
Object REXX for Windows

OODialog Method Reference

Version 2.1

SH12-6727-00

���

Object REXX for Windows

OODialog Method Reference

Version 2.1

SH12-6727-00

���

Note!
Before using this information and the product it supports, be sure to read the general information under
“Appendix. Notices” on page 525.

First Edition, March 2001

This edition applies to Version 2.1 of IBM Object REXX for Windows Development Edition (5639-M68), and to all
subsequent releases and modifications until otherwise indicated in new editions or technical newsletters.

This edition replaces SH12-6224-02.

© Copyright International Business Machines Corporation 1997, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About This Book. xiii
Who Should Use This Book xiii
How This Book is Structured xiii
Related Information xiii
How to Send Your Comments. xiii
How to Read the Syntax Diagrams xiv

Part 1. Developing Graphical User
Interfaces with OODialog 1

Chapter 1. Conceptual Overview 3
The Design of OODialog 3
Standard Dialogs 3

Timed Message Box 3
Input Box, Integer Box, Password Box. . . 4
Multiple Input Box 4
List Choice 6
Multiple List Choice. 6
Check List 7
Single Selection 9

IBM Resource Workshop 9
Resources 10

Object REXX Dialog Classes 11
Object REXX Objects and Windows Objects 11
Separate Data Areas 12
Methods Dealing with Windows Objects 12

Chapter 2. Creating your User Interface . . 13
Creating a New Resource Project 13
Creating a New Dialog 15
Configuring the Resource Workshop 19
Adding Control Items to your Dialog . . . 20
The Tools Toolbar 23

Chapter 3. Using a Dialog with Object
REXX 25
Using the Object REXX Workbench OODialog
Template Generator 25
The PlainUserDialog Class 33
Changing the Dialog Behavior 35
Dialog Data Validation 39
Advanced Dialog Programming 40
Nesting Dialogs 45
Formatted Lists 45

Using Menus within Your Dialogs 49
Creating Graphics with OODialog 53
Scrolling Text and Bitmaps 59
More about Event Handling. 59
Summary of User Dialog Processing 60

Chapter 4. Other OODialog Classes . . . 65
The ResDialog Class 65
The CategoryDialog Class 66

Chapter 5. Tokenizing OODialog Scripts . . 75

Chapter 6. OODialog External Functions 77

Part 2. OODialog Method
Reference 81

Chapter 7. Definition of Terms 87

Chapter 8. BaseDialog Class 89
Preparing and Running the Dialog 98

Init 98
InitDialog 98
Run 99
Execute 100
ExecuteAsync 101
EndAsyncExecution 102
Popup 102
PopupAsChild 103
IsDialogActive 104
StopIt 104
Show 105
ToTheTop 105
HandleMessages 106
AsyncMessageHandling. 106
PeekDialogMessage 107
ClearMessages 107
SendMessageToItem 107

Connect Methods 107
InitAutoDetection 108
NoAutoDetection 108
AutoDetection 109
ConnectResize 109
ConnectMove 110

© Copyright IBM Corp. 1997, 2001 iii

ConnectPosChanged 110
ConnectMouseCapture 111
ConnectButton 111
ConnectBitmapButton 112
ConnectControl 114
ConnectDraw 114
ConnectList 115
ConnectListLeftDoubleClick 115
ConnectEntryLine 116
ConnectComboBox 117
ConnectCheckBox 117
ConnectRadioButton 117
ConnectListBox 118
ConnectMultiListBox 118
ConnectScrollBar 119
ConnectAllSBEvents 121
AddUserMsg 122
AddAttribute 124

Get and Set Methods. 125
GetData 125
SetData 125
ItemTitle 126
SetStaticText 126
GetEntryLine 126
SetEntryLine 126
GetListLine 127
SetListLine 127
GetMultiList 128
SetMultiList. 128
GetComboLine. 129
SetComboLine 129
GetRadioButton 129
SetRadioButton 130
GetCheckBox 130
SetCheckBox 130
GetValue 130
SetValue 131
GetAttrib 131
SetAttrib 132
SetDataStem 132
GetDataStem 133

Standard Event Methods 133
OK. 133
Cancel 134
Help 134
Validate 134
Leaving 135
DeInstall 135

Combo Box Methods. 135
AddComboEntry 135

InsertComboEntry 136
DeleteComboEntry 136
FindComboEntry 137
GetComboEntry 137
GetComboItems 137
GetCurrentComboIndex. 138
SetCurrentComboIndex 138
ChangeComboEntry 139
ComboAddDirectory. 139
ComboDrop 140

List Box Methods 140
GetListWidth 140
SetListWidth 141
SetListColumnWidth 141
AddListEntry 142
InsertListEntry 142
DeleteListEntry 142
FindListEntry 143
GetListEntry 143
GetListItems 144
GetListItemHeight 144
SetListItemHeight 144
GetCurrentListIndex 145
SetCurrentListIndex 145
ChangeListEntry 145
SetListTabulators 146
ListAddDirectory 146
ListDrop 146

Scroll Bar Methods 147
GetSBRange. 147
SetSBRange 147
GetSBPos 148
SetSBPos 148
CombineELwithSB 149
DetermineSBPosition. 149

Methods for Window Handles, Sizes, and
Positions 150

Get 150
GetItem 151
GetPos 151
GetButtonRect 151
GetWindowRect 152

Appearance Modification Methods 152
BackgroundColor 152
FocusItem 152
EnableItem 153
DisableItem 153
HideItem 153
HideItemFast 154
ShowItem 154

iv OODialog Method Reference

ShowItemFast 154
HideWindow 154
HideWindowFast 155
ShowWindow 155
ShowWindowFast. 155
SetWindowRect 155
RedrawWindow 156
ResizeItem 157
MoveItem 158
Center 158
SetWindowTitle 159

Window Draw Methods 159
DrawButton. 159
RedrawRect 159
RedrawButton 160
RedrawWindowRect 160
ClearRect 161
ClearButtonRect 161
ClearWindowRect. 162

Bitmap Methods 162
ChangeBitmapButton 162
GetBitmapSizeX 162
GetBitmapSizeY 163
DrawBitmap 163
ScrollBitmapFromTo 164
TiledBackgroundBitmap. 164
BackgroundBitmap 165
DisplaceBitmap 165
GetBmpDisplacement 165

Device Context Methods 166
GetWindowDC. 166
GetButtonDC 166
FreeWindowDC 167
FreeButtonDC 167

Text Methods 167
Write 167
ScrollText 168
ScrollInButton 170
ScrollButton. 170
SetItemFont 170

Animated Buttons 171
AddAutoStartMethod 171
ConnectAnimatedButton 172

Menu Methods. 174
ConnectMenuItem 174
EnableMenuItem 174
DisableMenuItem 175
CheckMenuItem 175
UncheckMenuItem 175
GrayMenuItem. 175

SetMenuItemRadio 176
GetMenuItemState 176

Public Routines 176
Play 177
InfoDialog 177
ErrorDialog 178
AskDialog 178
FileNameDialog 178
FindWindow 180

Debugging Method 180
Dump. 180

Chapter 9. DialogControl Class 181
Preparing and Running the Dialog Control 184

ProcessMessage 184
AssignFocus 185
Show 185
Value 185
Value= 185

Connect Method 186
AssignWindow 186

Get and Set Methods. 187
GetID 187
GetRect 187
SetRect 188
GetClientRect 189
GetPos 189
GetSize 189
GetFocus. 190
SetFocus 190

Appearance Modification Methods 190
Enable 190
Disable 191
Hide 191
HideFast 191
ShowFast 191
Display 192
Minimize 193
Maximize 193
Resize. 193
SetColor 194
ForegroundWindow 194
Move 195
Update 196
Title 196
Title= 196
SetTitle 197

Draw Methods 197
Draw 197
Clear 197

Contents v

ClearRect 197
Redraw 198
RedrawRect 198
RedrawClient 199

Conversion Methods 199
LogRect2AbsRect 199
AbsRect2LogRect 200
ScreenToClient 200
ClientToScreen 201

Scroll Methods 201
Scroll 201
HScrollPos 202
VScrollPos 202
SetHScrollPos 202
SetVScrollPos 203

Mouse and Cursor Methods 203
CursorPos 203
SetCursorPos 203
RestoreCursorShape 204
Cursor_Arrow 205
Cursor_AppStarting 205
Cursor_Cross 206
Cursor_No 206
Cursor_Wait 206
GetMouseCapture. 207
CaptureMouse 207
ReleaseMouseCapture 207
IsMouseButtonDown. 208

Bitmap Methods 208
LoadBitmap. 208
RemoveBitmap. 209

Device Context Methods 209
GetDC 209
FreeDC 210

Text Methods 210
Write 210
WriteDirect 212
TransparentText 212
OpaqueText 212
WriteToWindow 213
WriteToButton 214
GetTextSize 215
SetFont 216
CreateFont 216
DeleteFont 217
FontToDC 218
FontColor 218

Graphic Methods 219
CreateBrush. 219
CreatePen 220

ObjectToDC 220
DeleteObject 221

Graphic Drawing Methods. 221
Rectangle 221
DrawLine 222
DrawPixel 223
GetPixel 223
DrawArc. 223
GetArcDirection 224
SetArcDirection 224
DrawPie 225
FillDrawing 225
DrawAngleArc. 225

Chapter 10. UserDialog Class 227
Init 230
InitAutoDetection 230
Create 231
CreateCenter 232
DefineDialog 233
Load 234
LoadFrame 235
LoadItems 236
Add... Methods 236

AddButton 237
AddBitmapButton 238
AddGroupBox 240
AddText 240
AddEntryLine 241
AddPasswordLine 243
AddListBox 244
AddComboBox 245
AddCheckBox 246
AddRadioButton 246
AddRadioGroup 248
AddCheckGroup 249
AddInput 249
AddInputGroup 251
AddComboInput 252
AddInputStem 252
AddCheckBoxStem 254
AddRadioStem. 255
AddScrollBar 255
AddButtonGroup 256

Frames and Rectangles 257
AddWhiteRect 257
AddWhiteFrame 258
AddGrayRect 258
AddGreyFrame 258
AddBlackRect 258

vi OODialog Method Reference

AddBlackFrame 258
OK and Cancel Push Buttons 259

AddOkCancelRightBottom 259
AddOkCancelLeftBottom 259
AddOkCancelRightTop 259
AddOkCancelLeftTop 260

Dialog Control Methods 260
StartIt 260
StopIt 260

Menu Methods. 260
CreateMenu. 261
AddPopupMenu 261
AddMenuItem 261
AddMenuSeparator 262
SetMenu 262
LoadMenu 262

Chapter 11. PlainUserDialog Class and
PlainBaseDialog Class 263

Chapter 12. ResDialog Class 269
Init 269
StartIt 270
SetMenu 270

Chapter 13. CategoryDialog Class . . . 271
Setting Up the Dialog 274

Init 274
InitCategories 275
DefineDialog 277
CategoryPage 278
CreateCategoryDialog 278
InitDialog 278
GetSelectedPage 279
CurrentCategory 279
NextPage 279
PreviousPage 280
ChangePage 280
PageHasChanged 280
StartIt 281

Connect... Methods 281
Methods for Dialog Items 282
Get and Set Methods. 283

SetCategoryStaticText 283
GetCategoryEntryLine 283
SetCategoryEntryLine 283
GetCategoryListLine 283
SetCategoryListLine 283
GetCategoryListWidth 283
SetCategoryListWidth 284

GetCategoryMultiList 284
SetCategoryMultiList. 284
GetCategoryComboLine. 284
SetCategoryComboLine 284
GetCategoryRadioButton 284
SetCategoryRadioButton 284
GetCategoryCheckBox 285
SetCategoryCheckBox 285
GetCategoryValue. 285
SetCategoryValue 285
GetCategoryAttrib 285
SetCategoryAttrib 285

Combo Box Methods. 286
AddCategoryComboEntry 286
InsertCategoryComboEntry 286
DeleteCategoryComboEntry 286
FindCategoryComboEntry 286
GetCategoryComboEntry 287
GetCategoryComboItems 287
GetCurrentCategoryComboIndex . . . 287
SetCurrentCategoryComboIndex 287
ChangeCategoryComboEntry 287
CategoryComboAddDirectory. 287
CategoryComboDrop 288

List Box Methods 288
AddCategoryListEntry 288
InsertCategoryListEntry 288
DeleteCategoryListEntry 288
FindCategoryListEntry 288
GetCategoryListEntry 288
GetCategoryListItems 289
GetCurrentCategoryListIndex 289
SetCurrentCategoryListIndex 289
ChangeCategoryListEntry 289
SetCategoryListTabulators 289
CategoryListAddDirectory 289
CategoryListDrop 290

Appearance Modification Methods 290
EnableCategoryItem 290
DisableCategoryItem 290
ShowCategoryItem 290
HideCategoryItem 290
SetCategoryItemFont. 290
FocusCategoryItem 291
ResizeCategoryItem 291
MoveCategoryItem 291
SendMessageToCategoryItem 291

Chapter 14. Standard Dialog Classes and
Functions 293

Contents vii

TimedMessage Class 293
Init 294
DefineDialog 294
Execute 295
TimedMessage Function 295

InputBox Class. 295
Init 295
DefineDialog 296
AddLine 296
Execute 296
InputBox Function 296

PasswordBox Class 297
AddLine 297
PasswordBox Function 297

IntegerBox Class 297
Validate 298
IntegerBox Function 298

MultiInputBox Class 298
Init 298
MultiInputBox Function. 299

ListChoice Class 300
Init 300
ListChoice Function 301

MultiListChoice Class 301
MultiListChoice Function 302

CheckList Class 302
Init 302
CheckList Function 303

SingleSelection Class 304
Init 304
SingleSelection Function 305

Chapter 15. AnimatedButton Class . . . 307

Chapter 16. MessageExtensions Class 311
ConnectCommonNotify 312
ConnectTreeNotify 313
DefTreeDragHandler 316
ConnectListNotify 318
DefListDragHandler 321
ConnectButtonNotify 322
ConnectEditNotify 324
ConnectListBoxNotify 326
ConnectComboBoxNotify 328
ConnectScrollBarNotify 330
ConnectTabNotify. 332
ConnectSliderNotify 333

Chapter 17. AdvancedControls Class . . 337
GetStaticControl 338

GetEditControl. 339
GetButtonControl 340
GetRadioControl 341
GetCheckControl 342
GetListBox 342
GetComboBox 343
GetScrollBar 345
GetTreeControl. 345
GetListControl 346
GetProgressBar. 347
GetSliderControl 348
GetTabControl 349
ConnectTreeControl 350
ConnectListControl 351
ConnectSliderControl 351
ConnectTabControl 352
AddTreeControl 352
AddListControl 354
AddProgressBar 358
AddSliderControl 359
AddTabControl 361

Chapter 18. StaticControl Class 365

Chapter 19. EditControl Class 367
Selected 368
Select 368
ScrollCommand 369
LineScroll 370
EnsureCaretVisibility. 370
IsModified 371
SetModified. 371
Lines 372
LineIndex 372
LineLength 373
LineFromIndex. 373
ReplaceSelText 374
SetLimit 374
PasswordChar= 374
PasswordChar 375
FirstVisibleLine 375
SetReadOnly 376
SetMargins 376
Margins 377
GetLine 377

Chapter 20. ListControl Class 379
View Styles 381
Methods of the ListControl Class 382

ReplaceStyle 382

viii OODialog Method Reference

AddStyle. 383
RemoveStyle 384
InsertColumn 385
DeleteColumn 385
ModifyColumn 386
ColumnInfo 387
ColumnWidth 388
SetColumnWidth 388
StringWidth. 389
Insert 389
Modify 390
SetItemText 391
SetItemState. 392
Add 393
AddRow 394
Delete. 395
DeleteAll. 395
Items 395
Last 396
Prepare4nItems 396
SelectedItems 396
ItemInfo 396
ItemText 398
ItemState. 398
Select 398
Deselect 399
Selected 399
LastSelected. 399
Focused 400
Focus 400
DropHighlighted 400
FirstVisible 401
NextSelected 401
PreviousSelected 401
Next 402
Previous 402
NextLeft 402
NextRight 402
SmallSpacing 403
Spacing 403
RedrawItems 403
UpdateItem 404
Update 404
EnsureVisible 404
SetSmallImages 405
SetImages 405
RemoveSmallImages 406
RemoveImages. 406
Find 407
FindPartial 407

FindNearestXY. 408
Arrange 408
SnapToGrid 408
AlignLeft 409
AlignTop. 409
ItemPos 409
SetItemPos 410
Edit 410
EndEdit 411
SubclassEdit 411
RestoreEditClass 411
ItemsPerPage 411
Scroll 411
BkColor 412
BkColor= 412
TextColor 413
TextColor= 413
TextBkColor. 413
TextBkColor= 414

Notification Messages 414

Chapter 21. ButtonControl Class 415
State 416
State=. 416
Style=. 417
ChangeBitmap 419
DisplaceBitmap 420
GetBmpDisplacement 421
Scroll 421
ScrollText 422
GetBitmapSizeX 423
GetBitmapSizeY 423
DrawBitmap 424
DimBitmap 425
ScrollBitmapFromTo 425

Chapter 22. RadioButton Class 427
IsChecked 427
Check. 428
Uncheck 428
Indeterminate 428

Chapter 23. CheckBox Class 429

Chapter 24. ListBox Class 431
Add 432
Insert 432
Delete. 433
DeleteAll. 433
Find 433

Contents ix

SelectedIndex 434
Selected 434
SelectIndex 435
DeSelectIndex 435
Select 435
SelectRange 436
DeselectRange 437
Items 437
SelectedItems 438
SelectedIndexes 438
MakeFirstVisible 438
GetFirstVisible 439
GetText 439
Modify 439
SetTabulators 440
AddDirectory 441
SetWidth. 442
Width. 442
ItemHeight 442
ItemHeight= 443
ColumnWidth= 443

Chapter 25. ComboBox Class 445
Add 446
Insert 446
Delete. 446
DeleteAll. 447
Find 447
SelectedIndex 448
Selected 448
SelectIndex 448
Select 449
Items 449
GetText 449
Modify 450
AddDirectory 450
OpenDropDown 451
CloseDropDown 451
IsDropDownOpen 452
EditSelection 452

Chapter 26. ScrollBar Class. 453
SetRange. 453
Range. 454
SetPos 454
Position 455
DeterminePosition 455

Chapter 27. PropertySheet Class 457
Init 458

Chapter 28. ProgressBarControl Class 461
Step 462
SetPos 462
SetStep 463
SetRange. 463

Chapter 29. SliderControl Class 465
Pos= 466
SetPos 466
Pos 467
InitRange 468
SetMin 468
SetMax 469
Range. 469
ClearTicks 470
CountTicks 470
GetTick 471
SetTickAt 471
SetTickFrequency 471
GetLineStep. 472
GetPageStep 472
SetLineStep 473
SetPageStep 474
InitSelRange 474
SetSelStart 475
SetSelEnd 476
ClearSelRange 476
SelRange 477

Chapter 30. TabControl Class 479
Insert 480
Modify 481
AddSequence 482
AddFullSeq 482
Items 483
Rows 483
ItemInfo 484
Delete. 484
DeleteAll. 485
Last 485
Selected 485
SelectedIndex 486
Select 486
SelectIndex 486
Focus 486
Focused 487
SetImages 487
RemoveImages. 488
SetPadding 488
SetSize 488

x OODialog Method Reference

PosRectangle 489
AdjustToRectangle 489
RequiredWindowSize 490

Chapter 31. TreeControl Class 491
Methods of the TreeControl Class 492

Insert 492
Add 494
Modify 496
ItemInfo 499
Items 500
VisibleItems. 500
Root 501
Parent 501
Child 501
Selected 502
DropHighlighted 502
FirstVisible 502
Next 503
NextVisible 503
Previous 504
PreviousVisible 504
Delete. 504
DeleteAll. 505
Collapse 505
CollapseAndReset. 506
Expand 506
Toggle 507
EnsureVisible 507

Indent 508
Indent= 508
Edit 508
EndEdit 509
SubclassEdit 509
RestoreEditClass 509
Select 509
MakeFirstVisible 510
DropHighlight 510
SortChildren 511
SetImages 511
RemoveImages. 512
HitTest 512
MoveItem 513
IsAncestor 514

Notification Messages 514

Chapter 32. VirtualKeyCodes Class . . . 517
Methods of the VirtualKeyCodes Class. . . 517

VCode 517
KeyName 517

Symbolic Names for Virtual Keys 518

Part 3. Appendixes 523

Appendix. Notices 525
Trademarks 526

Index 529

Contents xi

xii OODialog Method Reference

About This Book

This book describes the OODialog class library in Object REXX for Windows
Version 2.1, and how to use it to program user interfaces.

Who Should Use This Book

This book is intended for Object REXX programmers who want to design
graphical user interfaces for their applications.

How This Book is Structured

This book is structured in two parts.

Part 1 is a tutorial. It is organized as a guided tour through different functions
and classes and uses examples that are enhanced from chapter to chapter.

Part 2 is intended as reference material. It describes the classes and methods
in detail.

Related Information

Object REXX for Windows: Programming Guide, SH12-6726

Object REXX for Windows: Reference, SH12-6725

How to Send Your Comments

Your feedback is important in helping to provide the most accurate and
high-quality information. If you have any comments about this book or any
other REXX documentation:
v Visit our home page at http://www.ibm.com/software/ad/obj-

rexx/support.html#Buy or get support. There you can access the Internet
Online Form where you can enter comments and send them.

v Send your comments by e-mail to swsdid@de.ibm.com. Be sure to include
the name of the book, the part number of the book, the version of REXX,
and, if applicable, the specific location of the text you are commenting on
(for example, a page number or table number).

v Fill out one of the forms at the back of this book and return it by mail, by
fax, or by giving it to an IBM representative. The mailing address is on the
back of the Readers’ Comments form. The fax number is
+49-(0)7031-16-4892.

© Copyright IBM Corp. 1997, 2001 xiii

How to Read the Syntax Diagrams

Throughout this book, syntax is described using the structure defined below.
v Read the syntax diagrams from left to right, from top to bottom, following

the path of the line.
The ��─── symbol indicates the beginning of a statement.
The ───� symbol indicates that the statement syntax is continued on the
next line.
The �─── symbol indicates that a statement is continued from the previous
line.
The ───�� symbol indicates the end of a statement.
Diagrams of syntactical units other than complete statements start with the
�─── symbol and end with the ───� symbol.

v Required items appear on the horizontal line (the main path).

�� STATEMENT required_item ��

v Optional items appear below the main path.

�� STATEMENT
optional_item

��

v If you can choose from two or more items, they appear vertically, in a stack.
If you must choose one of the items, one item of the stack appears on the
main path.

�� STATEMENT required_choice1
required_choice2

��

v If choosing one of the items is optional, the entire stack appears below the
main path.

�� STATEMENT
optional_choice1
optional_choice2

��

v If one of the items is the default, it appears above the main path and the
remaining choices are shown below.

xiv OODialog Method Reference

�� STATEMENT
default_choice

optional_choice
optional_choice

��

v An arrow returning to the left above the main line indicates an item that
can be repeated.

�� STATEMENT & repeatable_item ��

A repeat arrow above a stack indicates that you can repeat the items in the
stack.

v A set of vertical bars around an item indicates that the item is a fragment, a
part of the syntax diagram that appears in greater detail below the main
diagram.

�� STATEMENT fragment ��

fragment:

expansion_provides_greater_detail

v Keywords appear in uppercase (for example, PARM1). They must be spelled
exactly as shown but you can type them in upper, lower, or mixed case.
Variables appear in all lowercase letters (for example, parmx). They
represent user-supplied names or values.

v If punctuation marks, parentheses, arithmetic operators, or such symbols
are shown, you must enter them as part of the syntax.

The following example shows how the syntax is described:

�� MAX(&

,

number) ��

About This Book xv

xvi OODialog Method Reference

Part 1. Developing Graphical User Interfaces with
OODialog

This part is a tutorial that demonstrates how to use the Resource Workshop
and the classes defined by OODialog to design and control graphical user
interfaces for your Object REXX programs.

This tutorial does not cover all available OODialog methods. However, it
introduces many of them in the form of small samples so that most of the
commonly required dialog functionalities are covered by this book. A detailed
description of all classes and methods is given in the second part of this book.

To learn more about GUI programming with OODialog, check out the sample
programs delivered with OODialog in the OODIALOG\SAMPLES directory.

© Copyright IBM Corp. 1997, 2001 1

2 OODialog Method Reference

Chapter 1. Conceptual Overview

This chapter gives you a conceptual overview of how OODialog is designed
and builds a bridge between native Windows objects and Object REXX
objects. It also introduces the standard dialog classes, which provide an easy
graphical user interface for smaller applications.

The Design of OODialog

The GUI builder consists of three basic parts: the Object REXX interface to the
Windows API – the external functions – written in C, an IBM resource editor
called Resource Workshop, and the Object REXX dialog classes. The external
functions provided by OODIALOG.DLL are for internal use only and, with a
few exceptions, must not be registered and called directly. The registration
and calls are managed by the OODialog classes. The other two components
are fundamental for creating a professional front end for your application. You
can also create dialogs completely dynamically without using the Resource
Workshop, which is also used in the standard dialogs that are described next.

The following topic ″Standard Dialogs″ gives you an introduction to
producing frequently used dialogs and to help making the development of
simple user interfaces as easy as possible. However, if you plan to develop
more complex user interfaces and want to learn more about the concept of
OODialog, skip this topic and concentrate on the “IBM Resource Workshop”
on page 9 and “Object REXX Dialog Classes” on page 11.

Standard Dialogs

OODialog provides dialogs that can be used to implement user interfaces
easily without defining dialog layouts and subclasses. These dialogs are called
standard dialogs and are defined by the OODPLAIN.CLS. Most of these dialogs
can be used by writing a two-liner, and they are useful when you need a
quick interface to the user. The design of the dialog classes and the way they
can be used is described in detail after the introduction of the standard
dialogs.

Timed Message Box
The timed message box is used to display a message to the user for a specified
time. The first argument contains the message, the second the box title, and
the third the time, in milliseconds, during which the message box is visible.
As with the other dialogs, you have to call Execute to run the dialog. See
Figure 1 for an example.

© Copyright IBM Corp. 1997, 2001 3

The ::requires "OODPLAIN.CLS" statement is required for the rest of the
examples in this topic but not separately listed.

Input Box, Integer Box, Password Box
The input box is used to read a text string from the keyboard, similar to what
the REXX PULL instruction does in a DOS window. The first argument
contains a message, and the second the box title. The Execute method runs the
dialog and returns the text string, as shown in Figure 2.

The integer box and the password box are similar to the input box, with one
exception: In the integer box you can return numerical data only, and in the
password box the input characters are displayed as asterisks (*).

Multiple Input Box
The multiple input box is used to read more than one text string from the
keyboard. The first argument contains a message, the second the dialog title,
the third a stem containing the labels for the entry lines, and the fourth a stem

dlg = .TimedMessage∼new("This is a timed message!","Hello !", 3000)
dlg∼execute
::requires "OODPLAIN.CLS"

Figure 1. Timed Message Box

dlg = .InputBox∼new("This is an input dialog,",
"please enter some data","InputBox")
say "Your InputBox data :" dlg∼execute

Figure 2. Input Box Dialog

dlg = .IntegerBox∼new("This is an integer dialog,",
"please enter numerical data","IntegerBox")
say "Your IntegerBox data: " dlg∼execute

dlg = .PasswordBox∼new("Please enter your password","Security")
say "Your PasswordBox data: " dlg∼execute

4 OODialog Method Reference

containing the initialization values for the entry lines. The first stem
containing the labels must start with 1 and continue in increments of 1. The
second stem must start with 101 and continue in increments of 1. The Execute
method runs the dialog. The data is placed into the second stem and into the
object attributes that have the same names as the labels, with ampersands (&),
colons (:), and blanks removed as shown in Figure 3.

lab.1 = "First name: "
lab.2 = "Last name: "
lab.3 = "Street and City: "
lab.4 = "Profession: "

addr.101 = "John" ; addr.102 = "Smith" ; addr.103 = ""
addr.104 = "Software Engineer"

dlg = .MultiInputBox∼new("This is a multi input dialog,",
"please enter the address","Your Address",lab., addr.)
if dlg∼execute = 1 then
do
say dlg∼FirstName ; say dlg∼LastName
say dlg∼StreetandCity ; say dlg∼Profession
end

Figure 3. Multiple Input Box Dialog

Chapter 1. Conceptual Overview 5

List Choice
The list choice dialog is used to select one entry of a list. The first argument
contains a message, the second the dialog title, and the third a stem
containing the entries for the list. The stem suffixes must be 1 to n in
increments of 1. The Execute method runs the dialog and returns the selected
text string as shown in Figure 4.

Multiple List Choice
The multiple list choice dialog is similar to the list choice dialog, except that the
user can select more than one list entry and that the return value is not the
selected strings but the list index of the selected list entries separated by
blanks. The Execute method runs the dialog and returns the numbers of the
selected entries, separated by blanks as shown in Figure 5.

lst.1 = "Monday" ; lst.2 = "Tuesday"
lst.3 = "Wednesday" ; lst.4 = "Thursday"
lst.5 = "Friday" ; lst.6 = "Saturday"
lst.7 = "Sunday"

dlg = .ListChoice∼new("This is a listchoice dialog,",
"please select the day","ListChoice",lst.)
say "Your ListChoice data:" dlg∼execute

Figure 4. List Choice Dialog

6 OODialog Method Reference

The do-while loop at the end of this sample is to parse the individual indexes
from the return value and to display its corresponding string.

Check List
The check list dialog is similar to the multiple list choice dialog. Instead of
displaying the alternatives in a listed form, check boxes are used. See Figure 6
for an example.

lst.1 = "Monday" ; lst.2 = "Tuesday" ;
lst.3 = "Wednesday" ; lst.4 = "Thursday"
lst.5 = "Friday" ; lst.6 = "Saturday";
lst.7 = "Sunday"

dlg = .MultiListChoice∼new("This is a multiple list choice dialog,",
"please select the days",,
"MultipleListChoice",lst.)

s = dlg∼execute
if s <> 0 then do while s <> ""

parse var s res s
if res <> "" then say lst.res

end

Figure 5. Multiple List Choice Dialog

Chapter 1. Conceptual Overview 7

The first argument contains a message, the second the dialog title, the third a
stem containing the alternatives, and the fourth a stem containing the
initialization values of the check boxes. Optional parameters are the length of
the check boxes in dialog units and the maximum number of check boxes in
one column. The first stem suffix must start with 1 and continue in increments
of 1. The second stem suffix must start with 101 and continue in increments of
1. To preselect a check box, the corresponding stem entry must be assigned to
1. The Execute method runs the dialog. The data is returned in the second
stem and in the object attributes named after the check box labels. For
example, chk.102 and dlg∼tuesday represent the same check box. If a check
box has been selected, its stem entry and the relative object attribute are 1,
otherwise they are 0.

lst.1 = "Monday" ; lst.2 = "Tuesday"
lst.3 = "Wednesday" ; lst.4 = "Thursday"
lst.5 = "Friday" ; lst.6 = "Saturday"
lst.7 = "Sunday"

do i = 101 to 107
chk.i = 0

end
chk.101 = 1

dlg = .CheckList∼new("This is a checklist dialog",,
"Checklist",lst., chk.)

if dlg∼execute = 1 then do
say "Your CheckList data: "

do i = 101 to 107
a = i-100
if chk.i = 1 then say lst.a

end
end

Figure 6. Check List Dialog

8 OODialog Method Reference

Single Selection
The single selection dialog is similar to the list choice dialog. Instead of
displaying the alternatives in a listed form, radio buttons are used. The
arguments are the same as in the check list dialog, except that fourth
argument number is not a stem but the number of the radio button to be
preselected; in the example, June is preselected. The Execute method runs the
dialog and returns the number of the selected radio button as shown in
Figure 7.

If you need more complex user interfaces or customized layouts, you can
define your dialog using the Resource Workshop and then write an Object
REXX program that loads, runs, and controls this dialog.

IBM Resource Workshop

With the Resource Workshop you can create and manipulate Windows
resources. This enables you to create graphical user interfaces for your
programs. For a tutorial to help you get started on creating your user
interfaces in this way, see “Chapter 2. Creating your User Interface” on
page 13.

mon.1 = "January" ; mon.2 = "February" ;
mon.3 = "March" ; mon.4 = "April"
mon.5 = "May" ;mon.6 = "June" ;
mon.7 = "July" ; mon.8 = "August"
mon.9 = "September";mon.10= "October" ;
mon.11= "November"; mon.12= "December"

dlg = .SingleSelection∼new("This is a single selection dialog",,
"Single Selection",mon.,6,,6)

s = dlg∼execute
say "Your SingleSelection data: " mon.s

Figure 7. Single Selection Dialog

Chapter 1. Conceptual Overview 9

.

In Windows, a resource is, among other things, a file or a part of a file that
describes the layout of a window. You can use resources to compose the
dialogs you want to execute using Object REXX. Within the Resource
Workshop you can determine the size, frame type, and style of the dialog, and
you can place text, control items, and data fields that the dialog should
contain. The various control items that are supported by the Resource
Workshop are shown in Figure 8.

With the Resource Workshop you can add and place one or more of these
items into the dialog. When you have finished your dialog design, save the
data to a resource script (.RC), which you need to execute the dialog with
Object REXX.

Resources
A resource can be simply a single bitmap (.BMP) file, or an icon (.ICO), either
of which you can create on your own. A bitmap file is a binary representation
of a graphic image in a program. Each bit, or group of bits, in the bitmap
represents one pixel of this image on your screen. Icons are small bitmapped
images. Windows programs typically use customized icons to represent
minimized windows.

A resource can also be a complex project that contains many kinds of graphic
elements. These kinds of resource projects begin the creation of a .RC file.

Figure 8. The Resource Workshop

10 OODialog Method Reference

After you create this initial file, you populate it with different kinds of
elements. From within the Resource Workshop you have access to the Bitmap
Editor, which enables you to create your own bitmaps and icons.

You can also base your resource project on a binary resource file (.RES). This
type of file can contain one or more compiled resources. Typically, you
compile all the resources for an application into a single .RES file, and then
bind the .RES file to an executable file.

Note: The Resource Workshop is a resource editor only, and cannot be
equated with a graphical programming environment. You cannot assign
program code to a dialog or its items within the Resource Workshop.
Also, the Resource Workshop supports features that are not supported
by OODialog.

Object REXX Dialog Classes

Dialog classes are your interface to Windows. There is more than one class,
because there is more than one way of executing a dialog with Object REXX,
and there are dialogs with different behaviors.

The class of interest at the moment is the UserDialog class. This class contains
the methods to execute a dialog that has been created with the Resource
Workshop and stored into a resource script (.RC).

Object REXX Objects and Windows Objects
To use the UserDialog class, you must create an object, which is the case for
every other class also. OODialog differentiates between two kinds of objects,
the Object REXX object, which must be an instance of a subclass of the
BaseDialog or PlainBaseDialog, and the dialog window itself, which is an
object of the Windows system itself. After you created an instance of the
UserDialog you have an Object REXX object but not a Windows object, which
means that Windows has not created a dialog window yet nor allocated
memory for one.

The next step is loading the resource script. You then have a template
describing the layout of the dialog in a Windows internal format, but still not
a Windows object.

When you call the method to execute the dialog in Object REXX, a real
Windows object is created, data is transferred from the Object REXX object to
the Windows object, and the dialog is displayed. Now you can enter data and
work (communicate) with the items of the dialog or the dialog itself.

When you finish the dialog, its data is received in Object REXX, and the
Windows object is deleted.

Chapter 1. Conceptual Overview 11

Separate Data Areas
Why is it necessary to transfer data to and from the Windows object?

In a dialog you give information to the user and receive feedback from the
user. You can get feedback via push buttons, entry lines (also called entry
fields), list or combo boxes, radio buttons, or check boxes. Although you can
assign Object REXX object attributes to each of these data items (this is done
automatically in most cases when loading the resource script or dynamically
adding dialog items), the memory needed for the dialog data items is
allocated and managed by the Windows object itself.

Whenever the user changes the state of one of these dialog items, the internal
data buffer of the Windows dialog is updated, but the corresponding Object
REXX object is not aware of any modification at that point and so the object
attributes remain unchanged.

To reflect the state of the Windows dialog in the Object REXX object, the
UserDialog class defines methods to exchange data of the Object REXX dialog
object with the Windows dialog, and vice versa. Before executing the
Windows dialog, data is automatically copied from the Object REXX object to
the Windows dialog, and after dialog execution, data is copied from the
Windows dialog back to the Object REXX dialog object. Keep in mind that the
Object REXX dialog attributes are separated from the Windows dialog data. To
keep the original data of the Object REXX dialog object after the Windows
dialog has been finished, press Cancel or Esc.

Methods Dealing with Windows Objects
Most of the methods provided by the BaseDialog deal with real Windows
objects and therefore are first applicable when the Window dialog was
created. These methods can either be used within InitDialog, within a method
called by a dialog event, or after calling ExecuteAsync.

The “Summary of User Dialog Processing” on page 60 gives you an overview
of all the methods and their calling sequence that are involved in running a
UserDialog object.

12 OODialog Method Reference

Chapter 2. Creating your User Interface

This chapter contains a tutorial that you can use to get started on creating the
graphical elements of the user interfaces for your programs. These elements
are the familiar items – dialog boxes, command buttons, and so on – that will
make your programs attractive and easy to use for Windows-oriented users.

When you are creating the user interface for a program of your own, it will be
important to plan its design carefully. Consider how best to arrange the
interface so that the user can work with it as simply and intuitively as
possible. To help you to do this, make diagrams of your dialogs. Use a
flowchart, if necessary, to help you to create the dialogs – and the connections
between them – that lead the users securely to what they want to do. If
possible, consult some potential users.

If you are interested in working more intensively with graphical user interface
development, you will find a wide variety of published guides on the subject
to help you.

The graphic element you will use most frequently in your user interfaces will
probably be the dialog box, because of its versatility and the wide range of
command options and user-input devices it can use. In this tutorial, you will
create a dialog box and populate it with some standard user-interface
elements.

To create your dialog, you use the IBM Resource Workshop. You perform the
following steps:
1. Create a new project
2. Create a new dialog
3. Configure the Resource Workshop
4. Add control items to your dialog

Creating a New Resource Project

To begin with, you need to create the project in which you will place all the
resources for your interface. Resources are the graphic elements that make up
the interface.

To create a new project:
1. Open the IBM Resource Workshop. You can do this in several ways:

© Copyright IBM Corp. 1997, 2001 13

On the Windows taskbar, select Start/Programs/Object REXX for
Windows/IBM Resource Workshop.
Alternatively, type Workshop at the Command Prompt.
Or, if the Object REXX Workbench is already open, select
Tools/OODialog/Resource Workshop from the menu bar.
The Resource Workshop opens.

2. In the Resource Workshop menu bar, select File/New resource project.
The New resource project dialog appears.

3. Select the .RC type, if it is not already selected. This creates a project that
can include all the different resources you create.
If you would like information about the other resource types that you can
create, click the Help button. See also “Resources” on page 10.

4. Click OK.
An empty window appears, representing your new project. You must now
name your project and decide a location for it, so that the resources you
create will automatically be saved in the right location.

5. In the Resource Workshop menu bar, select File/Save resource project.
The Save file as dialog appears.

6. Use the Directories list to choose the location where your project will be
saved. Double-click on a drive letter to raise a list of available directories
above the list of drives, and then select the directory you want.
In the File type edit field, choose the RC resource script file type.
In the New file name field, add the name you wish to give to your
project. The name can have no more than eight letters; use the suffix .rc.
For now, name your project newproj.rc.

Figure 9. The New resource project dialog

14 OODialog Method Reference

7. Click OK. Your new project dialog is now renamed to reflect the new
name you have given to your project.

Creating a New Dialog

You now create the first dialog box in your new project.
1. In the Resource Workshop menu bar, select Resource/New.

The New resource dialog appears.

2. From the Resource type list, select Dialog. Ensure that your new project
name appears in both of the entry fields Place resource in and Place
identifiers in.

3. Click OK.
The DialogExpert dialog appears.

Figure 10. The New Resource dialog

Chapter 2. Creating your User Interface 15

4. You can now choose the basic appearance of your dialog from the list of
dialog types. The names are self-explanatory; if you need more
information, click the Help button.
For now, choose the first type, Dialog with buttons on the right.

5. Click OK.
The Dialog Editor opens, and displays your new dialog box, as well as
some toolbars that you can use later to create controls in your dialog.

6. You now need to name your dialog. To do this:
From the Resource menu, select Rename.
The Rename resource dialog appears.

Figure 11. The DialogExpert dialog

16 OODialog Method Reference

7. In the New name field, type the name you wish to give to your new
dialog.
For now, use MyNewDialog.

8. Click OK.
The Resource Workshop dialog appears.

9. Click Yes to confirm that you wish to create a new identifier for the
dialog.
The New identifier dialog appears.

Figure 12. The Rename resource dialog

Figure 13. The Resource Workshop dialog

Chapter 2. Creating your User Interface 17

10. You now need to allot to your dialog a number that will identify it. The
number can be any number greater than 10.
In the Value entry field, enter the number 100.

11. Click OK. The new name and numerical identifier are added to your
dialog.

12. Next you need to modify the appearance of your dialog. To do this, call
up the Window style dialog. You can do this in several ways:
Double-click the dialog’s title bar; double-click an empty space within the
dialog; or right-click an empty space within the dialog, and select Style
in the ensuing dialog.
Alternatively, select the dialog by clicking its title bar or its outer border,
and then select Control/Style from the menu bar.
The Window style dialog appears.

Figure 14. The New identifier dialog

18 OODialog Method Reference

13. In the Caption entry field, enter the name you wish the user to see as the
caption of your dialog.
Leave the Class and Menu fields empty.
For information about the other options presented, click the Help button.

14. When you are ready, click OK to complete setting the appearance options
for your dialog.

15. You can now specify the size of your dialog, and where it will appear on
the user’s monitor screen.
To do this, first maximize the Dialog Editor window. Drag the dialog to
the desired location, and drag its sides and/or corners to resize it.
Alternatively, select the dialog box, and from the menu bar choose
Align/Size. In the ensuing Size dialog, you can set precise values for the
X and Y coordinates of the dialog and for its dimensions.
For more information about the values you can specify, click Help. Click
OK to complete specifying your dialog size and position.

Configuring the Resource Workshop

If this is the first time that you are using the Resource Workshop to create
dialogs after a new installation of Object REXX for Windows, you will need to
set some configuration options for the Dialog Editor. You will need to do this
only once. Skip this step if the configuration is done already.

Figure 15. The Window style dialog

Chapter 2. Creating your User Interface 19

1. With your new dialog box visible, select Options/Preferences from the
menu bar.
The Preferences dialog opens.

2. For information about the options in the Preferences dialog, click the Help
button.
For now, set the following options:
In the Status line units area, select Dialog.
In the Selection border area, select Thick frame.
In the Drawing type area, select WYSIWYG.
In the Selection Options area, deselect both options.
Select the Use Ctl3dv2.dll option, and deselect the others in this area.

3. Click OK to confirm your preferences.

Adding Control Items to your Dialog

You now add some control items to your new dialog box. Three such controls
are already in place, the command buttons OK, Cancel, and Help.

You will now enable your users to provide information to the program by
entering some text, for example, their names and addresses. You make this
possible by placing text entry fields in your dialog.

Figure 16. The Preferences dialog

20 OODialog Method Reference

Beside your new dialog box are two floating toolbars, Tools and Alignment.
(If they don’t appear, select Options/Show Tools and Options/Show
Alignment from the menu bar.) You can move these toolbars around as you
wish within the Resource Workshop window.

To add a text entry field to your dialog box:

1. In the Tools toolbar, click the text cursor icon .
Alternatively, select Control/Edit Text in the menu bar.

2. Place the pointer inside the dialog. The pointer has now changed
appearance; it now shows the text cursor icon with a crosshair indicator in
the top left corner.
Position the crosshair where you want the top left-hand corner of your
text entry field to appear, and drag to where you want the opposite corner
to appear.
Your new text field appears in your dialog.

Figure 17. The Tools toolbar

Chapter 2. Creating your User Interface 21

3. You now need to modify the text field to suit your needs. To alter the style
of the text field, either double-click it, or select it and choose Control/Style
from the menu bar.
The Edit text style dialog appears.

Figure 18. Creating a new text entry field

Figure 19. The Edit text style dialog

22 OODialog Method Reference

4. In the Caption entry field, enter the text for the caption that the user will
see for the text field.
In the Control ID field, enter an appropriate identifier that will help you
to identify this text field later. For example, if you create a number of text
fields to contain users’ names and addresses, you might name them
IDC_TF_FirstName, IDC_TF_LastName, IDC_TF_StreetName, and so on. This
will make it easy for you to identify the various elements later when you
want to assign their functionality to them in the REXX program.
For information about the other options in the Edit text style dialog, click
the Help button. When you are finished modifying the text field, click OK.
You have now successfully placed a text field element into your new
dialog.

Continue to experiment by placing other control elements in your dialog. Use
the icons in the two middle columns of the Tools toolbar to choose controls
that you can add to your dialog. (For a description of the functions of the
icons in the Tools toolbar, see the next section, ″The Tools Toolbar.″
Alternatively, choose new controls from the list given in the Control menu.

Use the Alignment toolbar to locate controls precisely in your dialogs. In the
case of each new element, modify its style as you did in step 4.

Add at least one of each type of dialog element to your sample dialog.

When you are familiar with the process of creating the graphic elements of
your user interfaces, go on to Chapter 3, ″Using a Dialog with Object REXX″,
to learn how to add functionality to these elements.

The Tools Toolbar

All of the control items that you can add to your dialogs are available from
the Tools toolbar. To add a control item, simply click the appropriate icon for
the feature, and then draw it in your dialog by using the pointer. (An
alternative way to select control items is to use the Control menu in the
Resource Workshop.)

The control items and related options that are available from the Tools toolbar
are as follows:

Chapter 2. Creating your User Interface 23

Table 1. The Tools toolbar

Select button OK push button Auto radio button Progress bar

Tab set tool, to
mark items for tab

stops

Horizontal scroll
bar

Vertical scroll bar Horizontal slider

Group tool Text scroll bar Check box Vertical slider

Set order tool. Sets
the tab stop

sequence.

Group box Combo box. Enlarge
it downward for

long lists.

Tab control

Test your dialog.
Activates your
dialog in a new

window.

Dynamic text field Static text field Tree view

Duplicate [This is a
non-functional

button.]

Black frame. Puts
an empty

rectangular frame
into your dialog.

Report view

Undo Black rectangle.
Puts a rectangle into

your dialog.

New custom control List view

24 OODialog Method Reference

Chapter 3. Using a Dialog with Object REXX

Once you are familiar with the Resource Workshop, you can either continue
with this chapter using the dialog that you created, or take the one that is
provided in the tutorial directory (EMPLOYE1.RC) as shown in Figure 20.

The following sections demonstrate how to use the Workbench to create an
Object REXX program that executes this dialog.

Using the Object REXX Workbench OODialog Template Generator

The “Template Generator” of the Workbench creates a program template that
is based on a resource script created with the Resource Workshop. All the
statements that are needed to execute the dialog, to define the new dialog
class, to define its methods, to connect the dialog events to methods and the
dialog data items to attributes is automatically added to the generated
program template by the template generator.

To use the template generator in the OODialog popup menu under the Tools
menu:
1. Start the Workbench.
2. Select menu item Template Generator in the OODialog popup menu under

the Tools menu. The following dialog appears on your screen:

Figure 20. The Tutorial Dialog

© Copyright IBM Corp. 1997, 2001 25

3. In the Resource Script field, enter the name of the resource script you
previously created or the name of one of the tutorial resource scripts. The
Dialog ID field is only required if more than one dialog is defined in the
given resource script.

4. After you specified the dialog resource, you can press the Load Resource
button to load the dialog definition into the template generator panel. If an
error occurs, check whether you are using type "Text" for the caption field.
All non-static dialog control items (ID not equal to -1) are now listed in
the list box. You can see that for data items the field in the Item Name
column, which you specified in the caption field of the Resource
Workshop, is taken as default for the Attribute column, and for buttons it
is taken as default for the Method column.

When you double-click on the Dialog Item ID field of a data item, a dialog
appears on the screen as shown in Figure 22 on page 27.

Figure 21. The OODialog Template Generator Panel

26 OODialog Method Reference

You can change the name of the attribute that is assigned to the data item and
add a method that is called each time an event occurs for the data item. If, for
example, you connect a method with a radio button, this method is called
each time the radio button is selected. In this method you can, for example,
check if the constellation of the radio button group is valid. The third field in
this dialog is to set the initial value for the data item.

If you look at the radio buttons and check boxes, you see that the ampersand
(&) has been removed for the attribute names. Blanks and colons (:) are
removed from the names to make the attribute name a valid REXX symbol.
The Method field is empty for data items when loading the resource. If you
want to assign a method to a radio button or a check box or change the
attribute name, double-click on the Dialog Item ID field as you did before. If
you entered an invalid Object REXX symbol for the Attribute field or this
attribute was already defined, the data item is connected to the object
attribute DATAXXX, where XXX stands for the ID of the dialog item. If, for
example, you assigned Name to dialog item 21 and Name was already defined
for the dialog object, the data of this dialog item is exchanged with attribute
DATA21.

When you double-click on the Dialog Item ID field of a button, the panel that
appears looks as shown in Figure 23 on page 28.

Figure 22. The Connect Data Item Panel

Chapter 3. Using a Dialog with Object REXX 27

Most of the fields contained by this dialog are disabled for the buttons that
are added to the dialog resource. These fields are needed to create buttons
that contain a bitmap (bitmap button), which are discussed later. All you can
set for normal buttons is the method that is called each time the button is
pressed. To "owner-drawn" buttons you can assign several bitmaps stored in a
file. The Use Color Palette, the Stretch Size, and the Frame options influence the
appearance of the bitmaps. For further information, see
“ConnectBitmapButton” on page 112.

The ID constants IDOK, IDCANCEL, and IDHELP, which are assigned to the
buttons created automatically by the Resource Workshop, are automatically
replaced by 1, 2, and 9.

If you double-click on the ID of a scroll bar, a panel appears that looks as
shown in Figure 24.

Figure 23. The Connect Button Panel

Figure 24. The Connect Scroll Bar Panel

28 OODialog Method Reference

In the scroll bar panel you can enter the name of the method that is intended
to handle all scroll bar events, the minimum, maximum, and initial position
values for the scroll bar, the number the scroll bar is increased or decreased
each time the down or up (single step) or the page down or page up (page
step) key is used on a focused scroll bar. The last field is to specify an entry
line that you want to associate with the scroll bar that then operates as a spin
control. The numerical value of the entry line reflects the position of the scroll
bar, and vice versa. Leave this field empty if you do not want to use this
functionality.

After you have done all the necessary modifications in the item association
list, specify the name of the Object REXX program that you want to create in
the Template File field. In the Class Name field you can specify the name of the
OODialog subclass and in the Object Name you can specify the name of the
class instance to be used in the program template.

The template generator supports the following options:

Default assignments
Specifies whether attribute names are taken from the resource script
(enabled) or explicitly assigned to the names listed in the item list. If
you did not change an attribute name listed in the item list, you can
leave this option disabled to reduce the size of the generated program.

Signal handler
Specifies whether you want a signal handler set at the beginning of
your script. If a signal handler is set, all conditions raised are handled
by the signal handler, for example, to close a dialog in case of an error
before the program is terminated.

Additional items
Enable this option if you want to extend your dialog resource by
adding dynamic items to the dialog. If this option is enabled, the
DefineDialog method is overridden.

Initialization
Enable this option if you want to initialize dialog items before the
dialog pops up. If this option is enabled, the InitDialog method is
overridden. You must enable this option, if you use scroll bars or
want to initialize combo boxes or list boxes.

Validation
Enable this option if you want to validate the dialog before the dialog
is closed. If this option is enabled, the Validate method is overridden.

Add comments
Enable this option to let the template generator add comments to the
generated script.

Chapter 3. Using a Dialog with Object REXX 29

You can store the dialog item settings in a file by pressing the Store Map
button. With the Restore Map button, you can retrieve the same list again. To
create the Object REXX program template, press the Create Template button
and then close the template generator panel. The newly generated template is
automatically loaded into the Workbench.

Here is how the program template could look like:

/**/
/* Name: testtg3.rex */
/* Type: Object REXX Script using OODialog */
/* Author: */
/* Resource: Employe1.rc */
/* */
/* Description: */
/* This file has been created by the Object REXX Workbench OODIALOG */
/* template generator. */
/* */
/* Coypright (C) ____________________, 199_. All Rights Reserved. */
/* */
/**/

/* Install signal handler to catch error conditions and clean up */
signal on any name CleanUp

EmployeeInput = .EmployeeInputClass∼new
if EmployeeInput∼InitCode = 0 then do

rc = EmployeeInput∼Execute("SHOWTOP")
end

/* Add program code here */

exit /* leave program */

/* ---- signal handler to destroy dialog if error condition was raised ----*/
CleanUp:

call ErrorMessage "Error" rc "occurred at line" sigl":" errortext(rc),
¦¦ "a"x ¦¦ condition("o")∼message

if EmployeeInput∼IsDialogActive then EmployeeInput∼StopIt

::requires "OODIALOG.CLS" /* This file contains the OODIALOG classes */

Figure 25. A Generated Program Template (Part 1 of 3)

30 OODialog Method Reference

/* ---------------------------- Directives ---------------------------------*/
::class EmployeeInputClass subclass UserDialog

/* All connections are done explicitly */
::method InitAutoDetection

self∼NoAutoDetection /* disable autodetection */

::method Init
use arg InitStem.
if Arg(1,"o") = 1 then

InitRet = self∼Init:super
else

InitRet = self∼Init:super(InitStem.) /* Initialization stem is used */

if self∼Load("P:\SAMPLES\WIN\OODIALOG\TUTORIAL\Employe1.rc",) \= 0 then do
self∼InitCode = 1
return

end /* Connect dialog control items to class methods */
self∼ConnectButton(1,"OK")
self∼ConnectButton(2,"Cancel")
self∼ConnectButton(9,"Help")

/* Connect dialog data items to object attributes */
/* These attributes are created dynamically */
self∼ConnectEntryLine(21,"Name") /* attribute Name */
self∼ConnectComboBox(22,"City", "LIST") /* attribute City */
self∼ConnectListBox(23,"Profession") /* attribute Profession */
self∼ConnectRadioButton(31,"Male") /* attribute Male */
self∼ConnectRadioButton(32,"Female") /* attribute Female */
self∼ConnectCheckBox(41,"Married") /* attribute Married */

Figure 25. A Generated Program Template (Part 2 of 3)

Chapter 3. Using a Dialog with Object REXX 31

You can directly run the generated program. The dialog that you previously
designed using the Resource Workshop appears on the screen, ready to
retrieve data input. If you want to change the behavior of the dialog you can
do the required modifications within this template. Some of the comments
guide you to find the right location for your modifications.

The following sections demonstrate how to use OODialog to run and control
this dialog within Object REXX step by step without using the template
generator.

/* Initial values that are assigned to the object attributes */
self∼Name= '' /* Entry Line */
self∼City= 'Stuttgart' /* Combo List */
self∼Profession= '' /* List Box */
self∼Male=1 /* Radio Button */
self∼Female=0 /* Radio Button */
self∼Married=0 /* Check Box */

/* Add your initialization code here */
return InitRet

::method InitDialog
InitDlgRet = self∼InitDialog:super
/* Initialization Code (e.g. fill list and combo boxes) */
return InitDlgRet

/* --------------------- message handler -----------------------------------*/

/* Method OK is connected to item 1 */
::method OK

resOK = self∼OK:super /* make sure self∼Validate is called and
self∼InitCode is set to 1 */

self∼Finished = resOK /* 1 means close dialog, 0 means keep open */
return resOK

/* Method Cancel is connected to item 2 */
::method Cancel

resCancel = self∼Cancel:super /* make sure self∼InitCode is set to 2 */
self∼Finished = resCancel /* 1 means close dialog, 0 means keep open */
return resCancel

/* Method Help is connected to item 9 */
::method Help

self∼Help:super

Figure 25. A Generated Program Template (Part 3 of 3)

32 OODialog Method Reference

The PlainUserDialog Class

Start the Object REXX Workbench to create a new Object REXX script. First,
add the statement ::requires "OODPLAIN.CLS", which loads a file in your
script with all the class definitions necessary to use OODialog. Place the
statement at the end of your script.

For the first step, you are going to display the dialog, enter some data, and
quit the dialog. Because you will not implement any further functions, you
will not have to define a new dialog subclass; you can use the existing class.
The class you need for working with dialogs defined through a resource script
is called the PlainUserDialog class. The EMPLOYE1.RC in the tutorial directory
that you are going to use is shown in Figure 26.

Figure 27 on page 34 shows the Object REXX script that you need to execute
your dialog.

/**

employe1.rc

produced by IBM Object REXX Resource Workshop

***/

#define DIALOG_1 1

100 DIALOG 6, 15, 241, 141
STYLE DS_MODALFRAME ¦ WS_POPUP ¦ WS_CAPTION ¦ WS_SYSMENU
CAPTION "Employees"
FONT 8, "System"{
CONTROL "Name", 21, "EDIT", WS_BORDER ¦ WS_TABSTOP, 50, 11, 177, 12
CONTROL "City", 22, "COMBOBOX", CBS_DROPDOWNLIST ¦ WS_CHILD ¦

WS_VISIBLE ¦ WS_TABSTOP, 50, 30, 174, 55
CONTROL "Profession", 23, "LISTBOX", LBS_STANDARD, 73, 52, 156, 65
AUTORADIOBUTTON "&Male", 31, 12, 71, 28, 12
AUTORADIOBUTTON "&Female", 32, 12, 84, 39, 12
AUTOCHECKBOX "M&arried", 41, 12, 99, 37, 12
DEFPUSHBUTTON "OK", IDOK, 69, 123, 50, 14
PUSHBUTTON "Cancel", IDCANCEL, 125, 123, 50, 14
PUSHBUTTON "Help", IDHELP, 180,123, 50, 14
LTEXT "Person:", -1, 10, 12, 34, 8
LTEXT "City:", -1, 10, 32, 34, 8
LTEXT "Profession:", -1, 10, 53, 42, 8
CONTROL "", -1, "static", SS_BLACKFRAME ¦ WS_CHILD ¦ WS_VISIBLE, 9, 68, 47, 45
}

Figure 26. The Resource Script of the Employee Dialog

Chapter 3. Using a Dialog with Object REXX 33

The first line of the script instantiates an object of the predefined
PlainUserDialog class and assigns the object to the symbol dlg. The second
line checks for an initialization error which could be caused by not finding the
dynamic-link library (DLL) that defines the external functions required by
OODialog. The third line loads your resource script and creates a template for
the Windows dialog. You do not have a Windows object yet. The Windows
dialog is first created within the Execute method. After the loading, you can
set the object attributes for the data items of your dialog. If you want to
predefine values for the data items of your dialog before the dialog pops up,
use PlainUserDialog methods to assign these values to the attributes. If you
want to set the default value for the City combo box to “New York”, for
example, and the default sex to male, add the following three lines:

after the Load method, where City, Male, and Female are the captions entered
in the Resource Workshop. You can skip the comments if you want.

If the AutoDetect attribute is 1, which is the default for an instance of the
PlainUserDialog class, an attribute is dynamically created within the object —
not within the class — for each of the input items added to the dialog. This is
done within the Load method. The attribute has the same name that was
assigned to the dialog items in the Caption field, except that ampersands (&),
colons, and blanks are filtered. If the caption is not a valid Object REXX
symbol, the attribute is named DATAx, where x stands for the identification
number of the dialog item.

If you use symbolic IDs, an attribute with the name of the ID is assigned to
the dialog item. If, for example, a check box has the ID “CHECK_1”, an
attribute “self∼CHECK_1” is assigned to the check box.

dlg = .PlainUserDialog∼new
if dlg∼InitCode <> 0 then exit
if dlg∼Load("EMPLOYE1.RC", 100) ¬= 0 then exit
if dlg∼Execute("SHOWTOP") = 1 then do

say dlg∼Name
say dlg∼City
say dlg∼Profession
say dlg∼Male
say dlg∼Female
say dlg∼Married

end
dlg∼deinstall
::requires "OODPLAIN.CLS"

Figure 27. Simple Object REXX Script for the Employee Dialog (EMPLOYE1.REX)

dlg∼City = "New York"
dlg∼Male = 1 /* radio button is selected */
dlg∼Female = 0 /* radio button is not selected (default) */

34 OODialog Method Reference

If you want to change the value of a dialog item, or retrieve the value, it is
not sufficient to assign a new value to the attribute that belongs to the item,
or retrieve the value of the attribute. This is because the data within the
Object REXX object is separated from the data within the internal buffer of the
Windows dialog. Each time an object attribute is changed, only the state of the
object is modified, but not the state of the Windows dialog. To do that,
exchange the data of the Object REXX object with the Windows dialog using
the SetData method (see page 125). To get the data from the Windows dialog,
use the GetData method (see page 125). The entire data of the Windows
dialog is then copied to the Object REXX object and is accessible by the
attributes.

There are several methods for exchanging only a single dialog item. See the
methods beginning with Set or Get followed by the name of the dialog item
type, such as SetEntryLine or GetRadioButton. If you want to set the check
mark for the Married check box only, for example, and you know the ID of the
dialog item, you can either call dlg∼SetCheckBox(41, 1) or dlg∼SetValue(41,
1). To call dlg∼SetCheckBox(41, 1) you must know the dialog item type. To
call dlg∼SetValue(41, 1), the dialog item must have been registered, which is
done automatically if AutoDetect is 1. If you do not know the dialog ID, you
can assign 1 to the attribute Married and then call dlg∼SetAttrib("Married").
This method copies the data from attribute Married to the assigned dialog
item.

If you are using symbolic IDs and the check box has the ID "Check_1", for
example, you can call dlg∼SetCheckBox("Check_1",1) to set the check mark
for that check box.

It is possible to use the DO OVER loop on a dialog object to loop through all
the data attributes that are contained by the dialog object.

Deinstall in the last line of the program is used to remove the external
functions needed for OODialog from the memory. It is a cleanup method.

Deinstall automatically detects whether there is still a dialog running on your
system and only removes the external functions if they are really obsolete at
the time of calling Deinstall.

Changing the Dialog Behavior

Most of the methods defined by OODialog are used to specify the behavior of
the Windows dialog. The previous program does not implement a useful user
interface. There is no selectable entry in either the list of the combo box or the
list box. The list box and the combo box only make sense when list entries are
selectable, otherwise you can replace them with a normal entry line. To fill
these lists with strings, you can use the AddListEntry and AddComboEntry

Chapter 3. Using a Dialog with Object REXX 35

methods. The following program extends the previous one to support list
selection for the list box and the combo box as shown in Figure 28.

In the program in Figure 28, MyDialogClass is defined, which is a subclass of
the PlainUserDialog class. The definition of this class must begin directly after
the ::requires statement. MyDialogClass redefines one method called InitDialog
which is already defined in the PlainUserDialog class. The InitDialog method
is called by the PlainUserDialog class within the Execute method after the
Windows object has been created and before it is displayed. This method is
the best place to use the AddComboEntry and AddListEntry methods. All the
other methods that directly manipulate Windows objects to initialize the
dialog like SetEntryLine, SetListLine, SetListTabulators, or SetTitle, can also be
called within InitDialog.

In the preceding code, the InitDialog method first sets the three attributes
City, Male, and Female to default values and then puts four city names into the
combo box specified by ID 22, and five professions into the list box specified
by ID 23. The Object REXX object attributes are automatically exchanged with
the Windows object within the Execute method before the dialog is displayed.

dlg = .MyDialogClass∼new
if dlg∼InitCode <> 0 then exit
if dlg∼Load("EMPLOYE1.RC", 100) ¬= 0 then exit
if dlg∼Execute("SHOWTOP") = 1 then do

say dlg∼Name
say dlg∼City
say dlg∼Profession
say dlg∼Male
say dlg∼Female
say dlg∼Married

end
dlg∼deinstall
::requires "OODPLAIN.CLS"
::class MyDialogClass subclass PlainUserDialog
::method InitDialog

self∼City = "New York"
self∼Male = 1
self∼Female = 0
self∼AddComboEntry(22, "Munich")
self∼AddComboEntry(22, "New York")
self∼AddComboEntry(22, "San Francisco")
self∼AddComboEntry(22, "Stuttgart")
self∼AddListEntry(23, "Business Manager")
self∼AddListEntry(23, "Software Developer")
self∼AddListEntry(23, "Broker")
self∼AddListEntry(23, "Police Man")
self∼AddListEntry(23, "Lawyer")

Figure 28. Extended Dialog Using Subclassing (EMPLOYE2.REX)

36 OODialog Method Reference

If you would have used symbolic IDs for the list box and the combo box you
would have to specify the symbolic IDs instead of 22 and 23. In the previous
example you would have to call self∼AddComboEntry(″CB_CITY″, ″Munich″) or
self∼AddListEntry(″LB_PROF″, ″Broker″) given that you were using CB_CITY
instead of 22 and LB_PROF instead of 23.

There are several other methods of working with list boxes and combo boxes.
For a list box, there is AddListEntry InsertListEntry, DeleteListEntry,
ChangeListEntry, FindListEntry, GetListEntry, GetCurrentListIndex,
SetListTabulators, ListAddDirectory and ListDrop. For the combo box there
are the same methods except that you have to use Combo instead of List for
the method names, and there is no SetComboTabulators. Run this program to
see the different behavior.

Enhance your dialog now by adding a Print button. You can give it any
identification number that is greater than 9 and not already used for another
item. The reason for the ID greater than 9 is that ID 1 and two are reserved
for the OK and Cancel buttons. Both buttons terminate the dialog execution
and call their corresponding methods. ID 9 is reserved for a Help button that
calls the Help method. The IDs between 3 and 8 are reserved for other
standard buttons. All IDs from 10 to 9999 are available.

When you execute the new dialog and press the Print button you will notice
that nothing happens. To react on a button event, you must provide a method
and connect it to the button using the ConnectButton method. See Figure 29
for an example that demonstrates how to implement a Print method that
reacts on the Print button and displays the data of the employee dialog.

dlg = .MyDialogClass∼new
if dlg∼InitCode <> 0 then exit
if dlg∼Load("EMPLOYE2.RC", 100) ¬= 0 then exit
dlg∼Execute("SHOWTOP")
dlg∼deinstall
::requires "OODPLAIN.CLS"

Figure 29. Providing a Method to Handle a Button Event (EMPLOYE3.REX) (Part 1 of 3)

Chapter 3. Using a Dialog with Object REXX 37

“Employe2.rc” is the same as “Employe1.rc” except for the Print button. In
addition to the previous sample, the Print method is defined, and there is one
more line, self∼ConnectButton(10, "Print"), in the InitDialog method to
connect the newly created button ID 10 with the Print method. Connect...
methods only take effect when placed at the correct location. One possible
location is the InitDialog method used in the previous example. Other
possible locations will be discussed later. Another way to connect buttons
with Object REXX methods is the "CONNECTBUTTONS" option, which can
be passed to the Load method as the third parameter
dlg∼Load("EMPLOYE2.RC",100,"CONNECTBUTTONS"). If this option is specified, all
buttons in the resource are connected to a method that is named after the
caption of the button. Ampersands and blanks are filtered.

Because of the Print method, which displays the dialog data, the output
processed by the program header is no longer needed. The output of the Print
method is formatted so that the correct title depending on the sex is placed in
front of the name and “(married)” is placed behind it, when appropriate. You
can see that the output is displayed in the output window, provided by the
workbench or in the console window, if started by the REXX command.

::class MyDialogClass subclass PlainUserDialog
::method InitDialog

self∼City = "New York"
self∼Male = 1
self∼Female = 0
self∼AddComboEntry(22, "Munich")
self∼AddComboEntry(22, "New York")
self∼AddComboEntry(22, "San Francisco")
self∼AddComboEntry(22, "Stuttgart")
self∼AddListEntry(23, "Business Manager")
self∼AddListEntry(23, "Software Developer")
self∼AddListEntry(23, "Broker")
self∼AddListEntry(23, "Police Man")
self∼AddListEntry(23, "Lawyer")
self∼ConnectButton(10, "Print") /* connect button 10 with a method */

Figure 29. Providing a Method to Handle a Button Event (EMPLOYE3.REX) (Part 2 of 3)

::method Print
if self∼Male = 1 then title = "Mr."; else title = "Ms."
if self∼Married = 1 then addition = " (married) "
else addition = ""
say title self∼Name addition
say "City:" self∼City
say "Profession:" self∼Profession

Figure 29. Providing a Method to Handle a Button Event (EMPLOYE3.REX) (Part 3 of 3)

38 OODialog Method Reference

If you want to display the output in a message box, you can take one of the
callable external functions provided by OODialog. Callable external functions
are InfoMessage, ErrorMessage, YesNoMessage, GetScreenSize,
GetFileNameWindow, PlaySoundFile, PlaySoundFileInLoop, StopSoundFile,
SleepMs, and WinTimer. The function used for displaying the dialog data is
InfoMessage as shown in Figure 30.

When you run “Employe3.rex”, notice that Print method does not display the
right values. This is because of the separation between dialog-internal data
and the object attributes. To retrieve the data from the dialog within the
corresponding object attributes, you must call GetData, which is done in Print
method in Figure 30. GetData is also called implicitly when the dialog is
closed with OK.

InfoMessage takes one argument, which is a string that is displayed in the
message box. The string passed to the function in the previous example is
created from various variables and contains two line breaks that are specified
by the hexadecimal value 'A'x. The comma at the end of line 6 is an Object
REXX line-continuation sign.

Dialog Data Validation

In several cases the data already entered or to be entered into the dialog data
fields must conform to specific conditions. OODialog provides a predefined
mechanism to check the dialog data for consistency. The Validate method is
called when the OK button is pressed. The default implementation of Validate
returns 1, which means that everything is all right and the dialog can be
closed. If you override Validate you can change this and check whether the
data entered conforms to your conditions. If not, you can return 0, which
means that the dialog cannot be closed. The following listing shows the
definition of Validate that denies the closing of the dialog if the name field for
the employee is an empty entry line. See Figure 31 on page 40 for an example.

::method Print
self∼GetData
if self∼Male = 1 then title = "Mr."; else title = "Ms."
if self∼Married = 1 then addition = " (married) "
else addition = ""
call InfoMessage title self∼Name addition ¦¦ "A"x ¦¦ "City:" ¦¦,

self∼City ¦¦, "A"x ¦¦,
"Profession:" self∼Profession

Figure 30. Modified Print Method to Display Output in a Message Box (EMPLOYE4.REX)

Chapter 3. Using a Dialog with Object REXX 39

When you add these lines to the previous sample, the dialog can be closed
only when the name field contains some data. Otherwise a message box pops
up.

Advanced Dialog Programming

The following sections show how to implement an Object REXX program that
can handle the data of more than one employee and allows the user to scroll
through the different employees. This tutorial is not intended to deal with
normal Object REXX programming, so the data will be stored in the memory
and not to a file. The basis for this program is a dialog like the one shown in
Figure 32.

If you do not want to modify the resource script yourself, you can take the
“EMPLOYE3.RC” from the tutorial directory.

...

::method Validate
if self∼GetValue(21)∼strip = "" then
do

call InfoMessage "An unnamed employee is not accepted!"
return 0 /* dialog cannot be closed */

end; else
return 1 /* dialog can be closed */

Figure 31. Data Validation by Overriding Method Validate (EMPVALID.REX)

Figure 32. Extending the Dialog for Multidata Handling

40 OODialog Method Reference

signal on any name CleanUp

dlg = .MyDialogClass∼new
if dlg∼InitCode <> 0 then exit
dlg∼Execute("SHOWTOP")
dlg∼deinstall
exit
/* -- signal handler to destroy dialog if condition was raised---*/
CleanUp:

call ErrorMessage "Error" rc "occurred at line" sigl":",
¦¦ errortext(rc), ¦¦ "a"x ¦¦ condition("o")∼message

if dlg∼IsDialogActive then dlg∼StopIt

::requires "OODPLAIN.CLS"

::class MyDialogClass subclass PlainUserDialog

::method Employees attribute
::method Emp_count attribute
::method Emp_current attribute
::method Init

ret = self∼init:super;
if ret = 0 then ret = self∼Load("EMPLOYE3.RC", 100)
if ret = 0 then self∼Employees = .array∼new(10)
self∼Emp_count = 1
self∼Emp_current = 1
self∼ConnectButton(10, "Print")

/* connect button 10 with a method */
self∼ConnectButton(12, "Add")

/* connect button 12 with a method */
self∼InitCode = ret
return ret

Figure 33. Handling the Add Button (EMPLOYE5.REX) (Part 1 of 2)

Chapter 3. Using a Dialog with Object REXX 41

The first line of the program is new. “signal on any name CleanUp” is used to
install a signal handler that handles runtime errors. The signal handler itself is
defined after the CleanUp label in line 8. This label is called when a condition
was raised that would cause the program to be terminated. When an
OODialog program is executed and the dialog is active when the error
condition is raised, the program is interrupted without deleting the Windows
object. When you run your program from a command console with REXX this
is no problem because the dialog is deleted by the closed process. When you

::method InitDialog
self∼City = "New York"
self∼Male = 1
self∼Female = 0
self∼AddComboEntry(22, "Munich")
self∼AddComboEntry(22, "New York")
self∼AddComboEntry(22, "San Francisco")
self∼AddComboEntry(22, "Stuttgart")
self∼AddListEntry(23, "Business Manager")
self∼AddListEntry(23, "Software Developer")
self∼AddListEntry(23, "Broker")
self∼AddListEntry(23, "Police Man")
self∼AddListEntry(23, "Lawyer")

::method Print
self∼GetData
if self∼Male = 1 then title = "Mr."; else title = "Ms."
if self∼Married = 1 then addition = " (married) "

else addition = ""
call InfoMessage(title self∼Name addition ¦¦ "A"x ¦¦,

"City:" self∼City ¦¦ "A"x ¦¦
"Profession:" self∼Profession)

::method Add
self∼Employees[self∼Emp_count] = .directory∼new
self∼Employees[self∼Emp_count]['NAME'] = self∼GetValue(21)
self∼Employees[self∼Emp_count]['CITY'] = self∼GetValue(22)
self∼Employees[self∼Emp_count]['PROFESSION'] = self∼GetValue(23)
if self∼GetValue(31) = 1 then sex = 1; else sex = 2
self∼Employees[self∼Emp_count]['SEX'] = sex
self∼Employees[self∼Emp_count]['MARRIED'] = self∼GetValue(41)
self∼Emp_count = self∼Emp_count +1
self∼Emp_current = self∼Emp_count
self∼SetValue(21, "");

::method Set
self∼SetValue(21, self∼Employees[self∼Emp_current]['NAME'])
self∼SetValue(22, self∼Employees[self∼Emp_current]['CITY'])
self∼SetValue(23, self∼Employees[self∼Emp_current]['PROFESSION'])
if self∼Employees[self∼Emp_current]['SEX'] = 1 then do

self∼SetValue(31, 1);self∼SetValue(32, 0); end
else do

self∼SetValue(31, 0);self∼SetValue(32, 1); end
self∼SetValue(41, self∼Employees[self∼Emp_current]['MARRIED'])

Figure 33. Handling the Add Button (EMPLOYE5.REX) (Part 2 of 2)

42 OODialog Method Reference

run the program from the workbench, the dialog is still up after the Object
REXX program is interrupted, but it does not react to an event. This is
because the control program – the Object REXX program you wrote – was
interrupted by an error or failure condition. The code defined for label
CleanUp displays the Object REXX error message in a message box and then
deletes the Windows object before the Object REXX program is terminated.
You can take this code and copy it for all your other OODialog programs.

To handle the data of more than one employee the MyDialogClass class
defines three attributes. Employees is assigned to an array that is created in the
Init method and stores the data fields for each employee. Emp_count is to hold
the number of employees stored in the Employees array and Emp_current
stores the array index of the currently displayed employee.

In addition to the previous example, the two Add and Set methods are
defined. The Add method is called each time the Add button (with ID 12) is
pressed. The first line in the Add method assigns a directory object to the array
slot for the current Employee. The directory object holds the 5 entries NAME,
CITY, PROFESSION, SEX, and MARRIED. The values for these entries are
directly taken from the Windows dialog via the GetValue, which expects the
ID of the dialog item that the data is required from. The entry SEX is either 1
if the “Male” or 2 if the “Female” radio button is selected. The Set method is
defined to prepare the next step. It copies the entries of the directory object at
the Emp_current index directly to the Windows dialog by using the SetValue
method which expects the ID of the dialog item where the data is to be
copied to, and a value.

