
Lab: Introduction to rich-client

development

.

.

Elena Lowery
ISV Business Strategy and Enablement

June 2006

© Copyright IBM Corporation, 2006. All Rights Reserved.
All trademarks or registered trademarks mentioned herein are the property of their respective holders

Table of contents
Abstract and introduction ..1

Tools...1

Skill prerequisites ...1

Lab setup ...1

Part 1: Reviewing SWT controls ..2

Checkpoint 1: ... 5

Part 2: Creating composites and shells with Visual Editor...6

Checkpoint 2: ... 20

Part 3: Import pre-implemented classes and JAR files ...21

Checkpoint 3: ... 26

Part 4: Implementing basic navigation ...27

Checkpoint 4: ... 36

Part 5: Integrating business logic ...37

Checkpoint 5: ... 45

Trademarks and special notices..46

IBM White paper title here

Abstract and introduction

In this lab, you will create a stand-alone Standard Widget Toolkit (SWT) application for Eclipse 3.1 for
System i programmers. You will learn how to create SWT controls, invoke business logic, and display
results in a rich-client application.

Tools
This lab will use Eclipse 3.1, and not IBM WebSphere® Development Studio Client for IBM iSeries™,
because Eclipse 3.1 contains significant enhancements for SWT and the Eclipse Rich Client Platform
(RCP) application development. WebSphere Development Studio Client and IBM Rational® tooling
(Version 6) are currently based on Eclipse 3.0.

Eclipse 3.1 is an open source (free-of-charge) integrated development environment (IDE). You can
download Eclipse 3.1 from the Eclipse Web site, http://www.eclipse.org. You will use Visual Editor
(VE), an open source plug-in for SWT, JFace and Eclipse RCP development, to build your SWT
application. VE has to be installed into Eclipse 3.1 projects using the Eclipse Update feature. VE is
packaged with IBM Rational and WebSphere Studio tooling (with no additional installation required).

Skill prerequisites
Prerequisite skills for this lab consist of an understanding of Java™ programming language concepts
and beginner Java programming skills.

Lab setup
1. 	 Extract the RichClientLab.zip file to your C:\ drive.
2. 	 Create the flght400C library on your IBM System i™ model (notice no “i” in the word flght).
3. 	 Implement a File Transfer Protocol (FTP) and restore the custdb.savf save file on your System

i model by entering the following string:

RSTOBJ OBJ(*ALL) SAVLIB(FLGHT400C) DEV(*SAVF) SAVF(QGPL/CUSTDB)

MBROPT(*ALL) ALWOBJDIF(*ALL)

IBM White paper title here

1

http://www.eclipse.org

Part 1: Reviewing SWT controls

In this section, you will review SWT widgets. SWT widgets are building blocks of a rich-client
application:

1. 	 Open the Eclipse 3.1 IDE. Double-click the Eclipse 3.1 icon on your desktop (see Figure 1).

Figure 1. Eclipse 3.1 icon

2. 	 In the Workspace field, type C:/ITSO Lab (see Figure 2).

Figure 2. Select a workspace: C:\ITSO Lab

3. 	 On the Welcome panel, click Samples. If the Welcome panel does not display, you can open it
by clicking Help -> Welcome (see Figure 3).

Figure 3. Samples selection

IBM White paper title here

2

4. Under SWT, click he red round button (see Figure 4).

Figure 4. Workbench views and stand-alone applications

5. On the Eclipse Samples window, click Finish (see Figure 5).

Figure 5. Click Finish

IBM White paper title here

3

6. Verify that you are in the Java development perspective. If not, switch to the Java development
perspective by selecting Window -> Open Perspective -> Java (see Figure 6).

Figure 6. The Java development perspective

7. 	 In the Package Explorer tab, right-click org.eclipse.swt.examples. Click
Run as -> SWT Application (see Figure 7).

Figure 7: Package Explorer selections

8. 	 On the Run Type dialog window, click ControlExample for the matching type and click OK
(see Figure 8).

Figure 8: ControlExample is the Run Type

IBM White paper title here

4

9. A sample SWT application is displayed in Figure 9.

This application shows different types of SWT controls, their properties, and events. Try setting
different properties for SWT controls and observe the change in their visual appearance. On
the tabs that have Select Listeners enabled, observe when certain events are invoked on
controls.

If you are new to SWT programming, this application provides an excellent reference on how
you can use SWT controls to construct a rich-client application.

Figure 9. A sample SWT application

10. Close the sample application by clicking the x in the red box.

Checkpoint 1:

Take a few minutes to reflect on the things that you have learned in this section:

� List some of the most-commonly used SWT widgets.
� What is an SWT widget property? List some of the SWT widget properties.
� What is an SWT widget event? List some of SWT widget events.

IBM White paper title here

5

Part 2: Creating composites and shells with Visual Editor
In this section, you will create an SWT application with Visual Editor. You will complete the following
tasks (represented in Figure 10):

1. 	 Create composites. A composite is a type of an SWT widget that contains other SWT widgets.
2. 	 Create SWT shells and place composites on shells. Shells are application windows.
3. 	 Implement events for SWT widgets. Events are user-driven actions that invoke some business

logic. Examples of events are click, menu selection, and double-click.

