolBar | Dialog] Group] Label | Link. ‘ List] Menu] PrugressBar] Sash] Shell ‘ Slider [Scale | Spinner |TabFDIder | Table | Text |740*

Parameters
Text Buttons Styles Other

EJ M EJ * SWT.PUSH ¥ Enabled

(" SWT.CHECK v Visible
Image Buttons e R
@ g " SWT.TOGGLE

(" SWT.ARROW

I~ swr.FLAT

I~ SWT.BORDER

Size Colors and Font

* Preferred Foreground Color [l
10X 10
Background Color []
(" 50% 50 J
 100% 100 Font... Defaults
" Horizontal Fil
Alignment
" Left
{* Center
" Right
~
e
Listeners
Select Listeners | [Listen Clear

Figure 9. A sample SWT application

10. Close the sample application by clicking the x in the red box.

Checkpoint 1:
Take a few minutes to reflect on the things that you have learned in this section:

= List some of the most-commonly used SWT widgets.
= What is an SWT widget property? List some of the SWT widget properties.
= Whatis an SWT widget event? List some of SWT widget events.

Part 2: Creating composites and shells with Visual Editor

In this section, you will create an SWT application with Visual Editor. You will complete the following
tasks (represented in Figure 10):

1. Create composites. A composite is a type of an SWT widget that contains other SWT widgets.

2. Create SWT shells and place composites on shells. Shells are application windows.

3. Implement events for SWT widgets. Events are user-driven actions that invoke some business
logic. Examples of events are click, menu selection, and double-click.

The completed SWT application allows you to search for a customer name on the Customer Summary
shell and perform view, add, update, and delete operations on the Customer Details shell.

—

Customer Name [g.0 0 Search

Mumber

| Customer Name |

1781
2330
2463
5215
3735
7596

< Primary Shell

Brown, Jacquelyn
Brownigg, Daphine
Browniga, Muriel
Brownigg, Ellen
Brownigg, Rodney
Brownigg, Ester

Composite —»

Mame | Brownigg, Muriel

Address | 34 Daisy Ave

City New York State |NY Zip code [43p126—— Modal Shell
Telephone | 445-252-9322

Close

Figure 10. Customer Detail shell input

1. Select File -> New -> Project, then, on the New Project window, click Java Project. Click
Next (see Figure 11).

= New Project

Select a wizard —>

Create a Java project

Wizards:

3 a Project from Existing Ant Buildfile
Ig PlugHin Project
= Code Samples
= CVs
= Designer
== Edipse Modeling Framework
= Java
== Plug-in Development
= Simple

Ea e e N e e e e

| Mext = | F Cancel

Figure 11. Java Project wizard

2. Type TeanXXSWI'Pr oj ect as the project name, where XX is your team number. Click Finish
(see Figure 12).

= New Java Project

Create a Java project J
Create a Java project in the workspace or in an external location, [i —

Project name: |Teamx3(5'.f‘aTPrnject

% Create new project in workspace

" Create project from exjsting source

I &

JDK Compliance

% Lse default compiler compliance (Currently 1.4) Configure default...

" Use a project specific compliance: v

Praoject layout
¥ Use project folder as root for sources and dass files

" Create separate source and output folders Confiqure default...

Cancel I

< Back I Mext = J

Figure 12. Project name. TeamXXSWTProject

3. Create the Customer Summary composite:

a.

b.

C.

In Package Explorer, right-click the newly created TeamXXSWTSample project and select
New - > Visual Class.
On the New Java Visual Class dialog, type or verify the following values (see Figure 13):

e Source folder: TeamXXSWTProject
e Package: com.ibm.swt.comp

e Name: CustomerSummaryComp
e Style: SWT -> Composite

Click Finish.

Note: SWT shell is a stand-alone window in a rich-client application. SWT composite is a
widget that contains other controls. Although you can place controls directly on a shell, you
can achieve better reuse of code if you create composites and place them on different
shells.

Fm ol

<= New Java Visual Class

Java Class

Create a new Java dass.

i o

Source folder: | TeamxxsWTProject Browse
Package: | com.ibm.swt. comp Browse
[Endosing type: |
MName: | CustomerSummaryComp
Modifiers: (* public (" default ake (" prot
[abstract [final 5=
Style:
-7 RCP Superclass:]org.edipse.s'.-\'t.'.ﬂ.'idgem.Cu:umpu:usite
== ?l“""rr Interfaces:
|| Compaosite
] Shell
+-[= Swing
T-E2 ANT
-1-{= Other Which method stubs would you like to create?
C Object I public static void main{String[] args)
| Constructors from superdass
o] » [V Inherited abstract methods

Do you want to add comments as configured in the properties of the current project?

& Geperate comments

Einish Cancel

Figure 13. Click Finish to finish creating a new Java class

d. The CustomerSummaryComp.java class is displayed in the Visual Editor. Notice that there
is a hidden Palette view on the right side of the editor area. Click the arrow in the top-right
corner to display the Palette view. In the editor area, you can work in a design view or a

source view (see Figure 14).

= Java - CustomerSummaryComp.java - Eclipse SDK

M%)

-He |#-0-%- | EH#C- &4
Apm|lylig| s E

File Edit Source Refactor Navigste Search Project Run Window Help

ral 3‘;-' Java |[5Resource

=J==Plug-n Devel...
] Package Explorer 3% == w *CustomerSummaryComp.java &3
=
o
4122 org.edipse.swt.examples
+ L7J org.edipse.swt.examples.browser
=2 org.edipse.swh.eamples.controls (| [0 0 0 0
+ L7J org.edipse.swteiampleslauncher [l [
+ L7J org.edlipse.swt.examples.layouts . .
EHE orgedipseswtexamplespaint | boe e b e e e e Deslgn view
= 'L%Teamxxs'.’-ﬂ?roject
=% com.ibm.swt.comp
+ |i| CosiomerSummaryCompjava] (1 [o o s e e e e e e e e e
+-m JRE System Library [jre1.42] ([} o o o s e e e o
4. iy, Standard Widget Toolkit (SWT)
F 2
public class CustomerSummaryComp extends Composite { '\E
public CustomerSummaryComp (Composite parent, int style) {
super (parent, style);
initialize(); H
, Source view
private wvoid initialize() { s
3 = e e T T —
§E§$ JavaBeans &4 =B g Problems | Javadoc | Dedaration | Console | =] Properties 52 = :::r T
L [this Property J Value |
background Color {224, 223, 227} L
bounds 0,0,373,254
enabled true e
1% >
Writable Smart Insert ARz In Sync

Figure 14. Palette, desig

n, and source views

e. Move the following components (see Table 1) from the Palette view to the
CustomerSummaryComp design view.

Type Name Text
Label IblICustomerName Customer Name
Text txtCustomerName
Button btnSearch Search
Table tbICustomers
TableColumn | colCustomerNumber | Number
TableColumn | colCustomerName Customer Name

Table 1. Type, Name, and Text components from the Palette view

When placing a widget on the composite, you can use the Name window to type the name
component (see Figure 15). In the Properties view, you can modify the Name, Text, and
other properties. If the Properties view is not open, you can open it by selecting Window ->
Show View -> Properties (see Figure 16).

