
z/OS

Stream I/O for TSO/E REXX

Version 1

���

z/OS

Stream I/O for TSO/E REXX

Version 1

���

Note

Before using this information and the product it supports, be sure to read the general information under
“Appendix B. Notices” on page 53.

First Edition, February 2002

This edition applies to Version 1 Release 3 of the z/OS TSO/E REXX Stream I/O function package (applicable for
z/OS (5694-A01)), and to all subsequent releases and modifications until otherwise indicated in new editions or
technical newsletters.

© Copyright International Business Machines Corporation 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this book. v
Related information v
How to send your comments v
How to read the syntax diagrams vi

Chapter 1. Installing the function package . 1
Preparation 1
Assembly, link-edit, and verification 2
Installations with multiple function packages . 2
Usage considerations 3

Chapter 2. Understanding the stream I/O
concept 5
The basic elements of stream I/O 5
The TSO/E REXX Stream I/O implementation 6

The stream I/O functions 7
Naming streams 7
Transient and persistent streams 9
Opening and closing streams. 9
Stream formats 11
Position pointer details 12
End-of-stream treatment 13

Error treatments. 14
Multiple read operations 14

Chapter 3. Stream I/O functions. 17
CHARIN (Character Input) 18
CHAROUT (Character Output) 20
CHARS (Characters Remaining) 22
LINEIN (Line Input) 23
LINEOUT (Line Output) 25
LINES (Lines Remaining) 27
STREAM (Operations) 28

Chapter 4. Stream I/O messages 31

Appendix A. JCL job MAKESIO 37

Appendix B. Notices. 53
Trademarks 54

Glossary of z/OS terms. 55

Index 57

© Copyright IBM Corp. 2002 iii

iv Stream I/O for TSO/E REXX

About this book

This book describes the z/OS TSO/E REXX Stream I/O function package and
its usage. This function package is a collection of I/O functions that follow the
stream I/O concept. It extends and enhances the I/O capabilities of TSO/E
REXX and shields the complexity of z/OS data set I/O to some degree.
Further, the use of stream I/O functions provides for easier coding syntax and
leads to better portability of REXX programs among different operating
system platforms.

The function package can be used with TSO/E REXX on z/OS™, OS/390®,
and MVS™ systems that provide the MVS Name/Token Services, which are
required to hook the function package into an existing TSO/E REXX
installation.

This book is intended for application programmers who want to apply the
described functions to new or modified REXX programs. It is assumed that
the reader is familiar with the REXX language, the TSO/E environment, and
the logical organization of data sets in the z/OS environment. The stream I/O
concept is introduced in “Chapter 2. Understanding the stream I/O concept”
on page 5. If required, see also “Glossary of z/OS terms” on page 55.

Related information

The reader should be familiar with the following books, or the equivalent
books for the predecessors of z/OS:
v z/OS V1R1.0 TSO/E REXX User’s Guide

v z/OS V1R1.0 TSO/E REXX Reference

How to send your comments

Your feedback is important in helping to provide the most accurate and
high-quality information. If you have any comments about this book or any
other REXX documentation:
v Visit our home page at:

http://www.ibm.com/software/ad/obj-rexx/support.html#Buy or get
support
There you can access the Internet Online Form where you can enter
comments and send them.

v Send your comments by e-mail to swsdid@de.ibm.com. Be sure to include
the name of the book, the part number of the book, the version of REXX,

© Copyright IBM Corp. 2002 v

and, if applicable, the specific location of the text you are commenting on
(for example, a page number or table number).

v Fill out one of the forms at the back of this book and return it by mail, by
fax, or by giving it to an IBM representative. The mailing address is on the
back of the Readers’ Comments form. The fax number is
+49-(0)7031-16-4892.

How to read the syntax diagrams

Throughout this book, syntax is described using the structure defined below.
v Read the syntax diagrams from left to right, from top to bottom, following

the path of the line.
The ��─── symbol indicates the beginning of a statement.
The ───� symbol indicates that the statement syntax is continued on the
next line.
The �─── symbol indicates that a statement is continued from the previous
line.
The ───�� symbol indicates the end of a statement.
Diagrams of syntactical units other than complete statements start with the
�─── symbol and end with the ───� symbol.

v Required items appear on the horizontal line (the main path).

�� STATEMENT required_item ��

v Optional items appear below the main path.

�� STATEMENT
optional_item

��

v If you can choose from two or more items, they appear vertically, in a stack.
If you must choose one of the items, one item of the stack appears on the
main path.

�� STATEMENT required_choice1
required_choice2

��

v If choosing one of the items is optional, the entire stack appears below the
main path.

vi Stream I/O for TSO/E REXX

�� STATEMENT
optional_choice1
optional_choice2

��

v If one of the items is the default, it appears above the main path and the
remaining choices are shown below.

��
default_choice

STATEMENT
optional_choice
optional_choice

��

v An arrow returning to the left above the main line indicates an item that
can be repeated.

�� &STATEMENT repeatable_item ��

A repeat arrow above a stack indicates that you can repeat the items in the
stack.

v A set of vertical bars around an item indicates that the item is a fragment, a
part of the syntax diagram that appears in greater detail below the main
diagram.

�� STATEMENT fragment ��

fragment:

expansion_provides_greater_detail

v Keywords appear in uppercase (for example, PARM1). They must be spelled
exactly as shown, but you can type them in uppercase, lowercase, or mixed
case. Variables appear in all lowercase letters (for example, parmx). They
represent user-supplied names or values.

v If punctuation marks, parentheses, arithmetic operators, or such symbols
are shown, you must enter them as part of the syntax.

The following example shows how the syntax is described.

About this book vii

�� MAX(&

,

number) ��

viii Stream I/O for TSO/E REXX

Chapter 1. Installing the function package

The z/OS TSO/E REXX Stream I/O function package is a loadable file that
contains multiple object files bound together. Before its functions can be
accessed and executed, the function package must be properly integrated into
TSO/E REXX. Perform the following steps to install the package.

Preparation

1. Unpack the zipped file that contains the function package on a
workstation. It contains the following files:
v Object modules, as listed in step 3
v JCL job MAKESIO to build the load modules
v Parameter modules IRXPARMS and IRXTSPRM, modified for the needs of

the REXX Stream I/O function package
v Documentation, as file STREAMIO.PDF

v Probably a README file with latest information
2. Allocate the following data sets:

v For the object library: <uid>.REXX.SIO130.OBJECT, record format FB,
record length 80

v For the load library: <uid>.REXX.SIO130.LOAD, record format U, record
length 0, block size 23200

3. Upload the following object modules to the object library
<uid>.REXX.SIO130.OBJECT:
EAGIOCHI
EAGIOCHO
EAGIOCLS
EAGIODYN
EAGIOGET
EAGIOGFE
EAGIOGNM
EAGIOHKP (the function package termination)
EAGIOLNI
EAGIOLNO
EAGIOLNS
EAGIOMSG
EAGIOOPE
EAGIOPUT
EAGIORET
EAGIOSTR
EAGEFSIO (the function package directory)

4. Upload the parameter modules IRXPARMS and IRXTSPRM.
5. Upload the JCL job MAKESIO.

© Copyright IBM Corp. 2002 1

6. Customize the JCL job MAKESIO (listed also in “Appendix A. JCL job
MAKESIO” on page 37). It contains predefined steps to automate the
installation and verification. It does the necessary assemble and link-edit
steps to create the load library <uid>.REXX.SIO130.LOAD. You need to
customize the PROC section as follows:
v Specify the data sets you have already allocated. Replace the first

qualifier <uid> by the appropriate user ID.
v Ensure that SYS1.MACLIB and SYS1.CSSLIB is referenced in your SYSLIB

concatenation. SYS1.CSSLIB must contain the modules IEANTRT, IEANTCR,
and IEANTDL.
SYS1.CSSLIB contains the stubs for MVS Name/Token Services that the
stream I/O functions require to share data with TSO/E REXX.

7. The parameter modules IRXPARMS and IRXTSPRM provided with this
function package are modified exclusively for the needs of the REXX
Stream I/O function package. Do not modify them. They are used by the
MAKESIO job.

Assembly, link-edit, and verification

1. Submit the MAKESIO job to assemble and link-edit the modules, and place
the load module into a load library that is accessible by your system.
Upon completion the load library <uid>.REXX.SIO130.LOAD should contain
these load modules:
EAGEFSIO EAGIOHKP IRXPARMS IRXTSPRM

2. At the end of the installation job MAKESIO runs a small REXX exec that
issues several stream I/O function calls. You should see the appropriate
output in the job output.

Note that load modules IRXPARMS and IRXTSPRM provided with this function
package can only be used if the REXX Stream I/O function package is the
only function package to be used on your system.

Installations with multiple function packages

Your installation might already use other function packages. These are defined
in the parameter modules IRXPARMS and IRXTSPRM installed on your system.
You need to add the definitions for the REXX Stream I/O function package to
these modules to make all function packages work.
1. Inspect the parameter modules IRXPARMS and IRXTSPRM provided with this

function package. They contain the TSO/E default definitions and the
definitions for the REXX Stream I/O function package.

2. Incorporate the modifications for the REXX Stream I/O function package
into the modules IRXPARMS and IRXTSPRM that are installed on your system.

2 Stream I/O for TSO/E REXX

3. Assemble and link-edit the updated parameter modules IRXPARMS and
IRXTSPRM.

4. Copy the resulting load modules IRXPARMS and IRXTSPRM to the load
library. (The load modules now contain the definitions for all function
packages.)

5. Copy the load modules EAGEFSIO and EAGIOHKP (created with the MAKESIO
job) to the load library.

The new load library should now contain the load modules for all function
packages.

More detailed information about function packages is described in z/OS
V1R1.0 TSO/E REXX Reference.

Usage considerations

Your TSO/E REXX installation might use the EXECTERM exec termination
exit to customize the processing after REXX execs complete their processing.
This customized processing can include closing of data sets, and freeing of
resources that were allocated during the exec initialization step. If exec
termination is used, a REXX exec does not necessarily need to close data sets
it has opened.

On the other hand, the stream I/O function package provides the STREAM
function, which can issue a CLOSE ALL stream command. If CLOSE ALL is
used in a REXX exec, it also closes the data sets and frees the resources that
were allocated with the first use of stream functions.

If you prefer relying on exec termination functionality (without using CLOSE
ALL in your REXX exec), ensure that exec termination is active and
APF-authorized, otherwise you might receive abend 066D.

To avoid these dependencies, use CLOSE ALL in your REXX execs regardless
of the use of exec termination.

Chapter 1. Installing the function package 3

4 Stream I/O for TSO/E REXX

Chapter 2. Understanding the stream I/O concept

This chapter introduces the stream I/O concept and the implementation for
TSO/E REXX. The terminology, the functions, and the common elements are
described. Further, attention is given to the aspects of TSO/E and z/OS data
set handling from the view of the stream I/O functions.

This knowledge lets you effectively use the information in “Chapter 3. Stream
I/O functions” on page 17.

The basic elements of stream I/O

A stream is a popular concept for how to perform input/output to and from a
program. Basically, a stream is a sequence of characters with functions to take
characters out of one end, and put characters into the other end. In the case of
input/output streams, one end of the stream is connected to a physical or
logical I/O device, such as a keyboard, display, file, or queue. If it is an output
stream, your program puts characters into one end of the stream, and an
output device takes characters out of the other end. If it is an input stream, an
input device puts characters into one end of the stream, and your program
takes characters out of the other end.

The purpose of stream I/O is to simplify a programmer’s view of input and
output devices. The physical characteristics of I/O devices and the
organization of data remain hidden. The data organization of devices is
reduced to two simple forms:
v A sequence of characters that can be read or written character by character
v A sequence of lines that can be read or written line by line. A line in this

context is defined as a sequence of characters that are terminated by means
of any special character, or by means of the organizational form of the
storage media.