The completed SWT application allows you to search for a customer name on the Customer Summary
shell and perform view, add, update, and delete operations on the Customer Details shell.

Primary Shell

lModal Shel

Composite

Figure 10. Customer Detail shell input

IBM White paper title here

6

1. Select File -> New -> Project, then, on the New Project window, click Java Project. Click
Next (see Figure 11).

Figure 11. Java Project wizard

2. 	 Type TeamXXSWTProject as the project name, where XX is your team number. Click Finish
(see Figure 12).

Figure 12. Project name. TeamXXSWTProject

IBM White paper title here

7

3. 	 Create the Customer Summary composite:
a. 	 In Package Explorer, right-click the newly created TeamXXSWTSample project and select

New - > Visual Class.
b. 	 On the New Java Visual Class dialog, type or verify the following values (see Figure 13):

•	 Source folder: TeamXXSWTProject
•	 Package: com.ibm.swt.comp
•	 Name: CustomerSummaryComp
•	 Style: SWT -> Composite

c.	 Click Finish.

Note: SWT shell is a stand-alone window in a rich-client application. SWT composite is a
widget that contains other controls. Although you can place controls directly on a shell, you
can achieve better reuse of code if you create composites and place them on different
shells.

Figure 13. Click Finish to finish creating a new Java class

IBM White paper title here

8

d. 	 The CustomerSummaryComp.java class is displayed in the Visual Editor. Notice that there
is a hidden Palette view on the right side of the editor area. Click the arrow in the top-right
corner to display the Palette view. In the editor area, you can work in a design view or a
source view (see Figure 14).

Design view

Source view

Figure 14. Palette, design, and source views

e. 	 Move the following components (see Table 1) from the Palette view to the
CustomerSummaryComp design view.

Type Name Text
Label lblCustomerName Customer Name
Text txtCustomerName
Button btnSearch Search
Table tblCustomers
TableColumn colCustomerNumber Number
TableColumn colCustomerName Customer Name

Table 1. Type, Name, and Text components from the Palette view

IBM White paper title here

9

Pa

When placing a widget on the composite, you can use the Name window to type the name
component (see Figure 15). In the Properties view, you can modify the Name, Text, and
other properties. If the Properties view is not open, you can open it by selecting Window ->
Show View -> Properties (see Figure 16).

Figure 15. Provide names for beans

Figure 16. Property identification

When finished, your composite will look like Figure 17.

Figure 17. Panel of finished composite

IBM White paper title here

10

f.	 Set the fullSelection property for the tblCustomers table to FULL_SELECTION. Full
selection for a table means that an entire row (as compared to a cell) is selected in a table
when a user clicks a table row (see Figure 18Figure 18).

Figure 18. Setting the fullSelection property

g. 	 Add a getter method to allow access to the Customers table from other SWT controls (for
example, the SWT shell):
i. 	 In the Source view, right-click any tblCustomers label and click Source -> Generate Getters

and Setters (see Error! Reference source not found.).

Figure 19. Source view requirement

IBM White paper title here

11

ii. Click Deselect All, then on the Generate Getters and Setters window, select the
getTblCustomers() check box. Click OK (see Figure 20).

Figure 20. Select Generate method comments

h. Save the changes to the CustomerSummaryComp.java class.

IBM White paper title here

12

4. Import and review the Customer Details composite:
a. In Package Explorer, right-click TeamXXSWTProject and click Import.
b. On the Import window, click File system (see Figure 21).

Figure 21. Select File system

IBM White paper title here

13

c. Navigate to the C:\Rich Client Lab\com\ibm\flight400\comp directory and click
CustomerDetailsComposite.java. Click Finish (see Figure 22).

Figure 22. Create selected folders and click Finish

d. 	 Verify that the CustomerDetailsComp.java class was imported into the com.ibm.swt.comp
package. Inform the instructor if you see any errors after the import (see Figure 23).

Figure 23. Ensure that CustomerDetailsComp.java has been imported into the com.ibm.swt.comp package

IBM White paper title here

14

e. Review the Customer Details composite.

Notice that double-clicking CustomerDetailsComp.java, opens this class in a default Java
editor. Right-click CustomerDetailsComp.java and select Open With -> Visual Editor
(see Figure 24).

Figure 24. Opening the Visual Editor

Development of this composite is similar to the development of the Customer Summary
composite; it consists of placing controls on the composite and modifying control properties
(see Figure 25).

Figure 25. Development of the CustomerDetailsComp.java composite

IBM White paper title here

15

5. 	 Create a Customer Summary shell. A Customer Summary shell is the top-level application
window that you use to display customer summary information:
a. 	 In Package Explorer, right-click TeamXXSWTProject and click New ->

Visual Class.

b. 	 On the New Java Visual Class dialog, type or verify the following values (see Figure 26):

•	 Source folder: TeamXXSWTProject
•	 Package: com.ibm.swt.shells
•	 Name: CustomerSummaryShell
•	 Style: SWT -> Shell
•	 For the Which method stubs would you like to create? value, select the public

static void main(…) check box.