< Name
Bean Name rf\'("_\} rr
Provide names for beans A=

® o label | Iblcustomerhame

I” Do not ask again

oK | Cancel

Figure 15. Provide names for beans

= Properties &7

Froperty | Value
arrowstyle
background Color {224, 223, 227}
border <not set>
»bounds 269,10,83,23
enabled true
>field name binSearch
flat <not set=
font Tahoma,8
foreground Color {0, 0, 0}
image
location 269,10
selection false
size 83,23
style PUSH
=text Search

L = == ===

Figure 16. Property identification

When finished, your composite will look like Figure 17.

Customer Mame | Search

| Number | Customer Mame |

Figure 17. Panel of finished composite

10

f. Set the fullSelection property for the tbiICustomers table to FULL_SELECTION. Full
selection for a table means that an entire row (as compared to a cell) is selected in a table
when a user clicks a table row (see Figure 18Figure 18).

Problems | Javadoc | Dedaration |) Properties &3 Console

Property | Value
background Color {255, 255, 255}
border <not set=
»bounds 7,33,326,189
enabled true
=field name thiCustomers
font Tahoma,s
foreground Color {0, 0, O}
fullselection FULL_SELECTION]
=headerVisible true
hideSelection <not set=

Figure 18. Setting the fullSelection property

g. Add agetter method to allow access to the Customers table from other SWT controls (for
example, the SWT shell):
i. Inthe Source view, right-click any tbICustomers label and click Source -> Generate Getters
and Setters (see Error! Reference source not found.).

private Button btnSear: . |
private Table tblCustor < undo Typing Crl+z Toggle Comment Ctrl+/
Remove Block Comment Ctrl+5hift+)
public CustomerSummaryt Format Cirl+shift+F
soper (parent, style Open Dedlaration 3 Correct Indentation Ctrl+L
initialize(): "
N Open Type Hierarchy F4 Organize Imports Cirl+5hift+0 .
Open Call Hierarchy Cirl +Alt+H Add Import Cirl +5hift-+v
private void initialize Open SUDEF Implementation Owerride/Implement Methods. ..
lblCustomerName = 1 Show in Package Explorer Generate Getters and Setters...
lblCustomerlame.sel o Generate Delegate Methods. ..
l1blCustomerlame. sel "' Add Constructors from Superdlass...
txtCustomerName = 155 Generate Constructor using Fields...
txtCustomeriame.sei [Paste Ctrl+V Add Comment Alt+5hift+]
btnSearch = new Bul
brnSearch.sertBound: Source Alt+shift+s » Externalize Strings...
; Eefacior AltsshiftaT »

Figure 19. Source view requirement

11

i. Click Deselect All, then on the Generate Getters and Setters window, select the
getTblCustomers() check box. Click OK (see Figure 20).

= Generate Getters and Setters @

Select getters and setters to create:

#-[] o binsearch Select all
+ me
= Deselect All
tomers() E———
O e setTbiCustomers(Table) M
+-[e txtCustomerName Select Setters

Insertion point:
|Last method j
Sort by:

|Fields in getterfsetter pairs

L

Access modifier
{* public ™ protected ™ default ™ private
[final [synchronized

[Generate method comments

The format of the getters/setters may be configured on the Code Templates preference page.

i 10of8selected.

CK | Cancel

Figure 20. Select Generate method comments

h. Save the changes to the CustomerSummaryComp.java class.

12

4. Import and review the Customer Details composite:
a. In Package Explorer, right-click TeamXXSWTProject and click Import.

b. On the Import window, click File system (see Figure 21).

= Import
Select \
Impart resources from the local file system into an existing project. | E - 5

Select an import source:

[Archive file

= Checkout Projects from CVS

75 Existing Projects into Workspace
LLExternal Features

=5 External PIL_l__g-ins and Fragments

L=, Preferences
ﬁi:lLTE.Elm Project Set

| MNext = | Einish Cancel

Figure 21. Select File system

13

c. Navigate to the C:\Rich Client Lab\com\ibm\flight400\comp directory and click
CustomerDetailsComposite.java. Click Finish (see Figure 22).

= Import

File system

Import resources from the local file system,

From directory; | C:\Rich CW =] Browse...

= [F = Rich Client Lab ﬁ
+-[] (= Code [
= [F = com
--[E = ibm
+ [] = fiight400
= (= swt
#-[E = comp
+-[] (= swidesigner
+-[] (= Completed Project

+-[J & img ol
A A v ™
Filter Types... ‘ Select Al ‘ Deselect Al
Into foldefs | TeamXXSWTProject Browse. ..
Options il

B QOverwrite existing resources without warning
" Create complete folder structure
(* Create selected folders only

< Back | e ‘ Einish I Cancel

Figure 22. Create selected folders and click Finish

d. Verify that the CustomerDetailsComp.java class was imported into the com.ibm.swt.comp
package. Inform the instructor if you see any errors after the import (see Figure 23).

-4 TeamXXSWTProject
-1-E8 com.ibm.swt comp
+ |1| CustomerDetailsComp.java
+ |1| CustomersummaryComp.java

Figure 23. Ensure that CustomerDetailsComp.java has been imported into the com.ibm.swt.comp package

14

e. Review the Customer Details composite.

Notice that double-clicking CustomerDetailsComp.java, opens this class in a default Java
editor. Right-click CustomerDetailsComp.java and select Open With -> Visual Editor
(see Figure 24).

=|-%= TeamXXSWTProject Mew »

=3 com.ibm.swt.comp

+-- [J] |CustomerDetail Open F3

:E 9 Cl;shomerSumrr Open With * = Designer Editor
+- 441 com.ibm.swt.sessic :
4 H3 comjbm.swt.shells Open Type Hierarchy F4 [3) Java Editor
+-md JRE System Library [Copy Cr+C Java Mode! Editor
£, Standard Widget T o o\ Crl+y 2 Text Editer
+-) ccfjar -
+- () eablib.jar ¥ Delete Delete ® |1 visual Editor
o figbtannani dor Dl Dol h

Figure 24. Opening the Visual Editor

Development of this composite is similar to the development of the Customer Summary
composite; it consists of placing controls on the compaosite and modifying control properties
(see Figure 25).

|i| CustomerDetailsComp.java 2

Customer Name |

Address |

City state | 7ipCode

Telephone |

Figure 25. Development of the CustomerDetailsComp.java composite

15

5. Create a Customer Summary shell. A Customer Summary shell is the top-level application
window that you use to display customer summary information:
a. In Package Explorer, right-click TeamXXSWTProject and click New ->
Visual Class.
b. On the New Java Visual Class dialog, type or verify the following values (see Figure 26):
e Source folder: TeamXXSWTProject
e Package: com.ibm.swt.shells
e Name: CustomerSummaryShell
e Style: SWT -> Shell
e For the Which method stubs would you like to create? value, select the public
static void main(...) check box.

Fa

= New Java Visual Class

Java Class

Create a new Java dass.

Source folder: | Team¥¥SWTProject Browse

il o

Package: | cam.ibm.swt.shey Browse
[~ Endosing type: |
Mame: | Customersummaryshel
Modifiers: & Ste (&
[~ abstract [final o
Style:

E% Editor P Superdlass: | java.lang. Object Browse...