The next step provides the necessary extensions to browse through the stored
employees by using the scroll bar, as shown in Figure 34 on page 44.

Chapter 3. Using a Dialog with Object REXX 43

This program excerpt shows the additional lines of code that are required to
handle the events of the scroll bar. Because scroll bars are not supported by
the PlainUserDialog, the UserDialog class must be subclassed, which extends
the PlainUserDialog by several more methods. Because the UserDialog is
defined within OODIALOG.CLS, this file must be requested. The advantage
of splitting the functionality of OODialog into these two classes and into two
files is to save memory when you only need the functionality provided by the
PlainUserDialog or any of the Standard Dialogs. In the InitDialog method, the
UP event of the scroll bar with ID 11 is connected to method Emp_Previous,
and the DOWN event is connected to method Emp_Next via the
ConnectScrollBar method. The Emp_Previous method decreases the attribute
Emp_current and calls the Set method to copy the values of the directory
object to the Windows dialog. The Emp_Next method does the same except that
Emp_current is increased. Both methods check if the top or the bottom is

::requires "OODIALOG.CLS"...
::class MyDialogClass subclass UserDialog...

::method InitDialog...
self∼ConnectScrollBar(11, "Emp_Previous", "Emp_Next")

...
::method Add...

self∼SetSBRange(11, 1, self∼Emp_count)
self∼SetSBPos(11, self∼Emp_count)

::method Emp_Previous
if self∼Emp_count = 1 then return
if self∼Emp_current > 1 then do

self∼Emp_current = self∼Emp_current - 1
self∼SetSBPos(11, self∼Emp_current)
self∼Set

end; else
call TimedMessage "You have reached the top!","Info",1000

::method Emp_Next
if self∼Emp_count = 1 then return
if self∼Emp_current < self∼Emp_count-1 then do

self∼Emp_current = self∼Emp_current + 1
self∼SetSBPos(11, self∼Emp_current)
self∼Set

end; else
call TimedMessage "You have reached the bottom!","Info",1000

Figure 34. Handling Scroll Bar Events (EMPLOYE6.REX)

44 OODialog Method Reference

reached. The SetSBPos method is called to set the position of the scroll bar.
The SetSBRange method is called within Add to extend the range of the scroll
bar each time an employee is added.

TimedMessage is one of the standard dialog functions that creates an object of
TimedMessage class and executes it.

Nesting Dialogs

Nesting dialogs allows you to execute a dialog within another running dialog.
OODialog has a maximum nesting level of 10 dialogs.

Instantiate a new dialog object, create the Windows dialog, and execute it.
OODialog does the dialog management for you. Running a child dialog from
a parent dialog causes the parent dialog to be disabled, which means that you
can no longer access control items of this dialog. This behavior is called
application-modal. The dialog is disabled automatically. The usual way is to
execute the newly created child dialog with SHOWTOP, which causes the
dialog to be the topmost window. After the dialog is finished, the parent
dialog is enabled again automatically, but becomes the topmost window only
after you called the ToTheTop method in the parent dialog. To make sure that
the parent dialog is not locked by an unsuccessful execution of the nested
dialog, you can invoke the Enable method before the parent dialog receives
control again. The following example includes nested dialogs.

Formatted Lists

In the following example a new button is added to the employee dialog that
is named “List Employees”. When you press this button, a second dialog pops
up and lists all the employees that are currently stored in the memory. The list
contains the title, the name, the profession, and the city. The “List Employees”
button should only be enabled when at least one employee is stored in
memory. The example is shown in Figure 35 on page 46.

Chapter 3. Using a Dialog with Object REXX 45

101 DIALOG 6, 15, 278, 144
STYLE DS_MODALFRAME ¦ WS_POPUP ¦ WS_CAPTION ¦ WS_SYSMENU
CAPTION "List of Employees"
FONT 8, "System"
{
DEFPUSHBUTTON "OK", IDOK, 226, 127, 50, 14
CONTROL "List", 101, "LISTBOX",

LBS_NOTIFY ¦ WS_BORDER ¦ WS_BORDER ¦ WS_VSCROLL, 3, 16, 272, 103
LTEXT "Name", -1, 5, 7, 26, 8
LTEXT "Profession", -1, 101, 7, 60, 8
LTEXT "City", -1, 201, 7, 60, 8
}

Figure 35. Resource Definition of the Employee List Dialog

...

::method Init...
self∼ConnectButton(13, "Emp_List")...

::methodInitDialog...
self∼DisableItem(11)
self∼DisableItem(13)

...

Figure 36. Nesting a List Dialog (EMPLOYE8.REX) (Part 1 of 6)

::method Add...
self∼EnableItem(11)
self∼EnableItem(13)

...

::method Emp_List
ldlg = .EmployeeListClass∼new(self)
ldlg∼Execute("SHOWTOP")

Figure 36. Nesting a List Dialog (EMPLOYE8.REX) (Part 2 of 6)

46 OODialog Method Reference

Figure 35 on page 46 shows the resource definition of the dialog containing
the list. Figure 36 on page 46 shows the parts of the MyDialogClass definition
that are new, and the definition of the EmployeeListClass. In addition to the

::method FillList
use arg subdlg, id
column1 = 24;column2 = 29
do i = 1 to self∼Emp_count-1

if self∼Employees[i]['SEX'] = 1 then
title = "Mr."; else title = "Ms."
addstring = title self∼Employees[i]['NAME']
spacebetween = column1 - self∼Employees[i]['NAME']∼length - 5
if spacebetween > 0 then addstring = addstring,
¦¦ " "∼copies(spacebetween)
addstring = addstring ¦¦ " "self∼Employees[i]['PROFESSION']
spacebetween = column2 - self∼Employees[i]
['PROFESSION']∼length - 5
if spacebetween > 0 then addstring = addstring,
¦¦ " "∼copies(spacebetween)
addstring = addstring ¦¦ " "self ∼Employees[i]['CITY']
subdlg∼AddListEntry(id, addstring)

end

Figure 36. Nesting a List Dialog (EMPLOYE8.REX) (Part 3 of 6)

::class EmployeeListClass subclass UserDialog

::method parent attribute

Figure 36. Nesting a List Dialog (EMPLOYE8.REX) (Part 4 of 6)

::method Init
use arg ParentDlg
self∼parent = ParentDlg
ret = self∼init:super
if ret = 0 then ret = self∼Load("EMPLOYE5.RC", 101)
self∼InitCode = ret
return ret

Figure 36. Nesting a List Dialog (EMPLOYE8.REX) (Part 5 of 6)

::method InitDialog
self∼parent∼FillList(self, 101)
font = self∼CreateFont("Courier", 10)
self∼SetItemFont(101, font)

Figure 36. Nesting a List Dialog (EMPLOYE8.REX) (Part 6 of 6)

Chapter 3. Using a Dialog with Object REXX 47

previous sample, dialog 100 contains the “List Employees” button instead of
the Help button. This button (ID 13) is connected to method Emp_List in the
Init method. The two additional lines in the InitDialog method are to initially
disable the “List Employees” button and the scroll bar. Disabled dialog items
are grayed. At the end of the Add method the disabled dialog items are
enabled again, because after Add was called once, an employee is stored in
memory and therefore the list can be displayed and the scroll bar can be used
to display data of the employee.

EmployeeListClass defines the new attribute Parent which stores the
OODialog object that is passed on to the Init method. Init also calls the
method of its superclass and loads the dialog resource 101. Notice that both
dialog resources are stored in one .RC file.

The Emp_List method is called when the “List Employees” button is pressed.
Emp_List instantiates an object of class EmployeeListClass and passes on self
to the Init method. Emp_List then calls the Execute method of this dialog
instance to execute the dialog. Before this dialog pops up, the InitDialog
method of EmployeeListClass is automatically called. In the InitDialog
method, the FillList method of the Parent object is called. Parent was set to
self of MyDialogClass within the Emp_List method and therefore the FillList
method of MyDialogClass is called. Arguments for these methods are self of
the EmployeeListClass object and the ID of the list box.

FillList processes all employees stored in memory and formats a data string
that is added to the list by calling AddListEntry. In this method blanks are
inserted between the data fields so that the columns start at the same
character position. If you were to run this sample without the two last
program lines – within the InitDialog method – you could see that the data
fields are not in a row when pressing the “List Employees” button. This is
because the default font for the list box is the same as for the dialog, and that
is a proportional font. Therefore, in the InitDialog method, a monospaced font
(Courier) is created by calling CreateFont and assigned to the list box by
calling SetItemFont. In this way the data fields are lined up.

Instead of using a monospaced font, you can also use a list box that has the
“Multicolumn” and the “Tab stops” options checked. The following excerpt
shows the differences when using tab stops instead of a monospaced font and
blanks. See Figure 37 on page 49 for details.

48 OODialog Method Reference

In the InitDialog method, the tabulator stops are set to 98 and 198 (in dialog
units) for the list box by calling SetListTabulators. This causes the FillList
method to be smaller because no data field length calculation must be done
but a tabulator character ("9"x) is needed to separate the columns. Tabulator
formatting works with proportional fonts and monospaced fonts.

Using Menus within Your Dialogs

OODialog provides several methods that allow to use menu resources within
your dialog or to create menus dynamically and add them to the dialog.

You can use the Resource Workshop to create a menu for your dialog by
selecting menu item Resource – New and choosing MENU as the type for the

101 DIALOG 6, 15, 278, 144...
CONTROL "List", 101, "LISTBOX", LBS_NOTIFY ¦ WS_BORDER ¦

LBS_USETABSTOPS ¦ LBS_MULTICOLUMN ¦ WS_BORDER ¦
WS_VSCROLL, 3, 16, 272, 103...

...

Figure 37. Resource Definition of a Multicolumn List

::method FillList
use arg subdlg, id
do i = 1 to self∼Emp_count-1

if self∼Employees[i]['SEX'] = 1 then title = "Mr.";
else title = "Ms."

addstring = title self∼Employees[i]['NAME']
addstring = addstring ¦¦ "9"x ¦¦ self∼Employees[i]['PROFESSION']
addstring = addstring ¦¦ "9"x ¦¦ self∼Employees[i]['CITY']
subdlg∼AddListEntry(id, addstring)

end

Figure 38. Formatting the List Data Using Tab Stops (EMPLOYE9.REX) (Part 1 of 2)

::class EmployeeListClass subclass UserDialog

...

::method InitDialog
self∼parent∼FillList(self, 101)
self∼SetListTabulators(101, 98, 198)

Figure 38. Formatting the List Data Using Tab Stops (EMPLOYE9.REX) (Part 2 of 2)

Chapter 3. Using a Dialog with Object REXX 49

resource. If you close the dialog with OK the menu editor appears in the
Resource Workshop. In the menu editor you can add the popup menus and
menu items that your menu shall contain. Remember to rename the menu
resource to a numerical ID. OODialog does not allow the definition of
accelerator keys for the menu items although the Resource Workshop
supports this.

To load a menu from the resource script, you can use LoadMenu. You can
either add more menu items to the loaded menu or set the menu to the dialog
by calling SetMenu. SetMenu adds the menu to an existing Windows dialog.
Therefore the right place to call SetMenu is the InitDialog method because
InitDialog is automatically called after the Windows object was created and
before the dialog pops up. For an example on how to use menus within
dialogs, see Figure 39.

...

::method Init
ret = self∼init:super;
if ret = 0 then ret = self∼Load("EMPLOYE7.RC", 100)
if ret = 0 then self∼Employees = .array∼new(10)
if ret = 0 then do

self∼Emp_count = 1
self∼Emp_current = 1
self∼ConnectButton(10, "Print")
self∼ConnectButton(12, "Add")
self∼ConnectButton(13, "Emp_List")
if self∼LoadMenu("EMPLOYE7.RC", 200) = 0 then do

self∼ConnectMenuItem(201, "Add")
self∼ConnectMenuItem(202, "Print")
self∼ConnectMenuItem(203, "Emp_List")
self∼ConnectMenuItem(204, "About")

end
end
self∼InitCode = ret
return ret

Figure 39. Adding a Menu Resource to a Dialog (EMP_MENU.REX) (Part 1 of 2)

50 OODialog Method Reference

The first part of the Init method is the same as for all the previous samples
except that the dialog resource is loaded from EMPLOYE7.RC. The reason for
this is, that the size of the dialog must be larger than before because all dialog
items are moved downward when the menu is added to the top of the dialog.
The highlighted statements are necessary to load and connect the menu
resource. LoadMenu("EMPLOYE7.RC", 200) loads the menu resource 200 from
the resource script. If LoadMenu was successful (return value = 0), the menu
item IDs are connected to Object REXX methods by using ConnectMenuItem.
The menu items “Exit” and “Cancel” have not been connected to any method
because the IDs of the two menu items are 1 and 2 and these events are
already by default connected with the OK and Cancel methods. If you use for
a menu item the same ID as for a button, you must connect either the item or
the button with a method because they send the same event if selected or
pressed.

At the end of the InitDialog method, SetMenu is called to add the loaded
menu resource to the dialog. SetMenu must be called from InitDialog because
the Windows object must exist if you use SetMenu. The Add method has been
overridden to enable menu item “List”, which is initially grayed. The About
method is called when the “About” menu item is selected and gives you
information about the author of this tutorial.

In the following sample the same menu is added to the dialog, but this time
no resource is defined. Instead all the popup menus, separators, and menu
items that the menu consists of, are added dynamically. See Figure 40 on
page 52.

::method InitDialog...
self∼SetMenu

::method Add...
self∼EnableMenuItem(203)

...

::method About
call InfoMessage "This is a sample About message!"

Figure 39. Adding a Menu Resource to a Dialog (EMP_MENU.REX) (Part 2 of 2)

Chapter 3. Using a Dialog with Object REXX 51

The Init method is similar to the previous one. ConnectMenuItem is used to
connect the menu items with a method. The “Exit” and “Cancel” menu items
must be connected because these two menu items are created with ID 204 and
205, which are not handled by default. There is no LoadMenu method because
the menu resource is to be created dynamically. A good place for the dynamic

...
::method Init

ret = self∼init:super;
if ret = 0 then ret = self∼Load("EMPLOYE7.RC", 100)
if ret = 0 then self∼Employees = .array∼new(10)
if ret = 0 then do

self∼Emp_count = 1
self∼Emp_current = 1
self∼ConnectButton(10, "Print")
self∼ConnectButton(12, "Add")
self∼ConnectButton(13, "Emp_List")
self∼ConnectMenuItem(201, "Add")
self∼ConnectMenuItem(202, "Print")
self∼ConnectMenuItem(203, "Emp_List")
self∼ConnectMenuItem(204, "OK")
self∼ConnectMenuItem(205, "Cancel")
self∼ConnectMenuItem(206, "About")

end

self∼InitCode = ret
return ret

Figure 40. Adding a Dynamically Created Menu to a Dialog (EMP_MEND.REX) (Part 1 of 2)

::method InitDialog...
self∼SetMenu

::method DefineDialog
forward class(super) continue
self∼CreateMenu
self∼AddPopupMenu("&Employees")
self∼AddMenuItem("&Add", 201)
self∼AddMenuItem("&Print", 202)
self∼AddMenuSeparator

/* last item in popup */
self∼AddMenuItem("&List", 203, "GRAYED END")

/* last popup in menu */
self∼AddPopupMenu("&Control", "END")
self∼AddMenuItem("E&xit", 204)
self∼AddMenuItem("Cancel", 205)
self∼AddMenuSeparator

/* last item in popup */
self∼AddMenuItem("&About", 206, "END")

Figure 40. Adding a Dynamically Created Menu to a Dialog (EMP_MEND.REX) (Part 2 of 2)

52 OODialog Method Reference

creation of a dynamic control is the DefineDialog method, which is
overridden in this sample to define the menu.

To start the creation of a menu you must call CreateMenu. Then you can add
popup menus by using AddPopupMenu, separators by using
AddMenuSeparator, and menu items by calling AddMenuItem. The menu
components are added in the same order as these methods are called. The
END option must be specified for every last menu item in a popup menu and
for the last popup menu in the menu. The option GRAYED is used for the
“List” menu item, which causes this menu item initially to be displayed
grayed. The Add and About methods are equal to those in the previous sample.
See also “DisableMenuItem” on page 175, “CheckMenuItem” on page 175,
“UncheckMenuItem” on page 175, “GrayMenuItem” on page 175,
“SetMenuItemRadio” on page 176, and “GetMenuItemState” on page 176.

Creating Graphics with OODialog

If you want to make your dialogs more attractive, you can display a bitmap
as the background of a dialog or use your own, so-called owner-drawn,
graphical push buttons. Owner-drawn means that you can use the area
reserved for the push button to draw your own graphics, display bitmaps, or
write text. All graphic methods require a device context for the button, which
is a memory for graphics.

To use a bitmap as the background you need the method BackgroundBitmap
(see page 165) or TiledBackgroundBitmap (see page 164), depending on
whether you want to show one bitmap or tile the entire dialog background
with a bitmap. To provide a bitmap button for owner-drawn bitmaps you use
the ConnectBitmap method (see page 112).

The source code excerpt in Figure 41 on page 54 shows the statements
necessary to display a bitmap button instead of the “Add” button and to have
the Object REXX logo displayed in the background.

Chapter 3. Using a Dialog with Object REXX 53

The two highlighted lines provide a bitmap button and a background bitmap.
The drawing and refreshing of bitmap buttons and the background bitmap is
handled by OODialog. The rest of the graphic methods are so-called “top
window” methods, because the drawing is not displayed persistently. Each
time a window is drawn upon the button and then removed, the repainted
area is erased and not restored with the original drawing.

The following example demonstrates how to use the graphic methods
together with the device context methods to display a circle in a dialog.

...

::method Init
ret = self∼init:super;
if ret = 0 then ret = self∼Load("EMPLOYE8.RC", 100)
if ret = 0 then self∼Employees = .array∼new(10)
if ret = 0 then do

self∼Emp_count = 1
self∼Emp_current = 1
self∼ConnectButton(10, "Print")

/* connect button 10 with a method */
self∼ConnectBitmapButton(12, "Add", "add.bmp",,,,"FRAME")
self∼BackgroundBitmap("logo.bmp")

end
self∼InitCode = ret
return ret

Figure 41. Using Bitmaps (EMPLOYE7.REX)

54 OODialog Method Reference

This program shows the definition of a class that connects the two buttons 11
and 12 with the methods Circle and MyRectangle. The name “MyRectangle”
was chosen because OODialog already defines a method Rectangle. Naming
the method that is connected to button 12 “Rectangle” would cause an endless
loop.

The Init method loads the resource script and connects the button. The first
line in method Circle calls GetButtonDC to retrieve the device context of the
owner-drawn button. The return value DC is required by the other methods to
connect the graphic operations with the appropriate dialog item. In the second
line a pen is created by calling CreatePen. A pen is used to draw pixels and
lines (the outline part of a graphic). The other two objects that can be used in
a device context are a brush, which is used to draw the filling part of a
graphic, and a font. ObjectToDC is used to load the newly created pen into
the device context. The return value of ObjectToDC is the old object that was

...

::class MyDialogClass subclass UserDialog

::method Init
ret = self∼init:super;
if ret = 0 then ret = self∼Load("Drawings.RC", 100)
self∼ConnectButton(11, "Circle")
self∼ConnectButton(12, "MyRectangle")
self∼InitCode = ret
return ret

::method Circle
dc = self∼GetButtonDC(10)
pen = self∼CreatePen(5, "SOLID", 1)
oldpen = self∼ObjectToDc(dc, pen)
self∼DrawArc(dc, 10, 10, 320, 200)
self∼ObjectToDc(dc, oldpen)
self∼DeleteObject(pen)
self∼FreeButtonDC(10, dc)

Figure 42. Display a Drawing in the Dialog (DRAWING1.REX) (Part 1 of 2)

::method MyRectangle
dc = self∼GetButtonDC(10)
pen = self∼CreatePen(8, "SOLID", 2)
oldpen = self∼ObjectToDc(dc, pen)
self∼Rectangle(dc, 10, 10, 320, 200)
self∼ObjectToDc(dc, oldpen)
self∼DeleteObject(pen)
self∼FreeButtonDC(10, dc)

Figure 42. Display a Drawing in the Dialog (DRAWING1.REX) (Part 2 of 2)

Chapter 3. Using a Dialog with Object REXX 55

used before. In this case, this is the pen that was assigned to the device
context of the owner-drawn button before loading the new one.

The next line does the drawing. For the method Circle DrawArc is used,
which draws an ellipse or part of it. In the method MyRectangle, Rectangle is
used to draw the rectangle. After the drawing the old pen is assigned back to
the device context. Because you no longer need the pen, you can delete it
using DeleteObject. The last method, FreeButtonDC, is the counterpart of
GetButtonDC. Each time you call a “Get..DC” method you should also call the
“Free..DC” method to release the device context again. If you do not free the
device context, your Windows system might eventually run out of resources.

The overhead of using a graphic method seems to be large, but once you have
retrieved your device context and created and assigned your graphic objects,
it is easy to draw various graphic elements. When you run the program you
should also move another window onto the dialog. If you remove that
window again from the top of the dialog, your graphic disappears as
mentioned before. The next sample shows how to make graphics within an
owner-drawn button persistent. See Figure 43.

...

::class MyDialogClass subclass UserDialog

::method GraphicObject attribute

::method Init
ret = self∼init:super;
if ret = 0 then ret = self∼Load("Drawings.RC", 100)
self∼ConnectButton(11, "Circle")
self∼ConnectButton(12, "MyRectangle")
self∼GraphicObject = "NONE"
if ret = 0 then self∼ConnectDraw(10, "DrawIt")
self∼InitCode = ret
return ret

Figure 43. Making Graphics Persistent (DRAWING2.REX) (Part 1 of 4)

56 OODialog Method Reference

Figure 43 on page 56 shows not only the parts that were necessary to make
persistent graphics, but also how to write text into the device context with a
user-defined font. The two drawing methods of the previous sample have

::method DrawIt
if self∼GraphicObject = "NONE" then return 0
dc = self∼GetButtonDC(10)
if self∼GraphicObject = "CIRCLE" then do

size = 5
color = 1
x = 60

end; else do
size = 8
color = 2
x = 20

end;

Figure 43. Making Graphics Persistent (DRAWING2.REX) (Part 2 of 4)

pen = self∼CreatePen(size, "SOLID", color)
oldpen = self∼ObjectToDc(dc, pen)
font = self∼CreateFont("Arial", 24, "BOLD ITALIC")
oldfont = self∼FontToDC(dc, font)
self∼TransparentText(dc)
if self∼GraphicObject = "CIRCLE" then

self∼DrawArc(dc, 10, 10, 300, 200)
else

self∼Rectangle(dc, 10, 10, 320, 200)
self∼WriteDirect(dc,x,100,self∼GraphicObject)
self∼FontToDC(dc, oldfont)
self∼DeleteFont(font)
self∼ObjectToDc(dc, oldpen)
self∼DeleteObject(pen)
self∼OpaqueText(dc)
self∼FreeButtonDC(10, dc)
return 1

Figure 43. Making Graphics Persistent (DRAWING2.REX) (Part 3 of 4)

::method Circle
self∼GraphicObject = "CIRCLE"
self∼RedrawButton(10, 1)

::method MyRectangle
self∼GraphicObject = "RECTANGLE"
self∼RedrawButton(10, 1)

Figure 43. Making Graphics Persistent (DRAWING2.REX) (Part 4 of 4)

Chapter 3. Using a Dialog with Object REXX 57

been combined into one method. The methods Circle and MyRectangle that
handle the button events now only set the new attribute GraphicObject to
either “CIRCLE” or “RECTANGLE”.

The Init method contains two additional lines. The first one initializes
attribute GraphicObject to “NONE” and the second one connects method
DrawIt with the Windows message WM_DRAWITEM to get graphic
persistence. Message WM_DRAWITEM is automatically sent each time a
dialog item must be drawn or redrawn.

ConnectDraw expects two arguments. The first is the ID of the button that the
device context uses to draw the graphic, and the second is the name of the
method for processing the drawing instructions. If you omit the button ID, the
specified method is called for all owner-drawn buttons contained by the
current dialog. This means that, in this case, it makes no difference whether or
not the ID is specified because this dialog contains only one owner-drawn
button.

Method DrawIt manipulates the device context. It loads a user-defined font
into the device context of the button by calling FontToDC, which is similar to
ObjectToDC. The user-defined font was created using CreateFont. It also
displays text in the drawing area of the button using WriteDirect. FontToDC
returns the old font — like ObjectToDC. Load the old font back into the device
context after the write statements were processed. The counterpart to
CreateFont is DeleteFont which frees the Windows resource allocated by
calling CreateFont.

The TransparentText and OpaqueText methods used to set the text mode.
Figure 44 helps to clarify the difference between the two modes.

Figure 44. The Two Text Modes: Transparent and Opaque

58 OODialog Method Reference

Scrolling Text and Bitmaps

The ScrollInButton method displays a given text with a given font within an
owner-drawn button from right to left. Figure 45 shows how to use this
method.

The beginning of the program equals all previous examples. A signal handler
is installed and the instance is created and executed. The user-defined class
only overrides the Init method and defines one additional method. In Init, the
default values for the dialog data items are assigned (this is possible only
after Load is called because the attributes are automatically added to the
object within Load) and button 11 is connected to method Display. Method
Display calls GetData to retrieve the values from the dialog data item and
calls the ScrollInButton method to scroll the text stored in self∼text from
right to left within the owner-drawn button 10 in the font that is specified by
self∼fontname and self∼fontsize.

OODialog also allows you to move bitmaps within owner-drawn buttons. To
get more information on this topic, see “ScrollBitmapFromTo” on page 164 and
“DisplaceBitmap” on page 165 and look at the OODGRAPH.REX example in the
OODIALOG\SAMPLES directory. OODGRAPH.REX executes a dynamically created
dialog that was composed by calling UserDialog methods.

More about Event Handling

OODialog provides a list of methods that help handling dialog events or
dialog commands, such as ConnectButton and ConnectBitmapButton.

...

::class MyDialogClass subclass UserDialog

::method Init
ret = self∼init:super;
if ret = 0 then ret = self∼Load("Textscrl.RC", 100)
self∼fontname = "Arial"
self∼text = "This is a scrolling text demonstration"
self∼fontsize = 24
self∼ConnectButton(11, "Display")
self∼InitCode = ret
return ret

::method Display
self∼GetData
self∼ScrollInButton(10, self∼text, self∼fontname,,

self∼fontsize,"BOLD")

Figure 45. Scrolling Text from Right to Left (TEXTSCRL.REX)

Chapter 3. Using a Dialog with Object REXX 59

ConnectScrollBar can be used to catch the events of a scroll bar and route
them to different methods. Another way of catching scroll bar events is by
calling ConnectAllSBEvents which causes all scroll bar events to be routed to
one method. In this context it is also recommended to get familiar with
DetermineSBPosition and ConnectELwithSB. ConnectControl can be used to
catch events from any dialog control like a radio button, a combo box, or even
an entry field.

ConnectList catches the event of a list box. The corresponding method is
called each time the list selection changes.

ConnectListLeftDoubleClick can be used to catch the double-click event
within a list box, ConnectDraw catches the WM_DRAWITEM message. If you
need to catch any other event, you can use AddUserMsg to connect the
specified Windows message number with a class method. To use AddUserMsg
you must know the hexadecimal value of the message to be caught. You can
specify filters to determine whether the values of the WPARAM and LPARAM
arguments must be equal to the specified ones. Within the method that is
connected to all events, you can use the “Use Arg wParam lParam” statement
to retrieve the additional message values. As an example, you can connect
method DrawIt with an owner-drawn button. If method DrawIt is defined as
follows:

ID is set to the button ID that is to be drawn.

All other OODialog “Connect...” methods are to connect object attributes with
dialog data items.

Summary of User Dialog Processing

Figure 46 on page 61 describes in which way the methods of a UserDialog
object must be called to create and execute a Windows dialog.

...

::method DrawIt
use arg ID...

60 OODialog Method Reference

The first method called is Init. This is done automatically by the new class
method when an object is instantiated. Once the object has been created, the
user can choose (�A�) between defining the dialog manually – using the Create

Figure 46. How the Methods Work Together

Chapter 3. Using a Dialog with Object REXX 61

method – and loading the dialog from a resource script – using the Load
method. The choice is indicated by solid lines.

If you want to load the dialog from a resource script, the Load method first
calls LoadFrame and then LoadItems. LoadItems can also be used for a
CategoryDialog to load all dialog items from a dialog resource into a category
page. LoadFrame, however, calls Create, which means that choosing to load
the dialog ends in the same branch as choosing to define the dialog manually.

The Create method allocates memory for a dialog template to which the
dialog items can be added. The DefineDialog method (�B�), which is called by
Create, is the right place to add items to the dialog. If you choose to define
the dialog manually, UserDialog should be subclassed and all Add... messages
(AddText, AddEntryLine, AddButton) be placed into DefineDialog. The new
attributes are added to the OODialog object by LoadItems or the Add...
methods. Therefore, you can assign values to dialog items after DefineDialog
is executed. You can choose whether to send the Execute message or the
ExecuteAsync message after Create has been processed. At this time, no
Windows dialog exists, only a dialog template that contains all information
about the dialog’s appearance.

Once you send the Execute or ExecuteAsync message, the StartIt method is
called. Method Startit creates a real Windows dialog and calls InitDialog (�C�).
The InitDialog method is the right place to fill the combo boxes and list boxes
– using AddListEntry or AddComboEntry – and to invoke other methods that
deal with real dialog items (Windows objects) like SetItemFont, DisableItem,
or GetButtonDC. All Connect... methods, except the ConnectScrollBar and
ConnectAllSBEvents methods, can also be placed in this method, but the Init
method is the recommended place because these Connect... methods do not
deal with Windows objects.

However, ConnectScrollBar and ConnectAllSBEvents must be specified within
InitDialog because they deal with a real Windows object.

In the Execute and ExecuteAsync methods, the next method called is SetData
to transfer the data from the attributes – or the stem if given – to the
Windows dialog. This implies that modifying a dialog data item with a
method that directly deals with the dialog item like SetCurrentListIndex or
SetRadioButton within InitDialog is obsolete because the dialog items are reset
by SetData with the values that are either stored in the data stem or in the
corresponding object attributes.

After this, all the methods that were added by using AddAutoStartMethod are
executed asynchronously. This feature is for animated buttons. Next, the
dialog is displayed by sending Show (�D�).

62 OODialog Method Reference

At this point there is a difference between Execute and ExecuteAsync (�E�).
For Execute dialogs, the Run method is invoked next, to dispatch the
messages until the user closes the dialog. For ExecuteAsync dialogs the
AsyncMessageHandling message is started to handle the incoming messages
and dispatch them to the dialog object. Because this method is executed
asynchronously, ExecuteAsync returns while the dialog is still up.

In this way it is possible to let your Object REXX program continue
processing while the dialog is up and waiting for user interaction.

When the dialog is closed with OK (ID=1), the data is transferred from the
Windows dialog to the OODialog object through GetData, and the dialog is
removed from memory by StopIt. A second Execute is not possible. For
ExecuteAsync, EndAsyncExecution (�F�) must be called manually to wait
until the user closes the dialog and to transfer the data to the object.

After StopIt (�G�) was called, method Leaving (�H�) is invoked to allow you to
do any dialog post-processing. After StopIt is called, you can no longer use
methods that deal with Windows objects. But you still have access to the
attributes of the dialog object.

Chapter 3. Using a Dialog with Object REXX 63

64 OODialog Method Reference

Chapter 4. Other OODialog Classes

There is more than one way to execute your dialogs with OODialog. Until
now, the UserDialog and PlainUserDialog classes have been used, which are
required when the dialogs are stored in a resource script. In some of the
OODialog samples other classes are used that are briefly described in the
following sections.

The ResDialog Class

The ResDialog class is used when the dialogs are stored in a dynamic-link
library (DLL). If you save your resources as a .RES file in binary format,
which you can do with the Resource Workshop, you can link this file to a
DLL. Windows provides functions to load resources directly from a DLL, to
be used by the ResDialog class. The advantage of using DLL resources is that
they are faster. Because you can also store bitmaps in the DLL, you no longer
need to handle a large number of files, and your dialog resources are better
protected.

To link a binary resource file to a DLL, OODialog includes the IBM
VisualAge® C++ linker, ILINK. This linker lets you create a DLL from a RES
file. The linker must be executed within a command window. Here is the
syntax to invoke the linker:
ilink MyDialog.res /DLL -out:MyDialog.dll

This command creates MYDIALOG.DLL by converting the binary resource file
MYDIALOG.RES. To minimize the keystrokes, you can also use MAKEDLL.BAT,
which contains the same command. To create the same DLL, just enter
MAKEDLL MyDialog at the command prompt. The names of the DLL and the
binary resource file are the same, except for a different extension.

Whether you use binary resources stored in a DLL or resource scripts depends
on what you want to do. If your application uses dialogs with many bitmap
buttons, or if you use a lot of complex dialogs, it is better to store the
resources in a DLL so you have one file instead of many .BMP and .RC files.
If your application is not too big, resources stored in a DLL are easy to link
and modify. Note, however, that bitmaps stored in a DLL do not support
different color palettes. To support different color palettes, you must use
bitmap files.

The following list shows the differences between the UserDialog class and the
ResDialog:

© Copyright IBM Corp. 1997, 2001 65

v The Init method needs two additional arguments, the name of the DLL and
the ID of the dialog resource. For example, to instantiate a dialog object that
can execute dialog 100, which is stored in MYDLG.DLL, use the following
statement:
dlg = .ResDialog∼Init("MYDLG.DLL", 100)

v You must not call Load or Create.
v The DefineDialog method is not called.
v You can pass the resource ID of bitmaps stored in your DLL to

ConnectBitmapButton and ChangeBitmapButton instead of the file names
or bitmap handles.

All other methods of the ResDialog class are equal to those of the UserDialog
class.

The CategoryDialog Class

The CategoryDialog class is a subclass of the UserDialog class. It lets you use
more than one dialog within one window and is comparable to the OS/2®

notebook. Figure 47 on page 67 gives you an example.

66 OODialog Method Reference

The dialogs displayed are the four pages of the OOTICKET.REX sample in the
OODIALOG\SAMPLES directory. To move to a different page, select the
corresponding radio button. The dialog is split into three parts, which are
named head, body, and foot. Only the body must be defined by you, the head
and foot are created by OODialog itself. The Object REXX instructions to
execute this category dialog are shown in Figure 48.

Figure 47. A Category Dialog

...
dlg = .TicketDialog∼new(data.,,4,,"TOPLINE")
if dlg∼InitCode ¬= 0 then do; say "Init did not work"; exit; end

dlg∼createcenter(200, 180, "Come to the movies !")
dlg∼execute("SHOWTOP")

Figure 48. Execution of a Category Dialog

Chapter 4. Other OODialog Classes 67

The first line instantiates an object of TicketDialog, which is a subclass of the
CategoryDialog. The initialization data is passed to the dialog through the
stem data. The dialog consists of four categories and is of the style TOPLINE.

After InitCode has been checked, the dialog template (see “Summary of User
Dialog Processing” on page 60) is created by using CreateCenter. Using Create
or CreateCenter means that no resource script is used to retrieve the layout of
the dialog. This is why the size of the dialog must be passed to CreateCenter
in dialog units, not in screen pixels. The third argument of CreateCenter is the
title of the dialog. The dialog must be large enough to fit all the dialog pages,
including the head and the foot, which are added automatically.

The individual dialog pages can be defined dynamically or by using the
Resource Workshop. You cannot use the Resource Workshop to define the
category dialog itself. Figure 49 shows the layout of a CategoryDialog.

InitCategories is one of the CategoryDialog methods that must be overridden.
To use CategoryDialog you must subclass it. InitCategories is used to specify
which categories are used. The information must be assigned to the Object
REXX directory object catalog. The entry names in this directory must be
assigned to an array containing the names of the categories.

The DefineDialog method is called by Create to add dialog items to the dialog
template. You must define a dialog for each category. A method with the same
name as the category is called to define the particular dialog page.

For example, the Days method is called to define the dialog page that is
displayed when the Days radio button is selected. The Ticket method is called

::class TicketDialog subclass CategoryDialog

...

::method InitCategories
self∼catalog['names'] = .array∼of("Movies", "Cinemas", "Days", "Ticket")...

::method Days
self∼AddText(10,self∼SizeY - 65,0,0, "Please select the day you like most")
self∼AddRadioGroup(31, 5, 5,0, "&Monday &Tuesday &Wednesday",

"&Thursday &Friday &Saturday &Sunday")
self∼AddBlackRect(1, self∼SizeY -68, self∼SizeX -6, 14)
self∼AddBitmapButton(145, 73, 10, 125, 100, ,,"bmp\movie.bmp")

::method Ticket
self∼loaditems("ticket.rc")
self∼connectBitmapButton("", 45,"bmp\ticket.bmp",,,,"FRAME USEPAL")

Figure 49. Defining the Layout of a CategoryDialog

68 OODialog Method Reference

to define the Ticket page. This means that the define methods have the same
name as the category names that are added to the array in catalog['names'].

In the Days method the dialog items are added manually. The Add... methods
need the positions, in dialog units, where the dialog items are to be located.
These methods enable you to create dialogs without using the Resource
Workshop. Some of them add a whole group of items, which is much faster
than adding the items with the Resource Workshop.

If you look at the Ticket method, LoadItems is called with the name of a
resource script. Because the CategoryDialog is created with Create and the
pages contain only dialog items, it is not necessary to retrieve the dialog
frame, only the items of the dialog, which is done by LoadItems.

It is also possible to load items from a resource script and then manually add
more. Once you have defined your dialog pages, tasks such as creating the
dialog, switching the pages, and transferring the data, are handled by
OODialog. Data is handled in the same way as in the UserDialog class. Object
attributes are added to all data items. It is also possible to use a stem variable
to set or retrieve the dialog values. All data items of all pages are copied from
or into one stem.

To summarize, to use a CategoryDialog you must to subclass it, override
InitCategories with a method that creates an array containing the category
names and assign it to catalog['names']. In addition, you must define the
methods to load or add the dialog items to the pages using method names
that match the names stored in the array.

Because the dialog items are spread over more than one dialog, all of the
methods that must communicate with real Windows objects, such as GetValue,
SetValue, AddComboEntry and FindListEntry, must know on which page the
corresponding dialog is. Therefore you must use the CategoryDialog methods
and add the dialog page number starting with 1. Some of the CategoryDialog
methods are used in the next example.

Chapter 4. Other OODialog Classes 69

The methods have the same name as their equivalent in the UserDialog class
with the prefix Category added. The arguments are the same except that it is
also necessary to determine the page on which the dialog item is located.

When defining the resource scripts or the layout definition methods, ensure
that you do not use the same item ID twice. All methods that allow you to
manually add a group of dialog items expect a starting ID for the first item,
which is increased for each item. The other methods are the same as for the
UserDialog class.

...
::method InitDialog

expose films
self∼InitDialog:super
films = .array∼of("Disclosure","Bad Boys","Drop Zone","Twister",

,"Hair","Cinderella","True lies",
"Nasty guy in your bathroom","Grassmower")

do i = 1 to 9
self∼addCategoryListEntry(31, films[i], 1)

end
self∼addCategoryComboEntry(35,"Jack Nicholson" , 1)
self∼addCategoryComboEntry(35,"Jackie's Girls" , 1)
self∼addCategoryComboEntry(35,"Linda Moore" , 1)

self∼setCategoryStaticText(42, date(), 4)
self∼setCategoryStaticText(43, time(), 4)
self∼setCategoryStaticText(44, "Charlie's Suburb Barn Theatre", 4)...

Figure 50. Examples of CategoryDialog Methods (Part 1 of 2)

::method changePage
expose films
NewPage = self∼GetSelectedPage
if (NewPage = 4) then do

self∼ChangePage:super(NewPage)
self∼CategoryComboDrop(41, 4)
Lines = self∼getCategoryValue(31, 1)
do while Lines ¬= ''

parse var Lines Line Lines
self∼addCategoryComboEntry(41, films[Line] ,4)

end
self∼setCategoryComboLine(41, films[line] ,4)
end

else
self∼ChangePage:super(NewPage)

Figure 50. Examples of CategoryDialog Methods (Part 2 of 2)

70 OODialog Method Reference

Another sample to demonstrate the use of CategoryDialog is EM_CATEG.REX in
the OODIALOG\TUTORIAL directory. This example combines the employee input
dialog and the employee list dialog of the previous examples in one category
dialog. See Figure 51 for details.

dlg = .EmployeeDialog∼new(,,,,"TOPLINE WIZARD")
if dlg∼InitCode ¬= 0 then do; say "Dialog init did not work"; exit; end
dlg∼createcenter(280, 160, "Employee Dialog")...

::class EmployeeDialog subclass CategoryDialog...

::method InitDialog...
self∼AddCategoryComboEntry(22, "Munich", 1)...
self∼AddCategoryListEntry(23, "Business Manager", 1)...
self∼DisableCategoryItem(44, 1)
self∼SetCategoryListTabulators(101, 98, 198, 2)

Figure 51. Code Excerpt of EM_CATEG.REX (Part 1 of 6)

::method InitCategories
self∼catalog['names'] = .array∼of("Input", "List")

/* set the width of the button row at the bottom to 35 */
self∼catalog['page']['btnwidth'] = 35

/* change name of wizzard buttons,
default is &Backward and &Forward */

self∼catalog['page']['leftbtntext'] = "&Input"
self∼catalog['page']['rightbtntext'] = "&List"

Figure 51. Code Excerpt of EM_CATEG.REX (Part 2 of 6)

::method Input /* page 1 */
self∼loaditems("em_categ.rc", 100)
self∼ConnectButton(40, "Print")
self∼ConnectButton(42, "Add")

Figure 51. Code Excerpt of EM_CATEG.REX (Part 3 of 6)

Chapter 4. Other OODialog Classes 71

In the first line, the category dialog is instantiated with the TOPLINE and the
WIZARD options. CreateCenter is used to create a dialog in the given size and
center it on the screen. The third argument is the dialog caption.

::method List /* page 2 */
self∼loaditems("em_categ.rc", 101)

...

::method Add...
self∼Employees[self∼Emp_count]['NAME'] = self∼GetCategoryValue(21, 1)...
self∼EnableCategoryItem(44, 1)

Figure 51. Code Excerpt of EM_CATEG.REX (Part 4 of 6)

...

::method FillList
use arg id
do i = 1 to self∼Emp_count-1

if self∼Employees[i]['SEX'] = 1 then title = "Mr."; else title = "Ms."
addstring = title self∼Employees[i]['NAME']
addstring = addstring ¦¦"9"x ¦¦self∼Employees[i]['PROFESSION']
addstring = addstring ¦¦"9"x ¦¦self∼Employees[i]['CITY']
self∼AddCategoryListEntry(id, addstring, 2)

end

Figure 51. Code Excerpt of EM_CATEG.REX (Part 5 of 6)

::method PageHasChanged
NewPage = self∼CurrentCategory
if NewPage = 1 then do

self∼Emp_current = self∼GetCurrentCategoryListIndex(101, 2)
if self∼Emp_current > 0 then do

self∼SetSBPos(44, self∼Emp_current)
self∼Set

end
end
else do

self∼CategoryListDrop(101, 2)
self∼FillList(101)

end

Figure 51. Code Excerpt of EM_CATEG.REX (Part 6 of 6)

72 OODialog Method Reference

In the InitCategories method the category catalog is set. Two categories, Input
and List, are added and the page layout of the wizard dialog is modified.
Method Input is automatically called by CreateCenter to define the layout for
the first page and List is called to define the second page. Both methods call
LoadItems to load the items from the EM_CATEG.RC file. In Input, the two
buttons “Add” and “Print” are connected to the corresponding methods.
Method Print has not changed, while in the Add method GetCategoryValue
and EnableCategoryItem are called, where the second argument specifies the
category page. Method Set has changed such that SetCategoryValue is used.
Emp_Previous and Emp_Next have not changed.

Method FillList changed because AddCategoryListEntry must be used
instead of AddListEntry and the argument subdlg is no longer needed.

The last method, PageHasChanged is an overridden method that is
automatically called each time the category page has changed. In this method
the algorithm that is processed depends on the newly selected page. If page 2
is selected, the list must be created or refreshed. If page 1 is selected, the data
entry that is currently selected in the list is displayed in the input dialog.

Chapter 4. Other OODialog Classes 73

74 OODialog Method Reference

Chapter 5. Tokenizing OODialog Scripts

Larger REXX scripts should be tokenized to improve the performance. Make
sure that your GUI scripts using OODialog are tokenized as well. Otherwise,
the load time for your interactive programs can be very long. You can
tokenize your programs by using REXXC.EXE.

The required OODialog files are in the internal format to minimize the time
required to parse them. The SCRIPTS subdirectory contains the source scripts
to make some modifications. After you have changed the source files, you
must execute REXX BUILD to tokenize the modified source scripts. Notice that
you must not name your modified OODialog classes OODIALOG.CLS,
OODPLAIN.CLS, or OODWIN32.CLS.

BUILD.REX creates one file containing all the classes defined by the OODialog
source scripts.

© Copyright IBM Corp. 1997, 2001 75

76 OODialog Method Reference

Chapter 6. OODialog External Functions

OODialog provides the following callable functions that can be used in your
Object REXX programs.

InfoMessage
Displays an information message window:
call InfoMessage "some message text"
ret = InfoMessage("another text")

ErrorMessage
Displays an error message window:
call ErrorMessage "some error message text"
ret = ErrorMessage("another error message")

YesNoMessage
Displays a message and ask the user for a YES or NO answer:
ret = YesNoMessage("press Yes or No")
if ret=1 then /* this is yes */

GetScreenSize
Queries the monitor size in dialog units and pixels:
val = GetScreenSize()
parse var val dunitx dunity pixelx pixely

PlaySoundFile
Plays a sound file (.WAV):
call PlaySoundFile "d:\wav\sound.wav"
ret = PlaySoundFile("d:\wav\sound.wav","YES")

The optional second parameter YES plays the file asynchronously, that
is the program continues execution. See also the routine “Play” on
page 177.

PlaySoundFileInLoop
Plays a sound file (.WAV) continuously and asynchronously:
call PlaySoundFileInLoop "d:\wav\sound.wav"

StopSoundFile
Stops playing an asynchronous sound file (.WAV):
call StopSoundFile

© Copyright IBM Corp. 1997, 2001 77

GetFileNameWindow
Displays an Open File window:
file = GetFileNameWindow(filename,handle,filter,loadorsave,title,,

defExtension,multiSelect,sepChar)

Parameters (optional):

filename
A preselected name.

handle
The parent window handle.

filter
A file mask specification.

loadorsave
If you specify 1, which is the default, you get the file name for a
load operation. If you specify 0, you get the file name for a save
operation.

title
The window title. The default is “Open a File” or “Save File As”,
depending on what you specify for loadorsave.

defExtension
The default extension that is added if no extension was specified.
The default is TXT.

multiSelect
If you specify 1, you can select several files. In this case, loadorsave
must also be 1. The result is then path file1 file2 file3

If you specify 0 or omit this parameter, you get the selected file
name or an empty string when the Open File window is canceled.

sepChar
Specifies which character should be used for separating the file
names when multiSelect = 1.

This is needed for file names with blank characters. If this
argument is omitted, the separation character is a blank. If the
argument is specified, the returned path and file name uses this
separation character. For example, if you specify ″#″ as the
separation character, the return string might look as follows:
C:\WINNT#file with blank.ext#fileWithNoBlank.TXT

Example:
"Text files (*.txt)"¦¦'0'x¦¦"*.TXT"¦¦'0'x¦¦ ,
"All files (*.*)"¦¦'0'x¦¦"*.*"

78 OODialog Method Reference

SleepMS
Sleeps for a given time interval, in milliseconds:
call SleepMS(3000) /* 3 seconds */

WinTimer
Starts, stops, and waits for a windows timer:
tid = WinTimer("START",300) /* 0,3 seconds */
call WinTimer("WAIT,tid) /* wait... */
ret = WinTimer("STOP",tid) /* stop premature */

OODialog functions are registered automatically when the first dialog is
initialized. If no dialog has been created, register individual functions with:
call RxFuncAdd functionname, "OODialog", functionname

To register all OODialog functions:
call RxFuncAdd InstMMFuncs, "OODialog", InstMMFuncs
call InstMMFuncs

A more convenient way to call these functions is provided by the “Public
Routines” on page 176.

The standard dialog classes can also be executed as callable functions. These
functions are described with their respective classes in “Chapter 14. Standard
Dialog Classes and Functions” on page 293.

Chapter 6. OODialog External Functions 79

80 OODialog Method Reference

Part 2. OODialog Method Reference

The classes provided by OODialog form a hierarchy as shown in Figure 52.

Figure 52. The Hierarchy of OODialog Classes (Part 1 of 3)

© Copyright IBM Corp. 1997, 2001 81

The classes are:

PlainBaseDialog, BaseDialog
Base methods regardless of whether the dialog is implemented as a
binary resource, a script, or dynamically. PlainBaseDialog provides
limited functionality.

PlainUserDialog
Subclass of PlainBaseDialog used to create a dialog with all its control
elements or to execute a dialog stored in a resource script (.RC). This
class has limited functionality.

Figure 52. The Hierarchy of OODialog Classes (Part 2 of 3)

Figure 52. The Hierarchy of OODialog Classes (Part 3 of 3)

82 OODialog Method Reference

DynamicDialog, DialogExtensions, WindowBase, WindowExtensions
Internal mixin classes used to extend PlainBaseDialog,
PlainUserDialog, BaseDialog, UserDialog, and DialogControl. The
methods provided by these classes are not listed separately but are
listed in BaseDialog or UserDialog.

UserDialog
Subclass of BaseDialog used to create a dialog with all its control
elements, such as push buttons, check boxes, radio buttons, entry
lines, and list boxes.

ResDialog
Subclass of BaseDialog for dialogs within a binary (compiled) resource
file (.DLL).

CategoryDialog
Subclass of UserDialog used to create a dialog with several pages that
overlay each other.

TimedMessage
Class to show a message window for a defined duration.

InputBox
Class to dynamically define a dialog with a message, one entry line,
and two push buttons (OK, Cancel).

PasswordBox
Similar to InputBox, but keystrokes in the entry line are shown as
asterisks (*).

IntegerBox
Similar to InputBox, but only numeric data can be entered in the entry
line.

MultiInputBox
Similar to InputBox, but with multiple entry lines.

ListChoice
Class to dynamically define a dialog with a list box, where one line
can be selected and returned to the caller.

MultiListChoice
Similar to ListChoice, but more than one line can be selected and
returned to the caller.

CheckList
Class to dynamically define a dialog with a group of check boxes,
which can be selected and returned to the caller.

SingleSelection
Class to dynamically define a dialog with a group of radio buttons,
where one can be selected and returned.

Part 2. OODialog Method Reference 83

Dialog
Subclass of UserDialog for simple dialogs. You can change the default
dialog style from UserDialog to ResDialog.

AnimatedButton
Class to implement an animated button within a dialog.

DialogControl
Class to implement methods that are common to all dialogs and
dialog controls.

TreeControl
Class to implement a tree to display the list of items in a dialog in a
hierarchy.

ListControl
Class to implement a list view to display the items in a dialog as a
collection.

ProgressBar
Class to implement a progress indicator within a dialog.

SliderControl
Class to implement a slider or trackbar within a dialog.

TabControl
Class to implement tabs, which can be compared to dividers in a
notebook or labels in a file cabinet.

StaticControl
Class to query and modify static controls, such as static text, group
boxes, and frames.

EditControl
Class to query and modify edit controls, which are also called entry
lines.

ButtonControl
Class to implement push buttons within a dialog.

RadioButtonControl
Class to implement radio buttons within a dialog.

CheckBoxControl
Class to implement check boxes within a dialog.

ListBoxControl
Class to implement list boxes within a dialog.

ComboBoxControl
Class to implement a combo box, which combines a list box with an
edit control.

84 OODialog Method Reference

ScrollBarControl
Class to implement a scroll bar within a dialog.

PropertySheetControl
Class to implement a property sheet, which is similar to a category
dialog that spreads its dialog items over several pages (categories),
where the individual pages are controlled by a tab control instead of
radio buttons or combo box lists.

Part 2. OODialog Method Reference 85

86 OODialog Method Reference

Chapter 7. Definition of Terms
id The identification number of a dialog item. An ID is assigned by the

user the dialog item is created using the Resource Workshop or
dynamically. IDs 1, 2, and 9 are reserved for the OK, Cancel, and Help
push buttons. An ID can be either numerical (for example, 100) or
symbolic (for example, ″Bankaccount_Entry″).

handle
A unique reference to a Windows object assigned by the system. It can
be a reference to a dialog, a particular dialog item, or a graphic object
(pen, brush, font). Handles are required for certain methods; they can
be retrieved from the system when needed.

device context
Stores information about the graphic objects that are displayed, such
as bitmaps, lines, and pixels, and the tools used to display them, such
as pens, brushes, and fonts. A device context can be acquired for a
dialog or a button; it must be explicitly freed when the text or graphic
operations are completed.

pixel Individual addressable point within a window. VGA screens support
640 by 480 pixels, SVGA screens support higher resolutions, such as
800 by 600, 1024 by 768, 1280 by 1024, and 1600 by 1200. Pixel values
in a dialog start at the top left corner and include the window title
and border.

dialog unit
Used within dialog box templates to define the size and position of
the dialog box and its controls. There is a horizontal and a vertical
dialog base unit to convert width and height of dialog boxes and
controls from dialog units to pixels and vice versa. The value of these
base units depend on the screen resolution and the active system font;
they are stored in attributes of the UserDialog class.
xPixels = xDialogUnits * self∼FactorX

color Each color supported by the Windows operating system is assigned a
number. Sample color indexes are 0 (black), 1 (dark red), 2 (dark
green), 3 (dark yellow), 4 (dark blue), 5 (purple), 6 (blue grey), 7 (light
grey), 8 (pale green), 9 (light blue), 10 (white), 11 (grey), 12 (dark
grey), 13 (red), 14 (light green), 15 (yellow), 16 (blue), 17 (pink), 18
(turquoise).

© Copyright IBM Corp. 1997, 2001 87

color palette
An array that contains color values identifying the colors that can
currently be displayed or drawn on the output device.

Color palettes are used by devices that can generate many colors but
can only display or draw a subset of them at a time. For such devices,
Windows maintains a system palette to track and manage the current
colors of the device.

Applications do not have direct access to this system palette. Instead,
Windows associates a default palette with each device context.
Applications can use the colors in the default palette.

The default palette is an array of color values identifying the colors
that can be used with a device context by default. Windows associates
the default palette with a context whenever an application creates a
context for a device that supports color palettes. The default palette
ensures that colors are available for use by an application without any
further action. The default palette typically has 20 entries (colors), but
the exact number of entries can vary from device to device. The colors
in the default palette depend on the device. Display devices, for
example, often use the 16 standard colors of the VGA display and 4
other colors defined by Windows.

88 OODialog Method Reference

Chapter 8. BaseDialog Class

The BaseDialog class implements base methods for all dialogs regardless of
whether the dialog is implemented as a binary resource, a resource script, or
created dynamically. Binary (compiled) resources are stored in a DLL. A
dialog is created dynamically by using Add... methods. Dialogs that are
implemented using a resource script (.RC) are generated semi-dynamically.

BaseDialog is an abstract class. You cannot use it to execute a Windows dialog
but have to use one of its subclasses.

See the subclasses in “Chapter 10. UserDialog Class” on page 227 and
“Chapter 12. ResDialog Class” on page 269 for additional information.

Requires:
BaseDlg.cls is the source file of this class. Use the tokenized version
of OODialog, oodialog.cls, to shorten the dialog startup time.
::requires oodialog.cls

Attributes:
Instances of the BaseDialog class have the following attributes:

AutoDetect
Automatic data field detection on (=1, default) or off (=0). For
the UserDialog subclass the default is off and Connect...
methods or a resource script are usually used.

AutomaticMethods
A queue containing the methods that are started concurrently
before the execution of the dialog.

BkgBitmap
The handle to a bitmap that is displayed in the dialog’s
background.

BkgBrushBmp
The handle to a bitmap that is used to draw the dialog’s
background.

ConstDir
A directory containing the numerical values assigned to
symbolic IDs (#define-statements in the resource script).

DataConnection
A protected attribute to store connections between dialog
items and the attributes of the dialog instance.

© Copyright IBM Corp. 1997, 2001 89

DlgHandle
The handle to the dialog.

Finished
0 if dialog is executing, 1 if terminated with OK, and 2 if
canceled.

InitCode
The result of the Init method. If Init fails, its value is 1.

IsExtended
A protected attribute that is true (=1) if the graphics extension
is installed.

UseStem
A protected attribute that is true (=1) if a stem variable was
passed to Init.

Routines:
See “Public Routines” on page 176 for a description of the audio Play
routine.

Methods:
Instances of the BaseDialog class implement the methods listed in
Table 2.

Table 2. BaseDialog Instance Methods

Method... ...on page

AbsRect2LogRect 200

AddAttribute 124

AddAutoStartMethod 171

AddComboEntry 135

AddListEntry 142

AddUserMsg 122

AssignWindow 186

AsyncMessageHandling 106

AutoDetection 109

BackgroundBitmap 165

BackgroundColor 152

Cancel 134

CaptureMouse 207

Center 158

ChangeBitmapButton 162

90 OODialog Method Reference

Table 2. BaseDialog Instance Methods (continued)

Method... ...on page

ChangeComboEntry 139

ChangeListEntry 145

CheckMenuItem 175

Clear 197

ClearButtonRect 161

ClearMessages 107

ClearRect 161

ClearWindowRect 162

ClientToScreen 201

CombineELwithSB 149

ComboAddDirectory 139

ComboDrop 140

ConnectAllSBEvents 121

ConnectAnimatedButton 172

ConnectBitmapButton 112

ConnectButton 111

ConnectCheckBox 117

ConnectComboBox 117

ConnectControl 114

ConnectDraw 114

ConnectEntryLine 116

ConnectList 115

ConnectListBox 118

ConnectListLeftDoubleClick 115

ConnectMenuItem 174

ConnectMouseCapture 111

ConnectMove 110

ConnectMultiListBox 118

ConnectPosChanged 110

ConnectRadioButton 117

ConnectResize 109

ConnectScrollBar 119

Chapter 8. BaseDialog Class 91

Table 2. BaseDialog Instance Methods (continued)

Method... ...on page

CreateBrush 219

CreateFont 216

CreatePen 220

Cursor_AppStarting 205

Cursor_Arrow 205

Cursor_Cross 206

Cursor_No 206

CursorPos 203

Cursor_Wait 206

DeInstall 135

DeleteComboEntry 136

DeleteFont 217

DeleteListEntry 142

DeleteObject 221

DetermineSBPosition 149

Disable 191

DisableItem 153

DisableMenuItem 175

DisplaceBitmap 165

Display 192

Draw 197

DrawAngleArc 225

DrawArc 223

DrawBitmap 163

DrawButton 159

DrawLine 222

DrawPie 225

DrawPixel 223

Dump 180

Enable 190

EnableMenuItem 174

EnableItem 153

92 OODialog Method Reference

Table 2. BaseDialog Instance Methods (continued)

Method... ...on page

EndAsyncExecution 102

Execute 100

ExecuteAsync 101

FillDrawing 225

FindComboEntry 137

FindListEntry 143

FocusItem 152

FontColor 218

FontToDC 218

ForegroundWindow 194

FreeButtonDC 167

FreeDC 210

FreeWindowDC 167

Get 150

GetArcDirection 224

GetAttrib 131

GetBitmapSizeX 162

GetBitmapSizeY 163

GetBmpDisplacement 165

GetButtonDC 166

GetButtonRect 151

GetClientRect 189

GetCheckBox 130

GetComboEntry 137

GetComboItems 137

GetComboLine 129

GetCurrentComboIndex 138

GetCurrentListIndex 145

GetData 125

GetDataStem 133

GetDC 209

GetEntryLine 126

Chapter 8. BaseDialog Class 93

Table 2. BaseDialog Instance Methods (continued)

Method... ...on page

GetFocus 190

GetID 187

GetItem 151

GetListEntry 143

GetListItemHeight 144

GetListItems 144

GetListLine 127

GetListWidth 140

GetMenuItemState 176

GetMouseCapture 207

GetMultiList 128

GetPixel 223

GetPos 151

GetRadioButton 129

GetRect 187

GetSBPos 148

GetSBRange 147

GetSize 189

GetTextSize 215

GetValue 130

GetWindowDC 166

GetWindowRect 152

GrayMenuItem 175

HandleMessages 106

HScrollPos 202

Help 134

Hide 191

HideFast 191

HideItem 153

HideItemFast 154

HideWindow 154

HideWindowFast 155

94 OODialog Method Reference

Table 2. BaseDialog Instance Methods (continued)

Method... ...on page

Init 98

InitAutoDetection 108

InitDialog 98

IsMouseButtonDown 208

Leaving 135

InsertComboEntry 136

InsertListEntry 142

IsDialogActive 104

ItemTitle 126

ListAddDirectory 146

ListDrop 146

LoadBitmap 208

LogRect2AbsRect 199

Maximize 193

Minimize 193

Move 195

MoveItem 158

NoAutoDetection 108

ObjectToDC 220

OK 133

OpaqueText 212

PeekDialogMessage 107

Popup 102

PopupAsChild 103

Rectangle 221

Redraw 198

RedrawClient 199

RedrawButton 160

RedrawRect 159

RedrawWindow 156

RedrawWindowRect 160

ReleaseMouseCapture 207

Chapter 8. BaseDialog Class 95

Table 2. BaseDialog Instance Methods (continued)

Method... ...on page

RemoveBitmap 209

Resize 193

ResizeItem 157

RestoreCursorShape 204

Run 99

ScreenToClient 200

Scroll 201

ScrollBitmapFromTo 164

ScrollButton 170

ScrollInButton 170

ScrollText 168

SendMessageToItem 107

SetArcDirection 224

SetAttrib 132

SetCheckBox 130

SetComboLine 129

SetCursorPos 203

SetCurrentComboIndex 138

SetCurrentListIndex 145

SetData 125

SetDataStem 132

SetEntryLine 126

SetFocus 190

SetFont 216

SetHScrollPos 202

SetVScrollPos 203

SetItemFont 170

SetListColumnWidth 141

SetListItemHeight 144

SetListLine 127

SetListWidth 141

SetListTabulators 146

96 OODialog Method Reference

Table 2. BaseDialog Instance Methods (continued)

Method... ...on page

SetMenuItemRadio 176

SetMultiList 128

SetRadioButton 130

SetRect 188

SetSBPos 148

SetSBRange 147

SetStaticText 126

SetTitle 197

SetValue 131

SetWindowRect 155

SetWindowTitle 159

Show 105

ShowFast 191

ShowItem 154

ShowItemFast 154

ShowWindow 155

ShowWindowFast 155

StopIt 104

TiledBackgroundBitmap 164

Title 196

Title= 196

TransparentText 212

ToTheTop 105

UncheckMenuItem 175

Update 196

Validate 134

VScrollPos 202

Write 167

WriteDirect 212

WriteToButton 214

WriteToWindow 213

Chapter 8. BaseDialog Class 97

Preparing and Running the Dialog

This section presents the methods used to prepare and initialize a dialog,
show it, run it, and stop it.

Init

�� aBaseDialog∼Init(,Resource)
Library , DlgData.

��

The constructor of the class installs the necessary C functions for the Object
REXX API manager and prepares the dialog management for a new dialog.

Protected:
This method is protected. You cannot create an instance of BaseDialog.
You can only create instances of its subclasses.

Arguments:
The arguments are:

Library
The file name of a .DLL file. Pass an empty string if you do
not use binary resources.

Resource
The ID, or the symbolic name, of the dialog within the
resource file.

DlgData.
A stem variable (remember the period!) that contains
initialization data for the dialog. For example, if you assign
the string “Hello world” to DlgData.103, where 103 is the ID
of an entry field, it is initialized with this string. If the dialog
is terminated with OK, the data of the dialog is copied into
this stem variable.

Example:
The following example shows how the ResDialog class is
implemented, overriding the Init method. If your subclass overrides
the Init method, ensure that it calls the Init method of its superclass:
::class ResDialog subclass BaseDialog
::method Init

expose Library Resource DlgData.
use arg Library, Resource, DlgData.
return self∼init:super(Library, Resource, DlgData.)

InitDialog

98 OODialog Method Reference

�� aBaseDialog∼InitDialog ��

The InitDialog method is called after the Windows dialog has been created. It
is useful for setting data fields and initializing combo and list boxes. Do not
use Set... methods because the SetData method is executed automatically
afterwards and sets the values of all dialog items from the attributes.

Protected:
The method is designed to be overwritten in subclasses; it cannot be
called from outside the class.

Example:
The following example shows how to use InitDialog to initialize
dialog items; in this case a list box:
::class MyDialog subclass Userdialog
::method InitDialog

self∼InitDialog:super
AddListEntry(501, "this is the first line")
AddListEntry(501, "and this one the second")

Run

�� aBaseDialog∼Run ��

The Run method dispatches messages from the Windows dialog until the user
terminates the dialog by one of the following actions:
v Press the OK button (the push button with ID 1)
v Press the Cancel button (the push button with ID 2)
v Press the Enter key (if OK or Cancel is the default button)
v Press the Esc key

Protected:
Run is a protected method. You cannot call this method directly; it is
called by Execute.

Chapter 8. BaseDialog Class 99

Execute

��
DEFAULT

aBaseDialog∼Execute(" ")
NORMAL , icon
SHOWTOP
HIDE
MIN
MAX
INACTIVE

��

The Execute method creates the dialog, shows it (see “Show” on page 105),
starts automatic methods, and destroys the dialog. The data is passed to the
Windows dialog before execution and received from it after the dialog is
terminated.

Note: If another dialog has already been started in the same process, it is
disabled by Execute.

Arguments:
The arguments are:

show See “Show” on page 105.

icon The resource ID of the dialog’s icon.

Return value:

0 The dialog was not executed.

1 You terminated the method using the OK button.

2 You terminated the method using the Cancel button.

Example:
The following example instantiates a new dialog object (remember
that it is not possible to instantiate an object of the BaseDialog class),
creates a dialog template, and runs the dialog as the topmost window:
MyDialog = .UserDialog∼new(...)
MyDialog∼Create(...)
MyDialog∼Execute("SHOWTOP")

100 OODialog Method Reference

ExecuteAsync

�� aBaseDialog∼ExecuteAsync
(sleeptime

�

�
)

,
DEFAULT , icon

" NORMAL "
SHOWTOP
HIDE
MIN
MAX
INACTIVE

��

The ExecuteAsync method does the same as Execute, except that it dispatches
messages asynchronously. Therefore the ExecuteAsync method returns
immediately after the dialog has been started.

Arguments:
The arguments are:

sleeptime
The time slice, in milliseconds, until the next message is
processed.

show See “Show” on page 105.

icon The resource ID of the dialog’s icon.

Return value:

0 The dialog was started.

1 An error occurred. Do not call the EndAsyncExecution
method in this case.

Example:
The following example starts a dialog and runs the statements
between ExecuteAsync and EndAsyncExecution asynchronously to the
dialog:
ret = MyDialog∼ExecuteAsync(1000, "SHOWTOP")
if ret = 0 then do

...
/* Object REXX statements to run while the dialog is executing */
...
MyDialog∼EndAsyncExecution
end

else call ErrorMessage("Could not start dialog")

Chapter 8. BaseDialog Class 101

EndAsyncExecution

�� aBaseDialog∼EndAsyncExecution ��

The EndAsyncExecution method is used to complete the asynchronous
execution of a dialog. It does not terminate the dialog but waits until the user
terminates it.

Return value:

0 The dialog was not executed.

1 The dialog was terminated using the OK button.

2 The dialog was terminated using the Cancel button.

Example:
See the example in “ExecuteAsync” on page 101.

Popup

��
DEFAULT

aBaseDialog∼Popup(" ")
NORMAL ,
SHOWTOP sleeptime , icon
HIDE
MIN
MAX
INACTIVE

��

The Popup method starts a dialog, dispatches messages asynchronously, and
returns immediately after the dialog is started.

A dialog started with Popup is independent of any other dialog. This means
that a dialog already started in the same process is not disabled by Popup.
You can therefore use Popup to produce nonmodal dialogs.

Arguments:
The arguments are:

show See “Show” on page 105.

sleeptime
The time, in milliseconds, until the next message is processed.

icon The resource ID of the dialog’s icon.

Return value:
This method does not return a value.

102 OODialog Method Reference

Example:
The following example starts a dialog and runs the statements after
Popup asynchronously to the dialog. This means that the dialog reacts
to an event like pressing a button and calls the connected method
while the DO loop is being processed:
MyDialog∼Popup("SHOWTOP", 250)
do i = 1 to 1000

say "Iteration" i
call SleepMs 100

end

This example could also be part of a method handling an event of a
dialog, for example dialog A. The newly started dialog MyDialog is
independent of dialog A. If dialog A is closed, MyDialog remains
unaffected and active.

PopupAsChild

��
DEFAULT

aBaseDialog∼PopupAsChild(parent , " "
NORMAL
SHOWTOP
HIDE
MIN
MAX
INACTIVE

�

�)
,

sleeptime , icon

��

The PopupAsChild method starts a dialog as a child dialog of another dialog,
dispatches messages asynchronously, and returns immediately after the dialog
is started.

A dialog started with PopupAsChild and its parent dialog can be active at the
same time. This means that the parent dialog is not disabled by the child
dialog. You can therefore use PopupAsChild to produce nonmodal dialogs.
However, the child dialog is automatically terminated when the parent dialog
is closed.

Arguments:
The arguments are:

parent An object of the PlainBaseDialog class or one of its
descendants that is the parent of the newly started dialog.

show See “Show” on page 105.

Chapter 8. BaseDialog Class 103

sleeptime
The time, in milliseconds, until the next message is processed.

icon The resource ID of the dialog’s icon.

Return value:
This method does not return a value.

Example:
The following example starts a dialog and runs the statements after
PopupAsChild asynchronously to the dialog. This means that the
dialog reacts to an event like pressing a button and calls the
connected method while the DO loop is being processed. The new
dialog is started as a child of MyParent and is therefore closed when
the MyParent dialog is closed:
MyParent = .UserDialog∼new
...
MyParent∼Popup("SHOWTOP")
...
MyDialog∼PopupAsChild(MyParent, "SHOWTOP", 250)
do i = 1 to 1000

say "Iteration" i
call SleepMs 100
if i = 800 then MyParent∼Finished = 1 /* close both dialogs when i = 800 */

end

This example could also be part of a method handling an event of a
dialog, for example dialog A. The newly started dialog MyDialog is
independent of dialog A. If dialog A is closed, MyDialog remains
unaffected and active.

IsDialogActive

�� aBaseDialog∼IsDialogActive ��

The IsDialogActive method returns 1 if the Windows dialog still exists.

Example:
The following example tests whether the dialog is active:
if MyDialog∼IsDialogActive then ...

StopIt

�� aBaseDialog∼StopIt ��

The StopIt method removes the Windows dialog from the memory. It is called
by Execute, after the user terminates the dialog.

104 OODialog Method Reference

Protected:
This method is protected and for internal use only.

Show

��
DEFAULT

aBaseDialog∼Show(" ")
NORMAL
SHOWTOP
HIDE
MIN
MAX
INACTIVE

��

The Show method shows the dialog; it is usually called by Execute or
ExecuteAsync.

Argument:
The argument must be one of the following:

DEFAULT
Makes the dialog visible with the default window size. This is
the default.

NORMAL
Same as default.

SHOWTOP
Makes the dialog the topmost dialog.

HIDE Makes the dialog invisible.

MIN Minimizes the dialog.

MAX Maximizes the dialog.

INACTIVE
Deactivates the dialog.

Example:
The following statement hides the dialog:
MyDialog∼Show("HIDE")

ToTheTop

�� aBaseDialog∼ToTheTop ��

The ToTheTop method makes the dialog the topmost dialog.

Chapter 8. BaseDialog Class 105

Example:
The following example uses the ToTheTop method to make the user
aware of an alarm event:
aDialog = .MyDialog∼new
msg = .Message∼new(aDialog, 'Remind')
a = .Alarm∼new('17:30:00', msg)

::class MyDialog subclass UserDialog...
::method Remind

self∼SetStaticText(102, "Don't forget to go home!")
self∼ToTheTop

Note: The Message and Alarm classes are built-in classes of Object
REXX. See the Object REXX for Windows: Reference for further
information.

HandleMessages

�� aBaseDialog∼HandleMessages ��

The HandleMessages method handles dialog messages synchronously. It is
called by Execute. HandleMessages is a dispatcher that receives Windows
events and posts the message that is set to handle the event.

AsyncMessageHandling

�� aBaseDialog∼AsyncMessageHandling(sleeptime) ��

The AsyncMessageHandling method starts the asynchronous handling of dialog
messages. It is invoked automatically by ExecuteAsync with the Start method
of the Object class. A message in this context is the name of an object method
that is processed whenever the corresponding event occurs. You can set the
messages that should be sent by using Connect... methods (see page 107).

Protected:
This method is protected and for internal use only.

Arguments:
The only argument is:

sleeptime
The time slice, in milliseconds, unitl the next message is
processed.

106 OODialog Method Reference

PeekDialogMessage

�� aBaseDialog∼PeekDialogMessage ��

The PeekDialogMessage method returns the first pending message of the
dialog’s message queue without removing it from the message queue.

Return value:
The first pending message or an empty string.

ClearMessages

�� aBaseDialog∼ClearMessages ��

The ClearMessages method clears all pending dialog messages.

SendMessageToItem

�� aBaseDialog∼SendMessageToItem(id , msg , wp , lp) ��

The SendMessageToItem method sends a Windows message to a dialog item. It
is used to influence the behavior of dialog items.

Arguments:
The arguments are:

id The ID of the dialog item.

msg The Windows message (you need a Windows SDK to look up
these numbers).

wp The first message parameter (wParam).

lp The second message parameter (lParam).

Example:
The following example sets the marker to radio button 9001:
MyDialog∼SendMessageToItem(9001, "0x000000F1", 1, 0)

Connect Methods

The following methods create a connection between a dialog control and an
Object REXX attribute or method. The behavior of the connections differ with
the dialog control.
v For push buttons you connect a method to the button. The connected

method is called each time the button is pressed.

Chapter 8. BaseDialog Class 107

v For data items, such as an entry line, list box, or combo box, an attribute is
created and added to the dialog object. The attribute is used as an interface
to the data of the entry line, list box, or combo box.

v Check boxes and radio buttons are also data items and are therefore
connected to an attribute. The only valid values for these attributes are 1 for
selected and 0 for not selected.

v List boxes, multiple list boxes, and combo boxes can also be connected to a
method that is called each time a line in the box is selected.

v For a scroll bar you can specify different methods that are called depending
on the user action. The user can click on the arrow buttons, drag the
thumb, or use direction keys.

In a UserDialog the Connect... methods are called automatically from the Add...
methods. The proper place for Connect... methods is the InitDialog method.

Note: The method name that is to be sent when the specified event occurs
must be less than 256 characters.

InitAutoDetection

�� aBaseDialog∼InitAutoDetection ��

The InitAutoDetection method is called by the Init method to change the
default setting for the automatic data field detection.

Automatic data field detection means that for every dialog data item a
corresponding Object REXX attribute is created automatically. If you disable
automatic detection, you have to use the Connect... methods to assign a dialog
item to an Object REXX attribute.

Protected:
This method is protected. You can override this method within your
subclass to change the standard behavior.

Example:
The following example overrides the method to switch off auto
detection:
::class MyDialog subclass UserDialog
::method InitAutoDetection

self∼NoAutoDetection

NoAutoDetection

�� aBaseDialog∼NoAutoDetection ��

108 OODialog Method Reference

The NoAutoDetection method switches off auto detection.

AutoDetection

�� aBaseDialog∼AutoDetection ��

The AutoDetection method switches on auto detection.

ConnectResize

�� aBaseDialog∼ConnectResize(msgToRaise) ��

The ConnectResize method connects a dialog resize event with a method. It is
called each time the size of the dialog is changed.

Arguments:
The only argument is:

msgToRaise
The message that is to be sent each time the dialog is resized.
Provide a method with a matching name.

Return value:
This method does not return a value.