Figure 26. Create a new Java class

c.	 Click Finish.

IBM White paper title here

16

d. 	 Add the Customer Summary composite to the Customer Summary shell:
i. 	 Using the following code, declare CustomerSummaryComp as a private field immediately after

the shell declaration:

private CustomerSummaryComp customerSummaryComp;

See Figure 27 for a display of the completed code.

Figure 27. Competed code - CustomerSummaryComp

ii. 	 Add the following method in the CustomerSummaryShell.java class.

public void createContents(){

customerSummaryComp = new CustomerSummaryComp

 (sShell.getShell(), SWT.NONE);

}

You can copy and paste the code in Figure 27 from the following text file:

C:\Rich Client Lab\Code\CustomerSummaryShell_CreateContents.txt

Note: Throughout this lab, you will reference Java classes that are not imported by
default. You can easily add imports by clicking the error icon (Figure 28) on the left
border of the Java source editor and selecting an option to add the required import.
Alternatively, you can add an import manually.

Click here

Figure 28. Adding imports

iii. 	 After the last line of code in the createSShell() method, add a call to the createContents()
method as follows:

private void createSShell() {
sShell = new Shell();

 sShell.setText("Customer Summary");
 sShell.setSize(new org.eclipse.swt.graphics.Point(375,294));

createContents();
}

IBM White paper title here

17

e. Save the changes to the CustomerSummaryShell.java class. At this time, your Customer
Summary shell will look like Figure 29.

Figure 29. Example of the Customer Summary shell

6. 	 Create a Customer Details shell. A Customer Details shell is displayed by a user-driven event
(menu selection) from the Customer Summary shell.

Note: In a typical stand-alone SWT application, you have one shell with a main() method
(which is a starting point for any Java application). Actions on the primary application shell
invoke all other shells.

a. 	 In Package Explorer, right–click TeamXXSWTProject and select New ->

Visual Class.

b. 	 On the New Java Visual Class dialog, type or verify the following values:
�	 Source folder: TeamXXSWTProject
�	 Package: com.ibm.swt.shells
�	 Name: CustomerDetailsShell
�	 Style: SWT => Shell
�	 For the Which method stubs would you like to create? value, make sure the public

static void main(…) check box is cleared.
c.	 Click Finish.
d. 	 Add the Customer Details composite to the Customer Details shell:

i. 	 Using the following statement, declare CustomerDetailsComp as a private field immediately
after the shell declaration:

private CustomerDetailsComp customerDetailsComp;

IBM White paper title here

18

See Figure 30 for a display of the completed code.

Figure 30. Completed code - CustomerDetailsComp

ii. 	 Add the following method in the CustomerDetailsShell.java class:

public void createContents(){
 customerDetailsComp = new

CustomerDetailsComp(sShell,SWT.NONE);
}

You can copy and paste the code listed in Figure 30 from the following text file:

C:\Rich Client Lab\Code\CustomerDetailsShell_CreateContents_method.txt

iii. 	 After the last line of code in the createSShell() method that is contained in the
CustomerDetailsShell.java class, add a call to the createContents() method as follows:

private void createSShell() {
sShell = new Shell();

 sShell.setText("Customer Details");
 sShell.setSize(new org.eclipse.swt.graphics.Point(450,170));

createContents();
}

e. 	 Add a constructor to the CustomerDetailsShell.java class.

A constructor is a method in a Java class that initializes the class. You can add it
immediately after the class variable declaration as follows:

public CustomerDetailsShell(){

createSShell();

}

Figure 31 shows the completed code.

Figure 31. Completed code – CustomerDetailsComp with createSShell() method

IBM White paper title here

19

f.	 Make the following changes to change the type of shell that is being created in the
createSShell() method to create a modal shell:

Change: sShell = new Shell();

To: sShell = new Shell(SWT.DIALOG_TRIM + SWT.APPLICATION_MODAL);

g. 	 Add the open() method to the CustomerDetailsShell.java class. This method allows other
shells to open the Customer Details shell. You can add this method after the last method of
the class as follows:

public void open(){

sShell.open();

}

h. 	 Switch to the design view of the CustomerDetailsShell.java class and under the Customer
Details composite, add the two buttons listed in Table 2.

Type Name Text
Button btnAction
Button btnCancel Cancel

Table 2. Design view: Adding two buttons to the Customer Details composite

i. 	 Save changes to the CustomerDetailsShell.java file. Figure 32 shows the Customer Details
shell.

Figure 32. Example of Customer Details shell

Checkpoint 2:

Up to this point, you have created composites and shells. Take a few minutes to reflect on the
things that you have learned in this section:

•	 What is the difference between a composite and a shell?
•	 Why is it a good idea to place widgets in a composite compared to directly onto a shell?
•	 How do you place a composite on a shell?
•	 How many shells with a main() method do you have in a SWT application?
•	 How can you specify the different types of an SWT shell?