A simple set of functions performs stream I/O operations from within a
program.
v Housekeeping functions declare streams as input or output streams, open and

close streams before and after using them, and allow to query their existence
and characteristics.

v Character input and character output functions let the program read and write
data character by character from input streams or to output streams.

v Line input and line output functions let the program read and write data line
by line from input streams or to output streams.

© Copyright IBM Corp. 2002 5

v Further functions let the program check for the availability of input data
from input streams.

During stream I/O operations a pointer is maintained for each stream. The
pointer references the current position in a stream where a read operation or a
write operation takes place. The position in a stream is relative to its
beginning, counted as number of characters. Position 1 is always the first
character. Pointers increase automatically during read operations and write
operations. This eases the sequential reading from or writing to streams. The
stream I/O functions can modify the position pointers by specifying explicit
character or line positions to be read or written.

When streams are declared, they are given names. The input and output
functions refer to these names to distinguish among multiple streams in a
REXX program.

Generally, a stream can be any source or destination of external data that a
program uses. Typical streams are files and data sets, and consoles for
interactive input and output. The stream I/O concept also allows to view
other sources and destinations as streams, for example, a reader, puncher,
printer, program stack, queue, or a communication path. Programming
environments that support stream I/O usually provide a default input stream,
which is often the terminal input buffer, and a default output stream, often the
display.

Data streams have two distinctive traits; they are either finite or conceptually
unbound. An input stream from a file is finite because of the known quantity
of characters; an input stream from a keyboard or communication path is
unbound because of the unknown quantity. Stream I/O functions generally
provide a mechanism of determining that an input stream is exhausted – that
all data was read, and no more data is available. For finite streams they can
detect the end of a file, for example. For unbound streams they might
interpret special characters of the stream as delimiters.

The TSO/E REXX Stream I/O implementation

Stream I/O is a concept already implemented in REXX for various operating
system platforms. However, on z/OS and its predecessors, programmers
needed to use the EXECIO command to access z/OS data sets. EXECIO
requires programmers to consider many parameters, and to care about the
allocation and deallocation of data sets. The TSO/E REXX Stream I/O
functions hide this complexity. Programmers can use these easy-to-use
functions to access z/OS data. Further, the use of stream I/O functions makes
REXX programs more portable among platforms that support stream I/O.

6 Stream I/O for TSO/E REXX

The following sections describe the implementation of stream I/O for TSO/E
REXX. A good understanding of this information is necessary to effectively
use the individual functions described in “Chapter 3. Stream I/O functions”
on page 17.

The stream I/O functions
The function package provides the following functions:
v The STREAM function controls streams and their status. It opens and closes

streams, declares the type of operation (either read or write), and queries
the existence and details of streams.

v The CHARIN and LINEIN functions are the stream input functions. They
perform character input or line input.

v The CHAROUT and LINEOUT functions are the stream output functions.
They perform character output and line output.

v The CHARS and LINES functions determine whether data exists in input
streams for further read operations.

In this context, the following terms require definitions:
v The term “character” is any single byte in the range of X'00'...X'FF',

respectively 0...255. So, a “character stream” is synonymous with a “binary
stream” or a “byte stream”.

v The term “line” is defined as a sequence of characters that makes up the
smallest unit that can be processed by the LINEIN and LINEOUT functions.
A line read by LINEIN or written by LINEOUT does not process any
additional line-terminating characters (such as new-line character or
carriage return character) if they are not part of the string to be read or
written. You might think of a line as a record of an MVS data set.

The function calling mechanism for the stream I/O functions is identical to
the REXX built-in functions. Thus, they are called in REXX programs as
functions, with the result being assigned to a variable, like in
rexx_variable = CHARS().

Naming streams
TSO/E REXX provides a default input stream and a default output stream, which
are used implicitly whenever a stream I/O function does not name a stream.
In z/OS these default streams are associated with the console:
v For TSO/E background and MVS:

– ddname SYSTSIN represents the default input stream.
– ddname SYSTSPRT represents the default output stream.

v For TSO/E foreground:
– ddname SYSIN represents the default input stream.
– ddname SYSIN represents the default output stream.

Chapter 2. Understanding the stream I/O concept 7

If functions are to be performed on other streams, the streams must be named
explicitly. The naming follows the rules and conventions for z/OS data sets as
follows:
v A stream name can be the name of a data set, or the name of a data set

member, for example:
– A fully qualified data set name, for example bill.january.data.
– A partially qualified data set name, for example january.data, where

TSO/E prepends a system-defined prefix to the data set name, as in
<user_id>.january.data.

– A fully qualified or partially qualified name of a data set member, for
example bill.year2001.data(january).

Data set names should be enclosed in single quotation marks to avoid a
modification by TSO/E, such as 'year2001.data(january)'.

v A stream name can also be a ddname that is known to TSO/E and has the
required data sets or resources allocated to it, for example, SYSPRINT or
SYSOUT.

v A stream name can be a ddname that is generated from a data set name
through the STREAM function. Each time the STREAM function opens a
stream that is specified as a data set name, it automatically generates
enumerated ddnames of the form &SYSxxxxx. The leading ampersand
distinguishes them from data set names, and xxxxx is an enumeration.
These unique ddnames can be used in a REXX program to explicitly name
a stream with the stream I/O functions.
The following example shows how the STREAM function opens the data
set member SYS1.MACLIB(PARM), generates a ddname, assigns this ddname
to the variable infile, and uses this variable in the following CHARIN
function call to name the stream. To recognize the generated ddname you
could add SAY infile, which displays something similar to &SYS00004.
/* Open the file. */
infile = STREAM("'SYS1.MACLIB(PARM)'",'C','OPEN')
if infile ¬= "ERROR" then

parm = CHARIN(infile,,20)

Note the specification of the data set member name; the inner single
quotation marks avoid a modification by TSO/E, the outer double
quotation marks are the REXX convention for literal strings that include
single quotation marks.

A second use of this side effect is more sophisticated. You can open the
same data set multiple times with this method, and the STREAM function
will provide a respective number of unique ddnames. Using these ddnames
with the stream I/O functions lets you maintain multiple position pointers
in the same data set. See “Multiple read operations” on page 14 for a
detailed description.

8 Stream I/O for TSO/E REXX

After streams are given names, the stream I/O functions use these names to
specify on which stream an operation is to be performed.

Transient and persistent streams
Streams might have a variety of sources and destinations, but they are either
transient or persistent. Both types have certain characteristics that should be
known when using the stream I/O functions.
v Transient streams usually communicate with the human user. The default

input stream and the default output stream, if they represent the keyboard
and the display, are typical examples. A communication path in a network
is another example of a transient stream because of its similar behavior.
The distinctive feature of a transient stream is that after a specific character
or line was read from or written to a stream this process cannot be
repeated. For example, if your REXX program reads user input from the
default input stream, the characters are read as they are typed. You cannot
change the position in a stream and read again the same character or line
without the character being typed again.

v Persistent streams are usually files or data sets or equivalent media.
The distinctive feature of a persistent stream is that you can repeatedly
change the position in a persistent stream and read or write from and to
different positions, within the boundaries of the stream.

When you use the stream I/O functions you will find that several parameters,
such as the start position for the CHARIN function, are applicable only for
persistent streams. In transient streams, read positions and write positions
always default to the next character or line in a stream. In persistent streams,
read positions and write positions can generally be changed within the
boundaries of a stream.

Note: The current implementation of the TSO/E REXX stream I/O functions
is limited with respect to randomly changing the positions in persistent
streams. See the description of the individual functions for these
capabilities. The LINEIN function might provide the most flexibility.

Opening and closing streams
A stream needs to be opened before it can be used, as a means to make the
stream known to a REXX program, and to gain access to this stream for read
and write operations.

The default input stream and the default output stream are opened when
TSO/E REXX is started. Any stream I/O function that does not specify a
stream by name performs its read operation or write operation on a default
stream.

Chapter 2. Understanding the stream I/O concept 9

Implicit versus explicit opening of streams
Streams are opened either implicitly or explicitly. All stream I/O functions
open a named stream implicitly upon their first use within a REXX program.
The named stream remains open for further function calls.

Streams can also be opened explicitly with the STREAM function. Explicit
opening (as well as closing) of streams has some advantages. For the sake of a
few lines, your program is more understandable, and you can easily recognize
the type of operation (read or write) allowed on a stream.

You must explicitly open a stream to perform multiple read operations on the
same data set. See also “Naming streams” on page 7 and “Multiple read
operations” on page 14.

Opening streams for read or write operations
A stream is opened for either read operations or write operations. It is not
recommended to have a stream concurrently open for both types of
operations.

If a stream is opened implicitly, the stream I/O function that is used at first
decides the type of operation. A CHARIN, CHARS, LINEIN, or LINES
function call opens a stream for read operations. A CHAROUT or LINEOUT
function call opens a stream for write operations.

If a stream is opened explicitly through the STREAM function, the type of
operation is specified as a parameter of the STREAM function.

After the type of operation is determined for a specific stream, you can use
only the corresponding stream I/O functions, otherwise an error occurs.

To change the type of operation allowed for a stream, you first need to close
the stream, then open it again for a different type of operation.

Note that opening a stream with the stream I/O functions in a TSO/E REXX
program implies an allocation of the corresponding resource. You do not need
to allocate a resource with the TSO/E ALLOCATE command, or by any other
means.

Opening nonexistent streams
Persistent streams like data sets or files might not exist at the time they are
opened. An attempt to open such a stream for read operations, either
implicitly or explicitly, will fail. An attempt to open such a stream for write
operations, either implicitly or explicitly, allocates an empty data set with VB
255, or whatever the operating system has defined as default. If you require a
different record format, allocate the data set through the TSO/E ALLOCATE
command, ISPF option 3.2, or a DD statement in batch.

10 Stream I/O for TSO/E REXX

If you name a nonexisting member (directly as data set member, or indirectly
through a ddname) with a stream output function, the member is created and
receives all subsequent output data.

You can use the STREAM function to query the existence of a stream before it
is opened for read operations or write operations.

Closing streams
All opened streams are closed implicitly when the REXX program ends. You
can also use the STREAM function to explicitly close all or specific streams.
You might want to do so for clarity, to free dynamically allocated working
storage, or to change the type of operations on a stream (from read to write,
or vice versa).

Closing a stream causes all pending write operations on this stream to be
executed first. Pending write operations can be, for example, partially written
lines on fixed block data sets.

Stream formats
The z/OS TSO/E REXX stream I/O functions can work with the following
files and data sets:
v QSAM (queued sequential access method) files
v z/OS sequential data sets and single members of partitioned data sets with

the following record formats:
– Fixed block formats (FB), and fixed length with ASA control characters

(FBA)
– Variable length (VB), and variable length with ASA control characters

(VBA)

As a rule, the stream I/O functions do not write any additional formatting or
control characters (other than what is specified as string with the stream I/O
function) to a data set. Vice versa, the stream I/O functions read whatever is
considered data from a data set. The read functions do not hide or remove
anything.

Note that the record formats of data sets influence how the output stream
functions succeed:
v The LINEOUT function attempts to write a specified string to a data set as

a single line.
If the length of the string fits in to the LRECL of the data set, the line is
written. For data sets with a fixed record length the line is padded with
blanks up to the logical record length.
If the length of the string exceeds the LRECL of the data set, the line is
truncated. The function returns a 1 as an indication that data remains to be
written to the stream.

Chapter 2. Understanding the stream I/O concept 11

Note that, if the LINEOUT function writes a null string, the stream is
closed. Nothing is written to a data set.

v The CHAROUT function attempts to write a specified string to a data set
character by character.
No truncation takes place. Subsequent strings of characters are concatenated
to previously written strings. If a fixed or maximum LRECL is exceeded,
the characters wrap around to the next record. Thus, a large string can
cause several records to be written. A partially filled record is retained
internally until it is filled by subsequent CHAROUT (or LINEOUT)
function calls, or until the output stream is closed. For data sets with fixed
record length a partial record is padded with blanks.