057 View
= SwT
L| Composite
] shel
== Swing
-5

Interfaces:

b

Which method stubs would you like to create?

Ny

& Elaﬂnerb v public static void main{String[] ar
Object
[I Constuctors from superdass
& | > ¥ Inherited abstract methods

Do you want to add comments as configured in the properties of the current project?
| Generate comments

Einish | Cancel

Figure 26. Create a new Java class

c. Click Finish.

16

d. Add the Customer Summary composite to the Customer Summary shell:

Using the following code, declare CustomerSummaryComp as a private field immediately after
the shell declaration:

private Custoner Sumrar yConp cust onmer Summar yConp;

See Figure 27 for a display of the completed code.

poblic class CustomerSummaryShell

private Shell =5hell = nmll;
r

private CustomerSummaryComp customerSummaryConmg;

Figure 27. Competed code - CustomerSummaryComp

Add the following method in the CustomerSummaryShell.java class.

public void createContents(){
cust omer Summar yConp = new Cust oner Summar yConp
(sShel | .getShel | (), SWI. NONE);

}

You can copy and paste the code in Figure 27 from the following text file:
C:\Rich Client Lab\Code\CustomerSummaryShell_CreateContents.txt

Note: Throughout this lab, you will reference Java classes that are not imported by
default. You can easily add imports by clicking the error icon (Figure 28) on the left
border of the Java source editor and selecting an option to add the required import.
Alternatively, you can add an import manually.

B,

poblic void createContents(){

CustomerSummaryvComp customerSummaryCo W hell .getShe
} 4— Import 'CustomerSummaryComp' (com/ibm.swt.com
\ import mm.ibm.swtmmp.tustomerSumga% = i yComp' (s T 2
aryComp
Click here public dass CustomerSummaryShell { & Change to 'CustomerSummaryShell' (com.ibm. swt.shells)
@ Rename in file (Ctrl+2, R direct access)

Figure 28. Adding imports

After the last line of code in the createSShell() method, add a call to the createContents()
method as follows:

private void createSShell () {
sShell = new Shell ();
sShel | . set Text (" Cust oner Sunmary");

—se e{new org. eclipse. sw.graphics. Poi nt (375,294));

17

e. Save the changes to the CustomerSummaryShell.java class. At this time, your Customer
Summary shell will look like Figure 29.

F i |

e

Customer Mame | Search

Number | Customer Name |

Figure 29. Example of the Customer Summary shell

6. Create a Customer Details shell. A Customer Details shell is displayed by a user-driven event
(menu selection) from the Customer Summary shell.

Note: In a typical stand-alone SWT application, you have one shell with a main() method
(which is a starting point for any Java application). Actions on the primary application shell
invoke all other shells.

a. In Package Explorer, right—click TeamXXSWTProject and select New ->
Visual Class.

b. On the New Java Visual Class dialog, type or verify the following values:
= Source folder: TeamXXSWTProject
= Package: com.ibm.swt.shells
= Name: CustomerDetailsShell
= Style: SWT => Shell
= For the Which method stubs would you like to create? value, make sure the public

static void main(...) check box is cleared.
c. Click Finish.
d. Add the Customer Details composite to the Customer Details shell:

i. Using the following statement, declare CustomerDetailsComp as a private field immediately
after the shell declaration:

private CustonerDetail sConmp custonerDetail sConp;

18

See Figure 30 for a display of the completed code.

public class CustomerDetailsShell

private Shell s5hell = nmll;
~

private CustomerDetail=sComp customerDetailsComp:

Figure 30. Completed code - CustomerDetailsComp

ii. Add the following method in the CustomerDetailsShell.java class:

public void createContents(){
cust orer Det ai | sConp = new

Cust omrer Det ai | sConp(sShel | , SWI'. NONE) ;
}

You can copy and paste the code listed in Figure 30 from the following text file:

C:\Rich Client Lab\Code\CustomerDetailsShell CreateContents_method.txt
iii. After the last line of code in the createSShell() method that is contained in the

CustomerDetailsShell.java class, add a call to the createContents() method as follows:

private void createSShell () {
sShell = new Shell ();
sShel | . set Text (" Custoner Detail s");

sSh —setSkze(new org. ecli pse. swt. graphi cs. Poi nt (450, 170)) ;
Gemecmen <D
}

e. Add a constructor to the CustomerDetailsShell.java class.

A constructor is a method in a Java class that initializes the class. You can add it
immediately after the class variable declaration as follows:

public CustomerDetail sShell (){
createSSshel | ();
}

Figure 31 shows the completed code.

public class CustomerDetailsShell |

private Shell =sS5hell = null;
-~

private CustomerDetailsComp customerDetailsComp;

public CustomerDetailsShell () {
create35Shell () ;
h

Figure 31. Completed code — CustomerDetailsComp with createSShell() method

19

f.

Make the following changes to change the type of shell that is being created in the
createSShell() method to create a modal shell:

new Shel | ();

Change: sShell

To: sShel

new Shel | (SWI. DI ALOG TRIM + SWI. APPLI CATI ON_MODAL) ;

Add the open() method to the CustomerDetailsShell.java class. This method allows other
shells to open the Customer Details shell. You can add this method after the last method of
the class as follows:

public void open(){
sShel | . open();
}

Switch to the design view of the CustomerDetailsShell.java class and under the Customer
Details composite, add the two buttons listed in Table 2.

Type Name Text
Button btnAction
Button btnCancel Cancel

Table 2. Design view: Adding two buttons to the Customer Details composite

Save changes to the CustomerDetailsShell.java file. Figure 32 shows the Customer Details
shell.

Customer Name |

Address |

Ciity State | Zip Code

Telephone [

| Cancel |

Figure 32. Example of Customer Details shell

Checkpoint 2:

Up to this point, you have created composites and shells. Take a few minutes to reflect on the
things that you have learned in this section:

o What is the difference between a composite and a shell?
e Why is it a good idea to place widgets in a composite compared to directly onto a shell?
e How do you place a composite on a shell?

How many shells with a main() method do you have in a SWT application?
How can you specify the different types of an SWT shell?

20

Part 3: Import pre-implemented classes and JAR files

1.

a.

In this section, you will import some Java archive (JAR) files and classes that contain business logic
(IBM instructors created these files and classes in order to help you complete this lab.)
Import the JAR files that are required for business-logic implementation. You will review the

content of JAR files in “Part 5: Integrate business logic.”
In Package Explorer, right—click TeamXXSWTProject and click Import. On the Import

panel, click File system (see Figure 33).

= Import

Select

Import resources from the local file system into an existing project.

Select an impart source:

._‘

B, Archive file

L Checkout Projects from CS

% Existing Projects into Workspace
Lk External Features

25 External Plug-ins and Fragments

=L Preferences
ﬁi:lLTeam Project Set

| Mext = |

Cancel

Figure 33. On the Import panel, select File system

21

b. Navigate to the C:\Rich Client Lab\Jars directory and select all JAR files in this directory.
Click Finish (see Figure 34).

Note: The application business logic is implemented in the flight400api.jar file. The rest of
the JAR files contain Java classes that the business logic uses.