IBM White paper title here

20

Part 3: Import pre-implemented classes and JAR files

In this section, you will import some Java archive (JAR) files and classes that contain business logic.
(IBM instructors created these files and classes in order to help you complete this lab.)

1. 	 Import the JAR files that are required for business-logic implementation. You will review the
content of JAR files in “Part 5: Integrate business logic.”
a. 	 In Package Explorer, right–click TeamXXSWTProject and click Import. On the Import

panel, click File system (see Figure 33).

Figure 33. On the Import panel, select File system

IBM White paper title here

21

b. 	 Navigate to the C:\Rich Client Lab\Jars directory and select all JAR files in this directory.
Click Finish (see Figure 34).

Note: The application business logic is implemented in the flight400api.jar file. The rest of
the JAR files contain Java classes that the business logic uses.

Figure 34. Selecting all JAR files in the directory

IBM White paper title here

22

c.	 Add JAR files to Java Build Path (see Figure 35):
i. 	 In Package Explorer, right-click TeamXXSWTProject and click Properties.
ii. 	 In the left pane, click Java Build Path.
iii. 	 Click the Libraries tab and click Add JARs.

Figure 35. Selecting properties for TeamXXSWTProject

iv. 	 On the JAR Selection dialog, select all JAR files under TeamXXSWTProject (hold the Shift key
when selecting the JAR files). Click OK (see Figure 36).

Figure 36. Choosing the JAR archives for the build path

IBM White paper title here

23

v.	 Click OK to close the Properties window.
d. 	 Repeat steps 1a and 1b to import the dbconn.properties file from the C:\Rich Client

Lab\jdbc directory into TeamXXSWTProject. This properties file contains database
connection information.

e. 	 Edit the hostname, userid, and password values in the dbconn.properties file.

When finished, your project will look similar to Figure 37.

Figure 37. Project appearance

2. 	 Import the Session Manager Java (SessionMgr.java) class. This class has been implemented
to provide some basic session management functionality for this lab. Unlike Web applications,
rich-client applications do not provide a default implementation for session management. A
session in an application is a period of time during which a user interacts with an application.
Conceptually, the use of a session object in a rich-client application is similar to the use of a
temporary data area or a user space in an RPG application.

3. 	 One of the primary uses of a session object is to pass information between SWT shells.
Although it is possible to pass information between shells directly, using an intermediate object
creates better architecture and allows for code reuse:
a. 	 In Package Explorer, right-click TeamXXSWTProject and click Import.
b. 	 On the Import panel, click File System And click Next.

IBM White paper title here

24

c. Navigate to the C:\Rich Client Lab\Session directory and select Session. Click Finish (see
Figure 38).

Figure 38. Create selected folders and click Finish

4. 	 Review the implementation of the SessionMgr.java class (located in
TeamXXSWTProject\com.ibm.swt.session). In a Java editor, double-click SessionMgr.java to
open this class (see Figure 39).

Figure 39. Opening the SessionMgr.java class

IBM White paper title here

25

Notice that this class is a singleton. Singleton implementation means that there will be only one
instance of this class in an application. This implementation is necessary to support the session
functionality that was described earlier:

public static SessionMgr getInstance() {
if(sessionMgr == null){

sessionMgr = new SessionMgr();
}
return sessionMgr;

}

Here is a review some of the most interesting Java methods in this class:

�	 getCurrentMode() and setCurrentMode(): This application uses the concept of a mode
(view, add, update, or delete) to reuse SWT shells. At the same time, these methods support
different behavior, depending on the selected mode. This getter/setter set allows the Customer
Summary shell to set the mode, based on the selected menu. The Customer Details shell has
a slightly different look and behavior, based on the selected mode.

�	 getSelectedCustomer(): This method allows the application to pass information about the
selected customer from the Customer Summary shell to the Customer Details shell.

�	 setRefresh and isRefresh(): These methods tell the Customer Summary shell when to refresh
search results.

Checkpoint 3:

Take a few minutes to reflect on the things that you have learned in this section:

•	 What is the role of a session object in an application?
•	 Do all rich-client applications need a session object?

IBM White paper title here

26

Part 4: Implementing basic navigation

In this section, you will implement basic navigation between the Customer Summary and Customer
Details shells.

1. 	 Add a main menu bar to the Customer Summary shell:
a. 	 You can build a main menu by using Menu components in the Palette. Make sure to select

components from the SWT Menus palette (see Figure 40).

Figure 40. Adding a main menu bar to the Customer Summary shell

b. 	 Start by placing a MenuBar object onto the Customer Summary shell. Accept the default
values in the JavaBeans name dialogs (see Figure 41).

Figure 41. Placing a MenuBar object onto the Customer Summary shell

c.	 Notice that the menu bar is displayed in the JavaBeans view (located in the left-bottom
corner of the Workbench). To build the rest of the menu, drop menu components in the
Java Beans view (see Figure 42).