Contrary, the LINEIN function and the CHARIN function attempt to read a
line, respectively a number of characters, from a persistent stream. For data
sets with a fixed record length the string returned includes the padded blanks.

You can combine the use of the CHARIN and LINEIN, respectively the
CHAROUT and LINEOUT, functions for whatever purpose. For example, you
can write a few characters with CHAROUT, followed by a line written with
LINEOUT. The basic rule is that the line starts at the position where the
character string ended. To use these combinations, understand how the
position pointers in stream work, as described in “Position pointer details”.

Position pointer details
Each persistent stream maintains a position pointer to mark the position
where a read operation or write operation takes place. By definition, position
1 marks the first character in a stream, and the positions are counted in
number of characters relative to the beginning of a stream. When a stream is
opened, the position pointer is set to position 1 of the stream.

The general use of position pointers is to ease the sequential reading and
writing of streams. By default the first read operation starts at position 1,
reads a number of characters or a line, and automatically increments the read
position to the next unread character or line. A subsequent read operation
starts at the incremented read position (the current read position). Similarly, a
first write operation starts at position 1, writes a number of characters or a
line, and automatically increments the write position behind the last character
written. A subsequent write operation starts at the incremented write position
(the current write position). The current position is maintained automatically.
Thus, for sequential processing of a persistent stream, the stream I/O
functions do not require the specification of a stream position.

The position pointer in a persistent stream can be manipulated to a certain
degree to set it to a specific position where the next read operation or write
operation should take place.

12 Stream I/O for TSO/E REXX

v A CHARIN or CHAROUT start value of 1 sets the current position to the
beginning of a stream.

v A LINEIN line value can be set to any line number within a stream, which
sets the current position to the beginning of this line.

v A LINEOUT line value of 1 sets the current position to the beginning of the
stream (the beginning of the first line).

Note that the line parameter specifies a line, not the position of a character.
Lines are counted from 1 to n, where line 1 is the first line in a stream.

Each open stream has its own position pointer. If a stream is opened for read
operations, the pointer is either automatically set by any sequence of CHARIN
and LINEIN function calls, or it is explicitly manipulated as described.
Likewise, if a stream is opened for write operations, the pointer is either
automatically set by any sequence of CHAROUT and LINEOUT function
calls, or it is explicitly manipulated as described.

The CHARIN and LINEIN functions manipulate the same read position in a
stream; respectively the CHAROUT and LINEOUT functions manipulate the
same write position in a stream. For example, if two lines of 80 characters
each where written to a fixed length data set by LINEOUT, followed by a
CHAROUT of five characters, the current write position is 166 (the position
where the next write operation would start). A subsequent LINEOUT with 80
characters would not succeed because only 75 characters would fit in the
record. The line would be truncated. Conversely, if a line of 50 characters was
written by LINEOUT to a fixed length (80) data set, the line is padded with
blanks, and the current write position is 81 (the position were the next write
operation would start). A subsequent CHAROUT or LINEOUT function starts
at position 81.

End-of-stream treatment
For transient and persistent input streams use the CHARS function or the
LINES function to detect the end of an input stream. These functions return 0
if no more characters or lines are available for reading, or they return 1 if at
least one character, respectively line, is available for reading.

For transient streams, 0 means that the user has terminated the input to the
stream by means of the two-character sequence /*, followed by the Enter key.

For persistent streams, 0 means that the input stream is either empty, or a
previous read operation has already read the last character or line, or repeated
read operations have triggered an end-of-file condition.

Chapter 2. Understanding the stream I/O concept 13

An attempt to read beyond the end of a stream returns a null string and
triggers an error message. If this happens, the stream should be closed and
reopened. Do not try to manipulate the position pointer after the end-of-file
condition was triggered.

Error treatments

Stream I/O processing errors
The current implementation of the z/OS TSO/E REXX Stream I/O function
package supports only the SIGNAL ON SYNTAX condition trap. This means that a
SYNTAX condition is raised if a language processing error, a syntax error, or a
run-time error occurs during the execution of a stream I/O function call.

Note that it is not possible to trap NOTREADY conditions. Therefore, before
using a stream, query its existence with the STREAM ... QUERY EXISTS function
call.

If a syntax condition is raised because of a stream I/O function call, it is
recommended to exit the REXX program. The recovering from such a syntax
condition might cause unpredictable results.

Messages
The z/OS TSO/E REXX Stream I/O function package adds its own set of
messages to TSO/E REXX. Similar to TSO/E REXX messages, each message
consists of a message identifier and a message text. The message identifier is
EAGSIO.

See “Chapter 4. Stream I/O messages” on page 31, if required.

Multiple read operations
As already described, each open stream maintains its own position pointer.
This is sufficient for most sequential operations on a persistent stream.
However, if you have a need to perform multiple read operations on the same
stream, for example if you work with an indexed data set, you can use the
following method. (Multiple write operations as well as concurrent read and
write operations on the same stream are not supported.)

Use the STREAM function to open a stream explicitly for read operations.
Name the data set to work with by its fully qualified or partially qualified
data set name. The STREAM function returns a ddname, for example
&SYS00001. You have now a stream open with its own position pointer.

Repeat this step with the same data set name. The next ddname might be
&SYS00002. You have now a second stream open with its own position pointer.

Both streams represent the same data set. Both streams have their position
pointers, each set to position 1 at the beginning.

14 Stream I/O for TSO/E REXX

You can now perform various CHARIN and LINEIN function calls on the
streams &SYS00001 and &SYS00002 in any combination, and each stream
pointer is maintained independently.

Chapter 2. Understanding the stream I/O concept 15

16 Stream I/O for TSO/E REXX

Chapter 3. Stream I/O functions

This chapter lists the stream I/O functions and shows their syntax elements.
For each function, the basic function, the boundary conditions, the parameters,
and the results are described. Examples show possible uses and return values.

© Copyright IBM Corp. 2002 17

CHARIN (Character Input)

�� CHARIN ()
name ,

start , length

��

Returns a string of up to length characters read from the character input
stream name.

For persistent streams, a read position is maintained for each stream. Any
read operation from the stream will by default start at the current read
position. When the read operation is completed, the read position is increased
by the number of characters read.

A start value of 1 can be given, together with a length of 0, to refer to the first
character in a persistent stream. The read position is set to the beginning of
the stream, no characters are read, and the null string is returned.

For transient streams (SYSIN in TSO/E foreground) only: If there are fewer
than length characters available, then the execution of the program will
normally stop until sufficient characters become available.

name
Specifies the name of the character input stream. If it is not specified, the
default input stream is assumed.

start
For a persistent stream, specify a value of 1 (and a length of 0) to set the
read position to the first character in the stream. No other value is
supported.

For a transient stream do not specify a read position.

length
Specifies the number of characters to be returned. The default is 1.

If length is 0, no characters are read, a null string is returned, and the read
position is set to the value specified by start.

Comments
If a length of 0 is given (to specify an explicit read position, without reading
from the stream) you must also specify start or let start default to 1 (the first
character in a stream). This combination is only applicable to persistent
streams, because for transient streams you cannot specify an explicit read
position.

Results
A string of characters, or a null string.

18 Stream I/O for TSO/E REXX

Examples
CHARIN(myfile,1,3) -> 'MFC' /* First 3 characters are read. */

CHARIN(myfile,1,0) -> '' /* Read position set to start position. */
CHARIN(myfile) -> 'M' /* 1 character read from start position. */
CHARIN(myfile,,2) -> 'FC' /* Next 2 characters read. */

/* Reading from default input stream (here, the keyboard). */
/* The user types 'abcd efg'. */
CHARIN() -> 'a' /* Default is one character. */
CHARIN(,,5) -> 'bcd e' /* Next 5 characters. */

Chapter 3. Stream I/O functions 19

CHAROUT (Character Output)

�� CHAROUT ()
name ,

string , start

��

Returns the result (0 or 1) of the write operation after attempting to write
string to the character output stream name. string can be the null string, then
no characters are written to the stream and 0 is returned.

For persistent streams, a write position is maintained for each stream. Any
write operation to the stream will by default start at the current write
position. When the write operation is completed, the write position is
increased by the number of characters that are written. The initial write
position is the beginning of the stream, so that calls to CHAROUT will
append characters to the beginning of the stream.

A start value of 1 can be given, together with string being omitted (or
specified as a null string), to refer to the first character in a persistent stream.
The write position is set to the beginning of the stream, no characters are
written to the stream, and 0 is returned.

If neither start nor string is given, the output stream is closed, and 0 is
returned.

The execution of the CHAROUT function will normally stop until the output
operation is effectively complete. If it is impossible for a character to be
written, CHAROUT returns with a result of 1, and a corresponding error
message is shown.

name
Specifies the name of the output stream. If it is not specified, the default
output stream is assumed.

string
specifies the string to write.

For transient streams, the length of the string is limited by the capabilities
of your input device, usually 80 characters.

For persistent strings, the length is limited to a maximum of 32760
characters.

start
For a persistent stream, specify a value of 1 and omit string to set the
write position to the first character in the stream. No other value is
supported.

20 Stream I/O for TSO/E REXX

For a transient stream do not specify a write position. (If a value is
specified, it is ignored.)

Results
Returns 0 after the specified characters are successfully written, or 1 if the
specified characters could not be written.

Examples
CHAROUT(myfile,'Hi') -> 0 /* */
CHAROUT(myfile) -> 0
CHAROUT(,'Hi') -> 0
CHAROUT(V90,'29 BYTES FOR a V90 FILE LRECL') -> 0 /* Variable format */
CHAROUT(V20,'29 BYTES FOR a V20 FILE LRECL') -> 9 /* Variable format */

If a string of 29 characters is written to a data set with RECFM=F and
LRECL=20, 20 bytes are written to record n, and nine bytes are written to
record n+1.

If a string of 29 characters is written to a data set with RECFM=V or VB and
LRECL=20, four bytes are reserved for the RDW, 16 bytes are written to
record n, and 13 bytes are written to record n+1.

In both cases CHAROUT returns 0, as no truncation takes place.

Chapter 3. Stream I/O functions 21

CHARS (Characters Remaining)

�� CHARS ()
name

��

Returns 0, or 1 if characters are remaining in the character input stream name.

name
Specifies the name of the input stream. If it is not specified, the default
input stream is assumed.

Results
Returns 1, if one or more characters are available.

Returns 0, if no character is available. The data set or data set member is
empty, or a previous read operation has already read the last character, or a
previous read operation has triggered an EOF condition.

Examples
CHARS(myfile) -> 1 /* EOF not reached. */
CHARS(empty) -> 0 /* Empty data set. */
CHARS() -> 1 /* TSO/E console. */

22 Stream I/O for TSO/E REXX

LINEIN (Line Input)

�� LINEIN ()
name ,

line , count

��

Returns count (0 or 1) lines read from the character input stream name.

For persistent streams, a read position is maintained for each stream. Any
read operation from the stream will by default start at the current read
position.1 When the read operation is completed, the read position is
increased by the number of characters read.

A line number can be given to set the read position to the start of a specified
line. This line number must be positive and within the boundaries of the
stream, and it must not be specified for a transient stream. A value of 1 for
line refers to the first line in the stream.

If a count of 0 is given, then the read position is set to the start of the specified
line, but no characters are read, and the null string is returned.

For transient streams (SYSIN in TSO/E foreground) only: If a complete line is
not available in the stream, then the execution of the program will normally
stop until the line becomes available.

name
Specifies the name of the input stream. If it is not specified, the default
input stream is assumed.

line
For a persistent stream, it specifies an explicit read position. The default is
1, or the position set by a previous read operation.