= Import
File system —
I
Import resources from the local file system, / /
-

From directory:] C:\Rich Client Lab\Jars j Browse...

= =| ccf.jar
| eablib.jar
| flight400api.jar
=| iwdtrt.jar
= j2ee.jar
=| jt400 jar
|=| regava.jar
Filter Types. .. ‘ Select Al Deselect All ‘
Into folder: |TeamXX5W'I'Pr0ject Browse...
Options

r COverwrite existing resources without warning
(" Create complete folder structure
(¥ Create selected folders only

< Back | e ‘ Einish I Cancel

Figure 34. Selecting all JAR files in the directory

22

c. Add JAR files to Java Build Path (see Figure 35):
i. In Package Explorer, right-click TeamXXSWTProject and click Properties.
ii. Inthe left pane, click Java Build Path.
iii. Click the Libraries tab and click Add JARs.

= Properties for TeamXXSWTProject G @
type filter text = Java Build Path 4mB

Info
BeanInfo Path (# Spurce] = Projects\ = Libraries]{5«} @rder and Ex'pnrt]

JARs and dass folders on the build path:
Designer Color Dynstants

Java Build Path [#--@d}, JRE System Library [jZre1.4.2]
Java Code S [+--m, Standard Widget Toolkit (SWT)

+|- Java Compiler
Javadoc Location Add Varahie
Project References -
Add Library...
Add Class Folder. ..

Default output folder:

(&l 3] | TeamxxswrProect Browse...

OK I Cancel I

Figure 35. Selecting properties for TeamXXSWTProject

iv. On the JAR Selection dialog, select all JAR files under TeamXXSWTProject (hold the Shift key
when selecting the JAR files). Click OK (see Figure 36).

< JAR Selection =%

Choose jar archives to be added to the build path:

== TeamiXSWTProject
E eefier
- eablib.jar
- flight400api.jar
- iwdtrtjar

| j2ee.jar

123 Team¥XSWTProject2

OK. | Cancel

Figure 36. Choosing the JAR archives for the build path

23

v. Click OK to close the Properties window.

d. Repeat steps 1a and 1b to import the dbconn.properties file from the C:\Rich Client
Lab\jdbc directory into TeamXXSWTProject. This properties file contains database
connection information.

e. Edit the host nane, useri d, and passwor d values in the dbconn.properties file.

When finished, your project will look similar to Figure 37.

=% 2 TeamXXSWTProject
+--F8 com.ibm.swt.comp
+-F8 com.ibm.swt.shells
+-my, JRE System Library [j2rel.4.2]
+--2), Standard Widget Toolkit {SWT)
+- [ccf.jar
+- [| eablib.jar
+- (] flight400api.jar
+- (] iwdtrt.jar
+ | j2ee.jar
+ | jt400.jar
-] recjava.jar
-5 dbconn.properties

Figure 37. Project appearance

2. Import the Session Manager Java (SessionMgr.java) class. This class has been implemented
to provide some basic session management functionality for this lab. Unlike Web applications,
rich-client applications do not provide a default implementation for session management. A
session in an application is a period of time during which a user interacts with an application.
Conceptually, the use of a session object in a rich-client application is similar to the use of a
temporary data area or a user space in an RPG application.

3. One of the primary uses of a session object is to pass information between SWT shells.
Although it is possible to pass information between shells directly, using an intermediate object
creates better architecture and allows for code reuse:

a. In Package Explorer, right-click TeamXXSWTProject and click Import.
b. Onthe Import panel, click File System And click Next.

24

c. Navigate to the C:\Rich Client Lab\Session directory and select Session. Click Finish (see

Figure 38).
= Import
File system —
Import resources from the local file system. / 7
-

From directory: J ©\Rich Client Lab\Session Ll Browse...

+[#] = Session

Filter Types. .. I Select All Deselect all
Into folder: |Team§d>{5'\"ﬂ'Pr0ject Browse...
Options

B Overwrite existing resources without warning
(" Create complete folder structure
(¥ Create selected folders only

< Back [E J Einish | Cancel

Figure 38. Create selected folders and click Finish

4. Review the implementation of the SessionMgr.java class (located in
TeamXXSWTProject\com.ibm.swt.session). In a Java editor, double-click SessionMgr.java to
open this class (see Figure 39).

-T2 TeamXXSWTProject
+ :-E com.ibm.swt, comp
- :-E com.ibrm, swt.session
+ |1| SessionMar.java
+- 3 com.ibm.swt.shells

Figure 39. Opening the SessionMgr.java class

25

Notice that this class is a singleton. Singleton implementation means that there will be only one
instance of this class in an application. This implementation is necessary to support the session
functionality that was described earlier:

public static SessionMgr getlnstance() {
i f(sessionMgr == null){
sessi onMgr = new Sessi onMr () ;
}

return sessi onMyr;

Here is a review some of the most interesting Java methods in this class:

= getCurrentMode() and setCurrentMode(): This application uses the concept of a mode
(view, add, update, or delete) to reuse SWT shells. At the same time, these methods support
different behavior, depending on the selected mode. This getter/setter set allows the Customer
Summary shell to set the mode, based on the selected menu. The Customer Details shell has
a slightly different look and behavior, based on the selected mode.

= getSelectedCustomer(): This method allows the application to pass information about the
selected customer from the Customer Summary shell to the Customer Details shell.

= setRefresh and isRefresh(): These methods tell the Customer Summary shell when to refresh
search results.

Checkpoint 3:
Take a few minutes to reflect on the things that you have learned in this section:

e What is the role of a session object in an application?
e Do all rich-client applications need a session object?

26

Part 4: Implementing basic navigation

In this section, you will implement basic navigation between the Customer Summary and Customer

Details shells.

1. Add a main menu bar to the Customer Summary shell:
a. You can build a main menu by using Menu components in the Palette. Make sure to select

components from the SWT Menus palette (see Figure 40).

Palette 4

[% Selection

{:_: Marguee

.ﬁfsa Choose Bean
[SWT Controls
[= SWT Containers

MenuBar
=) Menultem,Push

Figure 40. Adding a main menu bar to the Customer Summary shell

b. Start by placing a MenuBar object onto the Customer Summary shell. Accept the default
values in the JavaBeans name dialogs (see Figure 41).

+J| *CustomerSummaryShell.java &2

P

Customer Name |

Number | Customer Name

Search

Palette
[} Selection
{::'_ Marquee
& Choose Bean
[~ SWT Controls
== SWT Containers
\@ SWT Menus
MenuBar
=; Menultem.Push

Figure 41. Placing a MenuBar object onto the Customer Summary shell

Notice that the menu bar is displayed in the JavaBeans view (located in the left-bottom
corner of the Workbench). To build the rest of the menu, drop menu components in the

Java Beans view (see Figure 42).

