
Object REXX for Windows

Reference

Version 2.1

SH12-6725-00

���

Object REXX for Windows

Reference

Version 2.1

SH12-6725-00

���

Note!
Before using this information and the product it supports, be sure to read the general information under
“Appendix D. Notices” on page 547.

First Edition, March 2001

This edition applies to Version 2.1 of IBM Object REXX for Windows Interpreter Edition (5639-M69) and Development
Edition (5639-M68), and to all subsequent releases and modifications until otherwise indicated in new editions or
technical newsletters.

This edition replaces SH12-6222-03.

© Copyright International Business Machines Corporation 1994, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About This Book. xiii
Related Information xiii
How to Send Your Comments. xiii
How to Read the Syntax Diagrams xiii

Chapter 1. REXX General Concepts 1
What Is Object-Oriented Programming? . . . 2
Modularizing Data 2
Modeling Objects 3
How Objects Interact 5
Methods 6
Polymorphism 6
Classes and Instances 7
Data Abstraction 8
Subclasses, Superclasses, and Inheritance. . . 8
Structure and General Syntax 9

Characters 10
Comments 10
Tokens 12
Implied Semicolons 17
Continuations 18

Terms, Expressions, and Operators 18
Terms and Expressions 18
Operators 19
Parentheses and Operator Precedence . . 23
Message Terms 25
Message Sequences 26

Clauses and Instructions 27
Null Clauses 27
Directives 27
Labels 28
Instructions 28
Assignments 28
Message Instructions 28
Keyword Instructions 28
Commands 29

Assignments and Symbols 29
Constant Symbols 30
Simple Symbols 30
Stems 30
Compound Symbols 33
Environment Symbols. 35

Message Instructions 36
Commands to External Environments . . . 37

Environment 37

Commands 37
Using REXX on Windows 39

Chapter 2. Keyword Instructions 41
ADDRESS. 42
ARG 43
CALL 45
DO 49
DROP 50
EXIT 51
EXPOSE 52
FORWARD 53
GUARD 55
IF 56
INTERPRET 57
ITERATE 59
LEAVE 60
NOP 61
NUMERIC 62
PARSE 63
PROCEDURE 66
PULL 69
PUSH 70
QUEUE 70
RAISE 71
REPLY 73
RETURN 74
SAY 75
SELECT 76
SIGNAL 77
TRACE 79
USE. 84

Chapter 3. Directives 87
::CLASS 87
::METHOD 89
::REQUIRES 91
::ROUTINE 92

Chapter 4. Objects and Classes. 95
Types of Classes 95

Object Classes 95
Mixin Classes 96
Abstract Classes. 96

© Copyright IBM Corp. 1994, 2001 iii

Chapter 5. The Collection Classes . . . 117
The Array Class 118

NEW (Class Method) 119
OF (Class Method) 119
[] 120
[]= 120
AT 120
DIMENSION 120
FIRST 121
HASINDEX 121
ITEMS 121
LAST 121
MAKEARRAY 121
NEXT 121
PREVIOUS 122
PUT 122
REMOVE 122
SECTION 122
SIZE 123
SUPPLIER 123
Examples 123

The Bag Class 124
OF (Class Method) 125
[] 125
[]= 125
HASINDEX 125
MAKEARRAY 126
PUT 126
SUPPLIER 126
Examples 126

The Directory Class 127
[] 128
[]= 128
AT 128
ENTRY 128
HASENTRY. 129
HASINDEX 129
ITEMS 129
MAKEARRAY 129
PUT 129
REMOVE 129
SETENTRY 130
SETMETHOD 130
SUPPLIER 130
UNKNOWN 131
DIFFERENCE 131
INTERSECTION 131
SUBSET 132
UNION 132
XOR 132

Examples 132
The List Class 133

OF (Class Method) 134
[] 135
[]= 135
AT 135
FIRST 135
FIRSTITEM 135
HASINDEX 135
INSERT 136
ITEMS 136
LAST 136
LASTITEM 137
MAKEARRAY 137
NEXT 137
PREVIOUS 137
PUT 137
REMOVE 137
SECTION 138
SUPPLIER 138

The Queue Class 138
[] 139
[]= 139
AT 139
HASINDEX 140
ITEMS 140
MAKEARRAY 140
PEEK 140
PULL 140
PUSH. 140
PUT 141
QUEUE 141
REMOVE 141
SUPPLIER 141

The Relation Class 141
[] 143
[]= 143
ALLAT 143
ALLINDEX 143
AT 143
HASINDEX 143
HASITEM 144
INDEX 144
ITEMS 144
MAKEARRAY 144
PUT 144
REMOVE 145
REMOVEITEM. 145
SUPPLIER 145
DIFFERENCE 145

iv Object REXX Reference

INTERSECTION 145
SUBSET 146
UNION 146
XOR 146
Examples 146

The Set Class 147
OF (Class Method) 148
[] 148
[]= 148
AT 149
HASINDEX 149
ITEMS 149
MAKEARRAY 149
PUT 149
REMOVE 149
SUPPLIER 150

The Table Class 150
[] 151
[]= 151
AT 151
HASINDEX 151
ITEMS 152
MAKEARRAY 152
PUT 152
REMOVE 152
SUPPLIER 152
DIFFERENCE 153
INTERSECTION 153
SUBSET 153
UNION 153
XOR 154

The Concept of Set Operations 154
The Principles of Operation 155
Determining the Identity of an Item. . . 156
The Argument Collection Classes . . . 157
The Receiver Collection Classes 157
Classifying Collections 158

Chapter 6. Other Classes 159
The Alarm Class 159

CANCEL 160
INIT 160
Examples 160

The Class Class 161
BASECLASS 162
DEFAULTNAME 162
DEFINE 162
DELETE 163
ENHANCED 164
ID 164

INHERIT 164
INIT 165
METACLASS 165
METHOD 166
METHODS 166
MIXINCLASS 167
NEW 168
QUERYMIXINCLASS 168
SUBCLASS 168
SUBCLASSES 169
SUPERCLASSES 169
UNINHERIT 170

The Message Class 170
COMPLETED 171
INIT 171
NOTIFY 172
RESULT 173
SEND. 173
START 173
Example 174

The Method Class. 175
NEW (Class Method) 175
NEWFILE (Class Method) 176
SETGUARDED 176
SETPRIVATE 176
SETPROTECTED 176
SETSECURITYMANAGER 176
SETUNGUARDED 177
SOURCE. 177

The Monitor Class 177
CURRENT 178
DESTINATION 178
INIT 178
UNKNOWN 178
Examples 179

The Object Class 179
NEW (Class Method) 179
Operator Methods 179
CLASS 180
COPY. 180
DEFAULTNAME 180
HASMETHOD 181
INIT 181
OBJECTNAME. 181
OBJECTNAME= 181
REQUEST 182
RUN 183
SETMETHOD 183
START 184
STRING 185

Contents v

UNSETMETHOD 185
The Stem Class 186

NEW (Class Method) 187
[] 187
[]= 187
MAKEARRAY 188
REQUEST 188
UNKNOWN 188

The Stream Class 188
ARRAYIN 189
ARRAYOUT 190
CHARIN. 190
CHAROUT 190
CHARS 191
CLOSE 191
COMMAND 191
DESCRIPTION. 198
FLUSH 198
INIT 198
LINEIN 198
LINEOUT 199
LINES 199
MAKEARRAY 200
OPEN. 200
POSITION 202
QUALIFY 202
QUERY 202
SEEK 204
STATE 205
SUPPLIER 206

The String Class 206
NEW (Class Method) 208
Arithmetic Methods 208
Comparison Methods 209
Logical Methods 211
Concatenation Methods 212
ABBREV 212
ABS 213
BITAND 213
BITOR 214
BITXOR 215
B2X 215
CENTER/CENTRE 216
CHANGESTR 216
COMPARE 217
COPIES 217
COUNTSTR. 218
C2D 218
C2X 219
DATATYPE 219

DELSTR 221
DELWORD 221
D2C 222
D2X 223
FORMAT 223
INSERT 225
LASTPOS 225
LEFT 226
LENGTH 226
MAKESTRING. 227
MAX 227
MIN 227
OVERLAY 228
POS 228
REVERSE 229
RIGHT 229
SIGN 229
SPACE 230
STRING 230
STRIP. 231
SUBSTR 231
SUBWORD 232
TRANSLATE 232
TRUNC 233
VERIFY 234
WORD 235
WORDINDEX 235
WORDLENGTH 235
WORDPOS 236
WORDS 236
X2B 237
X2C 237
X2D 238

The Supplier Class 239
NEW (Class Method) 240
AVAILABLE 240
INDEX 240
ITEM 240
NEXT 241
Examples 241

The WindowsProgramManager Class . . . 241
AddDesktopIcon 242
AddShortCut 243
AddGroup 244
AddItem 244
DeleteGroup 245
DeleteItem 245
Init 245
ShowGroup 246
Symbolic Names for Virtual Keys . . . 246

vi Object REXX Reference

The WindowsRegistry Class 249
CLASSES_ROOT 250
CLASSES_ROOT= 250
CLOSE 251
CONNECT 251
CREATE 251
CURRENT_KEY 251
CURRENT_KEY= 252
CURRENT_USER 252
CURRENT_USER= 252
DELETE 252
DELETEVALUE 252
FLUSH 252
GETVALUE 253
INIT 253
LIST 253
LISTVALUES 254
LOAD 254
LOCAL_MACHINE 255
LOCAL_MACHINE= 255
OPEN. 255
QUERY 256
REPLACE 256
RESTORE 256
SAVE 256
SETVALUE 257
UNLOAD 257
USERS 257
USERS= 257

The WindowsEventLog Class 258
INIT 258
OPEN. 258
CLOSE 259
READ. 259
WRITE 261
CLEAR 263
GETNUMBER 264

The WindowsManager Class 265
FIND 266
FOREGROUNDWINDOW 266
WINDOWATPOSITION. 266
CONSOLETITLE 266
CONSOLETITLE= 267
SENDTEXTTOWINDOW 267
PUSHBUTTONINWINDOW 267
PROCESSMENUCOMMAND 267

The WindowObject Class 268
ASSOCWINDOW 269
HANDLE 269
TITLE. 269

TITLE= 270
WCLASS. 270
ID 270
COORDINATES 270
STATE 270
RESTORE 270
HIDE 271
MINIMIZE 271
MAXIMIZE 271
RESIZE 271
ENABLE 271
DISABLE 271
MOVETO 272
TOFOREGROUND 272
FOCUSNEXTITEM 272
FOCUSPREVIOUSITEM 272
FOCUSITEM 272
FINDCHILD 273
CHILDATPOSITION 273
NEXT 273
PREVIOUS 273
FIRST 273
LAST 274
OWNER 274
FIRSTCHILD 274
ENUMERATECHILDREN 274
SENDMESSAGE 275
SENDCOMMAND 275
SENDMENUCOMMAND 275
SENDMOUSECLICK. 275
SENDSYSCOMMAND 276
PUSHBUTTON 278
SENDKEY 278
SENDCHAR 279
SENDKEYDOWN. 279
SENDKEYUP 279
SENDTEXT 279
MENU 279
SYSTEMMENU 280
ISMENU 280
PROCESSMENUCOMMAND 280

The MenuObject Class 280
ISMENU 281
ITEMS 281
IDOF 281
TEXTOF(position). 281
TEXTOF(id) 281
SUBMENU 282
FINDSUBMENU 282
FINDITEM 282

Contents vii

PROCESSITEM 282
The WindowsClipboard Class 283

COPY. 283
PASTE 283
EMPTY 283
ISDATAAVAILABLE 283

The OLEObject Class. 284
INIT 285
GETCONSTANT 286
GETKNOWNEVENTS 286
GETKNOWNMETHODS 287
GETOBJECT 289
GETOUTPARAMETERS. 290
UNKNOWN 290
Type Conversion 291

Chapter 7. Other Objects. 293
The Environment Object 293
The NIL Object 294

The Local Environment Object (.LOCAL) 294
The Error Object 295
The Input Object 295
The Output Object 296

Chapter 8. Functions 297
Syntax 297
Functions and Subroutines 298

Search Order 299
Errors during Execution. 300

Return Values 302
Built-in Functions 302

ABBREV (Abbreviation). 304
ABS (Absolute Value) 304
ADDRESS 305
ARG (Argument) 305
BEEP 306
BITAND (Bit by Bit AND) 307
BITOR (Bit by Bit OR) 308
BITXOR (Bit by Bit Exclusive OR) . . . 308
B2X (Binary to Hexadecimal) 309
CENTER (or CENTRE) 309
CHANGESTR 310
CHARIN (Character Input) 310
CHAROUT (Character Output) 311
CHARS (Characters Remaining) 312
COMPARE 313
CONDITION 313
COPIES 315
COUNTSTR. 315
C2D (Character to Decimal) 316

C2X (Character to Hexadecimal) 316
DATATYPE 317
DATE 318
DELSTR (Delete String) 321
DELWORD (Delete Word) 321
DIGITS 322
DIRECTORY 322
D2C (Decimal to Character) 323
D2X (Decimal to Hexadecimal) 323
ERRORTEXT 324
FILESPEC 324
FORM 325
FORMAT 325
FUZZ 327
INSERT 327
LASTPOS (Last Position) 327
LEFT 328
LENGTH 328
LINEIN (Line Input) 328
LINEOUT (Line Output) 330
LINES (Lines Remaining) 331
MAX (Maximum) 332
MIN (Minimum) 332
OVERLAY 333
POS (Position) 333
QUEUED 333
RANDOM 334
REVERSE 335
RIGHT 335
SIGN 335
SOURCELINE 336
SPACE 336
STREAM. 336
STRIP. 344
SUBSTR (Substring) 344
SUBWORD 345
SYMBOL. 345
TIME 346
TRACE 348
TRANSLATE 349
TRUNC (Truncate) 350
VALUE 350
VAR 353
VERIFY 353
WORD 354
WORDINDEX 354
WORDLENGTH 355
WORDPOS (Word Position) 355
WORDS 355
XRANGE (Hexadecimal Range) 356

viii Object REXX Reference

X2B (Hexadecimal to Binary) 356
X2C (Hexadecimal to Character) 357
X2D (Hexadecimal to Decimal) 357

Windows Application Programming
Interface Functions 358

RXFUNCADD 358
RXFUNCDROP 358
RXFUNCQUERY 359
RXQUEUE 359

Chapter 9. REXX Utilities (RexxUtil) . . . 361
RxMessageBox 361
RxWinExec 363
SysAddRexxMacro 364
SysBootDrive 365
SysClearRexxMacroSpace 365
SysCloseEventSem 365
SysCloseMutexSem 366
SysCls 366
SysCreateEventSem 366
SysCreateMutexSem 367
SysCurPos 367
SysCurState 368
SysDriveInfo 368
SysDriveMap 369
SysDropFuncs 370
SysDropRexxMacro 370
SysDumpVariables 370
SysFileDelete 371
SysFileSearch 371
SysFileSystemType 373
SysFileTree 373
SysFromUnicode 376
SysToUnicode 377
SysGetErrortext 379
SysGetFileDateTime 379
SysGetKey 380
SysIni 381
SysLoadFuncs 383
SysLoadRexxMacroSpace 383
SysMkDir 383
SysOpenEventSem 384
SysOpenMutexSem 384
SysPostEventSem 385
SysPulseEventSem 385
SysQueryProcess 385
SysQueryRexxMacro 386
SysReleaseMutexSem 387
SysReorderRexxMacro 387
SysRequestMutexSem 387

SysResetEventSem 388
SysRmDir 388
SysSaveRexxMacroSpace 389
SysSearchPath 389
SysSetFileDateTime 390
SysSetPriority 391
SysSleep 392
SysStemCopy 392
SysStemDelete 393
SysStemInsert 394
SysStemSort. 395
SysSwitchSession 396
SysSystemDirectory 396
SysTempFileName 396
SysTextScreenRead 397
SysTextScreenSize 398
SysUtilVersion 398
SysVersion 399
SysVolumeLabel 399
SysWaitEventSem 399
SysWaitNamedPipe 400
SysWinDecryptFile 400
SysWinEncryptFile 401
SysWinVer 401

Chapter 10. Parsing 403
Simple Templates for Parsing into Words 403

The Period as a Placeholder 405
Templates Containing String Patterns . . . 405
Templates Containing Positional (Numeric)
Patterns 407

Combining Patterns and Parsing into
Words 410

Parsing with Variable Patterns 411
Using UPPER, LOWER, and CASELESS . . 412
Parsing Instructions Summary 413
Parsing Instructions Examples 413
Advanced Topics in Parsing 414

Parsing Several Strings 414
Combining String and Positional Patterns 415
Conceptual Overview of Parsing 416

Chapter 11. Numbers and Arithmetic . . 421
Precision 422
Arithmetic Operators 422

Power. 423
Integer Division 423
Remainder 423
Operator Examples 424

Exponential Notation 424

Contents ix

Numeric Comparisons 426
Limits and Errors when REXX Uses
Numbers Directly 427

Chapter 12. Conditions and Condition
Traps 429
Action Taken when a Condition Is Not
Trapped 432
Action Taken when a Condition Is Trapped 432
Condition Information 434

Descriptive Strings 435
Additional Object Information 436
The Special Variable RC. 436
The Special Variable SIGL 436
Condition Objects 437

Chapter 13. Concurrency. 439
Early Reply 439
Message Objects 441
Default Concurrency 442

Sending Messages within an Activity . . 444
Using Additional Concurrency Mechanisms 445

SETUNGUARDED Method and
UNGUARDED Option 445
GUARD ON and GUARD OFF 446
Guarded Methods. 446
Additional Examples. 447

Chapter 14. Built-in Objects. 455
.METHODS 455
.RS. 455

Chapter 15. The Security Manager . . . 457
Calls to the Security Manager 457

Example 460

Chapter 16. Input and Output Streams 463
The Input and Output Model 464

Input Streams 464
Output Streams 465
External Data Queue. 465
Default Stream Names 468
Line versus Character Positioning . . . 469

Implementation 470
Operating System Specifics 471
Examples of Input and Output 471
Errors during Input and Output 472
Summary of REXX I/O Instructions and
Methods 473

Chapter 17. Debugging Aids 475
Interactive Debugging of Programs 475
RXTRACE Variable 477
Object REXX Workbench 477

Chapter 18. Reserved Keywords 479

Chapter 19. Special Variables 481

Chapter 20. Useful Services 485
Windows Commands 485
Subcommand Handler Services 485

The RXSUBCOM Command 485
The RXQUEUE Filter 488

Distributing Programs without Source . . . 490

Chapter 21. Windows Scripting Host
Engine 493
Object REXX as a Windows Scripting Host
Engine 493

Windows Scripting Host Overview . . . 493
Scripting in the Windows Style 494

Invocation by the Browser 495
WSH File Types and Formats 496
Invocation from a Command Prompt . . 502
Invocation as a COM Object 503
WSH Samples 506

Interpretation of and Deviation from the
WSH Specification 507

Windows Scripting Host (WSH)
Advanced Overview 507
Object REXX in the WSH Environment 509
Properties 510
The Object REXX ″Sandbox″ 512
Features Duplicated in Object REXX and
WSH 512

Appendix A. Using the DO Keyword. . . 515
Simple DO Group. 515
Repetitive DO Loops. 515

Simple Repetitive Loops 515
Controlled Repetitive Loops 516

Repetitive Loops over Collections 517
Conditional Phrases (WHILE and UNTIL) 518

Appendix B. Migration 523
Error Codes and Return Codes 523
Error Detection and Reporting 523
Environment Variables 523
Stems versus Collections 524

x Object REXX Reference

Input and Output Using Functions and
Methods 524
.Environment 524
Deleting Environment Variables 524
Queuing 524
Trace in Macrospace 525
The RxMessageBox Function 525

Appendix C. Error Numbers and
Messages 527

Error List 527
RXSUBCOM Utility Program 544
RXQUEUE Utility Program 545
REXXC Utility Program 545
REXXRT Utility Program 546

Appendix D. Notices 547
Trademarks 548

Index 551

Contents xi

xii Object REXX Reference

About This Book

This book describes the Object REXX Interpreter, called interpreter or
language processor in the following, and the Object-Oriented REstructured
eXtended eXecutor (REXX) language.

This book is intended for people who plan to develop applications using
REXX. Its users range from the novice, who might have experience in some
programming language but no REXX experience, to the experienced
application developer, who might have had some experience with Object
REXX.

This book is a reference rather than a tutorial. It assumes you are already
familiar with object-oriented programming concepts.

Descriptions include the use and syntax of the language and explain how the
language processor “interprets” the language as a program is running.

Related Information

Object REXX for Windows: Programming Guide, SH12-6726

How to Send Your Comments

Your feedback is important in helping to provide the most accurate and
high-quality information. If you have any comments about this book or any
other REXX documentation:
v Visit our home page at http://www.ibm.com/software/ad/obj-

rexx/support.html#Buy or get support. There you can access the Internet
Online Form where you can enter comments and send them.

v Send your comments by e-mail to swsdid@de.ibm.com. Be sure to include
the name of the book, the part number of the book, the version of REXX,
and, if applicable, the specific location of the text you are commenting on
(for example, a page number or table number).

v Fill out one of the forms at the back of this book and return it by mail, by
fax, or by giving it to an IBM representative. The mailing address is on the
back of the Readers’ Comments form. The fax number is
+49-(0)7031-16-4892.

How to Read the Syntax Diagrams

Throughout this book, syntax is described using the structure defined below.

© Copyright IBM Corp. 1994, 2001 xiii

v Read the syntax diagrams from left to right, from top to bottom, following
the path of the line.
The ��─── symbol indicates the beginning of a statement.
The ───� symbol indicates that the statement syntax is continued on the
next line.
The �─── symbol indicates that a statement is continued from the previous
line.
The ───�� symbol indicates the end of a statement.
Diagrams of syntactical units other than complete statements start with the
�─── symbol and end with the ───� symbol.

v Required items appear on the horizontal line (the main path).

�� STATEMENT required_item ��

v Optional items appear below the main path.

�� STATEMENT
optional_item

��

v If you can choose from two or more items, they appear vertically, in a stack.
If you must choose one of the items, one item of the stack appears on the
main path.

�� STATEMENT required_choice1
required_choice2

��

v If choosing one of the items is optional, the entire stack appears below the
main path.

�� STATEMENT
optional_choice1
optional_choice2

��

v If one of the items is the default, it appears above the main path and the
remaining choices are shown below.

�� STATEMENT
default_choice

optional_choice
optional_choice

��

xiv Object REXX Reference

v An arrow returning to the left above the main line indicates an item that
can be repeated.

�� STATEMENT & repeatable_item ��

A repeat arrow above a stack indicates that you can repeat the items in the
stack.

v A set of vertical bars around an item indicates that the item is a fragment, a
part of the syntax diagram that appears in greater detail below the main
diagram.

�� STATEMENT fragment ��

fragment:

expansion_provides_greater_detail

v Keywords appear in uppercase (for example, PARM1). They must be spelled
exactly as shown but you can type them in upper, lower, or mixed case.
Variables appear in all lowercase letters (for example, parmx). They
represent user-supplied names or values.

v If punctuation marks, parentheses, arithmetic operators, or such symbols
are shown, you must enter them as part of the syntax.

The following example shows how the syntax is described:

�� MAX(&

,

number) ��

About This Book xv

xvi Object REXX Reference

Chapter 1. REXX General Concepts

The REXX language is particularly suitable for:
v Application scripting
v Command procedures
v Application front ends
v User-defined macros (such as editor subcommands)
v Prototyping
v Personal computing

As an object-oriented language, REXX provides, for example, data
encapsulation, polymorphism, an object class hierarchy, class-based
inheritance of methods, and concurrency. Object REXX is compatible with
earlier REXX versions. It has the usual structured-programming instructions,
for example IF, SELECT, DO WHILE, and LEAVE, and a number of useful
built-in functions.

The language imposes few restrictions on the program format. There can be
more than one clause on a line, or a single clause can occupy more than one
line. Indentation is allowed. You can, therefore, code programs in a format
that emphasizes their structure, making them easier to read.

There is no limit to the length of the values of variables, as long as all
variables fit into the storage available. There are no restrictions on the types of
data that variables can contain.

The limit on the length of symbols (variable names) is 250 characters. You can
use compound symbols, such as
NAME.Y.Z

where Y and Z can be the names of variables or can be constant symbols, for
constructing arrays and for other purposes.

A language processor (interpreter) runs REXX programs. That is, the program
runs line by line and word by word, without first being translated to another
form (compiled). The advantage of this is that you can fix the error and rerun
the program faster than with a compiler.

© Copyright IBM Corp. 1994, 2001 1

What Is Object-Oriented Programming?

Object-oriented programming is a way to write computer programs by
focusing not on the instructions and operations a program uses to manipulate
data, but on the data itself. First, the program simulates, or models, objects in
the physical world as closely as possible. Then the objects interact with each
other to produce the desired result.

Real-world objects, such as a company’s employees, money in a bank account,
or a report, are stored as data so the computer can act upon it. For example,
when you print a report, print is the action and report is the object acted
upon. Often several actions apply; you could also send or erase the report.

Modularizing Data

In conventional, structured programming, actions like print are often isolated
from the data by placing them in subroutines or modules. A module typically
contains an operation for implementing one simple action. You might have a
PRINT module, a SEND module, an ERASE module. These actions are
independent of the data they operate on.

But with object-oriented programming, it is the data that is modularized. And
each data module includes its own operations for performing actions directly
related to its data.

REXX General Concepts

2 Object REXX Reference

In the case of report, the report object would contain its own built-in PRINT,
SEND, ERASE, and FILE operations.

Object-oriented programming lets you model real-world objects—even very
complex ones—precisely and elegantly. As a result, object manipulation
becomes easier and computer instructions become simpler and can be
modified later with minimal effort.

Object-oriented programming hides any information that is not important for
acting on an object, thereby concealing the object’s complexities. Complex
tasks can then be initiated simply, at a very high level.

Modeling Objects

In object-oriented programming, objects are modeled to real-world objects. A
real-world object has actions related to it and characteristics of its own.

Take a ball, for example. A ball can be acted on—rolled, tossed, thrown,
bounced, caught. But it also has its own physical characteristics—size, shape,
composition, weight, color, speed, position. An accurate data model of a real
ball would define not only the physical characteristics but all related actions
and characteristics in one package:

Figure 1. Modular Data—a Report Object

REXX General Concepts

Chapter 1. REXX General Concepts 3

In object-oriented programming, objects are the basic building blocks—the
fundamental units of data.

There are many kinds of objects; for example, character strings, collections,
and input and output streams. An object—such as a character string—always
consists of two parts: the possible actions or operations related to it, and its
characteristics or variables. A variable has a variable name, and an associated
data value that can change over time. These actions and characteristics are so
closely associated that they cannot be separated:

To access an object’s data, you must always specify an action. For example,
suppose the object is the number 5. Its actions might include addition,
subtraction, multiplication, and division. Each of these actions is an interface
to the object’s data. The data is said to be encapsulated because the only way to
access it is through one of these surrounding actions. The encapsulated
internal characteristics of an object are its variables. Variables are associated
with an object and exist for the lifetime of that object:

Figure 2. A Ball Object

Figure 3. Ball Object with Variable Names and Values

REXX General Concepts

4 Object REXX Reference

REXX comes with a basic set of classes for creating objects (see “Chapter 4.
Objects and Classes” on page 95). Therefore, you can create objects that exactly
match the needs of a particular application.

How Objects Interact

The actions within an object are its only interface to other objects. Actions
form a kind of “wall” that encapsulates the object, and shields its internal
information from outside objects. This shielding is called information hiding.
Information hiding protects an object’s data from corruption by outside
objects, and also protects outside objects from relying on another object’s
private data, which can change without warning.

One object can act upon another (or cause it to act) only by calling that
object’s actions, namely by sending messages. Objects respond to these
messages by performing an action, returning data, or both. A message to an
object must specify:
v A receiving object
v The “message send” symbol, ∼, which is called the twiddle

v The action and, optionally in parentheses, any parameters required

So the message format looks like this:
object∼action(parameters)

Assume that the object is the string !iH. Sending it a message to use its
REVERSE action:
'!iH'∼reverse

returns the string object Hi!.

Figure 4. Encapsulated 5 Object

REXX General Concepts

Chapter 1. REXX General Concepts 5

Methods

Sending a message to an object results in performing some action; that is, it
results in running some underlying code. The action-generating code is called
a method. When you send a message to an object, you specify its method name
in the message. Method names are character strings like REVERSE. In the
preceding example, sending the reverse message to the !iH object causes it to
run the REVERSE method. Most objects are capable of more than one action,
and so have a number of available methods.

The classes REXX provides include their own predefined methods. The
Message class, for example, has the COMPLETED, INIT, NOTIFY, RESULT,
SEND, and START methods. When you create your own classes, you can
write new methods for them in REXX code. Much of the object programming
in REXX is writing the code for the methods you create.

Polymorphism

REXX lets you send the same message to objects that are different:
'!iH'∼reverse /* Reverses the characters "!iH" to form "Hi!" */
pen∼reverse /* Reverses the direction of a plotter pen */
ball∼reverse /* Reverses the direction of a moving ball */

As long as each object has its own REVERSE method, REVERSE runs even if
the programming implementation is different for each object. This ability to
hide different functions behind a common interface is called polymorphism. As
a result of information hiding, each object in the previous example knows
only its own version of REVERSE. And even though the objects are different,
each reverses itself as dictated by its own code.

Although the !iH object’s REVERSE code is different from the plotter pen’s,
the method name can be the same because REXX keeps track of the methods
each object owns. The ability to reuse the same method name so that one
message can initiate more than one function is another feature of
polymorphism. You do not need to have several message names like
REVERSE_STRING, REVERSE_PEN, REVERSE_BALL. This keeps
method-naming schemes simple and makes complex programs easy to follow
and modify.

The ability to hide the various implementations of a method while leaving the
interface the same illustrates polymorphism at its lowest level. On a higher
level, polymorphism permits extensive code reuse.

REXX General Concepts

6 Object REXX Reference

Classes and Instances

In REXX, objects are organized into classes. Classes are like templates; they
define the methods and variables that a group of similar objects have in
common and store them in one place.

If you write a program to manipulate some screen icons, for example, you
might create an Icon class. In that Icon class you can include all the icon
objects with similar actions and characteristics:

All the icon objects might use common methods like DRAW or ERASE. They
might contain common variables like position, color, or size. What makes each
icon object different from one another is the data assigned to its variables. For
the Windows system icon, it might be position='20,20', while for the shredder
it is '20,30' and for information it is '20,40':

Objects that belong to a class are called instances of that class. As instances of
the Icon class, the Windows system icon, shredder icon, and information icon
acquire the methods and variables of that class. Instances behave as if they
each had their own methods and variables of the same name. All instances,
however, have their own unique properties—the data associated with the
variables. Everything else can be stored at the class level.

Figure 5. A Simple Class

Figure 6. Icon Class

REXX General Concepts

Chapter 1. REXX General Concepts 7

If you must update or change a particular method, you only have to change it
at one place, at the class level. This single update is then acquired by every
new instance that uses the method.

A class that can create instances of an object is called an object class. The Icon
class is an object class you can use to create other objects with similar
properties, such as an application icon or a drives icon.

An object class is like a factory for producing instances of the objects.

Data Abstraction

The ability to create new, high-level data types and organize them into a
meaningful class structure is called data abstraction. Data abstraction is at the
core of object-oriented programming. Once you model objects with real-world
properties from the basic data types, you can continue creating, assembling,
and combining them into increasingly complex objects. Then you can use
these objects as if they were part of the original programming language.

Subclasses, Superclasses, and Inheritance

When you write your first object-oriented program, you do not have to begin
your real-world modeling from scratch. REXX provides predefined classes and
methods. From there you can create additional classes and methods of your
own, according to your needs.

REXX classes are hierarchical. Any subclass (a class below another class in the
hierarchy) inherits the methods and variables of one or more superclasses
(classes above a class in the hierarchy):

Figure 7. Instances of the Icon Class

REXX General Concepts

8 Object REXX Reference

You can add a class to an existing superclass. For example, you might add the
Icon class to the Screen-Object superclass:

In this way, the subclass inherits additional methods from the superclass. A
class can have more than one superclass, for example, subclass Bitmap might
have the superclasses Screen-Object and Art-Object. Acquiring methods and
variables from more than one superclass is known as multiple inheritance:

Structure and General Syntax

On Windows, REXX programs are not required to start with a standard
comment. However, for portability reasons, start each REXX program with a
standard comment that begins in the first column of the first line. For more
information on comments, refer to “Comments” on page 10.

A REXX program is built from a series of clauses that are composed of:
v Zero or more blanks (which are ignored)
v A sequence of tokens (see “Tokens” on page 12)
v Zero or more blanks (again ignored)
v A semicolon (;) delimiter that the line end, certain keywords, or the colon (:)

implies.

Conceptually, each clause is scanned from left to right before processing, and
the tokens composing it are identified. Instruction keywords are recognized at
this stage, comments are removed, and several blanks (except within literal
strings) are converted to single blanks. Blanks adjacent to operator characters
and special characters are also removed.

Figure 8. Superclass and Subclasses

Figure 9. The Screen-Object Superclass

Figure 10. Multiple Inheritance

REXX General Concepts

Chapter 1. REXX General Concepts 9

Characters
A character is a member of a defined set of elements that is used for the
control or representation of data. You can usually enter a character with a
single keystroke. The coded representation of a character is its representation
in digital form. A character, the letter A, for example, differs from its coded
representation or encoding. Various coded character sets (such as ASCII and
EBCDIC) use different encodings for the letter A (decimal values 65 and 193,
respectively). This book uses characters to convey meanings and not to imply
a specific character code, except where otherwise stated. The exceptions are
certain built-in functions that convert between characters and their
representations. The functions C2D, C2X, D2C, X2C, and XRANGE depend on
the character set used.

A code page specifies the encodings for each character in a set. Be aware that:
v Some code pages do not contain all characters that REXX defines as valid

(for example, the logical NOT character).
v Some characters that REXX defines as valid have different encodings in

different code pages, for example the exclamation mark (!).

Comments
A comment is a sequence of characters delimited by specific characters. It is
ignored by the program but acts as a separator. For example, a token
containing one comment is treated as two tokens.

The interpreter recognizes the following types of comments:
v A line comment, where the comment is limited to one line
v The standard REXX comment, where the comment can cover several lines

A line comment is started by two subsequent minus signs (−−) and ends at the
end of a line. Example:
'Fred'
"Don't Panic!"
'You shouldn''t' −− Same as "You shouldn't"
''

In this example, the language processor processes the statements from 'Fred'
to 'You shouldn''t', ignores the words following the line comment, and
continues to process the statement ''.

A standard comment is a sequence of characters (on one or more lines)
delimited by /* and */. Within these delimiters any characters are allowed.
Standard comments can contain other standard comments, as long as each
begins and ends with the necessary delimiters. They are called nested
comments. Standard comments can be anywhere and of any length.
/* This is an example of a valid REXX comment */

REXX General Concepts

10 Object REXX Reference

Take special care when commenting out lines of code containing /* or */ as
part of a literal string. Consider the following program segment:
01 parse pull input
02 if substr(input,1,5) = '/*123'
03 then call process
04 dept = substr(input,32,5)

To comment out lines 2 and 3, the following change would be incorrect:
01 parse pull input
02 /* if substr(input,1,5) = '/*123'
03 then call process
04 */ dept = substr(input,32,5)

This is incorrect because the language processor would interpret the /* that is
part of the literal string /*123 as the start of a nested standard comment. It
would not process the rest of the program because it would be looking for a
matching standard comment end (*/).

You can avoid this type of problem by using concatenation for literal strings
containing /* or */; line 2 would be:
if substr(input,1,5) = '/' || '*123'

You could comment out lines 2 and 3 correctly as follows:
01 parse pull input
02 /* if substr(input,1,5) = '/' || '*123'
03 then call process
04 */ dept = substr(input,32,5)

Both types of comments can be mixed and nested. However, when you nest
the two types, the type of comment that comes first takes precedence over the
one nested. Here is an example:
'Fred'
"Don't Panic!"
'You shouldn''t' /* Same as "You shouldn't"
'' −− The null string */

In this example, the language processor ignores everything after 'You
shouldn''t' up to the end of the last line. In this case, the standard comment
has precedence over the line comment.

When nesting the two comment types, make sure that the start delimiter of
the standard comment /* is not in the line commented out with the line
comment signs.

Example:

REXX General Concepts

Chapter 1. REXX General Concepts 11

'Fred'
"Don't Panic!"
'You shouldn''t' −− Same as /* "You shouldn't"
'' The null string */

This example produces an error because the language processor ignores the
start delimiter of the standard comment, which is commented out using the
line comment.

Tokens
A token is the unit of low-level syntax from which clauses are built. Programs
written in REXX are composed of tokens. Tokens can be of any length, up to
an implementation-restricted maximum. They are separated by blanks or
comments, or by the nature of the tokens themselves. The classes of tokens
are:
v Literal strings
v Hexadecimal strings
v Binary strings
v Symbols
v Numbers
v Operator characters
v Special characters

Literal Strings
A literal string is a sequence including any characters except line feed (X'10')
and delimited by a single quotation mark (') or a double quotation mark (").
You use two consecutive double quotation marks ("") to represent one double
quotation mark (") within a string delimited by double quotation marks.
Similarly, you use two consecutive single quotation marks ('') to represent
one single quotation mark (') within a string delimited by single quotation
marks. A literal string is a constant and its contents are never modified when
it is processed. Literal strings must be complete on a single line. This means
that unmatched quotation marks can be detected on the line where they occur.

A literal string with no characters (that is, a string of length 0) is called a null
string.

These are valid strings:
'Fred'
"Don't Panic!"
'You shouldn''t' /* Same as "You shouldn't" */
'' /* The null string */

REXX General Concepts

12 Object REXX Reference

Implementation maximum: A literal string can contain up to 250 characters.
The length of the evaluated result of an expression, however, is limited only
by the available virtual storage of your computer, with an additional limit of
512MB maximum per process.

Note that a string immediately followed by a right bracket is considered to be
the name of a function. If immediately followed by the symbol X or x, it is
considered to be a hexadecimal string. If followed immediately by the symbol
B or b, it is considered to be a binary string.

Hexadecimal Strings
A hexadecimal string is a literal string, expressed using a hexadecimal
notation of its encoding. It is any sequence of zero or more hexadecimal digits
(0–9, a–f, A–F), grouped in pairs. A single leading 0 is assumed, if necessary, at
the beginning of the string to make an even number of hexadecimal digits.
The groups of digits are optionally separated by one or more blanks, and the
whole sequence is delimited by single or double quotation marks and
immediately followed by the symbol X or x. Neither x nor X can be part of a
longer symbol. The blanks, which can only be byte boundaries (and not at the
beginning or end of the string), are to improve readability. The language
processor ignores them.

A hexadecimal string is a literal string formed by packing the hexadecimal
digits given. Packing the hexadecimal digits removes blanks and converts
each pair of hexadecimal digits into its equivalent character, for example, '41'X
to A.

Hexadecimal strings let you include characters in a program even if you
cannot directly enter the characters themselves. These are valid hexadecimal
strings:
'ABCD'x
"1d ec f8"X
"1 d8"x

Note: A hexadecimal string is not a representation of a number. It is an escape
mechanism that lets a user describe a character in terms of its encoding
(and, therefore, is machine-dependent). In ASCII, '20'X is the encoding
for a blank. In every case, a string of the form '.....'x is an alternative to
a straightforward string. In ASCII '41'x and 'A' are identical, as are '20'x
and a blank, and must be treated identically.

Implementation maximum: The packed length of a hexadecimal string (the
string with blanks removed) can be up to 250 bytes.

REXX General Concepts

Chapter 1. REXX General Concepts 13

Binary Strings
A binary string is a literal string, expressed using a binary representation of
its encoding. It is any sequence of zero or more binary digits (0 or 1) in
groups of 8 (bytes) or 4 (nibbles). The first group can have less than four
digits; in this case, up to three 0 digits are assumed to the left of the first
digit, making a total of four digits. The groups of digits are optionally
separated by one or more blanks, and the whole sequence is delimited by
matching single or double quotation marks and immediately followed by the
symbol b or B. Neither b nor B can be part of a longer symbol. The blanks,
which can only be byte or nibble boundaries (and not at the beginning or end
of the string), are to improve readability. The language processor ignores
them.

A binary string is a literal string formed by packing the binary digits given. If
the number of binary digits is not a multiple of 8, leading zeros are added on
the left to make a multiple of 8 before packing. Binary strings allow you to
specify characters explicitly, bit by bit. These are valid binary strings:
'11110000'b /* == 'f0'x */
"101 1101"b /* == '5d'x */
'1'b /* == '00000001'b and '01'x */
'10000 10101010'b /* == '0001 0000 1010 1010'b */
''b /* == '' */

Implementation maximum: The packed length of a binary-literal string can be
up to 250 bytes.

Symbols
Symbols are groups of characters, selected from the:
v English alphabetic characters (A–Z and a–z). Note that some code pages do

not include lowercase English characters a–z.
v Numeric characters (0–9)
v Characters . ! ? and underscore (_). Note that the encoding of the

exclamation mark depends on the code page used.

lowercase symbolsAny lowercase alphabetic character in a symbol is
translated to uppercase (that is, lowercase a–z to uppercase A–Z) before use.

These are valid symbols:
Fred
Albert.Hall
WHERE?

If a symbol does not begin with a digit or a period, you can use it as a
variable and can assign it a value. If you have not assigned a value to it, its
value is the characters of the symbol itself, translated to uppercase (that is,

REXX General Concepts

14 Object REXX Reference

lowercase a–z to uppercase A–Z). Symbols that begin with a number or a
period are constant symbols and cannot directly be assigned a value. (See
“Environment Symbols” on page 35.)

One other form of symbol is allowed to support the representation of
numbers in exponential format. The symbol starts with a digit (0–9) or a
period, and it can end with the sequence E or e, followed immediately by an
optional sign (- or +), followed immediately by one or more digits (which
cannot be followed by any other symbol characters). The sign in this context
is part of the symbol and is not an operator.

These are valid numbers in exponential notation:
17.3E-12
.03e+9

Numbers
Numbers are character strings consisting of one or more decimal digits, with
an optional prefix of a plus (+) or minus (-) sign, and optionally including a
single period (.) that represents a decimal point. A number can also have a
power of 10 suffixed in conventional exponential notation: an E (uppercase or
lowercase), followed optionally by a plus or minus sign, then followed by one
or more decimal digits defining the power of 10. Whenever a character string
is used as a number, rounding can occur to a precision specified by the
NUMERIC DIGITS instruction (the default is nine digits). See “Chapter 11.
Numbers and Arithmetic” on page 421 for a full definition of numbers.

Numbers can have leading blanks (before and after the sign) and trailing
blanks. Blanks cannot be embedded among the digits of a number or in the
exponential part. Note that a symbol or a literal string can be a number. A
number cannot be the name of a variable.

These are valid numbers:
12
'-17.9'
127.0650
73e+128
' + 7.9E5 '

You can specify numbers with or without quotation marks around them. Note
that the sequence −17.9 (without quotation marks) in an expression is not
simply a number. It is a minus operator (which can be prefix minus if no term
is to the left of it) followed by a positive number. The result of the operation
is a number.

REXX General Concepts

Chapter 1. REXX General Concepts 15

A whole number is a number that has a no decimal part and that the language
processor would not usually express in exponential notation. That is, it has no
more digits before the decimal point than the current setting of NUMERIC
DIGITS (the default is nine).

Implementation maximum: The exponent of a number expressed in
exponential notation can have up to nine digits.

Operator Characters
The characters + - \ / % * | | & = ¬ > < and the sequences >=
<= \> \< \= >< <> == \== // && || ** ¬> ¬< ¬= ¬== >> <<
>>= \<< ¬<< \>> ¬>> <<= indicate operations (see “Operators” on page 19).
(The || can also be used as the concatenation symbol.) A few of these are also
used in parsing templates, and the equal sign is also used to indicate
assignment. Blanks adjacent to operator characters are removed. Therefore, the
following are identical in meaning:
345>=123
345 >=123
345 >= 123
345 > = 123

Some of these characters (and some special characters—see the next section)
might not be available in all character sets. In this case, appropriate
translations can be used. In particular, the vertical bar (|) is often shown as a
split vertical bar (¦).

Throughout the language, the NOT (¬) character is synonymous with the
backslash (\). You can use the two characters interchangeably according to
availability and personal preference.

Note: The REXX interpreter uses ASCII character 124 in the concatenation
operator and as the logical OR operator. Depending on the code page
or keyboard for your particular country, ASCII 124 can be shown as a
solid vertical bar (|) or a split vertical bar (¦). The character on the
screen might not match the character engraved on the key. If you
receive error 13, Invalid character in program, on an instruction
including a vertical bar character, make sure this character is ASCII 124.

The REXX interpreter uses ASCII character 170 for the logical NOT
operator. Depending on your country, the ¬ might not appear on your
keyboard. If the character is not available, you can use the backslash (\)
in place of ¬.

Special Characters
The following characters, together with the operator characters, have special
significance when found outside of literal strings:

REXX General Concepts

16 Object REXX Reference

, ; : () [] ∼

These characters constitute the set of special characters. They all act as token
delimiters, and blanks adjacent to any of these are removed. There is an
exception: a blank adjacent to the outside of a parenthesis or bracket is
deleted only if it is also adjacent to another special character (unless the
character is a parenthesis or bracket and the blank is outside it, too). For
example, the language processor does not remove the blank in A (Z). This is a
concatenation that is not equivalent to A(Z), a function call. The language
processor removes the blanks in (A) + (Z) because this is equivalent to
(A)+(Z).

Example
The following example shows how a clause is composed of tokens:
'REPEAT' A + 3;

This example is composed of six tokens—a literal string ('REPEAT'), a blank
operator, a symbol (A, which can have an assigned value), an operator (+), a
second symbol (3, which is a number and a symbol), and the clause delimiter
(;). The blanks between the A and the + and between the + and the 3 are
removed. However, one of the blanks between the 'REPEAT' and the A remains
as an operator. Thus, this clause is treated as though written:
'REPEAT' A+3;

Implied Semicolons
The last element in a clause is the semicolon (;) delimiter. The language
processor implies the semicolon at a line end, after certain keywords, and
after a colon if it follows a single symbol. This means that you need to
include semicolons only when there is more than one clause on a line or to
end an instruction whose last character is a comma.

A line end usually marks the end of a clause and, thus, REXX implies a
semicolon at most end of lines. However, there are the following exceptions:
v The line ends in the middle of a comment. The clause continues on to the

next line.
v The last token was the continuation character (a comma) and the line does

not end in the middle of a comment. (Note that a comment is not a token.)

REXX automatically implies semicolons after colons (when following a single
symbol, a label) and after certain keywords when they are in the correct
context. The keywords that have this effect are ELSE, OTHERWISE, and
THEN. These special cases reduce typographical errors significantly.

Note: The two characters forming the comment delimiters, /* and */, must
not be split by a line end (that is, / and * should not appear on
different lines) because they could not then be recognized correctly; an

REXX General Concepts

Chapter 1. REXX General Concepts 17

implied semicolon would be added. The two consecutive characters
forming a literal quotation mark within a string are also subject to this
line-end ruling.

Continuations
One way to continue a clause on the next line is to use the comma, which is
referred to as the continuation character. The comma is functionally replaced by
a blank, and, thus, no semicolon is implied. One or more comments can
follow the continuation character before the end of the line.

The following example shows how to use the continuation character to
continue a clause:
say 'You can use a comma',
'to continue this clause.'

This displays:
You can use a comma to continue this clause.

Terms, Expressions, and Operators

Expressions in REXX are a general mechanism for combining one or more
pieces of data in various ways to produce a result, usually different from the
original data. All expressions evaluate to objects.

Everything in REXX is an object. REXX provides some objects, which are
described in later sections. You can also define and create objects that are
useful in particular applications—for example, a menu object for user
interaction. See “Modeling Objects” on page 3 for more information.

Terms and Expressions
Terms are literal strings, symbols, message terms, function calls, or
subexpressions interspersed with zero or more operators that denote
operations to be carried out on terms.

Literal strings, which are delimited by quotation marks, are constants.

Symbols (no quotation marks) are translated to uppercase. A symbol that does
not begin with a digit or a period can be the name of a variable; in this case
the value of that variable is used. A symbol that begins with a period can
identify an object that the current environment provides; in this case, that
object is used. Otherwise a symbol is treated as a constant string. A symbol
can also be compound.

Message terms are described in “Message Terms” on page 25.

REXX General Concepts

18 Object REXX Reference

Function calls (see “Chapter 8. Functions” on page 297), which are of the
following form:

�� symbolorstring(&

,

expression
) ��

The symbolorstring is a symbol or literal string.

An expression consists of one or more terms. A subexpression is a term in an
expression surrounded with a left and a right parenthesis.

Evaluation of an expression is left to right, modified by parentheses and
operator precedence in the usual algebraic manner (see “Parentheses and
Operator Precedence” on page 23). Expressions are wholly evaluated, unless
an error occurs during evaluation.

As each term is used in an expression, it is evaluated as appropriate. The
result is an object. Consequently, the result of evaluating any expression is
itself an object (such as a character string).

Operators
An operator is a representation of an operation, such as an addition, to be
carried out on one or two terms. Each operator, except for the prefix
operators, acts on two terms, which can be symbols, strings, function calls,
message terms, intermediate results, or subexpressions. Each prefix operator
acts on the term or subexpression that follows it. Blanks (and comments)
adjacent to operator characters have no effect on the operator; thus, operators
constructed from more than one character can have embedded blanks and
comments. In addition, one or more blanks, if they occur in expressions but
are not adjacent to another operator, also act as an operator. The language
processor functionally translates operators into message terms. For dyadic
operators, which operate on two terms, the language processor sends the
operator as a message to the term on the left, passing the term on the right as
an argument. For example, the sequence
say 1+2

is functionally equivalent to:
say 1∼'+'(2)

The blank concatenation operator sends the message “ ” (a single blank), and
the abuttal concatenation operator sends the "" message (a null string). When
the ¬ character is used in an operator, it is changed to a \. That is, the
operators ¬= and \= both send the message \= to the target object.

REXX General Concepts

Chapter 1. REXX General Concepts 19

For an operator that works on a single term (for example, the prefix − and
prefix + operators), REXX sends a message to the operand, with no
arguments. This means -z has the same effect as z∼'-'.

See “Operator Methods” on page 179 for operator methods of the Object class
and “Arithmetic Methods” on page 208 for operator methods of the String
class.

There are four types of operators:
v Concatenation
v Arithmetic
v Comparison
v Logical

String Concatenation
The concatenation operators combine two strings to form one string by
appending the second string to the right-hand end of the first string. The
concatenation may occur with or without an intervening blank. The
concatenation operators are:

(blank) Concatenate terms with one blank in between

|| Concatenate without an intervening blank

(abuttal) Concatenate without an intervening blank

You can force concatenation without a blank by using the || operator.

The abuttal operator is assumed between two terms that are not separated by
another operator. This can occur when two terms are syntactically distinct,
such as a literal string and a symbol, or when they are only separated by a
comment.

Examples:

An example of syntactically distinct terms is: if Fred has the value 37.4, then
Fred'%' evaluates to 37.4%.

If the variable PETER has the value 1, then (Fred)(Peter) evaluates to 37.41.

The two adjoining strings, one hexadecimal and one literal, '4a 4b'x'LMN'
evaluate to JKLMN.

In the case of
Fred/* The NOT operator precedes Peter. */¬Peter

there is no abuttal operator implied, and the expression is not valid. However,

REXX General Concepts

20 Object REXX Reference

(Fred)/* The NOT operator precedes Peter. */(¬Peter)

results in an abuttal, and evaluates to 37.40.

Arithmetic
You can combine character strings that are valid numbers (see “Numbers” on
page 15) using the following arithmetic operators:

+ Add

− Subtract

* Multiply

/ Divide

% Integer divide (divide and return the integer part of the result)

// Remainder (divide and return the remainder—not modulo,
because the result can be negative)

** Power (raise a number to a whole-number power)

Prefix − Same as the subtraction: 0 - number

Prefix + Same as the addition: 0 + number

See “Chapter 11. Numbers and Arithmetic” on page 421 for details about
precision, the format of valid numbers, and the operation rules for arithmetic.
Note that if an arithmetic result is shown in exponential notation, it is likely
that rounding has occurred.

Comparison
The comparison operators compare two terms and return the value 1 if the
result of the comparison is true, or 0 otherwise.

The strict comparison operators all have one of the characters defining the
operator doubled. The ==, \==, and ¬== operators test for an exact match
between two strings. The two strings must be identical (character by
character) and of the same length to be considered strictly equal. Similarly, the
strict comparison operators such as >> or << carry out a simple
character-by-character comparison, with no padding of either of the strings
being compared. The comparison of the two strings is from left to right. If one
string is shorter than the other and is a leading substring of another, then it is
smaller than (less than) the other. The strict comparison operators also do not
attempt to perform a numeric comparison on the two operands.

For all other comparison operators, if both terms involved are numeric, a
numeric comparison (see “Numeric Comparisons” on page 426) is effected.
Otherwise, both terms are treated as character strings, leading and trailing
blanks are ignored, and the shorter string is padded with blanks on the right.

REXX General Concepts

Chapter 1. REXX General Concepts 21

Character comparison and strict comparison operations are both
case-sensitive, and the exact collating order might depend on the character set
used for the implementation. In an ASCII environment, such as Windows, the
ASCII character value of digits is lower than that of the alphabetic characters,
and that of lowercase alphabetic characters is higher than that of uppercase
alphabetic characters.

The comparison operators and operations are:

= True if the terms are equal (numerically or when padded)

\=, ¬= True if the terms are not equal (inverse of =)

> Greater than

< Less than

>< Greater than or less than (same as not equal)

<> Greater than or less than (same as not equal)

>= Greater than or equal to

\<, ¬< Not less than

<= Less than or equal to

\>, ¬> Not greater than

== True if terms are strictly equal (identical)

\==, ¬== True if the terms are not strictly equal (inverse of ==)

>> Strictly greater than

<< Strictly less than

>>= Strictly greater than or equal to

\<<, ¬<< Strictly not less than

<<= Strictly less than or equal to

\>>, ¬>> Strictly not greater than

Note: Throughout the language, the NOT (¬) character is synonymous with
the backslash(\). You can use the two characters interchangeably,
according to availability and personal preference. The backslash can
appear in the following operators: \ (prefix not),\=, \==, \<, \>, \<<, and
\>>.

Logical (Boolean)
A character string has the value false if it is 0, and true if it is 1. A logical
operator can take at least two values and return 0 or 1 as appropriate:

& AND — returns 1 if both terms are true.

REXX General Concepts

22 Object REXX Reference

| Inclusive OR — returns 1 if either term or both terms are true.

&& Exclusive OR — returns 1 if either term, but not both terms, is
true.

Prefix \,¬ Logical NOT— negates; 1 becomes 0, and 0 becomes 1.

Parentheses and Operator Precedence
Expression evaluation is from left to right; parentheses and operator
precedence modify this:
v When parentheses are encountered—other than those that identify the

arguments on messages (see “Message Terms” on page 25) and function
calls—the entire subexpression between the parentheses is evaluated
immediately when the term is required.

v When the sequence
term1 operator1 term2 operator2 term3

is encountered, and operator2 has precedence over operator1, the
subexpression (term2 operator2 term3) is evaluated first.

Note, however, that individual terms are evaluated from left to right in the
expression (that is, as soon as they are encountered). The precedence rules
affect only the order of operations.

For example, * (multiply) has a higher priority than + (add), so 3+2*5
evaluates to 13 (rather than the 25 that would result if a strict left-to-right
evaluation occurred). To force the addition to occur before the multiplication,
you could rewrite the expression as (3+2)*5. Adding the parentheses makes
the first three tokens a subexpression. Similarly, the expression -3**2
evaluates to 9 (instead of -9) because the prefix minus operator has a higher
priority than the power operator.

The order of precedence of the operators is (highest at the top):

+ - ¬ \ (prefix operators)

** (power)

* / % // (multiply and divide)

+ - (add and subtract)

(blank) || (abuttal)
(concatenation with or without blank)

= > < (comparison operators)

== >> <<

\= ¬=

>< <>

REXX General Concepts

Chapter 1. REXX General Concepts 23

\> ¬>

\< ¬<

\== ¬==

\>> ¬>>

\<< ¬<<

>= >>=

<= <<=

& (and)

| && (or, exclusive or)

Examples:

Suppose the symbol A is a variable whose value is 3, DAY is a variable whose
value is Monday, and other variables are uninitialized. Then:
A+5 -> '8'
A-4*2 -> '-5'
A/2 -> '1.5'
0.5**2 -> '0.25'
(A+1)>7 -> '0' /* that is, False */
' '='' -> '1' /* that is, True */
' '=='' -> '0' /* that is, False */
' '¬=='' -> '1' /* that is, True */
(A+1)*3=12 -> '1' /* that is, True */
'077'>'11' -> '1' /* that is, True */
'077' >> '11' -> '0' /* that is, False */
'abc' >> 'ab' -> '1' /* that is, True */
'abc' << 'abd' -> '1' /* that is, True */
'ab ' << 'abd' -> '1' /* that is, True */
Today is Day -> 'TODAY IS Monday'
'If it is' day -> 'If it is Monday'
Substr(Day,2,3) -> 'ond' /* Substr is a function */
'!'xxx'!' -> '!XXX!'

Note: The REXX order of precedence usually causes no difficulty because it is
the same as in conventional algebra and other computer languages.
There are two differences from common notations:
v The prefix minus operator always has a higher priority than the

power operator.
v Power operators (like other operators) are evaluated from left to

right.

For example:
-3**2 == 9 /* not -9 */
-(2+1)**2 == 9 /* not -9 */
2**2**3 == 64 /* not 256 */

REXX General Concepts

24 Object REXX Reference

Message Terms
You can include messages to objects in an expression wherever a term, such as
a literal string, is valid. A message can be sent to an object to perform an
action, obtain a result, or both.

A message term can have one of the following forms:

The receiver is a term (see “Terms and Expressions” on page 18 for a definition
of term). It receives the message. The ∼ or ∼∼ indicates sending a message. The
messagename is a literal string or a symbol that is taken as a constant. The
expressions (separated by commas) between the parentheses or brackets are the
arguments for the message. The receiver and the argument expressions can
themselves include message terms. If the message has no arguments, you can
omit the parentheses.

The left parenthesis, if present, must immediately follow a token (messagename
or symbol) with no blank in between them. Otherwise, only the first part of
the construct is recognized as a message term. (A blank operator would be
assumed at that point.) Only a comment (which has no effect) can appear
between a token and the left parenthesis.

You can use any number of expressions, separated by commas. The expressions
are evaluated from left to right and form the argument during the execution
of the routine. Any ARG, PARSE ARG, or USE ARG instruction or ARG
built-in function in the called routine accesses these objects while the called
routine is running. You can omit expressions, if appropriate, by including extra
commas.

The receiver is evaluated, followed by one or more expression arguments. The
message name (in uppercase) and the resulting argument objects are then sent
to the receiver object. The receiver object selects a method to be run based on
the message name (see Table 1 on page 108), and runs the selected method
with the specified argument objects. The receiver eventually returns, allowing
processing to continue.

�� receiver ∼ messagename
∼∼ :symbol

&

()
,

expression

��

�� receiver[

&

,

expression

] ��

REXX General Concepts

Chapter 1. REXX General Concepts 25

If the message term uses ∼, the receiver must return a result object. This object
is included in the original expression as if the entire message term had been
replaced by the name of a variable whose value is the returned object.

For example, the message POS is valid for strings, and you could code:
c='escape'
a="Position of 'e' is:" c∼pos('e',3)
/* would set A to "Position of 'e' is: 6" */

If the message term uses ∼∼, the receiver needs not return a result object. Any
result object is discarded, and the receiver object is included in the original
expression in place of the message term.

For example, the messages INHERIT and SUBCLASS are valid for classes (see
“The Class Class” on page 161) and, assuming the existence of the Persistent
class, you could code:
account = .object∼subclass('Account')∼∼inherit(.persistent)
/* would set ACCOUNT to the object returned by SUBCLASS, */
/* after sending that object the message INHERIT */

If the message term uses brackets, the message [] is sent to the receiver object.
(The expressions within the brackets are available to the receiver object as
arguments.) The effect is the same as for the corresponding ∼ form of the
message term. Thus, a[b] is the same as a∼'[]'(b).

For example, the message [] is valid for arrays (see “The Array Class” on
page 118) and you could code:
a = .array∼of(10,20)
say "Second item is" a[2] /* Same as: a∼at(2) */
/* or a∼'[]'(2) */
/* Produces: "Second item is 20" */

A message can have a variable number of arguments. You need to specify
only those required. For example, 'ESCAPE'∼POS('E') returns 1.

A colon (:) and symbol can follow the message name. In this case, the symbol
must be the name of a variable (usually the special variable SUPER—see page
481) or an environment symbol (see “Environment Symbols” on page 35). The
resulting value changes the usual method selection. For more information, see
“Changing the Search Order for Methods” on page 102.

Message Sequences
The ∼ and ∼∼ forms of message terms differ only in their treatment of the
result object. Using ∼ returns the result of the method. Using ∼∼ returns the
object that received the message. Here is an example:

REXX General Concepts

26 Object REXX Reference

/* Two ways to use the INSERT method to add items to a list */
/* Using only ∼ */
team = .list∼of('Bob','Mary')
team∼insert('Jane')
team∼insert('Joe')
team∼insert('Steve')
say 'First on the team is:' team∼firstitem /* Bob */
say 'Last on the team is:' team∼lastitem /* Steve */
/* Do the same thing using ∼∼ */
team=.list∼of('Bob','Mary')
/* Because ∼∼ returns the receiver of the message */
/* each INSERT message following returns the list */
/* object (after inserting the argument value). */
team∼∼insert('Jane')∼∼insert('Joe')∼∼insert('Steve')
say 'First on the team is:' team∼firstitem /* Bob */
say 'Last on the team is:' team∼lastitem /* Steve */

Thus, you would use ∼ when you want the returned result to incorporate the
methods included in each stage of the message.

Clauses and Instructions

Clauses can be subdivided into the following types:
v Null clauses
v Directives
v Labels
v Instructions
v Assignments
v Message instructions
v Keyword instructions
v Commands

Null Clauses
A clause consisting only of blanks, comments, or both is a null clause. It is
completely ignored.

Note: A null clause is not an instruction; for example, putting an extra
semicolon after the THEN or ELSE in an IF instruction is not equivalent
to using a dummy instruction (as it would be in the C language). The
NOP instruction is provided for this purpose.

Directives
A clause that begins with two colons is a directive. Directives are
nonexecutable code and can start in any column. They divide a program into
separate executable units (methods and routines) and supply information
about the program or its executable units. Directives perform various
functions, such as associating methods with a particular class (::CLASS

REXX General Concepts

Chapter 1. REXX General Concepts 27

directive) or defining a method (::METHOD directive). See “Chapter 3.
Directives” on page 87 for more information about directives.

Labels
A clause that consists of a single symbol or string followed by a colon is a
label. The colon in this context implies a semicolon (clause separator), so no
semicolon is required.

The label's name is taken from the string or symbol part of the label. If the
label uses a symbol for the name, the label's name is in uppercase. If a label
uses a string, the name can contain mixed-case characters.

Labels identify the targets of CALL instructions, SIGNAL instructions, and
internal function calls. Label searches for CALL, SIGNAL, and internal
function calls are case-sensitive. Label-search targets specified as symbols
cannot match labels with lowercase characters. Literal-string or
computed-label searches can locate labels with lowercase characters. More
than one label can precede an instruction. Labels are treated as null clauses
and can be traced selectively to aid debugging.

Labels can be any number of successive clauses. Several labels can precede
other clauses. Duplicate labels are permitted, but control is only passed to the
first of any duplicates in a program. The duplicate labels occurring later can
be traced but cannot be used as a target of a CALL, SIGNAL, or function
invocation.

Instructions
An instruction consists of one or more clauses describing some course of
action for the language processor to take. Instructions can be assignments,
message instructions, keyword instructions, or commands.

Assignments
A single clause of the form symbol=expression is an instruction known as an
assignment. An assignment gives a (new) value to a variable. See
“Assignments and Symbols” on page 29.

Message Instructions
A message instruction is a single clause in the form of a message term (see
“Message Terms” on page 25) or in the form messageterm=expression. A
message is sent to an object, which responds by performing some action. See
“Message Instructions” on page 36.

Keyword Instructions
A keyword instruction is one or more clauses, the first of which starts with a
keyword that identifies the instruction. Keyword instructions control, for
example, the external interfaces and the flow of control. Some keyword
instructions can include nested instructions. In the following example, the DO

REXX General Concepts

28 Object REXX Reference

construct (DO, the group of instructions that follow it, and its associated END
keyword) is considered a single keyword instruction.
DO

instruction
instruction
instruction

END

A subkeyword is a keyword that is reserved within the context of a particular
instruction, for example, the symbols TO and WHILE in the DO instruction.

Commands
A command is a clause consisting of an expression only. The expression is
evaluated and the result is passed as a command string to an external
environment.

Assignments and Symbols

A variable is an object whose value can change during the running of a REXX
program. The process of changing the value of a variable is called assigning a
new value to it. The value of a variable is a single object. Note that an object
can be composed of other objects, such as an array or directory object.

You can assign a new value to a variable with the ARG, PARSE, PULL, or
USE instructions, the VALUE built-in function, or the variable pool interface,
but the most common way of changing the value of a variable is the
assignment instruction itself. Any clause in the form

symbol=expression;

is taken to be an assignment. The result of expression becomes the new value
of the variable named by the symbol to the left of the equal sign.

Example:
/* Next line gives FRED the value "Frederic" */
Fred='Frederic'

The symbol naming the variable cannot begin with a digit (0–9) or a period.

You can use a symbol in an expression even if you have not assigned a value
to it, because a symbol has a defined value at all times. A variable to which
you have not assigned a value is uninitialized. Its value is the characters of the
symbol itself, translated to uppercase (that is, lowercase a–z to uppercase A–Z).
However, if it is a compound symbol (described under “Compound Symbols”
on page 33), its value is the derived name of the symbol.

Example:

REXX General Concepts

Chapter 1. REXX General Concepts 29

/* If Freda has not yet been assigned a value, */
/* then next line gives FRED the value "FREDA" */
Fred=Freda

The meaning of a symbol in REXX varies according to its context. As a term
in an expression, a symbol belongs to one of the following groups: constant
symbols, simple symbols, compound symbols, environment symbols, and
stems. Constant symbols cannot be assigned new values. You can use simple
symbols for variables where the name corresponds to a single value. You can
use compound symbols and stems for more complex collections of variables
although the collection classes might be preferable in many cases. See
“Chapter 5. The Collection Classes” on page 117.

Constant Symbols
A constant symbol starts with a digit (0–9) or a period.

You cannot change the value of a constant symbol. It is simply the string
consisting of the characters of the symbol (that is, with any lowercase
alphabetic characters translated to uppercase).

These are constant symbols:
77
827.53
.12345
12e5 /* Same as 12E5 */
3D
17E-3

Symbols where the first character is a period and the second character is
alphabetic are environment symbols.

Simple Symbols
A simple symbol does not contain any periods and does not start with a digit
(0–9).

By default, its value is the characters of the symbol (that is, translated to
uppercase). If the symbol has been assigned a value, it names a variable and
its value is the value of that variable.

These are simple symbols:
FRED
Whatagoodidea? /* Same as WHATAGOODIDEA? */
?12

Stems
A stem is a symbol that contains a period as the last character. It cannot start
with a digit or a period.

REXX General Concepts

30 Object REXX Reference

These are stems:
FRED.
A.

By default, the value of a stem is a Stem object. (See “The Stem Class” on
page 186.) The stem variable's Stem object is automatically created the first
time you use the stem variable or a compound variable (see “Compound
Symbols” on page 33) containing the stem variable name. The Stem object's
assigned name is the name of the stem variable (with the characters translated
to uppercase). If the stem variable has been assigned a value, or the Stem
object has been given a default value, a reference to the stem variable returns
the assigned default value.

Further, when a stem is the target of an assignment, a new Stem object is
created and assigned to the stem variable. The new value assigned to the stem
variable is given to the new Stem object as a default value. Following the
assignment, a reference to any compound symbol with that stem variable
returns the new value until another value is assigned to the stem, the Stem
object, or the individual compound variable.

Example:
hole. = "empty"
hole.19 = "full"
say hole.1 hole.mouse hole.19
/* says "empty empty full" */

Thus, you can give a whole collection of variables the same value.

If the object assigned to a stem variable is already a Stem object, then a new
Stem object is not created. The assignment updates the stem variable to refer
to the existing Stem object.

Example:
hole. = "empty"
hole.19 = "full"
say hole.1 hole.mouse hole.19
/* Says "empty empty full" */

hole2. = hole. /* copies reference to hole. stem to hole2. */

say hole2.1 hole2.mouse hole2.19

/* Also says "empty empty full" */

You can pass stem collections as function, subroutine, or method arguments.

Example:

REXX General Concepts

Chapter 1. REXX General Concepts 31

/* CALL RANDOMIZE count, stem. calls routine */
Randomize: Use Arg count, stem.
do i = 1 to count

stem.i = random(1,100)
end
return

Note: USE ARG must be used to access the stem variable as a collection.
PARSE and PARSE ARG force the stem to be a string value.

Stems can also be returned as function, subroutine, or method results.

Example:
/* RANDOMIZE(count) calls routine */
Randomize: Use Arg count
do i = 1 to count

stem.i = random(1,100)
end
return stem.

Note: The value that has been assigned to the whole collection of variables
can always be obtained by using the stem. However, this is not the
same as using a compound variable whose derived name is the null
string.

Example:
total. = 0
null = ''
total.null = total.null + 5
say total. total.null /* says "0 5" */

You can use the DROP, EXPOSE, and PROCEDURE instructions to manipulate
collections of variables, referred to by their stems. DROP FRED. assigns a new
Stem object to the specified stem. (See “DROP” on page 50.) EXPOSE FRED. and
PROCEDURE EXPOSE FRED. expose all possible variables with that stem (see
“EXPOSE” on page 52 and “PROCEDURE” on page 66).

The DO instruction can also iterate over all of the values assigned to a stem
variable. See “DO” on page 49 for more details.

Notes:

1. When the ARG, PARSE, PULL, or USE instruction, the VALUE built-in
function, or the variable pool interface changes a variable, the effect is
identical with an assignment. Wherever a value can be assigned, using a
stem sets an entire collection of variables.

2. Any clause that starts with a symbol and whose second token is (or starts
with) an equal sign (=) is an assignment, rather than an expression (or a
keyword instruction). This is not a restriction, because you can ensure that

REXX General Concepts

32 Object REXX Reference

the clause is processed as a command, such as by putting a null string
before the first name, or by enclosing the first part of the expression in
parentheses.
If you unintentionally use a REXX keyword as the variable name in an
assignment, this should not cause confusion. For example, the following
clause is an assignment, not an ADDRESS instruction:
Address='10 Downing Street';

3. You can use the VAR function (see “VAR” on page 353) to test whether a
symbol has been assigned a value. In addition, you can set SIGNAL ON
NOVALUE to trap the use of any uninitialized variables (except when they
are tails in compound variables—see page 431–or stems).

Compound Symbols
A compound symbol contains at least one period and two other characters. It
cannot start with a digit or a period, and if there is only one period it cannot
be the last character.

The name begins with a stem (that part of the symbol up to and including the
first period) and is followed by a tail, which are parts of the name (delimited
by periods) that are constant symbols, simple symbols, or null. Note that you
cannot use constant symbols with embedded signs (for example, 12.3E+5)
after a stem; in this case the whole symbol would not be valid.

These are compound symbols:
FRED.3
Array.I.J
AMESSY..One.2.

Before the symbol is used, that is, at the time of reference, the language
processor substitutes in the compound symbol the character string values of
any simple symbols in the tail (I, J, and One in the examples), thus generating
a new, derived name. The value of a compound symbol is, by default, its
derived name (used exactly as is) or, if it has been used as the target of an
assignment, the value of the variable named by the derived name.

The substitution in the symbol permits arbitrary indexing (subscripting) of
collections of variables that have a common stem. Note that the values
substituted can contain any characters (including periods and blanks).
Substitution is done only once.

More formally, the derived name of a compound variable that is referenced by
the symbol
s0.s1.s2. --- .sn

is given by

REXX General Concepts

Chapter 1. REXX General Concepts 33

d0.v1.v2. --- .vn

where d0 is the name of the Stem object associated with the stem variable s0
and v1 to vn are the values of the constant or simple symbols s1 through sn.
Any of the symbols s1 to sn can be null. The values v1 to vn can also be null
and can contain any characters. Lowercase characters are not translated to
uppercase, blanks are not removed, and periods have no special significance.
There is no limit on the length of the evaluated name.

Some examples of simple and compound symbols follow in the form of a
small extract from a REXX program:
a=3 /* assigns '3' to the variable A */
z=4 /* '4' to Z */
c='Fred' /* 'Fred' to C */
a.z='Fred' /* 'Fred' to A.4 */
a.fred=5 /* '5' to A.FRED */
a.c='Bill' /* 'Bill' to A.Fred */
c.c=a.fred /* '5' to C.Fred */
y.a.z='Annie' /* 'Annie' to Y.3.4 */
say a z c a.a a.z a.c c.a a.fred y.a.4
/* displays the string: */
/* "3 4 Fred A.3 Fred Bill C.3 5 Annie" */

You can use compound symbols to set up arrays and lists of variables in
which the subscript is not necessarily numeric, thus offering a great scope for
the creative programmer. A useful application is to set up an array in which
the subscripts are taken from the value of one or more variables, producing a
form of associative memory (content-addressable).

Evaluated Compound Variables
The value of a stem variable is always a Stem object (see “The Stem Class” on
page 186 for details). A Stem object is a type of collection that supports the []
and []= methods used by other collection classes. The [] provides an alternate
means of accessing compound variables that also allows embedded
subexpressions.

Examples:
a=3 /* assigns '3' to the variable A */
z=4 /* '4' to Z */
c='Fred' /* 'Fred' to C */
a.[z]='Fred' /* 'Fred' to A.4 */
a.[z+1]='Rick' /* 'Rick' to A.5 */
a.[fred]=5 /* '5' to A.FRED */
a.[c]='Bill' /* 'Bill' to A.Fred */
c.[c]=a.fred /* '5' to C.Fred */
y.[a,z]='Annie' /* 'Annie' to Y.3.4 */
say a z c a.[a] a.[z] a.[z+1] a.[c] c.[a] a.[fred] y.[a,z]
/* displays the string: */
/* "3 4 Fred A.3 Fred Rick Bill C.3 5 Annie" */

REXX General Concepts

34 Object REXX Reference

Environment Symbols
An environment symbol starts with a period and has at least one other
character. This character must not be a digit. By default the value of an
environment symbol is the string consisting of the characters of the symbol
(translated to uppercase). If the symbol identifies an object in the current
environment, its value is that object.

These are environment symbols:
.method /* Same as .METHOD */

.true

When you use an environment symbol, the language processor performs a
series of searches to see if the environment symbol has an assigned value. The
search locations and their ordering are:
1. The directory of classes declared on ::CLASS directives (see “::CLASS” on

page 87) within the current program file.
2. The directory of PUBLIC classes declared on ::CLASS directives of other

files included with a ::REQUIRES directive.
3. The local environment directory. The local environment includes

process-specific objects such as the .INPUT and .OUTPUT objects. You can
directly access the local environment directory by using the .LOCAL
environment symbol. (See “The Local Environment Object (.LOCAL)” on
page 294 .)

4. The global environment directory. The global environment includes all
permanent REXX objects such as the REXX supplied classes (.ARRAY and
so on) and constants such as .TRUE and .FALSE. You can directly access
the global environment by using the .ENVIRONMENT environment
symbol (see “The Environment Object” on page 293) or the VALUE built-in
function (see “VALUE” on page 350) with a null string for the selector
argument.

5. REXX defined symbols. Other simple environment symbols are reserved
for use by REXX built-in objects. The currently defined built-in objects are
.RS and .METHODS.

If an entry is not found for an environment symbol, then the default character
string value is used.

Note: You can place entries in both the .LOCAL and the .ENVIRONMENT
directories for programs to use. To avoid conflicts with future REXX
defined entries, it is recommended that the entries that you place in
either directory include at least one period in the entry name.

Example:

REXX General Concepts

Chapter 1. REXX General Concepts 35

/* establish settings directory */
.local∼setentry('MyProgram.settings', .directory∼new)

Message Instructions

You can send a message to an object to perform an action, obtain a result, or
both. You use a message instruction if the main purpose of the message is to
perform an action. You use a message term (see “Message Terms” on page 25)
if the main purpose of the message is to obtain a result.

A message instruction is a clause of the form:

�� messageterm
=expression

; ��

If there is only a messageterm, the message is sent in exactly the same way as
for a message term (see “Message Terms” on page 25). If the message yields a
result object, it is assigned to the sender’s special variable RESULT. If you use
the ∼∼ form of message term, the receiver object is used as the result. If there
is no result object, the variable RESULT is dropped (becomes uninitialized).

Example:
mytable∼add('John',123)

This sends the message ADD to the object MYTABLE. The ADD method need
not return a result. If ADD returns a result, the result is assigned to the
variable RESULT.

The equal sign (=) sets a value. If =expression follows the message term, a
message is sent to the receiver object with an = concatenated to the end of the
message name. The result of evaluating the expression is passed as the first
argument of the message.

Examples:
person∼age = 39 /* Same as person∼'AGE='(39) */
table[i] = 5 /* Same as table∼'[]='(5,i) */

The expressions are evaluated in the order in which the arguments are passed
to the method. That is, the language processor evaluates the =expression first.
Then it evaluates the argument expressions within any [] pairs from left to
right.

REXX General Concepts

36 Object REXX Reference

Commands to External Environments

Issuing commands to the surrounding environment is an integral part of
REXX.

Environment
The base system for the language processor is assumed to include at least one
environment for processing commands. An environment is selected by default
on entry to a REXX program. You can change the environment by using the
ADDRESS instruction. You can find out the name of the current environment
by using the ADDRESS built-in function. The underlying operating system
defines environments external to the REXX program. The environments
selected depend on the caller. Normally the default environment is the used
shell, mostly 'CMD' on Windows® systems. If called from an editor that
accepts subcommands from the language processor, the default environment
can be that editor.

A REXX program can issue commands—called subcommands—to other
application programs. For example, a REXX program written for a text editor
can inspect a file being edited, issue subcommands to make changes, test
return codes to check that the subcommands have been processed as expected,
and display messages to the user when appropriate.

An application that uses REXX as a macro language must register its
environment with the REXX language processor. See the Object REXX for
Windows: Programming Guide for a discussion of this mechanism.

Commands
To send a command to the currently addressed environment, use a clause of
the form:
expression;

The expression (which must not be an expression that forms a valid message
instruction—see “Message Instructions” on page 36) is evaluated, resulting in
a character string value (which can be the null string), which is then prepared
as appropriate and submitted to the underlying system. Any part of the
expression not to be evaluated must be enclosed in quotation marks.

The environment then processes the command and returns control to the
language processor after setting a return code. A return code is a string,
typically a number, that returns some information about the command
processed. A return code usually indicates if a command was successful but
can also represent other information. The language processor places this
return code in the REXX special variable RC. See “Chapter 19. Special
Variables” on page 481.

REXX General Concepts

Chapter 1. REXX General Concepts 37

In addition to setting a return code, the underlying system can also indicate to
the language processor if an error or failure occurred. An error is a condition
raised by a command to which a program that uses that command can
respond. For example, a locate command to an editing system might report
requested string not found as an error. A failure is a condition raised by a
command to which a program that uses that command cannot respond, for
example, a command that is not executable or cannot be found.

Errors and failures in commands can affect REXX processing if a condition
trap for ERROR or FAILURE is ON (see “Chapter 12. Conditions and
Condition Traps” on page 429). They can also cause the command to be traced
if TRACE E or TRACE F is set. TRACE Normal is the same as TRACE F and is the
default—see “TRACE” on page 79.

The .RS environment symbol can also be used to detect command failures and
errors. When the command environment indicates that a command failure has
occurred, the REXX environment symbol .RS has the value -1. When a
command error occurs, .RS has a value of 1. If the command did not have a
FAILURE or ERROR condition, .RS is 0.

Here is an example of submitting a command. Where the default environment
is Windows, the sequence:
fname = "CHESHIRE"
exten = "CAT"
"TYPE" fname"."exten

would result in passing the string TYPE CHESHIRE.CAT to the command
processor. On Windows 95, this is COMMAND.COM. On Windows NT, this is
CMD.EXE. The simpler expression:
"TYPE CHESHIRE.CAT"

has the same effect.

On return, the return code placed in RC will have the value 0 if the file
CHESHIRE.CAT were typed, or a nonzero value if the file could not be found
in the current directory.

Note: Remember that the expression is evaluated before it is passed to the
environment. Enclose in quotation marks any part of the expression
that is not to be evaluated.

Examples:
delete "*".lst /* not "multiplied by" */
var.003 = anyvalue
type "var.003" /* not a compound symbol */

REXX General Concepts

38 Object REXX Reference

w = any
dir"/w" /* not "divided by ANY" */

Enclosing an entire message instruction in parentheses causes the message
result to be used as a command. Any clause that is a message instruction is
not treated as a command. Thus, for example, the clause
myfile∼linein

causes the returned line to be assigned to the variable RESULT, not to be used
as a command to an external environment.

Using REXX on Windows

REXX programs can call other REXX programs as external functions or
subroutines with the call instruction.

If a program is called with the call instruction, the program runs in the same
process as the calling program. If you call another program by a REXX
command, the program is executed in a new process and therefore does not
share .environment, .local, or the Windows environment.

Examples:
call "other.REX" /* runs in the same process */
"rexx other.REX" /* runs in a new child process */
"start rexx other.REX" /* runs in a new detached process */

When REXX programs call other REXX programs as commands, the return
code of the command is the exit value of the called program provided that
this value is a whole number in the range -32768 to 32767. Otherwise, the exit
value is ignored and the called program is given a return code of 0.

REXX General Concepts

Chapter 1. REXX General Concepts 39

40 Object REXX Reference

Chapter 2. Keyword Instructions

A keyword instruction is one or more clauses, the first of which starts with a
keyword that identifies the instruction. Some keyword instructions affect the
flow of control, while others provide services to the programmer. Some
keyword instructions, like DO, can include nested instructions.

In the syntax diagrams on the following pages, symbols (words) in capitals
denote keywords or subkeywords. Other words, such as expression, denote a
collection of tokens as defined previously. Note, however, that the keywords
and subkeywords are not case-dependent. The symbols if, If, and iF all have
the same effect. Note also that you can usually omit most of the clause
delimiters (;) shown because the end of a line implies them.

A keyword instruction is recognized only if its keyword is the first token in a
clause and if the second token does not start with an equal (=) character
(implying an assignment) or a colon (implying a label). The keywords ELSE,
END, OTHERWISE, THEN, and WHEN are treated in the same way. Note
that any clause that starts with a keyword defined by REXX cannot be a
command. Therefore,
arg(fred) rest

is an ARG keyword instruction, not a command that starts with a call to the
ARG built-in function. A syntax error results if the keywords are not in their
correct positions in a DO, IF, or SELECT instruction. The keyword THEN is
also recognized in the body of an IF or WHEN clause. In other contexts,
keywords are not reserved and can be used as labels or as the names of
variables (though this is generally not recommended).

Subkeywords are reserved within the clauses of individual instructions. For
example, the symbols VALUE and WITH are subkeywords in the ADDRESS
and PARSE instructions, respectively. For details, see the description of each
instruction.

Blanks adjacent to keywords separate the keyword from the subsequent token.
One or more blanks following VALUE are required to separate the expression
from the subkeyword in the example following:
ADDRESS VALUE expression

However, no blank is required after the VALUE subkeyword in the following
example, although it would improve readability:
ADDRESS VALUE'ENVIR'||number

© Copyright IBM Corp. 1994, 2001 41

ADDRESS

�� ADDRESS
environment

expression
expression1

VALUE

; ��

ADDRESS temporarily or permanently changes the destination of commands.
Commands are strings sent to an external environment. You can send
commands by specifying clauses consisting of only an expression or by using
the ADDRESS instruction. (See “Commands to External Environments” on
page 37.)

To send a single command to a specified environment, code an environment, a
literal string or a single symbol, which is taken to be a constant, followed by
an expression. The environment name is the name ofan external procedure or
process that can process commands. The expression is evaluated to produce a
character string value, and this string is routed to the environment to be
processed as a command. (Enclose in quotation marks any part of the
expression you do not want to be evaluated.) After execution of the
command, environment is set back to its original state, thus temporarily
changing the destination for a single command. The special variable RC and
the environment symbol .RS are set and errors and failures in commands
processed in this way are trapped or traced.

Example:
ADDRESS CMD "DIR C:\CONFIG.SYS"

If you specify only environment, a lasting change of destination occurs: all
commands (see “Commands” on page 37) that follow are routed to the
specified command environment, until the next ADDRESS instruction is
processed. The previously selected environment is saved.

Examples:

Assume that the environment for a text editor is registered by the name EDIT:
address CMD
'DIR C:\AUTOEXEC.BAT'
if rc=0 then 'COPY C:\AUTOEXEC.BAT C:*.TMP'
address EDIT

Subsequent commands are passed to the editor until the next ADDRESS
instruction.

Keyword Instructions

42 Object REXX Reference

Similarly, you can use the VALUE form to make a lasting change to the
environment. Here expression1, which can be a variable name, is evaluated,
and the resulting character string value forms the name of the environment.
You can omit the subkeyword VALUE if expression1 does not begin with a
literal string or symbol, that is, if it starts with a special character such as an
operator character or parenthesis.

Example:
ADDRESS ('ENVIR'||number) /* Same as ADDRESS VALUE 'ENVIR'||number */

With no arguments, commands are routed back to the environment that was
selected before the previous change of the environment, and the current
environment name is saved. After changing the environment, repeated
execution of ADDRESS alone, therefore, switches the command destination
between two environments. Using a null string for the environment name ("")
is the same as using the default environment.

The two environment names are automatically saved across internal and
external subroutine and function calls. See the CALL instruction (“CALL” on
page 45) for more details.

The address setting is the currently selected environment name. You can
retrieve the current address setting by using the ADDRESS built-in function.
(See “ADDRESS” on page 305.) The Object REXX for Windows: Programming
Guide describes the registration of alternative subcommand environments.

ARG

�� ARG
template_list

; ��

ARG retrieves the argument strings provided to a program, internal routine,
or method and assigns them to variables. It is a short form of the instruction:

�� PARSE UPPER ARG
template_list

; ��

The template_list can be a single template orlist of templates separated by
commas. Each template consists of one or more symbols separated by blanks,
patterns, or both.

Keyword Instructions

Chapter 2. Keyword Instructions 43

Unless a subroutine, internal function, or method is processed, the objects
passed as parameters to the program are converted to string values and
parsed into variables according to the rules described in “Chapter 10. Parsing”
on page 403.

If a subroutine, internal function, or method is processed, the data used are
the argument objects that the caller passes to the routine.

The language processor converts the objects to strings and translates the
strings to uppercase (that is, lowercase a–z to uppercase A–Z) before
processing them. Use the PARSE ARG instruction if you do not want
uppercase translation.

You can use the ARG and PARSE ARG instructions repeatedly on the same
source objects (typically with different templates). The source objects do not
change. The only restrictions on the length or content of the data parsed are
those the caller imposes.

Example:
/* String passed is "Easy Rider" */
Arg adjective noun .

/* Now: ADJECTIVE contains 'EASY' */
/* NOUN contains 'RIDER' */

If you expect more than one object to be available to the program or routine,
you can use a comma in the parsing template_list so each template is selected
in turn.

Example:
/* Function is called by FRED('data X',1,5) */
Fred: Arg string, num1, num2

/* Now: STRING contains 'DATA X' */
/* NUM1 contains '1' */
/* NUM2 contains '5' */

Notes:

1. The ARG built-in function can also retrieve or check the arguments. See
“ARG (Argument)” on page 305.

2. The USE ARG instruction (see “USE” on page 84) is an alternative way of
retrieving arguments. USE ARG performs a direct, one-to-one assignment
of argument objects to REXX variables. You should use this when your
program needs a direct reference to the argument object, without string
conversion or parsing. USE ARG also allows access to both string and
non-string argument objects. ARG and PARSE ARG produce string values
from the arguments, and the language processor then parses these.

Keyword Instructions

44 Object REXX Reference

CALL

�� CALL &

,

name
(var) expression

OFF ANY
ERROR
FAILURE
HALT
NOTREADY
USER usercondition

ON ANY
ERROR NAME trapname
FAILURE
HALT
NOTREADY
USER usercondition

; ��

CALL calls a routine (if you specify name) or controls the trapping of certain
conditions (if you specify ON or OFF).

To control trapping, you specify OFF or ON and the condition you want to
trap. OFF turns off the specified condition trap. ON turns on the specified
condition trap. All information on condition traps is contained in “Chapter 12.
Conditions and Condition Traps” on page 429.

To call a routine, specify name, which must be a literal string or symbol that is
taken as a constant. The usercondition is a single symbol that is taken as a
constant. The trapname is a symbol or string taken as a constant. The routine
called can be:

An internal routine
A function or subroutine that is in the same program as the CALL
instruction or function call that calls it.

A built-in routine
A function or subroutine that is defined as part of the REXX language.

An external routine
A function or subroutine that is neither built-in nor in the same
program as the CALL instruction or function call that calls it.

If name is a string in which case you specify it in quotation marks, the search
for internal routines is bypassed, and only a built-in function or an external
routine is called. Note that the names of built-in functions and external
routines are in uppercase. Therefore, write the name in the literal string in
uppercase characters.

Keyword Instructions

Chapter 2. Keyword Instructions 45

File names can be in uppercase, lowercase, or mixed case. The search for files
is case-insensitive to case. Therefore, when using CALL to run a REXX
subroutine contained on a disk file (external routine), the case does not matter.

You can also specify (var), a single variable name enclosed in parentheses. The
variable is evaluated before any of the argument expressions, and the value is
the target of the CALL instruction. The language processor does not translate
the variable value into uppercase, so the evaluated name must exactly match
any label name. (See “Labels” on page 28 for a description of label names.)

The called routine can optionally return a result. In this case, the CALL
instruction is functionally identical with the clause:

�� result=name(&

,

expression
) ; ��

If the called routine does not return a result, you get an error if you call it as
a function.

You can use any number of expressions, separated by commas. The expressions
are evaluated from left to right and form the arguments during execution of
the routine. Any ARG, PARSE ARG, or USE ARG instruction or ARG built-in
function in the called routine accesses these objects while the called routine is
running. You can omit expressions, if appropriate, by including extra commas.

The CALL then branches to the routine called name, using exactly the same
mechanism as function calls. See “Chapter 8. Functions” on page 297. The
search order is as follows:

Internal routines
These are sequences of instructions inside the same program, starting
at the label that matches name in the CALL instruction. If you specify
the routine name in quotation marks, then an internal routine is not
considered for that search order. The RETURN instruction completes
the execution of an internal routine.

Built-in routines
These are routines built into the language processor for providing
various functions. They always return an object that is the result of
the routine. (See “ARG (Argument)” on page 305.)

Note: You can call any built-in function as a subroutine. Any result is
stored in RESULT. Simply specify CALL, the function name (with
no parenthesis) and any arguments:

Keyword Instructions

46 Object REXX Reference

call length "string" /* Same as length("string") */
say result /* Produces: 6 */

However, if you include a trailing comma, you must include
the semicolon to prevent the interpretation of the last comma as
a continuation character.

External routines
Users can write or use routines that are external to the language
processor and the calling program. You can code an external routine
in REXX or in any language that supports the system-dependent
interfaces. If the CALL instruction calls an external routine written in
REXX as a subroutine, you can retrieve any argument strings with the
ARG, PARSE ARG, or USE ARG instructions or the ARG built-in
function.

For more information on the search order, see “Search Order” on page 299.

During execution of an internal routine, all variables previously known are
generally accessible. However, the PROCEDURE instruction can set up a local
variables environment to protect the subroutine and caller from each other.
The EXPOSE option on the PROCEDURE instruction can expose selected
variables to a routine.

Calling an external program as a subroutine is similar to calling an internal
routine. The external routine, however, is an implicit PROCEDURE in that all
the caller’s variables are always hidden. The status of internal values, for
example NUMERIC settings, start with their defaults (rather than inheriting
those of the caller). In addition, you can use EXIT to return from the routine.

When control reaches an internal routine but not a built-in function or
external routine, the line number of the CALL instruction is available in the
variable SIGL (in the caller’s variable environment). This can be used as a
debug aid because it is possible to find out how control reached a routine.
Note that if the internal routine uses the PROCEDURE instruction, it needs to
EXPOSE SIGL to get access to the line number of the CALL.

After the subroutine processed the RETURN instruction, control returns to the
clause following the original CALL. If the RETURN instruction specified an
expression, the variable RESULT is set to the value of that expression.
Otherwise, the variable RESULT is dropped (becomes uninitialized).

An internal routine can include calls to other internal routines, as well as
recursive calls to itself.

Example:

Keyword Instructions

Chapter 2. Keyword Instructions 47

/* Recursive subroutine execution... */
arg z
call factorial z
say z'! =' result
exit
factorial: procedure /* Calculate factorial by */

arg n /* recursive invocation. */
if n=0 then return 1
call factorial n-1
return result * n

During internal subroutine (and function) execution, all important pieces of
information are automatically saved and then restored upon return from the
routine. These are:
v The status of DO loops and other structures: Executing a SIGNAL within

a subroutine is safe because DO loops and other structures that were active
when the subroutine was called are not ended. However, those currently
active within the subroutine are ended.

v Trace action: After a subroutine is debugged, you can insert a TRACE Off
at the beginning of it without affecting the tracing of the caller. If you want
to debug a subroutine, you can insert a TRACE Results at the start and
tracing is automatically restored to the conditions at entry (for example,
Off) upon return. Similarly, ? (interactive debug) is saved across routines.

v NUMERIC settings: The DIGITS, FUZZ, and FORM of arithmetic
operations (in “NUMERIC” on page 62) are saved and then restored on
return. A subroutine can, therefore, set the precision, for example, that it
needs to use without affecting the caller.

v ADDRESS settings: The current and previous destinations for commands
(see “ADDRESS” on page 42) are saved and then restored on return.

v Condition traps: CALL ON and SIGNAL ON are saved and then restored
on return. This means that CALL ON, CALL OFF, SIGNAL ON, and
SIGNAL OFF can be used in a subroutine without affecting the conditions
the caller set up.

v Condition information: This information describes the state and origin of
the current trapped condition. The CONDITION built-in function returns
this information. See “CONDITION” on page 313.

v .RS value: The value of the .RS environment symbol. (See “.RS” on
page 455.)

v Elapsed-time clocks: A subroutine inherits the elapsed-time clock from its
caller (see “TIME” on page 346), but because the time clock is saved across
routine calls, a subroutine or internal function can independently restart
and use the clock without affecting its caller. For the same reason, a clock
started within an internal routine is not available to the caller.

v OPTIONS settings: ETMODE and EXMODE are saved and then restored
on return.

Keyword Instructions

48 Object REXX Reference

DO

�� DO ;
repetitor conditional

& instruction

END ��

repetitor:

control1=expri
TO exprt BY exprb FOR exprf

control2 OVER collection
FOREVER
exprr

conditional:

WHILE exprw
UNTIL expru

DO groups instructions and optionally processes them repetitively. During
repetitive execution, a control variable (control1 or control2) can be stepped
through some range of values.

Notes:

1. The exprr, expri, exprb, exprt, and exprf options, if present, are any
expressions that evaluate to a number. The exprr and exprf options are
further restricted to result in a positive whole number or zero. If necessary,
the numbers are rounded according to the setting of NUMERIC DIGITS.

2. The exprw or expru options, if present, can be any expression that evaluates
to 1 or 0.

3. The TO, BY, and FOR phrases can be in any order, if used, and are
evaluated in the order in which they are written.

4. The instruction can be any instruction, including assignments, commands,
message instructions, and keyword instructions (including any of the more
complex constructs such as IF, SELECT, and the DO instruction itself).

5. The subkeywords WHILE and UNTIL are reserved within a DO
instruction in that they cannot be used as symbols in any of the
expressions. Similarly, TO, BY, and FOR cannot be used in expri, exprt,
exprb, or exprf. FOREVER is also reserved, but only if it immediately
follows the keyword DO and is not followed by an equal sign.

6. The exprb option defaults to 1, if relevant.

Keyword Instructions

Chapter 2. Keyword Instructions 49

7. The collection can be any expression that evaluates to an object that
supports a MAKEARRAY method.

For more information, refer to “Appendix A. Using the DO Keyword” on
page 515.

DROP

�� DROP & name
(name)

; ��

DROP “unassigns” variables, that is, restores them to their original
uninitialized state. If name is not enclosed in parentheses, it identifies a
variable you want to drop and must be a symbol that is a valid variable
name, separated from any other name by one or more blanks or comments.

If parentheses enclose a single name, then its value is used as a subsidiary list
of variables to drop. Blanks are not necessary inside or outside the
parentheses, but you can add them if desired. This subsidiary list must follow
the same rules as the original list, that is, be valid character strings separated
by blanks, except that no parentheses are allowed. The list needs not contain
any names—that is, it can be empty.

Variables are dropped from left to right. It is not an error to specify a name
more than once or to drop a variable that is not known. If an exposed variable
is named (see “EXPOSE” on page 52 and “PROCEDURE” on page 66), then
the original variable is dropped.

Example:
j=4
Drop a z.3 z.j
/* Drops the variables: A, Z.3, and Z.4 */
/* so that reference to them returns their names. */

Here, a variable name in parentheses is used as a subsidiary list.

Example:
mylist='c d e'
drop (mylist) f
/* Drops the variables C, D, E, and F */
/* Does not drop MYLIST */

Keyword Instructions

50 Object REXX Reference

Specifying a stem (that is, a symbol that contains only one period as the last
character) assigns the stem variable to a new, empty stem object.