Example:
::class MyDlgClass subclass UserDialog

::method Init
selfinit:super(...)
selfConnectResize("OnSize")

::method OnSize
use arg dummy, sizeinfo /* sizeinfo contains information about the

new width and height */
msg = self∼PeekDialogMessage
if msg∼left(6) = "ONSIZE" then return /* not the last size

event message */
w = binaryand(data, "0x0000FFFF") / self∼FactorX
h = binaryand(data, "0xFFFF0000") % X2D("FFFF") / self∼FactorY
say "New width=" w ", new height=" h

Note: Connections are usually placed in the Init or InitDialog method. If both
methods are defined, use Init as the place for this connection – but not
before init:super has been called.

Chapter 8. BaseDialog Class 109

ConnectMove

�� aBaseDialog∼ConnectMove(msgToRaise) ��

The ConnectMove method connects a dialog move event with a method. It is
called each time the position of the dialog is changed.

Arguments:
The only argument is:

msgToRaise
The message that is to be sent each time the dialog is moved.
Provide a method with a matching name.

Return value:
This method does not return a value.

Example:
::class MyDlgClass subclass UserDialog

::method Init
selfinit:super(...)
selfConnectResize("OnMove")

::method OnMove
use arg dummy, posinfo /* posinfo contains information

about the new position */
msg = self∼PeekDialogMessage
if msg∼left(6) = "ONMOVE" then return /* not the last move

event message */
w = binaryand(data, "0x0000FFFF") / self∼FactorX
h = binaryand(data, "0xFFFF0000") % X2D("FFFF") / self∼FactorY
say "New x=" x ", new y=" y

Note: Connections are usually placed in the Init or InitDialog method. If both
methods are defined, use Init as the place for this connection – but not
before init:super has been called.

ConnectPosChanged

�� aBaseDialog∼ConnectPosChanged(msgToRaise) ��

The ConnectPosChanged method connects a change regarding the dialog
coordinates with a method. It is called each time the size, position, or place in
the Z order of the dialog is changed.

Arguments:
The only argument is:

110 OODialog Method Reference

msgToRaise
The message that is to be sent each time the coordinates of the
dialog are changed. Provide a method with a matching name.

Return value:
This method does not return a value.

Example:
::class MyDlgClass subclass UserDialog

::method Init
self∼init:super(...)
self∼ConnectPosChanged("OnNewPos")

::method OnNewPos
say "The new rectangle is" self∼GetWindowRect(self∼DlgHandle)

Note: Connections are usually placed in the Init or InitDialog method. If both
methods are defined, use Init as the place for this connection – but not
before init:super has been called.

ConnectMouseCapture

�� aBaseDialog∼ConnectMouseCapture(msgToRaise) ��

The ConnectMouseCapture method connects a method with the
lose-mouse-capture event. It is called each time the dialog loses the mouse
capture. This can happen, for example, when you move a dialog with the
mouse and release the left mouse button.

Arguments:
The only argument is:

msgToRaise
The message that is to be sent each time the mouse capture is
lost in the dialog. Provide a method with a matching name.

Return value:
This method does not return a value.

ConnectButton

�� aBaseDialog∼ConnectButton(id
, msgToRaise

) ��

The ConnectButton method connects a push button with a method.

Chapter 8. BaseDialog Class 111

Arguments:
The arguments are:

id The ID of the dialog element.

msgToRaise
The message that is sent each time the button is clicked. You
should provide a method with the matching name.

Return value:

−1 The specified symbolic ID could not be resolved.

0 No error.

Example:
::class MyDlgClass subclass UserDialog

::method Init
self∼init:super(...)
self∼ConnectButton(203, "SayHello")

::method SayHello
say "Hello"

Note: Connections are usually placed in the Init or InitDialog method. If both
methods are defined, use Init as the place for this connection – but not
before init:super has been called.

ConnectBitmapButton

�� aBaseDialog∼ConnectBitmapButton(id, ,bmpNormal
msgToRaise

�

�)
, bmpFocused

, bmpSelected
, bmpDisabled

, styleOptions

��

The ConnectBitmapButton method connects a bitmap and a method with a
push button. The given bitmaps are displayed instead of a Windows push
button.

Arguments:
The arguments are:

id The ID of the button.

msgToRaise
The message that is to be sent to this object when the button
is clicked.

112 OODialog Method Reference

bmpNormal
The name (alphanumeric), resource ID (numeric), or handle
(INMEMORY option) of a bitmap file. This bitmap is
displayed when the button is not selected, not focused, and
not disabled. It is used for the other button states in case the
other arguments are omitted.

bmpFocused
This bitmap is displayed when the button is focused. The
focused button is activated when the Enter key is pressed.

bmpSelected
This bitmap is displayed while the button is clicked and held.

bmpDisabled
This bitmap is displayed when the button is disabled.

styleOptions
One of the following keywords:

FRAME
Draws a frame around the button. When using this
option, the bitmap button behaves like a normal
Windows button, except that a bitmap is shown
instead of a text.

USEPAL
Stores the colors of the bitmap file as the system color
palette. This option is needed when the bitmap was
created with a palette other than the default Windows
color palette. Use it for one button only, because only
one color palette can be active at any time. USEPAL is
invalid for a bitmap loaded from a DLL.

INMEMORY
This option must be used if the named bitmaps are
already loaded into memory by using the LoadBitmap
method. In this case, bmpNormal, bmpFocused,
bmpSelected, and bmpDisabled specify a bitmap handle
instead of a file.

STRETCH
If this option is specified and the extent of the bitmap
is smaller than the extent of the button rectangle, the
bitmap is adapted to match the extent of the button.
STRETCH has no effect for bitmaps loaded through a
DLL.

Return value:

−1 The specified symbolic ID could not be resolved.

Chapter 8. BaseDialog Class 113

0 No error.

Example:
The following example connects a button with four bitmaps and a
method:

...
::method InitDialog

self∼ConnectBitmapButton(204, "BmpButtonClicked",,
"AddBut_n.bmp", "AddBut_f.bmp",,
"AddBut_s.bmp", "AddBut_d.bmp", "FRAME")

::method BmpButtonClicked...

See also method “ChangeBitmapButton” on page 162.

ConnectControl

�� aBaseDialog∼ConnectControl(id
, msgToRaise

) ��

The ConnectControl method connects a dialog control with a method.

Arguments:
The arguments are:

id The ID of the dialog element.

msgToRaise
The message that is to be sent each time the button is clicked.
Provide a method with the matching name.

Return value:

−1 The specified symbolic ID could not be resolved.

0 No error.

ConnectDraw

�� aBaseDialog∼ConnectDraw(id)
, msgToRaise

��

The ConnectDraw method connects the WM_DRAWITEM event with a
method. A WM_DRAWITEM message is sent for owner-drawn buttons each
time they are to be redrawn.

Arguments:
The arguments are:

114 OODialog Method Reference

id The ID of the dialog control. If the ID is omitted, all drawing
events of all owner-drawn buttons are routed to the method.

msgToRaise
The message that is to be sent each time the WM_DRAWITEM
event occurs. Provide a method with the matching name. You
can use USE ARG ID to retrieve the ID of the item that is to be
redrawn.

Return value:

−1 The specified symbolic ID could not be resolved.

0 No error.

ConnectList

�� aBaseDialog∼ConnectList(id
, msgToRaise

) ��

The ConnectList method connects a list box, multiple list box, or combo box
with a method. The method is called each time the user selects a new item
from the list.

Arguments:
The arguments are:

id The ID of the dialog element.

msgToRaise
The message that is to be sent each time the button is pressed.
Provide a method with the matching name.

Return value:

−1 The specified symbolic ID could not be resolved.

0 No error.

ConnectListLeftDoubleClick

�� aBaseDialog∼ConnectListLeftDoubleClick(id , msgToRaise) ��

The ConnectListLeftDoubleClick method combines a left double-click within the
list box with a method.

Arguments:
The arguments are:

id The ID of the list box.

Chapter 8. BaseDialog Class 115

msgToRaise
The name of the method that is to be called.

Return value:

−1 The specified symbolic ID could not be resolved.

0 No error.

ConnectEntryLine

�� aBaseDialog∼ConnectEntryLine(id)
, attributeName

��

The ConnectEntryLine method creates a new attribute and connects it to the
entry line id. The attribute has to be synchronized with the entry line
manually. This can be done globally with the SetData and GetData methods
(see page 125), or for only one item with the SetEntryLine and GetEntryLine
methods (see page 126). It is done automatically by Execute when the dialog
starts and after it terminates. If AutoDetection is enabled, or if the dialog is
created dynamically (manually or based on a resource script), you do not
have to use this method or any other Connect... methods that deal with dialog
controls).

Arguments:
The arguments are:

id The ID of the entry field you want to connect.

attributeName
An unused valid REXX symbol because an attribute with
exactly this name is added to the dialog object with this
method. Blank spaces, ampersands (&), and colons (:) are
removed from the attributeName. If this argument is omitted, is
not valid, or already exists, and the ID is numeric, an attribute
with the name DATAid is used, where id is the value of the
first argument.

Return value:

−1 The specified symbolic ID could not be resolved.

0 No error.

Example:
In the following example, the entry line with ID 202 is associated with
the attribute Name. "Put your name here!" is assigned to the newly
created attribute. Then the dialog is executed. After the dialog has
terminated, the data of the entry line, which the user might have
changed, is copied back to the attribute Name.

116 OODialog Method Reference

MyDialog∼ConnectEntryLine(202, "Name")
MyDialog∼Name="Put your name here!"
MyDialog∼Execute("SHOWTOP")
say MyDialog∼Name

ConnectComboBox

�� aBaseDialog∼ConnectComboBox(id
,

attributeName , "LIST"

) ��

The ConnectComboBox method creates an attribute and connects it to a combo
box. The value of the combo box, that is, the text in the entry line or the
selected list item, is associated with this attribute. See “ConnectEntryLine” on
page 116 for a more detailed description.

If the combo box is of type "Drop down list", you must specify "LIST" to
connect an attribute with the combo box.

Return value:

−1 The specified symbolic ID could not be resolved.

0 No error.

ConnectCheckBox

�� aBaseDialog∼ConnectCheckBox(id
, attributeName

) ��

The ConnectCheckBox method connects a check box control to a newly created
attribute. A check box attribute has only two valid values: 1 if the box has a
check mark, and 0 if it has not. See “ConnectEntryLine” on page 116 for a
more detailed description.

Return value:

−1 The specified symbolic ID could not be resolved.

0 No error.

ConnectRadioButton

�� aBaseDialog∼ConnectRadioButton(id
, attributeName

) ��

Chapter 8. BaseDialog Class 117

The ConnectRadioButton method connects a radio button control to a newly
created attribute. A radio button attribute has only two valid values: 1 if the
radio button is marked and 0 if it is not. See “ConnectEntryLine” on page 116
for a more detailed description.

Return value:

−1 The specified symbolic ID could not be resolved.

0 No error.

ConnectListBox

�� aBaseDialog∼ConnectListBox(id
, attributeName

) ��

The ConnectListBox method connects a list box to a newly created attribute.
The value of the attribute is the number of the selected line. Therefore, if the
attribute value is 3, the third line is currently selected or will be selected,
depending on whether you set data to the dialog or receive it. See
“ConnectEntryLine” on page 116 for a more detailed description.

Return value:

−1 The specified symbolic ID could not be resolved.

0 No error.

ConnectMultiListBox

�� aBaseDialog∼ConnectMultiListBox(id
, attributeName

) ��

The ConnectMultiListBox method connects a list box to a newly created
attribute. The list box has the multiple-selection style enabled (by setting the
MULTI option when adding this list box), that is, you can select more than
one item at the same time. The value of the attribute is a string containing the
numbers of the selected lines. The numbers are separated by blank spaces.
Therefore, if the attribute value is 3 5 6, the third, fifth, and sixth item are
currently selected, or will be selected if SetData is executed. See
“ConnectEntryLine” on page 116 for a more detailed description.

Return value:

−1 The specified symbolic ID could not be resolved.

0 No error.

118 OODialog Method Reference

Example:
The following example defines a list box with the name of the four
seasons. It then preselects the items Summer and Winter. After
execution of the dialog, it parses the value of the attribute.
MyDialog = .ResDialog∼new(...)
MyDialog∼NoAutoDetection
MyDialog∼AddListBox(205, ..., "MULTI")
MyDialog∼ConnectMultiListBox(205, "ListBox")
seasons.1="Spring"
seasons.2="Summer"
seasons.3="Autumn"
seasons.4="Winter"
do season over seasons

MyDialog∼AddListEntry(205, season)
end
MyDialog∼ListBox="2 4"
MyDialog∼Execute("SHOWTOP")
selItems = MyDialog∼ListBox
do until anItem =""

parse var selItems anItem selItems
say "You selected: "seasons.anItem

end

ConnectScrollBar

�� aBaseDialog∼ConnectScrollBar(id , msgWhenUp , msgWhenDown �

�
,

msgWhenDrag ,
min ,

max ,
pos

�

�

,
progpgup ,

progpgdn ,
progtop

�

Chapter 8. BaseDialog Class 119

�

,
progbuttom

�

�

,
progtrack , progendsc

�

�) ��

The ConnectScrollBar method initializes and connects a scroll bar to an Object
REXX object. Use this method in the InitDialog method.

Protected:
This method is protected.

Arguments:
The arguments are:

id The ID of the scroll bar.

msgWhenUp
The method that is called each time the scroll bar is
incremented.

msgWhenDown
The method that is called each time the scroll bar is
decremented.

msgWhenDrag
The method that is called each time the scroll bar is dragged
with the mouse.

min, max
The minimum and maximum values for the scroll bar.

120 OODialog Method Reference

pos The current or preselected value.

progpgup
The method that is called each time the scroll bar is focused
and the PgUp key is pressed.

progpgdn
The method that is called each time the scroll bar is focused
and the PgDn key is pressed.

progtop
The method that is called each time the scroll bar is focused
and the Home key is pressed.

progbottom
The method that is called each time the scroll bar is focused
and the End key is pressed.

progtrack
The method that is called each time the scroll box is dragged.

progendsc
The method that is called each time the scroll box is released
after the dragging.

Return value:

−1 The specified symbolic ID could not be resolved.

0 No error.

Example:
In the following example, scroll bar 255 is connected to three methods
and initialized with 1 as the minimum, 20 as the maximum, and 6 as
the current value:
::class MyDialog subclass UserDialog...
::method DefineDialog
self∼ConnectScrollBar(255,"Increase","Decrease","Drag",1,20,6)...
::method Increase...
::method Decrease...
::method Drag...
/* see CombineElWithSB below for continuation */

ConnectAllSBEvents

�� aBaseDialog∼ConnectAllSBEvents(id , Prog �

Chapter 8. BaseDialog Class 121

�)
,

min ,
max , pos

��

Connects all scroll bar events to one method.

Protected:
This method is protected.

Arguments:
The arguments are:

id The ID of the scroll bar

Prog The method that is called for all events sent by the scroll bar.

min, max
The minimum and maximum values for the scroll bar.

pos The current or preselected value.

Return value:

−1 The specified symbolic ID could not be resolved.

0 No error.

AddUserMsg

�� aBaseDialog∼AddUserMsg(msgToRaise , msgWindows �

�
, filt1

, wParam
, filt2

, lParam
, filt3

) ��

The AddUserMsg method connects a Windows message with an Object REXX
method. This message is designed to be used by Windows programmers who
are familiar with the Windows API.

You have to pass the Windows message ID and the two message parameters
(wParam and lParam) to specify the exact event you want to catch. In addition,
you can specify filters for each parameter. Filters are useful for catching more
than one message or one parameter with one method.

122 OODialog Method Reference

Protected:
This method is protected. You can use it only within the scope of the
BaseDialog class or its subclasses.

Arguments:
The arguments are:

msgToRaise
The message that is to be sent to the Object REXX dialog
object each time the specified Windows message is caught.
Provide a method with the same name. The maximum size for
a message is limited to 256 characters.

msgWindows
The message in the Windows environment that is to be
caught.

filt1 This filter is used to binary AND the incoming Windows
message.

wParam
This is the first parameter that must be passed with the
Windows message.

filt2 This filter is used to binary AND the wParam argument.

lParam
This is the second message parameter.

filt3 This is the filter for lParam.

Example:
The following example shows an implementation of the ConnectList
method:
::class BaseDialog...
::method ConnectList

use arg msgToRaise, id
self∼AddUserMsg(msgToRaise, '0x00000111', '0xFFFFFFFF',,

'0x0001'||id∼d2x(4), '0xFFFFFFFF', 0, 0)

Assume that this method is called with ID=254 and
msgToRaise="ListChanged". After the ConnectList is executed, the
ListChanged message is sent to the Object REXX dialog object if the
following conditions are true:
v Message "0x00000111" (WM_COMMAND) is generated by Windows

in answer to an event (for example, a button is clicked or a list has
changed). The filter "0xFFFFFFFF" ensures that only that message is
caught; if the filter were "0xFFFFEFFF", the message "0x00001111"
would be caught as well.

Chapter 8. BaseDialog Class 123

v The first message parameter is "0x000100FF". The first part,
"0x0001", specifies the event, and the second part, "0x00FE" (equals
decimal 254), specifies the dialog control where the event occurred.
By using another filter it is possible to make more than one event a
trigger for the ListChanged method; for example, filter "0xFFFFFFFE"
would ignore the last bit of the ID, and this the same event for
dialog item 255 would call ListChanged as well.

v The second message parameter and its filter are ignored.

The following example invokes a user-defined method DoubleClick
each time the left mouse button is double-clicked:
self∼AddUserMsg('DoubleCick','0x00000203','0xFFFFFFFF',0,0,0,0)

AddAttribute

�� aBaseDialog∼AddAttribute(id
, attributeName

) ��

The AddAttribute method adds an attribute to the dialog object. The attribute
is associated with the dialog control id.

Protected:
This method is for internal use only.

Arguments:
The arguments are:

id The ID of the dialog control.

attributeName
The name you want to give to the attribute. This name must
comply with the conventions of Object REXX for valid
symbols. AddAttribute checks whether the argument is valid.
In case of an invalid argument, an attribute with the name
DATAid is created, where id is the value of the first argument.
This method automatically removes blanks, ampersands (&),
and colons (:).

Example:
The first and second lines generate the attributes Add and List all
items. The third line generates the assembled attribute DATA34 because
ListALLitems already exists. The fourth line creates attribute DATA35
because Update+Refresh is not a valid symbol name.
self∼AddAttribute(32, "&Add")
self∼AddAttribute(33, "List all items")
self∼AddAttribute(34, "ListALLitems:")
self∼AddAttribute(35, "Update+Refresh")

124 OODialog Method Reference

Get and Set Methods

Get methods are used to retrieve the data from all or individual controls of a
dialog. Set methods are used to set the values of all or individual controls,
without changing the associated Object REXX attributes.

GetData

�� aBaseDialog∼GetData ��

The GetData method receives data from the Windows dialog and copies it to
the associated object attributes.

Example:
The following example continues the SetData example:

...
MyDialog∼ConnectEntryLine(102, "ENTRYLINE_1")
MyDialog∼ConnectCheckBox(201,)
MyDialog∼ConnectListbox(203, "LISTBOX_DAYS")...
/* process the dialog */...
MyDialog∼GetData /* retrieve dialog item value */
say MyDialog∼ENTRYLINE_1
say MyDialog∼DATA201
say MyDialog∼LISTBOX_DAYS

SetData

�� aBaseDialog∼SetData ��

The SetData method transfers data from the Object REXX attributes to the
Windows dialog.

Example:
Dialog items with ID 102, 201 and 203 are connected to the attributes
ENTRYLINE_1, DATA201, and LISTBOX_DAYS. Attribute DATA201 is
generated by the ConnectCheckBox method. Then the attributes are
initialized with some values. This does not change the dialog window,
unless you run the SetData method.

...
MyDialog∼ConnectEntryLine(102, "ENTRYLINE_1")
MyDialog∼ConnectCheckBox(201,)
MyDialog∼ConnectListbox(203, "LISTBOX_DAYS")...
MyDialog∼ENTRYLINE_1="Memorial Day"

Chapter 8. BaseDialog Class 125

MyDialog∼DATA201=1
MyDialog∼LISTBOX_DAYS="Monday"

MyDialog∼SetData

ItemTitle

�� aBaseDialog∼ItemTitle(id) ��

The ItemTitle method returns the title of the given dialog item.

Arguments:
The only argument is:

id The ID of the dialog item.

SetStaticText

�� aBaseDialog∼SetStaticText(id , aString) ��

The SetStaticText method changes the text of a static text control.

Arguments:
The arguments are:

id The ID of the static text control for which you want to change
the text.

aString
The new text for the static text control.

GetEntryLine

�� aBaseDialog∼GetEntryLine(id) ��

The GetEntryLine method returns the value of the given entry line.

Arguments:
The only argument is:

id The ID of the entry line.

SetEntryLine

�� aBaseDialog∼SetEntryLine(id , aString) ��

126 OODialog Method Reference

The SetEntryLine method puts the value of a string into an entry line.

Arguments:
The arguments are:

id The ID of the entry line.

aString
The value to be assigned to the entry line.

Example:
Assume that three methods are connected to a push button. The
SetToDefault method overrides the value in the Windows dialog entry
line 234 with the value 256 but does not change its associated
attribute. Using SetEntryLine has the same effect as a change to the
entry line made by the user. The associated attribute in the Object
REXX object (DATA234) still has the original value. Thus it is possible
to undo the changes or confirm them.
::method SetToDefault

self∼SetEntryLine(234, "256")

::method AcceptValues
self∼GetAttrib(DATA234)

::method UndoChanges
self∼SetAttrib(DATA234)

GetListLine

�� aBaseDialog∼GetListLine(id) ��

The GetListLine method returns the value of the currently selected list item. If
you need the index of the item, use the GetCurrentListIndex method. If no
item is selected, a null string is returned.

Arguments:
The only argument is:

id The ID of the list box.

SetListLine

�� aBaseDialog∼SetListLine(id , aString) ��

The SetListLine method assigns the value of a string to the list box. Thus the
item with the value of aString becomes selected. The first item is selected if
the string is not found in the list box. This method does not apply to a
multiple selection list box (see “SetMultiList” on page 128).

Chapter 8. BaseDialog Class 127

Arguments:
The arguments are:

id The ID of the list box.

aString
The value of the item to be selected.

Example:
The following example selects item “New York” in list box 232:
MyBaseDialog∼SetListLine(232, "New York")

GetMultiList

�� aBaseDialog∼GetMultiList(id) ��

The GetMultiList method can be applied to a multiple-selection list box. It
returns a string containing the indexes of up to 1000 selected items. The
numbers are separated by blanks.

Arguments:
The only argument is:

id The ID of the multiple-selection list box.

Example:
The following example shows how to handle a multiple-selection list
box. It parses the returned string as long as it contains an index.
selLines = MyDialog∼GetMultiList(555)
do until selLines = ""

parse var selLines aLine selLines
say aLine

end

SetMultiList

�� aBaseDialog∼SetMultiList(id , data) ��

The SetMultiList method selects one or more lines in a multiple-selection list
box.

Arguments:
The arguments are:

id The ID of the multiple-selection list box.

data The indexes (separated by blanks) of the lines to be selected.

128 OODialog Method Reference

Example:
The following example selects the lines 2, 5, and 6 of list box 345:
MyDialog∼SetMultiList(345, "2 5 6")

GetComboLine

�� aBaseDialog∼GetComboLine(id) ��

The GetComboLine method returns the value of the currently selected list item
of a combo box. If you need the index of the item, use the
GetCurrentComboIndex method. If no item is selected, a null string is
returned.

Arguments:
The only argument is:

id The ID of the combo box.

SetComboLine

�� aBaseDialog∼SetComboLine(id , aString) ��

The SetComboLine method assigns a string to the given combo box. Thus the
item with the value of aString becomes selected. If not found in the combo
box, the first item selected is the string.

Arguments:
The arguments are:

id The ID of the combo box.

aString
The value of the item to be selected.

GetRadioButton

�� aBaseDialog∼GetRadioButton(id) ��

The GetRadioButton method returns 1 if the radio button is selected, 0 if it is
not selected.

Arguments:
The only argument is:

id The ID of the radio button.

Chapter 8. BaseDialog Class 129

SetRadioButton

�� aBaseDialog∼SetRadioButton(id , data) ��

The SetRadioButton method marks the radio button if the given data value is
1, and removes the mark if the value is 0.

Arguments:
The arguments are:

id The ID of the radio button.

data 1 to select the button or 0 to deselect it.

GetCheckBox

�� aBaseDialog∼GetCheckBox(id) ��

The GetCheckBox method returns the value of a check box: 1 if the check box
is selected (has a check mark), 0 if it is not selected.

Arguments:
The only argument is:

id The ID of the check box.

SetCheckBox

�� aBaseDialog∼SetCheckBox(id , data) ��

The SetCheckBox method puts a check mark in the check box if the given data
value is 1 and removes the check mark if the value is 0.

Arguments:
The arguments are:

id The ID of the check box.

data The value 1 to check the box or 0 to remove the check mark.

GetValue

�� aBaseDialog∼GetValue(id) ��

The GetValue method gets the value of a dialog item, regardless of its type.
The item must have been connected before.

130 OODialog Method Reference

Arguments:
The only argument is:

id The ID of the dialog item.

SetValue

�� aBaseDialog∼SetValue(id , dataString) ��

The SetValue method sets the value of a dialog item. You do not have to know
what kind of item it is. The dialog item must have been connected before.

Arguments:
The arguments are:

id The ID of the dialog item.

dataString
The value that is assigned to the item. It must be a valid
value.

Example:
The following example sets dialog item 123 to (string) value “1 2 3”.
This is meaningful if 123 is an entry field, or if it is a list box that
contains the line “1 2 3”. However, it is an error to apply this against
a check box.
MyDialog∼SetValue(123, "1 2 3")

Note: If it is a multiple-selection list box, the SetValue method does
not look for an item with “1 2 3” as value but highlights the
first, second, and third line.

GetAttrib

�� aBaseDialog∼GetAttrib(attributeName) ��

The GetAttrib method assigns the value of a dialog item to the associated
Object REXX attribute. It does not return a value. You do not have to know
the ID or the type of the dialog item.

Arguments:
The only argument is:

attributeName
The name of the attribute.

Chapter 8. BaseDialog Class 131

Example:
The following example shows how to get the data value of a dialog
item without knowing its ID:
MyDialog∼GetAttrib("FirstName")
if MyDialog∼FirstName¬="" then ...

SetAttrib

�� aBaseDialog∼SetAttrib(attributeName) ��

The SetAttrib method copies the value of an attribute to the associated dialog
item. You do not have to know the ID or the type of the dialog item.

Arguments:
The only argument is:

attributeName
The name of the attribute.

Example:
The following example copies the value of the attribute DATA101 to
the associated dialog item:
MyBaseDialog∼SetAttrib("DATA101")

SetDataStem

�� aBaseDialog∼SetDataStem(dataStem.) ��

The SetDataStem method sets all Windows dialog items to the values within
the given stem; the suffixes of the stem variable are the dialog IDs.

Protected:
This method is protected.

Arguments:
The only argument is:

dataStem.
A stem variable containing initialization data. Remember the
trailing period.

Example:
The following example initializes the dialog items with ID 21, 22, and
23:

...

132 OODialog Method Reference

dlgStem.21="Windows 95"
dlgStem.22="0"
dlgStem.23="1 2 3"
self∼SetDataStem(dlgStem.)

GetDataStem

�� aBaseDialog∼GetDataStem(dataStem.) ��

The GetDataStem method gets the values of all dialog items and copies them
to the given stem.

Protected:
This method is protected.

Arguments:
The only argument is:

dataStem.
The name of a stem variable to which the data is returned.
Remember the trailing period.

Standard Event Methods

The following methods are abstract methods that are called each time a push
button with ID 1, 2, or 9 is pressed.

OK

�� aBaseDialog∼OK ��

The OK method is called in response to a pressed OK button. It calls Validate
to get its return code. The default return code is the self∼finished attribute,
which is usually 1, and the dialog is terminated.

Protected:
This method is protected. You might want to override it in your
subclass. If you do, forward the OK message to the parent class after
processing has finished. Set the self∼finished attribute to 1 or 0 and
return it. The dialog continues executing if you return the value 0. See
also “Validate” on page 134.

Example:
The following example shows how to override the OK method:

Chapter 8. BaseDialog Class 133

::method OK
...
self∼ok:super()
self∼finished = 1
return self∼finished

Cancel

�� aBaseDialog∼Cancel ��

The Cancel method is called in response to a pressed Cancel button. The
default return code is the self∼finished attribute, which is usually 1 and the
dialog is terminated. The InitCode attribute is set to 2 if the dialog is
terminated.

Protected:
This method is protected. You might want to override it in your
subclass. If you do, forward the Cancel message to the parent class
after processing has finished. Set the self∼finished attribute to 1 or 0
and return it. The dialog continues executing if you return the value 0.

Help

�� aBaseDialog∼Help ��

The Help method is called in response to a pressed Help button.

Protected:
This method is protected. You might want to override it in your
subclass.

Validate

�� aBaseDialog∼Validate ��

The Validate method is an abstract method that is called to determine whether
the dialog can be closed. This method is called by the OK method. The
standard implementation is that Validate returns 1 and the dialog is closed.
The dialog is not closed if Validate returns 0.

Protected:
The method is designed to be defined in a subclass.

134 OODialog Method Reference

Example:
In the following example Validate checks whether entry line 203 is
empty. If it is empty, Validate returns 0, which indicates that the dialog
cannot be closed.
::class MyDialog subclass UserDialog
::method Validate

if self∼GetEntryLine(203) = "" then return 0
else return 1

Leaving

�� aBaseDialog∼Leaving ��

The Leaving method is called when the dialog was closed.

DeInstall

�� aBaseDialog∼DeInstall ��

The DeInstall method removes the external functions from the Object REXX
API manager. It should be called at the end of each dialog. The installed
functions are freed when all dialogs are finished.

Combo Box Methods

The following methods belong to combo boxes.

AddComboEntry

�� aBaseDialog∼AddComboEntry(id , aString) ��

The AddComboEntry method adds a string to the list of a combo box. The new
item becomes the last one, if the list does not have the SORT flag set. In the
case of a sorted list, the new item is inserted at the proper position.

Arguments:
The arguments are:

id The ID of a combo box.

aString
The data to be inserted as a new line.

Example:
The following example adds the new line, Another item, to the list of
combo box 103:

Chapter 8. BaseDialog Class 135

MyDialog∼AddComboEntry(103, "Another item")

InsertComboEntry

�� aBaseDialog∼InsertComboEntry(id , , string)
index

��

The InsertComboEntry method inserts a string into the list of a combo box.

Arguments:
The arguments are:

id The ID of the combo box.

index The index (line number) where you want to insert the new
item. If this argument is omitted, the new item is inserted
after the currently selected item.

string The data string to be inserted.

Example:
This statement inserts The new third line after the second line into
the list of combo box 103:
MyDialog∼InsertComboEntry(103, 2, "The new third line")

DeleteComboEntry

�� aBaseDialog∼DeleteComboEntry(id , index) ��

The DeleteComboEntry method deletes a string from the combo box.

Arguments:
The arguments are:

id The ID of the combo box.

index The line number of the item to be deleted. Use the
FindComboEntry method (see page137) to retrieve the index
of an item.

Example:
The following example shows a method that deletes the item that is
passed to the method in the form of a text string from combo box 203:

...
::method DeleteFromCombo

use arg delStr
idx = self∼FindComboEntry(203, delStr)
self∼DeleteComboEntry(203, idx)

136 OODialog Method Reference

FindComboEntry

�� aBaseDialog∼FindComboEntry(id , aString) ��

The FindComboEntry method returns the index corresponding to a given text
string in the combo box.

Arguments:
The arguments are:

id The ID of the combo box

aString
The string of which you search the index in the combo box.

Example:
See “DeleteComboEntry” on page 136 for an example.

GetComboEntry

�� aBaseDialog∼GetComboEntry(id , index) ��

The GetComboEntry method returns the string at index index of the combo box.

Arguments:
The arguments are:

id The ID of the combo box

index The index of the list entry to be retrieved

Example:
if dlg∼GetComboEntry(203,5)="JOHN"
then ...

GetComboItems

�� aBaseDialog∼GetComboItems(id) ��

The GetComboItems method returns the number of items in the combo box.

Arguments:
The only argument is:

id The ID of the combo box

Chapter 8. BaseDialog Class 137

GetCurrentComboIndex

�� aBaseDialog∼GetCurrentComboIndex(id) ��

The GetCurrentComboIndex method returns the index of the currently selected
item within the list. See “GetComboLine” on page 129 for information on how
to retrieve the selected combo box item.

Arguments:
The only argument is:

id The ID of the combo box.

Example:
The following example displays the line number of the currently
selected combo box item within entry line 240:
::class MyListDialog subclass UserDialog...
::method Init

self∼Init:super
self∼ConnectList(230, "ListSelected")...

::method ListSelected
line = self∼GetCurrentComboIndex(230)
SetEntryLine(240, line)

Method ListSelected is called each time the selected item within the
combo box changes.

SetCurrentComboIndex

�� aBaseDialog∼SetCurrentComboIndex(id
, index

) ��

The SetCurrentComboIndex method selects the item with the given index within
the list. If called without an index, all items in the list are deselected. See
“SetComboLine” on page 129 for information on how to select a combo box
item using a data value.

Arguments:
The arguments are:

id The ID of the combo box.

index The index within the combo box.

138 OODialog Method Reference

ChangeComboEntry

�� aBaseDialog∼ChangeComboEntry(id , , aString)
index

��

The ChangeComboEntry method changes the value of a given entry in a combo
box to a new string.

Arguments:
The arguments are:

id The ID of the combo box

index The index number of the item you want to replace. To retrieve
the index, use the FindComboEntry or
GetCurrentComboIndex method (see page 137 or 138).

aString
The new text.

Example:
In the following example, method ChangeButtonPressed changes the
currently selected line of combo box 230 to the value in entry line 250:

...
::method ChangeButtonPressed

idx = self∼GetCurrentComboEntry(230)
str = self∼GetEntryLine(250)
self∼ChangeComboEntry(230, idx, str)

ComboAddDirectory

�� &aBaseDialog∼ComboAddDirectory(id,drvpath," READWRITE ")
READONLY
HIDDEN
SYSTEM
DIRECTORY
ARCHIVE

��

The ComboAddDirectory method adds all or selected file names in the given
directory to the combo box.

Arguments:
The arguments are:

id The ID of the combo box.

Chapter 8. BaseDialog Class 139

drvpath
The drive, path, and name pattern.

fileAttributes
Specify the file attributes that the files must have in order to
be added:

READWRITE
Normal read/write files (same as none).

READONLY
Files that have the read-only bit.

HIDDEN
Files that have the hidden bit.

SYSTEM
Files that have the system bit.

DIRECTORY
Files that have the directory bit.

ARCHIVE
Files that have the archive bit.

Example:
The following example fills the combo box list with the names of all
read/write files with extension .REX in the given directory:
MyDialog∼ComboAddDirectory(203, drive":\"path"*.rex", "READWRITE")

ComboDrop

�� aBaseDialog∼ComboDrop(id) ��

The ComboDrop method deletes all items from the list of the given combo box.

Arguments:
The only argument is:

id The ID of the combo box.

List Box Methods

The following methods deal with list boxes.

GetListWidth

�� aBaseDialog∼GetListWidth(id) ��

140 OODialog Method Reference

The GetListWidth method returns the scrollable width of a list box, in dialog
units.

Arguments:
The only argument is:

id The ID of the list box of which you want to know the
scrollable width.

Return value:
The width of the scrollable area of the list box, in dialog units.

SetListWidth

�� aBaseDialog∼SetListWidth(id,scrollwidth) ��

The SetListWidth method sets the scrollable width of a list box, in dialog units.
If the scrollable width is greater than the width of the list box and the
"HSCROLL" (WS_HSCROLL in the resource script) style is defined for the list
box (see “AddListBox” on page 244), a horizontal scroll bar is displayed.

Arguments:
The arguments are:

id The ID of the list box for which you want to set the scrollable
width.

scrollwidth
The width of the scrollable area of the list box, in dialog units.

Return value:
This method does not return a value.

SetListColumnWidth

�� aBaseDialog∼SetListColumnWidth(id,columnwidth) ��

The SetListColumnWidth method sets the width of all columns in a list box, in
dialog units.

Arguments:
The arguments are:

id The ID of the list box for which you want to set the column
width.

columnwidth
The width of the columns in the list box, in dialog units.

Chapter 8. BaseDialog Class 141

Return value:
This method does not return a value.

AddListEntry

�� aBaseDialog∼AddListEntry(id , aString) ��

The AddListEntry method adds a string to the given list box. See also
“AddComboEntry” on page 135. The line is added at the end (by default), or
in sorted order if the list box was defined with the sorted flag.

Arguments:
The arguments are:

id The ID of a list box.

aString
The data to be inserted as a new line.

InsertListEntry

�� aBaseDialog∼InsertListEntry(id , , aString)
index

��

The InsertListEntry method inserts a string into the given list box. See also
“InsertComboEntry” on page 136.

Arguments:
The arguments are:

id The ID of the list box.

index The index (line number starting with 1) of the item after
which the new item is inserted. If this argument is omitted,
the new item is inserted after the currently selected item.

aString
The text string to be inserted.

DeleteListEntry

�� aBaseDialog∼DeleteListEntry(id , index) ��

The DeleteListEntry method deletes an item from a list box. See also
“DeleteComboEntry” on page 136.

142 OODialog Method Reference

Arguments:
The arguments are:

id The ID of the list box.

index The line number of the item to be deleted. Use
“FindListEntry” to retrieve the index of an item. If this
argument is omitted, the currently selected item is deleted.

FindListEntry

�� aBaseDialog∼FindListEntry(id , aString) ��

The FindListEntry method returns the index of the given string within the
given list box. The first item has index 1, the second has index 2, and so forth.
If the list box does not contain the string, 0 is returned.

Arguments:
The arguments are:

id The ID of the list box.

aString
The item text you are looking for.

Example:
The following example shows a method that adds the contents of an
entry line (214) to the list box (215) if no item with the same value is
already contained in it:

...
::method PutEntryInList

str = self∼GetEntryLine(214)
if self∼FindListEntry(215, str) = 0 then

self∼AddListEntry(215, str)

GetListEntry

�� aBaseDialog∼GetListEntry(id , index) ��

The GetListEntry method returns the string at index index of the list.

Arguments:
The arguments are:

id The ID of the list box.

index The index of the list entry to be retrieved.

Chapter 8. BaseDialog Class 143

Example:
if dlg∼GetListEntry(203,5)="JOHN"
then ...

GetListItems

�� aBaseDialog∼GetListItems(id) ��

The GetListItems method returns the number of items in the list box.

Arguments:
The only argument is:

id The ID of the list box.

GetListItemHeight

�� aBaseDialog∼GetListItemHeight(id) ��

The GetListItemHeight method returns the height of the items in a list box, in
dialog units.

Arguments:
The only argument is:

id The ID of the list box of which you want to know the item
height.

Return value:
The height of the list box items, in dialog units.

SetListItemHeight

�� aBaseDialog∼SetListItemHeight(id,itemheight) ��

The SetListItemHeight method sets the height for all items in a list box, in
dialog units. It determines the space between the individual list box items.

Arguments:
The arguments are:

id The ID of the list box for which you want to set the item
height.

itemheight
The height of the items in the list box, in dialog units.

144 OODialog Method Reference

Return value:
A number smaller than 0 if the height that you specify is not valid.

GetCurrentListIndex

�� aBaseDialog∼GetCurrentListIndex(id) ��

The GetCurrentListIndex method returns the index of the currently selected list
box item, or 0 if no item is selected. See “GetListLine” on page 127 for
information on how to retrieve the selected list box item.

Arguments:
The only argument is:

id The ID of the list box.

SetCurrentListIndex

�� aBaseDialog∼SetCurrentListIndex(id
, index

) ��

The SetCurrentListIndex selects the item with the given index in the list. If
called without an index, all items in the list are deselected. See “SetListLine”
on page 127 for information on how to select a list box item using a data
value.

Arguments:
The arguments are:

id The ID of the list box.

index The index within the list box.

ChangeListEntry

�� aBaseDialog∼ChangeListEntry(id , , aString)
index

��

The ChangeListEntry method changes the contents of a line in a list box.

Arguments:
The arguments are:

id The ID of the list box.

index The index of the item that you want to replace. If this
argument is omitted, the currently selected item is changed.

Chapter 8. BaseDialog Class 145

aString
The new text of the item.

SetListTabulators

�� aBaseDialog∼SetListTabulators(id , &

,

tab) ��

The SetListTabulators method sets the tabulators for a list box. Thus you can
use items containing tab characters ('09'x), which is useful for formatting the
list in more than one column.

Arguments:
The arguments are:

id The ID of the list box.

tab The positions of the tabs relative to the left edge of the list
box.

Example:
The following example creates a four-column list and adds a
tab-formatted row to the list. The tabulator positions are 10, 20, and
30.
MyDialog∼SetListTabulators(102, 10, 20, 30)
MyDialog∼AddListEntry(102, var1 ¦¦ '09'x ¦¦ var2 ¦¦ '09'x ¦¦ ,

var3 ¦¦ '09'x ¦¦ var4)

ListAddDirectory

�� &aBaseDialog∼ListAddDirectory(id,drvPath," READWRITE ")
READONLY
HIDDEN
SYSTEM
DIRECTORY
ARCHIVE

��

The ListAddDirectory method adds all or selected file names of a given
directory to the list box. See “ComboAddDirectory” on page 139 for more
information.

ListDrop

�� aBaseDialog∼ListDrop(id) ��

146 OODialog Method Reference

The ListDrop method removes all items from the list box.

Arguments:
The only argument is:

id The ID of the list box.

Scroll Bar Methods

The following methods are used to set or get the behavior of a scroll bar. You
can connect scroll bars with numerical entry fields to edit the value with the
mouse.

GetSBRange

�� aBaseDialog∼GetSBRange(id) ��

The GetSBRange method returns the range of a scroll bar control. It returns the
two values (minimum and maximum) in one string, separated by a blank.

Protected:
This method is protected.

Arguments:
The only argument is:

id The ID of the scroll bar.

Example:
The following example demonstrates how to get the minimum and
the maximum values of the scroll bar:

...
::method DumpSBRange
SBrange = self∼GetSBRange(234)
parse var SBrange SBmin SBmax
say SBmin " - " SBmax

SetSBRange

��
1

aBaseDialog∼SetSBRange(id,min,max,)
redraw

��

The SetSBRange method sets the range of a scroll bar control. It sets the
minimum and maximum values.

Chapter 8. BaseDialog Class 147

Protected:
This method is not intended to be used outside of the BaseDialog
class.

Arguments:
The arguments are:

id The ID of a scroll bar control.

min The minimum value.

max The maximum value.

redraw
A flag indicating whether (1) or not (0) the scroll bar should
be redrawn. The default is 1.

Example:
The following example allows the scroll bar to take values between 1
and 10:
MyDialog∼SetSBRange(234, 1, 10, 1)

GetSBPos

�� aBaseDialog∼GetSBPos(id) ��

The GetSBPos method returns the current value of a scroll bar control.

Arguments:
The only argument is:

id The ID of the scroll bar.

SetSBPos

��
1

aBaseDialog∼SetSBPos(id,pos,)
redraw

��

The SetSBPos method sets the current value of a scroll bar control.

Protected:
This method is protected.

Arguments:
The arguments are:

id The ID of the scroll bar.

148 OODialog Method Reference

pos The value to which you want to set the scroll bar. It must be
within the defined range.

redraw
A flag indicating whether (1) or not (0) the scroll bar should
be redrawn. The default is 1.

CombineELwithSB

�� aBaseDialog∼CombineELwithSB(elid,sbid)
,

step , pos

��

The CombineELwithSB method connects an entry line with a scroll bar such
that each time the slider of the scroll bar is moved, the value of the entry field
is changed. This method must be used in a method registered with
ConnectScrollBar.

Arguments:
The arguments are:

elid The ID of the entry line.

sbid The ID of the scroll bar.

step The size of one step. If, for example, step is 3 and the current
position is 4, the next position is 7.

pos If the step value is zero, this sets the position of the scroll bar
and entry line. Use it in the method registered for drag.

Example:
The following example continues the example of ConnectScrollBar. In
the registered methods an entry line (251) is combined with the scroll
bar (255).
::method Increase
self∼CombineELwithSB(251,255,+20)
::method Decrease
self∼CombineELwithSB(251,255,-20)
::method Drag
use arg wparam, lparam /* wparam=position */
self∼CombineELwithSB(251,255,0,wparam)

DetermineSBPosition

�� aBaseDialog∼DetermineSBPosition(id,posdata)
,

single , page

��

Chapter 8. BaseDialog Class 149

The DetermineSBPosition method calculates and sets the new scroll bar position
based on the position data retrieved from the scroll bar and the step
information.

Protected:
This method is protected.

Arguments:
The arguments are:

id The ID of the scroll bar.

posdata
The position information sent with the connected scroll bar
event.

single This number is added (or subtracted if negative) to the current
position for a single step. If omitted, the single step size is 1.

page This number is added (or subtracted if negative) to the current
position for a page step. If omitted, the page step size is 10.

Return value:
The new scroll bar position.

Example:
The following example demonstrates how to update the scroll bar
position. Each time the ScrollBarEventHandler is called by an event
for scroll bar SB_SIZE, the position of the scroll bar is calculated and
updated. posdata is sent along with the scroll bar event.

/* Method ScrollBarEventHandler is connected to item SB_SIZE */
::method ScrollBarEventHandler

use arg posdata, sbwnd
pos = self∼DetermineSBPosition("SB_SIZE",posdata,1,25)
return pos

Methods for Window Handles, Sizes, and Positions

The following methods return information about the dialog or a single dialog
control.

Get

�� aBaseDialog∼Get ��

The Get method returns the handle of the current Windows dialog. A handle
is a unique reference to a particular Windows object. Handles are used within
some of the methods to work on a particular Windows object.

150 OODialog Method Reference

GetItem

�� aBaseDialog∼GetItem(id
, hDlg

) ��

The GetItem method returns the handle of a particular dialog item.

Arguments:
The arguments are:

id The ID of the dialog element.

hDlg The handle of the dialog. If it is omitted, the main dialog
handle is used.

Example:
The following example returns the handle of a push button:
hndPushButton = MyDialog∼GetItem(101)

GetPos

�� aBaseDialog∼GetPos ��

The GetPos method returns the dialog window’s position in pixels. The values
are returned in a string separated by blanks for parsing.

Example:
The following example moves the Window towards the top left of the
screen. GetScreenSize is an external function of OODialog.
parse value self∼GetPos with px py
self∼Move(px%self∼FactorX - 10, py%self∼FactorY - 10)

GetButtonRect

�� aBaseDialog∼GetButtonRect(id) ��

The GetButtonRect method returns the size and position of the given button.
The four values (left, top, right, bottom) are returned in one string separated
by blanks.

Arguments:
The only argument is:

id The ID of the button

Chapter 8. BaseDialog Class 151

GetWindowRect

�� aBaseDialog∼GetWindowRect(hwnd) ��

The GetWindowRect method returns the size and position of the given window.
The four values (left, top, right, bottom) are returned in one string separated
by blanks.

Arguments:
The only argument is:

hwnd The handle of the window. Use the Get method to retrieve the
window handle.

Appearance Modification Methods

The methods listed below are to change the appearance of the dialog itself or
one of its items. The list contains methods to change the size, position,
visibility, and title (header).

Some of the methods come in two flavors, normal (for example, ShowWindow)
and fast (for example, ShowWindowFast). The fast extension indicates that the
method does not redraw the item or window immediately. After modifying
several items, invoke the Update method (see page 196) to redraw the dialog.

BackgroundColor

�� aBaseDialog∼BackgroundColor(color) ��

The BackgroundColor method sets the background color of a dialog.

Arguments:
The only argument is:

color A color-palette index specifying the background color. For
information on the color numbers, refer to“Chapter 7.
Definition of Terms” on page 87.

Return value:
This method does not return a value.

FocusItem

�� aBaseDialog∼FocusItem(id) ��

152 OODialog Method Reference

The FocusItem method sets the input focus to a particular dialog item.

Arguments:
The only argument is:

id The ID of the dialog item to set the focus to

Return value:
A handle to the window that previously had the input focus

EnableItem

�� aBaseDialog∼EnableItem(id) ��

The EnableItem method enables the given dialog item.

Arguments:
The only argument is:

id The ID of the item

DisableItem

�� aBaseDialog∼DisableItem(id) ��

The DisableItem method disables the given dialog item. A disabled dialog item
is usually indicated by a gray instead of a black title or text; it cannot be
changed by the user.

Arguments:
The only argument is:

id The ID of the item

HideItem

�� aBaseDialog∼HideItem(id) ��

The HideItem method makes the given item disappear from the screen and
thus unavailable to the user. In fact, the item is still in the dialog and you can
transfer its data.

Arguments:
The only argument is:

id The ID of the item

Chapter 8. BaseDialog Class 153

HideItemFast

�� aBaseDialog∼HideItemFast(id) ��

The HideItemFast method hides an item without redrawing its area. It is
similar to the HideItem method, but it is faster because the item’s area is not
redrawn. The HideItemFast method is used when more than one item state is
modified. After the operations, you can manually redraw the dialog window,
using the “Update” on page 196 method.

Arguments:
The only argument is:

id The ID of the item

ShowItem

�� aBaseDialog∼ShowItem(id) ��

The ShowItem method makes the given dialog item reappear on the screen.

Arguments:
The only argument is:

id The ID of the item

ShowItemFast

�� aBaseDialog∼ShowItemFast(id) ��

The ShowItemFast method shows an item without redrawing its area. It is the
counterpart to the HideItemFast method.

HideWindow

�� aBaseDialog∼HideWindow(hwnd) ��

The HideWindow method hides a whole dialog window or a dialog item.

Arguments:
The only argument is:

hwnd A handle to the window or dialog item. Use the Get or
GetItem method to get a handle.

154 OODialog Method Reference

Example:
The following example hides the whole dialog:
hwnd = MyDialog∼Get
MyDialog∼HideWindow(hwnd)

HideWindowFast

�� aBaseDialog∼HideWindowFast(hwnd) ��

The HideWindowFast method is similar to the HideWindow method, but it is
faster because the window’s or item’s area is not redrawn. The
HideWindowFast method is used when more than one state is modified. After
the operations, you can manually redraw the dialog window, using the
Update method.

Arguments:
The only argument is:

hwnd A handle to the window or dialog item

ShowWindow

�� aBaseDialog∼ShowWindow(hwnd) ��

The ShowWindow method shows the window or item again.

Arguments:
The only argument is:

hwnd The handle of a window or an item

ShowWindowFast

�� aBaseDialog∼ShowWindowFast(hwnd) ��

The ShowWindowFast method is the counterpart to the HideWindowFast
method.

SetWindowRect

�� aBaseDialog∼SetWindowRect(hwnd , x , y , width , height �

Chapter 8. BaseDialog Class 155

�

&

)

, " NOMOVE "
NOSIZE
HIDEWINDOW
SHOWWINDOW
NOREDRAW

��

The SetWindowRect method sets new coordinates for a specific window.

Arguments:
The arguments are:

hwnd The handle to the dialog that is to be repositioned.

x, y The new position of the upper left corner, in screen pixels.

width The new width of the window, in screen pixels.

height The new height of the window, in screen pixels.

showOptions
This argument can be one or more of the following keywords,
separated by blanks:

NOMOVE
The upper left position of the window has not
changed.

NOSIZE
The size of the window has not changed.

HIDEWINDOW
The window is to be made invisible.

SHOWWINDOW
The window is to be made visible.

NOREDRAW
The window is to be repositioned without redrawing
it.

Return value:

0 Repositioning was successful.

1 Repositioning failed.

RedrawWindow

�� aBaseDialog∼RedrawWindow(hwnd) ��

156 OODialog Method Reference

The RedrawWindow method redraws a specific dialog.

Arguments:
The only argument is:

hwnd The handle to the dialog that is to be redrawn.

Return value:

0 Redrawing was successful.

1 Redrawing failed.

ResizeItem

�� aBaseDialog∼ResizeItem(id,width,height)
, " HIDEWINDOW "

SHOWWINDOW
NOREDRAW

��

The ResizeItem method changes the size of a dialog item.

Arguments:
The arguments are:

id The ID of the dialog item you want to resize

width, height
The new size in dialog units

showOptions
This argument can be one of the following keywords:

HIDEWINDOW
Hides the item

SHOWWINDOW
Shows the item

NOREDRAW
Resizes the item without updating the display. Use the
Update method to manually update the display.

Example:
The following example resizes a dialog item:
MyDialog∼ResizeItem(123, 40, 30, "SHOWWINDOW")

Chapter 8. BaseDialog Class 157

MoveItem

�� aBaseDialog∼MoveItem(id,xPos,yPos)
, " HIDEWINDOW "

SHOWWINDOW
NOREDRAW

��

The MoveItem method moves a dialog item to another position within the
dialog window.

Arguments:
The arguments are:

id The ID of the dialog item you want to move

xPos, yPos
The new position in dialog units relative to the dialog
window

showOptions
This argument can be one of the following keywords:

HIDEWINDOW
Hides the dialog

SHOWWINDOW
Shows the dialog

NOREDRAW
Moves the dialog item without updating the display.
Use the “Update” on page 196 method to manually
update the display.

Center

�� aBaseDialog∼Center(" HIDEWINDOW ")
SHOWWINDOW
NOREDRAW

��

The Center method moves the dialog to the screen center.

Arguments:
The only argument can be one of:

HIDEWINDOW
Hides the dialog

SHOWWINDOW
Shows the dialog

158 OODialog Method Reference

NOREDRAW
Center the dialog without updating the display. Use the
“Update” on page 196 method to manually update the display.

SetWindowTitle

�� aBaseDialog∼SetWindowTitle(hwnd , aString) ��

The SetWindowTitle method changes the title of a window.

Arguments:
The arguments are:

hwnd The handle of the window whose title you want to change

aString
The new title text

Window Draw Methods

The methods listed below are used to draw, redraw, and clear window areas.

DrawButton

�� aBaseDialog∼DrawButton(id) ��

The DrawButton method draws the given button.

Arguments:
The only argument is:

id The ID of the button

RedrawRect

��
0

aBaseDialog∼RedrawRect(,left,top,right,bottom,)
hwnd erasebkg

��

The RedrawRect method immediately redraws a rectangle within the client
area of a dialog. You can specify whether the background of the dialog is to
be erased before repainting.

Arguments:
The arguments are:

hwnd The handle to the dialog in which parts of the client area are

Chapter 8. BaseDialog Class 159

to be redrawn. See “Get” on page 150 or “GetItem” on
page 151 for information on how to get a window handle. If
you omit this argument, the handle of the dialog is used.

left, top
The upper left corner of the rectangle relative to the client
area, in screen pixels.

right, bottom
The lower right corner of the rectangle relative to the client
area, in screen pixels.

erasebkg
If this argument is 1 or 0, the background of the dialog is
erased before redrawing. The default is 0.

Return value:

0 Redrawing was successful.

1 Redrawing failed.

RedrawButton

�� aBaseDialog∼RedrawButton(id)
, erasebkg

��

The RedrawButton method redraws the given button.

Arguments:
The arguments are:

id The ID of the button

erasebkg
Determines whether (1) or not (0) the background of the
drawing area should be erased before redrawing. The default
is 0.

RedrawWindowRect

�� aBaseDialog∼RedrawWindowRect
(hwnd)

, erasebkg

��

The RedrawWindowRect method redraws the given window rectangle.

Arguments:
The arguments are:

160 OODialog Method Reference

hwnd The handle to the window. See “Get” on page 150 or
“GetItem” on page 151 for information on how to get a
window handle. If you omit this argument, the handle of the
dialog is used.

erasebkg
Determines whether (1) or not (0) the background of the
drawing area should be erased before redrawing. The default
is 0.

ClearRect

�� aBaseDialog∼ClearRect(hwnd,left,top,right,bottom) ��

The ClearRect method clears the given rectangle of a window. The values are
in pixels.

Arguments:
The arguments are:

hwnd The handle of the window. See Get or GetItem for how to get
a window handle.

left The horizontal value of the upper-left corner of the rectangle

top The vertical value of the upper left corner

right The horizontal value of the lower right corner

bottom
The vertical value of the lower right corner

Example:
The following example clears a rectangle of the size 20 by 20:
hwnd=MyDialog∼Get
MyDialog∼ClearRect(hwnd, 2, 4, 22, 24)

ClearButtonRect

�� aBaseDialog∼ClearButtonRect(id) ��

The ClearButtonRect method erases the draw area of the given button.

Arguments:
The only argument is:

id The ID of the push button

Chapter 8. BaseDialog Class 161

ClearWindowRect

�� aBaseDialog∼ClearWindowRect(hwnd) ��

The ClearWindowRect method erases the draw area of the given window.

Arguments:
The only argument is:

hwnd The handle of the window. See Get or GetItem for how to get
a window handle.

Example:
The following example gets the window handle and then clears the
window:
hwnd = MyDialog∼GetItem(211)
MyDialog∼ClearWindowRect(hwnd)

Bitmap Methods

The methods listed below deal with bitmaps.

ChangeBitmapButton

�� aBaseDialog∼ChangeBitmapButton(id , bmpNormal �

�
,bmpFocused

,bmpSelected
,bmpDisabled

,styleOptions

) ��

The ChangeBitmapButton method changes the bitmaps of a bitmap button.

Arguments:
The arguments are the same as for ConnectBitmapButton, except for
the first argument (msgToRaise), which is skipped in this method.

Example:
The following example replaces the current bitmap with a new
bitmap:
MyDialog∼ChangeBitmapButton(501, "NewBB.bmp")

GetBitmapSizeX

162 OODialog Method Reference

�� aBaseDialog∼GetBitmapSizeX(id) ��

The GetBitmapSizeX method returns the horizontal bitmap extension.

Arguments:
The only argument is:

id The ID of the bitmap button

GetBitmapSizeY

�� aBaseDialog∼GetBitmapSizeY(id) ��

The GetBitmapSizeY method returns the vertical bitmap extension.

Arguments:
The only argument is:

id The ID of the bitmap button

DrawBitmap

�� aBaseDialog∼DrawBitmap(, id
hwnd

�

�
, px , py

, srcx , srcy
, xlen , ylen

) ��

The DrawBitmap method draws the bitmap of a button. You can also use this
method to move a bitmap or a part of it.

Arguments:
The arguments are:

hwnd The handle to the window. If this argument is omitted, the
handle for the button is used automatically.

id The ID of the button that has the owner-draw option set

px, py The upper-left corner of the target space within the button
(default is 0)

srcx, srcy
The upper-left corner within the bitmap (default is 0)

Chapter 8. BaseDialog Class 163

xlen, yLen
The extension of the bitmap or a part of it (default is the
whole bitmap)

ScrollBitmapFromTo

�� aBaseDialog∼ScrollBitmapFromTo(id , fromX , fromY , toX , toY , �

� stepX , stepY , delay , displace) ��

The ScrollBitmapFromTo method scrolls a bitmap from one position to another
within an owner-drawn button.

Arguments:
The arguments are:

id The ID of the button

fromX, fromY
The starting position

toX, toY
The target position

stepX, stepY
The width of one step

delay The time in milliseconds this method waits after each move
before doing the next move. This determines the speed at
which the bitmap moves.

displace
If set to 1 the internal position of the bitmap (bitmap
displacement) is updated after each incremental move.
DisplaceBitmap is called after each step to adjust the bitmap
position. If the dialog is redrawn, the bitmap is shown at the
correct position, but the drawing is slower.

TiledBackgroundBitmap

�� aBaseDialog∼TiledBackgroundBitmap(bmpFilename) ��

The TiledBackgroundBitmap method sets a bitmap as the background brush
(Windows NT only). If the bitmap size is less than the size of the background,
the bitmap is drawn repetitively.

Arguments:
The only argument is:

164 OODialog Method Reference

bmpFilename
The name of a bitmap file

BackgroundBitmap

�� aBaseDialog∼BackgroundBitmap(bmpFilename
, "USEPAL"

) ��

The BackgroundBitmap method sets a bitmap as the dialog’s background
picture.

Arguments:
The arguments are:

bmpFilename
The name of a bitmap file

option Set the last argument to USEPAL if you want to use the color
palette of the bitmap. See “ConnectBitmapButton” on page 112
for more information.

DisplaceBitmap

�� aBaseDialog∼DisplaceBitmap(id , x , y) ��

The DisplaceBitmap method sets the position of a bitmap within a button.

Arguments:
The arguments are:

id The ID of a button

x The horizontal displacement in screen pixels. A negative value
can be used.

y The vertical displacement (negative allowed)

Example:
The following example moves the bitmap within a button four screen
pixels to the right and three pixels upward:
MyBaseDialog∼DisplaceBitmap(244, 4, -3)

GetBmpDisplacement

�� aBaseDialog∼GetBmpDisplacement(id) ��

The GetBmpDisplacement method gets the position of a bitmap within a button.

Chapter 8. BaseDialog Class 165

Arguments:
The only argument is:

id The ID of the button

Example:
The following example shows how to use the GetButtonRect and
GetBmpDisplacement methods:
bRect = MyBaseDialog∼GetButtonRect(244)
parse var bRect left top right bottom
bmpPos = MyBaseDialog∼GetBmpDisplacement(244)
parse var bmpPos x y

Device Context Methods

The methods listed below are used to retrieve and release a device context.

A device context is associated with a window, a dialog, or a push button, and
is a drawing area managed by a window. A device context stores information
about the graphic objects (bitmaps, lines, pixels, ...) that are displayed and the
tools (pen, brush, font, ...) that are used to display them.

GetWindowDC

�� aBaseDialog∼GetWindowDC(hwnd) ��

The GetWindowDC method returns the device context of a window. Do not
forget to free the device context after you have completed the operations (see
FreeWindowDC).

Arguments:
The only argument is:

hwnd The handle of the window

GetButtonDC

�� aBaseDialog∼GetButtonDC(id) ��

The GetButtonDC method returns the device context of a button. Do not forget
to free the device context after you have completed the operations (see
FreeButtonDC).

Arguments:
The only argument is:

id The ID of the button

166 OODialog Method Reference

FreeWindowDC

�� aBaseDialog∼FreeWindowDC(hwnd , dc) ��

The FreeWindowDC method frees the device context of a window.

Arguments:
The arguments are:

hwnd The window handle

dc The device context previously received by the GetWindowDC
method

FreeButtonDC

�� aBaseDialog∼FreeButtonDC(id , dc) ��

The FreeButtonDC method releases the device context of a button.

Arguments:
The arguments are:

id The ID of the button

dc The device context previously received by the GetButtonDC
method

Text Methods

The following methods are used to display text dynamically in a window area
and to modify the state of a device context. See “GetWindowDC” on page 166,
“GetDC” on page 209, and “GetButtonDC” on page 166 for information on
how to retrieve a device context.

Write

�� aBaseDialog∼Write(xPos , yPos , text �

Chapter 8. BaseDialog Class 167

�

&

"SYSTEM"
,

fontName 10
,

fontSize
OPAQUE

, " THIN "
EXTRALIGHT
LIGHT
MEDIUM
SEMIBOLD
EXTRABOLD
BOLD
HEAVY
UNDERLINE
ITALIC
STRIKEOUT
TRANSPARENT
CLIENT

�

�) ��

The Write method enables you to write text to the dialog in the given font and
size, to the given position. This method does not take a handle or an ID; it
always writes to the dialog window.

Arguments:
See “WriteToWindow” on page 213 for a description of the other
arguments.

ScrollText

�� aBaseDialog∼ScrollText(hwnd , text , , ,
fontName fontSize

�

168 OODialog Method Reference

�

&" THIN "
EXTRALIGHT
LIGHT
MEDIUM
SEMIBOLD
EXTRABOLD
BOLD
HEAVY
UNDERLINE
ITALIC
STRIKEOUT

, displaceY , step , sleep , color) ��

The ScrollText method scrolls text in a window with the given size, font, and
color. The text is scrolled from right to left. If the method is started
concurrently, call it a second time to stop scrolling.

Arguments:
The arguments are:

hwnd The handle of the window in which the text is scrolled

text A text string that is scrolled

displaceY
The vertical displacement of the text relative to the top of the
window’s client area (default 0)

step The size of one step in screen pixels (default 4)

sleep The time in milliseconds that the program waits after each
movement (default 10). This determines the speed.

color The color of the text (default 0, black)

See WriteToWindow for a description of the other arguments.

Example:
The following example scrolls the string “Hello world!” from left to
right within the given window. The text is located two pixels below
the top of the client area, one move is 3 screen pixels, and the delay
time after each movement is 15 ms.
MyDialog∼ScrollText(hwnd, "Hello world!", , , , 2, 3, 15)

Note: Only one sleep interval can be set for multiple scrolling texts within
one process. All scrolling text in one process is synchronized with the
first given interval.

Chapter 8. BaseDialog Class 169

ScrollInButton

�� aBaseDialog∼ScrollInButton(id , text , ,
fontName

,
fontSize

�

�

&" THIN "
EXTRALIGHT
LIGHT
MEDIUM
SEMIBOLD
EXTRABOLD
BOLD
HEAVY
UNDERLINE
ITALIC
STRIKEOUT

, displaceY , step , sleep , color) ��

The ScrollInButton method scrolls text within a button. It is similar to the
ScrollText method, except that you have to pass an ID instead of a window
handle.

ScrollButton

�� aBaseDialog∼ScrollButton(id , xPos , yPos , left , top �

� , right , bottom) ��

The ScrollButton method moves the rectangle within a button. It is used to
move bitmaps within buttons.

Arguments:
The arguments are:

id The ID of the button

xPos, yPos
The new position of the rectangle (in pixels)

left, top, right, bottom
The extension of the rectangle

SetItemFont

170 OODialog Method Reference

��
1

aBaseDialog∼SetItemFont(id , fonthandle ,)
redraw

��

The SetItemFont method changes the font for a particular dialog item.

The best place to call this method is within InitDialog. If the font is no longer
needed, for instance, when the dialog is closed or another font has been
assigned to the dialog item, you should free the font resource by calling
DeleteFont. A good place to do this is the Leaving method.

Arguments:
The arguments are:

id The ID of the dialog item.

fonthandle
The handle returned by CreateFont.

redraw

0 Do not redraw the item.

1 Redraw the item, which is the default.

Example:
The following example sets a 12-point Arial font for item 101.
::method InitDialog...

hFont=self∼CreateFont("Arial",12)
self∼SetItemFont(101,hFont,0)

Animated Buttons

The methods listed below work with animated buttons.

AddAutoStartMethod

�� aBaseDialog∼AddAutoStartMethod(,MethodName)
InClass , Parameters

��

The AddAutoStartMethod method adds a method name and parameters to a
special internal queue. All methods in this queue will be started automatically
and run concurrently when the dialog is executed. The given method
(MethodName) in the given class (InClass) is started concurrently with the
dialog when the dialog is activated using the Execute or ExecuteAsync
method. This is useful for processing animated buttons.

Chapter 8. BaseDialog Class 171

Arguments:
The arguments are:

InClass
The class where the method is defined. If this argument is
omitted, the method is assumed to be defined in the dialog
class.

MethodName
The name of the method

Parameters
All parameters that are passed to this method

Example:
The following example installs the ExecuteB method of the
MyAnimatedButton class so that it is processed concurrently with the
dialog execution:
MyDialog∼AddAutoStartMethod("MyAnimatedButton", "ExecuteB")

::class MyAnimatedButton
::method ExecuteB...

ConnectAnimatedButton

�� aBaseDialog∼ConnectAnimatedButton(id, ,
msgToRaise

�

� , bmpFrom , , moveX , moveY ,
AutoClass bmpTo

�

� , , delay , ,)
sizeX sizeY xNow yNow

��

The ConnectAnimatedButton method installs an animated button and runs it
concurrently with the main activity.

Arguments:
The arguments are:

id The ID of the button

msgToRaise
The name of a method within the same class. This method is
called each time the button is clicked.

172 OODialog Method Reference

AutoClass
The class that controls the animation (default is Chapter 15.
AnimatedButton Class)

bmpFrom
The ID of the first bitmap in the animation sequence within a
binary resource. It can also be the name of an array stored in
the .local directory containing handles of bitmaps to be
animated and bmpTo is omitted. See LoadBitmap for how to
get bitmap handles. The array starts at index 1.

bmpTo
The ID of the last bitmap in the animation sequence within a
binary resource. If omitted, bmpFrom is expected to be the
name of an array stored in .local that holds the bitmap
handles of the bitmaps that are to be animated.

moveX, moveY
Size of one move (in pixels)

sizeX, sizeY
Size of the bitmaps (if omitted, the size of the bitmaps is
retrieved)

delay The time in milliseconds the method waits after each move

xnow, ynow
The starting position of the bitmap

Example:
The following example defines and runs an animated button. The
example loads ten bitmaps ("anibmp1.bmp" to "anibmp10.bmp") into
memory and stores them into the array ″My.Bitmaps″ that is stored in
the .local directory. The name ″My.Bitmaps″ is specified as the bmpfrom
and bmpto is omitted. After the dialog execution the bitmaps are
removed from memory again. The sample also uses a different
animation class (″.MyAnimation″) which subclasses from
.AnimatedButton and overrides method HitRight which plays a tune
each time the animated bitmap hits the right border.

/* store array in .local */
.Local["My.Bitmaps"] = .array∼new(10)
/* load 10 bitmaps into .local array */
do i= 1 to 10

.Local["My.Bitmaps"][i] = Dialog∼LoadBitmap("anibmp"i".bmp")
/* you could also use .My.Bitmaps[i] = ... */

end

/* connect bitmap sequence and .MyAnimated class with button IDANI */
Dialog∼ConnectAnimatedButton("IDANI",,.MyAnimation,"My.Bitmaps",,1,1,,,100)

...

Chapter 8. BaseDialog Class 173

Dialog∼Execute
...

/* Free the bitmap previously loaded */
do bmp over .Local["My.Bitmaps"] /* You could also use do bmp over .My.Bitmaps */

Dialog∼RemoveBitmap(bmp)
end

::class MyAnimation subclass AnimatedButton

/* play sound.wav whenever the bitmap hits the right border */

::method HitRight
ret = Play("sound.wav", yes)
return self∼super:hitright

Menu Methods

The methods listed below manipulate a menu connected to the dialog.

ConnectMenuItem

�� aBaseDialog∼ConnectMenuItem(id , msgToRaise) ��

The ConnectMenuItem method is called to connect a menu item selection with
a method.

Arguments:
The arguments are:

id The ID of the menu item.

msgToRaise
The name of the method that is to be called.

Example:
See ConnectButton.

Do not use one of the menu item methods below, prior to the SetMenu
method. If you call one of these methods before SetMenu has been called, the
intended action will not be processed and the return code is unpredictable.

EnableMenuItem

�� aBaseDialog∼EnableMenuItem(id) ��

The EnableMenuItem method is called to enable a menu item.

174 OODialog Method Reference

Arguments:
The only argument is:

id The ID of the menu item to be enabled.

DisableMenuItem

�� aBaseDialog∼DisableMenuItem(id) ��

The DisableMenuItem method is called to disable a menu item.

Arguments:
The only argument is:

id The ID of the menu item to be disabled.

CheckMenuItem

�� aBaseDialog∼CheckMenuItem(id) ��

The CheckMenuItem method is called to set the check mark for a menu item.

Arguments:
The only argument is:

id The ID of the menu item to be checked.

UncheckMenuItem

�� aBaseDialog∼UncheckMenuItem(id) ��

The UncheckMenuItem method is called to remove the check mark from a
menu item.

Arguments:
The only argument is:

id The ID of the menu item to be unchecked.

GrayMenuItem

�� aBaseDialog∼GrayMenuItem(id) ��

The GrayMenuItem method is called to disable a menu item. The menu item is
grayed.

Chapter 8. BaseDialog Class 175

EnableMenuItem is used to reset the grayed state.

Arguments:
The only argument is:

id The ID of the menu item to be grayed.

SetMenuItemRadio

�� aBaseDialog∼SetMenuItemRadio(idstart , idend , idset) ��

The SetMenuItemRadio method is used to change the selection for a radio
button menu group.

Arguments:
The arguments are:

idstart The ID of the first menu item in the group.

idend The ID of the last menu item in the group.

idset The ID of the menu item that is to be selected.

Example:
The following example shows how to change the selection within a
radio button group. Menu item 102 gets the radio button.
self∼SetMenuItemRadio(101, 105, 102)

GetMenuItemState

�� aBaseDialog∼GetMenuItemState(id) ��

The GetMenuItemState method returns the state of a given menu item

Arguments:
The only argument is:

id The ID of the menu item whose state is of interest.

Return values:
CHECKED DISABLED GRAYED HIGHLIGHTED

Public Routines

The routines listed below are useful additional functions.

176 OODialog Method Reference

Play
The routine listed below is used to play audio sounds.

�� Play()
fileName , YES

, LOOP

��

The Play routine can be used to play an audio file using the Windows
multimedia capabilities. See also the PlaySoundFile function in “Chapter 6.
OODialog External Functions” on page 77.

The file name is looked up in the current directory and in the directories of
the SOUNDPATH environment variable.

Arguments:
The arguments are:

fileName
The file name of an audio (.WAV) file. The file name is looked
up in the directories of the SOUNDPATH environment
variable. If this argument is omitted, the currently played
sound file is stopped.

option You can set the last argument to:

YES This plays the audio file asynchronously.

LOOP Plays the audio file asynchronously and repeats it in a
loop. You can stop the loop by calling Play again
omitting all arguments.

Example:
The following example plays a welcoming message:
rc = play('Welcome.wav')

InfoDialog
Pops up a message box containing the specified text and an OK button.

�� InfoDialog(info_text) ��

Argument:
The only argument is:

info_text
Text to be displayed in the message box.

Chapter 8. BaseDialog Class 177

ErrorDialog
Pops up a message box containing the specified text, an OK button, and an
error symbol.

�� ErrorDialog(error_text) ��

Argument:
The only argument is:

error_text
Text to be displayed in the message box.

AskDialog
Pops up a message box containing the specified text, a Yes button, and a No
Button.

�� AskDialog(question) ��

Arguments:
The only argument is:

question
Text to be displayed in the message box.

Return Values:

0 The No button has been selected.

1 The Yes button has been selected.

FileNameDialog
Causes a file selection dialog box to appear.

�� FileNameDialog(
selfile ,

parent , filemask

�

�)
,

loadorsave , title , defExtension , multiSelect , sepChar

��

Arguments:
The arguments are:

selfile Preselected file name.

parent Handle to the parent window.

filemask
Pairs of null-terminated filter strings.

178 OODialog Method Reference

The first string in each pair is a display string that describes
the filter (for example, "Text Files"), and the second string
specifies the filter pattern (for example, "*.TXT"). To specify
multiple filter patterns for a single display string, use a
semicolon to separate the patterns (for example,
"*.TXT;*.DOC;*.BAK"). A pattern string can be a combination
of valid file name characters and the asterisk (*) wildcard
character. Do not include spaces in the pattern string.

If omitted, "Text Files
(*.TXT)"¦¦'0'x¦¦"*.TXT"¦¦'0'x¦¦"All Files
(*.*)"¦¦'0'x¦¦"*.*" is used as the filter

loadorsave
Specifies which dialog should be displayed.

LOAD
Display the File Open Dialog (default).

SAVE Display the File Save Dialog.

title The window title. The default is ″Open a File″ or ″Save File
As″, depending on what is specified for loadorsave.

defExtension
The default extension that is added if no extension was
specified. The default is TXT.

multiSelect
Specifies if the dialog allows selection of multiple files.

MULTI
Multiple file selection allowed. In this case,
loadorsave must also be ″LOAD″ or omitted. The
result is then path file1 file2 file3 ... If this argument is
omitted, you get the selected file name or an empty
string when the ″Open File″ window is canceled.

sepChar
Specifies the separation character for the returned path and
file names. This is needed for file names with blank
characters. If this argument is omitted, the separation
character is a blank. If the argument is specified, the returned
path and file name uses this separation character. For
example, if you specify ″#″ as the separation character, the
return string might look as follows:
C:\WINNT#file with blank.ext#fileWithNoBlank.TXT

Return value:
Returns the selected file name or an empty string when canceled.

Chapter 8. BaseDialog Class 179

FindWindow
Searches the Windows application list for a specific window and returns its
handle.

�� FindWindow(Caption) ��

Argument:
The only argument is:

Caption
Caption of the window that is to be searched.