For a transient stream do not specify a read position.

count
Specifies the number of lines to be returned. Only 0 or 1 is allowed. The
default is 1.

If count is 0, no lines are read, a null string is returned, and the read
position is set to the value specified by line.

1. Under certain circumstances, therefore, a call to LINEIN will return a partial line if the stream has already been
read with the CHARIN function, and part but not all of the line has been read.

Chapter 3. Stream I/O functions 23

Comments
If a count of 0 is given (to specify an explicit read position, without reading
from the stream), you must also specify line. This combination is only
applicable to persistent streams, because for transient streams you cannot
specify an explicit read position.

Results
A line, or a null string.

24 Stream I/O for TSO/E REXX

LINEOUT (Line Output)

�� LINEOUT ()
name ,

string , line

��

Returns the result (0 or 1) of the write operation after attempting to write
string as a line to the character output stream name. The result is either 0 (the
line was successfully written) or 1 (an error occurred while writing the line).
string can be the null string, then no characters are written to the stream and 0
is returned.

For persistent streams, a write position is maintained for each stream. Any
write operation will by default start at the current write position.2 When the
write operation is completed, the write position is increased by the length of
the line written. The initial write position is the beginning of the stream, so
that calls to LINEOUT will append lines to the beginning of the stream.

Note: The line parameter is provided for compatibility reasons, but does not
allow to set the write position in this implementation.

If neither line nor string is given, the output stream is closed, and 0 is
returned.

The execution of the LINEOUT function will normally stop until the output
operation is effectively complete. If it is impossible for a line to be written,
LINEOUT returns with a result of 1, and a corresponding error message is
shown.

name
Specifies the name of the output stream. If it is not specified, the default
output stream is assumed.

string
Specifies the string to write as a line.

line
Specify value of 1, or specify no value. See the previous note.

Results
Returns 0 after the specified line is successfully written, or 1 if the line could
not be written or is only partially written.

2. Under certain circumstances, therefore, the characters written by a call to LINEOUT might be added to a partial
line previously written to the stream with the CHAROUT routine. LINEOUT conceptually terminates a line at the
end of each call.

Chapter 3. Stream I/O functions 25

Examples
LINEOUT(myfile,'Hi') -> 0 /* Writes the string. */
LINEOUT(myfile,, -> 0 /* No action. */
LINEOUT(myfile) -> 0 /* Output stream is closed. */
LINEOUT(myfile,'String longer than lrecl') -> 1 /* Truncated. */

26 Stream I/O for TSO/E REXX

LINES (Lines Remaining)

�� LINES ()
name

��

Returns 0, or 1 if lines are remaining in the character input stream name. If the
stream has already been read with the CHARIN function, this might include
an initial partial line.

name
Specifies the name of the input stream. If it is not specified, the default
input stream is assumed.

Results
Returns 1, if one or more lines are available.

Returns 0, if no line is available. The data set or data set member is empty, or
a previous read operation has already read the last line, or a previous read
operation has triggered an EOF condition.

Examples
LINES(myfile) -> 0 /* EOF encountered. */
LINES(empty) -> 0 /* Empty data set. */
LINES() -> 1 /* TSO/E console. */

Chapter 3. Stream I/O functions 27

STREAM (Operations)

�� STREAM (name , operation , stream_command) ��

Returns a string describing the state of the character stream name, or the result
of an operation upon the character stream name.

This function is used to request information on the state of an input or output
stream, or to carry out some particular operation on the stream.

name
Specifies the name of the stream. Use a fully or partially qualified data set
name (with or without a member specification), or a ddname known to
TSO/E.

Note that the STREAM function returns enumerated ddnames of type
&SYSxxxxx when it performs an OPEN, OPEN READ, or OPEN WRITE
command. You can use these ddnames to name a stream in the stream
I/O function calls. For more information see “Naming streams” on page 7.

operation
Specifies the type of operation. This parameter must be the string
Command, or its leading character C. The first character must be
uppercase, and subsequent characters are ignored.

stream_command
Specifies one of the following commands (in capital letters) to be
performed on the named stream:

CLOSE
Closes the named stream.

CLOSE ALL
Closes all streams that have been opened so far in this REXX exec,
and frees resources that are bound to opened streams. For this
stream command the first parameter name is ignored and can be
omitted, such as in STREAM(,'Command','CLOSE ALL').

It is recommended that you use this stream command in your
REXX execs, regardless of external exec termination exits
providing similar functions. See “Usage considerations” on page 3
for a detailed description.

OPEN Is identical with OPEN READ.

OPEN READ
Opens the named stream for input, respectively read operations.
The input stream must already exist.

28 Stream I/O for TSO/E REXX

Note that input functions (CHARIN, CHARS, LINEIN, LINES)
implicitly open streams for input at their first usage. You can
explicitly open a stream for clarity reasons. You need to explicitly
open a stream if you want to maintain multiple position pointers.
See “Multiple read operations” on page 14, if required.

OPEN WRITE
Opens a named stream for output, respectively write operations. If
the output stream does not exist, a data set is allocated with the
system defaults. See “Opening nonexistent streams” on page 10, if
required.

Note that output functions (CHAROUT, LINEOUT) implicitly
open streams for output at their first usage. You can explicitly
open a stream for clarity reasons.

When the output stream is opened, the position pointer is initially
set to position 1. Thus, the contents are overwritten. See “Position
pointer details” on page 12, if required).

QUERY EXISTS
Queries the existence of a named stream and returns the fully
qualified data set name that is allocated to this stream.

QUERY REFDATE
Queries the date when the named stream was last referenced. The
date is returned in julian form.

Note: You can also use the STREAM function to query the level of the
installed function package. This might be required if you need to report
problems. If required, type STREAM(,'COMMAND','QUERY SERVICELEVEL').
The function returns the service level of the installed function package
in the form REXXSIO <v><r><m> FIX<nnnn> <yyyy><mm><dd>, for example
REXXSIO 130 FIX0000 20011207.

Results
v CLOSE returns 0. If unsuccessful, RC = 4 is returned, and a message is

issued. The named stream might not exist, or it has already been closed.
v OPEN returns a ddname as a string &SYSxxxxx, with xxxxx being an

enumeration. If unsuccessful, the string ERROR is returned.
v QUERY REFDATE returns the date in julian form (like 1999/360), or a null

string if the stream does not exist or the date cannot be determined.

Examples
STREAM('MYDATA FILE','C','CLOSE') /* Closes the named data set. */

STREAM(strinp,'C','OPEN') /* Opens an input stream. */

STREAM(strout,'C','OPEN WRITE') /* Opens an output stream. */

Chapter 3. Stream I/O functions 29

STREAM('YOURDATA.FILE','C','QUERY EXISTS')
/* Request the fully qualified */
/* data set name. */

STREAM('MY.DATA.FILE','C','QUERY REFDATE')
/* Requests the date when last */
/* referenced. */

30 Stream I/O for TSO/E REXX

Chapter 4. Stream I/O messages

One or more of the following messages might occur in response to a problem
during a stream I/O function call. If the problem cause is likely to be with
your REXX program, detailed information is given with each message. If the
problem cause is outside your REXX program, you need to see the
appropriate TSO/E or z/OS documentation or to contact the system
administrator for further help.

EAGSIO0001 Invalid numeric parameter for
REXXIO.

Explanation: A function call contains a numeric
parameter that is not allowed. A line, count, or
start parameter value might be negative or
outside the boundaries of a stream.

EAGSIO0002 Invalid ’count’ value for LINEIN.

Explanation: The count parameter contains a
value other than 0 or 1.

EAGSIO0003 Invalid number of parameters
for LINEIN.

Explanation: Possible syntax problem with the
LINEIN function call, or more than three
parameter values specified. Check also the use of
commas in the function call. See “LINEIN (Line
Input)” on page 23.

EAGSIO0004 Invalid file specification for
REXXIO.

Explanation: A stream name is not properly
specified. The name might contain invalid
characters, or a qualifier might be more than
eight characters long. See also “Naming streams”
on page 7.

EAGSIO0005 Invalid number of parameters
for LINES.

Explanation: Possible syntax problem with the
LINES function call, or more than one parameter

value specified (no commas in the function call).
See “LINES (Lines Remaining)” on page 27.

EAGSIO0007 Invalid number of parameters
for LINEOUT.

Explanation: Possible syntax problem with the
LINEOUT function call, or more than three
parameter values specified. Check also the use of
commas in the function call. See “LINEOUT
(Line Output)” on page 25.

EAGSIO0008 Invalid line number for
LINEOUT.

Explanation: The line parameter contains a
value for a transient stream, or a value other
than 1 for a persistent stream.

EAGSIO0009 The file failed to open for
REXXIO.

Explanation: The specified stream failed to
open. The ddname might not be allocated.

EAGSIO0010 The file is a partitioned data set,
but no member name was
specified.

Explanation: You need to specify the stream
name with an explicit member name because the
data set is partitioned. See “Naming streams” on
page 7.

© Copyright IBM Corp. 2002 31

EAGSIO0011 The file is a sequential data set,
but a member name was
specified.

Explanation: Do not specify the stream name
with an explicit member name; the data set is not
partitioned. See “Naming streams” on page 7.

EAGSIO0012 Record format of file is not
supported.

Explanation: An attempt was made to open a
persistent stream with an unsupported record
format. See “Stream formats” on page 11 for
supported formats.

EAGSIO0013 Data set organization of file is
not supported.

Explanation: An attempt was made to open a
persistent stream with an unsupported data set
organization. See “Stream formats” on page 11
for supported formats.

EAGSIO0014 Warning: Output record
truncated.

Explanation: A LINEOUT function call
attempted to write a string that exceeds the
LRECL of the data set. A preceding CHAROUT
function call might have already written several
characters, or the string length exceeds the
LRECL of the data set. See “Stream formats” on
page 11 for details.

EAGSIO0015 Cannot allocate data set.
Insufficient storage.

Explanation: Increase the Region size (MVS).

EAGSIO0016 Cannot allocate data set. Data set
cannot be accessed exclusively.

Explanation: Opening a stream for write
operations requires exclusive allocation. Someone
else has already allocated the data set.

EAGSIO0017 Cannot allocate data set. Data set
in use by another user or job.

Explanation: Someone else has already allocated
the data set exclusively. You cannot open the
stream for read operations or write operations
yet.

EAGSIO0018 Cannot allocate data set. No unit
available.

Explanation: You specified a stream name as a
data set that cannot be allocated. Ask the system
administrator for help.

EAGSIO0019 Cannot allocate data set. Volume
cannot be mounted.

Explanation: You specified a stream name as a
data set that cannot be allocated. Ask the system
administrator for help.

EAGSIO0020 Volume allocated to another user
or job.

Explanation: You specified a stream name as a
data set that cannot be allocated. Ask the system
administrator for help.

EAGSIO0021 Cannot allocate data set. Number
of required devices unavailable.

Explanation: You specified a stream name as a
data set that cannot be allocated. Ask the system
administrator for help.

EAGSIO0022 Cannot allocate data set. Volume
or unit in use by system.

Explanation: You specified a stream name as a
data set that cannot be allocated (exclusively
used by someone else). Ask the system
administrator for help.

EAGSIO0023 Cannot allocate data set. Volume
mounted on an ineligible device.

Explanation: You specified a stream name as a
data set that cannot be allocated. Ask the system
administrator for help.

32 Stream I/O for TSO/E REXX

EAGSIO0024 Cannot allocate data set.
Specified device in use.

Explanation: You specified a stream name as a
data set that cannot be allocated. Ask the system
administrator for help.

EAGSIO0025 Cannot allocate data set.
Specified Volume is on another
device.

Explanation: You specified a stream name as a
data set that cannot be allocated. Ask the system
administrator for help.

EAGSIO0026 Cannot allocate data set.
Maximum number of allocations
reached.