Example:
Drop z.
/* Assigns stem variable z. to a new empty stem object */

EXIT

�� EXIT
expression

; ��

EXIT leaves a program unconditionally. Optionally, EXIT returns a result
object to the caller. The program is stopped immediately, even if an internal
routine is being run. If no internal routine is active, RETURN (see “RETURN”
on page 74) and EXIT are identical in their effect on the program running.

If you specify expression, it is evaluated and the object resulting from the
evaluation is passed back to the caller when the program stops.

Example:
j=3
Exit j*4
/* Would exit with the string '12' */

If you do not specify expression, no data is passed back to the caller. If the
program was called as an external function, this is detected as an error—either
immediately (if RETURN was used), or on return to the caller (if EXIT was
used).

You can also use EXIT within a method. The method is stopped immediately,
and the result object, if specified, is returned to the sender. If the method has
previously issued a REPLY instruction (see “REPLY” on page 73), the EXIT
instruction must not include a result expression.

Notes:

1. If the program was called through a command interface, an attempt is
made to convert the returned value to a return code acceptable by the
underlying operating system. The returned string must be a whole number
whose value fits in a 16-bit signed integer (within the range -(2**15) to
(2**15-1). If the conversion fails, no error is raised, and a return code of 0
is returned.

2. If you do not specify EXIT, EXIT is implied but no result string is
returned.

Keyword Instructions

Chapter 2. Keyword Instructions 51

EXPOSE

�� EXPOSE & name
(name)

; ��

EXPOSE causes the object variables identified in name to be exposed to a
method. References to exposed variables, including assigning and dropping,
access variables in the current object's variable pool. (An object variable pool
is a collection of variables that is associated with an object rather than with
any individual method.)Therefore, the values of existing variables are
accessible, and any changes are persistent even after RETURN or EXIT from
the method.

Any changes a method makes to an object variable pool are immediately
visible to any other methods that share the same object variable pool. All
other variables that a method uses are local to the method and are dropped
on RETURN or EXIT. If an EXPOSE instruction is included, it must be the first
instruction of the method.

If parentheses enclose a single name, then, after the variable name is exposed,
the character string value of name is immediately used as a subsidiary list of
variables. Blanks are not necessary inside or outside the parentheses, but you
can add them if desired. This subsidiary list must follow the same rules as the
original list, that is, valid variable names separated by blanks, except that no
parentheses are allowed.

Variables are exposed in sequence from left to right. It is not an error to
specify a name more than once, or to specify a name that has not been used
as a variable.

Example:
/* Example of exposing object variables */
myobj = .myclass∼new
myobj∼c
myobj∼d /* Would display "Z is: 120" */

::class myclass /* The ::CLASS directive */
/* (see “::CLASS” on page 87) */

::method c /* The ::METHOD directive */
/* (see “::METHOD” on page 89) */

expose z
z = 100 /* Would assign 100 to the object variable z */
return

::method d

Keyword Instructions

52 Object REXX Reference

expose z
z=z+20 /* Would add 20 to the same object variable z */
say 'Z is:' z
return

You can expose an entire collection of compound variables (see “Compound
Symbols” on page 33) by specifying their stem in the variable list or a
subsidiary list. The variables are exposed for all operations.

Example:
expose j k c. d.
/* This exposes "J", "K", and all variables whose */
/* name starts with "C." or "D." */
c.1='7.' /* This sets "C.1" in the object */

/* variable pool, even if it did not */
/* previously exist. */

FORWARD

�� FORWARD
CONTINUE

&

ARGUMENTS expra
,

ARRAY (expri)

MESSAGE exprm
�

�
CLASS exprs TO exprt

��

Note: You can specify the options in any order.

FORWARD forwards the message that caused the currently active method to
begin running. The FORWARD instruction can change parts of the forwarded
message, such as the target object, the message name, the arguments, and the
superclass override.

If you specify the TO option, the language processor evaluates exprt to
produce a new target object for the forwarded message. The exprt is a literal
string, constant symbol, or expression enclosed in parentheses. If you do not
specify the TO option, the initial value of the REXX special variable SELF is
used.

If you specify the ARGUMENTS option, the language processor evaluates
expra to produce an array object that supplies the set of arguments for the

Keyword Instructions

Chapter 2. Keyword Instructions 53

forwarded message. The expra can be a literal string, constant symbol, or
expression enclosed in parentheses. The ARGUMENTS value must evaluate to
a REXX array object.

If you specify the ARRAY option, each expri is an expression (use commas to
separate the expressions). The language processor evaluates the expression list
to produce a set of arguments for the forwarded message. It is an error to use
both the ARRAY and the ARGUMENTS options on the same FORWARD
instruction.

If you specify neither ARGUMENTS nor ARRAY, the language processor does
not change the arguments used to call the method.

If you specify the MESSAGE option, the exprm is a literal string, a constant
symbol, or an expression enclosed in parentheses. If you specify an expression
enclosed in parentheses, the language processor evaluates the expression to
obtain its value. The uppercase character string value of the MESSAGE option
is the name of the message that the FORWARD instruction issues.

If you do not specify MESSAGE, FORWARD uses the message name used to
call the currently active method.

If you specify the CLASS option, the exprs is a literal string, a constant
symbol, or an expression enclosed in parentheses. This is the class object used
as a superclass specifier on the forwarded message.

If you do not specify CLASS, the message is forwarded without a superclass
override.

If you do not specify the CONTINUE option, the language processor
immediately exits the current method before forwarding the message. Results
returned from the forwarded message are the return value from the original
message that called the active method (the caller of the method that issued
the FORWARD instruction). Any conditions the forwarded message raises are
raised in the calling program (without raising a condition in the method
issuing the FORWARD instruction).

If you specify the CONTINUE option, the current method does not exit and
continues with the next instruction when the forwarded message completes. If
the forwarded message returns a result, the language processor assigns it to
the special variable RESULT. If the message does not return a result, the
language processor drops (uninitializes) the variable RESULT.

Keyword Instructions

54 Object REXX Reference

The FORWARD instruction passes all or part of an existing message
invocation to another method. For example, the FORWARD instruction can
forward a message to a different target object, using the same message name
and arguments.

Example:
::method substr
forward to (self∼string) /* Forward to the string value */

You can use FORWARD in an UNKNOWN method to reissue to another
object the message that the UNKNOWN method traps.

Example:
::method unknown
use arg msg, args
/* Forward to the string value */
/* passing along the arguments */
forward to (self∼string) message (msg) arguments (args)

You can use FORWARD in a method to forward a message to a superclass's
methods, passing the same arguments. This is very common usage in object
INIT methods.

Example:
::class savings subclass account
::method init
expose type penalty
forward class (super) continue /* Send to the superclass */
type = 'Savings' /* Now complete initialization */
penalty = '1% for balance under 500'

In the preceding example, the CONTINUE option causes the FORWARD
message to continue with the next instruction, rather than exiting the Savings
class INIT method.

GUARD

�� GUARD ON
WHEN expression

OFF
WHEN expression

; ��

GUARD controls a method's exclusive access to an object.

GUARD ON acquires for an active method exclusive use of its object variable
pool. This prevents other methods that also require exclusive use of the same

Keyword Instructions

Chapter 2. Keyword Instructions 55

variable pool from running on the same object. If another method has already
acquired exclusive access, the GUARD instruction causes the issuing method
to wait until the variable pool is available.

GUARD OFF releases exclusive use of the object variable pool. Other methods
that require exclusive use of the same variable pool can begin running.

If you specify WHEN, the method delays running until the expression
evaluates to 1 (true). If the expression evaluates to 0 (false), GUARD waits until
another method assigns or drops an object variable (that is, a variable named
on an EXPOSE instruction) used in the WHEN expression. When an object
variable changes, GUARD reevaluates the WHEN expression. If the expression
evaluates to true, the method resumes running. If the expression evaluates to
false, GUARD resumes waiting.

Example:
::method c
expose y
if y>0 then

return 1
else

return 0
::method d
expose z
guard on when z>0
self∼c /* Reevaluated when Z changes */
say 'Method D'

If you specify WHEN and the method has exclusive access to the object's
variable pool, then the exclusive access is released while GUARD is waiting
for an object variable to change. Exclusive access is reacquired before the
WHEN expression is evaluated. Once the WHEN expression evaluates to 1
(true), exclusive access is either retained (for GUARD ON WHEN) or released
(for GUARD OFF WHEN), and the method resumes running.

Note: If the condition expression cannot be met, GUARD ON WHEN puts the
program in a continuous wait condition. This can occur in particular
when several activities run concurrently. See “Guarded Methods” on
page 446 for more information.

IF

�� IF expression
;

THEN
;

instruction
ELSE instruction

;

��

Keyword Instructions

56 Object REXX Reference

IF conditionally processes an instruction or group of instructions depending
on the evaluation of the expression. The expression is evaluated and must result
in 0 or 1.

The instruction after the THEN is processed only if the result is 1 (true). If
you specify an ELSE, the instruction after ELSE is processed only if the result
of the evaluation is 0 (false).

Example:
if answer='YES' then say 'OK!'
else say 'Why not?'

Remember that if the ELSE clause is on the same line as the last clause of the
THEN part, you need a semicolon before ELSE.

Example:
if answer='YES' then say 'OK!'; else say 'Why not?'

ELSE binds to the nearest IF at the same level. You can use the NOP
instruction to eliminate errors and possible confusion when IF constructs are
nested, as in the following example.

Example:
If answer = 'YES' Then

If name = 'FRED' Then
say 'OK, Fred.'

Else
nop

Else
say 'Why not?'

Notes:

1. The instruction can be any assignment, message instruction, command, or
keyword instruction, including any of the more complex constructs such as
DO, SELECT, or the IF instruction itself. A null clause is not an instruction,
so putting an extra semicolon (or label) after THEN or ELSE is not
equivalent to putting a dummy instruction (as it would be in C). The NOP
instruction is provided for this purpose.

2. The symbol THEN cannot be used within expression, because the keyword
THEN is treated differently in that it need not start a clause. This allows
the expression on the IF clause to be ended by THEN, without a semicolon
(;) being required.

INTERPRET

Keyword Instructions

Chapter 2. Keyword Instructions 57

�� INTERPRET expression ; ��

INTERPRET processes instructions that have been built dynamically by
evaluating expression.

The expression is evaluated to produce a character string, and is then
processed (interpreted) just as though the resulting string were a line inserted
into the program and bracketed by a DO; and an END;.

Any instructions (including INTERPRET instructions) are allowed, but note
that constructions such as DO...END and SELECT...END must be complete.
For example, a string of instructions being interpreted cannot contain a
LEAVE or ITERATE instruction (valid only within a repetitive DO loop)
unless it also contains the whole repetitive DO...END construct.

A semicolon is implied at the end of the expression during execution, if one
was not supplied.

Examples:
/* INTERPRET example */
data='FRED'
interpret data '= 4'
/* Builds the string "FRED = 4" and */
/* Processes: FRED = 4; */
/* Thus the variable FRED is set to "4" */

/* Another INTERPRET example */
data='do 3; say "Hello there!"; end'
interpret data /* Displays: */

/* Hello there! */
/* Hello there! */
/* Hello there! */

Notes:

1. Labels within the interpreted string are not permanent and are, therefore,
an error.

2. Executing the INTERPRET instruction with TRACE R or TRACE I can be
helpful in interpreting the results you get.
Example:
/* Here is a small REXX program. */
Trace Int
name='Kitty'
indirect='name'
interpret 'say "Hello"' indirect'"!"'

When this is run, you get the following trace:

Keyword Instructions

58 Object REXX Reference

C:\>REXXC kitty
3 *-* name='Kitty'

>L> "Kitty"
4 *-* indirect='name'

>L> "name"
5 *-* interpret 'say "Hello"' indirect'"!"'

>L> "say "Hello""
>V> "name"
>O> "say "Hello" name"
>L> ""!""
>O> "say "Hello" name"!""
- say "Hello" name"!"
>L> "Hello"
>V> "Kitty"
>O> "Hello Kitty"
>L> "!"
>O> "Hello Kitty!"

Hello Kitty!
C:\>

Lines 3 and 4 set the variables used in line 5. Execution of line 5 then
proceeds in two stages. First the string to be interpreted is built up, using
a literal string, a variable (INDIRECT), and another literal string. The
resulting pure character string is then interpreted, just as though it were
actually part of the original program. Because it is a new clause, it is
traced as such (the second *-* trace flag under line 5) and is then
processed. Again a literal string is concatenated to the value of a variable
(NAME) and another literal, and the final result (Hello Kitty!) is then
displayed.

3. For many purposes, you can use the VALUE function (see “VALUE” on
page 350) instead of the INTERPRET instruction. The following line could,
therefore, have replaced line 5 in the previous example:
say "Hello" value(indirect)"!"

INTERPRET is usually required only in special cases, such as when two or
more statements are to be interpreted together, or when an expression is to
be evaluated dynamically.

4. You cannot use a directive (see “Chapter 3. Directives” on page 87) within
an INTERPRET instruction.

ITERATE

�� ITERATE
name

; ��

Keyword Instructions

Chapter 2. Keyword Instructions 59

ITERATE alters the flow within a repetitive DO loop (that is, any DO
construct other than that with a simple DO).

Execution of the group of instructions stops, and control is passed to the DO
instruction just as though the END clause had been encountered. The control
variable, if any, is incremented and tested, as usual, and the group of
instructions is processed again, unless the DO instruction ends the loop.

The name is a symbol, taken as a constant. If name is not specified, ITERATE
continues with the current repetitive loop. If name is specified, it must be the
name of the control variable of a currently active loop, which can be the
innermost, and this is the loop that is stepped. Any active loops inside the one
selected for iteration are ended (as though by a LEAVE instruction).

Example:
do i=1 to 4

if i=2 then iterate
say i

end
/* Displays the numbers: "1" "3" "4" */

Notes:

1. If specified, name must match the symbol naming the control variable in
the DO clause in all respects except the case. No substitution for
compound variables is carried out when the comparison is made.

2. A loop is active if it is currently being processed. If a subroutine is called,
or an INTERPRET instruction is processed, during the execution of a loop,
the loop becomes inactive until the subroutine has returned or the
INTERPRET instruction has completed. ITERATE cannot be used to
continue with an inactive loop.

3. If more than one active loop uses the same control variable, ITERATE
selects the innermost loop.

LEAVE

�� LEAVE
name

; ��

LEAVE causes an immediate exit from one or more repetitive DO loops, that
is, any DO construct other than a simple DO.

Processing of the group of instructions is ended, and control is passed to the
instruction following the END clause, just as though the END clause had been

Keyword Instructions

60 Object REXX Reference

encountered and the termination condition had been met. However, on exit,
the control variable, if any, contains the value it had when the LEAVE
instruction was processed.

The name is a symbol, taken as a constant. If name is not specified, LEAVE
ends the innermost active repetitive loop. If name is specified, it must be the
name of the control variable of a currently active loop, which can be the
innermost, and that loop, and any active loops inside it, are then ended.
Control then passes to the clause following the END that matches the DO
clause of the selected loop.

Example:
do i=1 to 5

say i
if i=3 then leave

end
/* Displays the numbers: "1" "2" "3" */

Notes:

1. If specified, name must match the symbol naming the control variable in
the DO clause in all respects except the case. No substitution for
compound variables is carried out when the comparison is made.

2. A loop is active if it is currently being processed. If a subroutine is called,
or an INTERPRET instruction is processed, during execution of a loop, the
loop becomes inactive until the subroutine has returned or the
INTERPRET instruction has completed. LEAVE cannot be used to end an
inactive loop.

3. If more than one active loop uses the same control variable, LEAVE selects
the innermost loop.

NOP

�� NOP; ��

NOP is a dummy instruction that has no effect. It can be useful as the target
of a THEN or ELSE clause.

Example:
Select

when a=c then nop /* Do nothing */
when a>c then say 'A > C'
otherwise say 'A < C'

end

Keyword Instructions

Chapter 2. Keyword Instructions 61

Note: Putting an extra semicolon instead of the NOP would merely insert a
null clause, which would be ignored. The second WHEN clause would
be seen as the first instruction expected after the THEN, and would,
therefore, be treated as a syntax error. NOP is a true instruction,
however, and is, therefore, a valid target for the THEN clause.

NUMERIC

�� NUMERIC DIGITS
expression1

SCIENTIFIC
FORM

ENGINEERING
expression2

VALUE
FUZZ

expression3

; ��

NUMERIC changes the way in which a program carries out arithmetic
operations. The options of this instruction are described in detail in
“Chapter 11. Numbers and Arithmetic” on page 421.

NUMERIC DIGITS
controls the precision to which arithmetic operations and built-in
functions are evaluated. If you omit expression1, the precision defaults to 9
digits. Otherwise, the character string value result of expression1 must
evaluate to a positive whole number and must be larger than the current
NUMERIC FUZZ setting.

There is no limit to the value for DIGITS (except the amount of storage
available), but high precisions are likely to require a great amount of
processing time. It is recommended that you use the default value
whenever possible.

You can retrieve the current NUMERIC DIGITS setting with the DIGITS
built-in function. See “DIGITS” on page 322.

NUMERIC FORM
controls the form of exponential notation for the result of arithmetic
operations and built-in functions. This can be either SCIENTIFIC (in
which case only one, nonzero digit appears before the decimal point) or
ENGINEERING (in which case the power of 10 is always a multiple of 3).
The default is SCIENTIFIC. The subkeywords SCIENTIFIC or
ENGINEERING set the FORM directly, or it is taken from the character
string result of evaluating the expression (expression2) that follows VALUE.
The result in this case must be either SCIENTIFIC or ENGINEERING. You can

Keyword Instructions

62 Object REXX Reference

omit the subkeyword VALUE if expression2 does not begin with a symbol
or a literal string, that is, if it starts with a special character, such as an
operator character or parenthesis.

You can retrieve the current NUMERIC FORM setting with the FORM
built-in function. See “FORM” on page 325.

NUMERIC FUZZ
controls how many digits, at full precision, are ignored during a numeric
comparison operation. (See “Numeric Comparisons” on page 426.) If you
omit expression3, the default is 0 digits. Otherwise, the character string
value result of expression3 must evaluate to 0 or a positive whole number
rounded, if necessary, according to the current NUMERIC DIGITS setting,
and must be smaller than the current NUMERIC DIGITS setting.

NUMERIC FUZZ temporarily reduces the value of NUMERIC DIGITS by
the NUMERIC FUZZ value during every numeric comparison. The
numbers are subtracted under a precision of DIGITS minus FUZZ digits
during the comparison and are then compared with 0.

You can retrieve the current NUMERIC FUZZ setting with the FUZZ
built-in function. See “FUZZ” on page 327.

Note: The three numeric settings are automatically saved across internal
subroutine and function calls. See the CALL instruction (“CALL” on
page 45) for more details.

PARSE

�� PARSE
UPPER
LOWER

CASELESS
ARG
LINEIN
PULL
SOURCE
VALUE WITH

expression
VAR name
VERSION

�

�
template_list

; ��

Note: You can specify UPPER and CASELESS or LOWER and CASELESS in
either order.

PARSE assigns data from various sources to one or more variables according
to the rules of parsing. (See “Chapter 10. Parsing” on page 403.)

Keyword Instructions

Chapter 2. Keyword Instructions 63

If you specify UPPER or LOWER, any character strings to be parsed are first
translated. Otherwise no translation takes place during the parsing. If you
specify UPPER, the strings are translated to uppercase. If you specify LOWER,
the strings are translated to lowercase.

If you specify CASELESS, character string matches during parsing are made
independent of the case. This means a letter in uppercase is equal to the same
letter in lowercase.

The template_list can be a single template or list of templates separated by
commas. Each template consists of one or more symbols separated by blanks,
patterns, or both.

Each template is applied to a single source string. Specifying several templates
is not a syntax error, but only the PARSE ARG variant can supply more than
one non-null source string. See “Parsing Several Strings” on page 414 for
information on parsing several source strings.

If you do not specify a template, no variables are set but the data is prepared
for parsing, if necessary. Thus for PARSE PULL, a data string is removed from
the current data queue, for PARSE LINEIN (and PARSE PULL if the queue is
empty), a line is taken from the default input stream, and for PARSE VALUE,
expression is evaluated. For PARSE VAR, the specified variable is accessed. If it
does not have a value, the NOVALUE condition is raised, if it is enabled.

The following list describes the data for each variant of the PARSE instruction.

PARSE ARG
parses the strings passed to a program or internal routine as input
arguments. (See the ARG instruction in “ARG” on page 43 for details and
examples.)

Note: Parsing uses the argument string values. The USE ARG instruction
provides access to string and non-string argument objects. You can
also retrieve or check the argument objects to a REXX program or
internal routine with the ARG built-in function (see “ARG
(Argument)” on page 305).

PARSE LINEIN
parses the next line of the default input stream. (See “Chapter 16. Input
and Output Streams” on page 463 for a discussion of REXX input and
output.) PARSE LINEIN is a shorter form of the following instruction:

�� PARSE VALUE LINEIN()WITH
template_list

; ��

If no line is available, program execution usually pauses until a line is

Keyword Instructions

64 Object REXX Reference

complete. Use PARSE LINEIN only when direct access to the character
input stream is necessary. Use the PULL or PARSE PULL instructions for
the usual line-by-line dialog with the user to maintain generality.
To check if any lines are available in the default input stream, use the
built-in function LINES. See “LINES (Lines Remaining)” on page 331 and
“LINEIN (Line Input)” on page 328.

PARSE PULL
parses the next string of the external data queue. If the external data
queue is empty, PARSE PULL reads a line of the default input stream (the
user’s terminal), and the program pauses, if necessary, until a line is
complete. You can add data to the head or tail of the queue by using the
PUSH and QUEUE instructions, respectively. You can find the number of
lines currently in the queue with the QUEUED built-in function. (See
“QUEUED” on page 333.) The queue remains active as long as the
language processor is active. Other programs in the system can alter the
queue and use it to communicate with programs written in REXX. See
also the PULL instruction in “PULL” on page 69.

Note: PULL and PARSE PULL read the current data queue. If the queue
is empty, they read the default input stream, STDIN (typically, the
keyboard).

PARSE SOURCE
parses data describing the source of the program running. The language
processor returns a string that does not change while the program is
running.

The source string contains the characters Windows95 or WindowsNT,
followed by either COMMAND, FUNCTION, METHOD, or SUBROUTINE, depending
on whether the program was called as a host command or from a function
call in an expression or as a method of an object or using the CALL
instruction. These two tokens are followed by the complete path
specification of the program file.

The string parsed might, therefore, look like this:

Windows95 COMMAND C:\MYDIR\REXXTRY.CMD
or
WindowsNT COMMAND C:\MYDIR\REXXTRY.CMD

PARSE VALUE
parses the data, a character string, that is the result of evaluating
expression. If you specify no expression, the null string is used. Note that
WITH is a subkeyword in this context and cannot be used as a symbol
within expression.

Thus, for example:
PARSE VALUE time() WITH hours ':' mins ':' secs

Keyword Instructions

Chapter 2. Keyword Instructions 65

gets the current time and splits it into its constituent parts.

PARSE VAR name
parses the character string value of the variable name. The name must be a
symbol that is valid as a variable name, which means it cannot start with
a period or a digit. Note that the variable name is not changed unless it
appears in the template, so that, for example:
PARSE VAR string word1 string

removes the first word from string, puts it in the variable word1, and
assigns the remainder back to string.
PARSE UPPER VAR string word1 string

also translates the data from string to uppercase before it is parsed.

PARSE VERSION
parses information describing the language level and the date of the
language processor. This information consists of five blank-delimited
words:
v The string OBJREXX

v The language level description, for example 6.00.
v Three tokens that describe the language processor release date in the

same format as the default for the DATE built-in function (see “DATE”
on page 318), for example, “27 Sep 1997”.

PROCEDURE

�� PROCEDURE

&EXPOSE name
(name)

; ��

PROCEDURE, within an internal routine (subroutine or function), protects the
caller's variables by making them unknown to the instructions that follow it.
After a RETURN instruction is processed, the original variables environment
is restored and any variables used in the routine (that were not exposed) are
dropped. (An exposed variable is one belonging the caller of a routine that the
PROCEDURE instruction has exposed. When the routine refers to, or alters,
the variable, the original (caller's) copy of the variable is used.) An internal
routine need not include a PROCEDURE instruction. In this case the variables
it is manipulating are those the caller owns. If the PROCEDURE instruction is
used, it must be the first instruction processed after the CALL or function
invocation; that is, it must be the first instruction following the label.

Keyword Instructions

66 Object REXX Reference

If you use the EXPOSE option, any variable specified by the name is exposed.
Any reference to it (including setting and dropping) is made to the variables
environment the caller owns. Hence, the values of existing variables are
accessible, and any changes are persistent even on RETURN from the routine.
If the name is not enclosed in parentheses, it identifies a variable you want to
expose and must be a symbol that is a valid variable name, separated from
any other name with one or more blanks.

If parentheses enclose a single name, then, after the variable name is exposed,
the character string value of name is immediately used as a subsidiary list of
variables. Blanks are not necessary inside or outside the parentheses, but you
can add them if desired. This subsidiary list must follow the same rules as the
original list, that is, valid variable names separated by blanks, except that no
parentheses are allowed.

Variables are exposed from left to right. It is not an error to specify a name
more than once, or to specify a name that the caller has not used as a
variable.

Any variables in the main program that are not exposed are still protected.
Therefore, some of the caller's variables can be made accessible and can be
changed, or new variables can be created. All these changes are visible to the
caller upon RETURN from the routine.

Example:
/* This is the main REXX program */
j=1; z.1='a'
call toft
say j k m /* Displays "1 7 M" */
exit
/* This is a subroutine */
toft: procedure expose j k z.j

say j k z.j /* Displays "1 K a" */
k=7; m=3 /* Note: M is not exposed */

return

Note that if Z.J in the EXPOSE list is placed before J, the caller's value of J is
not visible, so Z.1 is not exposed.

The variables in a subsidiary list are also exposed from left to right.

Example:
/* This is the main REXX program */
j=1;k=6;m=9
a ='j k m'
call test
exit

Keyword Instructions

Chapter 2. Keyword Instructions 67

/* This is a subroutine */
test: procedure expose (a) /* Exposes A, J, K, and M */

say a j k m /* Displays "j k m 1 6 9" */
return

You can use subsidiary lists to more easily expose a number of variables at a
time or, with the VALUE built-in function, to manipulate dynamically named
variables.

Example:
/* This is the main REXX program */
c=11; d=12; e=13
Showlist='c d' /* but not E */
call Playvars
say c d e f /* Displays "11 New 13 9" */
exit

/* This is a subroutine */
Playvars: procedure expose (showlist) f

say word(showlist,2) /* Displays "d" */
say value(word(showlist,2),'New') /* Displays "12" and sets new value */
say value(word(showlist,2)) /* Displays "New" */
e=8 /* E is not exposed */
f=9 /* F was explicitly exposed */
return

Specifying a stem as name exposes this stem and all possible compound
variables whose names begin with that stem. (See “Stems” on page 30.)

Example:
/* This is the main REXX program */
a.=11; i=13; j=15
i = i + 1
C.5 = 'FRED'
call lucky7
say a. a.1 i j c. c.5
say 'You should see 11 7 14 15 C. FRED'
exit
lucky7:Procedure Expose i j a. c.
/* This exposes I, J, and all variables whose */
/* names start with A. or C. */
A.1='7' /* This sets A.1 in the caller's */

/* environment, even if it did not */
/* previously exist. */

return

Note: Variables can be exposed through several generations of routines if they
are included in all intermediate PROCEDURE instructions.

Keyword Instructions

68 Object REXX Reference

See the CALL instruction and function descriptions in “CALL” on
page 45 and “Chapter 8. Functions” on page 297 for details and
examples of how routines are called.

PULL

�� PULL
template_list

; ��

PULL reads a string from the head of the external data queue. (See
“Chapter 16. Input and Output Streams” on page 463 for a discussion of REXX
input and output.) It is a short form of the following instruction:

�� PARSE UPPER PULL
template_list

; ��

The current head of the queue is read as one string. Without a template_list
specified, no further action is taken and the string is thus effectively
discarded. The template_list can be a single template or list of templates
separated by commas, but PULL parses only one source string. Each template
consists of one or more symbols separated by blanks, patterns, or both.

If you specify several comma-separated templates, variables in templates other
than the first one are assigned the null string. The string is translated to
uppercase (that is, lowercase a–z to uppercase A–Z) and then parsed into
variables according to the rules described in “Chapter 10. Parsing” on
page 403. Use the PARSE PULL instruction if you do not desire uppercase
translation.

Note: If the current data queue is empty, PULL reads from the standard input
(typically, the keyboard). If there is a PULL from the standard input,
the program waits for keyboard input with no prompt. The length of
data read by the PULL instruction is restricted to the length of strings
contained by variables.

Example:
Say 'Do you want to erase the file? Answer Yes or No:'
Pull answer .
if answer='NO' then say 'The file will not be erased.'

Here the dummy placeholder, a period (.), is used in the template to isolate
the first word the user enters.

Keyword Instructions

Chapter 2. Keyword Instructions 69

If the external data queue is empty, a line is read from the default input
stream and the program pauses, if necessary, until a line is complete. (This is
as though PARSE UPPER LINEIN had been processed. See page 64.)

The QUEUED built-in function (see page “QUEUED” on page 333) returns the
number of lines currently in the external data queue.

PUSH

�� PUSH
expression

; ��

PUSH stacks the string resulting from the evaluation of expression LIFO (Last
In, First Out) into the external data queue. (See “Chapter 16. Input and
Output Streams” on page 463 for a discussion of REXX input and output.)

If you do not specify expression, a null string is stacked.

Example:
a='Fred'
push /* Puts a null line onto the queue */
push a 2 /* Puts "Fred 2" onto the queue */

The QUEUED built-in function (described in “QUEUED” on page 333) returns
the number of lines currently in the external data queue.

QUEUE

�� QUEUE
expression

; ��

QUEUE appends the string resulting from expression to the tail of the external
data queue. That is, it is added FIFO (First In, First Out). (See “Chapter 16.
Input and Output Streams” on page 463 for a discussion of REXX input and
output.)

If you do not specify expression, a null string is queued.

Example:
a='Toft'
queue a 2 /* Enqueues "Toft 2" */
queue /* Enqueues a null line behind the last */

Keyword Instructions

70 Object REXX Reference

The QUEUED built-in function (described in “QUEUED” on page 333) returns
the number of lines currently in the external data queue.

RAISE

�� RAISE condition
ERROR errorcode
FAILURE failurecode
SYNTAX number
USER usercondition
PROPAGATE

;
options

��

options:

&

ADDITIONAL expra
,

ARRAY (expri)

DESCRIPTION exprd

EXIT

RETURN
exprr

EXIT:

EXIT
expre

Note: You can specify the options ADDITIONAL, ARRAY, DESCRIPTION,
RETURN, and EXIT in any order. However, if you specify EXIT without
expre or RETURN without exprr, it must appear last.

RAISE returns or exits from the currently running routine or method and
raises a condition in the caller (for a routine) or sender (for a method). See
“Chapter 12. Conditions and Condition Traps” on page 429 for details of the
actions taken when conditions are raised. The RAISE instruction can raise all
conditions that can be trapped.

If you specify condition, it is a single symbol that is taken as a constant.

If the ERROR or FAILURE condition is raised, you must supply the associated
return code as errorcode or failurecode, respectively. These can be literal strings,
constant symbols, or expressions enclosed in parentheses. If you specify an
expression enclosed in parentheses, a subexpression, the language processor
evaluates the expression to obtain its character string value.

Keyword Instructions

Chapter 2. Keyword Instructions 71

If the SYNTAX condition is raised, you must supply the associated REXX
error number as number. This error number can be either a REXX major error
code or a REXX detailed error code in the form nn.nnn. The number can be a
literal string, a constant symbol, or an expression enclosed in parentheses. If
you specify an expression enclosed in parentheses, the language processor
evaluates the expression to obtain its character string value.

If a USER condition is raised, you must supply the associated user condition
name as usercondition. This can be a literal string or a symbol that is taken as a
constant.

If you specify the ADDITIONAL option, the language processor evaluates
expra to produce an object that supplies additional object information
associated with the condition. The expra can be a literal string, constant
symbol, or expression enclosed in parentheses. The ADDITIONAL entry of the
condition object and the “A” option of the CONDITION built-in function
return this additional object information. For SYNTAX conditions, the
ADDITIONAL value must evaluate to a REXX array object.

If you specify the ARRAY option, each expri is an expression (use commas to
separate the expressions). The language processor evaluates the expression list
to produce an array object that supplies additional object information
associated with the condition. The ADDITIONAL entry of the condition object
and the “A” option of the CONDITION built-in function return this additional
object information as an array of values. It is an error to use both the ARRAY
option and the ADDITIONAL option on the same RAISE instruction.

The content of expra or expri is used as the contents of the secondary error
message produced for a condition.

If you specify neither ADDITIONAL nor ARRAY, there is no additional object
information associated with the condition.

If you specify the DESCRIPTION option, the exprd can be a literal string, a
constant symbol, or an expression enclosed in parentheses. If you specify an
expression enclosed in parentheses, the language processor evaluates the
expression to obtain its character string value. This is the description
associated with the condition. The “D” option of the CONDITION built-in
function and the DESCRIPTION entry of the condition object return this
string.

If you do not specify DESCRIPTION, the language processor uses a null
string as the descriptive string.

If you specify the RETURN or EXIT option, the language processor evaluates
the expression exprr or expre, respectively, to produce a result object that is

Keyword Instructions

72 Object REXX Reference

passed back to the caller or sender as if it were a RETURN or EXIT result. The
expre or exprr is a literal string, constant symbol, or expression enclosed in
parentheses. If you specify an expression enclosed in parentheses, the
language processor evaluates the expression to obtain its character string
value. If you do not specify exprr or expre, no result is passed back to the
caller or sender. In either case, the effect is the same as that of the RETURN or
EXIT instruction (see “RETURN” on page 74). Following the return or exit, the
appropriate action is taken in the caller or sender (see “Action Taken when a
Condition Is Not Trapped” on page 432). If specified, the result value can be
obtained from the RESULT entry of the condition object.

Examples:
raise syntax 40 /* Raises syntax error 40 */
raise syntax 40.12 array (1, number) /* Raises syntax error 40, subcode 12 */

/* Passing two substitution values */
raise syntax (errnum) /* Uses the value of the variable ERRNUM */

/* as the syntax error number */
raise user badvalue /* Raises user condition BADVALUE */

If you specify PROPAGATE, and there is a currently trapped condition, this
condition is raised again in the caller (for a routine) or sender (for a method).
Any ADDITIONAL, DESCRIPTION, ARRAY, RETURN, or EXIT information
specified on the RAISE instruction replaces the corresponding values for the
currently trapped condition. A SYNTAX error occurs if no condition is
currently trapped.

Example:
signal on syntax
a = 'xyz'
c = a+2 /* Raises the SYNTAX condition */...
exit
syntax:
raise propagate /* Propagates SYNTAX information to caller */

REPLY

�� REPLY
expression

; ��

REPLY sends an early reply from a method to its caller. The method issuing
REPLY returns control, and possibly a result, to its caller to the point from
which the message was sent; meanwhile, the method issuing REPLY continues
running.

Keyword Instructions

Chapter 2. Keyword Instructions 73

If you specify expression, it is evaluated and the object resulting from the
evaluation is passed back. If you omit expression, no object is passed back.

Unlike RETURN or EXIT, the method issuing REPLY continues to run after
the REPLY until it issues an EXIT or RETURN instruction. The EXIT or
RETURN must not specify a result expression.

Example:
reply 42 /* Returns control and a result */
call tidyup /* Can run in parallel with sender */
return

Notes:

1. You can use REPLY only in a method.
2. A method can execute only one REPLY instruction.
3. When the method issuing the REPLY instruction is the only method on the

current activity with exclusive access to the object's variable pool, the
method retains exclusive access on the new activity. When the other
methods on the activity also have access, the method issuing REPLY
releases its access and reacquires the access on the new activity. This might
force the method to wait until the original activity has released its access.

See “Chapter 13. Concurrency” on page 439 for a complete description of
concurrency.

RETURN

�� RETURN
expression

; ��

RETURN returns control, and possibly a result, from a REXX program,
method, or internal routine to the point of its invocation.

If no internal routine (subroutine or function) is active, RETURN and EXIT are
identical in their effect on the program that is run. (See “EXIT” on page 51.)

If a subroutine is run, expression (if any) is evaluated, control is passed back to
the caller, and the REXX special variable RESULT is set to the value of
expression. If you omit expression, the special variable RESULT is dropped
(becomes uninitialized). The various settings saved at the time of the CALL
(for example, tracing and addresses) are also restored. (See “CALL” on
page 45.)

Keyword Instructions

74 Object REXX Reference

If a function is processed, the action taken is identical, except that expression
must be specified on the RETURN instruction. The result of expression is then
used in the original expression at the point where the function was called. See
the description of functions in “Chapter 8. Functions” on page 297 for more
details.

If a method is processed, the language processor evaluates expression (if any)
and returns control to the point from which the method's activating message
was sent. If called as a term of an expression, expression is required. If called
as a message instruction, expression is optional and is assigned to the REXX
special variable RESULT if you specify it. If the method has previously issued
a REPLY instruction, the RETURN instruction must not include a result
expression.

If a PROCEDURE instruction was processed within the routine (subroutine or
internal function), all variables of the current generation are dropped (and
those of the previous generation are exposed) after expression is evaluated and
before the result is used or assigned to RESULT.

SAY

�� SAY ;
expression

��

SAY writes a line to the default output stream, which displays it to the user.
However, the output destination can depend on the implementation. See
“Chapter 16. Input and Output Streams” on page 463 for a discussion of REXX
input and output. The string value of the expression result is written to the
default character output stream. The resulting string can be of any length. If
you omit expression, the null string is written.

The SAY instruction is a shorter form of the following instruction:

�� CALL LINEOUT,
expression

; ��

except that:
v SAY does not affect the special variable RESULT.
v If you use SAY and omit expression, a null string is used.
v CALL LINEOUT can raise NOTREADY; SAY cannot.

Keyword Instructions

Chapter 2. Keyword Instructions 75

See “LINEOUT (Line Output)” on page 330 for details of the LINEOUT
function.

Example:
data=100
Say data 'divided by 4 =>' data/4
/* Displays: "100 divided by 4 => 25" */

Notes:

1. Data from the SAY instruction is sent to the default output stream
(STDOUT). However, the standard rules for redirecting output apply to
the SAY output.

2. The SAY instruction does not format data; the operating system and the
hardware handle line wrapping. However, formatting is accomplished, the
output data remains a single logical line.

SELECT

�� SELECT; & WHEN expression THEN instruction ;
; ;

�

�

&

OTHERWISE
;

instruction ;

END ; ��

SELECT conditionally calls one of several alternative instructions.

Each expression after a WHEN is evaluated in turn and must result in 0 or 1. If
the result is 1, the instruction following the associated THEN (which can be a
complex instruction such as IF, DO, or SELECT) is processed and control is
then passed to the END. If the result is 0, control is passed to the next WHEN
clause.

If none of the WHEN expressions evaluates to 1, control is passed to the
instructions, if any, after OTHERWISE. In this situation, the absence of an
OTHERWISE produces an error, however, you can omit the instruction list
that follows OTHERWISE.

Example:

Keyword Instructions

76 Object REXX Reference

balance=100
check=50
balance = balance - check
Select

when balance > 0 then
say 'Congratulations! You still have' balance 'dollars left.'

when balance = 0 then do
say 'Warning, Balance is now zero! STOP all spending.'
say "You cut it close this month! Hope you do not have any"
say "checks left outstanding."
end

Otherwise
say "You have just overdrawn your account."
say "Your balance now shows" balance "dollars."
say "Oops! Hope the bank does not close your account."

end /* Select */

Notes:

1. The instruction can be any assignment, command, message instruction, or
keyword instruction, including any of the more complex constructs, such
as DO, IF, or the SELECT instruction itself.

2. A null clause is not an instruction, so putting an extra semicolon (or label)
after a THEN clause is not equivalent to putting a dummy instruction. The
NOP instruction is provided for this purpose.

3. The symbol THEN cannot be used within expression, because the keyword
THEN is treated differently in that it need not start a clause. This allows
the expression on the WHEN clause to be ended by the THEN without a
semicolon (;).

SIGNAL

Keyword Instructions

Chapter 2. Keyword Instructions 77

�� SIGNAL labelname
expression

VALUE
OFF ANY

ERROR
FAILURE
HALT
LOSTDIGITS
NOMETHOD
NOSTRING
NOTREADY
NOVALUE
SYNTAX
USER usercondition

ON ANY
ERROR NAME trapname
FAILURE
HALT
LOSTDIGITS
NOMETHOD
NOSTRING
NOTREADY
NOVALUE
SYNTAX
USER usercondition

; ��

SIGNAL causes an unusual change in the flow of control (if you specify
labelname or VALUE expression), or controls the trapping of certain conditions
(if you specify ON or OFF).

To control trapping, you specify OFF or ON and the condition you want to
trap. OFF turns off the specified condition trap. ON turns on the specified
condition trap. All information on condition traps is contained in “Chapter 12.
Conditions and Condition Traps” on page 429.

To change the flow of control, a label name is derived from labelname or taken
from the character string result of evaluating the expression after VALUE. The
labelname you specify must be a literal string or symbol that is taken as a
constant. If you specify a symbol for labelname, the search looks for a label
with uppercase characters. If you specify a literal string, the search uses the
literal string directly. You can locate label names with lowercase letters only if
you specify the label as a literal string with the same case. Similarly, for
SIGNAL VALUE, the lettercase of labelname must match exactly. You can omit
the subkeyword VALUE if expression does not begin with a symbol or literal
string, that is, if it starts with a special character, such as an operator character
or parenthesis. All active pending DO, IF, SELECT, and INTERPRET
instructions in the current routine are then ended and cannot be resumed.

Keyword Instructions

78 Object REXX Reference

Control is then passed to the first label in the program that matches the given
name, as though the search had started at the beginning of the program.

The labelname and usercondition are single symbols, which are taken as
constants. The trapname is a string or symbol taken as a constant.

Example:
Signal fred; /* Transfer control to label FRED below */
....
....
Fred: say 'Hi!'

If there are duplicates, control is always passed to the first occurrence of the
label in the program.

When control reaches the specified label, the line number of the SIGNAL
instruction is assigned to the special variable SIGL. This can aid debugging
because you can use SIGL to determine the source of a transfer of control to a
label.

TRACE

�� TRACE

&

number
Normal

All
Commands

? Error
Failure
Intermediates
Labels
Off
Results

; ��

Or, alternatively:

�� TRACE
string
symbol

expression
VALUE

; ��

TRACE controls the tracing action (that is, how much is displayed to the user)
during the processing of a REXX program. Tracing describes some or all of the

Keyword Instructions

Chapter 2. Keyword Instructions 79

clauses in a program, producing descriptions of clauses as they are processed.
TRACE is mainly used for debugging. Its syntax is more concise than that of
other REXX instructions because TRACE is usually entered manually during
interactive debugging. (This is a form of tracing in which the user can interact
with the language processor while the program is running.)

Note: TRACE cannot be used in the REXX macrospace. See “Trace in
Macrospace” on page 525.

If specified, the number must be a whole number.

The string or expression evaluates to:
v A numeric option
v One of the valid prefix or alphabetic character (word) options described in

“Alphabetic Character (Word) Options”
v Null

The symbol is taken as a constant and is therefore:
v A numeric option
v One of the valid prefix or alphabetic character (word) options described in

“Alphabetic Character (Word) Options”

The option that follows TRACE or the character string that is the result of
evaluating expression determines the tracing action. You can omit the
subkeyword VALUE if expression does not begin with a symbol or a literal
string, that is, if it starts with a special character, such as an operator or
parenthesis.

Alphabetic Character (Word) Options
Although you can enter the word in full, only the first capitalized letter is
needed; all following characters are ignored. That is why these are referred to
as alphabetic character options.

TRACE actions correspond to the alphabetic character options as follows:

All Traces (that is, displays) all clauses before execution.

Commands
Traces all commands before execution. If the command results in an
error or failure (see “Commands” on page 37), tracing also displays
the return code from the command.

Error Traces any command resulting in an error or failure after execution
(see “Commands” on page 37), together with the return code from the
command.

Failure
Traces any command resulting in a failure after execution (see

Keyword Instructions

80 Object REXX Reference

“Commands” on page 37), together with the return code from the
command. This is the same as the Normal option.

Intermediates
Traces all clauses before execution. Also traces intermediate results
during the evaluation of expressions and substituted names.

Labels Traces only labels passed during execution. This is especially useful
with debug mode, when the language processor pauses after each
label. It also helps the user to note all internal subroutine calls and
transfers of control because of the SIGNAL instruction.

Normal
Traces any failing command after execution, together with the return
code from the command. This is the default setting.

For the default Windows command processor, an attempt to enter an
unknown command raises a FAILURE condition. The CMD return
code for an unknown command is 1. An attempt to enter a command
in an unknown command environment also raises a FAILURE
condition; in such a case, the variable RC is set to 30.

Off Traces nothing and resets the special prefix option (described later) to
OFF.

Results
Traces all clauses before execution. Displays the final results (in
contrast with Intermediates option) of the expression evaluation. Also
displays values assigned during PULL, ARG, PARSE, and USE
instructions. This setting is recommended for general debugging.

Prefix Option
The prefix ? is valid alone or with one of the alphabetic character options. You
can specify the prefix more than once, if desired. Each occurrence of a prefix
on an instruction reverses the action of the previous prefix. The prefix must
immediately precede the option (no intervening blanks).

The prefix ? controls interactive debugging. During normal execution, a
TRACE option with a prefix of ? causes interactive debugging to be switched
on. (See “Chapter 17. Debugging Aids” on page 475 for full details of this
facility.) When interactive debugging is on, interpretation pauses after most
clauses that are traced. For example, the instruction TRACE ?E makes the
language processor pause for input after executing any command that returns
an error, that is, a nonzero return code or explicit setting of the error condition
by the command handler.

Any TRACE instructions in the program being traced are ignored to ensure
that you are not taken out of interactive debugging unexpectedly.

Keyword Instructions

Chapter 2. Keyword Instructions 81

You can switch off interactive debugging in several ways:
v Entering TRACE O turns off all tracing.
v Entering TRACE with no options restores the defaults—it turns off interactive

debugging but continues tracing with TRACE Normal (which traces any
failing command after execution).

v Entering TRACE ? turns off interactive debugging and continues tracing with
the current option.

v Entering a TRACE instruction with a ? prefix before the option turns off
interactive debugging and continues tracing with the new option.

Using the ? prefix, therefore, switches you in or out of interactive debugging.
Because the language processor ignores any further TRACE statements in
your program after you are in interactive debug mode, use CALL TRACE '?' to
turn off interactive debugging.

Numeric Options
If interactive debugging is active and the option specified is a positive whole
number (or an expression that evaluates to a positive whole number), that
number indicates the number of debug pauses to be skipped. (See
“Chapter 17. Debugging Aids” on page 475 for further information.) However,
if the option is a negative whole number (or an expression that evaluates to a
negative whole number), all tracing, including debug pauses, is temporarily
inhibited for the specified number of clauses. For example, TRACE -100 means
that the next 100 clauses that would usually be traced are not displayed. After
that, tracing resumes as before.

Tracing Tips:

v When a loop is traced, the DO clause itself is traced on every iteration of
the loop.

v You can retrieve the trace actions currently in effect by using the TRACE
built-in function (see “TRACE” on page 348).

v The trace output of commands traced before execution always contains the
final value of the command, that is, the string passed to the environment,
and the clause generating it.

v Trace actions are automatically saved across subroutine, function, and
method calls. See “CALL” on page 45 for more details.

Example: One of the most common traces you will use is:
TRACE ?R
/* Interactive debugging is switched on if it was off, */
/* and tracing results of expressions begins. */

The Format of Trace Output: Every clause traced appears with automatic
formatting (indentation) according to its logical depth of nesting, for example.
Results, if requested, are indented by two extra spaces and are enclosed in
double quotation marks so that leading and trailing blanks are apparent. Any

Keyword Instructions

82 Object REXX Reference

control codes in the data encoding (ASCII values less than '20'x) are replaced
by a question mark (?) to avoid screen interference. Results other than strings
appear in the string representation obtained by sending them a STRING
message. The resulting string is enclosed in parentheses. The line number in
the program precedes the first clause traced on any line. All lines displayed
during tracing have a three-character prefix to identify the type of data being
traced. These can be:

- Identifies the source of a single clause, that is, the data actually in the
program.

+++ Identifies a trace message. This can be the nonzero return code from a
command, the prompt message when interactive debugging is
entered, an indication of a syntax error when in interactive debugging.

>>> Identifies the result of an expression (for TRACE R) or the value
assigned to a variable during parsing, the value returned from a
subroutine call, or a value evaluated by execution of a DO loop.

>.> Identifies the value assigned to a placeholder during parsing (see
“The Period as a Placeholder” on page 405).

The following prefixes are used only if TRACE Intermediates is in effect:

>C> The data traced is the name of a compound variable, after the name
has been replaced by the value of the variable but before the variable
is used. If no value was assigned to the variable, the trace shows the
variable in uppercase characters.

>F> The data traced is the result of a function call.

>L> The data traced is a literal (string, uninitialized variable, or constant
symbol).

>M> The data traced is the result of a message.

>O> The data traced is the result of an operation on two terms.

>P> The data traced is the result of a prefix operation.

>V> The data traced is the contents of a variable.

If no option is specified on a TRACE instruction, or if the result of evaluating
the expression is null, the default tracing actions are restored. The defaults are
TRACE N and interactive debugging (?) off.

Following a syntax error that SIGNAL ON SYNTAX does not trap, the clause
in error is always traced.

Keyword Instructions

Chapter 2. Keyword Instructions 83

USE

�� USE ARG &

,

name
��

USE ARG retrieves the argument objects provided in a program, routine,
function, or method and assigns them to variables.

Each name must be a valid variable name. The names are assigned from left to
right. For each name you specify, the language processor assigns it a
corresponding argument from the program, routine, function, or method call.
If there is no corresponding argument, name is dropped.

A USE ARG instruction can be processed repeatedly and it always accesses
the same current argument data.

Examples:
/* USE Example */
/* FRED('Ogof X',1,5) calls function */
Fred: use arg string, num1, num2

/* Now: STRING contains 'Ogof X' */
/* NUM1 contains '1' */
/* NUM2 contains '5' */

/* Another example, shows how to pass non-string arguments with USE ARG */
/* Pass a stem and an array to a routine to modify one element of each */
stem.1 = 'Value'
array = .array∼of('Item')
say 'Before subroutine:' stem.1 array[1] /* Shows "Value Item" */
Call Change_First stem. , array
say 'After subroutine:' stem.1 array[1] /* Shows "NewValue NewItem" */
Exit
Change_First: Procedure

Use Arg substem., subarray
substem.1 = 'NewValue'
subarray[1] = 'NewItem'
Return

You can retrieve or check the arguments by using the ARG built-in function
(see “ARG (Argument)” on page 305). The ARG and PARSE ARG instructions
are alternative ways of retrieving arguments. ARG and PARSE ARG access the
string values of arguments. USE ARG performs a direct, one-to-one
assignment of arguments to REXX variables. This is preferable when you need
an exact copy of the argument, without translation or parsing. USE ARG also

Keyword Instructions

84 Object REXX Reference

allows access to both string and non-string argument objects; ARG and PARSE
ARG parse the string values of the arguments.

Keyword Instructions

Chapter 2. Keyword Instructions 85

86 Object REXX Reference

Chapter 3. Directives

A REXX program contains one or more executable code units. Directive
instructions separate these executable units. A directive begins with a double
colon (::) and is a nonexecutable instruction. For example, it cannot appear in
a string for the INTERPRET instruction to be interpreted. The first directive
instruction in a program marks the end of the main executable section of the
program.

For a program containing directives, all directives are processed first to set up
the program’s classes, methods, and routines. Then any program code in the
main code unit (preceding the first directive) is processed. This code can use
any classes, methods, and routines that the directives established.

::CLASS

�� ::CLASS classname
METACLASS metaclass

SUBCLASS Object

MIXINCLASS mclass
SUBCLASS sclass

�

�
PUBLIC INHERIT iclasses

; ��

Notes:

1. You can specify the options EXTERNAL, METACLASS, MIXINCLASS,
SUBCLASS, and PUBLIC in any order.

2. If you specify INHERIT, it must be the last option.

The ::CLASS directive creates a REXX class named classname. The classname is
a literal string or symbol that is taken as a constant. The created class is
available to programs through the REXX environment symbol .classname. The
classname acquires all methods defined by subsequent ::METHOD directives
until the end of the program or another ::CLASS directive is found. Only null
clauses (comments or blank lines) can appear between a ::CLASS directive and
any following directive instruction or the end of the program. Only one
::CLASS directive can appear for classname in a program.

If you specify the EXTERNAL option, the class is created using information
derived from an external source named extname. The extname is a literal string.

© Copyright IBM Corp. 1994, 2001 87

If you specify the METACLASS option, the instance methods of the metaclass
class become class methods of the classname class. (See “Chapter 4. Objects and
Classes” on page 95.) The metaclass and classname are literal strings or symbols
that are taken as constants. In the search order for methods, the metaclass
methods precede inherited class methods and follow any class methods
defined by ::METHOD directives with the CLASS option.

If you specify the PUBLIC option, the class is visible beyond its containing
REXX program to any other program that references this program with a
::REQUIRES directive. (See “::REQUIRES” on page 91.) If you do not specify
the PUBLIC option, the class is visible only within its containing REXX
program. All public classes defined within a program are used before PUBLIC
classes created with the same name.

If you specify the SUBCLASS option, the class becomes a subclass of the class
sclass for inheritance of instance and class methods. The sclass is a literal string
or symbol that is taken as a constant.

If you specify the MIXINCLASS option, the class becomes a subclass of the
class mclass for inheritance of instance and class methods. You can add the
new class instance and class methods to existing classes by using the
INHERIT option on a ::CLASS directive or by sending an INHERIT message
to an existing class. If you specify neither the SUBCLASS nor the
MIXINCLASS option, the class becomes a non-mixin subclass of the Object
class.

If you specify the INHERIT option, the class inherits instance methods and
class methods from the classes iclasses in their order of appearance (leftmost
first). This is equivalent to sending a series of INHERIT messages to the class
object, with each INHERIT message (except the first) specifying the preceding
class in iclasses as the classpos argument. (See “INHERIT” on page 164.) As
with the INHERIT message, each of the classes in iclasses must be a mixin
class. The iclasses is a blank-separated list of literal strings or symbols that are
taken as constants. If you omit the INHERIT option, the class inherits only
from sclass.

Example:
::class rectangle
::method area /* defined for the RECTANGLE class */
expose width height
return width*height

::class triangle
::method area /* defined for the TRIANGLE class */
expose width height
return width*height/2

Directives

88 Object REXX Reference

The ::CLASS directives in a program are processed in the order in which they
appear. If a ::CLASS directive has a dependency on ::CLASS directives that
appear later in the program, processing of the directive is deferred until all of
the class's dependencies have been processed.

Example:
::class savings subclass account /* requires the ACCOUNT class */
::method type
return "a Savings Account"

::class account
::method type
return "an Account"

The Savings class in the preceding example is not created until the Account
class that appears later in the program has been created.

Note: If you specify the same ::CLASS classname more than once in different
programs, the last one is used. Using more than one ::CLASS classname
in the same program produces an error.

::METHOD

�� ::METHOD methodname
CLASS ATTRIBUTE PRIVATE GUARDED

UNGUARDED

�

�
PROTECTED

; ��

Note: You can specify all options in any order.

The ::METHOD directive creates a method object and defines the method
attributes.

A ::METHOD directive starts a method, which is ended by another directive
or the end of the program. The ::METHOD is not included in the method
source.

The methodname is a literal string or a symbol that is taken as a constant. The
method is defined as methodname in the class specified in the most recent
::CLASS directive. Only one ::METHOD directive can appear for any
methodname in a class.

Directives

Chapter 3. Directives 89

A ::CLASS directive is not required before a ::METHOD directive. If no
::CLASS directive precedes ::METHOD, the method is not associated with a
class but is accessible to the main (executable) part of a program through the
.METHODS built-in object. Only one ::METHOD directive can appear for any
method name not associated with a class. See “.METHODS” on page 455 for
more details.

If you specify the CLASS option, the method is a class method. See “Chapter 4.
Objects and Classes” on page 95. The method is associated with the class
specified on the most recent ::CLASS directive. The ::CLASS directive is
required in this case.

If you specify the PRIVATE option, the method is a private method. (Only a
message the same object sends can activate the method.) If you omit the
PRIVATE option, the method is a public method that any sender can activate.

If you specify the UNGUARDED option, the method can be called while other
methods are active on the same object. If you do not specify UNGUARDED,
the method requires exclusive use of the object variable pool; it can run only
if no other method that requires exclusive use of the object variable pool is
active on the same object.

If you specify the ATTRIBUTE option, in addition to having a method created
as methodname in the class specified in the most recent ::CLASS directive,
another method is also automatically created in that same class as
methodname=.

For example, the directive
::method name attribute

creates two methods, NAME and NAME=. The NAME and NAME= methods
are equivalent to the following code sequences:
::method 'NAME='
expose name
use arg name

::method name
expose name
return name

If you specify the PROTECTED option, the method is a protected method.
(See “Chapter 15. The Security Manager” on page 457 for more information.) If
you omit the PROTECTED option, the method is not protected.

If you specify ATTRIBUTE, another directive (or the end of the program) must
follow the ::METHOD directive.

Directives

90 Object REXX Reference

Example:
r = .rectangle∼new(20,10)
say 'Area is' r∼area /* Produces "Area is 200" */

::class rectangle

::method area
expose width height
return width*height

::method init
expose width height
use arg width, height

::method perimeter
expose width height
return (width+height)*2

Note: It is an error to specify ::METHOD more than once within the same
class and use the same methodname.

::REQUIRES

�� ::REQUIRES ’programname’ ; ��

The ::REQUIRES directive specifies that the program requires access to the
classes and objects of the REXX program programname. All public classes and
routines defined in the named program are made available to the executing
program. The programname is a literal string or a symbol that is taken as a
constant. The string or symbol programname can be any string or symbol that
is valid as the target of a CALL instruction. The program programname is
called as an external routine with no arguments. The main program code,
which precedes the first directive instruction, is run.

Any ::REQUIRES directive must precede all ::CLASS, ::METHOD, and
::ROUTINE directives. The order of ::REQUIRES directives determines the
search order for classes and routines defined in the named programs.

The following example illustrates that two programs, ProgramA and
ProgramB, can both access classes and routines that another program,
ProgramC, contains. (The code at the beginning of ProgramC runs.)

Directives

Chapter 3. Directives 91

The language processor uses local routine definitions within a program in
preference to routines of the same name accessed through ::REQUIRES
directives. Local class definitions within a program override classes of the
same name in other programs accessed through ::REQUIRES directives.

Another directive, or the end of the program, must follow a ::REQUIRES
directive. Only null clauses can appear between them.

::ROUTINE

�� ::ROUTINE routinename
PUBLIC

; ��

The ::ROUTINE directive creates named routines within a program. The
routinename is a literal string or a symbol that is taken as a constant. Only one
::ROUTINE directive can appear for any routinename in a program.

A ::ROUTINE directive starts a routine, which is ended by another directive or
the end of the program.

If you specify the PUBLIC option, the routine is visible beyond its containing
REXX program to any other program that references this program with a
::REQUIRES directive. If you do not specify the PUBLIC option, the routine is
visible only within its containing REXX program.

Routines you define with the ::ROUTINE directive behave like external
routines. In the search order for routines, they follow internal routines and
built-in functions but precede all other external routines.

Example:

Directives

92 Object REXX Reference

::class c
::method a
call r 'A' /* displays "In method A" */

::method b
call r 'B' /* displays "In method B" */

::routine r
use arg name
say 'In method' name

Notes:

1. It is an error to specify ::ROUTINE with the same routine name more than
once in the same program. It is not an error to have a local ::ROUTINE
with the same name as another ::ROUTINE in another program that the
::REQUIRES directive accesses. The language processor uses the local
::ROUTINE definition in this case.

2. Calling an external REXX program as a function is similar to calling an
internal routine. For an external routine, however, the caller's variables are
hidden and the internal values (NUMERIC settings, for example) start
with their defaults.

Directives

Chapter 3. Directives 93

Directives

94 Object REXX Reference

Chapter 4. Objects and Classes

This chapter provides an overview of the REXX class structure.

A REXX object consists of object methods and object variables. Sending a
message to an object causes the object to perform some action; a method
whose name matches the message name defines the action that is performed.
Only an object's methods can access the object variables belonging to an
object. EXPOSE instructions within an object's methods specify object
variables. Any variables not exposed are dropped on return from a method.

You can create an object by sending a message to a class object. An object
created from a class is an instance of that class. Classes define the methods
and method names for their instances. The methods a class defines for its
instances are called the instance methods of that class. These are the object
methods for the instances. Classes can also define class methods, which are a
class's own object methods.

Note: When referring to object methods (for objects other than classes) or
instance methods (for classes), this book uses the term methods when
the meaning is clear from the context. When referring to object methods
and class methods of classes, this book uses the qualified terms to
avoid possible confusion.

Types of Classes

There are three kinds of classes:
v Object classes
v Mixin classes
v Abstract classes

The following sections explain these.

Object Classes
An object class is like a factory for producing objects. An object class creates
objects (instances) and provides methods that these objects can use. An object
acquires the instance methods of the class to which it belongs at the time of
its creation. If a class gains additional methods, objects created before the
definition of these methods do not acquire these methods.

Because the object methods also define the object variables, object classes are
factories for creating REXX objects. The Array class (see “The Array Class” on
page 118) is an example of an object class.

© Copyright IBM Corp. 1994, 2001 95

Mixin Classes
Classes can inherit from more than the single superclass fromwhich they were
created. This is called multiple inheritance. Classes designed to add a set of
instance and class methods to other classes are called mixin classes, or simply
mixins.

You can add mixin methods to an existing class by sending an INHERIT
message or using the INHERIT option on the ::CLASS directive. (See
“Chapter 3. Directives” on page 87.) In either case, the class to be inherited
must be a mixin. During both class creation and multiple inheritance,
subclasses inherit both class and instance methods from their superclasses.

Mixins are always associated with a base class, which is the mixin’s first
non-mixin superclass. Any subclass of the mixin’s base class can (directly or
indirectly) inherit a mixin; other classes cannot.

To create a new mixin class, you send a MIXINCLASS message to an existing
class or use the ::CLASS directive with the MIXINCLASS option. A mixin class
is also an object class and can create instances of the class.

Abstract Classes
Abstract classes provide definitions for instance methods and class methods but
are not intended to create instances. Abstract classes often define the message
interfaces that subclasses should implement.

You create an abstract class like object or mixin classes. No extra messages or
keywords on the ::CLASS directive are necessary. REXX does not prevent
users from creating instances of abstract classes.

Metaclasses
A metaclass is a class you can use to create another class. The only metaclass
that REXX provides is .class, the Class class. The Class class is the metaclass
of all the classes REXX provides. This means that instances of .class are
themselves classes. The Class class is like a factory for producing the factories
that produce objects.

To change the behavior of an object that is an instance, you generally use
subclassing. For example, you can create Statarray, a subclass of the Array
class (see “The Array Class” on page 118). The Statarray class can include a
method for computing a total of all the numeric elements of an array.
/* Creating an array subclass for statistics */

::class statarray subclass array public

::method init /* Initialize running total and forward to superclass */
expose total
total = 0

Objects and Classes

96 Object REXX Reference

/* “INIT” on page 171 describes the INIT method. */
forward class (super)

::method put /* Modify to increment running total */
expose total
use arg value
total = total + value /* Should verify that value is numeric!!! */
forward class (super)

::method '[]=' /* Modify to increment running total */
forward message 'PUT'

::method remove /* Modify to decrement running total */
expose total
use arg index
forward message 'AT' continue
total = total - result
forward class (super)

::method average /* Return the average of the array elements */
expose total
return total / self∼items

::method total /* Return the running total of the array elements */
expose total
return total

You can use this method on the individual array instances, so it is an instance
method.

However, if you want to change the behavior of the factory producing the
arrays, you need a new class method. One way to do this is to use the
::METHOD directive with the CLASS option. Another way to add a class
method is to create a new metaclass that changes the behavior of the Statarray
class. A new metaclass is a subclass of .class.

You can use a metaclass by specifying it in a SUBCLASS or MIXINCLASS
message or on a ::CLASS directive with the METACLASS option.

If you are adding a highly specialized class method useful only for a
particular class, use the ::METHOD directive with the CLASS option.
However, if you are adding a class method that would be useful for many
classes, such as an instance counter that counts how many instances a class
creates, you use a metaclass.

The following examples add a class method that keeps a running total of
instances created. The first version uses the ::METHOD directive with the
CLASS option. The second version uses a metaclass.

Version 1

Objects and Classes

Chapter 4. Objects and Classes 97

/* Adding a class method using ::METHOD */

a = .point∼new(1,1) /* Create some point instances */
say 'Created point instance' a
b = .point∼new(2,2)
say 'Created point instance' b
c = .point∼new(3,3)
say 'Created point instance' c

/* Ask the point class how many */
/* instances it has created */

say 'The point class has created' .point∼instances 'instances.'

::class point public /* Create Point class */

::method init class
expose instanceCount
instanceCount = 0 /* Initialize instanceCount */
forward class (super) /* Forward INIT to superclass */

::method new class
expose instanceCount /* Creating a new instance */
instanceCount = instanceCount + 1 /* Bump the count */
forward class (super) /* Forward NEW to superclass */

::method instances class
expose instanceCount /* Return the instance count */
return instanceCount

::method init
expose xVal yVal /* Set object variables */
use arg xVal, yVal /* as passed on NEW */

::method string
expose xVal yVal /* Use object variables */
return '('xVal','yVal')' /* to return string value */

Version 2
/* Adding a class method using a metaclass */

a = .point∼new(1,1) /* Create some point instances */
say 'Created point instance' a
b = .point∼new(2,2)
say 'Created point instance' b
c = .point∼new(3,3)
say 'Created point instance' c

/* Ask the point class how many */
/* instances it has created */

say 'The point class has created' .point∼instances 'instances.'

::class InstanceCounter subclass class /* Create a new metaclass that */

Objects and Classes

98 Object REXX Reference

/* will count its instances */
::method init
expose instanceCount
instanceCount = 0 /* Initialize instanceCount */
forward class (super) /* Forward INIT to superclass */

::method new
expose instanceCount /* Creating a new instance */
instanceCount = instanceCount + 1 /* Bump the count */
forward class (super) /* Forward NEW to superclass */

::method instances
expose instanceCount /* Return the instance count */
return instanceCount

::class point public metaclass InstanceCounter /* Create Point class */
/* using InstanceCounter metaclass */

::method init
expose xVal yVal /* Set object variables */
use arg xVal, yVal /* as passed on NEW */

::method string
expose xVal yVal /* Use object variables */
return '('xVal','yVal')' /* to return string value */

Creating Classes and Methods
You can define a class using either directives or messages.

To define a class using directives, you place a ::CLASS directive at the end of
your source program:
::class 'Account'

This creates an Account class that is a subclass of the Object class. (See “The
Object Class” on page 179 for a description of the Object class.) The string
“Account” is a string identifier for the new class.

Now you can use ::METHOD directives to add methods to your new class.
The ::METHOD directives must immediately follow the ::CLASS directive that
creates the class.
::method type
return "an account"

::method 'name='
expose name
use arg name

::method name
expose name
return name

Objects and Classes

Chapter 4. Objects and Classes 99

This adds the methods TYPE, NAME, and NAME= to the Account class.

You can create a subclass of the Account class and define a method for it:
::class 'Savings' subclass account
::method type
return "a savings account"

Now you can create an instance of the Savings class with the NEW method
(see “NEW” on page 168) and send TYPE, NAME, and NAME= messages to
that instance:
asav = .savings∼new
say asav∼type
asav∼name = 'John Smith'

The Account class methods NAME and NAME= create a pair of access
methods to the account object variable NAME. The following directive
sequence creates the NAME and NAME= methods:
::method 'name='
expose name
use arg name

::method name
expose name
return name

You can replace this with a single ::METHOD directive with the ATTRIBUTE
option. For example, the directive
::method name attribute

adds two methods, NAME and NAME= to a class. These methods perform
the same function as the NAME and NAME= methods in the original
example. The NAME method returns the current value of the object variable
NAME; the NAME= method assigns a new value to the object variable
NAME.

Using Classes
When you create a new class, it is always a subclass of an existing class. You
can create new classes with the ::CLASS directive or by sending the
SUBCLASS or MIXINCLASS message to an existing class. If you specify
neither the SUBCLASS nor the MIXINCLASS option on the ::CLASS directive,
the superclass for the new class is the Object class, and it is not a mixin class.

Example of creating a new class using a message:
persistence = .object∼mixinclass('Persistence')
myarray=.array∼subclass('myarray')∼∼inherit(persistence)

Example of creating a new class using the directive:

Objects and Classes

100 Object REXX Reference

::class persistence mixinclass object
::class myarray subclass array inherit persistence

Scope
A scope is the methods and object variables defined in a single class. Only
methods defined in a particular scope can access object variables within that
scope. This means that object variables in a subclass can have the same names
as object variables in a superclass, because the object variables are at different
scopes.

Defining Instance Methods with SETMETHOD or ENHANCED
In REXX, methods are usually associated with instances using classes, but it is
also possible to add methods directly to an instance using the SETMETHOD
(see “SETMETHOD” on page 183) or ENHANCED (see “ENHANCED” on
page 164) method.

All subclasses of the Object class inherit SETMETHOD. You can use
SETMETHOD to create one-off objects, objects that must be absolutely unique
so that a class that is capable of creating other instances is not necessary. The
Class class also provides an ENHANCED method that lets you create new
instances of a class with additional methods. The methods and the object
variables defined on an object with SETMETHOD or ENHANCED form a
separate scope, like the scopes the class hierarchy defines.

Method Names
A method name can be any string. When an object receives a message, the
language processor searches for a method whose name matches the message
name in uppercase.

Note: The language processor also translates the specified name of all
methods added to objects into uppercase characters.

You must surround a method name with quotation marks when it contains
characters that are not allowed in a symbol (for example, the operator
characters). The following example creates a new class (the Cost class), defines
a new method (%), creates an instance of the Cost class (mycost), and sends a
% message to mycost:
cost=.object∼subclass('A cost')
cost∼define('%', 'expose p; say "Enter a price."; pull p; say p*1.07;')
mycost=cost∼new
mycost∼'%' /* Produces: Enter a price. */

/* If the user specifies a price of 100, */
/* produces: 107.00 */

Default Search Order for Method Selection
The search order for a method name matching the message is for:

Objects and Classes

Chapter 4. Objects and Classes 101

1. A method the object itself defines with SETMETHOD or ENHANCED.(See
“SETMETHOD” on page 183.)

2. A method the object's class defines. (Note that an object acquires the
instance methods of the class to which it belongs at the time of its
creation. If a class gains additional methods, objects created before the
definition of these methods do not acquire these methods.)

3. A method that a superclass of the object's class defines. This is also limited
to methods that were available when the object was created. The order of
the INHERIT (see “INHERIT” on page 164) messages sent to an object's
class determines the search order of the superclass method definitions.

This search order places methods of a class before methods of its superclasses
so that a class can supplement or override inherited methods.

If the language processor does not find a match for the message name, the
language processor checks the object for a method name UNKNOWN. If it
exists, the language processor calls the UNKNOWN method and returns as
the message result any result the UNKNOWN method returns. The
UNKNOWN method arguments are the original message name and a REXX
array containing the original message arguments.

If the object does not have an UNKNOWN method, the language processor
raises a NOMETHOD condition.

Defining an UNKNOWN Method
When an object that receives a message does not have a matching message
name, the language processor checks if the object has a method named
UNKNOWN. If the object has an UNKNOWN method, the language
processor calls UNKNOWN, passing two arguments. The first argument is the
name of the method that was not located. The second argument is an array
containing the arguments passed with the original message.

If you define an UNKNOWN method, you can use the following syntax:

�� UNKNOWN(messagename,messageargs) ��

Changing the Search Order for Methods
You can change the usual search order for methods by:
1. Ensuring that the receiver object is the sender object. (You usually do this

by specifying the special variable SELF—see page 481.)
2. Specifying a colon and a class symbol after the message name. The class

symbol can be a variable name or an environment symbol. It identifies the
class object to be used as the starting point for the method search.

Objects and Classes

102 Object REXX Reference

The class object must be a superclass of the class defining the active
method, or, if you used SETMETHOD to define the active method, the
object's own class. The class symbol is usually the special variable SUPER
(see page 481) but it can be any environment symbol or variable name
whose value is a valid class.

Suppose you create an Account class that is a subclass of the Object class,
define a TYPE method for the Account class, and create the Savings class that
is a subclass of Account. You could define a TYPE method for the Savings
class as follows:
savings∼define('TYPE', 'return "a savings account"')

You could change the search order by using the following line:
savings∼define('TYPE', 'return self∼type:super "(savings)"')

This changes the search order so that the language processor searches for the
TYPE method first in the Account superclass (rather than in the Savings
subclass). When you create an instance of the Savings class (asav) and send a
TYPE message to asav:
say asav∼type

an account (savings) is displayed. The TYPE method of the Savings class
calls the TYPE method of the Account class, and adds the string (savings) to
the results.

Public and Private Methods
A method can be public or private. Any object can send a message that runs a
public method. A private method runs only when an object sends a message to
itself (that is, using the variable SELF as the message receiver). Private
methods include methods at different scopes within the same object.
(Superclasses can make private methods available to their subclasses while
hiding those methods from other objects.) A private method is like an internal
subroutine. It provides common functions to the object methods but is hidden
from other programs.

The Class Hierarchy
REXX provides the following classes belonging to the object class:
v Alarm class
v Class class
v Array class
v List class
v Queue class
v Table class

– Set class
v Directory class
v Relation class

Objects and Classes

Chapter 4. Objects and Classes 103

– Bag class
v Message class
v Method class
v Monitor class
v Stem class
v Stream class
v String class
v Supplier class

(The classes are in a class hierarchy with subclasses indented below their
superclasses.)

Note that there might also be other classes in the system.

Initialization
Any object requiring initialization at creation time must define an INIT
method. If this method is defined, the class object runs the INIT method after
the object is created. If an object has more than one INIT method (for
example, it is defined in several classes), each INIT method must forward the
INIT message up the hierarchy to complete the object's initialization.

Example:
asav = .savings∼new(1000.00, 6.25)
say asav∼type
asav∼name = 'John Smith'

::class Account

::method INIT
expose balance
use arg balance

::method TYPE
return "an account"

::method name attribute

::class Savings subclass Account

::method INIT
expose interest_rate
use arg balance, interest_rate
self∼init:super(balance)

::method type
return "a savings account"

Objects and Classes

104 Object REXX Reference

The NEW method of the Savings class object creates a new Savings object and
calls the INIT method of the new object. The INIT method arguments are the
arguments specified on the NEW method. In the Savings INIT method, the
line:
self∼init:super(balance)

calls the INIT method of the Account class, using just the balance argument
specified on the NEW message.

Object Destruction and Uninitialization
Object destruction is implicit. When an object is no longer in use, REXX
automatically reclaims its storage. If the object has allocated other system
resources, you must release them at this time. (REXX cannot release these
resources, because it is unaware that the object has allocated them.)

Similarly, other uninitialization processing may be needed, for example, by a
message object holding an unreported error. An object requiring
uninitialization should define an UNINIT method. If this method is defined,
REXX runs it before reclaiming the object’s storage. If an object has more than
one UNINIT method (defined in several classes), each UNINIT method is
responsible for sending the UNINIT method up the object hierarchy.

Required String Values
REXX requires a string value in a number of contexts within instructions and
built-in function calls.
v DO statements containing exprr or exprf
v Substituted values in compound variable names
v Commands to external environments
v Commands and environment names on ADDRESS instructions
v Strings for ARG, PARSE, and PULL instructions to be parsed
v Parenthesized targets on CALL instructions
v Subsidiary variable lists on DROP, EXPOSE, and PROCEDURE instructions
v Instruction strings on INTERPRET instructions
v DIGITS, FORM, and FUZZ values on NUMERIC instructions
v Options strings on OPTIONS instructions
v Data queue strings on PUSH and QUEUE instructions
v Label names on SIGNAL VALUE instructions
v Trace settings on TRACE VALUE instructions
v Arguments to built-in functions
v Variable references in parsing templates
v Data for PUSH and QUEUE instructions to be processed
v Data for the SAY instruction to be displayed
v REXX dyadic operators when the receiving object (the object to the left of

the operator) is a string

Objects and Classes

Chapter 4. Objects and Classes 105

If you supply an object other than a string in these contexts, by default the
language processor converts it to some string representation and uses this.
However, the programmer can cause the language processor to raise the
NOSTRING condition when the supplied object does not have an equivalent
string value.

To obtain a string value, the language processor sends a REQUEST('STRING')
message to the object. Strings and other objects that have string values return
the appropriate string value for REXX to use. (This happens automatically for
strings and for subclasses of the String class because they inherit a suitable
MAKESTRING method from the String class.) For this mechanism to work
correctly, you must provide a MAKESTRING method for any other objects
with string values.

For other objects without string values (that is, without a MAKESTRING
method), the action taken depends on the setting of the NOSTRING condition
trap. If the NOSTRING condition is being trapped (see “Chapter 12.
Conditions and Condition Traps” on page 429), the language processor raises
the NOSTRING condition. If the NOSTRING condition is not being trapped,
the language processor sends a STRING message to the object to obtain its
readable string representation (see the STRING method of the Object class
“STRING” on page 185) and uses this string.

Example:
d = .directory∼new
say substr(d,5,7) /* Produces "rectory" from "a Directory" */
signal on nostring
say substr(d,5,7) /* Raises the NOSTRING condition */
say substr(d∼string,3,6) /* Displays "Direct" */

For arguments to REXX object methods, different rules apply. When a method
expects a string as an argument, the argument object is sent the
REQUEST(’STRING’) message. If REQUEST returns the NIL object, then the
method raises an error.

Concurrency
REXX supports concurrency, multiple methods running simultaneously on a
single object. See “Chapter 13. Concurrency” on page 439 for a full description
of concurrency.

Classes and Methods Provided by REXX
The following figure shows all the classes and their methods.

Objects and Classes

106 Object REXX Reference

Figure 11. Classes and Inheritance of Methods (Part 1 of 2)

Objects and Classes

Chapter 4. Objects and Classes 107

Summary of Methods by Class
The following table lists all the methods and the classes that define them. All
methods are instance methods except where noted.

Table 1. Summary of Methods and the Classes Defining Them

Method Name Class(es) and Page(s)

[] Array, “[]” on page 120 Bag, “[]” on page 125
Directory, “[]” on page 128 List, “[]” on
page 135 Queue, “[]” on page 139 Relation,
“[]” on page 143 Set, “[]” on page 148 Stem,
“[]” on page 187 Table, “[]” on page 151

Figure 11. Classes and Inheritance of Methods (Part 2 of 2)

Objects and Classes

108 Object REXX Reference

Table 1. Summary of Methods and the Classes Defining Them (continued)

Method Name Class(es) and Page(s)

[]= Array “[]=” on page 120 Bag, “[]=” on
page 125 Directory, “[]=” on page 128 List,
“[]=” on page 135 Queue, “[]=” on page 139
Relation, “[]=” on page 143 Set, “[]=” on
page 148 Stem, “[]=” on page 187 Table, “[]=”
on page 151

ABBREV String, “ABBREV” on page 212

ABS String, “ABS” on page 213

ALLAT Relation, “ALLAT” on page 143

ALLINDEX Relation, “ALLINDEX” on page 143

ARRAYIN Stream, “ARRAYIN” on page 189

ARRAYOUT Stream, “ARRAYOUT” on page 190

AT Array, “AT” on page 120 Directory, “AT” on
page 128 List, “AT” on page 135 Queue, “AT”
on page 139 Relation, “AT” on page 143 Set,
“AT” on page 149 Table, “AT” on page 151

AVAILABLE Supplier, “AVAILABLE” on page 240

BASECLASS Class, “BASECLASS” on page 162

BITAND String, “BITAND” on page 213

BITOR String, “BITOR” on page 214

BITXOR String, “BITXOR” on page 215

B2X String, “B2X” on page 215

CANCEL Alarm, “CANCEL” on page 160

CENTER String, “CENTER/CENTRE” on page 216

CHANGESTR String, “CHANGESTR” on page 216

CHARIN Stream, “CHARIN” on page 190

CHAROUT Stream, “CHAROUT” on page 190

CHARS Stream, “CHARS” on page 191

CLASS Object, “CLASS” on page 180

CLOSE Stream, “CLOSE” on page 191

COMMAND Stream, “COMMAND” on page 191

COMPARE String, “COMPARE” on page 217

COMPLETED Message, “COMPLETED” on page 171

COPIES String, “COPIES” on page 217

COPY Object, “COPY” on page 180

Objects and Classes

Chapter 4. Objects and Classes 109

Table 1. Summary of Methods and the Classes Defining Them (continued)

Method Name Class(es) and Page(s)

COUNTSTR String, “COUNTSTR” on page 218

CURRENT Monitor, “CURRENT” on page 178

C2D String, “C2D” on page 218

C2X String, “C2X” on page 219

DATATYPE String, “DATATYPE” on page 219

DEFAULTNAME Class, “DEFAULTNAME” on page 162 Object,
“DEFAULTNAME” on page 180

DEFINE Class (class and instance method), “DEFINE”
on page 162

DELETE Class (class and instance method), “DELETE”
on page 163

DELSTR String, “DELSTR” on page 221

DELWORD String, “DELWORD” on page 221

DESCRIPTION Stream, “DESCRIPTION” on page 198

DESTINATION Monitor, “DESTINATION” on page 178

DIFFERENCE Directory, “DIFFERENCE” on page 131
Relation, “DIFFERENCE” on page 145 Table,
“DIFFERENCE” on page 153

DIMENSION Array, “DIMENSION” on page 120

D2C String, “D2C” on page 222

D2X String, “D2X” on page 223

ENHANCED Class (class and instance method),
“ENHANCED” on page 164

ENTRY Directory, “ENTRY” on page 128

FIRST Array, “FIRST” on page 121 List, “FIRST” on
page 135

FIRSTITEM List, “FIRSTITEM” on page 135

FLUSH Stream, “FLUSH” on page 198

FORMAT String, “FORMAT” on page 223

HASENTRY Directory, “HASENTRY” on page 129

Objects and Classes

110 Object REXX Reference

Table 1. Summary of Methods and the Classes Defining Them (continued)

Method Name Class(es) and Page(s)

HASINDEX Array, “HASINDEX” on page 121 Bag,
“HASINDEX” on page 125 Directory,
“HASINDEX” on page 129 List, “HASINDEX”
on page 135 Queue, “HASINDEX” on
page 140 Relation, “HASINDEX” on page 143
Set, “HASINDEX” on page 149 Table,
“HASINDEX” on page 151

HASITEM Relation, “HASITEM” on page 144

HASMETHOD Object, “HASMETHOD” on page 181

ID Class (class and instance method), “ID” on
page 164

INDEX Relation, “INDEX” on page 144 Supplier,
“INDEX” on page 240

INHERIT Class (class and instance method), “INHERIT”
on page 164

INIT Alarm, “INIT” on page 160 Class, “INIT” on
page 165 Message, “INIT” on page 171
Monitor, “INIT” on page 178 Object, “INIT”
on page 181 Stream, “INIT” on page 198

INSERT List, “INSERT” on page 136 String, “INSERT”
on page 225

INTERSECTION Directory, “INTERSECTION” on page 131
Relation, “INTERSECTION” on page 145
Table, “INTERSECTION” on page 153

ITEM Supplier, “ITEM” on page 240

ITEMS Array, “ITEMS” on page 121 Directory,
“ITEMS” on page 129 List, “ITEMS” on
page 136 Queue, “ITEMS” on page 140
Relation, “ITEMS” on page 144 Set, “ITEMS”
on page 149 Table, “ITEMS” on page 152

LAST Array, “LAST” on page 121 List, “LAST” on
page 136

LASTITEM List, “LASTITEM” on page 137

LASTPOS String, “LASTPOS” on page 225

LEFT String, “LEFT” on page 226

LENGTH String, “LENGTH” on page 226

LINEIN Stream, “LINEIN” on page 198

LINEOUT Stream, “LINEOUT” on page 199

Objects and Classes

Chapter 4. Objects and Classes 111

Table 1. Summary of Methods and the Classes Defining Them (continued)

Method Name Class(es) and Page(s)

LINES Stream, “LINES” on page 199

MAKEARRAY Array, “MAKEARRAY” on page 121 Bag,
“MAKEARRAY” on page 126 Directory,
“MAKEARRAY” on page 129 List,
“MAKEARRAY” on page 137 Queue,
“MAKEARRAY” on page 140 Relation,
“MAKEARRAY” on page 144 Set,
“MAKEARRAY” on page 149 Stem,
“MAKEARRAY” on page 188 Stream,
“MAKEARRAY” on page 200 Table,
“MAKEARRAY” on page 152

MAKESTRING String, “MAKESTRING” on page 227

MAX String, “MAX” on page 227

METACLASS Class, “METACLASS” on page 165

METHOD Class (class and instance method),
“METHOD” on page 166

METHODS Class (class and instance method),
“METHODS” on page 166

MIN String, “MIN” on page 227

MIXINCLASS Class, “MIXINCLASS” on page 167

NEW Array (class method), “NEW (Class Method)”
on page 119 Class (class and instance
method), “NEW” on page 168 Method, “NEW
(Class Method)” on page 175 Object, “NEW
(Class Method)” on page 179 Stem (class
method), “NEW (Class Method)” on page 187
String (class method), “NEW (Class Method)”
on page 208 Supplier (class method), “NEW

(Class Method)” on page 240

NEWFILE Method, “NEWFILE (Class Method)” on
page 176

NEXT Array, “NEXT” on page 121 List, “NEXT” on
page 137 Supplier, “NEXT” on page 241

NOTIFY Message, “NOTIFY” on page 172

OBJECTNAME Object, “OBJECTNAME” on page 181

OBJECTNAME= Object, “OBJECTNAME=” on page 181

Objects and Classes

112 Object REXX Reference

Table 1. Summary of Methods and the Classes Defining Them (continued)

Method Name Class(es) and Page(s)

OF Array (class method), “OF (Class Method)” on
page 119 Bag (class method), “OF (Class
Method)” on page 125 List (class method),
“OF (Class Method)” on page 134 Set (class
method), “OF (Class Method)” on page 148

OPEN Stream, “OPEN” on page 200

Operator Methods (Arithmetic): +, −,
*, /, %, //, **, prefix +, prefix −

String, “Arithmetic Methods” on page 208

Operator Methods (Comparison): =,
\=, ><, <>, ==, and \==

Object, “Operator Methods” on page 179
String, 209

Operator Methods (Comparison): >,
<, >=, \<, <=, \>, >>, <<, >>=, \<<,
<<=, and \>>

String, page 211

Operator Methods (Concatenation): ""
(abuttal), ||, and " " (blank)

String, page 212

Operator Methods (Logical): &, |,
&&, and prefix \

String, page 211

Operator Methods (Other): ==
(unary)

Object, “Operator Methods” on page 179

OVERLAY String, “OVERLAY” on page 228

PEEK Queue, “PEEK” on page 140

POS String, “POS” on page 228

POSITION Stream, “POSITION” on page 202

PREVIOUS Array, “PREVIOUS” on page 122 List,
“PREVIOUS” on page 137

PULL Queue, “PULL” on page 140

PUSH Queue, “PUSH” on page 140

PUT Array, “PUT” on page 122 Bag, “PUT” on
page 126 Directory, “PUT” on page 129 List,
“PUT” on page 137 Queue, “PUT” on
page 141 Relation, “PUT” on page 144 Set,
“PUT” on page 149 Table, “PUT” on page 152

QUALIFY Stream, “QUALIFY” on page 202

QUERY Stream, “QUERY” on page 202

QUERYMIXINCLASS Class, “QUERYMIXINCLASS” on page 168

QUEUE Queue, “QUEUE” on page 141

Objects and Classes

Chapter 4. Objects and Classes 113

Table 1. Summary of Methods and the Classes Defining Them (continued)

Method Name Class(es) and Page(s)

REMOVE Array, “REMOVE” on page 122 Directory,
“REMOVE” on page 129 List, “REMOVE” on
page 137 Queue, “REMOVE” on page 141
Relation, “REMOVE” on page 145 Set,
“REMOVE” on page 149 Table, “REMOVE” on
page 152

REMOVEITEM Relation, “REMOVEITEM” on page 145

REQUEST Object, “REQUEST” on page 182 Stem,
“REQUEST” on page 188

RESULT Message, “RESULT” on page 173

REVERSE String, “REVERSE” on page 229

RIGHT String, “RIGHT” on page 229

RUN Object, “RUN” on page 183

SECTION Array, “SECTION” on page 122 List,
“SECTION” on page 138

SEEK Stream, “SEEK” on page 204

SEND Message, “SEND” on page 173

SETENTRY Directory, “SETENTRY” on page 130

SETGUARDED Method, “SETGUARDED” on page 176

SETMETHOD Directory, “SETMETHOD” on page 130
Object, “SETMETHOD” on page 183

SETPRIVATE Method, “SETPRIVATE” on page 176

SETPROTECTED Method, “SETPROTECTED” on page 176

SETSECURITYMANAGER Method, “SETSECURITYMANAGER” on
page 176

SETUNGUARDED Method, “SETUNGUARDED” on page 177

SIGN String, “SIGN” on page 229

SIZE Array, “SIZE” on page 123

SOURCE Method, “SOURCE” on page 177

SPACE String, “SPACE” on page 230

START Message, “START” on page 173 Object,
“START” on page 184

STATE Stream, “STATE” on page 205

STRING Object, “STRING” on page 185 String,
“STRING” on page 230

STRIP String, “STRIP” on page 231

Objects and Classes

114 Object REXX Reference

Table 1. Summary of Methods and the Classes Defining Them (continued)

Method Name Class(es) and Page(s)

SUBCLASS Class (class and instance method),
“SUBCLASS” on page 168

SUBCLASSES Class (class and instance method),
“SUBCLASSES” on page 169

SUBSET Directory, “SUBSET” on page 132 Relation,
“SUBSET” on page 146 Table, “SUBSET” on
page 153

SUBSTR String, “SUBSTR” on page 231

SUBWORD String, “SUBWORD” on page 232

SUPERCLASSES Class (class and instance method),
“SUPERCLASSES” on page 169

SUPPLIER Array, “SUPPLIER” on page 123 Bag,
“SUPPLIER” on page 126 Directory,
“SUPPLIER” on page 130 List, “SUPPLIER”
on page 138 Queue, “SUPPLIER” on page 141
Relation, “SUPPLIER” on page 145 Set,
“SUPPLIER” on page 150 Stream,
“SUPPLIER” on page 206 Table, “SUPPLIER”
on page 152

TRANSLATE String, “TRANSLATE” on page 232

TRUNC String, “TRUNC” on page 233

UNINHERIT Class (class and instance method),
“UNINHERIT” on page 170

UNION Directory, “UNION” on page 132 Relation,
“UNION” on page 146 Table, “UNION” on
page 153

UNKNOWN Directory, “UNKNOWN” on page 131
Monitor, “UNKNOWN” on page 178 Stem,
“UNKNOWN” on page 188

UNSETMETHOD Object, “UNSETMETHOD” on page 185

VERIFY String, “VERIFY” on page 234

WORD String, “WORD” on page 235

WORDINDEX String, “WORDINDEX” on page 235

WORDLENGTH String, “WORDLENGTH” on page 235

WORDPOS String, “WORDPOS” on page 236

WORDS String, “WORDS” on page 236

XOR Directory, “XOR” on page 132 Relation,
“XOR” on page 146 Table, “XOR” on page 154

Objects and Classes

Chapter 4. Objects and Classes 115

Table 1. Summary of Methods and the Classes Defining Them (continued)

Method Name Class(es) and Page(s)

X2B String, “X2B” on page 237

X2C String, “X2C” on page 237

X2D String, “X2D” on page 238

The chapters that follow describe the classes and other objects that REXX
provides and their available methods. REXX provides the objects listed in
these sections and they are generally available to all methods through
environment symbols (see “Environment Symbols” on page 35).

Notes:

1. In the method descriptions in the chapters that follow, methods that return
a result begin with the word ‘returns’.

2. For [] and []= methods, the syntax diagrams include the index or indexes
within the brackets. These diagrams are intended to show how you can
use these methods. For example, to retrieve the first element of a
one-dimensional array named Array1, you would typically use the syntax:
Array1[1]

rather than:
Array1∼“[]”(1)

even though the latter is valid and equivalent. For more information, see
“Message Terms” on page 25 and “Message Instructions” on page 28.

3. When the argument of a method must be a specific kind of object (such as
array, class, method, or string) the variable you specify must be of the
same class as the required object or be able to produce an object of the
required kind in response to a conversion message. In particular,
subclasses are acceptable in place of superclasses (unless overridden in a
way that changes superclass behavior), because they inherit a suitable
conversion method from their REXX superclass.
The REQUEST method of the Object class (see “REQUEST” on page 182)
can perform this validation.

Objects and Classes

116 Object REXX Reference

Chapter 5. The Collection Classes

A collection is an object that contains a number of items, which can be any
objects. Every item stored in a REXX collection has an associated index that
you can use to retrieve the item from the collection with the AT or [] methods.

Each collection defines its own acceptable index types. REXX provides the
following collection classes:

Collections that do not have set operations:

Array A sequenced collection of objects ordered by whole-number
indexes. See “The Array Class” on page 118 for details.

List A sequenced collection that lets you add new items at any
position in the sequence. A list generates and returns an index
value for each item placed in the list. The returned index
remains valid until the item is removed from the list. See “The
List Class” on page 133 for details.

Queue A sequenced collection with the items ordered as a queue. You
can remove items from the head of the queue and add items
at either its tail or its head. Queues index the items with
whole-number indexes, in the order in which the items would
be removed. The current head of the queue has index 1, the
item after the head item has index 2, up to the number of
items in the queue. See “The Queue Class” on page 138 for
details.

Collections that have set operations:

Table A collection with indexes that can be any object. For example,
string objects, array objects, alarm objects, or any user-created
object can be a table index. The table class determines the
index match by using the == comparison method. A table
contains no duplicate indexes. See “The Table Class” on
page 150 for details.

Directory A collection with character string indexes. Index comparisons
are performed using the string == comparison method. See
“The Directory Class” on page 127 for details.

Relation A collection with indexes that can be any object (as with the
table class). A relation can contain duplicate indexes. See “The
Relation Class” on page 141 for details.

© Copyright IBM Corp. 1994, 2001 117

Set A collection where the index and the item are the same object.
Set indexes can be any object (as with the table class) and
each index is unique. See “The Set Class” on page 147 for
details.

Bag A collection where the index and the item are the same object.
Bag indexes can be any object (as with the table class) and
each index can appear more than once. See “The Bag Class”
on page 124 for details.

The following sections describe the individual collection classes in
alphabetical order and the methods that they define and inherit. It also
describes the concept of set operations.

The Array Class

An array is a collection with indexes that are positive whole numbers. You can
reference array items by using one or more indexes. The number of indexes is
the same as the number of dimensions of the array. This number is called the
dimensionality of the array.

Array objects are variable-sized. The dimensionality of an array is fixed, but
the size of each dimension is variable. When you create an array, you can
specify a hint about how many elements you expect to put into the array or
the array's dimensionality. However, you do not need to specify a size or
dimensionality of an array when you are creating it. You can use any
whole-number indexes to reference items in an array.

Methods the Array class defines:

NEW (Class method. Overrides Object class method.)
OF (Class method)
[]
[]=
AT
DIMENSION
FIRST
HASINDEX
ITEMS
LAST
MAKEARRAY
NEXT
PREVIOUS
PUT
REMOVE

Collection Classes

118 Object REXX Reference

SECTION
SIZE
SUPPLIER

Methods inherited from the Object class:

Operator methods: =, ==, \=, ><, <>, \==
CLASS
COPY
DEFAULTNAME
HASMETHOD
OBJECTNAME
OBJECTNAME=
REQUEST
RUN
SETMETHOD
START
STRING
UNSETMETHOD

Note: The Array class also has available class methods that its metaclass, the
Class class, defines.

NEW (Class Method)

��

&

NEW
,

(size)

��

Returns a new empty array. If you specify any size, the size is taken as a hint
about how big each dimension should be. The language processor uses this
only to allocate the array object initially. For multiple dimension arrays, you
can also specify how much space is to be allocated initially for each
dimension of the array.

Each size argument must be 0 or a positive whole number. If it is 0, the
corresponding dimension is initially empty.

OF (Class Method)

��

&

OF
,

(item)

��

Array Class

Chapter 5. The Collection Classes 119

Returns a newly created single-index array containing the specified item
objects. The first item has index 1, the second has index 2, and so on.

If you use the OF method and omit any argument items, the returned array
does not include the indexes corresponding to those you omitted.

[]

�� &

,

[index] ��

Returns the same value as the AT method, which follows. See “AT”.

[]=

�� &

,

[index]=value ��

This method is the same as the PUT method, which follows. See “PUT” on
page 122.

AT

�� &

,

AT(index) ��

Returns the item associated with the specified index or indexes. If the array has
no item associated with the specified index or indexes, this method returns the
NIL object.

DIMENSION

�� DIMENSION
(n)

��

Returns the current size (upper bound) of dimension n (a positive whole
number). If you omit n, this method returns the dimensionality (number of
dimensions) of the array. If the number of dimensions has not been
determined, DIMENSION returns 0.

Array Class

120 Object REXX Reference

FIRST

�� FIRST ��

Returns the index of the first item in the array or the NIL object if the array is
empty. The FIRST method is valid only for single-index arrays.

HASINDEX

�� &

,

HASINDEX(index) ��

Returns 1 (true) if the array contains an item associated with the specified
index or indexes. Returns 0 (false) otherwise.

ITEMS

�� ITEMS ��

Returns the number of items in the collection.

LAST

�� LAST ��

Returns the index of the last item in the array or the NIL object if the array is
empty. The LAST method is valid only for single-index arrays.