Figure 42. menuBar is displayed in the JavaBeans view

IBM White paper title here

27

d. Drop two SubMenu objects under the menuBar object. You can change the type of menu
by clicking the arrow in the Palette view (see Figure 43).

Figure 43: Dropping SubMenu objects under the MenuBar

At this time, your menu bar will look similar to Figure 44.

Figure 44: MenuBar screen display

e. 	 Add one push menu object under the first submenu object and four push menu objects
under the second submenu object (see Figure 45).

Figure 45: Adding push menu objects

f.	 In the Properties view, rename the menu objects by changing their field names and text
properties (see Table 3).

Generated name Field name Text
submenuItem mnuFile File
push mnuExit Exit
submenuItem1 mnuCustomer Customer
push1 mnuViewCustomer View Customer
push2 mnuAddCustomer Add Customer
push3 mnuUpdateCustomer Update Customer
push4 mnuDeleteCustomer Delete Customer

Table 3. menu object field names and text properties

IBM White paper title here

28

g. When finished, your menu tree will look similar to Figure 46.

Figure 46: Menu tree display

2. 	 Test the SWT application:
a. 	 In Package Explorer, right–click TeamXXSWTProject and click Run As ->

SWT Application (see Figure 47).

Figure 47. Testing the SWT application

IBM White paper title here

29

b. In the Run Type dialog, type cu to display the CustomerSummaryShell matching type.
Click OK (see Figure 48).

Figure 48. Displaying the CustomerSummaryShell matching type

IBM White paper title here

30

c. Your application will look similar to Figure 49.

Figure 49. Customer Summary window

Notice that you can display the main and pop-up menus but nothing happens when you
select the menus. Later in the lab, you will implement event handling for menu items and
other SWT widgets. The only default actions that an SWT shell implements are the
minimize, maximize, and close actions.

d. Close the Customer Summary shell.

3. Next, implement a basic operation of closing the application with the Exit menu:
a. Open the Customer Summary shell in the Visual Editor.
b. In the JavaBeans view, right-click mnuExit and click Add Events (see Figure 50).

Figure 50. Add Events in the JavaBeans view

IBM White paper title here

31

c. On the Add Event dialog, expand selection, click widgetSelected, and click Finish (see
Figure 51).

Figure 51. Selecting widgets

d. 	 Review the generated code (see Figure 52). Notice that a selection listener has been added
to the Exit menu. The role of a listener is to respond to a specific event, in this case, a
selection event.

Figure 52. Generated code for the Exit menu

Replace the generated code with the code that closes the shell.

Replace: System.out.println("widgetSelected()");

With: sShell.close();

Figure 53 shows completed code for the Exit menu.

Figure 53. Completed code for the Exit menu

e. 	 Save the changes and test the application (try clicking the Exit menu).

IBM White paper title here

32

4. 	 Implement event handling for the View Customer, Add Customer, Update Customer, and
Delete Customer menus:
a. 	 Add the displayCustomerDetails(int mode) method to the CustomerSummaryShell.java

shell. You can copy and paste this code from the following text file:
C:\Rich Client Lab\Code\DisplayCustomerDetails.txt

This method creates an instance of the CustomerDetailsShell panel and opens it. The
mode parameter determined if the details panel is used for display, add, update, and delete
operations.

public void displayCustomerDetails(int mode){

SessionMgr sessionMgr = SessionMgr.getInstance();
sessionMgr.setCurrentMode(mode);

if(mode == SessionMgr.MODE_VIEW ||
mode == SessionMgr.MODE_UPDATE ||
mode == SessionMgr.MODE_DELETE) {

// Get selected row
sessionMgr.setSelectedCustomerIndex(customerSummaryComp.

getTblCustomers().getSelectionIndex());
}

CustomerDetailsShell custDetailShell = new CustomerDetailsShell();

custDetailShell.open();

}
b. 	 Add selection listeners and a call to the displayCustomerDetails() method to each

customer-related menu. Use the Add Events menu that you used in the previous step. For
each menu, replace the default code with:

View menu: displayCustomerDetails(SessionMgr.MODE_VIEW);

Add menu: displayCustomerDetails(SessionMgr.MODE_ADD);

Update menu: displayCustomerDetails(SessionMgr.MODE_UPDATE);

Delete menu: displayCustomerDetails(SessionMgr.MODE_DELETE);

IBM White paper title here

33

Figure 54 shows a sample set of code for the customer menus.

Figure 54. Sample code for the customer menus

Although the JFace API is out of the scope of this lab, it is important to note that it is
possible to minimize the amount of repeating code for action processing with the JFace
Action Processing API. The JFace API allows you to set up one action-processing method
for multiple events (main menu, pop-up menu, and toolbar buttons). In this case, if you
create a JFace action-processing class, you do not have to add event listeners to each
menu.

c.	 Test the application. Each customer-related menu item brings up a Customer Details panel.
Notice that the Customer Details shell is modal.