Explanation: You have already allocated too
many data sets. The maximum number of
allocations is specified in TSO/E and MVS.
Either try to free some other allocations, or ask
the system administrator for help.

EAGSIO0027 Cannot allocate data set.
Maximum number of allocations
exceeded.

Explanation: The maximum number of
concurrent allocations is reached. Either try to
free some ddnames, or ask the system
administrator for help.

EAGSIO0028 Cannot allocate data set. Job
Entry Subsystem unavailable.

Explanation: The JES is not available to verify
an allocation request. Ask the system
administrator for help.

EAGSIO0029 Cannot allocate data set. Number
of volumes exceeds limit.

Explanation: You specified a stream name as a
data set that cannot be allocated. Ask the system
administrator for help.

EAGSIO0030 Cannot allocate data set. Request
cancelled by the operator.

Explanation: You specified a stream name as a
data set that cannot be allocated. Ask the system
operator for help.

EAGSIO0031 Cannot allocate data set. MSS
volume not accessible from unit.

Explanation: You specified a stream name as a
data set that cannot be allocated. Ask the system
administrator for help.

EAGSIO0032 Cannot allocate data set. MSS
volume does not exist.

Explanation: You specified a stream name as a
data set that cannot be allocated. Ask the system
administrator for help.

EAGSIO0033 Cannot allocate data set. Data set
name not found.

Explanation: You specified a stream name as a
data set that cannot be allocated (the data set
name is not cataloged). Ask the system
administrator for help.

EAGSIO0034 Cannot allocate data set. Locate
I/O error.

Explanation: You specified a stream name as a
data set that cannot be allocated (probably a
system problem). Ask the system administrator
for help.

EAGSIO0035 Cannot allocate data set.
DADSM I/O error.

Explanation: You specified a stream name as a
data set that cannot be allocated (probably a
system problem). Ask the system administrator
for help.

Chapter 4. Stream I/O messages 33

EAGSIO0036 Cannot allocate data set. Data set
not on volume as denoted by
catalog.

Explanation: You specified a stream name as a
data set that cannot be allocated (probably a
system problem). Ask the system administrator
for help.

EAGSIO0037 Cannot allocate data set.
OBTAIN I/O error.

Explanation: You specified a stream name as a
data set that cannot be allocated (probably a
system problem). Ask the system administrator
for help.

EAGSIO0038 Cannot allocate data set.
Required catalog not mounted.

Explanation: You specified a stream name as a
data set that cannot be allocated (probably a
system problem). Ask the system administrator
for help.

EAGSIO0039 The requested member is not in
the specified data set.

Explanation: An attempt was made to open a
partitioned data set for a read operation, but the
data set member does not exist.

EAGSIO0040 The STOW failed during the
close of a data set.

Explanation: Probably a system problem. Ask
the system administrator for help.

EAGSIO0041 Invalid number of parameters
for CHARIN.

Explanation: Possible syntax problem with the
CHARIN function call, or more than three
parameter values specified. Check also the use of
commas in the function call. See “LINEIN (Line
Input)” on page 23.

EAGSIO0042 Invalid number of parameters
for CHAROUT.

Explanation: Possible syntax problem with the
CHAROUT function call, or more than three
parameter values specified. Check also the use of
commas in the function call. See “LINEIN (Line
Input)” on page 23.

EAGSIO0043 Invalid number of parameters
for CHARS.

Explanation: Possible syntax problem with the
CHARS function call, or more than one
parameter value specified (no commas in the
function call). See “LINEIN (Line Input)” on
page 23.

EAGSIO0044 Invalid ’start’ value for
CHAROUT.

Explanation: The start parameter contains a
value other than 1.

EAGSIO0045 Invalid ’start’ value for
CHARIN.

Explanation: The start parameter contains a
value other than 1.

EAGSIO0046 Invalid ’line’ value for LINEIN.

Explanation: The line parameter contains a
value that is negative or not within the
boundaries of the stream (the specified line
might not exist).

EAGSIO0047 Read error in REXXIO.

Explanation: TSO/E returned with a Read error.
See the subsequent messages for further
information. If required, ask the TSO/E support
for help.

EAGSIO0048 CLOSE ignored. File already
closed, or not found.

Explanation: The stream was already closed by
a preceding STREAM CLOSE command or by an

34 Stream I/O for TSO/E REXX

implicit close, or the named stream does not
exist.

EAGSIO0049 Logic error IEANTRT token
retrieval.

Explanation: Should never occur. Contact IBM
service.

EAGSIO0050 Invalid command for STREAM
specified.

Explanation: The stream_command parameter of
the STREAM function call contains an invalid
value. See “STREAM (Operations)” on page 28.

EAGSIO0051 Invalid parameter for STREAM
QUERY specified.

Explanation: The stream_command parameter of
the STREAM function call contains an invalid
value. Only QUERY EXISTS, QUERY REFDATE, and
QUERY SERVICELEVEL are supported. See
“STREAM (Operations)” on page 28.

EAGSIO0052 I/O RC=12, DCB already opened
for a different type of I/O
operation.

Explanation: Error returned by TSO/E. A data
set operation was tried in a mode different from
the initial mode.

EAGSIO0053 I/O RC=16, Output data was
truncated for WRITE option.

Explanation: A LINEOUT function call failed to
write a string. The LRECL value of the data set
in question might be too small.

EAGSIO0054 I/O RC=20, unsuccessful
processing, function not
performed.

Explanation: Error returned by TSO/E.
Subsequent messages might provide further
information. If required, ask the TSO/E support
for help.

EAGSIO0055 I/O RC=24, unsuccessful
processing, file cannot be opened.

Explanation: Error returned by TSO/E.
Subsequent messages might provide further
information. If required, ask the TSO/E support
for help.

EAGSIO0056 I/O RC=28, unsuccessful
processing. Language processor
cannot be located.

Explanation: Error returned by TSO/E.
Subsequent messages might provide further
information. If required, ask the TSO/E support
for help.

EAGSIO0057 I/O RC=32, unsuccessful
processing. Internal error in
REXXIO.

Explanation: Error returned by TSO/E.
Subsequent messages might provide further
information. If required, ask the TSO/E support
for help.

EAGSIO0058 Record for console must be Fixed
80.

Explanation: An attempt to read from SYSTSIN
with IRXJCL failed. The DSN must be F 80.

EAGSIO0059 SVC99 allocation error, errorcode
not known in EAGIODYN.

Explanation: Should never occur. Contact IBM
service.

EAGSIO0060 Allocation failed. Too many
attempts.

Explanation: Too many unsuccessful allocation
attempts from within the REXX program have
used up the available storage.

Chapter 4. Stream I/O messages 35

36 Stream I/O for TSO/E REXX

Appendix A. JCL job MAKESIO

Note: For pre-reading and walkthrough purposes only. The actual job might
be slightly different.

//* -->uidCSIO JOB - Specify your Job card here
//*---*
//* IBM z/OS TSO/E REXX Stream I/O function package. VRM 130 *
//* *
//* OCO Source Materials Program Property of IBM *
//* 5695-014 IBM Library for SAA REXX/370 *
//* (C) Copyright IBM Corp. 1989, 1994. *
//* *
//* Purpose: *
//* JCL to assemble and linkedit the REXX Stream I/O function *
//* package. After successful creation, a job step to verify the *
//* functionality is executed. *
//* *
//* Setup: *
//* If you already have function packages and if you want to *
//* add this one, you must modify the IRXPARMS, IRXTSPRM *
//* according to your needs. The setup here is exclusively for *
//* REXX Stream I/O. EXECTERM is not used to avoid APF need. *
//* *
//* Necessary Modifications: *
//* The object and load libraries, defined in the PROC section, *
//* have to be allocated. *
//* For the object library it is recommended: PDS FB 80, *
//* for the load library: PDS U 0 23200 etc. *
//* Verify the DS Names listed in the PROC section, especially *
//* the first DSN qualifier which defines the user ID. *
//* *
//* Note: *
//* The Job inputs are defined in section: *
//* Source inputs for all Job steps *
//* *
//* *
//* Job Steps: *
//* ALLOLOAD Allocate load library - job step is commented, *
//* activate if desired, UNIT=SYSDA used. *
//* COMPRESS Compress load library *
//* Discard COMPRESS and COMPRESS.SYSIN DD * *
//* if not desired, or comment out both job steps. *
//* LKEDSIO Link the function package *
//* LKEDHKP Link Termination Exit EAGIOHKP *
//* ASSMIRP Assemble IRXPARMS REXX Parameter Module *
//* LKEDIRP Link IRXPARMS *
//* ASSMIRT Assemble IRXTSPRM REXX Parameter Module *
//* LKEDIRT Link IRXTSPRM *
//* VERTSYS Create temporary SYSEXEC *
//* VERTUSE Create temporary DSN for verification *
//* COPYEXEC Copy REXX exec to SYSEXEC *

© Copyright IBM Corp. 2002 37

//* GOREXMVS Execute verification under IRXJCL *
//* GOREXTSO Execute verification under IKJEFT01 *
//* Note: *
//* This setup does not require APF authorization. *
//* If you define EXECTERM together with a non-APF *
//* load library, you receive a system 66D abend. *
//* *
//* Change Activity: New 020230 - otm *
//* *
//*---*
//* PROC section, make your updates here: *
//*---*
//MAKESIO PROC OBJLIB='uid.REXX.SIO130.OBJECT', Object library
// LOADLB='uid.REXX.SIO130.LOAD', Load library
// SMACLB='SYS1.MACLIB', Sample library
// CSSLIB='SYS1.CSSLIB', Systems Maclib
// REXPRT='X' EXEC output
//*---*
//* Allocate load library - Discard * to activate Job step *
//*---*
//*ALLOLOAD EXEC PGM=IEFBR14
//*ALLODD DD DSN=&LOADLB,DISP=(NEW,CATLG,DELETE),
//* UNIT=SYSDA,SPACE=(TRK,(5,1,10)),
//* DCB=(RECFM=U,LRECL=0,BLKSIZE=23200,DSORG=PO)
//*---*
//* Compress load library - Comment out if not desired *
//*---*
//COMPRESS EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=*
//IN DD DISP=SHR,DSN=&LOADLB
//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(1,2))
//SYSUT4 DD UNIT=SYSDA,SPACE=(CYL,(1,2))
//SYSIN DD DUMMY
//*---*
//* Link Directory *
//*---*
//LKEDSIO EXEC PGM=IEWL,
// PARM='LIST,XREF,LET,RENT',
// COND=(4,LT)
//SYSLIB DD DISP=SHR,DSN=&OBJLIB
// DD DISP=SHR,DSN=&CSSLIB
//SYSPRINT DD SYSOUT=*
//SYSLMOD DD DISP=SHR,DSN=&LOADLB
//SYSLIN DD DUMMY
//*---*
//* Link Exec Termination Exit *
//*---*
//LKEDHKP EXEC PGM=IEWL,
// PARM='LIST,XREF,LET,RENT',
// COND=(4,LT)
//SYSLIB DD DISP=SHR,DSN=&OBJLIB
// DD DISP=SHR,DSN=&CSSLIB
//SYSPRINT DD SYSOUT=*
//SYSLMOD DD DISP=SHR,DSN=&LOADLB
//SYSLIN DD DUMMY