MAKEARRAY

�� MAKEARRAY ��

Returns a single-index array with the same number of items as the receiver
object. Any index with no associated item is omitted from the new array.

NEXT

�� NEXT(index) ��

Array Class

Chapter 5. The Collection Classes 121

Returns the index of the item that follows the array item having index index
or returns the NIL object if the item having that index is last in the array. The
NEXT method is valid only for single-index arrays.

PREVIOUS

�� PREVIOUS(index) ��

Returns the index of the item that precedes the array item having index index
or the NIL object if the item having that index is first in the array. The
PREVIOUS method is valid only for single-index arrays.

PUT

�� &PUT(item ,index) ��

Makes the object item a member item of the array and associates it with the
specified index or indexes. This replaces any existing item associated with the
specified index or indexes with the new item. If the index for a particular
dimension is greater than the current size of that dimension, the array is
expanded to the new dimension size.

REMOVE

�� &

,

REMOVE(index) ��

Returns and removes the member item with the specified index or indexes
from the array. If there is no item with the specified index or indexes, the NIL
object is returned and no item is removed.

SECTION

�� SECTION(start)
,items

��

Returns a new array (of the same class as the receiver) containing selected
items from the receiver array. The first item in the new array is the item
corresponding to index start in the receiver array. Subsequent items in the
new array correspond to those in the receiver array (in the same sequence). If

Array Class

122 Object REXX Reference

you specify the whole number items, the new array contains only this number
of items (or the number of subsequent items in the receiver array, if this is less
than items). If you do not specify items, the new array contains all subsequent
items of the receiver array. The receiver array remains unchanged. The
SECTION method is valid only for single-index arrays.

SIZE

�� SIZE ��

Returns the number of items that can be placed in the array before it needs to
be extended. This value is the same as the product of the sizes of the
dimensions in the array.

SUPPLIER

�� SUPPLIER ��

Returns a supplier object for the collection. After you have obtained a
supplier, you can send it messages (see “The Supplier Class” on page 239) to
enumerate all the items that were in the array at the time of the supplier’s
creation. The supplier enumerates the array items in their sequenced order.

Examples
array1=.array∼of(1,2,3,4) /* Loads the array */

/* Alternative way to create and load an array */
array2=.array∼new(4) /* Creates array2, containing 4 items */
do i=1 to 4 /* Loads the array */

array2[i]=i
end

You can produce the elements loaded into an array, for example:
do i=1 to 4

say array1[i]
end

If you omit any argument values before arguments you supply, the
corresponding indexes are skipped in the returned array:
directions=.array∼of('North','South',,'West')
do i=1 to 4 /* Produces: North */

say directions[i] /* South */
/* The NIL object */

end /* West */

Here is an example using the ∼∼:

Array Class

Chapter 5. The Collection Classes 123

z=.array∼of(1,2,3)∼∼put(4,4)
do i = 1 to z∼size

say z[i] /* Produces: 1 2 3 4 */
end

The Bag Class

A bag is a collection that restricts the elements to having an item that is the
same as the index. Any object can be placed in a bag, and the same object can
be placed in a bag several times.

The Bag class is a subclass of the Relation class. In addition to its own
methods, it inherits the methods of the Object class and the Relation class.

Methods the Bag class defines:

OF (Class method)
[]
[]= (Overrides Relation class method)
HASINDEX
MAKEARRAY
PUT (Overrides Relation class method)
SUPPLIER

Methods inherited from the Relation class:

ALLAT
ALLINDEX
AT
HASITEM
INDEX
ITEMS
REMOVE
REMOVEITEM

Set-operator methods inherited from the Relation class:

DIFFERENCE
INTERSECTION
SUBSET
UNION
XOR

Methods inherited from the Object class:

NEW (Class method)
Operator methods: =, ==, \=, ><, <>, \==

Array Class

124 Object REXX Reference

CLASS
COPY
DEFAULTNAME
HASMETHOD
INIT
OBJECTNAME
OBJECTNAME=
REQUEST
RUN
SETMETHOD
START
STRING
UNSETMETHOD

Note: The Bag class also has available class methods that its metaclass, the
Class class, defines.

OF (Class Method)

�� &

,

OF(item) ��

Returns a newly created bag containing the specified item objects.

[]

�� [index] ��

Returns the same value as the AT method in the Relation class. See “AT” on
page 143.

[]=

�� [index]=item ��

This method is the same as the PUT method. See “PUT” on page 126.

HASINDEX

�� HASINDEX(index) ��

Bag Class

Chapter 5. The Collection Classes 125

Returns 1 (true) if the collection contains any item associated with index index,
or 0 (false).

MAKEARRAY

�� MAKEARRAY ��

Returns a single-index array containing the index objects. The array indexes
range from 1 to the number of items. The collection items appear in the array
in an unspecified order. (The program should not rely on any order.)

PUT

�� PUT(item)
,index

��

Makes the object item a member item of the collection and associates it with
index index. If you specify index, it must be the same as item.

SUPPLIER

�� SUPPLIER ��

Returns a supplier object for the collection. After you have obtained a
supplier, you can send it messages (see “The Supplier Class” on page 239) to
enumerate all the items that were in the collection at the time of the supplier's
creation. The supplier enumerates the items in an unspecified order. (The
program should not rely on any order.)

Examples
/* Create a bag of fruit */
fruit = .bag∼of('Apple', 'Orange', 'Apple', 'Pear')
say fruit∼items /* How many pieces? (4) */
say fruit∼items('Apple') /* How many apples? (2) */
fruit∼remove('Apple') /* Remove one of the apples. */
fruit∼∼put('Banana')∼put('Orange') /* Add a couple. */
say fruit∼items /* How many pieces? (5) */

Bag Class

126 Object REXX Reference

The Directory Class

A directory is a collection with unique indexes that are character strings
representing names.

Directories let you refer to objects by name, for example:
.environment∼array

For directories, items are often referred to as entries.

Methods the Directory class defines:

[]
[]=
AT
ENTRY
HASENTRY
HASINDEX
ITEMS
MAKEARRAY
PUT
REMOVE
SETENTRY
SETMETHOD (Overrides Object class method)
SUPPLIER
UNKNOWN

Set-operator methods the Directory class defines:

DIFFERENCE
INTERSECTION
SUBSET
UNION
XOR

Methods Inherited from the Object Class:

NEW (Class method)
Operator methods: =, ==, \=, ><, <>, \==
CLASS
COPY
DEFAULTNAME
HASMETHOD
INIT
OBJECTNAME
OBJECTNAME=

Directory Class

Chapter 5. The Collection Classes 127

REQUEST
RUN
START
STRING
UNSETMETHOD

Note: The Directory class also has available class methods that its metaclass,
the Class class, defines.

[]

�� [name] ��

Returns the same item as the AT method, which follows. See “AT”.

[]=

�� [name]=item ��

This method is the same as the PUT method. See “PUT” on page 129.

AT

�� AT(name) ��

Returns the item associated with index name. If a method that SETMETHOD
supplies is associated with index name, the result of running this method is
returned. If the collection has no item or method associated with index name,
this method returns the NIL object.

Example:
say .environment∼AT('OBJECT') /* Produces: 'The Object class' */

ENTRY

�� ENTRY(name) ��

Returns the directory entry with name name (translated to uppercase). If there
is no such entry, name returns the item for any method that SETMETHOD
supplied. If there is neither an entry nor a method for name or for
UNKNOWN, the language processor raises an error.

Directory Class

128 Object REXX Reference

HASENTRY

�� HASENTRY(name) ��

Returns 1 (true) if the directory has an entry or a method for name name
(translated to uppercase), or 0 (false).

HASINDEX

�� HASINDEX(name) ��

Returns 1 (true) if the collection contains any item associated with index name,
or 0 (false).

ITEMS

�� ITEMS ��

Returns the number of items in the collection.

MAKEARRAY

�� MAKEARRAY ��

Returns a single-index array containing the index objects. The array indexes
range from 1 to the number of items. The collection items appear in the array
in an unspecified order. (The program should not rely on any order.)

PUT

�� PUT(item,name) ��

Makes the object item a member item of the collection and associates it with
index name. The new item replaces any existing item or method associated
with index name.

REMOVE

�� REMOVE(name) ��

Directory Class

Chapter 5. The Collection Classes 129

Returns and removes the member item with index name from a collection. If a
method is associated with SETMETHOD for index name, REMOVE removes
the method and returns the result of running it. If there is no item or method
with index name, the UNKNOWN method returns the NIL object and removes
nothing.

SETENTRY

�� SETENTRY(name)
,entry

��

Sets the directory entry with name name (translated to uppercase) to the object
entry, replacing any existing entry or method for name. If you omit entry, this
method removes any entry or method with this name.

SETMETHOD

�� SETMETHOD(name)
,method

��

Associates entry name name (translated to uppercase) with method method.
Thus, the language processor returns the result of running method when you
access this entry. This occurs when you specify name on the AT, ENTRY, or
REMOVE method. This method replaces any existing item or method for
name.

You can specify the name UNKNOWN as name. Doing so supplies a method
to run whenever an AT or ENTRY message specifies a name for which no
item or method exists in the collection. This method's first argument is the
specified directory index. This method has no effect on the action of any
HASENTRY, HASINDEX, ITEMS, REMOVE, or SUPPLIER message sent to the
collection.

The method can be a string containing a method source line instead of a
method object. Alternatively, an array of strings containing individual method
lines can be passed. In either case, SETMETHOD creates an equivalent
method object.

If you omit method, SETMETHOD removes the entry with the specified name.

SUPPLIER

�� SUPPLIER ��

Directory Class

130 Object REXX Reference

Returns a supplier object for the collection. After you have obtained a
supplier, you can send it messages (see “The Supplier Class” on page 239) to
enumerate all the items that were in the collection at the time of the supplier's
creation. The supplier enumerates the items in an unspecified order. (The
program should not rely on any order.)

UNKNOWN

�� UNKNOWN(messagename,messageargs) ��

Runs either the ENTRY or SETENTRY method, depending on whether
messagename ends with an equal sign. If messagename does not end with an
equal sign, this method runs the ENTRY method, passing messagename as its
argument. The language processor ignores any arguments specified in the
array messageargs. In this case, UNKNOWN returns the result of the ENTRY
method.

If messagename does end with an equal sign, this method runs the SETENTRY
method, passing the first part of messagename (up to, but not including, the
final equal sign) as its first argument, and the first item in the array
messageargs as its second argument. In this case, UNKNOWN returns no
result.

DIFFERENCE

�� DIFFERENCE(argument) ��

Returns a new collection (of the same class as the receiver) containing only
those items from the receiver whose indexes the argument collection does not
contain. The argument can be any object described in “The Argument
Collection Classes” on page 157. The argument must also allow all of the index
values in the receiver collection.

INTERSECTION

�� INTERSECTION(argument) ��

Returns a new collection (of the same class as the receiver) containing only
those items from the receiver whose indexes are in both the receiver collection
and the argument collection. The argument can be any object described in “The
Argument Collection Classes” on page 157. The argument must also allow all
of the index values in the receiver collection.

Directory Class

Chapter 5. The Collection Classes 131

SUBSET

�� SUBSET(argument) ��

Returns 1 (true) if all indexes in the receiver collection are also contained in
the argument collection; returns 0 (false) otherwise. The argument can be any
object described in “The Argument Collection Classes” on page 157. The
argument must also allow all of the index values in the receiver collection.

UNION

�� UNION(argument) ��

Returns a new collection of the same class as the receiver that contains all the
items from the receiver collection and selected items from the argument
collection. This method includes an item from argument in the new collection
only if there is no item with the same associated index in the receiver
collection and the method has not already included an item with the same
index. The order in which this method selects items in argument is
unspecified. (The program should not rely on any order.) See also the UNION
method of the Table (“UNION” on page 153) and Relation (“UNION” on
page 146) classes. The argument can be any object described in “The Argument
Collection Classes” on page 157. The argument must also allow all of the index
values in the receiver collection.

XOR

�� XOR(argument) ��

Returns a new collection of the same class as the receiver that contains all
items from the receiver collection and the argument collection; all indexes that
appear in both collections are removed. The argument can be any object
described in “The Argument Collection Classes” on page 157. The argument
must also allow all of the index values in the receiver collection.

Examples
/**/
/* A Phone Book Directory program */
/* This program demonstrates use of the directory class. */
/**/

/* Define an UNKNOWN method that adds an abbreviation lookup feature. */
/* Directories do not have to have an UNKNOWN method. */
book = .directory∼new∼∼setmethod('UNKNOWN', .methods['UNKNOWN'])

Directory Class

132 Object REXX Reference

book['ANN'] = 'Ann B. 555-6220'
book['ann'] = 'Little annie . 555-1234'
book['JEFF'] = 'Jeff G. 555-5115'
book['MARK'] = 'Mark C. 555-5017'
book['MIKE'] = 'Mike H. 555-6123'
book∼Rick = 'Rick M. 555-5110' /* Same as book['RICK'] = ... */

Do i over book /* Iterate over the collection */
Say book[i]

end i

Say '' /* Index lookup is case sensitive... */
Say book∼entry('Mike') /* ENTRY method uppercases before lookup */
Say book['ANN'] /* Exact match */
Say book∼ann /* Message sends uppercase before lookup */
Say book['ann'] /* Exact match with lowercase index */

Say ''
Say book['M'] /* Uses UNKNOWN method for lookup */
Say book['Z']
Exit

/* Define an unknown method to handle indexes not found. */
/* Check for abbreviations or indicate listing not found */
::Method UNKNOWN

Parse arg at_index
value = ''
Do i over self

If abbrev(i, at_index) then do
If value <> '' then value = value', '
value = value || self∼at(i)

end
end i
If value = '' then value = 'No listing found for' at_index
Return value

The List Class

A list is a sequenced collection to which you can add new items at any
position in the sequence. The collection supplies the list indexes at the time
items are added with the INSERT method. The FIRST, LAST, and NEXT
methods can also retrieve list indexes. Only indexes the list object generates
are valid.

Methods the List class defines:

OF (Class method)
[]
[]=
AT
FIRST

Directory Class

Chapter 5. The Collection Classes 133

FIRSTITEM
HASINDEX
INSERT
ITEMS
LAST
LASTITEM
MAKEARRAY
NEXT
PREVIOUS
PUT
REMOVE
SECTION
SUPPLIER

Methods inherited from the Object class:

NEW (Class method)
Operator methods: =, ==, \=, ><, <>, \==
CLASS
COPY
DEFAULTNAME
HASMETHOD
INIT
OBJECTNAME
OBJECTNAME=
REQUEST
RUN
SETMETHOD
START
STRING
UNSETMETHOD

Note: The List class also has available class methods that its metaclass, the
Class class, defines.

OF (Class Method)

�� &

,

OF(item) ��

Returns a newly created list containing the specified item objects in the order
specified.

List Class

134 Object REXX Reference

[]

�� [index] ��

Returns the same item as the AT method. See “AT”.

[]=

�� [index]=item ��

This method is the same as the PUT method. See “PUT” on page 137.

AT

�� AT(index) ��

Returns the item associated with index index. If the collection has no item
associated with index, this method returns the NIL object.

FIRST

�� FIRST ��

Returns the index of the first item in the list or the NIL object if the list is
empty. The example for INSERT (see “INSERT” on page 136) includes FIRST.

FIRSTITEM

�� FIRSTITEM ��

Returns the first item in the list or the NIL object if the list is empty.

Example:
musketeers=.list∼of(Porthos,Athos,Aramis) /* Creates list MUSKETEERS */
item=musketeers∼firstitem /* Gives first item in list */

/* (Assigns "Porthos" to item) */

HASINDEX

�� HASINDEX(index) ��

List Class

Chapter 5. The Collection Classes 135

Returns 1 (true) if the collection contains any item associated with index index,
or 0 (false).

INSERT

�� INSERT(item)
,index

��

Returns a list-supplied index for a new item item, which is added to the list.
The new item follows the existing item with index index in the list ordering. If
index is the NIL object, the new item becomes the first item in the list. If you
omit index, the new item becomes the last item in the list.
musketeers=.list∼of(Porthos,Athos,Aramis) /* Creates list MUSKETEERS */

/* consisting of: Porthos */
/* Athos */
/* Aramis */

index=musketeers∼first /* Gives index of first item */
musketeers∼insert("D'Artagnan",index) /* Adds D'Artagnan after Porthos */

/* List is now: Porthos */
/* D'Artagnan */
/* Athos */
/* Aramis */

/* Alternately, you could use */
musketeers∼insert("D'Artagnan",.nil) /* Adds D'Artagnan before Porthos */

/* List is now: D'Artagnan */
/* Porthos */
/* Athos */
/* Aramis */

/* Alternately, you could use */
musketeers∼insert("D'Artagnan") /* Adds D'Artagnan after Aramis */

/* List is now: Porthos */
/* Athos */
/* Aramis */
/* D'Artagnan */

ITEMS

�� ITEMS ��

Returns the number of items in the collection.

LAST

�� LAST ��

Returns the index of the last item in the list or the NIL object if the list is
empty.

List Class

136 Object REXX Reference

LASTITEM

�� LASTITEM ��

Returns the last item in the list or the NIL object if the list is empty.

MAKEARRAY

�� MAKEARRAY ��

Returns a single-index array containing the receiver collection items. The array
indexes range from 1 to the number of items. The order in which the
collection items appear in the array is the same as their sequence in the list
collection.

NEXT

�� NEXT(index) ��

Returns the index of the item that follows the list item having index index or
returns the NIL object if the item having that index is last in the list.

PREVIOUS

�� PREVIOUS(index) ��

Returns the index of the item that precedes the list item having index index or
the NIL object if the item having that index is first in the list.

PUT

�� PUT(item,index) ��

Replaces any existing item associated with the specified index with the new
item item. If the index does not exist in the list, an error is raised.

REMOVE

�� REMOVE(index) ��

List Class

Chapter 5. The Collection Classes 137

Returns and removes from a collection the member item with index index. If
no item has index index, this method returns the NIL object and removes no
item.

SECTION

�� SECTION(start)
,items

��

Returns a new list (of the same class as the receiver) containing selected items
from the receiver list. The first item in the new list is the item corresponding
to index start in the receiver list. Subsequent items in the new list correspond
to those in the receiver list (in the same sequence). If you specify the whole
number items, the new list contains only this number of items (or the number
of subsequent items in the receiver list, if this is less than items). If you do not
specify items, the new list contains all subsequent items from the receiver list.
The receiver list remains unchanged.

SUPPLIER

�� SUPPLIER ��

Returns a supplier object for the list. If you send appropriate messages to the
supplier (see “The Supplier Class” on page 239), the supplier enumerates all
the items in the list at the time of the supplier's creation. The supplier
enumerates the items in their sequenced order.

The Queue Class

A queue is a sequenced collection with whole-number indexes. The indexes
specify the position of an item relative to the head (first item) of the queue.
Adding or removing an item changes the association of an index to its queue
item. You can add items at either the tail or the head of the queue.

Methods the Queue class defines:

[]
[]=
AT
HASINDEX
ITEMS
MAKEARRAY
PEEK
PULL

List Class

138 Object REXX Reference

PUSH
PUT
QUEUE
REMOVE
SUPPLIER

Methods inherited from the Object class:

NEW (Class method)
Operator methods: =, ==, \=, ><, <>, \==
CLASS
COPY
DEFAULTNAME
HASMETHOD
INIT
OBJECTNAME
OBJECTNAME=
REQUEST
RUN
SETMETHOD
START
STRING
UNSETMETHOD

Note: The Queue class also has available class methods that its metaclass, the
Class class, defines.

[]

�� [index] ��

Returns the same value as the AT method. See “AT”.

[]=

�� [index]=item ��

This method is the same as the PUT method. See “PUT” on page 141.

AT

�� AT(index) ��

Queue Class

Chapter 5. The Collection Classes 139

Returns the item associated with index index. If the collection has no item
associated with index, this method returns the NIL object.

HASINDEX

�� HASINDEX(index) ��

Returns 1 (true) if the collection contains any item associated with index index,
or 0 (false).

ITEMS

�� ITEMS ��

Returns the number of items in the collection.

MAKEARRAY

�� MAKEARRAY ��

Returns a single-index array containing the receiver queue items. The array
indexes range from 1 to the number of items. The order in which the queue
items appear in the array is the same as their queuing order, with the head of
the queue as index 1.

PEEK

�� PEEK ��

Returns the item at the head of the queue. The collection remains unchanged.

PULL

�� PULL ��

Returns and removes the item at the head of the queue.

PUSH

�� PUSH(item) ��

Queue Class

140 Object REXX Reference

Adds the object item to the head of the queue.

PUT

�� PUT(item,index) ��

Replaces any existing item associated with the specified index with the new
item. If the index does not exist in the queue, an error is raised.

QUEUE

�� QUEUE(item) ��

Adds the object item to the tail of the queue.

REMOVE

�� REMOVE(index) ��

Returns and removes from a collection the member item with index index. If
no item has index index, this method returns the NIL object and removes no
item.

SUPPLIER

�� SUPPLIER ��

Returns a supplier object for the collection. After you have obtained a
supplier, you can send it messages (see “The Supplier Class” on page 239) to
enumerate all the items that were in the queue at the time of the supplier's
creation. The supplier enumerates the items in their queuing order, with the
head of the queue first.

The Relation Class

A relation is a collection with indexes that can be any objects the user supplies.
In a relation, each item is associated with a single index, but there can be
more than one item with the same index (unlike a table, which can contain
only one item for any index).

Methods the Relation class defines:

Queue Class

Chapter 5. The Collection Classes 141

[]
[]=
ALLAT
ALLINDEX
AT
HASINDEX
HASITEM
INDEX
ITEMS
MAKEARRAY
PUT
REMOVE
REMOVEITEM
SUPPLIER

Set-operator methods the Relation class defines:

DIFFERENCE
INTERSECTION
SUBSET
UNION
XOR

Methods inherited from the Object class:

NEW (Class method)
Operator methods: =, ==, \=, ><, <>, \==
CLASS
COPY
DEFAULTNAME
HASMETHOD
INIT
OBJECTNAME
OBJECTNAME=
REQUEST
RUN
SETMETHOD
START
STRING
UNSETMETHOD

Note: The Relation class also has available class methods that its metaclass,
the Class class, defines.

Relation Class

142 Object REXX Reference

[]

�� [index] ��

Returns the same item as the AT method. See “AT”.

[]=

�� [index]=item ��

This method is the same as the PUT method. See “PUT” on page 144.

ALLAT

�� ALLAT(index) ��

Returns a single-index array containing all the items associated with index
index. The indexes of the returned array range from 1 to the number of items.
Items in the array appear in an unspecified order.

ALLINDEX

�� ALLINDEX(item) ��

Returns a single-index array containing all indexes for item item, in an
unspecified order. (The program should not rely on any order.)

AT

�� AT(index) ��

Returns the item associated with index index. If the relation contains more
than one item associated with index index, the item returned is unspecified.
(The program should not rely on any particular item being returned.) If the
relation has no item associated with index index, this method returns the NIL
object.

HASINDEX

�� HASINDEX(index) ��

Relation Class

Chapter 5. The Collection Classes 143

Returns 1 (true) if the collection contains any item associated with index index,
or 0 (false).

HASITEM

�� HASITEM(item,index) ��

Returns 1 (true) if the relation contains the member item item (associated with
index index, or 0 (false).

INDEX

�� INDEX(item) ��

Returns the index for item item. If there is more than one index associated
with item item, the one this method returns is not defined.

ITEMS

�� ITEMS
(index)

��

Returns the number of relation items with index index. If you specify no index,
this method returns the total number of items associated with all indexes in
the relation.

MAKEARRAY

�� MAKEARRAY ��

Returns a single-index array containing the index objects. The array indexes
range from 1 to the number of items. The collection items appear in the array
in an unspecified order. (The program should not rely on any order.)

PUT

�� PUT(item,index) ��

Makes the object item a member item of the relation and associates it with
index index. If the relation already contains any items with index index, this
method adds a new member item item with the same index, without
removing any existing member items.

Relation Class

144 Object REXX Reference

REMOVE

�� REMOVE(index) ��

Returns and removes from a relation the member item with index index. If the
relation contains more than one item associated with index index, the item
returned and removed is unspecified. If no item has index index, this method
returns the NIL object and removes nothing.

REMOVEITEM

�� REMOVEITEM(item,index) ��

Returns and removes from a relation the member item item (associated with
index index). If value is not a member item associated with index index, this
method returns the NIL object and removes no item.

SUPPLIER

�� SUPPLIER
(index)

��

Returns a supplier object for the collection. After you have obtained a
supplier, you can send it messages (see “The Supplier Class” on page 239) to
enumerate all the items that were in the collection at the time of the supplier's
creation. The supplier enumerates the items in an unspecified order. (The
program should not rely on any order.) If you specify index, the supplier
enumerates all of the items in the relation with the specified index.

DIFFERENCE

�� DIFFERENCE(argument) ��

Returns a new collection (of the same class as the receiver) containing only
those items that the argument collection does not contain (with the same
associated index). The argument can be any object described in “The Argument
Collection Classes” on page 157.

INTERSECTION

�� INTERSECTION(argument) ��

Relation Class

Chapter 5. The Collection Classes 145

Returns a new collection (of the same class as the receiver) containing only
those items that are in both the receiver collection and the argument collection
with the same associated index. The argument can be any object described in
“The Argument Collection Classes” on page 157.

SUBSET

�� SUBSET(argument) ��

Returns 1 (true) if all items in the receiver collection are also contained in the
argument collection with the same associated index; returns 0 (false) otherwise.
The argument can be any object described in “The Argument Collection
Classes” on page 157.

UNION

�� UNION(argument) ��

Returns a new collection containing all items from the receiver collection and
the argument collection. The argument can be any object described in “The
Argument Collection Classes” on page 157.

XOR

�� XOR(argument) ��

Returns a new collection of the same class as the receiver that contains all
items from the receiver collection and the argument collection. All index-item
pairs that appear in both collections are removed. The argument can be any
object described in “The Argument Collection Classes” on page 157.

Examples
/* Use a relation to express parent-child relationships */
family = .relation∼new
family['Henry'] = 'Peter' /* Peter is Henry's child */
family['Peter'] = 'Bridget' /* Bridget is Peter's child */
family['Henry'] = 'Jane' /* Jane is Henry's child */

/* Show all children of Henry recorded in the family relation */
henrys_kids = family∼allat('Henry')
Say 'Here are all the listed children of Henry:'
Do kid Over henrys_kids

Say ' 'kid
End

/* Show all parents of Bridget recorded in the family relation */

Relation Class

146 Object REXX Reference

bridgets_parents = family∼allindex('Bridget')
Say 'Here are all the listed parents of Bridget:'
Do parent Over bridgets_parents

Say ' 'parent
End

/* Display all the grandparent relationships we know about. */
checked_for_grandkids = .set∼new /* Records those we have checked */
Do grandparent Over family /* Iterate for each index in family */

If checked_for_grandkids∼hasindex(grandparent)
Then Iterate /* Already checked this one */

kids = family∼allat(grandparent) /* Current grandparent's children */
Do kid Over kids /* Iterate for each item in kids */

grandkids = family∼allat(kid) /* Current kid's children */
Do grandkid Over grandkids /* Iterate for each item in grandkids */

Say grandparent 'has a grandchild named' grandkid'.'
End

End
checked_for_grandkids∼put(grandparent) /* Add to already-checked set */

End

The Set Class

A set is a collection containing the member items where the index is the same
as the item. Any object can be placed in a set. There can be only one
occurrence of any object in a set.

The Set class is a subclass of the Table class. In addition to its own methods, it
inherits the methods of the Object class (see “The Object Class” on page 179)
and the Table class.

Methods the Set class defines:

OF (Class method)
[]
[]=
AT
HASINDEX
ITEMS
MAKEARRAY
PUT
REMOVE
SUPPLIER

Set-operator methods inherited from the Table class:

DIFFERENCE
INTERSECTION

Relation Class

Chapter 5. The Collection Classes 147

SUBSET
UNION
XOR

Methods inherited from the Object class:

NEW (Class method)
Operator methods: =, ==, \=, ><, <>, \==
CLASS
COPY
DEFAULTNAME
HASMETHOD
INIT
OBJECTNAME
OBJECTNAME=
REQUEST
RUN
SETMETHOD
START
STRING
UNSETMETHOD

Note: The Set class also has available class methods that its metaclass, the
Class class, defines.

OF (Class Method)

�� &

,

OF(item) ��

Returns a newly created set containing the specified item objects.

[]

�� [index] ��

Returns the same item as the AT method. See “AT” on page 149.

[]=

�� [index]=item ��

This method is the same as the PUT method. See “PUT” on page 149.

Set Class

148 Object REXX Reference

AT

�� AT(index) ��

Returns the item associated with index index. If the collection has no item
associated with index, this method returns the NIL object.

HASINDEX

�� HASINDEX(index) ��

Returns 1 (true) if the collection contains any item associated with index index,
or 0 (false).

ITEMS

�� ITEMS ��

Returns the number of items in the collection.

MAKEARRAY

�� MAKEARRAY ��

Returns a single-index array containing the index objects. The array indexes
range from 1 to the number of items. The collection items appear in the array
in an unspecified order. (The program should not rely on any order.)

PUT

�� PUT(item)
,index

��

Makes the object item a member item of the collection and associates it with
index index. If you specify index, it must be the same as item.

REMOVE

�� REMOVE(index) ��

Set Class

Chapter 5. The Collection Classes 149

Returns and removes from a collection the member item with index index. If
no item has index index, this method returns the NIL object and removes no
item.

SUPPLIER

�� SUPPLIER ��

Returns a supplier object for the collection. After you have obtained a
supplier, you can send it messages (see “The Supplier Class” on page 239) to
enumerate all the items that were in the collection at the time of the supplier's
creation. The supplier enumerates the items in an unspecified order. (The
program should not rely on any order.)

The Table Class

A table is a collection with indexes that can be any object the user supplies. In
a table, each item is associated with a single index, and there can be only one
item for each index (unlike a relation, which can contain more than one item
with the same index).

Methods the Table class defines:

[]
[]=
AT
HASINDEX
ITEMS
MAKEARRAY
PUT
REMOVE
SUPPLIER

Set-operator methods the Table class defines:

DIFFERENCE
INTERSECTION
SUBSET
UNION
XOR

Methods inherited from the Object class:

NEW (Class method)
Operator methods: =, ==, \=, ><, <>, \==

Set Class

150 Object REXX Reference

CLASS
COPY
DEFAULTNAME
HASMETHOD
INIT
OBJECTNAME
OBJECTNAME=
REQUEST
RUN
SETMETHOD
START
STRING
UNSETMETHOD

Note: The Table class also has available class methods that its metaclass, the
Class class, defines.

[]

�� [index] ��

Returns the same item as the AT method. See “AT”.

[]=

�� [index]=item ��

This method is the same as the PUT method. See “PUT” on page 152.

AT

�� AT(index) ��

Returns the item associated with index index. If the collection has no item
associated with index, this method returns the NIL object.

HASINDEX

�� HASINDEX(index) ��

Returns 1 (true) if the collection contains any item associated with index index,
or 0 (false).

Table Class

Chapter 5. The Collection Classes 151

ITEMS

�� ITEMS ��

Returns the number of items in the collection.

MAKEARRAY

�� MAKEARRAY ��

Returns a single-index array containing the index objects. The array indexes
range from 1 to the number of items. The collection items appear in the array
in an unspecified order. (The program should not rely on any order.)

PUT

�� PUT(item,index) ��

Makes the object item a member item of the collection and associates it with
index index. The new item replaces any existing items associated with index
index.

REMOVE

�� REMOVE(index) ��

Returns and removes from a collection the member item with index index. If
no item has index index, this method returns the NIL object and removes no
item.

SUPPLIER

�� SUPPLIER ��

Returns a supplier object for the collection. After you have obtained a
supplier, you can send it messages (see “The Supplier Class” on page 239) to
enumerate all the items that were in the collection at the time of the supplier's
creation. The supplier enumerates the items in an unspecified order. (The
program should not rely on any order.)

Table Class

152 Object REXX Reference

DIFFERENCE

�� DIFFERENCE(argument) ��

Returns a new collection (of the same class as the receiver) containing only
those index-item pairs of the receiver whose indexes the argument collection
does not contain. The argument can be any object described in “The Argument
Collection Classes” on page 157. The argument must also allow all of the index
values in the receiver collection.

INTERSECTION

�� INTERSECTION(argument) ��

Returns a new collection (of the same class as the receiver) containing only
those index-item pairs of the receiver whose indexes are in both the receiver
collection and the argument collection. The argument can be any object
described in “The Argument Collection Classes” on page 157. The argument
must also allow all of the index values in the receiver collection.

SUBSET

�� SUBSET(argument) ��

Returns 1 (true) if all indexes in the receiver collection are also contained in
the argument collection; returns 0 (false) otherwise. The argument can be any
object described in “The Argument Collection Classes” on page 157. The
argument must also allow all of the index values in the receiver collection.

UNION

�� UNION(argument) ��

Returns a new collection of the same class as the receiver that contains all the
items from the receiver collection and selected items from the argument
collection. This method includes an item from argument in the new collection
only if there is no item with the same associated index in the receiver
collection and the method has not already included an item with the same
index. The order in which this method selects items in argument is
unspecified. (The program should not rely on any order.) See also the UNION
method of the Directory (see “UNION” on page 132) and Relation (see
“UNION” on page 146) classes. The other can be any object described in “The

Table Class

Chapter 5. The Collection Classes 153

Argument Collection Classes” on page 157. The argument must also allow all
of the index values in the receiver collection.

XOR

�� XOR(argument) ��

Returns a new collection of the same class as the receiver that contains all
items from the receiver collection and the argument collection; all indexes that
appear in both collections are removed. The argument can be any object
described in “The Argument Collection Classes” on page 157. The argument
must also allow all of the index values in the receiver collection.

The Concept of Set Operations

The following sections describe the concept of set operations to help you work
with set operators, in particular if the receiver collection class differs from the
argument collection class.

REXX provides the following set-operator methods:
v DIFFERENCE
v INTERSECTION
v SUBSET
v UNION
v XOR

These methods are only available to instances of the following collection
classes:
v Directory
v Table and its subclass Set
v Relation and its subclass Bag

The collection classes Array, List, and Queue do not have set-operator
methods but their instances can be used as the argument collections.

Set operations have the following form:
result = receiver∼setoperator(argument)

where:

receiver
is the collection receiving the set-operator message. It can be an instance
of the Directory, Relation, Table, Set, or Bag collection class.

Table Class

154 Object REXX Reference

setoperator
is the set-operator method used.

argument
is the argument collection supplied to the method. It can be an instance of
one of the receiver collection classes or of a collection class that does not
have set-operator methods, namely Array, List, or Queue.

The resulting collection is of the same class as the receiver collection.

The Principles of Operation
A set operation is performed by iterating over the elements of the receiver
collection to compare each element of the receiver collection with each
element of the argument collection. The element is defined as the tuple
<index,item> (see “Determining the Identity of an Item” on page 156).
Depending on the set-operator method and the result of the comparison, an
element of the receiver collection is, or is not, included in the resulting
collection. A receiver collection that allows for duplicate elements can,
depending on the set-operator method, also accept elements of the argument
collection after they have been coerced to the type of the receiver collection.

The following examples are to help you understand the semantics of set
operations. The collections are represented as a list of elements enclosed in
curly brackets. The list elements are separated by a comma.

Set Operations on Collections without Duplicates
Assume that the example sets are A={a,b} and B={b,c,d}. The result of a set
operation is another set. The only exception is a subset resulting in a Boolean
.true or .false. Using the collection A and B, the different set operators produce
the following:

UNION operation
All elements of A and B are united:
A UNION B = {a,b,c,d}

DIFFERENCE operation
The resulting collection contains all elements of the first set except for
those that also appear in the second set. The system iterates over the
elements of the second set and removes them from the first set one by
one.
A DIFFERENCE B = {a}
B DIFFERENCE A = {c,d}

XOR operation
The resulting collection contains all elements of the first set that are
not in the second set and all elements of the second set that are not in
the first set:
A XOR B = {a,c,d}

Set-Operator Methods

Chapter 5. The Collection Classes 155

INTERSECTION operation
The resulting collection contains all elements that appear in both sets:
A INTERSECTION B = {b}

SUBSET operation
Returns .true if the first set contains only elements that also appear
in the second set, otherwise it returns .false:
A SUBSET B = .false
B SUBSET A = .false

Set-Like Operations on Collections with Duplicates
Assume that the example bags are A={a,b,b} and B={b,b,c,c,d}. The result of
any set-like operation is a collection, in this case a bag. The only exception is
SUBSET resulting in a Boolean .true or .false. Using the collections A and B,
the different set-like operators produce the following:

UNION operation
All elements of A and B are united:
A UNION B = {a,b,b,b,b,c,c,d}

DIFFERENCE operation
The resulting collection contains all elements of the first bag except for
those that also appear in the second bag. The system iterates over the
elements of the second bag and removes them from the first bag one
by one.
A DIFFERENCE B = {a}
B DIFFERENCE A = {c,c,d}

XOR operation
The resulting collection contains all elements of the first bag that are
not in the second bag and all elements of the second bag that are not
in the second bag:
A XOR B = {a,c,c,d}

INTERSECTION operation
The resulting collection contains all elements that appear in both bags:
A INTERSECTION B = {b,b}

SUBSET operation
Returns .true if the first set contains only elements that also appear
in the second set, otherwise it returns .false:
A SUBSET B = .false
B SUBSET A = .false

Determining the Identity of an Item
Set operations require the definition of the identity of an element to determine
whether a certain element exists in the receiver collection. The element of a
collection is conceived as the tuple <index,item>. The index is used as the
identification tag associated with the item. Depending on the collection class,

Set-Operator Methods

156 Object REXX Reference

the index is an instance of a particular class, for example, the string class for a
directory element, an integer for an array, or any arbitrary class for a relation.
The Array class is an exception because it can be multidimensional having
more than one index. However, as a collection, it is conceptionally linearized
by the set operator.

For collections of collection classes that require unique indexes, namely the
Set, Table, and Directory classes, an item is identified by its index. For
collections of collection classes that allow several items to have the same
index, namely the Relation class, an item is identified by both its index and its
item. For the Bag and the Set subclasses, where several items can have the
same index but index and item must be identical, the item is identified by its
index. According to this concept, an item of a collection is identified as
follows:
v HASINDEX(index) for Bag, Directory, Set, and Table collections
v HASITEM(item,index) for the Relation collections

Items of the Array, List, and Queue collections are identified by the item, not
the index. The index is only used as a means to access the item but carries no
semantics. In a Queue collection class, for example, the index of a particular
item changes when another item is added to the queue and therefore is not a
permanent identification of an item.

The Argument Collection Classes
A argument collection can be an instance of any collection class, including the
Array, List, and Queue classes, which do not have set-operator methods.

If the collection does not contain a UNION method, the following must apply:
v The collection must support the MAKEARRAY method so that the set or

set-like operator can iterate over the supplied elements.
v The collection must conceptionally be coerced into a bag-like collection

before the set operation. Conceptionally, sparse arrays are condensed and
multidimensional arrays are linearized.

Collections having the UNION method must support the SUPPLIER method.

The Receiver Collection Classes
In addition to the set and set-like methods, a collection must support the
following methods to qualify as a receiver collection:
v Methods for collections not allowing elements with duplicate indexes:

HASINDEX
PUT or []=
REMOVE
ITEMS

Set-Operator Methods

Chapter 5. The Collection Classes 157

v Methods for collections allowing elements with duplicate indexes:
HASITEM; for bags, HASINDEX is sufficient
AT or []
PUT or []=
REMOVEITEM; for bags, REMOVE is sufficient
ITEMS

Classifying Collections
To determine whether the items in a collection class can be used in a set
operation, check the following criteria:
v Is an object a collection?

To answer this question, send the HASMETHOD method with parameter
“hasindex” to object:
::ROUTINE isCollection
use arg object
return object∼hasmethod("hasindex")

This function returns TRUE if the object is an instance of the Array, List,
Queue, Set, Bag, Relation, or Table collection class.

v Does the collection class have set-operator methods?
To answer this question, send the HASMETHOD method with parameter
“union” to object:
::ROUTINE hasSetOperators
use arg object
return object∼hasmethod("union")

This function returns TRUE if the object is an instance of the Set, Bag,
Relation, or Table collection class.

Set-Operator Methods

158 Object REXX Reference

Chapter 6. Other Classes

This chapter describes the following classes:
v Alarm class
v Class class
v Message class
v Method class
v Monitor class
v Object class
v Stem class
v Stream class
v String class
v Supplier class
v WindowsProgramManager class
v WindowsRegistry class
v WindowsEventLog class
v WindowsManager class
v WindowObject class
v MenuObject class
v WindowsClipboard class
v OLEObject class

The Alarm Class

An alarm object provides timing and notification capability by supplying a
facility to send any message to any object at a given time. You can cancel an
alarm before it sends its message.

The Alarm class is a subclass of the Object class.

Methods the Alarm class defines:

CANCEL
INIT (Overrides Object class method)

Methods inherited from the Object class:

NEW (Class Method)
Operator methods: =, ==, \=, ><, <>, \==
CLASS
COPY
DEFAULTNAME
HASMETHOD

© Copyright IBM Corp. 1994, 2001 159

OBJECTNAME
OBJECTNAME=
REQUEST
RUN
SETMETHOD
START
STRING
UNSETMETHOD

Note: The Alarm class also has available class methods that its metaclass, the
Class class, defines.

CANCEL

�� CANCEL ��

Cancels the pending alarm request represented by the receiver. This method
takes no action if the specified time has already been reached.

INIT

�� INIT(atime,message) ��

Sets up an alarm for a future time atime. At this time, the alarm object sends
the message that message, a message object, specifies. (See “The Message
Class” on page 170.) The atime is a string. You can specify this in the default
format ('hh:mm:ss') or as a number of seconds starting at the present time. If
you use the default format, you can specify a date in the default format ('dd
Mmm yyyy') after the time with a single blank separating the time and date.
Leading and trailing blanks are not allowed in the atime. If you do not specify
a date, the language processor uses the first future occurrence of the specified
time. You can use the CANCEL method to cancel a pending alarm. See
“Initialization” on page 104 for more information.

Examples
The following code sets up an alarm at 5:10 p.m. on October 8, 1996. (Assume
today's date is October 5, 1996.)
/* Alarm Examples */

PersonalMessage=.MyMessageClass∼new('Call the Bank')
msg=.message∼new(PersonalMessage,'RemindMe')

a=.alarm∼new('17:10:00 8 Oct 1996', msg)
exit
/* “::CLASS” on page 87 describes the ::CLASS directive */
/* “::METHOD” on page 89 describes the ::METHOD directive */

Alarm Class

160 Object REXX Reference

::CLASS MyMessageClass public
::Method init
expose inmsg
use arg inmsg
::Method RemindMe
expose inmsg
say 'It is now' 'TIME'('C')'.Please 'inmsg
/* On the specified data and time, displays the following message: */
/* 'It is now 5:10pm. Please Call the Bank' */

For the following example, the user uses the same code as in the preceding
example to define msg, a message object to run at the specified time. The
following code sets up an alarm to run the msg message object in 30 seconds
from the current time:
a=.alarm∼new(30,msg)

The Class Class

The Class class is like a factory producing the factories that produce objects. It
is a subclass of the Object class. The instance methods of the Class class are
also the class methods of all classes.

Methods the Class class defines: (They are all both class and instance
methods.)

BASECLASS
DEFAULTNAME (Overrides Object class method)
DEFINE
DELETE
ENHANCED
ID
INHERIT
INIT (Overrides Object class method)
METACLASS
METHOD
METHODS
MIXINCLASS
NEW (Overrides Object class method)
QUERYMIXINCLASS
SUBCLASS
SUBCLASSES
SUPERCLASSES
UNINHERIT

Methods inherited from the Object class:

Alarm Class

Chapter 6. Other Classes 161

Operator methods: =, ==, \=, ><, <>, \==
CLASS
COPY
HASMETHOD
OBJECTNAME
OBJECTNAME=
REQUEST
RUN
SETMETHOD
START
STRING
UNSETMETHOD

BASECLASS

�� BASECLASS ��

Returns the base class associated with the class. If the class is a mixin class,
the base class is the first superclass that is not also a mixin class. If the class is
not a mixin class, the base class is the class receiving the BASECLASS
message.

DEFAULTNAME

�� DEFAULTNAME ��

Returns a short human-readable string representation of the class. The string
returned is of the form
The id class

where id is the identifier assigned to the class when it was created.

Examples:
say .array∼defaultname /* Displays "The Array class" */
say .account∼defaultname /* Displays "The ACCOUNT class" */
say .savings∼defaultname /* Displays "The Savings class" */

::class account /* Name is all upper case */
::class 'Savings' /* String name is mixed case */

DEFINE

�� DEFINE(methodname)
,method

��

Class Class

162 Object REXX Reference

Incorporates the method object method in the receiver class’s collection of
instance methods. The language processor translates the method name
methodname to uppercase. Using the DEFINE method replaces any existing
definition for methodname in the receiver class.

If you omit method, the method name methodname is made unavailable for the
receiver class. Sending a message of that name to an instance of the class
causes the UNKNOWN method (if any) to be run.

The method argument can be a string containing a method source line instead
of a method object. Alternatively, you can pass an array of strings containing
individual method lines. Either way, DEFINE creates an equivalent method
object.

Notes:

1. The classes REXX provides do not permit changes or additions to their
method definitions.

2. The DEFINE method is a protected method.

Example:
bank_account=.object∼subclass('Account')
bank_account∼define('TYPE','return "a bank account"')

DELETE

�� DELETE(methodname) ��

Removes the receiver class's definition for the method name methodname. If the
receiver class defined methodname as unavailable with the DEFINE method,
this definition is nullified. If the receiver class had no definition for
methodname, no action is taken.

Notes:

1. The classes REXX provides do not permit changes or additions to their
method definitions.

2. DELETE deletes only methods the target class defines. You cannot delete
inherited methods the target's superclasses define.

3. The DELETE method is a protected method.

Example:
myclass=.object∼subclass('Myclass') /* After creating a class */
myclass∼define('TYPE','return "my class"') /* and defining a method */
myclass∼delete('TYPE') /* this deletes the method */

Class Class

Chapter 6. Other Classes 163

ENHANCED

��

&

ENHANCED(methods)

,argument

��

Returns an enhanced new instance of the receiver class, with object methods
that are the instance methods of the class, enhanced by the methods in the
collection methods. The collection indexes are the names of the enhancing
methods, and the items are the method objects (or strings or arrays of strings
containing method code). (See the description of DEFINE in “DEFINE” on
page 162.) You can use any collection that supports a SUPPLIER method.

ENHANCED sends an INIT message to the created object, passing the
arguments specified on the ENHANCED method.

Example:
/* Set up rclass with class method or methods you want in your */
/* remote class */
rclassmeths = .directory∼new

rclassmeths['DISPATCH']=d_source /* d_source must have code for a */
/* DISPATCH method. */

/* The following sends INIT('Remote Class') to a new instance */
rclass=.class∼enhanced(rclassmeths,'Remote Class')

ID

�� ID ��

Returns the class identity (instance) string. (This is the string that is an
argument on the SUBCLASS and MIXINCLASS methods.) The string
representations of the class and its instances contain the class identity.

Example:
myobject=.object∼subclass('my object') /* Creates a subclass */
say myobject∼id /* Produces: 'my object' */

INHERIT

�� INHERIT(classobj)
,classpos

��

Class Class

164 Object REXX Reference

Causes the receiver class to inherit the instance and class methods of the class
object classobj. The classpos is a class object that specifies the position of the
new superclass in the list of superclasses. (You can use the SUPERCLASSES
method to return the immediate superclasses.)

The new superclass is inserted in the search order after the specified class. If
the classpos class is not found in the set of superclasses, an error is raised. If
you do not specify classpos, the new superclass is added to the end of the
superclasses list.

Inherited methods can take precedence only over methods defined at or above
the base class of the classobj in the class hierarchy. Any subsequent change to
the instance methods of classobj takes immediate effect for all the classes that
inherit from it.

The new superclass classobj must be created with the MIXINCLASS option of
the ::CLASS directive or the MIXINCLASS method and the base class of the
classobj must be a direct superclass of the receiver object. The receiver must
not already descend from classobj in the class hierarchy and vice versa.

The method search order of the receiver class after INHERIT is the same as
before INHERIT, with the addition of classobj and its superclasses (if not
already present).

Notes:

1. You cannot change the classes that REXX provides by sending INHERIT
messages.

2. The INHERIT method is a protected method.

Example:
room∼inherit(.location)

INIT

�� INIT(classid) ��

Sets the receiver class identity to the string classid. You can use the ID method
(described previously) to return this string, which is the class identity. See
“Initialization” on page 104 for more information.

METACLASS

�� METACLASS ��

Class Class

Chapter 6. Other Classes 165

Returns the receiver class's default metaclass. This is the class used to create
subclasses of this class when you send SUBCLASS or MIXINCLASS messages
(with no metaclass arguments). If the receiver class is an object class (see
“Object Classes” on page 95), this is also the class used to create the receiver
class. The instance methods of the default metaclass are the class methods of
the receiver class. For more information about class methods, see “Object
Classes” on page 95. See also the description of the SUBCLASS method in
“SUBCLASS” on page 168.

METHOD

�� METHOD(methodname) ��

Returns the method object for the receiver class's definition for the method
name methodname. If the receiver class defined methodname as unavailable, this
method returns the NIL object. If the receiver class did not define methodname,
the language processor raises an error.

Example:
/* Create and retrieve the method definition of a class */
myclass=.object∼subclass('My class') /* Create a class */
mymethod=.method∼new(' ','Say arg(1)') /* Create a method object */
myclass∼define('ECHO',mymethod) /* Define it in the class */
method_source = myclass∼method('ECHO')∼source /* Extract it */
say method_source /* Says 'an Array' */
say method_source[1] /* Shows the method source code */

METHODS

�� METHODS
(class_object)

��

Returns a supplier object for all the instance methods of the receiver class and
its superclasses, if you specify no argument. If class_object is the NIL object,
METHODS returns a supplier object for only the instance methods of the
receiver class. If you specify a class_object, this method returns a supplier
object containing only the instance methods that class_object defines. If you
send appropriate messages to a supplier object, the supplier enumerates all
the instance methods existing at the time of the supplier's creation. (See “The
Supplier Class” on page 239 for details.)

Note: Methods that have been hidden with a SETMETHOD or DEFINE
method are included with the other methods that METHODS returns.
The hidden methods have the NIL object for the associated method.

Class Class

166 Object REXX Reference

Example:
objsupp=.object∼methods
do while objsupp∼available
say objsupp∼index /* Says all instance methods */
objsupp∼next /* of the Object class */
end

MIXINCLASS

�� MIXINCLASS(classid)
,metaclass

,methods

��

Returns a new mixin subclass of the receiver class. You can use this method to
create a new mixin class that is a subclass of the superclass to which you send
the message. The classid is a string that identifies the new mixin subclass. You
can use the ID method to retrieve this string.

The metaclass is a class object. If you specify metaclass, the new subclass is an
instance of metaclass. (A metaclass is a class that you can use to create a class,
that is, a class whose instances are classes. The Class class and its subclasses
are metaclasses.)

If you do not specify a metaclass, the new mixin subclass is an instance of the
default metaclass of the receiver class. For subclasses of the Object class, the
default metaclass is the Class class.

The methods is a collection whose indexes are the names of methods and
whose items are method objects (or strings or arrays of strings containing
method code). If you specify methods, the new class is enhanced with class
methods from this collection. (The metaclass of the new class is not affected.)

The METACLASS method returns the metaclass of a class.

The method search order of the new subclass is the same as that of the
receiver class, with the addition of the new subclass at the start of the order.

Example:
buyable=.object∼mixinclass('Buyable') /* New subclass is buyable */

/* Superclass is Object class */

Class Class

Chapter 6. Other Classes 167

NEW

��

&

NEW
,

(arg)

��

Returns a new instance of the receiver class, whose object methods are the
instance methods of the class. This method initializes a new instance by
running its INIT methods. (See “Initialization” on page 104.) NEW also sends
an INIT message. If you specify args, NEW passes these arguments on the
INIT message.

Example:
/* NEW method example */
a = .account∼new /* -> Object variable balance=0 */
y = .account∼new(340.78) /* -> Object variable balance=340.78 */

/* plus free toaster oven */
::class account subclass object
::method INIT /* Report time each account created */

/* plus free toaster when more than $100 */
Expose balance
Arg opening_balance
Say 'Creating' self∼objectname 'at time' time()
If datatype(opening_balance, 'N') then balance = opening_balance
else balance = 0
If balance > 100 then Say ' You win a free toaster oven'

QUERYMIXINCLASS

�� QUERYMIXINCLASS ��

Returns 1 (true) if the class is a mixin class, or 0 (false).

SUBCLASS

�� SUBCLASS(classid)
,metaclass

,methods

��

Returns a new subclass of the receiver class. You can use this method to create
a new class that is a subclass of the superclass to which you send the
message. The classid is a string that identifies the subclass. (You can use the ID
method to retrieve this string.)

Class Class

168 Object REXX Reference

The metaclass is a class object. If you specify metaclass, the new subclass is an
instance of metaclass. (A metaclass is a class that you can use to create a class,
that is, a class whose instances are classes. The Class class and its subclasses
are metaclasses.)

If you do not specify a metaclass, the new subclass is an instance of the default
metaclass of the receiver class. For subclasses of the Object class, the default
metaclass is the Class class.

The methods is a collection whose indexes are the names of methods and
whose items are method objects (or strings or arrays of strings containing
method code). If you specify methods, the new class is enhanced with class
methods from this collection. (The metaclass of the new class is not affected.)

The METACLASS method returns the metaclass of a class.

The method search order of the new subclass is the same as that of the
receiver class, with the addition of the new subclass at the start of the order.

Example:
room=.object∼subclass('Room') /* Superclass is .object */

/* Subclass is room */
/* Subclass identity is Room */

SUBCLASSES

�� SUBCLASSES ��

Returns the immediate subclasses of the receiver class in the form of a
single-index array of the required size, in an unspecified order. (The program
should not rely on any order.) The array indexes range from 1 to the number
of subclasses.

SUPERCLASSES

�� SUPERCLASSES ��

Returns the immediate superclasses of the receiver class in the form of a
single-index array of the required size. The immediate superclasses are the
original class used on a SUBCLASS or a MIXINCLASS method, plus any
additional superclasses defined with the INHERIT method. The array is in the
order in which the class has inherited the classes. The original class used on a
SUBCLASS or MIXINCLASS method is the first item of the array. The array
indexes range from 1 to the number of superclasses.

Class Class

Chapter 6. Other Classes 169

Example:
z=.class∼superclasses
/* To obtain the information this returns, you could use: */
do i over z

say i
end

UNINHERIT

�� UNINHERIT(classobj) ��

Nullifies the effect of any previous INHERIT message sent to the receiver for
the class classobj.

Note: You cannot change the classes that REXX provides by sending
UNINHERIT messages.

Example:
location=.object∼mixinclass('Location')
room=.object∼subclass('Room')∼∼inherit(location) /* Creates subclass */
/* and specifies inheritance */
room∼UNINHERIT(location)

The Message Class

A message object provides for the deferred or asynchronous sending of a
message. You can create a message object by using the NEW or ENHANCED
method of the Message class or the START method of the Object class (see
“START” on page 184). The Message class is a subclass of the Object class.

Methods the Message class defines:

COMPLETED
INIT (Overrides Object class method)
NOTIFY
RESULT
SEND
START (Overrides Object class method)

Methods inherited from the Object class:

NEW (Class method)
Operator methods: =, ==, \=, ><, <>, \==
CLASS
COPY
DEFAULTNAME

Class Class

170 Object REXX Reference

HASMETHOD
OBJECTNAME
OBJECTNAME=
REQUEST
RUN
SETMETHOD
STRING
UNSETMETHOD

Note: The Message class also has available class methods that its metaclass,
the Class class, defines.

COMPLETED

�� COMPLETED ��

Returns 1 if the message object has completed its message, or 0. You can use
this method instead of sending RESULT and waiting for the message to
complete.

INIT

��

&

INIT(target,messagename)

,Individual
,argument

,Array,argument

��

Initializes the message object for sending the message name messagename to
object target.

The messagename can be a string or an array. If messagename is an array object,
its first item is the name of the message and its second item is a class object to
use as the starting point for the method search. For more information, see
Table 1 on page 108.

If you specify the Individual or Array option, any remaining arguments are
arguments for the message. (You need to specify only the first letter; the
language processor ignores all characters following it.)

Individual If you specify this option, specifying argument is optional. The
language processor passes any arguments as message
arguments to target in the order you specify them.

Array If you specify this option, you must specify an argument,

Message Class

Chapter 6. Other Classes 171

which is an array object. (See “The Array Class” on page 118.)
The language processor then passes the member items of the
array to target. When the language processor passes the
arguments taken from the array, the first argument is at index
1, the second argument at index 2, and so on. If you omitted
any indexes when creating the array, the language processor
omits their corresponding message arguments when passing
the arguments.

If you specify neither Individual nor Array, the message sent has no
arguments.

Note: This method does not send the message messagename to object target.
The SEND or START method (described later) sends the message.

NOTIFY

�� NOTIFY(message) ��

Requests notification about the completion of processing of the message
SEND or START. The message object message is sent as the notification. You
can use NOTIFY to request any number of notifications. After the notification
message, you can use the RESULT method to obtain any result from the
messages SEND or START.

Example:
/* Event-driven greetings */

.prompter∼new∼prompt(.nil)

:class prompter

::method prompt
expose name
use arg msg

if msg \= .nil then do
name = msg∼result
if name = 'quit' then return
say 'Hello,' name

end

say 'Enter your name ("quit" to quit):'

/* Send the public default object .INPUT a LINEIN message asynchronously */
msg=.message∼new(.input,'LINEIN')∼∼start

/* Sends self∼prompt(msg) when data available */

Message Class

172 Object REXX Reference

msg∼notify(.message∼new(self,'PROMPT','I',msg))

/* Don't leave until user has entered "quit" */
guard on when name='quit'

RESULT

�� RESULT ��

Returns the result of the message SEND or START. If message processing is
not yet complete, this method waits until it completes. If the message SEND
or START raises an error condition, this method also raises an error condition.

Example:
/* Example using RESULT method */
string='700' /* Create a new string object, string */
bond=string∼start('REVERSE') /* Create a message object, bond, and */

/* start it. This sends a REVERSE */
/* message to string, giving bond */
/* the result. */

/* Ask bond for the result of the message */
say 'The result of message was' bond∼result /* Result is 007 */

SEND

�� SEND
(target)

��

Returns the result (if any) of sending the message. If you specify target, this
method sends the message to target. Otherwise, this method sends the
message to the target you specified when the message object was created.
SEND does not return until message processing is complete.

You can use the NOTIFY method to request notification that message
processing is complete. You can use the RESULT method to obtain any result
from the message.

START

�� START
(target)

��

Sends the message to start processing at a specific target whereas the sender
continues processing. If you specify target, this method sends the message to

Message Class

Chapter 6. Other Classes 173

target. Otherwise, this method sends the message to the target that you
specified when the message object was created. This method returns as soon
as possible and does not wait until message processing is complete. When
message processing is complete, the message object retains any result and
holds it until the sender requests it by sending a RESULT message. You can
use the NOTIFY method to request notification that message processing is
complete.

Example
/* Using Message class methods */
/* Note: In the following example, ::METHOD directives define class Testclass */

/* with method SHOWMSG */

ez=.testclass∼new /* Creates a new instance of Testclass */
mymsg=ez∼start('SHOWMSG','Hello, Ollie!',5) /* Creates and starts */

/* message mymsg to send */
/* SHOWMSG to ez */

/* Continue with main processing while SHOWMSG runs concurrently */
do 5

say 'Hello, Stan!'
end

/* Get final result of the SHOWMSG method from the mymsg message object */
say mymsg∼result
say 'Goodbye, Stan...'
exit

::class testclass public /* Directive defines Testclass */

::method showmsg /* Directive creates new method SHOWMSG */
use arg text,reps /* class Testclass */
do reps

say text
end
reply 'Bye Bye, Ollie...'
return

The following output is possible:
Hello, Ollie!
Hello, Stan!
Hello, Ollie!
Hello, Stan!
Hello, Ollie!
Hello, Stan!
Hello, Ollie!
Hello, Stan!
Hello, Ollie!
Hello, Stan!
Bye Bye, Ollie...
Goodbye, Stan...

Message Class

174 Object REXX Reference

The Method Class

The Method class creates method objects from REXX source code. It is a
subclass of the Object class.

Methods the Method class defines:

NEW (Class method. Overrides Object class method.)
NEWFILE (Class method)
SETGUARDED
SETPRIVATE
SETPROTECTED
SETSECURITYMANAGER
SETUNGUARDED
SOURCE

Methods inherited from the Object class:

Operator methods: =, ==, \=, ><, <>, \==
CLASS
COPY
DEFAULTNAME
HASMETHOD
INIT
OBJECTNAME
OBJECTNAME=
REQUEST
RUN
SETMETHOD
START
STRING
UNSETMETHOD

Note: The Method class also has available class methods that its metaclass,
the Class class, defines.

NEW (Class Method)

�� NEW(name,source) ��

Returns a new instance of method class, which is an executable representation
of the code contained in the source. The name is a string. The source can be a
single string or an array of strings containing individual method lines.

Method Class

Chapter 6. Other Classes 175

NEWFILE (Class Method)

�� NEWFILE(filename) ��

Returns a new instance of method class, which is an executable representation
of the code contained in the file filename. The filename is a string.

For an example of the use of this method, see the code example ’Server
implements Security Manager’ in Chapter 15.

SETGUARDED

�� SETGUARDED ��

Reverses any previous SETUNGUARDED messages, restoring the receiver to
the default guarded status. If the receiver is already guarded, a
SETGUARDED message has no effect.

SETPRIVATE

�� SETPRIVATE ��

Specifies that a method is a private method. Only a message that an object
sends to itself can run a private method. If a method object does not receive a
SETPRIVATE message, the method is a public method. (Any object can send a
message to run a public method. See “Public and Private Methods” on
page 103 for details.)

SETPROTECTED

�� SETPROTECTED ��

Specifies thata method is a protected method. If a method object does not
receive a SETPROTECTED message, the method is not protected. (See
“Chapter 15. The Security Manager” on page 457 for details.)

SETSECURITYMANAGER

�� SETSECURITYMANAGER
(security_manager_object)

��

Method Class

176 Object REXX Reference

Replaces the existing security manager with the specified
security_manager_object. If security_manager_object is omitted, any existing
security manager is removed.

SETUNGUARDED

�� SETUNGUARDED ��

Lets an object run a method even when another method is active on the same
object. If a method object does not receive a SETUNGUARDED message, it
requires exclusive use of its object variable pool. A method can be active for
an object only when no other method requiring exclusive access to the object's
variable pool is active in the same object. This restriction does not apply if an
object sends itself a message to run a method and it already has exclusive use
of the same object variable pool. In this case, the method runs immediately
and has exclusive use of its object variable pool, regardless of whether it
received a SETUNGUARDED message.

SOURCE

�� SOURCE ��

Returns the method source code as a single-index array of source lines. If the
source code is not available, SOURCE returns an array of zero items.

The Monitor Class

The Monitor class forwards messages to a destination object. It is a subclass of
the Object class.

Methods the Monitor class defines:

CURRENT
DESTINATION
INIT (Overrides Object class method)
UNKNOWN

Methods inherited from the Object class:

NEW (Class method)
Operator methods: =, ==, \=, ><, <>, \==
CLASS
COPY
DEFAULTNAME

Method Class

Chapter 6. Other Classes 177

HASMETHOD
OBJECTNAME
OBJECTNAME=
REQUEST
RUN
SETMETHOD
START
STRING
UNSETMETHOD

Note: The Monitor class also has available class methods that its metaclass,
the Class class, defines.

CURRENT

�� CURRENT ��

Returns the current destination object.

DESTINATION

�� DESTINATION
(destination)

��

Returns a new destination object. If you specify destination, this becomes the
new destination for any forwarded messages. If you omit destination, the
previous destination object becomes the new destination for any forwarded
messages.

INIT

�� INIT
(destination)

��

Initializes the newly created monitor object.

UNKNOWN

�� UNKNOWN(messagename,messageargs) ��

Reissues or forwards to the current monitor destination all unknown
messages sent to a monitor object. For additional information, see “Defining
an UNKNOWN Method” on page 102.

Monitor Class

178 Object REXX Reference

Examples
.local∼setentry('output',.monitor∼new(.stream∼new('my.new')∼∼command('open nobuffer')))

/* The following sets the destination */
previous_destination=.output∼destination(.stream∼new('my.out')∼∼command('open write'))
/* The following resets the destination */
.output∼destination

.output∼destination(.STDOUT)
current_output_destination_stream_object=.output∼current

The Object Class

The Object class is the root of the class hierarchy. The instance methods of the
Object class are, therefore, available on all objects.

Methods the Object class defines:

NEW (Class method)
Operator methods: =, ==, \=, ><, <>, \==
CLASS
COPY
DEFAULTNAME
HASMETHOD
INIT
OBJECTNAME
OBJECTNAME=
REQUEST
RUN
SETMETHOD
START
STRING
UNSETMETHOD

Note: The Object class also has available class methods that its metaclass, the
Class class, defines.

NEW (Class Method)

�� NEW ��

Returns a new instance of the receiver class.

Operator Methods

Monitor Class

Chapter 6. Other Classes 179

�� comparison_operator(argument) ��

Note: The argument is optional for the == operator.

Returns 1 (true) or 0 (false), the result of performing a specified comparison
operation. If you specify the == operator and omit argument, a string
representation is returned representing a hash value for Set, Bag, Table,
Relation, and Directory.

For the Object class, the arguments must match the receiver object. If they do
not match the receiver object, you can define subclasses of the Object class to
match the arguments.

The comparison operators you can use in a message are:

=, == True if the terms are the same object.

\=, ><, <>, \==
True if the terms are not the same object (inverse of =).

CLASS

�� CLASS ��

Returns the class object that received the message that created the object.

COPY

�� COPY ��

Returns a copy of the receiver object. The copied object has the same methods
as the receiver object and an equivalent set of object variables, with the same
values.

Example:
myarray=.array∼of('N','S','E','W')
directions=myarray∼copy /* Copies array myarray to array directions */

DEFAULTNAME

�� DEFAULTNAME ��

Object Class

180 Object REXX Reference

Returns a short human-readable string representation of the object. The exact
form of this representation depends on the object and might not alone be
sufficient to reconstruct the object. All objects must be able to produce a short
string representation of themselves in this way, even if the object does not
have a string value. See “Required String Values” on page 105 for more
information. The DEFAULTNAME method of the Object class returns a string
that identifies the class of the object, for example, an Array or a Directory. See
also “OBJECTNAME” and “STRING” on page 185. See “OBJECTNAME=” for
an example using DEFAULTNAME.

HASMETHOD

�� HASMETHOD(methodname) ��

Returns 1 (true) if the receiver object has a method named methodname
(translated to uppercase) or if the target method is a private method.
Otherwise, it returns 0 (false).

Note: If you call the methodname method although it is private, you receive
error 97 Object method not found although HASMETHOD returns 1
(true).

INIT

�� INIT ��

Performs any required object initialization. Subclasses of the Object class can
override this method.

OBJECTNAME

�� OBJECTNAME ��

Returns the receiver object’s name that the OBJECTNAME= method sets. If
the receiver object does not have a name, this method returns the result of the
DEFAULTNAME method. See “Required String Values” on page 105 for more
information. See the OBJECTNAME= method for an example using
OBJECTNAME.

OBJECTNAME=

�� OBJECTNAME=(newname) ��

Object Class

Chapter 6. Other Classes 181

Sets the receiver object’s name to the string newname.

Example:
points=.array∼of('N','S','E','W')
say points∼objectname /* (no change yet) Says: "an Array" */
points∼objectname=('compass') /* Changes obj name POINTS to "compass"*/
say points∼objectname /* Shows new obj name. Says: "compass" */
say points∼defaultname /* Default is still available. */

/* Says "an Array" */
say points /* Says string representation of */

/* points "compass" */
say points[3] /* Says: "E"Points is still an array */

/* of 4 items */

REQUEST

�� REQUEST(classid) ��

Returns an object of the classid class, or the NIL object if the request cannot be
satisfied.

This method first compares the identity of the object's class (see the ID
method of the Class class in “ID” on page 164) to classid. If they are the same,
the receiver object is returned as the result. Otherwise, REQUEST tries to
obtain and return an object satisfying classid by sending the receiver object the
conversion message MAKE with the string classid appended (converted to
uppercase). For example, a REQUEST('string') message causes a
MAKESTRING message to be sent. If the object does not have the required
conversion method, REQUEST returns the NIL object.

The conversion methods cause objects to produce different representations of
themselves. The presence or absence of a conversion method defines an
object's capability to produce the corresponding representations. For example,
lists can represent themselves as arrays, because they have a MAKEARRAY
method, but they cannot represent themselves as directories, because they do
not have a MAKEDIRECTORY method. Any conversion method must return
an object of the requested class. For example, MAKEARRAY must return an
array. The language processor uses the MAKESTRING method to obtain string
values in certain contexts; see “Required String Values” on page 105.

Object Class

182 Object REXX Reference

RUN

��

&

RUN(method)

,Individual
,argument

,Array,argument

��

Runs the method object method (see “The Method Class” on page 175). The
method has access to the object variables of the receiver object, as if the
receiver object had defined the method by using SETMETHOD.

If you specify the Individual or Array option, any remaining arguments are
arguments for the method. (You need to specify only the first letter; the
language processor ignores all characters following it.)

Individual
Passes any remaining arguments to the method as arguments in the
order you specify them.

Array Requires argument, which is an array object. (See “The Array Class” on
page 118.) The language processor passes the member items of the
array to the method as arguments. The first argument is at index 1,
the second argument at index 2, and so on. If you omitted any
indexes when creating the array, the language processor omits their
corresponding arguments when passing the arguments.

If you specify neither Individual nor Array, the method runs without
arguments.

The method argument can be a string containing a method source line instead
of a method object. Alternatively, you can pass an array of strings containing
individual method lines. In either case, RUN creates an equivalent method
object.

Notes:

1. The RUN method is a private method. See the SETPRIVATE method in
“SETPRIVATE” on page 176 for details.

2. The RUN method is a protected method.

SETMETHOD

�� SETMETHOD(methodname)
,method

��

Object Class

Chapter 6. Other Classes 183

Adds a method to the receiver object's collection of object methods. The
methodname is the name of the new method. (The language processor
translates this name to uppercase.) If you previously defined a method with
the same name using SETMETHOD, the new method replaces the earlier one.
If you omit method, SETMETHOD makes the method name methodname
unavailable for the receiver object. In this case, sending a message of that
name to the receiver object runs the UNKNOWN method (if any).

The method can be a string containing a method source line instead of a
method object. Or it can be an array of strings containing individual method
lines. In either case, SETMETHOD creates an equivalent method object.

Notes:

1. The SETMETHOD method is a private method. See the SETPRIVATE
method in “SETPRIVATE” on page 176 for details.

2. The SETMETHOD method is a protected method.

START

�� &START(messagename)
,argument

��

Returns a message object (see “The Message Class” on page 170) and sends it
a START message to start concurrent processing. The object receiving the
message messagename processes this message concurrently with the sender's
continued processing.

The messagename can be a string or an array. If messagename is an array object,
its first item is the name of the message and its second item is a class object to
use as the starting point for the method search. For more information, see
Table 1 on page 108.

The language processor passes any arguments to the receiver as arguments for
messagename in the order you specify them.

When the receiver object has finished processing the message, the message
object retains its result and holds it until the sender requests it by sending a
RESULT message. For further details, see “START” on page 173.

Example:
world=.object∼new
msg=world∼start('HELLO') /* same as next line */
msg=.message∼new(world,'HELLO')∼∼start /* same as previous line */

Object Class

184 Object REXX Reference

STRING

�� STRING ��

Returns a human-readable string representation of the object. The exact form
of this representation depends on the object and might not alone be sufficient
to reconstruct the object. All objects must be able to produce a string
representation of themselves in this way.

The object's string representation is obtained from the OBJECTNAME method
(which can in turn use the DEFAULTNAME method). See also the
OBJECTNAME method (“OBJECTNAME” on page 181) and the
DEFAULTNAME method (“DEFAULTNAME” on page 180).

The distinction between this method, the MAKESTRING method (which
obtains string values—see “MAKESTRING” on page 227) and the REQUEST
method (see “REQUEST” on page 182) is important. All objects have a
STRING method, which returns a string representation (human-readable form)
of the object. This form is useful in tracing and debugging. Only those objects
that have information with a meaningful string form have a MAKESTRING
method to return this value. For example, directory objects have a readable
string representation (a Directory), but no string value, and, therefore, no
MAKESTRING method.

Of the classes that REXX provides, only the String class has a MAKESTRING
method. Any subclasses of the String class inherit this method by default, so
these subclasses also have string values. Any other class can also provide a
string value by defining a MAKESTRING method.

UNSETMETHOD

�� UNSETMETHOD(methodname) ��

Cancels the effect of all previous SETMETHODs for method methodname. It
also removes any method methodname introduced with ENHANCED when the
object was created. If the object has received no SETMETHOD method, no
action is taken.

Notes:

1. The UNSETMETHOD method is a private method. See the SETPRIVATE
method in “SETPRIVATE” on page 176 for details.

2. The UNSETMETHOD method is a protected method.

Object Class

Chapter 6. Other Classes 185

The Stem Class

A stem object is a collection with unique indexes that are character strings.

Stems are automatically created whenever a REXX stem variable or REXX
compound variable is used. For example:
a.1 = 2

creates a new stem collection and assigns it to the REXX variable A.; it also
assigns the value 2 to entry 1 in the collection.

In addition to the items assigned to the collection indexes, a stem also has a
default value that is used for all uninitialized indexes of the collection. You
can assign a default value to the stem with the []= method and retrieve the
default value with the [] method.

In addition to the methods defined in the following, the Stem class removes
the methods =, ==, \=, \==, <>, and >< using the DEFINE method.

Methods the Stem class defines:

NEW (Class method. Overrides Object class method.)
[]
[]=
MAKEARRAY
REQUEST (Overrides Object class method)
UNKNOWN

Methods inherited from the Object class:

Operator methods: =, ==, \=, ><, <>, \==
CLASS
COPY
DEFAULTNAME
HASMETHOD
INIT
OBJECTNAME
OBJECTNAME=
RUN
SETMETHOD
START
STRING
UNSETMETHOD

Note: The Stem class also has available class methods that its metaclass, the
Class class, defines.

Stem Class

186 Object REXX Reference

NEW (Class Method)

�� NEW
(name)

��

Returns a new stem object. If you specify a string name, this value is used to
create the derived name of compound variables. The default stem name is a
null string.

[]

�� &

,

[]
index

��

Returns the item associated with the specified indexes. Each index is an
expression; use commas to separate the expressions. The language processor
concatenates the index expression string values, separating them with a period
(.), to create a derived index. A null string ("") is used for any omitted
expressions. The resulting string references the stem item. If the stem has no
item associated with the specified final index, the stem default value is
returned. If a default value has not been set, the stem name concatenated with
the final index string is returned.

If you do not specify index, the stem default value is returned. If no default
value has been assigned, the stem name is returned.

Note: You cannot use the [] method in a DROP or PROCEDURE instruction
or in a parsing template.

[]=

�� &

,

[]=value
index

��

Makes the value a member item of the stem collection and associates it with
the specified index. If you specify no index expressions, a new default stem
value is assigned. Assigning a new default value will re-initialize the stem
and remove all existing assigned indexes.

Stem Class

Chapter 6. Other Classes 187

MAKEARRAY

�� MAKEARRAY ��

Returns an array of all stem indexes that currently have an associated value.
The items appear in the array in an unspecified order. (The program should
not rely on any order.)

REQUEST

�� REQUEST(classid) ��

Returns the result of the Stem class MAKEARRAY method, if the requested
class is ARRAY. For all other classes, REQUEST forwards the message to the
default value of the stem and returns this result. This method requests
conversion to a specific class. All conversion requests except ARRAY are
forwarded to the current stem default value.

UNKNOWN

�� UNKNOWN (messagename,messageargs) ��

Reissues or forwards to the current stem default value all unknown messages
sent to a stem collection. For additional information, see “Defining an
UNKNOWN Method” on page 102.

The Stream Class

A stream object allows external communication from REXX. (See “Chapter 16.
Input and Output Streams” on page 463 for a discussion of REXX input and
output.)

The Stream class is a subclass of the Object class.

Methods the Stream class defines:

ARRAYIN
ARRAYOUT
CHARIN
CHAROUT
CHARS
CLOSE
COMMAND

Stem Class

188 Object REXX Reference

DESCRIPTION
FLUSH
INIT (Overrides Object class method)
LINEIN
LINEOUT
LINES
MAKEARRAY
OPEN
POSITION
QUALIFY
QUERY
SEEK
STATE
SUPPLIER

Methods inherited from the Object class:

NEW (Class method)
Operator methods: =, ==, \=, ><, <>, \==
CLASS
COPY
DEFAULTNAME>
HASMETHOD
OBJECTNAME
OBJECTNAME=
REQUEST
RUN
SETMETHOD
START
STRING
UNSETMETHOD

Note: The Stream class also has available class methods that its metaclass, the
Class class, defines.

ARRAYIN

�� ARRAYIN
(LINES)

(CHARS)
��

Returns a fixed array that contains the data of the stream in line or character
format, starting from the current read position. The line format is the default.

If you have used the CHARIN method, the first line can be a partial line.

Stream Class

Chapter 6. Other Classes 189

ARRAYOUT

��
, LINES

ARRAYOUT(array)
, CHARS

��

Returns a stream object that contains the data from array.

CHARIN

�� CHARIN
()

start ,length

��

Returns a string of up to length characters from the character input stream
receiving the message. The language processor advances the read pointer. If
you omit length, it defaults to 1. If you specify start, this positions the read
pointer before reading. If the stream is not already open, the language
processor tries to open the stream for reading and writing. If that fails, the
language processor opens the stream for read only. (See “CHARIN (Character
Input)” on page 310 for information about the CHARIN built-in function.)

CHAROUT

�� CHAROUT
()

string ,start

��

Returns the count of characters remaining after trying to write string to the
character output stream receiving the message. The language processor
advances the write pointer.

The string can be the null string. In this case, CHAROUT writes no characters
to the stream and returns 0. If you omit string, CHAROUT writes no
characters to the stream and returns 0. The language processor closes the
stream.

If you specify start, this positions the write pointer before writing. If the
stream is not already open, the language processor tries to open the stream for
reading and writing. If that fails, the language processor opens the stream for
write only. (See “CHAROUT (Character Output)” on page 311 for information
about the CHAROUT built-in function.)

Stream Class

190 Object REXX Reference

CHARS

�� CHARS ��

Returns the total number of characters remaining in the character input
stream receiving the message. The default input stream is STDIN. The count
includes any line separator characters, if these are defined for the stream. In
the case of persistent streams, it is the count of characters from the current
read position. (See “Chapter 16. Input and Output Streams” on page 463 for a
discussion of REXX input and output.) The total number of characters
remaining cannot be determined for some streams (for example, STDIN). For
these streams. the CHARS method returns 1 to indicate that data is present, or
0 if no data is present. For Windows devices, CHARS always returns 1. (See
“CHARS (Characters Remaining)” on page 312 for information about the
CHARS built-in function.)

CLOSE

�� CLOSE ��

Closes the stream that receives the message. CLOSE returns READY: if closing
the stream is successful, or an appropriate error message. If you have tried to
close an unopened file, then the CLOSE method returns a null string ("").

COMMAND

�� COMMAND(stream_command) ��

Returns a string after performing the specified stream_command. The returned
string depends on the stream_command performed and can be the null string.
The following stream_commands:
v Open a stream for reading, writing, or both
v Close a stream at the end of an operation
v Move the line read or write position within a persistent stream (for

example, a file)
v Get information about a stream

If the method is unsuccessful, it returns an error message string in the same
form that the DESCRIPTION method uses.

Stream Class

Chapter 6. Other Classes 191

For most error conditions, the additional information is in the form of a
numeric return code. This return code is the value of ERRNO that is set
whenever one of the file system primitives returns with a -1.

Command Strings
The argument stream_command can be any expression that the language
processor evaluates to a command string that corresponds to the following
diagram:

��
BOTH Write Options

OPEN
READ Options
WRITE

APPEND
REPLACE

CLOSE
FLUSH

= CHAR
SEEK offset
POSITION < READ LINE

+ WRITE
−

QUERY DATETIME
EXISTS
HANDLE

CHAR
SEEK READ
POSITION LINE

CHAR
WRITE

LINE
SYS

SIZE
STREAMTYPE
TIMESTAMP

��

Write Options:

APPEND
REPLACE

Stream Class

192 Object REXX Reference

Options:

SHARED
SHAREREAD
SHAREWRITE

& NOBUFFER
BINARY

RECLENGTH length

OPEN Opens the stream object receiving the message and returns
READY:. (If unsuccessful, the previous information about return
codes applies.) The default for OPEN is to open the stream for
both reading and writing data, for example: 'OPEN BOTH'. To
specify that the stream_name receiving the message can be only
read or written to, add READ or WRITE, to the command
string.

The following is a description of the options for OPEN:

READ Opens the stream only for reading.

WRITE Opens the stream only for writing.

BOTH Opens the stream for both reading and
writing. (This is the default.) The language
processor maintains separate read and write
pointers.

APPEND Positions the write pointer at the end of the
stream. The write pointer cannot be moved
anywhere within the extent of the file as it
existed when the file was opened.

REPLACE Sets the write pointer to the beginning of the
stream and truncates the file. In other words,
this option deletes all data that was in the
stream when opened.

SHARED Enables another process to work with the
stream in a shared mode. This mode must be
compatible with the shared mode (SHARED,
SHAREREAD, or SHAREWRITE) used by the
process that opened the stream.

SHAREREAD Enables another process to read the stream in
a shared mode.

SHAREWRITE
Enables another process to write the stream in
a shared mode.

NOBUFFER Turns off buffering of the stream. All data

Stream Class

Chapter 6. Other Classes 193

written to the stream is flushed immediately
to the operating system for writing. This
option can have a severe impact on output
performance. Use it only when data integrity
is a concern, or to force interleaved output to
a stream to appear in the exact order in which
it was written.

BINARY Opens the stream in binary mode. This means
that line end characters are ignored; they are
treated like any other byte of data. This is
intended to force file operations that are
compatible with other REXX language
processors that run on record-based systems,
or to process binary data using the line
operations.

Note: Specifying the BINARY option for a
stream that does not exist but is opened
for writing also requires the
RECLENGTH option to be specified.
Omitting the RECLENGTH option in
this case raises an error condition.

RECLENGTH length
Allows the specification of an exact length for
each line in a stream. This allows line
operations on binary-mode streams to operate
on individual fixed-length records. Without
this option, line operations on binary-mode
files operate on the entire file (for example, as
if you specified the RECLENGTH option with a
length equal to that of the file). The length
must be 1 or greater.

Examples:
stream_name∼Command('open')
stream_name∼Command('open write')
stream_name∼Command('open read')
stream_name∼Command('open read shared')

CLOSE closes the stream object receiving the message. The
COMMAND method with the CLOSE option returns READY: if
the receiving stream object is successfully closed or an
appropriate error message otherwise. If an attempt to close an
unopened file occurs, then the COMMAND method with the
CLOSE option returns a null string ("").

Stream Class

194 Object REXX Reference

FLUSH forces any data currently buffered for writing to be written to
this stream.

SEEK offset sets the read or write position to a given number (offset)
within a persistent stream. If the stream is open for both
reading and writing and you do not specify READ or WRITE,
both the read and write positions are set.

Note: See “Chapter 16. Input and Output Streams” on
page 463 for a discussion of read and write positions in
a persistent stream.

To use this command, you must first open the receiving
stream object (with the OPEN stream command described
previously or implicitly with an input or output operation).
One of the following characters can precede the offset number.

= explicitly specifies the offset from the beginning of the
stream. This is the default if you supply no prefix. For
example, an offset of 1 with the LINE option means
the beginning of the stream.

< specifies offset from the end of the stream.

+ specifies offset forward from the current read or write
position.

- specifies offset backward from the current read or
write position.

The COMMAND method with the SEEK option returns the
new position in the stream if the read or write position is
successfully located, or an appropriate error message.

The following is a description of the options for SEEK:

READ specifies that this command sets the read
position.

WRITE specifies that this command sets the write
position.

CHAR specifies the positioning in terms of characters.
This is the default.

LINE specifies the positioning in terms of lines. For
non-binary streams, this is potentially an
operation that can take a long time to
complete because, in most cases, the file must
be scanned from the top to count the line-end

Stream Class

Chapter 6. Other Classes 195

characters. However, for binary streams with a
specified record length, the new resulting line
number is simply multiplied by the record
length before character positioning. See “Line
versus Character Positioning” on page 469 for
a detailed discussion of this issue.

Note: If you do line positioning in a file open
only for writing, you receive an error
message.

Examples:
stream_name∼Command('seek =2 read')
stream_name∼Command('seek +15 read')
stream_name∼Command('seek -7 write line')
fromend = 125
stream_name∼Command('seek <'fromend read)

POSITION is a synonym for SEEK.

Used with these stream_commands, the COMMAND method returns specific
information about a stream. Except for QUERY HANDLE and QUERY
POSITION, the language processor returns the query information even if the
stream is not open. The language processor returns the null string for
nonexistent streams.

QUERY DATETIME
Returns the date and time stamps of a stream in US format. For
example:
stream_name∼Command('query datetime')

A sample output might be:
11-12-95 03:29:12

QUERY EXISTS
Returns the full path specification of the stream object receiving the
message, if it exists, or a null string. For example:
stream_name∼Command('query exists')

A sample output might be:
c:\data\file.txt

QUERY HANDLE
Returns the handle associated with the open stream that is the
receiving stream object. For example:
stream_name∼Command('query handle')

Stream Class

196 Object REXX Reference

A sample output might be:

3

QUERY POSITION
Returns the current read or write position for the receiving stream
object, as qualified by the following options:

READ Returns the current read position.

WRITE Returns the current write position.

Note: If the stream is open for both reading and
writing, this returns the read position by
default. Otherwise, this returns the appropriate
position by default.

CHAR Returns the position in terms of characters. This is the
default.

LINE Returns the position in terms of lines. For non-binary
streams, this operation can take a long time to
complete. This is because the language processor
starts tracking the current line number if not already
doing so, and, thus, might require a scan of the stream
from the top to count the line-end characters. See
“Line versus Character Positioning” on page 469 for a
detailed discussion of this issue. For example:
stream_name∼Command('query position write')

A sample output might be:
247

SYS Returns the operating system stream position in terms
of characters.

QUERY SEEK
Is a synonym for QUERY POSITION.

QUERY SIZE
Returns the size in bytes of a persistent stream that is the receiving
stream object. For example:
stream_name∼Command('query size')

A sample output might be:
1305

QUERY STREAMTYPE
Returns a string indicating whether the receiving stream object is
PERSISTENT, TRANSIENT, or UNKNOWN.

Stream Class

Chapter 6. Other Classes 197

QUERY TIMESTAMP
Returns the date and time stamps of the receiving stream object in an
international format. This is the preferred method of getting date and
time because it provides the full 4-digit year. For example:
stream_name∼Command('query timestamp')

A sample output might be:
1995-11-12 03:29:12

DESCRIPTION

�� DESCRIPTION ��

Returns any descriptive string associated with the current state of the stream
or the NIL object if no descriptive string is available. The DESCRIPTION
method is identical with the STATE method except that the string that
DESCRIPTION returns is followed by a colon and, if available, additional
information about ERROR or NOTREADY states. (The STATE method in
“STATE” on page 205 describes these states.)

FLUSH

�� FLUSH ��

Returns READY:. It forces any data currently buffered for writing to be written
to the stream receiving the message.

INIT

�� INIT(name) ��

Initializes a stream object for a stream named name, but does not open the
stream. See “Initialization” on page 104 for more information.

LINEIN

�� LINEIN
()

line ,count

��

Returns the next count lines. The count must be 0 or 1. The language
processor advances the read pointer. If you omit count, it defaults to 1. If you

Stream Class

198 Object REXX Reference

specify line, this positions the read pointer before reading. If the stream is not
already open, the language processor tries to open the stream for reading and
writing. If that fails, the language processor opens the stream for read-only.
(See “LINEIN (Line Input)” on page 328 for information about the LINEIN
built-in function.)

LINEOUT

�� LINEOUT
()

string ,line

��

Returns 0 if successful in writing string to the character output stream
receiving the message or 1 if an error occurs while writing the line. The
language processor advances the write pointer. If you omit string, the
language processor closes the stream. If you specify line, this positions the
write pointer before writing. If the stream is not already open, the language
processor tries to open the stream for reading and writing. If that fails, the
language processor opens the stream for write-only. (See “LINEOUT (Line
Output)” on page 330 for information about the LINEOUT built-in function.)

LINES

�� LINES ��

Returns the number of completed lines that remain in the character input
stream receiving the message. If the stream has already been read with
CHARIN, this can include an initial partial line. For persistent streams the
count starts at the current read position. In effect, LINES reports whether a
read action of CHARIN (see “CHARIN” on page 190) or LINEIN (see
“LINEIN” on page 198) will succeed. (For an explanation of input and output,
see “Chapter 16. Input and Output Streams” on page 463.)

For QUEUE, LINES returns the actual number of lines. (See “LINES (Lines
Remaining)” on page 331 for information about the LINES built-in function.)

Note: The CHARS method returns the number of characters in a persistent
stream or the presence of data in a transient stream. The LINES method
determines the actual number of lines by scanning the stream starting
at the current position and counting the lines. For large streams, this
can be a time-consuming operation. Therefore, avoid the use of the
LINES method in the condition of a loop reading a stream. It is
recommended that you use the CHARS method (see “CHARS” on
page 191) or the LINES built-in function for this purpose.

Stream Class

Chapter 6. Other Classes 199

MAKEARRAY

�� MAKEARRAY
(LINES)

(CHARS)
��

Returns a fixed array that contains the data of the stream in line or character
format, starting from the current read position. The line format is the default.

If you have used the CHARIN method, the first line can be a partial line.

OPEN

�� OPEN
(BOTH Write Options

(READ
(WRITE Write Options

SHARED

SHAREREAD
SHAREWRITE

�

� &

NOBUFFER
BINARY

RECLENGTH length

)
��

Write Options:

&
APPEND

REPLACE

Opens the stream to which you send the message and returns READY:. If the
method is unsuccessful, it returns an error message string in the same form
that the DESCRIPTION method uses.

For most error conditions, the additional information is in the form of a
numeric return code. This return code is the value of ERRNO, which is set
whenever one of the file system primitives returns with a -1.

By default, OPEN opens the stream for both reading and writing data, for
example: 'OPEN BOTH'. To specify that the stream receiving the message can be
only read or only written to, specify READ or WRITE.

Stream Class

200 Object REXX Reference

The options for the OPEN method are:

READ Opens the stream only for reading.

WRITE Opens the stream only for writing.

BOTH Opens the stream for both reading and writing. (This is the
default.) The language processor maintains separate read and
write pointers.

APPEND Positions the write pointer at the end of the stream. (This is
the default.) The write pointer cannot be moved anywhere
within the extent of the file as it existed when the file was
opened.

REPLACE Sets the write pointer to the beginning of the stream and
truncates the file. In other words, this option deletes all data
that was in the stream when opened.

SHARED Enables another process to work with the stream in a shared
mode. (This is the default.) This mode must be compatible
with the shared mode (SHARED, SHAREREAD, or
SHAREWRITE) used by the process that opened the stream.

SHAREREAD Enables another process to read the stream in a shared mode.

SHAREWRITE
Enables another process to write the stream in a shared mode.

NOBUFFER Turns off buffering of the stream. All data written to the
stream is flushed immediately to the operating system for
writing. This option can have a severe impact on output
performance. Use it only when data integrity is a concern, or
to force interleaved output to a stream to appear in the exact
order in which it was written.

BINARY Opens the stream in binary mode. This means that line-end
characters are ignored; they are treated like any other byte of
data. This is intended to force file operations that are
compatible with other REXX language processors that run on
record-based systems, or to process binary data using the line
operations.

Note: Specifying the BINARY option for a stream that does
not exist but is opened for writing also requires the
RECLENGTH option to be specified. Omitting the
RECLENGTH option in this case raises an error
condition.

RECLENGTH length
Allows the specification of an exact length for each line in a

Stream Class

Chapter 6. Other Classes 201

stream. This allows line operations on binary-mode streams to
operate on individual fixed-length records. Without this
option, line operations on binary-mode files operate on the
entire file (for example, as if you specified the RECLENGTH
option with a length equal to that of the file). The length must
be 1 or greater.

Examples:
stream_name∼OPEN
stream_name∼OPEN('write')
stream_name∼OPEN('read')

POSITION

��
= CHAR

POSITION(offset READ)
< WRITE LINE
+
−

��

POSITION is a synonym for SEEK. (See “SEEK” on page 204.)

QUALIFY

�� QUALIFY ��

Returns the stream's fully qualified name. The stream need not be open.

QUERY

�� QUERY(DATETIME)
EXISTS
HANDLE

CHAR
SEEK READ
POSITION LINE

CHAR
WRITE

LINE
SYS

SIZE
STREAMTYPE
TIMESTAMP

��

Used with these options, the QUERY method returns specific information
about a stream. Except for QUERY HANDLE and QUERY POSITION, the

Stream Class

202 Object REXX Reference

language processor returns the query information even if the stream is not
open. The language processor returns the null string for nonexistent streams.

DATETIME
returns the date and time stamps of the receiving stream object in US
format. For example:
stream_name∼query('datetime')

A sample output might be:
11-12-98 03:29:12

EXISTS
returns the full path specification of the receiving stream object, if it
exists, or a null string. For example:
stream_name∼query('exists')

A sample output might be:
c:\data\file.txt

HANDLE
returns the handle associated with the open stream that is the
receiving stream object. For example:
stream_name∼query('handle')

A sample output might be:
3

POSITION
returns the current read or write position for the receiving stream
object, as qualified by the following options:

READ returns the current read position.

WRITE returns the current write position.

Note: If the stream is open for both reading and
writing, this returns the read position by
default. Otherwise, this returns the appropriate
position by default.

CHAR returns the position in terms of characters. This is the
default.

LINE returns the position in terms of lines. For non-binary
streams, this operation can take a long time to
complete. This is because the language processor
starts tracking the current line number if not already
doing so, and, thus, might require a scan of the stream
from the top to count the line-end characters. See

Stream Class

Chapter 6. Other Classes 203

“Line versus Character Positioning” on page 469 for a
detailed discussion of this issue. For example:
stream_name∼query('position write')

A sample output might be:
247

SYS returns the operating system stream position in terms
of characters.

SIZE returns the size, in bytes, of a persistent stream that is the receiving
stream object. For example:
stream_name∼query('size')

A sample output might be:
1305

STREAMTYPE
returns a string indicating whether the receiving stream object is
PERSISTENT, TRANSIENT, or UNKNOWN.

TIMESTAMP
returns the date and time stamps of the receiving stream object in an
international format. This is the preferred method of getting the date
and time because it provides the full 4-digit year. For example:
stream_name∼query('timestamp')

A sample output might be:
1998-11-12 03:29:12

SEEK

��
= CHAR

SEEK(offset)
< READ LINE
+ WRITE
−

��

Sets the read or write position to a given number (offset) within a persistent
stream. If the stream is open for both reading and writing and you do not
specify READ or WRITE, both the read and write positions are set.

Note: See “Chapter 16. Input and Output Streams” on page 463 for a
discussion of read and write positions in a persistent stream.

Stream Class

204 Object REXX Reference

To use this method, you must first open the receiving stream object (with the
OPEN method described previously or implicitly with an input or output
operation). One of the following characters can precede the offset number:

= Explicitly specifies the offset from the beginning of the stream. This is
the default if you supply no prefix. For example, an offset of 1 means
the beginning of the stream.

< Specifies offset from the end of the stream.

+ Specifies offset forward from the current read or write position.

- Specifies offset backward from the current read or write position.

The SEEK method returns the new position in the stream if the read or write
position is successfully located, or an appropriate error message.

The following is a description of the options for SEEK:

READ specifies that the read position be set.

WRITE specifies that the write position be set.

CHAR specifies that positioning be done in terms of characters. This
is the default.

LINE specifies that the positioning be done in terms of lines. For
non-binary streams, this is potentially an operation that can
take a long time to complete because, in most cases, the file
must be scanned from the top to count the line-end characters.
However, for binary streams with a specified record length,
the new resulting line number is simply multiplied by the
record length before character positioning. See “Line versus
Character Positioning” on page 469 for a detailed discussion of
this issue.

Note: If you do line positioning in a file open only for
writing, you receive an error message.

Examples:
stream_name∼seek('=2 read')
stream_name∼seek('+15 read')
stream_name∼seek('-7 write line')
fromend = 125
stream_name∼seek('<'fromend read)

STATE

�� STATE ��

Stream Class

Chapter 6. Other Classes 205

Returns a string that indicates the current state of the specified stream.

The returned strings are as follows:

ERROR The stream has been subject to an erroneous operation
(possibly during input, output, or through the STREAM
function). See “Errors during Input and Output” on page 472.
You might be able to obtain additional information about the
error with the DESCRIPTION method or by calling the
STREAM function with a request for the description.

NOTREADY The stream is known to be in such a state that the usual input
or output operations attempted upon would raise the
NOTREADY condition. (See “Errors during Input and
Output” on page 472.) For example, a simple input stream can
have a defined length. An attempt to read that stream (with
CHARIN or LINEIN, perhaps) beyond that limit can make the
stream unavailable until the stream has been closed (for
example, with LINEOUT(name)) and then reopened.

READY The stream is known to be in such a state that the usual input
or output operations might be attempted. This is the usual
state for a stream, although it does not guarantee that any
particular operation will succeed.

UNKNOWN The state of the stream is unknown. This generally means that
the stream is closed or has not yet been opened.

SUPPLIER

�� SUPPLIER ��

Returns a supplier object for the stream. When you send appropriate
messages to the supplier object (see “The Supplier Class” on page 239), it
enumerates all the lines in the stream object. The supplier enumerates the
items in their line order.