=[] sShell-"Customer Summary”
2% shellActivated

|| customerSummaryComp

% JavaBeans 2 = O

B =

Figure 42. menuBar is displayed in the JavaBeans view

27

[SWT Menus

-+

MenuBar

_—

=| Menultem.SubMenu &_-/)

Figure 43: Dropping SubMenu objects under the MenuBar

At this time, your menu bar will look similar to Figure 44.

d. Drop two SubMenu objects under the menuBar object. You can change the type of menu
by clicking the arrow in the Palette view (see Figure 43).

g JavaBeans 2

szﬁ

=[] sshell-"Customer Summary” Customer Name |

@% shellactivated Number

Search

| Customer Name |

-1-[E=] menuBar
--1=; submenultem1
=| submenu
—1-= submenultem?2

DI | —

s Choose Bean
(= SWT Controls
== SWT Containers
[.=- SWT Menus
MenuBar

=| submenul

=| Menultem,SubMenu

Figure 44: MenuBar screen display

e. Add one push menu object under the first submenu object and four push menu objects
under the second submenu object (see Figure 45).

EVI:IE

%y Java Beans I3

=[] sShell-"Customer Summary” Customer Name |

®% shellactivated Mumber

Search

| Customer Name |

-1-E menuBar
—l-1= submenultem1
-1+ |= subl

=
—l-1= submenultem?2
=| submenul

F= Menot=
=) Menultem Pdsh

L v =
& Choose Bean
(== SWT Contrals
|.—== SWT Containers
.= SWT Menus

Figure 45: Adding push menu objects

properties (see Table 3).

Generated name Field name Text
submenultem mnuFile File

push mnuEXxit Exit
submenulteml mnuCustomer Customer

pushl mnuViewCustomer View Customer
push2 mnuAddCustomer Add Customer
push3 mnuUpdateCustomer Update Customer
push4 mnuDeleteCustomer Delete Customer

Table 3. menu object field names and text properties

28

f. Inthe Properties view, rename the menu objects by changing their field names and text

g. When finished, your menu tree will look similar to Figure 46.

-1--=3 mnuFile-"Fie"
- |£ submenu
= mnuExit-"Exit”
-l = mnuCustomer-"Customer”™
—I- £ submenul
= mnuviewCustomer-"View Customer”
= mnuAddCustomer-"Add Customer™
= mnulpdateCustomer-"Update Customer™
=1 mnubDeleteCustomer-"Telete Customer”™

Figure 46: Menu tree display

2. Test the SWT application:
a. In Package Explorer, right—click TeamXXSWTProject and click Run As ->
SWT Application (see Figure 47).

- = TeamXXSWTPraiect W
- com.ibr MNew L
= 3} com.ibr Golnto
S o e LTSS
¥ m cu: Openin New Windew | L
+-E JRE Sy Open Type Hierarchy e
Wk Stnda |
- ccfijar =| Copy cl+c
=-0 eablibl: J. Paste Ctr|+\‘l
-) flight4l
= Delete Delete | . . o o
Bl () wvdtrt.; X)
w- () j2eeda Build Path 3
B (0 400, Source Alt+shift+5 ¥
#-() recave Refactor Alt+shift4T » -
dhconr play.dispose():
52 Teamixsiy 21 IPart...
£ Export...
< £ Refresh F5 =
_— Close Project
JavaBeans I
1] Run As ¥ EG 1Java Applet Alt+5hift+x, A
(- - e
Debug As . 3] 2 Java Application Alt+5hift+¥, 1
=[] sshell-C Team
e " Ju 3 Unit Test Alt+5hift+%, T
|| custom Compare With o/l
Restore from Local History. .. [77] 4SWT Application Alt+5hift+, S]
PDE Tools 3
O Run...
o " At I

Figure 47. Testing the SWT application

29

In the Run Type dialog, type cu to display the CustomerSummaryShell matching type.
Click OK (see Figure 48).

r# Run Type - @“

Choose a type (? = any character, * = any string):

b.

|l

Matching types:

® & CustomerSummaryShell

Qualifier:

B4 com.ibm.zwt.shells - TeamXXSWTProject

{] i | [>]

| Ok | Cancel |

Figure 48. Displaying the CustomerSummaryShell matching type

30

c. Your application will look similar to Figure 49.

-

— Customer Summary E]@“

File Customers

Customer Mame | | Zaarch

MNumber | Customer Name |

Figure 49. Customer Summary window

Notice that you can display the main and pop-up menus but nothing happens when you
select the menus. Later in the lab, you will implement event handling for menu items and
other SWT widgets. The only default actions that an SWT shell implements are the

m ni m ze, naxi m ze, and cl ose actions.

d. Close the Customer Summary shell.

3. Next, implement a basic operation of closing the application with the Exit menu:
a. Open the Customer Summary shell in the Visual Editor.
b. In the JavaBeans view, right-click mnuExit and click Add Events (see Figure 50).

T

%4 JavaBeans 53 g < =04 submenu =
=[] sShell-"Customer Surmmary” Menultem p
@4 shellActivated push.setTe
= menuBar submenulte
—|- = mnuFile-"TFile™ sS5hell.set
=+ [E| submenu s5hell. add
=Y a public
=5} mnuCustomer-"Custo <7 if|

= [E| submenul 5N

= mnuviewCust

= mnuAddCuste Open

& mnuUpdateCt Open Type Hierarchy

= mnuDeleteCu ¥
|| customerSummaryComp uﬁ‘ Cut }

=| Copy s
= ffcreateMa
createPopuy
Rename Field
X Delete Javadoc | Dedaration
Events L4 Add Events ...
tor

Figure 50. Add Events in the JavaBeans view

31

c. Onthe Add Event dialog, expand selection, click widgetSelected, and click Finish (see
Figure 51).

= Add Event - mnuExit-"Exit"

®

Add Event page

i :!3 arm Mo Description
+1-“¢3 Dispose
+ 4’@ help
=% selection

B 'A'\dgemefaults_elecbed

{ G
% Create new Listener

+ implements: org.edipse.swt.events. Selectionlistener

Figure 51. Selecting widgets

d. Review the generated code (see Figure 52). Notice that a selection listener has been added
to the Exit menu. The role of a listener is to respond to a specific event, in this case, a
selection event.

MenuTtem push = new Menultem(submenu, S5SWT.FUSH):

push. setText ("Exit"™) ;

push.addSelectionlistener (new org.eclipse.swt.events.S5electionlistener ()
public wvoid widgetSelected(org.eclipse.swt.events.SelectionEvent e)

System.out.println("widgetSelected()"): // Auto-generated Ewveq
¥
poblic wvoid widgetDefaultSelected (org.eclipse.swt.events.5electionEvent
¥

i

Figure 52. Generated code for the Exit menu

Replace the generated code with the code that closes the shell.
Replace: Systemout. println("w dget Sel ected()");
With: sShel | . cl ose();

Figure 53 shows completed code for the Exit menu.

MenulItem push = new Menultem(submenu, SWI.PUSH);
push.setText ("Exit™) ;
push.addSelectionlistene ew org.eclipse.swt.events.S5electionlistener ()

public void widgetSelected(ong.eclipse.swt.events.5S5electionEvent &)
s5helNclaose ()2
}

public void widgetDefaultSelected(org.eclipse.swt.events.SelectionEvent e)
H
s

Figure 53. Completed code for the Exit menu

e. Save the changes and test the application (try clicking the Exit menu).