Return value:
Handle of the window or 0 if the window was not found.

Debugging Method

The following method displays the internal setting of the dialog
administration table.

Dump
The Dump method displays the internal settings of the dialog administration
table. This method can be helpful for debugging OODialog programs.

�� Dump()
dialogadmin

��

Argument:
The only argument is:

dialogadmin
A pointer to a particular dialog administration record. If you
specify this argument, you get detailed information on this
record. If you omit this argument, all administration records
(one for each dialog of the active process) are listed.

Return value:
This method does not return a value.

180 OODialog Method Reference

Chapter 9. DialogControl Class

The DialogControl class provides methods that are common to all dialogs and
dialog controls. It is a generic class that serves as a superclass to all
dialog-control-specific classes.

Attributes:
Instances of the DialogControl class have the following attributes:

FactorX
The horizontal size of one dialog unit, in pixels.

FactorY
The vertical size of one dialog unit, in pixels.

SizeX The width of the dialog, in dialog units.

SizeY The height of the dialog, in dialog units.

Requires:
The DialogControl class requires the class definition file oodwin32.cls:
::requires oodwin32.cls

Methods:
Instances of the DialogControl class implement the methods listed in
Table 3.

Table 3. DialogControl Instance Methods

Method... ...on page

AbsRect2LogRect 200

AssignFocus 185

AssignWindow 186

CaptureMouse 207

Clear 197

ClearRect 197

ClientToScreen 201

CreateBrush 219

CreateFont 216

CreatePen 220

Cursor_AppStarting 205

Cursor_Arrow 205

© Copyright IBM Corp. 1997, 2001 181

Table 3. DialogControl Instance Methods (continued)

Method... ...on page

Cursor_Cross 206

Cursor_No 206

CursorPos 203

Cursor_Wait 206

DeleteFont 217

DeleteObject 221

Disable 191

Display 192

Draw 197

DrawAngleArc 225

DrawArc 223

DrawLine 222

DrawPie 225

DrawPixel 223

Enable 190

FillDrawing 225

FontColor 218

FontToDC 218

ForegroundWindow 194

FreeDC 210

GetArcDirection 224

GetClientRect 189

GetDC 209

GetFocus 190

GetID 187

GetMouseCapture 207

GetPixel 223

GetPos 189

GetRect 187

GetSize 189

GetTextSize 215

HScrollPos 202

182 OODialog Method Reference

Table 3. DialogControl Instance Methods (continued)

Method... ...on page

Hide 191

HideFast 191

IsMouseButtonDown 208

LoadBitmap 208

LogRect2AbsRect 199

Maximize 193

Minimize 193

Move 195

ObjectToDC 220

OpaqueText 212

ProcessMessage 184

Rectangle 221

Redraw 198

RedrawClient 199

RedrawRect 198

ReleaseMouseCapture 207

RemoveBitmap 209

Resize 193

RestoreCursorShape 204

ScreenToClient 200

Scroll 201

SetArcDirection 224

SetColor 194

SetCursorPos 203

SetFocus 190

SetFont 216

SetHScrollPos 202

SetVScrollPos 203

SetRect 188

SetTitle 197

Show 185

ShowFast 191

Chapter 9. DialogControl Class 183

Table 3. DialogControl Instance Methods (continued)

Method... ...on page

Title 196

Title= 196

TransparentText 212

Update 196

Value 185

Value= 185

VScrollPos 202

Write 210

WriteToButton 214

WriteToWindow 213

Preparing and Running the Dialog Control

The following methods are used to prepare (initialize) a dialog control, show
it, run it, and stop it.

ProcessMessage

�� aDialogControl∼ProcessMessage(message,firstParam,secondParam) ��

The ProcessMessage method sends a Windows message to a dialog control.

Arguments:
The arguments are:

message
The number of the message to be sent to the dialog control.

firstParam,secondParam
Additional arguments specific to the message.

Return value:
The return values are message-specific.

Example:
The following example erases the background of the NAME edit
control:

184 OODialog Method Reference

dlgc = MyDialog∼GetEditControl("NAME")
WM_ERASEBACKGROUND = "14"∼x2d
hdc = dlgc∼GetDc
dlgc∼ProcessMessage(WM_ERASEBACKGROUND, hdc, 0)
dlgc∼FreeDC(hdc)

Note: The Window message numbers are not documented.

AssignFocus

�� aDialogControl∼AssignFocus ��

The AssignFocus method sets the input focus to the associated dialog control.

Show

�� aDialogControl∼Show ��

The Show method makes a dialog control visible and activates it.

Example:
The following example makes the edit control NAME visible and
activates it:
MyDialog∼GetEditControl("NAME")∼Show

Value

�� aDialogControl∼Value ��

The Value method retrieves the current value of a dialog control.

Return value:
The current value set in the dialog control.

Note: See “GetValue” on page 130 for more information.

Value=

�� aDialogControl∼Value=new_value ��

The Value= method sets a value for a dialog control.

Arguments:
The only argument is:

Chapter 9. DialogControl Class 185

new_value
The value assigned to the dialog control.

Example
The following example selects check box RESTART and deselects
check box VERIFY:
MyDialog∼GetCheckControl("RESTART")∼Value=1
MyDialog∼GetCheckControl("VERIFY")∼Value=0

Note: See “SetValue” on page 131 for more information.

Connect Method

The following method creates a connection between a dialog or dialog control
and an object of another class.

AssignWindow

�� aDialogControl∼AssignWindow(hwnd) ��

The AssignWindow method connects a dialog or dialog control with an existing
object of the PlainBaseDialog or DialogControl class. Note that the connected
dialog or dialog control might not support all methods provided by the
DialogControl class.

Arguments:
The only argument is:

hwnd The handle to the dialog or dialog control that you want to
assign to the DialogControl object.

Return value:
The handle to the dialog or dialog control that has been assigned, or 0
if the connection failed.

Example:
The following example searches the desktop for a dialog with the title
"Monitoring Applications", connects it to the object dlgc of the
DialogControl class, and then minimizes the dialog:
dlgc = .DialogControl∼new
...
whnd = FindWindow("Monitoring Application")
if whnd \= 0 then do

dlgc∼AssignWindow(whnd)
dlgc∼Display("MIN")

end

186 OODialog Method Reference

Get and Set Methods

Get methods are used to retrieve the data from all or individual controls of a
dialog. Set methods are used to set the values of all or individual controls,
without changing the associated Object REXX attributes.

GetID

�� aDialogControl∼GetID ��

The GetID method retrieves the identification number of the associated dialog
or dialog control.

Return value:
The numeric ID.

Example:
The following example displays 1 in most cases:
say MyDialog∼GetButtonControl("IDOK")∼GetID

GetRect

�� aDialogControl∼GetRect ��

Retrieves the dimensions of the rectangle surrounding the associated dialog or
dialog control. The coordinates are relative to the upper left corner of the
screen and are specified in screen pixels. The order is: left, top, right, bottom;
where ’left’ and ’top’ are the x and y coordinates of the upper left-hand corner
of the rectangle, and ’right’ and ’bottom’ are the coordinates of the bottom
right-hand corner.

Return value:
The coordinates of the dialog or dialog control, separated by blanks.

Example:
The following example calculates the width and height of an entry
line:
parse value MyDialog∼GetEditControl("Name")∼GetRect with left top,
right bottom
width = right - left
height = bottom - top

Chapter 9. DialogControl Class 187

SetRect

��

&

aDialogControl∼SetRect(x,y,width,height)

, " NOMOVE "
NOSIZE
HIDEWINDOW
SHOWWINDOW
NOREDRAW

��

The SetRect method sets new coordinates for the associated dialog or dialog
control.

Arguments:
The arguments are:

x,y The new position of the upper left corner, in screen pixels.

width The new width of the dialog or dialog control, in screen
pixels.

height The new height of the dialog or dialog control, in screen
pixels.

showOptions
One or more of the following keywords, separated by blanks:

NOMOVE
The upper left position of the dialog or dialog control
is not changed.

NOSIZE
The size of the dialog or dialog control is not changed.

HIDEWINDOW
The dialog or dialog control is to be made invisible.

SHOWWINDOW
The dialog or dialog control is to be made visible.

NOREDRAW
The dialog or dialog control is to be repositioned
without redrawing it.

Return value:

0 Repositioning was successful.

1 Repositioning failed.

188 OODialog Method Reference

GetClientRect

�� aDialogControl∼GetClientRect()
hwnd

��

The GetClientRect method returns the client rectangle of a dialog or dialog
control in screen pixels. The client coordinates specify the upper left and
lower right corners of the client area. Because the client coordinates are
relative to the upper left corner of the client area of a dialog or dialog control,
the coordinates of the upper left corner are (0,0).

Arguments:
The only argument is:

hwnd The handle to a dialog or dialog control. If this argument is
omitted, the dimensions of the associated dialog or dialog
control are returned.

Return value:
The client rectangle in the format "left top right bottom", separated by
blanks.

GetPos

�� aDialogControl∼GetPos ��

The GetPos method returns the coordinates of the upper left corner of the
dialog or dialog control, in dialog units.

Return value:
The horizontal and vertical position, separated by a blank.

Example:
For an example, see “Move” on page 195.

GetSize

�� aDialogControl∼GetSize ��

The GetSize method returns the width and height of the dialog or dialog
control, in dialog units.

Return value:
The width and height, separated by a blank.

Chapter 9. DialogControl Class 189

Example:
For an example, see “Resize” on page 193.

GetFocus

�� aDialogControl∼GetFocus ��

The GetFocus method returns the handle to the dialog or dialog control that
has currently the input focus.

Return value:
The handle to the dialog or dialog control that has the input focus, or
0 if this method failed.

SetFocus

�� aDialogControl∼SetFocus(hwnd) ��

The SetFocus method sets the input focus to a dialog or dialog control.

Arguments:
The only argument is:

hwnd The handle to the dialog or dialog control that is to receive
the input focus.

Return value:
The handle to the dialog or dialog control that had the focus before,
or 0 if this method failed.

Appearance Modification Methods

The following methods are to change the appearance of the dialog itself or
one of its controls. The list contains methods to change the size, position,
visibility, and title (header).

Enable

�� aDialogControl∼Enable ��

The Enable method enables a dialog or dialog control to accept user
interaction.

190 OODialog Method Reference

Example:
MyDialog∼GetEditControl("Name")∼Enable

Disable

�� aDialogControl∼Disable ��

The Disable method disables a dialog or dialog control.

Example:
MyDialog∼GetEditControl("Name")∼Disable

Hide

�� aDialogControl∼Hide ��

The Hide method makes a dialog or dialog control invisible and activates
another dialog or dialog control.

Example:
MyDialog∼GetEditControl("NAME")∼Hide

HideFast

�� aDialogControl∼HideFast ��

The HideFast method marks a dialog or dialog control as invisible but does
not redraw it. Send the Update method (see page 196) to the dialog or dialog
control to force a redraw.

Example:
MyDialog∼GetEditControl("NAME")∼HideFast
...
MyDialog∼Update

ShowFast

�� aDialogControl∼ShowFast ��

The ShowFast method marks a dialog or dialog control as visible but does not
redraw it. Send the Update method (see page 196) to the dialog or dialog
control to force a redraw.

Example:

Chapter 9. DialogControl Class 191

MyDialog∼GetEditControl("NAME")∼ShowFast
...
MyDialog∼Update

Display

�� aDialogControl∼Display(" DEFAULT ")
FAST

NORMAL
FAST

HIDE
FAST

MIN
FAST

MAX
FAST

RESTORE
FAST

INACTIVE
FAST

��

The Display method displays a dialog or dialog control as specified.

Argument:
This argument must be one of the following keywords:

DEFAULT
Displays the dialog or dialog control in its default state.

NORMAL
Same as calling the Show method (see page 105).

HIDE Same as calling the Hide method (see page 191).

MIN Minimizes the dialog.

MAX Maximizes the dialog.

RESTORE
Activates and displays the dialog. If the dialog is minimized
or maximized, it is restored to its original size and position.

INACTIVE
Displays the dialog or dialog control in its current state. The
active dialog or dialog control remains active.

To each keyword you can add FAST, separated by a blank, to
suppress the redrawing of the dialog or dialog control.

Example:
The following statement minimizes the dialog without redrawing it.
MyDialog∼GetTreeControl("FILES")∼Display("MIN FAST")

192 OODialog Method Reference

Minimize

�� aDialogControl∼Minimize ��

The Minimize method minimizes the dialog.

Return value:

0 Minimizing was successful.

1 Minimizing failed.

Maximize

�� aDialogControl∼Maximize ��

The Maximize method maximizes the dialog.

Return value:

0 Maximizing was successful.

1 Maximizing failed.

Resize

��

&

aDialogControl∼Resize(width,height)

, " HIDEWINDOW "
SHOWWINDOW
NOREDRAW

��

The Resize method resizes a dialog or dialog control.

Arguments:
The arguments are:

width The new width of the dialog or dialog control, in dialog units.

height The new height of the dialog or dialog control, in dialog units.

showOptions
One or more of the following keywords, separated by blanks:

HIDEWINDOW
The dialog or dialog control is to be made invisible.

SHOWWINDOW
The dialog or dialog control is to be made visible.

Chapter 9. DialogControl Class 193

NOREDRAW
The dialog or dialog control is to be repositioned
without redrawing it.

Return value:

0 Resizing was successful.

1 Resizing failed.

Example:
The following example resizes the tree view control FILES almost to
the size of the window and displays the new size:
obj = MyDialog∼GetTreeControl("FILES")
if obj = .Nil then return
obj∼Resize(MyDialog∼SizeX -10, MyDialog∼SizeY -20)
parse value obj∼GetSize with width height
say "New width of window is" width "and new height is" height

SetColor

�� aDialogControl∼SetColor(background,foreground) ��

The SetColor method sets the background and foreground colors of the dialog
control.

Arguments:
The arguments are:

background
The color number of the background color.

foreground
The color number of the foreground color.

Return value:

0 The color has been assigned.

1 The selected color was already assigned.

Example:
The following example sets the background color of list box FILES to
blue:
MyDialog∼GetListBox("FILES")∼SetColor(4, 15)

ForegroundWindow

�� aDialogControl∼ForegroundWindow ��

194 OODialog Method Reference

The ForegroundWindow method returns the handle to the current foreground
window.

Return value:
The handle to the foreground window, or 0 if this method failed.

Move

��

&

aDialogControl∼Move(xPos,yPos)

, " HIDEWINDOW "
SHOWWINDOW
NOREDRAW

��

The Move method moves the associated dialog or dialog control to the
specified position.

Arguments:
The arguments are:

xPos The new horizontal position of the dialog or dialog control, in
dialog units.

yPos The new vertical position of the dialog or dialog control, in
dialog units.

showOptions
One or more of the following keywords, separated by blanks:

HIDEWINDOW
The dialog or dialog control is to be made invisible.

SHOWWINDOW
The dialog or dialog control is to be made visible.

NOREDRAW
The dialog or dialog control is to be repositioned
without redrawing it.

Return value:

0 Moving was successful.

1 Moving failed.

Example:
The following example repositions the tree view control FILES to the
upper left corner of the window and displays the new position:

Chapter 9. DialogControl Class 195

obj = MyDialog∼GetTreeControl("FILES")
if obj = .Nil then return
obj∼Move(1,1)
parse value obj∼GetPos with x y
say "New horizontal position of window is" x "and new vertical position is" y

Update

�� aDialogControl∼Update ��

The Update method makes the contents of the dialog or dialog control invalid
and therefore forces it to be updated.

Title

�� aDialogControl∼Title ��

The Title method retrieves the title of the dialog or dialog control.

Return value:

0 The title was retrieved.

1 Retrieving the title failed.

Title=

�� aDialogControl∼Title=new_title ��

The Title= method sets the title of the dialog or dialog control.

Arguments:
The only argument is:

new_text
A text string that is to be used as the title or text of the dialog
or dialog control.

Return value:

0 The title was set.

1 Setting the title failed.

Example:
The following example changes the label of radio button CHOICE2:
MyDialog∼GetRadioControl("CHOICE2")∼Title="&Object REXX (preferred choice)"
MyDialog∼Redraw

196 OODialog Method Reference

SetTitle

�� aDialogControl∼SetTitle(new_title) ��

The SetTitle method sets the title of the dialog or dialog control. It is equal to
“Title=” on page 196.

Draw Methods

The following methods are used to draw, redraw, and clear a dialog or dialog
control.

Draw

�� aDialogControl∼Draw ��

The Draw method draws the dialog or dialog control.

Return value:

0 Drawing was successful.

1 Drawing failed.

Clear

�� aDialogControl∼Clear ��

The Clear method draws the dialog or dialog control using the background
brush.

Return value:

0 Clearing was successful.

1 Clearing failed.

ClearRect

�� aDialogControl∼ClearRect(left,top,right,bottom) ��

The ClearRect method draws the dialog or dialog control using the
background brush.

Chapter 9. DialogControl Class 197

Arguments:
The arguments are:

left,top
The upper left corner of the rectangle, in screen pixels.

right,bottom
The lower right corner of the rectangle, in screen pixels.

Return value:

0 Drawing was successful.

1 Drawing failed.

Redraw

�� aDialogControl∼Redraw ��

The Redraw method redraws the dialog or dialog control immediately.

Return value:

0 Redrawing was successful.

1 Redrawing failed.

RedrawRect

�� aDialogControl∼RedrawRect(left,top,right,bottom)
,erasebkg

��

The RedrawRect method immediately redraws the rectangle of the client area
of the associated dialog. You can specify whether the background of the
dialog is to be erased before repainting.

Arguments:
The arguments are:

left,top
The upper left corner of the rectangle relative to the client
area, in screen pixels.

right,bottom
The lower right corner of the rectangle relative to the client
area, in screen pixels.

erasebkg
If this argument is 1 or "Y", the background of the dialog is
erased before repainting.

198 OODialog Method Reference

Return value:

0 Redrawing was successful.

1 Redrawing failed.

RedrawClient

�� aDialogControl∼RedrawClient(erasebkg) ��

The RedrawClient method immediately redraws the entire client area of the
dialog or dialog control. You can specify whether the background of the
dialog or dialog control is to be erased before redrawing.

Arguments:
The only argument is:

erasebkg
If you specify 1 or "Y", the background of the dialog is erased
before redrawing.

Return value:

0 Redrawing was successful.

1 Redrawing failed.

Conversion Methods

The following methods are used to convert and map coordinates of a dialog
or dialog control.

LogRect2AbsRect

�� aDialogControl∼LogRect2AbsRect(left,top,right,bottom) ��

The LogRect2AbsRect method converts the coordinates from dialog units to
screen pixels.

Arguments:
The arguments are:

left,top
The position of the upper left corner, in dialog units.

right,bottom
The position of the lower right corner, in dialog units.

Return value:
A compound variable that stores the four screen pixel coordinates.

Chapter 9. DialogControl Class 199

The position of the upper left corner is stored in RetStem.left and
RetStem.top. The position of the lower right corner is stored in
RetStem.right and RetStem.bottom. The tails left, top, right, and
bottom must be uninitialized symbols.

Example:
absrect. = MyDialog∼LogRect2AbsRect(5, 5, 10, 10)
say "Screen pixel rectangle=" absrect.left "," absrect.top ",",
absrect.right "," absrect.bottom

AbsRect2LogRect

�� aDialogControl∼AbsRect2LogRect(left,top,right,bottom) ��

The AbsRect2LogRect method converts the coordinates from screen pixels to
dialog units.

Arguments:
The arguments are:

left,top
The position of the upper left corner, in screen pixels.

right,bottom
The position of the lower right corner, in screen pixels.

Return value:
A compound variable that stores the four screen dialog units. The
position of the upper left corner is stored in RetStem.left and
RetStem.top. The position of the lower right corner is stored in
RetStem.right and RetStem.bottom. The tails left, top, right, and
bottom must be uninitialized symbols.

Example:
rectdunit. = MyDialog∼AbsRect2LogRect(20, 20, 40, 40)
say "Dialog unit rectangle=" rectdunit.left "," rectdunit.top ",",
rectdunit.right "," rectdunit.bottom

ScreenToClient

�� aDialogControl∼ScreenToClient(x,y) ��

The ScreenToClient method maps the coordinates relative to the upper left
corner of the screen, to a location within the client area relative to the upper
left corner of the dialog’s client area.

Arguments:
The arguments are:

200 OODialog Method Reference

x The horizontal position, in screen pixels.

y The vertical position, in screen pixels.

Return value:
The horizontal and vertical positions of the specified location relative
to the upper left corner of the client area, separated by a blank.

ClientToScreen

�� aDialogControl∼ClientToScreen(x,y) ��

The ClientToScreen method maps the coordinates relative to the dialog’s client
area to the coordinates relative to the upper left corner of the screen.

Arguments:
The arguments are:

x The horizontal position in screen pixels.

y The vertical position in screen pixels.

Return value:
The horizontal and vertical positions of the specified location relative
to the location (0,0) of the screen, separated by a blank.

Scroll Methods

The following methods are used to scroll a dialog or dialog control and to set
scroll bars.

Scroll

�� aDialogControl∼Scroll(cx,cy) ��

The Scroll method scrolls the contents of the associated dialog or dialog
control by the amount specified.

Arguments:
The arguments are:

cx The number of screen pixels the content of the dialog or
dialog control is to be scrolled to the right or to the left, if
negative.

cy The number of screen pixels the content of the dialog or
dialog control is to be scrolled downward or upward, if
negative.

Chapter 9. DialogControl Class 201

Return value:

0 Scrolling was successful.

1 Scrolling failed.

HScrollPos

�� aDialogControl∼HScrollPos ��

The HScrollPos method returns the position of the horizontal scroll bar in the
associated dialog or dialog control.

Return value:
The position of the horizontal scroll bar.

VScrollPos

�� aDialogControl∼VScrollPos ��

The VScrollPos method returns the position of the vertical scroll bar in the
associated dialog or dialog control.

Return value:
The position of the vertical scroll bar.

SetHScrollPos

��
1

aDialogControl∼SetHScrollPos(position,)
redraw

��

The SetHScrollPos method sets the thumb position of the horizontal scroll bar
contained in the associated dialog or dialog control.

Arguments:
The arguments are:

position
The new thumb position of the horizontal scroll bar.

redraw
If this argument is 1 (the default), the display of the scroll bar
is updated.

Return value:
The previous position of the horizontal scroll bar, or 0 if this method
failed.

202 OODialog Method Reference

SetVScrollPos

��
1

aDialogControl∼SetVScrollPos(position,)
redraw

��

The SetVScrollPos method sets the thumb position of the vertical scroll bar
contained in the associated dialog or dialog control.

Arguments:
The arguments are:

position
The new thumb position of the vertical scroll bar.

redraw
If this argument is 1 (the default), the display of the scroll bar
is updated.

Return value:
The previous position of the vertical scroll bar, or 0 if this method
failed.

Mouse and Cursor Methods

The following methods are used to position and shape the mouse cursor and
to capture the mouse.

CursorPos

�� aDialogControl∼CursorPos ��

The CursorPos method returns the current position of the mouse cursor.

Return value:
The horizontal and vertical position of the mouse, separated by a
blank.

Example:
See “SetCursorPos” for an example on how to use this method.

SetCursorPos

�� aDialogControl∼SetCursorPos(x,y) ��

Chapter 9. DialogControl Class 203

The SetCursorPos method moves the mouse cursor to the specified position.
This method can be used to force the repainting of the mouse cursor or to
keep the mouse cursor within a specific rectangle.

Arguments:
The arguments are:

x The horizontal position of the mouse cursor, in screen pixels.

y The vertical position of the mouse cursor, in screen pixels.

Return value:

0 Moving the mouse cursor was successful.

1 Moving the mouse cursor failed.

Example
The following example shows two methods: one indicating that
processing has started and one indicating that processing has
completed. The method IndicateBeginProcessing changes the shape of
the mouse cursor to the WAIT cursor and IndicateEndProcessing
restores the original mouse cursor shape. Both methods retrieve the
current position of the mouse cursor and move it by one screen pixel
in each direction to force the repainting of the mouse cursor.
::method IndicateBeginProcessing

self∼Current_Cursor = self∼Cursor_Wait
parse value self∼CursorPos with curx cury
self∼SetCursorPos(curx+1, cury+1)

::method IndicateEndProcessing
self∼RestoreCursorShape(self∼Current_Cursor)
parse value self∼CursorPos with curx cury
self∼SetCursorPos(curx-1, cury-1)

See “DefListDragHandler” on page 321 for another example on how to
use the mouse methods.

RestoreCursorShape

�� aDialogControl∼RestoreCursorShape()
CursorHandle

��

The RestoreCursorShape method restores the shape of the mouse cursor.

Arguments:
The only argument is:

CursorHandle
The handle to the mouse cursor shape returned by the

204 OODialog Method Reference

Cursor_Arrow, Cursor_AppStarting, Cursor_Cross,
Cursor_No, or Cursor_Wait method.

If you omit this argument, the cursor shape is set to an arrow.
Therefore, it is recommended that you store the original
mouse cursor shape by specifying its handle when you change
its shape.

Return value:
The handle to the current cursor shape, that is, the shape that was
used before the cursor was restored to the given shape.

Example:
See “SetCursorPos” on page 203 for an example on how to use this
method.

Cursor_Arrow

�� aDialogControl∼Cursor_Arrow ��

The Cursor_Arrow method sets the shape of the mouse cursor to the standard
arrow. The new shape is only used when the mouse cursor is within the
rectangle of the associated dialog or dialog control.

Return value:
The handle to the current cursor shape, that is, the shape that was
used before the arrow shape was set.

Example:
See “SetCursorPos” on page 203 for an example on how to use this
method.

Cursor_AppStarting

�� aDialogControl∼Cursor_AppStarting ��

The Cursor_AppStarting method sets the shape of the mouse cursor to the
standard arrow with a small hourglass. The new shape is only used when the
mouse cursor is within the rectangle of the associated dialog or dialog control.

Return value:
The handle to the current cursor shape, that is, the shape that was
used before the arrow shape with the hourglass was set.

Example:
See “SetCursorPos” on page 203 for an example on how to use this
method.

Chapter 9. DialogControl Class 205

Cursor_Cross

�� aDialogControl∼Cursor_Cross ��

The Cursor_Cross method sets the shape of the mouse cursor to a crosshair.
The new shape is only used when the mouse cursor is within the rectangle of
the associated dialog or dialog control.

Return value:
The handle to the current shape, that is, the shape that was used
before the crosshair cursor shape was set.

Example:
See “SetCursorPos” on page 203 for an example on how to use this
method.

Cursor_No

�� aDialogControl∼Cursor_No ��

The Cursor_No method sets the shape of the mouse cursor to a slashed circle
to deny access. The new shape is only used when the mouse cursor is within
the rectangle of the associated dialog or dialog control.

Return value:
The handle to the current shape, that is, the shape that was used
before the slashed-circle cursor shape was set.

Example:
See “SetCursorPos” on page 203 for an example on how to use this
method.

Cursor_Wait

�� aDialogControl∼Cursor_Wait ��

The Cursor_Wait method sets the shape of the mouse cursor to the hourglass.
The new shape is only used when the mouse cursor is within the rectangle of
the associated dialog or dialog control.

Return value:
The handle to the current shape, that is, the shape that was used
before the hourglass shape was set.

206 OODialog Method Reference

Example:
See “SetCursorPos” on page 203 for an example on how to use this
method.

GetMouseCapture

�� aDialogControl∼GetMouseCapture ��

The GetMouseCapture method retrieves the dialog or dialog control that
captured the mouse. This dialog or dialog control receives the entire mouse
input regardless of whether the mouse cursor is within the borders of the
dialog or dialog control.

Return value:
The handle to the dialog or dialog control that captures the mouse, or
0 if the mouse is not captured.

CaptureMouse

�� aDialogControl∼CaptureMouse ��

The CaptureMouse method captures the mouse. This means that the associated
dialog or dialog control receives the entire mouse input regardless of whether
the mouse cursor is within the borders of the dialog or dialog control.

Return value:
The handle to the dialog or dialog control that previously captured
the mouse, or 0 if the mouse was not captured before.

Note: If you change the cursor shape while the mouse is being captured, this
change is ignored.

ReleaseMouseCapture

�� aDialogControl∼ReleaseMouseCapture ��

The ReleaseMouseCapture method releases the mouse capture from a dialog or
dialog control and restores normal mouse input processing. This means that
the mouse input is then received by another dialog or dialog control that
captured the mouse.

Return value:

0 The mouse capture was released.

1 Releasing the mouse capture failed.

Chapter 9. DialogControl Class 207

IsMouseButtonDown

�� aDialogControl∼IsMouseButtonDown(" LEFT ")
MIDDLE
RIGHT

��

The IsMouseButtonDown method retrieves information on whether a mouse
button is pressed.

Arguments:
The only argument is:

button
The location of the mouse button you are interested in.

Return value:

0 The button is not being pressed.

1 The button is being pressed.

Bitmap Methods

The following methods load and release bitmaps.

LoadBitmap

�� aDialogControl∼LoadBitmap(bmpFilename)
, "USEPAL"

��

The LoadBitmap method loads a bitmap from a file into memory and returns
the handle to the bitmap.

Arguments:
The arguments are:

bmpFilename
The name of a bitmap file. The name can also include a
relative or absolute path.

USEPAL
Sets the color palette of the bitmap as the system color palette.

Example:
The following example loads into memory the bitmap file, Walker.bmp,
which is located in the BMP subdirectory. hBmp is the handle to this
in-memory bitmap.
hBmp = MyDialog∼LoadBitmap("bmp\Walker.bmp", "USEPAL")

208 OODialog Method Reference

Note: Do not forget to call the RemoveBitmap method to free memory when
the bitmap is no longer in use. You have to specify the INMEMORY
option when using the ConnectBitmapButton or ChangeBitmapButton
method.

RemoveBitmap

�� aDialogControl∼RemoveBitmap(hBitmap) ��

The RemoveBitmap method frees an in-memory bitmap that was loaded by
LoadBitmap.

Arguments:
The only argument is:

hBitmap
The bitmap handle.

Device Context Methods

The following methods are used to retrieve and release a device context (DC).

A device context (DC) is associated with a dialog or dialog control, and is a
drawing area managed by a dialog or dialog control. It stores information
about graphic objects (such as bitmaps, lines, and pixels that are displayed)
and the tools (such as pens, brushes, and fonts) that are used to display them.

GetDC

�� aDialogControl∼GetDC ��

The GetDC method reserves drawing resources and returns the handle to the
display device context of a dialog or dialog control.

Return value:
The handle to the device context, or 0 if this method failed.

Example:
The following example retrieves the device context of button
DRAWINGS, processes the drawing commands, and frees the device
context resources:
obj = MyDialog∼GetButtonControl("DRAWINGS")
if obj = .Nil then return -1
dc = obj∼GetDC
if dc = 0 then return -1
... /* draw something */
obj∼FreeDC(dc)

Chapter 9. DialogControl Class 209

Note: When you have finished with the device context, call FreeDC.

FreeDC

�� aDialogControl∼FreeDC(dc) ��

The FreeDC method releases the device context resources that were reserved
for GetDC.

Arguments:
The only argument is:

dc The handle to the device context that is to be released.

Return value:

0 The device context resources were released.

1 Releasing the device context resources failed.

Example:
See “GetDC” on page 209 for an example.

Note: Always call this method when you have finished with the device
context.

Text Methods

The following methods are used to display text dynamically in a window area
and to modify the state of a device context. See “GetWindowDC” on page 166,
“GetDC” on page 209, and “GetButtonDC” on page 166 for information on
how to retrieve a device context.

Write

�� aDialogControl∼Write(xPos , yPos , text �

�
"SYSTEM"

,
fontName 10

,
fontSize

�

210 OODialog Method Reference

�

&

)

OPAQUE
, " THIN "

EXTRALIGHT ,
LIGHT fgColor , bkColor
MEDIUM
SEMIBOLD
EXTRABOLD
BOLD
HEAVY
UNDERLINE
ITALIC
STRIKEOUT
TRANSPARENT
CLIENT

��

The Write method writes the specified text to the device context associated
with the dialog or dialog control in the given font, style, and color at the
given position.

Arguments:
The arguments are:

xPos, yPos
The starting position of the text, in pixels.

text The string that you want to write to the dialog or dialog
control.

fontName
The name of a font. If omitted, the SYSTEM font is used.

fontSize
The size of the font. If omitted, the standard size (10) is used.

fontStyle
One or more of the keywords listed in the syntax diagram,
separated by blanks:

TRANSPARENT
This style writes the text without clearing the
background.

OPAQUE
This style, which is the default, clears the background
with the given background color, or with white if the
background color is omitted, before writing the text.

CLIENT
The device context of the client area of the dialog or

Chapter 9. DialogControl Class 211

dialog control is used instead of the device context of
the entire dialog or dialog control.

fgcolor
The color index of the text color.

bkColor
The color index of the background color. The background
color is not used in transparent mode.

Example:
The following example writes the string "Hello world!" to the dialog
using a blue 24pt Arial font in bold and transparent, italic style:
MyDialog∼Write(5, 5, "Hello world!", "Arial", 24,,
"BOLD ITALIC TRANSPARENT CLIENT", 4)

WriteDirect

�� aDialogControl∼WriteDirect(dc,xPos,yPos,text) ��

The WriteDirect method enables you to write text to a device context at a
given position.

Arguments:
The arguments are:

dc A device context.

xPos, yPos
The position where the text is placed, in pixels.

text The string you want to write to the dialog or dialog control.

TransparentText

�� aDialogControl∼TransparentText(dc) ��

The TransparentText method enables you to write text to a device context using
WriteDirect in transparent mode, that is, without a white background behind
the text. Restore the default mode using “OpaqueText”.

Arguments:
The only argument is:

dc A device context.

OpaqueText

212 OODialog Method Reference

�� aDialogControl∼OpaqueText(dc) ��

The OpaqueText method restores the default text mode, that is, with a white
background behind the text, which overlays whatever is at that position in the
dialog or dialog control. Use this method after transparent mode was set
using “TransparentText” on page 212.

Arguments:
The only argument is:

dc A device context.

WriteToWindow

�� aDialogControl∼WriteToWindow(hwnd , xPos , yPos , text �

�
"SYSTEM"

,
fontName 10

,
fontSize

�

�

&

)

OPAQUE
, " THIN "

EXTRALIGHT ,
LIGHT fgColor , bkColor
MEDIUM
SEMIBOLD
EXTRABOLD
BOLD
HEAVY
UNDERLINE
ITALIC
STRIKEOUT
TRANSPARENT
CLIENT

��

The WriteToWindow method enables you to write text to a dialog or dialog
control in the given font and size to the given position.

Arguments:
The arguments are:

hwnd The handle of the dialog or dialog control. See “Get” on
page 150 for how to get a valid handle.

Chapter 9. DialogControl Class 213

xPos, yPos
The starting position of the text, in pixels.

text The string you want to write to the dialog or dialog control.

fontName
The name of a font. If omitted, the SYSTEM font is used.

fontSize
The size of the font. If omitted, the standard size (10) is used.

fontStyle
One or more of the keywords listed in the syntax diagram,
separated by blanks:

TRANSPARENT
This style writes the text without clearing the
background.

OPAQUE
This style, which is the default, clears the background
with the given background color, or with white if the
background color is omitted, before writing the text.

CLIENT
The device context of the dialog’s client area is used
instead of the device context of the entire dialog.

Example:
This example writes the string ″Hello world!″ to the dialog window
using a 24pt Arial font in bold and italic style:
hwnd=MyDialog∼Get
MyDialog∼WriteToWindow(hwnd, 23, 15, "Hello world!", ,

"Arial", 24, "BOLD ITALIC")

WriteToButton

�� aDialogControl∼WriteToButton(id , xPos , yPos , text �

�
"SYSTEM"

,
fontName 10

,
fontSize

�

214 OODialog Method Reference

�

&

)

OPAQUE
, " THIN "

EXTRALIGHT ,
LIGHT fgColor , bkColor
MEDIUM
SEMIBOLD
EXTRABOLD
BOLD
HEAVY
UNDERLINE
ITALIC
STRIKEOUT
TRANSPARENT
CLIENT

��

The WriteToButton method enables you to write text to a button in the given
font and size to the given position.

Arguments:
The arguments are:

id The ID of a button.

See “WriteToWindow” on page 213 for a description of the other
arguments.

GetTextSize

�� aDialogControl∼GetTextSize(text,fontname,fontsize,hwnd) ��

The GetTextSize method returns the width and height that the specified text
requires in the font and size given.

Arguments:
The arguments are:

text The text for which the dimensions are to be returned.

fontname
The name of the font used in the device context (DC).

fontsize
The size of the font used in the device context (DC).

hwnd The handle to the dialog or dialog control that is the owner of
the device context (DC).

Chapter 9. DialogControl Class 215

Return value:
The width and height of the text, in dialog units, separated by a
blank.

Example:
The following example stores the space required by the specified text
in the device context of MyButton, in cx and cy:
parse value MyButton∼GetTextSize("This is the output!") with cx cy

SetFont

�� aDialogControl∼SetFont(fontHandle)
,redraw

��

The SetFont method assigns another font to the text in a dialog or dialog
control.

Arguments:
The arguments are:

fontHandle
The handle to the font that is to be used by the dialog or
dialog item. Use “CreateFont” to get this handle.

redraw
If you specify 1, the dialog or dialog item is redrawn.

Example:
The following example creates the font Arial with a pitch size of 14
and assigns it to the tree view control FILES, which is forced to be
redrawn.
hfnt = Mydialog∼CreateFont("Arial", 14)
MyDialog∼GetTreeControl("FILES")∼SetFont(hfnt, 1)

CreateFont

��
"SYSTEM" 10

aDialogControl∼CreateFont(, ,
fontName fontSize

�

216 OODialog Method Reference

� &" THIN ")
EXTRALIGHT , fontWidth
LIGHT
MEDIUM
SEMIBOLD
EXTRABOLD
BOLD
HEAVY
UNDERLINE
ITALIC
STRIKEOUT

��

The CreateFont method creates a font. It returns a handle that you can use in
the FontToDC method (see page 218) to activate the font in a device context or
in the SetItemFont method (see page 170) to change the font of a dialog or
dialog item.

Arguments:
The arguments are:

fontName
The name of a font. You can look for valid fonts in the Fonts
folder of your Windows Control Panel. If omitted, the
SYSTEM font is used.

fontSize
The size of the font. If omitted, the standard size (10) is used.

fontStyle
One or more of the keywords listed in the syntax diagram,
separated by blanks.

fontWidth
This argument is optional if it differs from fontSize.

Example:
The following example creates a 16-point italic Arial font:
hfnt = MyDialog∼CreateFont("Arial", 16, "ITALIC")

DeleteFont

�� aDialogControl∼DeleteFont(hFont) ��

The DeleteFont method deletes a font. This method is to be used to delete a
font created with the CreateFont method (see page 216).

Chapter 9. DialogControl Class 217

Arguments:
The only argument is:

hFont The handle of a font.

FontToDC

�� aDialogControl∼FontToDC(dc,hFont) ��

The FontToDC method loads a font into a device context and returns the
handle of the previous font. Use the GetWindowDC, GetDC, or GetButtonDC
method to retrieve a device context, and the CreateFont method to get a font
handle. To reset the font to the original state, use another FontToDC call with
the handle of the previous font. To release the device context, use the
FreeWindowDC, FreeDC, or FreeButtonDC method.

Arguments:
The arguments are:

dc The device context of a dialog or button.

hFont The handle of a font.

Example:
This example loads an Arial font into the current dialog window:
hfnt = MyDialog∼CreateFont("Arial", 16, "ITALIC")
dc = MyDialog∼GetDC
oldf = MyDialog∼FontToDC(dc,hfnt) /* activate font */
...
MyDialog∼FontToDC(dc,oldf) /* restore previous font */
MyDialog∼FreeDC(dc)

FontColor

�� aDialogControl∼FontColor(color,dc) ��

The FontColor method sets the font color for a device context.

Arguments:
The arguments are:

color The index of a color in the system’s color palette.

dc The device context.

218 OODialog Method Reference

Graphic Methods

These methods deal with drawing graphics within the device context of a
window. See “GetWindowDC” on page 166, “GetDC” on page 209, and
“GetButtonDC” on page 166 for information on how to retrieve a device
context.

CreateBrush

�� aDialogControl∼CreateBrush(color)
,brushSpecifier

��

The CreateBrush method creates a color brush or a bitmap brush. It returns the
handle to a brush object. To remove the brush, use “DeleteObject” on
page 221. The brush is used to fill rectangles.

Arguments:
The arguments are:

color The color number. For a list of color numbers, refer to
“Chapter 7. Definition of Terms” on page 87.

brushSpecifier
The name of a bitmap file or one of the following keywords to
create a hatched brush:

UPDIAGONAL
A 45-degree upward, left-to-right hatch

CROSS
A horizontal and vertical crosshatch

DIAGCROSS
A 45-degree crosshatch

DOWNDIAGONAL
A 45-degree downward, left-to-right hatch

HORIZONTAL
A horizontal hatch

VERTICAL
A vertical hatch

If CreateBrush is sent to a dialog object (subclass of
ResDialog), brushSpecifier can also be an integer resource ID
for a bitmap stored in the DLL that also stores the resource.

If this argument is omitted, a solid brush with the specified
color is created.

Chapter 9. DialogControl Class 219

CreatePen

��
1

aDialogControl∼CreatePen(, ,
width SOLID

" DASH "
DOT
DASHDOT
DASHDOTDOT
NULL

�

�
0

)
color

��

The CreatePen method creates a pen in the specified color and style. It returns
the handle to a pen object. To remove the pen, use “DeleteObject” on
page 221.

Arguments:
The arguments are:

width The width of the lines that the pen will draw. If omitted, 1 is
used as default.

style One of the keywords listed in the syntax diagram. Values
other than SOLID or NULL have no effect on pens with a
width greater than 1. SOLID is the default.

color The color number of the pen. If omitted, 0 is used as default.
For a list of color numbers, refer to “Chapter 7. Definition of
Terms” on page 87.

Example:
The following example creates a dotted pen object with a width of 1:
hPen = MyDialog∼CreatePen(1, "DOT", 13)

ObjectToDC

�� aDialogControl∼ObjectToDC(dc,obj) ��

The ObjectToDC method loads a graphic object, namely a pen or a brush, into
a device context. Subsequent lines, rectangles, and arcs are drawn using the
pen and brush.

Arguments:
The arguments are:

220 OODialog Method Reference

dc The device context.

obj The object: a pen or a brush.

Return value:
The handle of the previous active pen or brush. It can be used to
restore the previous environment.

Example:
The following example activates a pen for drawing:
dc = MyBaseDialog∼GetDC
hpen = MyDialog∼CreatePen(2, "SOLID", 4)
MyDialog∼ObjectToDC(dc,hpen)
... /* do lines, rectangles, ... */
MyDialog∼deleteObject(hpen)

DeleteObject

�� aDialogControl∼DeleteObject(obj) ��

The DeleteObject method deletes a graphic object, namely a pen or a brush. See
“CreatePen” on page 220 and “CreateBrush” on page 219 for information on
how to get the handle of a pen or brush.

Arguments:
The only argument is:

obj The handle of a pen or brush.

Graphic Drawing Methods

The following methods are used to draw rectangles, lines, pixels, and arcs in a
device context. See “GetWindowDC” on page 166, “GetDC” on page 209, and
“GetButtonDC” on page 166 for how to retrieve a device context. A pen and a
brush can be activated using ObjectToDC before invoking the drawing
methods.

Note: Because the pixel values include the title bar in a dialog it is easier to
define a button filling the window, and then draw on the button.

Rectangle

�� aDialogControl∼Rectangle(dc,x,y,x2,y2)
, "FILL"

��

The Rectangle method draws a rectangle to the given device context. The
appearance is determined by the graphics objects currently active in the

Chapter 9. DialogControl Class 221

device context. The active pen draws the outline and, optionally, the active
brush fills the inside area. The default pen is thin black and the default brush
is white.

Arguments:
The arguments are:

dc The device context.

x, y The position of the upper left corner of the rectangle, in
pixels.

x2, y2 The position of the lower right corner.

"FILL" The rectangle is filled with the active brush.

Example:
The following example draws a red rectangle filled with yellow,
surrounded by a black rectangle:
dc = self∼getButtonDC(100)
brush = self∼createBrush(15) /* yellow */
pen = self∼createPen(10,'solid',13) /* thick red */
oldb = self∼objectToDC(dc,brush)
oldp = self∼objectToDC(dc,pen)
self∼Rectangle(dc, 50, 50, 200, 150, "FILL")
self∼objectToDC(dc,oldp); self∼deleteObject(pen)
self∼objectToDC(dc,oldb); self∼deleteObject(brush)
self∼Rectangle(dc, 40, 40, 210, 160) /* default */

DrawLine

�� aDialogControl∼DrawLine(dc, , ,toX,toY)
fromX fromY

��

The DrawLine method draws a line within the device context using the active
pen.

Arguments:
The arguments are:

dc The device context.

fromX, fromY
The starting position, in pixels. If omitted, the previous end
point of a line or arc is used.

toX, toY
The target position.

222 OODialog Method Reference

DrawPixel

�� aDialogControl∼DrawPixel(dc,x,y,color) ��

The DrawPixel method draws a pixel within the device context.

Arguments:
The arguments are:

dc The device context.

x, y The position, in pixels.

color The color number for the pixel. For a list of color numbers,
refer to “Chapter 7. Definition of Terms” on page 87.

GetPixel

�� aDialogControl∼GetPixel(dc,x,y) ��

The GetPixel method returns the color of a pixel within the device context.

Arguments:
The arguments are:

dc The device context.

x, y The position, in pixels.

DrawArc

�� aDialogControl∼DrawArc(dc , x , Y , x2 , y2 �

�)
, startx , starty , endx , endy

��

The DrawArc method draws a circle or ellipse on the given device context
using the active pen for the outline. The circle or ellipse is drawn within the
boundaries of an imaginary rectangle whose coordinates are given. A partial
figure can be drawn by giving the end points of two radials. By default, the
figure is drawn counterclockwise, but the direction can be modified using
“SetArcDirection” on page 224.

Arguments:
The arguments are:

dc The device context.

Chapter 9. DialogControl Class 223

x, y The position of the upper left corner of the imaginary
rectangle, in pixels.

x2, y2 The position of the lower right corner of the imaginary
rectangle, in pixels.

startx, starty, endx, endy
The end points of the starting and ending radials for drawing
the figure. A full circle or ellipse is drawn if no start and end
are given. Omitted values default to 0. Imaginary radials are
drawn from the center to the start and end points. The circle
or ellipse is then drawn between the intersections of these
lines with the full circle or ellipse.

Example:
This example draws a full ellipse and a quarter circle:
dc = self∼getButtonDC(100)
pen = self∼createPen(4,'solid',13)
oldp = self∼objectToDC(dc,pen)
self∼drawArc(dc,50,50,200,150) /* full ellipse */
self∼drawArc(dc,100,100,150,150, 200,50,75,75) /* quarter circle */
self∼objectToDC(dc,oldp); self∼deleteObject(pen)

GetArcDirection

�� aDialogControl∼GetArcDirection(dc) ��

The GetArcDirection method returns the current drawing direction for the
DrawArc method.

Arguments:
The only argument is:

dc The device context.

SetArcDirection

�� aDialogControl∼SetArcDirection(dc," COUNTERCLOCKWISE ")
CLOCKWISE

��

The SetArcDirection method changes the drawing direction for the DrawArc
and DrawPie methods.

Arguments:
The arguments are:

dc The device context.

224 OODialog Method Reference

direction
The new drawing direction.

DrawPie

�� aDialogControl∼DrawPie(dc,x,y,x2,y2,startx,starty,endx,endy) ��

The DrawPie method draws a pie of a circle or ellipse on the given device
context using the active pen for the outline and the active brush to fill the pie.
The circle or ellipse is drawn within the boundaries of an imaginary rectangle
whose coordinates are given. The arc is drawn between start and end radials
in the direction specified by “SetArcDirection” on page 224.

Arguments:
The arguments are:

dc The device context.

x, y The position of the upper left corner of the imaginary
rectangle, in pixels.

x2, y2 The position of the lower right corner of the imaginary
rectangle.

startx, starty, endx, endy
The end points of the two radials (same as for DrawArc).

FillDrawing

�� aDialogControl∼FillDrawing(dc,x,y,color) ��

The FillDrawing method fills an outline figure in the given device context
using the active brush.

Arguments:
The arguments are:

dc The device context.

x, y The inside starting position for filling the outline figure with
the color of the brush, in pixels.

color The color number of the outline figure whose inside will be
filled. For a list of color numbers, refer to “Chapter 7.
Definition of Terms” on page 87.

DrawAngleArc

Chapter 9. DialogControl Class 225

�� aDialogControl∼DrawAngleArc(dc,xs,ys,x,y,radius,startangle,sweepangle) ��

The DrawAngleArc method draws a partial circle (arc) and a line connecting
the start drawing point with the start of the arc on the given device context
using the active pen for the outline. The circle is drawn counterclockwise with
the given radius between the given angles.

Arguments:
The arguments are:

dc The device context.

xs, ys The start draw position, in pixels.

x, y The center of the circle, in pixels.

radius The radius of the circle, in pixels.

startangle, sweepangle
The starting and ending angles for the partial circle in degrees
(0 is the x-axis).

226 OODialog Method Reference

Chapter 10. UserDialog Class

The UserDialog class extends the BaseDialog class. It provides methods to
create a dialog with these control elements:
v Entry lines
v Push buttons
v Check boxes
v Radio buttons
v List boxes
v Combo boxes
v Frames and rectangles

Note: The class also inherits the methods of its parent class.

There are two ways of creating a dialog:
v Load the dialog from a resource script using the Load method. A resource

script can be created with a graphical resource editor such as the Resource
Workshop.

v Invoke Add... methods to an instance of this class or a subclass and create
the dialog step by step, one method for one dialog item. The best place to
invoke these Add... methods is to override the DefineDialog method. The
DefineDialog method is called automatically when the instance is created.
There are also methods that enable you to define a group of the same
dialog elements together. The names of these methods end with Group or
Stem.

You can also combine loading a dialog from a resource script and adding
elements dynamically.

Requires:
UserDlg.cls is the source file of this class. Use the tokenized version
of OODialog, oodialog.cls, to shorten your dialog’s startup time:
::requires oodialog.cls

Subclass:
The UserDialog class is a subclass of BaseDialog.

© Copyright IBM Corp. 1997, 2001 227

Attributes:
Instances of the UserDialog class have the following attributes:

AktPtr
An attribute for internal use

BasePtr
An attribute for internal use

DialogItemCount
An attribute for internal use

FactorX
Horizontal size of one dialog unit (in pixels)

FactorY
Vertical size of one dialog unit (in pixels)

SizeX Width of the dialog in dialog units

SizeY Height of the dialog in dialog units

Methods:
Instances of the UserDialog class implement the methods listed in the
following table.

Method... ...on page

AddBitmapButton 238

AddBlackFrame 258

AddBlackRect 258

AddButton 237

AddButtonGroup 256

AddCheckBox 246

AddCheckBoxStem 254

AddCheckGroup 249

AddComboBox 245

AddComboInput 252

AddEntryLine 241

AddGrayFrame 258

AddGrayRect 258

AddGroupBox 240

AddInput 249

AddInputGroup 251

AddInputStem 252

228 OODialog Method Reference

Method... ...on page

AddListBox 244

AddMenuItem 261

AddMenuSeparator 262

AddOkCancelLeftBottom 259

AddOkCancelLeftTop 260

AddOkCancelRightBottom 259

AddOkCancelRightTop 259

AddPasswordLine 243

AddPopupMenu 261

AddRadioButton 246

AddRadioGroup 248

AddRadioStem 255

AddScrollBar 255

AddText 240

AddWhiteFrame 258

AddWhiteRect 257

Create 231

CreateCenter 232

CreateMenu 261

DefineDialog 233

Init 230

InitAutoDetection 230

Load 234

LoadFrame 235

LoadItems 236

LoadMenu 262

SetMenu 262

StartIt 260

StopIt 260

Chapter 10. UserDialog Class 229

Init

�� aUserDialog∼Init(
DlgData.

) ��

The Init method initializes a new dialog object.

Arguments:
The only argument is:

DlgData.
A stem variable that is used to initialize the data fields of the
dialog. If the dialog is terminated by means of the OK button,
the values of the dialog’s data fields are copied to this
variable. The ID of the dialog items is used to name the entry
within the stem.

Example:
The following example creates a new dialog object:
MyDialog=.UserDialog∼new(aStem.)

InitAutoDetection

�� aUserDialog∼InitAutoDetection ��

The InitAutoDetection method is called by the Init to determine whether or not
automatic data field detection should be used. For a UserDialog, autodetection
is disabled.

Protected:
This method is protected. It is called by the class itself and can be
overwritten.

Example:
The following example overrides the method to switch off auto
detection:
::class MyClass subclass UserDialog

::method InitAutoDetection
self∼NoAutoDetection

230 OODialog Method Reference

Create

�� aUserDialog∼Create(x , y , cx , cy , title , �

�

&" NOMENU "
VISIBLE
NOTMODAL
SYSTEMMODAL
THICKFRAME
MINIMIZEBOX
MAXIMIZEBOX

,
dlgClass

�

� , , ,)
fontName fontSize expected

��

The Create method creates the Windows dialog you previously defined with
Add... methods. You can set the size, title, and style of the dialog. If the return
code of Create is 0 the dialog creation failed and you should not try to
execute the dialog object.

Arguments:
The arguments are:

x, y The position of the upper-left edge of the dialog in dialog
units

cx, cy The extent (width and height) of the dialog in dialog units

title The dialog’s title that is displayed in the title bar

options
One or more of the keywords listed in the syntax diagram,
separated by blanks:

NOMENU
Creates a dialog without a system menu

VISIBLE
Creates a visible dialog

NOTMODAL
Creates a dialog with a normal window frame

SYSTEMMODAL
Creates a dialog that blocks all other windows

Chapter 10. UserDialog Class 231

THICKFRAME
Creates a dialog with a thick frame

MINIMIZEBOX
The dialog is minimized

MAXIMIZEBOX
The dialog is maximized

dlgClass
Name of the window class used for the dialog. This argument
must be omitted or an empty string.

fontName
The name of a font used by the dialog for all text. The default
font is System.

fontSize
The size of the font used by the dialog. The default value is 8.

expected
This argument determines the maximum number of dialog
elements (static text, entry lines, list boxes, and the like) the
dialog can handle. The default value is 200. If your dialog has
more than 200 elements, you must set this value; otherwise,
the dialog fails.

Example:
The following example creates a dialog with a size of 300 by 200
dialog units. The dialog has no system menu in its upper-left corner.
It has a thick frame (therefore the dialog will get resizable) and a
12-point font. The dialog has capabilities for up to 100 elements.
rc = MyDialog∼Create(20, 20, 300, 200, "My first Dialog",,

"THICKFRAME NOMENU",, "Courier", 12, 100)
if rc <> 0 then MyDialog∼Execute

CreateCenter

�� aUserDialog∼CreateCenter(cx , cy , title , �

232 OODialog Method Reference

�

&" NOMENU "
VISIBLE
NOTMODAL
SYSTEMMODAL
THICKFRAME
MINIMIZEBOX
MAXIMIZEBOX

,
dlgClass

�

�
, fontName

, fontSize
, expected

) ��

The CreateCenter method creates a dialog and centers its position. See “Create”
on page 231 for a description of all arguments and an example.

DefineDialog

�� aUserDialog∼DefineDialog ��

The DefineDialog method is called by Create. It is designed to be overwritten in
a subclass of UserDialog. You should do all or additional dialog definitions,
such as adding dialog items to the dialog, within this method. See also
“Summary of User Dialog Processing” on page 60.

Protected:
This method is protected. There is no need to call this method from
anywhere else than Create.

Example:
When the dialog is created, a push button and an entry line are added
to its client area:
::class MyDialog subclass UserDialog...
::method DefineDialog
self∼AddButton(401, 20, 235, 40, 15, "&More...")
self∼AddEntryLine(402, INPUT_1, 20, 170, 150)...

Chapter 10. UserDialog Class 233

Load

�� aUserDialog∼Load(resourceFileName , dialogId �

�

&

,
, expected

" CENTER "
CONNECTBUTTONS
CONNECTRADIOS
CONNECTCHECKS

) ��

The Load method creates the dialog based on the data of a given resource
script (a file with the extension .RC). It calls the LoadFrame and LoadItems
methods to retrieve the dialog data from the file. See also “Summary of User
Dialog Processing” on page 60.

Return code:
The return code is 0 for a successful load and 1 otherwise

Arguments:
The arguments are:

resourceFileName
The name of the resource script of the dialog

dialogId
The ID (number) of the dialog. Note that each dialog has a
unique ID assigned to it. There can be more than one dialog
definition in one resource file. If there is only one dialog
resource in the resource file, you do not have to indicate the
ID.

options
One or more of the keywords listed in the syntax diagram,
separated by blanks:

CENTER
The dialog is positioned in the center.

CONNECTBUTTONS
For each button a connection to an object method is
established automatically. See ConnectControl for a
description of connecting buttons to a method.

CONNECTRADIOS
Similar to CONNECTBUTTONS, this option enforces
the method to connect the radio buttons.

234 OODialog Method Reference

CONNECTCHECKS
This option connects the check box controls.

expected
This is the maximum number of dialog elements the dialog
object can handle. See Create.

Example:
The following example creates a dialog based on the values for dialog
100 in Dialog1.rc. It also connects the push and radio buttons to a
message named after the buttons’ title.
MyDlg = .UserDialog∼new()
MyDlg∼Load("Dialog1.rc", 100, "CONNECTBUTTONS CONNECTRADIOS")

LoadFrame

�� aUserDialog∼LoadFrame(resfile �

�
,

dialogid ,
"CENTER" , expected

) ��

The LoadFrame method creates the window frame using the data of the given
dialog resource with dialogid in file resfile. It is usually called by the Load
method. See also “Summary of User Dialog Processing” on page 60.

Protected:
This method is protected. It can only be used internally within a class
method.

Arguments:
The arguments are:

resfile The name of the resource file

dialogid
The ID of the dialog. It can be omitted if there is just one
dialog; otherwise it has to be specified.

expected
The number of expected dialog items

Example:
The following example overrides the Load method, so it loads the
dialog window (just the frame) but not its contents:
::class WindowOnlyDialog subclass UserDialog..

Chapter 10. UserDialog Class 235

.
::method Load
self∼LoadFrame("Dialog2.rc", 100, "CENTER", 20)

LoadItems

�� aUserDialog∼LoadItems(resFile �

�

&

,
dialogId

, " CONNECTBUTTONS "
CONNECTRADIOS
CONNECTCHECKS

) ��

The LoadItems method creates the dialog items, using the data of the given
resource script. It is either called by the Load method, or it can be used in the
context of a category dialog. See also “Summary of User Dialog Processing”
on page 60.

Protected:
This method cannot be called from outside the class.

Arguments:
See Load for a description.

Example:
In the following example the dialog is created either with the items of
dialog 200 or dialog 300, depending on the argument:
::class MyDialog subclass UserDialog...
::method Load

use arg view
self∼LoadFrame("Dialog2.rc", 200, "CENTER", 200)
if view="special" then

self∼LoadItems("Dialog2.rc", 200, "CONNECTBUTTONS")
else

self∼LoadItems("Dialog2.rc", 300, "CONNECTBUTTONS")

Add... Methods

The methods listed below (all starting with Add) can be used to create a
dialog dynamically without any resource script (.RC file). They can also be
used in addition to a loaded dialog.

236 OODialog Method Reference

The recommended way to create a dialog is to subclass from UserDialog and
put all Add... statements into DefineDialog method, which is executed when the
dialog is about to be created.

Add... methods call the matching Connect... methods to create the associated
Object REXX attribute. Add... methods cannot be used after Execute has
started.

Note: The coordinates are usually set in dialog units, if not mentioned
explicitly.

AddButton

�� aUserDialog∼AddButton(id , x , y , cx , cy , text �

�

&

, msgToRaise

, " DEFAULT "
OWNER
HIDDEN
DISABLED
NOTAB

) ��

The AddButton method adds a push button to the dialog and connects it with
a method that is processed whenever the button is clicked.

Arguments:
The arguments are:

id A unique number you have to assign to the button. You need
the ID to refer to this control in other methods.

x, y The position of the button’s upper-left corner relative to the
dialog measured in dialog units

cx, cy The size of the button in dialog units

text The button’s title that is displayed on the button

msgToRaise
The name of a method that is processed whenever the button
is clicked

options
The last argument can be one or more of:

DEFAULT
The button becomes the default button in the dialog.

Chapter 10. UserDialog Class 237

OWNER
The button is owner-drawn. This option is used for
bitmap buttons.

HIDDEN
The button is not visible at startup time.

DISABLED
The button is disabled at startup time.

NOTAB
There is no tabstop at the button, so you cannot get to
the button by using just the keyboard (tab key).

Example:
The following example creates a push button entitled Get new Info at
position x=100/y=80 and size width=40/height=15. The button’s ID is
555, and if the button is clicked, the getInfo message is sent to the
dialog object.
MyDialog∼AddButton(555, 100, 80, 40, 15, "&Get new Info",,
"getInfo", "NOTAB")

AddBitmapButton

�� aUserDialog∼AddBitmapButton(id , x , y , ,
cx

�

� , , , bmpNormal ,
cy text msgToRaise

�

� , ,
bmpFocused bmpSelected bmpDisabled

�

�

&

)

, " DEFAULT "
HIDDEN
DISABLED
NOTAB
FRAME
USEPAL
INMEMORY
STRETCH

��

The AddBitmapButton method adds a push button with a bitmap (instead of
plain text) to the dialog. You can provide four different bitmaps representing
the four states of a button.

238 OODialog Method Reference

The bitmaps can be specified by either a file name or a bitmap handle. You
can retrieve a bitmap handle by loading a bitmap stored in a file into memory,
using the method “LoadBitmap” on page 208). If you pass a bitmap handle to
the method, you must use the INMEMORY option.

Arguments:
The arguments are the same as for AddButton, with the changes listed
below:

bmpNormal
A bitmap that is displayed

bmpFocused
A bitmap that is displayed if the button is focused. Having
the focus means that the button is clicked by using the Enter
key. Normally the focused button is surrounded by a dashed
frame.

bmpSelected
A bitmap that is displayed while the button is clicked and
held

bmpDisabled
A bitmap that is displayed if the button is disabled

options
In addition to AddButton, there are four more options:

FRAME
The button has a 3D frame. This gives your bitmap
the same behavior as a standard Windows button.

USEPAL
The color palette of the bitmap is loaded and used.
This argument should be specified for just one of the
dialog buttons, because only one color palette can be
active at any time.

INMEMORY
Specifies that the bitmap was loaded into memory
before. If you switch often between different bitmaps
within one button, the loading of all bitmaps into
memory increases performance.

STRETCH
If this option is specified and the extent of the bitmap
is smaller than the extent of the button rectangle, the
bitmap is adapted to match the extent of the button.

See AddButton for a description of the other arguments.

Chapter 10. UserDialog Class 239

Example:
The following example defines a button with ID 601. The bitmap in
the Button1.bmp file is displayed for the push button instead of a
black text on a grey background. If the button is disabled (by using
the DisableItem method, see page 153), the bitmap is exchanged and
Button1D.bmp is shown instead. If the button is clicked, the BmpPushed
message is sent.
MyDialog∼AddBitmapButton(601, 20, 317, 80, 30, , "BmpPushed",,

"Button1.bmp",,,"Button1D.bmp","FRAME USEPAL")

AddGroupBox

�� aUserDialog∼AddGroupBox(x , y , cx , cy , text �

�
, "BORDER"

, id

) ��

The AddGroupBox method adds a group box to the dialog. A group box has a
frame and a title.

Arguments:
The arguments are the same as for AddButton, with the changes listed
below:

text The title of the group box

options

BORDER
A rectangle is drawn around the group box

AddText

�� aUserDialog∼AddText(x , y , , , text
cx cy

�

�

&

,
, id

" HIDDEN "
SIMPLE
RIGHT
CENTER
BORDER

) ��

240 OODialog Method Reference

The AddText method adds a static text element to the dialog.

Arguments:
The arguments are the same as for AddButton, with the changes listed
below:

text The text string to be displayed

options
This argument can be one or more of:

HIDDEN
The text is not visible at startup time

SIMPLE
Simple text field

RIGHT
The text is aligned to the right

CENTER
The text is centered. If neither RIGHT or CENTER is
specified, the text is aligned to the left.

BORDER
A rectangle is drawn around the text

If not specified RIGHT or CENTER, the text is aligned to the
left.

id If omitted, ID -1 is used.

AddEntryLine

�� aUserDialog∼AddEntryLine(id , , x , y , cx
name

�

Chapter 10. UserDialog Class 241

�

&

,
cy

, " MULTILINE "
AUTOSCROLLH
HSCROLL
AUTOSCROLLV
VSCROLL
READONLY
DISABLED
CENTER
RIGHT
UPPER
LOWER
NOBORDER

) ��

The AddEntryLine method adds an entry line to the dialog.

Arguments:
The arguments are:

id This must be a unique number.

name This is the name of the entry line. An attribute with exactly
this name is added to the object and provides data for the
dialog item automatically. See “ConnectEntryLine” on
page 116.

x, y The position of the upper-left corner relative to the dialog’s
client area measured in dialog units

cx The length of the entry line in dialog units

cy The height of the entry line. If this argument is omitted or
equal to 0, the height is calculated to fit the font’s height.

Options
The last argument can be one or more (separated by a blank)
of:

MULTILINE
Designates a multiple-line edit control. (The default is
single line.)

AUTOSCROLLH
Automatically scrolls text to the right by 10 characters
when the user types a character at the end of the line.
When the user presses the ENTER key, the control
scrolls all text back to position 0.

242 OODialog Method Reference

HSCROLL
Combines a horizontal scroll bar with the entry line.

AUTOSCROLLV
Automatically scrolls text up one page when the user
presses ENTER on the last line.

VSCROLL
Combines a vertical scroll bar with the entry line.

READONLY
Prevents the user from entering or editing text in the
edit control.

DISABLED
Initially disables the entry line.

CENTER
Centers text in a multiline edit control.

RIGHT
Aligns text flush right in a multiline edit control.

UPPER
Converts all characters to uppercase as they are typed
into the edit control.

LOWER
Converts all characters to lowercase as they are typed
into the edit control.

NOBORDER
The rectangle is not drawn around the entry field.

Example:
The following example puts the entry line with ID 201 and length of
150 dialog units close to the upper-left corner of the dialog’s client
area. The FIRSTNAME attribute is created and connected to the dialog
item. If the entered data is longer than 150 dialog units, the entryline
is scrolled horizontally.

MyDialog∼AddEntryLine(201, "FIRSTNAME", 12, 14, 150,,"AUTOSCROLLH")

AddPasswordLine

�� aUserDialog∼AddPasswordLine(id , , x , y , cx
name

�

Chapter 10. UserDialog Class 243

�
,

cy , options

) ��

The AddPasswordLine method adds a password entry line that does not echo
the characters entered but displays asterisks (*) instead.

Arguments:
See AddEntryLine for a description of the arguments.

AddListBox

�� aUserDialog∼AddListBox(id , , x , y , cx ,
name

cy �

�

&, " MULTI "
NOTIFY
SORT
COLUMNS
VSCROLL
HSCROLL
NOBORDER
MCOLUMN
PARTIAL
SBALWAYS

) ��

Adds a list box to the dialog.

Arguments:
The arguments are the same as for AddEntryLine, with the changes
listed below:

Options
The last argument can be one or more of:

MULTI
Makes the list box a multiple choice list box, that is,
you can select more than one line.

NOTIFY
A message is posted whenever the user selects an item
of the list box. To use this feature you have to connect
the list to a method (see “ConnectList” on page 115).

SORT The items in the dialog are listed in the noted order.

244 OODialog Method Reference

COLUMNS
The list box can handle tab characters ('09'x). Use this
option together with the SetListTabulators method (see
page 146) to have more than one column in a list.

VSCROLL
Adds a vertical scroll bar to the list box. Scroll bars
appear only if the list contains more lines than can fit
in the available space.

HSCROLL
Adds a horizontal scroll bar to the list box. See also
“SetListWidth” on page 141.

NOBORDER
Draw list without drawing a rectangle around it.

MCOLUMN
Makes the list box a multicolumn list box that can be
scrolled horizontally. “SetListColumnWidth” on
page 141 sets the width of the columns.

PARTIAL
The size of the list box equals the size specified by the
application when it created the list box. Windows
usually sizes a list box such that the list box does not
display partial items.

SBALWAYS
The list box shows a disabled scroll bar if there is no
need to scroll. If you do not specify this option, the
scroll bar is hidden when the list box does not contain
enough items.

Note: A list box does not support a horizontal scroll bar.

AddComboBox

�� aUserDialog∼AddComboBox(id , , x , y , cx , cy
name

�

�

&

)

, " SIMPLE "
LIST
SORT
VSCROLL

��

Chapter 10. UserDialog Class 245

The AddComboBox method adds a combo box to the dialog. A combo box is a
combination of an entry line and a list box.

Arguments:
The arguments are the same as for AddEntryLine, with the changes
listed below:

options
The last argument can be one or more of:

SIMPLE
Displays the list box all the time.

LIST No free text can be entered in the entry line; the list
contains selectable items only.

SORT The items in the list are sorted by the combo box
itself.

VSCROLL
Adds a vertical scroll bar to the combo box.

AddCheckBox

�� aUserDialog∼AddCheckBox(id , , x , y , ,
name cx

�

�

&

, text)
cy

, " GROUP "

��

The AddCheckBox method adds a check box to the dialog.

Arguments:
The arguments are the same as for AddEntryLine, with the changes
listed below:

name The name of the check box. If omitted, text is used.

text The text that is displayed next to the check box.

AddRadioButton

�� aUserDialog∼AddRadioButton(id , , x , y , cx
name

�

246 OODialog Method Reference

� , cy , text)
, " GROUP "

��

The AddRadioButton method adds a radio button to the dialog.

Arguments:
The arguments are the same as for AddEntryLine, with the changes
listed below:

name The name of the radio button

text The text that is displayed next to the radio button

options
Valid values for the last argument are:

GROUP
Makes the radio button the beginning of a new group.
Use this option just for the first radio button if you
want to make all radio buttons dependent. In each
group if you select a radio button, the previously
selected button is automatically deselected.

Example:
The following example defines seven radio buttons with IDs 501
through 507:
RText.1="Monday"
RText.2="Tuesday"
RText.3="Wednesday"
RText.4="Thursday"
RText.5="Friday"
RText.6="Saturday"
RText.7="Sunday"

do i=1 to 7
MyDialog∼AddRadioButton(500+i, , 20, i*15+13, 40, 14, RText.i)
end

Note: There are also methods that create a whole group automatically
(see the AddRadioGroup method below and AddRadioStem).

Chapter 10. UserDialog Class 247

AddRadioGroup

�� &aUserDialog∼AddRadioGroup(startId,x,y, ," text "
cx

�

�
,

"NOBORDER" , idstat

) ��

The AddRadioGroup method creates a group of radio buttons.

Arguments:
The arguments are:

startId The ID of the first radio button. The startId is increased by 1
for each additional radio button and then assigned to the
dialog item.

x, y The position of the first radio button control. The other radio
buttons are positioned automatically.

cx The length of the radio button plus text. If omitted, the space
needed is calculated.

text The text string for each radio button. Single strings have to be
separated by blank spaces. This argument determines the
number of radio buttons in total.

options
The only option is NOBORDER, which prevents the method
from placing a group box around the group.

idstat This argument is used to set the static frame ID.

Example:
The following example adds a group of three radio buttons with IDs
301, 302, and 303 to the dialog (see Figure 53):
MyDialog = .UserDialog∼new
MyDialog∼Create(100,100,80,60,"Radio Button Group")
MyDialog∼AddRadioGroup(301, 23, 18, ,"Fast Medium Slow")
MyDialog∼fast = 1
MyDialog∼Execute

248 OODialog Method Reference

AddCheckGroup

�� aUserDialog∼AddCheckGroup(startId , x , y , ,
cx

�

� &" text ")
,

"NOBORDER" , idstat

��

The AddCheckGroup method creates a group of check boxes. See
AddRadioGroup for a full description.

Example:
The following example adds a group with four check boxes to the
dialog. Two check boxes are preselected (see Figure 54):

MyDialog∼AddCheckGroup(401, 23, 18, ,"Smalltalk C++ ObjectREXX OO-COBOL")
MyDialog∼smalltalk = 1
MyDialog∼objectrexx = 1

AddInput

�� aUserDialog∼AddInput(id , , x , y ,
attrName

�

Figure 53. Sample Radio Button Group

Figure 54. Sample Check Box Group

Chapter 10. UserDialog Class 249

� , cx2 , , text
cx1 cy

)
, options

, idstat

��

The AddInput method adds an entry line with a label (a static text) to the
dialog.

Arguments:
The arguments are:

id The unique ID of the entry line

attrName The attrName is used to create an attribute in the
dialog object that reflects the contents of the entry line
(see “AddEntryLine” on page 241). If it is skipped, the
text label is used as the attribute name.

x, y The position of the upper-left edge of the label. The
entry line is aligned automatically.

cx1 The length of the label. If omitted, the length is
calculated.

cx2 The length of the entry field

cy The height of the entry field. If omitted, the height is
calculated.

text The label displayed in front of the entry field

options Possible options are:

HIDDEN
Makes the input group invisible

PASSWORD
Displays asterisks instead of the typed-in
characters

For further options see AddEntryLine.

idstat An ID for the label

Example:
The following example creates an entry field and the label Your e-mail
address (placed on the entry field’s left side). It also creates an attribute
with the name YOUREMAILADDRESS. The height of the elements is
calculated. (See Figure 55.)
MyUserDialog∼AddInput(402, , 20, 30, , 150, , "Your eMail address")

250 OODialog Method Reference

AddInputGroup

�� aUserDialog∼AddInputGroup(startid , x , y , ,
cx

�

� &, " text ")
,

"NOBORDER" , idstat

��

The AddInputGroup method creates a group of one or more entry lines.

Arguments:
The arguments are:

startid An ID that is assigned to the first entry line. Consecutive
numbers are assigned to the other entry fields.

x, y Position of the input group’s upper-left corner

cx1 Length of the entry field label. If omitted, the length is
calculated.

cx2 Length of the entry field in dialog units

text The text strings used for each entry field’s label. The single
strings are to be separated by blank spaces. This argument
determines the number of entry fields in total.

options
In addition to the options of AddInput, NOBORDER can be
used to prevent the method from placing a group box around
the group.

idstat The ID of the first label. Usually you do not have to specify
this value because labels are static controls.

Example:
The following example creates a four-line input group. The single
entry lines are accessible by IDs 301 through 304.

MyDialog∼AddInputGroup(301, 20, 20, ,130, "Name FirstName Street City")

Figure 55. Sample Input Field

Chapter 10. UserDialog Class 251

Note: If you want to use labels that include blanks (for example, “First
Name” instead of “FirstName”), use the AddInputStem method.

AddComboInput

�� aUserDialog∼AddComboInput(id , , x , y ,
attrName

�

� , cx2 , , text ,
cx1 clines

�

�

&

,
, idstat

" SIMPLE "
LIST
SORT
VSCROLL

) ��

The AddComboInput method adds a combo box and a label string to the
dialog.

Arguments:
The arguments are:

id The ID of the combo box

attrName
The name of the combo box. This name is used as an object
attribute name.

x, y Position of the group (text string of combo box)

cx1 Length of the text string

cx2 Width of the combo box

clines Vertical length of the combo box in number of lines

text Label being displayed on the left-hand side of the combo box

options
See “AddComboBox” on page 245

idstat The ID of the label. Usually you do not have to specify this
value because labels are static controls.

AddInputStem

252 OODialog Method Reference

�� aUserDialog∼AddInputStem(startid , x , y , ,
cx1

�

� cx2 , textStem.)
,

options , idstat

��

The AddInputStem method adds a group of input fields to the dialog. The
difference between this method and the AddInputGroup method is that the
titles (and names) of the single lines are passed to the method in a stem
variable. Thus it is possible to use strings containing blank spaces.

Arguments:
The arguments are:

startid The ID of the first entry line

x, y The position of the whole group (upper-left corner)

cx1 The length of the text strings. If omitted, the size is calculated.

cx2 The width of the entry fields

textStem.
A stem variable containing all labels for the entry fields. The
object attribute for each field is created on the basis of this
string.

options
In addition to the options of the AddInput method,
NOBORDER can be used to prevent the method from placing
a group box around the group.

idstat The ID of the first label. Usually you do not have to specify
this value because labels are static controls.