The String Class

String objects represent character-string data values. A character string value
can have any length and contain any characters. If you are familiar with
earlier versions of REXX you might find the notation for functions more
convenient than the notation for methods. See “Chapter 8. Functions” on
page 297 for function descriptions.

The String class is a subclass of the Object class.

Stream Class

206 Object REXX Reference

Methods the String class defines:

NEW (Class method. Overrides Object class method)
Arithmetic methods: +, -, *, /, %, //, **
Comparison methods: =, \=, <>, ><, ==, \== (Override Object class methods)
Comparison methods: >, <, >=, \<, <=, \>, >>, <<, >>=, \<<, <<=, \>>
Logical methods: &, |, &&, \
Concatenation methods: "" (abuttal), " " (blank), ||
ABBREV
ABS
BITAND
BITOR
BITXOR
B2X
CENTER (or CENTRE)
CHANGESTR
COMPARE
COPIES
COUNTSTR
C2D
C2X
DATATYPE
DELSTR
DELWORD
D2C
D2X
FORMAT
INSERT
LASTPOS
LEFT
LENGTH
MAKESTRING
MAX
MIN
OVERLAY
POS
REVERSE
RIGHT
SIGN
SPACE
STRING (Overrides Object class method)
STRIP
SUBSTR
SUBWORD
TRANSLATE
TRUNC

String Class

Chapter 6. Other Classes 207

VERIFY
WORD
WORDINDEX
WORDLENGTH
WORDPOS
WORDS
X2B
X2C
X2D

Methods inherited from the Object class:

CLASS
COPY
DEFAULTNAME
HASMETHOD
INIT
OBJECTNAME
OBJECTNAME=
REQUEST
RUN
SETMETHOD
START
UNSETMETHOD

Note: The String class also has available class methods that its metaclass, the
Class class, defines.

NEW (Class Method)

�� NEW(stringvalue) ��

Returns a new string object initialized with the characters in stringvalue.

Arithmetic Methods

�� arithmetic_operator(argument) ��

Note: For the prefix - and prefix + operators, omit the parentheses and
argument.

Returns the result of performing the specified arithmetic operation on the
receiver object. The receiver object and the argument must be valid numbers
(see “Numbers” on page 15). The arithmetic_operator can be:

String Class

208 Object REXX Reference

+ Addition

− Subtraction

* Multiplication

/ Division

% Integer division (divide and return the integer part of the result)

// Remainder (divide and return the remainder—not modulo, because
the result can be negative)

** Exponentiation (raise a number to a whole-number power)

Prefix −
Same as the subtraction: 0 - number

Prefix +
Same as the addition: 0 + number

See “Chapter 11. Numbers and Arithmetic” on page 421 for details about
precision, the format of valid numbers, and the operation rules for arithmetic.
Note that if an arithmetic result is shown in exponential notation, it might
have been rounded.

Examples:
5+5 -> 10
8-5 -> 3
5*2 -> 10
6/2 -> 3
9//4 -> 1
9%4 -> 2
2**3 -> 8
+5 -> 5 /* Prefix + */
-5 -> -5 /* Prefix − */

Comparison Methods

�� comparison_operator(argument) ��

Returns 1 (true) or 0 (false), the result of performing the specified comparison
operation. The receiver object and the argument are the terms compared. Both
must be string objects.

The comparison operators you can use in a message are:

= True if the terms are equal (for example, numerically or when
padded)

String Class

Chapter 6. Other Classes 209

\=, ><, <>
True if the terms are not equal (inverse of =)

> Greater than

< Less than

>= Greater than or equal to

\< Not less than

<= Less than or equal to

\> Not greater than

Examples:
5=5 -> 1 /* equal */

42\=41 -> 1 /* All of these are */
42><41 -> 1 /* "not equal" */
42<>41 -> 1

13>12 -> 1 /* Variations of */
12<13 -> 1 /* less than and */
13>=12 -> 1 /* greater than */
12\<13 -> 0
12<=13 -> 1
12\>13 -> 1

All strict comparison operations have one of the characters doubled that
define the operator. The == and \== operators check whether two strings
match exactly. The two strings must be identical (character by character) and
of the same length to be considered strictly equal.

The strict comparison operators such as >> or << carry out a simple
character-by-character comparison. There is no padding of either of the strings
being compared. The comparison of the two strings is from left to right. If one
string is shorter than and a leading substring of another, then it is smaller
than (less than) the other. The strict comparison operators do not attempt to
perform a numeric comparison on the two operands.

For all the other comparison operators, if both terms are numeric, the language
processor does a numeric comparison (ignoring, for example, leading
zeros—see “Numeric Comparisons” on page 426). Otherwise, it treats both
terms as character strings, ignoring leading and trailing blanks and padding
the shorter string on the right with blanks.

Character comparison and strict comparison operations are both
case-sensitive, and for both the exact collating order can depend on the

String Class

210 Object REXX Reference

character set. In an ASCII environment, the digits are lower than the
alphabetic characters, and lowercase alphabetic characters are higher than
uppercase alphabetic characters.

The strict comparison operators you can use in a message are:

== True if terms are strictly equal (identical)

\== True if the terms are NOT strictly equal (inverse of ==)

>> Strictly greater than

<< Strictly less than

>>= Strictly greater than or equal to

\<< Strictly NOT less than

<<= Strictly less than or equal to

\>> Strictly NOT greater than

Examples:
'space'=='space' -> 1 /* Strictly equal */

'space'\==' space' -> 1 /* Strictly not equal */

'space'>>' space' -> 1 /* Variations of */
' space'<<'space' -> 1 /* strictly greater */
'space'>>=' space' -> 1 /* than and less than */
'space'\<<' space' -> 1
' space'<<='space' -> 1
' space'\>>'space' -> 1

Logical Methods

�� logical_operator(argument) ��

Note: For NOT (prefix \), omit the parentheses and argument.

Returns 1 (true) or 0 (false), the result of performing the specified logical
operation. The receiver object and the argument are character strings that
evaluate to 1 or 0.

The logical_operator can be:

& AND (Returns 1 if both terms are true.)

| Inclusive OR (Returns 1 if either term or both terms are true.)

&& Exclusive OR (Returns 1 if either term, but not both terms, is
true.)

String Class

Chapter 6. Other Classes 211

Prefix \ Logical NOT (Negates; 1 becomes 0, and 0 becomes 1.)

Examples:
1&0 -> 0
1|0 -> 1
1&&0 -> 1
\1 -> 0

Concatenation Methods

�� concatenation_operator(argument) ��

Concatenates the receiver object with argument. (See “String Concatenation” on
page 20.) The concatenation_operator can be:

"" concatenates without an intervening blank. The abuttal operator "" is
the null string. The language processor uses the abuttal to concatenate
two terms that another operator does not separate.

|| concatenates without an intervening blank.

“ ” concatenates with one blank between the receiver object and the
argument. (The operator “ ” is a blank.)

Examples:
num=33
say num"%" -> 33% /* abuttal */
say num∼''('%') -> 33%

say "R"||"EXX" -> REXX /* || */

say object rexx -> OBJECT REXX /* blank */
say 'OBJECT'∼' '('REXX') -> OBJECT REXX

ABBREV

�� ABBREV(info)
,length

��

Returns 1 if info is equal to the leading characters of the receiving string and
the length of info is not less than length. Returns 0 if either of these conditions
is not met.

If you specify length, it must be a positive whole number or zero. The default
for length is the number of characters in info.

Examples:

String Class

212 Object REXX Reference

'Print'∼ABBREV('Pri') -> 1
'PRINT'∼ABBREV('Pri') -> 0
'PRINT'∼ABBREV('PRI',4) -> 0
'PRINT'∼ABBREV('PRY') -> 0
'PRINT'∼ABBREV('') -> 1
'PRINT'∼ABBREV('',1) -> 0

Note: A null string always matches if a length of 0, or the default, is used.
This allows a default keyword to be selected automatically if desired.

Example:
say 'Enter option:'; pull option .
select /* keyword1 is to be the default */

when 'keyword1'∼abbrev(option) then ...
when 'keyword2'∼abbrev(option) then ...

...
otherwise nop;

end;

(See “ABBREV (Abbreviation)” on page 304 for information about the
ABBREV built-in function.)

ABS

�� ABS ��

Returns the absolute value ofthe receiving string. The result has no sign and is
formatted according to the current NUMERIC settings.

Examples:
12.3∼abs -> 12.3
'-0.307'∼abs -> 0.307

(See “ABS (Absolute Value)” on page 304 for information about the ABS
built-in function.)

BITAND

�� BITAND
(string)

,pad

��

Returns a string composed of the receiver string and the argument string
logically ANDed together, bit by bit. (The encodings of the strings are used in
the logical operation.) The length of the result is the length of the longer of

String Class

Chapter 6. Other Classes 213

the two strings. If you omit the pad character, the AND operation stops when
the shorter of the two strings is exhausted, and the unprocessed portion of the
longer string is appended to the partial result. If you provide pad, it extends
the shorter of the two strings on the right before the logical operation. The
default for string is the zero-length (null) string.

Examples:
'12'x∼BITAND -> '12'x
'73'x∼BITAND('27'x) -> '23'x
'13'x∼BITAND('5555'x) -> '1155'x
'13'x∼BITAND('5555'x,'74'x) -> '1154'x
'pQrS'∼BITAND(,'DF'x) -> 'PQRS' /* ASCII */

(See “BITAND (Bit by Bit AND)” on page 307 for information about the
BITAND built-in function.)

BITOR

�� BITOR
(string)

,pad

��

Returns a string composed of the receiver string and the argument string
logically inclusive-ORed, bit by bit. The encodings of the strings are used in
the logical operation. The length of the result is the length of the longer of the
two strings. If you omit the pad character, the OR operation stops when the
shorter of the two strings is exhausted, and the unprocessed portion of the
longer string is appended to the partial result. If you provide pad, it extends
the shorter of the two strings on the right before the logical operation. The
default for string is the zero-length (null) string.

Examples:
'12'x∼BITOR -> '12'x
'15'x∼BITOR('24'x) -> '35'x
'15'x∼BITOR('2456'x) -> '3556'x
'15'x∼BITOR('2456'x,'F0'x) -> '35F6'x
'1111'x∼BITOR(,'4D'x) -> '5D5D'x
'pQrS'∼BITOR(,'20'x) -> 'pqrs' /* ASCII */

(See “BITOR (Bit by Bit OR)” on page 308 for information about the BITOR
built-in function.)

String Class

214 Object REXX Reference

BITXOR

�� BITXOR
(string)

,pad

��

Returns a string composed of the receiver string and the argument string
logically eXclusive-ORed, bit by bit. The encodings of the strings are used in
the logical operation. The length of the result is the length of the longer of the
two strings. If you omit the pad character, the XOR operation stops when the
shorter of the two strings is exhausted, and the unprocessed portion of the
longer string is appended to the partial result. If you provide pad, it extends
the shorter of the two strings on the right before carrying out the logical
operation. The default for string is the zero-length (null) string.

Examples:
'12'x∼BITXOR -> '12'x
'12'x∼BITXOR('22'x) -> '30'x
'1211'x∼BITXOR('22'x) -> '3011'x
'1111'x∼BITXOR('444444'x) -> '555544'x
'1111'x∼BITXOR('444444'x,'40'x) -> '555504'x
'1111'x∼BITXOR(,'4D'x) -> '5C5C'x
'C711'x∼BITXOR('222222'x,' ') -> 'E53302'x /* ASCII */

(See “BITXOR (Bit by Bit Exclusive OR)” on page 308 for information about
the BITXOR built-in function.)

B2X

�� B2X ��

Returns a string, in character format, that represents the receiving binary
string converted to hexadecimal.

The receiving string is a string of binary (0 or 1) digits. It can be of any
length. It can optionally include blanks (at 4-digit boundaries only, not leading
or trailing). These are to improve readability; the language processor ignores
them.

The returned string uses uppercase alphabetic characters for the values A–F
and does not include blanks.

If the receiving binary string is a null string, B2X returns a null string. If the
number of binary digits in the receiving string is not a multiple of four, the

String Class

Chapter 6. Other Classes 215

language processor adds up to three 0 digits on the left before the conversion
to make a total that is a multiple of four.

Examples:
'11000011'∼B2X -> 'C3'
'10111'∼B2X -> '17'
'101'∼B2X -> '5'
'1 1111 0000'∼B2X -> '1F0'

You can combine B2X with the methods X2D and X2C to convert a binary
number into other forms.

Example:
'10111'∼B2X∼X2D -> '23' /* decimal 23 */

(See “B2X (Binary to Hexadecimal)” on page 309 for information about the
B2X built-in function.)

CENTER/CENTRE

�� CENTER(length)
CENTRE(, pad

��

Returns a string of length length with the receiving string centered in it. The
language processor adds pad characters as necessary to make up length. The
length must be a positive whole number or zero. The default pad character is
blank. If the receiving string is longer than length, it is truncated at both ends
to fit. If an odd number of characters are truncated or added, the right-hand
end loses or gains one more character than the left-hand end.

Note: To avoid errors because of the difference between British and American
spellings, this method can be called either CENTRE or CENTER.

Examples:
abc∼CENTER(7) -> ' ABC '
abc∼CENTER(8,'-') -> '--ABC---'
'The blue sky'∼CENTRE(8) -> 'e blue s'
'The blue sky'∼CENTRE(7) -> 'e blue '

(See “CENTER (or CENTRE)” on page 309 for information about the CENTER
built-in function.)

CHANGESTR

�� CHANGESTR(needle,newneedle) ��

String Class

216 Object REXX Reference

Returns a copy of the receiver object in which newneedle replaces all
occurrences of needle.

Here are some examples:
101100∼CHANGESTR('1','') -> '000'
101100∼CHANGESTR('1','X') -> 'X0XX00'

(See “CHANGESTR” on page 310 for information about the CHANGESTR
built-in function.)

COMPARE

�� COMPARE(string)
,pad

��

Returns 0 if the argument string is identical to the receiving string. Otherwise,
returns the position of the first character that does not match. The shorter
string is padded on the right with pad if necessary. The default pad character is
a blank.

Examples:
'abc'∼COMPARE('abc') -> 0
'abc'∼COMPARE('ak') -> 2
'ab '∼COMPARE('ab') -> 0
'ab '∼COMPARE('ab',' ') -> 0
'ab '∼COMPARE('ab','x') -> 3
'ab-- '∼COMPARE('ab','-') -> 5

(See “COMPARE” on page 313 for information about the COMPARE built-in
function.)

COPIES

�� COPIES(n) ��

Returns n concatenated copies of the receiving string. The n must be a
positive whole number or zero.

Examples:
'abc'∼COPIES(3) -> 'abcabcabc'
'abc'∼COPIES(0) -> ''

(See “COPIES” on page 315 for information about the COPIES built-in
function.)

String Class

Chapter 6. Other Classes 217

COUNTSTR

�� COUNTSTR(needle) ��

Returns a count of the occurrences of needle in the receiving string that do not
overlap.

Here are some examples:
'101101'∼COUNTSTR('1') -> 4
'J0KKK0'∼COUNTSTR('KK') -> 1

(See “COUNTSTR” on page 315 for information about the COUNTSTR built-in
function.)

C2D

�� C2D
(n)

��

Returns the decimal value of the binary representation of the receiving string.
If the result cannot be expressed as a whole number, an error results. That is,
the result must not have more digits than the current setting of NUMERIC
DIGITS. If you specify n, it is the length of the returned result. If you do not
specify n, the receiving string is processed as an unsigned binary number. If
the receiving string is null, C2D returns 0.

Examples:
'09'X∼C2D -> 9
'81'X∼C2D -> 129
'FF81'X∼C2D -> 65409
''∼C2D -> 0
'a'∼C2D -> 97 /* ASCII */

If you specify n, the receiving string is taken as a signed number expressed in
n characters. The number is positive if the leftmost bit is off, and negative if
the leftmost bit is on. In both cases, it is converted to a whole number, which
can therefore be negative. The receiving string is padded on the left with '00'x
characters (not “sign-extended”), or truncated on the left to n characters. This
padding or truncation is as though receiving_string∼RIGHT(n,'00'x) had
been processed. If n is 0, C2D always returns 0.

Examples:

String Class

218 Object REXX Reference

'81'X∼C2D(1) -> -127
'81'X∼C2D(2) -> 129
'FF81'X∼C2D(2) -> -127
'FF81'X∼C2D(1) -> -127
'FF7F'X∼C2D(1) -> 127
'F081'X∼C2D(2) -> -3967
'F081'X∼C2D(1) -> -127
'0031'X∼C2D(0) -> 0

(See “C2D (Character to Decimal)” on page 316 for information about the C2D
built-in function.)

C2X

�� C2X ��

Returns a string, in character format, that represents the receiving string
converted to hexadecimal. The returned string contains twice as many bytes
as the receiving string. On an ASCII system, sending a C2X message to the
receiving string 1 returns 31 because '31'X is the ASCII representation of 1.

The returned string has uppercase alphabetic characters for the values A–F and
does not include blanks. The receiving string can be of any length. If the
receiving string is null, C2X returns a null string.

Examples:
'0123'X∼C2X -> '0123' /* '30313233'X in ASCII */
'ZD8'∼C2X -> '5A4438' /* '354134343338'X in ASCII */

(See “C2X (Character to Hexadecimal)” on page 316 for information about the
C2X built-in function.)

DATATYPE

�� DATATYPE
(type)

��

Returns NUM if you specify no argument and the receiving string is a valid
REXX number that can be added to 0 without error. It returns CHAR if the
receiving string is not a valid number.

If you specify type, it returns 1 if the receiving string matches the type.
Otherwise, it returns 0. If the receiving string is null, the method returns 0
(except when the type is X or B, for which DATATYPE returns 1 for a null

String Class

Chapter 6. Other Classes 219

string). The following are valid types. You need to specify only the capitalized
letter, or the number of the last type listed. The language processor ignores all
characters following it.

Alphanumeric returns 1 if the receiving string contains only characters from
the ranges a–z, A–Z, and 0–9.

Binary returns 1 if the receiving string contains only the characters 0
or 1, or a blank. Blanks can appear only between groups of 4
binary characters. It also returns 1 if string is a null string,
which is a valid binary string.

Lowercase returns 1 if the receiving string contains only characters from
the range a–z.

Mixed case returns 1 if the receiving string contains only characters from
the ranges a–z and A–Z.

Number returns 1 if receiving_string∼DATATYPE returns NUM.

Symbol returns 1 if the receiving string is a valid symbol, that is, if
SYMBOL(string) does not return BAD. (See “Symbols” on
page 14.) Note that both uppercase and lowercase alphabetic
characters are permitted.

Uppercase returns 1 if the receiving string contains only characters from
the range A–Z.

Variable returns 1 if the receiving string could appear on the left-hand
side of an assignment without causing a SYNTAX condition.

Whole number
returns 1 if the receiving string is a whole number under the
current setting of NUMERIC DIGITS.

heXadecimal returns 1 if the receiving string contains only characters from
the ranges a–f, A–F, 0–9, and blank (as long as blanks appear
only between pairs of hexadecimal characters). Also returns 1
if the receiving string is a null string.

9 Digits returns 1 if receiving_string∼DATATYPE('W') returns 1 when
NUMERIC DIGITS is set to 9.

Examples:
' 12 '∼DATATYPE -> 'NUM'
'∼DATATYPE -> 'CHAR'
'123*'∼DATATYPE -> 'CHAR'
'12.3'∼DATATYPE('N') -> 1
'12.3'∼DATATYPE('W') -> 0
'Fred'∼DATATYPE('M') -> 1
'∼DATATYPE('M') -> 0

String Class

220 Object REXX Reference

'Fred'∼DATATYPE('L') -> 0
'?20K'∼DATATYPE('s') -> 1
'BCd3'∼DATATYPE('X') -> 1
'BC d3'∼DATATYPE('X') -> 1

Note: The DATATYPE method tests the meaning or type of characters in a
string, independent of the encoding of those characters (for example,
ASCII or EBCDIC).

(See “DATATYPE” on page 317 for information about the DATATYPE built-in
function.)

DELSTR

�� DELSTR(n
,length

) ��

Returns a copy of the receiving string after deleting the substring that begins
at the nth character and is of length characters. If you omit length, or if length
is greater than the number of characters from n to the end of string, the
method deletes the rest of string (including the nth character). The length must
be a positive whole number or zero. The n must be a positive whole number.
If n is greater than the length of the receiving string, the method returns the
receiving string unchanged.

Examples:
'abcd'∼DELSTR(3) -> 'ab'
'abcde'∼DELSTR(3,2) -> 'abe'
'abcde'∼DELSTR(6) -> 'abcde'

(See “DELSTR (Delete String)” on page 321 for information about the DELSTR
built-in function.)

DELWORD

�� DELWORD(n
,length

) ��

Returns a copy of the receiving string after deleting the substring that starts at
the nth word and is of length blank-delimited words. If you omit length, or if
length is greater than the number of words from n to the end of the receiving
string, the method deletes the remaining words in the receiving string
(including the nth word). The length must be a positive whole number or zero.
The n must be a positive whole number. If n is greater than the number of
words in the receiving string, the method returns the receiving string

String Class

Chapter 6. Other Classes 221

unchanged. The string deleted includes any blanks following the final word
involved but none of the blanks preceding the first word involved.

Examples:
'Now is the time'∼DELWORD(2,2) -> 'Now time'
'Now is the time '∼DELWORD(3) -> 'Now is '
'Now is the time'∼DELWORD(5) -> 'Now is the time'
'Now is the time'∼DELWORD(3,1) -> 'Now is time'

(See “DELWORD (Delete Word)” on page 321 for information about the
DELWORD built-in function.)

D2C

�� D2C
(n)

��

Returns a string, in character format, that is the ASCII representation of the
receiving string, a decimal number. If you specify n, it is the length of the
final result in characters; leading blanks are added to the returned string. The
n must be a positive whole number or zero.

The receiving string must not have more digits than the current setting of
NUMERIC DIGITS.

If you omit n, the receiving string must be a positive whole number or zero,
and the result length is as needed. Therefore, the returned result has no
leading '00'x characters.

Examples:
'65'∼D2C -> 'A' /* '41'x is an ASCII 'A' */
'65'∼D2C(1) -> 'A'
'65'∼D2C(2) -> ' A'
'65'∼D2C(5) -> ' A'
'109'∼D2C -> 'm' /* '6D'x is an ASCII 'm' */
'-109'∼D2C(1) -> 'ô' /* '93'x is an ASCII 'ô' */
'76'∼D2C(2) -> ' L' /* '4C'x is an ASCII ' L' */
'-180'∼D2C(2) -> ' L'

Implementation maximum:The returned string must not have more than 250
significant characters, although a longer result is possible if it has additional
leading sign characters ('00'x and 'FF'x).

(See “D2C (Decimal to Character)” on page 323 for information about the D2C
built-in function.)

String Class

222 Object REXX Reference

D2X

�� D2X
(n)

��

Returns a string, in character format, that represents the receiving string, a
decimal number converted to hexadecimal. The returned string uses
uppercase alphabetic characters for the values A–F and does not include
blanks.

The receiving string must not have more digits than the current setting of
NUMERIC DIGITS.

If you specify n, it is the length of the final result in characters. After
conversion the returned string is sign-extended to the required length. If the
number is too big to fit into n characters, it is truncated on the left. If you
specify n, it must be a positive whole number or zero.

If you omit n, the receiving string must be a positive whole number or zero,
and the returned result has no leading zeros.

Examples:
'9'∼D2X -> '9'
'129'∼D2X -> '81'
'129'∼D2X(1) -> '1'
'129'∼D2X(2) -> '81'
'129'∼D2X(4) -> '0081'
'257'∼D2X(2) -> '01'
'-127'∼D2X(2) -> '81'
'-127'∼D2X(4) -> 'FF81'
'12'∼D2X(0) -> ''

Implementation maximum:The returned string must not have more than 500
significant hexadecimal characters, although a longer result is possible if it has
additional leading sign characters (0 and F).

(See “D2X (Decimal to Hexadecimal)” on page 323 for information about the
D2X built-in function.)

FORMAT

�� FORMAT
(before)

,
after ,

expp ,expt

��

String Class

Chapter 6. Other Classes 223

Returns the receiving string, a number, rounded and formatted.

The number is first rounded according to standard REXX rules, as though the
operation receiving_string+0 had been carried out. If you specify no
arguments the result of the method is the same as the result of this operation.
If you specify any options, the number is formatted as described in the
following.

The before and after options describe how many characters are to be used for
the integer and decimal parts of the result. If you omit either or both of them,
the number of characters for that part is as needed.

If before is not large enough to contain the integer part of the number (plus the
sign for a negative number), an error results. If before is larger than needed for
that part, the number is padded on the left with blanks. If after is not the
same size as the decimal part of the number, the number is rounded (or
extended with zeros) to fit. Specifying 0 causes the number to be rounded to
an integer.

Examples:
'3'∼FORMAT(4) -> ' 3'
'1.73'∼FORMAT(4,0) -> ' 2'
'1.73'∼FORMAT(4,3) -> ' 1.730'
'-.76'∼FORMAT(4,1) -> ' -0.8'
'3.03'∼FORMAT(4) -> ' 3.03'
' - 12.73'∼FORMAT(,4) -> '-12.7300'
' - 12.73'∼FORMAT -> '-12.73'
'0.000'∼FORMAT -> '0'

expp and expt control the exponent part of the result, which, by default, is
formatted according to the current NUMERIC settings of DIGITS and FORM.
expp sets the number of places for the exponent part; the default is to use as
many as needed (which can be zero). expt specifies when the exponential
expression is used. The default is the current setting of NUMERIC DIGITS.

If expp is 0, the number is not an exponential expression. If expp is not large
enough to contain the exponent, an error results.

If the number of places needed for the integer or decimal part exceeds expt or
twice expt, respectively, exponential notation is used. If expt is 0, exponential
notation is always used unless the exponent would be 0. (If expp is 0, this
overrides a 0 value of expt.) If the exponent would be 0 when a nonzero expp
is specified, then expp+2 blanks are supplied for the exponent part of the
result. If the exponent would be 0 and expp is not specified, the number is not
an exponential expression.

Examples:

String Class

224 Object REXX Reference

'12345.73'∼FORMAT(,,2,2) -> '1.234573E+04'
'12345.73'∼FORMAT(,3,,0) -> '1.235E+4'
'1.234573'∼FORMAT(,3,,0) -> '1.235'
'12345.73'∼FORMAT(,,3,6) -> '12345.73'
'1234567e5'∼FORMAT(,3,0) -> '123456700000.000'

(See “FORMAT” on page 325 for information about the FORMAT built-in
function.)

INSERT

�� INSERT(new)
,

n ,
length ,pad

��

Inserts the string new, padded or truncated to length length, into the receiving
string. after the nth character. The default value for n is 0, which means
insertion at the beginning of the string. If specified, n and length must be
positive whole numbers or zero. If n is greater than the length of the receiving
string, the string new is padded at the beginning. The default value for length
is the length of new. If length is less than the length of the string new, then
INSERT truncates new to length length. The default pad character is a blank.

Examples:
'abc'∼INSERT('123') -> '123abc'
'abcdef'∼INSERT(' ',3) -> 'abc def'
'abc'∼INSERT('123',5,6) -> 'abc 123 '
'abc'∼INSERT('123',5,6,'+') -> 'abc++123+++'
'abc'∼INSERT('123',,5,'-') -> '123--abc'

(See “INSERT” on page 327 for information about the INSERT built-in
function.)

LASTPOS

�� LASTPOS(needle)

,start

��

Returns the position of the last occurrence of a string, needle, in the receiving
string. (See also “POS” on page 228.) It returns 0 if needle is the null string or
not found. By default, the search starts at the last character of the receiving
string and scans backward. You can override this by specifying start, the point
at which the backward scan starts. The start must be a positive whole number
and defaults to receiving_string∼length if larger than that value or omitted.

String Class

Chapter 6. Other Classes 225

Examples:
'abc def ghi'∼LASTPOS(' ') -> 8
'abcdefghi'∼LASTPOS(' ') -> 0
'efgxyz'∼LASTPOS('xy') -> 4
'abc def ghi'∼LASTPOS(' ',7) -> 4

(See “LASTPOS (Last Position)” on page 327 for information about the
LASTPOS built-in function.)

LEFT

�� LEFT(length)
,pad

��

Returns a string of length length, containing the leftmost length characters of
the receiving string. The string returned is padded with pad characters (or
truncated) on the right as needed. The default pad character is a blank. The
length must be a positive whole number or zero. The LEFT method is exactly
equivalent to:

�� SUBSTR(string,1,length)
,pad

��

Examples:
'abc d'∼LEFT(8) -> 'abc d '
'abc d'∼LEFT(8,'.') -> 'abc d...'
'abc def'∼LEFT(7) -> 'abc de'

(See “LEFT” on page 328 for information about the LEFT built-in function.)

LENGTH

�� LENGTH ��

Returns the length of the receiving string.

Examples:
'abcdefgh'∼LENGTH -> 8
'abc defg'∼LENGTH -> 8
''∼LENGTH -> 0

(See “LENGTH” on page 328 for information about the LENGTH built-in
function.)

String Class

226 Object REXX Reference

MAKESTRING

�� MAKESTRING ��

Returns a string with the same string value as the receiver object. If the
receiver is an instance of a subclass of the String class, this method returns an
equivalent string object. If the receiver is a string object (not an instance of a
subclass of the String class), this method returns the receiver object. See
“Required String Values” on page 105.

MAX

��

&

MAX
,

(number)

��

Returns the largest number from among the receiver and any arguments. The
number that MAX returns is formatted according to the current NUMERIC
settings. You can specify any number of numbers.

Examples:
12∼MAX(6,7,9) -> 12
17.3∼MAX(19,17.03) -> 19
'-7'∼MAX('-3','-4.3') -> -3
1∼MAX(2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21) -> 21

(See “MAX (Maximum)” on page 332 for information about the MAX built-in
function.)

MIN

��

&

MIN
,

(number)

��

Returns the smallest number from among the receiver and any arguments.
The number that MIN returns is formatted according to the current
NUMERIC settings. You can specify any number of numbers.

Examples:

String Class

Chapter 6. Other Classes 227

12∼MIN(6,7,9) -> 6
17.3∼MIN(19,17.03) -> 17.03
'-7'∼MIN('-3','-4.3') -> -7
21∼MIN(20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1) -> 1

(See “MIN (Minimum)” on page 332 for information about the MIN built-in
function.)

OVERLAY

�� OVERLAY(new)
,

n ,
length ,pad

��

Returns the receiving string, which, starting at the nth character, is overlaid
with the string new, padded or truncated to length length. The overlay can
extend beyond the end of the receiving string. If you specify length, it must be
a positive whole number or zero. The default value for length is the length of
new. If n is greater than the length of the receiving string, padding is added
before the new string. The default pad character is a blank, and the default
value for n is 1. If you specify n, it must be a positive whole number.

Examples:
'abcdef'∼OVERLAY(' ',3) -> 'ab def'
'abcdef'∼OVERLAY('.',3,2) -> 'ab. ef'
'abcd'∼OVERLAY('qq') -> 'qqcd'
'abcd'∼OVERLAY('qq',4) -> 'abcqq'
'abc'∼OVERLAY('123',5,6,'+') -> 'abc+123+++'

(See “OVERLAY” on page 333 for information about the OVERLAY built-in
function.)

POS

�� POS(needle)
,start

��

Returns the position in the receiving string of another string, needle. (See also
“LASTPOS” on page 225.) It returns 0 if needle is the null string or is not
found or if start is greater than the length of the receiving string. By default,
the search starts at the first character of the receiving string (that is, the value
of start is 1). You can override this by specifying start (which must be a
positive whole number), the point at which the search starts.

Examples:

String Class

228 Object REXX Reference

'Saturday'∼POS('day') -> 6
'abc def ghi'∼POS('x') -> 0
'abc def ghi'∼POS(' ') -> 4
'abc def ghi'∼POS(' ',5) -> 8

(See “POS (Position)” on page 333 for information about the POS built-in
function.)

REVERSE

�� REVERSE ��

Returns the receiving string reversed.

Examples:
'ABc.'∼REVERSE -> '.cBA'
'XYZ '∼REVERSE -> ' ZYX'

(See “REVERSE” on page 335 for information about the REVERSE built-in
function.)

RIGHT

�� RIGHT(length)
,pad

��

Returns a string of length length containing the rightmost length characters of
the receiving string. The string returned is padded with pad characters, or
truncated, on the left as needed. The default pad character is a blank. The
length must be a positive whole number or zero.

Examples:
'abc d'∼RIGHT(8) -> ' abc d'
'abc def'∼RIGHT(5) -> 'c def'
'12'∼RIGHT(5,'0') -> '00012'

(See “RIGHT” on page 335 for information about the RIGHT built-in function.)

SIGN

�� SIGN ��

Returns a number that indicates the sign of the receiving string, which is a
number. The receiving string is first rounded according to standard REXX

String Class

Chapter 6. Other Classes 229

rules, as though the operation receiving_string+0 had been carried out. It
returns -1 if the receiving string is less than 0, 0 if it is 0, and 1 if it is greater
than 0.

Examples:
'12.3'∼SIGN -> 1
' -0.307'∼SIGN -> -1
0.0∼SIGN -> 0

(See “SIGN” on page 335 for information about the SIGN built-in function.)

SPACE

�� SPACE
(n)

,pad

��

Returns the blank-delimited words in the receiving string, with n pad
characters between each word. If you specify n, it must be a positive whole
number or zero. If it is 0, all blanks are removed. Leading and trailing blanks
are always removed. The default for n is 1, and the default pad character is a
blank.

Examples:
'abc def '∼SPACE -> 'abc def'
' abc def'∼SPACE(3) -> 'abc def'
'abc def '∼SPACE(1) -> 'abc def'
'abc def '∼SPACE(0) -> 'abcdef'
'abc def '∼SPACE(2,'+') -> 'abc++def'

(See “SPACE” on page 336 for information about the SPACE built-in function.)

STRING

�� STRING ��

Returns a string with the same string value as the receiver object. If the
receiver is an instance of a subclass of the String class, this method returns a
string having an equivalent value. If the receiver is a string (but is not an
instance of a subclass of the String class), this method returns the receiver
object. See also the STRING method of the Object class in “STRING” on
page 185.

String Class

230 Object REXX Reference

STRIP

�� STRIP
(option)

,char

��

Returns the receiving string with leading characters, trailing characters, or
both, removed, based on the option you specify. The following are valid
options. (You need to specify only the first capitalized letter; the language
processor ignores all characters following it.)

Both Removes both leading and trailing characters. This is the
default.

Leading Removes leading characters.

Trailing Removes trailing characters.

The char specifies the character to be removed, and the default is a blank. If
you specify char, it must be exactly one character long.

Examples:
' ab c '∼STRIP -> 'ab c'
' ab c '∼STRIP('L') -> 'ab c '
' ab c '∼STRIP('t') -> ' ab c'
'12.7000'∼STRIP(,0) -> '12.7'
'0012.700'∼STRIP(,0) -> '12.7'

(See “STRIP” on page 344 for information about the STRIP built-in function.)

SUBSTR

�� SUBSTR(n)
,

length ,pad

��

Returns the substring of the receiving string that begins at the nth character
and is of length length, padded with pad if necessary. The n must be a positive
whole number. If n is greater than receiving_string∼LENGTH, only pad
characters are returned.

If you omit length, the rest of the string is returned. The default pad character
is a blank.

Examples:

String Class

Chapter 6. Other Classes 231

'abc'∼SUBSTR(2) -> 'bc'
'abc'∼SUBSTR(2,4) -> 'bc '
'abc'∼SUBSTR(2,6,'.') -> 'bc....'

Note: In some situations the positional (numeric) patterns of parsing
templates are more convenient for selecting substrings, in particular if
you need to extract more than one substring from a string. See
also“LEFT” on page 226 and “RIGHT” on page 229.

(See “SUBSTR (Substring)” on page 344 for information about the SUBSTR
built-in function.)

SUBWORD

�� SUBWORD(n)
,length

��

Returns the substring of the receiving string that starts at the nth word and is
up to length blank-delimited words. The n must be a positive whole number.
If you omit length, it defaults to the number of remaining words in the
receiving string. The returned string never has leading or trailing blanks, but
includes all blanks between the selected words.

Examples:
'Now is the time'∼SUBWORD(2,2) -> 'is the'
'Now is the time'∼SUBWORD(3) -> 'the time'
'Now is the time'∼SUBWORD(5) -> ''

(See “SUBWORD” on page 345 for information about the SUBWORD built-in
function.)

TRANSLATE

�� TRANSLATE
()

tableo
,

tablei ,pad

��

Returns the receiving string with each character translated to another
character or unchanged. You can also use this method to reorder the
characters in the receiving string.

The output table is tableo and the input translation table is tablei. TRANSLATE
searches tablei for each character in the receiving string. If the character is
found, the corresponding character in tableo is used in the result string. If

String Class

232 Object REXX Reference

there are duplicates in tablei, the first (leftmost) occurrence is used. If the
character is not found, the original character in the receiving string is used.
The result string is always of the same length as the receiving string.

The tables can be of any length. If you specify translation table and omit pad,
the receiving string is translated to uppercase (that is, lowercase a–z to
uppercase A–Z), but if you include pad the language processor translates the
entire string to pad characters. tablei defaults to XRANGE('00'x,'FF'x), and
tableo defaults to the null string and is padded with pad or truncated as
necessary. The default pad is a blank.

Examples:
'abcdef'∼TRANSLATE -> 'ABCDEF'
'abcdef'∼TRANSLATE('12','ec') -> 'ab2d1f'
'abcdef'∼TRANSLATE('12','abcd','.') -> '12..ef'
'APQRV'∼TRANSLATE(,'PR') -> 'A Q V'
'APQRV'∼TRANSLATE(XRANGE('00'X,'Q')) -> 'APQ '
'4123'∼TRANSLATE('abcd','1234') -> 'dabc'

Note: The last example shows how to use the TRANSLATE method to
reorder the characters in a string. In the example, the last character of
any 4-character string specified as the first argument would be moved
to the beginning of the string.

(See “TRANSLATE” on page 349 for information about the TRANSLATE
built-in function.)

TRUNC

�� TRUNC
(n)

��

Returns the integer part the receiving string, which is a number, and n
decimal places. The default n is 0 and returns an integer with no decimal
point. If you specify n, it must be a positive whole number or zero. The
receiving string is first rounded according to standard REXX rules, as though
the operation receiving_string+0 had been carried out. This number is then
truncated to n decimal places or trailing zeros are added if needed to reach
the specified length. The result is never in exponential form. If there are no
nonzero digits in the result, any minus sign is removed.

Examples:
12.3∼TRUNC -> 12
127.09782∼TRUNC(3) -> 127.097
127.1∼TRUNC(3) -> 127.100
127∼TRUNC(2) -> 127.00

String Class

Chapter 6. Other Classes 233

Note: The number is rounded according to the current setting of NUMERIC
DIGITS if necessary, before the method processes it.

(See “TRUNC (Truncate)” on page 350 for information about the TRUNC
built-in function.)

VERIFY

�� VERIFY(reference)
,

option ,start

��

Returns a number that, by default, indicates whether the receiving string is
composed only of characters from reference. It returns 0 if all characters in the
receiving string are in reference or returns the position of the first character in
the receiving string not in reference.

The option can be either Nomatch (the default) or Match. (You need to specify
only the first capitalized and highlighted letter; the language processor
ignores all characters following the first character, which can be in uppercase
or lowercase.)

If you specify Match, the method returns the position of the first character in
the receiving string that is in reference, or returns 0 if none of the characters
are found.

The default for start is 1. Thus, the search starts at the first character of the
receiving string. You can override this by specifying a different start point,
which must be a positive whole number.

If the receiving string is null, the method returns 0, regardless of the value of
the option. Similarly, if start is greater than receiving_string∼LENGTH, the
method returns 0. If reference is null, the method returns 0 if you specify
Match. Otherwise, the method returns the start value.

Examples:
'123'∼VERIFY('1234567890') -> 0
'1Z3'∼VERIFY('1234567890') -> 2
'AB4T'∼VERIFY('1234567890') -> 1
'AB4T'∼VERIFY('1234567890','M') -> 3
'AB4T'∼VERIFY('1234567890','N') -> 1
'1P3Q4'∼VERIFY('1234567890',,3) -> 4
'123'∼VERIFY('',N,2) -> 2
'ABCDE'∼VERIFY('',,3) -> 3
'AB3CD5'∼VERIFY('1234567890','M',4) -> 6

String Class

234 Object REXX Reference

(See “VERIFY” on page 353 for information about the VERIFY built-in
function.)

WORD

�� WORD(n) ��

Returns the nth blank-delimited word in the receiving string or the null string
if the receiving string has fewer than n words. The n must be a positive whole
number. This method is exactly equivalent to receiving_string∼SUBWORD(n,1).

Examples:
'Now is the time'∼WORD(3) -> 'the'
'Now is the time'∼WORD(5) -> ''

(See “WORD” on page 354 for information about the WORD built-in function.)

WORDINDEX

�� WORDINDEX(n) ��

Returns the position of the first character in the nth blank-delimited word in
the receiving string. It returns 0 if the receiving string has fewer than n words.
The n must be a positive whole number.

Examples:
'Now is the time'∼WORDINDEX(3) -> 8
'Now is the time'∼WORDINDEX(6) -> 0

(See “WORDINDEX” on page 354 for information about the WORDINDEX
built-in function.)

WORDLENGTH

�� WORDLENGTH(n) ��

Returns the length of the nth blank-delimited word in the receiving string or 0
if the receiving string has fewer than n words. The n must be a positive whole
number.

Examples:

String Class

Chapter 6. Other Classes 235

'Now is the time'∼WORDLENGTH(2) -> 2
'Now comes the time'∼WORDLENGTH(2) -> 5
'Now is the time'∼WORDLENGTH(6) -> 0

(See “WORDLENGTH” on page 355 for information about the
WORDLENGTH built-in function.)

WORDPOS

�� WORDPOS(phrase)
,start

��

Returns the word number of the first word of phrase found in the receiving
string, or 0 if phrase contains no words or if phrase is not found. Several blanks
between words in either phrase or the receiving string are treated as a single
blank for the comparison, but, otherwise, the words must match exactly.

By default the search starts at the first word in the receiving string. You can
override this by specifying start (which must be positive), the word at which
the search is to be started.

Examples:
'now is the time'∼WORDPOS('the') -> 3
'now is the time'∼WORDPOS('The') -> 0
'now is the time'∼WORDPOS('is the') -> 2
'now is the time'∼WORDPOS('is the') -> 2
'now is the time'∼WORDPOS('is time ') -> 0
'To be or not to be'∼WORDPOS('be') -> 2
'To be or not to be'∼WORDPOS('be',3) -> 6

(See “WORDPOS (Word Position)” on page 355 for information about the
WORDPOS built-in function.)

WORDS

�� WORDS ��

Returns the number of blank-delimited words in the receiving string.

Examples:
'Now is the time'∼WORDS -> 4
' '∼WORDS -> 0

(See “WORDS” on page 355 for information about the WORDS built-in
function.)

String Class

236 Object REXX Reference

X2B

�� X2B ��

Returns a string, in character format, that represents the receiving string,
which is a string of hexadecimal characters converted to binary. The receiving
string can be of any length. Each hexadecimal character is converted to a
string of 4 binary digits. The receiving string can optionally include blanks (at
byte boundaries only, not leading or trailing) to improve readability; they are
ignored.

The returned string has a length that is a multiple of four, and does not
include any blanks.

If the receiving string is null, the method returns a null string.

Examples:
'C3'∼X2B -> '11000011'
'7'∼X2B -> '0111'
'1 C1'∼X2B -> '000111000001'

You can combine X2B with the methods D2X and C2X to convert numbers or
character strings into binary form.

Examples:
'C3'x∼C2X∼X2B -> '11000011'
'129'∼D2X∼X2B -> '10000001'
'12'∼D2X∼X2B -> '1100'

(See “X2B (Hexadecimal to Binary)” on page 356 for information about the
X2B built-in function.)

X2C

�� X2C ��

Returns a string, in character format, that represents the receiving string,
which is a hexadecimal string converted to character. The returned string is
half as many bytes as the receiving string. The receiving string can be any
length. If necessary, it is padded with a leading 0 to make an even number of
hexadecimal digits.

You can optionally include blanks in the receiving string (at byte boundaries
only, not leading or trailing) to improve readability; they are ignored.

String Class

Chapter 6. Other Classes 237

If the receiving string is null, the method returns a null string.

Examples:
'4865 6c6c 6f'∼X2C -> 'Hello' /* ASCII */
'3732 73'∼X2C -> '72s' /* ASCII */

(See “X2C (Hexadecimal to Character)” on page 357 for information about the
X2C built-in function.)

X2D

�� X2D
(n)

��

Returns the decimal representation of the receiving string, which is a string of
hexadecimal characters. If the result cannot be expressed as a whole number,
an error results. That is, the result must not have more digits than the current
setting of NUMERIC DIGITS.

You can optionally include blanks in the receiving string (at byte boundaries
only, not leading or trailing) to improve readability; they are ignored.

If the receiving string is null, the method returns 0.

If you do not specify n, the receiving string is processed as an unsigned
binary number.

Examples:
'0E'∼X2D -> 14
'81'∼X2D -> 129
'F81'∼X2D -> 3969
'FF81'∼X2D -> 65409
'46 30'X∼X2D -> 240 /* ASCII */
'66 30'X∼X2D -> 240 /* ASCII */

If you specify n, the receiving string is taken as a signed number expressed in
n hexadecimal digits. If the leftmost bit is off, then the number is positive;
otherwise, it is a negative number. In both cases it is converted to a whole
number, which can be negative. If n is 0, the method returns 0.

If necessary, the receiving string is padded on the left with 0 characters (note,
not “sign-extended”), or truncated on the left to n characters.

Examples:

String Class

238 Object REXX Reference

'81'∼X2D(2) -> -127
'81'∼X2D(4) -> 129
'F081'∼X2D(4) -> -3967
'F081'∼X2D(3) -> 129
'F081'∼X2D(2) -> -127
'F081'∼X2D(1) -> 1
'0031'∼X2D(0) -> 0

(See “X2D (Hexadecimal to Decimal)” on page 357 for information about the
X2D built-in function.)

The Supplier Class

You can use a supplier object to enumerate the items a collection contained at
the time of the supplier's creation. The following methods return a supplier
object:
v The SUPPLIER methods of the Array, Bag, Directory, List, Queue, Relation,

Set, Table, and Stream classes
v The METHODS method of the Class class

The Supplier class is a subclass of the Object class.

Methods the Supplier class defines:

NEW (Class method. Overrides Object class method.)
AVAILABLE
INDEX
ITEM
NEXT

Methods inherited from the Object class:

Operator methods: =, ==, \=, ><, <>, \==
CLASS
COPY
DEFAULTNAME
HASMETHOD
INIT
OBJECTNAME
OBJECTNAME=
REQUEST
RUN
SETMETHOD
START
STRING
UNSETMETHOD

String Class

Chapter 6. Other Classes 239

Note: The Supplier class also has available class methods that its metaclass,
the Class class, defines.

NEW (Class Method)

�� NEW(values,indexes) ��

Returns a new supplier object. The values argument must be an array of
values over which the supplier iterates. The indexes argument is an array of
index values with a one-to-one correspondence to the objects contained in the
values array. The created supplier iterates over the arrays, returning elements
of the values array in response to ITEM messages, and elements of the
indexes array in response to INDEX messages. The supplier iterates for the
number of items contained in the values array, returning the NIL object for
any nonexistent items in either array.

AVAILABLE

�� AVAILABLE ��

Returns 1 (true) if an item is available from the supplier (that is, if the ITEM
method would return a value). It returns 0 (false) if the collection is empty or
the supplier has already enumerated the entire collection.

INDEX

�� INDEX ��

Returns the index of the current item in the collection. If no item is available,
that is, if AVAILABLE would return false, the language processor raises an
error.

ITEM

�� ITEM ��

Returns the current item in the collection. If no item is available, that is, if
AVAILABLE would return false, the language processor raises an error.

Supplier Class

240 Object REXX Reference

NEXT

�� NEXT ��

Moves to the next item in the collection. By repeatedly sending NEXT to the
supplier (as long as AVAILABLE returns true), you can enumerate all items in
the collection. If no item is available, that is, if AVAILABLE would return
false, the language processor raises an error.

Examples
desserts=.array∼of(apples, peaches, pumpkins, 3.14159) /* Creates array */
say "The desserts we have are:"
baker=desserts∼supplier /* Creates supplier object named BAKER */
do while baker∼available /* Array suppliers are sequenced */

if baker∼index=4
then say baker∼item "is pi, not pie!!!"
else say baker∼item
baker∼next

end

/* Produces: */
/* The desserts we have are: */
/* APPLES */
/* PEACHES */
/* PUMPKINS */
/* 3.14159 is pi, not pie!!! */

The WindowsProgramManager Class

Object REXX provides a class for interaction with the Windows Program
Manager. You can use this class to create program groups and shortcuts to
access your programs. This class is specifically for Windows systems and may
not be available on other systems.

The WindowsProgramManager class is defined in the file WINSYSTM.CLS.
Use a ::requires statement to activate its function:
::requires "winsystm.cls"

A sample program DESKTOP.REX is provided in the OBJREXX\SAMPLES directory.

Methods of the WindowsProgramManager class are:

Table 2. Methods Available to the WindowsProgramManager Class

Method... ...on page

AddDeskTopIcon 242

AddGroup 244

Supplier Class

Chapter 6. Other Classes 241

Table 2. Methods Available to the WindowsProgramManager Class (continued)

Method... ...on page

AddItem 244

AddShortCut 243

DeleteGroup 245

DeleteItem 245

Init 245

ShowGroup 246

AddDesktopIcon

�� AddDesktopIcon (name , program
0

, ,
iconfile iconnr

�

�)
"PERSONAL" "NORMAL"

, , , , ,
workdir "COMMON" arguments hotkey "MAXIMIZED"

"MINIMIZED"

��

Adds a shortcut to the Windows desktop. A sample program DESKICON.REX is
provided in the OBJREXX\SAMPLES directory.

Arguments:
The arguments are:

name The name of the shortcut, displayed below the icon.

program
The program file launched by the shortcut.

iconfile
The name of the icon used for the shortcut. If not specified,
the icon of program is used.

iconnr The number of the icon within the iconfile. The default is 0.

workdir
The working directory of the shortcut.

location
Either of the following locations:

"PERSONAL" The shortcut is personal and displayed only
on the desktop of the user.

WindowsProgramManager Class

242 Object REXX Reference

"COMMON" The shortcut is common to all users and
displayed on the desktop of all users.

arguments
The arguments passed to the program that the shortcut refers
to.

hotkey
The virtual key to be used as a hotkey to open the shortcut.
For a list of the key names, see “Symbolic Names for Virtual
Keys” on page 246.

run Specifies one of the options listed in the syntax diagram. The
default is "NORMAL".

AddShortCut

�� AddShortCut (name , program �

�)
0 "NORMAL"

, , , , , ,
iconfile iconnr workdir arguments hotkey "MAXIMIZED"

"MINIMIZED"

��

Creates a shortcut within the specified folder.

Arguments:
The arguments are:

name The full name of the shortcut.

program
The program file launched by the shortcut.

iconfile
The name of the icon used for the shortcut. If not specified,
the icon of program is used.

iconnr The number of the icon within the iconfile. The default is 0.

workdir
The working directory of the shortcut.

arguments
The arguments passed to the program that the shortcut refers
to.

hotkey
The virtual key to be used as a hotkey to open the shortcut.
For a list of the key names, see “Symbolic Names for Virtual
Keys” on page 246.

WindowsProgramManager Class

Chapter 6. Other Classes 243

run Specifies one of the options listed in the syntax diagram. The
default is "NORMAL".

Example:
The following example creates a shortcut named "My NotePad" to the
Notepad editor wihin the directory c:\temp:
pm = .WindowsProgramManager∼new
if pm∼InitCode \= 0 then exit
pm∼AddShortCut("c:\temp\My Notepad","%SystemRoot%\system32\notepad.exe")
::requires "winsystm.cls"

AddGroup

�� AddGroup(group) ��

Adds a program group to the Programs group of the desktop. If the group
already exists, it is opened. The group argument specifies the name of the
program group to be added. Example:
AddGroup("Object REXX Redbook")

Note: The name that you specify for the group argument must not contain any
brackets or parenthesis. Otherwise, this method fails.

Return value:

0 The method was successful.

1 The method failed.

AddItem

�� AddItem (shortcut,program �

�
,

iconfile ,
iconnumber ,workdir

) ��

Adds a shortcut to a program group. The shortcut is placed into the last
group used with either AddGroup or ShowGroup. Example:
AddItem('OODialog Samples',,
'rexx oodialog\samples\sample.rex',,
'oodialog\samples\oodialog.ico')

WindowsProgramManager Class

244 Object REXX Reference

Note: The name that you specify for the group argument must not contain
characters that are not valid, such as brackets or parenthesis. Otherwise,
this method fails. Some characters are changed, for example / to _.

Return value:

0 The method was successful.

1 The method failed.

DeleteGroup

�� DeleteGroup(group) ��

Deletes a program group from the desktop. The group argument specifies the
name of the program group to be deleted.

Return value:

0 The method was successful.

1 The method failed.

DeleteItem

�� DeleteItem(shortcut) ��

Deletes a shortcut from a program group.

Return value:

0 The method was successful.

1 The method failed.

Init

�� Init ��

Creates an instance of the WindowsProgramManager class and loads the
required function package.

WindowsProgramManager Class

Chapter 6. Other Classes 245

ShowGroup

�� ShowGroup(group,)
MIN
MAX

��

Opens a program group. The group argument specifies the name of the
program group to be opened. If MIN or MAX is specified, the program group
is opened minimized or maximized.

Return value:

0 The method was successful.

1 The method failed.

Symbolic Names for Virtual Keys
Table 3 shows the symbolic names and the keyboard equivalents for the
virtual keys used by Object REXX.

Table 3. Symbolic Names for Virtual Keys

Symbolic Name Mouse or Keyboard Equivalent

LBUTTON Left mouse button

RBUTTON Right mouse button

CANCEL Control-break processing

MBUTTON Middle mouse button (three-button mouse)

BACK BACKSPACE key

TAB TAB key

CLEAR CLEAR key

RETURN ENTER key

SHIFT SHIFT key

CONTROL CRTL key

MENU ALT key

PAUSE PAUSE key

CAPITAL CAPS LOCK key

ESCAPE ESC key

SPACE SPACEBAR

PRIOR PAGE UP key

NEXT PAGE DOWN key

END END key

WindowsProgramManager Class

246 Object REXX Reference

Table 3. Symbolic Names for Virtual Keys (continued)

Symbolic Name Mouse or Keyboard Equivalent

HOME HOME key

LEFT LEFT ARROW key

UP UP ARROW key

RIGHT RIGHT ARROW key

DOWN DOWN ARROW key

SELECT SELECT key

EXECUTE EXECUTE key

SNAPSHOT PRINT SCREEN key

INSERT INS key

DELETE DEL key

HELP HELP key

0 0 key

1 1 key

2 2 key

3 3 key

4 4 key

5 5 key

6 6 key

7 7 key

8 8 key

9 9 key

A A key

B B key

C C key

D D key

E E key

F F key

G G key

H H key

I I key

J J key

K K key

WindowsProgramManager Class

Chapter 6. Other Classes 247

Table 3. Symbolic Names for Virtual Keys (continued)

Symbolic Name Mouse or Keyboard Equivalent

L L key

M M key

N N key

O O key

Q Q key

R R key

S S key

T T key

U U key

V V key

W W key

X X key

Y Y key

Z Z key

NUMPAD0 Numeric keypad 0 key

NUMPAD1 Numeric keypad 1 key

NUMPAD2 Numeric keypad 2 key

NUMPAD3 Numeric keypad 3 key

NUMPAD4 Numeric keypad 4 key

NUMPAD5 Numeric keypad 5 key

NUMPAD6 Numeric keypad 6 key

NUMPAD7 Numeric keypad 7 key

NUMPAD8 Numeric keypad 8 key

NUMPAD9 Numeric keypad 9 key

MULTIPLY Multiply key

ADD Add key

SEPARATOR Separator key

SUBTRACT Subtract key

DECIMAL Decimal key

DIVIDE Divide key

F1 F1 key

F2 F2 key

WindowsProgramManager Class

248 Object REXX Reference

Table 3. Symbolic Names for Virtual Keys (continued)

Symbolic Name Mouse or Keyboard Equivalent

F3 F3 key

F4 F4 key

F5 F5 key

F6 F6 key

F7 F7 key

F8 F8 key

F9 F9 key

F10 F10 key

F11 F11 key

F12 F12 key

F13 F13 key

F14 F14 key

F15 F15 key

F16 F16 key

F17 F17 key

F18 F18 key

F19 F19 key

F20 F20 key

F21 F21 key

F22 F22 key

F23 F23 key

F24 F24 key

NUMLOCK NUM LOCK key

SCROLL SCROLL LOCK key

The WindowsRegistry Class

Object REXX provides a class for interaction with the WindowsRegistry. You
can use this class to query the registry and modify, add, and delete entries.
This class is specifically for Windows systems and may not be available on
other systems.

The WindowsRegistry class is not a built-in class; it is defined in the file
WINSYSTM.CLS.

WindowsProgramManager Class

Chapter 6. Other Classes 249

Use a ::requires statement to activate its function:
::requires "winsystm.cls"

A sample program, REGISTRY.REX, is provided in the OBJREXX\SAMPLES
directory.

Methods the WindowsRegistry Class Defines
CLASSES_ROOT
CLASSES_ROOT=
CLOSE
CREATE
CURRENT_KEY
CURRENT_KEY=
CURRENT_USER
CURRENT_USER=
DELETE
DELETEVALUE
FLUSH
GETVALUE
INIT
LIST
LISTVALUES
LOAD
LOCAL_MACHINE
LOCAL_MACHINE=
OPEN
QUERY
REPLACE
RESTORE
SAVE
SETVALUE
UNLOAD
USERS
USERS=

CLASSES_ROOT

�� CLASSES_ROOT ��

Returns the handle of the root key HKEY_CLASSES_ROOT.

CLASSES_ROOT=

�� CLASSES_ROOT= ��

WindowsRegistry Class

250 Object REXX Reference

This method is used by INIT to set the attribute CLASSES_ROOT to
HKEY_CLASSES_ROOT. Do not modify this attribute.

CLOSE

�� CLOSE()
key_handle

��

Closes a previously opened key specified by its handle. Example:
rg∼close(objectrexxkey)

It can take several seconds before all data is written to disk. You can use
FLUSH to empty the cache.

If key_handle is omitted, CURRENT_KEY is closed.

CONNECT

�� CONNECT(key,computer) ��

Opens a key on a remote computer. This is supported only for
HKEY_LOCAL_MACHINE and HKEY_USERS.

CREATE

�� CREATE(,subkey)
parent

��

Adds a new named subkey to the registry and returns its handle. The parent
key handle parent can be a root key or a key retrieved using OPEN. If the
parent key is omitted, CURRENT_KEY is used. Example:
newkey = rg∼create(rg∼local_machine,'MyOwnKey')

CURRENT_KEY

�� CURRENT_KEY ��

Returns the handle of the current key. The current key is set by INIT,
CREATE, and OPEN. It is used as a default value if the key is omitted in
other methods.

WindowsRegistry Class

Chapter 6. Other Classes 251

CURRENT_KEY=

�� CURRENT_KEY= ��

Sets the handle of the current key.

CURRENT_USER

�� CURRENT_USER ��

Returns the handle of the root key HKEY_CURRENT_USER.

CURRENT_USER=

�� CURRENT_USER= ��

This method is used by INIT to set the attribute CURRENT_USER to
HKEY_CURRENT_USER. Do not modify this attribute.

DELETE

�� DELETE(,subkeyname)
key_handle

��

Deletes a given named subkey of an open key specified by its handle and all
its subkeys and values. If key_handle is omitted, CURRENT_KEY is used.

DELETEVALUE

�� DELETEVALUE()
key_handle ,value

��

Deletes the named value for a given key. If key_handle is omitted,
CURRENT_KEY is used. If value is blank or omitted, the default value is
deleted.

FLUSH

�� FLUSH()
key_handle

��

WindowsRegistry Class

252 Object REXX Reference

Forces the system to write the cache buffer of a given key to disk. If
key_handle is omitted, CURRENT_KEY is flushed.

GETVALUE

�� GETVALUE()
key_handle ,value

��

Retrieves the data and type for a named value of a given key. The result is a
compound variable with suffixes data and type. If key_handle is omitted,
CURRENT_KEY is used. If named value is blank or omitted, the default value
is retrieved. Example:
myval. = rg∼GETVALUE(,'filesystem') /* current key */
say "Type is" myval.type
if myval.type = 'NORMAL' then say "Value is" myval.data
myval. = rg∼GETVALUE(mykey)
say "my default value is:" myval.data
myval. = rg∼GETVALUE(mykey,'')
say "my default value is:" myval.data

Possible types: NORMAL, EXPAND, MULTI, NUMBER, BINARY, NONE,
OTHER.

INIT

�� INIT ��

Creates an instance of the WindowsRegistry class and loads the required
external function package. The current key is set to
HKEY_LOCAL_MACHINE.

LIST

�� LIST(,stem.)
key_handle

��

Retrieves the list of subkeys for a given key in a stem variable. The name of
the stem variable must include the period. The keys are returned as stem.1,
stem.2, and so on. Example:
rg∼LIST(objectrexxkey,orexxkeys.)
do i over orexxkeys.
say orexxkeys.i
end

WindowsRegistry Class

Chapter 6. Other Classes 253

LISTVALUES

�� LISTVALUES(,variable.)
key_handle

��

Retrieves all value entries of a given key into a compound variable. The name
of the variable must include the period. The suffixes of the compound
variable are numbered starting with 1, and for each number the three values
are the name (var.i.name), the data (var.i.data), and the type (var.i.type). The
type is NORMAL for alphabetic values, EXPAND for expandable strings such
as a path, NONE for no specified type, MULTI for multiple strings, NUMBER
for a 4–byte value, and BINARY for any data format.

If key_handle is omitted, the values of CURRENT_KEY are listed.

Example:
qstem. = rg∼QUERY(objectrexxkey)
rg∼LISTVALUES(objectrexxkey,lv.)
do i=1 to qstem.values
say "name of value:" lv.i.name "(type="lv.i.type")"
if lv.i.type = 'NORMAL' then
say "data of value:" lv.i.data
end

LOAD

�� LOAD(,subkeyname, filename)
key_handle

��

Load creates a named subkey under the open key key_handle and loads
registry data from the file filename (created by SAVE) and stores the data
under the newly created subkey.

key_handle can only be HKEY_USERS or HKEY_LOCAL_MACHINE. Registry
information is stored in the form of a hive – a discrete body of keys, subkeys,
and values that is rooted at the top of the registry hierarchy. A hive is backed
by a single file.

If key_handle is omitted, the subkey is created under
HKEY_LOCAL_MACHINE.

Use UNLOAD to delete the subkey and to unlock the registry data file
filename.

WindowsRegistry Class

254 Object REXX Reference

LOCAL_MACHINE

�� LOCAL_MACHINE ��

Returns the handle of the root key HKEY_LOCAL_MACHINE.

LOCAL_MACHINE=

�� LOCAL_MACHINE= ��

This method is used by INIT to set the attribute LOCAL_MACHINE to
HKEY_LOCAL_MACHINE. Do not modify this attribute.

OPEN

�� OPEN(,subkey)
parent_handle , access

��

access:

ALL
�

� &

WRITE READ QUERY EXECUTE NOTIFY LINK

Opens a named subkey and return its handle. See “CREATE” on page 251 for
more information about parent_handle. Possible values for access are:

ALL Default

WRITE Create subkeys, set values

READ Query subkeys and values

QUERY Values

EXECUTE Key access, no subkey access

NOTIFY Change notification

LINK Create symbolic links

More than one value can be specified separated by blanks.

WindowsRegistry Class

Chapter 6. Other Classes 255

Notice that on Windows NT some keys require certain access rights and do
not allow to open the key with all but only with certain access values.

QUERY

�� QUERY (
key_handle

) ��

Retrieves information about a given key in a compound variable. The values
returned are class (class name), subkeys (number of subkeys) values (number of
value entries), date and time of last modification. If key_handle is omitted,
CURRENT_KEY is queried. Example:
myquery. = rg∼QUERY(objectrexxkey)
say "class="myquery.class "at" myquery.date
say "subkeys="myquery.subkeys "values="myquery.values

REPLACE

�� REPLACE(, ,newfilename,oldfilename)
key_handle subkeyname

��

Replaces the backup file of a key or subkey with a new file. Key must be an
immediate descendant of HKEY_LOCAL_MACHINE or HKEY_USERS. If
key_handle is omitted, the backup file of CURRENT_KEY is replaced. The
values in the new file become active when the system is restarted. If
subkeyname is omitted, the key and all its subkeys will be replaced.

RESTORE

�� RESTORE(,filename)
key_handle ,'VOLATILE'

��

Restores a key from a file. If key_handle is omitted, CURRENT_KEY is
restored. Example:
rg∼RESTORE(objectrexxkey,'\objrexx\orexx')

The VOLATILE keyword creates a new memory-only set of registry
information that is valid only until the system is restarted.

SAVE

�� SAVE(,filename)
key_handle

��

WindowsRegistry Class

256 Object REXX Reference

Saves the entries of a given key into a file. If key_handle is omitted,
CURRENT_KEY is saved. Example:
rg∼SAVE(objectrexxkey,'\objrexx\orexx')

On a FAT system, do not use a file extension in filename.

SETVALUE

�� SETVALUE(, ,value)
key_handle name ,NORMAL

,EXPAND
,MULTI
,NUMBER
,BINARY
,NONE

��

Sets a named value of a given key. If name is blank or omitted, the default
value is set. Examples:
rg∼SETVALUE(objectrexxkey,,'My default','NORMAL')
rg∼SETVALUE(objectrexxkey,'Product_Name','Object REXX')
rg∼SETVALUE(objectrexxkey,'VERSION','1.0')

UNLOAD

�� UNLOAD(,subkey)
key_handle

��

Removes a named subkey (created with LOAD) and its dependents from the
registry, but does not modify the file containing the registry information. If
key_handle is omitted, the subkey under CURRENT_KEY is unloaded. Unload
also unlocks the registry information file.

USERS

�� USERS ��

Returns the handle of the root key HKEY_USERS.

USERS=

�� USERS= ��

WindowsRegistry Class

Chapter 6. Other Classes 257

This method is used by INIT to set the attribute USERS to HKEY_USERS. Do
not modify this attribute.

The WindowsEventLog Class

Object REXX provides a class for interaction with the Windows NT event log.
You can use this class to read, write, and clear event-log records. This class is
specifically for Windows NT systems and might not be available on other
systems.

The WindowsEventLog class is not a built-in class; it is defined in the file
WINSYSTM.CLS. Use a ::requires statement to activate its function:
::requires "winsystm.cls"

A sample program EventLog.REX is provided in the OBJREXX\SAMPLES directory.

Methods the WindowsEventLog Class Defines
INIT
OPEN
CLOSE
READ
WRITE
CLEAR
GETNUMBER

INIT

�� INIT ��

Creates an instance of the WindowsEventLog class and loads the required
function package.

OPEN

�� OPEN
()

server
, source

��

Opens the specified event log.

Arguments:
The arguments are:

server The UNC (universal naming convention) name of the server

WindowsRegistry Class

258 Object REXX Reference

on which the event log is to be opened. If this argument is not
specified, the log is opened at the local machine.

source The name of the source of the event log. It must be a subkey
of a log file entry under the EventLog key in the registry. If,
for example, the registry looks as follows:
HKEY_LOCAL_MACHINE

System
CurrentControlSet

Services
EventLog

Application
WinApp1

Security
WinApp2

System

"Application", "Security", "System", "WinApp1", and
"WinApp2" are valid sources. If the source is not found, the
"Application Log" is used.

Example:
The following example opens the Application log on the local
machine:
rc = event_log1∼OPEN
rc = event_log∼OPEN(,"Application")

The following example opens the System log on SERVER01:
rc = event_log∼OPEN("\\SERVER01","System")

CLOSE

�� CLOSE ��

Closes an open event log.

READ

�� READ
FORWARDS

(, , ,
BACKWARDS server source

�

�
,)

start num

��

WindowsEventLog Class

Chapter 6. Other Classes 259

Reads event log records. If the event log was not opened with the OPEN
method, the event log specified by the server and source is opened and closed
after processing.

Arguments:
The arguments are:

server The UNC (universal naming convention) name of the server
on which the event log is to be opened. If this argument is not
specified, the log is opened at the local machine.

This argument is only used if the event log was not opened
before.

source The name of the source of the event log. It must be a subkey
of a log file entry under the EventLog key in the registry. If,
for example, the registry looks as follows:
HKEY_LOCAL_MACHINE

System
CurrentControlSet

Services
EventLog

Application
WinApp1

Security
WinApp2

System

"Application", "Security", "System", "WinApp1", and
"WinApp2" are valid sources. If the source is not found, the
"Application Log" is used.

This argument is only used if the event log was not opened
before.

start The record number of the event log record to be started. The
oldest record is always the first record regardless of the
direction specified.

num The number of the event log record to be read.

Example:
evl = .WindowsEventLog∼new

if evl∼InitCode \= 0 then exit

say " reading complete System log forwards without opening it before "

events = evl∼Read("FORWARDS", ,"System")

if events \= .nil then
call DisplayRecords

WindowsEventLog Class

260 Object REXX Reference

else
say "==> Error reading complete System event log"

evl∼deinstall

exit 0 /* leave program */

DisplayRecords:

say evl∼Events∼items "records read"

do i=1 to evl∼Events∼items
say "==="
temp = evl∼Events[i]
parse var temp type date time "'" sourcename"'" id,
userid computer "'" string "'" "'" data "'"
say 'Type : 'type
say 'Date : 'date
say 'Time : 'time
say 'Source : 'sourcename
say 'ID : 'id
say 'UserId : 'userid
say 'Computer : 'computer
say 'Detail : 'string
say 'Data : 'data

end
return

::requires "winsystm.cls"

WRITE

�� WRITE
1 0

(, , , ,
server source 0 category

2
4
8
10

�

�
0

, ,)
id data string

��

Reads event log records. If the event log was not opened with the Open
method, the event log specified by the server and source is opened and closed
after processing.

WindowsEventLog Class

Chapter 6. Other Classes 261

Arguments:
The arguments are:

server The UNC (universal naming convention) name of the server
on which the event log is to be opened. If this argument is not
specified, the log is opened at the local machine.

source The name of the source of the event log. It must be a subkey
of a log file entry under the EventLog key in the registry. If,
for example, the registry looks as follows:
HKEY_LOCAL_MACHINE

System
CurrentControlSet

Services
EventLog

Application
WinApp1

Security
WinApp2

System

"Application", "Security", "System", "WinApp1", and
"WinApp2" are valid sources. If the source is not found, the
"Application Log" is used.

type The type of the events to be logged. It can be one of the
numbers listed in the syntax diagram:

0 SUCCESS

1 ERROR, which is the default

2 WARNING

4 INFORMATION

8 AUDIT SUCCESS

10 AUDIT FAILURE

category
The event category. This is source-specific information that can
have any value. The default is 0.

id The event identifier specifying the message that, together with
the event, is an entry in the message file associated with the
event source. The default is 0.

data The binary data. This is source-specific information and can be
omitted.

string The strings merged into the message.

WindowsEventLog Class

262 Object REXX Reference

Example:
The following example writes the strings and the data to the system
log. "MyApplication" must be a subkey of a log file entry under the
EventLog key in the registry. If the source name cannot be found,
event logging uses the Application log file.
HKEY_LOCAL_MACHINE

System
CurrentControlSet

Services
EventLog
Application
Security

System
MyApplication

evl∼Write(,"MyApplication", , , ,"1A 1B 1C 0000 00"x,,
"First String", "Second String")

See the EventLog.REX for more examples.

CLEAR

�� CLEAR
()

server
,

source , backupFileName

��

Clears the specified event log and, optionally, saves a copy of the current log
file as a backup file. If the event log was not opened with the Open method,
the event log specified by the server and source is opened. The event log is
closed after it is cleared.

Arguments:
The arguments are:

server The UNC (universal naming convention) name of the server
on which the event log is to be opened. If this argument is not
specified, the log is opened at the local machine.

This argument is only used if the event log was not opened
before.

source The name of the source of the event log. It must be a subkey
of a log file entry under the EventLog key in the registry. If,
for example, the registry looks as follows:
HKEY_LOCAL_MACHINE

System
CurrentControlSet

Services

WindowsEventLog Class

Chapter 6. Other Classes 263

EventLog
Application

WinApp1
Security

WinApp2
System

"Application", "Security", "System", "WinApp1", and
"WinApp2" are valid sources. If the source is not found, the
"Application Log" is used.

This argument is only used if the event log was not opened
before.

backupFileName
The name of a file to which the copy of the current event log
file is to be written. If this file already exists, the function fails.
The file can reside on a remote server.

If you omit this argument, the current event log file is not
backed up but cleared.

Example:
The following example creates a backup of the Application event log
of the local machine and clears it:
event_log∼CLEAR(, ,"e:\evlbackup\application.evt")

The following example creates a backup of the System event log on
the server \\SERVER01 and clears it:
event_log∼CLEAR("\\SERVER01","System","e:\evlbackup\system_server01.evt")

The following example clears the Application log on the local machine
without a backup:
event_log∼CLEAR

GETNUMBER

�� GETNUMBER
()

server
, source

��

Retrieves the number of records in the specified event log. If the event log
was not opened with the Open method, the event log specified by the server
and source is opened and closed after processing.

Arguments:
The arguments are:

WindowsEventLog Class

264 Object REXX Reference

server The UNC (universal naming convention) name of the server
on which the event log is to be opened. If this argument is not
specified, the log is opened at the local machine.

This argument is only used if the event log was not opened
before.

source The name of the source of the event log. It must be a subkey
of a log file entry under the EventLog key in the registry. If,
for example, the registry looks as follows:
HKEY_LOCAL_MACHINE

System
CurrentControlSet

Services
EventLog

Application
WinApp1

Security
WinApp2

System

"Application", "Security", "System", "WinApp1", and
"WinApp2" are valid sources. If the source is not found, the
"Application Log" is used.

This argument is only used if the event log was not opened
before.

Example:
The following example returns the number of event log records in the
Application log of the local machine:
num = event_log∼GETNUMBER

The WindowsManager Class

The WindowsManager class provides methods to query, manipulate, and
interact with windows on your desktop. This class is specifically for Windows
NT and Windows 2000 systems and might not be available on other systems.

The WindowsManager class is not a built-in class; it is defined in the file
WINSYSTM.CLS. Use a ::requires statement to activate its function:
::requires "winsystm.cls"

Methods the WindowsManager Class Defines
FIND
FOREGROUNDWINDOW
WINDOWATPOSITION
CONSOLETITLE

WindowsEventLog Class

Chapter 6. Other Classes 265

CONSOLETITLE=
SENDTEXTTOWINDOW
PUSHBUTTONINWINDOW
PROCESSWINDOWCOMMAND

FIND

�� FIND (title) ��

Searches for a top-level window (not a child window) on your desktop with
the specified title.

If this window already exists, an instance of the WindowObject class is
returned. Otherwise, .NIL is returned.

FOREGROUNDWINDOW

�� FOREGROUNDWINDOW ��

Returns an instance of the WindowObject class that is associated with the
current foreground window.

WINDOWATPOSITION

�� WINDOWATPOSITION (x , y) ��

Returns an instance of the WindowObject class that is associated with the
window at the specified position (x,y). The coordinates are specified in screen
pixels. This method does not retrieve hidden or disabled windows. If you are
interested in a particular child window, use method “CHILDATPOSITION” on
page 273.

CONSOLETITLE

�� CONSOLETITLE ��

Returns the title of the current console.

This method does not apply within the Object REXX Workbench or if you
start your application with REXXHIDE.

WindowsManager Class

266 Object REXX Reference

CONSOLETITLE=

�� CONSOLETITLE=title ��

Sets the title of the current console.

This method does not apply within the Object REXX Workbench or if you
start your application with REXXHIDE.

SENDTEXTTOWINDOW

�� SENDTEXTTOWINDOW (title , text) ��

Sends a case-sensitive text to the window with the specified title..

PUSHBUTTONINWINDOW

�� PUSHBUTTONINWINDOW (title , text) ��

Selects the button with label text in the window with the specified title. If the
button’s label contains a mnemonic (underscored letter), you must specify an
ampersand (&) in front of it. You can also use this method to select radio
buttons and to check or uncheck check boxes.

Example:
winmgr∼PushButtonInWindow("Testwindow","List &Employees")

PROCESSMENUCOMMAND

�� PROCESSMENUCOMMAND (, ,
title popup

�

� &

,

submenu , menuItem) ��

Selects an item of the menu or submenu of the specified window title. You can
specify as many submenus as necessary to get to the required item.

Example:

WindowsManager Class

Chapter 6. Other Classes 267

The following example starts the IBM Resource Workshop when the Object
REXX Workbench is running by selecting menu item Resource Workshop of
the OODialog submenu in the Tools popup menu:
winmgr∼ProcessMenuCommand("Object REXX for Windows NT/95 - Output", "T&ools",,
"&OODialog", "&Resource Workshop")

The WindowObject Class

The WindowObject class provides methods to query, manipulate, and interact
with a particular window or one of its child windows.

Methods the WindowObject Class Defines

v ASSOCWINDOW
v CHILDATPOSITION
v COORDINATES
v DISABLE
v ENABLE
v ENUMERATECHILDREN
v FINDCHILD
v FIRST
v FIRSTCHILD
v FOCUSITEM
v FOCUSNEXTITEM
v FOCUSPREVIOUSITEM
v HANDLE
v HIDE
v ID
v ISMENU
v LAST
v MAXIMIZE
v MENU
v MINIMIZE
v MOVETO
v NEXT
v OWNER
v PREVIOUS
v PROCESSMENUCOMMAND
v PUSHBUTTON
v RESIZE

WindowsManager Class

268 Object REXX Reference

v RESTORE
v SENDCHAR
v SENDCOMMAND
v SENDKEY
v SENDKEYDOWN
v SENDKEYUP
v SENDMENUCOMMAND
v SENDMESSAGE
v SENDMOUSECLICK
v SENDSYSCOMMAND
v SENDTEXT
v STATE
v SYSTEMMENU
v TITLE
v TITLE=
v TOFOREGROUND
v WCLASS

ASSOCWINDOW

�� ASSOCWINDOW (handle) ��

Assigns a new window handle to the WindowObject instance.

HANDLE

�� HANDLE ��

Returns the handle of the associated window.

TITLE

�� TITLE ��

Returns the title of the window.

WindowObject Class

Chapter 6. Other Classes 269

TITLE=

�� TITLE=newTitle ��

Sets a new title for the window.

WCLASS

�� WCLASS ��

Returns the class of the window associated with the WindowObject instance.

ID

�� ID ��

Returns the numeric ID of the window.

COORDINATES

�� COORDINATES ��

Returns the upper left and the lower right corner positions of the window in
the format "left,top,right,bottom".

STATE

�� STATE ��

Returns information about the window state. The returned state can contain
one or more of the following constants:
v "Enables" or "Disabled"
v "Visible" or "Invisible"
v "Zoomed" or "Minimized"
v "Foreground"

RESTORE

�� RESTORE ��

WindowObject Class

270 Object REXX Reference

Activates and displays the associated window. If the window is minimized or
maximized, it is restored to its original size and position.

HIDE

�� HIDE ��

Hides the associated window and activates another window.

MINIMIZE

�� MINIMIZE ��

Minimizes the associated window and activates the next higher-level window.

MAXIMIZE

�� MAXIMIZE ��

Maximizes the associated window.

RESIZE

�� RESIZE (width , height) ��

Resizes the associated window to the specified width and height. The width
and height are specified in screen coordinates.

ENABLE

�� ENABLE ��

Enables the associated window if it was disabled.

DISABLE

�� DISABLE ��

Disables the associated window.

WindowObject Class

Chapter 6. Other Classes 271

MOVETO

�� MOVETO (x , y) ��

Moves the associated window to the specified position (x,y). Specify the new
position in screen pixels.

TOFOREGROUND

�� TOFOREGROUND ��

Makes the associated window the foreground window.

FOCUSNEXTITEM

�� FOCUSNEXTITEM ��

Sets the input focus to the next child window of the associated window.

FOCUSPREVIOUSITEM

�� FOCUSPREVIOUSITEM ��

Sets the input focus to the previous child window of the associated window.

FOCUSITEM

�� FOCUSITEM (wndObject) ��

Sets the input focus to the child window associated with the specified
WindowObject instance wndObject.

Example:

The following example sets the input focus to the last child window:
dlg = wndmgr∼Find("TestDialog")

if dlg \= .Nil then do
fChild = dlg∼FirstChild
lChild = fChild∼Last
dlg∼FocusItem(lChild)

end

WindowObject Class

272 Object REXX Reference

FINDCHILD

�� FINDCHILD (label) ��

Returns an instance of the WindowObject class associated with the child
window with the specified label. If the associated window does not own such
a window, the .NIL object is returned.

CHILDATPOSITION

�� CHILDATPOSITION (x , y) ��

Returns an instance of the WindowObject class associated with the child
window at the specified client position (x,y). The coordinates that are relative
to the upper left corner of the associated window must be specified in screen
pixels. To retrieve top-level windows, use method “WINDOWATPOSITION”
on page 266.

NEXT

�� NEXT ��

Returns an instance of the WindowObject class associated with the next
window of the same level as the associated window. If the associated window
is the last window of a level, the .NIL object is returned.

PREVIOUS

�� PREVIOUS ��

Returns an instance of the WindowObject class associated with the previous
window of the same level as the associated window. If the associated window
is the first window of a level, the .NIL object is returned.

FIRST

�� FIRST ��

Returns an instance of the WindowObject class associated with the first
window of the same level as the associated window.

WindowObject Class

Chapter 6. Other Classes 273

LAST

�� LAST ��

Returns an instance of the WindowObject class associated with the last
window of the same level as the associated window.

OWNER

�� OWNER ��

Returns an instance of the WindowObject class associated with the window
that owns the associated window (parent). If the associated window is a
top-level window, the .NIL object is returned.

FIRSTCHILD

�� FIRSTCHILD ��

Returns an instance of the WindowObject class associated with the first child
window of the associated window. If no child window exists, the .NIL object
is returned.

ENUMERATECHILDREN

�� ENUMERATECHILDREN ��

Returns a stem that stores information about the child windows of the
associated window. "Stem.0" contains the number of child windows. The
returned stem contains as many records as child windows. The first record is
stored at "Stem.1" continued by increments of 1. Each record contains the
following entries, where each entry starts with an exclamation mark (!):

!Handle The handle of the window.

!Title

!Class The window class.

!State

!Coordinates

!Children 1 if the window has child windows, 0 if is has none.

WindowObject Class

274 Object REXX Reference

!Id

Example:
wo = winmgr∼Find("TestDialog")

enum. = wo∼EnumerateChildren
do i = 1 to enum.0 /* number of children */

say "---"
say "Handle:" enum.i.!Handle
say "Title:" enum.i.!Title
say "Class:" enum.i.!Class
say "Id:" enum.i.!Id
say "Children:" enum.i.!Children
say "State:" enum.i.!State
say "Rect:" enum.i.!Coordinates

end

SENDMESSAGE

�� SENDMESSAGE (message , wParam , lParam) ��

Sends a message to the associated window.

SENDCOMMAND

�� SENDCOMMAND (command) ��

Sends a WM_COMMAND message to the associated window.
WM_COMMAND is sent, for example, when a button is pressed, where
command is the button ID.

SENDMENUCOMMAND

�� SENDMENUCOMMAND (id) ��

Selects the menu item id of the associated window. Method “IDOF” on
page 281 returns the ID of a menu item.

SENDMOUSECLICK

��
"LEFT" "DBLCLK"

SENDMOUSECLICK ("RIGHT" , "UP" " , x , y
"MIDDLE" "DOWN"

�

WindowObject Class

Chapter 6. Other Classes 275

�

&

)

, " LEFTDOWN "
RIGHTDOWN
MIDDLEDOWN
SHIFT
CONTROL

��

Simulates a mouse click event in the associated window.

Arguments:

The arguments are:

which Specifies which mouse button is simulated. LEFT is the default.

kind Selects the simulated mouse action. DBLCLK is the default.

x,y Specifies the coordinates of the mouse click event, in screen
coordinates, relative to the upper left corner of the window.

ext Can be one or more of the following strings:

LEFTDOWN
Simulates the pressed left mouse button.

RIGHTDOWN
Simulates the pressed right mouse button.

MIDDLEDOWN
Simulates the pressed middle mouse button.

SHIFT
Simulates the pressed Shift key.

CONTROL
Simulates the pressed Control key.

SENDSYSCOMMAND

WindowObject Class

276 Object REXX Reference

�� SENDSYSCOMMAND (" SIZE ")
MOVE
MINIMIZE
MAXIMIZE
NEXTWINDOW
PREVWINDOW
CLOSE
VSCROLL
HSCROLL
ARRANGE
RESTORE
TASKLIST
SCREENSAVE
CONTEXTHELP

��

Sends a WM_SYSCOMMAND message to the associated window. These
messages are normally sent when the user selects a command in the Window
menu.

Argument:

The only argument is:

command
One of the commands listed in the syntax diagram:

SIZE Puts the window in size mode.

MOVE
Puts the window in move mode.

MINIMIZE
Minimizes the window.

MAXIMIZE
Maximizes the window.

NEXTWINDOW
Moves to the next window.

PREVWINDOW
Moves to the previous window.

CLOSE
Closes the window.

VSCROLL
Scrolls vertically.

HSCROLL
Scrolls horizontally.

WindowObject Class

Chapter 6. Other Classes 277

ARRANGE
Arranges the window.

RESTORE
Restores the window to its normal position and size.

TASKLIST
Activates the Start menu.

SCREENSAVE
Executes the screen-saver application specified in the [boot]
section of the SYSTEM.INI file.

CONTEXTHELP
Changes the cursor to a question mark with a pointer. If the
user then clicks on a control in the dialog box, the control
receives a WM_HELP message.

PUSHBUTTON

�� PUSHBUTTON (label) ��

Selects the button with the specified label within the associated window and
sends the corresponding WM_COMMAND message. If the button’s label
contains a mnemonic (underscored letter), you must specify an ampersand (&)
in front of it. You can also use this method to select radio buttons and check
or uncheck check boxes.

SENDKEY

�� SENDKEY (keyName)
,

alt , ext

��

Sends all messages (CHAR, KEYDOWN, and KEYUP) that would be sent by
pressing a specific key on the keyboard. Character keys (a to z) are not
case-sensitive.

If the alt argument is 1, the Alt key flag is set, which is equal to pressing the
specified key together with the Alt key.

The Ext argument must be 1 if the key is an extended key, such as a right Ctrl
or a right Shift.

For a list of key names, refer to “Symbolic Names for Virtual Keys” on
page 246.

WindowObject Class

278 Object REXX Reference

SENDCHAR

�� SENDCHAR (character)
, alt

��

Sends a WM_CHAR message to the associated window. If the alt argument is
1, a pressed Alt key is simulated.

SENDKEYDOWN

�� SENDKEYDOWN (keyName)
, ext

��

Sends a WM_KEYDOWN message to the associated window. The ext
argument must be 1 if the key is an extended key, such as a right Ctrl or a
right Shift.

For a list of key names, refer to “Symbolic Names for Virtual Keys” on
page 246.

SENDKEYUP

�� SENDKEYUP (keyName)
, ext

��

Sends a WM_KEYUP message to the associated window. The ext argument
must be 1 if the key is an extended key, such as a right Ctrl or a right Shift.

For a list of key names, refer to “Symbolic Names for Virtual Keys” on
page 246.

SENDTEXT

�� SENDTEXT (text) ��

Sends a (case-sensitive) text to the associated window by sending a sequence
of WM_CHAR, WM_KEYDOWN, and WM_KEYUP messages.

MENU

�� MENU ��

WindowObject Class

Chapter 6. Other Classes 279

Returns an instance of the MenuObject class that refers to the menu of the
associated window.

SYSTEMMENU

�� SYSTEMMENU ��

Returns an instance of the MenuObject class that refers to the system menu of
the associated window.

ISMENU

�� ISMENU ��

Returns 1 if the associated window is a menu, otherwise 0.

PROCESSMENUCOMMAND

�� &

,

PROCESSMENUCOMMAND (, submenu , menuItem)
menu

��

Selects an item of the menu or submenu of the associated window. You can
specify as many submenus as necessary to get to the required item.

Example:

The following example starts the IBM Resource Workshop when the Object
REXX Workbench is running by selecting menu item Resource Workshop of
the OODialog submenu in the Tools popup menu provided that winobj is
associated with the Object REXX Workbench:
winobj∼ProcessMenuCommand("T&ools", "&OODialog", "&Resource Workshop")

The MenuObject Class

The MenuObject class provides methods to query, manipulate, and interact
with the menu or submenu of a window.

Methods the MenuObject Class Defines

v FINDITEM
v FINDSUBMENU

WindowObject Class

280 Object REXX Reference

v IDOF
v ISMENU
v ITEMS
v PROCESSITEM
v SUBMENU
v TEXTOF(id)
v TEXTOF(position)

ISMENU

�� ISMENU ��

Returns 1 if the associated window is a menu, otherwise 0.

ITEMS

�� ITEMS ��

Returns the number of menu items contained in the associated menu.

IDOF

�� IDOF (position) ��

Returns the ID of the menu item at the specified position, starting with 0.

TEXTOF(position)

�� TEXTOF (position) ��

Returns the text of the menu item at the specified position, starting with 0. A
mnemonic (underscored letter) is represented by a leading ampersand (&). If
the menu item contains an accelerator, it is separated by a tab.

TEXTOF(id)

�� TEXTOF (id) ��

MenuObject Class

Chapter 6. Other Classes 281

Returns the text of menu item id. A mnemonic is represented by a leading
ampersand (&). If the menu item contains an accelerator, it is separated by a
tab.

SUBMENU

�� SUBMENU (position) ��

Returns an instance of the MenuObject class that is associated with the
submenu at the specified position, starting with 0. If no submenu exists at this
position, the .NIL object is returned.

Example:
sub = menu∼Submenu(5)

if sub \= .Nil then do
say "Items:" sub∼items

end

FINDSUBMENU

�� FINDSUBMENU (label) ��

Returns an instance of the MenuObject class that is associated with the
submenu with the specified label. If the associated menu does not contain such
a submenu, the .NIL object is returned.

FINDITEM

�� FINDITEM (label) ��

Returns the ID of the menu item label. If the specified label does not include
an accelerator, the comparison excludes the accelerators of the menu items. If
no menu item is found that matches the specified label, 0 is returned.

Example:
f = menu∼FindItem("&Tools" || "9"x || "Ctrl+T")

if f \= 0 then menu∼ProcessItem(f)

PROCESSITEM

�� PROCESSITEM (id) ��

MenuObject Class

282 Object REXX Reference

Selects the menu item id. This causes a WM_COMMAND to be sent to the
window owning the menu.

The WindowsClipboard Class

The WindowsClipboard class provides methods to access the data in the
Windows clipboard.

Methods the WindowsClipboard Class Defines
COPY
PASTE
EMPTY
ISDATAAVAILABLE

COPY

�� COPY (text) ��

Empties the clipboard and copies the specified text to it.

PASTE

�� PASTE ��

Retrieves the text data stored on the clipboard.

EMPTY

�� EMPTY ��

Empties the clipboard.

ISDATAAVAILABLE

�� ISDATAAVAILABLE ��

Returns 1 if the text data is available on the clipboard. If no data is available,
0 is returned.

MenuObject Class

Chapter 6. Other Classes 283

The OLEObject Class

This class provides support for OLE automation. OLE (Object Linking and
Embedding) is an implementation of COM (Component Object Model). OLE
automation makes it possible for one application to manipulate objects
implemented in another application, or to expose objects so they can be
manipulated.

An automation client is an application that can manipulate exposed objects
belonging to another application. An automation server is an application that
exposes the objects. The OLEObject class enables REXX to be an OLE
automation client. Note that the OLE acronym has now been replaced by
ActiveX.

Applications can provide OLE objects, and OLE objects that support
automation can be used by a REXX script to remotely control the object
through the supplied methods. This lets you write a REXX script that, for
example, starts a Web browser, navigates to a certain page, and changes the
display mode of the browser.

Every application that supports OLE places a unique identifier in the registry.
This identifier is called the class ID (CLSID) of the OLE object. It consists of
several hexadecimal numbers separated by the minus symbol.

Example: CLSID of Microsoft Internet Explorer (Version 5.00.2014.0216):
"{0002DF01-0000-0000-C000-000000000046}"

The CLSID number can prove inconvenient when you want to create or access
a certain object, so a corresponding easy-to-remember entry is provided in the
registry, and this entry is mapped to the CLSID. This entry is called the
ProgID (the program ID), and is a string containing words separated by
periods.

Example: ProgID of Microsoft Internet Explorer:
"InternetExplorer.Application"

To find the ProgID of an application, you can use the sample script
OLEINFO.REX or the Microsoft OLEViewer, or you can consult the
documentation of the application or search the registry manually.

The OLEObject class is not a built-in class; it is defined in the file
OREXXOLE.CLS. This means you have to use a ::requires statement to activate
its functionality, as in:
::requires "OREXXOLE.CLS"

OLEObject Class

284 Object REXX Reference

Several sample programs are provided in the Object REXX installation
directory under Samples\OLE.
v The APPS directory contains 13 examples of how to use REXX to

remote-control other applications.
v The OLEINFO directory is a sample REXX application that can be used to

browse through the information an OLE object provides.
v In the ADSI directory there are eight examples of how to use the Active

Directory Services Interface with the REXX OLE interface.
v The METHINFO directory contains a very basic example of how to access

the information an OLE object provides.
v Finally, the WMI directory contains five examples of how to work with the

Windows Management Instrumentation.

Methods available to the OLEObject class:

INIT
GETCONSTANT
GETKNOWNEVENTS
GETKNOWNMETHODS
GETOBJECT(Class method)
GETOUTPARAMETERS
UNKNOWN

Note: The REXX OLE object acts as a proxy to the real OLE object. The OLE
object has its own methods, depending on its individual
implementation; its methods are accessed transparently through the
method mechanism “UNKNOWN” on page 290.

INIT

��
, ’NOEVENTS’

INIT(ProgID)
CLSID , ’WITHEVENTS’

��

Instantiates an OLE object of the given ProgID or CLSID. If the creation fails,
an error will be raised (see list of OLE specific errors on page 540).

The optional parameter ’events’ defines whether events are to be used or not.
Allowed values for events are 'NOEVENTS' (the default) and 'WITHEVENTS'.

Example:
myOLEObject = .OLEObject∼new("InternetExplorer.Application")

OLEObject Class

Chapter 6. Other Classes 285

GETCONSTANT

�� GETCONSTANT()
ConstantName

��

Retrieves the value of a constant that is associated with this OLE object. If no
constant of that name exists, the .NIL object will be returned. You can also
omit the name of the constant; this returns a stem with all known constants
and their values. In this case the constant names will be prefixed with a ″!″
symbol.

Example 1:
myExcel = .OLEObject∼new("Excel.Application")
say "xlCenter has the value" myExcel∼GetConstant("xlCenter")
myExcel∼quit
exit

::requires "orexxole.cls"

Possible output:
xlCenter has the value -4108

Example 2:
myExcel = .OLEObject∼new("Excel.Application")
constants. = myExcel∼GetConstant
myExcel∼quit

do i over constants.
say i"="constants.i

end

Possible output:
!XLFORMULA=5
!XLMOVE=2
!XLTEXTMAC=19
...

GETKNOWNEVENTS

�� GETKNOWNEVENTS ��

Returns a stem with information on the events that the OLE object can create.
It collects this information from the type library of the object. A type library
provides the names, types, and arguments of the provided methods.

OLEObject Class

286 Object REXX Reference

The stem provides the following information:

stem.0 The number of events.

stem.n.!NAME Name of n-th event.

stem.n.!DOC Description of n-th event (if available).

stem.n.!PARAMS.0 Number of parameters for n-th event.

stem.n.!PARAMS.i.!NAME Name of i-th parameter of n-th event.

stem.n.!PARAMS.i.!TYPE Type of i-th parameter of n-th event.

stem.n.!PARAMS.i.!FLAGS Flags of i-th parameter of n-th event; can be
″in″, ″out″, ″opt″, or any combination of these.

If no information is available, the .NIL object is returned and this OLE object
does not have any events.

Example script:
myIE = .OLEObject∼new("InternetExplorer.Application","NOEVENTS")
events. = myIE∼GetKnownEvents

if events. == .nil then
say "Sorry, this object does not have any events."

else do
say "The following events may occur:"
do i = 1 to events.0

say events.i.!NAME
end

end

exit

::requires "OREXXOLE.CLS"

Sample output:
The following events may occur:
ONTHEATERMODE
ONFULLSCREEN
ONSTATUSBAR
...

For an example of how to use events, see examples OLE\APPS\SAMP12.REX
and OLE\APPS\SAMP13.REX in the SAMPLES directory.

GETKNOWNMETHODS

�� GETKNOWNMETHODS ��

OLEObject Class

Chapter 6. Other Classes 287

Returns a stem with information on the methods that the OLE object supplies.
It collects this information from the type library of the object. A type library
provides the names, types, and arguments of the provided methods. Parts of
the supplied information have only informational character as you cannot use
them directly.