38 Stream I/O for TSO/E REXX

//*---*
//* Assemble and linkedit the IRXPARMS REXX Parameter Module *
//* Parameter Module consists of: *
//* PARMBLOCK *
//* MODULE NAME TABLE *
//* HOST COMMAND ENVIRONMENT TABLE *
//* FUNCTION PACKAGE TABLE *
//*---*
//ASSMIRP EXEC PGM=ASMA90,REGION=0K,
// PARM=(NODECK,OBJECT,SIZE(200K)),
// COND=(4,LT)
//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR
//SYSPUNCH DD DUMMY
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT2 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSLIN DD DISP=SHR,DSN=&OBJLIB(IRXPARMS)
//SYSIN DD DUMMY
//*---*
//* LKED Module IRXPARMS *
//*---*
//LKEDIRP EXEC PGM=IEWL,
// PARM='LIST,XREF,LET,RENT',
// COND=(4,LT)
//SYSPRINT DD SYSOUT=*
//SYSLMOD DD DISP=SHR,DSN=&LOADLB(IRXPARMS)
//SYSLIN DD DISP=SHR,DSN=&OBJLIB(IRXPARMS)
//*---*
//* Assemble and linkedit the IRXTSPRM REXX Parameter Module *
//* Parameter Module consists of: *
//* PARMBLOCK *
//* MODULE NAME TABLE *
//* HOST COMMAND ENVIRONMENT TABLE *
//* FUNCTION PACKAGE TABLE *
//*---*
//ASSMIRT EXEC PGM=ASMA90,REGION=0K,
// PARM=(NODECK,OBJECT,SIZE(200K)),
// COND=(4,LT)
//SYSLIB DD DISP=SHR,DSN=&SMACLB
//SYSPUNCH DD DUMMY
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT2 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSLIN DD DISP=SHR,DSN=&OBJLIB(IRXTSPRM)
//SYSIN DD DUMMY
//*---*
//* LKED IRXTSPRM *
//*---*
//LKEDIRT EXEC PGM=IEWL,
// PARM='LIST,XREF,LET,RENT',
// COND=(4,LT)
//SYSPRINT DD SYSOUT=*
//SYSLMOD DD DISP=SHR,DSN=&LOADLB(IRXTSPRM)
//SYSLIN DD DISP=SHR,DSN=&OBJLIB(IRXTSPRM)
//*---*

Appendix A. JCL job MAKESIO 39

//* Verification Step: *
//* It allocates two temporary data sets: *
//* 1. SYSEXEC *
//* 2. Used to write data to it and to read data from it *
//*---*
//ALLOCTMP EXEC PGM=IEFBR14,
// COND=(4,LT)
//VERTSYS DD DSN=&&SYSEXEC,
// DISP=(NEW,PASS,DELETE),
// UNIT=SYSDA,SPACE=(TRK,(1,1,1)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=8000,DSORG=PO)
//VERTUSE DD DSN=&&USE2VER,
// DISP=(NEW,PASS,DELETE),
// UNIT=SYSDA,SPACE=(TRK,(1,1)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800,DSORG=PS)
//*---*
//* COPY Source Exec to SYSEXEC *
//*---*
//COPYEXEC EXEC PGM=IEBGENER,
// COND=(4,LT)
//SYSPRINT DD SYSOUT=*
//SYSUT2 DD DISP=(SHR,PASS),DSN=&&SYSEXEC(GOVERIFY)
//SYSTSPRT DD SYSOUT=*
//SYSIN DD DUMMY
//SYSUT1 DD DUMMY
//*---*
//* Execute GOVERIFY EXEC under IRXJCL *
//*---*
//GOREXMVS EXEC PGM=IRXJCL,PARM='GOVERIFY VERDSN (IRXJCL',
// COND=(4,LT)
//STEPLIB DD DISP=SHR,DSN=&LOADLB
//SYSEXEC DD DISP=(SHR,PASS),DSN=&&SYSEXEC
//VERDSN DD DISP=(SHR,PASS),DSN=&&USE2VER
//SYSTSPRT DD SYSOUT=&REXPRT,DCB=(RECFM=FB,LRECL=120,BLKSIZE=1200)
//SYSPRINT DD SYSOUT=&REXPRT
//SYSTSIN DD DUMMY
//*---*
//* Execute GOVERIFY EXEC under IKJEFT01 *
//*---*
//GOREXTSO EXEC PGM=IKJEFT01,PARM='GOVERIFY VERDSN (IKJEFT01',
// COND=(4,LT)
//STEPLIB DD DISP=SHR,DSN=&LOADLB
//SYSEXEC DD DISP=(SHR,PASS),DSN=&&SYSEXEC
//VERDSN DD DISP=(SHR,PASS),DSN=&&USE2VER
//SYSTSPRT DD SYSOUT=&REXPRT,DCB=(RECFM=FB,LRECL=120,BLKSIZE=1200)
//SYSPRINT DD SYSOUT=&REXPRT
//SYSTSIN DD DUMMY
//*---*
//* Job Procedure End *
//*---*
// PEND
//*---*
//MAKEIT EXEC MAKESIO
//*---*
//* *

40 Stream I/O for TSO/E REXX

//* Source inputs for all Job steps *
//* *
//*---*
//* Compress SYSIN *
//*---*
//COMPRESS.SYSIN DD *

COPY INDD=IN,OUTDD=IN
/*
//*---*
//* Link EAGEFSIO Function Package *
//*---*
//LKEDSIO.SYSLIN DD *

INCLUDE SYSLIB(EAGEFSIO)
INCLUDE SYSLIB(EAGIOCHI)
INCLUDE SYSLIB(EAGIOCHO)
INCLUDE SYSLIB(EAGIOCLS)
INCLUDE SYSLIB(EAGIODYN)
INCLUDE SYSLIB(EAGIOGET)
INCLUDE SYSLIB(EAGIOGFE)
INCLUDE SYSLIB(EAGIOGNM)
INCLUDE SYSLIB(EAGIOHKP)
INCLUDE SYSLIB(EAGIOLNI)
INCLUDE SYSLIB(EAGIOLNO)
INCLUDE SYSLIB(EAGIOLNS)
INCLUDE SYSLIB(EAGIOMSG)
INCLUDE SYSLIB(EAGIOOPE)
INCLUDE SYSLIB(EAGIOPUT)
INCLUDE SYSLIB(EAGIORET)
INCLUDE SYSLIB(EAGIOSTR)
MODE AMODE(31),RMODE(ANY)
NAME EAGEFSIO(R)

/*
//*---*
//* Link Exec Termination Exit *
//*---*
//LKEDHKP.SYSLIN DD *

ENTRY EAGIOHKP
INCLUDE SYSLIB(EAGIOHKP)
MODE AMODE(31),RMODE(ANY)
NAME EAGIOHKP(R)

/*
//*---*
//* IRXPARMS *
//*---*
//ASSMIRP.SYSIN DD *

TITLE 'IRXPARMS REXX System RXAPI Parameter Module for MVS'

*
* Module name : IRXPARMS
*
* LICENSED MATERIALS - PROPERTY OF IBM
* THIS MACRO IS "RESTRICTED MATERIALS OF IBM"
* 5685-025 (C) COPYRIGHT IBM CORP. 1988, 1992
* SEE COPYRIGHT INSTRUCTIONS
*

Appendix A. JCL job MAKESIO 41

* Description : Parameter Module for MVS.
*
* Function : Declare the system
* - PARMBLOCK = parameter block
* - MODNAMET = module name table
* - SUBCOMTB = subcommand handler table
* - PACKTB = function package table
*
* Notes : This module does not contain any executable code,
* only data.
*
* Setup : for REXX Stream I/O
*
* Created : otm 12/05/2001
*

EJECT
IRXPARMS AMODE 31
IRXPARMS RMODE ANY
IRXPARMS CSECT

SPACE 1

* Parmblock
*--
* Flags / Masks:
*--
* Byte 1 of PARMBLOCK Flags
* TSOFL 1... Integrate with TSO flag
* .1.. Reserved
* CMDSOFL ..1. Command search order flag
* FUNCSOFL ...1 Function/subroutine search order flag
* NOSTKFL 1... No data stack flag
* NOREADFL1.. No read flag
* NOWRTFL1. No write flag
* NEWSTKFL1 New data stack flag
*--
* Byte 2 of PARMBLOCK Flags
* USERPKFL 1... User external function package flag
* LOCPKFL .1.. Local external function package flag
* SYSPKFL ..1. System external function package flag
* NEWSCFL ...1 New subcommand table flag
* CLOSEXFL 1... Close exec data set flag
* NOESTAE1.. No recovery ESTAE flag
* RENTRANT1. Reentrant REXX environment flag
* NOPMSGS1 No primary messages flag
*--
* Byte 3 of PARMBLOCK Flags
* ALTMSGS 1... Issue alternate messages flag
* SPSHARE .1.. Subpool storage is shared flag
* STORFL ..1. STORAGE function flag
* NOLOADDD ...1 Do not load from the sys-lvl EXEC DDNAME.
* NOMSGWTO_MASK 1... MVS, do not issue err msgs with WTO srv
* NOMSGIO_MASK1.. MVS, do not issue err msgs to OUTDD
*1. Reserved
*1 Reserved

42 Stream I/O for TSO/E REXX

*--
* Byte 4 of PARMBLOCK Flags
* 1111 1111 Reserved

SPACE 1
PARMBLOCK EQU *
PARMBLOCK_ID DC CL8'IRXPARMS' Initialize the ID field
PARMBLOCK_VERSION DC CL4'0200' Initialize the Version field
PARMBLOCK_LANGUAGE DC CL3'ENU' Language is American English
RSVD001 DC CL1' ' Reserved
PARMBLOCK_MODNAMET DC A(MODNAMET) Addr of Module Names Table
PARMBLOCK_SUBCOMTB DC A(SUBCOMTB) Addr of Subcom Table Header
PARMBLOCK_PACKTB DC A(PACKTB_HEADER) Addr of Package Table Header
PARMBLOCK_PARSETOK DC CL8' ' Parse Source Token
PARMBLOCK_FLAGS DC X'0000C000' Set the flags
PARMBLOCK_MASKS DC X'FFFFFFFF' Set all masks
PARMBLOCK_SUBPOOL DC AL4(0) Subpool to use
PARMBLOCK_ADDRSPN DC CL8'MVS' Address space name
PARMBLOCK_FFFF DC X'FFFFFFFFFFFFFFFF'

SPACE 1

* Module Name Table

SPACE 1
MODNAMET EQU *
MODNAMET_DDS EQU * DDs used by REXX:
MODNAMET_INDD DC CL8'SYSTSIN ' - Specify the input DD
MODNAMET_OUTDD DC CL8'SYSTSPRT' - Specify the output DD
MODNAMET_LOADDD DC CL8'SYSEXEC ' - Specify the load exec DD
*
MODNAMET_ROUTINES EQU * Routines used by REXX
* Blank indicates default to
* previous environment's settings
MODNAMET_IOROUT DC CL8' ' The I/O Routine
MODNAMET_EXROUT DC CL8' ' The exec load Routine
MODNAMET_GETFREER DC CL8' ' The GETMAIN/FREEMAIN Routine
MODNAMET_EXECINIT DC CL8' ' The EXEC initialization rtn.
MODNAMET_ATTNROUT DC CL8' ' The Attention Routine
MODNAMET_STACKRT DC CL8' ' The Data Stack Routine
MODNAMET_IRXEXECX DC CL8' ' The IRXEXEC exit Routine
MODNAMET_IDROUT DC CL8' ' The userid Routine
MODNAMET_MSGIDRT DC CL8' ' The message id Routine
***MODNAMET_EXECTERM DC CL8'EAGIOHKP' EXEC Termination Stream I/O
MODNAMET_EXECTERM DC CL8' ' Name of the EXEC Termination RTN
MODNAMET_FFFF DC X'FFFFFFFFFFFFFFFF'

SPACE 1

* Subcommand Table

SPACE 1
SUBCOMTB EQU *
SUBCOMTB_HEADER EQU * Set up the SUBCOMTB Header
SUBCOMTB_FIRST DC A(SUBCOMTB_ENTRIES) Addr of first SUBCOMTB entry
SUBCOMTB_TOTAL DC F'10' Total number of entries
SUBCOMTB_USED DC F'10' Number of entries used