5. 	 Add a pop-up menu to the Customers table.

Note: At this time, Visual Editor does not provide a visual wizard for creating a pop-up
menu. You will create the pop-up menu manually.

a. 	 Add the createPopupMenu() method to CustomerSummaryShell.java class. You can copy
and paste this code from following text file:

C:\Rich Client Lab\Code\CustomerSummaryPopupMenu.txt

In this method, you will create a Customer pop-up menu with submenus: View Details, Add
Customer, Update Customer, and Delete Customer. This pop-up menu will be displayed
when the user right-clicks the Customers table. Examine the following code:

IBM White paper title here

34

private void createPopupMenu(){

final Menu menu_3 = new Menu(customerSummaryComp);

customerSummaryComp.getTblCustomers().setMenu(menu_3);

final MenuItem mntmViewDetails_1 = new MenuItem(menu_3, SWT.NONE);

 mntmViewDetails_1.setText("View Details");

mntmViewDetails_1.addSelectionListener(new SelectionAdapter() {

public void widgetSelected(final SelectionEvent e) {
SessionMgr.getInstance().setCurrentMode(SessionMgr.MODE_VIEW);
displayCustomerDetails(SessionMgr.MODE_VIEW);

}

});

new MenuItem(menu_3, SWT.SEPARATOR);

final MenuItem mntmAddCustomer_1 = new MenuItem(menu_3, SWT.NONE);

 mntmAddCustomer_1.setText("Add Customer");

mntmAddCustomer_1.addSelectionListener(new SelectionAdapter() {

public void widgetSelected(final SelectionEvent e) {
SessionMgr.getInstance().setCurrentMode(SessionMgr.MODE_ADD);
displayCustomerDetails(SessionMgr.MODE_ADD);

}

});

final MenuItem mntmUpdateCustomer_1 = new MenuItem(menu_3, SWT.NONE);
 mntmUpdateCustomer_1.setText("Update Customer");

mntmUpdateCustomer_1.addSelectionListener(new SelectionAdapter() {
public void widgetSelected(final SelectionEvent e) {

SessionMgr.getInstance().setCurrentMode(SessionMgr.MODE_UPDATE);
displayCustomerDetails(SessionMgr.MODE_UPDATE);

}

});

final MenuItem mntmDeleteCustomer_1 = new MenuItem(menu_3, SWT.NONE);
 mntmDeleteCustomer_1.setText("Delete Customer");

mntmDeleteCustomer_1.addSelectionListener(new SelectionAdapter() {
public void widgetSelected(final SelectionEvent e) {

SessionMgr.getInstance().setCurrentMode(SessionMgr.MODE_DELETE);
displayCustomerDetails(SessionMgr.MODE_DELETE);

}

});

IBM White paper title here

35

b. After the last line of code in the createSShell() method, add a call to the
createPopupMenu() method. Figure 55 is a display of the completed code.

Figure 55. Sample of completed code for a pop-up menu

Checkpoint 4:

In this section, you added some basic navigation in a SWT application. Take a few minutes to reflect
on the things that you have learned:

• What is an event?
• What is the role of a listener?
• How did you implement event processing for SWT widgets?
• Does SWT implement any default event processing?

IBM White paper title here

36

Part 5: Integrating business logic

Business logic is usually invoked from GUI events that the end user initiates. Creating business logic is
outside the scope of this lab. You will use the business logic that was previously created for you.

Business logic in this application performs the following functions:

1. 	 Search for customers based on the customer name provided by the user
2. 	 Display detailed customer information
3. 	 Add a customer
4. 	 Update a customer
5. 	 Delete a customer

You implemented the business logic using ProgramCall JavaBeans (JavaBeans that invoke an RPG
program) and JDBC JavaBeans (JavaBeans that run Structured Query Language [SQL] statements
against an IBM DB2® for i5/OS® database).

As a GUI layer programmer, you do not need to know the details of the business-logic layer of the
implementation. Your goal is to provide input parameters that the business logic methods require and
display results that the business logic returns.

Separating the presentation and business logic is something that all programmers know they are
required to do, but during implementation you might have a tendency to do what is faster and more
convenient. You can use some techniques to move programmers into a good programming model. For
example, you can develop business logic in a separate project from the presentation logic (in IBM
WebSphere Development Studio Client), package it into a JAR file, and import it into the presentation
layer project. By using this process, programmers can call business logic from the presentation layer,
but they will be less likely to add business logic to the presentation layer.

1. 	 Add business logic to search for customers:
a. 	 Add the getCustomers() and refresh() methods to the CustomerSummaryComp.java class:

Note: To add these two methods, you can copy and paste the code listed on the next page
from the following text file:
C:\Rich Client Lab\Code\SummaryCompositeActions.txt
�	 The getCustomers() method calls another method that is packaged in one of the Java

classes that are included in the flight400api.jar JAR file and populates the table on the
composite with the returned results.

�	 The refresh() method refreshes the search results after returning from add, update, and
delete operations on the Customer Details shell.