The stem provides the following information:

stem.0 The number of methods.

stem.!LIBNAME Name of the type library that describes this object.

stem.!LIBDOC A help string describing the type library. Only set
when the string is available.

stem.n.!NAME The name of the n-th method.

stem.n.!DOC A help string for the n-th method. If this
information is not supplied in the type library this
value will not be set.

stem.n.!INVKIND A number that represents the invocation kind of
the method: 1 = normal method call, 2 = property
get, 4 = property put. A normal method call is
used with brackets; for a property get only the
name is to be specified; and a property set uses
the ″=″ symbol, as in these examples:
object∼methodCall(a,b,c)
object∼propertyPut="Hello" say
object∼propertyGet

stem.n.!RETTYPE The return type of the n-th method. The return
type will be automatically converted to a REXX
object (see ″Type Conversion″ in the description of
the UNKNOWN method of the OLEObject class).

stem.n.!MEMID The MemberID of the n-th method. This is only
used internally to call the method.

stem.n.!PARAMS.0 The number of parameters of the n-th method.

stem.n.!PARAMS.i.!NAME The name of the i-th parameter of the n-th
method.

stem.n.!PARAMS.i.!TYPE The type of the i-th parameter of the n-th method.

stem.n.!PARAMS.i.!FLAGS The flags of the i-th parameter of the n-th method;
can be ″in″, ″out″, ″opt″, or any combination of
these (for example: ″[in, opt]″).

If no information is available, the .NIL object is returned.

OLEObject Class

288 Object REXX Reference

Note: An object might provide additional methods that cannot be retrieved
for display but that can be invoked. In these cases, consult the
documentation of those objects.

There are mechanisms to ’hide’ methods from the user, because these methods
can only be used internally. It might happen that these are not hidden
properly and will get displayed. Be careful with methods like:

AddRef
GetTypeInfoCount
GetTypeInfo
GetIDsOfNames
QueryInterface
Release

Example script:
myOLEObject = .OLEObject∼new("InternetExplorer.Application")
methods. = myOLEObject∼GetKnownMethods

if methods. == .nil then
say "Sorry, no information on the methods available!"

else do
say "The following methods are available to this OLE object:"
do i = 1 to methods.0

say methods.i.!NAME
end

end

exit

::requires "OREXXOLE.CLS"

Sample output:
The following methods are available to this OLE object:
GoBack
GoForward
GoHome
...

GETOBJECT

�� GETOBJECT(Moniker)
,class

��

This is a class method that allows you to obtain an OLE object through the
use of a so-called moniker or nickname (a string). A moniker is used to find
out which object has to be created or, if it is already running, addressed. The
moniker itself tells OLE which type of object is required. The optional

OLEObject Class

Chapter 6. Other Classes 289

parameter class can be used to specify a subclass of OLEObject, and can be
used to obtain an OLE object that supports events (the 'WITHEVENTS' option
will be used in this case). This method is similar to the Init method where
you have to specify a ProgID or CLSID.

Example:
/* create a Word.Document by opening a certain file */
myOLEObject = .OLEObject∼GetObject("C:\DOCS\HELLOWORLD.DOC")

GETOUTPARAMETERS

�� GETOUTPARAMETERS ��

Returns an array containing the results of the single out parameters of the
OLE object, or the .NIL object if it does not have any. Out parameters are
arguments to the OLE object that are filled in by the OLE object. As this is not
possible in REXX due to data encapsulation, the results are placed in the array
mentioned above.

Example:

Consider an OLE object method with the following signature:
aMethod([in] A, [in] B, [out] sumAB)

The resulting out parameter of the method invocation will be placed in the
out array at position one; the ″normal″ return value gets processed as usual.
In this case the method will return the .NIL object:
resultTest = myOLEObject∼aMethod(1, 2, .NIL)
say "Invocation result :" resultTest
say "Result in out array:" myOLEObject∼GetOutParameters∼at(1)

The output of this sample script will be:
The NIL object
3

Out parameters are placed in the out array in order from left to right. If the
above OLE method looked like this:
aMethod([in] A, [in] B, [out] sumAB, [out] productAB),

then the out array would contain the sum of A and B at position one, and the
product at position two.

UNKNOWN

OLEObject Class

290 Object REXX Reference

�� UNKNOWN(messagename,messageargs) ��

The UNKNOWN message is the central mechanism through which methods of the
OLE object are called.

For further information, see “Defining an UNKNOWN Method” on page 102.

You can invoke the methods of the real OLE object by simply stating their
names to the REXX (proxy) OLE object like this:
myOLEObject∼OLEMethodName

This calls the method "OLEMethodName" of the real OLE object for any message
that does not exist for the REXX OLE object by dispatching the call to the real
OLE object.

If an OLE object offers a method with a name that is identical to one that is
defined for OLEObject, you must call UNKNOWN directly, like this:
msgs = .array∼of("Hello","World")
val = myOLEObject∼Unknown("Unknown",msgs)

This invokes the method "UNKNOWN" of the OLE object with two arguments,
"Hello" and "World".

Parameters for the OLE object are used in the usual way, with the exception
of so-called "out" parameters. Out parameters will be filled in by the OLE
object itself. As this is not possible in REXX due to data encapsulation, a
special method, GETOUTPARAMETERS, has to be used. Specify the .NIL
object for any Out parameters when invoking this method.

Type Conversion
Unlike REXX, OLE uses strict typing of data. Conversion to and from these
types is done automatically, if conversion is possible. OLE types are called
variants, because they are stored in one structure that gets flagged with the
type it represents. The following is a list of common types that OLE uses and
the REXX objects that they are converted into.

VARIANT type REXX object

VT_EMPTY .NIL

VT_NULL .NIL

VT_VOID .NIL

VT_I1 REXX string (a whole number)

VT_I2 REXX string (a whole number)

OLEObject Class

Chapter 6. Other Classes 291

VARIANT type REXX object

VT_I4 REXX string (a whole number)

VT_I8 REXX string (a whole number)

VT_UI1 REXX string (a whole, positive number)

VT_UI2 REXX string (a whole, positive number)

VT_UI4 REXX string (a whole, positive number)

VT_UI8 REXX string (a whole, positive number)

VT_R4 REXX string (a real number)

VT_R8 REXX string (a real number)

VT_CY REXX string (a fixed-point number with 15 digits to
the left of the decimal point and 4 digits to the right)

VT_DATE REXX string

VT_BSTR REXX string

VT_DISPATCH REXX OLEObject

VT_BOOL .TRUE or .FALSE *

VT_VARIANT Any REXX object that can be represented as a
VARIANT

VT_PTR see VT_VARIANT

VT_SAFEARRAY REXX Array

* When you pass .TRUE or .FALSE to an OLE object, these get passed as 1 or
0, respectively.

OLEObject Class

292 Object REXX Reference

Chapter 7. Other Objects

In addition to the class objects described in the previous chapter, REXX also
provides the following objects:
v The Environment object
v The NIL object
v The Local environment object
v The Error object
v The Input object
v The Output object

The Environment Object

The Environment object is a directory of public objects that are always
accessible. To access the entries of the Environment object, you can use
environment symbols.An environment symbol starts with a period and has at
least one other character, which cannot be a digit. For example, the term:
.method /* Same as .METHOD */

refers to the Method class.

Note: All environment objects that REXX provides are single symbols. Users
are recommended to use compound symbols when creating
environment objects.

(See “Environment Symbols” on page 35 for details about environment
symbols.) REXX provides the following public objects:

.ALARM The Alarm class. See “The Alarm Class” on page 159.

.ARRAY The Array class. See “The Array Class” on page 118.

.BAG The Bag class. See “The Bag Class” on page 124.

.CLASS The Class class. See “The Class Class” on page 161.

.DIRECTORY The Directory class. See “The Directory Class” on page 127.

.ENVIRONMENT
The Environment directory.

.FALSE The FALSE object (the value 0).

.LIST The List class. See “The List Class” on page 133.

.LOCAL The Local environment directory. See “The Local Environment
Object (.LOCAL)” on page 294.

© Copyright IBM Corp. 1994, 2001 293

.MESSAGE The Message class. See “The Message Class” on page 170.

.METHOD The Method class. See “The Method Class” on page 175.

.MONITOR The Monitor class. See “The Monitor Class” on page 177.

.NIL The NIL object. See “The NIL Object”.

.OBJECT The Object class. See “The Object Class” on page 179.

.QUEUE The Queue class. See “The Queue Class” on page 138.

.RELATION The Relation class. See “The Relation Class” on page 141.

.SET The Set class. See “The Set Class” on page 147.

.STEM The Stem class. See “The Stem Class” on page 186.

.STREAM The Stream class. See “The Stream Class” on page 188.

.STRING The String class. See “The String Class” on page 206.

.SUPPLIER The Supplier class. See “The Supplier Class” on page 239.

.TABLE The Table class. See “The Table Class” on page 150.

.TRUE The TRUE object (the value 1).

The NIL Object

The NIL object is a special object that does not contain data. It usually
represents the absence of an object, as a null string represents a string with no
characters. It has only the methods of the Object class. Note that you use the
.NIL object (rather than the null string ("")) to test for the absence of data in
an array entry:
if .nil = board[row,col] /* .NIL rather than "" */
then ...

The Local Environment Object (.LOCAL)
The Local environment object is a directory of process-specific objects that are
always accessible. You can access objects in the Local environment object in
the same way as objects in the Environment object. REXX provides the
following objects in the Local environment object:

.ERROR The Error object (default error stream). See “The Error Object”
on page 295. This is the object to which REXX error messages

and trace output are written.

.INPUT The Input object (default input stream). See “The Input
Object” on page 295.

.OUTPUT The Output object (default output stream). See “The Output
Object” on page 296.

Other Objects

294 Object REXX Reference

Objects in the Environment object and objects in the Local environment object
are available only to programs running within the same process.

Because both of these environment objects are directory objects, you can place
objects into, or retrieve objects from, these environments by using any of the
directory messages ([],[]=, PUT, AT, SETENTRY, ENTRY, or SETMETHOD). To
avoid potential name clashes with built-in objects and public objects that
REXX provides, each object that your programs add to these environments
should have a period in its index.

Examples:
/* .LOCAL example--places something in the Local environment directory */
.local∼my.alarm = theAlarm
/* To retrieve it */
say .local∼my.alarm

/* Another .LOCAL example */
.environment['MYAPP.PASSWORD'] = 'topsecret'
.environment['MYAPP.UID'] = 200

/* Create a local directory for */
/* my stuff. */

.local['MYAPP.LOCAL'] = .directory∼new
/* Add log file for my local directory */
.myapp.local['LOG'] = .stream∼new('C:\MYAPP.LOG')
say .myapp.password /* Displays "topsecret" */
say .myapp.uid /* Displays "200" */
/* Write a line to the log file */
.myapp.local∼log∼lineout('Logon at 'time()' on 'date())

/* Redirect SAY lines into a file: */
.local['OUTPUT'] = .stream∼new('C:\SAY_REDIRECT.TXT')
say "This goes into a file, and not onto the screen!"

The Error Object

This monitor object (see “The Monitor Class” on page 177) holds the trace
stream object. You can redirect the trace output in the same way as with the
output object in the Monitor class example.

The Input Object

This monitor object (see “The Monitor Class” on page 177) holds the default
input stream object (see “Chapter 16. Input and Output Streams” on page 463).
This input stream is the source for the PARSE LINEIN instruction, the LINEIN
method of the Stream class, and, if you specify no stream name, the LINEIN
built-in function. It is also the source for the PULL and PARSE PULL
instructions if the external data queue is empty.

Other Objects

Chapter 7. Other Objects 295

The Output Object

This monitor object (see “The Monitor Class” on page 177) holds the default
output stream object (see “Chapter 16. Input and Output Streams” on
page 463). This is the destination for output from the SAY instruction, the
LINEOUT method (.OUTPUT∼LINEOUT), and, if you specify no stream
name, the LINEOUT built-in function. You can replace this object in the
environment to direct such output elsewhere (for example, to a transcript
window).

Other Objects

296 Object REXX Reference

Chapter 8. Functions

A function is an internal, built-in, or external routine that returns a single
result object. (A subroutine is a function that is an internal, built-in, or external
routine that might return a result and is called with the CALL instruction.)

Syntax

A function call is a term in an expression calling a routine that carries out
some procedures and returns an object. This object replaces the function call
in the continuing evaluation of the expression. You can include function calls
to internal and external routines in an expression anywhere that a data term
(such as a string) would be valid, using the following notation:

�� function_name(&

,

expression
) ��

The function_name is a literal string or a single symbol, which is taken to be a
constant.

There can be any number of expressions, separated by commas, between the
parentheses. These expressions are called the arguments to the function. Each
argument expression can include further function calls.

Note that the left parenthesis must be adjacent to the name of the function,
with no blank in between. (A blank operator would be assumed at this point
instead.) Only a comment can appear between the name and the left
parenthesis.

The arguments are evaluated in turn from left to right and the resulting
objects are then all passed to the function. This function then runs some
operation (usually dependent on the argument objects passed, though
arguments are not mandatory) and eventually returns a single object. This
object is then included in the original expression as though the entire function
reference had been replaced by the name of a variable whose value is the
returned object.

For example, the function SUBSTR is built into the language processor and
could be used as:

© Copyright IBM Corp. 1994, 2001 297

N1='abcdefghijk'
Z1='Part of N1 is: 'substr(N1,2,7)
/* Sets Z1 to 'Part of N1 is: bcdefgh' */

A function can have a variable number of arguments.You need to specify only
those required. For example, SUBSTR('ABCDEF',4) would return DEF.

Functions and Subroutines

Functions and subroutines are called in the same way. The only difference
between functions and subroutines is that functions must return data, whereas
subroutines need not.

The following types of routines can be called as functions:

Internal If the routine name exists as a label in the program, the
current processing status is saved for a later return to the
point of invocation to resume execution. Control is then
passed to the first label in the program that matches the
name. As with a routine called by the CALL instruction, status
information, such as TRACE and NUMERIC settings, is saved
too. See the CALL instruction (“CALL” on page 45) for details.

If you call an internal routine as a function, you must specify
an expression in any RETURN instruction so that the routine
can return. This is not necessary if it is called as a subroutine.

Example:
/* Recursive internal function execution... */
arg x
say x'! =' factorial(x)
exit
factorial: procedure /* Calculate factorial by */

arg n /* recursive invocation. */
if n=0 then return 1
return factorial(n-1) * n

FACTORIAL is unusual in that it calls itself (this is recursive
invocation). The PROCEDURE instruction ensures that a new
variable n is created for each invocation.

Built-in These functions are always available and are defined in
“Built-in Functions” on page 302.

External You can write or use functions that are external to your
program and to the language processor. An external routine
can be written in any language, including REXX, that supports
the system-dependent interfaces the language processor uses
to call it. You can call a REXX program as a function and, in
this case, pass more than one argument string. The ARG,

Functions

298 Object REXX Reference

PARSE ARG, or USE ARG instruction or the ARG built-in
function can retrieve these argument strings. When called as a
function, a program must return data to the caller.

Notes:

1. Calling an external REXX program as a function is similar
to calling an internal routine. For an external routine,
however, the caller’s variables are hidden. To leave the
called REXX program, you can use either EXIT or
RETURN. In either case, you must specify an expression.

2. You can use the INTERPRET instruction to process a
function with a variable function name. However, avoid
this if possible because it reduces the clarity of the
program.

Search Order
Functions are searched in the following sequence: internal routines, built-in
functions, external functions.

The name of internal routines must not be specified as a literal string, that is,
in quotation marks, whereas the name of built-in functions or external
routines must be specified in quotation marks. Be aware of this when you
want to extend the capabilities of an existing internal function, for example,
and call it as a built-in function or external routine under the same name as
the existing internal function. In this case, you must specify the name in
quotation marks.

Example:
/* This internal DATE function modifies the */
/* default for the DATE function to standard date. */
date: procedure

arg in
if in='' then in='Standard'
return 'DATE'(in)

Built-in functions have uppercase names, and so the name in the literal string
must be in uppercase for the search to succeed. File names can be in
uppercase, lowercase, or mixed case. The operating system uses a
case-insensitive search for files. When calling a REXX subroutine, the case of
the name does not matter.

External functions and subroutines have a system-defined search order.

The search order for external functions is as follows:
1. Functions defined on ::ROUTINE directives within the program.

Functions

Chapter 8. Functions 299

2. Public functions defined on ::ROUTINE directives of programs referenced
with ::REQUIRES.

3. Functions that have been loaded into the macrospace for preorder
execution. (See the Object REXX for Windows: Programming Guide for
details.)

4. Functions that are part of a function package. (See the Object REXX for
Windows: Programming Guide for details.)

5. REXX functions in the current directory, with the current extension.
6. REXX functions along environment PATH, with the current extension.
7. REXX functions in the current directory, with the default extension (.REX

or .CMD).
8. REXX functions along environment PATH, with the default extension

(.REX or .CMD).
9. Functions that have been loaded into the macrospace for postorder

execution.

The full search pattern for functions and routines is shown in Figure 12 on
page 301.

Errors during Execution
If an external or built-in function detects an error, the language processor is
informed, and a syntax error results. Execution of the clause that included the
function call is, therefore, ended. Similarly, if an external function fails to
return data correctly, the language processor detects this and reports it as an
error.

If a syntax error occurs during the execution of an internal function, it can be
trapped (using SIGNAL ON SYNTAX) and recovery might then be possible. If
the error is not trapped, the program is ended.

Functions

300 Object REXX Reference

Start

Is name in quotation marks?

An internal function (a label)?

A built-in function?

Function defined on ::ROUTINE?

Public function defined on ::ROUTINE
in program referenced with::REQUIRES?

Macrospace pre-order?

Part of external function package?

External function with current extension?

External function with default extension

yes yes

yes

yes

yes

yes

yes

yes

yes

yes

no

no

no

no

no

no

no

no

no

Macrospace post-order?

Error Execute

no

yes

Figure 12. Function and Routine Resolution and Execution

Functions

Chapter 8. Functions 301

Return Values

A function usually returns a value that is substituted for the function call
when the expression is evaluated.

How the value returned by a function (or any REXX routine) is handled
depends on whether it is called by a function call or as a subroutine with the
CALL instruction.

A routine called as a subroutine: If the routine returns a value, that value
is stored in the special variable named RESULT. Otherwise, the RESULT
variable is dropped, and its value is the string RESULT.
A routine called as a function: If the function returns a value, that value is
substituted in the expression at the position where the function was called.
Otherwise, the language processor stops with an error message.

Here are some examples of how to call a REXX procedure:
call Beep 500, 100 /* Example 1: a subroutine call */

The built-in function BEEP is called as a REXX subroutine. The return value
from BEEP is placed in the REXX special variable RESULT.
bc = Beep(500, 100) /* Example 2: a function call */

BEEP is called as a REXX function. The return value from the function is
substituted for the function call. The clause itself is an assignment instruction;
the return value from the BEEP function is placed in the variable bc.
Beep(500, 100) /* Example 3: result passed as */

/* a command */

The BEEP function is processed and its return value is substituted in the
expression for the function call, like in the preceding example. In this case,
however, the clause as a whole evaluates to a single expression. Therefore, the
evaluated expression is passed to the current default environment as a
command.

Note: Many other languages, such as C, throw away the return value of a
function if it is not assigned to a variable. In REXX, however, a value
returned like in the third example is passed on to the current
environment or subcommand handler. If that environment is the
default, the operating system performs a disk search for what seems to
be a command.

Built-in Functions

REXX provides a set of built-in functions, including character manipulation,
conversion, and information functions. The following are general notes on the
built-in functions:

Functions

302 Object REXX Reference

v The parentheses in a function are always needed, even if no arguments are
required. The first parenthesis must follow the name of the function with
no space in between.

v The built-in functions internally work with NUMERIC DIGITS 9 and
NUMERIC FUZZ 0 and are unaffected by changes to the NUMERIC
settings, except where stated. Any argument named as a number is rounded,
if necessary, according to the current setting of NUMERIC DIGITS (as
though the number had been added to 0) and checked for validity before
use. This occurs in the following functions: ABS, FORMAT, MAX, MIN,
SIGN, and TRUNC, and for certain options of DATATYPE.

v Any argument named as a string can be a null string.
v If an argument specifies a length, it must be a positive whole number or

zero. If it specifies a start character or word in a string, it must be a positive
whole number, unless otherwise stated.

v If the last argument is optional, you can always include a comma to
indicate that you have omitted it. For example, DATATYPE(1,), like
DATATYPE(1), would return NUM. You can include any number of trailing
commas; they are ignored. If there are actual parameters, the default values
apply.

v If you specify a pad character, it must be exactly one character long. A pad
character extends a string, usually on the right. For an example, see the
LEFT built-in function “LEFT” on page 328.

v If a function has an option that you can select by specifying the first
character of a string, that character can be in uppercase or lowercase.

v Many of the built-in functions send messages the String class defines (see
“The String Class” on page 206). For the functions ABBREV, ABS, BITAND,
BITOR, BITXOR, B2X, CENTER, CENTRE, CHANGESTR, COMPARE,
COPIES, COUNTSTR, C2D, C2X, DATATYPE, DELSTR, DELWORD, D2C,
D2X, FORMAT, LEFT, LENGTH, MAX, MIN, REVERSE, RIGHT, SIGN,
SPACE, STRIP, SUBSTR, SUBWORD, TRANSLATE, TRUNC, VERIFY,
WORD, WORDINDEX, WORDLENGTH, WORDS, X2B, X2C, and X2D, the
first argument to the built-in function is used as the receiver object for the
message sent, and the remaining arguments are used in the same order as
the message arguments. For example, SUBSTR(‘ABCDE’,3,2) is equivalent to
‘ABCDE’∼SUBSTR(3,2).
For the functions INSERT, LASTPOS, OVERLAY, POS, and WORDPOS, the
second argument to the built-in functions is used as the receiver object for
the message sent, and the other arguments are used in the same order as
the message arguments. For example, POS('a','Haystack',3) is equivalent
to 'Haystack'∼POS('a',3).

v The language processor evaluates all built-in function arguments to produce
character strings.

Functions

Chapter 8. Functions 303

ABBREV (Abbreviation)

�� ABBREV(information,info
,length

) ��

Returns 1 if info is equal to the leading characters of information and the length
of info is not less than length. It returns 0 if either of these conditions is not
met.

If you specify length, it must be a positive whole number or zero. The default
for length is the number of characters in info.

Here are some examples:
ABBREV('Print','Pri') -> 1
ABBREV('PRINT','Pri') -> 0
ABBREV('PRINT','PRI',4) -> 0
ABBREV('PRINT','PRY') -> 0
ABBREV('PRINT','') -> 1
ABBREV('PRINT','',1) -> 0

Note: A null string always matches if a length of 0, or the default, is used.
This allows a default keyword to be selected automatically if desired;
for example:
say 'Enter option:'; pull option .
select /* keyword1 is to be the default */

when abbrev('keyword1',option) then ...
when abbrev('keyword2',option) then ...
...
otherwise nop;

end;

ABS (Absolute Value)

�� ABS(number) ��

Returns the absolute value of number. The result has no sign and is formatted
according to the current NUMERIC settings.

Here are some examples:
ABS('12.3') -> 12.3
ABS(' -0.307') -> 0.307

Functions

304 Object REXX Reference

ADDRESS

�� ADDRESS() ��

Returns the name of the environment to which commands are currently
submitted. Trailing blanks are removed from the result.

Here is an example:
ADDRESS() -> 'CMD' /* default under Windows */

ARG (Argument)

�� ARG(
n

,option

) ��

Returns one or more arguments, or information about the arguments to a
program, internal routine, or method.

If you do not specify n, the number of arguments passed to the program or
internal routine is returned.

If you specify only n, the nth argument string is returned. If the argument
string does not exist, the null string is returned. n must be a positive whole
number.

If you specify option, the value returned depends on the value of option. The
following are valid options. (Only the capitalized letter is needed; all
characters following it are ignored.)

Array returns a single-index array containing the arguments, starting
with the nth argument. The array indexes correspond to the
argument positions, so that the nth argument is at index 1, the
following argument at index 2, and so on. If any arguments
are omitted, their corresponding indexes are absent.

Exists returns 1 if the nth argument exists; that is, if it was explicitly
specified when the routine was called. Otherwise, it returns 0.

Normal returns the nth argument, if it exists, or a null string.

Omitted returns 1 if the nth argument was omitted; that is, if it was not
explicitly specified when the routine was called. Otherwise, it
returns 0.

Here are some examples:

Functions

Chapter 8. Functions 305

/* following "Call name;" (no arguments) */
ARG() -> 0
ARG(1) -> ''
ARG(2) -> ''
ARG(1,'e') -> 0
ARG(1,'O') -> 1
ARG(1,'a') -> .array∼of()

/* following "Call name 'a',,'b';" */
ARG() -> 3
ARG(1) -> 'a'
ARG(2) -> ''
ARG(3) -> 'b'
ARG(n) -> '' /* for n>=4 */
ARG(1,'e') -> 1
ARG(2,'E') -> 0
ARG(2,'O') -> 1
ARG(3,'o') -> 0
ARG(4,'o') -> 1
ARG(1,'A') -> .array∼of(a,,b)
ARG(3,'a') -> .array∼of(b)

Notes:

1. The number of argument strings is the largest number n for which
ARG(n,'e') returns 1 or 0 if there are no explicit argument strings. That is,
it is the position of the last explicitly specified argument string.

2. Programs called as commands can have only 0 or 1 argument strings. The
program has 0 argument strings if it is called with the name only and has
1 argument string if anything else (including blanks) is included in the
command.

3. Programs called by the RexxStart entry point can have several argument
strings. (See the Object REXX for Windows: Programming Guide for
information about RexxStart.)

4. You can access the argument objects of a program with the USE
instruction. See “USE” on page 84 for more information.

5. You can retrieve and directly parse the argument strings of a program or
internal routine with the ARG or PARSE ARG instructions.

BEEP

�� BEEP(frequency,duration) ��

Sounds the speaker at frequency (Hertz) for duration (milliseconds). The
frequency can be any whole number in the range 37 to 32767 Hertz. The
duration can be any number in the range 1 to 60000 milliseconds.

This routine is most useful when called as a subroutine. A null string is
returned.

Functions

306 Object REXX Reference

Note: Both parameters (frequency, duration) are ignored on Windows 95. On
computers with multimedia support the function plays the default
sound event. On computers without soundcard, the function plays the
standard system beep (if activated).

Here is an example for Windows NT:
/* C scale */
note.1 = 262 /* middle C */
note.2 = 294 /* D */
note.3 = 330 /* E */
note.4 = 349 /* F */
note.5 = 392 /* G */
note.6 = 440 /* A */
note.7 = 494 /* B */
note.8 = 523 /* C */

do i=1 to 8
call beep note.i,250 /* hold each note for */
/* one-quarter second */
end

BITAND (Bit by Bit AND)

�� BITAND(string1
,

string2 ,pad

) ��

Returns a string composed of the two input strings logically ANDed, bit by
bit. (The encodings of the strings are used in the logical operation.) The length
of the result is the length of the longer of the two strings. If no pad character
is provided, the AND operation stops when the shorter of the two strings is
exhausted, and the unprocessed portion of the longer string is appended to
the partial result. If pad is provided, it extends the shorter of the two strings
on the right before carrying out the logical operation. The default for string2 is
the zero-length (null) string.

Here are some examples:
BITAND('12'x) -> '12'x
BITAND('73'x,'27'x) -> '23'x
BITAND('13'x,'5555'x) -> '1155'x
BITAND('13'x,'5555'x,'74'x) -> '1154'x
BITAND('pQrS',,'DF'x) -> 'PQRS' /* ASCII */

Functions

Chapter 8. Functions 307

BITOR (Bit by Bit OR)

�� BITOR(string1
,

string2 ,pad

) ��

Returns a string composed of the two input strings logically inclusive-ORed,
bit by bit. (The encodings of the strings are used in the logical operation.) The
length of the result is the length of the longer of the two strings. If no pad
character is provided, the OR operation stops when the shorter of the two
strings is exhausted, and the unprocessed portion of the longer string is
appended to the partial result. If pad is provided, it extends the shorter of the
two strings on the right before carrying out the logical operation. The default
for string2 is the zero-length (null) string.

Here are some examples:
BITOR('12'x) -> '12'x
BITOR('15'x,'24'x) -> '35'x
BITOR('15'x,'2456'x) -> '3556'x
BITOR('15'x,'2456'x,'F0'x) -> '35F6'x
BITOR('1111'x,,'4D'x) -> '5D5D'x
BITOR('pQrS',,'20'x) -> 'pqrs' /* ASCII */

BITXOR (Bit by Bit Exclusive OR)

�� BITXOR(string1
,

string2 ,pad

) ��

Returns a string composed of the two input strings logically eXclusive-ORed,
bit by bit. (The encodings of the strings are used in the logical operation.) The
length of the result is the length of the longer of the two strings. If no pad
character is provided, the XOR operation stops when the shorter of the two
strings is exhausted, and the unprocessed portion of the longer string is
appended to the partial result. If pad is provided, it extends the shorter of the
two strings on the right before carrying out the logical operation. The default
for string2 is the zero-length (null) string.

Here are some examples:
BITXOR('12'x) -> '12'x
BITXOR('12'x,'22'x) -> '30'x
BITXOR('1211'x,'22'x) -> '3011'x
BITXOR('1111'x,'444444'x) -> '555544'x
BITXOR('1111'x,'444444'x,'40'x) -> '555504'x
BITXOR('1111'x,,'4D'x) -> '5C5C'x
BITXOR('C711'x,'222222'x,' ') -> 'E53302'x /* ASCII */

Functions

308 Object REXX Reference

B2X (Binary to Hexadecimal)

�� B2X(binary_string) ��

Returns a string, in character format, that represents binary_string converted to
hexadecimal.

The binary_string is a string of binary (0 or 1) digits. It can be of any length.
You can optionally include blanks in binary_string (at 4-digit boundaries only,
not leading or trailing) to improve readability; they are ignored.

The returned string uses uppercase alphabetical characters for the values A–F,
and does not include blanks.

If binary_string is the null string, B2X returns a null string. If the number of
binary digits in binary_string is not a multiple of 4, then up to three 0 digits
are added on the left before the conversion to make a total that is a multiple
of 4.

Here are some examples:
B2X('11000011') -> 'C3'
B2X('10111') -> '17'
B2X('101') -> '5'
B2X('1 1111 0000') -> '1F0'

You can combine B2X with the functions X2D and X2C to convert a binary
number into other forms. For example:
X2D(B2X('10111')) -> '23' /* decimal 23 */

CENTER (or CENTRE)

�� CENTER(
CENTRE(

string,length
,pad

) ��

Returns a string of length length with string centered in it and with pad
characters added as necessary to make up length. The length must be a
positive whole number or zero. The default pad character is blank. If the string
is longer than length, it is truncated at both ends to fit. If an odd number of
characters is truncated or added, the right-hand end loses or gains one more
character than the left-hand end.

Here are some examples:

Functions

Chapter 8. Functions 309

CENTER(abc,7) -> ' ABC '
CENTER(abc,8,'-') -> '--ABC---'
CENTRE('The blue sky',8) -> 'e blue s'
CENTRE('The blue sky',7) -> 'e blue '

Note: To avoid errors because of the difference between British and American
spellings, this function can be called either CENTRE or CENTER.

CHANGESTR

�� CHANGESTR(needle,haystack,newneedle) ��

Returns a copy of haystack in which newneedle replaces all occurrences of
needle. The following defines the effect:
result=''
$tempx=1;
do forever
$tempy=pos(needle,haystack,$tempx)
if $tempy=0 then leave
result=result||substr(haystack,$tempx,$tempy-$tempx)||newneedle
$tempx=$tempy+length(needle)
end
result=result||substr(haystack,$tempx)

Here are some examples:
CHANGESTR('1','101100','') -> '000'
CHANGESTR('1','101100','X') -> 'X0XX00'

CHARIN (Character Input)

�� CHARIN(
name ,

start ,length

) ��

Returns a string of up to length characters read from the character input
stream name. (To understand the input and output functions, see “Chapter 16.
Input and Output Streams” on page 463.) If you omit name, characters are read
from STDIN, which is the default input stream. The default length is 1.

For persistent streams, a read position is maintained for each stream. Any
read from the stream starts at the current read position by default. When the
language processor completes reading, the read position is increased by the
number of characters read. You can give a start value to specify an explicit
read position. This read position must be positive and within the bounds of
the stream, and must not be specified for a transient stream. A value of 1 for
start refers to the first character in the stream.

Functions

310 Object REXX Reference

If you specify a length of 0, then the read position is set to the value of start,
but no characters are read and the null string is returned.

In a transient stream, if there are fewer than length characters available, the
execution of the program generally stops until sufficient characters become
available. If, however, it is impossible for those characters to become available
because of an error or another problem, the NOTREADY condition is raised
(see “Errors during Input and Output” on page 472) and CHARIN returns
with fewer than the requested number of characters.

Here are some examples:
CHARIN(myfile,1,3) -> 'MFC' /* the first 3 */

/* characters */
CHARIN(myfile,1,0) -> '' /* now at start */
CHARIN(myfile) -> 'M' /* after last call */
CHARIN(myfile,,2) -> 'FC' /* after last call */

/* Reading from the default input (here, the keyboard) */
/* User types 'abcd efg' */
CHARIN() -> 'a' /* default is */

/* 1 character */
CHARIN(,,5) -> 'bcd e'

Notes:

1. CHARIN returns all characters that appear in the stream, including control
characters such as line feed, carriage return, and end of file.

2. When CHARIN reads from the keyboard, program execution stops until
you press the Enter key.

CHAROUT (Character Output)

�� CHAROUT(
name ,

string ,start

) ��

Returns the count of characters remaining after attempting to write string to
the character output stream name. (To understand the input and output
functions, see “Chapter 16. Input and Output Streams” on page 463.) If you
omit name, characters in string are written to STDOUT (generally the display),
which is the default output stream. The string can be a null string, in which
case no characters are written to the stream, and 0 is always returned.

For persistent streams, a write position is maintained for each stream. Any
write to the stream starts at the current write position by default. When the
language processor completes writing, the write position is increased by the

Functions

Chapter 8. Functions 311

number of characters written. When the stream is first opened, the write
position is at the end of the stream so that calls to CHAROUT append
characters to the end of the stream.

You can give a start value to specify an explicit write position for a persistent
stream. This write position must be a positive whole number. A value of 1 for
start refers to the first character in the stream.

You can omit the string for persistent streams. In this case, the write position
is set to the value of start that was given, no characters are written to the
stream, and 0 is returned. If you do not specify start or string, the stream is
closed and 0 is returned.

Execution of the program usually stops until the output operation is complete.

For example, when data is sent to a printer, the system accepts the data and
returns control to REXX, even though the output data might not have been
printed. REXX considers this to be complete, even though the data has not
been printed. If, however, it is impossible for all the characters to be written,
the NOTREADY condition is raised (see “Errors during Input and Output” on
page 472) and CHAROUT returns with the number of characters that could
not be written (the residual count).

Here are some examples:
CHAROUT(myfile,'Hi') -> 0 /* typically */
CHAROUT(myfile,'Hi',5) -> 0 /* typically */
CHAROUT(myfile,,6) -> 0 /* now at char 6 */
CHAROUT(myfile) -> 0 /* at end of stream */
CHAROUT(,'Hi') -> 0 /* typically */
CHAROUT(,'Hello') -> 2 /* maybe */

Note: This routine is often best called as a subroutine. The residual count is
then available in the variable RESULT.

For example:
Call CHAROUT myfile,'Hello'
Call CHAROUT myfile,'Hi',6
Call CHAROUT myfile

CHARS (Characters Remaining)

�� CHARS(
name

) ��

Returns the total number of characters remaining in the character input
stream name. The count includes any line separator characters, if these are

Functions

312 Object REXX Reference

defined for the stream. In the case of persistent streams, it is the count of
characters from the current read position. (See “Chapter 16. Input and Output
Streams” on page 463 for a discussion of REXX input and output.) If you omit
name, the number of characters available in the default input stream (STDIN)
is returned.

The total number of characters remaining cannot be determined for some
streams (for example, STDIN). For these streams, the CHARS function returns
1 to indicate that data is present, or 0 if no data is present. For windows
devices, CHARS always returns 1.

Here are some examples:
CHARS(myfile) -> 42 /* perhaps */
CHARS(nonfile) -> 0
CHARS() -> 1 /* perhaps */

COMPARE

�� COMPARE(string1,string2
,pad

) ��

Returns 0 if the strings string1 and string2 are identical. Otherwise, it returns
the position of the first character that does not match. The shorter string is
padded on the right with pad if necessary. The default pad character is a blank.

Here are some examples:
COMPARE('abc','abc') -> 0
COMPARE('abc','ak') -> 2
COMPARE('ab ','ab') -> 0
COMPARE('ab ','ab',' ') -> 0
COMPARE('ab ','ab','x') -> 3
COMPARE('ab-- ','ab','-') -> 5

CONDITION

�� CONDITION(
option

) ��

Returns the condition information associated with the current trapped
condition. (See “Chapter 12. Conditions and Condition Traps” on page 429 for
a description of condition traps.) You can request the following pieces of
information:
v The name of the current trapped condition
v Any descriptive string associated with that condition

Functions

Chapter 8. Functions 313

v Any condition-specific information associated with the current trapped
condition

v The instruction processed as a result of the condition trap (CALL or
SIGNAL)

v The status of the trapped condition

In addition, you can request a condition object containing all of the preceding
information.

To select the information to be returned, use the following options. (Only the
capitalized letter is needed; all characters following it are ignored.)

Additional returns any additional object information associated with the
current trapped condition. See “Additional Object
Information” on page 436 for a list of possible values. If no
additional object information is available or no condition has
been trapped, the language processor returns the NIL object.

Condition name
returns the name of the current trapped condition. For user
conditions, the returned string is a concatenation of the word
USER and the user condition name, separated by a blank.

Description returns any descriptive string associated with the current
trapped condition. See “Descriptive Strings” on page 435 for
the list of possible values. If no description is available or no
condition has been trapped, it returns a null string.

Instruction returns either CALL or SIGNAL, the keyword for the instruction
processed when the current condition was trapped. This is the
default if you omit option. If no condition has been trapped, it
returns a null string.

Object returns an object that contains all the information about the
current trapped condition. See “Chapter 12. Conditions and
Condition Traps” on page 429 for more information. If no
condition has been trapped, it returns the NIL object.

Status returns the status of the current trapped condition. This can
change during processing, and is one of the following:

ON - the condition is enabled
OFF - the condition is disabled
DELAY - any new occurrence of the condition is delayed or
ignored

If no condition has been trapped, a null string is returned.

Here are some examples:

Functions

314 Object REXX Reference

CONDITION() -> 'CALL' /* perhaps */
CONDITION('C') -> 'FAILURE'
CONDITION('I') -> 'CALL'
CONDITION('D') -> 'FailureTest'
CONDITION('S') -> 'OFF' /* perhaps */

Note: The CONDITION function returns condition information that is saved
and restored across subroutine calls (including those a CALL ON
condition trap causes). Therefore, after a subroutine called with CALL
ON trapname has returned, the current trapped condition reverts to the
condition that was current before the CALL took place (which can be
none). CONDITION returns the values it returned before the condition
was trapped.

COPIES

�� COPIES(string,n) ��

Returns n concatenated copies of string. The n must be a positive whole
number or zero.

Here are some examples:
COPIES('abc',3) -> 'abcabcabc'
COPIES('abc',0) -> ''

COUNTSTR

�� COUNTSTR(needle,haystack) ��

Returns a count of the occurrences of needle in haystack that do not overlap.
The following defines the effect:
result=0
$tempx=pos(needle,haystack)
do while $temp > 0
result=result+1
$temp=pos(needle,haystack,$temp+length(needle))
end

Here are some examples:
COUNTSTR('1','101101') -> 4
COUNTSTR('KK','J0KKK0') -> 1

Functions

Chapter 8. Functions 315

C2D (Character to Decimal)

�� C2D(string
,n

) ��

Returns the decimal value of the binary representation of string. If the result
cannot be expressed as a whole number, an error results. That is, the result
must not have more digits than the current setting of NUMERIC DIGITS. If
you specify n, it is the length of the returned result. If you do not specify n,
string is processed as an unsigned binary number.

If string is null, 0 is returned.

Here are some examples:
C2D('09'X) -> 9
C2D('81'X) -> 129
C2D('FF81'X) -> 65409
C2D('') -> 0
C2D('a') -> 97 /* ASCII */

If you specify n, the string is taken as a signed number expressed in n
characters. The number is positive if the leftmost bit is off, and negative if the
leftmost bit is on. In both cases, it is converted to a whole number, which can
be negative. The string is padded on the left with '00'x characters (not
“sign-extended”), or truncated on the left to n characters. This padding or
truncation is as though RIGHT(string,n,'00'x) had been processed. If n is 0,
C2D always returns 0.

Here are some examples:
C2D('81'X,1) -> -127
C2D('81'X,2) -> 129
C2D('FF81'X,2) -> -127
C2D('FF81'X,1) -> -127
C2D('FF7F'X,1) -> 127
C2D('F081'X,2) -> -3967
C2D('F081'X,1) -> -127
C2D('0031'X,0) -> 0

C2X (Character to Hexadecimal)

�� C2X(string) ��

Returns a string, in character format, that represents string converted to
hexadecimal. The returned string contains twice as many bytes as the input
string. On an ASCII system, C2X(1) returns 31 because the ASCII
representation of the character 1 is '31'X.

Functions

316 Object REXX Reference

The string returned uses uppercase alphabetical characters for the values A–F
and does not include blanks. The string can be of any length. If string is null, a
null string is returned.

Here are some examples:
C2X('0123'X) -> '0123' /* '30313233'X in ASCII */
C2X('ZD8') -> '5A4438' /* '354134343338'X in ASCII */

DATATYPE

�� DATATYPE(string
,type

) ��

Returns NUM if you specify only string and if string is a valid REXX number
that can be added to 0 without error; returns CHAR if string is not a valid
number.

If you specify type, it returns 1 if string matches the type. Otherwise, it returns
0. If string is null, the function returns 0 (except when the type is X or B, for
which DATATYPE returns 1 for a null string). The following are valid types.
(Only the capitalized letter, or the number of the last type listed, is needed; all
characters following it are ignored. Note that for the hexadecimal option, you
must start your string specifying the name of the option with x rather than h.)

Alphanumeric returns 1 if string contains only characters from the ranges
a–z, A–Z, and 0–9.

Binary returns 1 if string contains only the character 0 or 1, or a
blank. Blanks can appear only between groups of 4 binary
characters. It also returns 1 if string is a null string, which is a
valid binary string.

Lowercase returns 1 if string contains only characters from the range a–z.

Mixed case returns 1 if string contains only characters from the ranges a–z
and A–Z.

Number returns 1 if DATATYPE(string) returns NUM.

Symbol returns 1 if string is a valid symbol, that is, if SYMBOL(string)
does not return BAD. (See “Symbols” on page 14.) Note that
both uppercase and lowercase alphabetics are permitted.

Uppercase returns 1 if string contains only characters from the range A–Z.

Variable returns 1 if string could appear on the left-hand side of an
assignment without causing a SYNTAX condition.

Functions

Chapter 8. Functions 317

Whole number
returns 1 if string is a REXX whole number under the current
setting of NUMERIC DIGITS.

heXadecimal returns 1 if string contains only characters from the ranges
a–f, A–F, 0–9, and blank (as long as blanks appear only
between pairs of hexadecimal characters). It also returns 1 if
string is a null string, which is a valid hexadecimal string.

9 digits returns 1 if DATATYPE(string,'W') returns 1 when NUMERIC
DIGITS is set to 9.

Here are some examples:
DATATYPE(' 12 ') -> 'NUM'
DATATYPE('') -> 'CHAR'
DATATYPE('123*') -> 'CHAR'
DATATYPE('12.3','N') -> 1
DATATYPE('12.3','W') -> 0
DATATYPE('Fred','M') -> 1
DATATYPE(','M') -> 0
DATATYPE('Fred','L') -> 0
DATATYPE('?20K','s') -> 1
DATATYPE('BCd3','X') -> 1
DATATYPE('BC d3','X') -> 1

Note: The DATATYPE function tests the meaning or type of characters in a
string, independent of the encoding of those characters (for example,
ASCII or EBCDIC).

DATE

�� DATE(
option

,string
,option2

, , ,osep
,string ,option2 ,osep ,isep

, ,

) ��

Returns, by default, the local date in the format: dd mon yyyy (day month
year—for example, 13 Nov 1998), with no leading zero or blank on the day.
The first three characters of the English name of the month are used.

You can use the following options to obtain specific formats. (Only the
capitalized letter is needed; all characters following it are ignored.)

Base returns the number of complete days (that is, not including
the current day) since and including the base date, 1 January
0001, in the format: dddddd (no leading zeros or blanks). The

Functions

318 Object REXX Reference

expression DATE('B')//7 returns a number in the range 0–6
that corresponds to the current day of the week, where 0 is
Monday and 6 is Sunday.

Note: The base date of 1 January 0001 is determined by
extending the current Gregorian calendar backward
(365 days each year, with an extra day every year that
is divisible by 4 except century years that are not
divisible by 400). It does not take into account any
errors in the calendar system that created the Gregorian
calendar originally.

Days returns the number of days, including the current day, that
have passed this year in the format ddd (no leading zeros or
blanks).

European returns the date in the format dd/mm/yy.

Language returns the date in an implementation- and
language-dependent, or local, date format. The format is dd
month yyyy. The name of the month is according to the
national language installed on the system. If no local date
format is available, the default format is returned.

Note: This format is intended to be used as a whole; REXX
programs must not make any assumptions about the
form or content of the returned string.

Month returns the full English name of the current month, for
example, August.

Normal returns the date in the format dd mon yyyy. This is the default.

Ordered returns the date in the format yy/mm/dd (suitable for sorting,
for example).

Standard returns the date in the format yyyymmdd (suitable for sorting,
for example).

Usa returns the date in the format mm/dd/yy.

Weekday returns the English name for the day of the week, in mixed
case, for example, Tuesday.

Here are some examples, assuming today is 13 November 1996:
DATE() -> '13 Nov 1996'
DATE('B') -> 728609
DATE('D') -> 317
DATE('E') -> '13/11/96'
DATE('L') -> '13 November 1996'
DATE('M') -> 'November'

Functions

Chapter 8. Functions 319

DATE('N') -> '13 Nov 1996'
DATE('O') -> '96/11/13'
DATE('S') -> '19961113'
DATE('U') -> '11/13/96'
DATE('W') -> 'Monday'

Note: The first call to DATE or TIME in one clause causes a time stamp to be
made that is then used for all calls to these functions in that clause.
Therefore, several calls to any of the DATE or TIME functions, or both,
in a single expression or clause are consistent with each other.

If you specify string, DATE returns the date corresponding to string in the
format option. The string must be supplied in the format option2. The option2
format must specify day, month, and year (that is, not 'D', 'L', 'M', or 'W'). The
default for option2 is 'N', so you need to specify option2 if string is not in the
Normal format. Here are some examples:
DATE('O','13 Feb 1923') -> '23/02/13'
DATE('O','06/01/50','U') -> '50/06/01'

If you specify an output separator character osep, the days, month, and year
returned are separated by this character. Any nonalphanumeric character or
an empty string can be used. A separator character is only valid for the
formats 'E', 'N', 'O', 'S', and 'U'. Here are some examples:
DATE('S','13 Feb 1996','N','-') -> '1996-02-13'
DATE('N','13 Feb 1996','N','') -> '13Feb1996'
DATE('N','13 Feb 1996','N','-') -> '13-Feb-1996'
DATE('O','06/01/50','U','') -> '500601'
DATE('E','02/13/96','U','.') -> '13.02.96'
DATE('N',,,'_') -> '26_Mar_1998' (today)

In this way, formats can be created that are derived from their respective
default format, which is the format associated with option using its default
separator character. The default separator character for each of these formats
is:
Option Default separator

European '/'
Normal ' '
Ordered '/'
Standard '' (empty string)
Usa '/'

If you specify a string containing a separator that is different from the default
separator character of option2, you must also specify isep to indicate which
separator character is valid for string. Basically, any date format that can be
generated with any valid separator character can be used as input date string
as long as its format has the generalized form specified by option2 and its
separator character matches the character specified by isep.

Functions

320 Object REXX Reference

Here are some examples:
DATE('S','1996-11-13','S',,'','-') -> '19961113'
DATE('S','13-Nov-1996','N','','-') -> '19961113'
DATE('O','06*01*50','U','','*') -> '500601'
DATE('U','13.Feb.1996','N',,'.') -> '02/13/96'

You can determine the number of days between two dates; for example:
say date('B','12/25/96','U')-date('B') " shopping days till Christmas!"

If string does not include the century but option defines that the century be
returned as part of the date, the century is determined depending on whether
the year to be returned is within the past 50 years or the next 49 years.
Assume, for example, that you specify 10/15/43 for string and today’s date is
10/27/1998. In this case, 1943 would be 55 years ago and 2043 would be 45
years in the future. So, 10/15/2043 would be the returned date.

Note: This rule is suitable for dates that are close to today’s date. However,
when working with birth dates, it is recommended that you explicitly
provide the century.

DELSTR (Delete String)

�� DELSTR(string,n
,length

) ��

Returns string after deleting the substring that begins at the nth character and
is of length characters. If you omit length, or if length is greater than the
number of characters from n to the end of string, the function deletes the rest
of string (including the nth character). The length must be a positive whole
number or zero. n must be a positive whole number. If n is greater than the
length of string, the function returns string unchanged.

Here are some examples:
DELSTR('abcd',3) -> 'ab'
DELSTR('abcde',3,2) -> 'abe'
DELSTR('abcde',6) -> 'abcde'

DELWORD (Delete Word)

�� DELWORD(string,n
,length

) ��

Returns string after deleting the substring that starts at the nth word and is of
length blank-delimited words. If you omit length, or if length is greater than the
number of words from n to the end of string, the function deletes the

Functions

Chapter 8. Functions 321

remaining words in string (including the nth word). The length must be a
positive whole number or zero. n must be a positive whole number. If n is
greater than the number of words in string, the function returns string
unchanged. The string deleted includes any blanks following the final word
involved but none of the blanks preceding the first word involved.

Here are some examples:
DELWORD('Now is the time',2,2) -> 'Now time'
DELWORD('Now is the time ',3) -> 'Now is '
DELWORD('Now is the time',5) -> 'Now is the time'
DELWORD('Now is the time',3,1) -> 'Now is time'

DIGITS

�� DIGITS() ��

Returns the current setting of NUMERIC DIGITS. See “NUMERIC” on page 62
for more information.

Here is an example:
DIGITS() -> 9 /* by default */

DIRECTORY

�� DIRECTORY(
newdirectory

) ��

Returns the current directory, changing it to newdirectory if an argument is
supplied and the named directory exists. If newdirectory is not specified, the
name of the current directory is returned. Otherwise, an attempt is made to
change to the specified newdirectory. If successful, the name of the newdirectory
is returned; if an error occurred, null is returned.

For example, the following program fragment saves the current directory and
switches to a new directory; it performs an operation there, and then returns
to the former directory.
/* get current directory */
curdir = directory()
/* go play a game */
newdir = directory("/usr/bin")
if newdir = "/usr/games" then

do
fortune /* tell a fortune */

/* return to former directory */

Functions

322 Object REXX Reference

call directory curdir
end
else

say 'Can't find /usr/games'

D2C (Decimal to Character)

�� D2C(wholenumber
,n

) ��

Returns a string, in character format, that is the ASCII representation of the
decimal number. If you specify n, it is the length of the final result in
characters; leading blanks are added to the output character. n must be a
positive whole number or zero.

Wholenumber must not have more digits than the current setting of NUMERIC
DIGITS.

If you omit n, wholenumber must be a positive whole number or zero, and the
result length is as needed. Therefore, the returned result has no leading '00'x
characters.

Here are some examples:
D2C(65) -> 'A' /* '41'x is an ASCII 'A' */
D2C(65,1) -> 'A'
D2C(65,2) -> ' A'
D2C(65,5) -> ' A'
D2C(109) -> 'm' /* '6D'x is an ASCII 'm' */
D2C(-109,1) -> 'ô' /* '93'x is an ASCII 'ô' */
D2C(76,2) -> ' L' /* '4C'x is an ASCII ' L' */
D2C(-180,2) -> ' L'

Implementation maximum:The output string must not have more than 250
significant characters, although it can be longer if it contains leading sign
characters ('00'x and 'FF'x).

D2X (Decimal to Hexadecimal)

�� D2X(wholenumber
,n

) ��

Returns a string, in character format, that represents wholenumber, a decimal
number, converted to hexadecimal. The returned string uses uppercase
alphabetics for the values A–F and does not include blanks.

Functions

Chapter 8. Functions 323

Wholenumber must not have more digits than the current setting of NUMERIC
DIGITS.

If you specify n, it is the length of the final result in characters. After
conversion the input string is sign-extended to the required length. If the
number is too big to fit n characters, it is truncated on the left. n must be a
positive whole number or zero.

If you omit n, wholenumber must be a positive whole number or zero, and the
returned result has no leading zeros.

Here are some examples:
D2X(9) -> '9'
D2X(129) -> '81'
D2X(129,1) -> '1'
D2X(129,2) -> '81'
D2X(129,4) -> '0081'
D2X(257,2) -> '01'
D2X(-127,2) -> '81'
D2X(-127,4) -> 'FF81'
D2X(12,0) -> ''

Implementation maximum: The output string must not have more than 500
significant hexadecimal characters, although it can be longer if it contains
leading sign characters (0 and F).

ERRORTEXT

�� ERRORTEXT(n) ��

Returns the REXX error message associated with error number n. n must be in
the range 0–99. It returns the null string if n is in the allowed range but is not
a defined REXX error number. See “Appendix C. Error Numbers and
Messages” on page 527 for a complete description of error numbers and
messages.

Here are some examples:
ERRORTEXT(16) -> 'Label not found'
ERRORTEXT(60) -> ''

FILESPEC

�� FILESPEC(option,filespec) ��

Functions

324 Object REXX Reference

Returns a selected element of filespec, a given file specification, identified by
one of the following strings for option:

Drive The drive letter of the given filespec.

Path The directory path of the given filespec.

Name The file name of the given filespec.

If the requested string is not found, then FILESPEC returns a null string ("").

Note: Only the initial letter of option is needed.

Here are some examples:
thisfile = "C:\WINDOWS\UTIL\SYSTEM.INI"
say FILESPEC("drive",thisfile) /* says "C:" */
say FILESPEC("path",thisfile) /* says "\WINDOWS\UTIL\" */
say FILESPEC("name",thisfile) /* says "SYSTEM.INI" */
part = "name"
say FILESPEC(part,thisfile) /* says "SYSTEM.INI" */

FORM

�� FORM() ��

Returns the current setting of NUMERIC FORM. See “NUMERIC” on page 62
for more information.

Here is an example:
FORM() -> 'SCIENTIFIC' /* by default */

FORMAT

�� FORMAT(number �

�
,

before ,
after ,

expp ,expt

) ��

Returns number, rounded and formatted.

The number is first rounded according to standard REXX rules, as though the
operation number+0 had been carried out. The result is precisely that of this
operation if you specify only number. If you specify any other options, the
number is formatted as described in the following.

Functions

Chapter 8. Functions 325

The before and after options describe how many characters are used for the
integer and decimal parts of the result, respectively. If you omit either or both
of them, the number of characters used for that part is as needed.

If before is not large enough to contain the integer part of the number (plus the
sign for a negative number), an error results. If before is larger than needed for
that part, the number is padded on the left with blanks. If after is not the
same size as the decimal part of the number, the number is rounded (or
extended with zeros) to fit. Specifying 0 causes the number to be rounded to
an integer.

Here are some examples:
FORMAT('3',4) -> ' 3'
FORMAT('1.73',4,0) -> ' 2'
FORMAT('1.73',4,3) -> ' 1.730'
FORMAT('-.76',4,1) -> ' -0.8'
FORMAT('3.03',4) -> ' 3.03'
FORMAT(' - 12.73',,4) -> '-12.7300'
FORMAT(' - 12.73') -> '-12.73'
FORMAT('0.000') -> '0'

The first three arguments are as described previously. In addition, expp and
expt control the exponent part of the result, which, by default, is formatted
according to the current NUMERIC settings of DIGITS and FORM. expp sets
the number of places for the exponent part; the default is to use as many as
needed (which can be zero). expt specifies when the exponential expression is
used. The default is the current setting of NUMERIC DIGITS.

If expp is 0, the number is not in exponential notation. If expp is not large
enough to contain the exponent, an error results.

If the number of places needed for the integer or decimal part exceeds expt or
twice expt, respectively, the exponential notation is used. If expt is 0, the
exponential notation is always used unless the exponent would be 0. (If expp
is 0, this overrides a 0 value of expt.) If the exponent would be 0 when a
nonzero expp is specified, then expp+2 blanks are supplied for the exponent
part of the result. If the exponent would be 0 and expp is not specified, the
number is not an exponential expression.

Here are some examples:
FORMAT('12345.73',,,2,2) -> '1.234573E+04'
FORMAT('12345.73',,3,,0) -> '1.235E+4'
FORMAT('1.234573',,3,,0) -> '1.235'
FORMAT('12345.73',,,3,6) -> '12345.73'
FORMAT('1234567e5',,3,0) -> '123456700000.000'

Functions

326 Object REXX Reference

FUZZ

�� FUZZ() ��

Returns the current setting of NUMERIC FUZZ. See “NUMERIC” on page 62
for more information.

Here is an example:
FUZZ() -> 0 /* by default */

INSERT

�� INSERT(new,target
,

n ,
length ,pad

) ��

Inserts the string new, padded or truncated to length length, into the string
target after the nth character. The default value for n is 0, which means
insertion before the beginning of the string. If specified, n and length must be
positive whole numbers or zero. If n is greater than the length of the target
string, the string new is padded at the beginning. The default value for length
is the length of new. If length is less than the length of the string new, then
INSERT truncates new to length length. The default pad character is a blank.

Here are some examples:
INSERT(' ','abcdef',3) -> 'abc def'
INSERT('123','abc',5,6) -> 'abc 123 '
INSERT('123','abc',5,6,'+') -> 'abc++123+++'
INSERT('123','abc') -> '123abc'
INSERT('123','abc',,5,'-') -> '123--abc'

LASTPOS (Last Position)

�� LASTPOS(needle,haystack
,start

) ��

Returns the position of the last occurrence of one string, needle, in another,
haystack. (See also “POS (Position)” on page 333.) It returns 0 if needle is a null
string or not found. By default, the search starts at the last character of
haystack and scans backward. You can override this by specifying start, the
point at which the backward scan starts. start must be a positive whole
number and defaults to LENGTH(haystack) if larger than that value or omitted.

Here are some examples:

Functions

Chapter 8. Functions 327

LASTPOS(' ','abc def ghi') -> 8
LASTPOS(' ','abcdefghi') -> 0
LASTPOS('xy','efgxyz') -> 4
LASTPOS(' ','abc def ghi',7) -> 4

LEFT

�� LEFT(string,length
,pad

) ��

Returns a string of length length, containing the leftmost length characters of
string. The string returned is padded with pad characters, or truncated, on the
right as needed. The default pad character is a blank. length must be a positive
whole number or zero. The LEFT function is exactly equivalent to:

�� SUBSTR(string,1,length
,pad

) ��

Here are some examples:
LEFT('abc d',8) -> 'abc d '
LEFT('abc d',8,'.') -> 'abc d...'
LEFT('abc def',7) -> 'abc de'

LENGTH

�� LENGTH(string) ��

Returns the length of string.

Here are some examples:
LENGTH('abcdefgh') -> 8
LENGTH('abc defg') -> 8
LENGTH('') -> 0

LINEIN (Line Input)

�� LINEIN(
name ,

line ,count

) ��

Returns count lines read from the character input stream name. The count must
be 1 or 0. (To understand the input and output functions, see “Chapter 16.
Input and Output Streams” on page 463.) If you omit name, the line is read
from the default input stream, STDIN. The default count is 1.

Functions

328 Object REXX Reference

For persistent streams, a read position is maintained for each stream. Any
read from the stream starts at the current read position by default. Under
certain circumstances, a call to LINEIN returns a partial line. This can happen
if the stream has already been read with the CHARIN function, and part but
not all of a line (and its termination, if any) has already been read. When the
language processor completes reading, the read position is moved to the
beginning of the next line. The read position can be set to the beginning of the
stream by giving line a value of 1.

If you give a count of 0, then no characters are read and a null string is
returned.

For transient streams, if a complete line is not available in the stream, then
execution of the program usually stops until the line is complete. If, however,
it is impossible for a line to be completed because of an error or another
problem, the NOTREADY condition is raised (see “Errors during Input and
Output” on page 472) and LINEIN returns whatever characters are available.

Here are some examples:
LINEIN() /* Reads one line from the */

/* default input stream; */
/* usually this is an entry */
/* typed at the keyboard */

myfile = 'ANYFILE.TXT'
LINEIN(myfile) -> 'Current line' /* Reads one line from */

/* ANYFILE.TXT, beginning */
/* at the current read */
/* position. (If first call, */
/* file is opened and the */
/* first line is read.) */

LINEIN(myfile,1,1) -> 'first line' /* Opens and reads the first */
/* line of ANYFILE.TXT (if */
/* the file is already open, */
/* reads first line); sets */
/* read position on the */
/* second line. */

LINEIN(myfile,1,0) -> '' /* No read; opens ANYFILE.TXT */
/* (if file is already open, */
/* sets the read position to */
/* the first line). */

LINEIN(myfile,,0) -> '' /* No read; opens ANYFILE.TXT */
/* (no action if the file is */
/* already open). */

LINEIN("QUEUE:") -> 'Queue line' /* Read a line from the queue. */
/* If the queue is empty, the */
/* program waits until a line */
/* is put on the queue. */

Functions

Chapter 8. Functions 329

Note: If you want to read complete lines from the default input stream, as in
a dialog with a user, use the PULL or PARSE PULL instruction.

The PARSE LINEIN instruction is also useful in certain cases. (See page 64.)

LINEOUT (Line Output)

�� LINEOUT(
name ,

string ,line

) ��

Returns 0 if successful in writing string to the character output stream name,
or 1 if an error occurs while writing the line. (To understand the input and
output functions, see “Chapter 16. Input and Output Streams” on page 463.) If
you omit string but include line, only the write position is repositioned. If
string is a null string, LINEOUT repositions the write position (if you include
line) and does a carriage return. Otherwise, the stream is closed. LINEOUT
adds a line-feed and a carriage-return character to the end of string.

If you omit name, the line is written to the default output stream STDOUT
(usually the display).

For persistent streams, a write position is maintained for each stream. Any
write to the stream starts at the current write position by default. (Under
certain circumstances the characters written by a call to LINEOUT can be
added to a partial line previously written to the stream with the CHAROUT
routine. LINEOUT stops a line at the end of each call.) When the language
processor completes writing, the write position is set to the beginning of the
line following the one just written. When the stream is first opened, the write
position is at the end of the stream, so that calls to LINEOUT append lines to
the end of the stream.

You can specify a line number to set the write position to the start of a
particular line in a persistent stream. This line number must be positive and
within the bounds of the stream unless it is a binary stream (though it can
specify the line number immediately after the end of the stream). A value of 1
for line refers to the first line in the stream. Note that, unlike CHAROUT, you
cannot specify a position beyond the end of the stream for non-binary
streams.

You can omit the string for persistent streams. If you specify line, the write
position is set to the start of the line that was given, nothing is written to the
stream, and the function returns 0. If you specify neither line nor string, the
stream is closed. Again, the function returns 0.

Functions

330 Object REXX Reference

Execution of the program usually stops until the output operation is
effectively complete. For example, when data is sent to a printer, the system
accepts the data and returns control to REXX, even though the output data
might not have been printed. REXX considers this to be complete, even
though the data has not been printed. If, however, it is impossible for a line to
be written, the NOTREADY condition is raised (see “Errors during Input and
Output” on page 472), and LINEOUT returns a result of 1, that is, the residual
count of lines written.

Here are some examples:
LINEOUT(,'Display this') /* Writes string to the default */

/* output stream (usually, the */
/* display); returns 0 if */
/* successful */

myfile = 'ANYFILE.TXT'
LINEOUT(myfile,'A new line') /* Opens the file ANYFILE.TXT and */

/* appends the string to the end. */
/* If the file is already open, */
/* the string is written at the */
/* current write position. */
/* Returns 0 if successful. */

LINEOUT(myfile,'A new start',1) /* Opens the file (if not already */
/* open); overwrites first line */
/* with a new line. */
/* Returns 0 if successful. */

LINEOUT(myfile,,1) /* Opens the file (if not already */
/* open). No write; sets write */
/* position at first character. */

LINEOUT(myfile) /* Closes ANYFILE.TXT */

LINEOUT is often most useful when called as a subroutine. The return value
is then available in the variable RESULT. For example:
Call LINEOUT 'A:rexx.bat','Shell',1
Call LINEOUT ,'Hello'

Note: If the lines are to be written to the default output stream without the
possibility of error, use the SAY instruction instead.

LINES (Lines Remaining)

�� LINES(
name

) ��

Returns 1 if any data remains between the current read position and the end
of the character input stream name. It returns 0 if no data remains. In effect,

Functions

Chapter 8. Functions 331

LINES reports whether a read action that CHARIN (see “CHARIN (Character
Input)” on page 310) or LINEIN (see “LINEIN (Line Input)” on page 328)
performs will succeed. (To understand the input and output functions, see
“Chapter 16. Input and Output Streams” on page 463.)

Here are some examples:
LINES(myfile) -> 0 /* at end of the file */
LINES() -> 1 /* data remains in the */

/* default input stream */
/* STDIN: */

Note: The CHARS function returns the number of characters in a persistent
stream or the presence of data in a transient stream.

MAX (Maximum)

�� MAX(&

,

number) ��

Returns the largest number of the list specified, formatted according to the
current NUMERIC settings. You can specify any number of numbers.

Here are some examples:
MAX(12,6,7,9) -> 12
MAX(17.3,19,17.03) -> 19
MAX(-7,-3,-4.3) -> -3
MAX(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21) -> 21

MIN (Minimum)

�� MIN(&

,

number) ��

Returns the smallest number of the list specified, formatted according to the
current NUMERIC settings. You can specify any number of numbers.

Here are some examples:
MIN(12,6,7,9) -> 6
MIN(17.3,19,17.03) -> 17.03
MIN(-7,-3,-4.3) -> -7
MIN(21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1) -> 1

Functions

332 Object REXX Reference

OVERLAY

�� OVERLAY(new,target
,

n ,
length ,pad

) ��

Returns the string target, which, starting at the nth character, is overlaid with
the string new, padded or truncated to length length. The overlay must extend
beyond the end of the original target string. If you specify length, it must be a
positive whole number or zero. The default value for length is the length of
new. If n is greater than the length of the target string, the string new is
padded at the beginning. The default pad character is a blank, and the default
value for n is 1. If you specify n, it must be a positive whole number.

Here are some examples:
OVERLAY(' ','abcdef',3) -> 'ab def'
OVERLAY('.','abcdef',3,2) -> 'ab. ef'
OVERLAY('qq','abcd') -> 'qqcd'
OVERLAY('qq','abcd',4) -> 'abcqq'
OVERLAY('123','abc',5,6,'+') -> 'abc+123+++'

POS (Position)

�� POS(needle,haystack
,start

) ��

Returns the position of one string, needle, in another, haystack. (See also
“LASTPOS (Last Position)” on page 327.) It returns 0 if needle is a null string
or not found or if start is greater than the length of haystack. By default, the
search starts at the first character of haystack, that is, the value of start is 1.
You can override this by specifying start (which must be a positive whole
number), the point at which the search starts.

Here are some examples:
POS('day','Saturday') -> 6
POS('x','abc def ghi') -> 0
POS(' ','abc def ghi') -> 4
POS(' ','abc def ghi',5) -> 8

QUEUED

�� QUEUED() ��

Functions

Chapter 8. Functions 333

Returns the number of lines remaining in the external data queue when the
function is called. (See “Chapter 16. Input and Output Streams” on page 463
for a discussion of REXX input and output.)

Here is an example:
QUEUED() -> 5 /* Perhaps */

RANDOM

�� RANDOM(
,
min, ,seed
max

) ��

Returns a quasi-random nonnegative whole number in the range min to max
inclusive. If you specify max or min,max, then max minus min cannot exceed
100000. min and max default to 0 and 999, respectively. To start a repeatable
sequence of results, use a specific seed as the third argument, as described in
Note 1. This seed must be a positive whole number from 0 to 999999999.

Here are some examples:
RANDOM() -> 305
RANDOM(5,8) -> 7
RANDOM(2) -> 0 /* 0 to 2 */
RANDOM(,,1983) -> 123 /* reproducible */

Notes:

1. To obtain a predictable sequence of quasi-random numbers, use RANDOM
a number of times, but specify a seed only the first time. For example, to
simulate 40 throws of a 6-sided, unbiased die:
sequence = RANDOM(1,6,12345) /* any number would */

/* do for a seed */
do 39
sequence = sequence RANDOM(1,6)
end
say sequence

The numbers are generated mathematically, using the initial seed, so that as
far as possible they appear to be random. Running the program again
produces the same sequence; using a different initial seed almost certainly
produces a different sequence. If you do not supply a seed, the first time
RANDOM is called, an arbitrary seed is used. Hence, your program
usually gives different results each time it is run.

2. The random number generator is global for an entire program; the current
seed is not saved across internal routine calls.

Functions

334 Object REXX Reference

REVERSE

�� REVERSE(string) ��

Returns string reversed.

Here are some examples:
REVERSE('ABc.') -> '.cBA'
REVERSE('XYZ ') -> ' ZYX'

RIGHT

�� RIGHT(string,length
,pad

) ��

Returns a string of length length containing the rightmost length characters of
string. The string returned is padded with pad character, or truncated, on the
left as needed. The default pad character is a blank. The length must be a
positive whole number or zero.

Here are some examples:
RIGHT('abc d',8) -> ' abc d'
RIGHT('abc def',5) -> 'c def'
RIGHT('12',5,'0') -> '00012'

SIGN

�� SIGN(number) ��

Returns a number that indicates the sign of number. The number is first
rounded according to standard REXX rules, as though the operation number+0
had been carried out. It returns -1 if number is less than 0, 0 if it is 0, and 1 if
it is greater than 0.

Here are some examples:
SIGN('12.3') -> 1
SIGN(' -0.307') -> -1
SIGN(0.0) -> 0

Functions

Chapter 8. Functions 335

SOURCELINE

�� SOURCELINE(
n

) ��

Returns the line number of the final line in the program if you omit n. If you
specify n, returns the nth line in the program if available at the time of
execution. Otherwise, it returns a null string. If specified, n must be a positive
whole number and must not exceed the number that a call to SOURCELINE
with no arguments returns.

Here are some examples:
SOURCELINE() -> 10
SOURCELINE(1) -> '/* This is a 10-line REXX program */'

SPACE

�� SPACE(string
,

n ,pad

) ��

Returns the blank-delimited words in string with n pad characters between
each word. If you specify n, it must be a positive whole number or zero. If it
is 0, all blanks are removed. Leading and trailing blanks are always removed.
The default for n is 1, and the default pad character is a blank.

Here are some examples:
SPACE('abc def ') -> 'abc def'
SPACE(' abc def',3) -> 'abc def'
SPACE('abc def ',1) -> 'abc def'
SPACE('abc def ',0) -> 'abcdef'
SPACE('abc def ',2,'+') -> 'abc++def'

STREAM

�� STREAM(name
State

,
Command , stream_command
Description

) ��

Returns a string describing the state of, or the result of an operation upon, the
character stream name. The result may depend on characteristics of the stream
that you have specified in other uses of the STREAM function. (To understand

Functions

336 Object REXX Reference

the input and output functions, see “Chapter 16. Input and Output Streams”
on page 463.) This function requests information on the state of an input or
output stream or carries out some specific operation on the stream.

The first argument, name, specifies the stream to be accessed. The second
argument can be one of the following strings that describe the action to be
carried out. (Only the capitalized letter is needed; all characters following it
are ignored.)

Command
an operation (specified by the stream_command given as the third
argument) is applied to the selected input or output stream. The
string that is returned depends on the command performed and can
be a null string. The possible input strings for the stream_command
argument are described later.

Description
returns any descriptive string associated with the current state of the
specified stream. It is identical to the State operation, except that the
returned string is followed by a colon and, if available, additional
information about the ERROR or NOTREADY states.

State returns a string that indicates the current state of the specified stream.
This is the default operation.

The returned strings are as described in “STATE” on page 205.

Note: The state (and operation) of an input or output stream is global to a
REXX program; it is not saved and restored across internal function and
subroutine calls (including those calls that a CALL ON condition trap
causes).

Stream Commands: The following stream commands are used to:
v Open a stream for reading, writing, or both.
v Close a stream at the end of an operation.
v Position the read or write position within a persistent stream (for example,

a file).
v Get information about a stream (its existence, size, and last edit date).

The streamcommand argument must be used when—and only when—you
select the operation C (command). The syntax is:

�� STREAM(name,’C’,streamcommand) ��

Functions

Chapter 8. Functions 337

In this form, the STREAM function itself returns a string corresponding to the
given streamcommand if the command is successful. If the command is
unsuccessful, STREAM returns an error message string in the same form as
the D (Description) operation supplies.

For most error conditions, the additional information is in the form of a
numeric return code. This return code is the value of ERRNO that is set
whenever one of the file system primitives returns with a -1.

Command Strings: The argument streamcommand can be any expression that
the language processor evaluates to a command string that corresponds to the
following diagram:

��
BOTH Write Options

OPEN
READ Options
WRITE Write Options

CLOSE
FLUSH

= CHAR
SEEK offset
POSITION < READ LINE

+ WRITE
−

QUERY DATETIME
EXISTS
HANDLE

CHAR
SEEK READ
POSITION LINE

CHAR
WRITE

LINE
SYS

SIZE
STREAMTYPE
TIMESTAMP

��

Write Options:

APPEND
REPLACE

Options:

Functions

338 Object REXX Reference

SHARED
SHAREREAD
SHAREWRITE

& NOBUFFER
BINARY

RECLENGTH length

OPEN opens the named stream. The default for OPEN is to open the
stream for both reading and writing data, for example, 'OPEN
BOTH'.

The STREAM function itself returns a description string
similar to the one that the D option provides, for example,
'READY:' if the named stream is successfully opened, or
'ERROR:2' if the named stream is not found.

The following is a description of the options for OPEN:

READ opens the stream for reading only.

WRITE opens the stream for writing only.

BOTH opens the stream for both reading and
writing. (This is the default.) Separate read
and write pointers are maintained.

APPEND positions the write pointer at the end of the
stream. The write pointer cannot be moved
anywhere within the extent of the file as it
existed when the file was opened.

REPLACE sets the write pointer to the beginning of the
stream and truncates the file. In other words,
this option deletes all data that was in the
stream when opened.

SHARED Enables another process to work with the
stream in a shared mode. This mode must be
compatible with the shared mode (SHARED,
SHAREREAD, or SHAREWRITE) used by the
process that opened the stream.

SHAREREAD Enables another process to read the stream in
a shared mode.

SHAREWRITE
Enables another process to write the stream in
a shared mode.

NOBUFFER turns off buffering of the stream. Thus, all
data written to the stream is flushed
immediately to the operating system for

Functions

Chapter 8. Functions 339

writing. This option can severely affect output
performance. Therefore, use it only when data
integrity is a concern, or to force interleaved
output to a stream to appear in the exact
order in which it was written.

BINARY causes the stream to be opened in binary
mode. This means that line end characters are
ignored and treated as another byte of data.
This is intended to force file operations that
are compatible with other REXX language
processors that run on record-based systems,
or to process binary data using the line
operations.

Note: Specifying the BINARY option for a
stream that does not exist but is opened
for writing also requires the
RECLENGTH option to be specified.
Omitting the RECLENGTH option in
this case raises an error condition.

RECLENGTH length
allows the specification of an exact length for
each line in a stream. This allows line
operations on binary-mode streams to operate
on individual fixed-length records. Without
this option, line operations on binary-mode
files operate on the entire file (for example, as
if the RECLENGTH option were specified with a
length equal to that of the file). length must be
1 or greater.

Examples:
stream(strout,'c','open')
stream(strout,'c','open write')
stream(strinp,'c','open read')
stream(strinp,'c','open read shared')

CLOSE closes the named stream. The STREAM function itself returns
READY: if the named stream is successfully closed, or an
appropriate error message. If an attempt is made to close an
unopened file, STREAM returns a null string ("").

Example:
stream('STRM.TXT','c','close')

FLUSH forces any data currently buffered for writing to be written to
this stream.

Functions

340 Object REXX Reference

SEEK offset sets the read or write position within a persistent stream. If
the stream is opened for both reading and writing and no
SEEK option is specified, both the read and write positions are
set.

Note: See “Chapter 16. Input and Output Streams” on
page 463 for a discussion of read and write positions in
a persistent stream.

To use this command, the named stream must first be opened
with the OPEN stream command or implicitly with an input
or output operation. One of the following characters can
precede the offset number:

= explicitly specifies the offset from the beginning of the
stream. This is the default if no prefix is supplied.
Line Offset=1 means the beginning of stream.

< specifies offset from the end of the stream.

+ specifies offset forward from the current read or write
position.

− specifies offset backward from the current read or
write position.

The STREAM function itself returns the new position in the
stream if the read or write position is successfully located or
an appropriate error message otherwise.

The following is a description of the options for SEEK:

READ specifies that the read position is to be set by
this command.

WRITE specifies that the write position is to be set by
this command.

CHAR specifies that the positioning is to be done in
terms of characters. This is the default.

LINE specifies that the positioning is to be done in
terms of lines. For non-binary streams, this is
an operation that can take a long time to
complete, because, in most cases, the file must
be scanned from the top to count line-end
characters. However, for binary streams with a
specified record length, this results in a simple
multiplication of the new resulting line
number by the record length, and then a

Functions

Chapter 8. Functions 341

simple character positioning. See “Line versus
Character Positioning” on page 469 for a
detailed discussion of this issue.

Note: If you do line positioning in a file open
only for writing, you receive an error
message.

Examples:
stream(name,'c','seek =2 read')
stream(name,'c','seek +15 read')
stream(name,'c','seek -7 write line')
fromend = 125
stream(name,'c','seek <'fromend read)

POSITION is a synonym for SEEK.

QUERY Stream Commands: Used with these stream commands, the STREAM
function returns specific information about a stream. Except for QUERY
HANDLE and QUERY POSITION, the language processor returns the query
information even if the stream is not open. The language processor returns the
null string for nonexistent streams.

QUERY DATETIME
returns the date and time stamps of a stream in US format. This is
included for compatibility with OS/2®.
stream('..\file.txt','c','query datetime')

A sample output might be:
11-12-98 03:29:12

QUERY EXISTS
returns the full path specification of the named stream, if it exists, or a
null string.
stream('..\file.txt','c','query exists')

A sample output might be:
c:\data\file.txt

QUERY HANDLE
returns the handle associated with the open stream.
stream('..\file.txt','c','query handle')

A sample output might be:
3

Functions

342 Object REXX Reference

QUERY POSITION
returns the current read or write position for the stream, as qualified
by the following options:

READ returns the current read position.

WRITE returns the current write position.

Note: If the stream is open for both reading and
writing, the default is to return the read
position. Otherwise, it returns the appropriate
position by default.

CHAR returns the position in terms of characters. This is the
default.

LINE returns the position in terms of lines. For non-binary
streams, this operation can take a long time to
complete, because the language processor starts
tracking the current line number if not already doing
so. Thus, it might require a scan of the stream from
the top to count line-end characters. See “Line versus
Character Positioning” on page 469 for a detailed
discussion of this issue.
stream('myfile','c','query position write')

A sample output might be:
247

SYS returns the operating-system stream position in terms
of characters.

QUERY SIZE
returns the size, in bytes, of a persistent stream.
stream('..\file.txt','c','query size')

A sample output might be:
1305

QUERY STREAMTYPE
returns a string indicating whether the stream is PERSISTENT,
TRANSIENT, or UNKNOWN.

QUERY TIMESTAMP
returns the date and time stamps of a stream in an international
format. This is the preferred method of getting the date and time
because it provides the full 4-digit year.
stream('..\file.txt','c','query timestamp')

Functions

Chapter 8. Functions 343

A sample output might be:
1998-11-12 03:29:12

STRIP

�� STRIP(string
,

option ,char

) ��

Returns string with leading characters, trailing characters, or both, removed,
based on the option you specify. The following are valid options. (Only the
capitalized letter is needed; all characters following it are ignored.)

Both removes both leading and trailing characters from string. This
is the default.

Leading removes leading characters from string.

Trailing removes trailing characters from string.

The third argument, char, specifies the character to be removed, and the
default is a blank. If you specify char, it must be exactly one character long.

Here are some examples:
STRIP(' ab c ') -> 'ab c'
STRIP(' ab c ','L') -> 'ab c '
STRIP(' ab c ','t') -> ' ab c'
STRIP('12.7000',,0) -> '12.7'
STRIP('0012.700',,0) -> '12.7'

SUBSTR (Substring)

�� SUBSTR(string,n
,

length ,pad

) ��

Returns the substring of string that begins at the nth character and is of length
length, padded with pad if necessary. n must be a positive whole number. If n
is greater than LENGTH(string), only pad characters are returned.

If you omit length, the rest of the string is returned. The default pad character
is a blank.

Here are some examples:
SUBSTR('abc',2) -> 'bc'
SUBSTR('abc',2,4) -> 'bc '
SUBSTR('abc',2,6,'.') -> 'bc....'

Functions

344 Object REXX Reference

Note: In some situations the positional (numeric) patterns of parsing
templates are more convenient for selecting substrings, especially if
more than one substring is to be extracted from a string. See also
“LEFT” on page 328 and “RIGHT” on page 335.

SUBWORD

�� SUBWORD(string,n
,length

) ��

Returns the substring of string that starts at the nth word, and is up to length
blank-delimited words. n must be a positive whole number. If you omit length,
it defaults to the number of remaining words in string. The returned string
never has leading or trailing blanks, but includes all blanks between the
selected words.

Here are some examples:
SUBWORD('Now is the time',2,2) -> 'is the'
SUBWORD('Now is the time',3) -> 'the time'
SUBWORD('Now is the time',5) -> ''

SYMBOL

�� SYMBOL(name) ��

Returns the state of the symbol named by name. It returns BAD if name is not a
valid REXX symbol. It returns VAR if it is the name of a variable, that is, a
symbol that has been assigned a value. Otherwise, it returns LIT, indicating
that it is either a constant symbol or a symbol that has not yet been assigned
a value, that is, a literal.

As with symbols in REXX expressions, lowercase characters in name are
translated to uppercase and substitution in a compound name occurs if
possible.

Note: You should specify name as a literal string, or it should be derived from
an expression, to prevent substitution before it is passed to the
function.

Here are some examples:
/* following: Drop A.3; J=3 */
SYMBOL('J') -> 'VAR'
SYMBOL(J) -> 'LIT' /* has tested "3" */

Functions

Chapter 8. Functions 345

SYMBOL('a.j') -> 'LIT' /* has tested A.3 */
SYMBOL(2) -> 'LIT' /* a constant symbol */
SYMBOL('*') -> 'BAD' /* not a valid symbol */

TIME

�� TIME(
option

,string
,option2

) ��

Returns the local time in the 24-hour clock format hh:mm:ss (hours, minutes,
and seconds) by default, for example, 04:41:37.

You can use the following options to obtain alternative formats, or to gain
access to the elapsed-time clock. (Only the capitalized letter is needed; all
characters following it are ignored.)

Civil returns the time in Civil format hh:mmxx. The hours can take
the values 1 through 12, and the minutes the values 00
through 59. The minutes are followed immediately by the
letters am or pm. This distinguishes times in the morning (12
midnight through 11:59 a.m.—appearing as 12:00am through
11:59am) from noon and afternoon (12 noon through 11:59
p.m.—appearing as 12:00pm through 11:59pm). The hour has
no leading zero. The minute field shows the current minute
(rather than the nearest minute) for consistency with other
TIME results.

Elapsed returns sssssssss.uuuuuu, the number of seconds and
microseconds since the elapsed-time clock (described later)
was started or reset. The returned number has no leading
zeros or blanks, and the setting of NUMERIC DIGITS does
not affect it. The number has always four trailing zeros in the
decimal portion.

The language processor calculates elapsed time by subtracting
the time at which the elapsed-time clock was started or reset
from the current time. It is possible to change the system time
clock while the system is running. This means that the
calculated elapsed time value might not be a true elapsed
time. If the time is changed so that the system time is earlier
than when the REXX elapsed-time clock was started (so that
the elapsed time would appear negative), the language
processor raises an error and disables the elapsed-time clock.
To restart the elapsed-time clock, trap the error through
SIGNAL ON SYNTAX.

Functions

346 Object REXX Reference

The clock can also be changed by programs on the system.
Many LAN-attached programs synchronize the system time
clock with the system time clock of the server during startup.
This causes the REXX elapsed time function to be unreliable
during LAN initialization.

Hours returns up to two characters giving the number of hours since
midnight in the format hh (no leading zeros or blanks, except
for a result of 0).

Long returns time in the format hh:mm:ss.uuuuuu (where uuuuuu
are microseconds).

Minutes returns up to four characters giving the number of minutes
since midnight in the format mmmm (no leading zeros or
blanks, except for a result of 0).

Normal returns the time in the default format hh:mm:ss. The hours
can have the values 00 through 23, and minutes and seconds,
00 through 59. There are always two digits. Any fractions of
seconds are ignored (times are never rounded). This is the
default.

Reset returns sssssssss.uuuuuu, the number of seconds and
microseconds since the elapsed-time clock (described later)
was started or reset and also resets the elapsed-time clock to
zero. The returned number has no leading zeros or blanks,
and the setting of NUMERIC DIGITS does not affect it. The
number always has four trailing zeros in the decimal portion.

See the Elapsed option for more information on resetting the
system time clock.

Seconds returns up to five characters giving the number of seconds
since midnight in the format sssss (no leading zeros or blanks,
except for a result of 0).

Here are some examples, assuming that the time is 4:54 p.m.:
TIME() -> '16:54:22'
TIME('C') -> '4:54pm'
TIME('H') -> '16'
TIME('L') -> '16:54:22.120000' /* Perhaps */
TIME('M') -> '1014' /* 54 + 60*16 */
TIME('N') -> '16:54:22'
TIME('S') -> '60862' /* 22 + 60*(54+60*16) */

The elapsed-time clock:

You can use the TIME function to measure real (elapsed) time intervals. On
the first call in a program to TIME('E') or TIME('R'), the elapsed-time clock is

Functions

Chapter 8. Functions 347

started, and either call returns 0. From then on, calls to TIME('E') and
TIME('R') return the elapsed time since that first call or since the last call to
TIME('R').

The clock is saved across internal routine calls, which means that an internal
routine inherits the time clock that its caller started. Any timing the caller is
doing is not affected, even if an internal routine resets the clock. An example
of the elapsed-time clock:
time('E') -> 0 /* The first call */

/* pause of one second here */
time('E') -> 1.020000 /* or thereabouts */

/* pause of one second here */
time('R') -> 2.030000 /* or thereabouts */

/* pause of one second here */
time('R') -> 1.050000 /* or thereabouts */

Note: The elapsed-time clock is synchronized with the other calls to TIME
and DATE, so several calls to the elapsed-time clock in a single clause
always return the same result. For this reason, the interval between two
usual TIME/DATE results can be calculated exactly using the
elapsed-time clock.

If you specify string, TIME returns the time corresponding to string in the
format option. The string must be supplied in the format option2. The default
for option2 is 'N'. So you need to specify option2 only if string is not in the
Normal format. option2 must specify the current time, for example, not 'E' or
'R'. Here are some examples:
time('C','11:27:21') -> 11:27am
time('N','11:27am','C') -> 11:27:00

You can determine the difference between two times; for example:
If TIME('M','5:00pm','C')-TIME('M')<=0
then say "Time to go home"
else say "Keep working"

The TIME returned is the earliest time consistent with string. For example, if
the result requires components that are not specified in the source format,
then those components of the result are zero. If the source has components
that the result does not need, then those components of the source are
ignored.

Implementation maximum: If the number of seconds in the elapsed time
exceeds nine digits (equivalent to over 31.6 years), an error results.

TRACE

Functions

348 Object REXX Reference

�� TRACE(
option

) ��

Returns trace actions currently in effect and, optionally, alters the setting.

If you specify option, it selects the trace setting. It must be the valid prefix ?,
one of the alphabetic character options associated with the TRACE instruction
(that is, starting with A, C, E, F, I, L, N, O, or R), or both. (See the TRACE
instruction in “Alphabetic Character (Word) Options” on page 80 for full
details.)

Unlike the TRACE instruction, the TRACE function alters the trace action
even if interactive debugging is active. Also unlike the TRACE instruction,
option cannot be a number.

Here are some examples:
TRACE() -> '?R' /* maybe */
TRACE('O') -> '?R' /* also sets tracing off */
TRACE('?I') -> 'O' /* now in interactive debugging */

TRANSLATE

�� TRANSLATE(string
,

tableo ,
tablei ,pad

) ��

Returns string with each character translated to another character or
unchanged. You can also use this function to reorder the characters in string.

The output table is tableo and the input translation table is tablei. TRANSLATE
searches tablei for each character in string. If the character is found, the
corresponding character in tableo is used in the result string; if there are
duplicates in tablei, the first (leftmost) occurrence is used. If the character is
not found, the original character in string is used. The result string is always
the same length as string.

The tables can be of any length. If you specify neither table and omit pad,
string is simply translated to uppercase (that is, lowercase a–z to uppercase
A–Z), but, if you include pad, the language processor translates the entire string
to pad characters. tablei defaults to XRANGE('00'x,'FF'x), and tableo defaults to
the null string and is padded with pad or truncated as necessary. The default
pad is a blank.

Functions

Chapter 8. Functions 349

Here are some examples:
TRANSLATE('abcdef') -> 'ABCDEF'
TRANSLATE('abcdef','12','ec') -> 'ab2d1f'
TRANSLATE('abcdef','12','abcd','.') -> '12..ef'
TRANSLATE('APQRV',,'PR') -> 'A Q V'
TRANSLATE('APQRV',XRANGE('00'X,'Q')) -> 'APQ '
TRANSLATE('4123','abcd','1234') -> 'dabc'

Note: The last example shows how to use the TRANSLATE function to
reorder the characters in a string. The last character of any
four-character string specified as the second argument is moved to the
beginning of the string.

TRUNC (Truncate)

�� TRUNC(number
,n

) ��

Returns the integer part of number and n decimal places. The default n is 0
and returns an integer with no decimal point. If you specify n, it must be a
positive whole number or zero. The number is rounded according to standard
REXX rules, as though the operation number+0 had been carried out. Then it is
truncated to n decimal places or trailing zeros are added to reach the specified
length. The result is never in exponential form. If there are no nonzero digits
in the result, any minus sign is removed.

Here are some examples:
TRUNC(12.3) -> 12
TRUNC(127.09782,3) -> 127.097
TRUNC(127.1,3) -> 127.100
TRUNC(127,2) -> 127.00

Note: The number is rounded according to the current setting of NUMERIC
DIGITS, if necessary, before the function processes it.

VALUE

�� VALUE(name
,

newvalue ,selector

) ��

Returns the value of the symbol that name (often constructed dynamically)
represents and optionally assigns a new value to it. By default, VALUE refers
to the current REXX-variables environment, but other, external collections of
variables can be selected. If you use the function to refer to REXX variables,
name must be a valid REXX symbol. (You can confirm this by using the

Functions

350 Object REXX Reference

SYMBOL function.) Lowercase characters in name are translated to uppercase
for the local environment. For the global environment lowercase characters are
not translated because the global environment supports mixed-case identifiers.
Substitution in a compound name (see “Compound Symbols” on page 33)
occurs if possible.

If you specify newvalue, the named variable is assigned this new value. This
does not affect the result returned; that is, the function returns the value of
name as it was before the new assignment.

Here are some examples:
/* After: Drop A3; A33=7; K=3; fred='K'; list.5='Hi' */
VALUE('a'k) -> 'A3' /* looks up A3 */
VALUE('a'k||k) -> '7'
VALUE('fred') -> 'K' /* looks up FRED */
VALUE(fred) -> '3' /* looks up K */
VALUE(fred,5) -> '3' /* looks up K and */

/* then sets K=5 */
VALUE(fred) -> '5' /* looks up K */
VALUE('LIST.'k) -> 'Hi' /* looks up LIST.5 */

To use VALUE to manipulate environment variables, selector must be the
string “ENVIRONMENT” or an expression that evaluates to
“ENVIRONMENT”. In this case, the variable name need not be a valid REXX
symbol. Environment variables set by VALUE are not kept after program
termination.

Restriction: The values assigned to the variables must not contain any
character that is a hexadecimal zero ('00'X). For example:
Call VALUE 'MYVAR', 'FIRST' || '00'X || 'SECOND',
'ENVIRONMENT'

sets MYVAR to "FIRST", truncating '00'x and 'SECOND'.

Here are some more examples:
/* Given that an external variable FRED has a value of 4 */
share = 'ENVIRONMENT'
say VALUE('fred',7,share) /* says '4' and assigns */

/* FRED a new value of 7 */

say VALUE('fred',,share) /* says '7' */

/* Accessing and changing Windows environment entries given that */
/* PATH=C:\EDIT\DOCS; */

env = 'ENVIRONMENT'
new = 'C:\EDIT\DOCS;'
say value('PATH',new,env) /* says 'C:\WINDOWS' (perhaps) */

Functions

Chapter 8. Functions 351

/* and sets PATH = 'C:\EDIT\DOCS;' */

say value('PATH',,env) /* says 'C:\EDIT\DOCS;' */

To delete an environment variable use the .NIL object as the newvalue. To
delete the environment variable 'MYVAR' specify: value('MYVAR', .NIL,
'ENVIRONMENT'). If you specify an empty string as the newvalue like in
value('MYVAR', ", 'ENVIRONMENT') the value of the external environment
variable is set to an empty string which on Windows is not the same as
deleting the environment variable.

Note: In contrary to OS/2, the Windows environment is unchanged after
program termination.

You can use the VALUE function to return a value to the global environment
directory. To do so, omit newvalue and specify selector as the null string. The
language processor sends the message name (without arguments) to the
current environment object. The environment returns the object identified by
name. If there is no such object, it returns, by default, the string name with an
added initial period (an environment symbol—see “Environment Symbols” on
page 35).

Here are some examples:
/* Assume the environment name MYNAME identifies the string "Simon" */
name = value('MYNAME',,'') /* Sends MYNAME message to the environment */
name = .myname /* Same as previous instruction */
say 'Hello,' name /* Produces: "Hello, Simon" */
/* Assume the environment name NONAME does not exist. */
name = value('NONAME',,'') /* Sends NONAME message to the environment */
say 'Hello,' name /* Produces: "Hello, .NONAME" */

You can use the VALUE function to change a value in the REXX environment
directory. Include a newvalue and specify selector as the null string. The
language processor sends the message name (with = appended) and the single
argument newvalue to the current environment object. After receiving this
message, the environment identifies the object newvalue by the name name.

Here is an example:
name = value('MYNAME','David','') /* Sends "MYNAME=("David") message */
/* to the environment. */
/* You could also use: */
/* call value 'MYNAME','David','' */
say 'Hello,' .myname /* Produces: "Hello, David" */

Functions

352 Object REXX Reference

Notes:

1. If the VALUE function refers to an uninitialized REXX variable, the default
value of the variable is always returned. The NOVALUE condition is not
raised because a reference to an external collection of variables never
raises NOVALUE.

2. The VALUE function is used when a variable contains the name of another
variable, or when a name is constructed dynamically. If you specify name
as a single literal string and omit newvalue and selector, the symbol is a
constant and the string between the quotation marks can usually replace
the whole function call. For example, fred=VALUE('k'); is identical with
the assignment fred=k;, unless the NOVALUE condition is trapped. See
“Chapter 12. Conditions and Condition Traps” on page 429.

VAR

�� VAR(name) ��

Returns 1 if name is the name of a variable, that is, a symbol that has been
assigned a value), or 0.

Here are some examples:
/* Following: DROP A.3; J=3 */
VAR('J') -> 1
VAR(J) -> 0 /* has tested "3" */
VAR('a.j') -> 0 /* has tested "A.3" */
VAR(2) -> 0 /* a constant symbol */
VAR('*') -> 0 /* an invalid symbol */

VERIFY

�� VERIFY(string,reference
,

option ,start

) ��

Returns a number that, by default, indicates whether string is composed only
of characters from reference. It returns 0 if all characters in string are in
reference, or returns the position of the first character in string that is not in
reference.

The option can be either Nomatch (the default) or Match. (Only the capitalized
and highlighted letter is needed. All characters following it are ignored, and it
can be in uppercase or lowercase characters.) If you specify Match, the
function returns the position of the first character in the string that is in
reference, or returns 0 if none of the characters are found.

Functions

Chapter 8. Functions 353

The default for start is 1; thus, the search starts at the first character of string.
You can override this by specifying a different start point, which must be a
positive whole number.

If string is null, the function returns 0, regardless of the value of the third
argument. Similarly, if start is greater than LENGTH(string), the function
returns 0. If reference is null, the function returns 0 if you specify Match;
otherwise, the function returns the start value.

Here are some examples:
VERIFY('123','1234567890') -> 0
VERIFY('1Z3','1234567890') -> 2
VERIFY('AB4T','1234567890') -> 1
VERIFY('AB4T','1234567890','M') -> 3
VERIFY('AB4T','1234567890','N') -> 1
VERIFY('1P3Q4','1234567890',,3) -> 4
VERIFY('123',',N,2) -> 2
VERIFY('ABCDE',',,3) -> 3
VERIFY('AB3CD5','1234567890','M',4) -> 6

WORD

�� WORD(string,n) ��

Returns the nth blank-delimited word in string or returns the null string if less
than n words are in string. n must be a positive whole number. This function
is equal to SUBWORD(string,n,1).

Here are some examples:
WORD('Now is the time',3) -> 'the'
WORD('Now is the time',5) -> ''

WORDINDEX

�� WORDINDEX(string,n) ��

Returns the position of the first character in the nth blank-delimited word in
string or returns 0 if less than n words are in string. n must be a positive
whole number.

Here are some examples:
WORDINDEX('Now is the time',3) -> 8
WORDINDEX('Now is the time',6) -> 0

Functions

354 Object REXX Reference

WORDLENGTH

�� WORDLENGTH(string,n) ��

Returns the length of the nth blank-delimited word in the string or returns 0 if
less than n words are in the string. n must be a positive whole number.