32

4. Implement event handling for the View Customer, Add Customer, Update Customer, and
Delete Customer menus:

a. Add the displayCustomerDetails(int mode) method to the CustomerSummaryShell.java
shell. You can copy and paste this code from the following text file:

C.\Rich dient Lab\Code\Di spl ayCustonerDetails.txt

This method creates an instance of the CustomerDetailsShell panel and opens it. The
node parameter determined if the details panel is used for display, add, update, and delete
operations.

public void displayCustonerDetail s(int node){

Sessi onMyr sessi onMgr = Sessi onMgr. get | nstance();
sessi onMgr . set Curr ent Mode(node) ;

i f(node == Sessi onMgr. MODE_VI EW | |
node == Sessi onMyr. MODE_UPDATE | |

node == Sessi onMyr. MODE_DELETE) ({
/'l Get selected row

sessi onMyr . set Sel ect edCust oner | ndex(cust onmer Summar y Conp.
get Thl Cust onmer s() . get Sel ecti onl ndex());
}

Cust oner Det ai | sShel | custDetail Shell = new CustonerDetail sShell ();

cust Det ai | Shel | . open();

}

b. Add selection listeners and a call to the displayCustomerDetails() method to each
customer-related menu. Use the Add Events menu that you used in the previous step. For
each menu, replace the default code with:

View menu: di spl ayCust oner Det ai | s(Sessi onMgr . MODE_VI EW ;
Add menu: di spl ayCust onmer Det ai | s(Sessi onMyr . MODE_ADD) ;
Update menu: di spl ayCust oner Det ai | s(Sessi onMyr . MODE_UPDATE) ;

Delete menu: di spl ayCust oner Det ai | s(Sessi onMyr . MODE_DELETE) ;

33

C.

Figure 54 shows a sample set of code for the customer menus.

MenuItem pushl = new MenuItem(submenul, SWT.PUSH):
pushl.setText ("View Customer™):
pushl.addSelectionlistener (new org.eclipse.swt.events.SelectionListener () {

ic void widgetSelected(org.eclipses events.SelectionEvent)
\\‘-T___fiffiifff5tomerDEtailSiSESSiODng.HCDE VIEHW) ;
public void widgetDefaultSelected(org.eclipse.swt.events,.S5electionEvent e) {
}
Fh:

MenuItem pushZ = new Menultem(submenul, SWI.PUSH):
push2.zsetText ("Rdd Customer™);
pusha Sat TonET TET ToTeets 2Wwt.events.5electionlistener () {

public void widgetSelected(org.eclipse.swt.8yent2.5electionEvent e) {

public void widgetDefaunltSelected (org.eclipse.swt.events.S5electionEvent &) {
}
s

Figure 54. Sample code for the customer menus

Although the JFace API is out of the scope of this lab, it is important to note that it is
possible to minimize the amount of repeating code for action processing with the JFace
Action Processing API. The JFace API allows you to set up one action-processing method
for multiple events (main menu, pop-up menu, and toolbar buttons). In this case, if you
create a JFace action-processing class, you do not have to add event listeners to each
menu.

Test the application. Each customer-related menu item brings up a Customer Details panel.
Notice that the Customer Details shell is modal.

5. Add a pop-up menu to the Customers table.

a.

Note: At this time, Visual Editor does not provide a visual wizard for creating a pop-up
menu. You will create the pop-up menu manually.

Add the createPopupMenu() method to CustomerSummaryShell.java class. You can copy
and paste this code from following text file:

C:\Rich Client Lab\Code\CustomerSummaryPopupMenu.txt

In this method, you will create a Customer pop-up menu with submenus: View Details, Add
Customer, Update Customer, and Delete Customer. This pop-up menu will be displayed
when the user right-clicks the Customers table. Examine the following code:

34

private void createPopupMenu(){

final Menu nenu_3 = new Menu(cust omer Sumrar yConp) ;
cust omrer Summar yConp. get Thl Cust omer s() . set Menu(nenu_3) ;

final Menultem mtnVi ewDetails 1 = new Menulten(nenu_3, SW. NONE);

mt mvi ewDet ai | s_1. set Text ("Vi ew Detail s");
mt mVvi ewDet ai | s_1. addSel ecti onLi st ener (new Sel ecti onAdapter () {
public void wi dgetSel ected(final SelectionEvent e) {
Sessi onMyr . get | nst ance() . set Curr ent Mode(Sessi onMgr . MODE_VI EW ;
di spl ayCust oner Det ai | s(Sessi onMgr. MODE_VI EW ;
}
1)

new Menul tem nenu_3, SWI. SEPARATOR) ;
final Menultem mt mAddCust oner _1 = new Menulten(nenu_3, SWI. NONE);
mt mAddCust orrer _1. set Text (" Add Custoner");
mt mAddCust ormer _1. addSel ect i onLi st ener (new Sel ecti onAdapter () {
public void wi dget Sel ected(final SelectionEvent e) {
Sessi onMyr . get I nst ance() . set Curr ent Mode(Sessi onMgr . MODE_ADD) ;
di spl ayCust oner Det ai | s(Sessi onMgr . MODE_ADD) ;
}
1)

final Menultem mt mJpdat eCustoner _1 = new Menulten(nmenu_3, SW. NONE);
mt mJpdat eCust oner _1. set Text (" Updat e Custoner");
mt mJpdat eCust oner _1. addSel ect i onLi st ener (new Sel ecti onAdapter () {
public void wi dget Sel ected(final SelectionEvent e) {
Sessi onMyr . get | nst ance() . set Curr ent Mode(Sessi onMgr . MODE_UPDATE) ;
di spl ayCust oner Det ai | s(Sessi onMyr . MODE_UPDATE) ;
}
1)

final Menultem mt mDel et eCustoner _1 = new Menul tem(nmenu_3, SW. NONE) ;
mt mDel et eCust oner _1. set Text (" Del ete Custoner");
mt nDel et eCust oner _1. addSel ecti onLi st ener (new Sel ecti onAdapter() {
public void wi dget Sel ected(final SelectionEvent e) {
Sessi onMyr . get I nst ance() . set Curr ent Mode(Sessi onMgr . MODE_DELETE) ;
di spl ayCust omer Det ai | s(Sessi onMgr . MODE_DELETE) ;

1),

35

b. After the last line of code in the createSShell() method, add a call to the
createPopupMenu() method. Figure 55 is a display of the completed code.

submenultemn. setHMenn (submenu) 7
s5hell . setMenuBar (menubar) ;
createPopupMenu () ;

Figure 55. Sample of completed code for a pop-up menu

Checkpoint 4:

In this section, you added some basic navigation in a SWT application. Take a few minutes to reflect
on the things that you have learned:

e Whatis an event?

e What is the role of a listener?
e How did you implement event processing for SWT widgets?

o Does SWT implement any default event processing?

36

Part 5: Integrating business logic

Business logic is usually invoked from GUI events that the end user initiates. Creating business logic is
outside the scope of this lab. You will use the business logic that was previously created for you.

Business logic in this application performs the following functions:

1. Search for customers based on the customer name provided by the user
2. Display detailed customer information

3. Add a customer

4. Update a customer

5. Delete a customer

You implemented the business logic using ProgramCall JavaBeans (JavaBeans that invoke an RPG
program) and JDBC JavaBeans (JavaBeans that run Structured Query Language [SQL] statements
against an IBM DB2® for i5/0OS® database).