Appendix A. JCL job MAKESIO 43

SUBCOMTB_LENGTH DC F'32' Length of each entry
SUBCOMTB_INITIAL DC CL8'MVS' Initial Subcommand environment
RSVD007 DC X'0000000000000000' Reserved
SUBCOMTB_FFFF DC X'FFFFFFFFFFFFFFFF'
*
SUBCOMTB_ENTRIES EQU * Start of SUBCOMTB entries
*

DC CL8'MVS' subcommand environment name
DC CL8'IRXSTAM' handler routine name
DC CL16' ' subcommand token

*
DC CL8'LINK' subcommand environment name
DC CL8'IRXSTAM' handler routine name
DC CL16' ' subcommand token

*
DC CL8'ATTACH' subcommand environment name
DC CL8'IRXSTAM' handler routine name
DC CL16' ' subcommand token

*
DC CL8'CPICOMM' subcommand environment name
DC CL8'IRXAPPC' handler routine name
DC CL16' ' subcommand token

*
DC CL8'LU62' subcommand environment name
DC CL8'IRXAPPC' handler routine name
DC CL16' ' subcommand token

*
DC CL8'LINKMVS' subcommand environment name
DC CL8'IRXSTAMP' handler routine name
DC CL16' ' subcommand token

*
DC CL8'LINKPGM' subcommand environment name
DC CL8'IRXSTAMP' handler routine name
DC CL16' ' subcommand token

*
DC CL8'ATTCHMVS' subcommand environment name
DC CL8'IRXSTAMP' handler routine name
DC CL16' ' subcommand token

*
DC CL8'ATTCHPGM' subcommand environment name
DC CL8'IRXSTAMP' handler routine name
DC CL16' ' subcommand token

*
DC CL8'APPCMVS' subcommand environment name
DC CL8'IRXAPPC' handler routine name
DC CL16' ' subcommand token

SPACE 1

* Function Package Table

SPACE 1
PACKTB EQU *
PACKTB_HEADER EQU * Set up the PACKTB Header
*
PACKTB_USER_FIRST DC A(USER_PACKTB_ENTRIES) Addr of first User entry

44 Stream I/O for TSO/E REXX

PACKTB_USER_TOTAL DC F'1' Total number of User entries
PACKTB_USER_USED DC F'1' Number of User entries in use
*
PACKTB_LOCAL_FIRST DC A(LOCAL_PACKTB_ENTRIES) Addr of first Local entry
PACKTB_LOCAL_TOTAL DC F'1' Total number of Local entries
PACKTB_LOCAL_USED DC F'1' Number of Local entries in use
*
PACKTB_SYSTEM_FIRST DC A(SYSTEM_PACKTB_ENTRIES) Addr of 1st System entry
PACKTB_SYSTEM_TOTAL DC F'2' Total number of System entries
PACKTB_SYSTEM_USED DC F'2' Number of System entries in use
*
PACKTB_LENGTH DC F'8' Length of each PACKTB entry
PACKTB_FFFF DC X'FFFFFFFFFFFFFFFF'
*
SYSTEM_PACKTB_ENTRIES EQU *

DC CL8'IRXEFMVS' external MVS functions
DC CL8'EAGEFSIO' REXX Stream IO

SPACE 1
LOCAL_PACKTB_ENTRIES EQU *

DC CL8'IRXFLOC' Default Local Function Package
*
USER_PACKTB_ENTRIES EQU *

DC CL8'IRXFUSER' Default User Function Package
SPACE 1

* Patch area

SPACE 1
DC C'PATCH AREA - IRXPARMS'
DS 8F Patch area

SPACE 1
IRXPARMS CSECT

END IRXPARMS
/*
//*---*
//* IRXTSPRM *
//*---*
//ASSMIRT.SYSIN DD *

TITLE 'IRXTSPRM REXX System RXAPI Parameter Module for TSO'

*
* Module name : IRXTSPRM
*
* LICENSED MATERIALS - PROPERTY OF IBM
* THIS MACRO IS "RESTRICTED MATERIALS OF IBM"
* 5685-025 (C) COPYRIGHT IBM CORP. 1988, 1992
* SEE COPYRIGHT INSTRUCTIONS
*
* Description : Parameter Module for TSO.
*
* Function : Declare the system
* - PARMBLOCK = parameter block
* - MODNAMET = module name table
* - SUBCOMTB = subcommand handler table
* - PACKTB = function package table

Appendix A. JCL job MAKESIO 45

*
* Notes : This module does not contain any executable code,
* only data.
*
* Setup : for REXX Stream I/O
*
* Created : otm 12/05/2001
*

EJECT
IRXTSPRM AMODE 31
IRXTSPRM RMODE ANY
IRXTSPRM CSECT

SPACE 1

* Parmblock
*--
* Flags / Masks:
*--
* Byte 1 of PARMBLOCK Flags
* TSOFL 1... Integrate with TSO flag
* .1.. Reserved
* CMDSOFL ..1. Command search order flag
* FUNCSOFL ...1 Function/subroutine search order flag
* NOSTKFL 1... No data stack flag
* NOREADFL1.. No read flag
* NOWRTFL1. No write flag
* NEWSTKFL1 New data stack flag
*--
* Byte 2 of PARMBLOCK Flags
* USERPKFL 1... User external function package flag
* LOCPKFL .1.. Local external function package flag
* SYSPKFL ..1. System external function package flag
* NEWSCFL ...1 New subcommand table flag
* CLOSEXFL 1... Close exec data set flag
* NOESTAE1.. No recovery ESTAE flag
* RENTRANT1. Reentrant REXX environment flag
* NOPMSGS1 No primary messages flag
*--
* Byte 3 of PARMBLOCK Flags
* ALTMSGS 1... Issue alternate messages flag
* SPSHARE .1.. Subpool storage is shared flag
* STORFL ..1. STORAGE function flag
* NOLOADDD ...1 Do not load from the sys-lvl EXEC DDNAME.
* NOMSGWTO_MASK 1... MVS, do not issue err msgs with WTO srv
* NOMSGIO_MASK1.. MVS, do not issue err msgs to OUTDD
*1. Reserved
*1 Reserved
*--
* Byte 4 of PARMBLOCK Flags
* 1111 1111 Reserved

SPACE 1
PARMBLOCK EQU *
PARMBLOCK_ID DC CL8'IRXPARMS' Initialize the ID field

46 Stream I/O for TSO/E REXX

PARMBLOCK_VERSION DC CL4'0200' Initialize the Version field
PARMBLOCK_LANGUAGE DC CL3'ENU' Language is American English
RSVD001 DC CL1' ' Reserved
PARMBLOCK_MODNAMET DC A(MODNAMET) Addr of Module Names Table
PARMBLOCK_SUBCOMTB DC A(SUBCOMTB) Addr of Subcom Table Header
PARMBLOCK_PACKTB DC A(PACKTB_HEADER) Addr of Package Table Header
PARMBLOCK_PARSETOK DC CL8' ' Parse Source Token
PARMBLOCK_FLAGS DC X'8000C000' Set the flags
PARMBLOCK_MASKS DC X'FFFFFFFF' Set all masks
PARMBLOCK_SUBPOOL DC AL4(78) Subpool to use
PARMBLOCK_ADDRSPN DC CL8'TSO/E' Address space name
PARMBLOCK_FFFF DC X'FFFFFFFFFFFFFFFF'

SPACE 1

* Module Name Table

SPACE 1
MODNAMET EQU *
MODNAMET_DDS EQU * DDs used by REXX:
MODNAMET_INDD DC CL8'SYSTSIN ' - Specify the input DD
MODNAMET_OUTDD DC CL8'SYSTSPRT' - Specify the output DD
MODNAMET_LOADDD DC CL8'SYSEXEC ' - Specify the load exec DD
*
MODNAMET_ROUTINES EQU * Routines used by REXX
* Blank indicates default to
* previous environment's settings
MODNAMET_IOROUT DC CL8' ' The I/O Routine
MODNAMET_EXROUT DC CL8' ' The exec load Routine
MODNAMET_GETFREER DC CL8' ' The GETMAIN/FREEMAIN Routine
MODNAMET_EXECINIT DC CL8' ' The EXEC initialization rtn.
MODNAMET_ATTNROUT DC CL8' ' The Attention Routine
MODNAMET_STACKRT DC CL8' ' The Data Stack Routine
MODNAMET_IRXEXECX DC CL8' ' The IRXEXEC exit Routine
MODNAMET_IDROUT DC CL8' ' The userid Routine
MODNAMET_MSGIDRT DC CL8' ' The message id Routine
***MODNAMET_EXECTERM DC CL8'EAGIOHKP' EXEC Termination Stream I/O
MODNAMET_EXECTERM DC CL8' ' Name of the EXEC Termination RTN
MODNAMET_FFFF DC X'FFFFFFFFFFFFFFFF'

SPACE 1

* Subcommand Table

SPACE 1
SUBCOMTB EQU *
SUBCOMTB_HEADER EQU * Set up the SUBCOMTB Header
SUBCOMTB_FIRST DC A(SUBCOMTB_ENTRIES) Addr of first SUBCOMTB entry
SUBCOMTB_TOTAL DC F'12' Total number of entries
SUBCOMTB_USED DC F'12' Number of entries used
SUBCOMTB_LENGTH DC F'32' Length of each entry
SUBCOMTB_INITIAL DC CL8'TSO' Initial Subcommand environment
RSVD007 DC X'0000000000000000' Reserved
SUBCOMTB_FFFF DC X'FFFFFFFFFFFFFFFF'
*
SUBCOMTB_ENTRIES EQU * Start of SUBCOMTB entries
*

Appendix A. JCL job MAKESIO 47

DC CL8'MVS' subcommand environment name
DC CL8'IRXSTAM' handler routine name
DC CL16' ' subcommand token

*
DC CL8'TSO' subcommand environment name
DC CL8'IRXSTAM' handler routine name
DC CL16' ' subcommand token

*
DC CL8'LINK' subcommand environment name
DC CL8'IRXSTAM' handler routine name
DC CL16' ' subcommand token

*
DC CL8'ATTACH' subcommand environment name
DC CL8'IRXSTAM' handler routine name
DC CL16' ' subcommand token

*
DC CL8'CONSOLE' subcommand environment name
DC CL8'IRXSTAM' handler routine name
DC CL16' ' subcommand token

*
DC CL8'CPICOMM' subcommand environment name
DC CL8'IRXAPPC' handler routine name
DC CL16' ' subcommand token

*
DC CL8'LU62' subcommand environment name
DC CL8'IRXAPPC' handler routine name
DC CL16' ' subcommand token

*
DC CL8'LINKMVS' subcommand environment name
DC CL8'IRXSTAMP' handler routine name
DC CL16' ' subcommand token

*
DC CL8'LINKPGM' subcommand environment name
DC CL8'IRXSTAMP' handler routine name
DC CL16' ' subcommand token

*
DC CL8'ATTCHMVS' subcommand environment name
DC CL8'IRXSTAMP' handler routine name
DC CL16' ' subcommand token

*
DC CL8'ATTCHPGM' subcommand environment name
DC CL8'IRXSTAMP' handler routine name
DC CL16' ' subcommand token

*
DC CL8'APPCMVS' subcommand environment name
DC CL8'IRXAPPC' handler routine name
DC CL16' ' subcommand token

SPACE 1

* Function Package Table

SPACE 1
PACKTB EQU *
PACKTB_HEADER EQU * Set up the PACKTB Header
*

48 Stream I/O for TSO/E REXX

PACKTB_USER_FIRST DC A(USER_PACKTB_ENTRIES) Addr of first User entry
PACKTB_USER_TOTAL DC F'1' Total number of User entries
PACKTB_USER_USED DC F'1' Number of User entries in use
*
PACKTB_LOCAL_FIRST DC A(LOCAL_PACKTB_ENTRIES) Addr of first Local entry
PACKTB_LOCAL_TOTAL DC F'1' Total number of Local entries
PACKTB_LOCAL_USED DC F'1' Number of Local entries in use
*
PACKTB_SYSTEM_FIRST DC A(SYSTEM_PACKTB_ENTRIES) Addr of first System ent
PACKTB_SYSTEM_TOTAL DC F'3' Total number of System entries
PACKTB_SYSTEM_USED DC F'3' Number of System entries in use
*
PACKTB_LENGTH DC F'8' Length of each PACKTB entry
PACKTB_FFFF DC X'FFFFFFFFFFFFFFFF'
*
SYSTEM_PACKTB_ENTRIES EQU *