IBM White paper title here

37

private void getCustomers(){

if (txtCustomerName.getText().trim() != "") {

 Customer customer = null;

 int i = 0;

 try {
// Call business logic method to retrieve customers

 Vector customers =
iSeriesDataManager.getInstance().
getCustomerByName(txtCustomerName.
getText());

 if (customers != null) {
 Iterator iter = customers.iterator();
 // Remove previous records

tblCustomers.removeAll();
// Create an array of table rows

 final TableItem[] items = new
TableItem[customers.size()];

 while (iter.hasNext()) {
 customer = (Customer) iter.next();
 items[i] = new TableItem(tblCustomers,

SWT.NONE);
 items[i].setText(new String[] {

customer.getCustomerNumber().toString(),
 customer.getCustomerName() });

i++;
}

 // Save results in the "session"
SessionMgr.getInstance().setSearchResults(customers);
}

} catch (Exception ex) {

ex.printStackTrace();

}

}else{

// Display a message box if the customer name is not provided
MessageBox validMsg = new MessageBox(this.getShell(), SWT.OK);
validMsg.setMessage("Please enter a customer name.");
validMsg.open();

}
}

public void refresh(){
getCustomers();

}}

IBM White paper title here

38

b. 	 Add an event handling process for the Search button.
i. 	 You need to call the getCustomers() method when the user clicks the Search button. The click

action on the button corresponds to the SWT widgetSelected event. On the Design view, right-click
Search and click Events -> widgetSelected (see Figure 56).

Figure 56:Select widgetSelected

ii. 	 The View Editor brings you to the widgetSelected event code in the Source Code view.

Replace the following code: System.out.println("widgetSelected()")

with: getCustomers()

(See Figure 57. The widgetSelected event code.)

Figure 57. The widgetSelected event code

IBM White paper title here

39

c.	 Add the shellActivated() event to the CustomerSummaryShell.java class. You need to
refresh the search results after returning from add, update, and delete operations on the
Customer Details shell.

i. 	 Switch to design mode in the Customer Summary shell editor. Right-click the shell and click Events
-> shellActivated (see Figure 58).

Figure 58. Select shellActivated

ii. 	 Replace the generated code with the following code:

if(SessionMgr.getInstance().isRefresh()){
// If there was a previous search result
if(SessionMgr.getInstance().getSearchResults() != null){

customerSummaryComp.refresh();

}

}

Note: You can copy and paste this code from the following text file:

C:\Rich Client Lab\Code\CustomerSummaryShell_ShellActivated.txt

You can see an example of the completed code in Figure 59:

Figure 59. The completed shellActivated code

IBM White paper title here

40

d. 	 Save the changes to the CustomerSummaryComp.java class and test your
TeamXXSWTProject:
iii. 	 Type Brown for the customer name and click Search. You will see results similar to Figure 60.

Figure 60. Customer name: Brown

iv. 	 Leave the customer name blank and Search. You will see a validation message box
(see Figure 61).

Figure 61. Validation message box

IBM White paper title here

41

2. 	 Add business logic to the Customer Details shell.

Note: This step allows you to do some manual coding. If you do not want to complete this step,
but want to see the completed application, you can copy the completed version of the
Customer Details shell from the Solution project in your Eclipse Workbench (see Figure 62).

Figure 62. Adding business logic to the Customer Details shell

a. 	 Add the prepareForMode() method (see the following code) to the
CustomerDetailsShell.java class:

private void prepareForMode(){

int mode = SessionMgr.getInstance().getCurrentMode();

 if(mode == SessionMgr.MODE_ADD){
btnAction.setText("Add");

}else if (mode == SessionMgr.MODE_UPDATE){
btnAction.setText("Update");

}else if (mode == SessionMgr.MODE_DELETE){
btnAction.setText("Delete");

 // Disable all fields
customerDetailsComp.getTxtCustomerName().setEnabled(false);
customerDetailsComp.getTxtAddress().setEnabled(false);
customerDetailsComp.getTxtCity().setEnabled(false);
customerDetailsComp.getTxtState().setEnabled(false);
customerDetailsComp.getTxtZipCode().setEnabled(false);
customerDetailsComp.getTxtTelephone().setEnabled(false);

}else{

btnAction.setVisible(false);

}

 }

You can copy this method code from the following text file:

 C:\Rich Client Lab\Code\PrepareForMode.txt

Note: The prepareForMode() method displays a different caption for the action button
(based on the selected mode) and disables fields when they are not editable.