Example:
The following example shows how to use AddInputStem. It creates a
four-line input group. For each entry line (with IDs 401 through 404)
an object attribute is provided. The names might be different from the
title because not all characters can be used for Object REXX symbols.
In this example the NAME, FIRSTNAME, STREETNUMBER, and
CITYZIP attributes are added to the object.
FNames.1="Name"
FNames.2="First Name"
FNames.3="Street & Number"
FNames.4="City & ZIP"

MyDialog∼AddInputStem(401, 20, 20, , 150, FNames.)

Chapter 10. UserDialog Class 253

AddCheckBoxStem

�� aUserDialog∼AddCheckBoxStem(startid , x , y , �

� , textStem. , max
cx ,

options

�

�

,
idstat ,

fontName , fontSize

) ��

The AddCheckBoxStem method creates a group of check box controls. Unlike
the AddCheckGroup method you pass the titles of the check boxes in a stem
variable instead of using a string. Thus you can use labels including blanks.

Arguments:
See AddCheckGroup for a description of the arguments. The new
arguments are:

textStem.
A stem variable containing all labels for the check boxes. The
object attribute for each check box is created on the basis of
this string.

max The maximum number of check box items in one column. If
textStem has more items than max, a second column is created.

fontName
The name of the font used within the dialog

fontSize
The size of the font used within the dialog

Example:
The following example creates a three-column check box group:
CBNames.1="C"
CBNames.2="Pascal"
CBNames.3="Cobol"
CBNames.4="REXX"
CBNames.5="Basic"
CBNames.6="Fortran"

MyDialog∼AddCheckBoxStem(501, 20, 20, ,CBNames, 2,,
"NOBORDER", 551, "Courier New", 12)

254 OODialog Method Reference

AddRadioStem

�� aUserDialog∼AddRadioStem(startid,x,y, ,textStem.,max
cx

�

�
,

options ,
idstat ,

fontName , fontSize

) ��

The AddRadioStem method adds a group of radio button controls to the dialog.

See AddRadioGroup for a description of the arguments and an example.

AddScrollBar

�� aUserDialog∼AddScrollBar(id , x , y , cx , cy �

�

&, " VERTICAL "
HORIZONTAL
TOPLEFT
BOTTOMRIGHT
TAB

) ��

The AddScrollBar method adds a scroll bar to the dialog.

Arguments:
The arguments are:

id This must be a unique number

x, y The position of the upper-left corner relative to the dialog’s
client area measured in dialog units

cx The horizontal size of the scroll bar in dialog units

cy The vertical size of the scroll bar

options
The last argument can be one or more of:

VERTICAL
The scroll bar is positioned vertically (default)

Chapter 10. UserDialog Class 255

HORIZONTAL
The scroll bar is positioned horizontally

TOPLEFT
The scroll bar is aligned to the top left of the given
rectangle and has a predetermined width (if vertical)
or height (if horizontal)

BOTTOMRIGHT
The scroll bar is aligned to the bottom right of the
given rectangle and has a predetermined width (if
vertical) or height (if horizontal)

TAB The scroll bar is assigned a tab stop

AddButtonGroup

�� aUserDialog∼AddButtonGroup(x , y , , , "
cx cy

�

� & text id msg "
,

bottom , options

) ��

Use the AddButtonGroup method to add more than one push button at once to
the dialog. The buttons are arranged in a row or in a column.

Arguments:
The arguments are:

x, y The position of the entire button group

cx, cy The size of a single button. One or both arguments can be
skipped. If so, the default values (cx=40, cy=12) are taken.

text ID msg
These arguments are interpreted as one string containing three
words (separated by blanks) for each button. The first word is
the text that is displayed on the button, the second is the ID
of the button, and the third is the name of a message that is
sent to the object whenever the button is clicked. The fourth
to sixth words are for the next button, and so forth.

bottom
This is a flag to switch between a vertical (=0) or horizontal
(=1) placement of the buttons.

options
If DEFAULT is used, the first button becomes the default
button. For the other options, see AddButton.

256 OODialog Method Reference

Example:
The following example creates three buttons (Add, Delete, and
Update):

MyDialog∼AddButtonGroup(20, 235, , , "&Add 301 AddItem" ¦¦ ,
"&Delete 302 DeleteItem" ¦¦ ,
"&Update 303 UpdateItem")

Frames and Rectangles

The methods listed below add simple graphical elements to the dialog. They
are useful for giving the dialog a nice finish. Use Figure 56 to help you find
the right element.

Note: There is currently no difference between rectangles and frames.

AddWhiteRect

�� aUserDialog∼AddWhiteRect(x , y , cx , cy �

�

&, " HIDDEN "
BORDER , id

) ��

The AddWhiteRect method adds a white rectangle to the dialog.

Arguments:
The arguments are:

x, y The position of the rectangle’s upper-left corner relative to the
dialog measured in dialog units

cx, cy The size of the rectangle in dialog units

options
The options can be:

Figure 56. Frames and Rectangles in 3D Style

Chapter 10. UserDialog Class 257

HIDDEN
The frame or rectangle is not visible at startup time

BORDER
A border is drawn around the rectangle or frame

id The ID of the item, -1 is used by default

AddWhiteFrame
The AddWhiteFrame method is currently identical to the AddWhiteRect method.

AddGrayRect

�� aUserDialog∼AddGrayRect(x , y , cx , cy �

�

&

,
, id

" HIDDEN "
BORDER

) ��

The AddGrayRect method adds a gray rectangle to the dialog.

Arguments:
See AddWhiteRect for a description of the arguments.

AddGreyFrame
The AddGreyFrame method is currently identical to the AddGreyRect method.

AddBlackRect

�� aUserDialog∼AddBlackRect(x , y , cx , cy �

�

&

,
, id

" HIDDEN "
BORDER

) ��

The AddBlackRect method adds a black rectangle to the dialog.

Arguments:
See AddWhiteRect for a description of the arguments.

AddBlackFrame
The AddBlackFrame method is currently identical to the AddBlackRect method.

258 OODialog Method Reference

OK and Cancel Push Buttons

The four methods described in this section add OK and Cancel push buttons
to the dialog. The standard IDs (1 for OK and 2 for Cancel) are assigned to
the buttons.

AddOkCancelRightBottom

�� aUserDialog∼AddOkCancelRightBottom ��

The AddOkCancelRightBottom method adds an OK and a Cancel push button
to the lower-right edge of the dialog.

Example:
The following example adds the two push buttons to the bottom of
the dialog. It further overrides the standard OK and Cancel methods.

::class MyClass subclass UserDialog

::method DefineDialog...
self∼AddOkCancelRightBottom

::method OK
ret = MessageBox("Are you sure?", "Please confirm", "OK")
if ret=1 then self∼OK:super

::method Cancel
ret = MessageBox("Do you really want to quit?", "Please confirm", "OK")
if ret=1 then self∼CANCEL:super

AddOkCancelLeftBottom

�� aUserDialog∼AddOkCancelLeftBottom ��

The AddOkCancelLeftBottom method adds an OK and a Cancel push button to
the lower-left edge of the dialog.

AddOkCancelRightTop

�� aUserDialog∼AddOkCancelRightTop ��

The AddOkCancelRightTop method adds an OK and a Cancel push button
vertically to the upper-right edge of the dialog.

Chapter 10. UserDialog Class 259

AddOkCancelLeftTop

�� aUserDialog∼AddOkCancelLeftTop ��

The AddOkCancelLeftTop method adds an OK and a Cancel push button
vertically to the upper-left edge of the dialog.

Dialog Control Methods

The methods described in this section control the execution of the dialog; they
are for internal use only.

StartIt

�� aUserDialog∼StartIt()
icon

��

The StartIt method is for internal use only. It is necessary to create a real
Windows object based on the dialog template.

Protected:
This method is protected and cannot be called from outside the
instance. It can be overwritten, although this is not recommended.

Arguments:
There is only one argument:

icon This argument is currently not used.

StopIt

�� aUserDialog∼StopIt ��

The StopIt method is for internal use only. It is the counterpart to the
BaseDialog class StopIt method to remove the Windows object.

Protected:
This method is protected and cannot be called from outside the
instance. It can be overwritten, although this is not recommended.

Menu Methods

The methods described in this section are for creating dialog menus.

260 OODialog Method Reference

CreateMenu

�� aUserDialog∼CreateMenu()
count

��

This method initializes the creation of a menu. When you have finished
adding menu items, call SetMenu to combine the menu with the dialog.

Arguments:
There is only one argument:

count Maximum number of menu items that can be added

AddPopupMenu

�� aUserDialog∼AddPopupMenu(name,"options") ��

This method adds a popup menu to the menu.

The last popup menu must have the option ″END″ specified.

Arguments:
The arguments are:

name The name of the popup menu

options
GRAYED DISABLED END

AddMenuItem

�� aUserDialog∼AddMenuItem(name,id,"options",msgToRaise) ��

This method adds a new menu item after the last added item.

The last menu item in a popup menu must have the option ″END″ specified.

Arguments:
The arguments are:

name The name of the menu item. The name can include &.

id The ID of the menu item

options
GRAYED DISABLED END CHECKED

Chapter 10. UserDialog Class 261

msgToRaise
Method to be called when the menu item is selected. See
ConnectMenuItem.

AddMenuSeparator

�� aUserDialog∼AddMenuSeparator ��

This method adds a menu separator to the menu after the last added item.

SetMenu

�� aUserDialog∼SetMenu ��

This method adds the menu that was created or loaded for the current dialog
to the dialog window. Note that the menu needs additional space and
therefore displaces the rest of the dialog items.

LoadMenu

�� aUserDialog∼LoadMenu(resfile , menuid �

�)
,

"CONNECTITEMS" , count

��

This method loads a menu resource out of a resource script.

To combine the menu with the dialog, you must call SetMenu.

Arguments:
The arguments are:

resfile The name of a resource script.

menuid
The ID of the menu resource.

CONNECTITEMS
The menu items are automatically connected to methods
named after the name of the menu item. See LoadItems for
further details.

count The maximum number of menu items that can be loaded.

262 OODialog Method Reference

Chapter 11. PlainUserDialog Class and PlainBaseDialog
Class

The PlainUserDialog class subclasses from PlainBaseDialog class and provides
all the methods that normally are required to execute a dialog that is either
created dynamically or loaded from a resource script (.RC). In other words it
is a limited version of Chapter 10. UserDialog Class. Use ::requires
"OODPLAIN.CLS" in your script to get access to the PlainUserDialog class.

UserDialog includes all the methods PlainUserDialog does plus all the
methods defined in the DialogExtensions class. These are more specific
methods that cover asynchronous dialog execution, scroll bar support, resizing
and repositioning, bitmaps, graphics (device context related methods),
scrolling text, and menus (action bars).

The reason for splitting the functionality into two classes is to provide a
smaller package which requires less system resources for ordinary user
interfaces like the “Standard Dialogs” on page 3.

The following table lists all the methods that are provided by the
PlainUserDialog class. The individual methods are documented in “Chapter 8.
BaseDialog Class” on page 89 or “Chapter 10. UserDialog Class” on page 227.

Attributes:
Instances of the PlainUserDialog class have the following attributes:

AutoDetect
Automatic data field detection on (=1, default) or off (=0). For
the UserDialog subclass the default is off and Connect...
methods or a resource script are usually used.

AutomaticMethods
A queue containing the methods that are started concurrently
before the execution of the dialog

ConstDir
A directory string storing the numerical values assigned to
symbolic IDs (#define-statements in the resource script)

DataConnection
Protected attribute to store connections between dialog items
and the attributes of the dialog instance

DlgHandle
A handle to the dialog

© Copyright IBM Corp. 1997, 2001 263

Finished
0 if dialog is executing, 1 if terminated with OK, and 2 if
canceled

InitCode
Result of the init method; in case init failed, its value is 1.

UseStem
Protected attribute that is true (=1) if a stem variable was
passed to init

Methods:
Instances of the PlainUserDialog class implement the methods listed in
Table 4.

Table 4. PlainUserDialog and PlainBaseDialog Class Methods

Method... ...on page

AddAttribute 124

AddBitmapButton 238

AddBlackFrame 258

AddBlackRect 258

AddButton 237

AddButtonGroup 256

AddCheckBox 246

AddCheckBoxStem 254

AddCheckGroup 249

AddComboBox 245

AddComboEntry 135

AddComboInput 252

AddEntryLine 241

AddGrayFrame 258

AddGrayRect 258

AddGroupBox 240

AddInput 249

AddInputGroup 251

AddInputStem 252

AddListBox 244

AddListEntry 142

AddMenuItem 261

264 OODialog Method Reference

Table 4. PlainUserDialog and PlainBaseDialog Class Methods (continued)

Method... ...on page

AddMenuSeparator 262

AddOkCancelLeftBottom 259

AddOkCancelLeftTop 260

AddOkCancelRightBottom 259

AddOkCancelRightTop 259

AddPasswordLine 243

AddPopupMenu 261

AddRadioButton 246

AddRadioGroup 248

AddRadioStem 255

AddScrollBar 255

AddText 240

AddUserMsg 122

AddWhiteFrame 258

AddWhiteRect 257

AssignWindow 186

AutoDetection 109

Cancel 134

Center 158

ChangeComboEntry 139

ChangeListEntry 145

ClearMessages 107

ComboAddDirectory 139

ComboDrop 140

ConnectButton 111

ConnectCheckBox 117

ConnectComboBox 117

ConnectControl 114

ConnectEntryLine 116

ConnectList 115

ConnectListBox 118

ConnectListLeftDoubleClick 115

Chapter 11. PlainUserDialog Class and PlainBaseDialog Class 265

Table 4. PlainUserDialog and PlainBaseDialog Class Methods (continued)

Method... ...on page

ConnectMultiListBox 118

ConnectRadioButton 117

Create 231

CreateCenter 232

CreateMenu 261

DefineDialog 233

DeInstall 135

DeleteComboEntry 136

DeleteListEntry 142

Disable 191

DisableItem 153

Enable 190

EnableItem 153

Execute 100

FindComboEntry 137

FindListEntry 143

FocusItem 152

Get 150

GetAttrib 131

GetButtonRect 151

GetCheckBox 130

GetComboEntry 137

GetComboItems 137

GetComboLine 129

GetCurrentComboIndex 138

GetCurrentListIndex 145

GetData 125

GetDataStem 133

GetEntryLine 126

GetID 187

GetItem 151

GetListEntry 143

266 OODialog Method Reference

Table 4. PlainUserDialog and PlainBaseDialog Class Methods (continued)

Method... ...on page

GetListItems 144

GetListLine 127

GetMultiList 128

GetPos 189

GetRadioButton 129

GetSize 189

GetTextSize 215

GetValue 130

HandleMessages 106

Help 134

Hide 191

HideItem 153

HideWindow 154

Init 98

InitAutoDetection 108

InitDialog 98

InsertComboEntry 136

InsertListEntry 142

IsDialogActive 104

ItemTitle 126

Leaving 135

ListAddDirectory 146

ListDrop 146

Load 234

LoadFrame 235

LoadItems 236

LoadMenu 262

Move 195

NoAutoDetection 108

OK 133

Resize 193

Run 99

Chapter 11. PlainUserDialog Class and PlainBaseDialog Class 267

Table 4. PlainUserDialog and PlainBaseDialog Class Methods (continued)

Method... ...on page

SetAttrib 132

SetCheckBox 130

SetComboLine 129

SetCurrentComboIndex 138

SetCurrentListIndex 145

SetData 125

SetDataStem 132

SetEntryLine 126

SetListLine 127

SetListTabulators 146

SetMenu 262

SetMultiList 128

SetRadioButton 130

SetStaticText 126

SetTitle 197

SetValue 131

SetWindowTitle 159

Show 105

ShowItem 154

ShowWindow 155

StartIt 260

StopIt 104

Title 196

Title= 196

Update 196

Validate 134

268 OODialog Method Reference

Chapter 12. ResDialog Class

The ResDialog class is designed to be used together with a binary (compiled)
resource. A binary dialog resource is linked to a DLL (that is, a file with the
extension .DLL).

Requires:
ResDlg.cls is the source file of this class. Use the tokenized version of
OODialog, oodialog.cls, to shorten your dialog’s startup time:
::requires oodialog.cls

Subclass:
The ResDialog class is a subclass of BaseDialog.

Init

�� aResDialog∼Init(Library , Resource
, DlgData.

) ��

The Init method of the parent class, BaseDialog, has been overwritten.

Arguments:
The arguments you have to pass to the new method of the class when
creating a new dialog instance are:

Library
The file name of the DLL where the resource is located

Resource
The ID of the resource. This is a unique number you assigned
to the (dialog) resource while creating it.

DlgData.
A stem variable (don’t forget the trailing period) that contains
initialization data. See Init for more details.

Example:
This sample code creates a new dialog object from the ResDialog class.
It uses dialog resource 100 in the MYDLG.DLL file. The dialog is
initialized with the values of the MyDlgData. stem variable.
MyDlgData.101="1"
MyDlgData.102="Please enter your password."
MyDlgData.103=""

dlg = ResDialog∼new("MYDLG.DLL", 100, MyDlgData.)

© Copyright IBM Corp. 1997, 2001 269

StartIt

�� aResDialog∼StartIt()
icon

��

The StartIt method is for internal use only. It is necessary to create a real
Windows object based on the dialog template.

Protected:
This method is protected and cannot be called from outside the
instance. It can be overwritten, although that is not recommended.

Arguments:
There is only one argument:

icon This argument is currently not used.

SetMenu

�� aResDialog∼SetMenu(resid) ��

The SetMenu method adds a menu resource, that is stored in the same DLL, to
the dialog. Note that the menu needs additional space and therefore displaces
the rest of the dialog items.

SetMenu can be called in the InitDialog method only.

Arguments:
There is only one argument:

resid ID of the menu resource stored in the same DLL as the dialog.

270 OODialog Method Reference

Chapter 13. CategoryDialog Class

The CategoryDialog class creates and controls a dialog that has more than one
panel. It is similar to the notebook control available in OS/2 or the property
sheet available in the Windows 95 user interface.

Depending on the style you choose, you can switch among different pages by
either clicking radio buttons or selecting an item from a drop down list. Each
page has its own window controls.

Requires:
CatDlg.cls is the source file of this class. Use the tokenized version of
OODialog, oodialog.cls, to shorten your dialog’s startup time:
::requires oodialog.cls

Subclass:
The CategoryDialog class is a subclass of UserDialog (see “Chapter 10.
UserDialog Class” on page 227).

Attributes:
Instances of the CategoryDialog class have the following attributes:

Catalog
A directory describing the layout and behavior of the dialog.
This directory is usually set up in the InitCategories method of
the dialog (see “InitCategories” on page 275 for more
information).

StaticID
An internal counter

Methods:
Instances of the CategoryDialog class implement the methods listed in
the following table.

Note: In fact, most of the methods do the same as the methods in the
parent class, UserDialog, except that they are enabled to work
with a category dialog.

Method... ...on page

AddCategoryComboEntry 286

AddCategoryListEntry 288

CategoryComboAddDirectory 287

CategoryComboDrop 288

© Copyright IBM Corp. 1997, 2001 271

Method... ...on page

CategoryListAddDirectory 289

CategoryListDrop 290

CategoryPage 278

ChangeCategoryComboEntry 287

ChangeCategoryListEntry 289

ChangePage 280

CreateCategoryDialog 278

CurrentCategory 279

DefineDialog 277

DeleteCategoryComboEntry 286

DeleteCategoryListEntry 288

DisableCategoryItem 290

EnableCategoryItem 290

FindCategoryComboEntry 286

FindCategoryListEntry 288

FocusCategoryItem 291

GetCategoryAttrib 285

GetCategoryCheckBox 285

GetCategoryComboEntry 287

GetCategoryComboItems 287

GetCategoryComboLine 284

GetCategoryEntryLine 283

GetCategoryListEntry 288

GetCategoryListItems 289

GetCategoryListLine 283

GetCategoryMultiList 284

GetCategoryRadioButton 284

GetCategoryValue 285

GetCurrentCategoryComboIndex 287

GetCurrentCategoryListIndex 289

GetSelectedPage 279

HideCategoryItem 290

Init 274

272 OODialog Method Reference

Method... ...on page

InitCategories 275

InitDialog 278

InsertCategoryComboEntry 286

InsertCategoryListEntry 288

MoveCategoryItem 291

NextPage 279

PageHasChanged 280

PreviousPage 280

ResizeCategoryItem 291

SendMessageToCategoryItem 291

SetCategoryAttrib 285

SetCategoryCheckBox 285

SetCategoryComboLine 284

SetCategoryEntryLine 283

SetCategoryItemFont 290

SetCategoryListLine 283

SetCategoryListTabulators 289

SetCategoryMultiList 284

SetCategoryRadioButton 284

SetCategoryStaticText 283

SetCategoryValue 285

SetCurrentCategoryComboIndex 287

SetCurrentCategoryListIndex 289

ShowCategoryItem 290

StartIt 281

Chapter 13. CategoryDialog Class 273

Setting Up the Dialog

The following methods are used to set up the pages of the dialog and start it.

Init

�� aCategoryDialog∼Init(, , , ,
DlgData. catx caty catcx

�

� , , ,)
" DROPDOWN " cattable catlabel catmax

TOPLINE
WIZARD

��

The Init method initializes the category dialog object.

Arguments:
The arguments are:

DlgData.
A stem variable (do not forget the trailing period) that
contains initialization data for some or all dialog items. If the
dialog is terminated by means of the OK button, the values of
the dialog’s data fields are copied to this variable. The ID of
the dialog items is used to name the entry within the stem.

catx, caty
The position of the category selection control group (radio
buttons or combo box). The defaults are 10 and 4.

catcx This argument sets the length of one item of the control group
(calculated if omitted)

style This argument determines the style of the category dialog.
Without one of the following keywords, the category selection
is done by a vertical radio button group:

DROPDOWN
Creates a drop-down list at the top (useful if there are
many categories)

TOPLINE
Draws a horizontal radio button group at the top of
the client area

WIZARD
Adds Backward and Forward buttons with IDs 11 and
12 to switch between category pages

274 OODialog Method Reference

Without DROPDOWN and TOPLINE the default category
selection is done by a vertical radio button group, with the
dialog pages to the right of the radio buttons.

cattable
This argument can be used to set the category names
separated by blanks. If omitted, set the category names in the
InitCategories method.

catlabel
This argument defines the label for the combo box in
DROPDOWN style (default is “Page:”)

catmax
This argument sets the split point of the radio button group in
default style, or the number of entries in the combo box
drop-down list.

Example:
The following example creates a category dialog, using a combo box
as the selection control:
dlg = MyCategoryDialog∼new(MyData.,,,,"DROPDOWN", ,
"Movies Cinemas Days Ticket","Dialog panel:")
dlg∼createCenter(200,180,"Let's go to the movies")
dlg∼execute("SHOWTOP")
...
::class MyCategoryDialog subclass CategoryDialog

::method Movies /* define the Movies page */
...
::method Cinemas /* define the Cinemas page */
...

InitCategories

�� aCategoryDialog∼InitCategories ��

The InitCategories method is called by Init to set the characteristics of the
category dialog.

Protected:
This method is protected.

Catalog directory:
The InitCategories should set up the Catalog directory with information
about the layout and the behavior of the dialog. The directory entries
are:

names An array containing the names of the categories. The array is
initialized with the names given in the Init method (argument

Chapter 13. CategoryDialog Class 275

cattable). These names are used as labels for page selection
control and as messages sent to the object to define the single
pages.

Your subclass must provide a method for each category
page—with the same name as the label in this directory—to
define the dialog page using LoadItems to load the dialog
items from a resource script or Add... methods. Notice that
blanks are removed when you call the Define... methods.

If your subclass provides methods with the prefix Init
followed by the name of the categories (blanks removed),
these methods are called by InitDialog to initialize the dialog
(each page is a dialog) that contains the corresponding
category.

Unless you already specified the categories with the Init
method, you must assign an array to this Catalog entry.

count Number of categories

handles
For internal use only

id For internal use only

category
For internal use only

page A directory with the following entries:

font Name of the font used for the dialog

fsize Size of the font

style Style of the dialog (see “Create” on page 231)

expected
Total number of expected dialog items of all category
pages (200)

btnwidth
Width of Backward and Forward push buttons (see
WIZARD in Init method)

leftbtntext
Alternate label of Backward button

rightbtntext
Alternate label of Forward button

The next four entries should not be modified:

276 OODialog Method Reference

x Horizontal position of the category pages relative to
the parent dialog

y Vertical position of the category pages relative to the
parent dialog

w Width of the category pages

h Height of the category pages

Example:
The following example sets the category names to Text Editor, Compiler,
Linker, and Debugger. The subclass of CategoryDialog must define four
methods named after them.
::class MyCategoryDialog subclass CategoryDialog
::method InitCategories

self∼catalog['names']= .array∼of("Text Editor","Compiler","Linker",,
"Debugger")
self∼catalog['page']['leftbtntext'] = '&Previous'
self∼catalog['page']['rightbtntext'] = '&Next'

::method TextEditor /* blanks are removed when the message is sent
from DefineDialog */

/* add control to the first page */...
::method Compiler...
::method InitTextEditor /* called by InitDialog */

/* initialize the first dialog */...

DefineDialog

�� aCategoryDialog∼DefineDialog ��

The DefineDialog method is called after the main dialog has been created. This
method must not be overwritten in a subclass because it defines the layout of
the frame window and calls the definition methods for each category page.

Protected:
This method is protected.

Example:
Assume that you have the categories "Common Data", "Company
Data", and "Special". The following methods are automatically called
by DefineDialog to add dialog items to the associated page:

CommonData to add controls to the first category page.

CompanyData to add controls to the second category page.

Chapter 13. CategoryDialog Class 277

Special to add controls to the third category page.

See “InitCategories” on page 275 for more information.

CategoryPage

�� aCategoryDialog∼CategoryPage ��

The CategoryPage method adds controls to the base window of a Category
Dialog. It is used to define the layout of the parent dialog that contains the
single pages.

Protected:
This method is protected and should not be overwritten or called. Use
the InitCategories method to set up the dialog.

CreateCategoryDialog

�� aCategoryDialog∼CreateCategoryDialog(x , y , cx , cy , �

� , , options , expected)
fontName fontSize

��

The CreateCategoryDialog method creates the category dialog.

Protected:
This method is protected. It is called by another method and usually
does not have to be called manually.

InitDialog

�� aCategoryDialog∼InitDialog ��

The InitDialog method is called after the Windows dialog has been created
and before the category dialog is to be displayed.

Do not override this method to initialize your category dialog pages but
define an Init... method for each of your pages that you want to initialize like
adding combo and list box items. If your subclassed dialog defines a method
that has the prefix "Init" followed by the name of the category (without
blanks), this method is called by InitDialog to handle the initialization of the
corresponding page. If you use a method that requires a category specifier,

278 OODialog Method Reference

such as AddCategoryComboEntry or GetTreeControl, and you omit the
category, OODialog assumes that the dialog item addressed is part of the page
that contains the current category.

Protected:
This method is protected.

Example:
Assume that you have the categories "Common Data", "Company
Data", and "Special". The following methods are automatically called
when provided by the subclass:

InitCommonData to initialize the first category.

InitCompanyData to initialize the second category.

InitSpecial to initialize the third category.

See “InitCategories” on page 275 for more information.

GetSelectedPage

�� aCategoryDialog∼GetSelectedPage ��

The GetSelectedPage method is used internally to return the currently selected
page using the combo box or radio buttons (1 indicates the first page).

CurrentCategory

�� aCategoryDialog∼CurrentCategory ��

The CurrentCategory method returns the number of the current dialog page.
The first page is numbered 1.

Example:
The following example tests the current page number:
if MyCategoryDialog∼CurrentCategory=2 then do ...

NextPage

�� aCategoryDialog∼NextPage ��

The NextPage method switches the dialog to the next category page.

Chapter 13. CategoryDialog Class 279

PreviousPage

�� aCategoryDialog∼PreviousPage ��

The PreviousPage method switches the dialog to the previous category page.

ChangePage

�� aCategoryDialog∼ChangePage(
NewPage

) ��

The ChangePage method switches the dialog to another page and returns the
new page number. It is also called by selection control to activate the selected
page. ChangePage invokes PageHasChanged after the new page is activated.

Arguments:
The only argument is:

NewPage
The page number of the new page (default is the page
selected by the combo box or radio button)

Example:
The following example activates the second category page:
MyCategoryDialog∼ChangePage(2)

PageHasChanged

�� aCategoryDialog∼PageHasChanged(oldpage , newpage) ��

The PageHasChanged method is invoked by ChangePage when a new page is
activated. The default implementation returns without an action. The user can
override this method to react to page changes.

Arguments:
The arguments are:

oldpage
The page number of the previous page

newpage
The page number of the new page

280 OODialog Method Reference

StartIt

�� aCategoryDialog∼StartIt ��

The StartIt method is called by Execute to create a real Windows object based
on the dialog template. You might override it in your subclass, but be sure to
forward the message to the parent method.

Protected:
This method is protected.

Example:
This is a template for overwriting base methods:
::class MyCatDlg subclass CatergoryDialog
::method StartIt

say "this is method 'StartIt' !"
self∼StartIt:super()

Connect... Methods

�� aCategoryDialog∼Connect...(id , fname) ��

The Connect... methods connect data dialog items of certain types with the
dialog object. The Connect... methods should be placed into the user-defined
methods with the names of the categories defined in the InitCategories
method. The Connect... methods are defined for the BaseDialog class. For more
information, see “Chapter 8. BaseDialog Class” on page 89.

Arguments:
The arguments are:

id The ID of the dialog item

fname The name of the object attribute

Example:
The following example connects an entry line in the Movies page with
the FIRSTNAME object attribute:
::method InitCategories

self∼catalog['names'] = .array∼of("Movies",...)
...
::method Movies

self∼ConnectEntryLine(101, "FIRSTNAME")

Chapter 13. CategoryDialog Class 281

Note: IDs for dialog elements need not be unique across all pages. However,
IDs for buttons and list boxes that are connected to methods must be
unique for the whole category dialog.

Methods for Dialog Items

The methods listed in this section deal with individual dialog items on one of
the pages of the category dialog.

The methods correspond to methods with similar names of the BaseDialog
class; the word Category is inserted between the verb and the dialog item in
the method name. For example, AddCategoryComboEntry for the CategoryDialog
class has the same function as AddComboEntry of the BaseDialog class.

Note: The methods listed here have the same parameters as the
corresponding methods of the BaseDialog class, with the number of the
category page as an extra parameter.

Another way to directly address dialog items of a category dialog is to
retrieve an object of the DialogControl class (see page 181) or one of its
derivates that is associated with the requested dialog control. To retrieve such
an object, you can call one of the following methods depending on the
requested control:
v “GetStaticControl” on page 338
v “GetEditControl” on page 339
v “GetButtonControl” on page 340
v “GetRadioControl” on page 341
v “GetCheckControl” on page 342
v “GetListBox” on page 342
v “GetComboBox” on page 343
v “GetScrollBar” on page 345
v “GetTreeControl” on page 345
v “GetListControl” on page 346
v “GetProgressBar” on page 347
v “GetSliderControl” on page 348
v “GetTabControl” on page 349

To use these methods and the resulting objects, your category dialog must
inherit from the mixin class AdvancedControls. You can do this by adding the
keyword "inherit" followed by the mixin class name "AdvancedControls". For
example:
::class MyCategory subclass CategoryDialog public inherit AdvancedControls

282 OODialog Method Reference

Get and Set Methods

The following sections describe the individual Get and Set methods.

SetCategoryStaticText

�� aCategoryDialog∼SetCategoryStaticText(id , data , category) ��

For more information, see “SetStaticText” on page 126.

GetCategoryEntryLine

�� aCategoryDialog∼GetCategoryEntryLine(id , category) ��

For more information, see “GetEntryLine” on page 126.

SetCategoryEntryLine

�� aCategoryDialog∼SetCategoryEntryLine(id , data , category) ��

For more information, see “SetEntryLine” on page 126.

GetCategoryListLine

�� aCategoryDialog∼GetCategoryListLine(id , category) ��

For more information, see “GetListLine” on page 127.

SetCategoryListLine

�� aCategoryDialog∼SetCategoryListLine(id , data , category) ��

For more information, see “SetListLine” on page 127.

GetCategoryListWidth

�� aCategoryDialog∼GetCategoryListWidth(id , category) ��

For more information, see “GetListWidth” on page 140.

Chapter 13. CategoryDialog Class 283

SetCategoryListWidth

�� aCategoryDialog∼SetCategoryListWidth(id , scrollwidth , category) ��

For more information, see “SetListWidth” on page 141.

GetCategoryMultiList

�� aCategoryDialog∼GetCategoryMultiList(id , category) ��

For more information, see “GetMultiList” on page 128.

SetCategoryMultiList

�� aCategoryDialog∼SetCategoryMultiList(id , data , category) ��

For more information, see “SetMultiList” on page 128.

GetCategoryComboLine

�� aCategoryDialog∼GetCategoryComboLine(id , category) ��

For more information, see “GetComboLine” on page 129.

SetCategoryComboLine

�� aCategoryDialog∼SetCategoryComboLine(id , data , category) ��

For more information, see “SetComboLine” on page 129.

GetCategoryRadioButton

�� aCategoryDialog∼GetCategoryRadioButton(id , category) ��

For more information, see “GetRadioButton” on page 129.

SetCategoryRadioButton

�� aCategoryDialog∼SetCategoryRadioButton(id , data , category) ��

284 OODialog Method Reference

For more information, see “SetRadioButton” on page 130.

GetCategoryCheckBox

�� aCategoryDialog∼GetCategoryCheckBox(id , category) ��

For more information, see “GetCheckBox” on page 130.

SetCategoryCheckBox

�� aCategoryDialog∼SetCategoryCheckBox(id , data , category) ��

For more information, see “SetCheckBox” on page 130.

GetCategoryValue

�� aCategoryDialog∼GetCategoryValue(id , category) ��

For more information, see “GetValue” on page 130.

SetCategoryValue

�� aCategoryDialog∼SetCategoryValue(id , data , category) ��

For more information, see “SetValue” on page 131.

GetCategoryAttrib

�� aCategoryDialog∼GetCategoryAttrib(aname , category) ��

For more information, see “GetAttrib” on page 131.

SetCategoryAttrib

�� aCategoryDialog∼SetCategoryAttrib(attributename , category) ��

For more information, see “SetAttrib” on page 132.

Chapter 13. CategoryDialog Class 285

Combo Box Methods

The following sections describe the individual combo box methods.

AddCategoryComboEntry

�� aCategoryDialog∼AddCategoryComboEntry(id , data , category) ��

For more information, see “AddComboEntry” on page 135.

Arguments:
The arguments are:

id The ID of the combo box

data The text string that is added to the combo box

category
The category page number where the combo box is located

Example:
The following example adds a text string to the list of the combo box
101 in the third category page.

MyCategoryDialog∼AddCategoryComboEntry(101, "I'm one of the choices", 3)

InsertCategoryComboEntry

�� aCategoryDialog∼InsertCategoryComboEntry(id , item , data , category) ��

For more information, see “InsertComboEntry” on page 136.

DeleteCategoryComboEntry

�� aCategoryDialog∼DeleteCategoryComboEntry(id , index , category) ��

For more information, see method “DeleteComboEntry” on page 136.

FindCategoryComboEntry

�� aCategoryDialog∼FindCategoryComboEntry(id , data , category) ��

For more information, see “FindComboEntry” on page 137.

286 OODialog Method Reference

GetCategoryComboEntry

�� aCategoryDialog∼GetCategoryComboEntry(id , index) ��

For more information, see “GetComboEntry” on page 137.

GetCategoryComboItems

�� aCategoryDialog∼GetCategoryComboItems(id , category) ��

For more information, see “GetComboItems” on page 137.

GetCurrentCategoryComboIndex

�� aCategoryDialog∼GetCurrentCategoryComboIndex(id , category) ��

For more information, see “GetCurrentComboIndex” on page 138.

SetCurrentCategoryComboIndex

�� aCategoryDialog∼SetCurrentCategoryComboIndex(id ,
index

, category) ��

For more information, see “SetCurrentComboIndex” on page 138.

ChangeCategoryComboEntry

�� aCategoryDialog∼ChangeCategoryComboEntry(id , item , data , category) ��

For more information, see “ChangeComboEntry” on page 139.

CategoryComboAddDirectory

�� aCategoryDialog∼CategoryComboAddDirectory(id , drvpath , �

� fileAttributes , category) ��

For more information, see “ComboAddDirectory” on page 139.

Chapter 13. CategoryDialog Class 287

CategoryComboDrop

�� aCategoryDialog∼CategoryComboDrop(id , category) ��

For more information, see “ComboDrop” on page 140.

List Box Methods

The following sections describe the individual list box methods.

AddCategoryListEntry

�� aCategoryDialog∼AddCategoryListEntry(id , data , category) ��

For more information, see “AddListEntry” on page 142.

InsertCategoryListEntry

�� aCategoryDialog∼InsertCategoryListEntry(id , item , data , category) ��

For more information, see “InsertListEntry” on page 142.

DeleteCategoryListEntry

�� aCategoryDialog∼DeleteCategoryListEntry(id , index , category) ��

For more information, see “DeleteListEntry” on page 142.

FindCategoryListEntry

�� aCategoryDialog∼FindCategoryListEntry(id , data , category) ��

For more information, see “FindListEntry” on page 143.

GetCategoryListEntry

�� aCategoryDialog∼GetCategoryListEntry(id , ndx , category) ��

For more information, see “GetListEntry” on page 143.

288 OODialog Method Reference

GetCategoryListItems

�� aCategoryDialog∼GetCategoryListItems(id , category) ��

For more information, see “GetListItems” on page 144.

GetCurrentCategoryListIndex

�� aCategoryDialog∼GetCurrentCategoryListIndex(id , category) ��

For more information, see “GetCurrentListIndex” on page 145.

SetCurrentCategoryListIndex

�� aCategoryDialog∼SetCurrentCategoryListIndex(id ,
index

, category) ��

For more information, see “SetCurrentListIndex” on page 145.

ChangeCategoryListEntry

�� aCategoryDialog∼ChangeCategoryListEntry(id , item , data , category) ��

For more information, see “ChangeListEntry” on page 145.

SetCategoryListTabulators

�� aCategoryDialog∼SetCategoryListTabulators(id , &

,

tab , category) ��

For more information, see “SetListTabulators” on page 146.

CategoryListAddDirectory

�� aCategoryDialog∼CategoryListAddDirectory(id , drvpath , �

� fileAttributes , category) ��

For more information, see “ListAddDirectory” on page 146.

Chapter 13. CategoryDialog Class 289

CategoryListDrop

�� aCategoryDialog∼CategoryListDrop(id , category) ��

For more information, see “ListDrop” on page 146.

Appearance Modification Methods

The following sections describe the methods affecting the appearance of the
item.

EnableCategoryItem

�� aCategoryDialog∼EnableCategoryItem(id , category) ��

For more information, see “EnableItem” on page 153.

DisableCategoryItem

�� aCategoryDialog∼DisableCategoryItem(id , category) ��

For more information, see “DisableItem” on page 153.

ShowCategoryItem

�� aCategoryDialog∼ShowCategoryItem(id , category) ��

For more information, see “ShowItem” on page 154.

HideCategoryItem

�� aCategoryDialog∼HideCategoryItem(id , category) ��

For more information, see “HideItem” on page 153.

SetCategoryItemFont

�� aCategoryDialog∼SetCategoryItemFont(id , fonthandle , redraw , �

290 OODialog Method Reference

� category) ��

For more information, see “SetItemFont” on page 170.

FocusCategoryItem

�� aCategoryDialog∼FocusCategoryItem(id , category) ��

For more information, see “FocusItem” on page 152.

ResizeCategoryItem

�� aCategoryDialog∼ResizeCategoryItem(id , width , height , �

� , category)
" HIDEWINDOW "

SHOWWINDOW
NOREDRAW

��

For more information, see “ResizeItem” on page 157.

MoveCategoryItem

�� aCategoryDialog∼MoveCategoryItem(id , xPos , yPos , �

� , category)
" HIDEWINDOW "

SHOWWINDOW
NOREDRAW

��

For more information, see “MoveItem” on page 158.

SendMessageToCategoryItem

�� aCategoryDialog∼SendMessageToCategoryItem(id , msg , wp , lp �

� , category) ��

For more information, see “SendMessageToItem” on page 107.

Chapter 13. CategoryDialog Class 291

292 OODialog Method Reference

Chapter 14. Standard Dialog Classes and Functions

The standard dialog classes are:
v TimedMessage
v InputBox
v PasswordBox
v IntegerBox
v MultiInputBox
v ListChoice
v MultipleListChoice
v CheckList
v SingleSelection

Requires:
StdDlg.cls is the source file for the standard dialog classes. Use the
tokenized version of OODialog, OODPLAIN.CLS, to shorten your
dialog’s startup time:
::requires "OODPLAIN.CLS"

Preparation:
Standard dialogs are prepared by using the new method of the class,
which in turn invokes the Init method. The parameters are described
for the Init method of each class.

Execution:
The dialog is then run by using the Execute method. Execute returns
the user’s input if the OK button is clicked and the null string if the
Cancel button is clicked to terminate the dialog. If there is more than
one return value, Execute returns the value 1 and stores the results in
an attribute.

Functions:
Each standard dialog is also available as a callable function.

TimedMessage Class

The TimeMessage class shows a message window for a defined duration.

Requires:
OODPLAIN.CLS is required to use this class

Subclass:
This class is a subclass of the “PlainUserDialog” class

Execute:
Returns 1

© Copyright IBM Corp. 1997, 2001 293

The methods listed below are defined by this class.

Init

�� aTimedMessage∼Init(message,title,sleeping) ��

The Init method prepares the dialog.

Arguments:
The arguments are:

message
A string that is displayed inside the window as a message.
The length of the message determines the horizontal size of all
standard dialogs.

title A string that is displayed as the window title in the title bar
of the dialog

sleeping
A number that determines how long (in milliseconds) the
window is shown

Example:
The following example shows a window with the Information title for
a duration of 3 seconds:

dlg = .TimedMessage∼New("Application will be started, please wait",,
"Information", 3000)

dlg∼Execute
drop dlg

DefineDialog

�� aTimedMessage∼DefineDialog ��

The DefineDialog method is called by the Create method of the parent class,
PlainUserDialog, which in turn is called at the very beginning of Execute. You
do not have to call it. However, you may want to override it in your subclass
to add more dialog controls to the window. If you override it, you have to
forward the message to the parent class by using the keyword super.

Example:
The following example shows how to subclass the TimedMessage class
and how to add a background bitmap to the dialog window:

294 OODialog Method Reference

::class MyTimedMessage subclass TimedMessage inherit DialogExtensions

::method DefineDialog
self∼BackgroundBitmap("mybackg.bmp", "USEPAL")
self∼DefineDialog:super()

Execute

�� aTimedMessage∼Execute ��

The Execute method creates and shows the message window. After the given
time (see Init method), it destroys the dialog automatically.

TimedMessage Function
OODialog provides a shortcut function to invoke a TimedMessage dialog as a
function:
ret = TimedMessage("We are starting...","Please wait",3000)

The parameters are described in the Init method.

InputBox Class

The InputBox class provides a simple dialog with a title, a message, one entry
line, an OK, and a Cancel push button.

Requires:
OODPLAIN.CLS is required to use this class

Subclass:
This class is a subclass of the “PlainUserDialog” class

Execute:
Returns the user’s input

The methods listed below are defined by this class.

Init

�� aInputBox∼Init(message , title , preval , len) ��

The Init method prepares the input dialog.

Arguments:
The arguments are:

message
A text string that is displayed in the dialog

Chapter 14. Standard Dialog Classes and Functions 295

title A string that is displayed as the dialog’s title in the title bar

preval A string to initialize the entry line. If you do not want to put
any text in the entry line, just pass an empty string.

len The width of the entry line in dialog units

Example:
The following example shows a dialog with the Input title and an
entry line:
dlg = .InputBox∼New("Please enter your email address", ,
"Input", "user@host.domain", 150)
value = dlg∼Execute
say "You entered:" value
drop dlg

DefineDialog

�� aInputBox∼DefineDialog ��

The DefineDialog method is called by the Create method of the parent class,
PlainUserDialog, which in turn is called at the very beginning of Execute. You
do not have to call it. However, you may want to override it in your subclass
to add more dialog controls to the window. If you override it, you have to
forward the message to the parent class by using the keyword super.

AddLine

�� aInputBox∼AddLine(x , y , l) ��

The AddLine method is used internally to add one entry line to the dialog.

Execute

�� aInputBox∼Execute ��

The Execute method creates and shows the dialog. After termination, the value
of the entry line is returned if the user clicks the OK button; a null string is
returned if the user clicks on Cancel.

InputBox Function
OODialog provides a shortcut function to invoke an InputBox dialog as a
function:
say "Your name:" InputBox("Please enter your name","Personal Data")

296 OODialog Method Reference

The parameters are described in the Init method.

PasswordBox Class

The PasswordBox class is an InputBox dialog with an entry line that echoes the
keys with asterisks (*) instead of characters.

Requires:
OODPLAIN.CLS is required to use this class

Subclass:
This class is a subclass of the InputBox Class

Execute:
Returns the user’s password

The methods are the same as for the InputBox Class, with the exception of
AddLine.

AddLine

�� aPasswordBox∼AddLine(x , y , l) ��

The AddLine overrides the same method of the parent class, InputBox, by using
a password entry line instead of a simple entry line.

PasswordBox Function
OODialog provides a shortcut function to invoke a PasswordBox dialog as a
function:
pwd = PasswordBox("Please enter your password","Security")

The parameters are described in the Init method of the InputBox class.

IntegerBox Class

The IntegerBox class is an InputBox dialog whose entry line allows only
numerical data.

Requires:
OODPLAIN.CLS is required to use this class

Subclass:
This class is a subclass of the InputBox Class class

Execute:
Returns the user’s numeric input

Chapter 14. Standard Dialog Classes and Functions 297

The methods are the same as for the InputBox Class class, with the exception
of Validate.

Validate

�� aIntegerBox∼validate ��

The only method this subclass overrides is Validate, which is one of the
automatically called methods of PlainUserDialog. It is invoked by the OK
method, which in turn is called in response to a push button event. This
method checks whether or not the entry line contains a valid numerical value.
If the value is invalid, a message window is displayed.

IntegerBox Function
OODialog provides a shortcut function to invoke an IntegerBox dialog as a
function:
say "Your age:" IntegerBox("Please enter your age","Personal Data")

The parameters are described in the Init method of the InputBox class.

MultiInputBox Class

The MultiInputBox class is a dialog that provides a title, a message, and one or
more entry lines. After execution of this dialog you can access the values of
the entry lines.

Requires:
OODPLAIN.CLS is required to use this class

Subclass:
This class is a subclass of the “PlainUserDialog” class

Execute:
Returns 1 (if OK was clicked). The values entered by the user are
stored in attributes matching the labels of the entry lines.

The methods are the same as for the InputBox Class class, with the exception
of Init.

Init

�� aMultiInputBox∼Init(message , title , labels. , datas.
, len

) ��

The Init method is called automatically whenever a new instance of this class
is created. It prepares the dialog.

298 OODialog Method Reference

Arguments:
The arguments are:

message
A text string that is displayed on top of the entry lines. Use it
to give the user advice on what to do.

title A text string that is displayed in the title bar.

labels. A stem variable containing strings that are used as labels on
the left side of the entry lines. Labels.1 becomes the label for
the first entry line, labels.2 for the second, and so forth.

datas. A stem variable (do not forget the trailing period) containing
strings that are used to initialize the entry lines. The entries
must start with 101 and continue in increments of 1.

len The length of the entry lines. All entry lines get the same
length.

Example:
The following example creates a four-line input box. The data entered
is stored in the object attributes that are displayed after dialog
execution.
lab.1 = "First name" ; lab.2 = "Last name "
lab.3 = "Street and City" ; lab.4 = "Profession:"

addr.101 = "John" ; addr.102 = "Smith" ; addr.103 = ""
addr.104 = "Software Engineer"

dlg = .MultiInputBox∼new("Please enter your address", ,
"Your Address", lab., addr.)
if dlg∼execute = 1 then do

say "The address is:"
say dlg∼firstname dlg∼lastname
say dlg∼StreetandCity
say dlg∼Profession

end

MultiInputBox Function
OODialog provides a shortcut function to invoke a MultiInputBox dialog as a
function:
res = MultiInputBox('Enter your address','Personal Data', ,

.array∼of("&First name","Last &name","&City"), ,

.array∼of("John","Smith",'San Jose'), 100)
if res ¬= .Nil then do entry over res

say 'Address-line[]= ' entry
end

The parameters are described in the Init method, but, instead of stems, arrays
are passed into and returned from the function.

Chapter 14. Standard Dialog Classes and Functions 299

ListChoice Class

The ListChoice class provides a dialog with a list box, an OK, and a Cancel
button. The selected item is returned if the OK push button is used to
terminate the dialog.

Requires:
OODPLAIN.CLS is required to use this class

Subclass:
This class is a subclass of the “PlainUserDialog” class

Execute:
Returns the user’s choice or a null string

The method listed below is defined by this class.

Init

�� aListChoice∼Init(message , title , input. �

�
,)

lenx ,
leny , preselect

��

The Init method is used to initialize a newly created instance of this class.

Arguments:
The arguments are:

message
A text string that is displayed on top of the list box. Use it to
give the user advice on what to do.

title A text string for the dialog’s title

input. A stem variable (do not forget the trailing period) containing
string values that are inserted into the list box

lenx, leny
The size of the list box in dialog units

preselect
Entry that is selected when list pops up

Example:
The following example creates a list choice dialog box where the user
can select exactly one dessert:

300 OODialog Method Reference

lst.1 = "Cookies"; lst.2 = "Pie"; lst.3 = "Ice cream"; lst.4 = "Fruit"

dlg = .ListChoice∼new("Select the dessert please","YourChoice",lst.,,,"Pie")
say "Your ListChoice data:" dlg∼execute

ListChoice Function
OODialog provides a shortcut function to invoke a ListChoice dialog as a
function:
day = ListChoice('Select a day','My favorite day', ,

.array∼of("Monday","Tuesday","Wednesday","Thursday",,
"Friday","Saturday","Sunday") ,,,"Thursday")

say "Your favorite day is" day

The parameters are described in the Init method, but, instead of an input stem
an array is passed into the function.

MultiListChoice Class

The MultiListChoice class is an extension of the ListChoice class. It makes it
possible for the user to select more than one line at a time. The Execute
method returns the selected items’ indexes separated by blank spaces. The
first item has index 1.

Requires:
OODPLAIN.CLS is required to use this class

Subclass:
This class is a subclass of the ListChoice Class

Execute:
Returns the index numbers of the entries selected

Preselect:
Indexes of entries, separated by a blank, that are to be preselected.
The first entry has index 1 and the rest are increments of one.

The methods are the same as for the ListChoice Class class, except that
Execute returns the index numbers of the selected entries.

Example:
The following example creates a multiple list choice box where the
user can select multiple entries:

lst.1 = "Monday" ; lst.2 = "Tuesday" ; lst.3 = "Wednesday"
lst.4 = "Thursday" ; lst.5 = "Friday" ; lst.6 = "Saturday"
lst.7 = "Sunday"

dlg = .MultiListChoice∼new("Select the days you are working this week", ,
"YourMultipleChoice",lst.,,,"2 5")

s = dlg∼execute

Chapter 14. Standard Dialog Classes and Functions 301

if s ¬= '' then do while s ¬= ''
parse var s res s
say lst.res

end

MultiListChoice Function
OODialog provides a shortcut function to invoke a MultiListChoice dialog as a
function:
days = MultiListChoice('Select days','My TV Days', ,

.array∼of("Monday","Tuesday","Wednesday", ,
"Thursday","Friday","Saturday","Sunday"),,,"2 5")

if days ¬= .Nil then do day over days
say 'TV day =' day

end

The parameters are described in the Init method, but, instead of stems, arrays
are passed into and returned from the function.

CheckList Class

The CheckList class is a dialog with a group of one or more check boxes.

Requires:
OODPLAIN.CLS is required to use this class.

Subclass:
This class is a subclass of the “PlainUserDialog” class.

Execute:
Returns 1 (if OK was clicked). The check boxes selected by the user
are marked in a stem variable with the value 1.

The method listed below is defined by this class.

Init

�� aCheckList∼Init(message,title,labels.,datas.)
,

len , max

��

Arguments:
The arguments are:

message
A text string that is displayed on top of the check box group.
Use it to give the user advice on what to do.

title A text string for the dialog’s title

302 OODialog Method Reference

labels. A stem variable (do not forget the trailing period) containing
all the labels for the check boxes

datas. This argument is a stem variable (do not forget the trailing
period) that you can use to preselect the check boxes. The first
check box relates to stem item 101, the second to 102, and so
forth. A value of 1 indicates selected, and a value of 0 indicates
deselected.

For example, Datas.103=1 indicates that there is a check mark
on the third box.

len Determines the length of the check boxes and labels. If
omitted, the size is calculated to fit the largest label.

max The maximum number of check boxes in one column. If there
are more check boxes than max – that is, labels. has more items
than the value of max – this method continues with a new
column.

Example:
The following example creates and shows a dialog with seven check
boxes:

lst.1 = "Monday"; lst.2 = "Tuesday"; lst.3 = "Wednesday"
lst.4 = "Thursday"; lst.5 = "Friday"; lst.6 = "Saturday"
lst.7 = "Sunday"

do i = 101 to 107
chk.i = 0

end

dlg = .CheckList∼new("Please select a day!","Day of week",lst., chk.)
if dlg∼execute = 1 then do

say "You selected the following day(s): "
do i = 101 to 107

a = i-100
if chk.i = 1 then say lst.a

end
end

CheckList Function
OODialog provides a shortcut function to invoke a CheckList dialog as a
function:
weekdays = .array∼of("Monday","Tuesday","Wednesday", ,

"Thursday","Friday","Saturday","Sunday")
days = CheckList('Check the days','Working Days',weekdays)
if days ¬= .Nil then do i = 1 to days∼items

if days[i] then say 'Working day =' weekdays[i]
end

The parameters are described in the Init method, but, instead of stems, arrays
are passed into and returned from the function.

Chapter 14. Standard Dialog Classes and Functions 303

SingleSelection Class

The SingleSelection class shows a dialog that has a group of radio buttons. The
user can select only one item of the group.

Requires:
OODPLAIN.CLS is required to use this class

Subclass:
This class is a subclass of the “PlainUserDialog” class

Execute:
Returns the number of the radio button selected

The method listed below is defined by this class.

Init

�� aSingleSelection∼Init(message , title , labels. , data �

�
,

len , max

) ��

Arguments:
The arguments are:

message
A text string that is displayed on top of the radio button
group. Use it to give the user advice on what to do.

title A text string for the title bar

labels. This argument is a stem variable containing all labels for the
radio buttons

data You can use this argument to preselect one radio button. A
value of 1 selects the first radio button, a value of 2 selects the
second, and so on.

len Determines the length of the check boxes and labels. If
omitted, the size is calculated to fit the largest label.

max The maximum number of radio buttons in one column. If
there are more radio buttons than max – that is, labels. has
more items than the value of max – this method continues
with a new column.

304 OODialog Method Reference

Example:
The following example creates and executes a dialog that contains a
two-column radio button group. The fifth radio button (the button
with the label May) is preselected.
mon.1 = "January" ; mon.2 = "February" ; mon.3 = "March"
mon.4 = "April" ; mon.5 = "May" ; mon.6 = "June"
mon.7 = "July" ; mon.8 = "August" ; mon.9 = "September"
mon.10= "October" ; mon.11= "November" ; mon.12= "December"

dlg = .SingleSelection∼new("Please select a month!", ,
"Single Selection", mon., 5, , 6)

s = dlg∼execute
say "You Selected the month: " mon.s

SingleSelection Function
OODialog provides a shortcut function to invoke a SingleSelection dialog as a
function:
months = .array∼of("Jan","Feb","Mar","Apr","May","Jun", ,

"Jul","Aug","Sep","Oct","Nov","Dec")
m = SingleSelection('Check it','Born in',months,12,,6)
say "Born in month" m '=' months[m]

The parameters are described in the Init method, but instead of an input stem,
an array is passed into the function.

Chapter 14. Standard Dialog Classes and Functions 305

306 OODialog Method Reference

Chapter 15. AnimatedButton Class

The AnimatedButton class provides the methods to implement an animated
button within a dialog. The attributes and methods are only described briefly
in this document. An example program, oowalker.rex, is provided with the
OODialog sample programs.

ParentDlg
Attribute holding the handle of the parent dialog

Stopped
Animation ends when set to 1 (see Stop method)

Init Initialize the animation parameters:
but = .AnimatedButton∼new(buttonid,from,to,,

movex,movey,sizex,sizey,delay,,
startx,starty,parentdialog)

The values are stored in a stem variable:

sprite.buttonid
ID of animation button

sprite.from
Array of in-memory bitmap handles, or a bitmap resource ID
in a DLL, or the name of an array in the .local directory
containing handles to bitmaps loaded with “LoadBitmap” on
page 208. The array has to start with 1 and continue in
increments by 1.

sprite.to
0 if sprite.from is an array, or the name of an array stored in
.local, or a bitmap resource ID in a DLL

sprite.movex
Size of one move horizontally (pixels)

sprite.movey
Size of one move vertically

sprite.sizex
Horizontal size of all bitmaps (pixels)

sprite.sizey
Vertical size of all bitmaps

sprite.delay
Time delay between moves (ms)

© Copyright IBM Corp. 1997, 2001 307

Startx and starty are the initial bitmap position, and parentdialog is
stored in the ParentDlg attribute.

Two more values are initialized in the stem variable:

sprite.smooth
Set to 1 for smooth edge change (can be changed to 0 for a
bouncy edge change)

sprite.step
Set to 1 as the step size between sprite.from and sprite.to for
bitmaps in a DLL

SetSprite
Set all the sprite. animation values using a stem:
mysprite.from = .array∼of(bmp1,bmp2,...)
mysprite.to = 0
mysprite.movex = ...
...
self∼setSprite(mysprite.)

GetSprite
Retrieve the animation values into a stem:
self∼getSprite(mysprite.)

SetFromTo
Set bitmap information (sprite.from and sprite.to):
self∼setFromTo(bmpfrom,bmpto)

SetMove
Set size of one move (sprite.movex and sprite.movey):
self∼setMove(movex,movey)

SetDelay
Set delay between moves in milliseconds (sprite.delay):
self∼setDelay(delay)

SetSmooth
Set smooth (1) or bouncy (0) edges (sprite.smooth):
self∼setSmooth(smooth) /* 1 or 0 */

SetStep
Set the step size (sprite.step) between sprite.from and sprite.to for
bitmaps in a DLL, for example, if bitmap resources are numbered 202,
204, 206, etc:
self∼setFromTo(202,210)
self∼setStep(2)

Run Run the animation by going through all the bitmaps repetitively until
dialog is stopped; invokes MoveSeq:

308 OODialog Method Reference

self∼run

MoveSeq
Animate one sequence through all the bitmaps in the given move
steps; invokes MovePos:
self∼moveSeq

MovePos
Move the bitmaps by the arguments:
self∼movePos(movex,movey)

MoveTo
Move the bitmaps in the predefined steps to the given position;
invokes MoveSeq:
self∼moveTo(posx,posy)

SetPos
Set the new starting position of the bitmaps:
self∼setPos(newx,newy)

GetPos
Retrieve the current position into a stem:
self∼getPos(pos.)
say 'pos=' pos.x pos.y

ParentStopped
Check the parent dialog window and return its finished attribute (1
means finished)

Stop Stop animation by setting the stopped attribute to 1

HitRight
Invoked by run when the bitmap hits the right edge (returns 1 and
bitmap starts at left again; you can return 0 and set the new position
yourself)

HitLeft
Invoked when the bitmap hits the left edge (default action is to start
at right again)

HitBottom
Invoked when the bitmap hits the bottom edge (default action is to
start at top again)

HitTop
Invoked when the bitmap hits the top edge (default action is to start
at bottom again)

Chapter 15. AnimatedButton Class 309

To use an animated button a dialog has to:
v Define a button in a resource file (owner-drawn)
v Load the bitmaps of the animation into memory using an array
v Initialize the animated button with the animation parameters
v Invoke the run method of the animated button
v Stop the animation and remove the bitmaps from memory

The dialog may also dynamically change the parameters (for example, the size
of a move, or the speed) and override actions, such as hitting an edge.

See the oowalker.rex and oowalk2.rex examples in OODIALOG\SAMPLES.

For further information see “ConnectAnimatedButton” on page 172.

310 OODialog Method Reference

Chapter 16. MessageExtensions Class

To use the methods defined by the mixin class MessageExtensions you must
inherit from this class by specifying the INHERIT option for the ::CLASS
directive in the class declaration. For example:
::class MyExtendedDialog SUBCLASS UserDialog INHERIT MessageExtensions

Requires:
The MessageExtensions class requires the class definition file
oodwin32.cls:
::requires oodwin32.cls

Methods:
Instances of the MessageExtensions class implement the methods listed
in Table 5.

Table 5. MessageExtensions Instance Methods

Method... ...on page

ConnectButtonNotify 322

ConnectComboBoxNotify 328

ConnectCommonNotify 312

ConnectEditNotify 324

ConnectListBoxify 326

ConnectListNotify 318

ConnectScrollBarNotify 330

ConnectSliderNotify 330

ConnectTabNotify 332

ConnectTreeNotify 313

DefListDragHandler 321

DefTreeDragHandler 316

© Copyright IBM Corp. 1997, 2001 311

ConnectCommonNotify

�� aMessageExtensions∼ConnectCommonNotify(id , " OUTOFMEMORY
CLICK
DBLCLK
ENTER
RCLICK
RDBLCLK
GOTFOCUS
LOSTFOCUS

�

� ")
, msgToRaise

��

The ConnectCommonNotify method connects a particular WM_NOTIFY
message for a dialog control with a method. The WM_NOTIFY message
informs the dialog that an event has occurred with regard to a dialog control.

If a specific Connect...Notify method exists for the dialog control, use this
method instead of the ConnectCommonNotify method because the system
might send a specific notification instead of a common one.

Arguments:
The arguments are:

id The ID of the dialog control of which a notification is to be
connected to a method.

event The event to be connected with a method:

OUTOFMEMORY
The dialog control went out of memory.

CLICK
The left mouse button was clicked on the dialog
control.

DBLCLK
The left mouse button was double-clicked on the
dialog control.

ENTER
The return key was pressed in the dialog item.

RCLICK
The right mouse button was clicked on the dialog
item.

312 OODialog Method Reference

RDBLCLK
The right mouse button was double-clicked on the
dialog control.

GOTFOCUS
The dialog item got the input focus.

LOSTFOCUS
The dialog item lost the input focus.

msgToRaise
The message that is to be sent whenever the specified
notification is received. Provide a method with a matching
name. If you omit this argument, the event is preceded by On.

Return value:
This method does not return a value.

Example:
The following example connects the double-click of the left mouse
button on dialog control DLGITEM1 with method OnDblClk:
::class MyDlgClass subclass UserDialog inherit MessageExtensions

::method Init
self∼init:super(...)
self∼ConnectCommonNotify(DLGITEM1, "DBLCLK")

::method OnDblClk
use arg id
say "Item" id " has been double-clicked!"

Note: Connections are usually placed in the Init or InitDialog method. If both
methods are defined, use init as the place for this connection – but not
before init:super has been called.

ConnectTreeNotify

�� aMessageExtensions∼ConnectTreeNotify(id , " BEGINDRAG "
BEGINRDRAG
BEGINEDIT
ENDEDIT
DEFAULTEDIT
EXPANDING
EXPANDED
DELETE
KEYDOWN
SELCHANGING
SELCHANGED

�

Chapter 16. MessageExtensions Class 313

�)
, msgToRaise

��

The ConnectTreeNotify method connects a particular WM_NOTIFY message for
a tree view control with a method. The WM_NOTIFY message informs the
dialog that an event has occurred in the tree view.

Arguments:
The arguments are:

id The ID of the tree view control of which a notification is to be
connected to a method.

event The event to be connected with a method:

BEGINDRAG
A drag-and-drop operaton was initiated. See
“DefTreeDragHandler” on page 316 for information on
how to implement a drag-and-drop handler.

BEGINRDRAG
A drag-and-drop operaton involving the right mouse
button was initiated. See “DefTreeDragHandler” on
page 316 for information on how to implement a
drag-and-drop handler.

BEGINEDIT
Editing a label has been started.

ENDEDIT
Label editing has ended.

DEFAULTEDIT
This event connects the notification that label editing
has been started and ended with a predefined
event-handling method. This method extracts the
newly entered text from the notification and modifies
the item of which the label was edited. If this event is
not connected you must provide your own
event-handling method and connect it with the
BEGINEDIT and ENDEDIT events. Otherwise, the
edited text is lost and the item remains unchanged.

When you specify this event, omit the msgToRaise
argument.

314 OODialog Method Reference

EXPANDING
An item is about to expand or collapse. This
notification is sent before the item has expanded or
collapsed.

EXPANDED
An item has expanded or collapsed. This notification
is sent after the item expanded or collapsed.

DELETE
An item has been deleted.

KEYDOWN
A key was pressed inside the tree view. This
notification is not sent while a label is being edited.

SELCHANGING
Another item is about to be selected. This notification
is sent before the selection has changed.

SELCHANGED
Another item was selected. This notification is sent
after the selection was changed.

msgToRaise
The message that is to be sent whenever the specified
notification is received from the tree view control. Provide a
method with a matching name. If you omit this argument, the
event is preceded by On.

Return value:
This method does not return a value.

Example:
The following example connects the selection-changed event for the
tree view FileTree with method NewTreeSelection and displays the
text of the new selection:
::class MyDlgClass subclass UserDialog inherit MessageExtensions

::method Init
self∼init:super(...)
self∼ConnectTreeNotify("FileTree", "SELCHANGED", "NewTreeSelection")

::method NewTreeSelection
tc = self∼GetTreeControl("FileTree")
info. = tc∼ItemInfo(tc∼Selected)
say "New selection is:" info.!text

Notes:

1. Connections are usually placed in the Init or InitDialog method. If both
methods are defined, use init as the place for this connection – but not
before init:super has been called.

Chapter 16. MessageExtensions Class 315

2. The event-handling method connected to ENDEDIT receives two
arguments: the item handle of which the label has been edited and the
newly entered text. Example:
::method OnEndEdit

use arg item, newText

3. The event-handling method connected to KEYDOWN receives two
arguments: the control ID of the tree view control and the virtual key code
pressed. Use the method “KeyName” on page 517 of the VirtualKeyCodes
class to get the name of the key. Note that your class must inherit from the
VirtualKeyCodes class to use the KeyName method. Example:
::method OnKeyDown

use arg id, vkey
say "Key" self∼KeyName(vkey) "was pressed."

4. The event-handling method connected to EXPANDED or EXPANDING
receives three arguments: the control ID of the tree view control, the tree
item expanded or collapsed, and a string that indicates whether the item
was expanded or collapsed. Example:
::method OnExpanding

use arg id, item, what
say "Item with handle" item "is going to be" what

5. The event-handling method connected to BEGINDRAG or BEGINRDRAG
receives three arguments: the control ID of the tree view control, the tree
item to be dragged, and the point where the mouse cursor was pressed (x
and y positions, separated by a blank). Example:
::method OnBeginDrag

use arg id, item, where
say "Item with handle" item "is in drag-and-drop mode"
parse var where x y
say "The drag operation started at point ("x","y")"

DefTreeDragHandler

�� aMessageExtensions∼DefTreeDragHandler ��

A tree view control cannot handle a drag-and-drop operation within the tree
view. Therefore, you can connect the DefTreeDragHandler method with the
BEGINDRAG or BEGINRDRAG notification message (see
“ConnectTreeNotify” on page 313) to allow the moving of an item or a node
with all its subitems from one parent node to another within a tree view. The
cursor shape is changed to a crosshair during the drag operation. If the cursor
is moved over the item dragged, the cursor shape is changed to a slashed
circle. You can cancel the drag operation by clicking the other mouse button
while holding the button that started the drag operation.

316 OODialog Method Reference

The DefTreeDragHandler is implemented as follows:
::method DefTreeDragHandler

use arg id, item, pt
tc = self∼GetTreeControl(id)
hc = tc∼Cursor_Cross /* change cursor and store current */
parse value tc∼GetRect with left top right bottom
oldItem = 0
nocurs = 0
lmb = self∼IsMouseButtonDown("LEFT")
rmb = self∼IsMouseButtonDown("RIGHT")
call time "R"
do while (lmb \= 0 | rmb \= 0) & \(lmb \= 0 & rmb \= 0)

pos = self∼CursorPos
parse var pos x y
parse value tc∼ScreenToClient(x, y) with newx newy
ht = tc∼HitTest(newx, newy)
if ht \= 0 & ht∼wordpos("ONITEM") > 0 then do

parse var ht newParent where
/* check if droptarget is the current parent or one of the dragged

item's children */
if newParent \= Item & newParent \= tc∼Parent(Item) & tc∼IsAncestor,

(Item,newParent) = 0
then do

is. = tc∼ItemInfo(newParent)
if is.!State∼Wordpos("INDROP") = 0 then
do

call time "R"
tc∼DropHighlight(newParent)
if nocurs \= 0 then do

tc∼RestoreCursorShape(nocurs) /*restore old cursor (cross)*/
nocurs = 0

end
end
else if time("E") > 1 then do /* expand node after 1 second */

if is.!Children \= 0 & is.!State∼Wordpos("EXPANDED") = 0 then
tc∼expand(newParent)

end
end
else do

if nocurs = 0 then do
nocurs = tc∼Cursor_No /* set no cursor and retrieve

current cursor (cross) */
tc∼DropHighlight /* remove drop highlight */

end
end

end
else do

if newParent \= 0 then do
/* necessary to redraw cursor when moving on a valid item again */
tc∼DropHighlight /* remove drop highlight */
newParent = 0

end
if nocurs = 0 then nocurs = tc∼Cursor_No /* set no cursor and

retrieve current cursor (cross) */
/* handle scrolling */

Chapter 16. MessageExtensions Class 317

fvItem = tc∼FirstVisible
if (ybottom) & (tc∼NextVisible(fvItem) \= 0) then do

tc∼MakeFirstVisible(tc∼NextVisible(fvItem))
if y-bottom < 200 then call sleepms 200-(y-bottom)

end
end
lmb = self∼IsMouseButtonDown("LEFT")
rmb = self∼IsMouseButtonDown("RIGHT")

end
if ht∼wordpos("ONITEM") > 0 & lmb = 0 & rmb = 0 then do /* if mouse on item

and both mouse buttons up */
item = tc∼MoveItem(Item, newParent, 1) /* move item under newParent */

end
tc∼DropHighlight(0) /* remove drop highlight */
tc∼select(item) /* select item */
tc∼EnsureVisible(item)
tc∼RestoreCursorShape(hc) /* restore old cursor */
pos = self∼CursorPos
parse var pos x y
self∼SetCursorPos(x+1, y+1) /* move cursor to force redraw */

ConnectListNotify

�� aMessageExtensions∼ConnectListNotify(id," ACTIVATE "
BEGINDRAG
BEGINRDRAG
BEGINEDIT
ENDEDIT
DEFAULTEDIT
CHANGING
CHANGED
COLUMNCLICK
DELETE
DELETEALL
INSERTED
KEYDOWN

�

�)
, msgToRaise

��

The ConnectListNotify method connects a particular WM_NOTIFY message for
a list view control with a method. The WM_NOTIFY message informs the
dialog that an event has occurred in the list view.

Arguments:
The arguments are:

id The ID of the list view control of which a notification is to be
connected to a method.

318 OODialog Method Reference

event The event to be connected with a method:

ACTIVATE
An item is activated by double-clicking the left mouse
button.

BEGINDRAG
A drag-and-drop operaton was initiated. See
“DefListDragHandler” on page 321 for information on
how to implement a drag-and-drop handler.

BEGINRDRAG
A drag-and-drop operaton involving the right mouse
button was initiated. See “DefListDragHandler” on
page 321 for information on how to implement a
drag-and-drop handler.

BEGINEDIT
Editing a label has been started.

ENDEDIT
Label editing has ended.

DEFAULTEDIT
This event connects the notification that label editing
has been started and ended with a predefined
event-handling method. This method extracts the
newly entered text from the notification and modifies
the item of which the label was edited. If this event is
not connected you must provide your own
event-handling method and connect it with the
BEGINEDIT and ENDEDIT events. Otherwise, the
edited text is lost and the item remains unchanged.

When you specify this event, omit the msgToRaise
argument.

CHANGING
An item is about to change. This notification is sent
before the item is changed.

CHANGED
An item has changed. This notification is sent after the
item changed.

COLUMNCLICK
A column has been clicked.

DELETE
An item has been deleted.

Chapter 16. MessageExtensions Class 319

DELETEALL
All items have been deleted.

INSERTED
A new item has been inserted.

KEYDOWN
A key was pressed inside the list view. This
notification is not sent while a label is being edited.

msgToRaise
The message that is to be sent whenever the specified
notification is received from the list view control. Provide a
method with a matching name. If you omit this argument, the
event is preceded by On.

Return value:
This method does not return a value.

Example:
The following example connects the column-clicked event for the list
view EMPLOYEES with method ColumnAction and changes the style
of the list view from REPORT to SMALLICON:
::class MyDlgClass subclass UserDialog inherit MessageExtensions

::method Init
self∼init:super(...)
self∼ConnectListNotify("EMPLOYEES", "COLUMNCLICK", "ColumnAction")

::method ColumnAction
use arg id, column
lc = self∼GetListControl("EMPLOYEES")
lc∼ReplaceStyle("REPORT", "SMALLICON EDIT SINGLESEL ASCENDING")
if column > 0 then ...

Notes:

1. Connections are usually placed in the Init or InitDialog method. If both
methods are defined, use init as the place for this connection – but not
before init:super has been called.

2. The event-handling method connected to ENDEDIT receives two
arguments: the item ID of which the label has been edited and the newly
entered text. Example:
::method OnEndEdit

use arg item, newText

3. The event-handling method connected to COLUMNCLICK receives two
arguments: the control ID of the list view control and the zero-based
column number of which the header button was pressed. Example:
::method OnColumnClick

use arg id, column

320 OODialog Method Reference

4. The event-handling method connected to KEYDOWN receives two
arguments: the control ID of the list view control and the virtual key code
pressed. Use the method “KeyName” on page 517 of the VirtualKeyCodes
class to get the name of the key. Note that your class must inherit from the
VirtualKeyCodes class to use the KeyName method. Example:
::method OnKeyDown

use arg id, vkey
say "Key" self∼KeyName(vkey) "was pressed."

5. The event-handling method connected to BEGINDRAG or BEGINRDRAG
receives three arguments: the control ID of the list view control, the index
of the list item to be dragged, and the point where the mouse cursor was
pressed (x and y positions, separated by a blank). Example:
::method OnBeginDrag

use arg id, item, where
say "Item at index" item "is in drag-and-drop mode"
parse var where x y
say "The drag operation started at point ("x","y")"

DefListDragHandler

�� aMessageExtensions∼DefListDragHandler ��

A list view control cannot handle a drag-and-drop operation within the list
view. Therefore, you can connect the DefListDragHandler method with the
BEGINDRAG or BEGINRDRAG notification message (see “ConnectListNotify”
on page 318) to allow the dragging of an item from one location to another
within an icon view and a smallicon view. The cursor shape is changed to a
crosshair during the drag operation. You can cancel the drag operation by
clicking the other mouse button while holding the button that started the drag
operation. Note that the item position is not flexible when the list view
control has the AUTOARRANGE style.