Here are some examples:
WORDLENGTH('Now is the time',2) -> 2
WORDLENGTH('Now comes the time',2) -> 5
WORDLENGTH('Now is the time',6) -> 0

WORDPOS (Word Position)

�� WORDPOS(phrase,string
,start

) ��

Returns the word number of the first word of phrase found in string or returns
0 if phrase contains no words or if phrase is not found. Several blanks between
words in either phrase or string are treated as a single blank for the
comparison, but otherwise the words must match exactly.

By default, the search starts at the first word in string. You can override this
by specifying start (which must be positive), the word at which to start the
search.

Here are some examples:
WORDPOS('the','now is the time') -> 3
WORDPOS('The','now is the time') -> 0
WORDPOS('is the','now is the time') -> 2
WORDPOS('is the','now is the time') -> 2
WORDPOS('is time ','now is the time') -> 0
WORDPOS('be','To be or not to be') -> 2
WORDPOS('be','To be or not to be',3) -> 6

WORDS

�� WORDS(string) ��

Returns the number of blank-delimited words in string.

Here are some examples:
WORDS('Now is the time') -> 4
WORDS(' ') -> 0

Functions

Chapter 8. Functions 355

XRANGE (Hexadecimal Range)

�� XRANGE(
start ,end

) ��

Returns a string of all valid 1-byte encodings (in ascending order) between
and including the values start and end. The default value for start is '00'x,
and the default value for end is 'FF'x. If start is greater than end, the values
wrap from 'FF'x to '00'x. If specified, start and end must be single characters.

Here are some examples:
XRANGE('a','f') -> 'abcdef'
XRANGE('03'x,'07'x) -> '0304050607'x
XRANGE(,'04'x) -> '0001020304'x
XRANGE('FE'x,'02'x) -> 'FEFF000102'x
XRANGE('i','j') -> 'ij' /* ASCII */

X2B (Hexadecimal to Binary)

�� X2B(hexstring) ��

Returns a string, in character format, that represents hexstring converted to
binary. The hexstring is a string of hexadecimal characters. It can be of any
length. Each hexadecimal character is converted to a string of 4 binary digits.
You can optionally include blanks in hexstring (at byte boundaries only, not
leading or trailing) to improve readability; they are ignored.

The returned string has a length that is a multiple of 4, and does not include
any blanks.

If hexstring is null, the function returns a null string.

Here are some examples:
X2B('C3') -> '11000011'
X2B('7') -> '0111'
X2B('1 C1') -> '000111000001'

You can combine X2B with the functions D2X and C2X to convert numbers or
character strings into binary form.

Here are some examples:
X2B(C2X('C3'x)) -> '11000011'
X2B(D2X('129')) -> '10000001'
X2B(D2X('12')) -> '1100'

Functions

356 Object REXX Reference

X2C (Hexadecimal to Character)

�� X2C(hexstring) ��

Returns a string, in character format, that represents hexstring converted to
character. The returned string has half as many bytes as the original hexstring.
hexstring can be of any length. If necessary, it is padded with a leading zero to
make an even number of hexadecimal digits.

You can optionally include blanks in hexstring (at byte boundaries only, not
leading or trailing) to improve readability; they are ignored.

If hexstring is null, the function returns a null string.

Here are some examples:
X2C('4865 6c6c 6f') -> 'Hello' /* ASCII */
X2C('3732 73') -> '72s' /* ASCII */

X2D (Hexadecimal to Decimal)

�� X2D(hexstring
,n

) ��

Returns the decimal representation of hexstring. The hexstring is a string of
hexadecimal characters. If the result cannot be expressed as a whole number,
an error occurs. That is, the result must not have more digits than the current
setting of NUMERIC DIGITS.

You can optionally include blanks in hexstring (at byte boundaries only, not
leading or trailing) to aid readability; they are ignored.

If hexstring is null, the function returns 0.

If you do not specify n, the hexstring is processed as an unsigned binary
number.

Here are some examples:
X2D('0E') -> 14
X2D('81') -> 129
X2D('F81') -> 3969
X2D('FF81') -> 65409
X2D('46 30'X) -> 240 /* ASCII */
X2D('66 30'X) -> 240 /* ASCII */

Functions

Chapter 8. Functions 357

If you specify n, the string is taken as a signed number expressed in n
hexadecimal digits. If the leftmost bit is off, then the number is positive;
otherwise, it is a negative number. In both cases it is converted to a whole
number, which can be negative. If n is 0, the function returns 0.

If necessary, hexstring is padded on the left with 0 characters (not
“sign-extended”), or truncated on the left to n characters.

Here are some examples:
X2D('81',2) -> -127
X2D('81',4) -> 129
X2D('F081',4) -> -3967
X2D('F081',3) -> 129
X2D('F081',2) -> -127
X2D('F081',1) -> 1
X2D('0031',0) -> 0

Windows Application Programming Interface Functions

You can use the following built-in REXX functions in a REXX program to
register, drop, or query external function packages and to create and
manipulate external data queues. See the Object REXX for Windows:
Programming Guide for a full discussion of the external-function interfaces.

RXFUNCADD

�� RXFUNCADD(name,module)
,procedure

��

Registers the function name, making it available to REXX procedures. A return
value 0 signifies successful registration. A return value 1 signifies that the
function is already registered.
rxfuncadd('SysCls','rexxutil', 'SysCls') -> 0 /* if not already registered */

-> 1 /* if already registered */

Note: A return code of 0 signifies only that the function is successfully
registered, but not that the function or module is actually available.

RXFUNCDROP

�� RXFUNCDROP(name) ��

Removes (deregisters) the function name from the list of available functions. A
zero return value signifies successful removal.
rxfuncdrop('SysLoadFuncs') -> 0 /* if successfully removed */

Functions

358 Object REXX Reference

RXFUNCQUERY

�� RXFUNCQUERY(name) ��

Queries the list of available functions for the function name. It returns a value
of 0 if the function is registered, and a value of 1 if it is not.
rxfuncquery('SysLoadFuncs') -> 0 /* if registered */

RXQUEUE

�� RXQUEUE(″Create″)
,queuename

″Delete″,queuename
″Get″
″Set″,newqueuename

��

Creates and deletes external data queues. It also sets and queries their names.

“Create” creates a queue with the name queuename if you specify
queuename and if no queue of that name exists already. You
must not use SESSION as a queuename. If you specify no
queuename, then the language processor provides a name. The
name of the queue is returned in either case.

The maximum length of queuename can be 1024 characters.

Many queues can exist at the same time, and most systems
have sufficient resources available to support several hundred
queues at a time. If a queue with the specified name exists
already, a queue is still created with a name assigned by the
language processor. The assigned name is then returned to
you.

“Delete” deletes the named queue. It returns 0 if successful or a
nonzero number if an error occurs. Possible return values are:

0 Queue has been deleted.

5 Not a valid queue name or tried to delete queue
named 'SESSION'.

9 Specified queue does not exist.

10 Queue is busy; wait is active.

12 A memory failure has occurred.

1002 Failure in memory manager.

“Get” returns the name of the queue currently in use.

Windows API Functions

Chapter 8. Functions 359

“Set” sets the name of the current queue to newqueuename and
returns the previously active queue name.

The first parameter determines the function. Only the first character of the
first parameter is significant. The parameter can be entered in any case. The
syntax for a valid queue name is the same as for a valid REXX symbol.

The second parameter specified for Create, Set, and Delete must follow the
same syntax rules as the REXX variable names. There is no connection,
however, between queue names and variable names. A program can have a
variable and a queue with the same name. The actual name of the queue is
the uppercase value of the name requested.

Named queues prevent different REXX programs that are running in a single
session from interfering with each other. They allow REXX programs running
in different sessions to synchronize execution and pass data.
LINEIN('QUEUE:') is especially useful because the calling program stops
running until another program places a line on the queue.
/* default queue */
rxqueue('Get') -> 'SESSION'
/* assuming FRED does not already exist */
rxqueue('Create', 'Fred)' -> 'FRED'
/* assuming SESSION had been active */
rxqueue('Set', 'Fred') -> 'SESSION'
/* assuming FRED did not exist */
rxqueue('delete', 'Fred') -> '0'

Windows API Functions

360 Object REXX Reference

Chapter 9. REXX Utilities (RexxUtil)

RexxUtil is a Dynamic Link Library (DLL) package for Windows; the package
contains REXX functions. These functions:
v Manipulate Windows operating system files and directories
v Manipulate Windows classes and objects
v Perform text screen input and output

To use a RexxUtil function, you must first register the function with the REXX
RxFuncAdd function:
call RxFuncAdd 'SysCls', 'rexxutil', 'SysCls'

This example registers the SysCls function, which can now be used in your
REXX programs.

The SysLoadFuncs RexxUtil function automatically loads the other RexxUtil
functions. The following instructions in a REXX program register all of the
RexxUtil functions:
call RxFuncAdd 'SysLoadFuncs', 'rexxutil', 'SysLoadFuncs'
call SysLoadFuncs

Once registered, the RexxUtil functions are available from all Windows
operating system sessions.

The SysDropFuncs RexxUtil function lets you drop all RexxUtil functions. The
following instruction in a REXX program deregisters all of the RexxUtil
functions:
call SysDropFuncs

RxMessageBox

�� RxMessageBox(text
,

title ,
button ,icon

) ��

Displays a Windows message box.

RxMessageBox returns the selected message box push button. Possible values
are:

© Copyright IBM Corp. 1994, 2001 361

1 The OK push button was pressed

2 The CANCEL push button was pressed

3 The ABORT push button was pressed

4 The RETRY push button was pressed

5 The IGNORE push button was pressed

6 The YES push button was pressed

7 The NO push button was pressed

If a message box has a ‘CANCEL’ button, the function returns the 2 value if
either the ESC key is pressed or the ‘CANCEL’ button is selected. If the
message box has no ‘CANCEL’ button, pressing ESC has no effect.

Parameters:

text The message box text.

title The message box title. The default title is “Error!”.

button The message box push button style. The allowed styles are:

‘NONE’
No icon is displayed.

‘OK’ A single OK push button.

‘OKCANCEL’
An OK push button and a CANCEL push button.

‘RETRYCANCEL’
A RETRY push button and a CANCEL push button.

‘ABORTRETRYIGNORE’
An ABORT push button, a RETRY push button and an
IGNORE push button.

‘YESNO’
A YES push button and a NO push button.

‘YESNOCANCEL’
A YES push button, a NO push button and a CANCEL push
button.

‘QUERY’
A query icon is displayed.

‘WARNING’
A warning icon is displayed.

REXX Utilities

362 Object REXX Reference

‘ERROR’
An error icon is displayed.

The default push button style is OK.

icon The message box icon style. The allowed styles are:

‘HAND’
A hand icon is displayed.

‘QUESTION’
A question mark icon is displayed.

‘EXCLAMATION’
An exclamation point icon is displayed.

‘ASTERISK’
An asterisk icon is displayed.

‘INFORMATION’
An information icon is displayed.

‘STOP’
A stop icon is displayed.

Example:
/* Give option to quit */
if RxMessageBox("Shall we continue",, "YesNo", "Question") = 7
Then Exit /* quit option given, exit */

RxWinExec

�� RxWinExec(cmdline
,cmdshow

) ��

Runs the application as specified in cmdline.

Parameters:

cmdline
A string containing a file name and optional parameters for the
application to be executed. If the name of the executable file in cmdline
does not contain a directory path, RxWinExec searches for the
executable file in this sequence:

1 The directory from which Object REXX was loaded.

2 The current directory.

3 The Windows system directory.

REXX Utilities

Chapter 9. REXX Utilities (RexxUtil) 363

4 The Windows directory.

5 The directories listed in the PATH environment variable.

cmdshow
Specifies how a Windows-based application window is to be shown.
For a non-Windows-based application, the PIF file, if any, for the
application determines the window state.

SHOWNORMAL
Activates and displays a window.

SHOWNOACTIVATE
Displays the window while the current active window
remains active.

SHOWMINNOACTIVE
Displays the window as a minimized window, the current
active window remains active.

SHOWMINIMIZED
Activates the window and displays it as a minimized window.

SHOWMAXIMIZED
Activates the window and displays it as a maximized
window.

HIDE Hides the window and activates another window.

MINIMIZE
Minimizes the specified window and activates the next
top-level window in the Z order.

Return codes:

If the function succeeds, the return value is greater than 31; otherwise, it is
one of the following:

0 The system is out of memory or resources.

2 The specified file was not found.

3 The specified path was not found.

11 The EXE file is invalid.

SysAddRexxMacro

�� SysAddRexxMacro(name,file)
,order

��

REXX Utilities

364 Object REXX Reference

Adds a routine to the REXX macrospace. SysAddRexxMacro returns the
RexxAddMacro return code.

Parameters:

name The name of the function added to the macrospace.

file The file containing the REXX program.

order The macrospace search order. The order can be 'B' (Before) or 'A'
(After).

SysBootDrive

�� SysBootDrive() ��

Returns the drive used to boot Windows, for example, 'C:'.

SysClearRexxMacroSpace

�� SysClearRexxMacroSpace() ��

Clears the REXX macrospace. SysClearRexxMacroSpace returns the
RexxClearMacroSpace return code.

SysCloseEventSem

�� SysCloseEventSem(handle) ��

Closes an event semaphore.

Parameter:

handle A handle returned from a previous SysCreateEventSem or
SysOpenEventSem call.

Return codes:

0 No errors.

6 Invalid handle.

102 Error semaphore busy.

REXX Utilities

Chapter 9. REXX Utilities (RexxUtil) 365

SysCloseMutexSem

�� SysCloseMutexSem(handle) ��

Closes a mutex semaphore.

Parameter:

handle A handle returned from a previous SysCreateMutexSem call.

Return codes:

0 No errors.

6 Invalid handle.

102 Error semaphore busy.

SysCls

�� SysCls() ��

Clears the screen.

Example:
/* Code */
call SysCls

SysCreateEventSem

�� SysCreateEventSem()
name manual_reset

��

Creates or opens an event semaphore. It returns an event semaphore handle
that can be used with SysCloseEventSem, SysOpenEventSem,
SysResetEventSem, SysPostEventSem, and SysWaitEventSem.
SysCreateEventSem returns a null string ("") if the semaphore cannot be
created or opened.

Parameters:

name The optional event semaphore name. If you omit name,
SysCreateEventSem creates an unnamed, shared event semaphore. If

REXX Utilities

366 Object REXX Reference

you specify name, SysCreateEventSem opens the semaphore if the
semaphore has already been created. A semaphore name can be
MAX_PATH long, and can contain any character except the backslash
(\) path-separator character. Semaphore names are case-sensitive.

manual_reset
A flag to indicate that the event semaphore must be reset manually by
SysResetEventSem. If this parameter is omitted, the event semaphore
is reset automatically by SysWaitEventSem.

SysCreateMutexSem

�� SysCreateMutexSem()
name

��

Creates or opens a mutex semaphore. Returns a mutex semaphore handle that
can be used with SysCloseMutexSem, SysRequestMutexSem, and
SysReleaseMutexSem. SysCreateMutexSem returns a null string ("") if the
semaphore cannot be created or opened.

Parameter:

name The optional mutex semaphore name. If you omit name,
SysCreateMutexSem creates an unnamed, shared mutex semaphore. If
you specify name, SysCreateMutexSem opens the semaphore if the
mutex has already been created. The semaphore names cannot be
longer than 63 characters. Semaphore names are case-sensitive.

SysCurPos

�� SysCurPos()
row,column

��

Returns the cursor position in the form row col and optionally moves the
cursor to a new location.

Parameters:

row The row to move to.

col The column to move to.

Note: Position (0,0) is the upper left corner.

REXX Utilities

Chapter 9. REXX Utilities (RexxUtil) 367

You can call SysCurPos without a column and row position to obtain the
cursor position without moving the cursor.

Example:
/* Code */
call SysCls
parse value SysCurPos() with row col
say 'Cursor position is 'row', 'col

/* Output */
Cursor position is 0, 0

SysCurState

�� SysCurState(state) ��

Hides or displays the cursor.

Parameter:

state The new cursor state. Allowed states are:

‘ON’ Display the cursor

‘OFF’ Hide the cursor

SysDriveInfo

�� SysDriveInfo(drive) ��

Returns drive information in the form: drive: free total label.

drive: is the drive letter identifier.

free is the drive unused space.

total is the total size of the drive.

label is the drive label.

If the drive is not accessible, then SysDriveInfo returns ''.

Parameter:

drive The drive of interest, 'C:'.

REXX Utilities

368 Object REXX Reference

Example:
/* Code */
say 'Disk='SysDriveInfo('C:')
/* Output */
Disk=C: 33392640 83687424 TRIGGER_C

SysDriveMap

�� SysDriveMap()
drive ,opt

��

Returns a string listing accessible drives (separated by blanks) in the form:
C: D:

Parameters:

drive The first drive letter of the drive map. The default is 'C:'.

opt The drivemap option. This can be:

‘USED’
returns the drives that are accessible or in use, including all
local and remote drives. This is the default.

‘FREE’
returns drives that are free or not in use.

‘LOCAL’
returns only local drives.

‘REMOTE’
returns only remote drives, such as redirected LAN resources
or installable file system (IFS) attached drives.

‘REMOVABLE’
returns removable drives.

‘CDROM’
returns CD-ROM drives.

‘RAMDISK’
returns drives assigned from RAM.

Example:
/* Code */
say 'Used drives include:'
say SysDriveMap('C:', 'USED')
/* Output */
Used drives include:
C: D: E: F: W:

REXX Utilities

Chapter 9. REXX Utilities (RexxUtil) 369

SysDropFuncs

�� SysDropFuncs ��

Drops all RexxUtil functions. After a REXX program calls SysDropFuncs, the
RexxUtil functions are not available in any Windows operating system
sessions.

SysDropRexxMacro

�� SysDropRexxMacro(name) ��

Removes a routine from the REXX macrospace. SysDropRexxMacro returns
the RexxDropMacro return code.

Parameter:

name The name of the function removed from the macrospace.

SysDumpVariables

�� SysDumpVariables
(name)

��

Dumps all variables in the current scope either to the specified file filename
(new data is appended) or to STDOUT if you omit filename. The format of the
data is, with one variable per line:

Name=MYVAR, Value="This is the content of MYVAR"

Parameter:

filename
The name of the file to which variables are appended. The dump is
written to STDOUT if you omit this parameter.

Return codes:

0 Dump completed successfully.

–1 Dump failed.

REXX Utilities

370 Object REXX Reference

Example:
Call SysDumpVariables "MyVars.Lst" /* append vars to file */
Call SysDumpVariables /* list vars on STDOUT */

SysFileDelete

�� SysFileDelete(file) ��

Deletes a file. SysFileDelete does not support wildcard file specifications.

Parameter:

file The name of the file to be deleted.

Return codes:

0 File deleted successfully.

2 File not found.

3 Path not found.

5 Access denied or busy.

26 Not DOS disk.

32 Sharing violation.

36 Sharing buffer exceeded.

87 Does not exist.

206 File name exceeds range error.

Example:
/* Code */
parse arg InputFile OutputFile
call SysFileDelete OutputFile /* unconditionally erase output file */

SysFileSearch

�� SysFileSearch(target,file,stem
,options

) ��

Finds all file lines containing the target string and returns the file lines in a
REXX stem variable collection.

REXX Utilities

Chapter 9. REXX Utilities (RexxUtil) 371

Parameters:

target The target search string.

file The searched file.

stem The result stem variable name. SysFileSearch sets REXX variable
stem.0 to the number of lines returned and stores the individual lines
in variables stem.1 to stem.n.

options Any combination of the following one-character options:

‘C’ Conducts a case-sensitive search.

‘N’ Returns the file line numbers.

The default is a case-insensitive search without line numbers.

Return codes:

0 Successful.

2 Not enough memory.

3 Error opening file.

Example:
/* Find DEVICE statements in CONFIG.SYS */
call SysFileSearch 'DEVICE', 'C:\CONFIG.SYS', 'file.'
do i=1 to file.0
say file.i
end

/* Output */
DEVICE=C:\SB16\DRV\CTSB16.SYS /UNIT=0 /BLASTER=A:240 I:5 D:1 H:5
DEVICE=C:\SB16\DRV\CTMMSYS.SYS
rem **** DOS SCSI CDROM device drivers ***
DEVICE=C:\SCSI\ASPI8DOS.SYS /D
DEVICE=C:\SCSI\ASPICD.SYS /D:ASPICD0
rem **** IDE CDROM device drivers
DEVICE=C:\DOS\HIMEM.SYS
DEVICE=C:\SBCD\DRV\SBIDE.SYS /V /D:MSCD001 /P:1f0,14
DEVICE=C:\DOS\SETVER.EXE
DEVICE=C:\WINDOWS\SMARTDRV.EXE /DOUBLE_BUFFER
DEVICE=C:\WINDOWS\IFSHLP.SYS

/* Find DEVICE statements in CONFIG.SYS (along with */
/* line numbers) */
call SysFileSearch 'DEVICE', 'C:\CONFIG.SYS', 'file.', 'N'
do i=1 to file.0
say file.i
end

/* Output */
1 DEVICE=C:\SB16\DRV\CTSB16.SYS /UNIT=0 /BLASTER=A:240 I:5 D:1

REXX Utilities

372 Object REXX Reference

H:5
2 DEVICE=C:\SB16\DRV\CTMMSYS.SYS
4 rem **** DOS SCSI CDROM device drivers ***
5 DEVICE=C:\SCSI\ASPI8DOS.SYS /D
6 DEVICE=C:\SCSI\ASPICD.SYS /D:ASPICD0
8 rem **** IDE CDROM device drivers
9 DEVICE=C:\DOS\HIMEM.SYS
10 DEVICE=C:\SBCD\DRV\SBIDE.SYS /V /D:MSCD001 /P:1f0,14
13 DEVICE=C:\DOS\SETVER.EXE
16 DEVICE=C:\WINDOWS\SMARTDRV.EXE /DOUBLE_BUFFER
17 DEVICE=C:\WINDOWS\IFSHLP.SYS

SysFileSystemType

�� SysFileSystemType(drive) ��

Returns the name of the file system used for a drive. If the drive is not
accessible, it returns a null string ("").

Parameter:

drive The drive of interest, for example 'C:'.

Example:
/* Code */
say 'File System='SysFileSystemType('C:')
/* Output */
File System=NTFS

SysFileTree

�� SysFileTree(filespec,stem �

�
,

options ,
tattrib ,

nattrib

) ��

Finds all files that match a file specification. SysFileTree returns the file
descriptions (date, time, size, attributes, and file specification) in a REXX stem
variable collection.

Parameters:

REXX Utilities

Chapter 9. REXX Utilities (RexxUtil) 373

filespec The search file specification.

stem The name of a stem variable to be used for storing results. SysFileTree
sets REXX variable stem.0 to the number of files and directories found
and stores individual file descriptions into variables stem.1 to stem.n.

options Any combination of the following:

‘F’ Search only for files.

‘D’ Search only for directories.

‘B’ Search for both files and directories. This is the default.

‘S’ Search subdirectories recursively.

‘T’ Return the time and date in the form YY/MM/DD/HH/MM.

‘L’ Return the time and date in the form YYYY-MM-DD
HH:MM:SS.

‘O’ Return only the fully-qualified file name. The default is to
return the date, time, size, attributes, and fully-qualified name
for each file found.

tattrib The target attribute mask for file specification matches. Only files that
match the target mask are returned. The default mask is ‘*****’. This
returns all files regardless of the settings (clear or set) of the Archive,
Directory, Hidden, Read-Only, and System attributes. The target mask
attributes must appear in the order ‘ADHRS’.

Target Mask Options

* The file attribute may be any state.

+ The file attribute must be set.

- The file attribute must be cleared.

Target Mask Examples

‘***+*’ Find all files with the Read-Only attribute set.

‘+**+*’
Find all files with the Read-Only and Archive attributes set.

‘*++**’
Find all hidden subdirectories.

‘---+-’ Find all files with only the Read-Only attribute set.

nattrib The new attribute mask for setting the attributes of each matching file.
The default mask is ‘*****’. This means not to change the Archive,
Directory, Hidden, Read-Only, and System attributes. The target mask
attributes must appear in the order ‘ADHRS’.

REXX Utilities

374 Object REXX Reference

New Attribute Mask Options

* Do not change the file attribute.

+ Set the file attribute.

- Clear the file attribute.

New Attribute Mask Examples

‘***+*’ Set the Read-Only attribute on all files.

‘-**+*’ Set the Read-Only attribute and clear the Archive attribute of
each file.

‘+*+++’
Set all file attributes, except the directory attribute.

‘-----’ Clear all attributes on all files.

Note: You cannot set the directory attribute on non-directory
files.

SysFileTree returns the file attribute settings after the new
attribute mask has been applied.

Return codes:

0 Successful.

2 Not enough memory.

Examples:
/* Find all subdirectories on C: */
call SysFileTree 'c:*.*', 'file', 'SD'

/* Find all Read-Only files */
call SysFileTree 'c:*.*', 'file', 'S', '***+*'

/* Clear Archive and Read-Only attributes of files that have them set */
call SysFileTree 'c:*.*', 'file', 'S', '+**+*', '-**-*'

/****<< Sample Code and Output Example.>>********/

/* Code */
call SysFileTree 'c:\win*.', 'file', 'B'
do i=1 to file.0
say file.i
end

/* Actual Output */
5:24:95 4:59p 0 -D--- C:\WINDOWS

REXX Utilities

Chapter 9. REXX Utilities (RexxUtil) 375

SysFromUnicode

�� SysFromUnicode (string
,codepage ,mappingflags

�

� ,outstem)
,defaultchar

��

Maps a UNICODE character string to a character string. The new character
string and additional information is returned in the outstem.

Parameters:

string A string containing the UNICODE characters to be mapped.

codepage
Specifies the code page used to perform the conversion. This
parameter can be the value of any code page that is installed or
available in the system. The default is the current original equipment
manufacturer (OEM) code-page identifier for the system.

You can also specify one of the following values:

ACP ANSI code page.

OEMCP OEM code page.

SYMBOL Windows 2000: symbol code page.

THREAD_ACP
Windows 2000: current thread’s ANSI code page.

UTF7 Windows NT 4.0 and Windows 2000: translate using
UTF-7.

UTF8 Windows NT 4.0 and Windows 2000: translate using
UTF-8. When this is set, mappingflags must be set.

mappingflags
Specifies the handling of unmapped characters. The function performs
more quickly when none of these flags is set.

The following flags can be used:

COMPOSITECHECK
Converts composite characters to precomposed
characters.

SEPCHARS Discards nonspacing characters during conversion.

REXX Utilities

376 Object REXX Reference

DISCARDNS Generates separate characters during conversion. This
is the default conversion behavior.

DEFAULTCHAR
Replaces non-convertible characters with the default
character during conversion.

When compositecheck is specified, the function converts composite
characters to precomposed characters. A composite character consists
of a base character and a nonspacing character, each having different
character values. A precomposed character has a single character
value for a combination of a base and a nonspacing character. In the
character è, the ’e’ is the base character, and the ’grave’ accent mark is
the nonspacing character.

When compositecheck is specified, it can use the last three flags in this
list (discardns, sepchars, and defaultchar) to customize the
conversion to precomposed characters. These flags determine the
function’s behavior when there is no precomposed mapping for a
combination of a base and a nonspace character in a Unicode
character string. These last three flags can be used only if the
compositecheck flag is set. The function’s default behavior is to
generate separate characters (sepchars) for unmapped composite
characters.

defaultchar
Character to be used if a Unicode character cannot be represented in
the specified code page. If this parameter is NULL, a system default
value is used. The function is faster when both lpDefaultChar and
defaultchar are not used.

Return codes:

0 No errors.

87 Incorrect code page or codepage value.

1004 Invalid mapping flags.

SysToUnicode

�� SysToUnicode(string ,outstem)
,codepage ,translateflags

��

Maps a character string to a UNICODE string.

Parameters:

REXX Utilities

Chapter 9. REXX Utilities (RexxUtil) 377

string A string containing the UNICODE characters to be mapped.

codepage
Specifies the code page used to perform the conversion. This
parameter can be the value of any code page that is installed or
available in the system. The default is the current original equipment
manufacturer (OEM) code-page identifier for the system.

You can also specify one of the following values:

ACP ANSI code page.

OEMCP OEM code page.

SYMBOL Windows 2000: symbol code page.

THREAD_ACP
Windows 2000: current thread’s ANSI code page.

UTF7 Windows NT 4.0 and Windows 2000: translate using
UTF-7.

UTF8 Windows NT 4.0 and Windows 2000: translate using
UTF-8. When this is set, translateflags must be set.

translateflags
Indicates whether to translate to precomposed or composite-wide
characters (if a composite form exists), whether to use glyph
characters in place of control characters, and how to deal with invalid
characters.

You can specify a combination of the following flags:

PRECOMPOSED
Always use precomposed characters, that is,
characters in which a base character and a nonspacing
character have a single character value. This is the
default translation option. Cannot be used with
COMPOSITE.

COMPOSITE Always use composite characters, that is, characters in
which a base character and a nonspacing character
have different character values. Cannot be used with
PRECOMPOSED.

ERR_INVALID_CHARS
If the function encounters an invalid input character, it
fails and returns "1113".

USEGLYPHCHARS
Use glyph characters instead of control characters.

REXX Utilities

378 Object REXX Reference

A composite character consists of a base character and a nonspacing
character, each having different character values. A precomposed
character has a single character value for a base-nonspacing character
combination. In the character è, the ’e’ is the base character and the
’grave’ accent mark is the nonspacing character. The function’s default
behavior is to translate to the precomposed form. If a precomposed
form does not exist, the function attempts to translate to a composite
form.

The flags PRECOMPOSED and COMPOSITE are mutually exclusive.
The USEGLYPHCHARS flag and the ERR_INVALID_CHARS can be
set regardless of the state of the other flags.

Return codes:

0 No errors.

87 Incorrect code page or codepage value.

1004 Invalid translate flags.

1113 No mapping for the Unicode character exists in the target code page.

SysGetErrortext

�� SysGetErrortext(errornumber) ��

Obtains a string describing the system error identified by the error number.

Returns a string with the description of the error, or an empty string if no
description is available.

Example:
err=SysMkDir("c:\temp)
if err \= 0 then
say "Error" err":"SysGetErrortext(err)

SysGetFileDateTime

�� SysGetFileDateTime(filename)
, timesel

��

REXX Utilities

Chapter 9. REXX Utilities (RexxUtil) 379

Returns the selected data and time attribute of the file filename provided that
this is supported by the operating and file system. FAT, for example, does not
support Create/Access. The selector for the time to be returned can be
abbreviated to the first character.

In Windows NT, the filename can also be a directory name.

The file that you want to query must not be opened by another process or
must at least allow shared writes to query the time stamp.

Parameters:

filename The name of the file to be queried.

timesel The file time to be queried, namely CREATE, ACCESS,
WRITE.

Return codes:

The date and time in the format YYYY-MM-DD HH:MM:SS, or –1 to indicate
that the file date and time query failed

Example:
Say "File creation time:" SysGetFileDateTime("MyFile.Log", "C")
Say "File last access time:" SysGetFileDateTime("MyFile.Log", "A")
Say "File last update time:" SysGetFileDateTime("MyFile.Log", "W")

Say "Directory creation time:" SysGetFileDateTime("C:\MyDir", "C")
/* in Windows NT */

SysGetKey

�� SysGetKey()
opt

��

Reads and returns the next key from the keyboard buffer. If the keyboard
buffer is empty, SysGetKey waits until a key is pressed. Unlike the CHARIN
built-in function, SysGetKey does not wait until the Enter key is pressed.

Parameter:

opt An option controlling screen echoing. Allowed values are:

‘ECHO’ Echo the pressed key to the screen. This is the default.

‘NOECHO’ Do not echo the pressed key.

REXX Utilities

380 Object REXX Reference

SysIni

�� SysIni(,app,key,val,stem)
inifile

��

Allows limited access to INI file variables. Variables are stored in the INI file
under Application Names and their associated key names or keywords. You
can use SysIni to share variables between applications or as a way of
implementing GLOBALV in the Windows operating system. Be careful when
changing application profile information.

Note: SysIni works on all types of data stored in an INI file (text, numeric, or
binary).

When SysIni successfully sets or deletes key values, it returns ''. For a
successful query, it returns the value of the specified application keyword.

SysIni may return the string ERROR: when an error occurs. Possible error
conditions include:
v An attempt was made to query or delete an application/key pair that does

not exist.
v An error opening the profile file occurred. You may have specified the

current user or system INI file with a relative file specification. Make sure
to use the full file specification (specify drive, path, and file name).

Parameters:

inifile The name of the INI file with which you would like to work. The
default is WIN.INI.

app The application name or some other meaningful value with which
you want to store keywords (some sort of data).

key The name of a keyword to hold data.

val The value to associate with the keyword of the specified application.
This can be 'DELETE:' or 'ALL:'.

stem The name of a REXX stem variable collection in which to store the
resultant information. SysIni sets REXX variable stem.0 to the number
of elements returned and stores these elements in stem.1 to stem.n.

Sysini has six modes. The modes and the syntax variations are as follows:

REXX Utilities

Chapter 9. REXX Utilities (RexxUtil) 381

�� SysIni(,app,key,val)
inifile

��

Sets a single key value.

�� SysIni(,app,key)
inifile

��

Queries a single key value.

�� SysIni(,app,key ,'DELETE:')
inifile

��

Deletes a single key.

�� SysIni(,app)
inifile ,'DELETE:'

��

Deletes an application and all associated keys.

�� SysIni(,app ,'ALL:' ,'stem')
inifile

��

Queries names of all keys associated with a certain application.

�� SysIni(,'ALL:' ,'stem')
inifile

��

Queries the names of all applications.

Examples:
/* Sample code segments */

/*** Save the user entered name under the key 'NAME' of *****
**** the application 'MYAPP'. ****/
pull name .
call SysIni , 'MYAPP', 'NAME', name /* Save the value */
say SysIni(, 'MYAPP', 'NAME') /* Query the value */
call SysIni , 'MYAPP' /* Delete all MYAPP info */
exit

REXX Utilities

382 Object REXX Reference

/**** Type all WIN.INI file information to the screen *****/
call rxfuncadd sysloadfuncs, rexxutil, sysloadfuncs
call sysloadfuncs
call SysIni 'WIN.INI', 'All:', 'Apps.'
if Result \= 'ERROR:' then
do i = 1 to Apps.0
call SysIni 'WIN.INI', Apps.i, 'All:', 'Keys'
if Result \= 'ERROR:' then
do j=1 to Keys.0
val = SysIni('WIN.INI', Apps.i, Keys.j)
say left(Apps.i, 20) left(Keys.j, 20),
'Len=x'Left(d2x(length(val)),4) left(val, 20)
end
end
exit

SysLoadFuncs

�� SysLoadFuncs ��

Loads all RexxUtil functions. After a REXX program calls SysLoadFuncs, the
RexxUtil functions are available in all Windows operating system sessions.

SysLoadRexxMacroSpace

�� SysLoadRexxMacroSpace(file) ��

Loads functions from a saved macrospace file. SysLoadRexxMacroSpace
returns the RexxLoadMacroSpace return code.

Parameter:

file The file used to load functions into the REXX macrospace.
SysSaveRexxMacroSpace must have created the file.

SysMkDir

�� SysMkDir(dirspec) ��

Creates a specified directory.

Parameter:

REXX Utilities

Chapter 9. REXX Utilities (RexxUtil) 383

dirspec The directory to be created.

Return codes:

0 Directory creation was successful.

2 File not found.

3 Path not found.

5 Access denied.

26 Not a DOS disk.

87 Invalid parameter.

108 Drive locked.

183 Directory already exists.

206 File name exceeds range.

Example:
/* Code */
call SysMkDir '∼/rexx'

SysOpenEventSem

�� SysOpenEventSem(name) ��

Opens a Windows event semaphore. SysOpenEventSem returns a handle to
the semaphore, or zero if an error occurred.

Parameter:

name The name of the event semaphore created by SysCreateEventSem.

SysOpenMutexSem

�� SysOpenMutexSem(name) ��

Opens a Windows mutex semaphore. SysOpenMutexSem returns a handle to
the semaphore, or zero if an error occurred.

Parameter:

name The name of the mutex semaphore created by SysCreateMutexSem.

REXX Utilities

384 Object REXX Reference

SysPostEventSem

�� SysPostEventSem(handle) ��

Posts a Windows event semaphore. SysPostEventSem returns the GetLastError
return code of SetEvent.

Parameter:

handle A handle returned from a previous SysCreateEventSem call.

Return codes:

0 No errors.

6 Invalid handle.

SysPulseEventSem

�� SysPulseEventSem(handle) ��

Posts and immediately resets an event semaphore. It sets the state of the event
to signaled (available), releases any waiting threads, and resets it to
nonsignaled (unavailable) automatically. If the event is manual, all waiting
threads are released, the event is set to nonsignaled, and PulseEvent returns.
If the event is automatic, a single thread is released, the event is set to
nonsignaled, and PulseEvent returns. If no threads are waiting, or no threads
can be released immediately, PulseEvent sets the state of the event to
nonsignaled and returns.

SysPulseEventSem returns GetLastError of PulseEvent.

Parameter:

handle The handle of a Windows event semaphore previously created by
SysCreateEventSem.

SysQueryProcess

REXX Utilities

Chapter 9. REXX Utilities (RexxUtil) 385

��
PID

SysQueryProcess(" TID ")
PPRIO
TPRIO
PTIME
TTIME

��

Retrieves information about the current process or thread.

Parameter:

info The kind of information requested:

PID Returns the process ID of the current process.

TID Returns the thread ID of the current thread.

PPRIO Returns the priority class of the current process.

TPRIO Returns the relative priority of the current thread.

PTIME Returns time information on the current process.

TTIME Returns time information on the current thread.

Return codes:

v For PID or TID: an ID
v For PPRIO: "IDLE", "NORMAL", "HIGH", "REALTIME", or "UNKNOWN"
v For TPRIO: "IDLE", "LOWEST", "BELOW_NORMAL", "NORMAL",

"ABOVE_NORMAL", "HIGHEST", "TIME_CRITICAL", or "UNKNOWN"
v For PTIME or TTIME: the creation date and time, the amount of time that

the process executed in kernel mode, and the amount of time that the
process executed in user mode

SysQueryRexxMacro

�� SysQueryRexxMacro(name) ��

Queries the existence of a macrospace function. SysQueryRexxMacro returns
the placement order of the macrospace function or a null string ("") if the
function does not exist in the macrospace.

Parameter:

name The name of a function in the REXX macrospace.

REXX Utilities

386 Object REXX Reference

SysReleaseMutexSem

�� SysReleaseMutexSem(handle) ��

Releases a Windows mutex semaphore. SysReleaseMutexSem returns the
GetLastError return code of ReleaseMutex.

Parameter:

handle A handle returned from a previous SysCreateMutexSem call.

Return codes:

0 No errors.

6 Invalid handle.

105 Owner died.

288 Not owner.

SysReorderRexxMacro

�� SysReorderRexxMacro(name,order) ��

Reorders a routine loaded in the REXX macrospace. SysReorderRexxMacro
returns the RexxReorderMacro return code.

Parameters:

name The name of a function in the macrospace.

order The new macro search order. The order can be 'B' (Before) or 'A'
(After).

SysRequestMutexSem

�� SysRequestMutexSem(handle)
,timeout

��

Requests a Windows mutex semaphore. SysRequestMutexSem returns the
WaitForSingleObject return code.

Parameters:

REXX Utilities

Chapter 9. REXX Utilities (RexxUtil) 387

handle A handle returned from a previous SysCreateMutexSem call.

timeout
The time, in milliseconds, to wait on the semaphore. The default
timeout is an infinite wait.

Return codes:

0 No errors.

6 Invalid handle.

103 Too many requests.

121 Error timeout.

SysResetEventSem

�� SysResetEventSem(handle) ��

Resets a Windows event semaphore. SysResetEventSem returns the
GetLastError return code of ResetEvent.

Parameter:

handle A handle returned from a previous SysCreateEventSem call.

Return codes:

0 No errors.

6 Invalid handle.

SysRmDir

�� SysRmDir(dirspec) ��

Deletes a specified file directory without your confirmation.

Parameter:

dirspec The directory that should be deleted.

Return codes:

0 Directory removal was successful.

REXX Utilities

388 Object REXX Reference

2 File not found.

3 Path not found.

5 Access denied or busy.

16 Current directory.

26 Not a DOS disk.

32 Sharing violation.

108 Drive locked.

123 Invalid name.

145 Directory not empty.

146 Is Subst Path.

147 Is Join Path.

206 File name exceeds range.

Example:
/* Code */
call SysRmDir 'c:\rexx'

SysSaveRexxMacroSpace

�� SysSaveRexxMacroSpace(file) ��

Saves the REXX macrospace. SysSaveRexxMacroSpace returns the
RexxSaveMacroSpace return code.

Parameter:

file The file used to save the functions in the REXX macrospace.

SysSearchPath

�� SysSearchPath(path,filename)
, option

��

Searches the specified file path for the specified file. If the file is found, the
search returns the full file specification of the first file found within the path,
and then stops searching. If the file is not found, the search returns a null
string.

REXX Utilities

Chapter 9. REXX Utilities (RexxUtil) 389

Parameters:

path An environment variable name. The environment variable must
contain a list of file directories. Examples are 'PATH' or 'DPATH'.

filename
The file for which the path is to be searched.

option Specifies where the search starts.

'C' Starts the search at the current directory and then along the
specified path. This is the default.

'N' Starts the search at the path, not at the current directory.

Example:
/* Code */
fspec = SysSearchPath('PATH', 'CMD.EXE')
say "CMD.EXE is located at" fspec

/* Output */
CMD.EXE is located at C:\WIN\CMD.EXE

SysSetFileDateTime

�� SysSetFileDateTime(filename)
,

newdate , newtime

��

Modifies the "Last Modified" date and time of file filename. If no new date or
time is specified the file date or time is set to the current time (TOUCH). If
only the date is omitted, the "Last Modified" date remains unchanged. If only
the time is omitted, the "Last Modified" time remains unchanged.

In Windows NT, the filename can also be a directory name.

The file that you want to change must not be opened by another process or
must at least allow shared writes to update the time stamp.

Parameters:

filename The name of the file to be updated.

newdate The new date for the file, to be specified in the format
YYYY-MM-DD, where YYYY > 1800.

newtime The new time for the file, to be specified in the format
HH:MM:SS (24–hour format).

REXX Utilities

390 Object REXX Reference

Return codes:

0 The file date and time were updated correctly.

–1 The update of the file date or time failed.

Example:
Call SysSetFileDateTime "MyFile.Log" /* touch file */
Call SysSetFileDateTime "MyFile.Log", "1998-12-17"
Call SysSetFileDateTime "MyFile.Log",, "16:37:21"
Call SysSetFileDateTime "MyFile.Log", "1998-12-17", "16:37:21"

Call SysSetFileDateTime "C:\MyDir" /* touch dir on Windows NT */

SysSetPriority

�� SysSetPriority(class,delta) ��

Changes the priority of the current process. A return code of 0 indicates no
error.

Parameters:

class The new process priority class. The allowed classes are:

0 or "IDLE"
Idle time priority

1 or "NORMAL"
Regular priority

2 or "HIGH"
High or time-critical priority

3 or "REALTIME"
Real-time priority

delta The change applied to the process priority level. delta must be in the
range -15 to +15. It can also be a symbolic name:
v "IDLE" for −15
v "LOWEST" for −2
v "BELOW_NORMAL" for −1
v "NORMAL" for 0
v "ABOVE_NORMAL" for 1
v "HIGHEST" for 2
v "TIME_CRITICAL" for 15

REXX Utilities

Chapter 9. REXX Utilities (RexxUtil) 391

0 No errors.

307 Invalid priority class.

SysSleep

�� SysSleep(secs) ��

Pauses a REXX program for a specified time interval.

Parameter:

secs The number of seconds for which the program is to be paused. You
can specify up to seven decimal places in the number.

Example:
Say "Now paused for 2 seconds ..."
Call SysSleep 2
Say "Now paused for 0.1234567 seconds ..."
Call SysSleep 0.1234567

Call SysSleep 0.12345678 -- Error 40: Incorrect call to routine

SysStemCopy

�� SysStemCopy (fromstem , tostem �

�)
,

from ,
to ,

count , " I "
O

��

Copies items from the source stem to the target stem. Items in the source stem
are copied starting at the from index (default is 1) into the target stem
beginning at the to index (default is 1). The number of items to be copied to
the target stem can be specified with the count. The default is to copy all
items in the source stem.

You can also specify that the items are to be inserted into the target stem at
the position and the existing items are shifted to the end.

REXX Utilities

392 Object REXX Reference

This function operates only on stem arrays that specify the number of items in
stem.0 and all items must be numbered from 1 to n without omitting an
index.

Parameters:

fromstem
The name of the source stem.

tostem The name of the target stem.

from The first index in the source stem to be copied.

to The position at which the items are to be inserted in the target stem.

count The number of items to be copied or inserted.

insert Either of the following values:

I Insert items.

O Overwrite items.

Return codes:

0 The stem was copied successfully.

–1 Copying the stem failed.

Example:
Source.0 = 3
Source.1 = "Hello"
Source.2 = "from"
Source.3 = "REXX"
Call SysStemCopy "Source.", "Target."

Call SysStemCopy "Source.", "Target.", 1, 5, 2, "I"

SysStemDelete

�� SysStemDelete(stem,startitem)
, itemcount

��

Deletes the specified item at the index startitem in the stem. If more than one
item is to be deleted the itemcount must be specified. After deleting the
requested items the stem is compacted, which means that items following the
deleted items are moved to the vacant positions.

REXX Utilities

Chapter 9. REXX Utilities (RexxUtil) 393

This function operates only on stem arrays that specify the number of items in
stem.0 and all items must be numbered from 1 to n without omitting an
index.

Parameters:

stem The name of the stem from which the item is to be deleted.

startitem
The index of the item to be deleted.

itemcount
The number of items to be deleted if more than one.

Return codes:

0 Deleting was successful.

–1 Deleting failed.

Example:
Call SysStemDelete "MyStem.", 5
Call SysStemDelete "MyStem.", 5, 4

SysStemInsert

�� SysStemInsert(stem,position,value) ��

Inserts a new item at position in the stem. All items in the stem following this
position are shifted down by one position.

This function operates only on stem arrays that specify the number of items in
stem.0 and all items must be numbered from 1 to n without omitting an
index.

Parameters:

stem The name of the stem in which an item is to be inserted.

position
The index at which the new item is to be inserted.

value The value of the new item.

Return codes:

0 Inserting was successful.

–1 Inserting failed.

REXX Utilities

394 Object REXX Reference

Example:
Call SysStemInsert "MyStem.", 5, "New value for item 5"

SysStemSort

��
A C 1

SysStemSort (stem , " D " , " I " , start �

�
1

, end , firstcol , lastcol) ��

Sorts all or the specified items in the stem. The items can be sorted in
ascending or descending order and the case of the strings being compared can
be respected or ignored. Sorting can be further narrowed by specifying the
first and last item to be sorted or the columns used as sort keys. Because the
sort uses a quick-sort algorithm, the order of sorted items according to the
sort key is undetermined.

This function operates only on stems that specify the number of items in
stem.0 and all items must be numbered from 1 to n without omitting an
index.

Parameters:

stem The name of the stem to be sorted.

order Either "A" for ascending or "D" for descending. The default is "A".

type The type of comparison: either "C" for case or "I" for ignore. The
default is "C".

start The index at which the sort is to start. The default is 1.

end The index at which the sort is to end. The default is the last item.

firstcol The first column to be used as sort key. The default is 1.

lastcol The last column to be used as sort key. The default is the last column.

Return codes:

0 The sort was successful.

–1 The sort failed.

Example:

REXX Utilities

Chapter 9. REXX Utilities (RexxUtil) 395

/* sort all elements descending, use cols 5 to 10 as key */
Call SysStemSort "MyStem.", "D",,,,5, 10

/* sort all elements ascending, ignore the case */
Call SysStemSort "MyStem.", "A", "I"

/* sort elements 10 to 20 ascending, use cols 1 to 10 as key */
Call SysStemSort "MyStem.",,,10, 20, 1, 10

SysSwitchSession

�� SysSwitchSession(name) ��

Makes the named application the foreground application. SysSwitchSession
returns GetLastError of SetForegroundWindow.

Parameter:

name The name of the application you want to be the foreground
application.

SysSystemDirectory

�� SysSystemDirectory() ��

Returns the Windows system directory.

SysTempFileName

�� SysTempFileName(template)
,filter

��

Returns a unique name for a file or directory that does not currently exist. If
an error occurs or SysTempFileName cannot create a unique name from the
template, it returns a null string (""). SysTempFileName is useful when a
program requires a temporary file.

Parameters:

REXX Utilities

396 Object REXX Reference

template
The location and base form of the temporary file or directory name.
The template is a valid file or directory specification with up to five
filter characters.

filter The filter character used in template. SysTempFileName replaces each
filter character in template with a numeric value. The resulting string
represents a file or directory that does not exist. The default filter
character is ?.

Examples:
/* Code */
say SysTempFileName('C:\TEMP\MYEXEC.???')
say SysTempFileName('C:\TEMP\??MYEXEC.???')
say SysTempFileName('C:\MYEXEC@.@@@', '@')

/* Output */
C:\TEMP\MYEXEC.251
C:\TEMP\10MYEXEC.392
C:\MYEXEC6.019

SysTempFileName generates the filter character replacements with a random
number algorithm. If the resulting file or directory already exists,
SysTempFileName increments the replacement value until all possibilities
have been exhausted.

SysTextScreenRead

�� SysTextScreenRead(row,column
,len

) ��

Reads characters from a specified screen location. These include any carriage
return and linefeed characters if the number of character reads spans multiple
lines.

Parameters:

row The row from which to start reading.

col The column from which to start reading.

len The number of characters to read. The default is to read to the end of
the screen.

REXX Utilities

Chapter 9. REXX Utilities (RexxUtil) 397

Limitations: This function reads in only screen characters and does not
consider the color attributes of each character read. When restoring a
character string to the screen with SAY or the CHAROUT built-in function,
the previous color settings are lost.

Examples:
/* Reading the entire screen */
screen = SysTextScreenRead(0, 0)

/* Reading one line */
line = SysTextScreenRead(2, 0, 80)

SysTextScreenSize

�� SysTextScreenSize() ��

Returns the size of the screen in the format: row col.

Example:
/* Code */
call RxFuncAdd 'SysTextScreenSize', 'RexxUtil', 'SysTextScreenSize'
parse value SysTextScreenSize() with row col
say 'Rows='row', Columns='col

SysUtilVersion

�� SysUtilVersion() ��

Returns a version number that identifies the current level of the REXX
Utilities package. It can be used to verify the availability of certain functions.

Return code: The REXXUTIL version number in the format n.mm.

Examples:

Because this function was not part of the original packaging, a sample logic to
check for a certain level of REXXUTIL can look as follows:
If RxFuncQuery("SysUtilVersion") = 1 |,

SysUtilVersion() < "2.00" Then
Say "Your REXXUTIL.DLL is not at the current level"

If a specific function should be used that was added at a later REXXUTIL
level a similar check can be performed by querying this function as follows:

REXX Utilities

398 Object REXX Reference

If RxFuncQuery("SysSetFileDateTime") = 1 Then
Say "Your REXXUTIL.DLL is not at the current level"

SysVersion

�� SysVersion() ��

Returns a string to identify the operating system and version. The first word
of the returned string contains the identifier for the operating system and the
second word the version: WindowsNT x.xx or Windows95 x.xx.

Return code: The operating system and version. Possible output for operating
systems supported by Object REXX are:
Say SysVersion() -> "WindowsNT 4.00"
Say SysVersion() -> "WindowsNT 5.00"

Note: This function can be used to replace the operating-system-specific
functions SysOS2Ver(), SysWinVer(), and SysLinVer().

SysVolumeLabel

�� SysVolumeLabel("drive") ��

Returns the label of the specified or the current drive.

Parameter:

drive The drive letter in the form D:. If omitted, the letter of the current
drive is assumed.

SysWaitEventSem

�� SysWaitEventSem(handle)
,timeout

��

Waits on a Windows event semaphore. SysWaitEventSem returns the
WaitForSingleObject return code.

Parameters:

handle A handle returned from a previous SysCreateEventSem call.

REXX Utilities

Chapter 9. REXX Utilities (RexxUtil) 399

timeout
The time, in milliseconds, to wait on the semaphore. The default
timeout is an infinite wait.

Return codes:

0 No errors.

6 Invalid handle.

121 Timeout.

SysWaitNamedPipe

�� SysWaitNamedPipe(name)
,timeout

��

Performs a timed wait on a named pipe and returns the WaitNamedPipe
return code.

Parameters:

name The name of the pipe in the form “\\servername\pipe\pipename.”

timeout
The number of microseconds to be waited. If you omit timeout or
specify 0, SysWaitNamedPipe uses the default timeout value. To wait
until the pipe is no longer busy, you can use a value of -1.

SysWinDecryptFile

�� SysWinDecryptFile(filename) ��

Decrypts a given file (Windows 2000 only).

Parameter:

filename
The file to be decrypted.

Return codes:

0 Decryption was successful.

2 File not found.

REXX Utilities

400 Object REXX Reference

4 Cannot open file.

5 Access denied.

82 Cannot decrypt.

SysWinEncryptFile

�� SysWinEncryptFile(filename) ��

Encrypts a given file (Windows 2000 only).

Parameter:

filename
The file to be encrypted.

Return codes:

0 Encryption was successful.

2 File not found.

4 Cannot open file.

5 Access denied.

82 Cannot encrypt.

SysWinVer

�� SysWinVer() ��

Returns a string specifying the Windows operating system version
information in the form x.xx.

REXX Utilities

Chapter 9. REXX Utilities (RexxUtil) 401

402 Object REXX Reference

Chapter 10. Parsing

The parsing instructions are ARG, PARSE, and PULL (see “ARG” on page 43,
“PARSE” on page 63, and “PULL” on page 69).

The data to be parsed is a source string. Parsing splits the data in a source
string and assigns pieces of it to the variables named in a template. A template
is a model specifying how to split the source string. The simplest kind of
template consists of a list of variable names. Here is an example:
variable1 variable2 variable3

This kind of template parses the source string into blank-delimited words.
More complicated templates contain patterns in addition to variable names:

String patterns
Match the characters in the source string to specify where it is to be
split. (See “Templates Containing String Patterns” on page 405 for
details.)

Positional patterns
Indicate the character positions at which the source string is to be
split. (See “Templates Containing Positional (Numeric) Patterns” on
page 407 for details.)

Parsing is essentially a two-step process:
1. Parse the source string into appropriate substrings using patterns.
2. Parse each substring into words.

Simple Templates for Parsing into Words

Here is a parsing instruction:
parse value 'time and tide' with var1 var2 var3

The template in this instruction is: var1 var2 var3. The data to be parsed is
between the keywords PARSE VALUE and the keyword WITH, the source string
time and tide. Parsing divides the source string into blank-delimited words
and assigns them to the variables named in the template as follows:
var1='time'
var2='and'
var3='tide'

In this example, the source string to be parsed is a literal string, time and
tide. In the next example, the source string is a variable.

© Copyright IBM Corp. 1994, 2001 403

/* PARSE VALUE using a variable as the source string to parse */
string='time and tide'
parse value string with var1 var2 var3 /* same results */

PARSE VALUE does not convert lowercase a–z in the source string to
uppercase A–Z. If you want to convert characters to uppercase, use PARSE
UPPER VALUE. See “Using UPPER, LOWER, and CASELESS” on page 412 for
a summary of the effect of parsing instructions on the case.

Note that if you specify the CASELESS option on a PARSE instruction, the
string comparisons during the scanning operation are made independently of
the alphabetic case. That is, a letter in uppercase is equal to the same letter in
lowercase.

All of the parsing instructions assign the parts of a source string to the
variables named in a template. There are various parsing instructions because
of the differences in the nature or origin of source strings. For a summary of
all the parsing instructions, see “Parsing Instructions Summary” on page 413.

The PARSE VAR instruction is similar to PARSE VALUE except that the
source string to be parsed is always a variable. In PARSE VAR, the name of
the variable containing the source string follows the keywords PARSE VAR. In
the next example, the variable stars contains the source string. The template
is star1 star2 star3.
/* PARSE VAR example */
stars='Sirius Polaris Rigil'
parse var stars star1 star2 star3 /* star1='Sirius' */
/* star2='Polaris' */
/* star3='Rigil' */

All variables in a template receive new values. If there are more variables in
the template than words in the source string, the leftover variables receive
null (empty) values. This is true for the entire parsing: for parsing into words
with simple templates and for parsing with templates containing patterns.
Here is an example of parsing into words:
/* More variables in template than (words in) the source string */
satellite='moon'
parse var satellite Earth Mercury /* Earth='moon' */
/* Mercury='' */

If there are more words in the source string than variables in the template, the
last variable in the template receives all leftover data. Here is an example:
/* More (words in the) source string than variables in template */
satellites='moon Io Europa Callisto...'
parse var satellites Earth Jupiter /* Earth='moon' */
/* Jupiter='Io Europa Callisto...'*/

Parsing

404 Object REXX Reference

Parsing into words removes leading and trailing blanks from each word
before it is assigned to a variable. The exception to this is the word or group
of words assigned to the last variable. The last variable in a template receives
leftover data, preserving extra leading and trailing blanks. Here is an example:
/* Preserving extra blanks */
solar5='Mercury Venus Earth Mars Jupiter '
parse var solar5 var1 var2 var3 var4
/* var1 ='Mercury' */
/* var2 ='Venus' */
/* var3 ='Earth' */
/* var4 =' Mars Jupiter ' */

In the source string, Earth has two leading blanks. Parsing removes both of
them (the word-separator blank and the extra blank) before assigning
var3='Earth'. Mars has three leading blanks. Parsing removes one
word-separator blank and keeps the other two leading blanks. It also keeps all
five blanks between Mars and Jupiter and both trailing blanks after Jupiter.

Parsing removes no blanks if the template contains only one variable. For
example:
parse value ' Pluto ' with var1 /* var1=' Pluto '*/

The Period as a Placeholder
A period in a template is a placeholder. It is used instead of a variable name,
but it receives no data. It is useful as a “dummy variable” in a list of variables
or to collect unwanted information at the end of a string. And it saves the
overhead of unneeded variables.

The period in the first example is a placeholder. Be sure to separate adjacent
periods with spaces; otherwise, an error results.
/* Period as a placeholder */
stars='Arcturus Betelgeuse Sirius Rigil'
parse var stars . . brightest . /* brightest='Sirius' */

/* Alternative to period as placeholder */
stars='Arcturus Betelgeuse Sirius Rigil'
parse var stars drop junk brightest rest /* brightest='Sirius' */

Templates Containing String Patterns

A string pattern matches characters in the source string to indicate where to
split it. A string pattern can be either of the following:

Literal string pattern
One or more characters within quotation marks.

Parsing

Chapter 10. Parsing 405

Variable string pattern
A variable within parentheses with no plus (+), minus (-), or equal
sign (=) before the left parenthesis. (See “Parsing with Variable
Patterns” on page 411 for details.)

Here are two templates, a simple template and a template containing a literal
string pattern:
var1 var2 /* simple template */
var1 ', ' var2 /* template with literal string pattern */

The literal string pattern is: ', '. This template puts characters:
v From the start of the source string up to (but not including) the first

character of the match (the comma) into var1

v Starting with the character after the last character of the match (the
character after the blank that follows the comma) and ending with the end
of the string into var2

A template with a string pattern can omit some of the data in a source string
when assigning data to variables. The next two examples contrast simple
templates with templates containing literal string patterns.
/* Simple template */
name='Smith, John'
parse var name ln fn /* Assigns: ln='Smith,' */
/* fn='John' */

Notice that the comma remains (the variable ln contains 'Smith,'). In the
next example the template is ln ', ' fn. This removes the comma.
/* Template with literal string pattern */
name='Smith, John'
parse var name ln ', ' fn /* Assigns: ln='Smith' */

/* fn='John' */

First, the language processor scans the source string for ', '. It splits the source
string at that point. The variable ln receives data starting with the first
character of the source string and ending with the last character before the
match. The variable fn receives data starting with the first character after the
match and ending with the end of string.

A template with a string pattern omits data in the source string that matches
the pattern. (There is a special case (see “Combining String and Positional
Patterns” on page 415) in which a template with a string pattern does not omit
matching data in the source string.) The pattern ', ' (with a blank) is used
instead of ',' (no blank) because, without the blank in the pattern, the
variable fn receives ' John' (including a blank).

Parsing

406 Object REXX Reference

If the source string does not contain a match for a string pattern, any
variables preceding the unmatched string pattern get all the data in question.
Any variables after that pattern receive the null string.

A null string is never found. It always matches the end of the source string.

Templates Containing Positional (Numeric) Patterns

A positional pattern is a number that identifies the character position at which
the data in the source string is to be split. The number must be a whole
number.

An absolute positional pattern is:
v A number with no plus (+) or minus (-) sign preceding it or with an equal

sign (=) preceding it.
v A variable in parentheses with an equal sign before the left parenthesis.

(See “Parsing with Variable Patterns” on page 411 for details on variable
positional patterns.)

The number specifies the absolute character position at which the source
string is to be split.

Here is a template with absolute positional patterns:
variable1 11 variable2 21 variable3

The numbers 11 and 21 are absolute positional patterns. The number 11 refers
to the 11th position in the input string, 21 to the 21st position. This template
puts characters:
v 1 through 10 of the source string into variable1
v 11 through 20 into variable2
v 21 to the end into variable3

Positional patterns are probably most useful for working with a file of
records, such as:

The following example uses this record structure:
/* Parsing with absolute positional patterns in template */
record.1='Clemens Samuel Mark Twain '
record.2='Evans Mary Ann George Eliot '
record.3='Munro H.H. Saki '
do n=1 to 3

Parsing

Chapter 10. Parsing 407

parse var record.n lastname 11 firstname 21 pseudonym
If lastname='Evans' & firstname='Mary Ann' then say 'By George!'

end /* Says 'By George!' after record 2 */

The source string is split at character position 11 and at position 21. The
language processor assigns characters 1 to 10 to lastname, characters 11 to 20
to firstname, and characters 21 to 40 to pseudonym.

The template could have been:
1 lastname 11 firstname 21 pseudonym

instead of
lastname 11 firstname 21 pseudonym

Specifying 1 is optional.

Optionally, you can put an equal sign before a number in a template. An
equal sign is the same as no sign before a number in a template. The number
refers to a particular character position in the source string. These two
templates are equal:
lastname 11 first 21 pseudonym

lastname =11 first =21 pseudonym

A relative positional pattern is a number with a plus (+) or minus (-) sign
preceding it. It can also be a variable within parentheses, with a plus (+) or
minus (-) sign preceding the left parenthesis; for details see “Parsing with
Variable Patterns” on page 411.

The number specifies the relative character position at which the source string
is to be split. The plus or minus indicates movement right or left, respectively,
from the start of the string (for the first pattern) or from the position of the
last match. The position of the last match is the first character of the last
match. Here is the same example as for absolute positional patterns done with
relative positional patterns:
/* Parsing with relative positional patterns in template */
record.1='Clemens Samuel Mark Twain '
record.2='Evans Mary Ann George Eliot '
record.3='Munro H.H. Saki '
do n=1 to 3

parse var record.n lastname +10 firstname + 10 pseudonym
If lastname='Evans' & firstname='Mary Ann' then say 'By George!'

end /* same results */

Blanks between the sign and the number are insignificant. Therefore, +10 and
+ 10 have the same meaning. Note that +0 is a valid relative positional
pattern.

Parsing

408 Object REXX Reference

Absolute and relative positional patterns are interchangeable except in the
special case (“Combining String and Positional Patterns” on page 415) when a
string pattern precedes a variable name and a positional pattern follows the
variable name. The templates from the examples of absolute and relative
positional patterns give the same results.

With positional patterns, a matching operation can back up to an earlier
position in the source string. Here is an example using absolute positional
patterns:
/* Backing up to an earlier position (with absolute positional) */
string='astronomers'
parse var string 2 var1 4 1 var2 2 4 var3 5 11 var4
say string 'study' var1||var2||var3||var4
/* Displays: "astronomers study stars" */

The absolute positional pattern 1 backs up to the first character in the source
string.

With relative positional patterns, a number preceded by a minus sign backs
up to an earlier position. Here is the same example using relative positional
patterns:
/* Backing up to an earlier position (with relative positional) */
string='astronomers'
parse var string 2 var1 +2 -3 var2 +1 +2 var3 +1 +6 var4
say string 'study' var1||var2||var3||var4 /* same results */

In the previous example, the relative positional pattern -3 backs up to the first
character in the source string.

The templates in the previous two examples are equivalent.

Parsing

Chapter 10. Parsing 409

You can use templates with positional patterns to make several assignments:
/* Making several assignments */
books='Silas Marner, Felix Holt, Daniel Deronda, Middlemarch'
parse var books 1 Eliot 1 Evans
/* Assigns the (entire) value of books to Eliot and to Evans. */

Combining Patterns and Parsing into Words
If a template contains patterns that divide the source string into sections
containing several words, string and positional patterns divide the source
string into substrings. The language processor then applies a section of the
template to each substring, following the rules for parsing into words.
/* Combining string pattern and parsing into words */
name=' John Q. Public'
parse var name fn init '.' ln /* Assigns: fn='John' */
/* init=' Q' */
/* ln=' Public' */

The pattern divides the template into two sections:
v fn init
v ln

The matching pattern splits the source string into two substrings:
v ' John Q'
v ' Public'

The language processor parses these substrings into words based on the
appropriate template section.

John has three leading blanks. All are removed because parsing into words
removes leading and trailing blanks except from the last variable.

Q has six leading blanks. Parsing removes one word-separator blank and
keeps the rest because init is the last variable in that section of the template.

For the substring ' Public', parsing assigns the entire string into ln
without removing any blanks. This is because ln is the only variable in this
section of the template. (For details about treatment of blanks, see “Simple
Templates for Parsing into Words” on page 403.)

Parsing

410 Object REXX Reference

/* Combining positional patterns with parsing into words */
string='R E X X'
parse var string var1 var2 4 var3 6 var4 /* Assigns: var1='R' */
/* var2='E' */
/* var3=' X' */
/* var4=' X' */

The pattern divides the template into three sections:
v var1 var2
v var3
v var4

The matching patterns split the source string into three substrings that are
individually parsed into words:
v 'R E'
v ' X'
v ' X'

The variable var1 receives 'R'; var2 receives 'E'. Both var3 and var4 receive
' X' (with a blank before the X) because each is the only variable in its section
of the template. (For details on treatment of blanks, see “Simple Templates for
Parsing into Words” on page 403.)

Parsing with Variable Patterns

You might want to specify a pattern by using the value of a variable instead
of a fixed string or number. You do this by placing the name of the variable in
parentheses. This is a variable reference. Blanks are not necessary inside or
outside the parentheses, but you can add them if you wish.

The template in the next parsing instruction contains the following literal
string pattern '. '.
parse var name fn init '. ' ln

Here is how to specify that pattern as a variable string pattern:
strngptrn='. '
parse var name fn init (strngptrn) ln

If no equal, plus, or minus sign precedes the parenthesis that is before the
variable name, the character string value of the variable is then treated as a
string pattern. The variable can be one that has been set earlier in the same
template.

Example:
/* Using a variable as a string pattern */
/* The variable (delim) is set in the same template */
SAY "Enter a date (mm/dd/yy format). =====> " /* assume 11/15/98 */

Parsing

Chapter 10. Parsing 411

pull date
parse var date month 3 delim +1 day +2 (delim) year
/* Sets: month='11'; delim='/'; day='15'; year='98' */

If an equal, a plus, or a minus sign precedes the left parenthesis, the value of
the variable is treated as an absolute or relative positional pattern. The value
of the variable must be a positive whole number or zero.

The variable can be one that has been set earlier in the same template. In the
following example, the first two fields specify the starting-character positions
of the last two fields.

Example:
/* Using a variable as a positional pattern */
dataline = '12 26Samuel ClemensMark Twain'
parse var dataline pos1 pos2 6 =(pos1) realname =(pos2) pseudonym
/* Assigns: realname='Samuel Clemens'; pseudonym='Mark Twain' */

The positional pattern 6 is needed in the template for the following reason:
Word parsing occurs after the language processor divides the source string
into substrings using patterns. Therefore, the positional pattern =(pos1)
cannot be correctly interpreted as =12 until after the language processor has
split the string at column 6 and assigned the blank-delimited words 12 and 26
to pos1 and pos2, respectively.

Using UPPER, LOWER, and CASELESS

Specifying UPPER on any of the PARSE instructions converts lowercase a–z to
uppercase A–Z before parsing.

The ARG instruction is a short form of PARSE UPPER ARG. The PULL
instruction is a short form of PARSE UPPER PULL. If you do not desire
uppercase translation, use PARSE ARG instead of ARG or PARSE UPPER
ARG, and PARSE PULL instead of PULL or PARSE UPPER PULL.

Specifying LOWER on any of the PARSE instructions converts uppercase A–Z
to lowercase a–z before parsing.

Specifying CASELESS means the comparisons during parsing are independent
of the case—that is, a letter in uppercase is equal to the same letter in
lowercase.

Parsing

412 Object REXX Reference

Parsing Instructions Summary

All parsing instructions assign parts of the source string to the variables
named in the template. The following table summarizes where the source
string comes from.

Instruction Where the source string comes from

ARG
PARSE ARG

Arguments you list when you call the program or arguments
in the call to a subroutine or function.

PARSE LINEIN Next line in the default input stream.

PULL
PARSE PULL

The string at the head of the external data queue. (If the
queue is empty, it uses default input, typically the terminal.)

PARSE SOURCE System-supplied string giving information about the
executing program.

PARSE VALUE Expression between the keywords VALUE and WITH in the
instruction.

PARSE VAR name Parses the value of name.

PARSE VERSION System-supplied string specifying the language, language
level, and (three-word) date.

Parsing Instructions Examples

All examples in this section parse source strings into words.

ARG
/* ARG with source string named in REXX program invocation */
/* Program name is PALETTE. Specify 2 primary colors (yellow, */
/* red, blue) on call. Assume call is: palette red blue */
arg var1 var2 /* Assigns: var1='RED'; var2='BLUE' */
If var1<>'RED' & var1<>'YELLOW' & var1<>'BLUE' then signal err
If var2<>'RED' & var2<>'YELLOW' & var2<>'BLUE' then signal err
total=length(var1)+length(var2)
SELECT;

When total=7 then new='purple'
When total=9 then new='orange'
When total=10 then new='green'

Otherwise new=var1 /* entered duplicates */
END
Say new; exit /* Displays: "purple" */

Err:
say 'Input error--color is not "red" or "blue" or "yellow"'; exit

ARG converts alphabetic characters to uppercase before parsing. An example
of ARG with the arguments in the CALL to a subroutine is in “Parsing
Several Strings” on page 414.

Parsing

Chapter 10. Parsing 413

PARSE ARG is similar to ARG except that PARSE ARG does not convert
alphabetic characters to uppercase before parsing.

PARSE LINEIN
parse linein 'a=' num1 'c=' num2 /* Assume: 8 and 9 */
sum=num1+num2 /* Enter: a=8 b=9 as input */
say sum /* Displays: "17" */

PARSE PULL
PUSH '80 7' /* Puts data on queue */
parse pull fourscore seven /* Assigns: fourscore='80'; seven='7' */
SAY fourscore+seven /* Displays: "87" */

PARSE SOURCE
parse source sysname .
Say sysname /* Displays: */

/* "Windows" */

PARSE VALUE example is on page 403.

PARSE VAR examples are throughout the chapter, starting with page 404.

PARSE VERSION
parse version . level .
say level /* Displays: "Oryx 3.00 Jun 9 1993" */

PULL is similar to PARSE PULL except that PULL converts alphabetic
characters to uppercase before parsing.

Advanced Topics in Parsing

This section includes parsing several strings and flow charts illustrating a
conceptual view of parsing.

Parsing Several Strings
Only ARG and PARSE ARG can have more than one source string. To parse
several strings, you can specify several comma-separated templates. Here is
an example:
parse arg template1, template2, template3

This instruction consists of the keywords PARSE ARG and three
comma-separated templates. For an ARG instruction, the source strings to be
parsed come from arguments you specify when you call a program or CALL a
subroutine or function. Each comma is an instruction to the parser to move on
to the next string.

Example:

Parsing

414 Object REXX Reference

/* Parsing several strings in a subroutine */
num='3'
musketeers="Porthos Athos Aramis D'Artagnan"
CALL Sub num,musketeers /* Passes num and musketeers to sub */
SAY total; say fourth /* Displays: "4" and " D'Artagnan" */
EXIT

Sub:
parse arg subtotal, . . . fourth
total=subtotal+1
RETURN

Note that when a REXX program is started as a command, only one argument
string is recognized. You can pass several argument strings for parsing if:
v One REXX program calls another REXX program with the CALL instruction

or a function call
v Programs written in other languages start a REXX program

If there are more templates than source strings, each variable in a leftover
template receives a null string. If there are more source strings than templates,
the language processor ignores leftover source strings. If a template is empty
(two subsequent commas) or contains no variable names, parsing proceeds to
the next template and source string.

Combining String and Positional Patterns
There is a special case in which absolute and relative positional patterns do
not work identically. Parsing with a template containing a string pattern skips
the data in the source string that matches the pattern (see “Templates
Containing String Patterns” on page 405). But a template containing the
sequence string pattern, variable name, and relative position pattern does not
skip the matching data. A relative positional pattern moves relative to the first
character matching a string pattern. As a result, assignment includes the data
in the source string that matches the string pattern.
/* Template containing string pattern, then variable name, then */
/* relative positional pattern does not skip any data. */
string='REstructured eXtended eXecutor'
parse var string var1 3 junk 'X' var2 +1 junk 'X' var3 +1 junk
say var1||var2||var3 /* Concatenates variables; displays: "REXX" */

Here is how this template works:

Parsing

Chapter 10. Parsing 415

Conceptual Overview of Parsing
The following figures are to help you understand the concept of parsing.

The figures include the following terms:

string start
is the beginning of the source string (or substring).

string end
is the end of the source string (or substring).

length is the length of the source string.

match start
is in the source string and is the first character of the match.

match end
is in the source string. For a string pattern, it is the first character after
the end of the match. For a positional pattern, it is the same as match
start.

match position
is in the source string. For a string pattern, it is the first matching
character. For a positional pattern, it is the position of the matching
character.

token is a distinct syntactic element in a template, such as a variable, a
period, a pattern, or a comma.

value is the numeric value of a positional pattern. This can be either a
constant or the resolved value of a variable.

Parsing

416 Object REXX Reference

Figure 13. Conceptual Overview of Parsing

Parsing

Chapter 10. Parsing 417

Figure 14. Conceptual View of Finding Next Pattern

Parsing

418 Object REXX Reference

Note: The figures do not include error cases.

Figure 15. Conceptual View of Word Parsing

Parsing

Chapter 10. Parsing 419

Parsing

420 Object REXX Reference

Chapter 11. Numbers and Arithmetic

This chapter gives an overview of the arithmetic facilities of the REXX
language.

Numbers can be expressed flexibly. Leading and trailing blanks are permitted,
and exponential notation can be used. Valid numbers are, for example:
12 /* a whole number */
'-76' /* a signed whole number */
12.76 /* decimal places */
' + 0.003 ' /* blanks around the sign and so forth */
17. /* same as 17 */
.5 /* same as 0.5 */
4E9 /* exponential notation */
0.73e-7 /* exponential notation */

A number in REXX is defined as follows:

��
blanks sign

blanks

digits
digits.digits
.digits
digits.

blanks
��

blanks
are one or more spaces.

sign is either + or −.

digits are one or more of the decimal digits 0–9.

Note that a single period alone is not a valid number.

The arithmetic operators include addition (+), subtraction (-), multiplication (*),
power (**), division (/), prefix plus (+), and prefix minus (-). In addition, it
includes integer divide (%), which divides and returns the integer part, and
remainder (//), which divides and returns the remainder. For examples of the
arithmetic operators, see “Operator Examples” on page 424.

The result of an arithmetic operation is formatted as a character string
according to specific rules. The most important rules are:
v Results are calculated up to a maximum number of significant digits. The

default is 9, but you can alter it with the NUMERIC DIGITS instruction.
Thus, if a result requires more than 9 digits, it is rounded to 9 digits. For
example, the division of 2 by 3 results in 0.666666667.

© Copyright IBM Corp. 1994, 2001 421

v Except for division and power, trailing zeros are preserved. For example:
2.40 + 2 -> 4.40
2.40 - 2 -> 0.40
2.40 * 2 -> 4.80
2.40 / 2 -> 1.2

If necessary, you can remove trailing zeros with the STRIP method (see
“STRIP” on page 231), the STRIP function (see “STRIP” on page 344), or by
division by 1.

v A zero result is always expressed as the single digit 0.
v Exponential form is used for a result depending on its value and the setting

of NUMERIC DIGITS (the default is 9). If the number of places needed
before the decimal point exceeds the NUMERIC DIGITS setting, or the
number of places after the point exceeds twice the NUMERIC DIGITS
setting, the number is expressed in exponential notation:
1e6 * 1e6 -> 1E+12 /* not 1000000000000 */
1 / 3E10 -> 3.33333333E-11 /* not 0.0000000000333333333 */

Precision

Precision is the maximum number of significant digits that can result from an
operation. This is controlled by the instruction:

�� NUMERIC DIGITS
expression

; ��

The expression is evaluated and must result in a positive whole number. This
defines the precision (number of significant digits) of a calculation. Results are
rounded to that precision, if necessary.

If you do not specify expression in this instruction, or if no NUMERIC DIGITS
instruction has been processed since the start of a program, the default
precision is used. The REXX standard for the default precision is 9.

NUMERIC DIGITS can set values smaller than nine. However, use small
values with care because the loss of precision and rounding affects all REXX
computations, including, for example, the computation of new values for the
control variable in DO loops.

Arithmetic Operators

REXX arithmetic is performed by the operators +, -, *, /, %, //, and ** (add,
subtract, multiply, divide, integer divide, remainder, and power).

Before every arithmetic operation, the terms operated upon have leading zeros
removed (noting the position of any decimal point, and leaving only one zero

Numbers and Arithmetic

422 Object REXX Reference

if all the digits in the number are zeros). They are then truncated, if necessary,
to DIGITS + 1 significant digits before being used in the computation. The
extra digit improves accuracy because it is inspected at the end of an
operation, when a number is rounded to the required precision. When a
number is truncated, the LOSTDIGITS condition is raised if a SIGNAL ON
LOSTDIGITS condition trap is active. The operation is then carried out under
up to double that precision. When the operation is completed, the result is
rounded, if necessary, to the precision specified by the NUMERIC DIGITS
instruction.

The values are rounded as follows: 5 through 9 are rounded up, and 0
through 4 are rounded down.

Power
The ** (power) operator raises a number to a power, which can be positive,
negative, or 0. The power must be a whole number. The second term in the
operation must be a whole number and is rounded to DIGITS digits, if
necessary, as described under “Limits and Errors when REXX Uses Numbers
Directly” on page 427. If negative, the absolute value of the power is used,
and the result is inverted (that is, the number 1 is divided by the result). For
calculating the power, the number is multiplied by itself for the number of
times expressed by the power. Trailing zeros are then removed as though the
result were divided by 1.

Integer Division
The % (integer divide) operator divides two numbers and returns the integer
part of the result. The result is calculated by repeatedly subtracting the divisor
from the dividend as long as the dividend is larger than the divisor. During
this subtraction, the absolute values of both the dividend and the divisor are
used: the sign of the final result is the same as that which would result from
regular division.

If the result cannot be expressed as a whole number, the operation is in error
and fails—that is, the result must not have more digits than the current
setting of NUMERIC DIGITS. For example, 10000000000%3 requires 10 digits
for the result (3333333333) and would, therefore, fail if NUMERIC DIGITS 9 were
in effect.

Remainder
The // (remainder) operator returns the remainder from an integer division and
is defined to be the residue of the dividend after integer division. The sign of
the remainder, if nonzero, is the same as that of the original dividend.

This operation fails under the same conditions as integer division, that is, if
integer division on the same two terms fails, the remainder cannot be
calculated.

Numbers and Arithmetic

Chapter 11. Numbers and Arithmetic 423

Operator Examples
/* With: NUMERIC DIGITS 5 */
12+7.00 -> 19.00
1.3-1.07 -> 0.23
1.3-2.07 -> -0.77
1.20*3 -> 3.60
7*3 -> 21
0.9*0.8 -> 0.72
1/3 -> 0.33333
2/3 -> 0.66667
5/2 -> 2.5
1/10 -> 0.1
12/12 -> 1
8.0/2 -> 4
2**3 -> 8
2**-3 -> 0.125
1.7**8 -> 69.758
2%3 -> 0
2.1//3 -> 2.1
10%3 -> 3
10//3 -> 1
-10//3 -> -1
10.2//1 -> 0.2
10//0.3 -> 0.1
3.6//1.3 -> 1.0

Exponential Notation

For both large and small numbers, an exponential notation can be useful. For
example:
numeric digits 5
say 54321*54321

would display 2950800000 in the long form. Because this is misleading, the
result is expressed as 2.9508E+9 instead.

The definition of numbers is, therefore, extended as follows:

��
blanks sign

blanks

digits
digits.digits
.digits
digits.

E digits
sign

�

�
blanks

��

The integer following the E represents a power of ten that is to be applied to
the number. The E can be in uppercase or lowercase.

Numbers and Arithmetic

424 Object REXX Reference

Certain character strings are numbers even though they do not appear to be
numeric, such as 0E123 (0 raised to the 123 power) and 1E342 (1 raised to the
342 power). Also, a comparison such as 0E123=0E567 gives a true result of 1 (0
is equal to 0). To prevent problems when comparing nonnumeric strings, use
the strict comparison operators.

Here are some examples:
12E7 = 120000000 /* Displays "1" */
12E-5 = 0.00012 /* Displays "1" */
-12e4 = -120000 /* Displays "1" */
0e123 = 0e456 /* Displays "1" */
0e123 == 0e456 /* Displays "0" */

The results of calculations are returned in either conventional or exponential
form, depending on the setting of NUMERIC DIGITS. If the number of places
needed before the decimal point exceeds DIGITS, or the number of places
after the point exceeds twice DIGITS, the exponential form is used. The
exponential form the language processor generates always has a sign
following the E to improve readability. If the exponent is 0, the exponential
part is omitted—that is, an exponential part of E+0 is not generated.

You can explicitly convert numbers to exponential form, or force them to be
displayed in the long form, by using the FORMAT built-in function (see
“FORMAT” on page 325).

Scientific notation is a form of exponential notation that adjusts the power of
ten so that the number contains only one nonzero digit before the decimal
point. Engineering notation is a form of exponential notation in which up to
three digits appear before the decimal point, and the power of ten is always a
multiple of three. The integer part can, therefore, range from 1 through 999.
You can control whether scientific or engineering notation is used with the
following instruction:

�� NUMERIC FORM
SCIENTIFIC

ENGINEERING
expression

VALUE

; ��

Scientific notation is the default.
/* after the instruction */
Numeric form scientific

123.45 * 1e11 -> 1.2345E+13

Numbers and Arithmetic

Chapter 11. Numbers and Arithmetic 425

/* after the instruction */
Numeric form engineering

123.45 * 1e11 -> 12.345E+12

Numeric Comparisons

The comparison operators are listed in “Comparison” on page 21. You can use
any of them for comparing numeric strings. However, you should not use ==,
\==, ¬==, >>, \>>, ¬>>, <<, \<<, and ¬<< for comparing numbers because leading
and trailing blanks and leading zeros are significant with these operators.

Numeric values are compared by subtracting the two numbers (calculating the
difference) and then comparing the result with 0. That is, the operation:
A ? Z

where ? is any numeric comparison operator, is identical with:
(A - Z) ? '0'

It is, therefore, the difference between two numbers, when subtracted under
REXX subtraction rules, that determines their equality.

Fuzz affects the comparison of two numbers. It controls how much two
numbers can differ and still be considered equal in a comparison. The FUZZ
value is set by the following instruction:

�� NUMERIC FUZZ
expression

; ��

expression must result in a positive whole number or zero. The default is 0.

Fuzz is to temporarily reduce the value of DIGITS. That is, the numbers are
subtracted with a precision of DIGITS minus FUZZ digits during the
comparison. The FUZZ setting must always be less than DIGITS.

If, for example, DIGITS = 9 and FUZZ = 1, the comparison is carried out to 8
significant digits, just as though NUMERIC DIGITS 8 had been put in effect for
the duration of the operation.

Example:
Numeric digits 5
Numeric fuzz 0
say 4.9999 = 5 /* Displays "0" */
say 4.9999 < 5 /* Displays "1" */

Numbers and Arithmetic

426 Object REXX Reference

Numeric fuzz 1
say 4.9999 = 5 /* Displays "1" */
say 4.9999 < 5 /* Displays "0" */

Limits and Errors when REXX Uses Numbers Directly

When REXX uses numbers directly, that is, numbers that have not been
involved in an arithmetic operation, they are rounded, if necessary, according
to the setting of NUMERIC DIGITS.

The following table shows which numbers must be whole numbers and what
their limits are:

Power values (right-hand operand of the
power operator)

999999999

Values of exprr and exprf in the DO
instruction

The current numeric precision (up to
999999999)

Values given for DIGITS or FUZZ in the
NUMERIC instruction

999999999 (Note: FUZZ must always be
less than DIGITS.)

Positional patterns in parsing templates 999999999

Number given for option in the TRACE
instruction

999999999

When REXX uses numbers directly, the following types of errors can occur:
v Overflow or underflow.

This error occurs if the exponential part of a result exceeds the range that
the language processor can handle, when the result is formatted according
to the current settings of NUMERIC DIGITS and NUMERIC FORM. The
language defines a minimum capability for the exponential part, namely the
largest number that can be expressed as an exact integer in default
precision. Because the default precision is 9, you can use exponents in the
range -999999999 through 999999999.
Because this allows for (very) large exponents, overflow or underflow is
treated as a syntax error.

v Insufficient storage.
Storage is needed for calculations and intermediate results, and if an
arithmetic operation fails because of lack of storage. This is considered as a
terminating error.

Numbers and Arithmetic

Chapter 11. Numbers and Arithmetic 427

Numbers and Arithmetic

428 Object REXX Reference

Chapter 12. Conditions and Condition Traps

A condition is an event or state that CALL ON or SIGNAL ON can trap. A
condition trap can modify the flow of execution in a REXX program.
Condition traps are turned on or off using the ON or OFF subkeywords of the
SIGNAL and CALL instructions (see “CALL” on page 45 and “SIGNAL” on
page 77).

�� CALL
SIGNAL

OFF condition
USER usercondition

ON condition
USER usercondition NAME trapname

; ��

condition, usercondition, and trapname are single symbols that are taken as
constants. Following one of these instructions, a condition trap is set to either
ON (enabled) or OFF (disabled). The initial setting for all condition traps is
OFF.

If a condition trap is enabled and the specified condition or usercondition
occurs, control passes to the routine or label trapname if you have specified
trapname. Otherwise, control passes to the routine or label usercondition or
condition. CALL or SIGNAL is used, depending on whether the most recent
trap for the condition was set using CALL ON or SIGNAL ON, respectively.

Note: If you use CALL, the trapname can be an internal label, a built-in
function, or an external routine. If you use SIGNAL, the trapname can
only be an internal label.

The conditions and their corresponding events that can be trapped are:

ANY traps any condition that a more specific condition trap does not trap.
For example, if NOVALUE is raised and there is no NOVALUE trap
enabled, but there is a SIGNAL ON ANY trap, the ANY trap is called
for the NOVALUE condition. For example, a CALL ON ANY trap is
ignored if NOVALUE is raised because CALL ON NOVALUE is not
allowed.

ERROR
raised if a command indicates an error condition upon return. It is
also raised if any command indicates failure and none of the
following is active:
v CALL ON FAILURE
v SIGNAL ON FAILURE

© Copyright IBM Corp. 1994, 2001 429

v CALL ON ANY
v SIGNAL ON ANY

The condition is raised at the end of the clause that called the
command but is ignored if the ERROR condition trap is already in the
delayed state. The delayed state is the state of a condition trap when
the condition has been raised but the trap has not yet been reset to
the enabled (ON) or disabled (OFF) state.

FAILURE
raised if a command indicates a failure condition upon return. The
condition is raised at the end of the clause that called the command
but is ignored if the FAILURE condition trap is already in the delayed
state.

An attempt to enter a command to an unknown subcommand
environment also raises a FAILURE condition.

HALT
raised if an external attempt is made to interrupt and end execution of
the program. The condition is usually raised at the end of the clause
that was processed when the external interruption occurred. When a
REXX program is running in a full-screen or command prompt
session, the Ctrl+Break key sequence raises the halt condition.
However, if Ctrl+Break is pressed while a command or non-REXX
external function is processing, the command or function ends.

Notes:

1. Application programs that use the REXX language processor might
use the RXHALT exit or the RexxStart programming interface to
halt the execution of a REXX macro. (See the Object REXX for
Windows: Programming Guide for details about exits.)

2. Only SIGNAL ON HALT or CALL ON HALT can trap error 4,
described in “Appendix C. Error Numbers and Messages” on
page 527.

LOSTDIGITS
raised if a number used in an arithmetic operation has more digits
than the current setting of NUMERIC DIGITS. Leading zeros are not
counted in this comparison. You can specify the LOSTDIGITS
condition only for SIGNAL ON.

NOMETHOD
raised if an object receives a message for which it has no method
defined, and the object does not have an UNKNOWN method. You
can specify the NOMETHOD condition only for SIGNAL ON.

NOSTRING
raised when the language processor requires a string value from an

Conditions and Condition Traps

430 Object REXX Reference

object and the object does not directly provide a string value. See
“Required String Values” on page 105 for more information. You can
specify the NOSTRING condition only for SIGNAL ON.

NOTREADY
raised if an error occurs during an input or output operation. See
“Errors during Input and Output” on page 472. This condition is
ignored if the NOTREADY condition trap is already in the delayed
state.

NOVALUE
raised if an uninitialized variable is used as:
v A term in an expression
v The name following the VAR subkeyword of a PARSE instruction
v A variable reference in a parsing template, an EXPOSE instruction,

a PROCEDURE instruction, or a DROP instruction
v A method selection override specifier in a message term

Note: SIGNAL ON NOVALUE can trap any uninitialized variables
except tails in compound variables.
/* The following does not raise NOVALUE. */
signal on novalue
a.=0
say a.z
say 'NOVALUE is not raised.'
exit

novalue:
say 'NOVALUE is raised.'

You can specify this condition only for SIGNAL ON.

SYNTAX
raised if any language-processing error is detected while the program
is running. This includes all kinds of processing errors:
v True syntax errors
v “Run-time” errors (such as attempting an arithmetic operation on

nonnumeric terms)
v Syntax errors propagated from higher call or method invocation

levels
v Untrapped HALT conditions
v Untrapped NOMETHOD conditions

You can specify this condition only for SIGNAL ON.

Notes:

1. SIGNAL ON SYNTAX cannot trap the errors 3 and 5.
2. SIGNAL ON SYNTAX can trap the errors 6 and 30 only if they

occur during the execution of an INTERPRET instruction.

Conditions and Condition Traps

Chapter 12. Conditions and Condition Traps 431

For information on these errors, refer to “Appendix C. Error Numbers
and Messages” on page 527.

USER
raised if a condition specified on the USER option of CALL ON or
SIGNAL ON occurs. USER conditions are raised by a RAISE
instruction that specifies a USER option with the same usercondition
name. The specified usercondition can be any symbol, including those
specified as possible values for condition.

Any ON or OFF reference to a condition trap replaces the previous state (ON,
OFF, or DELAY, and any trapname) of that condition trap. Thus, a CALL ON
HALT replaces any current SIGNAL ON HALT (and a SIGNAL ON HALT
replaces any current CALL ON HALT), a CALL ON or SIGNAL ON with a
new trap name replaces any previous trap name, and any OFF reference
disables the trap for CALL or SIGNAL.

Action Taken when a Condition Is Not Trapped

When a condition trap is currently disabled (OFF) and the specified condition
occurs, the default action depends on the condition:
v For HALT and NOMETHOD, a SYNTAX condition is raised with the

appropriate REXX error number.
v For SYNTAX conditions, the clause in error is terminated, and a SYNTAX

condition is propagated to each CALL instruction, INTERPRET instruction,
message instruction, or clause with function or message invocations active
at the time of the error, terminating each instruction if a SYNTAX trap is
not active at the instruction level. If the SYNTAX condition is not trapped
at any of the higher levels, processing stops, and a message (see
“Appendix C. Error Numbers and Messages” on page 527) describing the
nature of the event that occurred usually indicates the condition.

v For all other conditions, the condition is ignored and its state remains OFF.

Action Taken when a Condition Is Trapped

When a condition trap is currently enabled (ON) and the specified condition
occurs, a CALL trapname or SIGNAL trapname instruction is processed
automatically. You can specify the trapname after the NAME subkeyword of
the CALL ON or SIGNAL ON instruction. If you do not specify a trapname,
the name of the condition itself (for example, ERROR or FAILURE) is used.

For example, the instruction call on error enables the condition trap for the
ERROR condition. If the condition occurred, then a call to the routine
identified by the name ERROR is made. The instruction call on error name

Conditions and Condition Traps

432 Object REXX Reference

commanderror would enable the trap and call the routine COMMANDERROR
if the condition occurred, and the caller usually receives an indication of
failure.

The sequence of events, after a condition has been trapped, varies depending
on whether a SIGNAL or CALL is processed:
v If the action taken is a SIGNAL, execution of the current instruction ceases

immediately, the condition is disabled (set to OFF), and SIGNAL proceeds
as usually (see “SIGNAL” on page 77).
If any new occurrence of the condition is to be trapped, a new CALL ON or
SIGNAL ON instruction for the condition is required to re-enable it when
the label is reached. For example, if SIGNAL ON SYNTAX is enabled when
a SYNTAX condition occurs, a usual syntax error termination occurs if the
SIGNAL ON SYNTAX label name is not found.

v If the action taken is a CALL, the CALL trapname proceeds in the usual way
(see “CALL” on page 45) when the instruction completes. The call does not
affect the special variable RESULT. If the routine should RETURN any data,
that data is ignored.
When the condition is raised, and before the CALL is made, the condition
trap is put into a delayed state. This state persists until the RETURN from
the CALL, or until an explicit CALL (or SIGNAL) ON (or OFF) is made for
the condition. This delayed state prevents a premature condition trap at the
start of the routine called to process a condition trap. When a condition
trap is in the delayed state, it remains enabled, but if the condition is raised
again, it is either ignored (for ERROR and FAILURE) or (for the other
conditions) any action (including the updating of the condition information)
is delayed until one of the following events occurs:
1. A CALL ON or SIGNAL ON for the delayed condition is processed. In

this case, a CALL or SIGNAL takes place immediately after the new
CALL ON or SIGNAL ON instruction has been processed.

2. A CALL OFF or SIGNAL OFF for the delayed condition is processed. In
this case, the condition trap is disabled and the default action for the
condition occurs at the end of the CALL OFF or SIGNAL OFF
instruction.

3. A RETURN is made from the subroutine. In this case, the condition trap
is no longer delayed and the subroutine is called again immediately.

On RETURN from the CALL, the original flow of execution is resumed,
that is, the flow is not affected by the CALL.

Notes:

1. In all cases, the condition is raised immediately upon detection. If
SIGNAL ON traps the condition, the current instruction is ended, if
necessary. Therefore, the instruction during which an event occurs can

Conditions and Condition Traps

Chapter 12. Conditions and Condition Traps 433

only be partly processed. For example, if SYNTAX is raised during the
evaluation of the expression in an assignment, the assignment does not
take place. Note that the CALL for traps for which CALL ON is enabled
can only occur at clause boundaries. If these conditions arise in the
middle of an INTERPRET instruction, execution of INTERPRET can be
interrupted and resumed later. Similarly, other instructions, for example
DO or SELECT, can be temporarily interrupted by a CALL at a clause
boundary.

2. The state (ON, OFF, or DELAY, and any trapname) of each condition trap
is saved on entry to a subroutine and is then restored on RETURN. This
means that CALL ON, CALL OFF, SIGNAL ON, and SIGNAL OFF can
be used in a subroutine without affecting the conditions set up by the
caller. See “CALL” on page 45 for details of other information that is
saved during a subroutine call.

3. The state of condition traps is not affected when an external routine is
called by a CALL, even if the external routine is a REXX program. On
entry to any REXX program, all condition traps have an initial setting of
OFF.

4. While user input is processed during interactive tracing, all condition
traps are temporarily set OFF. This prevents any unexpected transfer of
control—for example, should the user accidentally use an uninitialized
variable while SIGNAL ON NOVALUE is active. For the same reason, a
syntax error during interactive tracing does not cause the exit from the
program but is trapped specially and then ignored after a message is
given.

5. The system interface detects certain execution errors either before the
execution of the program starts or after the program has ended.
SIGNAL ON SYNTAX cannot trap these errors.

Note that a label is a clause consisting of a single symbol followed by a
colon. Any number of successive clauses can be labels; therefore, several
labels are allowed before another type of clause.

Condition Information

When a condition is trapped and causes a SIGNAL or CALL, this becomes the
current trapped condition, and certain condition information associated with it
is recorded. You can inspect this information by using the CONDITION
built-in function (see “CONDITION” on page 313).

The condition information includes:
v The name of the current trapped condition
v The name of the instruction processed as a result of the condition trap

(CALL or SIGNAL)
v The status of the trapped condition

Conditions and Condition Traps

434 Object REXX Reference

v A descriptive string (see “Descriptive Strings”) associated with that
condition

v Optional additional object information (see “Additional Object Information”
on page 436)

The current condition information is replaced when control is passed to a
label as the result of a condition trap (CALL ON or SIGNAL ON). Condition
information is saved and restored across subroutine or function calls,
including one because of a CALL ON trap and across method invocations.
Therefore, a routine called by CALL ON can access the appropriate condition
information. Any previous condition information is still available after the
routine returns.

Descriptive Strings
The descriptive string varies, depending on the condition trapped:

ERROR The string that was processed and resulted in the error
condition.

FAILURE The string that was processed and resulted in the failure
condition.

HALT Any string associated with the halt request. This can be the
null string if no string was provided.

LOSTDIGITS The number with excessive digits that caused the
LOSTDIGITS condition.