IBM White paper title here

42

b. 	 Add the populateCustomerDetails() method to the CustomerDetailsShell.java shell. The
code for this method is as follows:

private void populateCustomerDetails() {

Customer customer = SessionMgr.getInstance().getSelectedCustomer();
if(customer != null){

customerDetailsComp.getTxtCustomerName().setText(customer.
getCustomerNme());

customerDetailsComp.getTxtAddress().setText(customer.getAddress());
customerDetailsComp.getTxtCity().setText(customer.getCity());
customerDetailsComp.getTxtState().setText(customer.getState());

customerDetailsComp.getTxtZipCode().setText(customer.getZipcode());

customerDetailsComp.getTxtTelephone().setText(customer.getTelephone());
}

You can copy the populateCustomerDetails() code from the following text file:

C:\Rich Client Lab\Code\PopulateCustomerDetails.txt

Note: The populateCustomerDetails() method populates the text fields, based on the
record selected in the Customer Summary shell.

c.	 In the CustomerDetailsShell constructor, add a call to the following code after the call to the
createSShell() method:

public CustomerDetailsShell(){
createSShell();
prepareForMode();

 if(SessionMgr.getInstance().getCurrentMode() ==

 SessionMgr.MODE_VIEW ||
SessionMgr.getInstance().getCurrentMode() ==

 SessionMgr.MODE_UPDATE ||
 SessionMgr.getInstance().getCurrentMode() ==
 SessionMgr.MODE_DELETE) {

populateCustomerDetails();
}

 }

You can copy and paste the complete code for the createSShell() method from the

following text file:

C:\Rich Client Lab\CustomerDetailsShellCreateShell.txt

Note: If you are copying and pasting the createSShell() code, make sure you replace the
existing constructor; that is, do not create a second constructor.

d. 	 Test the application, using Brown as a search value. Then select all menus. Notice that the
behavior of the Summary Details panel differs, depending on the mode that you select.

IBM White paper title here

43

e. 	 Add the perfomAction() method (see the following code) to the CustomerDetailsShell.java
class. This method invokes business logic to perform an action that corresponds to the
selected mode (add, update, or delete).

private void performAction(){

SessionMgr sessionMgr = SessionMgr.getInstance();

try{
Customer customer = new Customer();
// We don't have customer number in the Add mode
if(sessionMgr.getCurrentMode() != SessionMgr.MODE_ADD){

customer.setCustomerNumber(sessionMgr.getSelectedCustomer()
.getCustomerNumber());

}

customer.setCustomerName(customerDetailsComp.getTxtCustomerName().
getText());

customer.setAddress(customerDetailsComp.getTxtAddress().getText());
customer.setCity(customerDetailsComp.getTxtCity().getText());
customer.setState(customerDetailsComp.getTxtState().getText());
customer.setZipcode(customerDetailsComp.getTxtZipCode().getText());
customer.setTelephone(customerDetailsComp.getTxtTelephone().getText());

iSeriesDataManager dataMgr = iSeriesDataManager.getInstance();
int mode = SessionMgr.getInstance().getCurrentMode();

if(mode == SessionMgr.MODE_ADD){

dataMgr.addCustomer(customer);

}else if (mode == SessionMgr.MODE_UPDATE){

dataMgr.updateCustomer(customer);

}else if (mode == SessionMgr.MODE_DELETE){
// Display a confirmation message box
MessageBox confirmMsg = new MessageBox(sShell, SWT.YES + SWT.NO);
confirmMsg.setMessage("Delete this customer?");
int result = confirmMsg.open();
if(result == SWT.YES){

dataMgr.deleteCustomer(customer.getCustomerNumber().
intValue());

}
}

// If we were in the Add, Update or Deelte mode,
// refresh the summary view
if(sessionMgr.getCurrentMode() == SessionMgr.MODE_ADD ||

sessionMgr.getCurrentMode() == SessionMgr.MODE_UPDATE ||
sessionMgr.getCurrentMode() == SessionMgr.MODE_DELETE) {

sessionMgr.setRefresh(true);
}else{

sessionMgr.setRefresh(false);
}

 }catch(Exception e){

e.printStackTrace();

}finally{

sShell.close();

}

}

IBM White paper title here

44

You can copy and paste the perfomAction() code from the following text file:

C:\Rich Client Lab\Code\CustomerDetailsPerformAction.txt

f.	 On the Customer Details shell, add the widgetSelected() event to the btnAction class.
Hint: Use the right-click menu in the design mode.

g. 	 Replace the generated code with a call to the performAction() method (see Figure 63):

Figure 63. Replacing generated code with a call to performAction()

h. 	 Incorporate the handling process for the Cancel button by adding the widgetSelected()
event to the btnCancel class on the Customer Details shell, and replace the generated code
with the sShell.close() method (see Figure 64):

Figure 64. Replace generated code with the sShell.close() method

i. 	 Test the application. Try adding, updating, and deleting customer records.

Note: Create your own customer records to avoid conflict with other students in the class.
(This lab application does not implement concurrency handling.)

Checkpoint 5:

Take a few minutes to reflect on what you have learned in this section:

•	 How can you add business logic to an SWT application?
•	 Is it possible to reuse SWT shells for different business functions?

This is the end of this lab. Congratulations. You have implemented your first SWT rich-client
application.

IBM White paper title here

45

Trademarks and special notices

© Copyright IBM Corporation 1994-2006. All rights reserved.

References in this document to IBM products or services do not imply that IBM intends to make them available in
every country.

The following terms are trademarks or registered trademarks of International Business Machines Corporation in
the United States, other countries, or both:

IBM i5/OS System i
DB2 iSeries WebSphere
eServer Rational

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other

countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Information is provided "AS IS" without warranty of any kind.

IBM White paper title here

46