The DefListDragHandler is implemented as follows:
::method DefListDragHandler

use arg id, item, pt
lc = self∼GetListControl(id)
hc = lc∼Cursor_Cross /* change cursor and store current */
parse value lc∼GetRect with left top right bottom
parse var pt oldx oldy
origin = lc∼ItemPos(item)
lmb = self∼IsMouseButtonDown("LEFT")
rmb = self∼IsMouseButtonDown("RIGHT")
do while (lmb \= 0 | rmb \= 0) & \(lmb \= 0 & rmb \= 0)

pos = self∼CursorPos
parse var pos x y
parse value lc∼ScreenToClient(x, y) with newx newy

Chapter 16. MessageExtensions Class 321

hs = lc∼HScrollPos; vs = lc∼VScrollPos
sx = x-right
sy = y-bottom
in_rx = (sx <= 30) & (newx >= -30)
in_ry = (sy <= 30) & (newy >= -30)
if (in_rx & in_ry) then do /* is the mouse cursor inside the drag

rectangle */
if xright then sx = sx + 30; else sx = 0
if ybottom then sy = sy + 30; else sy = 0
newx = newx+hs; newy = newy +vs;
if newx < 0 then newx = 0
if newy < 0 then newy = 0
if (in_rx & oldx \= newx) | (in_ry & oldy \= newy) then do
lc∼SetItemPos(item, newx, newy)

oldx = newx
oldy = newy
if sx \= 0 | sy \= 0 then do

lc∼Scroll(sx, sy)
call sleepms 30

end
end

end
else do /* no, so force the mouse cursor back inside the rectangle */

if newx < -30 then newx = -30
if sx > 30 then newx = (right-left) + 28
if newy < -30 then newy = -30
if sy > 30 then newy = (bottom-top) + 28
parse value lc∼ClientToSCreen(newx, newy) with x y
self∼SetCursorPos(x, y)

end
lmb = self∼IsMouseButtonDown("LEFT")
rmb = self∼IsMouseButtonDown("RIGHT")

end
if (lmb \= 0 & rmb \= 0) then do /* if both buttons pressed restore

original pos */
parse var origin x y
lc∼SetItemPos(item, x, y)

end
lc∼RestoreCursorShape(hc) /* restore old cursor */
pos = self∼CursorPos
parse var pos x y
self∼SetCursorPos(x+1, y+1) /* move cursor to force redraw */

ConnectButtonNotify

�� aMessageExtensions∼ConnectButtonNotify(id," CLICKED "
DBLCLK
DISABLE
GOTFOCUS
LOSTFOCUS
HILITE
UNHILITE
PAINT

�

322 OODialog Method Reference

�)
, msgToRaise

��

The ConnectButtonNotify method connects a particular WM_NOTIFY message
for a button control (push button, radio button, or check box) with a method.
The WM_NOTIFY message informs the dialog that an event has occurred
with regard to the button.

Arguments:
The arguments are:

id The ID of the button control of which a notification is to be
connected to a method.

event The event to be connected with a method:

CLICKED
The button has been clicked.

DBLCLK
The button has been double-clicked.

DISABLE
The button has been disabled.

GOTFOCUS
The button got the input focus.

LOSTFOCUS
The button lost the input focus.

HILITE
The button has been selected.

UNHILITE
The highlighting is to be removed (lost selection).

PAINT
The button is to be repainted. This notification is only
sent for owner-drawn buttons.

msgToRaise
The message that is to be sent whenever the specified
notification is received from the button control. Provide a
method with a matching name. If you omit this argument, the
event is preceded by On.

Return value:
This method does not return a value.

Chapter 16. MessageExtensions Class 323

Example:
The following example displays a message whenever the OK button is
selected:
::class MyDlgClass subclass UserDialog inherit MessageExtensions

::method Init
self∼init:super(...)
self∼ConnectButtonNotify("OK", "HILITE")

::method OnHilite
say "The OK button has been selected"

Notes:

1. Connections are usually placed in the Init or InitDialog method. If both
methods are defined, use init as the place for this connection – but not
before init:super has been called.

2. The event-handling methods receive two arguments: the ID of the button
(extract the low-order word) and the handle to the button. Example:
::method Handler

use arg ev_id, handle
id = BinaryAnd(ev_id, "0x0000FFFF")
...

ConnectEditNotify

�� aMessageExtensions∼ConnectEditNotify(id," CHANGE "
UPDATE
ERRSPACE
MAXTEXT
HSCROLL
VSCROLL
GOTFOCUS
LOSTFOCUS

�

�)
, msgToRaise

��

The ConnectEditNotify method connects a particular WM_NOTIFY message for
an edit control with a method. The WM_NOTIFY message informs the dialog
that an event has occurred with regard to the edit control.

Arguments:
The arguments are:

id The ID of the edit control of which a notification is to be
connected to a method.

event The event to be connected with a method:

324 OODialog Method Reference

CHANGE
The text has been altered. This notification is sent after
the screen has been updated.

UPDATE
The text has been altered. This notification is sent
before the screen is updated.

ERRSPACE
An out-of-memory problem has occurred.

MAXTEXT
The text inserted exceeds the specified number of
characters for the edit control. This notification is also
sent when:
v An edit control does not have the

ES_AUTOHSCROLL or AUTOSCROLLH style and
the number of characters to be inserted would
exceed the width of the edit control.

v The ES_AUTOVSCROLL or AUTOSCROLLV style is
not set and the total number of lines resulting from
a text insertion would exceed the height of the edit
control.

HSCROLL
The horizontal scroll bar has been used.

VSCROLL
The vertical scroll bar has been used.

GOTFOCUS
The edit control got the input focus.

LOSTFOCUS
The edit control lost the input focus.

msgToRaise
The message that is to be sent whenever the specified
notification is received from the edit control. Provide a
method with a matching name. If you omit this argument, the
event is preceded by On.

Return value:
This method does not return a value.

Example:
The following example verifies the input of entry line AMOUNT and
resets it to 0 when a nonnumeric value was entered:
::class MyDlgClass subclass UserDialog inherit MessageExtensions

::method Init

Chapter 16. MessageExtensions Class 325

self∼init:super(...)
self∼ConnectEditNotify("AMOUNT", "CHANGE")

::method OnChange
ec = self∼GetEditControl("AMOUNT")
if ec∼GetText∼Space(0) \= "" & ec∼GetText∼DataType("N") = 0 then do

ec∼SetModified(0)
ec∼Select
ec∼ReplaceSelText("0")
end

Notes:

1. Connections are usually placed in the Init or InitDialog method. If both
methods are defined, use init as the place for this connection – but not
before init:super has been called.

2. The event-handling methods receive two arguments: the ID of the edit
control (extract the low-order word) and the handle to the edit control.
Example:
::method Handler

use arg ev_id, handle
id = BinaryAnd(ev_id, "0x0000FFFF")
...

ConnectListBoxNotify

�� aMessageExtensions∼ConnectListBoxNotify(id," DBLCLK "
ERRSPACE
GOTFOCUS
LOSTFOCUS
SELCANCEL
SELCHANGE

�

�)
, msgToRaise

��

The ConnectListBoxNotify method connects a particular WM_NOTIFY message
for a list box with a method. The WM_NOTIFY message informs the dialog
that an event has occurred in the list box.

Arguments:
The arguments are:

id The ID of the list box of which a notification is to be
connected to a method.

event The event to be connected with a method:

326 OODialog Method Reference

DBLCLK
An entry in the list box has been selected with a
double click.

ERRSPACE
An out-of-memory problem has occurred.

GOTFOCUS
The list box got the input focus.

LOSTFOCUS
The list box lost the input focus.

SELCANCEL
The selection in the list box has been canceled.

SELCHANGE
Another list box entry has been selected.

msgToRaise
The message that is to be sent whenever the specified
notification is received from the list box. Provide a method
with a matching name. If you omit this argument, the event is
preceded by On.

Return value:
This method does not return a value.

Example:
The following example displays the text of the selected list box entry:
::class MyDlgClass subclass UserDialog inherit MessageExtensions

::method Init
self∼init:super(...)
self∼ConnectListBoxNotify("MYLIST", "SELCHANGE", "SelectionChanged")

::method SelectionChanged
li = self∼GetListBox("MYLIST")
say "New selection is:" li∼Selected

Notes:

1. Connections are usually placed in the Init or InitDialog method. If both
methods are defined, use init as the place for this connection – but not
before init:super has been called.

2. The event-handling methods receive two arguments: the ID of the list box
(extract the low-order word) and the handle to the list box. Example:
::method Handler

use arg ev_id, handle
id = BinaryAnd(ev_id, "0x0000FFFF")
...

Chapter 16. MessageExtensions Class 327

ConnectComboBoxNotify

�� aMessageExtensions∼ConnectComboBoxNotify(id," CHANGE "
UPDATE
CLOSEUP
DROPDOWN
DBLCLK
ERRSPACE
GOTFOCUS
LOSTFOCUS
SELCHANGE
SELENDOK
SELENDCANCEL

�

�)
, msgToRaise

��

The ConnectComboBoxNotify method connects a particular WM_NOTIFY
message for a combo box with a method. The WM_NOTIFY message informs
the dialog that an event has occurred in the combo box.

Arguments:
The arguments are:

id The ID of the combo box of which a notification is to be
connected to a method.

event The event to be connected with a method:

CHANGE
The text in the edit control has been altered. This
notification is sent after Windows updated the screen.

UPDATE
The text in the edit control has been altered. This
notification is sent before Windows updates the
screen.

CLOSEUP
The list of the combo box has been closed.

DROPDOWN
The list of the combo box is about to be made visible.

DBLCLK
An entry in the combo box list has been selected with
a double click.

ERRSPACE
An out-of-memory problem has occurred.

328 OODialog Method Reference

GOTFOCUS
The combo box got the input focus.

LOSTFOCUS
The combo box lost the input focus.

SELCHANGE
Another entry in the combo box list has been selected.

SELENDOK
The list was closed after another entry was selected.

SELENDCANCEL
After the selection of another entry, another control or
dialog was selected, which canceled the selection of
the entry.

msgToRaise
The message that is to be sent whenever the specified
notification is received from the combo control. Provide a
method with a matching name. If you omit this argument, the
event is preceded by On.

Return value:
This method does not return a value.

Example:
The following example invokes method PlaySong whenever the list of
the combo box PROFESSIONS is about to be made visible:
::class MyDlgClass subclass UserDialog inherit MessageExtensions

::method InitDialog
self∼init:super(...)
self∼ConnectComboBoxNotify("PROFESSIONS", "DROPDOWN", "PlaySong")

Notes:

1. Connections are usually placed in the Init or InitDialog method. If both
methods are defined, use init as the place for this connection – but not
before init:super has been called.

2. The event-handling methods receive two arguments: the ID of the combo
box (extract the low-order word) and the handle to the combo box.
Example:
::method Handler

use arg ev_id, handle
id = BinaryAnd(ev_id, "0x0000FFFF")
...

Chapter 16. MessageExtensions Class 329

ConnectScrollBarNotify

�� aMessageExtensions∼ConnectScrollBarNotify(id," UP "
DOWN
TOP
BOTTOM
PAGEUP
PAGEDOWN
DRAG
ENDSCROLL
POSITION

�

�)
, msgToRaise

��

The ConnectScrollBarNotify method connects a particular WM_NOTIFY
message for a scroll bar with a method. The WM_NOTIFY message informs
the dialog that an event has occurred with regard to the scroll bar.

Arguments:
The arguments are:

id The ID of the scroll bar of which a notification is to be
connected to a method.

event The event to be connected with a method:

UP The scroll bar was scrolled to the left or up by one
unit.

DOWN
The scroll bar was scrolled to the right or down by
one unit.

TOP The scroll bar was scrolled to the upper left.

BOTTOM
The scroll bar was scrolled to the lower right.

PAGEUP
The scroll bar was scrolled to the left or up by one
page size.

PAGEDOWN
The scroll bar was scrolled to the right or down by
one page size.

DRAG
The scroll bar has been dragged.

330 OODialog Method Reference

ENDSCROLL
Scrolling has been ended, that is, the appropriate key
or mouse button has been released.

POSITION
The scroll bar was scrolled to an absolute position (the
left mouse button has been released).

msgToRaise
The message that is to be sent whenever the specified
notification is received from the scroll bar. Provide a method
with a matching name. If you omit this argument, the event is
preceded by On.

Return value:
This method does not return a value.

Example:
The following example connects the POSITION event with method
OnPosition, which extracts the new position from the notification
arguments and stores it for the scroll bar. It also displays the new
position and the event type for POSITION, which is to be 4:
::class MyDlgClass subclass UserDialog inherit MessageExtensions

::method InitDialog
self∼InitDialog:super(...)
self∼ConnectScrollBarNotify("MYSCROLL", "POSITION")

::method OnPosition
use arg ev_pos, hnd
pos = ev_pos % "10000"∼x2d
self∼GetScrollBar("MYSCROLL")∼SetPos(pos,1) /* redraw scroll bar

with new position */
say "Pos=" pos ", event code to verify=" BinaryAnd(ev_pos,,

"0x0000FFFF") "(expected 4)"

Notes:

1. The method can only be called after the scroll bar was created by
Windows. A good location for this connection is the InitDialog method.

2. The event-handling methods receive two arguments: an event-position pair
and the handle to the scroll bar. You can retrieve the scroll bar position by
extracting the high-order word. Example:
::method Handler

use arg ev_pos, handle
position = ev_pos % "10000"∼x2d

If the user changed the scroll bar position, you must set the scroll bar
position with “SetPos” on page 454 to keep the selected position.

Chapter 16. MessageExtensions Class 331

ConnectTabNotify

�� aMessageExtensions∼ConnectTabNotify(id," KEYDOWN "
SELCHANGE
SELCHANGING

�

�)
, msgToRaise

��

The ConnectTabNotify method connects a particular WM_NOTIFY message for
a tab control with a method. The WM_NOTIFY message informs the dialog
that an event has occurred with regard to the tab control.

Arguments:
The arguments are:

id The ID of the tab control of which a notification is to be
connected to a method.

event The event to be connected with a method:

KEYDOWN
A key has been pressed while the tab control was
focused.

SELCHANGE
Another tab has been selected in the tab control. This
method is called after the selection was changed.

SELCHANGING
Another tab has been selected in the tab control. This
method is called before the selection is changed.

msgToRaise
The message that is to be sent whenever the specified
notification is received from the tab control. Provide a method
with a matching name. If you omit this argument, the event is
preceded by On.

Return value:
This method does not return a value.

Example:
The following example invokes method OnSelChange whenever
another tab is selected in the tab control PAGE:

332 OODialog Method Reference

::class MyDlgClass subclass UserDialog inherit MessageExtensions

::method Init
self∼init:super(...)
self∼ConnectTabNotify("PAGE", "SELCHANGE")

Notes:

1. Connections are usually placed in the Init or InitDialog method. If both
methods are defined, use init as the place for this connection – but not
before init:super has been called.

2. The event-handling method that is connected to KEYDOWN receives two
arguments: the control ID of the tab control and the virtual key code that
has been pressed. Use the method “KeyName” on page 517 of the
VirtualKeyCodes class to get the name of the key. Note that your class
must inherit from the VirtualKeyCodes class to use the KeyName method.
Example:
::method OnKeyDown

use arg id, vkey
say "Key" self∼KeyName(vkey) "was pressed."

3. All other event-handling methods receive two arguments: the ID of the tab
control (extract the low-order word) and the handle to the tab control.
Example:
::method Handler

use arg ev_id, handle
id = BinaryAnd(ev_id, "0x0000FFFF")

ConnectSliderNotify

�� aMessageExtensions∼ConnectSliderNotify(id," UP "
DOWN
TOP
BOTTOM
PAGEUP
PAGEDOWN
DRAG
POSITION
ENDTRACK

�

�)
, msgToRaise

��

The ConnectSliderNotify method connects a particular WM_NOTIFY message
for a slider control, which is also called a track bar, with a method. The
WM_NOTIFY message informs the dialog that an event has occurred with
regard to the slider control.

Chapter 16. MessageExtensions Class 333

Arguments:
The arguments are:

id The ID of the slider control of which a notification is to be
connected to a method.

event The event to be connected with a method:

UP The Up or right key has been pressed.

DOWN
The Down or left key has been pressed.

TOP The Home key has been pressed.

BOTTOM
The End key has been pressed.

PAGEUP
The PgUp key has been pressed.

PAGEDOWN
The PgDn key has been pressed.

DRAG
The slider has been moved.

POSITION
The left mouse button has been released, following a
DRAG notification.

ENDTRACK
The slider movement is completed, that is, the
appropriate key or mouse button has been released.

msgToRaise
The message that is to be sent whenever the specified
notification is received from the slider control. Provide a
method with a matching name. If you omit this argument, the
event is preceded by On.

Return value:
This method does not return a value.

Example:
The following example connects the POSITION event (release mouse
button after dragging) with method PosSet, which extracts the new
slider position from the notification arguments and displays it
together with the event type for POSITION, which is to be 4:
::class MyDlgClass subclass UserDialog inherit MessageExtensions

::method InitDialog
self∼InitDialog:super(...)

334 OODialog Method Reference

self∼ConnectSliderNotify("MYSLIDER", "POSITION", PosSet)

::method PosSet
use arg ev_pos, hnd
pos = ev_pos % "10000"∼x2d
say "Pos=" pos ", event code to verify=" BinaryAnd(ev_pos,,

"0x0000FFFF") "(expected 4)"

Notes:

1. The method can only be called after the slider was created by Windows. A
good location for this connection is the InitDialog method.

2. The event-handling methods receive two arguments: an event-position pair
and the handle to the slider control. For some events, you can retrieve the
slider position by extracting the high-oder word. Example:
::method Handler

use arg ev_pos, handle
position = ev_pos % "10000"∼x2d

Chapter 16. MessageExtensions Class 335

336 OODialog Method Reference

Chapter 17. AdvancedControls Class

The AdvancedControls class provides methods to add and use the new Win32
controls tree view control, list view control, tab control, slider control, and
progress bar. It also provides methods to retrieve a specific object for any
dialog control.

To use the methods defined by this mixin class, you must inherit from this
class by specifying the INHERIT option for the ::CLASS directive in the class
declaration. For example:
::class NewWin32Dialog SUBCLASS UserDialog INHERIT AdvancedControls

Requires:
The AdvancedControls class requires the class definition file
oodwin32.cls:
::requires oodwin32.cls

Methods:
Instances of the AdvancedControls class implement the methods listed
in Table 6.

Table 6. AdvancedControls Instance Methods

Method... ...on page

AddListControl 354

AddProgressBar 358

AddSliderControl 359

AddTabControl 361

AddTreeControl 352

ConnectListControl 351

ConnectSliderControl 351

ConnectTreeControl 350

GetButtonControl 340

GetCheckControl 342

GetComboBox 343

GetEditControl 339

GetListBox 342

GetListControl 346

GetProgressBar 347

© Copyright IBM Corp. 1997, 2001 337

Table 6. AdvancedControls Instance Methods (continued)

Method... ...on page

GetRadioControl 341

GetScrollBar 345

GetSliderControl 348

GetStaticControl 338

GetTabControl 349

GetTreeControl 345

GetStaticControl

�� anAdvancedControl∼GetStaticControl(id)
, category

��

The GetStaticControl method returns an object of the StaticControl class that is
assigned to the static dialog item with the specified ID. The StaticControl class
provides methods to query and manipulate static dialog items like static text,
group boxes, or frames. The static controls must have a positive ID.

Arguments:
The arguments are:

id The ID of the static dialog item.

category
The number of the category dialog page containing the
requested dialog item. This argument must only be specified
for category dialogs.

Return value:
An object of the StaticControl class or .Nil if the requested dialog item
does not exist.

Example:
The following example requests an object of dialog item ITEM7 and, if
the dialog item exists, resizes it, changes the displayed text, and sets
another background and foreground color:
::class MyDlgClass subclass UserDialog inherit AdvancedControls

::method ReArrange
di = self∼GetStaticControl("ITEM7")
if di == .Nil then return
di∼Resize(100, 25, "HIDE")

338 OODialog Method Reference

di∼Title="Processing layout update!"
di∼SetColor(7,4)
di∼Show
...

Note: GetStaticControl connects an Object REXX object with a Windows
object. If the object does not exist, the NIL object is returned. Therefore,
this method can only be applied after the Windows dialog has been
created (after the invocation of “StartIt” on page 260). For more
information on this issue, refer to “Summary of User Dialog
Processing” on page 60.

GetEditControl

�� anAdvancedControl∼GetEditControl(id)
, category

��

The GetEditControl method returns an object of the EditControl class that is
assigned to the entry line with the specified ID. The EditControl class (see
page 367) provides methods to query and manipulate edit controls.

Arguments:
The arguments are:

id The ID of the edit control.

category
The number of the category dialog page containing the
requested edit control. This argument must only be specified
for category dialogs.

Return value:
An object of the StaticControl class or .Nil if the requested edit control
does not exist.

Example:
The following example gets an object of the EditControl class and
checks whether the NAME entry line is empty. If the name field is
empty, the dialog is not valid.
::class MyDlgClass subclass UserDialog inherit AdvancedControls

::method Validate
di = self∼GetEditControl("NAME")
if di == .Nil then return 0
if di∼Title∼space(0) \="" then return 1

Note: GetEditControl connects an Object REXX object with a Windows object.
If the object does not exist, the NIL object is returned. Therefore, this

Chapter 17. AdvancedControls Class 339

method can only be applied after the Windows dialog has been created
(after the invocation of “StartIt” on page 260). For more information on
this issue, refer to “Summary of User Dialog Processing” on page 60.

GetButtonControl

�� anAdvancedControl∼GetButtonControl(id)
, category

��

The GetButtonControl method returns an object of the ButtonControl class that
is assigned to the push button with the specified ID. The ButtonControl class
(see page 415) provides methods to query and manipulate push buttons.

Arguments:
The arguments are:

id The ID of the push button.

category
The number of the category dialog page containing the
requested push button. This argument must only be specified
for category dialogs.

Return value:
An object of the ButtonControl class or .Nil if the requested push
button does not exist.

Example:
The following example displays the current state of the OK button by
retrieving an object of the Button class and calling the State method:
::class MyDlgClass subclass UserDialog inherit AdvancedControls

::method CurrentState
di = self∼GetButtonControl(1)
if di == .Nil then return 0
say "State is" di∼State

Note: GetButtonControl connects an Object REXX object with a Windows
object. If the object does not exist, the NIL object is returned. Therefore,
this method can only be applied after the Windows dialog has been
created (after the invocation of “StartIt” on page 260). For more
information on this issue, refer to “Summary of User Dialog
Processing” on page 60.

340 OODialog Method Reference

GetRadioControl

�� anAdvancedControl∼GetRadioControl(id)
, category

��

The GetRadioControl method returns an object of the RadioButton class that is
assigned to the radio button with the specified ID. The RadioButton class (see
page 427) provides methods to query and manipulate radio buttons.

Arguments:
The arguments are:

id The ID of the radio button.

category
The number of the category dialog page containing the
requested radio button. This argument must only be specified
for category dialogs.

Return value:
An object of the RadioButton class or .Nil if the requested radio
button does not exist.

Example:
The following example displays a message when radio button
CHOICE1 is selected:
::class MyDlgClass subclass UserDialog inherit AdvancedControls

::method CurrentState
di = self∼GetRadioControl("CHOICE1")
if di == .Nil then return 0
id di∼IsChecked = "CHECKED" then say "The radio button is selected!"

Note: GetRadioControl connects an Object REXX object with a Windows
object. If the object does not exist, the NIL object is returned. Therefore,
this method can only be applied after the Windows dialog has been
created (after the invocation of “StartIt” on page 260). For more
information on this issue, refer to “Summary of User Dialog
Processing” on page 60.

Chapter 17. AdvancedControls Class 341

GetCheckControl

�� anAdvancedControl∼GetCheckControl(id)
, category

��

The GetCheckControl method returns an object of the CheckBox class that is
assigned to the check box with the specified ID. The CheckBox class (see page
429) provides methods to query and manipulate check boxes.

Arguments:
The arguments are:

id The ID of the check box.

category
The number of the category dialog page containing the
requested check box. This argument must only be specified for
category dialogs.

Return value:
An object of the CheckBox class or .Nil if the requested check box
does not exist.

Example:
The following example displays a message when check box CHOICE1
is checked:
::class MyDlgClass subclass UserDialog inherit AdvancedControls

::method CurrentState
di = self∼GetCheckControl("CHOICE1")
if di == .Nil then return 0
if di∼IsChecked = "CHECKED" then say "The check box is checked!"

Note: GetCheckControl connects an Object REXX object with a Windows
object. If the object does not exist, the NIL object is returned. Therefore,
this method can only be applied after the Windows dialog has been
created (after the invocation of “StartIt” on page 260). For more
information on this issue, refer to “Summary of User Dialog
Processing” on page 60.

GetListBox

�� anAdvancedControl∼GetListBox(id)
, category

��

342 OODialog Method Reference

The GetListBox method returns an object of the ListBox class that is assigned
to the list box with the specified ID. The ListBox class (see page 431) provides
methods to query and manipulate list boxes.

Arguments:
The arguments are:

id The ID of the list box.

category
The number of the category dialog page containing the
requested list box. This argument must only be specified for
category dialogs.

Return value:
An object of the ListBox class or .Nil if the requested list box does not
exist.

Example:
The following example removes all entries of list box AREAS and
adds several new entries. Entry City will be preselected. Object "di" is
connected to list box AREAS.
::class MyDlgClass subclass UserDialog inherit AdvancedControls

::method UpdateList
di = self∼GetListBox("AREAS")
if di == .Nil then return 0
di∼DeleteAll
di∼Add("Town")
di∼Add("City")
di∼Add("Green")
di∼Add("Forest")
di∼Select("City")

Note: GetListBox connects an Object REXX object with a Windows object. If
the object does not exist, the NIL object is returned. Therefore, this
method can only be applied after the Windows dialog has been created
(after the invocation of “StartIt” on page 260). For more information on
this issue, refer to “Summary of User Dialog Processing” on page 60.

GetComboBox

�� anAdvancedControl∼GetComboBox(id)
, category

��

The GetComboBox method returns an object of the ComboBox class that is
assigned to the list box with the specified ID. The ComboBox class (see page
445) provides methods to query and manipulate combo boxes.

Chapter 17. AdvancedControls Class 343

Arguments:
The arguments are:

id The ID of the combo box.

category
The number of the category dialog page containing the
requested combo box. This argument must only be specified
for category dialogs.

Return value:
An object of the ComboBox class or .Nil if the requested combo box
does not exist.

Example:
The following example removes all entries of combo box AREAS and
adds several new entries. Entry "City" will be preselected. Object "di"
is connected to combo box AREAS.
::class MyDlgClass subclass UserDialog inherit AdvancedControls

::method UpdateList
di = self∼GetComboBox("AREAS")
if di == .Nil then return 0
di∼DeleteAll
di∼Add("Town")
di∼Add("City")
di∼Add("Green")
di∼Add("Forest")
di∼Select("City")

Note: GetComboBox connects an Object REXX object with a Windows object.
If the object does not exist, the NIL object is returned. Therefore, this
method can only be applied after the Windows dialog has been created
(after the invocation of “StartIt” on page 260). For more information on
this issue, refer to “Summary of User Dialog Processing” on page 60.

344 OODialog Method Reference

GetScrollBar

�� anAdvancedControl∼GetScrollBar(id)
, category

��

The GetScrollBar method returns an object of the ScrollBar class that is
assigned to the scroll bar with the specified ID. The ScrollBar class (see page
453) provides methods to query and manipulate scroll bars.

Arguments:
The arguments are:

id The ID of the scroll bar.

category
The number of the category dialog page containing the
requested scroll bar. This argument must only be specified for
category dialogs.

Return value:
An object of the ScrollBar class or .Nil if the requested scroll bar does
not exist.

Example:
The following example sets a new range and a new position for scroll
bar HORSB. Object "di" is connected to scroll bar HORSB.
::class MyDlgClass subclass UserDialog inherit AdvancedControls

::method FocusPage
di = self∼GetScrollBar("HORSB")
if di == .Nil then return 0
di∼SetRange(0, 1000, 0)
di∼SetPos(500, 1)

Note: GetScrollBar connects an Object REXX object with a Windows object. If
the object does not exist, the NIL object is returned. Therefore, this
method can only be applied after the Windows dialog has been created
(after the invocation of “StartIt” on page 260). For more information on
this issue, refer to “Summary of User Dialog Processing” on page 60.

GetTreeControl

�� anAdvancedControl∼GetTreeControl(id)
, category

��

Chapter 17. AdvancedControls Class 345

The GetTreeControl method returns an object of the TreeControl class that is
assigned to the tree view with the specified ID. The TreeControl class (see
page 491) provides methods to query and manipulate tree views.

Arguments:
The arguments are:

id The ID of the tree view.

category
The number of the category dialog page containing the
requested tree view. This argument must only be specified for
category dialogs.

Return value:
An object of the TreeControl class or .Nil if the requested tree view
does not exist.

Example:
The following example initializes tree view 101 by sending message
ADD to object "tc", which is assigned to 101 by using GetTreeControl:
::class MyDlgClass subclass UserDialog inherit AdvancedControls

::method InitDialog
tc = self∼GetTreeControl(101)
if tc == .Nil then return
tc∼Add("Root 1")
tc∼Add(,"Item 1")
tc∼Add(,"Item 2")
tc∼Add(,"Item 3")
tc∼Add("Root 2",,,"EXPANDED")
tc∼Add(,"Item 4",,,"BOLD")
tc∼Add(,"Item 5")
tc∼Add(,"Subroot")
tc∼Add(, ,"Item 6",3)

Note: GetTreeControl connects an Object REXX object with a Windows object.
If the object does not exist, the NIL object is returned. Therefore, this
method can only be applied after the Windows dialog has been created
(after the invocation of “StartIt” on page 260). For more information on
this issue, refer to “Summary of User Dialog Processing” on page 60.

GetListControl

�� anAdvancedControl∼GetListControl(id)
, category

��

346 OODialog Method Reference

The GetListControl method returns an object of the ListControl class that is
assigned to the list view with the specified ID. The ListControl class (see page
379) provides methods to query and manipulate list views.

Arguments:
The arguments are:

id The ID of the list view.

category
The number of the category dialog page containing the
requested list view. This argument must only be specified for
category dialogs.

Return value:
An object of the ListControl class or .Nil if the requested list view
does not exist.

Example:
The following example initializes list view 101 by sending message
ADD to object lc, which is assigned to 101 by using GetListControl:
::class MyDlgClass subclass UserDialog inherit AdvancedControls

::method InitDialog
lc = self∼GetListControl(101)
if lc == .Nil then return
lc∼∼Add(101222)∼∼Add(,"Smith")∼∼Add(,,"John")
lc∼∼Add(101223)∼∼Add(,"Michael")∼∼Add(,,"Carl")

Note: GetListControl connects an Object REXX object with a Windows object.
If the object does not exist, the NIL object is returned. Therefore, this
method can only be applied after the Windows dialog has been created
(after the invocation of “StartIt” on page 260). For more information on
this issue, refer to “Summary of User Dialog Processing” on page 60.

GetProgressBar

�� anAdvancedControl∼GetProgressBar(id)
, category

��

The GetProgressBar method returns an object of the ProgressBar Control class
that is assigned to the progress bar with the specified ID. The
ProgressBarControl class (see page 461) provides methods to query and
manipulate progress bars.

Arguments:
The arguments are:

Chapter 17. AdvancedControls Class 347

id The ID of the progress bar.

category
The number of the category dialog page containing the
requested progress bar. This argument must only be specified
for category dialogs.

Return value:
An object of the ProgressBar class or .Nil if the requested progress bar
does not exist.

Example:
The following example initializes and modifies progress bar
PROGRESS by sending messages to the object that is returned by
GetProgressBar:
::class MyDlgClass subclass UserDialog inherit AdvancedControls

::method InitDialog
pb = self∼GetProgressBar("PROGRESS")
if pb == .Nil then return
pb∼setstep(50)
pb∼setrange(,500)

::method UpdateProgress
use arg amount
self∼GetProgressBar("PROGRESS")∼SetPos(amount)

Note: GetProgressBar connects an Object REXX object with a Windows object.
If the object does not exist, the NIL object is returned. Therefore, this
method can only be applied after the Windows dialog has been created
(after the invocation of “StartIt” on page 260). For more information on
this issue, refer to “Summary of User Dialog Processing” on page 60.

GetSliderControl

�� anAdvancedControl∼GetSliderControl(id)
, category

��

The GetSliderControl method returns an object of the SliderControl class that is
assigned to the track bar with the specified ID. The SliderControl class (see
page 465) provides methods to query and manipulate track bars.

Arguments:
The arguments are:

id The ID of the track bar.

348 OODialog Method Reference

category
The number of the category dialog page containing the
requested track bar. This argument must only be specified for
category dialogs.

Return value:
An object of the SliderControl class or .Nil if the requested track bar
does not exist.

Example:
The following example initializes track bar 103:
::class MyDlgClass subclass UserDialog inherit AdvancedControls

::method InitTheSlider
sl = self∼GetSliderControl(103)
if sl == .Nil then return
no = 0; yes = 1
sl∼ClearSelRange(no)
sl∼SetMax(200,no)
sl∼SetTickFrequency(50)
sl∼SetTickAt(75)
sl∼SetSelStart(20, no)
sl∼SetSelEnd(180, yes)
sl∼Pos = 167

Note: GetSliderControl connects an Object REXX object with a Windows
object. If the object does not exist, the NIL object is returned. Therefore,
this method can only be applied after the Windows dialog has been
created (after the invocation of “StartIt” on page 260). For more
information on this issue, refer to “Summary of User Dialog
Processing” on page 60.

GetTabControl

�� anAdvancedControl∼GetTabControl(id)
, category

��

The GetTabControl method returns an object of the TabControl class that is
assigned to the tab control with the specified ID. The TabControl class (see
page 479) provides methods to query and manipulate tab controls.

Arguments:
The arguments are:

id The ID of the tab control.

Chapter 17. AdvancedControls Class 349

category
The number of the category dialog page containing the
requested tab control. This argument must only be specified
for category dialogs.

Return value:
An object of the TabControl class or .Nil if the requested tab control
does not exist.

Example:
The following example initializes tab control PAGES to have five tabs:
::class MyDlgClass subclass UserDialog inherit AdvancedControls

::method InitDialog
self∼GetTabControl("PAGES")∼AddSequence("Design","Implementation",,
"Test","Review","Release")

Note: GetTabControl connects an Object REXX object with a Windows object.
If the object does not exist, the NIL object is returned. Therefore, this
method can only be applied after the Windows dialog has been created
(after the invocation of “StartIt” on page 260). For more information on
this issue, refer to “Summary of User Dialog Processing” on page 60.

ConnectTreeControl

�� anAdvancedControl∼ConnectTreeControl(id)
, attributeName

��

The ConnectTreeControl method creates a new attribute and connects it to the
tree view id. The attribute has to be synchronized manually with the tree
view. You can do this globally using the SetData and GetData methods (see
page 125) or methods provided by the TreeControl class. A tree view can
contain many items. When the dialog data is set, the first tree view item
containing the same text as the text stored in the connected attribute, is
selected. When the data is received, the attribute receives the text of the
selected tree view item. Usually, the connection is made automatically and
you do not have to use this method.

Arguments:
The arguments are:

id The ID of the tree view that you want to connect.

attributeName
An unused valid REXX symbol because an attribute with
exactly this name is added to the dialog object by this

350 OODialog Method Reference

method. Blank spaces, ampersands (&), and colons (:) are
removed from the attributeName.

If this argument is omitted, is not valid, or already exists, the
following occurs:
v If the ID is numeric, an attribute with the name DATAid is

used, where id is the value of the first argument.
v If the ID is symbolic, the attribute is named as the ID.

Example:
In the following example, the tree view with ID 202 is associated with
the attribute FileName. Then TEST.REX is assigned to the newly
created attribute. Then the dialog is executed, which preselects
TEST.REX in the tree view, if it exits. After the dialog is terminated,
the selected entry of the tree view is copied to the attribute FileName.
MyDialog∼ConnectTreeControl(202, "FileName")
MyDialog∼FileName="TEST.REX"
MyDialog∼Execute("SHOWTOP")
say MyDialog∼FileName

ConnectListControl

�� anAdvancedControl∼ConnectListControl(id)
, attributeName

��

The ConnectListControl method creates a new attribute and connects it to the
list view id. The attributeName is a string containing the numbers of the
selected lines. The numbers are separated by blanks. Therefore, if value of the
attribute after GetData is ″3 5 6″, the third, fifth, and sixth items are currently
selected, or will be selected when SetData is executed. For further information,
refer to “ConnectTreeControl” on page 350.

Example:
In the following example, the list view with ID 202 is associated with
the attribute Customers. The first, 14th, and 29th entries in the list are
preselected.
MyDialog∼ConnectListControl(202, "Customers")
MyDialog∼Customers="1 14 29"

ConnectSliderControl

�� anAdvancedControl∼ConnectSliderControl(id)
, attributeName

��

Chapter 17. AdvancedControls Class 351

The ConnectSliderControl method creates a new attribute and connects it to the
track bar id. The attributeName is the numerical position of the slider. For
further information, refer to “ConnectTreeControl” on page 350.

ConnectTabControl

�� anAdvancedControl∼ConnectTabControl(id)
, attributeName

��

The ConnectTabControl method creates a new attribute and connects it to the
tab control id. The attributeName is the text of the active tab. For further
information, refer to “ConnectTreeControl” on page 350.

AddTreeControl

�� anAdvancedControl∼AddTreeControl(id , , x , y ,
attributeName

�

�

&

cx , cy)

, " ATROOT "
BUTTONS
LINES
EDIT
HSCROLL
VSCROLL
SHOWSELALWAYS
ALL
NODRAG
GROUP
HIDDEN
NOTAB
NOBORDER

��

The AddTreeControl method adds a tree view to the dialog and connects it with
a data attribute. For further information on tree view controls, refer to
“Chapter 31. TreeControl Class” on page 491.

Arguments:
The arguments are:

id A unique identifier assigned to the control. You need the ID to
refer to this control in other methods.

352 OODialog Method Reference

attributeName
The name of the data attribute associated with the dialog
item. See page 350 to get information on what happens when
this argument is omitted.

x, y The position of the upper left corner of the control relative to
the dialog, in dialog units.

cx, xy The width and height of the dialog item, in dialog units.

options
This argument determines the behavior and style of the dialog
item and can be one or more of the following, separated by
blanks:

ATROOT
The tree view has lines linking child items to the root
of the hierarchy.

BUTTONS
The tree view adds a button to the left of each parent
item.

LINES
The tree view has lines linking child items to their
corresponding parent items.

EDIT The tree view allows the user to edit the labels of tree
view items. To store the edited text, you must connect
a method to the ENDEDIT notification or connect the
DEFAULTEDIT event handler (see
“ConnectTreeNotify” on page 313).

HSCROLL
The tree view supports a horizontal scroll bar.

VSCROLL
The tree view supports a vertical scroll bar.

SHOWSELALWAYS
A selected item remains selected when the tree view
loses focus.

ALL The options ATROOT, BUTTONS, LINES, EDIT,
HSCROLL, and SHOWSELALWAYS are all applied.

NODRAG
The tree view is prevented from sending “begin drag”
notifications.

Chapter 17. AdvancedControls Class 353

GROUP
The first control of a group of controls in which the
user can move from one control to the next with the
arrow key.

HIDDEN
The control is initially hidden.

NOTAB
The tab key cannot be used to move to this control.

NOBORDER
No border is drawn around the control.

Example:
The following example creates a tree view at position x=100 and y=80
and with a size of width=40 and height=120. The ID of the tree is 555
and its data is associated with attribute BRANCH. The tree view uses
lines for child items and roots, displays a button to the left of each
parent item, and supports item editing.
MyDialog∼AddTreeControl(555, "Branch", 100, 80, 40, 120,,
"LINES BUTTON EDIT ATROOT")

AddListControl

�� anAdvancedControl∼AddListControl(id , , x, y ,
attributeName

�

354 OODialog Method Reference

�

&

cx , cy)

, " ICON "
SMALLICON
LIST
REPORT
ALIGNLEFT
ALIGNTOP
AUTOARRANGE
ASCENDING
DESCENDING
EDIT
HSCROLL
VSCROLL
NOSCROLL
NOHEADER
NOSORTHEADER
NOWRAP
SINGLESEL
SHOWSELALWAYS
SHAREIMAGES
GROUP
HIDDEN
NOTAB
NOBORDER

��

The AddListControl method adds a list view to the dialog and connects it with
a data attribute. For further information on list view controls, refer to
“Chapter 20. ListControl Class” on page 379.

Arguments:
The arguments are:

id A unique identifier assigned to the control. You need the ID to
refer to this control in other methods.

attributeName
The name of the data attribute associated with the dialog
item. See page 350 to get information on what happens when
this argument is omitted.

x, y The position of the upper left corner of the control relative to
the dialog, in dialog units.

cx, xy The width and height of the dialog item, in dialog units.

options
This argument determines the behavior and style of the dialog
item and can be one or more of the following, separated by
blanks:

Chapter 17. AdvancedControls Class 355

ICON Use the icon view. Each item appears as a full-sized
icon with a label below it. The user can drag the items
to any location in the list view control.

SMALLICON
Use the small-icon view. Each item appears as a small
icon with a label to the right of it. The user can drag
the items to any location in the list view control.

LIST Use the list view. Each item appears as a small icon
with a label to the right of it. Items are arranged in
columns and cannot be moved by the user.

REPORT
Use the report view. Each item appears on a separate
line with information arranged in columns. The
leftmost column contains the small icon and label, and
subsequent columns contain subitems.

ALIGNLEFT
In icon and small-icon views, the items are
left-aligned.

ALIGNTOP
In icon and small-icon views, the items are aligned
with the top of the control.

AUTOARRANGE
In icon and small-icon views, the icons are always
automatically arranged.

ASCENDING
Sorts items by item text in ascending order.

DESCENDING
Sorts items by item text in descending order.

EDIT The list view allows the user to edit the list view
items. To store the edited text, you must connect a
method to the ENDEDIT notification or you connect
the DEFAULTEDIT event handler (see
“ConnectTreeNotify” on page 313.

HSCROLL
The list view supports a horizontal scroll bar.

VSCROLL
The list view supports a vertical scroll bar.

NOSCROLL
Disables scrolling.

356 OODialog Method Reference

NOHEADER
No column header is displayed in the report view. By
default, columns have headers in the report view.

NOSORTHEADER
Specifies that column headers do not work like
buttons. This option is useful if clicking a header in
the report view does not carry out an action.

NOWRAP
Displays item text on a single line in the icon view. By
default, the item text can wrap in the icon view.

SINGLESEL
Allows only one item to be selected at a time. By
default, several items can be selected.

SHOWSELALWAYS
Specifies that a selected item remains selected when
the list view loses focus.

DEFAULTEDIT
Connects the notification that label editing has been
started and ended with a predefined event-handling
method. This method extracts the newly entered text
from the notification and modifies the item of which
the label was edited. If this event is not connected you
must provide your own event-handling method and
connect it with the BEGINEDIT and ENDEDIT events.
Otherwise, the edited text is lost and the item remains
unchanged.

SHAREIMAGES
The control does not take ownership of the image lists
assigned to it. This option enables an image list to be
used with several list controls.

GROUP
Specifies the first control of a group of control in
which the user can move from one control to the next
with the arrow keys.

HIDDEN
The control is initially hidden.

NOTAB
The tab key cannot be used to move to this control.

NOBORDER
No border is drawn around the control.

Chapter 17. AdvancedControls Class 357

Example:
The following example creates a list view at position x=100 and y=80
and with a size of width=40 and height=120. The list view with ID
555 is a report view with items sorted in ascending order. It supports
item editing and column headers do not behave like buttons. Its data
is associated with attribute EMPLOYEES.
MyDialog∼AddListControl(555, "EMPLOYEES", 100, 80, 40, 120,,
"REPORT ASCENDING EDIT NOSORTHEADER")

AddProgressBar

�� anAdvancedControl∼AddProgressBar(id , x , y , cx , cy �

�

&

)

, " VERTICAL "
SMOOTH
BORDER

��

The AddProgressBar method adds a progress bar to the dialog and connects it
with a data attribute. For further information on progress bar controls, refer to
“Chapter 28. ProgressBarControl Class” on page 461.

Arguments:
The arguments are:

id A unique identifier assigned to the control. You need the ID to
refer to this control in other methods.

x, y The position of the upper left corner of the control relative to
the dialog, in dialog units.

cx, xy The width and height of the dialog item, in dialog units.

options
This argument determines the behavior and style of the dialog
item and can be one or more of the following:

VERTICAL
The progress bar is oriented vertically.

SMOOTH
The progress bar is incremented smoothly.

BORDER
A border is drawn around the progress bar.

358 OODialog Method Reference

If you omit this argument, the progress bar is oriented
horizontally.

Example:
The following example creates a progress bar with ID DONE at the
bottom of the dialog. The progress bar is as wide as the dialog.
MyDialog∼AddProgressBar("DONE",10,MyDialog∼sizey-16,MyDialog∼sizex=20,12)

AddSliderControl

�� anAdvancedControl∼AddSliderControl(id , , x , y ,
attributeName

�

�

&

cx , cy)

, " AUTOTICKS "
NOTICKS
HORIZONTAL
VERTICAL
TOP
BOTTOM
LEFT
RIGHT
BOTH
ENABLESELRANGE
GROUP
HIDDEN
NOTAB
NOBORDER

��

The AddSliderControl method adds a slider control (track bar) to the dialog
and connects it with a data attribute. For further information on slider
controls, refer to “Chapter 29. SliderControl Class” on page 465.

Arguments:
The arguments are:

id A unique identifier assigned to the control. You need the ID to
refer to this control in other methods.

attributeName
The name of the data attribute associated with the dialog
item. See page 350 to get information on what happens when
this argument is omitted.

x, y The position of the upper left corner of the control relative to
the dialog, in dialog units.

Chapter 17. AdvancedControls Class 359

cx, xy The width and height of the dialog item, in dialog units.

options
This argument determines the behavior and style of the dialog
item and can be one or more of the following:

AUTOTICKS
Creates a slider that has a tick mark for each
increment in its range of values. These tick marks are
automatically added when an application calls the
InitRange method. You cannot use the SetTickAt and
SetTickFrequency methods to specify the position of
the tick marks when you use this option.

NOTICKS
Creates a slider that does not display tick marks.

HORIZONTAL
Orients the slider horizontally. This is the default
orientation.

VERTICAL
Orients the slider vertically.

TOP Displays tick marks along the top of a horizontal
slider.

BOTTOM
Displays tick marks along the bottom of a horizontal
slider. This option can be used together with the TOP
option to display tick marks on both sides of the
slider control.

LEFT Displays tick marks along the left of a vertical slider.

RIGHT
Displays tick marks along the right of a vertical slider.
This option can be used together with the LEFT
option to display tick marks on both sides of the
slider control.

BOTH Displays tick marks on both sides of the slider in any
direction.

ENABLESELRANGE
Displays a selection range. If you set this option, the
tick marks at the starting and ending positions of a
selection range are displayed as triangles and the
selection range is highlighted. This can be used, for
example, to indicate a preferred selection.

360 OODialog Method Reference

GROUP
Specifies the first control of a group of control in
which the user can move from one control to the next
with the arrow keys.

HIDDEN
The control is initially hidden.

NOTAB
The tab key cannot be used to move to this control.

NOBORDER
No border is drawn around the control.

Example:
The following example creates a vertical slider control at the right
border of the dialog. The slider with ID PRESSURE displays
automatic tick marks on both sides. Its position is associated with
attribute PRESSURE.
MyDialog∼AddSliderControl("PRESSURE",, MyDialog∼sizeX-30, 15, 20,,
MyDialog∼sizeY-30, "VERTICAL BOTH AUTOTICKS")

AddTabControl

�� anAdvancedControl∼AddTabControl(id , , x , y ,
attributeName

�

�

&

cx , cy)

, " ALIGNRIGHT "
BUTTONS
FIXED
FOCUSNEVER
FOCUSONDOWN
ICONLEFT
LABELLEFT
MULTILINE
GROUP
HIDDEN
NOTAB
NOBORDER

��

The AddTabControl method adds a tab control to the dialog and connects it
with a data attribute. For further information on tab controls, refer to
“Chapter 30. TabControl Class” on page 479.

Chapter 17. AdvancedControls Class 361

Arguments:
The arguments are:

id A unique identifier assigned to the control. You need the ID to
refer to this control in other methods.

attributeName
The name of the data attribute associated with the dialog
item. See page 350 to get information on what happens when
this argument is omitted.

x, y The position of the upper left corner of the control relative to
the dialog, in dialog units.

cx, xy The width and height of the dialog item, in dialog units.

options
This argument determines the behavior and style of the dialog
item and can be one or more of the following:

ALIGNRIGHT
Right-justifies tabs. By default, tabs are left-justified
within a row.

BUTTONS
Modifies the appearance of the tabs to look like
buttons.

FIXED
Makes all tabs equal in width. You cannot use this
option with the ALIGNRIGHT option.

FOCUSNEVER
A tab never receives the input focus.

FOCUSONDOWN
A tab receives the input focus when clicked (typically
with option BUTTONS).

ICONLEFT
Forces the icon to the left, but leaves the tab label
centered. By default, the control centers the icon and
label, with the icon being to the left of the label.

LABELLEFT
Left-aligns both the icon and the label.

MULTILINE
Causes a tab control to display several rows of tabs,
enabling all tabs to be displayed at the same time.

362 OODialog Method Reference

GROUP
Specifies the first control of a group of control in
which the user can move from one control to the next
with the arrow keys.

HIDDEN
The control is initially hidden.

NOTAB
The tab key cannot be used to move to this control.

NOBORDER
No border is drawn around the control.

Example:
The following example creates a tab control with ID PAGES and
multiline capability. Its data (the selected tab) is associated with
attribute CURRENTPAGE.
MyDialog∼AddTabControl("PAGES","CURRENTPAGE", 10, 120, 200, 20,,
"MULTILINE FIXED")

Chapter 17. AdvancedControls Class 363

364 OODialog Method Reference

Chapter 18. StaticControl Class

The StaticControl class provides methods to query and modify static controls,
such as static text, group boxes, and frames. It inherits all methods of the
DialogControl class (see page 181).

The StaticControl class requires the class definition file oodwin32.cls:
::requires oodwin32.cls

Use the GetStaticControl method (see page 338) to retrieve an object of the
StaticControl class. To use this method, the static control must have a positive
ID.

© Copyright IBM Corp. 1997, 2001 365

366 OODialog Method Reference

Chapter 19. EditControl Class

The EditControl class provides methods to query and modify edit controls,
which are also called entry lines. It inherits all methods of the DialogControl
class (see page 181).

Use the GetEditControl method (see page 339) to retrieve an object of the
EditControl class.

Requires:
The EditControl class requires the class definition file oodwin32.cls:
::requires oodwin32.cls

Methods:
Instances of the EditControl class implement the methods listed in
Table 7.

Table 7. EditControl Instance Methods

Method... ...on page

EnsureCaretVisibility 370

FirstVisibleLine 375

GetLine 377

IsModified 371

LineFromIndex 373

LineIndex 372

LineLength 373

LineScroll 370

Lines 372

Margins 377

PasswordChar 375

PasswordChar= 374

ReplaceSelText 374

ScrollCommand 369

Select 368

Selected 368

SetLimit 374

SetMargins 376

© Copyright IBM Corp. 1997, 2001 367

Table 7. EditControl Instance Methods (continued)

Method... ...on page

SetModified 371

SetReadOnly 376

Selected

�� anEditControl∼Selected ��

The Selected method retrieves the indexes of the starting and ending character
of the text selected. If the starting index equals the ending index, no text is
selected and the index specifies the current cursor position. If the ending
index is 0 and the starting index is 1, the entire text is selected.

Return value:
The one-based starting and ending index of the current selection,
separated by a blank.

Example:
The following example displays the starting and ending index of the
text selection of the edit control NAME. It then selects the entire text
of the edit control.
edit = MyDialog∼GetEditControl("NAME")
if edit == .Nil then return
parse value edit∼Selected with start end
say "Starting index of selection is" start
say "Ending index of selection is" end
edit∼Select(1,0)

Select

�� anEditControl∼Select(start,end) ��

The Select method selects the text or sets the cursor position for the associated
edit control. If the starting index equals the ending index, no text is selected
and the cursor is set to the character at the specified index. If the ending
index is 0 and the starting index is 1, the entire text is selected.

Arguments:
The arguments are:

368 OODialog Method Reference

start A one-based index where the selection begins or the cursor is
to be set.

end A one-based index where the selection ends.

Example:
See “Selected” on page 368.

ScrollCommand

��
UP

anEditControl∼ScrollCommand(" ")
LEFT , repetitions
DOWN
RIGHT
PAGEUP
PAGELEFT
PAGEDOWN
PAGERIGHT

��

The ScrollCommand method scrolls the associated edit control in a given
direction.

Arguments:
The arguments are:

command
Specifies the direction and the step size of the scroll
command. Possible values are:

UP or LEFT
Scrolls up one line. UP is the default.

DOWN or RIGHT
Scrolls down one line.

PAGEUP or PAGELEFT
Scrolls up one page.

PAGEDOWN or PAGERIGHT
Scrolls down one page.

repetitions
The number of times the scroll command is to be issued. If
this argument is omitted, the scroll command is issued once.

Example:
The following example scrolls down 3 lines in the edit control:

Chapter 19. EditControl Class 369

edit = MyDialog∼GetEditControl("NAME")
if edit == .Nil then return
edit∼ScrollCommand("DOWN",3)

LineScroll

�� anEditControl∼LineScroll(sChars,sLines) ��

The LineScroll method scrolls the text in a multiline edit control vertically or
horizontally by the specified number of characters and lines.

Arguments:
The arguments are:

sChars The number of characters to be scrolled horizontally.

sLines The number of lines to be scrolled vertically.

Return value:
0 if the message is sent to a multiline edit control, or a non-zero value
if the message is sent to a single-line edit control.

Example:
The following example scrolls an edit control by 50 characters and 35
lines:
edit∼Scroll(50, 35)

Note: The edit control does not scroll vertically past the last line of text. If the
current line, plus the number of lines specified by sLines, exceeds the
total number of lines in the edit control, the last line of the edit control
is scrolled to the top. The LineScroll message can, however, be used to
scroll horizontally past the last character of a line.

EnsureCaretVisibility

�� anEditControl∼EnsureCaretVisibility ��

The EnsureCaretVisibility method scrolls the edit control until the caret (cursor)
is visible.

Return value:
0 if the object is associated with an existing edit control.

370 OODialog Method Reference

IsModified

�� anEditControl∼IsModified ��

The IsModified method retrieves information on whether the edit control has
been modified.

Return value:

1 The text in the edit control has been altered.

0 For all other cases.

Example:
if edit∼IsModified = 1 then MyDialog∼Save

SetModified

�� anEditControl∼SetModified(bool) ��

The SetModified method sets the flag to indicate whether the edit control has
been modified.

Arguments:
The only argument is:

bool

1 The flag indicates that the text has been altered.

0 For all other cases.

Example:
In the following example, the Save method stores the dialog contents
in a file and clears the modified flag:
::method Save

/* write contents to file */
edit = MyDialog∼GetEditControl("TEXT")
...
edit∼SetModified(0)

Chapter 19. EditControl Class 371

Lines

�� anEditControl∼Lines ��

The Lines method retrieves the number of text lines of a multiline edit control.

Return value:
The number of text lines.

Example:
For an example, refer to “LineIndex”.

LineIndex

�� anEditControl∼LineIndex(line) ��

The LineIndex method retrieves the one-based character index of the beginning
of the line in the associated edit control.

Arguments:
The only argument is:

line The number of the line of which the starting index is to be
retrieved. Line numbers are incremented by 1, starting with 1.

Return value:
The character index of the specified line. The first line starts at index
1.

Example:
The following example sets a text for edit control TEXT and displays
the number of text lines (3), the starting index of the second line
(carriage return and line feed, which mark a line break, are also
considered to be characters), and the length of the third line:
edit = MyDialog∼GetEditControl("TEXT")
if edit == .Nil then return

"It is easy to learn and easy to use." || 13∼d2c || 10∼d2c ||,
"Have fun with it!"
say "Number of lines:" edit∼lines

say "Line 2 begins at index" edit∼LineIndex(2)
say "Length of 3rd line:" edit∼LineLength(3)

Result: The number of lines: 3
Line 2 begins at index 37
Length of 3rd line: 17

372 OODialog Method Reference

LineLength

�� anEditControl∼LineLength(line) ��

The LineLength method retrieves the number of characters contained in the line
in the associated edit control.

Arguments:
The only argument is:

line The number of the line of which the number of characters is
to be retrieved. Line numbers are incremented by 1, starting
with 1.

Return value:
The length of the given line.

Example:
For an example, refer to “LineIndex” on page 372.

LineFromIndex

�� anEditControl∼LineFromIndex(index) ��

The LineFromIndex method retrieves the one-based line number that contains
the character index index.

Arguments:
The only argument is:

index The one-based character index contained in the line whose
number is to be retrieved.

Return value:
The line number containing the specified character index. The first
line starts at index 1. If the specified index exceeds the number of
characters contained in the edit control or an invalid character index
was specified, 0 is returned.

Example:
The following example displays the line in which character 55 is
contained:
edit = MyDialog∼GetEditControl("TEXT")
if edit == .Nil then return

"It is easy to learn and easy to use." || 13∼d2c || 10∼d2c ||,
"Have fun with it!"

Chapter 19. EditControl Class 373

say "Character 55 is contained in line" edit∼LineFromIndex(55)

Result: Character 55 is contained in line 2

ReplaceSelText

�� anEditControl∼ReplaceSelText(text) ��

The ReplaceSelText method replaces the selected text in the associated edit
control with a new one.

Arguments:
The only argument is:

text The text string that is to replace the currently selected text.

Example:
edit = MyDialog∼GetEditControl("TEXT")
if edit == .Nil then return
edit∼Title = "Object REXX is a hybrid language."
edit∼Select(17,25)

edit∼ReplaceSelText("n interpreted")
say edit∼Title

Result: Object REXX is an interpreted language.

SetLimit

�� anEditControl∼SetLimit(chars) ��

The SetLimit method sets the maximum numbers of characters that the
associated edit control can contain.

Arguments:
The only argument is:

chars The number of characters that the edit control can contain.

PasswordChar=

�� anEditControl∼PasswordChar=char ��

The PasswordChar= method sets the character that is displayed in an edit
control for which the PASSWORD or ES_PASSWORD flag is set.

374 OODialog Method Reference

Arguments:
The only argument is:

char The character that is displayed for the typed characters.

Example:
The following example ensures that if the PASSWORD style was
chosen for the edit control in the resource workshop, the dollar sign
($) is displayed for each character typed in the edit control:
edit = MyDialog∼GetEditControl("TEXT")
if edit == .Nil then return
edit∼PasswordChar = "$"
say "The new password character is" edit∼PasswordChar

PasswordChar

�� anEditControl∼PasswordChar ��

The PasswordChar method retrieves the character that is displayed in an edit
control for which the PASSWORD option or ES_PASSWORD style was set in
the resource workshop.

Return value:
The character that is displayed instead of the characters contained in
the edit control. If the edit control is no password field or no
password character was set, an empty string is returned.

Example:
For an example, refer to “PasswordChar=” on page 374.

FirstVisibleLine

�� anEditControl∼FirstVisibleLine ��

The FirstVisibleLine method retrieves the one-based line number of the first
line visible in a multiline edit control.

Return value:
The number of the first visible line, starting with 1.

Example:
For an example, refer to “PasswordChar=” on page 374.

Chapter 19. EditControl Class 375

SetReadOnly

��
1

anEditControl∼SetReadOnly()
0

��

The SetReadOnly method sets or unsets the read-only flag for the associated
edit control. If the read-only flag is set, the user can no longer modify the text
of the edit control.

Arguments:
The only argument is:

bool 1 if the edit control is to be marked as a read-only field (the
default), or 0 if new text can be typed into the edit control.

Return value:
0 if this method was successful.

SetMargins

�� anEditControl∼SetMargins(left,right) ��

The SetMargins method sets the left and right margins for the associated edit
control. The margins determine the spacing to the left and right of the edit
control.

Arguments:
The arguments are:

left The left margin, specified in screen pixels.

right The right margin, specified in screen pixels.

Example:
The following example sets the margins for edit control TEXT such
that the left indent is 10 screen pixels and on the right there is a
spacing of 5 pixels between the text and the frame of the edit control:
edit = MyDialog∼GetEditControl("TEXT")
if edit == .Nil then return
edit∼SetMargins(10, 5)

parse value edit∼Margins with left right
say "The new left margin is" left" and the new right margin is" right

376 OODialog Method Reference

Margins

�� anEditControl∼Margins ��

The Margins method retrieves the left and right margins of the associated edit
control.

Return value:
The left and right margins, in screen pixels, separated by a blank.

Example:
For an example, refer to “SetMargins” on page 376.

GetLine

�� anEditControl∼GetLine(line)
, maxLength

��

The GetLine method retrieves the text string contained in the specified line.

Arguments:
The arguments are:

line The one-based line number to be retrieved.

maxLength
The maximum number of characters to be retrieved. Object
REXX allocates the appropriate amount of memory to store
the text string. If the line consists of more characters than fit
in the memory, the text string is truncated. If you omit this
argument, the maximum number of characters retrieved is
255.

Return value:
A text string or an empty string.

Example:
The following example stores all lines contained in edit control
EDITOR in a stem. If a line consists of more than 1024 characters, it is
truncated.
edit = MyDialog∼GetEditControl("EDITOR")
if edit == .Nil then return
do i = 1 to edit∼Lines

lines.i = edit∼GetLine(i, 1024)
end

Chapter 19. EditControl Class 377

Note: The carriage return and line-feed characters are not included in the
returned text string. To get the contents of a single line edit control, use
the Title method (see page 196) or call GetLine(i, 1024).

378 OODialog Method Reference

Chapter 20. ListControl Class

A list view control is a window that displays a collection of items, with each
item consisting of an icon and a label. It provides several ways of arranging
and displaying items. Refer to OODLIST.REX in the OODIALOG\SAMPLES
directory for an example.

Requires:
The ListControl class requires the class definition file oodwin32.cls:
::requires oodwin32.cls

Methods:
Instances of the ListControl class implement the methods listed in
Table 8.

Table 8. ListControl Instance Methods

Method... ...on page

Add 393

AddRow 394

AddStyle 383

AlignLeft 409

AlignTop 409

Arrange 408

BkColor 412

BkColor= 412

ColumnInfo 387

ColumnWidth 388

Delete 395

DeleteAll 395

DeleteColumn 385

Deselect 399

DropHighlighted 400

Edit 410

EndEdit 411

EnsureVisible 404

Find 407

FindNearestXY 408

© Copyright IBM Corp. 1997, 2001 379

Table 8. ListControl Instance Methods (continued)

Method... ...on page

FindPartial 407

FirstVisible 401

Focus 400

Focused 400

Insert 389

InsertColumn 385

ItemInfo 396

ItemPos 409

ItemState 398

ItemText 398

Items 395

ItemsPerPage 411

Last 396

LastSelected 399

Modify 390

ModifyColumn 386

Next 402

NextLeft 402

NextRight 402

NextSelected 401

Prepare4nItems 396

Previous 402

PreviousSelected 401

RedrawItems 403

RemoveImages 406

RemoveStyle 384

RemoveSmallImages 406

ReplaceStyle 382

RestoreEditClass 411

Scroll 411

Select 398

Selected 399

380 OODialog Method Reference

Table 8. ListControl Instance Methods (continued)

Method... ...on page

SelectedItems 396

SetColumnWidth 388

SetImages 405

SetItemPos 410

SetItemState 392

SetItemText 391

SetSmallImages 405

SmallSpacing 403

SnapToGrid 408

Spacing 403

StringWidth 389

SubclassEdit 411

TextBkColor 413

TextBkColor= 414

TextColor 413

TextColor= 413

Update 404

UpdateItem 404

View Styles

List view controls can display their contents in different views. The current
view is specified by the window style of the control. Additional window
styles define the alignment of the items and the functionality of the list view
control. The different views are:

Icon view
Each item appears as a full-sized icon with a label below it. The user
can drag the items to any location in the list view.

Small-icon view
Each item appears as a small icon with a label to the left of it. The
user can drag the items to any location.

List view
Each item appears as a small icon with a label to the left of it. The
user cannot drag the items.

Chapter 20. ListControl Class 381

Report view
Each item appears on a separate line with information arranged in
columns. The leftmost column contains the small icon and the label.
All following columns contain subitems as specified by the
application.

Methods of the ListControl Class

The following sections describe the individual methods.

ReplaceStyle

�� &aListControl∼ReplaceStyle(oldStyle," ICON ")
SMALLICON
LIST
REPORT
ALIGNLEFT
ALIGNTOP
AUTOARRANGE
ASCENDING
DESCENDING
EDIT
HSCROLL
VSCROLL
NOSCROLL
NOHEADER
NOSORTHEADER
NOWRAP
SINGLESEL
SHOWSELALWAYS
SHAREIMAGES
GROUP
HIDDEN
NOTAB
NOBORDER

��

The ReplaceStyle method removes a window style of a list view control and
sets new styles.

Arguments:
The arguments are:

oldStyle
The window style to be removed.

newStyle
The new window styles to be set, which is one or more of the

382 OODialog Method Reference

styles listed in the syntax diagram, separated by blanks. For
an explanation of the different styles, refer to
“AddListControl” on page 354.

Return value:
0 if this method fails.

Example:
The following example replaces a small-icon list with an icon list and
connects the new bitmap file:
::method Icon

curList = self∼GetListControl(104)
curList∼SetImages("ilist.bmp",16,12)
curList∼ReplaceStyle("SMALLICON","ICON")

AddStyle

�� &aListControl∼AddStyle(" ICON ")
SMALLICON
LIST
REPORT
ALIGNLEFT
ALIGNTOP
AUTOARRANGE
ASCENDING
DESCENDING
EDIT
HSCROLL
VSCROLL
NOSCROLL
NOHEADER
NOSORTHEADER
NOWRAP
SINGLESEL
SHOWSELALWAYS
SHAREIMAGES
GROUP
HIDDEN
NOTAB
NOBORDER

��

The AddStyle method adds new window styles to a list view control.

Arguments:
The only argument is:

style The window styles to be added, which is one or more of the

Chapter 20. ListControl Class 383

styles listed in the syntax diagram, separated by blanks. For
an explanation of the different styles, refer to
“AddListControl” on page 354.

Return value:
0 if this method fails.

RemoveStyle

�� &aListControl∼RemoveStyle(" ICON ")
SMALLICON
LIST
REPORT
ALIGNLEFT
ALIGNTOP
AUTOARRANGE
ASCENDING
DESCENDING
EDIT
HSCROLL
VSCROLL
NOSCROLL
NOHEADER
NOSORTHEADER
NOWRAP
SINGLESEL
SHOWSELALWAYS
SHAREIMAGES
GROUP
HIDDEN
NOTAB
NOBORDER

��

The RemoveStyle method removes one or more window styles of a list view
control.

Arguments:
The only argument is:

style The window styles to be removed, which is one or more of
the styles listed in the syntax diagram, separated by blanks.
For an explanation of the different styles, refer to
“AddListControl” on page 354.

Return value:
0 if this method fails.

384 OODialog Method Reference

InsertColumn

��
0

aListControl∼InsertColumn(,text,width)
column LEFT

, " CENTER "
RIGHT

��

The InsertColumn method sets the attributes of a report list view column.

Arguments:
The arguments are:

column
The number of the column. 0 is the first column and the
default.

text The text of the column heading.

width The width of the column, in pixels.

align The alignment of the column heading and the subitem text
within the column. It can be one of the following values:

CENTER The text is centered.

LEFT The text is left-aligned, which is the default.

RIGHT The text is right-aligned.

Return value:
The number of the new column, or 0 if this method fails.

Example:
The following example adds three columns to a report list:
::method InitReport

curList = self∼GetListControl(102)
if curList \= .Nil then
do

curList∼InsertColumn(0,"First Name",50)
curList∼InsertColumn(1,"Last Name",50)
curList∼InsertColumn(2,"Age",50)

end

DeleteColumn

�� aListControl∼DeleteColumn(column) ��

The DeleteColumn method removes a column from a list view control.

Chapter 20. ListControl Class 385

Arguments:
The only argument is:

column
The number of the column to be deleted. The first column
must be deleted last.

Return value:

0 The column was deleted.

−1 You did not specify column.

1 For all other cases.

ModifyColumn

�� aListControl∼ModifyColumn(column , , width
text

�

�)
LEFT

, " CENTER "
RIGHT

��

The ModifyColumn method sets new attributes for a column of a list view
control.

Arguments:
The arguments are:

column
The number of the column. 0 is the first column.

text The text of the column heading. If you omit this argument,
the heading is not changed.

width The width of the column, in pixels.

align The alignment of the column heading and the subitem text
within the column. It can be one of the following values:

CENTER The text is centered.

LEFT The text is left-aligned, which is the default.

RIGHT The text is right-aligned.

Return value:

0 The column was modified.

−1 You did not specify column.

386 OODialog Method Reference

1 For all other cases.

Example:
The following example changes the title, size, and alignment of the
first column in a report list:
::method ChangeColumn

curList = self∼GetListControl(102)
curList∼ModifyColumn(0,"New Title",100,"RIGHT")

ColumnInfo

�� aListControl∼ColumnInfo(column) ��

The ColumnInfo method retrieves the attributes of a column of a list view
control.

Arguments:
The only argument is:

column
The number of the column of which the attributes are to be
retrieved. 0 is the first column.

Return value:
A compound variable that stores the attributes of the item, or –1 if
this method fails. The attributes are:

RetStem.!TEXT
The heading of the column.

RetStem.!COLUMN
The column number.

RetStem.!WIDTH
The width of the column.

RetStem.!ALIGN
The alignment of the column: "LEFT", "RIGHT", or
"CENTER".

Example:
The following example displays the column attributes in an
information box when the column is clicked on:
::method OnColumnClick

use arg id, column
curList = self∼GetListControl(102)
info. = curList∼ColumnInfo(column)
call InfoDialog("Column Title : " info.!Text"d"x,

"Column Number: " info.!Column"d"x,
"Column Width : " info.!Width"d"x,
"Alignment : " info.!Align)

Chapter 20. ListControl Class 387

ColumnWidth

�� aListControl∼ColumnWidth(column) ��

The ColumnWidth method retrieves the width of a column in a report or list
view.

Arguments:
The only argument is:

column
The number of the column of which the width is to be
retrieved. 0 is the first column.

Return value:
The column width, or −1 if you did not specify column, or 0 in all
other cases.

Example:
The following example displays the column width in an information
box when the column is clicked on:
::method OnColumnClick

use arg id, column
curList = self∼GetListControl(102)
call InfoDialog(curList∼ColumnWidth(column))

SetColumnWidth

�� aListControl∼SetColumnWidth(column)
, width

��

The SetColumnWidth method sets the width of a column in a report or list
view.

Arguments:
The arguments are:

column
The number of the column of which the width is to be set. 0 is
the first column.

width The width of the column, in pixels. If you omit this argument,
the column is sized automatically.

Return value:

0 The column width was set.

−1 You did not specify column.

388 OODialog Method Reference

1 For all other cases.

Example:
The following example enlarges the selected column by 10:
::method OnColumnClick

use arg id, column
curList = self∼GetListControl(102)
curList∼SetColumnWidth(column,curList∼ColumnWidth(column)+10)

StringWidth

�� aListControl∼StringWidth(text) ��

The StringWidth method determines the width of a specified string using the
current font of the list view control.

Arguments:
The only argument is:

text The text string of which the width is to be determined.

Return value:
The string width, or −1 if you did not specify a text, or 0 in all other
cases.

Insert

��
0 0

aListControl∼Insert(, ,text,)
item column icon

��

The Insert method inserts a new item in a list view control.

Arguments:
The arguments are:

item The number of the item. If you omit this argument, the
number of the last item is increased by 1.

column
The number of the column. If you omit this argument, 0 is
assumed. This argument only applies to report views.

text The text of the item.

icon The index of the icon of the list view item within the bitmap
file, set with the SetImages or SetSmallImages method (see

Chapter 20. ListControl Class 389

page 405). The SetImages method must be used for the icon
view and the SetSmallImages for the list, report, and
small-icon views.

In a report view, this argument can only be used for the first
column.

If you omit this argument, 0 is assumed.

Return value:
The index of the new item, or −1 in all other cases.

Example:
The following example inserts items in a list:
::method InitReport

curList = self∼GetListControl(102)
if curList \= .Nil then
do

curList∼Insert(,,"First")
curList∼Insert(,,"Second")
curList∼Insert(,,"Third")

end

Modify

��
0 0

aListControl∼Modify(, ,)
item column icon

��

The Modify method sets some or all attributes of a list view item.

Arguments:
The arguments are:

item The number of the item. If you omit this argument, the
selected item is used.

column
The number of the column. If you omit this argument, 0 is
assumed. This argument only applies to report views.

text The new text for the item.

icon The new index for the icon of the list view item within the
bitmap file, set with the SetImages or SetSmallImages method
(see page 405). The SetImages method must be used for the
icon view and the SetSmallImages method for the list, report,
and small-icon views.

In a report view, this argument can only be used for the first
column.

390 OODialog Method Reference

If you omit this argument, 0 is assumed.

Return value:

0 The modification was successful.

1 For all other cases.

Example:
The following example modifies the icon of the item that is
double-clicked:
::method OnActivate

curList = self∼GetListControl(102)
if curList \= .Nil then
do

si = curlist∼Focused
curList∼Modify(si,,,2)

end

SetItemText

��
0

aListControl∼SetItemText(item, ,text)
column

��

The SetItemText method changes the text of a list view item or a column.

Arguments:
The arguments are:

item The number of the item.

column
The number of the column. If you omit this argument, 0 is
assumed. This argument only applies to report views.

text The text of the item or a column.

Return value:

0 The change was successful.

−1 You did not specify column.

1 For all other cases.

Chapter 20. ListControl Class 391

SetItemState

��

&

aListControl∼SetItemState(item)

, " CUT "
NOTCUT
DROP
NOTDROP
FOCUSED
NOTFOCUSED
SELECTED
NOTSELECTED

��

The SetItemState method sets the state of a list view item.

Arguments:
The arguments are:

item The number of the item.

state The state of the item, which can be one or more of the
following values, separated by blanks:

CUT The item is marked for a cut-and-paste
operation.

NOTCUT The item cannot be used for a cut-and-paste
operation.

DROP The item is highlighted as a drag-and-drop
target.

NOTDROP The item is not highlighted as a
drag-and-drop target.

FOCUSED The item has the focus and is therefore
surrounded by the standard focus rectangle.
Only one item can have the focus.

NOTFOCUSED
The item does not have the focus.

SELECTED The item is selected. Its appearance depends
on whether it has the focus and on the system
colors used for a selection.

NOTSELECTED
The item is not selected.

Return value:

0 The state was set successfully.

392 OODialog Method Reference

−1 You did not specify item.

1 For all other cases.

Add

�� &
0

aListControl∼Add(,text,)
, icon

��

The Add method adds a new item to the report view. It can be used to fill a
list view or report view sequentially.

Arguments:
The arguments are:

, The number of commas specifies in which column the text of
the item is to be placed. For example, one comma specifies
that the text of the item is to be placed in the first column.

text The text for the item.

icon The index of the icon of the list view item within the bitmap
file, set with the SetImages or SetSmallImages method (see
page 405). The SetImages method must be used for the icon
view and the SetSmallImages method for the list, report, and
small-icon views.

In a report view, this argument can only be used for the first
column.

If you omit this argument, 0 is assumed.

Example:
The following example adds three columns and two items to a report
list control. To get the following result:

First Name Last Name Age

Mike Miller 30

Sue Thaxtor 29

you must specify the following:
::method InitDialog

InitDlgRet = self∼InitDialog:super

curList = self∼GetListControl("IDC_LIST_REP")
if curList \= .Nil then
do

Chapter 20. ListControl Class 393

curList∼SetSmallImages("E:\oodlist\oodlist.BMP",16,12)
curList∼InsertColumn(0,"First Name",50)
curList∼InsertColumn(1,"Last Name",50)
curList∼InsertColumn(2,"Age",50)
curList∼Add("Mike")
curList∼Add(,"Miller")
curList∼Add(,,"30")
curList∼∼Add("Sue")∼∼Add(,"Thaxton")∼∼Add(,,"29")

end
return InitDlgRet

AddRow

�� &

,

aListControl∼AddRow(,icon, text)
item

��

The AddRow method adds a new item to a list.

Arguments:
The arguments are:

item The number of the item. If you omit this argument, the
number of the last item is increased by 1.

icon The index of the icon of the list view item within the bitmap
file, set with the SetImages or SetSmallImages method (see
page 405). The SetImages method must be used for the icon
view and the SetSmallImages method for the list, report, and
small icon views.

In a report view, this argument can only be used for the first
column.

text Any number of text strings. The first is used for the first
column, the second for the second column, and so on. If you
specify more text entries than there are columns, the extra
entries are ignored.

Return value:
The index of the new item, or −1 in all other cases.