NOMETHOD The name of the method that could not be found.

NOSTRING The readable string representation of the object causing the
NOSTRING condition.

NOTREADY The name of the stream being manipulated when the error
occurred and the NOTREADY condition was raised. If the
stream was a default stream with no defined name, then the
null string might be returned.

NOVALUE The derived name of the variable whose attempted reference
caused the NOVALUE condition.

SYNTAX Any string the language processor associated with the error.
This can be the null string if you did not provide a specific
string. Note that the special variables RC and SIGL provide
information on the nature and position of the processing error.
You can enable the SYNTAX condition trap only by using
SIGNAL ON.

USER Any string specified by the DESCRIPTION option of the
RAISE instruction that raised the condition. If a description
string was not specified, a null string is used.

Conditions and Condition Traps

Chapter 12. Conditions and Condition Traps 435

Additional Object Information
The language processor can provide additional information, depending on the
condition trapped:

NOMETHOD The object that raised the NOMETHOD condition.

NOSTRING The object that caused the NOSTRING condition.

NOTREADY The stream object that raised the NOTREADY condition.

SYNTAX An array containing the objects substituted into the secondary
error message (if any) for the syntax error. If the message did
not contain substitution values, a zero element array is used.

USER Any object specified by an ADDITIONAL or ARRAY option of
the RAISE instruction that raised the condition.

The Special Variable RC
When an ERROR or FAILURE condition is trapped, the REXX special variable
RC is set to the command return code before control is transferred to the
target label (whether by CALL or by SIGNAL).

Similarly, when SIGNAL ON SYNTAX traps a SYNTAX condition, the special
variable RC is set to the syntax error number before control is transferred to
the target label.

The Special Variable SIGL
Following any transfer of control because of a CALL or SIGNAL, the program
line number of the clause causing the transfer of control is stored in the
special variable SIGL. If the transfer of control is because of a condition trap,
the line number assigned to SIGL is that of the last clause processed (at the
current subroutine level) before the CALL or SIGNAL took place. The setting
of SIGL is especially useful after a SIGNAL ON SYNTAX trap when the
number of the line in error can be used, for example, to control a text editor.
Typically, code following the SYNTAX label can PARSE SOURCE to find the
source of the data and then call an editor to edit the source file, positioned at
the line in error. Note that in this case you might have to run the program
again before any changes made in the editor can take effect.

Alternatively, SIGL can help determine the cause of an error (such as the
occasional failure of a function call) as in the following example:
signal on syntax
a = a + 1 /* This is to create a syntax error */
say 'SYNTAX error not raised'
exit

/* Standard handler for SIGNAL ON SYNTAX */

Conditions and Condition Traps

436 Object REXX Reference

syntax:
say 'REXX error' rc 'in line' sigl':' "ERRORTEXT"(rc)
say "SOURCELINE"(sigl)
trace ?r; nop

This code first displays the error code, line number, and error message. It then
displays the line in error, and finally drops into debug mode to let you
inspect the values of the variables used at the line in error.

Condition Objects
A condition object is a directory returned by the Object option of the
CONDITION built-in function. This directory contains all information
currently available on a trapped condition. The information varies with the
trapped condition. The NIL object is returned for any entry not available to
the condition. The following entries can be found in a condition object:

ADDITIONAL
The additional information object associated with the
condition. This is the same object that the Additional option of
the CONDITION built-in function returns. The ADDITIONAL
information may be specified with the ADDITIONAL or
ARRAY options of the RAISE instruction.

DESCRIPTION
The string describing the condition. The Description option of
the CONDITION built-in function also returns this value.

INSTRUCTION
The keyword for the instruction executed when the condition
was trapped, either CALL or SIGNAL. The Instruction option of
the CONDITION built-in function also returns this value.

CONDITION The name of the trapped condition. The Condition name
option of the CONDITION built-in function also returns this
value.

RESULT Any result specified on the RETURN or EXIT options of a
RAISE instruction.

RC The major REXX error number for a SYNTAX condition. This
is the same error number assigned to the special variable RC.

CODE The detailed identification of the error that caused a SYNTAX
condition. This number is a nonnegative number in the form
nn.nnn. The integer portion is the REXX major error number
(the same value as the RC entry). The fractional portion is a
subcode that gives a precise indication of the error that
occurred.

Conditions and Condition Traps

Chapter 12. Conditions and Condition Traps 437

ERRORTEXT The primary error message for a SYNTAX condition. This is
the same message available from the ERRORTEXT built-in
function.

MESSAGE The secondary error message for a SYNTAX condition. The
message also contains the content of the ADDITIONAL
information.

POSITION The line number in source code at which a SYNTAX condition
was raised.

PROGRAM The name of the program where a SYNTAX condition was
raised.

TRACEBACK A single-index list of formatted traceback lines.

PROPAGATED
The value 0 (false) if the condition was raised at the same
level as the condition trap or the value 1 (true) if the
condition was reraised with RAISE PROPAGATE.

Conditions and Condition Traps

438 Object REXX Reference

Chapter 13. Concurrency

Conceptually, each REXX object is like a small computer with its own
processor to run its methods, its memory for object and method variables, and
its communication links to other objects for sending and receiving messages.
This is object-based concurrency. It lets more than one method run at the same
time. Any number of objects can be active (running) at the same time,
exchanging messages to communicate with, and synchronize, each other.

Early Reply

Early reply provides concurrent processing. A running method returns control,
and possibly a result, to the point from which it was called; meanwhile it
continues running. The following figure illustrates this concept.

Method A includes a call to Method B. Method B contains a REPLY
instruction. This returns control and a result to method A, which continues
processing with the line after the call to Method B. Meanwhile, Method B also
continues running.

The chains of execution represented by method A and method B are called
activities. An activity is a thread of execution that can run methods
concurrently with methods on other activities.

An activity contains a stack of invocations that represent the REXX programs
running on the activity. An invocation can be a main program invocation, an
internal function or subroutine call, an external function or subroutine call, an
INTERPRET instruction, or a message invocation. An invocation is activated
when an executable unit is invoked and removed (popped) when execution
completes. In Figure 16, the programs begins with a single activity. The

Figure 16. Early Reply

© Copyright IBM Corp. 1994, 2001 439

activity contains a single invocation, method A. When method A invokes
method B, a second invocation is added to the activity.

When method B issues a REPLY, a new activity is created (activity 2). Method
B's invocation is removed from activity 1, and pushed on to activity 2.
Because activities can execute concurrently, both method A and method B
continue processing. The following figures illustrate this concept.

Here is an example of using early reply to run methods concurrently.
/* Example of early reply */

object1 = .example∼new
object2 = .example∼new

say object1∼repeat(10, 'Object 1 running')
say object2∼repeat(10, 'Object 2 running')
say 'Main ended.'

Figure 17. Before REPLY

Figure 18. After REPLY

Concurrency

440 Object REXX Reference

exit

::class example
::method repeat
use arg reps,msg
reply 'Repeating' msg',' reps 'times.'
do reps

say msg
end

Message Objects

A message object (see “The Message Class” on page 170) is an intermediary
between two objects that enables concurrent processing. All objects inherit the
START method (page 173) from the object class. To obtain a message object,
an object sends a START message to the object to which the message object
will convey a message. The message is an argument to the START message as
in the following example:
a=p∼start('REVERSE')

This line of code creates a message object, A, and sends it a start message. The
message object then sends the REVERSE message to object P. Object P receives
the message, performs any needed processing, and returns a result to message
object A. Meanwhile the object that obtained message object A continues its
processing. When message object A returns, it does not interrupt the object
that obtained it. It waits until this object requests the information. Here is an
example of using a message object to run methods concurrently.
/* Example of using a message object */

object1 = .example∼new
object2 = .example∼new

a = object1∼start('REPEAT',10,'Object 1 running')
b = object2∼start('REPEAT',10,'Object 2 running')

say a∼result
say b∼result
say 'Main ended.'
exit

::class example
::method repeat
use arg reps,msg
do reps

say msg
end
return 'Repeated' msg',' reps 'times.'

Concurrency

Chapter 13. Concurrency 441

Default Concurrency

The instance methods of a class use the EXPOSE instruction to define a set of
object variables. This collection of variables belonging to an object is called its
object variable pool. The methods a class defines and the variables these
methods can access is called a scope. REXX’s default concurrency exploits the
idea of scope. The object variable pool is a set of object subpools, each
representing the set of variables at each scope of the inheritance chain of the
class from which the object was created. Only methods at the same scope can
access object variables at any particular scope. This prevents any name
conflicts between classes and subclasses, because the object variables for each
class are in different scopes.

If you do not change the defaults, only one method of a given scope can run
on a single object at a time. Once a method is running on an object, the
language processor blocks other methods on other activities from running in
the same object at the same scope until the method that is running completes.
Thus, if different activities send several messages within a single scope to an
object the methods run sequentially.

The next example shows how the default concurrency works.
/* Example of default concurrency for methods of different scopes */

object1 = .subexample∼new

say object1∼repeat(8, 'Object 1 running call 1') /* These calls run */
say object1∼repeater(8, 'Object 1 running call 2') /* concurrently */
say 'Main ended.'
exit

::class example
::method repeat
use arg reps,msg
reply 'Repeating' msg',' reps 'times.'
do reps

say msg
end

::class subexample subclass example
::method repeater
use arg reps,msg
reply 'Repeating' msg',' reps 'times.'
do reps

say msg
end

The preceding example produces output such as the following:
Repeating Object 1 running call 1, 8 times.
Object 1 running call 1
Repeating Object 1 running call 2, 8 times.

Concurrency

442 Object REXX Reference

Object 1 running call 1
Object 1 running call 2
Main ended.

Object 1 running call 1
Object 1 running call 2
Object 1 running call 1
Object 1 running call 2
Object 1 running call 1
Object 1 running call 2
Object 1 running call 1
Object 1 running call 2
Object 1 running call 1
Object 1 running call 2
Object 1 running call 1
Object 1 running call 2
Object 1 running call 2

The following example shows that methods of the same scope do not run
concurrently by default.
/* Example of methods with the same scope not running concurrently*/

object1 = .example∼new

say object1∼repeat(10,'Object 1 running call 1') /* These calls */
say object1∼repeat(10,'Object 1 running call 2') /* cannot run */
say 'Main ended.' /* concurrently. */
exit

::class example
::method repeat
use arg reps,msg
reply 'Repeating' msg',' reps 'times.'
do reps

say msg
end

The REPEAT method includes a REPLY instruction, but the methods for the
two REPEAT messages in the example cannot run concurrently. This is
because REPEAT is called twice at the same scope and requires exclusive
access to the object variable pool. The REPLY instruction causes the first
REPEAT message to transfer its exclusive access to the object variable pool to
a new activity and continue execution. The second REPLY message also
requires exclusive access and waits until the first method completes.

If the original activity has more than one method active (nested method calls)
with exclusive variable access, the first REPLY instruction is unable to transfer
its exclusive access to the new activity and must wait until the exclusive
access is again available. This may allow another method on the same object
to run while the first method waits for exclusive access.

Concurrency

Chapter 13. Concurrency 443

Sending Messages within an Activity
Whenever a message is invoked on an object, the activity acquires exclusive
access (a lock) for the object’s scope. Other activities that send messages to the
same object that required the locked scope waits until the first activity releases
the lock.

Suppose object A is running method Y, which includes:
self∼z

Sequential processing does not allow method Z to begin until method Y has
completed. However, method Y cannot complete until method Z runs. A
similar situation occurs when a subclass's overriding method does some
processing and passes a message to its superclasses' overriding method. Both
cases require a special provision: If an invocation running on an activity sends
another message to the same object, this method is allowed to run because the
activity has already acquired the lock for the scope. This allows nested,
nonconcurrent method invocations on a single activity without causing a
deadlock situation. The language processor regards these additional messages
as subroutine calls.

Here is an example showing the special treatment of single activity messages.
The REPEATER and REPEAT methods have the same scope. REPEAT runs on
the same object at the same time as the REPEATER method because a
message to SELF runs the REPEAT method. The language processor treats this
as a subroutine call rather than as concurrently running two methods.
/* Example of sending message to SELF */

object1 = .example∼new
object2 = .example∼new

say object1∼repeater(10, 'Object 1 running')
say object2∼repeater(10, 'Object 2 running')

say 'Main ended.'
exit

::class example
::method repeater
use arg reps,msg
reply 'Entered repeater.'
say self∼repeat(reps,msg)
::method repeat
use arg reps,msg
do reps

say msg
end
return 'Repeated' msg',' reps 'times.'

Concurrency

444 Object REXX Reference

The activity locking rules also allow indirect object recursion. The following
figure illustrates indirect object recursion.

Method M in object A sends object B a message to run method N. Method N
sends a message to object A, asking it to run method O. Meanwhile, method
M is still running in object A and waiting for a result from method N. A
deadlock would result. Because the methods are all running on the same
activity, no deadlock occurs.

Using Additional Concurrency Mechanisms

REXX has additional concurrency mechanisms that can add full concurrency
so that more than one method of a given scope can run in an object at a time:
v The SETUNGUARDED method of the Method class and the UNGUARDED

option of the METHOD directive provide unconditional concurrency
v GUARD OFF and GUARD ON control a method’s exclusive access to an

object’s scope

SETUNGUARDED Method and UNGUARDED Option
The SETUNGUARDED method of the Method class and the UNGUARDED
option of the ::METHOD directive control locking of an object's scope when a
method is invoked. Both let a method run even if another method is active on
the same object.

Use the SETUNGUARDED method or UNGUARDED option only for
methods that do not need exclusive use of their object variable pool, that is,
methods whose execution can interleave with another method's execution
without affecting the object's integrity. Otherwise, concurrent methods can
produce unexpected results.

To use the SETUNGUARDED method for a method you have created with the
NEW method of the Method class, you specify:
methodname∼SETUNGUARDED

Figure 19. Indirect Object Recursion

Concurrency

Chapter 13. Concurrency 445

(See “SETUNGUARDED” on page 177 for details about SETUNGUARDED.)

Alternately, you can define a method with the ::METHOD directive, specifying
the UNGUARDED option:
::METHOD methodname UNGUARDED

GUARD ON and GUARD OFF
You might not be able to use the SETUNGUARDED method or
UNGUARDED option in all cases. A method might need exclusive use of its
object variables, then allow methods on other activities to run, and perhaps
later need exclusive use again. You can use GUARD ON and GUARD OFF to
alternate between exclusive use of an object’s scope and allowing other
activities to use the scope.

By default, a method must wait until a currently running method is finished
before it begins. GUARD OFF lets another method (running on a different
activity) that needs exclusive use of the same object variables become active
on the same object. See “GUARD” on page 55 for more information.

Guarded Methods
Concurrency requires the activities of concurrently running methods to be
synchronized. Critical data must be safeguarded so diverse methods on other
activities do not perform concurrent updates. Guarded methods satisfy both
these needs.

A guarded method combines the UNGUARDED option of the ::METHOD
directive or the SETUNGUARDED method of the Method class with the
GUARD instruction.

The UNGUARDED option and the SETUNGUARDED method both provide
unconditional concurrency. Including a GUARD instruction in a method
makes concurrency conditional:
GUARD ON WHEN expression

If the expression on the GUARD instruction evaluates to 1 (true), the method
continues to run. If the expression on the GUARD instruction evaluates to 0
(false), the method does not continue running. GUARD reevaluates the
expression whenever the value of an exposed object variable changes. When
the expression evaluates to 1, the method resumes running. You can use
GUARD to block running any method when proceeding is not safe. (See
“GUARD” on page 55 for details about GUARD.)

Note: It is important to ensure that you use an expression that can be
fulfilled. If the condition expression cannot be met, GUARD ON
WHEN puts the program in a continuous wait condition. This can

Concurrency

446 Object REXX Reference

occur in particular when several activities run concurrently. In this case,
a second activity can make the condition expression invalid before
GUARD ON WHEN can use it.

To avoid this, ensure that the GUARD ON WHEN statement is
executed before the condition is set to true. Keep in mind that the
sequence of running activities is not determined by the calling
sequence, so it is important to use a logic that is independent of the
activity sequence.

Additional Examples
The following example uses REPLY in a method for a write-back cache.
/* Method Write_Back */
use arg data /* Save data to be written */
reply 0 /* Tell the sender all was OK */
self∼disk_write(data) /* Now write the data */

The REPLY instruction returns control to the point at which method
Write_Back was called, returning the result 0. The caller of method Write_Back
continues processing from this point; meanwhile, method Write_Back also
continues processing.

The following example uses a message object. It reads a line asynchronously
into the variable nextline:
mymsg = infile∼start('READLINE') /* Gets message object to carry */
/* message to INFILE */
/* do other work */
nextline=mymsg∼result /* Gets result from message object */

This creates a message object that waits for the read to finish while the sender
continues with other work. When the line is read, the mymsg message object
obtains the result and holds it until the sender requests it.

Semaphores and monitors (bounded buffers) synchronize concurrency
processes. Giving readers and writers concurrent access is a typical
concurrency problem. The following sections show how to use guarded
methods to code semaphore and monitor mechanisms and to provide
concurrency for readers and writers.

Semaphores
A semaphore is a mechanism that controls access to resources, for example,
preventing simultaneous access. Synchronization often uses semaphores. Here
is an example of a semaphore class:

Concurrency

Chapter 13. Concurrency 447

/***/
/* A REXX Semaphore Class. */
/* */
/* This file implements a semaphore class in REXX. The class is defined to */
/* the Global REXX Environment. The following methods are defined for */
/* this class: */
/* init - Initializes a new semaphore. Accepts the following positional */
/* parameters: */
/* 'name' - global name for this semaphore */
/* if named default to set name in */
/* the class semDirectory */
/* noshare - do not define named semaphore */
/* in class semDirectory */
/* Initial state (0 or 1) */
/* setInitialState - Allow for subclass to have some post-initialization, */
/* and do setup based on initial state of semaphore */
/* Waiting - Is the number of objects waiting on this semaphore. */
/* Shared - Is this semaphore shared (Global). */
/* Named - Is this semaphore named. */
/* Name - Is the name of a named semaphore. */
/* setSem - Sets the semaphore and returns previous state. */
/* resetSem - Sets state to unSet. */
/* querySem - Returns current state of semaphore. */
/* */
/* SemaphoreMeta - Is the metaclass for the semaphore classes. This class is */
/* set up so that when a namedSemaphore is shared, it maintains these */
/* named/shared semaphores as part of its state. These semaphores are */
/* maintained in a directory, and an UNKNOWN method is installed on the */
/* class to forward unknown messages to the directory. In this way the */
/* class can function as a class and "like" a directory, so [] syntax can */
/* be used to retrieve a semaphore from the class. */
/* */
/* */
/* The following are in the subclass EventSemaphore. */
/* */
/* Post - Posts this semaphore. */
/* Query - Queries the number of posts since the last reset. */
/* Reset - Resets the semaphore. */
/* Wait - Waits on this semaphore. */
/* */
/* */
/* The following are in the subclass MutexSemaphore */
/* */
/* requestMutex - Gets exclusive use of semaphore. */
/* releaseMutex - Releases to allow someone else to use semaphore. */
/* NOTE: Currently anyone can issue a release (need not be the owner). */
/***/

Figure 20. Example of a REXX Semaphore Class (Part 1 of 5)

Concurrency

448 Object REXX Reference

/* == */
/* === Start of Semaphore class. ===== */
/* == */
::class SemaphoreMeta subclass class
::method init

expose semDict
/* Be sure to initialize parent */

.message∼new(self, .array∼of('INIT', super), 'a', arg(1,'a'))∼send
semDict = .directory∼new

::method unknown
expose semDict
use arg msgName, args

/* Forward all unknown messages */
/* to the semaphore dictionary */

.message∼new(semDict, msgName, 'a', args)∼send
if var('RESULT') then

return result
else

return

::class Semaphore subclass object metaclass SemaphoreMeta

::method init
expose sem waits shared name
use arg semname, shr, state

waits = 0 /* No one waiting */
name = '' /* Assume unnamed */
shared = 0 /* Assume not shared */
sem = 0 /* Default to not posted */

if state = 1 Then /* Should initial state be set? */
sem = 1

/* Was a name specified? */
if VAR('SEMNAME') & semname \= '' Then Do

name = semname /* Yes, so set the name */

if shr \= 'NOSHARE' Then Do /* Do we want to share this sem? */
shared = 1 /* Yes, mark it shared */

/* Shared add to semDict */
self∼class[name] = self

End

End

Figure 20. Example of a REXX Semaphore Class (Part 2 of 5)

Concurrency

Chapter 13. Concurrency 449

self∼setInitialState(sem) /* Initialize initial state */

::method setInitialState
/* This method intended to be */

nop /* overridden by subclasses */
::method setSem
expose sem
oldState = sem
sem = 1 /* Set new state to 1 */
return oldState

::method resetSem
expose sem
sem = 0
return 0

::method querySem
expose sem
return sem

::method shared
expose shared
return shared /* Return true 1 or false 0 */

::method named
expose name

/* Does semaphore have a name? */
if name = '' Then return 0 /* No, not named */
Else return 1 /* Yes, it is named */

::method name
expose name
return name /* Return name or '' */

::method incWaits
expose waits
waits = waits + 1 /* One more object waiting */

::method decWaits
expose Waits
waits = waits - 1 /* One object less waiting */

::method Waiting
expose Waits
return waits /* Return number of objects waiting */

Figure 20. Example of a REXX Semaphore Class (Part 3 of 5)

Concurrency

450 Object REXX Reference

/* == */
/* === Start of EventSemaphore class. === */
/* == */

::class EventSemaphore subclass Semaphore public
::method setInitialState

expose posted posts
use arg posted

if posted then posts = 1
else posts = 0

::method post
expose posts posted

self∼setSem /* Set semaphore state */
posted = 1 /* Mark as posted */
reply
posts = posts + 1 /* Increase the number of posts */

::method wait
expose posted

self∼incWaits /* Increment number waiting */
guard off
guard on when posted /* Now wait until posted */
reply /* Return to caller */
self∼decWaits /* Cleanup, 1 less waiting */

::method reset
expose posts posted

posted = self∼resetSem /* Reset semaphore */
reply /* Do an early reply */
posts = 0 /* Reset number of posts */

::method query
expose posts

/* Return number of times */
return posts /* Semaphore has been posted */

Figure 20. Example of a REXX Semaphore Class (Part 4 of 5)

Concurrency

Chapter 13. Concurrency 451

Note: There are functions available that use system semaphores. See
“SysCreateEventSem” on page 366, and “SysCreateMutexSem” on
page 367.

Monitors (Bounded Buffer)
A monitor object consists of a number of client methods, WAIT and SIGNAL
methods for client methods to use, and one or more condition variables.
Guarded methods provide the functionality of monitors. Do not confuse this
with the Monitor class (see “The Monitor Class” on page 177).
::method init
/* Initialize the bounded buffer */
expose size in out n
use arg size
in = 1
out = 1
n = 0

/* == */
/* === Start of MutexSemaphore class. === */
/* == */

::class MutexSemaphore subclass Semaphore public

::method setInitialState
expose owned
use arg owned

::method requestMutex
expose Owned

Do forever /* Do until we get the semaphore */
owned = self∼setSem
if Owned = 0 /* Was semaphore already set? */

Then leave /* Wasn't owned; we now have it */
else Do

self∼incWaits
guard off /* Turn off guard status to let */

/* others come in */
guard on when \Owned /* Wait until not owned and get */

/* guard */
self∼decWaits /* One less waiting for MUTEX */

End
/* Go up and see if we can get it */

End

::method releaseMutex
expose owned
owned = self∼resetSem /* Reset semaphore */

Figure 20. Example of a REXX Semaphore Class (Part 5 of 5)

Concurrency

452 Object REXX Reference

::method append unguarded
/* Add to the bounded buffer if not full */
expose n size b. in
guard on when n < size
use arg b.in
in = in//size+1
n = n+1

::method take
/* Remove from the bounded buffer if not empty */
expose n b. out size
guard on when n > 0
reply b.out
out = out//size+1
n = n-1

Readers and Writers
The concurrency problem of the readers and writers requires that writers
exclude writers and readers, whereas readers exclude only writers. The
UNGUARDED option is required to allow several concurrent readers.
::method init
expose readers writers
readers = 0
writers = 0

::method read unguarded
/* Read if no one is writing */
expose writers readers
guard on when writers = 0
readers = readers + 1
guard off

/* Read the data */
say 'Reading (writers:' writers', readers:' readers').'
guard on
readers = readers - 1

::method write unguarded
/* Write if no-one is writing or reading */
expose writers readers
guard on when writers + readers = 0
writers = writers + 1

/* Write the data */
say 'Writing (writers:' writers', readers:' readers').'
writers = writers - 1

Concurrency

Chapter 13. Concurrency 453

Concurrency

454 Object REXX Reference

Chapter 14. Built-in Objects

REXX provides some objects that all programs can use. To access these built-in
objects, you use the special environment symbols, which start with a period (.).

.METHODS

The .METHODS environment symbol identifies a directory (see “The
Directory Class” on page 127) of methods that ::METHOD directives in the
currently running program define. The directory indexes are the method
names. The directory values are the method objects. See “The Method Class”
on page 175.

Only methods that are not preceded by a ::CLASS directive are in the
.METHODS directory. If there are no such methods, the .METHODS symbol
has the default value of .METHODS.

Example:
use arg class, methname
class∼define(methname,.methods['a'])
::method a
use arg text
say text

.RS

.RS is set to the return status from any executed command (including those
submitted with the ADDRESS instruction). The .RS environment symbol has a
value of -1 when a command returns a FAILURE condition, a value of 1
when a command returns an ERROR condition, and a value of 0 when a
command indicates successful completion. The value of .RS is also available
after trapping the ERROR or FAILURE condition.

Note: Commands executed manually during interactive tracing do not change
the value of .RS. The initial value of .RS is .RS.

© Copyright IBM Corp. 1994, 2001 455

Built-in Objects

456 Object REXX Reference

Chapter 15. The Security Manager

The security manager provides a special environment that is safe even if agent
programs try to perform unexpected actions. The security manager is called if
an agent program tries to:
v Call an external function
v Use a host command
v Use the ::REQUIRES directive
v Access the .LOCAL directory
v Access the .ENVIRONMENT directory
v Use a stream name in the input and output built-in functions (CHARIN,

CHAROUT, CHARS, LINEIN, LINEOUT, LINES, and STREAM)

Calls to the Security Manager

When the language processor reaches any of the defined security checkpoints,
it sends a message to the security manager for the particular checkpoint. The
message has a single argument, a directory of information that pertains to the
checkpoint. If the security manager chooses to handle the action instead of the
language processor, the security manager uses the checkpoint information
directory to pass information back to the language processor.

Security manager methods must return a value of either 0 or 1 to the
language processor. A value of 0 indicates that the program is authorized to
perform the indicated action. In this case, processing continues as usual. A
value of 1 indicates that the security manager performed the action itself. The
security manager sets entries in the information directory to pass results for
the action back to the language processor. The security manager can also use
the RAISE instruction to raise a program error for a prohibited access. Error
message 98.948 indicates authorization failures.

The defined checkpoints, with their arguments and return values, are:

CALL sent for all external function calls. The information directory contains
the following entries:

NAME The name of the invoked function.

ARGUMENTS
An array of the function arguments.

When the CALL method returns 1, indicating that it
handled the external call, the security manager places
the function result in the information directory as the
entry RESULT.

© Copyright IBM Corp. 1994, 2001 457

COMMAND
sent for all host command instructions. The information directory
contains the following entries:

COMMAND
The string that represents the host command.

ADDRESS
The name of the target ADDRESS environment for the
command.

When the COMMAND method returns 1, indicating that it
handled the command, the security manager uses the
following information directory entries to return the command
results:

RC The command return code. If the entry is not
set, a return code of 0 is used.

FAILURE If a FAILURE entry is added to the
information directory, a REXX FAILURE
condition is raised.

ERROR If an ERROR entry is added to the
information directory, a REXX ERROR
condition is raised. The ERROR condition is
raised only if the FAILURE entry is not set.

REQUIRES
sent whenever a ::REQUIRES directive in the file is processed. The
information directory contains the following entry:

NAME The name of the file specified on the ::REQUIRES
directive.

When the REQUIRES method returns 1, indicating that it handled the
request, the entry NAME in the information directory is replaced with
the name of the actual file to load for the request. The REQUIRES
method can also provide a security manager to be used for the
program loaded by the ::REQUIRES directive by setting the
information direction entry SECURITYMANAGER into the desired
security manager object.

LOCAL
sent whenever REXX is going to access an entry in the .LOCAL
directory as part of the resolution of the environment symbol name.
The information directory contains the following entry:

NAME
The name of the target directory entry.

458 Object REXX Reference

When the LOCAL method returns 1, indicating that it handled the
request, the information directory entry RESULT contains the
directory entry. When RESULT is not set and the method returns 1,
this is the same as a failure to find an entry in the .LOCAL directory.
REXX continues with the next step in the name resolution.

ENVIRONMENT
sent whenever REXX is going to access an entry in the
.ENVIRONMENT directory as part of the resolution of the
environment symbol name. The information directory contains the
following entry:

NAME The name of the target directory entry.

When the ENVIRONMENT method returns 1, indicating that it
handled the request, the information directory entry RESULT contains
the directory entry. When RESULT is not set and the method returns
1, this is the same as a failure to find an entry in the
.ENVIRONMENT directory. REXX continues with the next step in the
name resolution.

STREAM
sent whenever one of the REXX input and output built-in functions
(CHARIN, CHAROUT, CHARS, LINEIN, LINEOUT, LINES, or
STREAM) needs to resolve a stream name. The information directory
contains the following entry:

NAME The name of the target stream.

When the STREAM method returns 1, the information directory
STREAM must be set to an object to be used as the stream target. This
should be a stream object or another object that supports the Stream
class methods.

METHOD
sent whenever a secure program attempts to send a message for a
protected method (see the ::METHOD directive “::METHOD” on
page 89) to an object. The information directory contains the following
entries:

OBJECT The object the protected method is issued against.

NAME The name of the protected method.

ARGUMENTS
An array containing the method arguments.

When the METHOD method returns 1, indicating that it handled the
external call, the function result can be placed in the information
directory as the method RESULT.

Chapter 15. The Security Manager 459

Example
The following agent program includes all the actions for which the security
manager defines checkpoints (for example, by calling an external function).

The following server implements the security manager with three levels of
security. For each action the security manager must check (for example, by
calling an external routine):
1. The audit manager (Dumper class) writes a record of the event but then

permits the action.
2. The closed cell manager (noWay class) does not permit the action to take

place and raises an error.
3. The replacement execution environment (Replacer class, a subclass of the

noWay class) replaces the prohibited action with a different action.

/* Agent */
interpret 'echo Hello There'
'dir foo.bar'
call rxfuncadd sysloadfuncs, rexxutil, sysloadfuncs
say result
say syssleep(1)
say linein('c:\profile')
say .array
.object∼setmethod('SETMETHOD')
::requires agent2.cmd

Figure 21. Agent Program

460 Object REXX Reference

/* Server implements security manager */
parse arg program
method = .method∼newfile(program)
say "Calling program" program "with an audit manager:"
pull
method∼setSecurityManager(.dumper∼new(.output))
.go∼new∼∼run(method)
say "Calling program" program "with a function replacement execution environment:"
pull
method∼setSecurityManager(.replacer∼new)
.go∼new∼∼run(method)
say "Calling program" program "with a closed cell manager:"
pull
signal on syntax
method∼setSecurityManager(.noWay∼new)
.go∼new∼∼run(method)
exit

syntax:
say "Agent program terminated with an authorization failure"
exit

::class go subclass object

::method run -- this is a NON-PRIVATE method!
use arg m
self∼run:super(m) -- a PRIVATE method is called here!

::class dumper
::method init

expose stream /* target stream for output */
use arg stream /* hook up the output stream */

::method unknown /* generic unknown method */
expose stream /* need the global stream */
use arg name, args /* get the message and arguments */

/* write out the audit event */
stream∼lineout(time() date() 'Called for event' name)
stream∼lineout('Arguments are:') /* write out the arguments */
info = args[1] /* info directory is the first arg */
do name over info /* dump the info directory */

stream∼lineout('Item' name':' info[name])
end

return 0 /* allow this to proceed */

::class noWay
::method unknown /* everything trapped by unknown */

/* and everything is an error */
raise syntax 98.948 array("You didn't say the magic word!")

::class replacer subclass noWay /* inherit restrictive UNKNOWN method*/
::method command /* issuing commands */

use arg info /* access the directory */
info∼rc = 1234 /* set the command return code */
info∼failure = .true /* raise a FAILURE condition */
return 1 /* return "handled" return value */

Figure 22. Example of Server Implementing Security Manager (Part 1 of 2) Chapter 15. The Security Manager 461

::method call /* external function/routine call */
use arg info /* access the directory */

/* all results are the same */
info∼setentry("RESULT","uh, uh, uh...you didn't say the magic word")
return 1 /* return "handled" return value */

::method stream /* I/O function stream lookup */
use arg info /* access the directory */

/* replace with a different stream */
info∼stream = .stream∼new('c:\sample.txt')

return 1
/* return "handled" return value */

::method local /* .LOCAL variable lookup */
/* no value returned at all */

return 1 /* return "handled" return value */
::method environment /* .ENVIRONMENT variable lookup */

/* no value returned at all */
return 1 /* return "handled" return value */

::method method /* protected method invocation */
use arg info /* access the directory */

/* all results are the same */
info∼setentry("RESULT","uh, uh, uh...you didn't say the magic word")
return 1 /* return "handled" return value */

::method requires /* REQUIRES directive */
use arg info /* access the directory */

/* switch to load a different file */
info∼name = 'c:\samples\agent.cmd'
info∼securitymanager = self /* load under this authority */
return 1 /* return "handled" return value */

Figure 22. Example of Server Implementing Security Manager (Part 2 of 2)

462 Object REXX Reference

Chapter 16. Input and Output Streams

REXX defines Stream class methods to handle input and output and maintains
the I/O functions for input and output externals. Using a mixture of REXX
I/O methods and REXX I/O functions can cause unpredictable results. For
example, using the LINEOUT method and the LINEOUT function on the
same persistent stream object can cause overlays.

When a REXX I/O function creates a stream object, the language processor
maintains the stream object. When a REXX I/O method creates a stream
object, it is returned to the program to be maintained. Because of this, when
REXX I/O methods and REXX I/O functions referring to the same stream are
in the same program, there are two separate stream objects with different read
and write pointers. The program needs to synchronize the read and write
pointers of both stream objects, or overlays occur.

To obtain a stream object (for example, MYFIL), you could use:
MyStream = .stream∼new('MYFIL')

You can manipulate stream objects with character or line methods:
nextchar = MyStream∼charin()
nextline = MyStream∼linein()

In addition to stream objects, the language processor defines an external data
queue object for interprogram communication. This queue object understands
line functions only.

A stream object can have a variety of sources or destinations including files,
serial interfaces, displays, or networks. It can be transient or dynamic, for
example, data sent or received over a serial interface, or persistent in a static
form, for example, a disk file.

Housekeeping for stream objects (opening and closing files, for example) is
not explicitly part of the language definition. However, REXX provides
methods, such as CHARIN and LINEIN, that are independent of the
operating system and include housekeeping. The COMMAND method
provides the stream_command argument for those situations that require more
granular access to operating system interfaces.

© Copyright IBM Corp. 1994, 2001 463

The Input and Output Model

The model of input and output for REXX consists of the following logically
distinct parts:
v One or more input stream objects
v One or more output stream objects
v One or more external data queue objects

The REXX methods, instructions, and built-in routines manipulate these
elements as follows.

Input Streams
Input to REXX programs is in the form of a serial character stream generated
by user interaction or has the characteristics of one generated this way. You
can add characters to the end of some stream objects asynchronously; other
stream objects might be static or synchronous.

The methods and instructions you can use on input stream objects are:
v CHARIN method—reads input stream objects as characters.
v LINEIN method—reads input stream objects as lines.
v PARSE PULL and PULL instructions—read the default input stream object

(.INPUT), if the external data queue is empty. PULL is the same as PARSE
UPPER PULL except that uppercase translation takes place for PULL.

v PARSE LINEIN instruction—reads lines from the default input stream
object regardless of the state of the external data queue. Usually, you can
use PULL or PARSE PULL to read the default input stream object.

In a persistent stream object, the REXX language processor maintains a
current read position. For a persistent stream:
v The CHARS method returns the number of characters currently available in

an input stream object from the read position through the end of the stream
(including any line-end characters).

v The LINES method determines if any data remains between the current
read position and the end of the input stream object.

v You can move the read position to an arbitrary point in the stream object
with:
– The SEEK or POSITION method of the Stream class
– The COMMAND method's SEEK or POSITION argument
– The start argument of the CHARIN method
– The line argument of the LINEIN method

When the stream object is opened, this position is the start of the stream.

In a transient stream, no read position is available. For a transient stream:

Input and Output

464 Object REXX Reference

v The CHARS and LINES methods attempt to determine if data is present in
the input stream object. These methods return the value 1 for a device if
data is waiting to be read or a determination cannot be made. Otherwise,
these methods return 0.

v The SEEK and POSITION methods of the Stream class and the COMMAND
method's SEEK and POSITION arguments are not applicable to transient
streams.

Output Streams
Output stream methods provide for output from a REXX program. Output
stream methods are:
v SAY instruction—writes to the default output stream object (.OUTPUT).
v CHAROUT method—writes in character form to either the default or a

specified output stream object.
v LINEOUT method—writes in lines to either the default or a specified

output stream object.

LINEOUT and SAY write the new-line character at the end of each line.
Depending on the operating system or hardware, other modifications or
formatting can be applied; however, the output data remains a single logical
line.

The REXX language processor maintains the current write position in a
stream. It is separate from the current read position. Write positioning is
usually at the end of the stream (for example, when the stream object is first
opened), so that data can be appended to the end of the stream. For persistent
stream objects, you can set the write position to the beginning of the stream to
overwrite existing data by giving a value of 1 for the CHAROUT start
argument or the LINEOUT line argument. You can also use the CHAROUT
start argument, the LINEOUT line argument, the SEEK or POSITION method,
or the COMMAND method's SEEK or POSITION stream_command to direct
sequential output to some arbitrary point in the stream.

Note: Once data is in a transient output stream object (for example, a network
or serial link), it is no longer accessible to REXX.

External Data Queue
REXX provides queuing services entirely separate from interprocess
communications queues.

The external data queue is a list of character strings that only line operations
can access. It is external to REXX programs in that other REXX programs can
have access to the queue.

Input and Output

Chapter 16. Input and Output Streams 465

The external data queue forms a REXX-defined channel of communication
between programs. Data in the queue is arbitrary; no characters have any
special meaning or effect.

Apart from the explicit REXX operations described here, no detectable change
to the queue occurs while a REXX program is running, except when control
leaves the program and is manipulated by external means (such as when an
external command or routine is called).

There are two kinds of queues in REXX. Both kinds are accessed and
processed by name.

Unnamed Queues
One unnamed queue is automatically provided for eachREXX program in
operation. Its name is always “QUEUE:”, and the language processor creates
it when REXX is called and no queue is currently available. All processes that
are children of the process that created the queue can access it as long as the
process that created it is still running. However, other processes cannot share
the same unnamed queue. The queue is deleted when the process that created
it ends.

Named Queues
Your program creates (and deletes) named queues. You can name the queue
yourself or leave the naming to the language processor. Your program must
know the name of the queue to use a named queue. To obtain the name of the
queue, use the RXQUEUE function:
previous_queue=rxqueue("set",newqueuename)

This sets the new queue name and returns the name of the previous queue.

The following REXX instructions manipulate the queue:
v PULL or PARSE PULL—reads a string from the head of the queue. If the

queue is empty, these instructions take input from .INPUT.
v PUSH—stacks a line on top of the queue (LIFO).
v QUEUE—adds a string to the tail of the queue (FIFO).

REXX functions that manipulate QUEUE: as a device name are:
v LINEIN('QUEUE:')—reads a string from the head of the queue. If the queue

is empty, this takes input from .INPUT.
v LINEOUT('QUEUE:','string')—adds a string to the tail of the queue (FIFO).
v QUEUED—returns the number of items remaining in the queue.

Here is an example of using a queue:

Input and Output

466 Object REXX Reference

Special considerations:
v External programs that must communicate with a REXX procedure through

defined data queues can use the REXX-provided queue or the queue that
QUEUE: references (if the external program runs in a child process), or they
can receive the data queue name through some interprocess communication
technique, including argument passing, placement on a prearranged logical
queue, or the use of usual interprocess communication mechanisms (for
example, pipes, shared memory, or IPC queues).

v Named queues are available across the entire system. Therefore, the names
of queues must be unique within the system. If a queue named anyque
exists, using the following function:
newqueue = RXQUEUE('Create', 'ANYQUE')

results in an error.

Multiprogramming Considerations
The top-level REXX program in a process tree owns an unnamed queue.
However, any child process can modify the queue at any time. No specific
process or user owns a named queue. The operations that affect the queue are
atomic—the subsystem serializes the resource so that no data integrity

/* */
/* push/pull WITHOUT multiprogramming support */
/* */
push date() time() /* push date and time */
do 1000 /* let's pass some time */

nop /* doing nothing */
end /* end of loop */
pull a b /* pull them */
say 'Pushed at ' a b ', Pulled at ' date() time() /* say now and then */

/* */
/* push/pull WITH multiprogramming support */
/* (no error recovery, or unsupported environment tests) */
/* */
newq = RXQUEUE('Create') /* create a unique queue */
oq = RXQUEUE('Set',newq) /* establish new queue */
push date() time() /* push date and time */
do 1000 /* let's spend some time */

nop /* doing nothing */
end /* end of loop */
pull a b /* get pushed information */
say 'Pushed at ' a b ', Pulled at ' date() time() /* tell user */
call RXQUEUE 'Delete',newq /* destroy unique queue created */
call RXQUEUE 'Set',oq /* reset to default queue (not required) */

Figure 23. Sample REXX Procedure Using a Queue

Input and Output

Chapter 16. Input and Output Streams 467

problems can occur. However, you are responsible for the synchronization of
requests so that two processes accessing the same queue get the data in the
order it was placed on the queue.

A specific process owns (creates) an unnamed queue. When that process ends,
the language processor deletes the queue. Conversely, the named queues
created with RxQueue('Create', queuename) exist until you explicitly delete
them. The end of a program or procedure that created a named queue does
not force the deletion of the private queue. When the process that created a
queue ends, any data on the queue remains until the data is read or the queue
is deleted. (The function call RxQueue('Delete', queuename) deletes a queue.)

If a data queue is deleted by its creator, a procedure, or a program, the items
in the queue are also deleted.

Default Stream Names
A stream name can be a file, a queue, a pipe, or any device that supports
character-based input and output. If the stream is a file or device, the name
can be any valid file specification.

Windows defines three default streams:
v stdin (file descriptor 0) - standard input
v stdout (file descriptor 1) - standard output
v stderr (file descriptor 2) - standard error (output)

REXX provides .INPUT and .OUTPUT public objects. They default to the
default input and output streams of the operating system. The appropriate
default stream object is used when the call to a REXX I/O function includes
no stream name. The following REXX statements write a line to the default
output stream of the operating system:
Lineout(,'Hello World')
.Output∼lineout('Hello World')

REXX reserves the names STDIN, STDOUT, and STDERR to allow REXX functions
to refer to these stream objects. The checks for these names are not
case-sensitive; for example, STDIN, stdin, and sTdIn all refer to the standard
input stream object. If you need to access a file with one of these names,
qualify the name with a directory specification, for example, \stdin.

REXX also provides access to arbitrary file descriptors that are already open
when REXX is called. The stream name used to access the stream object is
HANDLE:x. x is the number of the file descriptor you wish to use. You can use
HANDLE:x as any other stream name; it can be the receiver of a Stream class
method. If the value of x is not a valid file descriptor, the first I/O operation
to that object fails.

Input and Output

468 Object REXX Reference

Notes:

1. Once you close a HANDLE:x stream object, you cannot reopen it.
2. HANDLE:x is reserved. If you wish to access a file or device with this name,

include a directory specification before the name. For example, \HANDLE:x
accesses the file HANDLE:x in the current directory.

3. Programs that use the .INPUT and .OUTPUT public objects are
independent of the operating environment.

Line versus Character Positioning
REXX lets you move the read or write position of a persistent stream object to
any location within the stream. You can specify this location in terms of
characters or lines.

Character positioning is based upon the view of a stream as a simplecollection
of bytes of data. No special meaning is given to any single character.
Character positioning alone can move the stream pointer. For example:
MyStream∼charin(10,0)

moves the stream pointer so that the tenth character in MyStream is the next
character read. But this does not return any data. If MyStream is opened for
reading or writing, any output that was previously written but is still buffered
is eliminated. Moving the write position always causes any buffered output to
be written.

Line positioning views a stream as a collection of lines of data. There are two
ways of positioning by lines. If you open a stream in binary mode and specify
a record length of x on the open, a line break occurs every x characters. Line
positioning in this case is an extension of character positioning. For example,
if you open a stream in binary mode with record length 80, then the following
two lines are exactly equivalent.
MyStream∼command(position 5 read line)
MyStream∼command(position 321 read char)

Remember that streams and other REXX objects are indexed starting with one
rather than zero.

The second way of positioning by lines is for non-binary streams. New-line
characters separate lines in non-binary streams. Because the line separator is
contained within the stream, ensure accurate line positioning. For example, it
is possible to change the line number of the current read position by writing
extra new-line characters ahead of the read position or by overwriting existing
new-line characters. Thus, line positioning in a non-binary stream object has
the following characteristics:

Input and Output

Chapter 16. Input and Output Streams 469

v To do line positioning, it is necessary to read the stream in circumstances
such as switching from character methods to line methods or positioning
from the end of the stream.

v If you rewrite a stream at a point prior to the read position, the line
number of the current read position could become inaccurate.

Note that for both character and line positioning, the index starts with one
rather than zero. Thus, character position 1 and line position 1 are equivalent,
and both point to the top of the persistent stream object. The REXX I/O
processing uses certain optimizations for positioning. These require that no
other process is writing to the stream concurrently and no other program uses
or manipulates the same low-level drive, directory specification, and file name
that the language processor uses to open the file. If you need to work with a
stream in these circumstances, use the system I/O functions.

Implementation

Usually, the dialog between a REXX program and you as the user takes place
on a line-by-line basis and is, therefore, carried out with the SAY, PULL, or
PARSE PULL instructions. This technique considerably enhances the usability
of many programs, because they can be converted to programmable dialogs
by using the external data queue to provide the input you generally type. Use
the PARSE LINEIN instruction only when it is necessary to bypass the
external data queue.

When a dialog is not on a line-by-line basis, use the serial interfaces the
CHARIN and CHAROUT methods provide. These methods are important for
input and output in transient stream objects, such as keyboards, printers, or
network environments.

Opening and closing of persistent stream objects, such as files, is largely
automatic. Generally the first CHARIN, CHAROUT, CHARS, LINEIN,
LINEOUT, or LINES message sent to a stream object opens that stream object.
It remains open until you explicitly close it with a CHAROUT or LINEOUT or
until the program ends. Using the LINEOUT method with only the name of a
stream object (and no output string or line) closes the named stream object.
The Stream class also provides OPEN and CLOSE methods and the
COMMAND method, which can explicitly open or close a stream object.

If you open a stream with the CHARIN, CHAROUT, LINEIN, or LINEOUT
methods, it is opened for both reading and writing, if possible. You can use
the OPEN method or the COMMAND method to open a stream for read-only
or write-only operations.

Input and Output

470 Object REXX Reference

Operating System Specifics

The COMMAND method of the Stream class determines the state of an input
or output stream object and carries out specific operations (see “COMMAND”
on page 191). It allows REXX programs to open and close selected stream
objects for read-only, write-only, or read and write operations, to move the
read and write position within a stream object, to control the locking and
buffering characteristics, and to obtain information (such as the size and the
date of the last update).

Examples of Input and Output

In most circumstances, communication with a user running a REXX program
uses the default input and output stream objects. For a question and answer
dialog, the recommended technique is to use the SAY and PULL instructions
on the .INPUT and .OUTPUT objects. (You can use PARSE PULL if
case-sensitive input is needed.)

It is generally necessary to write to, or read from, stream objects other than
the default. For example, the following program copies the contents of one
stream to another.
/* FILECOPY.CMD */
/* This routine copies, as lines, the stream or */
/* file that the first argument names to the stream */
/* or file the second argument names. It is assumed */
/* that the name is not an object, as it could be */
/* if it is passed from another REXX program. */

parse arg inputname, outputname

inputobject = .stream∼new(inputname)
outputobject = .stream∼new(outputname)

signal on notready

do forever
outputobject∼lineout(inputobject∼linein)

end
exit

notready:
return

As long as lines remain in the named input stream, a line is read and is then
immediately written to the named output stream. This program is easy to
change so that it filters the lines before writing them.

The following example illustrates how character and line operations can be
mixed in a communications program. It converts a character stream into lines.

Input and Output

Chapter 16. Input and Output Streams 471

/* COLLECT.CMD */
/* This routine collects characters from the stream */
/* the first argument names until a line is */
/* complete, and then places the line on the */
/* external data queue. */
/* The second argument is a single character that */
/* identifies the end of a line. */
parse arg inputname, lineendchar
inputobject = .stream∼new(inputname)

buffer='' /* zero-length character accumulator */
do forever

nextchar=inputobject∼charin
if nextchar=lineendchar then leave
buffer=buffer||nextchar /* add to buffer */
end

queue buffer /* place it on the external data queue */

Here each line is built up in a variable called BUFFER. When the line is
complete (for example, when the user presses the Enter key) the loop ends
and the language processor places the contents of BUFFER on the external data
queue. The program then ends.

Errors during Input and Output

The REXX language offers considerable flexibility in handling errors during
input or output. This is provided in the form of a NOTREADY condition that
the CALL ON and SIGNAL ON instructions can trap. The STATE and
DESCRIPTION methods can elicit further information.

When an error occurs during an input or output operation, the function or
method called usually continues without interruption (the output method
returns a nonzero count). Depending on the nature of the operation, a
program has the option of raising the NOTREADY condition. The
NOTREADY condition is similar to the ERROR and FAILURE conditions
associated with commands in that it does not cause a terminating error if the
condition is raised but is not trapped. After NOTREADY has been raised, the
following possibilities exist:
v If the NOTREADY condition is not trapped, processing continues without

interruption. The NOTREADY condition remains in the OFF state.
v If SIGNAL ON NOTREADY traps the NOTREADY condition, the

NOTREADY condition is raised. Processing of the current clause stops
immediately, and the SIGNAL takes place as usual for condition traps.

v If CALL ON NOTREADY traps the NOTREADY condition, the
NOTREADY condition is raised, but execution of the current clause is not
halted. The NOTREADY condition is put into the delayed state, and
processing continues until the end of the current clause. While processing
continues, input methods that refer to the same stream can return the null

Input and Output

472 Object REXX Reference

string and output methods can return an appropriate count, depending on
the form and timing of the error. At the end of the current clause, the CALL
takes place as usual for condition traps.

v If the NOTREADY condition is in the DELAY state (CALL ON NOTREADY
traps the NOTREADY condition, which has already been raised), processing
continues, and the NOTREADY condition remains in the DELAY state.

After the NOTREADY condition has been raised and is in DELAY state, the
“O” option of the CONDITION function returns the stream object being
processed when the stream error occurred.

The STATE method of the Stream class returns the stream object state as
ERROR, NOTREADY, or UNKNOWN. You can obtain additional information by using
the DESCRIPTION method of the Stream class.

Note: SAY .OUTPUT and PULL .INPUT never raise the NOTREADY condition.
However, the STATE and DESCRIPTION methods can return
NOTREADY.

Summary of REXX I/O Instructions and Methods

The following lists REXX I/O instructions and methods:
v CHARIN (see “CHARIN” on page 190)
v CHAROUT (see “CHAROUT” on page 190)
v CHARS (see “CHARS” on page 191)
v CLOSE (see “CLOSE” on page 191)
v COMMAND (see “COMMAND” on page 191)
v DESCRIPTION (see “DESCRIPTION” on page 198)
v FLUSH (see “FLUSH” on page 198)
v INIT (see “INIT” on page 198)
v LINEIN (see “LINEIN” on page 198)
v LINEOUT (see “LINEOUT” on page 199)
v LINES (see “LINES” on page 199)
v MAKEARRAY (see “MAKEARRAY” on page 200)
v OPEN (see “OPEN” on page 200)
v PARSE LINEIN (see “PARSE” on page 63)
v PARSE PULL (see “PARSE” on page 63)
v POSITION (see “POSITION” on page 202)
v PULL (see “PULL” on page 69)
v PUSH (see “PUSH” on page 70)
v QUALIFY (see “QUALIFY” on page 202)

Input and Output

Chapter 16. Input and Output Streams 473

v QUERY (see “QUERY” on page 202)
v QUEUE (see “QUEUE” on page 70)
v QUEUED (see “QUEUED” on page 333)
v SAY (see “SAY” on page 75)
v SEEK (see “SEEK” on page 204)
v STATE (see “STATE” on page 205)

Input and Output

474 Object REXX Reference

Chapter 17. Debugging Aids

In addition to the TRACE instruction described in “TRACE” on page 79, there
are the following debugging aids.

Interactive Debugging of Programs

The debug facility permits interactively controlled execution of a program.
Adding the prefix character ? to the TRACE instruction or the TRACE
function (for example, TRACE ?I or TRACE(?I)) turns on interactive debugging
and indicates to the user that interactive debugging is active. Further TRACE
instructions in the program are ignored, and the language processor pauses
after nearly all instructions that are traced at the console (see page 476 for the
exceptions). When the language processor pauses, the following debug actions
are available:
v Entering a null line causes the language processor to continue with the

execution until the next pause for debugging input. Repeatedly entering a
null line, therefore, steps from pause point to pause point. For TRACE ?A, for
example, this is equivalent to single-stepping through the program.

v Entering an equal sign (=) with no blanks causes the language processor to
reexecute the clause last traced. For example, if an IF clause is about to take
the wrong branch, you can change the value of the variables on which it
depends, and then reexecute it.
Once the clause has been reexecuted, the language processor pauses again.

v Anything else entered is treated as a line of one or more clauses, and
processed immediately (that is, as though DO; line; END; had been inserted
in the program). The same rules apply as for the INTERPRET instruction
(for example, DO-END constructs must be complete). If an instruction
contains a syntax error, a standard message is displayed and you are
prompted for input again. Similarly, all other SIGNAL conditions are
disabled while the string is processed to prevent unintentional transfer of
control.
During interpretation of the string, no tracing takes place, except that
nonzero return codes from commands are displayed. The special variable
RC and the environment symbol .RS are not set by commands executed
from the string. Once the string has been processed, the language processor
pauses again for further debugging input.

Interactive debug is turned off in either of the following cases:
v A TRACE instruction uses the ? prefix while interactive debug is in effect
v At any time, if TRACE O or TRACE with no options is entered

© Copyright IBM Corp. 1994, 2001 475

The numeric form of the TRACE instruction can be used to allow sections of
the program to be executed without pause for debugging input. TRACE n (that
is, a positive result) allows execution to continue, skipping the next n pauses
(when interactive debugging is or becomes active). TRACE -n (that is, a
negative result) allows execution to continue without pause and with tracing
inhibited for n clauses that would otherwise be traced. The trace action a
TRACE instruction selects is saved and restored across subroutine calls. This
means that if you are stepping through a program (for example, after using
TRACE ?R to trace results) and then enter a subroutine in which you have no
interest, you can enter TRACE O to turn off tracing. No further instructions in
the subroutine are traced, but on return to the caller, tracing is restored.

Similarly, if you are interested only in a subroutine, you can put a TRACE ?R
instruction at its start. Having traced the routine, the original status of tracing
is restored and, if tracing was off on entry to the subroutine, tracing and
interactive debugging are turned off until the next entry to the subroutine.

Because any instructions can be executed in interactive debugging you have
considerable control over the execution.

The following are some examples:
Say expr /* displays the result of evaluating the */

/* expression */

name=expr /* alters the value of a variable */

Trace O /* (or Trace with no options) turns off */
/* interactive debugging and all tracing */

Trace ?A /* turns off interactive debugging but */
/* continues tracing all clauses */

exit /* terminates execution of the program */

do i=1 to 10; say stem.i; end
/* displays ten elements of the array stem. */

Exceptions: Some clauses cannot safely be reexecuted, and therefore the
language processor does not pause after them, even if they are traced. These
are:
v Any repetitive DO clause, on the second or subsequent time around the

loop.
v All END clauses.
v All THEN, ELSE, OTHERWISE, or null clauses.
v All RETURN and EXIT clauses.
v All SIGNAL clauses (but the language processor pauses after the target

label is traced).

Debugging Aids

476 Object REXX Reference

v Any clause that causes a syntax error. They can be trapped by SIGNAL ON
SYNTAX, but cannot be reexecuted.

A pause occurs after a REPLY instruction, but the REPLY instruction cannot be
reexecuted.

RXTRACE Variable

When the interpreter starts the interpretation of a REXX procedure it checks
the setting of the special environment variable, RXTRACE. If RXTRACE has
been set to ON (not case-sensitive), the interpreter starts in interactive debug
mode as if the REXX instruction TRACE '?R' had been the first interpretable
instruction. All other settings of RXTRACE are ignored. RXTRACE is only
checked when starting a new REXX procedure.

Use the SET command to set or query an environment variable or query all
environment variables. To delete an environment variable, use SET variable=.

Object REXX Workbench

The Object REXX Workbench is an integrated development environment
included in the Object REXX Development Edition that can be used as a
comfortable alternative to debug your REXX programs. The Workbench
supports, for example, multi-color trace output, in-source debugging,
tracepoints, step in, step out, step over, run to cursor, a call stack, and inspect
variables.

Debugging Aids

Chapter 17. Debugging Aids 477

478 Object REXX Reference

Chapter 18. Reserved Keywords

Keywords can be used as ordinary symbols in many unambiguous situations.
The precise rules are given in this chapter.

The free syntax of REXX implies that some symbols are reserved for use by
the language processor in certain contexts.

Within particular instructions, some symbols can be reserved to separate the
parts of the instruction. These symbols are referred to as keywords. Examples
of REXX keywords are the WHILE keyword in a DO instruction and the
THEN keyword, which acts as a clause terminator in this case, following an IF
or WHEN clause.

Apart from these cases, only simple symbols that are the first token in a
clause and that are not followed by an “=” or “:” are checked to see if they
are instruction keywords. The symbols can be freely used elsewhere in clauses
without being understood as keywords.

Be careful with host commands or subcommands with the same name as
REXX keywords. To avoid problems, enclose at least the command or
subcommand in quotation marks. For example:
'DELETE' Fn'.'Ext

You can then also use the SIGNAL ON NOVALUE condition to check the
integrity of an executable.

Alternatively, you can precede such command strings with two adjacent
quotation marks to concatenate the null string to the beginning. For example:
'Erase Fn'.'Ext

A third option is to enclose the entire expression, or the first symbol, in
parentheses. For example:
(Erase Fn'.'Ext)

© Copyright IBM Corp. 1994, 2001 479

Reserved Keywords

480 Object REXX Reference

Chapter 19. Special Variables

A special variable can be set automatically during processing of a REXX
program. There are five special variables:

RC is set to the return code from any executed command
(including those submitted with the ADDRESS instruction).
After the trapping of ERROR or FAILURE conditions, it is also
set to the command return code. When the SYNTAX condition
is trapped, RC is set to the syntax error number (1–99). RC is
unchanged when any other condition is trapped.

Note: Commands executed manually during interactive
tracing do not change the value of RC.

RESULT is set by a RETURN instruction in a subroutine that has been
called, or a method that was activated by a message
instruction, if the RETURN instruction specifies an expression.
(See “EXIT” on page 51, “REPLY” on page 73, and “RETURN”
on page 74.) If the RETURN instruction has no expression,

RESULT is dropped (becomes uninitialized). Note that an
EXIT or REPLY instruction also sets RESULT.

SELF is set when a method is activated. Its value is the object that
forms the execution context for the method (that is, the
receiver object of the activating message). You can use SELF
to:
v Run a method in an object in which a method is already

running. For example, a Find_Clues method is running in
an object called Mystery_Novel. When Find_Clues finds a
clue, it sends a Read_Last_Page message to Mystery_Novel:
self∼Read_Last_Page

v Pass references about an object to the methods of other
objects. For example, a Sing method is running in object
Song. The code Singer2∼Duet(self) would give the Duet
method access to the same Song.

SIGL is set to the line number of the last instruction that caused a
transfer of control to a label (that is, any SIGNAL, CALL,
internal function call, or trapped condition). See “The Special
Variable SIGL” on page 436.

SUPER is set when a method is activated. Its value is the class object
that is the usual starting point for a superclass method lookup
for the SELF object. This is the first immediate superclass of

© Copyright IBM Corp. 1994, 2001 481

the class that defined the method currently running. (See
“Classes and Instances” on page 7.)

The special variable SUPER lets you call a method in the
superclass of an object. For example, the following Savings
class has INIT methods that the Savings class, Account class,
and Object class define.
::class Account

::method INIT
expose balance
use arg balance
self∼init:super /* Forwards to the Object INIT method */

::method TYPE
return "an account"

::method name attribute

::class Savings subclass Account

::method INIT
expose interest_rate
use arg balance, interest_rate
self∼init:super(balance) /* Forwards to the Account INIT method */

::method type
return "a savings account"

When the INIT method of the Savings class is called, the
variable SUPER is set to the Account class object. The
instruction:
self∼init:super(balance) /* Forwards to the Account INIT method */

calls the INIT method of the Account class rather than
recursively calling the INIT method of the Savings class.
When the INIT method of the Account class is called, the
variable SUPER is assigned to the Object class.
self∼init:super /* Forwards to the Object INIT method */

calls the INIT method that the Object class defines.

You can alter these variables like any other variable, but the language
processor continues to set RC, RESULT, and SIGL automatically when
appropriate. The EXPOSE, PROCEDURE, USE and DROP instructions also
affect these variables.

REXX also supplies functions that indirectly affect the execution of a program.
An example is the name that the program was called by and the source of the

Special Variables

482 Object REXX Reference

program (which are available using the PARSE SOURCE instruction). In
addition, PARSE VERSION makes available the language version and date of
REXX implementation that is running. The built-in functions ADDRESS,
DIGITS, FUZZ, FORM, and TRACE return other settings that affect the
execution of a program.

Special Variables

Chapter 19. Special Variables 483

484 Object REXX Reference

Chapter 20. Useful Services

The following section describes useful commands and services.

Windows Commands

COPY copies files.

DELETE deletes files.

DIR displays disk directories.

ERASE erases files.

MODE controls input and output device characteristics.

PATH defines or displays the search path for commands and REXX
programs. See also “Search Order” on page 299.

SET displays or changes Windows environment variables. See also
“VALUE” on page 350.

Subcommand Handler Services

For a complete subcommand handler description, see the Object REXX for
Windows Programming Guide.

The RXSUBCOM Command
The RXSUBCOM command registers, drops, and queries REXX subcommand
handlers. A REXX procedure or script file can use RXSUBCOM to register
dynamic-link library subcommand handlers. Once the subcommand handler is
registered, a REXX program can send commands to the subcommand handler
with the REXX ADDRESS instruction. For example, REXX Dialog Manager
programs use RXSUBCOM to register the ISPCIR subcommand handler.
'RXSUBCOM REGISTER ISPCIR ISPCIR ISPCIR'
Address ispcir

See “ADDRESS” on page 42 for details of the ADDRESS instruction.

RXSUBCOM REGISTER
RXSUBCOM REGISTER registers a dynamic-link library subcommand
handler. This command makes a command environment available to REXX.

�� RXSUBCOM REGISTER envname dllname procname ��

© Copyright IBM Corp. 1994, 2001 485

Parameters:

envname
The subcommand handler name. The REXX ADDRESS instruction uses
envname to send commands to the subcommand handler.

dllname
The name of the dynamic-link library file containing the subcommand
handler routine.

procname
The name of the dynamic-link library procedure within dllname that REXX
calls as a subcommand handler.

Return codes:
0 The command environment has been registered.
10 A duplicate registration has occurred. An envname subcommand

handler in a different dynamic-link library has already been
registered. Both the new subcommand handler and the existing
subcommand handler can be used.

30 The registration has failed. Subcommand handler envname in library
dllname is already registered.

1002 RXSUBCOM was unable to obtain the memory necessary to register
the subcommand handler.

-1 A parameter is missing or incorrectly specified.

RXSUBCOM DROP
RXSUBCOM DROP deregisters a subcommand handler.

�� RXSUBCOM DROP envname
dllname

��

Parameters:

envname
The name of the subcommand handler.

dllname
The name of the dynamic-link file containing the subcommand handler
routine.

Return codes:
0 The subcommand handler was successfully deregistered.
30 The subcommand handler does not exist.
40 The environment was registered by a different process as

RXSUBCOM_NONDROP.
-1 A parameter is missing or specified incorrectly.

486 Object REXX Reference

RXSUBCOM QUERY
RXSUBCOM QUERY checks the existence of a subcommand handler. The
query result is returned.

�� RXSUBCOM QUERY envname
dllname

��

Parameters:

envname
The name of the subcommand handler.

dllname
The name of the dynamic-link file containing the subcommand handler
routine.

Return codes:
0 The subcommand handler is registered.
30 The subcommand handler is not registered.
-1 A parameter is missing or specified incorrectly.

RXSUBCOM LOAD
RXSUBCOM LOAD loads a subcommand handler dynamic-link library.

�� RXSUBCOM LOAD envname
dllname

��

Parameters:

envname
The name of the subcommand handler.

libname
The name of the dynamic-link file containing the subcommand handler
routine.

Return codes:
0 The dynamic-link library was located and loaded successfully.
50 The dynamic-link library was not located or could not be loaded.
-1 A parameter is missing or incorrectly specified.

Chapter 20. Useful Services 487

The RXQUEUE Filter

�� RXQUEUE
queuename /FIFO

/LIFO
/CLEAR

��

The RXQUEUE filter usually operates on the default queue named SESSION.
However, if an environment variable named RXQUEUE exists, the RXQUEUE
value is used for the queue name.

For a full description of REXX queue services for applications programming,
see “External Data Queue” on page 465.

Parameters:

queuename/LIFO
stacks items from STDIN last in, first out (LIFO) on a REXX queue.

queuename/FIFO
queues items from STDIN first in, first out (FIFO) on a REXX queue.

queuename/CLEAR
removes all lines from a REXX queue.

RXQUEUE takes output lines from another program and places them on a
REXX queue. A REXX procedure can use RXQUEUE to capture Windows
command and program output for processing. RXQUEUE can direct output to
any REXX queue, either FIFO (first in, first out) or LIFO (last in, first out).

RXQUEUE uses the environment variable RXQUEUE for the default queue
name. When RXQUEUE does not have a value, RXQUEUE uses SESSION for
the queue name.

The following example obtains the Windows version number with RXQUEUE:
/* Sample program to show simple use of RXQUEUE */
/* Find out the Windows version number, using the */
/* VER command. VER produces two lines of */
/* output; one blank line, and one line with the*/
/* format "The Windows Version is n.nn" */

'VER |RXQUEUE' /* Put the data on the Queue */
pull . /* Get and discard the blank line */
Pull . "VERSION" number "]" /* The bracket is required for
Windows 95, not for Windows NT */
Say 'We are running on Windows Version' number

488 Object REXX Reference

Note that the syntax of the version string that is returned by Windows can
vary, so the parsing syntax for retrieving the version number may be different.

The following example processes output from the DIR command:
/* Sample program to show how to use the RXQUEUE filter */
/* This program filters the output from a DIR command, */
/* ignoring small files. It displays a list of the */
/* large files, and the total of the sizes of the large */
/* files. */

size_limit = 10000 /* The dividing line */
/* between large and small*/
size_total = 0 /* Sum of large file sizes*/
NUMERIC DIGITS 12 /* Set up to handle very */
/* large numbers */

/* Create a new queue so that this program cannot */
/* interfere with data placed on the queue by another */
/* program. */

queue_name = rxqueue('Create')
Call rxqueue 'Set', queue_name

'DIR /N | RXQUEUE' queue_name

/* DIR output starts with five header lines */
Do 5
Pull . /* discard header line */
End

/* Now all the lines are file or directory lines, */
/* except for one at the end. */

Do queued() - 1 /* loop for lines we want */
Parse Pull . . size . name ./* get one name and size */
/* If the size field says "<DIR>", we ignore this */
/* line. */
If size <> '<DIR>' Then
/* Now check size, and display */
If size > size_limit Then Do
Say format(size,12) name
size_total = size_total + size
End
End

Say 'The total size of those files is' size_total

/* Now we are done with the queue. We delete it, which */
/* discards the line remaining in it. */

Call rxqueue 'DELETE', queue_name

Chapter 20. Useful Services 489

Distributing Programs without Source

The Object REXX for Windows Development Edition comes with a utility
called REXXC. You can use this utility to produce versions of your programs
that do not include the original program source. You can use these programs
to replace any REXX program file that includes the source, with the following
restrictions:
1. The SOURCELINE built-in function returns 0 for the number of lines in

the program and raises an error for all attempts to retrieve a line.
2. A sourceless program may not be traced. The TRACE instruction runs

without error, but no tracing of instruction lines, expression results, or
intermediate expression values occurs.

The syntax of the REXXC utility is:

�� REXXC inputfile
outputfile /s

��

If you specify the outputfile, the language processor processes the inputfile and
writes the executable version of the program to the outputfile. If the outputfile
already exists, it is replaced.

If the language processor detects a syntax error while processing the program,
it reports the error and stops processing without creating a new output file. If
you omit the outputfile, the language processor performs a syntax check on the
program without writing the executable version to a file.

You can use the /s option to suppress the display of the information about the
interpreter used.

An alternative to REXXC is provided by the ″Tools — Tokenize Script″
command of the Object REXX Workbench.

Note: You can use the in-storage capabilities of the RexxStart programming
interface to process the file image of the output file.

With version 2.1, the tokenized form has changed. All Object REXX for
Windows editions contain a utility called REXXRT that can be used to change
old tokenized forms to the new one. The recommended procedure is to create
a new tokenized file from the original source with the new version of Object
REXX. However, if the source code is no longer available, REXXRT can be
used to convert the old tokenized file. The syntax of the REXXRT utility is:

490 Object REXX Reference

�� REXXRT inputfile outputfile ��

Chapter 20. Useful Services 491

492 Object REXX Reference

Chapter 21. Windows Scripting Host Engine

This chapter describes the use of Object REXX as a Windows Scripting Host
(WSH) engine.

Object REXX as a Windows Scripting Host Engine

Object REXX is automatically enabled as an engine for Windows Scripting
Host at installation. This chapter gives a brief description of WSH and how
Object REXX interacts with it, and shows you how you can best use this
feature.

The easiest part of this feature to understand and to become immediately
productive with is its ability to use Object REXX as a scripting language for
Microsoft’s Web browser, Internet Explorer. To go quickly to using this
technique, see “Invocation by the Browser” on page 495.

Windows Scripting Host Overview
Windows Scripting Host (WSH) is a unified scripting environment for all
Microsoft products. It is usable by any macro language that follows its
specification. WSH is the mechanism that allows users to customize and
dynamically control the products that support its hosting standard.

The Windows Scripting Host engine for Object REXX enables users to drive
Microsoft’s products, notably Internet Explorer. Other products that can be
driven include the components of the Office suite, like Word, Excel, and so on.

The difference between WSH and the OLE support that Object REXX provides
is the context in which the script resides. OLE scripts are exterior to the
product, and WSH scripts can be embedded in the files that the product uses.
The advantage of embedding the script is that the user has fewer files to
manage. The Object REXX engine for WSH enables users to accomplish this in
a seamless fashion.

There are two components to WSH. The first is the host – the product that can
be scripted. The second is the engine – the product that interprets the script.

Object REXX supplies the engine component of WSH.

The Gestation of WSH
As with many new technologies today, WSH introduces several new concepts
and terms. The best way to describe these is to start with an overview of the
problem that WSH addresses, and its history.

© Copyright IBM Corp. 1994, 2001 493

Until recently, Microsoft provided users simply with a COM (Common Object
Model) interface to their office products. COM is a binary, as opposed to text,
command input system. These commands drove the product – by, for
example, telling Microsoft Word to print the current document – and did not
contain any logic or decision-making capabilities. Users who wanted such
capabilities developed them in programs external to the COM object.
Accessing the interface required the user to develop the logic to drive the
COM object at first in C++, then later in Visual Basic. The investment for the
user, in development time, was quite significant.

In order to satisfy customer demand, a particular version of a scripting
language (based on Visual Basic) was developed for each Microsoft product.
In addition, the emergence of scripting languages such as JavaScript, with
their ability to dynamically control Web browsers, led Microsoft to develop
two more scripting languages, VBScript and JScript.

WSH is a consolidation of the scripting language proliferation. Borrowing
heavily from the browser paradigm, the host interprets a
language-independent XML file that contains one or more scripts where each
script is encapsulated in a script (script tag) that denotes the language of the
script, and any other necessary environmental parameters. The host extracts
the script from the file, and passes it to the appropriate interpreter.

Hosts Provided by Microsoft
Microsoft provides three fully-implemented scripting hosts. They are
Microsoft Internet Explorer, CScript, and WScript. As an expansion on the
concept of using a scripting language to drive external products, CScript and
WScript were developed to control the Windows operating system. The two
modules are so similar that they are sometimes referred to as C/WScript.
CScript is intended to be used from the command line, and WScript is best
used in the Windows environment. Both provide their services to the script
through the WScript object. Using the default method for output
WScript∼Echo(), CScript sends the output to a console screen in the same
manner as the Object REXX command Say, whereas WScript∼Echo() in a script
controlled by WScript will create a pop-up box in which the user must click
the OK button to make it disappear.

Scripting in the Windows Style

Each flavor of WSH has an associated file type. This section gives a brief
example of scripting for each file type, and suggestions that are appropriate in
each case. If you need to, see the appropriate documentation for the exact
syntax of WSH’s XML format, and the syntax of an HTML file.

Object REXX as a Windows Scripting Host Engine

494 Object REXX Reference

Invocation by the Browser
Invocation by the Web browser is probably the easiest scripting technique to
illustrate, and the most familiar use of WSH. The following is a small HTML
file that shows Object REXX as the scripting language. There are three
paragraphs that have the animating power of Object REXX behind them. Each
uses an Internet Explorer pop-up window to denote a particular mouse action.
The appropriate activity takes place when the mouse is rolled over the first
paragraph, when it leaves the second, and when it is used to click the third.
<HTML>
<!--
/**/
/* DISCLAIMER OF WARRANTIES. The following [enclosed] */
/* code is sample code created by IBM Corporation. This */
/* sample code is not part of any standard or IBM */
/* product and is provided to you solely for the */
/* purpose of assisting you in the development of your */
/* applications. The code is provided "AS IS", without */
/* warranty of any kind. IBM shall not be liable for */
/* any damages arising out of your use of the sample */
/* code, even if they have been advised of the */
/* possibility of such damages. */
/**/
!-->

<HEAD>
<TITLE>A simple event</TITLE>
<script language="Object REXX" >

::Routine Display Public
Window∼Alert(Arg(1))
Return "something to keep the mouseover function call happy"
</script>

</HEAD>

<BODY BGCOLOR="#ffffff">

<H1>How to use events</H1>

<P>Moving the cursor over the following paragraphs will cause two
events, respectively: one when you move onto the text, and one when
you leave it. At both times a pop-up message will inform you about this.</P>

<!-- in both cases the "alert" function of the object "window" is called !-->

<P onmouseout="alert('Cursor left paragraph')" LANGUAGE="Object REXX">
Event takes place when cursor leaves this paragraph.</P>

<P onmouseover="a = Display('Cursor is over paragraph')"
LANGUAGE="Object REXX">
Event takes place when cursor moves over this paragraph.</P>

<P>The following paragraph reacts when you click it:</P>

Scripting in the Windows Style

Chapter 21. Windows Scripting Host Engine 495

<P onclick="call Display 'Thank you! The current time is' time()',' date()"
LANGUAGE="Object REXX">Click me!</P>

</BODY>

</HTML>

The important things to note in this example are:
v The LANGUAGE="Object REXX" attribute on each tag that contains code.
v The <script> tag in the <HEAD> section defines a function that can be called

from any other code section in this HTML file.
– The Object REXX keyword PUBLIC must be on the ::ROUTINE statement,

or Object REXX will not be able to make that name accessible outside of
that script block.

– The Window object is accessible, even though it was not declared and the
::ROUTINE statements have the variable scope of an external routine.

– Some text was put on the RETURN statement simply as a precaution.
Those familiar with Object REXX know that routines called as functions
demand a return value.

v All of the code for the mouseout= is completely contained within the <p>
and </p> tags.
– Also note the lack of the leading "Window∼" on the Alert(). See “Changes

in Object REXX due to WSH” on page 509.
v The second event references the routine that was defined earlier as a

function. The return value is assigned to the variable ″a″, and discarded as
soon as the event finishes processing. Unlike the situation in JScript,
function return values in WSH must be used in an expression, or assigned
to a variable.

v The third event also references the routine that was defined earlier, but this
time as a procedure and not as a function. The CALL statement forces this
kind of access.
– CALL statements do not produce an error if no value is returned. If a

value is returned, and CALL was used to activate the routine, the value
can be obtained from the special variable RESULT.

Additional examples can be found in the Samples\WSH subdirectory of your
Object REXX for Windows installation directory.

WSH File Types and Formats
Two main file types are used by WSH. Both follow an XML format that wraps
the script code. The XML tags are interpreted by C/WScript, and direct it to
the correct scripting engine to process the code inside. The file type .wsf is
used to define scripts that are executed as commands. This is similar to the

Scripting in the Windows Style

496 Object REXX Reference

conventional way of invoking Object REXX in the Windows environment. The
file type .wsc is used to define scripts that are treated as COM objects. The
XML tags here denote the properties, methods, and events of the COM object,
as well as the correct engine to invoke for scripts.

Note that these XML files are well formed, but not valid. There is no
associated Document Type Definition (DTD).

.wsf
The .wsf file type is as easy to invoke as HTML, and is very similar in
appearance, with only minor differences. The .wsf file is used to drive the
operating system in the same way that an HTML file is used to drive the
browser. The file is an Object REXX script file with an XML wrapper.

The following sample prints the version of the JScript engine and the version
of the scripting host. If this file had the name "SimpleOREXX.wsf″, the
command to invoke it would be "CScript //nologo SimpleOREXX.wsf", or
"WScript //nologo SimpleOREXX.wsf".
<?xml version="1.0"?>
<?job error="true" debug="true" ?>

<package id="wstest">

<!--
/**/
/* DISCLAIMER OF WARRANTIES. The following [enclosed] */
/* code is sample code created by IBM Corporation. This */
/* sample code is not part of any standard or IBM */
/* product and is provided to you solely for the */
/* purpose of assisting you in the development of your */
/* applications. The code is provided "AS IS", without */
/* warranty of any kind. IBM shall not be liable for */
/* any damages arising out of your use of the sample */
/* code, even if they have been advised of the */
/* possibility of such damages. */
/**/
!-->

<!-- Just a small file to demonstrate the *.wsf file format, and
--- what Windows provides by default.
-->

<job idid="RunByDefault">

<!---
--- These functions are provided by WSH.
-->
<script language="JScript"><![CDATA[

function GetScriptEngineInfo(){
var s;

Scripting in the Windows Style

Chapter 21. Windows Scripting Host Engine 497

s = ""; // Build string with necessary info.
s += ScriptEngine() + " Version "; // Except this function. It can

// only be accessed from JScript
// or VBscript.

s += ScriptEngineMajorVersion() + ".";
s += ScriptEngineMinorVersion() + ".";
s += ScriptEngineBuildVersion();
return(s);
}

]]></script>
<!---

--- Not all of the script needs to be within one tag, or use the
--- same language.
-->
<script language="Object REXX"><![CDATA[

Say "This is "GetScriptEngineInfo()
Ver = "Accessing the version info from Object REXX yields"
Ver = Ver ScriptEngineMajorVersion()"."
Ver = Ver||ScriptEngineMinorVersion()"."ScriptEngineBuildVersion()
Say Ver

WScript∼Echo("Done!")

]]></script>
</job>

</package>

The important things to note in this example are:
v Accept the two XML tags (<? ... ?>) at the beginning as boilerplate,

although the debug="true" can also be 'debug="false" without any
detrimental effect.

v All XML tag names and attributes are in lower case.
v All XML tags have a beginning and an end tag. The beginning tag looks

like <tag>, and the end tag </tag>. Where the tag contains only attributes,
and there is no content between the beginning and the end tag, it is
acceptable to abbreviate <tag attribute=""></tag> to <tag
attribute=""/>.

v Comments are the same as in HTML.
v Following the <script> tag is the tag <![CDATA[, and preceding the

<script/> tag is]]>. This tells the XML parser to ignore this text. If this is
not done, many of the operators and special characters in the script will
confuse the XML parser, and it will abort the script.

v There are several <script> tags; here Object REXX is invoking a JScript
function.

Scripting in the Windows Style

498 Object REXX Reference

v The functions that begin with ScriptEngine... and the WScript object are
not declared, yet Object REXX finds them. They are implicit, and their
scope is global.

Additional examples can be found in the Samples\WSH subdirectory of your
Object REXX for Windows installation directory.

.wsc
The .wsc file type is much more elaborate than the .wsf type. Since a .wsc file
is used as a COM object, the XML must describe the object in a way that is
independent of the script language. Consider the following example.
<?xml version="1.0"?>
<?component error="true" debug="true" ?>

<package id="SimpleObjectREXXCOMScriptTest">

<!--
/**/
/* DISCLAIMER OF WARRANTIES. The following [enclosed] */
/* code is sample code created by IBM Corporation. This */
/* sample code is not part of any standard or IBM */
/* product and is provided to you solely for the */
/* purpose of assisting you in the development of your */
/* applications. The code is provided "AS IS", without */
/* warranty of any kind. IBM shall not be liable for */
/* any damages arising out of your use of the sample */
/* code, even if they have been advised of the */
/* possibility of such damages. */
/**/
!-->

<!---
--- An example script to demonstrate the features provided by the
--- COM structure. Register our own typelib, create methods,
--- and create a property.
!-->

<!---

--- This section registers the script as a COM
--- object when Register is chosen from the list of commands
--- that appear when this file is right-clicked.

--- The value of progid= is how the world will find us.
--- Two GUID's are needed, one for the COM object, and one
--- for the Typelib that will be generated. The routine's
--- Register and Unregister mimic those required in a COM
--- *.dll. Even within these routines, there is full
--- Object REXX capability.
!-->

<component id="SimpleOREXXCOM">

Scripting in the Windows Style

Chapter 21. Windows Scripting Host Engine 499

<registration
progid="SimpleObjectREXX.Com"
description="Test of the COM scriptlet interface as seen by Object
REXX."
version="1.0"
clsid="{6550bac9-b31d-11d4-9306-b9d506515f14}">

<script language="Object REXX"><![CDATA[
::Routine Register Public

Shell = .OLEObject∼New("WScript.Shell")
Typelib = .OLEObject∼New("Scriptlet.TypeLib")
Shell∼Popup("We are registering, n o w")

/*
* Please note that the name that follows must match
* our file name exactly, or this fails when registering
* with an "OLE exception", Code 800C0005 or Code 800C0009.
*/
Typelib∼AddURL("SimpleOREXXCOM.wsc")
Typelib∼Path= "SimpleOREXXCOM.tlb"
Typelib∼Doc = "Test component typelib for Simple Object REXX.Com"
Typelib∼Name = "Test component typelib for Simple Object REXX.Com"
Typelib∼MajorVersion = 1
Typelib∼MinorVersion = 0
Typelib∼GUID = "{6550bac5-b31d-11d4-9306-b9d506515f14}"
Typelib∼Write()
Typelib∼Reset()
Shell∼Popup("We've really done it n o w")

::Routine Unregister Public
Shell = .OLEObject∼New("WScript.Shell")
Shell∼Popup("We are outa here!")

]]></script>
</registration>

<!---
--- This section is what describes this COM object to the outside
--- world. There is one property, and there are two methods named.
--- One of the methods is the default, since its dispid is 0.
--- Object REXX does not support calling the default in a shorthand
--- manner. All calls are as follows:

--- Obj = .OLEObject∼New("SimpleObjectREXX.Com")
--- Obj∼DefaultMethod("Some Parm")

!-->
<public>

<property name="ExternalPropertyName"
internalName="InternalPropertyName" dispid="3">

</property>
<method name="NamedRoutine">

<parameter name="NamedParameter"/>
</method>

<method name="DefaultMethod" dispid="0">
<parameter name="ReallyForTheOutsideWorld" />
</method>

Scripting in the Windows Style

500 Object REXX Reference

</public>

<!---
--- This is the actual script code. Note that the property
--- is declared at the highest scope. If this is not done,
--- then the property will not be found, and the script
--- will not abend when the property is referenced.

!-->
<script language="Object REXX" ><![CDATA[

InternalPropertyName = "Sample Property"

::Routine NamedRoutine Public
say "There are "Arg()" args."
a = RxMessageBox("Is executing, now.","NamedRoutine","OK",)

Return

::Routine DefaultMethod Public
say "There are "Arg()" args."
a = RxMessageBox("Is executing, now.","DefaultMethod","OK",)
WShell = .OLEObject∼New("WScript.Shell")
a = WShell∼Popup("A message via an implicit COM object.");

Return "a value"

]]></script>

</component>

</package>

The important things to note are:
v There are three distinct sections in this file, and two of them contain Object

REXX code.
– The first section identifies this as a COM object. The progid=, version=,

and clsid= attributes of the <registration> tag are given so that this file
can be entered into the Windows Registry as a COM object. This is one
of the sections that has code. The code here generates the Typelib when
the script is registered as a COM object.

– The second section lists all of the entry points to this object, their
parameters, and any data that is being externalized. When the Typelib is
generated, this information is used to create its contents. This is more of
a designer’s wish list than something that is enforced. The designer
states what he or she believes to be the minimal number of parameters.
The designer must then enforce this within the subroutine. However, be
aware that other routines calling these listed here may pass more, or
fewer, parameters than this section suggests. This is especially true for
procedures named with <method> tags. WSH passes the named
parameter THIS, which Object REXX passes on to the routine.

– The third section is the actual code.

Scripting in the Windows Style

Chapter 21. Windows Scripting Host Engine 501

v Read the comments before each section; they contain important information
about that particular section.

v Any code that is put in the same scope as the property being assigned its
value is called immediate code. Immediate code is executed when the COM
object is loaded, before any of its pieces (methods, properties, or events) are
accessed. It executes even if none of the external pieces are accessed.

Additional examples can be found in the Samples\WSH subdirectory of your
Object REXX for Windows installation directory.

Invocation from a Command Prompt
Invocation from a command prompt covers many possible means:

Opening a DOS window to type the command into;
Selecting Start->Run from the Windows taskbar;
Starting from a file association made in Windows Explorer.

A conventional Object REXX file is one in which every line is valid Object
REXX syntax, and makes no assumptions about global objects. It contains no
XML wrapper as described in the section on .wsf files.

Consider what happens when a file named WSH.rex contains the single line:
'WScript∼Echo("WSH is available.")'; another file named WSH.wsf contains
the same line of code in the .wsf wrapper described above; and another file,
Safe.rex, contains the line "Say 'Conventional REXX file' Arg(1)".

As a Conventional Object REXX File
From a command prompt, "REXX WSH.rex", will stop with an error 97: Object
"WScript" does not understand message "Echo″.

From a command prompt, "REXX WSH.wsf", will stop with an error 35: Invalid
expression detected at "<".

From a command prompt, "REXX Safe.rex GREAT!", produces one line of
output, "Conventional REXX File GREAT!".

As a Windows Scripting Host File
Both CScript and WScript will invoke a file from the command line. All of
their parameters begin with a double slash. Two useful parameters are:
//nologo and //e:. The //nologo parameter prevents the banner from being
displayed, and //e: tells WSH not to interpret this file, and to pass the
complete contents to the named engine. Enter CScript or WScript with no
parameters or file names to see a complete list of parameters.

WScript converts all WScript∼Echo() output into pop-up text boxes, whereas
with CScript they are displayed as output lines in a DOS window. If CScript
is executed from outside a DOS window (either from Start->Run, or from the

Scripting in the Windows Style

502 Object REXX Reference

use of Windows Explorer), a DOS window will be created for the output.
Note, however, that it is removed when the script is complete. Usually, this
means that the lifetime of the DOS window is long enough for a person to
detect it, but not to actually read it.

From a command prompt, "cscript //e:"Object REXX" WSH.rex" produces
one line of output, "WSH is available." From a command prompt, "wscript
//e:"Object REXX" WSH.rex", produces a pop-up box that contains the title
"Windows Script Host″, an OK button, and the text "WSH is available."

From a command prompt, "cscript //e:"Object REXX" WSH.wsf" will stop
with an error 35: Invalid expression detected at "<". From a command
prompt, "wscript //e:"Object REXX" WSH.wsf", will seem as if it produced no
output at all. Though Object REXX is still generating the error message,
WScript does not detect the output to STDOUT, and no DOS window is
created.

From a command prompt, "cscript //e:"Object REXX" Safe.rex GREAT!"
produces one line of output, "Conventional REXX File". Note the lack of the
word GREAT!. WSH does not pass the command line args to Object REXX.
The WScript∼Arguments method/object must be used, as in the following code:

/* Note that the WScript object is not declared. It just appears
* courtesy of CScript and WScript
*/
Say "The arguments as WSH sees them."
If WScript∼Arguments∼length > 0 Then Do I = 0 To (WScript∼Arguments∼length - 1)

Say i WScript∼Arguments(i)
End

Else Say "No arguments were sent."

From a command prompt, "wscript //e:"Object REXX" Safe.rex GREAT!",
will seem as if it produced no output at all. As when WSH.wsf is run by
WScript with a known engine (see the relevant paragraph earlier), Object
REXX is still executing the SAY instruction, WScript does not detect the output
to STDOUT, and no DOS window is created.

Invocation as a COM Object
This is the most intricate of the script files to execute. Multiple steps are
involved, and there is no command that directly invokes the script.
C/WScript cannot be used to directly invoke a .wsc file. It must be processed
by other means first. Once created, the file must be registered.

Once registered, this can be invoked by any program that can call COM
objects. It does not have to be another script; that program could be Visual
Basic or C++. If the COM object is to be invoked by Visual Basic, it is a good
idea to generate a Typelib. This helps Visual Basic to form its parameter list.

Scripting in the Windows Style

Chapter 21. Windows Scripting Host Engine 503

Registering the COM Object
Use either of two methods to register a .wsc file. The first is to right-click it in
Windows Explorer, and choose Register from the list of commands that
appears. The second is from the command line. For example, to register
WSH.wsc, at a command prompt, enter the command, "regsvr32 /c WSH.wsf".

The GUID in the clsid= attribute must be unique for the machine the COM
object is being registered on. In other words, no other COM object may use
the GUID. Once it is registered, the script cannot be moved. The path to a
COM object is stored in the Registry as a complete path. If the script is
moved, then Windows will not know how to find it.

Generating a Typelib
Use either of two methods to generate the Typelib. One is using code in the
Register method of the <registration> section. See the sample .wsc code
above for an example of this. The other is to choose Generate Type Library
from the list of commands that appear when the file name is right-clicked in
Windows Explorer.

Invoking
The easiest method of invoking the script, once it is a COM object, is to use
an OLE-enabled application, such as Object REXX. The following Object REXX
code shows how to define the object in Object REXX, and invoke its methods.
<?xml version="1.0"?>
<?job error="true" debug="true" ?>

<package id="wstest">

<!--
/**/
/* DISCLAIMER OF WARRANTIES. The following [enclosed] */
/* code is sample code created by IBM Corporation. This */
/* sample code is not part of any standard or IBM */
/* product and is provided to you solely for the */
/* purpose of assisting you in the development of your */
/* applications. The code is provided "AS IS", without */
/* warranty of any kind. IBM shall not be liable for */
/* any damages arising out of your use of the sample */
/* code, even if they have been advised of the */
/* possibility of such damages. */
/**/
!-->

<!---
--- This example shows how easy it is to
--- invoke a COM object that is a script by means of
--- Object REXX.
-->

<job id="RunByDefault">
<script language="Object REXX"><![CDATA[

Scripting in the Windows Style

504 Object REXX Reference

Say "Creating the ObjectREXX.Com object. "
Sample = .OLEObject∼new("SimpleObjectREXX.Com")
Say "Just before the default method "
ReturnValue = Sample∼DefaultMethod("A parm");
ReturnValue = Sample∼NamedRoutine("A parm");

]]></script>
</job>

</package>

Object REXX is not the only way to invoke the script. Any application that
can call COM objects can invoke it. For further information, see the relevant
documentation.

Events
When scripts are turned into COM objects they can initiate events. Several
types of events are supported: the default COM events, HTML or Behavior
events, and ASP events. The type of event that the COM object supports is
denoted by the type= attribute of the <implements> tag. An in-depth
discussion of events and how to create, code, and handle them is beyond the
scope of this documentation. However, there are a few concepts that should
be mentioned.

COM Events: In the <public> section, where the external attributes of the
COM object are disclosed, <event> tags can be added. They name the events
that the script could possibly activate. When the script that calls the COM
object instantiates it by using the method provided by WScript, rather than
the Object REXX method, it can inform the COM object that it will handle the
events that the COM object fires. Note that when a script agrees to handle the
events of an object, it must handle all of the events of that object.

For example, suppose the public section looked as follows:
<public>

<event name="Event1" />
<event name="Event2" />

</public>

and the script that instantiated the COM objects code looked as follows:
REXXObject = WScript∼CreateObject("ObjectREXX.Com","Event_");

In that case, the instantiating script would be required to define the two
routines below.
::Routine Event_Event1 Public
::Routine Event_Event2 Public

It is not acceptable if only one of the events is supported. Also, note the
naming convention. The second parameter of CreateObject() names the prefix
of the routine name that will support the event. The remainder of the routine
name is composed of the event name from the <event> tag of the <public>

Scripting in the Windows Style

Chapter 21. Windows Scripting Host Engine 505

section. Neither the prefix nor the empty string can be elided. In other words,
neither CreateObject("object",) nor CreateObject("object","") is allowed.
The script host will generate an error.

Internet Explorer Events: When coding Internet Explorer events, the user
should be aware of the following. The section of code between the quotes on
an HTML tag has to be complete, with correct syntax. The THIS object is
implicity defined for the scope of the section. If the section calls a function,
and the function needs access to THIS, then the section must pass THIS as a
variable to the function. THIS is the browser’s object that represents the tag
that the event was fired from. For all of the exact properties and methods
associated with THIS, see the documentation for the corresponding tag.

To illustrate, consider the following code extract:
<p onmouseover="Call RxMouseOver This" id="SomeTag">
"HOT" text, get your "HOT" text right here
</p>

<script language="Object REXX">
::Routine RxMouseOver Public
Use Arg This
Text = "This is a <"This∼tagName"> tag named '"THIS∼id"'"
a = RxMessageBox(Text,"RxMouseOver","OK",)
Return "OK"
</script>

The code for the onmouseover= "Call RxMouseOver This" is complete and
correct. If a function call had been used instead, the code would be something
similar to "a = RxMouseOver(This)". Do not forget to assign the results of a
function call to something. If THIS is not passed as an argument to
RxMouseOver, it will have the default value of a string whose content is THIS.

To cancel Internet Explorer events, the Object REXX Boolean value .false
must be returned. The integer values 0 and 1 are not appropriate alternatives.
For example:

WSH Samples
There are more features to WSH than are listed here. The Samples\WSH
subdirectory of your Object REXX for Windows installation directory contains
some appropriate samples and an explanation of the relevant features. Before
running any samples, make sure that the latest version of Windows Scripting
Host is installed on the machine.

Several sample files are stand-alone; these are all of the file types .htm, .wsf
or .rex. However, all of the samples covering the aspects of using Object
REXX scripts as COM objects are in pairs or, in one case, a group of three.
One file is the COM object, and the other is the script that instantiates it. All

Scripting in the Windows Style

506 Object REXX Reference

of the COM objects are of the file type .wsc. The files that instantiate them are
either .wsf or .rex. The sample that uses three files illustrates the include=
attribute of the <script> tag. All of the .wsc files must be registered before
they can be used (see “Registering the COM Object” on page 504).

To view the .htm samples, use Windows Explorer to view the sample
directory. Right-click the desired sample file, and choose Open With->Internet
Explorer from the menu that appears.

To view the .wsf or .rex samples, use either a DOS window or Windows
Explorer. From Windows Explorer, double-click the desired file. It will execute
automatically. From the DOS window, make the sample directory the current
directory, and use either CScript or WScript to execute the sample. The file
Print.rex is an include file. It is not intended for direct execution.

Samples whose names begin with ″w″ use only Window pop-up boxes for
output. Samples without the leading ″w″ are best viewed from the DOS
window. They produce output that will not display in a Windows-only
environment. Samples whose name begins with ″call″ are used to instantiate
the COM objects once they are installed. If they are not installed, the error
message "Error 98.909: Class "......" not found" will be issued.

Interpretation of and Deviation from the WSH Specification

This section deals with a number of issues to do with interpreting the WSH
specification and with deviations from it.

Windows Scripting Host (WSH) Advanced Overview
Accommodating to WSH has necessitated some deviations from the Object
REXX standard. To best understand what these deviations are, you need to be
aware of the components of WSH. In addition to the products that are hosts,
there are special COM objects and different mechanisms for initiating the
engine.

Hosts Provided by Microsoft
Microsoft provides three fully-implemented scripting hosts. They are
Microsoft Internet Explorer, CScript, and WScript. As an expansion on the
concept of using a scripting language to drive external products, CScript and
WScript were developed to control the Windows operating system. The two
modules are so similar that they are sometimes referred to as C/WScript.
CScript is intended to be used from the command line, and WScript is best
used in the Windows environment. Both provide their services to the script
through the WScript object. Using the default method for output
WScript∼Echo(), CScript sends the output to a console screen in the same

Scripting in the Windows Style

Chapter 21. Windows Scripting Host Engine 507

manner as the Object REXX command Say, whereas WScript∼Echo() in a script
controlled by WScript will create a pop-up box in which the user must click
the OK button to make it disappear.