As a GUI layer programmer, you do not need to know the details of the business-logic layer of the
implementation. Your goal is to provide input parameters that the business logic methods require and
display results that the business logic returns.

Separating the presentation and business logic is something that all programmers know they are
required to do, but during implementation you might have a tendency to do what is faster and more
convenient. You can use some techniques to move programmers into a good programming model. For
example, you can develop business logic in a separate project from the presentation logic (in IBM
WebSphere Development Studio Client), package it into a JAR file, and import it into the presentation
layer project. By using this process, programmers can call business logic from the presentation layer,
but they will be less likely to add business logic to the presentation layer.

1. Add business logic to search for customers:

a. Add the getCustomers() and refresh() methods to the CustomerSummaryComp.java class:
Note: To add these two methods, you can copy and paste the code listed on the next page
from the following text file:

C:\Rich Client Lab\Code\SummaryCompositeActions.txt

= The getCustomers() method calls another method that is packaged in one of the Java
classes that are included in the flight400api.jar JAR file and populates the table on the
composite with the returned results.

= The refresh() method refreshes the search results after returning from add, update, and
delete operations on the Customer Details shell.

37

private void getCustoners(){

if (txtCustomerName.getText().trin() !'="") {

Custoner custonmer = null;

int i =0;

try {

/1 Call business logic method to retrieve custoners

Vect or

custoners =
i Seri esDat aManager . get | nst ance().
get Cust orrer ByNane(t xt Cust orrer Nane.
get Text ());

if (customers !'= null) {

Iterator iter = custoners.iterator();
/1 Renove previous records
t bl Cust oners. renoveAl | ();
/1l Create an array of table rows
final Tablelten]{] itens = new
Tabl el t enf cust oner s. si ze()];

while (iter.hasNext()) {

customer = (Custoner) iter.next();

items[i] = new Tabl elten{tbl Customners,
SWI. NONE) ;

items[i].setText(new String[] {

cust oner . get Cust oner Nunber (). toString(),

cust omrer . get Cust oner Nane() });

i ++;

}

// Save results in the "session"

Sessi onMyr . get I nst ance() . set Sear chResul t s(cust omer s) ;

}

} catch (Exception ex) {
ex. printStackTrace();

}el se{

/1 Display a nessage box if the custoner
MessageBox val i dvsg = new MessageBox(this.getShell (), SW.K);

val i dMsg. set Message(" Pl ease enter a customer nane.");
val i dMsg. open();

}

public void refresh(){
get Cust oners();
H}

38

nane i s not provided

b. Add an event handling process for the Search button.
You need to call the getCustomers() method when the user clicks the Search button. The click

i.
action on the button corresponds to the SWT widgetSelected event. On the Design view, right-click

Search and click Events -> widgetSelected (see Figure 56).

.
| :- Search
b——a—— "] Uindo Typing

%

Ctrl+Z

* [Mumber] Customer Name

Open
Open Type Hierarchy

of Cut
=| Copy
Rename Field

¥ Delete
Events L4 Add Events ...
Set Text @+ widgetSelected

Customize Layout...

Figure 56:Select widgetSelected
The View Editor brings you to the widgetSelected event code in the Source Code view.

ii.
Replace the following code: System out. printl n("w dget Sel ected()")
with: get Cust oner s()

(See Figure 57. The widgetSelected event code.)

btnSearch.addSelectionlistener (new org.eclipse.swt.events. Selectionfdapter ()
public wvolid widgetSelected(org.eclipse.swt.events.S5electionEvent) {

getCustomers () ;
¥
HE
Figure 57. The widgetSelected event code

39

c. Add the shellActivated() event to the CustomerSummaryShell.java class. You need to
refresh the search results after returning from add, update, and delete operations on the

Customer Details shell.
Switch to design mode in the Customer Summary shell editor. Right-click the shell and click Events

-> shellActivated (see Figure 58).

—_—

<:|rjl
Customer Mame r*\:>

Mumber | Customer Name Cpen
COpen Type Hierarchy

of Cut
=|Copy

Rename Field

¥ Delete
Events ' Add Events ...
) @ ghellActivated
:Zi'pr;r;thd @+ shellClosed

Cuctomize | aynnt |

Figure 58. Select shellActivated

i. Replace the generated code with the following code:

i f(SessionMyr.getlnstance().isRefresh()){
/1 1f there was a previous search result
i f(SessionMyr. getlnstance().getSearchResults() !'= null){
cust onmer Sunmmar yConp. refresh();
}
}

Note: You can copy and paste this code from the following text file:
C:\Rich Client Lab\Code\CustomerSummaryShell_ShellActivated.txt

You can see an example of the completed code in Figure 59:

35hell.addShelllistener (new org.eclipse.swt.events.ShelllAdapter()
public woid shelllctivated (org.eclipse.swt.events.ShellEvent e)
if (SessionMgr.getinstance() .izBefresh()){
/f If there was a previous search result
if(SessionMgr.getInstance() .getSearchResults() !'= nmll){
customerSummaryComg .. refresh ()

}

}

Figure 59. The completed shellActivated code

40

d. Save the changes to the CustomerSummaryComp.java class and test your

TeamXXSWTProject:
iii. Type Br own for the customer name and click Search. You will see results similar to Figure 60.

—J Customer Summary E]@

File Customers

Customer Name [gr5,4n Search

Number | Customer Mame |

1781 Brown, Jacquelyn
2350 Brownigg, Daphine
24963 Brownigg, Muriel
5215 Brownigg, Ellen
5735 Brownigg, Rodney
7596 Brownigg, Ester

Figure 60. Customer name: Brown
iv. Leave the customer name blank and Search. You will see a validation message box

(see Figure 61).

Flease enter a customer name,

Figure 61. Validation message box

41

2. Add business logic to the Customer Details shell.

Note: This step allows you to do some manual coding. If you do not want to complete this step,
but want to see the completed application, you can copy the completed version of the
Customer Details shell from the Solution project in your Eclipse Workbench (see Figure 62).

-7 2= Solution
+- M com.ibm.swt.comp
+-- 3 com.ibm.swt.session
-1- /4 com.ibm.swt.shells
+-4J| CustomerDetailsShell java
+-4J| CustomerSummaryShell java

Figure 62. Adding business logic to the Customer Details shell

a. Add the prepareForMode() method (see the following code) to the
CustomerDetailsShell.java class:

private void prepareFor Mde()
i nt nmbde = SessionMyr. getlnstance(). getCurrent Mbde();

i f(nmode == Sessi onMyr . MODE_ADD) {
bt nActi on. set Text (" Add") ;
}else if (nbde == Sessi onMyr. MODE_UPDATE) {
bt nActi on. set Text (" Update");
}else if (node == Sessi onMyr. MODE _DELETE) {
bt nActi on. set Text ("Del ete");
/! Disable all fields
cust omer Det ai | sConp. get Txt Cust onmer Nane() . set Enabl ed(f al se);
cust omer Det ai | sConp. get Txt Addr ess() . set Enabl ed(f al se);
cust oner Det ai | sConp. get Txt City(). set Enabl ed(f al se);
cust oner Det ai | sConp. get Txt St at e() . set Enabl ed(f al se);
cust omrer Det ai | sConp. get Txt Zi pCode() . set Enabl ed(f al se);
cust oner Det ai | sConp. get Txt Tel ephone() . set Enabl ed(f al se);
}el se{
bt nActi on. set Vi si bl e(fal se);
}

}

You can copy this method code from the following text file:
C:\Rich Client Lab\Code\PrepareForMode.txt

Note: The prepareForMode() method displays a different caption for the action button
(based on the selected mode) and disables fields when they are not editable.