DC CL8'IRXEFMVS' external MVS functions
DC CL8'IRXEFPCK' external MVS functions
DC CL8'EAGEFSIO' REXX Stream I/O

SPACE 1
LOCAL_PACKTB_ENTRIES EQU *

DC CL8'IRXFLOC' Default Local Function Package
*
USER_PACKTB_ENTRIES EQU *

DC CL8'IRXFUSER' Default User Function Package
SPACE 1

* Patch area

SPACE 1
DC C'PATCH AREA - IRXTSPRM'
DS 8F Patch area

SPACE 1
IRXTSPRM CSECT

END IRXTSPRM
/*
//*---*
//* REXX EXEC Device under Test *
//*---*
//COPYEXEC.SYSUT1 DD DATA,DLM=§§
/*---*/
/* REXX sample exec for REXX STREAM I/O Verfication Test */
/* All Stream I/O commands are used to Read, Write and detect */
/* EOF. Closing files is performed implicit and by STREAM. */
/*---*/

Signal on Syntax;
Arg use_ddname . '('host .; /* Pre-alloc DDN (host*/

Parse version ver; /* Get REXX Version */
Parse source src; /* Get REXX Source ID */
Say '';
/*---*/
/* We need the pre-allocated DD Name by parm */
/*---*/
Say 'Running Verification EXEC' word(src,3) 'under' host!!':';

Appendix A. JCL job MAKESIO 49

If use_ddname='' then do;
Say 'Error, you did not specify a DD Name as argument.';
Exit 4;

End;
Else use_ddname='&'!!use_ddname; /* Prefix DDN sign */

/*---*/
/* Write out 2 records with LINEOUT */
/*---*/
Say ' REXX Stream I/O uses DD Name' use_ddname;
Say ' LINEOUT the following strings to file:';
Say ' ' ver;
Say ' ' src;
rc=lineout(use_ddname,ver); /* Write out to DDN */
rc=lineout(use_ddname,src);
rc=lineout(use_ddname); /* Close the file */

/*---*/
/* Read in the 2 records with LINEIN until EOF */
/*---*/
Say ' LINEIN the created file up to EOF:';
i=0;
Do While LINES(use_ddname)=1; /* Up to EOF */

i=i+1;
Say ' Record' right(i,3)':' linein(use_ddname);

End;
rc=STREAM(use_ddname,"C","CLOSE"); /* Close the file */
Say '';

/*---*/
/* Write out 50 bytes with CHAROUT */
/*---*/
string ='<>'; /* Write string */
times =120; /* Multiple of above */
portion=50; /* CharIn portion */
Say ' CHAROUT ' times 'times "'string '" to file:';
rc=charout(use_ddname,copies(string,times)); /* Write out to DDN */
rc=lineout(use_ddname); /* Close the file */

/*---*/
/* Read in 50 bytes portions with CHARIN until EOF */
/*---*/
Say ' CHARIN ' portion 'bytes portions up to EOF:';
i=0;
Do While CHARS(use_ddname)=1; /* Up to EOF */

i=i+1;
Say ' Portion' right(i,3)':' charin(use_ddname,,portion);

End;
rc=STREAM(use_ddname,"C","CLOSE"); /* Close the file */

/*---*/
/* End of Verification */
/*---*/
Say '';
Say 'End of Verification EXEC' word(src,3);

50 Stream I/O for TSO/E REXX

rc=STREAM(use_ddname,"C","CLOSE ALL"); /* Terminate I/O */
Exit;

/*---*/
/* Syntax routine */
/*---*/
Syntax:;

Say 'Syntax received in sourceline' sigl;
Say '->' sourceline(sigl);

Exit rc;
§§
//

Appendix A. JCL job MAKESIO 51

52 Stream I/O for TSO/E REXX

Appendix B. Notices

This information was developed for products and services offered in the
U.S.A. IBM may not offer the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions, therefore,
this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will

© Copyright IBM Corp. 2002 53

be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM Deutschland
Informationssysteme GmbH
Department 3982
Pascalstrasse 100
70569 Stuttgart
Germany

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement or any equivalent agreement between us.

COPYRIGHT LICENSE:

This information contains sample application programs in source language,
which illustrates programming techniques on various operating platforms.
You may copy, modify, and distribute these sample programs in any form
without payment to IBM, for the purposes of developing, using, marketing or
distributing application programs conforming to the application programming
interface for the operating platform for which the sample programs are
written. These examples have not been thoroughly tested under all conditions.
IBM, therefore, cannot guarantee or imply reliability, serviceability, or function
of these programs.

Trademarks

The following terms are trademarks of the IBM Corporation in the United
States, other countries, or both:

MVS
S/390
z/OS

Other company, product, and service names may be trademarks or service
marks of others.

54 Stream I/O for TSO/E REXX

Glossary of z/OS terms

allocate. To assign a resource, such as a disk
file, to a specific task. Contrast with deallocate.

authorized program facility (APF). Allows to
identify system programs and user programs that
can use sensitive system functions, and restricts
the use of such functions to APF-authorized
programs.

data set. The major unit of data storage and
retrieval, consisting of a collection of data in one
of several prescribed arrangements and described
by control information to which the system has
access.

ddname. Data definition name.

DD statement. Data definition statement.

HFS data set. A hierarchical file system data set,
which is used to store, and is essentially
identified with, a file system.

partitioned data set (PDS). A data set in direct
access storage that is divided into partitions,
called members, each of which can contain a
program, part of a program, or data. A
partitioned data set has a directory that contains
information about each member. Each member
can be accessed individually by its unique 1- to
8-character name.

partitioned data set extended (PDSE). A
partitioned data set managed by the Storage
Management Subsystem (SMS). Similar to PDS,
but with a number of enhancements.

sequential data set. A data set in which the
contents are arranged in successive physical
order and are stored as an entity. The data set
can contain data, text, a program, or part of a
program. Contrast with partitioned data set
(PDS).

© Copyright IBM Corp. 2002 55

56 Stream I/O for TSO/E REXX

Index

A
abend 066D 3
ALLOCATE

TSO/E command 10
APF-authorization 3

B
binary

see definition, character 7
binary stream

definition 7
byte

see definition, character 7
byte stream

definition 7

C
CALL ON condition 14
character

definition 7
character input

definition 5
character stream

definition 7
CHARIN

with LINEIN 12
CHAROUT

partial record 12
with LINEOUT 12

CHARS
end-of-stream detection 13

closing stream
purpose 11

condition trap
NOTREADY 14
SYNTAX 14

convention
use of single quotation mark 8

count
parameter of LINEIN 23

current read position
see position pointer 12

current write position
see position pointer 12

D
data set name

as stream name 8

ddname
as stream name 8
enumerated 8
generated by STREAM

function 8
default input stream

ddname 7
default output stream

ddname 7
default stream

opening 9
definition

character 7
line 7

E
EAGSIO

identifier 14
end-of-stream

detection 13
error messages

list of 31
EXECIO

purpose 6

F
function

calling mechanism 7
function package

installation 1

G
generated ddname

usage 8, 14

I
identifier

of messages 14
installation 1
IRXPARMS 2
IRXTSPRM 2

J
JCL job 1

L
length

parameter of CHARIN 18
limitation

CALL ON 14

limitation (continued)
SIGNAL ON 14

line
definition 7
parameter of LINEIN 23
parameter of LINEOUT 25

line input
definition 5

LINEIN
with CHARIN 12

LINEOUT
padding 12
truncation condition 12
with CHAROUT 12

LINES
end-of-stream detection 13

load library 1
load modules 2

M
MAKESIO JCL job 1
messages

identifier 14
list of 31

modification level 29
multiple read

on same stream 14

N
name

parameter of CHARIN 18
parameter of CHAROUT 20
parameter of CHARS 22
parameter of LINEIN 23
parameter of LINEOUT 25
parameter of LINES 27
parameter of STREAM 28

Notices 53
NOTREADY

condition trap 14

O
object library 1
object modules 1
opening data set member

nonexistent 10
opening default stream 9
opening stream

explicitly 10
for read 10

© Copyright IBM Corp. 2002 57

opening stream (continued)
for write 10
implicitly 10
nonexistent 10
purpose 9

operation
parameter of STREAM 28

P
padding

record 12
persistent stream

definition 9
end-of-stream detection 13

position pointer
changing 13
general purpose 12
initial setting 12
limitation 9
purpose of 6
truncated record 13

problems
query service level 29

purpose
of stream I/O v

Q
QUERY EXISTS

usage 14

R
read operation

multiple 14
read position

see position pointer 12
record format

CHAROUT 12
LINEOUT truncation 12
padding 12

release level ii, 29
resource authorization 3

S
service level

of function package 29
SIGNAL ON condition 14
single quotation mark

use with data set name 8
start

parameter of CHARIN 18
parameter of CHAROUT 20

stream
characteristics 6
default 6
multiple ddnames 14
multiple open 14

stream (continued)
name 6
opening explicitly 10
opening for read 10
opening for write 10
opening implicitly 10
opening nonexistent 10
position pointer 6
purpose of closing 11

stream_command
parameter of STREAM 28

STREAM function
generating ddname 8, 14

stream I/O
definition 5
error detection 14
functions, overview 7
minimum TSO/E REXX level v
purpose v, 5

string
parameter of CHAROUT 20
parameter of LINEOUT 25

supported data set 11
SYNTAX

condition trap 14
SYS1.CSSLIB 2
SYS1.MACLIB 2

T
Token Service, MVS 2
transient stream

definition 9
end-of-stream detection 13

truncation
LINEOUT 12
position pointer 13

TSO/E command
ALLOCATE 10

V
version level ii, 29

W
write position

see position pointer 12

Z
zipped file contents 1

58 Stream I/O for TSO/E REXX

Readers’ Comments — We’d Like to Hear from You

z/OS
Stream I/O for TSO/E REXX
Version 1

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
����

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

PLACE

POSTAGE

STAMP

HERE

IBM Deutschland Entwicklung GmbH
Information Development, Dept. 0446
Schoenaicher Str. 220
71032 Boeblingen
Germany

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

	Contents
	About this book
	Related information
	How to send your comments
	How to read the syntax diagrams

	Chapter 1. Installing the function package
	Preparation
	Assembly, link-edit, and verification
	Installations with multiple function packages
	Usage considerations

	Chapter 2. Understanding the stream I/O concept
	The basic elements of stream I/O
	The TSO/E REXX Stream I/O implementation
	The stream I/O functions
	Naming streams
	Transient and persistent streams
	Opening and closing streams
	Implicit versus explicit opening of streams
	Opening streams for read or write operations
	Opening nonexistent streams
	Closing streams

	Stream formats
	Position pointer details
	End-of-stream treatment
	Error treatments
	Stream I/O processing errors
	Messages

	Multiple read operations

	Chapter 3. Stream I/O functions
	CHARIN (Character Input)
	CHAROUT (Character Output)
	CHARS (Characters Remaining)
	LINEIN (Line Input)
	LINEOUT (Line Output)
	LINES (Lines Remaining)
	STREAM (Operations)

	Chapter 4. Stream I/O messages
	Appendix A. JCL job MAKESIO
	Appendix B. Notices
	Trademarks

	Glossary of z/OS terms
	Index
	Readers’ Comments — We'd Like to Hear from You