Example:
The following example adds three items to a report list with two
columns:
::method InitList

curList = self∼GetListControl(101)
curList∼AddRow(,,"Mike","Miller")
curList∼AddRow(,,"Sue","Muller")
curList∼AddRow(,,"Chris","Watson")

394 OODialog Method Reference

Delete

�� aListControl∼Delete(item) ��

The Delete method removes an item from a list view control.

Arguments:
The only argument is:

item The number of the item.

Return value:

0 The item was deleted.

−1 You did not specify item.

1 For all other cases.

Example:
The following example deletes the selected item in a list control:
::method DeleteSelectedItem

curList = self∼GetListControl(102)
curList∼Delete(curList∼Selected)

DeleteAll

�� aListControl∼DeleteAll ��

The DeleteAll method removes all items from a list view control.

Return value:

0 The items were deleted.

−1 No item was available.

1 For all other cases.

Items

�� aListControl∼Items ��

The Items method retrieves the number of items in a list view control.

Return value:
The number of items.

Chapter 20. ListControl Class 395

Last

�� aListControl∼Last ��

The Last method retrieves the number of the last item in a list view control.

Return value:
The number of the last item.

Prepare4nItems

�� aListControl∼Prepare4nItems(items) ��

The Prepare4nItems method prepares a list view control for adding a large
number of items.

Arguments:
The only argument is:

items The number of the items to be added later.

Return value:

0 The list view control was prepared.

−1 You did not specify items.

SelectedItems

�� aListControl∼SelectedItems ��

The SelectedItems method determines the number of selected items in a list
view control.

Return value:
The number of selected items.

ItemInfo

��
0

aListControl∼ItemInfo(item,)
column

��

The ItemInfo method retrieves the attributes of a list view item.

396 OODialog Method Reference

Arguments:
The arguments are:

item The number of the item.

column
The number of the column. If you omit this argument, 0 is
assumed.

Return value:
A compound variable that stores the attributes of the item, or −1 in all
other cases. The compound variable can be:

RetStem.!TEXT
The item text.

RetStem.!IMAGE
The index of the icon of the list view item within the bitmap
file, set with the SetImages or SetSmallImages method (see
page 405). The SetImages method must be used for the icon
view and the SetSmallImages method for the list, report, and
small icon views.

In a report view, this argument can only be used for the first
column.

RetStem.!STATE
One or more of the following values:

CUT The item is marked for a cut-and-paste operation.

DROPPED
The item is highlighted as a drag-and-drop target.

FOCUSED
The item has the focus and is therefore surrounded by
the standard focus rectangle. Only one item can have
the focus.

SELECTED
The item is selected. Its appearance depends on
whether it has the focus and on the system colors
used for a selection.

Example:
The following example displays the item text, icon index, and the item
state in a message box:
::method DisplayItemInfo

curList = self∼GetListControl(104)
itemInfo. = curList∼ItemInfo(curList∼Selected)
call InfoDialog("Item Text : " itemInfo.!Text"d"x,

"Image Index : " itemInfo.!Image"d"x,
"Item State : " itemInfo.!State)

Chapter 20. ListControl Class 397

ItemText

��
0

aListControl∼ItemText(item,)
column

��

The ItemText method retrieves the text of a list view item or a column.

Arguments:
The arguments are:

item The number of the item.

column
The number of the column. If you omit this argument, 0 is
assumed.

Return value:
The item or column text, or −1 if you did not specify item.

ItemState

�� aListControl∼ItemState(item) ��

The ItemState method retrieves the state of a list view item.

Arguments:
The only argument is:

item The number of the item.

Return value:
The state of the item, which can be one or more of the following
values:

CUT The item can be used in a cut-and-paste operation.

DROPPED The item is highlighted as a drag-and-drop target.

FOCUSED The item has the focus and is therefore surrounded by
the standard focus rectangle. Only one item can have
the focus.

SELECTED The item is selected. Its appearance depends on
whether it has the focus and on the system colors
used for a selection.

Select

398 OODialog Method Reference

�� aListControl∼Select(item) ��

The Select method selects an item.

Arguments:
The only argument is:

item The number of the item.

Return value:

0 The item was selected.

−1 You did not specify item.

1 For all other cases.

Deselect

�� aListControl∼Deselect(item) ��

The Deselect method deselects an item.

Arguments:
The only argument is:

item The number of the item.

Return value:

0 The item was selected.

−1 You did not specify item.

1 For all other cases.

Selected

�� aListControl∼Selected ��

The Selected method returns the number of the selected item.

Return value:
The number of the item selected last, or −1 in all other cases.

LastSelected

�� aListControl∼LastSelected ��

Chapter 20. ListControl Class 399

The LastSelected method returns the number of the item selected last.

Return value:
The number of the item selected last, or −1 in all other cases.

Focused

�� aListControl∼Focused ��

The Focused method retrieves the number of the item that has currently the
focus.

Return value:
The number of the item with the focus, or −1 in all other cases.

Focus

�� aListControl∼Focus(item) ��

The Focus method assigns the focus to the specified item, which is then
surrounded by the standard focus rectangle. Although more than one item can
be selected, only one item can have the focus.

Arguments:
The only argument is:

item The number of the item to receive the focus.

Return value:

0 The specified item received the focus.

−1 You did not specify item.

1 For all other cases.

DropHighlighted

�� aListControl∼DropHighlighted ��

The DropHighlighted method retrieves the item that is highlighted as a
drag-and-drop target.

Return value:
The number of the selected item, or −1 in all other cases.

400 OODialog Method Reference

FirstVisible

�� aListControl∼FirstVisible ��

The FirstVisible method retrieves the number of the first item visible in a list
or report view.

Return value:
The number of the first item visible, or 0 if the list view control is in
icon or small-icon view.

NextSelected

�� aListControl∼NextSelected(item) ��

The NextSelected method retrieves the selected item that follows, or is to the
right of, item.

Arguments:
The only argument is:

item The number of the item at which the search is to start. The
specified item itself is excluded from the search.

Return value:
The number of the selected item, or −1 in all other cases.

PreviousSelected

�� aListControl∼PreviousSelected(item) ��

The PreviousSelected method retrieves the selected item that precedes, or is to
the left of, item.

Arguments:
The only argument is:

item The number of the item at which the search is to start. The
specified item itself is excluded from the search.

Return value:
The number of the selected item, or −1 in all other cases.

Chapter 20. ListControl Class 401

Next

�� aListControl∼Next(item) ��

The Next method retrieves the item that follows, or is to the right of, item.

Arguments:
The only argument is:

item The number of the item at which the search is to start.

Return value:
The number of the following item, or −1 in all other cases.

Previous

�� aListControl∼Previous(item) ��

The Previous method retrieves the item that precedes, or is to the left of, item.

Arguments:
The only argument is:

item The number of the item at which the search is to start.

Return value:
The number of the previous item, or −1 in all other cases.

NextLeft

�� aListControl∼NextLeft(item) ��

The NextLeft method retrieves the item left to item.

Arguments:
The only argument is:

item The number of the item at which the search is to start. The
specified item itself is excluded from the search.

Return value:
The number of the next item to the left, or −1 in all other cases.

NextRight

�� aListControl∼NextRight(item) ��

402 OODialog Method Reference

The NextRight method retrieves the item right to item.

Arguments:
The only argument is:

item The number of the item at which the search is to start. The
specified item itself is excluded from the search.

Return value:
The number of the next item to the right, or −1 in all other cases.

SmallSpacing

�� aListControl∼SmallSpacing ��

The SmallSpacing method determines the spacing between items in a
small-icon list view control.

Return value:
The amount of spacing between the items.

Spacing

�� aListControl∼Spacing ��

The Spacing method determines the spacing between items in an icon list view
control.

Return value:
The amount of spacing between the items.

RedrawItems

�� aListControl∼RedrawItems
(first)

, last

��

The RedrawItems method forces a list view control to redraw a range of items.

Arguments:
The arguments are:

first The number of the first item to be redrawn. The default is 0.

last The number of the last item to be redrawn. The default is 0.

Return value:

0 The specified range of items was redrawn.

Chapter 20. ListControl Class 403

1 For all other cases.

UpdateItem

�� aListControl∼UpdateItem(item) ��

The UpdateItem method updates a list view item.

Arguments:
The only argument is:

item The number of the item to be updated.

Return value:

0 The item was updated.

−1 You did not specify item.

1 For all other cases.

Update

�� aListControl∼Update ��

The Update method updates a list view control.

Return value:
0.

EnsureVisible

��
0

aListControl∼EnsureVisible(item,)
1

��

The EnsureVisible method ensures that a list view item is entirely or partially
visible by scrolling the list view control, if necessary.

Arguments:
The arguments are:

item The number of the item visible.

partial Specifies whether the item must be entirely visible:

1 The list view control is not scrolled if the item is at
least partially visible.

404 OODialog Method Reference

0 The list view control is scrolled if the item is only
partially visible. This is the default.

Return value:

0 The item is visible.

−1 You did not specify item.

1 For all other cases.

SetSmallImages

�� aListControl∼SetSmallImages(bitmap)
,

width , height

��

The SetSmallImages method assigns an image list to a small-icon list view
control.

Arguments:
The arguments are:

bitmap
The name of, or handle to, a bitmap file that has already been
loaded using the LoadBitmap method.

width The width of each image, in pixels. If you do not specify this
argument or specify 0, the width of the image in the image
file is used.

height The height of each image, in pixels. If you do not specify this
argument or specify 0, the height of the image in the image
file is used.

Return value:
The handle to the image list, or −1 if you did not specify bitmap, or 0
in all other cases.

Example:
The following example connects a bitmap file with a small-icon list:
::method InitSmallIconList

curList = self∼GetListControl(104)
curList∼SetSmallImages("oodlist.BMP",16,12)

SetImages

�� aListControl∼SetImages(bitmap)
,

width , height

��

Chapter 20. ListControl Class 405

The SetImages method assigns an image list to an icon list view control.

Arguments:
The arguments are:

bitmap
The name of, or handle to, a bitmap file that has already been
loaded using the LoadBitmap method.

width The width of each image, in pixels. If you do not specify this
argument or specify 0, the width of the image in the image
file is used.

height The height of each image, in pixels. If you do not specify this
argument or specify 0, the height of the image in the image
file is used.

Return value:
The handle to the image list, or −1 if you did not specify bitmap, or 0
in all other cases.

Example:
The following example connects a bitmap file with an icon list:
::method InitIconList

curList = self∼GetListControl(104)
curList∼SetImages("oodlist.BMP",16,12)

RemoveSmallImages

�� aListControl∼RemoveSmallImages ��

The RemoveSmallImages method erases an image list of a small-icon list view
control.

Return value:

0 The image list was erased.

1 For all other cases.

RemoveImages

�� aListControl∼RemoveImages ��

The RemoveImages method erases an image list of an icon list view control.

Return value:

0 The image list was erased.

406 OODialog Method Reference

1 For all other cases.

Find

��
-1 0

aListControl∼Find(text, ,)
item 1

��

The Find method searches for a list view item containing text. The text of this
item must exactly match text.

Arguments:
The arguments are:

text The text of the item to be searched for.

item Specify the number of the item at which the search is to be
started. Specify −1 or omit this argument to start the search at
the beginning.

wrap Specify 1 if the search is to be continued at the beginning if no
match is found. Specify 0 or omit this argument if the search
is to stop at the end of the list.

Return value:
The number of the item, or −1 in all other cases.

FindPartial

��
-1 0

aListControl∼FindPartial(text, ,)
item 1

��

The FindPartial method searches for a list view item containing text. An item
matches if its text begins with text.

Arguments:
The arguments are:

text The text of the item to be searched for.

item Specify the number of the item at which the search is to be
started. Specify −1 or omit this argument to start the search at
the beginning.

wrap Specify 1 if the search is to be continued at the beginning if no
match is found. Specify 0 or omit this argument if the search
is to stop at the end of the list.

Chapter 20. ListControl Class 407

Return value:
The number of the item, or −1 in all other cases.

FindNearestXY

�� aListControl∼FindNearestXY(x,y)
DOWN

, " UP "
LEFT
RIGHT

��

The FindNearestXY method searches, in the specified direction, for the item
nearest to the specified position.

Arguments:
The arguments are:

x The x-coordinate of the position at which the search is to be
started.

y The y-coordinate of the position at which the search is to be
started.

direction
The direction in which the search should proceed.

Return value:
The index of the item, or −1 in all other cases.

Arrange

�� aListControl∼Arrange ��

The Arrange method aligns items according to the current alignment style of
the list view control.

Return value:

0 The items were aligned.

1 For all other cases.

SnapToGrid

�� aListControl∼SnapToGrid ��

The SnapToGrid method snaps all icons to the nearest grid position.

408 OODialog Method Reference

Return value:

0 The items were snapped.

1 For all other cases.

AlignLeft

�� aListControl∼AlignLeft ��

The AlignLeft method aligns items along the left window border.

Return value:

0 The items were aligned.

1 For all other cases.

AlignTop

�� aListControl∼AlignTop ��

The AlignTop method aligns items along the upper window border.

Return value:

0 The items were aligned.

1 For all other cases.

ItemPos

�� aListControl∼ItemPos(item) ��

The ItemPos method retrieves the position of the upper left corner of the item.

Arguments:
The only argument is:

item The number of the item.

Return value:
The x- and y-coordinates of the upper left corner of the item, or −1 if
you did not specify item, or 0 in all other cases.

Note: Use “DefListDragHandler” on page 321 to support default dragging:
self∼ConnectListNotify(104,"BEGINDRAG","DefListDragHandler")

Chapter 20. ListControl Class 409

SetItemPos

��
0 0

aListControl∼SetItemPos(item, ,)
x y

��

The SetItemPos method moves an item to a specified position in a list view
control, which must be in icon or small-icon view.

Arguments:
The arguments are:

item The number of the item.

x The x-coordinate of the new position of the upper left corner
of the item, in view coordinates. The default is 0.

y The y-coordinate of the new position of the upper left corner
of the item, in view coordinates. The default is 0.

Return value:

0 The item was moved.

−1 You did not specify item.

1 For all other cases.

Note: Use “DefListDragHandler” on page 321 to support default dragging:
self∼ConnectListNotify(104,"BEGINDRAG","DefListDragHandler")

Edit

�� aListControl∼Edit(item) ��

The Edit method begins editing of the text of the specified list view item.

Arguments:
The only argument is:

item The number of the item.

Return value:
The handle of the edit control used to edit the item text, or 0 in all
other cases.

410 OODialog Method Reference

EndEdit

�� aListControl∼EndEdit ��

The EndEdit method cancels editing of the list view item that is being edited.

SubclassEdit

�� aListControl∼SubclassEdit ��

The SubclassEdit method is used by the DefListEditHandler to correct an
operating system problem if the Esc or Enter key was pressed in an active edit
control.

RestoreEditClass

�� aListControl∼RestoreEditClass ��

The RestoreEditClass method is used by the DefListEditHandler to correct an
operating system problem if the Esc or Enter key was pressed in an active edit
item.

ItemsPerPage

�� aListControl∼ItemsPerPage ��

The ItemsPerPage method calculates the number of items that vertically fit the
visible area of a list view control that is in list or report view. Only fully
visible items are counted.

Return value:
The number of fully visible items. If the current view is an icon or
small-icon view, the return value is the total number of items in the
list view control.

Scroll

��
0 0

aListControl∼Scroll(,)
x y

��

The Scroll method scrolls the content of a list view control.

Chapter 20. ListControl Class 411

Arguments:
The arguments are:

x An integer value specifying the amount of horizontal
scrolling. If the control is in icon, small-icon, or report view,
this value specifies the number of pixels to be scrolled. If it is
in list view, this value specifies the number of columns to be
scrolled. The default value is 0.

y An integer value specifying the amount of vertical scrolling. If
the control is in icon, small-icon, or report view, this value
specifies the number of pixels to be scrolled. If it is in list
view, this value specifies the number of lines to be scrolled.
The default value is 0.

Return value:

0 Scrolling was successful.

1 Scrolling failed.

BkColor

�� aListControl∼BkColor ��

The BkColor method retrieves the background color for a list view control.

Return value:
The color-palette index specifier (0 to 18). For more information on
color palettes, refer to “Chapter 7. Definition of Terms” on page 87.

BkColor=

�� aListControl∼BkColor=(color) ��

The BkColor= method sets the background color of a list view control.

Arguments:
The only argument is:

color The new background color. Specify the color-palette index
specifier (0 to 18). For more information on color palettes,
refer to “Chapter 7. Definition of Terms” on page 87.

Example:
The following example sets the background color of a list control to
yellow:

412 OODialog Method Reference

::method Yellow
curList = self∼GetListControl(104)
curList∼BkColor = 15
curList∼Update

TextColor

�� aListControl∼TextColor ��

The TextColor method retrieves the text color of a list view control.

Return value:
The color-palette index specifier (0 to 18). For more information on
color palettes, refer to “Chapter 7. Definition of Terms” on page 87.

TextColor=

�� aListControl∼TextColor=(color) ��

The TextColor= method sets the text color of a list view control.

Arguments:
The only argument is:

color The new text color. Specify the color-palette index specifier (0
to 18). For more information on color palettes, refer to
“Chapter 7. Definition of Terms” on page 87.

Example:
The following example sets the text color of a list control to light blue:
::method LightBlue

curList = self∼GetListControl(104)
curList∼BkColor = 9
curList∼Update

TextBkColor

�� aListControl∼TextBkColor ��

The TextBkColor method retrieves the background color of the text in a list
view control.

Return value:
The color-palette index specifier (0 to 18). For more information on
color palettes, refer to “Chapter 7. Definition of Terms” on page 87.

Chapter 20. ListControl Class 413

TextBkColor=

�� aListControl∼TextBkColor=(color) ��

The TextBkColor= method sets the background color for the text in a list view
control.

Arguments:
The only argument is:

color The new background color for text. Specify the color-palette
index specifier (0 to 18). For more information on color
palettes, refer to “Chapter 7. Definition of Terms” on page 87.

Notification Messages

The list view control sends notification messages to notify about events. For
more information on notification messages, refer to “ConnectListNotify” on
page 318.

The following example shows how to connect the list view notification
messages with the corresponding message:
::method Init

use arg InitStem.
if Arg(1,"o") = 1 then

InitRet = self∼Init:super
else

InitRet = self∼Init:super(InitStem.)

if self∼Load("list.rc",) \= 0 then do
self∼InitCode = 1
return

end

/* Connect dialog control items to class methods */
self∼ConnectListNotify("IDC_LIST","Changing","OnChanging_IDC_LIST")
self∼ConnectListNotify("IDC_LIST","Changed","OnChanged_IDC_LIST")
self∼ConnectListNotify("IDC_LIST","DefaultEdit")
self∼ConnectListNotify("IDC_LIST","Delete","OnDelete_IDC_LIST")
self∼ConnectListNotify("IDC_LIST","KeyDown","OnKeyDown_IDC_LIST")
self∼ConnectButton("IDC_PB_NEW","IDC_PB_NEW")
self∼ConnectButton("IDC_PB_DELETE","IDC_PB_DELETE")
self∼ConnectButton(2,"Cancel")
self∼ConnectButton(9,"Help")
self∼ConnectButton(1,"OK")
return InitRet

414 OODialog Method Reference

Chapter 21. ButtonControl Class

The ButtonControl class provides methods to query and modify push button
controls. It inherits all methods of the DialogControl class (see page 181).

Use the GetButtonControl method (see page 340) to retrieve an object of the
ButtonControl class.

Requires:
The ButtonControl class requires the class definition file oodwin32.cls:
::requires oodwin32.cls

Methods:
Instances of the ButtonControl class implement the methods listed in
Table 9.

Table 9. ButtonControl Instance Methods

Method... ...on page

ChangeBitmap 419

DimBitmap 425

DisplaceBitmap 420

DrawBitmap 424

GetBitmapSizeX 423

GetBitmapSizeY 423

GetBmpDisplacement 421

Scroll 421

ScrollBitmapFromTo 425

ScrollText 422

State 416

State= 416

Style= 417

© Copyright IBM Corp. 1997, 2001 415

State

�� aButtonControl∼State ��

The State method retrieves the current state of the associated button control.

Return value:
A text string that can contain one or more of the following keywords,
separated by blanks:

"CHECKED"
The radio button is selected or the check box is checked.

"UNCHECKED"
The radio button is not selected or the check box is
unchecked.

"INDETERMINATE"
The Auto-3–State button is neither checked nor unchecked,
but grayed.

"PUSHED"
The cursor is positioned on the button and the left mouse
button is pressed and held.

"FOCUS"
The button has the keyboard focus.

Example:
button = MyDialog∼GetButtonControl("IDOK")
if button == .Nil then return
say button∼State

The result could be "UNCHECKED FOCUS".

State=

�� &aButtonControl∼State=" CHECKED "
UNCHECKED
INDETERMINATE
PUSHED
FOCUS

��

The State= method sets the state for the associated button control.

416 OODialog Method Reference

Arguments:
The only argument is:

new_State
A text string that contains one or more of the following
keywords, separated by a blank:

CHECKED
The radio button is to be selected or the check box is
to be checked.

UNCHECKED
The radio button is not to be selected or the check box
is to be unchecked.

INDETERMINATE
The Auto-3–State button is to be set to the grayed
state.

PUSHED
The button is to be set to the "pushed" state.

FOCUS
The button is to be set to the "focused" state.

Example:
button = MyDialog∼GetButtonControl("IDOK")
if button == .Nil then return
button∼State="FOCUS PUSHED"

Style=

�� aButtonControl∼Style=" DEFPUSHBUTTON "
CHECKBOX
AUTOCHECKBOX
RADIOBUTTON
AUTORADIOBUTTON
3STATE
AUTO3STATE
GROUPBOX
OWNERDRAW

��

The Style= method changes the style of the associated button control.

Arguments:
The only argument is:

new_Style
A text string that contains one of the following keywords:

Chapter 21. ButtonControl Class 417

DEFPUSHBUTTON
A default push button that is pushed when the Enter
key is pressed.

CHECKBOX
A check box the state of which has to be maintained
by the program.

AUTOCHECKBOX
A check box the check state of which toggles between
checked and unchecked each time the user selects the
check box.

RADIOBUTTON
A radio button the state of which has to be
maintained by the program.

AUTORADIOBUTTON
A radio button that sets the check state of the button
to checked and the check state for all other buttons in
the same group to unchecked each time the user
selects this radio button.

3STATE
A button that is equal to a check box except that the
check box can be grayed as well as checked or
unchecked.

AUTO3STATE
A button that is equal to a three-state check box
except that the check box changes its state when the
user selects it. The state cycles through checked,
grayed, and unchecked.

GROUPBOX
A rectangle in which other controls can be grouped. A
label is displayed in the upper left corner of the
rectangle.

OWNERDRAW
An owner-drawn button that can be used to display a
bitmap or graphics. If none of the previous values is
specified, the push-button style is set for the
associated button control.

Example:
The following example makes the OK button the default button:
button = MyDialog∼GetButtonControl("IDOK")
if button == .Nil then return
button∼Style="DEFPUSHBUTTON"

418 OODialog Method Reference

ChangeBitmap

�� aButtonControl∼ChangeBitmap(bmpNormal, ,
bmpFocused

�

� ,)
bmpSelected bmpDisabled , FRAME

USEPAL
INMEMORY
STRETCH

��

The ChangeBitmap method changes the bitmap of a bitmap button.

Arguments:
The arguments are:

bmpNormal
The (alphanumeric) name, (numeric) resource ID, or handle of
a bitmap that is displayed when the button is neither selected,
nor focused, nor disabled. If you specify the bitmap handle,
the INMEMORY option must be specified.

This option is used if none of the other arguments is specified.

bmpFocused
The (alphanumeric) name, (numeric) resource ID, or handle of
a bitmap that is displayed when the button is focused. The
focused button is activated when the Enter key is pressed. If
you specify the bitmap handle, the INMEMORY option must
be specified.

bmpSelected
The (alphanumeric) name, (numeric) resource ID, or handle of
a bitmap that is displayed when the button is clicked and
held. If you specify the bitmap handle, the INMEMORY
option must be specified.

bmpDisabled
The (alphanumeric) name, (numeric) resource ID, or handle of
a bitmap that is displayed when the button is disabled. If you
specify the bitmap handle, the INMEMORY option must be
specified.

styleOptions
The last argument can be one of the following:

FRAME
Draws a frame around the button. When you use this

Chapter 21. ButtonControl Class 419

option, the bitmap button behaves like a normal
Windows button except that a bitmap is shown
instead of text.

USEPAL
Takes the colors of the bitmap file and stores them as
the system color palette. This option is needed when
the bitmap was created with a palette other than the
default Windows color palette. Use it for one button
only because only one color palette can be active at a
time.

This option is not valid for a bitmap loaded from a
dynamic-link library.

INMEMORY
This option must be used if the named bitmaps are
already loaded into memory by using the LoadBitmap
method (see page 208). In this case, you must specify
a bitmap handle instead of a file name or ID.

STRETCH
If this option is specified and the extent of the bitmap
is smaller than the extent of the button rectangle, the
bitmap is adapted to match the extent of the button.
This option has no effect on bitmaps loaded from a
dynamic-link library.

Example:
button = MyDialog∼GetButtonControl("IDOK")
if button == .Nil then return
button∼ChangeBitmap("AddBut_n.bmp", "AddBut_f.bmp", "AddBut_s.bmp",,
"AddBut_d.bmp", "FRAME")

See also “ConnectBitmapButton” on page 112.

DisplaceBitmap

�� aButtonControl∼DisplaceBitmap(x,y) ��

The DisplaceBitmap method sets the position of a bitmap within a bitmap
button.

Arguments:
The arguments are:

x The horizontal displacement, in screen pixels. A negative
value can also be used.

420 OODialog Method Reference

y The vertical displacement, in screen pixels. A negative value
can also be used.

Example:
The following example moves the bitmap within the associated
bitmap button 4 screen pixels to the right and 3 pixels upward:
button = MyDialog∼GetButtonControl("IDOK")
if button == .Nil then return
parse value button∼GetBmpDisplacement with dx dy
button∼DisplacementBitmap(244, dx+4, dy-3)

GetBmpDisplacement

�� aButtonControl∼GetBmpDisplacement ��

The GetBmpDisplacement method retrieves the position of a bitmap within a
bitmap button.

Return value:
The horizontal and vertical positions of the bitmap, in screen pixels
and separated by a blank.

Example:
See “DisplaceBitmap” on page 420.

Scroll

�� aButtonControl∼Scroll(xPos,yPos,left,top,right,bottom) ��

The Scroll method moves the rectangle within the associated button and
redraws the uncovered area with the button background color. It is used to
move bitmaps within bitmap buttons.

Arguments:
The arguments are:

xPos, yPos
The new position of the rectangle, in screen pixels.

left, top, right, bottom
The upper left and lower right corner of the rectangle to be
moved.

Chapter 21. ButtonControl Class 421

ScrollText

��
10

aButtonControl∼ScrollText(text, , ,
fontName fontSize

�

�

&

0 4 10 0
, , , ,)

displaceY step sleep color

" THIN "
EXTRALIGHT
LIGHT
MEDIUM
SEMIBOLD
EXTRABOLD
BOLD
HEAVY
UNDERLINE
ITALIC
STRIKEOUT

��

The ScrollText method scrolls text in the associated button with the given font,
size, and color. The text is scrolled from right to left. If the method is started
concurrently, call it a second time to stop scrolling. The associated button
must have the OWNERDRAWN style.

Arguments:
The arguments are:

text A text string that is displayed and scrolled.

fontName
The name of the font used to write the text. If omitted, the
system font is used.

fontSize
The size of the font used to write the text. If omitted, the
standard size (10) is used.

fontStyle
This argument can be one or more of the keywords listed in
the syntax diagram. If you use more than one keyword, put
them in one string, separated by blanks.

displaceY
The vertical displacement of the text relative to the top of the
client area of the window. The default is 0.

step The amount of screen pixels that the text is moved in each
cycle. The default is 4.

422 OODialog Method Reference

sleep The time, in milliseconds, that the program waits after each
movement to determine the scrolling speed. The default is 10.

color The color index used for the text. The default is 0, which is
black.

Example:
The following example scrolls the string ″Hello world!″ from left to
right within the associated button. The text is located 2 pixels below
the top of the client area, one move is 3 screen pixels, and the delay
time after each movement is 15 ms.
button = MyDialog∼GetButtonControl("IFOK")
if button == .Nil then return
button∼ScrollText("Hello world!", "Arial", 36, "BOLD ITALIC", 2, 3, 15, 4)

GetBitmapSizeX

�� aButtonControl∼GetBitmapSizeX ��

The GetBitmapSizeX method retrieves the width of the bitmap that is set for
the associated button.

Return value:
The width of the bitmap, in screen pixels.

GetBitmapSizeY

�� aButtonControl∼GetBitmapSizeY ��

The GetBitmapSizeY method retrieves the height of the bitmap that is set for
the associated button.

Return value:
The height of the bitmap, in screen pixels.

Chapter 21. ButtonControl Class 423

DrawBitmap

��
0 0 0

aButtonControl∼DrawBitmap(, , ,
tarx tary srcx

�

�
0 0 0

, ,)
srcy width height

��

The DrawBitmap method draws the bitmap of the associated bitmap button.
You can also use this method to move a bitmap or part of it.

Contrary to the method “DisplaceBitmap” on page 420, which sets a
permanent position for the bitmap, DrawBitmap immediately draws the
bitmap, or part of it, at the specified position. If the button must be refreshed,
the bitmap is drawn at the position set with DisplaceBitmap. DrawBitmap is
used by ScrollBitmapFromTo, for example.

Arguments:
The arguments are:

tarx,tary
The position relative to the client area of the button where the
bitmap is to be displayed. The default is 0,0.

srcx,srcy
The offsets that specify the first pixel in the bitmap to be
displayed. If you omit these arguments, the pixel at position
0,0 is the first pixel displayed.

width,height
The width and height of the bitmap. If you omit these
arguments or specify 0, the entire bitmap is displayed at the
specified position. You can use these arguments to display
only parts of the bitmap.

Return value:
0 if the bitmap could be drawn.

Note: You can use the DrawBitmap method to animate a bitmap by providing
a bitmap that contains several images and use the offset and extension
arguments to display a single image of the bitmap.

424 OODialog Method Reference

DimBitmap

�� aButtonControl∼DimBitmap(bmpHandle , width , height , �

�
2 2 10

, ,)
stepx stepy steps

��

The DimBitmap method draws a bitmap step by step.

Arguments:
The arguments are:

bmpHandle
A handle to the bitmap loaded with “LoadBitmap” on
page 208.

width, height
The extensions of the bitmap.

stepx, stepy
The number of incremental pixels displayed at each step. The
default is 2,2.

steps The number of iterations used to display the bitmap. The
default is 10.

Return value:
This method does not return a value.

ScrollBitmapFromTo

�� aButtonControl∼ScrollBitmapFromTo(fromX , fromY , toX , toY , �

� stepx , stepy , delay , displace) ��

The ScrollBitmapFromTo method scrolls the bitmap within the associated
bitmap button from one position to another.

For an explanation of the arguments, refer to “ScrollBitmapFromTo” on
page 164.

Chapter 21. ButtonControl Class 425

426 OODialog Method Reference

Chapter 22. RadioButton Class

The RadioButton class provides methods to query and modify radio button
controls. It inherits all methods of the ButtonControl and DialogControl
classes (see pages 415 and 181).

Use the GetRadioControl (see page 341) to retrieve an object of the
RadioButton class.

Requires:
The RadioButton class requires the class definition file oodwin32.cls:
::requires oodwin32.cls

Methods:
Instances of the RadioControl class implement the methods listed in
Table 10.

Table 10. RadioButton Instance Methods

Method... ...on page

Check 428

Indeterminate 428

IsChecked 427

Uncheck 428

IsChecked

�� aRadioButton∼IsChecked ��

The IsChecked method retrieves the current state of the associated button
control.

Return value:
One of the following values:

"CHECKED"
The radio button is selected or the check box is checked.

"UNCHECKED"
The radio button is not selected or the check box is
unchecked.

© Copyright IBM Corp. 1997, 2001 427

"INDETERMINATE"
The Auto–3–State button is grayed to indicate an
indeterminate state.

"UNKNOWN"
No information on the current state available.

Check

�� aRadioButton∼Check ��

The Check method marks the associated button control as checked.

Uncheck

�� aRadioButton∼Uncheck ��

The Uncheck method deletes the check mark of the button control.

Indeterminate

�� aRadioButton∼Indeterminate ��

The Indeterminate method grays the check box of an Auto–3–State button to
indicate an indeterminate state.

428 OODialog Method Reference

Chapter 23. CheckBox Class

The CheckBox class provides methods to query and modify check box controls.
It inherits all methods of:
v The RadioButton class (see page 427)
v The ButtonControl class (see page 415)
v The DialogControl class (see page 181)

The CheckBox class requires the class definition file oodwin32.cls:
::requires oodwin32.cls

Use the GetCheckControl method (see page 342) to retrieve an object of the
CheckBox class.

© Copyright IBM Corp. 1997, 2001 429

430 OODialog Method Reference

Chapter 24. ListBox Class

The ListBox class provides methods to query and modify list box controls. It
inherits all methods of the DialogControl class (see page 181).

Use the GetListControl method (see page 346) to retrieve an object of the
ListBox class.

Requires:
The ListBox class requires the class definition file oodwin32.cls:
::requires oodwin32.cls

Methods:
Instances of the ListBox class implement the methods listed in
Table 11.

Table 11. ListBox Instance Methods

Method... ...on page

Add 432

AddDirectory 441

ColumnWidth 388

Delete 433

DeleteAll 433

DeSelectIndex 435

DeselectRange 437

Find 433

GetFirstVisible 439

GetText 439

Insert 432

ItemHeight 442

ItemHeight= 443

Items 437

MakeFirstVisible 438

Modify 439

Select 435

Selected 434

SelectedIndex 434

© Copyright IBM Corp. 1997, 2001 431

Table 11. ListBox Instance Methods (continued)

Method... ...on page

SelectedIndexes 438

SelectedItems 438

SelectIndex 435

SelectRange 436

SetTabulators 440

SetWidth 442

Width 442

Add

�� aListBox∼Add(listEntry) ��

The Add method adds a new item to the list. If the list is not sorted, the new
item is added to the end of the list.

Arguments:
The only argument is:

listEntry
A text string added to the list.

Return value:
A one-based index that specifies the position at which the entry has
been added, or 0 or a value less than 0 to indicate an error.

Insert

�� aListBox∼Insert(,listEntry)
index

��

The Insert method inserts a new item into the list after the specified item.

Arguments:
The arguments are:

index The index (starting with 1) of the list item after which the new
item is to be added. If this argument is omitted, the list entry
is added after the currently selected item.

432 OODialog Method Reference

listEntry
A text string added to the list.

Return value:
A one-based index that specifies the position at which the entry has
been added, or 0 or a value less than 0 to indicate an error.

Delete

�� aListBox∼Delete()
index

��

The Delete method removes a list item from the associated list box.

Arguments:
The only argument is:

index The index (starting with 1) of the list item to be removed from
the list. If this argument is omitted, the currently selected item
is deleted.

Return value:
The number of remaining list items, or 0 to indicate an error.

DeleteAll

�� aListBox∼DeleteAll ��

The DeleteAll method removes all list items from the associated list box.

Find

�� aListBox∼Find(TextorPrefix)
,

startIndex , exact

��

The Find method searches the list box for a list entry containing the specified
text or prefix. The search is caseless.

Arguments:
The arguments are:

Chapter 24. ListBox Class 433

TextorPrefix
The text or prefix for which the list is searched.

startIndex
The first list item at which the search is to be started. When
the search reaches the bottom of the list, it is continued
backward. If you omit this argument or specify 0, the entire
list is searched.

exact If you specify 1 or E, the text of the list item must exactly
match the text specified for TextorPrefix. If you omit this
argument or specify 0, the list entries are searched for a prefix
that matches TextorPrefix.

Return value:
The one-based index of the list entry that matches the search text, or 0
if not found.

SelectedIndex

�� aListBox∼SelectedIndex ��

The SelectedIndex method retrieves the index of the currently selected list
entry. This entry is highlighted and surrounded by a dotted border. To get the
selected items for a multiple selection listbox, use GetMultiList; see
“GetMultiList” on page 128.

Return value:
The one-based index of the currently selected list entry, or 0 if none is
selected.

Selected

�� aListBox∼Selected ��

The Selected method retrieves the text of the currently selected list entry.

Return value:
The text of the currently selected list entry, or an empty string if none
is selected.

434 OODialog Method Reference

SelectIndex

�� aListBox∼SelectIndex(index) ��

The SelectIndex method selects the list entry at the specified position. The
currently selected list item is highlighted and surrounded by a dotted border.
To select multiple items of a multiple selection listbox, use SetMultiList; see
“SetMultiList” on page 128.

Arguments:
The only argument is:

index The index (starting with 1) of the list item to be selected. If
you specify 0 for this argument, the list box must not contain
any selection.

Return value:
0 if an error occurred or you specified 0 for index to remove the
selection.

DeSelectIndex

�� aListBox∼DeSelectIndex()
index

��

The DeSelectIndex method deselects the list entry at the specified position for
multiple selection listboxes. The currently selected list item is highlighted and
surrounded by a dotted border.

Arguments:
The only argument is:

index The index (starting with 1) of the list item to be deselected. If
you specify no index or 0 for this argument, all items are
deselected.

Return value:
−1 if an error occurred.

Select

�� aListBox∼Select(ItemText) ��

Chapter 24. ListBox Class 435

The Select method selects the list entry that matches the specified text.

Arguments:
The only argument is:

ItemText
The text that the list box is searched for.

Return value:
0 if an error occurred or a matching list entry was not found.

SelectRange

�� aListBox∼SelectRange()
startIndex

, endIndex

��

The SelectRange method selects one or more consecutive items of the
associated multiselection list box.

Arguments:
The arguments are:

startIndex
The position of the first list item to be selected. If this
argument is omitted, the selection range starts with the first
item in the list.

endIndex
The position of the last list item to be selected. If this
argument is omitted, the selection range ends with the last
item in the list.

If startIndex is equal to endIndex, a single item of the list is selected.

Return value:
−1 if an error occurred. This can happen, for example, if the list box is
no multiselection list box.

Example:
The following example selects the items 5 through 9:
lb = self∼GetListBox("Offers")
if lb == .Nil then return
lb∼SelectRange(5,9)

436 OODialog Method Reference

DeselectRange

�� aListBox∼DeselectRange()
startIndex

, endIndex

��

The DeselectRange method removes the selection for one or more consecutive
items of the associated multiselection list box.

Arguments:
The arguments are:

startIndex
The position of the first list item to be deselected. If this
argument is omitted, the deselection range starts with the first
item in the list.

endIndex
The position of the last list item to be deselected. If this
argument is omitted, the deselection range ends with the last
item in the list.

If startIndex is equal to endIndex, a single item of the list is deselected.

Return value:
−1 if an error occurred. This can happen, for example, if the list box is
no multiselection list box.

Example:
The following example deselects the items 1 through 5:
lb = self∼GetListBox("Offers")
if lb == .Nil then return
lb∼DeselectRange(,6)

Items

�� aListBox∼Items ��

The Items method retrieves the number of items in the list box.

Return value:
The number of items in the list box.

Chapter 24. ListBox Class 437

SelectedItems

�� aListBox∼SelectedItems ��

The SelectedItems method retrieves the number of items that are currently
selected in the associated multiselection list box.

Return value:
The number of selected items, or −1 if this method fails, for example
if the list box is no multiselection list box.

Example:
For an example, refer to “SelectedIndexes”.

SelectedIndexes

�� aListBox∼SelectedIndexes ��

The SelectedIndexes method retrieves the indexes of all items that are currently
selected in the associated multiselection list box.

Return value:
A text string containing the indexes of the selected items in the list,
separated by blanks.

Example:
The following example lists all items selected in the associated
multiselection list box:
lb = self∼GetListBox("Offers")
if lb == .Nil then return
sit = lb∼SelectedItems
if sit > 0 then do

say "You ordered:"
sndx = lb∼SelectedIndexes
do i = 1 to sit

parse var sndx order sndx
say "1 x" lb∼GetText(order)

end
end

MakeFirstVisible

�� aListBox∼MakeFirstVisible(index) ��

438 OODialog Method Reference

The MakeFirstVisible method makes the list entry at the specified position the
first visible list item when you scroll up or down.

Arguments:
The only argument is:

index The one-based index of the list box item to be made first
visible.

Return value:
−1 if an error occurred.

GetFirstVisible

�� aListBox∼GetFirstVisible ��

The GetFirstVisible method retrieves the index of the first list item visible in
the list box.

Return value:
The one-based index of the list box item visible first.

GetText

�� aListBox∼GetText(index) ��

The GetText method gets the text of the list item at the specified position in
the list box.

Arguments:
The only argument is:

index The one-based index of the list box item containing the text
you are interested in.

Return value:
The text of the list box item at the given position, or an empty string
if the index does not refer to an item or an error occurred.

Modify

�� aListBox∼Modify(,newText)
index

��

Chapter 24. ListBox Class 439

The Modify method changes the text of the list item at the specified position in
the list box.

Arguments:
The arguments are:

index The one-based index of the list box item of which the text is
to be changed. If you omit this argument, the currently
selected item is modified.

newText
The new text string to be displayed at the given position.

Return value:
The one-based index of the modified list box item at the given
position. The return value is 0 if an error occurred, or −1 if the index
does not refer to an item.

SetTabulators

�� &

,

aListBox∼SetTabulators(tabPos) ��

The SetTabulators method sets the tabulators for the associated list box control.
This enables you to use items containing tab characters ('09'x), which is useful
if you want to format the list in more than one column when using
proportional fonts.

Arguments:
The only argument is:

tabPos
The position or positions of the tabs relative to the left edge of
the list box, in dialog units.

Return value:
1 if an error occurred.

Example:
The following example creates a list that can handle up to three
tabulators in a list entry. The tabulator positions are 10, 20, and 30.
lb = MyDialog∼GetListBox(102)
if lb == .Nil then return
lb∼SetTabulators(10, 20, 30)
lb∼Add(textcol1 || '09'x || textcol2 || '09'x || textcol3 || '09'x ||,

textcol4)

440 OODialog Method Reference

AddDirectory

�� &aListBox∼AddDirectory(drvPath," READWRITE ")
READONLY
HIDDEN
SYSTEM
DIRECTORY
ARCHIVE

��

The AddDirectory method adds all or selected file names of a given directory
to the list box.

Arguments:
The arguments are:

drvpath
The drive, path, and name pattern.

fileAttributes
The attributes that the files must have in order to be added:

READWRITE
Normal read/write files (same as none).

READONLY
Files that have the read-only bit.

HIDDEN
Files that have the hidden bit.

SYSTEM
Files that have the system bit.

DIRECTORY
Files that have the directory bit.

ARCHIVE
Files that have the archive bit.

Return value:
The one-based index of the file added last to the list, or 0 if an error
occurred.

Example:
The following example puts the names of all read/write files with
extension .REX in the given directory of the list box:
MyDialog∼AddDirectory(203, drive":\"path"*.rex", "READWRITE")

Chapter 24. ListBox Class 441

SetWidth

�� aListBox∼SetWidth(width) ��

The SetWidth method sets the internal width of the list box, in dialog units. If
the internal width exceeds the width of the list box control and the list box
has the HSCROLL style, the list box provides a horizontal scroll bar.

Arguments:
The only argument is:

width The width of the list box, in dialog units.

Example:
The following example sets the internal width twice the width of the
list box control:
lb = MyDialog∼GetListBox(102)
if lb == .Nil then return
lb∼SetWidth(lb∼SizeX*2)

Width

�� aListBox∼Width ��

The Width method retrieves the internal width of the associated list box.

Return value:
The internal width of the list box, in dialog units, or 0 if an error
occurred.

ItemHeight

�� aListBox∼ItemHeight ��

The ItemHeight method retrieves the height of the items in the list box, in
dialog units.

Return value:
The height of the list box items, in dialog units.

442 OODialog Method Reference

ItemHeight=

�� aListBox∼ItemHeight=height ��

The ItemHeight= method sets the height of the items in the list box, in dialog
units.

Arguments:
The only argument is:

height The height of all list box items, in dialog units.

ColumnWidth=

�� aListBox∼ColumnWidth=width ��

The ColumnWidth= method sets the width of the list box columns in a
multicolumn list box control.

Arguments:
The only argument is:

width The width of all list box columns, in dialog units.

Chapter 24. ListBox Class 443

444 OODialog Method Reference

Chapter 25. ComboBox Class

The ComboBox class provides methods to query and modify combo box
controls. It inherits all methods of the DialogControl class (see page 181).

Use the GetComboBox method (see page 343) to retrieve an object of the
ComboBox class.

Requires:
The ComboBox class requires the class definition file oodwin32.cls:
::requires oodwin32.cls

Methods:
Instances of the ComboBox class implement the methods listed in
Table 12.

Table 12. ComboBox Instance Methods

Method... ...on page

Add 446

AddDirectory 450

CloseDropDown 451

Delete 446

DeleteAll 447

EditSelection 452

Find 447

GetText 449

Insert 446

IsDropDownOpen 452

Items 449

Modify 450

OpenDropDown 451

Select 449

SelectIndex 448

Selected 448

SelectedIndex 448

© Copyright IBM Corp. 1997, 2001 445

Add

�� aComboBox∼Add(listEntry) ��

The Add method adds a new item to the list of the combo box. If the list is not
sorted, the new item is added to the end of the list.

Arguments:
The only argument is:

listEntry
A text string added to the list.

Return value:
A one-based index that specifies the position at which the entry has
been added, or 0 or a value less than 0 to indicate an error.

Insert

�� aComboBox∼Insert(,listEntry)
index

��

The Insert method inserts a new item into the list of the combo box after the
specified item.

Arguments:
The arguments are:

index The index (starting with 1) of the list item after which the new
item is to be added. If this argument is omitted, the list entry
is added after the currently selected item.

listEntry
A text string added to the list.

Return value:
A one-based index that specifies the position at which the entry has
been added, or 0 or a value less than 0 to indicate an error.

Delete

�� aComboBox∼Delete(index) ��

The Delete method removes a list item from the associated combo box.

446 OODialog Method Reference

Arguments:
The only argument is:

index The index (starting with 1) of the list item to be removed from
the list. If this argument is omitted, the currently selected item
is deleted.

Return value:
The number of remaining list items, or 0 to indicate an error.

DeleteAll

�� aComboBox∼DeleteAll ��

The DeleteAll method removes all list items from the associated combo box.

Arguments:
The only argument is:

index The index (starting with 1) of the list item to be removed from
the list. If this argument is omitted, the currently selected item
is deleted.

Return value:
The number of remaining list items, or 0 to indicate an error.

Find

�� aComboBox∼Find(TextorPrefix)
,

startIndex , exact

��

The Find method searches the combo box for a list entry containing the
specified text or prefix. The search is caseless.

Arguments:
The arguments are:

TextorPrefix
The text or prefix for which the list is searched.

startIndex
The first list item at which the search is to be started. When
the search reaches the bottom of the list, it is continued
backward. If you omit this argument or specify 0, the entire
list is searched.

Chapter 25. ComboBox Class 447

exact If you specify 1 or E, the text of the list item must exactly
match the text specified for TextorPrefix. If you omit this
argument or specify 0, the list entries are searched for a prefix
that matches TextorPrefix.

Return value:
The one-based index of the list entry that matches the search text, or 0
if not found.

SelectedIndex

�� aComboBox∼SelectedIndex ��

The SelectedIndex method retrieves the index of the currently selected entry of
the combo box list. This entry is highlighted and surrounded by a dotted
border.

Return value:
The one-based index of the currently selected list entry, or 0 if none is
selected.

Selected

�� aComboBox∼Selected ��

The Selected method retrieves the text of the currently selected entry of the
combo box list.

Return value:
The text of the currently selected list entry, or an empty string if none
is selected.

SelectIndex

�� aComboBox∼SelectIndex(index) ��

The SelectIndex method selects the list entry at the specified position. The
currently selected list item in the combo box is highlighted and surrounded
by a dotted border.

Arguments:
The only argument is:

448 OODialog Method Reference

index The index (starting with 1) of the list item to be selected. If
you specify 0 for this argument, the combo box must not
contain any selection.

Return value:
0 if an error occurred or you specified 0 for index to remove the
selection.

Select

�� aComboBox∼Select(ItemText) ��

The Select method selects the list entry that matches the specified text.

Arguments:
The only argument is:

ItemText
The text that the combo box is searched for.

Return value:
0 if an error occurred or a matching list entry was not found.

Items

�� aComboBox∼Items ��

The Items method retrieves the number of items in the combo box.

Return value:
The number of items in the combo box list.

GetText

�� aComboBox∼GetText(index) ��

The GetText method gets the text of the list item at the specified position in
the combo box.

Arguments:
The only argument is:

Chapter 25. ComboBox Class 449

index The one-based index of the combo box item containing the
text you are interested in.

Return value:
The text of the combo box item at the given position, or an empty
string if the index does not refer to an item or an error occurred.

Modify

�� aComboBox∼Modify(index,newText) ��

The Modify method changes the text of the list item at the specified position in
the combo box.

Arguments:
The arguments are:

index The one-based index of the combo box item of which the text
is to be changed. If you omit this argument, the currently
selected item is modified.

newText
The new text string to be displayed at the given position.

Return value:
The one-based index of the modified combo box item at the given
position. The return value is 0 if an error occurred, or −1 if the index
does not refer to an item.

AddDirectory

�� &aComboBox∼AddDirectory(drvPath," READWRITE ")
READONLY
HIDDEN
SYSTEM
DIRECTORY
ARCHIVE

��

The AddDirectory method adds all or selected file names of a given directory
to the combo box.

Arguments:
The arguments are:

450 OODialog Method Reference

drvpath
The drive, path, and name pattern.

fileAttributes
Specify the file attributes the files must possess in order to be
added:

READWRITE
Normal read/write files (same as none).

READONLY
Files that have the read-only bit.

HIDDEN
Files that have the hidden bit.

SYSTEM
Files that have the system bit.

DIRECTORY
Files that have the directory bit.

ARCHIVE
Files that have the archive bit.

Return value:
The one-based index of the file name added last to the list, or 0 if an
error occurred.

Example:
The following example puts the names of all read/write files with
extension .REX in the given directory of the list box:
MyDialog∼AddDirectory(203, drive":\"path"*.rex", "READWRITE")

OpenDropDown

�� aComboBox∼OpenDropDown ��

The OpenDropDown method opens the list box of the associated combo box.

CloseDropDown

�� aComboBox∼CloseDropDown ��

The CloseDropDown method closes the list box of the associated combo box.

Chapter 25. ComboBox Class 451

IsDropDownOpen

�� aComboBox∼IsDropDownOpen ��

The IsDropDownOpen method retrieves whether the list box of the associated
combo box is open, that is, visible.

Return value:

1 The list box is open.

0 For all other cases.

EditSelection

�� aComboBox∼EditSelection(startNdx,endNdx) ��

The EditSelection method selects the specified text range in the edit control of
the associated combo box.

Arguments:
The arguments are:

startNdx
The one-based index of the first character in the edit control to
be selected. If you omit this argument or specify 0, the
selection is removed.

endNdx
The one-based index of the last character in the edit control to
be selected. If you omit this argument or specify 0, the
selection is removed.

Return value:

0 The selection was successful.

1 An error occurred.

452 OODialog Method Reference

Chapter 26. ScrollBar Class

The ScrollBar class provides methods to query and modify scroll bars. It
inherits all methods of the DialogControl class (see page 181).

Use the GetScrollBar method to retrieve an object of the ScrollBar class.

Requires:
The ScrollBar class requires the class definition file oodwin32.cls:
::requires oodwin32.cls

Methods:
Instances of the ScrollBar class implement the methods listed in
Table 13.

Table 13. ScrollBar Instance Methods

Method... ...on page

DeterminePosition 455

Position 455

Range 454

SetRange 453

SetPos 454

SetRange

�� aScrollBar∼SetRange(min,max)
, redraw

��

The SetRange method sets the minimum and maximum positions for the
associated scroll bar.

Arguments:
The arguments are:

min The minimum position to which the scroll bar can be moved.

max The maximum position to which the scroll bar can be moved.

redraw
If you specify 1 or Y, the scroll bar is redrawn using the new

© Copyright IBM Corp. 1997, 2001 453

range. Otherwise, the range is set but the scroll bar display is
not updated. The default value is 1.

Return value:

0 Setting the range was successful.

1 For all other cases.

Range

�� aScrollBar∼Range ��

The Range method retrieves the minimum and maximum positions of the
associated scroll bar.

Return value:
The minimum and maximum positions, separated by a blank.

SetPos

�� aScrollBar∼SetPos(position)
, redraw

��

The SetPos method sets the position of the scroll box for the associated scroll
bar.

Arguments:
The arguments are:

position
The position to which the scroll box is to be moved.

redraw
If you specify 1 or Y, the scroll bar is redrawn using the new
position. Otherwise, the new position is set, but the scroll bar
display is not updated. The default value is 1.

Return value:

0 Setting the position was successful.

1 For all other cases.

454 OODialog Method Reference

Position

�� aScrollBar∼Position ��

The Position method retrieves the position of the scroll box in the associated
scroll bar.

Return value:
The position of the scroll box.

DeterminePosition

�� aScrollBar∼DeterminePosition(posdata �

�)
,

singleStep , pageStep

��

The DeterminePosition method determines the new position of the scroll box
based on the position sent with the scroll bar notification messages.

Arguments:
The arguments are:

posdata
The position sent with the scroll bar notification messages.

singleStep
The value by which the scroll box position is increased or
decreased when the user performs a single-step event like
using the Down or Up arrow keys or clicking on the arrow
buttons of the scroll bar.

pageStep
The value by which the scroll box position is increased or
decreased when the user performs a page-step event like
using the PgDn or PgUp arrow keys or clicking on an area in
the scroll bar that is not occupied by the scroll box or the
arrow buttons.

Return value:
The resulting position based on posdata and the current position.

Note: The position of a scroll bar cannot be modified directly by a user. The
Object REXX program must react to the notification that is the result of

Chapter 26. ScrollBar Class 455

the user interaction and set the resulting position of the scroll box using
“SetPos” on page 454. Use the DeterminePosition method to determine
the resulting position within your notification handler for the scroll bar
notification messages.

456 OODialog Method Reference

Chapter 27. PropertySheet Class

The PropertySheet class provides methods to control a property sheet. It is a
subclass of the CategoryDialog class (see page 271). A property sheet is
similar to a category dialog that spreads its dialog items over several pages
(categories), where the individual pages are controlled by a tab control instead
of radio buttons or combo box lists.

Refer to PROPDEMO.REX in the OODIALOG\SAMPLES directory for an
example.

The PropertySheet class requires the class definition file oodwin32.cls:
::requires oodwin32.cls

Use an object of the DialogControl class or one of its subclasses to work with
an individual dialog item of the sheets. To retrieve such an object, you can call
one of the following methods depending on the requested control:
v “GetStaticControl” on page 338
v “GetEditControl” on page 339
v “GetButtonControl” on page 340
v “GetRadioControl” on page 341
v “GetCheckControl” on page 342
v “GetListBox” on page 342
v “GetComboBox” on page 343
v “GetScrollBar” on page 345
v “GetTreeControl” on page 345
v “GetListControl” on page 346
v “GetProgressBar” on page 347
v “GetSliderControl” on page 348
v “GetTabControl” on page 349

© Copyright IBM Corp. 1997, 2001 457

Init

��
10

aPropertySheet∼Init(, , ,
DlgData. cattable tabx

�

�
4

,)
taby style

��

The Init method is called when a new instance of the PropertySheet class is
created and initializes the property sheet object.

Arguments:
The arguments are:

DlgData.
An optional stem variable containing the initial values for
some or all dialog items. If the dialog is terminated with the
OK button, the values in the data fields of the dialog are
copied to this variable. The ID of the dialog items is used to
name the entry within the stem.

cattable
You can use this argument to set the category names,
separated by blanks. Your class, which is a subclass of
PropertySheet, must provide a method for each of the
categories in the string to define the dialog items of the
related category page. The name of the method is equal to the
category name in the string.

If you omit this argument, set the category names to the
catalog directory in the InitCategories method (see page 275).

tabx, taby
The position of the tab control that is used to select the
category. The default is 10,4.

style Determines the style of the property sheet and the tab control
used to select the visible category. The style must be specified
as a text string that can contain tab control options (see
“AddTabControl” on page 361) or the option WIZARD, which
adds a backward and a forward button with ID 11 and 12 to
the dialog to switch between the category pages.

Example:
The following example creates a property sheet dialog with 4 sheets:

458 OODialog Method Reference

dlg = MyProperty∼new(MyData.,"Movies Cinemas Days Ticket",,,"WIZARD")
dlg∼createCenter(200,180,"Let's go to the movies")
dlg∼execute("SHOWTOP")...
::class MyProperty subclass PropertySheet
::method Movies /* define the Movies page */
::method Cinemas /* define the Cinemas page */...

Chapter 27. PropertySheet Class 459

460 OODialog Method Reference

Chapter 28. ProgressBarControl Class

A progress bar is a window that an application can use to indicate the
progress of a lengthy operation. It consists of a rectangle that is gradually
filled, from left to right, with the system highlight color as an operation
progresses. It has a range and a current position. The range represents the
entire duration of the operation, and the current position represents the
progress that the application has made toward completing the operation.

The ProgressBarControl class provides methods to change the range and the
current position of the progress bar. The window procedure uses the range
and the current position to determine the percentage of the progress bar. The
highest possible range or current position value is 65,535.

Refer to OODPBAR.REX and PROPDEMO.REX in the OODIALOG\SAMPLES
directory for an example.

The ProgressBarControl class does not send any notification messages. For
information about notification messages, refer to “ConnectListNotify” on
page 318.

Requires:
The ProgressBarControl class requires the class definition file
oodwin32.cls:
::requires oodwin32.cls

Methods:
Instances of the ProgressBarControl class implement the methods listed
in Table 14.

Table 14. ProgressBarControl Instance Methods

Method... ...on page

SetPos 462

SetRange 463

SetStep 463

Step 462

© Copyright IBM Corp. 1997, 2001 461

Step

�� aProgressBarControl∼Step()
increment

��

The Step method advances the current position of a progress bar or the
increment set with the SetStep method (see page 463), and redraws the bar to
reflect the new position.

Arguments:
The only argument is:

increment
The value for advancing the current position. If you do not
specify this argument, the position is advanced by the value
set with the SetStep method. If the position exceeds the
maximum range value, the progress indicator starts at the
beginning again.

Return value:
The previous position.

SetPos

�� aProgressBarControl∼SetPos(newpos) ��

The SetPos method sets the new position for a progress bar and redraws the
bar to reflect the new position.

Arguments:
The only argument is:

newpos
The new position.

Return value:
The previous position, or −1 if you do not specify newpos.

462 OODialog Method Reference

SetStep

��
10

aProgressBarControl∼SetStep()
newstep

��

The SetStep method specifies the step increment for a progress bar. The step
increment is the amount by which the progress bar increases its current
position whenever the method is called.

Arguments:
The only argument is:

newstep
The new step increment. The default step increment is 10.

Return value:
The previous position, or −1 if you do not specify newpos.

SetRange

��
0 100

aProgressBarControl∼SetRange(,)
min max

��

The SetRange method sets the minimum and maximum values for a progress
bar and redraws the bar to reflect the new range.

Arguments:
The arguments are:

min The minimum range value. The default is 0.

max The maximum range value. The default is 100.

Return value:
A string containing the minimum and maximum value of the previous
range, separated by a blank, or 0 in all other cases.

Chapter 28. ProgressBarControl Class 463

464 OODialog Method Reference

Chapter 29. SliderControl Class

A slider control, which is also called a trackbar, is a window that contains a
slider and optional tick marks. When the user moves the slider, using either
the mouse or the direction keys, the slider sends notification messages to
indicate the change.

Sliders are useful if you want the user to select a specific value or a set of
consecutive values within a specific range. For example, you might use a
slider to enable the user to set the repeat rate of the keyboard by moving the
slider to a given tick mark.

The slider in a trackbar moves in increments that you specify when you create
it. For example, if you specify that the trackbar should have a range from 0 to
10, the slider can occupy only eleven positions: a position at the left side of
the slider and one position for each increment in the range. Typically, each of
these positions is identified by a tick mark.

After you have created a slider, you can use the SliderControl methods to set
and retrieve its properties. Refer to PROPDEMO.REX in the
OODIALOG\SAMPLES directory for an example.

The SliderControl class sends notification messages to notify about the event.
For information about notification messages, refer to “ConnectListNotify” on
page 318.

Requires:
The SliderControl class requires the class definition file oodwin32.cls:
::requires oodwin32.cls

Methods:
Instances of the SliderControl class implement the methods listed in
Table 15.

Table 15. SliderControl Instance Methods

Method... ...on page

ClearSelRange 476

ClearTicks 470

CountTicks 470

GetLineStep 472

GetPageStep 472

© Copyright IBM Corp. 1997, 2001 465

Table 15. SliderControl Instance Methods (continued)

Method... ...on page

GetTick 471

InitRange 468

InitSelRange 474

Pos 467

Pos= 466

Range 469

SelRange 477

SetLineStep 473

SetMax 469

SetMin 468

SetPageStep 474

SetPos 466

SetSelEnd 476

SetSelStart 475

SetTickAt 471

SetTickFrequency 471

Pos=

�� aSliderControl∼Pos=value ��

The Pos= method sets the new logical position of the slider and redraws the
slider.

Arguments:
The only argument is:

value The new logical position. A valid position is an integer value
within the range of the minimum and maximum positions of
the slider. If you specify a value outside this range, the
position is set to the maximum or minimum position.

SetPos

466 OODialog Method Reference

��
0

aSliderControl∼SetPos(pos,)
1

��

The SetPos method sets the new logical position of the slider and redraws the
slider if required.

Arguments:
The arguments are:

pos The new logical position. A valid position is an integer value
within the range of the minimum and maximum positions of
the slider. If you specify a value outside this range, the
position is set to the maximum or minimum position.

redraw
The redraw flag. If you specify 1, the control is redrawn with
the slider at the position given by pos. If you specify 0 or omit
this argument, the control is not redrawn. However, the new
position is set regardless of the redraw argument.

Example:
The following example sets the slider to the maximum position, with
the range of the slider already been set to 0 to 100 using the SetRange
method:
::method SetToMax

ctrl=self∼GetSliderControl("IDC_1")
ctrl∼SetPos(100,1)

Pos

�� aSliderControl∼Pos ��

The Pos method retrieves the current logical position of the slider.

Return value:
The current logical position of the slider.

Example:
The following example displays the current slider position:
::method DisplayPos

ctrl=self∼GetSliderControl("IDC_1")
pos = ctrl∼Pos
say pos

Chapter 29. SliderControl Class 467

InitRange

��
0 100 0

aSliderControl∼InitRange(, ,)
min max 1

��

The InitRange method sets the minimum and maximum positions of the slider
and redraws the slider, if required.

Arguments:
The arguments are:

min The minimum position of the slider. The default is 0.

max The maximum position of the slider. The default is 100.

redraw
The redraw flag. If you specify 1, the slider is redrawn after
the range is set. If you specify 0 or omit this argument, the
slider is not redrawn.

Return value:

0 The range was set.

−1 The minimum you specified is greater than the maximum.

Example:
The following example sets the range, the line step, the page step, and
the tick frequency of the slider:
::method InitDialog

curSL = self∼GetSliderControl("IDC_1")
if curSL \= .Nil then do

curSL∼InitRange(0,100)
curSL∼SetLineStep(1)
curSL∼SetPageStep(10)
curSL∼SetTickFrequency(10)

end

SetMin

��
1

aSliderControl∼SetMin(min,)
0

��

The SetMin method sets the minimum logical position for a slider and
redraws the slider, if required.

468 OODialog Method Reference

Arguments:
The arguments are:

min The minimum position of the slider.

redraw
The redraw flag. If you specify 1 or omit this argument, the
slider is redrawn after the minimum position is set. If you
specify 0, the slider is not redrawn.

Return value:

0 The minimum position was set.

−1 You omitted min.

SetMax

��
1

aSliderControl∼SetMax(max,)
0

��

The SetMax method sets the maximum logical position for a slider and
redraws the slider, if required.

Arguments:
The arguments are:

min The maximum position of the slider.

redraw
The redraw flag. If you specify 1 or omit this argument, the
slider is redrawn after the maximum position is set. If you
specify 0, the slider is not redrawn.

Return value:

0 The maximum position was set successfully.

−1 You omitted min.

Range

�� aSliderControl∼Range ��

The Range method retrieves the minimum and maximum positions of the
slider.

Chapter 29. SliderControl Class 469

Return value:
The minimum and maximum positions of the slider, separated by a
blank.

Example:
The following example displays the range of a slider:
::method DisplayRange

ctrl=self∼GetSlidercontrol("IDC_1")
range = ctrl∼Range
parse var range min max
say min max

ClearTicks

��
1

aSliderControl∼ClearTicks()
0

��

The ClearTicks method removes the current tick marks from a slider. It does
not, however, remove the first and last tick marks because they are created
automatically by the slider.

Arguments:
The arguments are:

redraw
The redraw flag. If you specify 1 or omit this argument, the
slider is redrawn after the tick marks are removed. If you
specify 0, the slider is not redrawn.

Return value:
0.

CountTicks

�� aSliderControl∼CountTicks ��

The CountTicks method retrieves the number of tick marks in a slider,
including the first and last tick marks, which are created automatically by the
slider.

Return value:
The number of tick marks.

470 OODialog Method Reference

GetTick

�� aSliderControl∼GetTick(tic) ��

The GetTick method retrieves the logical position of a tick mark in a slider. A
valid position is an integer value within the minimum and maximum
positions of the slider.

Arguments:
The only argument is:

tic A zero-based index identifying a tick mark. A valid index is in
the range of 0 to 2 ticks less than the tick count returned by
the CountTicks method (see page 470).

Return value:
The logical position of the specified tick mark, or −1 if you did not
specify a valid index for tic.

SetTickAt

�� aSliderControl∼SetTickAt(pos) ��

The SetTickAt method sets a tick mark at the specified logical position in the
slider.

Arguments:
The only argument is:

pos An integer value within the minimum and maximum
positions of the slider.

Return value:

0 The tick mark was set.

−1 You omitted pos.

1 For all other cases.

SetTickFrequency

��
1

aSliderControl∼SetTickFrequency()
freq

��

Chapter 29. SliderControl Class 471

The SetTickFrequency method sets the interval frequency for tick marks in a
slider. For example, if you set the frequency to 2, a tick mark is displayed for
every other increment in the slider’s range.

Arguments:
The only argument is:

freq The frequency of the tick marks. The default is 1, that is,
every increment in the range is associated with a tick mark.

Return value:

0 The tick mark frequency was set.

−1 You omitted freq.

1 For all other cases.

Example:
The following example sets the range, the line step, the page step, and
the tick frequency of the slider:
::method InitDialog

curSL = self∼GetSliderControl("IDC_1")
if curSL \= .Nil then do

curSL∼InitRange(0,100)
curSL∼SetLineStep(1)
curSL∼SetPageStep(10)
curSL∼SetTickFrequency(10)

end

GetLineStep

�� aSliderControl∼GetLineStep ��

The GetLineStep method retrieves the number of logical positions that the
slider moves in response to keyboard input from the arrow keys, such as the
Right arrow or the Down arrow keys. The logical positions are the integer
increments within the minimum and maximum positions of the slider.

Return value:
The line size for the slider.

GetPageStep

�� aSliderControl∼GetPageStep ��

472 OODialog Method Reference

The GetPageStep method retrieves the number of logical positions that the
slider moves in response to keyboard input, such as the PageUp or PageDown
keys, or mouse input, such as clicks in the slider’s channel. The logical
positions are the integer increments within the minimum and maximum
positions of the slider.

Return value:
The page size for the slider.

SetLineStep

�� aSliderControl∼SetLineStep(step) ��

The SetLineStep method sets the number of logical positions that the slider
moves in response to keyboard input from the arrow keys, such as the Right
arrow or the Down arrow keys. The logical positions are the integer
increments within the minimum and maximum positions of the slider.

Arguments:
The only argument is:

step The new line size.

Return value:
The previous line size, or −1 if you omit step.

Example:
The following example sets the range, the line step, the page step, and
the tick frequency of the slider:
::method InitDialog

curSL = self∼GetSliderControl("IDC_1")
if curSL \= .Nil then do

curSL∼InitRange(0,100)
curSL∼SetLineStep(1)
curSL∼SetPageStep(10)
curSL∼SetTickFrequency(10)

end

Chapter 29. SliderControl Class 473

SetPageStep

�� aSliderControl∼SetPageStep(step) ��

The SetPageStep method sets the number of logical positions that the slider
moves in response to keyboard input, such as the PageUp or PageDown keys,
or mouse input, such as clicks in the slider’s channel. The logical positions are
the integer increments within the minimum and maximum positions of the
slider.

Arguments:
The only argument is:

step The new page size.

Return value:
The previous page size.

Example:
The following example sets the range, the line step, the page step, and
the tick frequency of the slider:
::method InitDialog

curSL = self∼GetSliderControl("IDC_1")
if curSL \= .Nil then do

curSL∼InitRange(0,100)
curSL∼SetLineStep(1)
curSL∼SetPageStep(10)
curSL∼SetTickFrequency(10)

end

InitSelRange

��
0 0

aSliderControl∼InitSelRange(, ,)
min max redraw

��

The InitSelRange method sets the starting and ending logical positions for the
current selection range in a slider. It is ignored if the slider does not have a
selection range.

Arguments:
The arguments are:

min The logical starting position of the selection range. The default
is 0.

474 OODialog Method Reference

max The logical ending position of the selection range. If you omit
this argument, the maximum position of the slider’s range is
assumed.

redraw
The redraw flag. If you specify 1, the slider is redrawn after
the selection range is set. If you specify 0 or omit this
argument, the selection range is set but the slider is not
redrawn.

Return value:

−1 The minimum you specified is greater than the maximum.

0 In all other cases.

SetSelStart

��
1

aSliderControl∼SetSelStart(min,)
redraw

��

The SetSelStart method sets the starting logical position for the current
selection range in a slider. It is ignored if the slider does not have a selection
range.

Arguments:
The arguments are:

min The logical starting position of the selection range.

redraw
The redraw flag. If you specify 1 or omit this argument, the
slider is redrawn after the starting position has been set. If
you specify 0, the starting position is set but the slider is not
redrawn.

Return value:

−1 You omitted min.

0 In all other cases.

Chapter 29. SliderControl Class 475

SetSelEnd

��
1

aSliderControl∼SetSelEnd(max,)
redraw

��

The SetSelEnd method sets the logical ending position for the current selection
range in a slider. It is ignored if the slider does not have a selection range.

Arguments:
The arguments are:

min The logical ending position of the selection range.

redraw
The redraw flag. If you specify 1 or omit this argument, the
slider is redrawn after the ending position has been set. If you
specify 0, the ending position is set but the slider is not
redrawn.

Return value:

−1 You omitted max.

0 In all other cases.

ClearSelRange

�� aSliderControl∼ClearSelRange(redraw) ��

The ClearSelRange method clears the current selection range in a slider.

Arguments:
The only argument is:

redraw
The redraw flag. If you specify 1, the slider is redrawn after
the selection is cleared.

Return value:
0.

476 OODialog Method Reference

SelRange

�� aSliderControl∼SelRange ��

The SelRange method retrieves the starting position of the current selection
range in a slider.

Return value:
The starting and ending positions of the current selection range,
separated by a blank.

Chapter 29. SliderControl Class 477

478 OODialog Method Reference

Chapter 30. TabControl Class

A tab control can be compared to a divider in a notebook or a label in a file
cabinet. By using a tab control, an application can define several pages for the
same area of a dialog or dialog control. Each page consists of a set of
information or a group of controls that the application displays when the user
selects the corresponding tab.

A special type of tab control displays tabs that look like buttons. Clicking a
button immediately performs a command instead of displaying a page.

You can apply specific characteristics to tab controls by specifying tab control
styles. For example, you can specify the alignment and general appearance of
the tabs in a tab control.

By default, a tab control displays only one row of tabs. If not all tabs can be
shown at once, the tab control displays an up-and-down control so that the
user can scroll to view additional tabs.

Refer to PROPDEMO.REX in the OODIALOG\SAMPLES directory for an
example.

The TabControl class sends notification messages to notify about the event. For
information about notification messages, refer to “ConnectListNotify” on
page 318.

Requires:
The TabControl class requires the class definition file oodwin32.cls:
::requires oodwin32.cls

Methods:
Instances of the TabControl class implement the methods listed in
Table 16.

Table 16. TabControl Instance Methods

Method... ...on page

AddFullSeq 482

AddSequence 482

AdjustToRectangle 489

Delete 484

DeleteAll 485

© Copyright IBM Corp. 1997, 2001 479

Table 16. TabControl Instance Methods (continued)

Method... ...on page

Focus 486

Focused 487

Insert 480

ItemInfo 484

Items 483

Last 485

Modify 481

PosRectangle 489

RemoveImages 488

RequiredWindowSize 490

Rows 483

Select 486

SelectIndex 486

Selected 485

SelectedIndex 486

SetImages 487

SetPadding 488

SetSize 488

Insert

�� aTabControl∼Insert(,text,icon,numValue)
tab

��

The Insert method inserts a new tab in a tab control.

Arguments:
The arguments are:

tab The number of the tab. If you omit this argument, the number
of the last tab is increased by 1, starting with 0.

text The label text for the inserted tab.

icon The index of the icon in the image list of the tab control, set
with the SetImages method (see page 487).

480 OODialog Method Reference

numValue
An integer value stored together with the tab to save
information.

Return value:
The number of the new tab, or −1 for all other cases.

Example:
The following example inserts three tabs in a tab control with the
specified text and a specific item:
::method InitDialog

InitDlgRet = self∼InitDialog:super
curTab = self∼GetTabControl("ID_TAB")
if curTab \= .Nil then do

curTab∼SetImages("oodtab.BMP",16,16)
curTab∼Insert(,"First Tab",0)
curTab∼Insert(,"Second Tab",1)
curTab∼Insert(,"Third Tab",2)

end
return InitDlgRet

Modify

�� aTabControl∼Modify(tab,text,icon,numValue) ��

The Modify method sets some or all of the attributes of a tab.

Arguments:
The arguments are:

tab The number of the tab.

text The label text for the tab.

icon The index of the icon in the image list of the tab control, set
with the SetImages method (see page 487).

numValue
An integer value stored together with the tab to save
information.

Return value:

0 The attributes were set.

−1 You did not specify tab.

1 In all other cases.

Chapter 30. TabControl Class 481

AddSequence

�� aTabControl∼AddSequence(text1,text2,text3,...) ��

The AddSequence method inserts a sequence of tabs in a tab control for which
you can only specify the label text. The number of the tab inserted last is
increased by 1.

Arguments:
The only argument is:

text The label text for the inserted tab.

Return value:
The number of the tab inserted last, or −1 for all other cases.

Example:
The following example inserts three tabs in a tab control:
::method InitDialog

InitDlgRet = self∼InitDialog:super
curTab = self∼GetTabControl("ID_TAB")
if curTab \= .Nil then do

curTab∼AddSequence("First Tab","Second Tab","Third Tab")
end

return InitDlgRet

AddFullSeq

�� aTabControl∼AddFullSeq(text_1,icon_1,numValue_1,text_2,icon_2,numValue_2,...) ��

The AddFullSeq method inserts a sequence of tabs in a tab control for which
you can specify the number, label text, and integer value.

Arguments:
The arguments are:

text The label text for the inserted tab.

icon The index of the icon in the image list of the tab control, set
with the SetImages method (see page 487).

numValue
An integer value stored together with the tab to save
information.

Return value:
The number of the tab inserted last, or −1 for all other cases.

482 OODialog Method Reference

Example:
The following example adds a sequence of tabs and sets their text and
icon:
::method InitDialog

InitDlgRet = self∼InitDialog:super
curTab = self∼GetTabControl("ID_TAB")
if curTab \= .Nil then do

curTab∼SetImages("oodtab.BMP",16,16)
curTab∼AddFullSeq("s11", 0,, "s12", 1,, "s13", 2,, "s14", 3)

end
return InitDlgRet

Items

�� aTabControl∼Items ��

The Items method retrieves the number of tabs in a tab control.

Return value:
The number of the tabs, or 0 for all other cases.