42

b. Add the populateCustomerDetails() method to the CustomerDetailsShell.java shell. The
code for this method is as follows:

private void popul ateCustonerDetail s() {

Cust omer custonmer = SessionMyr.getlnstance(). get Sel ect edCustoner();

if(customer !'= null){
cust oner Det ai | sConp. get Txt Cust omer Nane() . set Text (cust oner.

get Cust onmer Nme()) ;

cust orer Det ai | sConp. get Txt Address() . set Text (cust onmer. get Address());
cust oner Det ai | sConp. get Txt City().set Text(custoner.getCity());
cust oner Det ai | sConp. get Txt State() . set Text (custoner. getState());

cust orer Det ai | sConp. get Txt Zi pCode() . set Text (cust omer . get Zi pcode()) ;

cust oner Det ai | sConp. get Txt Tel ephone() . set Text (cust oner. get Tel ephone());

}
You can copy the populateCustomerDetails() code from the following text file:
C:\Rich Client Lab\Code\PopulateCustomerDetails.txt
Note: The populateCustomerDetails() method populates the text fields, based on the
record selected in the Customer Summary shell.
In the CustomerDetailsShell constructor, add a call to the following code after the call to the

C.
createSShell() method:
public CustonerDetail sShell (){
createSShel | ();
pr epar eFor Mbde() ;
i f(SessionMyr. getlnstance().getCurrentMde() ==
Sessi onMgr . MODE_VI EW | |
Sessi onMyr . get I nst ance() . get Current Mbde() ==
Sessi onMgr . MODE_UPDATE | |
Sessi onMyr. get I nst ance() . get Current Mode() ==
Sessi onMgr . MODE_DELETE) {
popul at eCust oner Det ai | s();
}
}
You can copy and paste the complete code for the createSShell() method from the
following text file:
C:\Rich Client Lab\CustomerDetailsShellCreateShell.txt
Note: If you are copying and pasting the createSShell() code, make sure you replace the
existing constructor; that is, do not create a second constructor.
d. Test the application, using Br own as a search value. Then select all menus. Notice that the

behavior of the Summary Details panel differs, depending on the mode that you select.

43

e. Add the perfomAction() method (see the following code) to the CustomerDetailsShell.java
class. This method invokes business logic to perform an action that corresponds to the
selected mode (add, update, or delete).

private void performAction(){
Sessi onMgr sessi onMgr = Sessi onMyr. get | nstance();

try{
Cust oner custonmer = new Custoner();
/1 W don't have custoner nunmber in the Add node
i f(sessionMgr. get Current Mode() != Sessi onMgr. MODE_ADD) {
cust oner. set Cust oner Nunber (sessi onMyr . get Sel ect edCust oner ()
. get Cust orrer Nunber ());

}

cust oner. set Cust oner Nane(cust oner Det ai | sConp. get Txt Cust oner Nane() .
get Text ());

cust onmer . set Addr ess(cust oner Det ai | sConp. get Txt Address().get Text());
custoner.setCity(custonerDetail sConp.get TxtCity().getText());

cust oner. set St at e(cust oner Det ai | sConp. get Txt State().get Text());

cust oner. set Zi pcode(cust onmer Det ai | sConp. get Txt Zi pCode() . get Text());
cust onmer . set Tel ephone(cust oner Det ai | sConp. get Txt Tel ephone(). get Text());

i Seri esDat aManager dataMyr = i Seri esDat aManager . get | nstance();
int node = Sessi onMyr. getlnstance().getCurrent Mode();

i f(mode == Sessi onMyr . MODE_ADD) {
dat aMgr . addCust oner (cust orer) ;
}else if (npde == Sessi onMgr. MODE_UPDATE) {
dat aMgr . updat eCust oner (cust oner) ;
}else if (npde == Sessi onMygr. MODE_DELETE) {
/1 Display a confirmation nmessage box
MessageBox confirmvsg = new MessageBox(sShel |, SWI. YES + SWI. NO);
confirmvsg. set Message("Del ete this customer?");
int result = confirmvsg. open();
if(result == SWI. YES) {
dat aMyr . del et eCust omer (cust oner . get Cust orrer Nunber () .
i ntValue());

}

/1 If we were in the Add, Update or Deelte node,
/'l refresh the sumary view
i f(sessi onMyr. get Current Mode() == Sessi onMyr. MODE_ADD | |
sessi onMyr. get Cur rent Mode() == Sessi onMgr . MODE_UPDATE | |
sessi onMgr. get Current Mode() == Sessi onMgr. MODE_DELETE) ({
sessi onMyr. set Refresh(true);
}el sef

}

}cat ch(Exception e){
e. printStackTrace();

}inally{
sShel | . cl ose();
}

}

sessi onMyr. set Refresh(f al se);

44

You can copy and paste the perfomAction() code from the following text file:
C:\Rich Client Lab\Code\CustomerDetailsPerformAction.txt

On the Customer Details shell, add the widgetSelected() event to the btnAction class.
Hint: Use the right-click menu in the design mode.

Replace the generated code with a call to the performAction() method (see Figure 63):

btniction.addSelectionlistener (new org.eclipse.swt.events.Selectionfidapter ()
public void widgetSelected(org.eclipse.swt.events.S5electionEvent e)
performiction () ;

}

-

Figure 63. Replacing generated code with a call to performAction()

Incorporate the handling process for the Cancel button by adding the widgetSelected()
event to the btnCancel class on the Customer Details shell, and replace the generated code
with the sShell.close() method (see Figure 64):

btnCancel .addSelectionlistener (new org.eclipse.swt.events,. Selectionfdapter()
public void widgetSelected(org.eclipse.swt.events.SelectionEvent e)
z5hell.close ()
¥
Phi

Figure 64. Replace generated code with the sShell.close() method
Test the application. Try adding, updating, and deleting customer records.

Note: Create your own customer records to avoid conflict with other students in the class.
(This lab application does not implement concurrency handling.)

Checkpoint 5:

Take a few minutes to reflect on what you have learned in this section:

How can you add business logic to an SWT application?
Is it possible to reuse SWT shells for different business functions?

This is the end of this lab. Congratulations. You have implemented your first SWT rich-client
application.

45

Trademarks and special notices

© Copyright IBM Corporation 1994-2006. All rights reserved.

References in this document to IBM products or services do not imply that IBM intends to make them available in
every country.

The following terms are trademarks or registered trademarks of International Business Machines Corporation in
the United States, other countries, or both:

IBM i5/0S System i
DB2 iSeries WebSphere
eServer Rational

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other
countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Information is provided "AS IS" without warranty of any kind.

46