Example:
The following example displays the number of tabs:
::method DisplayTabNum

curTab = self∼GetTabControl("ID_TAB")
if curTab \= .Nil then do

say curTab∼Items
end

Rows

�� aTabControl∼Rows ��

The Rows method retrieves the current number of rows of tabs in a tab
control. Only tab controls with multiline style can have several rows of tabs.

Return value:
The number of the tab rows.

Chapter 30. TabControl Class 483

ItemInfo

�� aTabControl∼ItemInfo(tab) ��

The ItemInfo method retrieves information about a tab in a tab control.

Arguments:
The only argument is:

text The number of the tab.

Return value:
A compound variable that stores the attributes of the tab, or −1 in all
other cases. The compound variable can be:

RetStem.!TEXT
The label text for the tab.

RetStem.!IMAGE
The index of the tab in the image list of the tab control, or −1
if the tab does not have an image.

RetStem.!PARAM
An integer value stored together with the tab to save
information:

Example:
The following example displays the text of all tabs:
::method DisplayText

curTab = self∼GetTabControl("ID_TAB")
if curTab \= .Nil then do

do i = 0 to curTab∼Items - 1
ItemInfo. = curTab∼ItemInfo(i)
say ItemInfo.!Text

end
end

Delete

�� aTabControl∼Delete(tab) ��

The Delete method removes a tab from a tab control.

Arguments:
The only argument is:

tab The number of the tab to be removed.

484 OODialog Method Reference

Return value:

0 The tab was removed.

−1 You did not specify tab or there is no tab available.

1 For all other cases.

DeleteAll

�� aTabControl∼DeleteAll ��

The DeleteAll method removes all tabs from a tab control.

Return value:

0 The tabs were removed.

1 For all other cases.

Last

�� aTabControl∼Last ��

The Last method retrieves the number of the last tab in a tab control.

Return value:
The number of the last tab, or 0 in all other cases.

Selected

�� aTabControl∼Selected ��

The Selected method retrieves the label text of the currently selected tab.

Return value:
The label text of the currently selected tab, or 0 in all other cases.

Chapter 30. TabControl Class 485

SelectedIndex

�� aTabControl∼SelectedIndex ��

The SelectedIndex method retrieves the number of the currently selected tab.

Return value:
The number of the currently selected tab, or 0 in all other cases.

Select

�� aTabControl∼Select(text) ��

The Select method selects the tab with the specified label text.

Arguments:
The only argument is:

text The label text of the tab to be selected.

Return value:
The number of the selected tab, or 0 in all other cases.

SelectIndex

�� aTabControl∼SelectIndex(tab) ��

The SelectIndex method selects the specified tab in a tab control.

Arguments:
The only argument is:

tab The number of the tab to be selected.

Return value:
The number of the previously selected tab, or −1 in all other cases.

Focus

�� aTabControl∼Focus(tab) ��

486 OODialog Method Reference

The Focus method sets the focus to the specified tab in a tab control.

Arguments:
The only argument is:

tab The number of the tab to receive the focus.

Return value:
0.

Focused

�� aTabControl∼Focused ��

The Focused method returns the number of the tab that has the focus. The tab
with the focus can differ from the selected tab.

Return value:
The number of the tab having the focus.

SetImages

��
0 0

aTabControl∼SetImages(bitmap, ,)
width height

��

The SetImages method assigns an image list to a tab control.

Arguments:
The arguments are:

bitmap
The name of, or the handle to, a bitmap file that is already
loaded with LoadBitmap method (see page 208).

width The width, in pixels, of each image. If you specify 0 or omit
this argument, the width of the image in the image file is
used.

height The height, in pixels, of each image. If you specify 0 or omit
this argument, the height of the image in the image file is
used.

Return value:
The handle to the previous image list, or 0 for all other cases.

Chapter 30. TabControl Class 487

RemoveImages

�� aTabControl∼RemoveImages ��

The RemoveImages method deletes an image list of a tab control.

Return value:

0 The image list was removed.

1 In all other cases.

SetPadding

�� aTabControl∼SetPadding(padX,padY) ��

The SetPadding method sets the amount of space (padding) around the icon
and the label of a tab.

Arguments:
The arguments are:

padX The amount of horizontal padding, in pixels.

padY The amount of vertical padding, in pixels.

Return value:
0.

SetSize

�� aTabControl∼SetSize(width,height) ��

The SetSize method sets the width and height of tabs in a fixed-width or
owner-drawn tab control.

Arguments:
The arguments are:

width The new width, in pixels.

height The new height, in pixels.

Return value:
The old width and height as a string, in pixels.

488 OODialog Method Reference

PosRectangle

�� aTabControl∼PosRectangle(tab) ��

The PosRectangle method retrieves the rectangle around a tab in a tab control.

Arguments:
The only argument is:

tab The number of the tab.

Return value:
A string containing the coordinates of the rectangle, or an empty
string. The coordinates are separated by blanks and are in the
following order:
v X-coordinate of the upper left corner of the rectangle
v Y-coordinate of the upper left corner of the rectangle
v X-coordinate of the lower right corner of the rectangle
v Y-coordinate of the lower right corner of the rectangle

AdjustToRectangle

�� aTabControl∼AdjustToRectangle(left,top,right,bottom) ��

The AdjustToRectangle method calculates the window rectangle of a tab control
that corresponds to the specified display rectangle.

Arguments:
The arguments are:

left The x-coordinate of the upper left corner of the display
rectangle.

top The y-coordinate of the upper left corner of the display
rectangle.

right The x-coordinate of the lower right corner of the display
rectangle.

bottom
The y-coordinate of the lower right corner of the display
rectangle.

Chapter 30. TabControl Class 489

Return value:
A string containing the coordinates of the window rectangle, or an
empty string. The coordinates are separated by blanks and are in the
following order:
v X-coordinate of the upper left corner of the rectangle
v Y-coordinate of the upper left corner of the rectangle
v X-coordinate of the lower right corner of the rectangle
v Y-coordinate of the lower right corner of the rectangle

RequiredWindowSize

�� aTabControl∼RequiredWindowSize(left,top,right,bottom) ��

The RequiredWindowSize method calculates the display rectangle of a tab
control that corresponds to the specified window rectangle.

Arguments:
The arguments are:

left The x-coordinate of the upper left corner of the window
rectangle.

top The y-coordinate of the upper left corner of the window
rectangle.

right The x-coordinate of the lower right corner of the window
rectangle.

bottom
The y-coordinate of the lower right corner of the window
rectangle.

Return value:
A string containing the coordinates of the display rectangle, or an
empty string. The coordinates are separated by blanks and are in the
following order:
v X-coordinate of the upper left corner of the rectangle
v Y-coordinate of the upper left corner of the rectangle
v X-coordinate of the lower right corner of the rectangle
v Y-coordinate of the lower right corner of the rectangle

490 OODialog Method Reference

Chapter 31. TreeControl Class

The tree view control is a dialog that displays a hierarchical list of items, such
as the headings in a document, the entries in an index, or the files and
directories on a disk. Each item consists of a label and an optional image
bitmap, and can have a list of subitems associated with it. By clicking on an
item, the user can expand and collapse the associated list of subitems.

Refer to OODTREE.REX in the OODIALOG\SAMPLES directory for an
example.

Requires:
The TreeControl class requires the class definition file oodwin32.cls:
::requires oodwin32.cls

Methods:
Instances of the TreeControl class implement the methods listed in
Table 17.

Table 17. TreeControl Instance Methods

Method... ...on page

Add 494

Child 501

Collapse 505

CollapseAndReset 506

Delete 504

DeleteAll 505

DropHighlight 510

DropHighlighted 502

Edit 508

EndEdit 509

EnsureVisible 507

Expand 506

FirstVisible 502

HitTest 512

Indent 508

Indent= 508

Insert 492

© Copyright IBM Corp. 1997, 2001 491

Table 17. TreeControl Instance Methods (continued)

Method... ...on page

IsAncestor 514

ItemInfo 499

Items 500

MakeFirstVisible 510

Modify 496

MoveItem 513

Next 503

NextVisible 503

Parent 501

Previous 504

PreviousVisible 504

RemoveImages 512

RestoreEditClass 509

Root 501

Select 509

Selected 502

SetImages 511

SortChildren 511

SubclassEdit 509

Toggle 507

VisibleItems 500

Methods of the TreeControl Class

The following sections describe the individual methods of the TreeControl
class.

Insert

��
"LAST" "" 0

aTreeControl∼Insert(parent, after , , ,
"FIRST" text image
"SORT"

�

492 OODialog Method Reference

�

&

"0"
, ,)

selImage "1"

" EXPANDED "
BOLD

��

The Insert method inserts a new item in a tree view control.

Arguments:
The arguments are:

parent The handle to the parent item. If you specify "ROOT", the
item is inserted at the root of the tree view control.

after The handle to the item after which the new item is to be
inserted or one of the following values:

"FIRST" Inserts the item at the beginning of the list.

"LAST" Inserts the item at the end of the list. This is
the default.

"SORT" Inserts the item into the list in alphabetical
order.

text The text for the item. If you omit this argument, "" is
assumed.

image The index of the icon image in the tree view control’s bitmap
file to be used when the item is in the non-selected state. If
you omit this argument, the icon with index 0 is used.

selImage
The index of the icon image in the tree view control’s bitmap
file to be used when the item is in the selected state. If you
omit this argument, the icon specified for image is used.

state Specifies the appearance and functionality of the item. It can
be a combination of the following values, separated by a
blank:

EXPANDED The item is currently expanded with all child
items visible. This only applies to parent
items.

BOLD The item is shown in bold.

If you omit this argument, the item is inserted in collapsed
and normal form.

Chapter 31. TreeControl Class 493

children
Indicates whether the item has child items associated with it:

"0" The item has no child items, which is the default.

"1" The item has one or more child items.

You can use this argument to show an item that does
not have any child items, with an expand button. This
allows you to save memory usage by dynamically
loading and displaying the child items only when the
user expands the item.

Return value:
The handle to the new item, or 0 for all other cases.

Example:
The following example inserts child items when a specific root item is
expanded. The text strings for the items are loaded from a file.
::method OnExpanding_IDC_TREE

use arg tree, item
itemFile = "root6.inp"
curTree = self∼GetTreeControl("IDC_TREE")
itemInfo. = curTree∼ItemInfo(item)

if itemInfo.!TEXT = "Root 6" & \itemInfo.!STATE∼POS("EXPANDED") then
do

do while lines(itemFile)
line = linein(itemFile)
command = "curTree∼Insert(item,,"||line||")"
interpret command

end
curTree∼Expand(item)

end

Add

�� &
"" 0

aTreeControl∼Add(, , ,
, text image

�

�

&

"0"
, ,)

selImage "1"

" EXPANDED "
BOLD

��

The Add method adds a new item to a tree view control.

494 OODialog Method Reference

Arguments:
The arguments are:

, The number of commas specifies at which parent the item is
to be inserted. If you omit this argument, the item is inserted
as a root item. Each additional comma inserts the item one
level deeper than the item inserted previously. See the
example in the following.

text The text for the item. If you omit this argument, "" is
assumed.

image The index of the icon image in the tree view control’s bitmap
file to be used when the item is in the non-selected state. If
you omit this argument, the icon with index 0 is used.

selImage
The index of the icon image in the tree view control’s bitmap
file to be used when the item is in the selected state. If you
omit this argument, the icon specified for image is used.

state Specifies the appearance and functionality of the item. It can
be a combination of the following values, separated by a
blank:

EXPANDED The item is currently expanded with all child
items visible. This only applies to parent
items.

BOLD The item is shown in bold.

If you omit this argument, the item is inserted in collapsed
and normal form.

children
Indicates whether the item has child items associated with it:

"0" The item has no child items, which is the default.

"1" The item has one or more child items.

You can use this argument to show an item that does
not have any child items, with an expand button. This
allows you to save memory usage by dynamically
loading and displaying the child items only when the
user expands the item.

Return value:
The handle to the new item, or 0 for all other cases.

Example:
To get the following tree view:

Chapter 31. TreeControl Class 495

v Peter
– Mike

- George
- Monique

v John
- Chris

– Maud
– Ringo

v Paul
– Dave
– Sam
– Jeff

v Mary
– Helen
– Michelle
– Diana

your example must look as follows:
::method InitDialog

InitDlgRet = self∼InitDialog:super
curTree = self∼GetTreeControl("IDC_TREE")
if curTree \= .Nil then
do

curTree∼Add("Peter",,,"BOLD EXPANDED")
curTree∼Add(,"Mike",,,"EXPANDED")
curTree∼Add(,,"George")
curTree∼Add(,,"Monique")
curTree∼Add(,,,"John")
curTree∼Add(,,"Chris")
curTree∼Add(,"Maud")
curTree∼Add(,"Ringo")
curTree∼Add("Paul",,,"BOLD EXPANDED")
curTree∼Add(,"Dave")
curTree∼Add(,"Sam")
curTree∼Add(,"Jeff")
curTree∼Add("Mary",,,"BOLD EXPANDED")
curTree∼Add(,"Helen")
curTree∼Add(,"Michelle")
curTree∼Add(,"Diana")

end

Modify

��
"" 0

aTreeControl∼Modify(hItem, , , ,
text image selImage

�

496 OODialog Method Reference

�

&

"0"
,)

"1"

" BOLD "
NOTBOLD
DROP
NOTDROP
SELECTED
NOTSELECTED
CUT
NOTCUT
EXPANDEDONCE
NOTEXPANDEDONCE
EXPANDED
NOTEXPANDED

��

The Modify method sets some or all attributes of an item of a tree view
control.

Arguments:
The arguments are:

hItem The handle to the item to be modified.

text The text for the item. If you omit this argument, "" is
assumed.

image The index of the icon image in the tree view control’s bitmap
file to be used when the item is in the non-selected state. If
you omit this argument, the icon with index 0 is used.

selImage
The index of the icon image in the tree view control’s bitmap
file to be used when the item is in the selected state. If you
omit this argument, the icon specified for image is used.

state Specifies the appearance and functionality of the item. It can
be one or more of the following values, separated by blanks:

BOLD The item is shown in bold.

NOTBOLD The item is not bold.

DROP The item is selected as a drag-and-drop target.

NOTDROP The item is not selected as a drag-and-drop
target.

SELECTED The item is selected. Its appearance depends
on whether it has the focus and whether the
system colors are used for the selection.

Chapter 31. TreeControl Class 497

NOTSELECTED
The item is not selected.

CUT The item is selected as part of a cut-and-paste
operation.

NOTCUT The item is not selected as part of a
cut-and-paste operation.

EXPANDEDONCE
The item’s list of child items has been
expanded at least once.

NOTEXPANDEDONCE
The item’s list of child items has not been
expanded at least once.

EXPANDED The item’s list is currently expanded with all
child items visible. This only applies to parent
items.

NOTEXPANDED
The item’s list is currently not expanded.

children
Indicates whether the item has child items associated with it:

"0" The item has no child items, which is the default.

"1" The item has one or more child items.

You can use this argument to show an item that does
not have any child items, with an expand button. This
allows you to save memory usage by dynamically
loading and displaying the child items only when the
user expands the item.

Return value:

0 The item has been modified.

−1 For all other cases.

Example:
The following example changes the text of the item to bold when it is
selected:
::method OnSelChanging_IDC_TREE

curTree = self∼GetTreeControl("IDC_TREE")
curTree∼Modify(curTree∼selected,,,,"BOLD")

498 OODialog Method Reference

ItemInfo

�� aTreeControl∼ItemInfo(hItem) ��

The ItemInfo method retrieves some or all attributes of an item of a tree view
control.

Arguments:
The only argument is:

hItem The handle to the item of which attributes are to be retrieved.

Return value:
A compound variable that stores the attributes of the item, or −1 in all
other cases. The compound variable can be:

RetStem.!TEXT
The text of the item.

RetStem.!CHILDREN

1 The item has children.

0 The item has no children.

RetStem.!IMAGE
The index of the icon image in the tree view control’s bitmap
file used when the item is in the non-selected state.

RetStem.!SELECTEDIMAGE
The index of the icon image in the tree view control’s bitmap
file used when the item is in the selected state.

RetStem.!STATE
An empty string or one or more of the following strings,
separated by blanks:

EXPANDED
The item’s list is currently expanded with all child
items visible. This only applies to parent items.

BOLD The item is in bold.

SELECTED
The item is selected.

EXPANDEDONCE
The item’s list has been expanded at least once. This
only applies to parent items.

INDROP
The item is selected as a drag-and-drop target.

Chapter 31. TreeControl Class 499

Example:
The following example displays the attributes of the selected item:
::method Info

curTree = self∼GetTreeControl("IDC_TREE")
itemInfo. = curTree∼ItemInfo(curTree∼Selected)
say itemInfo.!TEXT
say itemInfo.!CHILDREN
say itemInfo.!IMAGE
say itemInfo.!STATE

Items

�� aTreeControl∼Items ��

The Items method retrieves the number of items in a tree view control.

Return value:
The number of items.

Example:
The following example counts all items in a tree view control:
::method Count

curTree = self∼GetTreeControl("IDC_TREE")
say curTree∼Items

VisibleItems

�� aTreeControl∼VisibleItems ��

The VisibleItems method obtains the number of items that can be fully visible
in a tree view control. This number can be greater than the number of items
in the control. The control calculates this value by dividing the height of the
client window by the height of an item.

Return value:
The number of items that can be fully visible. For example, if you can
see all of 19 items and part of another item, the return value is 19, not
20.

Example:
The following example returns the number of items that can be fully
visible:
::method Visible

curTree = self∼GetTreeControl("IDC_TREE")
say curTree∼VisibleItems

500 OODialog Method Reference

Root

�� aTreeControl∼Root ��

The Root method retrieves the first or topmost item of the tree view control.

Return value:
The handle to the first item, or 0 in all other cases.

Example:
The following example displays the name of the root item:
::method RootName

curTree = self∼GetTreeControl("IDC_TREE")
itemInfo. = curTree∼ItemInfo(curTree∼Root)
say ItemInfo.!Text

Parent

�� aTreeControl∼Parent(hItem) ��

The Parent method retrieves the parent of the specified item.

Arguments:
The only argument is:

hItem The handle to the item for which the parent is to be retrieved.

Return value:
The handle to the parent item, or −1 if hItem is not specified or is 0, or
0 in all other cases.

Example:
The following example displays the name of the selected item’s
parent:
::method Parent

curTree = self∼GetTreeControl("IDC_TREE")
itemInfo. = curTree∼ItemInfo(curTree∼Parent(curTree∼Selected))
say ItemInfo.!Text

Child

�� aTreeControl∼Child(hItem) ��

The Child method retrieves the first child item of hItem.

Arguments:
The only argument is:

Chapter 31. TreeControl Class 501

hItem The handle to the item of which the first child is to be
retrieved.

Return value:
The handle to the first child item, or −1 if you omitted hItem, or 0 in
all other cases.

Example:
The following example displays the name of parent of the selected
item:
::method Child

curTree = self∼GetTreeControl("IDC_TREE")
itemInfo. = curTree∼ItemInfo(curTree∼Child(curTree∼Selected))
say ItemInfo.!Text

Selected

�� aTreeControl∼Selected ��

The Selected method retrieves the currently selected item.

Return value:
The handle to the currently selected item, or 0 in all other cases.

Example:
The following example displays the name of the selected item:
::method SelectedName

curTree = self∼GetTreeControl("IDC_TREE")
itemInfo. = curTree∼ItemInfo(curTree∼Selected)
say ItemInfo.!Text

DropHighlighted

�� aTreeControl∼DropHighlighted ��

The DropHighlighted method retrieves the item that is the target of a
drag-and-drop operation.

Return value:
The handle to the item, or 0 in all other cases.

FirstVisible

�� aTreeControl∼FirstVisible ��

502 OODialog Method Reference

The FirstVisible method retrieves the first visible item in the client window of
a tree view control.

Return value:
The handle to the first visible item, or 0 in all other cases.

Example:
The following example displays the name of the first visible item:
::method FirstVisibleName

curTree = self∼GetTreeControl("IDC_TREE")
itemInfo. = curTree∼ItemInfo(curTree∼FirstVisible)
say ItemInfo.!Text

Next

�� aTreeControl∼Next(hItem) ��

The Next method retrieves the sibling item next to hItem.

Arguments:
The only argument is:

hItem The handle to the item next to the sibling item to be retrieved.

Return value:
The handle to the next sibling item, or −1 if you omitted hItem, or 0 in
all other cases.

Example:
The following example displays the name of the selected item and its
siblings:
::method SiblingNames

curTree = self∼GetTreeControl("IDC_TREE")
nextItem = curTree∼Selected
do while nextItem \= 0

itemInfo. = curTree∼ItemInfo(nextItem)
say ItemInfo.!Text
nextItem = curTree∼Next(nextItem)

end

NextVisible

�� aTreeControl∼NextVisible(hItem) ��

The NextVisible method retrieves the visible item following hItem.

Arguments:
The only argument is:

Chapter 31. TreeControl Class 503

hItem The handle to the item that precedes the visible item to be
retrieved. hItem must also be visible.

Return value:
The handle to the next visible item, or −1 if you omitted hItem, or 0 in
all other cases.

Previous

�� aTreeControl∼Previous(hItem) ��

The Previous method retrieves the sibling item preceding hItem.

Arguments:
The only argument is:

hItem The handle to the item that follows the sibling item to be
retrieved.

Return value:
The handle to the previous sibling item, or −1 if hItem is not specified
or is 0, or 0 in all other cases.

PreviousVisible

�� aTreeControl∼PreviousVisible(hItem) ��

The PreviousVisible method retrieves the visible item preceding hItem.

Arguments:
The only argument is:

hItem The handle to the item that follows the visible child item to be
retrieved. hItem must also be visible.

Return value:
The handle to the previous visible child item, or −1 if hItem is not
specified or is 0, or 0 in all other cases.

Delete

�� aTreeControl∼Delete(hItem) ��

The Delete method removes an item from a tree view control.

Arguments:
The only argument is:

504 OODialog Method Reference

hItem The handle to the item to be deleted.

Return value:

0 The item was deleted.

1 An error occurred.

−1 hItem is 0 or is not a valid value.

Example:
The following example deletes the selected item and all its children, if
any:
::method IDC_PB_DELETE

curTree = self∼GetTreeControl("IDC_TREE")
curTree∼Delete(curTree∼Selected)

DeleteAll

�� aTreeControl∼DeleteAll ��

The DeleteAll method removes all items from a tree view control.

Return value:

0 The items were removed.

1 For all other cases.

Collapse

�� aTreeControl∼Collapse(hItem) ��

The Collapse method collapses the list of child items associated with the
specified parent item.

Arguments:
The only argument is:

hItem The handle to the parent item to collapse.

Return value:

0 The list of child items has collapsed.

−1 hItem is not specified or is 0.

1 For all other cases.

Example:
The following example collapses the selected item:

Chapter 31. TreeControl Class 505

::method CollapseSelected
curTree = self∼GetTreeControl("IDC_TREE")
curTree∼Collapse(curTree∼Selected)

CollapseAndReset

�� aTreeControl∼CollapseAndReset(hItem) ��

The CollapseAndReset method collapses the list of child items associated with
the specified parent item and removes the child items.

Arguments:
The only argument is:

hItem The handle to the parent item to collapse.

Return value:

0 The list of child items has collapsed and the child items have
been removed.

−1 hItem is not specified or is 0.

1 For all other cases.

Example:
The following example collapses the selected item and removes all its
child items:
::method CollapseSelectedAndReset

curTree = self∼GetTreeControl("IDC_TREE")
curTree∼CollapseAndReset(curTree∼Selected)

Expand

�� aTreeControl∼Expand(hItem) ��

The Expand method expands the list of child items associated with the
specified parent item.

Arguments:
The only argument is:

hItem The handle to the parent item to be expanded.

Return value:

0 The parent item was expanded.

−1 hItem is not specified or is 0.

1 For all other cases.

506 OODialog Method Reference

Example:
The following example expands the selected item:
::method ExpandSelected

curTree = self∼GetTreeControl("IDC_TREE")
curTree∼Expand(curTree∼Selected)

Toggle

�� aTreeControl∼Toggle(hItem) ��

The Toggle method collapses the list of the specified item if it was expanded,
or expands it if it was collapsed.

Arguments:
The only argument is:

hItem The handle to the item to be expanded or collapsed.

Return value:

0 The item was expanded or collapsed.

−1 hItem is not specified or is 0.

1 For all other cases.

Example:
The following example toggles between expanding and collapsing a
selected item:
::method ToggleSelected

curTree = self∼GetTreeControl("IDC_TREE")
curTree∼Toggle(curTree∼Selected)

EnsureVisible

�� aTreeControl∼EnsureVisible(hItem) ��

The EnsureVisible method ensures that a tree view item is visible, expanding
the parent item or scrolling the tree view control, if necessary.

Arguments:
The only argument is:

hItem The handle to the item to be visible.

Return value:

0 The items in the tree view control were scrolled to ensure that
the specified item is visible.

Chapter 31. TreeControl Class 507

−1 hItem is not specified or is 0.

1 For all other cases.

Indent

�� aTreeControl∼Indent ��

The Indent method retrieves the amount, in pixels, by which the child items
are indented relative to their parent item.

Return value:
The amount indented, in pixels.

Indent=

�� aTreeControl∼Indent=indent ��

The Indent= method sets the width of indentation for a tree view control and
redraws the control to reflect the new width.

Arguments:
The only argument is:

indent The width of the indentation, in pixels. If you specify a width
that is smaller than the system-defined minimum, it is set to
the system-defined minimum.

Return value:
−1 if indent is 0.

Edit

�� aTreeControl∼Edit(hItem) ��

The Edit method starts editing the text of the specified item by replacing the
text with a single-line edit control containing this text. It implicitly selects and
focuses the specified item.

Arguments:
The only argument is:

hItem The handle to the item to be edited.

Return value:
The handle to the edit control used to edit the item text, or −1 if hItem
is not specified or is 0, or 0 in all other cases.

508 OODialog Method Reference

EndEdit

�� aTreeControl∼EndEdit()
cancel

��

The EndEdit method ends the editing of the item label of the tree view.

Arguments:
The only argument is:

cancel Indicates whether editing is canceled without being saved to
the label. If you specify "1" or "YES", editing is canceled.
Otherwise, the changes are saved to the label, which is the
default.

Return value:

0 Editing has ended successfully.

1 For all other cases.

SubclassEdit

�� aTreeControl∼SubclassEdit ��

The SubclassEdit method is used by the DefTreeEditHandler to correct the
problem occurring when Esc or the Enter key is pressed in an active edit item.

RestoreEditClass

�� aTreeControl∼RestoreEditClass ��

The RestoreEditClass method is used by the DefTreeEditHandler to correct the
problem occurring when Esc or the Enter key is pressed in an active edit item.

Select

�� aTreeControl∼Select(hItem) ��

The Select method selects a specific item.

Arguments:
The only argument is:

hItem The handle to the item to be selected.

Chapter 31. TreeControl Class 509

Return value:

0 The item was selected.

−1 hItem was not specified or is 0.

1 For all other cases.

MakeFirstVisible

�� aTreeControl∼MakeFirstVisible(hItem) ��

The MakeFirstVisible method ensures that hItem is visible and displays it at the
top of the control’s dialog, if possible. If the specified item is near the end of
the control’s hierarchy of items, it might not become the first visible item
depending on how many items fit in the dialog.

Arguments:
The only argument is:

hItem The handle to the item to be visible first.

Return value:

0 The item is visible first.

−1 hItem was not specified or is 0.

1 For all other cases.

DropHighlight

�� aTreeControl∼DropHighlight(hItem) ��

The DropHighlight method redraws hItem in the style used to indicate the
target of a drag-and-drop operation.

Arguments:
The only argument is:

hItem The handle of the item to be redrawn.

Return value:

0 The item was redrawn.

−1 hItem was not specified or is 0.

1 For all other cases.

510 OODialog Method Reference

SortChildren

�� aTreeControl∼SortChildren(hItem) ��

The SortChildren method sorts the child items of the specified parent item in a
tree view control.

Arguments:
The only argument is:

hItem The handle to the parent item the child items of which are to
be sorted.

Return value:

0 The child items were sorted.

−1 hItem was not specified or is 0.

1 For all other cases.

SetImages

��
0 0

aTreeControl∼SetImages(hItem, ,)
width height

��

The SetImages method sets the image list for a tree view control and redraws
the control using the new images.

Arguments:
The arguments are:

bitmap
The name of, or handle to, a bitmap file that is already loaded
using the LoadBitmap method (see page 208).

width The width of each image, in pixels. If you specify 0 or omit
this argument, the height of the image in the image file is
used as width.

height The height of each image, in pixels. If you specify 0 or omit
this argument, the height of the image in the image file is
used.

Return value:
The handle to the previous image list, or −1 if you did not specify
bitmap, or 0 in all other cases.

Chapter 31. TreeControl Class 511

Example:
The following example sets the image list during dialog initialization:
::method InitDialog

expose bmpFile
InitDlgRet = self∼InitDialog:super
curTree = self∼GetTreeControl("IDC_TREE")
if curTree \= .Nil then
do

curTree∼SetImages(bmpFile,16,12)
end
return InitDlgRet

RemoveImages

�� aTreeControl∼RemoveImages ��

The RemoveImages method destroys the image list of the tree view.

Return value:

0 The image list was destroyed.

1 For all other cases.

HitTest

�� aTreeControl∼HitTest(x,y) ��

The HitTest method determines the location of the specified point relative to
the client area of a tree view control.

Arguments:
The arguments are:

x The x-coordinate of the point.

y The y-coordinate of the point.

Return value:
0 if no item occupies the point, or one or more of the following
strings if an item occupies the specified point:

handle
The handle to the item that occupies the specified point.

ABOVE
Above the client area.

BELOW
Below the client area.

512 OODialog Method Reference

NOWHERE
In the client area but below the last item.

ONITEM
On the bitmap or label associated with an item.

ONBUTTON
On the button associated with an item.

ONICON
On the icon associated with an item.

ONINDENT
In the indentation associated with an item.

ONLABEL
On the label (string) associated with an item.

ONRIGHT
In the area to the right of an item.

ONSTATEICON
On the state icon for a tree view item that is in a user-defined
state.

TOLEFT
To the left of the client area.

TORIGHT
To the right of the client area.

MoveItem

�� aTreeControl∼MoveItem(hItem,hNewParent,redraw)
, "NODELETE"
, "SIBLINGS"

��

The MoveItem method moves an item to a new location.

Arguments:
The arguments are:

hItem The handle to the item to be moved.

hNewParent
The handle to the new parent to which the item is to be
moved.

redraw
The tree view control is updated.

Chapter 31. TreeControl Class 513

options
One of the following options:

"NODELETE" The item is copied to another location.

"SIBLINGS" Siblings are moved together with the item.

Return value:
The handle to the new parent, or 0 in all other cases.

IsAncestor

�� aTreeControl∼IsAncestor(hParent,hItem) ��

The IsAncestor method checks if an item is an ancestor of another item.

Arguments:
The arguments are:

hParent
The ancestor.

hItem The item to be checked.

Return value:
1 if hParent is an ancestor of hItem.

Notification Messages

The tree view control sends notification messages to notify about events. For
more information on notification messages, refer to “ConnectListNotify” on
page 318.

The following example shows how to connect the tree view notification
messages with the corresponding message:
::method Init

use arg InitStem.
if Arg(1,"o") = 1 then

InitRet = self∼Init:super
else

InitRet = self∼Init:super(InitStem.)

if self∼Load("tree.rc",) \= 0 then do
self∼InitCode = 1
return

end

/* Connect dialog control items to class methods */
self∼ConnectTreeNotify("IDC_TREE","SelChanging","OnSelChanging_IDC_TREE")
self∼ConnectTreeNotify("IDC_TREE","SelChanged","OnSelChanged_IDC_TREE")
self∼ConnectTreeNotify("IDC_TREE","Expanding","OnExpanding_IDC_TREE")

514 OODialog Method Reference

self∼ConnectTreeNotify("IDC_TREE","Expanded","OnExpanded_IDC_TREE")
self∼ConnectTreeNotify("IDC_TREE","DefaultEdit")
self∼ConnectTreeNotify("IDC_TREE","Delete","OnDelete_IDC_TREE")
self∼ConnectTreeNotify("IDC_TREE","KeyDown","OnKeyDown_IDC_TREE")
self∼ConnectButton("IDC_PB_NEW","IDC_PB_NEW")
self∼ConnectButton("IDC_PB_DELETE","IDC_PB_DELETE")
self∼ConnectButton(2,"Cancel")
self∼ConnectButton(9,"Help")
self∼ConnectButton(1,"OK")
return InitRet

Chapter 31. TreeControl Class 515

516 OODialog Method Reference

Chapter 32. VirtualKeyCodes Class

The methods of the VirtualKeyCodes class can be used for all objects of the
WindowsProgramManager and WindowObject classes. These classes inherit
from the VirtualKeyCodes class. The VirtualKeyCodes class cannot be used as a
standalone class.

The VirtualKeyCodes class requires the class definition file oodwin32.cls:
::requires oodwin32.cls

Methods of the VirtualKeyCodes Class

Instances of the VirtualKeyCodes class implement the methods described in
the following sections.

VCode

�� aVirtualKeyCodes∼VCode(keyname) ��

The VCode method returns the decimal value of a symbolic key name.

Arguments:
The only argument is:

keyname
The symbolic key name. See “Symbolic Names for Virtual
Keys” on page 518 for a list of key names.

Return value:
The decimal value of the symbolic key name. If the symbolic name is
not found, 255 is returned.

KeyName

�� aVirtualKeyCodes∼KeyName(vcode) ��

The KeyName method returns the symbolic key name of the specified
hexadecimal code.

Arguments:
The only argument is:

vcode The hexadecimal code of the key.

© Copyright IBM Corp. 1997, 2001 517

Return value:
The symbolic key name of the specified code.

Example:
The following example deletes or inserts an item in a tree view
depending on the selected key:
::method OnKeyDown_IDC_TREE

use arg treeId, key
curTree = self∼GetTreeControl(treeId)
/* if the Delete key is pressed, delete the selected item */
if self∼KeyName(key) = "DELETE" then

curTree∼Delete(curTree∼Selected)
else
/* if the Insert key is pressed, simulate pressing the New button */
if self∼KeyName(key) = "INSERT" then

self∼IDC_PB_NEW

Symbolic Names for Virtual Keys

Table 18 shows the symbolic names and the keyboard equivalents for the
virtual keys used by Object REXX:

Table 18. Symbolic Names for Virtual Keys

Symbolic Name Mouse or Keyboard Equivalent

LBUTTON Left mouse button

RBUTTON Right mouse button

CANCEL Control-break processing

MBUTTON Middle mouse button (three-button mouse)

BACK BACKSPACE key

TAB TAB key

CLEAR CLEAR key

RETURN ENTER key

SHIFT SHIFT key

CONTROL CRTL key

MENU ALT key

PAUSE PAUSE key

CAPITAL CAPS LOCK key

ESCAPE ESC key

SPACE SPACEBAR

PRIOR PAGE UP key

NEXT PAGE DOWN key

518 OODialog Method Reference

Table 18. Symbolic Names for Virtual Keys (continued)

Symbolic Name Mouse or Keyboard Equivalent

END END key

HOME HOME key

LEFT LEFT ARROW key

UP UP ARROW key

RIGHT RIGHT ARROW key

DOWN DOWN ARROW key

SELECT SELECT key

EXECUTE EXECUTE key

SNAPSHOT PRINT SCREEN key

INSERT INS key

DELETE DEL key

HELP HELP key

0 0 key

1 1 key

2 2 key

3 3 key

4 4 key

5 5 key

6 6 key

7 7 key

8 8 key

9 9 key

A A key

B B key

C C key

D D key

E E key

F F key

G G key

H H key

I I key

J J key

Chapter 32. VirtualKeyCodes Class 519

Table 18. Symbolic Names for Virtual Keys (continued)

Symbolic Name Mouse or Keyboard Equivalent

K K key

L L key

M M key

N N key

O O key

Q Q key

R R key

S S key

T T key

U U key

V V key

W W key

X X key

Y Y key

Z Z key

NUMPAD0 Numeric keypad 0 key

NUMPAD1 Numeric keypad 1 key

NUMPAD2 Numeric keypad 2 key

NUMPAD3 Numeric keypad 3 key

NUMPAD4 Numeric keypad 4 key

NUMPAD5 Numeric keypad 5 key

NUMPAD6 Numeric keypad 6 key

NUMPAD7 Numeric keypad 7 key

NUMPAD8 Numeric keypad 8 key

NUMPAD9 Numeric keypad 9 key

MULTIPLY Multiply key

ADD Add key

SEPARATOR Separator key

SUBTRACT Subtract key

DECIMAL Decimal key

DIVIDE Divide key

F1 F1 key

520 OODialog Method Reference

Table 18. Symbolic Names for Virtual Keys (continued)

Symbolic Name Mouse or Keyboard Equivalent

F2 F2 key

F3 F3 key

F4 F4 key

F5 F5 key

F6 F6 key

F7 F7 key

F8 F8 key

F9 F9 key

F10 F10 key

F11 F11 key

F12 F12 key

F13 F13 key

F14 F14 key

F15 F15 key

F16 F16 key

F17 F17 key

F18 F18 key

F19 F19 key

F20 F20 key

F21 F21 key

F22 F22 key

F23 F23 key

F24 F24 key

NUMLOCK NUM LOCK key

SCROLL SCROLL LOCK key

Chapter 32. VirtualKeyCodes Class 521

522 OODialog Method Reference

Part 3. Appendixes

© Copyright IBM Corp. 1997, 2001 523

524 OODialog Method Reference

Appendix. Notices

This information was developed for products and services offered in the
U.S.A. IBM may not offer the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions, therefore,
this statement may not apply to you.

© Copyright IBM Corp. 1997, 2001 525

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will
be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM Deutschland
Informationssysteme GmbH
Department 3982
Pascalstrasse 100
70569 Stuttgart
Germany

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement or any equivalent agreement between us.

COPYRIGHT LICENSE:

This information contains sample application programs in source language,
which illustrates programming techniques on various operating platforms.
You may copy, modify, and distribute these sample programs in any form
without payment to IBM, for the purposes of developing, using, marketing or
distributing application programs conforming to the application programming
interface for the operating platform for which the sample programs are
written. These examples have not been thoroughly tested under all conditions.
IBM, therefore, cannot guarantee or imply reliability, serviceability, or function
of these programs.

Trademarks

The following terms are trademarks of the IBM Corporation in the United
States, other countries, or both:

IBM
OS/2
VisualAge

526 OODialog Method Reference

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service
marks of others.

Appendix. Notices 527

528 OODialog Method Reference

Index

A
AbsRect2LogRect 200
Add

ComboBox class 446
ListBox class 432
ListControl class 393
TreeControl class 494

Add... Methods 236
AddAttribute 124
AddAutoStartMethod 171
AddBitmapButton 238
AddBlackFrame 258
AddBlackRect 258
AddButton 237
AddButtonGroup 256
AddCategoryComboEntry 286
AddCategoryListEntry 288
AddCheckBox 246
AddCheckBoxStem 254
AddCheckGroup 249
AddComboBox 245
AddComboEntry 135
AddComboInput 252
AddDirectory

ComboBox class 450
ListBox class 441

AddEntryLine 241
AddFullSeq 482
AddGrayRect 258
AddGreyFrame 258
AddGroupBox 240
AddInput 249
AddInputGroup 251
AddInputStem 252
AddLine 296

InputBox class 296
PasswordBox class 297

AddListBox 244
AddListControl 354
AddListEntry 142
AddMenuItem 261
AddMenuSeparator 262
AddOkCancelLeftBottom 259
AddOkCancelLeftTop 260
AddOkCancelRightBottom 259
AddOkCancelRightTop 259
AddPasswordLine 243
AddPopupMenu 261
AddProgressBar 358

AddRadioButton 246
AddRadioGroup 248
AddRadioStem 255
AddRow 394
AddScrollBar 255
AddSequence 482
AddSliderControl 359
AddStyle 383
AddTabControl 361
AddText 240
AddTreeControl 352
AddUserMsg 122
AddWhiteFrame 258
AddWhiteRect 257
AdjustToRectangle 489
AdvancedControls class 337
AlignLeft 409
AlignTop 409
Animated Buttons 171
AnimatedButton Class 307
Arrange 408
AskDialog 178
AssignFocus 185
AssignWindow 186
AsyncMessageHandling 106
AutoDetection 109

B
BackgroundBitmap 165
BackgroundColor 152
BaseDialog Class 89
Bitmap Methods 162
BkColor 412
BkColor= 412
ButtonControl class 415

C
Cancel 134
Cancel Push Button 259
CaptureMouse 207
CategoryComboAddDirectory 287
CategoryComboDrop 288
CategoryDialog class 66, 271
CategoryListAddDirectory 289
CategoryListDrop 290
CategoryPage 278
Center 158
ChangeBitmap 419
ChangeBitmapButton 162
ChangeCategoryComboEntry 287

ChangeCategoryListEntry 289
ChangeComboEntry 139
ChangeListEntry 145
ChangePage 280
Check 428
check list 7
CheckBox class 429
CheckList class 7, 302
CheckList function 303
CheckMenuItem 175
Child 501
Clear 197
ClearButtonRect 161
ClearMessages 107
ClearRect

BaseDialog class 161
DialogControl class 197

ClearSelRange 476
ClearTicks 470
ClearWindowRect 162
ClientToScreen 201
CloseDropDown 451
Collapse 505
CollapseAndReset 506
color 87
color palette 88
ColumnInfo 387
ColumnWidth 388
ColumnWidth= 443
CombineELwithSB 149
Combo Box Methods 286
ComboAddDirectory 139
ComboBox class 445
ComboDrop 140
Connect... Methods 281
connect methods

BaseDialog class 107
DialogControl class 186

ConnectAllSBEvents 121
ConnectAnimatedButton 172
ConnectBitmapButton 112
ConnectButton 111
ConnectButtonNotify 322
ConnectCheckBox 117
ConnectComboBox 117
ConnectComboBoxNotify 328
ConnectCommonNotify 312
ConnectControl 114
ConnectDraw 114

© Copyright IBM Corp. 1997, 2001 529

ConnectEditNotify 324
ConnectEntryLine 116
ConnectList 115
ConnectListBox 118
ConnectListBoxNotify 326
ConnectListControl 351
ConnectListLeftDoubleClick 115
ConnectListNotify 318
ConnectMenuItem 174
ConnectMouseCapture 111
ConnectMove 110
ConnectMultiListBox 118
ConnectPosChanged 110
ConnectRadioButton 117
ConnectResize 109
ConnectScrollBar 119
ConnectScrollBarNotify 330
ConnectSliderControl 351
ConnectSliderNotify 333
ConnectTabControl 352
ConnectTabNotify 332
ConnectTreeControl 350
ConnectTreeNotify 313
conversion methods 199
CountTicks 470
Create 231
CreateBrush 219
CreateCategoryDialog 278
CreateCenter 232
CreateFont 216
CreateMenu 261
CreatePen 220
CurrentCategory 279
cursor and mouse methods 203
Cursor_AppStarting 205
Cursor_Arrow 205
Cursor_Cross 206
Cursor_No 206
Cursor_Wait 206
CursorPos 203

D
DefineDialog

CategoryDialog class 277
InputBox class 296
TimedMessage class 294
UserDialog class 233

DefListDragHandler 321
DefTreeDragHandler 316
DeInstall 135
Delete

ComboBox class 446
ListBox class 433
ListControl class 395
TabControl class 484
TreeControl class 504

DeleteAll
ComboBox class 447
ListBox class 433
ListControl class 395
TabControl class 485
TreeControl class 505

DeleteCategoryComboEntry 286
DeleteCategoryListEntry 288
DeleteColumn 385
DeleteComboEntry 136
DeleteFont 217
DeleteListEntry 142
DeleteObject 221
Deselect 399
DeSelectIndex 435
DeselectRange 437
DeterminePosition 455
DetermineSBPosition 149
device context 87
device context methods

BaseDialog class 166
DialogControl class 209

dialog classes 11
Dialog Control Methods 260
dialog creation 25
dialog unit 87
DialogControl class 181
DimBitmap 425
Disable 191
disable methods

BaseDialog class 152
catalog items 290
DialogControl class 190

DisableCategoryItem 290
DisableItem 153
DisableMenuItem 175
DisplaceBitmap

BaseDialog class 165
ButtonControl class 420

Display 192
Draw 197
draw methods

BaseDialog class 159
DialogControl class 197

DrawAngleArc 225
DrawArc 223
DrawBitmap

BaseDialog class 163
ButtonControl class 424

DrawButton 159
DrawLine 222
DrawPie 225
DrawPixel 223
DropHighlight 510

DropHighlighted
ListControl class 400
TreeControl class 502

Dump 180

E
Edit

ListControl class 410
TreeControl class 508

EditControl class 367
EditSelection 452
Enable 190
enable methods

BaseDialog class 152
catalog items 290
DialogControl class 190

EnableCategoryItem 290
EnableItem 153
EnableMenuItem 174
EndAsyncExecution 102
EndEdit

ListControl class 411
TreeControl class 509

EnsureCaretVisibility 370
EnsureVisible

ListControl class 404
TreeControl class 507

ErrorDialog 178
ErrorMessage 77
event handling 59
Execute 100

BaseDialog class 100
InputBox class 296
TimedMessage class 295

ExecuteAsync 101
Expand 506

F
FileNameDialog 178
FillDrawing 225
Find

ComboBox class 447
ListBox class 433
ListControl class 407

FindCategoryComboEntry 286
FindCategoryListEntry 288
FindComboEntry 137
FindListEntry 143
FindNearestXY 408
FindPartial 407
FindWindow 180
FirstVisible

ListControl class 401
TreeControl class 502

FirstVisibleLine 375

530 OODialog Method Reference

Focus
ListControl class 400
TabControl class 486

FocusCategoryItem 291
Focused

ListControl class 400
TabControl class 487

FocusItem 152
FontColor 218
FontToDC 218
ForegroundWindow 194
Frames 257
FreeButtonDC 167
FreeDC 210
FreeWindowDC 167

G
Get 150
get and set methods

BaseDialog class 125
DialogControl class 187

Get Methods 283
GetArcDirection 224
GetAttrib 131
GetBitmapSizeX

BaseDialog class 162
ButtonControl class 423

GetBitmapSizeY
BaseDialog class 163
ButtonControl class 423

GetBmpDisplacement 421
BaseDialog class 165

GetButtonControl 340
GetButtonDC 166
GetButtonRect 151
GetCategoryAttrib 285
GetCategoryCheckBox 285
GetCategoryComboEntry 287
GetCategoryComboItems 287
GetCategoryComboLine 284
GetCategoryEntryLine 283
GetCategoryListEntry 288
GetCategoryListItems 289
GetCategoryListLine 283
GetCategoryListWidth 283
GetCategoryMultiList 284
GetCategoryRadioButton 284
GetCategoryValue 285
GetCheckBox 130
GetCheckControl 342
GetClientRect 189
GetComboBox 343
GetComboEntry 137
GetComboItems 137
GetComboLine 129

GetCurrentCategoryComboIndex 287
GetCurrentCategoryListIndex 289
GetCurrentComboIndex 138
GetCurrentListIndex 145
GetData 125
GetDataStem 133
GetDC 209
GetEditControl 339
GetEntryLine 126
GetFileNameWindow 78
GetFirstVisible 439
GetFocus 190
GetID 187
GetItem 151
GetLine 377
GetLineStep 472
GetListBox 342
GetListControl 346
GetListEntry 143
GetListItemHeight 144
GetListItems 144
GetListLine 127
GetListWidth 140
GetMenuItemState 176
GetMouseCapture 207
GetMultiList 128
GetPageStep 472
GetPixel 223
GetPos

BaseDialog class 151
DialogControl class 189

GetProgressBar 347
GetRadioButton 129
GetRadioControl 341
GetRect 187
GetSBPos 148
GetSBRange 147
GetScreenSize 77
GetScrollBar 345
GetSelectedPage 279
GetSize 189
GetSliderControl 348
GetStaticControl 338
GetTabControl 349
GetText

ComboBox class 449
ListBox class 439

GetTextSize 215
GetTick 471
GetTreeControl 345
GetValue 130
GetWindowDC 166
GetWindowRect 152
Graphic Drawing Methods 221
graphics 53

Graphics Methods 219
GrayMenuItem 175

H
handle 87
HandleMessages 106
Help 134
Hide 191
hide methods

BaseDialog class 152
catalog items 290
DialogControl class 190

HideCategoryItem 290
HideFast 191
HideItem 153
HideItemFast 154
HideWindow 154
HideWindowFast 155
HitTest 512
HScrollPos 202

I
id 87
Indent 508
Indent= 508
Indeterminate 428
InfoDialog 177
InfoMessage 77
Init

BaseDialog class 98
CategoryDialog class 274
CheckList class 302
InputBox class 295
ListChoice class 300
MultiInputBox class 298
PropertySheet class 458
ResDialog class 269
SingleSelection class 304
TimedMessage class 294
UserDialog class 230

InitAutoDetection
BaseDialog class 108
UserDialog class 230

InitCategories 275
InitDialog

BaseDialog class 98
CategoryDialog class 278

InitRange 468
InitSelRange 474
input box 4
InputBox class 4, 295
InputBox function 296
Insert

ComboBox class 446
ListBox class 432
ListControl class 389

Index 531

Insert (continued)
TabControl class 480
TreeControl class 492

InsertCategoryComboEntry 286
InsertCategoryListEntry 288
InsertColumn 385
InsertComboEntry 136
InsertListEntry 142
integer box 4
IntegerBox class 4, 297
IntegerBox function 298
IsAncestor 514
IsChecked 427
IsDialogActive 104
IsDropDownOpen 452
IsModified 371
IsMouseButtonDown 208
ItemHeight 442
ItemHeight= 443
ItemInfo

ListControl class 396
TabControl class 484
TreeControl class 499

ItemPos 409
Items

ComboBox class 449
ListBox class 437
ListControl class 395
TabControl class 483
TreeControl class 500

ItemsPerPage 411
ItemState 398
ItemText 398
ItemTitle 126

K
KeyName 517

L
Last

ListControl class 396
TabControl class 485

LastSelected 399
Leaving 135
LineFromIndex 373
LineIndex 372
LineLength 373
Lines 372
LineScroll 370
List Box Methods 288
list choice 6
ListAddDirectory 146
ListBox class 431
ListChoice class 6, 300
ListChoice function 301
ListControl class 379

ListDrop 146
Load 234
LoadBitmap 208
LoadFrame 235
LoadItems 236
LoadMenu 262
LogRect2AbsRect 199

M
MakeFirstVisible

ListBox class 438
TreeControl class 510

Margins 377
Maximize 193
menu methods

BaseDialog class 174
UserDialog class 260

menus 49
MessageExtensions class 311
methods for dialog items 282
methods for handles, sizes, and

positions 150
Minimize 193
Modify

ComboBox class 450
ListBox class 439
ListControl class 390
TabControl class 481
TreeControl class 496

ModifyColumn 386
mouse and cursor methods 203
Move 195
MoveCategoryItem 291
MoveItem

BaseDialog class 158
TreeControl class 513

MultiInputBox class 298
MultiInputBox function 299
MultiListChoice class 6, 301
MultiListChoice function 302
multiple input box 4
multiple list choice 6
MultipleInputBox class 4

N
nested dialogs 45
Next

ListControl class 402
TreeControl class 503

NextLeft 402
NextPage 279
NextRight 402
NextSelected 401
NextVisible 503
NoAutoDetection 108
Notices 525

notification messages
ListControl class 414
TreeControl class 514

O
Object REXX

dialog classes 11
tokenizing 75

ObjectToDC 220
OK 133
OK Push Button 259
OODialog

classes
CategoryDialog 66
CheckList 7
InputBox 4
IntegerBox 4
ListChoice 6
MultiListChoice 6
MultipleInputBox 4
PasswordBox 4
ResDialog 65
SingleSelection 9
TimedMessage 3
UserDialog 11, 33, 60

dialog creation 25
event handling 59
graphics 53
menus 49
nested dialogs 45
resource workshop 9, 13
scrolling bitmaps 59
scrolling text 59
standard dialogs 3
Template Generator 25
tokenizing 75
Workbench 25

OpaqueText 212
OpenDropDown 451

P
PageHasChanged 280
Parent 501
password box 4
PasswordBox class 4, 297
PasswordBox function 297
PasswordChar 375
PasswordChar= 374
PeekDialogMessage 107
pixel 87
Play 177
PlaySoundFile 77
PlaySoundFileInLoop 77
Popup 102
PopupAsChild 103
Pos 467

532 OODialog Method Reference

Pos= 466
Position 455
PosRectangle 489
Prepare4nItems 396
Previous

ListControl class 402
TreeControl class 504

PreviousPage 280
PreviousSelected 401
PreviousVisible 504
ProcessMessage 184
ProgressBarControl class 461
PropertySheet class 457
Public Routines 176

R
RadioButton class 427
Range

ScrollBar class 454
SliderControl class 469

Rectangle 221
Rectangles 257
Redraw 198
RedrawButton 160
RedrawClient 199
RedrawItems 403
RedrawRect

BaseDialog class 159
DialogControl class 198

RedrawWindow 156
RedrawWindowRect 160
ReleaseMouseCapture 207
RemoveBitmap 209
RemoveImages

ListControl class 406
TabControl class 488
TreeControl class 512

RemoveSmallImages 406
RemoveStyle 384
ReplaceSelText 374
ReplaceStyle 382
RequiredWindowSize 490
ResDialog class 65, 269
Resize 193
ResizeCategoryItem 291
ResizeItem 157
resource workshop 9, 13
RestoreCursorShape 204
RestoreEditClass

ListControl class 411
TreeControl class 509

Root 501
Rows 483
Run 99

S
ScreenToClient 200
Scroll

ButtonControl class 421
DialogControl class 201
ListControl class 411

Scroll Bar Methods 147
scroll methods 201
ScrollBar class 453
ScrollBitmapFromTo

BaseDialog class 164
ButtonControl class 425

ScrollCommand 369
ScrollInButton 170
scrolling bitmaps 59
scrolling text 59
ScrollText

BaseDialog class 168
ButtonControl class 422

Select
ComboBox class 449
EditControl class 368
ListBox class 435
ListControl class 398
TabControl class 486
TreeControl class 509

Selected
ComboBox class 448
EditControl class 368
ListBox class 434
ListControl class 399
TabControl class 485
TreeControl class 502

SelectedIndex
ComboBox class 448
ListBox class 434
TabControl class 486

SelectedIndexes 438
SelectedItems

ListBox class 438
ListControl class 396

SelectIndex
ComboBox class 448
ListBox class 435
TabControl class 486

SelectRange 436
SelRange 477
SendMessageToCategoryItem 291
SendMessageToItem 107
Set Methods 283
SetArcDirection 224
SetAttrib 132
SetCategoryAttrib 285
SetCategoryCheckBox 285
SetCategoryComboLine 284

SetCategoryEntryLine 283
SetCategoryItemFont 290
SetCategoryListLine 283
SetCategoryListTabulators 289
SetCategoryListWidth 284
SetCategoryMultiList 284
SetCategoryRadioButton 284
SetCategoryStaticText 283
SetCategoryValue 285
SetCheckBox 130
SetColor 194
SetColumnWidth 388
SetComboLine 129
SetCurrentCategoryComboIndex 287
SetCurrentCategoryListIndex 289
SetCurrentComboIndex 138
SetCurrentListIndex 145
SetCursorPos 203
SetData 125
SetDataStem 132
SetEntryLine 126
SetFocus 190
SetFont 216
SetHScrollPos 202
SetImages

ListControl class 405
TabControl class 487
TreeControl class 511

SetItemFont 170
SetItemPos 410
SetItemState 392
SetItemText 391
SetLimit 374
SetLineStep 473
SetListColumnWidth 141
SetListItemHeight 144
SetListLine 127
SetListTabulators 146
SetListWidth 141
SetMargins 376
SetMax 469
SetMenu

ResDialog class 270
UserDialog class 262

SetMenuItemRadio 176
SetMin 468
SetModified 371
SetMultiList 128
SetPadding 488
SetPageStep 474
SetPos

ProgressBarControl class 462
ScrollBar class 454
SliderControl class 466

SetRadioButton 130

Index 533

SetRange
ProgressBarControl class 463
ScrollBar class 453

SetReadOnly 376
SetRect 188
SetSBPos 148
SetSBRange 147
SetSelEnd 476
SetSelStart 475
SetSize 488
SetSmallImages 405
SetStaticText 126
SetStep 463
SetTabulators 440
SetTickAt 471
SetTickFrequency 471
Setting Up the Dialog 274
SetTitle 197
SetValue 131
SetVScrollPos 203
SetWidth 442
SetWindowRect 155
SetWindowTitle 159
Show

BaseDialog 105
DialogControl 185

show methods
BaseDialog class 152
catalog items 290
DialogControl class 190

ShowCategoryItem 290
ShowFast 191
ShowItem 154
ShowItemFast 154
ShowWindow 155
ShowWindowFast 155
single selection 9
SingleSelection class 9, 304
SingleSelection function 305
SleepMS 79
SliderControl class 465
SmallSpacing 403
SnapToGrid 408
SortChildren 511
Spacing 403
Standard Dialog classes and

functions 293
standard dialogs 3
Standard Event Methods 133
StartIt

CategoryDialog class 281
ResDialog class 270
UserDialog class 260

State 416
State= 416

StaticControl class 365
Step 462
StopIt

BaseDialog class 104
UserDialog class 260

StopSoundFile 77
StringWidth 389
Style= 417
SubclassEdit

ListControl class 411
TreeControl class 509

T
TabControl class 479
text methods

BaseDialog class 167
DialogControl class 210

TextBkColor 413
TextBkColor= 414
TextColor 413
TextColor= 413
TiledBackgroundBitmap 164
timed message 3
TimedMessage class 3, 293
TimedMessage function 295
Title 196
Title= 196
Toggle 507
tokenizing 75
ToTheTop 105
TransparentText 212
TreeControl class 491

U
Uncheck 428
UncheckMenuItem 175
Update

DialogControl class 196
ListControl class 404

UpdateItem 404
user interface creation 13
UserDialog class 11, 33, 60, 227

V
Validate

BaseDialog class 134
IntegerBox class 298

Value 185
Value= 185
VCode 517
view styles 381
VirtualKeyCodes class 517
VisibleItems 500
VScrollPos 202

W
Width 442
WinTimer 79
Workbench Template Generator 25
Write

BaseDialog class 167
DialogControl class 210

WriteDirect 212
WriteToButton 214
WriteToWindow 213

Y
YesNoMessage 77

534 OODialog Method Reference

Readers’ Comments — We’d Like to Hear from You

Object REXX for Windows
OODialog Method Reference
Version 2.1

Publication No. SH12-6727-00

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SH12-6727-00

SH12-6727-00

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

PLACE

POSTAGE

STAMP

HERE

IBM Deutschland Entwicklung GmbH
Information Development, Dept. 0446
Schoenaicher Str. 220
71032 Boeblingen
Germany

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Part Number: CT81FIE
Program Number: 5639-M68 Development Edition

Printed in Denmark by IBM Danmark A/S

SH12-6727-00

(1
P)

P/
N:

CT
81
FI
E

	Contents
	About This Book
	Who Should Use This Book
	How This Book is Structured
	Related Information
	How to Send Your Comments
	How to Read the Syntax Diagrams

	Part 1. Developing Graphical User Interfaces withOODialog
	Chapter 1. Conceptual Overview
	The Design of OODialog
	Standard Dialogs
	Timed Message Box
	Input Box, Integer Box, Password Box
	Multiple Input Box
	List Choice
	Multiple List Choice
	Check List
	Single Selection

	IBM Resource Workshop
	Resources

	Object REXX Dialog Classes
	Object REXX Objects and Windows Objects
	Separate Data Areas
	Methods Dealing with Windows Objects

	Chapter 2. Creating your User Interface
	Creating a New Resource Project
	Creating a New Dialog
	Configuring the Resource Workshop
	Adding Control Items to your Dialog
	The Tools Toolbar

	Chapter 3. Using a Dialog with Object REXX
	Using the Object REXX Workbench OODialog Template Generator
	The PlainUserDialog Class
	Changing the Dialog Behavior
	Dialog Data Validation
	Advanced Dialog Programming
	Nesting Dialogs
	Formatted Lists
	Using Menus within Your Dialogs
	Creating Graphics with OODialog
	Scrolling Text and Bitmaps
	More about Event Handling
	Summary of User Dialog Processing

	Chapter 4. Other OODialog Classes
	The ResDialog Class
	The CategoryDialog Class

	Chapter 5. Tokenizing OODialog Scripts
	Chapter 6. OODialog External Functions
	Part 2. OODialog Method Reference
	Chapter 7. Definition of Terms
	Chapter 8. BaseDialog Class
	Preparing and Running the Dialog
	Init
	InitDialog
	Run
	Execute
	ExecuteAsync
	EndAsyncExecution
	Popup
	PopupAsChild
	IsDialogActive
	StopIt
	Show
	ToTheTop
	HandleMessages
	AsyncMessageHandling
	PeekDialogMessage
	ClearMessages
	SendMessageToItem

	Connect Methods
	InitAutoDetection
	NoAutoDetection
	AutoDetection
	ConnectResize
	ConnectMove
	ConnectPosChanged
	ConnectMouseCapture
	ConnectButton
	ConnectBitmapButton
	ConnectControl
	ConnectDraw
	ConnectList
	ConnectListLeftDoubleClick
	ConnectEntryLine
	ConnectComboBox
	ConnectCheckBox
	ConnectRadioButton
	ConnectListBox
	ConnectMultiListBox
	ConnectScrollBar
	ConnectAllSBEvents
	AddUserMsg
	AddAttribute

	Get and Set Methods
	GetData
	SetData
	ItemTitle
	SetStaticText
	GetEntryLine
	SetEntryLine
	GetListLine
	SetListLine
	GetMultiList
	SetMultiList
	GetComboLine
	SetComboLine
	GetRadioButton
	SetRadioButton
	GetCheckBox
	SetCheckBox
	GetValue
	SetValue
	GetAttrib
	SetAttrib
	SetDataStem
	GetDataStem

	Standard Event Methods
	OK
	Cancel
	Help
	Validate
	Leaving
	DeInstall

	Combo Box Methods
	AddComboEntry
	InsertComboEntry
	DeleteComboEntry
	FindComboEntry
	GetComboEntry
	GetComboItems
	GetCurrentComboIndex
	SetCurrentComboIndex
	ChangeComboEntry
	ComboAddDirectory
	ComboDrop

	List Box Methods
	GetListWidth
	SetListWidth
	SetListColumnWidth
	AddListEntry
	InsertListEntry
	DeleteListEntry
	FindListEntry
	GetListEntry
	GetListItems
	GetListItemHeight
	SetListItemHeight
	GetCurrentListIndex
	SetCurrentListIndex
	ChangeListEntry
	SetListTabulators
	ListAddDirectory
	ListDrop

	Scroll Bar Methods
	GetSBRange
	SetSBRange
	GetSBPos
	SetSBPos
	CombineELwithSB
	DetermineSBPosition

	Methods for Window Handles, Sizes, and Positions
	Get
	GetItem
	GetPos
	GetButtonRect
	GetWindowRect

	Appearance Modification Methods
	BackgroundColor
	FocusItem
	EnableItem
	DisableItem
	HideItem
	HideItemFast
	ShowItem
	ShowItemFast
	HideWindow
	HideWindowFast
	ShowWindow
	ShowWindowFast
	SetWindowRect
	RedrawWindow
	ResizeItem
	MoveItem
	Center
	SetWindowTitle

	Window Draw Methods
	DrawButton
	RedrawRect
	RedrawButton
	RedrawWindowRect
	ClearRect
	ClearButtonRect
	ClearWindowRect

	Bitmap Methods
	ChangeBitmapButton
	GetBitmapSizeX
	GetBitmapSizeY
	DrawBitmap
	ScrollBitmapFromTo
	TiledBackgroundBitmap
	BackgroundBitmap
	DisplaceBitmap
	GetBmpDisplacement

	Device Context Methods
	GetWindowDC
	GetButtonDC
	FreeWindowDC
	FreeButtonDC

	Text Methods
	Write
	ScrollText
	ScrollInButton
	ScrollButton
	SetItemFont

	Animated Buttons
	AddAutoStartMethod
	ConnectAnimatedButton

	Menu Methods
	ConnectMenuItem
	EnableMenuItem
	DisableMenuItem
	CheckMenuItem
	UncheckMenuItem
	GrayMenuItem
	SetMenuItemRadio
	GetMenuItemState

	Public Routines
	Play
	InfoDialog
	ErrorDialog
	AskDialog
	FileNameDialog
	FindWindow

	Debugging Method
	Dump

	Chapter 9. DialogControl Class
	Preparing and Running the Dialog Control
	ProcessMessage
	AssignFocus
	Show
	Value
	Value=

	Connect Method
	AssignWindow

	Get and Set Methods
	GetID
	GetRect
	SetRect
	GetClientRect
	GetPos
	GetSize
	GetFocus
	SetFocus

	Appearance Modification Methods
	Enable
	Disable
	Hide
	HideFast
	ShowFast
	Display
	Minimize
	Maximize
	Resize
	SetColor
	ForegroundWindow
	Move
	Update
	Title
	Title=
	SetTitle

	Draw Methods
	Draw
	Clear
	ClearRect
	Redraw
	RedrawRect
	RedrawClient

	Conversion Methods
	LogRect2AbsRect
	AbsRect2LogRect
	ScreenToClient
	ClientToScreen

	Scroll Methods
	Scroll
	HScrollPos
	VScrollPos
	SetHScrollPos
	SetVScrollPos

	Mouse and Cursor Methods
	CursorPos
	SetCursorPos
	RestoreCursorShape
	Cursor_Arrow
	Cursor_AppStarting
	Cursor_Cross
	Cursor_No
	Cursor_Wait
	GetMouseCapture
	CaptureMouse
	ReleaseMouseCapture
	IsMouseButtonDown

	Bitmap Methods
	LoadBitmap
	RemoveBitmap

	Device Context Methods
	GetDC
	FreeDC

	Text Methods
	Write
	WriteDirect
	TransparentText
	OpaqueText
	WriteToWindow
	WriteToButton
	GetTextSize
	SetFont
	CreateFont
	DeleteFont
	FontToDC
	FontColor

	Graphic Methods
	CreateBrush
	CreatePen
	ObjectToDC
	DeleteObject

	Graphic Drawing Methods
	Rectangle
	DrawLine
	DrawPixel
	GetPixel
	DrawArc
	GetArcDirection
	SetArcDirection
	DrawPie
	FillDrawing
	DrawAngleArc

	Chapter 10. UserDialog Class
	Init
	InitAutoDetection
	Create
	CreateCenter
	DefineDialog
	Load
	LoadFrame
	LoadItems
	Add... Methods
	AddButton
	AddBitmapButton
	AddGroupBox
	AddText
	AddEntryLine
	AddPasswordLine
	AddListBox
	AddComboBox
	AddCheckBox
	AddRadioButton
	AddRadioGroup
	AddCheckGroup
	AddInput
	AddInputGroup
	AddComboInput
	AddInputStem
	AddCheckBoxStem
	AddRadioStem
	AddScrollBar
	AddButtonGroup

	Frames and Rectangles
	AddWhiteRect
	AddWhiteFrame
	AddGrayRect
	AddGreyFrame
	AddBlackRect
	AddBlackFrame

	OK and Cancel Push Buttons
	AddOkCancelRightBottom
	AddOkCancelLeftBottom
	AddOkCancelRightTop
	AddOkCancelLeftTop

	Dialog Control Methods
	StartIt
	StopIt

	Menu Methods
	CreateMenu
	AddPopupMenu
	AddMenuItem
	AddMenuSeparator
	SetMenu
	LoadMenu

	Chapter 11. PlainUserDialog Class and PlainBaseDialogClass
	Chapter 12. ResDialog Class
	Init
	StartIt
	SetMenu

	Chapter 13. CategoryDialog Class
	Setting Up the Dialog
	Init
	InitCategories
	DefineDialog
	CategoryPage
	CreateCategoryDialog
	InitDialog
	GetSelectedPage
	CurrentCategory
	NextPage
	PreviousPage
	ChangePage
	PageHasChanged
	StartIt

	Connect... Methods
	Methods for Dialog Items
	Get and Set Methods
	SetCategoryStaticText
	GetCategoryEntryLine
	SetCategoryEntryLine
	GetCategoryListLine
	SetCategoryListLine
	GetCategoryListWidth
	SetCategoryListWidth
	GetCategoryMultiList
	SetCategoryMultiList
	GetCategoryComboLine
	SetCategoryComboLine
	GetCategoryRadioButton
	SetCategoryRadioButton
	GetCategoryCheckBox
	SetCategoryCheckBox
	GetCategoryValue
	SetCategoryValue
	GetCategoryAttrib
	SetCategoryAttrib

	Combo Box Methods
	AddCategoryComboEntry
	InsertCategoryComboEntry
	DeleteCategoryComboEntry
	FindCategoryComboEntry
	GetCategoryComboEntry
	GetCategoryComboItems
	GetCurrentCategoryComboIndex
	SetCurrentCategoryComboIndex
	ChangeCategoryComboEntry
	CategoryComboAddDirectory
	CategoryComboDrop

	List Box Methods
	AddCategoryListEntry
	InsertCategoryListEntry
	DeleteCategoryListEntry
	FindCategoryListEntry
	GetCategoryListEntry
	GetCategoryListItems
	GetCurrentCategoryListIndex
	SetCurrentCategoryListIndex
	ChangeCategoryListEntry
	SetCategoryListTabulators
	CategoryListAddDirectory
	CategoryListDrop

	Appearance Modification Methods
	EnableCategoryItem
	DisableCategoryItem
	ShowCategoryItem
	HideCategoryItem
	SetCategoryItemFont
	FocusCategoryItem
	ResizeCategoryItem
	MoveCategoryItem
	SendMessageToCategoryItem

	Chapter 14. Standard Dialog Classes and Functions
	TimedMessage Class
	Init
	DefineDialog
	Execute
	TimedMessage Function

	InputBox Class
	Init
	DefineDialog
	AddLine
	Execute
	InputBox Function

	PasswordBox Class
	AddLine
	PasswordBox Function

	IntegerBox Class
	Validate
	IntegerBox Function

	MultiInputBox Class
	Init
	MultiInputBox Function

	ListChoice Class
	Init
	ListChoice Function

	MultiListChoice Class
	MultiListChoice Function

	CheckList Class
	Init
	CheckList Function

	SingleSelection Class
	Init
	SingleSelection Function

	Chapter 15. AnimatedButton Class
	Chapter 16. MessageExtensions Class
	ConnectCommonNotify
	ConnectTreeNotify
	DefTreeDragHandler
	ConnectListNotify
	DefListDragHandler
	ConnectButtonNotify
	ConnectEditNotify
	ConnectListBoxNotify
	ConnectComboBoxNotify
	ConnectScrollBarNotify
	ConnectTabNotify
	ConnectSliderNotify

	Chapter 17. AdvancedControls Class
	GetStaticControl
	GetEditControl
	GetButtonControl
	GetRadioControl
	GetCheckControl
	GetListBox
	GetComboBox
	GetScrollBar
	GetTreeControl
	GetListControl
	GetProgressBar
	GetSliderControl
	GetTabControl
	ConnectTreeControl
	ConnectListControl
	ConnectSliderControl
	ConnectTabControl
	AddTreeControl
	AddListControl
	AddProgressBar
	AddSliderControl
	AddTabControl

	Chapter 18. StaticControl Class
	Chapter 19. EditControl Class
	Selected
	Select
	ScrollCommand
	LineScroll
	EnsureCaretVisibility
	IsModified
	SetModified
	Lines
	LineIndex
	LineLength
	LineFromIndex
	ReplaceSelText
	SetLimit
	PasswordChar=
	PasswordChar
	FirstVisibleLine
	SetReadOnly
	SetMargins
	Margins
	GetLine

	Chapter 20. ListControl Class
	View Styles
	Methods of the ListControl Class
	ReplaceStyle
	AddStyle
	RemoveStyle
	InsertColumn
	DeleteColumn
	ModifyColumn
	ColumnInfo
	ColumnWidth
	SetColumnWidth
	StringWidth
	Insert
	Modify
	SetItemText
	SetItemState
	Add
	AddRow
	Delete
	DeleteAll
	Items
	Last
	Prepare4nItems
	SelectedItems
	ItemInfo
	ItemText
	ItemState
	Select
	Deselect
	Selected
	LastSelected
	Focused
	Focus
	DropHighlighted
	FirstVisible
	NextSelected
	PreviousSelected
	Next
	Previous
	NextLeft
	NextRight
	SmallSpacing
	Spacing
	RedrawItems
	UpdateItem
	Update
	EnsureVisible
	SetSmallImages
	SetImages
	RemoveSmallImages
	RemoveImages
	Find
	FindPartial
	FindNearestXY
	Arrange
	SnapToGrid
	AlignLeft
	AlignTop
	ItemPos
	SetItemPos
	Edit
	EndEdit
	SubclassEdit
	RestoreEditClass
	ItemsPerPage
	Scroll
	BkColor
	BkColor=
	TextColor
	TextColor=
	TextBkColor
	TextBkColor=

	Notification Messages

	Chapter 21. ButtonControl Class
	State
	State=
	Style=
	ChangeBitmap
	DisplaceBitmap
	GetBmpDisplacement
	Scroll
	ScrollText
	GetBitmapSizeX
	GetBitmapSizeY
	DrawBitmap
	DimBitmap
	ScrollBitmapFromTo

	Chapter 22. RadioButton Class
	IsChecked
	Check
	Uncheck
	Indeterminate

	Chapter 23. CheckBox Class
	Chapter 24. ListBox Class
	Add
	Insert
	Delete
	DeleteAll
	Find
	SelectedIndex
	Selected
	SelectIndex
	DeSelectIndex
	Select
	SelectRange
	DeselectRange
	Items
	SelectedItems
	SelectedIndexes
	MakeFirstVisible
	GetFirstVisible
	GetText
	Modify
	SetTabulators
	AddDirectory
	SetWidth
	Width
	ItemHeight
	ItemHeight=
	ColumnWidth=

	Chapter 25. ComboBox Class
	Add
	Insert
	Delete
	DeleteAll
	Find
	SelectedIndex
	Selected
	SelectIndex
	Select
	Items
	GetText
	Modify
	AddDirectory
	OpenDropDown
	CloseDropDown
	IsDropDownOpen
	EditSelection

	Chapter 26. ScrollBar Class
	SetRange
	Range
	SetPos
	Position
	DeterminePosition

	Chapter 27. PropertySheet Class
	Init

	Chapter 28. ProgressBarControl Class
	Step
	SetPos
	SetStep
	SetRange

	Chapter 29. SliderControl Class
	Pos=
	SetPos
	Pos
	InitRange
	SetMin
	SetMax
	Range
	ClearTicks
	CountTicks
	GetTick
	SetTickAt
	SetTickFrequency
	GetLineStep
	GetPageStep
	SetLineStep
	SetPageStep
	InitSelRange
	SetSelStart
	SetSelEnd
	ClearSelRange
	SelRange

	Chapter 30. TabControl Class
	Insert
	Modify
	AddSequence
	AddFullSeq
	Items
	Rows
	ItemInfo
	Delete
	DeleteAll
	Last
	Selected
	SelectedIndex
	Select
	SelectIndex
	Focus
	Focused
	SetImages
	RemoveImages
	SetPadding
	SetSize
	PosRectangle
	AdjustToRectangle
	RequiredWindowSize

	Chapter 31. TreeControl Class
	Methods of the TreeControl Class
	Insert
	Add
	Modify
	ItemInfo
	Items
	VisibleItems
	Root
	Parent
	Child
	Selected
	DropHighlighted
	FirstVisible
	Next
	NextVisible
	Previous
	PreviousVisible
	Delete
	DeleteAll
	Collapse
	CollapseAndReset
	Expand
	Toggle
	EnsureVisible
	Indent
	Indent=
	Edit
	EndEdit
	SubclassEdit
	RestoreEditClass
	Select
	MakeFirstVisible
	DropHighlight
	SortChildren
	SetImages
	RemoveImages
	HitTest
	MoveItem
	IsAncestor

	Notification Messages

	Chapter 32. VirtualKeyCodes Class
	Methods of the VirtualKeyCodes Class
	VCode
	KeyName

	Symbolic Names for Virtual Keys

	Part 3. Appendixes
	Appendix. Notices
	Trademarks

	Index
	Readers’ Comments — We'd Like to Hear from You