These are not the only Microsoft products that have WSH capabilities. The
core of C/Wscript is scrobj.dll. Several Microsoft products implement
various parts of the scripting host architecture by using scrobj.dll.

Additional COM Objects
Since JScript and VBScript were developed primarily to manipulate the Web
browser DOM (Domain Object Model), they lack many of the features
associated with a language that drives an operating system. They have no
native facilities for I/O (Input and Output), or for controlling the file system.
These powers are granted through several additional COM objects.

Most of the literature on WSH describes these objects. Most of the features in
these additional COM objects are native to Object REXX; for further
information, see “The OLEObject Class” on page 284. Further documentation
on the additional COM objects is readily available from other sources.

Object REXX, since it is OLE-enabled, has access to all of these objects. OLE
(Object Linking and Embedding) is an advanced protocol based on COM. Be
aware that the automatic object WScript is only available when Object REXX
is activated by C/Wscript. Access cannot be obtained if Object REXX is
initiated by Internet Explorer, or when it is initiated in the classical method
"REXX someFile.rex", either from the command line or from a command
issued by the file explorer as an association with a file type. This is not a
limitation of Object REXX. It is a consequence of the manner in which this
object is loaded.

The WScript object is not registered in the Windows Registry. It exists only
when C/WScript dynamically creates it and then passes the pointer to Object
REXX. All scripting languages, including JScript and VBScript, have this
limitation.

Where to Find Additional Documentation
The best source of up-to-date information on WSH is the World Wide Web.
The keyword to use when searching the help facilities provided by Microsoft
is ″scripting″. If you are using a search engine (available when you click
″Search″ on your browser’s menu bar), insert ″activescript″ as the keyword.

In addition, there are several books on the subject. When browsing online
bookstores, use the keyword, ″activescript″. The MSDN (Microsoft Developers
Network) is a good reference source for the syntax of the XML used to define
the WSH files.

Interpretation of and Deviation from the WSH Specification

508 Object REXX Reference

Note that the correct file type to use for the XML file that C/WScript
processes is .wsf. Existing documentation often states misleadingly that the
file type to use is .ws. C/WScript requires the full file name, including file
type, and it processes the file correctly only when the file type is .wsf. This
seems to be hard coded into C/WScript, and no workaround is available.

Object REXX in the WSH Environment
Object REXX is fully compatible with the WSH environment. Interaction with
JScript and VBScript is transparent. Legacy applications developed with these
languages will not have to be discarded.

Object REXX Features Available
All of the features normally associated with Object REXX are available when
Object REXX is loaded by WSH. In addition, OLE support is loaded
automatically. Scripts do not need to include '::requires "OREXXOLE.CLS"'.
However, when Object REXX is invoked by Internet Explorer, it honors the
″sandbox″ settings that the user has set in the browser’s security panel. Access
to I/O, the file system, external commands, and COM objects may not be
granted.

Changes in Object REXX due to WSH
To comply with the WSH definition, some of the scoping rules and default
behavior of Object REXX have been modified. The default behavior has been
altered to allow some objects to be implicitly defined. The normal scoping
rules now allow ″global″ objects to appear at any procedure depth, without
requiring the use of EXPOSE, or the passing of the object as a parameter.
Second-level objects can now be accessed without specifying the first level.
These changes only apply to objects that WSH provides to Object REXX. All
other objects and variables behave in the standard ways.

Normally, access to objects requires explicit declaration through one of the
OLE methods, as in:
"Window = .OLEObject∼new("window")"

Some, like WScript, can only be passed in; others – window, for example –
have a history of being implicitly available. Full documentation is not yet
available as to what objects have these features, and therefore only a few will
be mentioned.

As previously mentioned, the WScript object is implicitly available when
Object REXX is started by C/WScript. The ″window″ object is implicitly
available when Object REXX is initiated by Internet Explorer. For events
associated with an HTML tag – ONMOUSEOVER, for example – the scriptlet in the
HTML tag has THIS implicitly defined. Unlike "WINDOW", THIS is not global.
Typically, this scriptlet calls a procedure, and THIS must be passed to the
procedure if the procedure needs to reference THIS.

Interpretation of and Deviation from the WSH Specification

Chapter 21. Windows Scripting Host Engine 509

Normally, you reference an object by naming the top level object, followed by
the objects at second and subsequent levels, separated by the tilde symbol (∼).
However, in order to emulate the current behavior of Internet Explorer, the
engine must resolve object names starting at the second level to the
appropriate top level that owns them. The shorthand "Document∼WriteLn()" or
"Alert()" is just as acceptable as "Window∼Document∼WriteLn()" or
"Window∼Alert()". It is preferable, as good coding practice, to explicitly state
this relationship. Stating "Doc = Window∼Document" removes all doubt as to
which global object WriteLn() is associated with when the statement
"Doc∼WriteLn()" is encountered.

Note: This applies only to global objects supplied by WSH. Objects created in
or supplied by Object REXX must be named in the normal fashion.

Parameters
A called routine may receive more parameters than expected. This is not
necessarily an error on the caller’s part; WSH adds extra parameters on
occasion. When WSH does this, Object REXX adds the parameters at the end.
There is an exception to this. The documentation is ambiguous in certain
sections about defining properties for scripts that are used as COM objects. If
the XML that defines the script states that a name should be a property, but
Object REXX finds it defined as a function, then Object REXX will prepend
the parameter list with GET or PUT, depending on the direction of the property
access. For more information, see the sample file Call_ExtraParms.wsf in the
Samples\WSH subdirectory of your Object REXX for Windows installation
directory.

Properties
WSH defines properties as variable values that a COM script exposes to
outside routines, or strings and numbers extracted from a Typelib. Properties
are to be treated as global variables within the accessing script. Properties can
be implemented as variables or as functions.

Object REXX supports declaring and defining properties in the intent of the
specification (see the section on .wsc files). That means that the variables at
the highest scope, the closest to what could be considered as global, may have
their values exposed as properties for other programs to use.

For another program to reference these properties, it must instantiate the
COM object, and the object name must precede the property name. For
example:
Object = .OLEObject∼New("SimpleObjectREXX.Com")
/* The next line is a property GET */
Say "The value for ExternalPropertyName is:" Object∼ExternalPropertyName
Object∼ExternalPropertyName = "New Value" -- This is a PUT

Interpretation of and Deviation from the WSH Specification

510 Object REXX Reference

If you experiment, you will find that there is also a shorthand method, as
follows:
Object = .OLEObject∼New("SimpleObjectREXX.Com")
/* The next line is a property GET */
Say "The ExternalPropertyName value is:" Object∼ExternalPropertyName()
Say Object∼ExternalPropertyName("New Value")

In the case of the second reference, the method is both a PROPERTYGET and
a PROPERTYPUT. It gets the old value, replacing the current one with the
parameter inside the parenthesis. If more than one parameter is passed, the
additional parameters are ignored.

Note: This does not always work, and is supported only by Object REXX. The
cases in which it does not work are where the properties are defined as
functions and not as simple variables. These calls are, in fact, methods
and not property references. When Object REXX receives method calls
for properties, it converts them to the appropriate action. In the case of
properties defined as functions, WSH translates the property action into
a function action. However, when the action is initiated as a function
and not as a property, WSH does not always make the appropriate or
correct translation.

Object REXX does not support the concept of global variables. For a COM
script to reference its own properties, and to react to outside scripts changing
them, then the properties have to be global. To meet the requirement that
properties are global in scope within the defining script, the Built-In Function
(BIF) Value() has been expanded to accept ″WSHPROPERTY″ as a selector
when referencing properties. As with variables accessed with the
″ENVIRONMENT″ selector, these variables persist only during the life of the
COM object that supplies the properties. The next time that the COM is run,
the values will be at initial coded state.

The WSH supports various syntax combinations in the case of implementing a
property as a function. In all combinations, the function is named in the
<property> section or tag. It assumes that, when no function is named, the
property is a variable; however, it does not enforce this assumption. It is
possible to name a property and define it as a function. Object REXX defines
this to mean that the function must be invoked whenever a property access is
attempted. Object REXX notifies the function of the intended access direction
by inserting GET or PUT as the first argument, and shifting all original
arguments accordingly; that is, the original first argument is the second, the
second is the third, and so on. For a demonstration of this behavior, see the
Call_PropertyORexx.wsf sample in the Samples\WSH subdirectory of your
Object REXX for Windows installation directory.

Interpretation of and Deviation from the WSH Specification

Chapter 21. Windows Scripting Host Engine 511

The WSH also establishes that Type Library variables may be made accessible
to the script. This violates the default value and scope mechanisms of Object
REXX. To meet the requirement that properties are global in scope within the
defining script, the Built-In Function (BIF) Value() has been expanded to
accept ″WSHTYPELIB″ as a selector when referencing elements in a Type
Library. As with variables accessed with the ″ENVIRONMENT″ selector, these
variables (because they are external to Object REXX) are global and persist
only during the life of the COM object that supplies the properties. In
addition, they are read only. They are immutable; they cannot be changed.

The Object REXX ″Sandbox″
Object REXX contains a feature known as the Security Manager. When this is
enabled it can restrict and audit the other native abilities of Object REXX.
When used with WSH, Object REXX honors the IObjectSafety interface and its
methods GetInterfaceSafetyOptions() and SetInterfaceSafetyOptions() by
translating their calls into Security Manager settings. This means that when
Object REXX is in the Internet Explorer’s sandbox, it will restrict itself to the
user’s settings. The most secure situation is one where Object REXX does not
interact with the user’s desktop (no reads or writes to the hard disk, no
external commands, and so on).

Implications of Browser Applications That Run Outside the ″Sandbox″
The most useful aspect of this feature is that the user may select the most
secure settings for the Internet, but allow desktop interaction for pages
delivered by the local intranet server. In keeping with the current trend in IT,
Object REXX allows users to leverage their investment in desktop software.
This facility is intended for clients who use the intranet to lighten the client,
or put a Web interface on legacy applications. A lighter client desktop means
less software on the user desktop to maintain.

Features Duplicated in Object REXX and WSH
Several features are available from both WSH and Object REXX. However, the
overlap is not exact, and knowing the differences can aid the user in deciding
which is more appropriate to use.

Declaring Objects with Object REXX or WScript
When instantiating COM or OLE objects as REXX objects, either the native
REXX .OLEObject∼new() method, or the WScript∼CreateObject() method can
be used. The WSH method has the advantage of allowing the script to
support the events that the object might fire. This is part of its definition, and
no scripting language will have access to this ability in its native object
enabler. The disadvantage is that it is a COM object performing a function
that can be done internally.

Interpretation of and Deviation from the WSH Specification

512 Object REXX Reference

Another disadvantage of using the WSH method becomes evident if the script
is executed outside of the context of WSH. The WScript object will not exist.
Therefore, unless the ability to sink events is necessary, it is suggested that the
native Object REXX method be used.

Subcom versus the Host Interface
With the advent of WSH, there are two ways to use Object REXX to drive a
product. The first is through the Object REXX Subcom interface. The second is
for the product to become a Windows Scripting Host. The advantage of the
WSH interface to the product is that it is a COM interface. This positions the
product to take advantage of DCOM. This interface also allows the package
developed by the user to pass objects to Object REXX.

The disadvantage is the loss of richness contained in the Subcom interface,
and the loss of the close integration that a .dll connection has over a COM
connection. The Subcom interface allows the package to tailor Object REXX in
ways that are not possible through the COM interface, especially when the
Object REXX Exit Handlers are implemented.

When writing a product that will be a WSH to Object REXX, refer to the
sections ″Concurrency″ and ″COM Interfaces″ in ″Windows Scripting Host
Interface″, in the Object REXX for Windows: Programming Guide.

.dll vs COM
There are several issues that should be considered when a choice needs to be
made between a COM or a .dll interface. These issues stem from the
intended purposes of each interface.

The .dll interface was developed to extend code reuse by allowing global
scope subroutines and functions to be externalized into a module that is
separate from the executable. When more than one executable wanted these
functions, they all shared the same code that was loaded into memory. The
code that was in the .dll executed in the frame of the .exe module. It had
the same address space and other environmental parameters. Multiple copies
of a *.dll code exist on a machine at one time. The first one that was found
in the search path was loaded.

COM was developed to embody a flat model world; only one copy per
machine. It was developed to solve two problems with the *.dll interface.
The first was entry point resolution, and the other was using the wrong *.dll
because the search path was not correct. COM does this by using RPC, a
mechanism that was designed to communicate between different machines.
For conceptual purposes, COM modules then function in a different address
space from that of the invoking *.exe. Therefore, there is overhead in making
any data that is to be passed back and forth opaque on the sender’s side, and
converting it into usable data on the receiver’s side.

Interpretation of and Deviation from the WSH Specification

Chapter 21. Windows Scripting Host Engine 513

Interpretation of and Deviation from the WSH Specification

514 Object REXX Reference

Appendix A. Using the DO Keyword

This appendix provides you with additional information about the DO
keyword.

Simple DO Group

If you specify neither repetitor nor conditional, the DO construct only groups a
number of instructions together. They are processed once. For example:
/* The two instructions between DO and END are both */
/* processed if A has the value "3". */
If a=3 then Do
a=a+2
Say 'Smile!'
End

Repetitive DO Loops

If a DO instruction has a repetitor phrase, a conditional phrase, or both, the
group of instructions forms a repetitive DO loop. The instructions are processed
according to the repetitor phrase, optionally modified by the conditional
phrase. (See “Conditional Phrases (WHILE and UNTIL)” on page 518.)

Simple Repetitive Loops
A simple repetitive loop is a repetitive DO loop in which the repetitor phrase
is an expression that evaluates to a count of the iterations.

If repetitor is omitted but there is a conditional or if the repetitor is FOREVER,
the group of instructions is processed until the condition is satisfied or a
REXX instruction ends the loop (for example, LEAVE).

In the simple form of a repetitive loop, exprr is evaluated immediately (and
must result in a positive whole number or zero), and the loop is then
processed that many times.

Example:
/* This displays "Hello" five times */
Do 5
say 'Hello'
end

Note that, similar to the distinction between a command and an assignment, if
the first token of exprr is a symbol and the second token is (or starts with) =,
the controlled form of repetitor is expected.

© Copyright IBM Corp. 1994, 2001 515

Controlled Repetitive Loops
The controlled form specifies control1, a control variable that is assigned an
initial value (the result of expri, formatted as though 0 had been added) before
the first execution of the instruction list. The variable is then stepped by
adding the result of exprb before the second and subsequent times that the
instruction list is processed.

The instruction list is processed repeatedly as long as the end condition
(determined by the result of exprt) is not met. If exprb is positive or 0, the loop
is ended when control1 is greater than exprt. If negative, the loop is ended
when control1 is less than exprt.

The expri, exprt, and exprb options must result in numbers. They are evaluated
only once, before the loop begins and before the control variable is set to its
initial value. The default value for exprb is 1. If exprt is omitted, the loop runs
infinitely unless some other condition stops it.

Example:
Do I=3 to -2 by -1 /* Displays: */

say i /* 3 */
end /* 2 */

/* 1 */
/* 0 */
/* -1 */
/* -2 */

The numbers do not have to be whole numbers:

Example:
I=0.3 /* Displays: */
Do Y=I to I+4 by 0.7 /* 0.3 */

say Y /* 1.0 */
end /* 1.7 */

/* 2.4 */
/* 3.1 */
/* 3.8 */

The control variable can be altered within the loop, and this can affect the
iteration of the loop. Altering the value of the control variable is not
considered good programming practice, though it can be appropriate in
certain circumstances.

Note that the end condition is tested at the start of each iteration (and after
the control variable is stepped, on the second and subsequent iterations).
Therefore, if the end condition is met immediately, the group of instructions
can be skipped entirely. Note also that the control variable is referred to by

Using the DO Keyword

516 Object REXX Reference

name. If, for example, the compound name A.I is used for the control
variable, altering I within the loop causes a change in the control variable.

The execution of a controlled loop can be limited further by a FOR phrase. In
this case, you must specify exprf, and it must evaluate to a positive whole
number or zero. This acts like the repetition count in a simple repetitive loop,
and sets a limit to the number of iterations around the loop if no other
condition stops it. Like the TO and BY expressions, it is evaluated only
once—when the DO instruction is first processed and before the control
variable receives its initial value. Like the TO condition, the FOR condition is
checked at the start of each iteration.

Example:
Do Y=0.3 to 4.3 by 0.7 for 3 /* Displays: */

say Y /* 0.3 */
end /* 1.0 */

/* 1.7 */

In a controlled loop, the control1 name describing the control variable can be
specified on the END clause. This name must match control1 in the DO clause
in all respects except the case (note that no substitution for compound
variables is carried out). Otherwise, a syntax error results. This enables the
nesting of loops to be checked automatically, with minimal overhead.

Example:
Do K=1 to 10
...
...
End k /* Checks that this is the END for K loop */

Note: The NUMERIC settings can affect the successive values of the control
variable because REXX arithmetic rules apply to the computation of
stepping the control variable.

Repetitive Loops over Collections

A collection loop specifies a control variable, control2, which receives a different
value on each repetition of the loop. (For more information on control2, see
“DO” on page 49.) These different values are taken from successive values of
collection. The collection is any expression that evaluates to an object that
provides a MAKEARRAY method, including stem variables. The collection
returned determines the set of values and their order.

If the collection is a stem variable, the values are the tail names that have
been explicitly assigned to the given stem. The order of the tail names is
unspecified, and a program should not rely on any order.

Using the DO Keyword

Appendix A. Using the DO Keyword 517

For other collection objects, the MAKEARRAY method of the specific
collection class determines the values assigned to the control variable.

All values for the loop iteration are obtained at the beginning of the loop.
Therefore, changes to the target collection object do not affect the loop
iteration. For example, using DROP to change the set of tails associated with a
stem or using a new value as a tail does not change the number of loop
iterations or the values over which the loop iterates.

As with controlled repetition, you can specify the symbol that describes the
control variable on the END clause. The control variable is referenced by
name, and you can change it within the loop (although this would not usually
be useful). You can also specify the control variable name on an ITERATE or
LEAVE instruction.

Example:
Astem.=0
Astem.3='CCC'
Astem.24='XXX'
do k over Astem.
say k Astem.k
end k

This example can produce:
3 CCC
24 XXX

or:
24 XXX
3 CCC

See Figure 25 on page 521 for a diagram.

Conditional Phrases (WHILE and UNTIL)

A conditional phrase can modify the iteration of a repetitive DO loop. It can
cause the termination of a loop. It can follow any of the forms of repetitor
(none, FOREVER, simple, or controlled). If you specify WHILE or UNTIL,
exprw or expru, respectively, is evaluated after each loop using the latest
values of all variables, and the loop is ended if exprw evaluates to 0 or expru
evaluates to 1.

For a WHILE loop, the condition is evaluated at the top of the group of
instructions. For an UNTIL loop, the condition is evaluated at the
bottom—before the control variable has been stepped.

Example:

Using the DO Keyword

518 Object REXX Reference

Do I=1 to 10 by 2 until i>6
say i
end
/* Displays: "1" "3" "5" "7" */

Note: Using the LEAVE or ITERATE instructions can also modify the
execution of repetitive loops.

Using the DO Keyword

Appendix A. Using the DO Keyword 519

Figure 24. Concept of a DO Loop

Using the DO Keyword

520 Object REXX Reference

Figure 25. Concept of Repetitive Loop over Collection

Appendix A. Using the DO Keyword 521

522 Object REXX Reference

Appendix B. Migration

This appendix lists some differences between Object REXX and earlier
versions of REXX, and between Object REXX for OS/2 and Object REXX for
Windows NT and Windows 95.

Error Codes and Return Codes

Some error codes have changed and some have been added. Also, for most
errors you now receive two error messages. The first should be similar or
identical to the message you would have seen previously. The second
provides additional and more detailed information. So, for example, where
you formerly received “Invalid Call to Routine”, you now get further
information on what is wrong with the call.

Also, the return codes of host commands might be different.

In Windows 95, you do not get return codes for external commands that:
v Are internal commands of the command interpreter COMMAND.COM,

such as DIR, COPY, or MD
v Are 16–bit applications
v Redirect input or output

Error Detection and Reporting

Some errors are now detected earlier. Formerly, REXX would wait until it
encountered an error during execution to report it to you. Now, some errors
are reported before the first instruction in your REXX script is executed. In
particular, syntax errors are reported after you have invoked the program, but
before it starts execution.

Environment Variables

Environment variables set within an Object REXX program by the VALUE
function or ″SET″ are not kept after the program termination.

© Copyright IBM Corp. 1994, 2001 523

Stems versus Collections

Stems are a general data structure that are powerful but abstract. In earlier
releases of REXX, you could use stems to create data structures of all types,
such as arrays, stacks, and queues. These data structures were semantically
neutral. Because stems were the basis for all of them, the code itself gave no
hint of which structure was implemented and for what purpose.

The best data structure job is not always the most powerful and abstract but
the most specific and restrictive. Object REXX provides a variety of data
structures in the collection classes. This helps reduce errors because you can
select the data structure that best meets your requirements. It also helps
eliminate the misuse of data structures and adds a semantic context that
makes programs easier to maintain.

Input and Output Using Functions and Methods

Do not use a mixture of methods and functions for input and output because
it can cause unpredictable results. For example, using the LINEOUT method
and the LINEOUT function on the same persistent stream object can cause
overlays.

When a REXX I/O function creates a stream object, the language processor
maintains the stream object. When an I/O method creates a stream object, it is
returned to the program to be maintained. Therefore, these two stream objects
are separate stream objects with different read and write pointers. The
program needs to synchronize the read and write pointers of both stream
objects. Otherwise, overlays would occur.

.Environment

The .Environment directory in Windows is local and not system-global as in
OS/2. This means that in Windows there is no difference between the scope of
the .Local and .Environment directories.

Deleting Environment Variables

Value(envvar,"","ENVIRONMENT") does not delete an environment variable
but sets the environment variable’s value to "". Use
Value(envvar,.nil,"ENVIRONMENT") to delete an environment variable.

Queuing

To improve performance it is recommended that you use the Queue class
instead of RXQUEUE whenever the queued data is not to be shared among
processes.

524 Object REXX Reference

Trace in Macrospace

Functions in macrospace cannot be traced using the TRACE keyword. These
functions are stored in an optimized format without source code. If you want
to trace functions, do not load them into macrospace.

The RxMessageBox Function

In Windows, the RxMessageBox function does not support all the options
available in OS/2. The following button styles are not available in Windows:
CANCEL, ENTER, and ENTERCANCEL.

Appendix B. Migration 525

526 Object REXX Reference

Appendix C. Error Numbers and Messages

The error numbers produced by syntax errors during the processing of REXX
programs are all in the range 1 to 99. Errors are raised in response to
conditions, for example, SYNTAX, NOMETHOD, and PROPAGATE. When the
condition is SYNTAX, the value of the error number is placed in the variable
RC when SIGNAL ON SYNTAX is trapped.

You can use the ERRORTEXT built-in function to return the text of an error
message.

Some errors have associated subcodes. A subcode is a one- to three-digit
decimal extension to the error number, for example, 115 in 40.115. When an
error subcode is available, additional information that further defines the
source of the error is given. The ERRORTEXT built-in function cannot retrieve
the secondary message, but it is available from the condition object created
when SIGNAL ON SYNTAX traps an error.

Some errors are only or not displayed under certain conditions:
v Errors 3 and 5 cannot be trapped by SIGNAL ON SYNTAX.
v Error 4 can only be trapped by SIGNAL ON HALT or CALL ON HALT.
v Errors 6 and 30 can only be trapped by SIGNAL ON SYNTAX if they occur

during the execution of an INTERPRET instruction.

Error List

Error 3 Failure during initialization

Explanation: The REXX program could not be
read from the disk.

The associated subcodes are:

1 Failure during initialization: File
“filename” is unreadable

901 Failure during initialization: Program
“program” was not found

902 Error writing output file “file”

903 Program “program_name” cannot be run
by this version of the REXX interpreter

904 Program “program_name” needs to be

tokenized. To run untokenized scripts
you need a full version of Object REXX.
(This error occurs only with the
RUNTIME version.)

Error 4 Program interrupted

Explanation: The system interrupted the
execution of your REXX program because of an
error or a user request.

The associated subcode is:

1 Program interrupted with condition
condition

© Copyright IBM Corp. 1994, 2001 527

Error 5 System resources exhausted

Explanation: While trying to execute a program,
the language processor was unable to get the
resources it needed to continue. For example, it
could not get the space needed for its work areas
or variables. The program that called the
language processor might itself have already
used up most of the available storage. Or a
request for storage might have been for more
than the implementation maximum.

Error 6 Unmatched “/*” or quote

Explanation: A comment or literal string was
started but never finished. This could be because
the language processor detected:
v The end of the program (or the end of the

string in an INTERPRET instruction) without
finding the ending “*/” for a comment or the
ending quotation mark for a literal string

v The end of the line for a literal string

The associated subcodes are:

1 Unmatched comment delimiter (“/*”)
on line line_number

2 Unmatched single quote (')

3 Unmatched double quote (")

Error 7 WHEN or OTHERWISE expected

Explanation: At least one WHEN construct (and
possibly an OTHERWISE clause) is expected
within a SELECT instruction. This message is
issued if any other instruction is found or there
is no WHEN construct before the OTHERWISE
or all WHEN expressions are false and an
OTHERWISE is not present. A common cause of
this error is if you forget the DO and END
around the list of instructions following a
WHEN. For example:

WRONG RIGHT

Select Select
When a=c then When a=c then DO
Say 'A equals C' Say 'A equals C'

exit exit
Otherwise nop end
end Otherwise nop
end

The associated subcodes are:

1 SELECT on line line_number requires
WHEN

2 SELECT on line line_number requires
WHEN, OTHERWISE, or END

3 All WHEN expressions of SELECT are
false; OTHERWISE expected

Error 8 Unexpected THEN or ELSE

Explanation: A THEN or an ELSE clause was
found that does not match a corresponding IF or
WHEN clause. This often occurs because of a
missing END or DO...END in the THEN part of
a complex IF...THEN...ELSE construction. For
example:

WRONG RIGHT

If a=c then do; If a=c then do;
Say EQUALS Say EQUALS
exit exit
else end
Say NOT EQUALS else
Say NOT EQUALS

The associated subcodes are:

1 THEN has no corresponding IF or
WHEN clause

2 ELSE has no corresponding THEN
clause

Error 9 Unexpected WHEN or
OTHERWISE

Explanation: A WHEN or OTHERWISE was
found outside of a SELECT construction. You
might have accidentally enclosed the instruction
in a DO...END construction by leaving out an
END, or you might have tried to branch to it
with a SIGNAL instruction (which does not work
because the SELECT is then ended).

The associated subcodes are:

528 Object REXX Reference

1 WHEN has no corresponding SELECT

2 OTHERWISE has no corresponding
SELECT

Error 10 Unexpected or unmatched END

Explanation: More ENDs were found in your
program than DO or SELECT instructions, or the
ENDs did not match the DO or SELECT
instructions.

This message also occurs if you try to transfer
control into the middle of a loop using SIGNAL.
In this case, the language processor does not
expect the END because it did not process the
previous DO instruction. Remember also that
SIGNAL deactivates any current loops, so it
cannot transfer control from one place inside a
loop to another.

Another cause for this message is placing an
END immediately after a THEN or ELSE
subkeyword or specifying a name on the END
keyword that does not match the name following
DO. Putting the name of the control variable on
ENDs that close repetitive loops can also help
locate this kind of error.

The associated subcodes are:

1 END has no corresponding DO or
SELECT

2 Symbol following END (“symbol”) must
either match control variable of DO
specification (“control_variable” on line
line_number) or be omitted

3 END corresponding to DO on line
line_number must not have a symbol
following it because there is no control
variable; found “symbol”

4 END corresponding to SELECT on line
line_number must not have a symbol
following; found “symbol”

5 END must not immediately follow
THEN

6 END must not immediately follow ELSE

Error 11 Control stack full

Explanation: Your program exceeds the nesting
level limit for control structures (for example,
DO...END and IF...THEN...ELSE).

This could be because of a looping INTERPRET
instruction, such as:

line='INTERPRET line'
INTERPRET line

These lines loop until they exceed the nesting
level limit and the language processor issues this
message. Similarly, a recursive subroutine or
internal function that does not end correctly can
loop until it causes this message.

The associated subcode is:

1 Insufficient control stack space; cannot
continue execution

Error 13 Invalid character in program

Explanation: A character was found outside a
literal (quoted) string that is not a blank or one
of the following:

(Alphanumeric Characters)
A through Z, a through z, 0 through 9

(Name Characters)
! _ ? .

(Special Characters)
& * () - + = ¬ ' " ; : < , > / \ | % ∼ []

The associated subcode is:

1 Incorrect character in program
“character” ('hex_character'X)

Error 14 Incomplete DO/SELECT/IF

Explanation: At the end of the program or the
string for an INTERPRET instruction, a DO or
SELECT instruction was found without a
matching END or an IF clause that is not
followed by a THEN clause. Putting the name of
the control variable on each END closing a
controlled loop can help locate this kind of error.

The associated subcodes are:

Appendix C. Error Numbers and Messages 529

1 DO instruction on line line_number
requires matching END

2 SELECT instruction on line line_number
requires matching END

3 THEN on line line_number must be
followed by an instruction

4 ELSE on line line_number must be
followed by an instruction

901 OTHERWISE on line line_number
requires matching END

Error 15 Invalid hexadecimal or binary
string

Explanation: Hexadecimal strings must not
have leading or trailing blanks and blanks can
only be embedded at byte boundaries. Only the
digits 0–9 and the letters a–f and A–F are
allowed. The following are valid hexadecimal
strings:

'13'x
'A3C2 1c34'x
'1de8'x

Binary strings can have blanks only at the
boundaries of groups of four binary digits. Only
the digits 0 and 1 are allowed. These are valid
binary strings:

'1011'b
'110 1101'b
'101101 11010011'b

You might have mistyped one of the digits, for
example, typing a letter O instead of the number
0. Or you might have used the one-character
symbol X or B (the name of the variable X or B,
respectively) after a literal string when the string
is not intended as a hexadecimal or binary
specification. In this case, use the explicit
concatenation operator (||) to concatenate the
string to the value of the symbol.

The associated subcodes are:

1 Incorrect location of blank in position
position in hexadecimal string

2 Incorrect location of blank in position
position in binary string

3 Only 0-9, a-f, A-F, and blank are valid in
a hexadecimal string; found “character”

4 Only 0, 1, and blank are valid in a
binary string; found “character”

Error 16 Label not found

Explanation: A SIGNAL instruction has been
executed or an event for which a trap was set
with SIGNAL ON has occurred, and the
language processor could not find the label
specified. You might have mistyped the label or
forgotten to include it.

The associated subcode is:

1 Label “label_name” not found

Error 17 Unexpected PROCEDURE

Explanation: A PROCEDURE instruction was
encountered at an incorrect position. This could
occur because no internal routines are active or
because the PROCEDURE instruction was not
the first instruction processed after the CALL
instruction or function call. One cause for this
error is dropping through to an internal routine,
rather than calling it with a CALL instruction or
a function call.

The associated subcodes are:

1 PROCEDURE is valid only when it is
the first instruction executed after an
internal CALL or function invocation

901 INTERPRET data must not contain
PROCEDURE

Error 18 THEN expected

Explanation: A THEN clause must follow each
REXX IF or WHEN clause. The language
processor found another clause before it found a
THEN clause.

The associated subcodes are:

1 IF instruction on line line_number
requires matching THEN clause

530 Object REXX Reference

2 WHEN instruction on line line_number
requires matching THEN clause

Error 19 String or symbol expected

Explanation: A symbol or string was expected
after the CALL or SIGNAL keywords but none
was found. You might have omitted the string or
symbol or inserted a special character (such as a
parenthesis).

The associated subcodes are:

1 String or symbol expected after
ADDRESS keyword

2 String or symbol expected after CALL
keyword

3 String or symbol expected after NAME
keyword

4 String or symbol expected after SIGNAL
keyword

6 String or symbol expected after TRACE
keyword

7 String or symbol expected after PARSE
keyword

901 String or symbol expected after ::CLASS
keyword

902 String or symbol expected after
::METHOD keyword

903 String or symbol expected after
::ROUTINE keyword

904 String or symbol expected after
::REQUIRES keyword

905 String or symbol expected after
EXTERNAL keyword

906 String or symbol expected after
METACLASS keyword

907 String or symbol expected after
SUBCLASS keyword

908 String or symbol expected after
INHERIT keyword

909 String or symbol expected after tilde (∼)

911 String or symbol expected after
superclass colon (:)

912 String or symbol expected after
STREAM keyword

913 String or symbol expected after
MIXINCLASS keyword

Error 20 Symbol expected

Explanation: A symbol is expected after CALL
ON, CALL OFF, END, ITERATE, LEAVE,
NUMERIC, PARSE, SIGNAL ON, or SIGNAL
OFF. Also, a list of symbols or variable references
is expected after DROP, EXPOSE, and
PROCEDURE EXPOSE. Either there was no
symbol when one was required or the language
processor found another token.

The associated subcodes are:

901 Symbol expected after DROP keyword

902 Symbol expected after EXPOSE keyword

903 Symbol expected after PARSE keyword

904 Symbol expected after PARSE VAR

905 NUMERIC must be followed by one of
the keywords DIGITS, FORM, or FUZZ;
found “symbol”

906 Symbol expected after “(” of a variable
reference

907 Symbol expected after LEAVE keyword

908 Symbol expected after ITERATE
keyword

909 Symbol expected after END keyword

911 Symbol expected after ON keyword

912 Symbol expected after OFF keyword

913 Symbol expected after USE ARG

914 Symbol expected after RAISE keyword

915 Symbol expected after USER keyword

916 Symbol expected after ::

917 Symbol expected after superclass colon
(:)

Appendix C. Error Numbers and Messages 531

Error 21 Invalid data on end of clause

Explanation: A clause such as SELECT or NOP
is followed by a token other than a comment.

The associated subcodes are:

901 Data must not follow the NOP keyword;
found “data”

902 Data must not follow the SELECT
keyword; found “data”

903 Data must not follow the NAME
keyword; found “data”

904 Data must not follow the condition
name; found “data”

905 Data must not follow the SIGNAL label
name; found “data”

906 Data must not follow the TRACE
setting; found “data”

907 Data must not follow the LEAVE control
variable name; found “data”

908 Data must not follow the ITERATE
control variable name; found “data”

909 Data must not follow the END control
variable name; found “data”

911 Data must not follow the NUMERIC
FORM specification; found “data”

912 Data must not follow the GUARD OFF
specification; found “data”

Error 22 Invalid character string

Explanation: A literal string contains character
codes that are not valid. This might be because
some characters are not possible, or because the
character set is extended and certain character
combinations are not allowed.

The associated subcode is:

1 Incorrect character string
“character_string” ('hex_string'X)

Error 23 Invalid data string

Explanation: A data string (that is, the result of
an expression) contains character codes that are
not valid. This might be because some characters
are not possible or because the character set is
extended and certain character combinations are
not allowed.

The associated subcode is:

1 Incorrect data string “string”
('hex_string'X)

Error 24 Invalid TRACE request

Explanation: This message is issued when:

v The option on a TRACE instruction or the
argument to the built-in function does not start
with A, C, E, F, I, L, N, O, or R.

v In interactive debugging, you entered a
number that is not a whole number.

The associated subcodes are:

1 TRACE request letter must be one of
“ACEFILNOR”; found “value”

901 Numeric TRACE requests are valid only
from interactive debugging

Error 25 Invalid subkeyword found

Explanation: An unexpected token was found
at this position of an instruction where a
particular subkeyword was expected. For
example, in a NUMERIC instruction, the second
token must be DIGITS, FUZZ, or FORM.

The associated subcodes are:

1 CALL ON must be followed by one of
the keywords ERROR, FAILURE, HALT,
NOTREADY, USER, or ANY; found
“word”

2 CALL OFF must be followed by one of
the keywords ERROR, FAILURE, HALT,
NOTREADY, USER, or ANY; found
“word”

3 SIGNAL ON must be followed by one
of the keywords ERROR, FAILURE,

532 Object REXX Reference

HALT, LOSTDIGITS, NOTREADY,
NOMETHOD, NOSTRING, NOVALUE,
SYNTAX, USER, or ANY; found “word”

4 SIGNAL OFF must be followed by one
of the keywords ERROR, FAILURE,
HALT, LOSTDIGITS, NOTREADY,
NOMETHOD, NOSTRING, NOVALUE,
SYNTAX, USER, or ANY; found “word”

11 NUMERIC FORM must be followed by
one of the keywords SCIENTIFIC or
ENGINEERING; found “word”

12 PARSE must be followed by one of the
keywords ARG, LINEIN, PULL,
SOURCE, VALUE, VAR, or VERSION;
found “word”

15 NUMERIC must be followed by one of
the keywords DIGITS, FORM, or FUZZ;
found “word”

17 PROCEDURE must be followed by the
keyword EXPOSE or nothing; found
“word”

901 Unknown keyword on ::CLASS
directive; found “word”

902 Unknown keyword on ::METHOD
directive; found “word”

903 Unknown keyword on ::ROUTINE
directive; found “word”

904 Unknown keyword on ::REQUIRES
directive; found “word”

905 USE must be followed by the keyword
ARG; found “word”

906 RAISE must be followed by one of the
keywords ERROR, FAILURE, HALT,
LOSTDIGITS, NOMETHOD,
NOSTRING, NOTREADY, NOVALUE,
or SYNTAX; found “word”

907 Unknown keyword on RAISE
instruction; found “word”

908 Duplicate DESCRIPTION keyword
found

909 Duplicate ADDITIONAL or ARRAY
keyword found

911 Duplicate RETURN or EXIT keyword
found

912 GUARD ON or GUARD OFF must be
followed by the keyword WHEN; found
“word”

913 GUARD must be followed by the
keyword ON or OFF; found “word”

914 CALL ON condition must be followed
by the keyword NAME; found “word”

915 SIGNAL ON condition must be
followed by the keyword NAME; found
“word”

916 Unknown keyword on FORWARD
instruction; found “keyword”

917 Duplicate TO keyword found

918 Duplicate ARGUMENTS or ARRAY
keyword found

919 Duplicate RETURN or CONTINUE
keyword found

921 Duplicate CLASS keyword found

922 Duplicate MESSAGE keyword found

Error 26 Invalid whole number

Explanation: An expression was found that did
not evaluate to a whole number or is greater
than the limit (the default is 999 999 999):
v Positional patterns in parsing templates

(including variable positional patterns)
v The operand to the right of the power (**)

operator
v The values of exprr and exprf in the DO

instruction
v The values given for DIGITS or FUZZ in the

NUMERIC instruction
v Any number used in the option of the TRACE

instruction.

This error is also raised if the value is not
permitted (for example, a negative repetition
count in a DO instruction), or the division
performed during an integer divide or remainder
operation does not result in a whole number.

Appendix C. Error Numbers and Messages 533

The associated subcodes are:

2 Value of repetition count expression in
DO instruction must be zero or a
positive whole number; found “value”

3 Value of FOR expression in DO
instruction must be zero or a positive
whole number; found “value”

4 Positional pattern of PARSE template
must be a whole number; found “value”

5 NUMERIC DIGITS value must be a
positive whole number; found “value”

6 NUMERIC FUZZ value must be zero or
a positive whole number; found “value”

7 Number used in TRACE setting must be
a whole number; found “value”

8 Operand to the right of the power
operator (**) must be a whole number;
found “value”

11 Result of % operation did not result in a
whole number

12 Result of // operation did not result in
a whole number

Error 27 Invalid DO syntax

Explanation: A syntax error was found in the
DO instruction. You probably used BY, TO, FOR,
WHILE, or UNTIL twice, used a WHILE and an
UTIL, or used BY, TO, or FOR when there is no
control variable specified.

The associated subcodes are:

1 WHILE and UNTIL keywords cannot be
used on the same DO loop

901 Incorrect data following FOREVER
keyword on the DO loop; found “data”

902 DO keyword keyword can be specified
only once

Error 28 Invalid LEAVE or ITERATE

Explanation: A LEAVE or ITERATE instruction
was found at an incorrect position. Either no
loop was active, or the name specified on the

instruction did not match the control variable of
any active loop.

Note that internal routine calls and the
INTERPRET instruction protect DO loops by
making them inactive. Therefore, for example, a
LEAVE instruction in a subroutine cannot affect a
DO loop in the calling routine.

You probably tried to use the SIGNAL
instruction to transfer control within or into a
loop. Because a SIGNAL instruction ends all
active loops, any ITERATE or LEAVE instruction
causes this message.

The associated subcodes are:

1 LEAVE is valid only within a repetitive
DO loop

2 ITERATE is valid only within a
repetitive DO loop

3 Symbol following LEAVE (“symbol”)
must either match the control variable
of a current DO loop or be omitted

4 Symbol following ITERATE (“symbol”)
must either match the control variable
of a current DO loop or be omitted

Error 29 Environment name too long

Explanation: The environment name specified
on the ADDRESS instruction is longer than
permitted for the system under which the
interpreter is running.

The associated subcode is:

1 Environment name exceeds limit
characters; found “environment_name”

Error 30 Name or string too long

Explanation: A variable name, label name,
literal (quoted) string has exceeded the allowed
limit of 250 characters.

The limit for names includes any substitutions. A
possible cause of this error is if you use a period
(.) in a name, causing an unexpected
substitution.

Leaving off an ending quotation mark for a

534 Object REXX Reference

literal string, or putting a single quotation mark
in a string, can cause this error because several
clauses can be included in the string. For
example, write the string 'don't' as 'don't' or
"don't".

The associated subcodes are:

1 Name exceeds 250 characters: “name”

2 Literal string exceeds 250 characters:
“string”

901 Hexadecimal literal string exceeds 250
characters: “string”

902 Binary literal string exceeds 250
characters: “string”

Error 31 Name starts with number or “.”

Explanation: A variable was found whose name
begins with a numeric digit or a period. You
cannot assign a value to such a variable because
you could then redefine numeric constants.

The associated subcodes are:

1 A value cannot be assigned to a
number; found “number”

2 Variable symbol must not start with a
number; found “symbol”

3 Variable symbol must not start with a
“.”; found “symbol”

Error 33 Invalid expression result

Explanation: The result of an expression was
found not to be valid in the context in which it
was used. Check for an illegal FUZZ or DIGITS
value in a NUMERIC instruction. FUZZ must not
become larger than DIGITS.

The associated subcodes are:

1 Value of NUMERIC DIGITS (“value”)
must exceed value of NUMERIC FUZZ
(“value”)

2 Value of NUMERIC DIGITS (“value”)
must not exceed value

901 Incorrect expression result following
VALUE keyword of ADDRESS
instruction

902 Incorrect expression result following
VALUE keyword of SIGNAL instruction

903 Incorrect expression result following
VALUE keyword of TRACE instruction

904 Incorrect expression result following
SYNTAX keyword of RAISE instruction

Error 34 Logical value not 0 or 1

Explanation: An expression was found in an IF,
WHEN, DO WHILE, or DO UNTIL phrase that
did not result in a 0 or 1. Any value operated on
by a logical operator (¬, |, &, or &&) must result
in a 0 or 1. For example, the phrase

If result then exit rc

fails if result has a value other than 0 or 1.
Thus, it would be better to write the phrase:

If result¬=0 then exit rc

The associated subcodes are:

1 Value of expression following IF
keyword must be exactly “0” or “1”;
found “value”

2 Value of expression following WHEN
keyword must be exactly “0” or “1”;
found “value”

3 Value of expression following WHILE
keyword must be exactly “0” or “1”;
found “value”

4 Value of expression following UNTIL
keyword must be exactly “0” or “1”;
found “value”

5 Value of expression to the left of the
logical operator “operator” must be
exactly “0” or “1”; found “value”

901 Logical value must be exactly “0” or
“1”; found “value”

902 Value of expression following GUARD
keyword must be exactly “0” or “1”;
found “value”

Appendix C. Error Numbers and Messages 535

903 Authorization return value must be
exactly “0” or “1”; found “value”

Error 35 Invalid expression

Explanation: An expression contains a
grammatical error. Possible causes:
v An expression is missing when one is required
v You ended an expression with an operator
v You specified, in an expression, two operators

next to one another with nothing in between
them

v You did not specify a right parenthesis when
one was required

v You used special characters (such as operators)
in an intended character expression without
enclosing them in quotation marks.

The associated subcodes are:

1 Invalid expression detected at “token”

901 Prefix operator “operator” is not
followed by an expression term

902 Missing conditional expression
following IF keyword

903 Missing conditional expression
following WHEN keyword

904 Missing initial expression for DO control
variable

905 Missing expression following BY
keyword

906 Missing expression following TO
keyword

907 Missing expression following FOR
keyword

908 Missing expression following WHILE
keyword

909 Missing expression following UNTIL
keyword

911 Missing expression following OVER
keyword

912 Missing expression following
INTERPRET keyword

913 Missing expression following OPTIONS
keyword

914 Missing expression following VALUE
keyword of an ADDRESS instruction

915 Missing expression following VALUE
keyword of a SIGNAL instruction

916 Missing expression following VALUE
keyword of a TRACE instruction

917 Missing expression following VALUE
keyword of a NUMERIC FORM
instruction

918 Missing expression following
assignment instruction

919 Operator “operator” is not followed by
an expression term

921 Missing expression following GUARD
keyword

922 Missing expression following
DESCRIPTION keyword of a RAISE
instruction

923 Missing expression following
ADDITIONAL keyword of a RAISE
instruction

924 Missing “(” on expression list of the
ARRAY keyword

925 Missing expression following TO
keyword of a FORWARD instruction

926 Missing expression following
ARGUMENTS keyword of a FORWARD
instruction

927 Missing expression following MESSAGE
keyword of a FORWARD instruction

928 Missing expression following CLASS
keyword of a FORWARD instruction

Error 36 Unmatched “(” or “[” in
expression

Explanation: A matched parenthesis or bracket
was found within an expression. There are more
left parentheses than right parentheses or more
left brackets than right brackets. To include a

536 Object REXX Reference

single parenthesis in a command, enclose it in
quotation marks.

The associated subcodes are:

901 Left parenthesis “(” in position position
on line line_number requires a
corresponding right parenthesis “)”

902 Square bracket “[” in position position
on line line_number requires a
corresponding right square bracket “]”

Error 37 Unexpected “,”, “)”, or “]”

Explanation: Either a comma was found outside
a function invocation, or there are too many right
parentheses or right square brackets in an
expression. To include a comma in a character
expression, enclose it in quotation marks. For
example, write the instruction:

Say Enter A, B, or C

as follows:

Say 'Enter A, B, or C'

The associated subcodes are:

1 Unexpected “,”

2 Unexpected “)” in expression

901 Unmatched “]” in expression

Error 38 Invalid template or pattern

Explanation: A special character that is not
allowed within a parsing template (for example,
%) has been found, or the syntax of a variable
pattern is incorrect (that is, no symbol was found
after a left parenthesis). This message is also
issued if you omit the WITH subkeyword in a
PARSE VALUE instruction.

The associated subcodes are:

1 Incorrect PARSE template detected at
“column_position”

2 Incorrect PARSE position detected at
“column_position”

3 PARSE VALUE instruction requires
WITH keyword

901 Missing PARSE relative position

Error 40 Incorrect call to routine

Explanation: An incorrect call to a routine was
found. Possible causes are:

v You passed incorrect data (arguments) to the
built-in or external routine.

v You passed too many arguments to the
built-in, external, or internal routine.

v The external routine called was not compatible
with the language processor.

If you did not try to call a routine, you might
have a symbol or a string adjacent to a “(” when
you meant it to be separated by a blank or other
operator. The language processor would treat
this as a function call. For example, write
TIME(4+5) as follows: TIME*(4+5).

The associated subcodes are:

1 External routine “routine” failed

3 Not enough arguments in invocation of
routine; minimum expected is number

4 Too many arguments in invocation of
routine; maximum expected is number

5 Missing argument in invocation of
routine; argument argument_number is
required

11 function_name argument
argument_number must be a number;
found “value”

12 function_name argument
argument_number must be a whole
number; found “value”

13 function_name argument
argument_number must be zero or
positive; found “value”

14 function_name argument
argument_number must be positive;
found “value”

19 function_name argument 2, “value”, is not
in the format described by argument 3,
“value”

Appendix C. Error Numbers and Messages 537

21 function_name argument
argument_number must not be null

22 function_name argument
argument_number must be a single
character or null; found “value”

23 function_name argument
argument_number must be a single
character; found “value”

24 function_name argument
argument_number must be a binary
string; found “value”

25 function_name argument
argument_number must be a hexadecimal
string; found “value”

26 function_name argument
argument_number must be a valid
symbol; found “value”

27 STREAM argument 1 must be a valid
stream name; found “value”

29 function_name conversion to format
“value” is not allowed

32 RANDOM difference between argument
1 (“argument”) and argument 2
(“argument”) must not exceed 100000

33 RANDOM argument 1 (“argument”)
must be less than or equal to argument
2 (“argument”)

34 SOURCELINE argument 1 (“argument”)
must be less than or equal to the
number of lines in the program
(program_lines)

35 X2D argument 1 cannot be expressed as
a whole number; found “value”

43 function_name argument
argument_number must be a single
non-alphanumeric character or the null
string; found “value”

44 function_name argument
argument_number, “value”, is a format
incompatible with the separator
specified in argument argument_number

901 Result returned by routine is longer than
length: “value”

902 function_name argument
argument_number must not exceed
999,999,999

903 function_name argument
argument_number must be in the range
0-99; found “value”

904 function_name argument
argument_number must be one of
“values”; found “value”

905 TRACE setting letter must be one of
ACEFILNOR; found “value”

912 function_name argument
argument_number must be a
single-dimensional array; found “value”

913 function_name argument
argument_number must have a string
value; found “value”

914 Unknown VALUE function variable
environment selector; found “value”

915 Program “program_name” cannot be used
with QUEUE:

916 Cannot read from a write-only property

917 Cannot write to a read-only property or
typelib element.

Error 41 Bad arithmetic conversion

Explanation: A term in an arithmetic expression
is not a valid number or has an exponent outside
the allowed range of -999 999 999 to
+999 999 999.

You might have mistyped a variable name, or
included an arithmetic operator in a character
expression without putting it in quotation marks.

The associated subcodes are:

1 Nonnumeric value (“value”) used in
arithmetic operation

3 Nonnumeric value (“value”) used with
prefix operator

4 Value of TO expression in DO
instruction must be numeric; found
“value”

538 Object REXX Reference

5 Value of BY expression in DO
instruction must be numeric; found
“value”

6 Value of control variable expression in
DO instruction must be numeric; found
“value”

7 Exponent exceeds number digits; found
“value”

901 Value of RAISE SYNTAX expression of
DO instruction must be numeric; found
“value”

Error 42 Arithmetic overflow/underflow

Explanation: The result of an arithmetic
operation requires an exponent that is greater
than the limit of nine digits (more than
999 999 999 or less than -999 999 999).

This error can occur during the evaluation of an
expression (often as a result of trying to divide a
number by 0) or while stepping a DO loop
control variable.

The associated subcodes are:

1 Arithmetic overflow detected at: “value
operator value”

2 Arithmetic underflow detected at: “value
operator value”

3 Arithmetic overflow; divisor must not
be zero

901 Arithmetic overflow; exponent
(“exponent”) exceeds number digits

902 Arithmetic underflow; exponent
(“exponent”) exceeds number digits

903 Arithmetic underflow; zero raised to a
negative power

Error 43 Routine not found

Explanation: A function has been invoked
within an expression or a subroutine has been
invoked by a CALL, but it cannot be found.
Possible reasons:

v The specified label is not in the program

v It is not the name of a built-in function

v The language processor could not locate it
externally

Check if you mistyped the name.

If you did not try to call a routine, you might
have put a symbol or string adjacent to a (when
you meant it to be separated by a blank or
another operator. The language processor then
treats it as a function call. For example, write the
string 3(4+5) as 3*(4+5).

The associated subcodes are:

1 Could not find routine “routine”

901 Could not find routine “routine” for
::REQUIRES

Error 44 Function or message did not
return data

Explanation: The language processor called an
external routine within an expression. The
routine seemed to end without error, but it did
not return data for use in the expression.

You might have specified the name of a program
that is not intended for use as a REXX function.
Call it as a command or subroutine instead.

The associated subcode is:

1 No data returned from function
“function”

Error 45 No data specified on function
RETURN

Explanation: A REXX program has been called
as a function, but returned without passing back
any data.

The associated subcode is:

1 Data expected on RETURN instruction
because routine “routine” was called as a
function

Appendix C. Error Numbers and Messages 539

Error 46 Invalid variable reference

Explanation: Within an ARG, DROP, EXPOSE,
PARSE, PULL, or PROCEDURE instruction, the
syntax of a variable reference (a variable whose
value is to be used, indicated by its name being
enclosed in parentheses) is incorrect. The right
parenthesis that must immediately follow the
variable name might be missing or the variable
name might be misspelled.

The associated subcodes are:

1 Extra token (“token”) found in variable
reference list; “)” expected

901 Missing “)” in variable reference

902 Extra token (“token”) found in USE ARG
variable reference; “,” or end of
instruction expected

Error 47 Unexpected label

Explanation: A label was used in the expression
being evaluated for an INTERPRET instruction
or in an expression entered during interactive
debugging. Remove the label from the
interpreted data.

The associated subcode is:

1 INTERPRET data must not contain
labels; found “label”

Error 48 Failure in system service

Explanation: The language processor stopped
processing the program because a system service,
such as stream input or output or the
manipulation of the external data queue, has
failed to work correctly.

The associated subcode is:

1 Failure in system service: service

Error 49 Interpretation error

Explanation: A severe error was detected in the
language processor or execution process during
internal self-consistency checks.

The associated subcode is:

1 Interpretation error: unexpected failure
initializing the interpreter

Error 90 External name not found

Explanation: An external class, method, or
routine (specified with the EXTERNAL option on
a ::CLASS, ::METHOD, or ::ROUTINE directive,
or as a second argument on a NEW message to
the Method class) cannot be found.

The associated subcodes are:

997 Unable to find external class “class”

998 Unable to find external method
“method”

999 Unable to find external routine “routine”

Error 91 No result object

Explanation: A message term requires a result
object, but the method did not return one.

The associated subcode is:

999 Message “message” did not return a
result object

Error 92 OLE error

Explanation: An error occurred in the
OLEObject class.

The associated subcodes are:

901 An unknown OLE error occurred
(HRESULT=errcode).

902 The conversion of the VARIANT type
type to a REXX object failed.

903 The conversion of REXX object object to
a VARIANT type failed.

904 The number of elements provided to the
method or property is different from the
number of parameters accepted by it.

905 One of the parameters is not a valid
VARIANT type.

906 The OLE object reported an exception
″text″. The text provides a code number,

540 Object REXX Reference

the source of the exception, and a
description of the exception.

907 The requested method does not exist, or
you tried to set the value of a read-only
property.

908 One of the parameters could not be
converted to the desired type.

909 One or more of the parameters could
not be converted to the desired type.
The first parameter with an incorrect
type is argument argnum.

910 A required parameter was omitted.

911 The creation of an instance of the OLE
object failed. Possible causes: the OLE
object does not support an automation
interface, or its initialization failed.

912 The object invoked has disconnected
from its clients.

Error 93 Incorrect call to method

Explanation: The specified method or built-in or
external routine exists, but you used it
incorrectly.

The associated subcodes are:

901 Not enough arguments in method;
number expected

902 Too many arguments in invocation of
method; number expected

903 Missing argument in method; argument
argument is required

904 Method argument argument must be a
number; found “value”

905 Method argument argument must be a
whole number; found “value”

906 Method argument argument must be
zero or a positive whole number; found
value

907 Method argument argument must be a
positive whole number; found “value”

908 Method argument argument must not
exceed limit; found “value”

909 Method argument argument must be in
the range 0-99; found “value”

911 Method argument argument must not be
null

912 Method argument argument must be a
hexadecimal string; found “value”

913 Method argument argument must be a
valid symbol; found “value”

914 Method argument argument must be one
of arguments; found “value”

915 Method option must be one of
arguments; found “value”

916 Method argument argument must have a
string value

917 Method method does not exist

918 Incorrect list index “index”

919 Incorrect array position “position”

921 Argument missing on binary operator

922 Incorrect pad or character argument
specified; found “value”

923 Incorrect length argument specified;
found “value”

924 Incorrect position argument specified;
found “value”

925 Not enough subscripts for array; number
expected

926 Too many subscripts for array; number
expected

927 Length must be specified to convert a
negative value

928 D2X value must be a valid whole
number; found “value”

929 D2C value must be a valid whole
number; found “value”

931 Incorrect location of blank in position
position in hexadecimal string

932 Incorrect location of blank in position
position in binary string

Appendix C. Error Numbers and Messages 541

933 Only 0-9, a-f, A-F, and blank are valid in
a hexadecimal string; character found
“character”

934 Only 0, 1, and blank are valid in a
binary string; character found
“character”

935 X2D result is not a valid whole number
with NUMERIC DIGITS digits

936 C2D result is not a valid whole number
with NUMERIC DIGITS digits

937 No more supplier items available

938 Method argument argument must have a
string value

939 Method argument argument must have a
single-dimensional array value

941 Exponent exponent is too large for
number spaces

942 Integer part integer is too large for
number spaces

943 method method target must be a number;
found “value”

944 Method argument argument must be a
message object

945 Missing argument in message array;
argument argument is required

946 A message array must be a
single-dimensional array with 2
elements

947 Method SECTION can be used only on
single-dimensional arrays

948 Method argument argument must be of
the class class

949 The index and value objects must be the
same for PUT to an index-only
collection

951 Incorrect alarm time; found “time”

952 Method argument argument is an array
and does not contain all string values

953 Method argument argument could not be
converted to type type

954 Method “method” can be used only on a
single-dimensional array

956 Element element of the array must be a
string

957 Element element of the array must be a
subclass of the target object

958 Positioning of transient streams is not
valid

959 An array cannot contain more than
99,999,999 elements

961 Method argument argument must have a
string value or an array value

Error 97 Object method not found

Explanation: The object does not have a method
with the given name. A frequent cause of this
error is an uninitialized variable.

The associated subcode is:

1 Object “object” does not understand
message “message”

Error 98 Execution error

Explanation: The language processor detected a
specific error during execution.

The associated subcodes are:

902 Unable to convert object “object” to a
double-float value

903 Unable to load library “name”

904 Abnormal termination occurred

905 Deadlock detected on a guarded method

906 Incorrect object reference detected

907 Object of type “type” was required

908 Metaclass “metaclass” not found

909 Class “class” not found

911 Cyclic inheritance in program “program”

913 Unable to convert object “object” to a
single-dimensional array value

542 Object REXX Reference

914 Unable to convert object “object” to a
string value

915 A message object cannot be sent more
than one SEND or START message

916 Message object “object” received an error
from message “message”

917 Incorrect condition object received for
RAISE OBJECT; found “value”

918 No active condition available for
PROPAGATE

919 Unable to convert object “object” to a
method

921 Could not retrieve “value” information
for method “method”

931 No method description information for
method “method” on class “class”

934 The number of OUT or INOUT type
arguments cannot exceed number

935 REPLY can be issued only once per
method invocation

936 RETURN cannot return a value after a
REPLY

937 EXIT cannot return a value after a
REPLY

938 Message search overrides can be used
only from methods of the target object

939 Additional information for SYNTAX
errors must be a single-dimensional
array of values

941 Unknown error number specified on
RAISE SYNTAX; found “number”

942 Class “class” must be a MIXINCLASS
for INHERIT

943 Class “class” is not a subclass of “class”
base class “class”

944 Class “class” cannot inherit from itself, a
superclass, or a subclass (“class”)

945 Class “class” has not inherited class
“class”

946 FORWARD arguments must be a
single-dimensional array of values

947 FORWARD can only be issued in an
object method invocation

948 Authorization failure: value

951 Concurrency not supported

952 servername class server not installed

Error 99 Translation error

Explanation: An error was detected in the
language syntax.

The associated subcodes are:

901 Duplicate ::CLASS directive instruction

902 Duplicate ::METHOD directive
instruction

903 Duplicate ::ROUTINE directive
instruction

904 Duplicate ::REQUIRES directive
instruction

905 CLASS keyword on ::METHOD
directive requires a matching ::CLASS
directive

907 EXPOSE must be the first instruction
executed after a method invocation

908 INTERPRET data must not contain
EXPOSE

909 GUARD must be the first instruction
executed after EXPOSE or USE

911 GUARD can only be issued in an object
method invocation

912 INTERPRET data must not contain
GUARD

913 GUARD instruction did not include
references to exposed variables

914 INTERPRET data must not contain
directive instructions

915 INTERPRET data must not contain USE

916 Unrecognized directive instruction

Appendix C. Error Numbers and Messages 543

917 Incorrect external directive name
“method”

918 USE ARG requires a “,” between
variable names; found “token”

919 REPLY can only be issued in an object
method invocation

921 Incorrect program line in method source
array

922 ::REQUIRES directives must appear
before other directive instructions

923 INTERPRET data must not contain
FORWARD

924 INTERPRET data must not contain
REPLY

925 An ATTRIBUTE method name must be
a valid variable name; found “name”

926 Incorrect class external; too many
parameters

927 “classname” is not a valid metaclass

928 Incorrect class external; class name
missing or invalid

929 Incorrect class external; invalid class
server “servername”

RXSUBCOM Utility Program

RXSUBCOM issues the following errors:

Error 115 The RXSUBCOM parameters are
incorrect.

Explanation: You can use RXSUBCOM as
follows:

RXSUBCOM REGISTER
Registers a dynamic link library
subcommand handler. (See
“RXSUBCOM REGISTER” on page 485.)

RXSUBCOM DROP
Deregisters a subcommand handler. (See
“RXSUBCOM DROP” on page 486.)

RXSUBCOM QUERY
Checks the existence of a subcommand
handler. (See “RXSUBCOM QUERY” on
page 487.)

RXSUBCOM LOAD
Loads a subcommand handler dynamic
link library. (See “RXSUBCOM LOAD”
on page 487.)

Check the RXSUBCOM parameters and retry the
command.

Error 116 The RXSUBCOM parameter
REGISTER is incorrect.

Explanation: Check the parameters (see
“RXSUBCOM REGISTER” on page 485) and retry
the command.

Error 117 The RXSUBCOM parameter
DROP is incorrect.

Explanation: Check the parameters (see
“RXSUBCOM DROP” on page 486) and retry the
command.

Error 118 The RXSUBCOM parameter
LOAD is incorrect.

Explanation: Check the parameters (see
“RXSUBCOM LOAD” on page 487) and retry the
command.

Error 125 The RXSUBCOM parameter
QUERY is incorrect.

Explanation: RXSUBCOM QUERY requires the
environment name to be specified. Check the
RXSUBCOM (see “RXSUBCOM QUERY” on
page 487) and retry the command.

544 Object REXX Reference

RXQUEUE Utility Program

RXQUEUE issues the following errors:

Error 119 The REXX queuing system is not
initialized.

Explanation: The queuing system requires a
housekeeping program to run. This program
usually runs under the Presentation Manager®

shell. The program is not running.

Report this message to your IBM service
representative.

Error 120 The size of the data is incorrect.

Explanation: The data supplied to the
RXQUEUE command is too long.

The RXQUEUE program accepts data records
containing 0 - 65472 bytes. A record exceeded the
allowable limits.

Use shorter data records.

Error 121 Storage for data queues is
exhausted.

Explanation: The queuing system is out of
memory. No more storage is available to store
queued data.

Delete some queues or remove queued data from
the system. Then retry your request.

Error 122 The name name is not a valid
queue name.

Explanation: The queue name contains an
invalid character. Only the following characters
can appear in queue names:

'A'..'Z', '0'..'9', '.', '!', '?', '_'

Change the queue name and retry the command.

Error 123 The queue access mode is not
correct.

Explanation: An internal error occurred in
RXQUEUE.

The RXQUEUE program tried to access a queue
with an incorrect access mode. Correct access
modes are LIFO and FIFO.

Report this message to your IBM service
representative.

Error 124 The queue name does not exist.

Explanation: The command attempted to access
a nonexistent queue.

Create the queue and try again, or use a queue
that has been created.

REXXC Utility Program

REXXC issues the following invocation errors:

Error 127 The REXXC command parameters
are incorrect.

Explanation: The REXXC utility was invoked
with zero or more than two parameters. REXXC
accepts the following parameters:

v To check the syntax of a REXX program:

REXXC

v To convert a REXX program into a sourceless
executable file:

REXXC InProgramName [OutProgramName] [/s]

For more details, refer to REXXC command
(“Distributing Programs without Source” on
page 490).

Error 128 Output file name must be
different from input file name.

Error 131 The syntax of the command is
incorrect.

Explanation: The RXQUEUE program was
invoked with incorrect parameters. It can be

Appendix C. Error Numbers and Messages 545

started with the following parameters:

RXQUEUE [/FIFO | /LIFO | /CLEAR] [queuename]

For more details, refer to “The RXQUEUE Filter”
on page 488.

Error 132 System error occurred while
processing the command.

Explanation: An internal error occurred in
RXQUEUE. RXQUEUE was unable to allocate the

required system resources.

REXXRT Utility Program

REXXRT issues the following invocation errors:

Error 0 Success.

Explanation: The operation succeeded.

Error 1 Input file is not in tokenized
format!

Explanation: The input file can be converted
only if it is tokenized.

Error 2 Input file is damaged!

Explanation: The input file is in tokenized
format, but is apparently corrupted.

Error 3 Version conflict. The script was
not tokenized with a previous
version!

Explanation: The input file is already in the
new format and thus cannot be converted.

546 Object REXX Reference

Appendix D. Notices

This information was developed for products and services offered in the
U.S.A. IBM may not offer the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions, therefore,
this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will

© Copyright IBM Corp. 1994, 2001 547

be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM Deutschland
Informationssysteme GmbH
Department 3982
Pascalstrasse 100
70569 Stuttgart
Germany

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement or any equivalent agreement between us.

COPYRIGHT LICENSE:

This information contains sample application programs in source language,
which illustrates programming techniques on various operating platforms.
You may copy, modify, and distribute these sample programs in any form
without payment to IBM, for the purposes of developing, using, marketing or
distributing application programs conforming to the application programming
interface for the operating platform for which the sample programs are
written. These examples have not been thoroughly tested under all conditions.
IBM, therefore, cannot guarantee or imply reliability, serviceability, or function
of these programs.

Trademarks

The following terms are trademarks of the IBM Corporation in the United
States, other countries, or both:

IBM
OS/2
Presentation Manager

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc.
in the United States, other countries, or both.

548 Object REXX Reference

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of the Open Group in the United States and
other countries.

Other company, product, and service names may be trademarks or service
marks of others.

Appendix D. Notices 549

550 Object REXX Reference

Index

Special Characters
[]= method

of Array class 120
of Bag class 125
of Directory class 128
of List class 135
of Queue class 139
of Relation class 143
of Set class 148
of Stem class 187
of Table class 151

\== (strictly not equal operator) 21
[] method

of Array class 120
of Bag class 125
of Directory class 128
of List class 135
of Queue class 139
of Relation class 143
of Set class 148
of Stem class 187
of Table class 151

\= (not equal operator) 22
&& (exclusive OR operator) 23
% (integer division operator) 21,

423
\= method

of Object class 180
of String class 210

\==method
of Object class 180
of String class 211

\ (NOT operator) 22
** (power operator) 21, 423
// (remainder operator) 21, 423
== (strictly equal operator) 21, 22,

422
- tracing flag 83
+++ tracing flag 83
+ (addition operator) 21, 422
& (AND logical operator) 22
: (colon)

as a special character 16
in a label 28

, (comma)
as continuation character 18
in CALL instruction 46
in function calls 297
in parsing template list 44, 414

, (comma) (continued)
separator of arguments 46, 297

/ (division operator) 21, 422
= (equal sign)

assignment indicator 29
equal operator 22
immediate debug command 475
in DO instruction 49
in parsing template 408

\> (not greater than operator) 22
\>> (strictly not greater than

operator) 22
\>> method 211
\> method 210
\< (not less than operator) 22
\<< (strictly not less than

operator) 22
\<< method 211
\< method 210
// method 209
** method 209
\ method 212
% method 209
&& method 211
== method

of Object class 180
of String class 211

* (multiplication operator) 21, 422
. (period)

as placeholder in parsing 405
causing substitution in variable

names 33
in numbers 421

- (subtraction operator) 21
::CLASS directive 87
- method 209
/ method 209
* method 209
& method 211
+ method 209
= method

of Object class 180
of String class 209

::METHOD directive 89
? prefix on TRACE option 81
::REQUIRES directive 91
::ROUTINE directive 92
.dll vs COM (WSH engine) 513

>= (greater than or equal
operator) 22

>.> tracing flag 83
> (greater than operator) 22
>= method 210
>>= (strictly greater than or equal

operator) 22
>>= method 211
>> (strictly greater than

operator) 21, 22
>>> tracing flag 83
>> method 211
>< (greater than or less than

operator) 22
>< method

of Object class 180
of String class 210

> method 210
>C> tracing flag 83
>F> tracing flag 83
>L> tracing flag 83
>M> tracing flag 83
>O> tracing flag 83
>P> tracing flag 83
>V> tracing flag 83
<= (less than or equal operator) 22
< (less than operator) 22
<= method 210
<> (less than or greater than

operator) 22
<> method

of Object class 180
of String class 210

<<= (strictly less than or equal
operator) 22

<<= method 211
<< (strictly less than operator) 21,

22
<< method 211
< method 210
¬== (strictly not equal operator) 21,

22
¬= (not equal operator) 22
¬ (NOT operator) 23
¬> (not greater than operator) 22
¬>> (strictly not greater than

operator) 22
¬< (not less than operator) 22

© Copyright IBM Corp. 1994, 2001 551

¬<< (strictly not less than
operator) 22

.METHODS symbol 455

.RS symbol 455
∼ (tilde, or twiddle) 5
∼ (tilde or twiddle) 26
∼∼ 26
| (inclusive OR operator) 23
| method 211
|| concatenation operator 20
|| method 212

A
ABBREV function

description 304
example 304
testing abbreviations 304
using to select a default 304

ABBREV method 212
abbreviations

testing with ABBREV
function 304

testing with ABBREV
method 212

ABS function
description 304
example 304

ABS method 213
absolute value

finding using ABS function 304
finding using ABS method 213
used with power 423

abstract class, definition 96
abuttal 20
action taken when a condition is not

trapped 432
action taken when a condition is

trapped 432
active loops 60
activity 439
add external function 358
AddDesktopIcon method 242
AddGroup method 244
AddItem method 244
addition

operator 21
ADDRESS command

issuing commands to 42
ADDRESS function

description 305
determining current

environment 305
example 305

ADDRESS instruction
description 42
example 42

ADDRESS instruction (continued)
settings saved during subroutine

calls 48
address setting 43, 48
AddShortCut method 243
advanced topics in parsing 414
Alarm class 159
algebraic precedence 23
ALLAT method 143
ALLINDEX method 143
alphabetic character word options in

TRACE 80
alphabetics

checking with DATATYPE 219,
317

used as symbols 14
alphanumeric checking with

DATATYPE 219, 317
altering

flow within a repetitive DO
loop 59

special variables 37
TRACE setting 349

alternating exclusive scope
access 446

AND, logical operator 22
ANDing character strings 213, 307
ANY condition of SIGNAL and

CALL instructions 429
ARG function

description 305
example 305

ARG instruction
description 43
example 44

ARG option of PARSE
instruction 64

arguments
checking with ARG

function 305
of functions 43, 297
of programs 43
of subroutines 43, 45
passing in messages 26
passing to functions 297, 298
retrieving with ARG

function 305
retrieving with ARG

instruction 43
retrieving with the PARSE ARG

instruction 64
arithmetic

basic operator examples 424
comparisons 426
errors 427

arithmetic (continued)
exponential notation

example 425
numeric comparisons,

example 426
NUMERIC settings 62
operator examples 424
operators 21, 421, 422
overflow 427
precision 422
underflow 427

array
initialization of 30
setting up 33

Array class 118
ARRAYIN method 189
ARRAYOUT method 190
assigning data to variables 63
assignment

description 29
indicator (=) 29
of compound variables 33
of stem variables 30
several assignments 410

associative storage 33
AssocWindow method 269
AT method

of Array class 120
of Directory class 128
of List class 135
of Queue class 139
of Relation class 143
of Set class 149
of Table class 151

AVAILABLE method 240

B
B2X function

description 309
example 309

B2X method 215
backslash, use of 16, 22
Bag class 124
base class for mixins 96
Base option of DATE function 318
BASECLASS method 162
basic operator examples 424
BEEP function 306
binary

digits 14
strings

description 14
implementation

maximum 14
nibbles 14

552 Object REXX Reference

binary (continued)
to hexadecimal conversion 215,

309
BITAND function

description 307
example 307
logical bit operations 307

BITAND method 213
BITANDM function

logical bit operations 213
BITOR function

description 308
example 308
logical bit operations,

BITOR 308
BITOR method 214
bits checked using DATATYPE 219,

317
BITXOR function

description 308
example 308
logical bit operations,

BITXOR 215, 308
BITXOR method 215
blanks

adjacent to special character 9
as concatenation operator 20
in parsing, treatment of 405
removal with STRIP

function 344
removal with STRIP method 231

boolean operations 22
boolean values 506
bottom of program reached during

execution 51
bounded buffer 452
browser, invocation by (WSH

engine) 495
built-in functions

ABBREV 304
ABS 304
ADDRESS 305
ARG 305
B2X 309
BEEP 306
BITAND 307
BITOR 308
BITXOR 308
C2D 316
C2X 316
calling 45
CENTER 309
CENTRE 309
CHANGESTR 310
CHARIN 310

built-in functions (continued)
CHAROUT 311
CHARS 312
COMPARE 313
CONDITION 313
COPIES 315
COUNTSTR 315
D2C 323
D2X 323
DATATYPE 317
DATE 318
definition 45
DELSTR 321
DELWORD 321
description 302
DIGITS 322
DIRECTORY 322
ERRORTEXT 324
FILESPEC 325
FORM 325
FORMAT 325
FUZZ 327
INSERT 327
LASTPOS 327
LEFT 328
LENGTH 328
LINEIN 328
LINEOUT 330
LINES 331
MAX 332
MIN 332
OVERLAY 333
POS 333
QUEUED 334
RANDOM 334
REVERSE 335
RIGHT 335
SIGN 335
SPACE 336
STREAM 336
STRIP 344
SUBSTR 344
SUBWORD 345
SYMBOL 345
TIME 346
TRACE 349
TRANSLATE 349
TRUNC 350
VALUE 350
VAR 353
VERIFY 353
WORD 354
WORDINDEX 354
WORDLENGTH 355
WORDPOS 355

built-in functions (continued)
WORDS 355
X2B 356
X2C 357
X2D 357
XRANGE 356

built-in object 455
BY phrase of DO instruction 49

C
C2D function 316
C2D method 218
C2X function 316
C2X method 219
CALL instruction 45
calls

recursive 47
calls to the Security Manager 457
CANCEL method 160
cancelling Internet Explorer events

(WSH engine) 506
CASELESS option in PARSE 64, 412
CENTER function 309
CENTER method 216
centering a string using

CENTER function 309
CENTER method 216

CENTRE method 216
change search order for

methods 102
changestr 310
CHANGESTR method 217
changing destination of

commands 42
character

definition 10
position of a string 225, 327
removal with STRIP

function 344
removal with STRIP method 231
strings, ANDing 213, 307
strings, exclusive-ORing 215,

308
strings, ORing 214, 308
to decimal conversion 218, 316
to hexadecimal conversion 219,

316
word options, alphabetic in

TRACE 80
character input and output 463, 475
character output streams 465
CHARIN function 310
CHARIN method

description 190
role in input and output 464

CHAROUT function 311

Index 553

CHAROUT method
description 190
role in input and output 465

CHARS function 312
CHARS method

description 191
role in input and output 464

checking arguments with ARG
function 305

ChildAtPosition method 273
class

Alarm 159
Array 118
Bag 124
Class 161
definition 7
Directory 127
List 133
MenuObject 280
Message 170
metaclasses 96
Method 175
Monitor 177
Object 179
object classes 95
OLEObject 284
Queue 138
Relation 141
Set 147
Stem 186
Stream 188
String 206
subclasses 8
superclasses 8
Supplier 239
Table 150
types

abstract 96
mixin 96
object 95

WindowObject 268
WindowsClipboard 283
WindowsEventLog 258
WindowsManager 265
WindowsProgramManager 241
WindowsRegistry 249

Class class 161
CLASS method 180
class methods 95
CLASSES_ROOT= method 251
CLASSES_ROOT method 250
clauses

assignment 28, 29
commands 29
continuation of 18

clauses (continued)
description 9, 27
instructions 28
keyword instructions 28
labels 28
message instructions 28
null 27

Clear method 263
CLOSE method 191

of WindowsEventLog class 259
of WindowsRegistry class 251

CMD command environment 42
code page 10
codes, error 527
collating sequence using

XRANGE 356
collection classes 117
collections of variables 351
COLLECTOR example

program 471
colon

as a special character 16
as label terminators 28
in a label 28

COM events (WHS engine) 505
COM object registration (WSH

engine) 504
combining string and positional

patterns 415
comma

as continuation character 18
in CALL instruction 46
in function calls 297
in parsing template list 44, 414
separator of arguments 46, 297

command
alternative destinations 37
clause 29
destination of 42
errors, trapping 429
issuing to host 37

COMMAND method 191, 463
command prompt, invocation from

(WSH engine) 502
comments

line comment 10
standard comment 10

COMPARE function 313
COMPARE method 217
comparisons

description 21
numeric, example 426
of numbers 21, 426
of strings 217, 313

COMPLETED method 171

compound
symbols 33
variable

description 33
setting new value 30

concatenation
of strings 20
operator

|| 16, 20
abuttal 20
blank 20

conceptual overview of parsing 416
concurrency

alternating exclusive scope
access 446

conditional 446
default 442
early reply 439
GUARD instruction 55, 446
guarded methods 446
message objects 441
object-based 439
SETUNGUARDED method 177,

445
UNGUARDED option 446

condition
action taken when not

trapped 432
action taken when trapped 432
ANY 429
definition 429
ERROR 429
FAILURE 430
HALT 430
information

described 434
saved 48

LOSTDIGITS 430
NOMETHOD 430
NOSTRING 430
NOTREADY 431
NOVALUE 431
saved during subroutine

calls 48
SYNTAX 431
trap information using

CONDITION 313
trapping of 429
traps, notes 433
USER 432

CONDITION function 313
conditional

loops 49
phrase 518

conditional concurrency 446

554 Object REXX Reference

conditions
raising of 71

CONNECT method 251
console

reading from with PULL 69
writing to with SAY 75

ConsoleTitle= method 267
ConsoleTitle method 266
constant symbols 30
content addressable storage 33
continuation

character 18
clauses 18
example 18
of data for display 75

control variable 516
controlled loops 516
conversion

binary to hexadecimal 215, 309
character to decimal 218, 316
character to hexadecimal 219,

316
conversion functions 302
decimal to character 222, 323
decimal to hexadecimal 223, 323
formatting numbers 224, 325
functions 358
hexadecimal to binary 237, 356
hexadecimal to character 237,

357
hexadecimal to decimal 238, 357

Coordinates method 270
COPIES function 315
COPIES method 217
Copy method 180, 283
copying a string using COPIES 217,

315
count from stream 311
counting

words in a string 236, 355
COUNTSTR function

description 315
example 315

COUNTSTR method 218
create external data queue 358
CREATE method 251
CScript 494, 507
CURRENT_KEY= method 252
CURRENT_KEY method 251
CURRENT method 178
CURRENT_USER= method 252
CURRENT_USER method 252

D
D2C function

description 323

D2C function (continued)
example 323
implementation maximum 323

D2C method 222
D2X function

description 323
example 324
implementation maximum 324

D2X method 223
data

abstraction 8
encapsulation 4
modularization 2
objects 18
size 19
terms 18

DATATYPE function 317
DATATYPE method 219
date and version of the language

processor 66
DATE function 318
debug interactive 79
decimal

arithmetic 421
to character conversion 222, 323
to hexadecimal conversion 223,

323
declaring objects (WSH engine) 512
default

character streams 463
concurrency 442
environment 37
search order for methods 102
selecting with ABBREV

function 304
selecting with ABBREV

method 212
DEFAULTNAME method

of Class class 162
of Object class 181

DEFINE method 163
delayed state

description 430
of NOTREADY condition 472

DELETE method
of Class class 163
of WindowsRegistry class 252

DeleteGroup method 245
DeleteItem method 245
DELETEVALUE method 252
deleting

part of a string 221, 321
words from a string 221, 321

DELSTR function 321
DELSTR method 221

DELWORD function 321
DELWORD method 221
derived names of variables 33
DESCRIPTION method 198
DESTINATION method 178
DIFFERENCE method

of Directory class 131
of Relation class 145
of Table class 153

DIGITS function 322
DIGITS option of NUMERIC

instruction 62, 422
DIMENSION method 120
directives

::CLASS 87
::METHOD 89
::REQUIRES 91
::ROUTINE 92

Directory class 127
DIRECTORY function 322
Disable method 271
division operator 21
dllfunctions 361
DO instruction

description 49
example 517

Domain Object Model (DOM) 508
drop external function 358
DROP instruction 50
duplicated features in Object REXX

and WSH 512
dyadic operator 19
dynamic link library (RexxUtil) 361

E
early reply 73, 439
elapsed-time clock

measuring intervals with 346
saved during subroutine

calls 48
Empty method 283
Enable method 271
encapsulation of data 4
END clause

specifying control variable 516
engineering notation 425
ENHANCED method 164
ENTRY method 128
EnumerateChildren method 274
environment

addressing of 42
default 43, 65
determining current using

ADDRESS function 305
name, definition 42
temporary change of 42

Index 555

environment object 293
environment symbols 35, 293

.RS 455
equal

operator 22
sign

in parsing template 407, 408
to indicate assignment 16, 29

equality, testing of 21
error

definition 38
during execution of

functions 300
during stream input and

output 472
from commands 37
messages

list 527
retrieving with

ERRORTEXT 324
syntax 527
traceback after 83
trapping 429

error codes 527
ERROR condition of SIGNAL and

CALL instructions 435
error messages and codes 527
ERRORTEXT function 324
European option of DATE

function 319
evaluation of expressions 19
events (WHS engine) 505
example

example 216, 217
examples

[] 36
::CLASS directive 88
::METHOD directive 91
::ROUTINE directive 92
ABBREV function 304
ABBREV method 212
ABS function 304
ABS method 213
ADDRESS function 305
ADDRESS instruction 42
Alarm class 160
ARG function 305
ARG instruction 44
arithmetic methods of String

class 209
Array class 123
B2X function 309
B2X method 216
basic arithmetic operators 424
BITAND function 307

examples (continued)
BITAND method 214
BITOR function 308
BITOR method 214
BITXOR function 308
BITXOR method 215
C2D function 316
C2D method 218
C2X function 317
C2X method 219
CALL instruction 47
CENTER function 309
CENTER method 216
CENTRE function 309
CENTRE method 216
CHANGESTR function 310
CHANGESTR method 217
character 18
CHARIN function 311
CHAROUT function 312
CHARS function 313
clauses 18
combining positional pattern and

parsing into words 410
combining string and positional

patterns 415
combining string pattern and

parsing into words 410
COMMAND method

Open option 194
Query option 196
Seek option 196

COMPARE function 313
COMPARE method 217
comparison methods of String

class 210
concatenation methods of String

class 212
CONDITION function 314
continuation 18
COPIES function 315
COPIES method 217
Copy method 180
COUNTSTR function 315
COUNTSTR method 218
D2C function 323
D2C method 222
D2X function 324
D2X method 223
DATATYPE function 318
DATATYPE method 220
DATE function 319
DEFAULTNAME method 162
DEFINE method 163
DELETE method 163

examples (continued)
DELSTR function 321
DELSTR method 221
DELWORD function 322
DELWORD method 222
DIGITS function 322
Directory class 132
DO instruction 517
DROP instruction 50
ENHANCED method 164
ERRORTEXT function 324
EXIT instruction 51
exponential notation 425
EXPOSE instruction 52
expressions 24
FORM function 325
FORMAT function 326
FORMAT method 224
FORWARD instruction 55
FUZZ function 327
GUARD instruction 56
ID method 164
IF instruction 57
INHERIT method 165
INSERT function 327
INSERT method

of List class 136
of String class 225

INTERPRET instruction 58
ITERATE instruction 60
LASTPOS function 327
LASTPOS method 226
LEAVE instruction 61
LEFT function 328
LEFT method 226
LENGTH function 328
LENGTH method 226
line comments 10
LINEIN function 329
LINEOUT function 331
LINES function 332
logical methods of String

class 212
MAX function 332
MAX method 227
Message class 174
message instruction 36
metaclass 98
METHOD method 166
METHODS method 167
MIN function 332
MIN method 227
MIXINCLASS method 167
Monitor class 179
NEW method 168

556 Object REXX Reference

examples (continued)
NOP instruction 61
NOTIFY method 172
numeric comparisons 426
OBJECTNAME= method 182
of programs 471
OPEN method 202
OVERLAY function 333
OVERLAY method 228
parsing instructions 413
parsing multiple strings in a

subroutine 414
period as a placeholder 405
POS function 333
POS method 228
PROCEDURE instruction 67
PULL instruction 69
PUSH instruction 70
QUERY method 203
QUEUE instruction 70
QUEUED function 334
RAISE instruction 73
RANDOM function 334
REPLY instruction 74
RESULT method 173
REVERSE function 335
REVERSE method 229
RIGHT function 335
RIGHT method 229
SAY instruction 76
SEEK method 205
SELECT instruction 76
SIGL, special variable 436
SIGN function 335
SIGN method 230
SIGNAL instruction 79
simple templates, parsing 403
SOURCELINE function 336
SPACE function 336
SPACE method 230
special characters 17
standard comments 10
START method 184
STREAM function 337
STRIP function 344
STRIP method 231
SUBCLASS method 169
SUBSTR function 344
SUBSTR method 231
SUBWORD function 345
SUBWORD method 232
SUPERCLASSES method 170
Supplier class 241
SYMBOL function 345

examples (continued)
templates containing positional

patterns 407
templates containing string

patterns 406
TIME function 347
TRACE function 349
TRACE instruction 82
TRANSLATE function 350
TRANSLATE method 233
TRUNC function 350
TRUNC method 233
UNINHERIT method 170
USE instruction 84
using a variable as a positional

pattern 412
using a variable as a string

pattern 411
VALUE function 351
VAR function 353
VERIFY function 354
VERIFY method 234
WORD function 354
WORD method 235
WORDINDEX function 354
WORDINDEX method 235
WORDLENGTH function 355
WORDLENGTH method 235
WORDPOS function 355
WORDPOS method 236
WORDS function 355
WORDS method 236
X2B function 356
X2B method 237
X2C function 357
X2C method 238
X2D function 357
X2D method 238
XRANGE function 356

exception conditions saved during
subroutine calls 48

exclusive OR operator 23
exclusive-ORing character strings

together 215, 308
execution

by language processor 1
of data 57

EXIT instruction 51
exponential notation

description 424
example 425
usage 15

exponentiation
description 424
operator 21

EXPOSE instruction 52
EXPOSE option of PROCEDURE

instruction 66
exposed variable 66
expressions

evaluation 19
examples 24
parsing of 65
results of 19
tracing results of 81

external character streams 463
external data queue

counting lines in 334
creating and deleting

queues 359
description 465
naming and querying

queues 359
reading from with PULL 69
RXQUEUE function 359
writing to with PUSH 70
writing to with QUEUE 70

external functions
description 298
search order 299

external routine 45
external subroutines 298
external variables

access with VALUE
function 351

extracting
substring 231, 344
word from a string 235, 354
words from a string 232, 345

F
failure, definition 38
FAILURE condition of SIGNAL and

CALL instructions 430, 435
features duplicated in Object REXX

and WSH 512
FIFO (first-in/first-out) stacking 70
file name, extension, path of

program 65
FILECOPY example program 471
files 463
FILESPEC function 325
Find method 266
FindChild method 273
finding

mismatch using COMPARE 217,
313

string in another string 228, 333
string length 226, 328
word length 235, 355

Index 557

FindItem method 282
FindSubMenu method 282
FIRST method

of Array class 121
of List class 135
of WindowObject class 273

FirstChild method 274
FIRSTITEM method 135
flags, tracing

- 83
+++ 83
>.> 83
>>> 83
>C> 83
>F> 83
>L> 83
>M> 83
>O> 83
>P> 83
>V> 83

flow of control
unusual, with CALL 429
unusual, with SIGNAL 429
with CALL and RETURN 45
with DO construct 49
with IF construct 56
with SELECT construct 76

FLUSH method
of Stream class 198
of WindowsRegistry class 253

FocusItem method 272
FocusNextItem method 272
FocusPreviousItem method 272
FOR phrase of DO instruction 49
ForegroundWindow method 266
FOREVER repetitor on DO

instruction 49
FORM function 325
FORM option of NUMERIC

instruction 62, 425
FORMAT function 325
FORMAT method 224
formatting

numbers for display 325
numbers with TRUNC 233, 350
of output during tracing 82
text centering 216, 309
text left justification 226, 328
text right justification 229, 335
text spacing 230, 336

FORWARD instruction 53
functions 297, 358

ABS 304
ADDRESS 305
ARG 305

functions 297, 358 (continued)
B2X 309
BITAND 307
BITOR 308
BITXOR 308
built-in 304, 357
built-in, description 302
C2D 316
C2X 316
call, definition 297
calling 297
CENTER 309
CENTRE 309
CHANGESTR 310
COMPARE 313
CONDITION 313
COPIES 315
COUNTSTR 315
D2C 323
D2X 323
DATATYPE 317
DATE 318
definition 297
DELSTR 321
DELWORD 321
description 297
DIGITS 322
ERRORTEXT 324
external 298
forcing built-in or external

reference 299
FORM 325
FORMAT 325
FUZZ 327
INSERT 327
internal 298
LASTPOS 327
LEFT 328
LENGTH 328
MAX 332
MIN 332
numeric arguments of 427
OVERLAY 333
POS 333
QUEUED 334
RANDOM 334
return from 74
REVERSE 335
RIGHT 335
SIGN 335
SOURCELINE 336
SPACE 336
STREAM 336
STRIP 344
SUBSTR 344

functions 297, 358 (continued)
SUBWORD 345
SYMBOL 345
TIME 346
TRACE 349
TRANSLATE 349
TRUNC 350
VALUE 350
VAR 353
variables in 66
VERIFY 353
WORD 354
WORDINDEX 354
WORDLENGTH 355
WORDPOS 355
WORDS 355
X2B 356
X2C 357
X2D 357
XRANGE 356

FUZZ
controlling numeric

comparison 426
option of NUMERIC

instruction 62, 426
FUZZ function 327

G
general concepts 1, 39
GetConstant method 286
GetKnownEvents method 286
GETKNOWNMETHODS

method 287
GetNumber method 264
GETOBJECT method 289
GETOUTPARAMETERS

method 290
GETVALUE method 253
global variables

access with VALUE
function 351

GOTO, unusual 429
greater than operator 22
greater than or equal operator

(>=) 22
greater than or less than operator

(><) 22
group, DO 515
grouping instructions to run

repetitively 49
GUARD instruction 55
guarded methods 446

558 Object REXX Reference

H
halt, trapping 430
HALT condition of SIGNAL and

CALL instructions 430, 435
Handle method 269
HASENTRY method 129
HASINDEX method

of Array class 121
of Bag class 125
of Directory class 129
of List class 135
of Queue class 140
of Relation class 143
of Set class 149
of Table class 151

HASITEM method 144
HASMETHOD method 181
hexadecimal

checking with DATATYPE 219,
317

digits 13
strings

description 13
implementation

maximum 13
to binary, converting with

X2B 237, 356
to character, converting with

X2C 237, 357
to decimal, converting with

X2D 238, 357
Hide method 271
host commands

issuing commands to underlying
operating system 37

hours calculated from midnight 347

I
ID method 164, 270
IdOf method 281
IF instruction 56
implementation maximum

binary strings 14
D2C function 323
D2C method 222
D2X function 324
D2X method 223
hexadecimal strings 13
literal strings 13
numbers 16
TIME function 348

implied semicolons 17
imprecise numeric comparison 426
inclusive OR operator 23
indentation during tracing 82

INDEX method
of Relation class 144
of Supplier class 240

indirect evaluation of data 57
inequality, testing of 21
infinite loops 49, 516
information hiding 5
INHERIT method 165
inheritance 8
Init method

of Alarm class 160
of Class class 165
of Message class 171
of Monitor class 178
of Object class 181
of OLEObject class 285
of Stream class 198
of WindowsEventLog class 258
of WindowsProgramManager

class 245
of WindowsRegistry class 253

initialization
of arrays 30
of compound variables 30

input, errors during 472
input and output

functions
CHARIN 310
CHAROUT 311
CHARS 312
LINEIN 328
LINEOUT 330
LINES 331
STREAM 336

model 463
streams 463

input from the user 463
input object 295
input streams 464
input to PULL from STDIN 69
input to PULL from the

keyboard 69
INSERT function 327
INSERT method

of List class 136
of String class 225

inserting a string into another 225,
327

instance methods 8, 95
instances

definition 7
instructions

ADDRESS 42
ARG 43
CALL 45

instructions (continued)
definition 28
DO 49
DROP 50
EXIT 51
EXPOSE 52
FORWARD 53
GUARD 55, 446
IF 56
INTERPRET 57
ITERATE 59
keyword 28

description 41
LEAVE 60
message 28, 36
NOP 61
NUMERIC 62
PARSE 63
parsing, summary 413
PROCEDURE 66
PULL 69
PUSH 70
QUEUE 70
RAISE 71
REPLY 73
RETURN 74
SAY 75
SELECT 76
SIGNAL 77
TRACE 79
USE 84

integer
arithmetic 421
division

description 421, 423
operator 21

interactive debug 79
internal

functions
description 298
return from 74
variables in 66

routine 45
Internet Explorer events (WSH

engine) 506
INTERPRET instruction 57
interpretive execution of data 57
INTERSECTION method

of Directory class 131
of Relation class 146
of Table class 153

invocation as a COM object (WSH
engine) 503

invocation by browser (WSH
engine) 495

Index 559

invocation from a command prompt
(WSH engine) 502

invoking
built-in functions 45
routines 45

invoking a script (WSH engine) 504
IsDataAvailable method 283
IsMenu method

IsMenu
of MenuObject class 281
of WindowObject class 280

of MenuObject class 281
of WindowObject class 280

ITEM method 240
ITEMS method

of Array class 121
of Directory class 129
of List class 136
of MenuObject class 281
of Queue class 140
of Relation class 144
of Set class 149
of Table class 152

ITERATE instruction 59

J
JScript 508
justification, text right, RIGHT

function 335
justification, text right, RIGHT

method 229

K
keyword

conflict with commands 479
description 41
mixed case 41
reservation of 479

L
label

as target of CALL 45
as target of SIGNAL 78
description 28
duplicate 79
in INTERPRET instruction 58
search algorithm 78

language
processor, execution 1
processor date and version 66
structure and syntax 9

Language (local) option of DATE
function 319

LAST method
of Array class 121
of List class 136

LASTITEM method 137
LASTPOS function 327
LASTPOS method 225
leading

blank removal with STRIP
function 344

blank removal with STRIP
method 231

zeros
adding with RIGHT

method 229
adding with the RIGHT

function 335
removing with STRIP

function 344
removing with STRIP

method 231
LEAVE instruction 60
leaving your program 51
LEFT function 328
LEFT method 226
LENGTH function 328
LENGTH method 226
less than operator (<) 22
less than or equal operator (<=) 22
less than or greater than operator

(<>) 22
LIFO (last-in, first-out) stacking 70
line input and output 463
LINEIN function 328
LINEIN method

description 198
role in input and output 464

LINEIN option of PARSE
instruction 64

LINEOUT function 330
LINEOUT method

description 199
role in input and output 465

lines
from stream 64

LINES function
description 331
example 332
from a program retrieved with

SOURCELINE 336
from stream 328
remaining in stream 331

LINES method
description 199
role in input and output 464

list, adding object to 136
List class 133
LIST method 253
LISTVALUES method 254

literal string
description 12
implementation maximum 13
patterns 406

LOAD method 254
LOCAL_MACHINE= method 255
LOCAL_MACHINE method 255
locating

string in another string 228, 333
word in a string 235, 354

logical
bit operations

BITAND 213, 307
BITOR 214, 308
BITXOR 215, 308

operations 22
logical NOT character 16
logical OR operator 16
loops

active 60
execution model 519
modification of 59
over collection 517
repetitive 515
termination of 60

LOSTDIGITS condition of SIGNAL
instruction 430

LOWER option in PARSE 64, 412

M
MAKEARRAY method

of Array class 121
of Bag class 126
of Directory class 129
of List class 137
of Queue class 140
of Relation class 144
of Set class 149
of Stem class 188
of Stream class 200
of Table class 152

MAKESTRING method 227
manipulate external data queue 358
MAX function 332
MAX method 227
Maximize method 271
Menu method 280
MenuObject class 280
Message class 170
message instructions 28, 36
message-send operator (∼) 5
message sequence

instructions 36
messages 5
messages, error 527

560 Object REXX Reference

messages to objects
∼, using 26
∼∼, using 26
operator as message 19

METACLASS method 166
metaclasses 96
method

- 209
/ 209
* 209
& 211
+ 209
=

of Object class 180
of String class 209

// 209
** 209
\ 212
% 209
&& 211
==

of Object class 180
of String class 211

\=
of Object class 180
of String class 210

\==
of Object class 180
of String class 211

[]
of Array class 120
of Bag class 125
of Directory class 128
of List class 135
of Queue class 139
of Relation class 143
of Set class 148
of Stem class 187
of Table class 151

[]=
of Array class 120
of Bag class 125
of Directory class 128
of List class 135
of Queue class 139
of Relation class 143
of Set class 148
of Stem class 187
of Table class 151

\> 210
\>> 211
\< 210
\<< 211
> 210
>= 210

method (continued)
>> 211
>>= 211
><

of Object class 180
of String class 210

< 210
<= 210
<>

of Object class 180
of String class 210

<< 211
<<= 211
| 211
|| 212
ABBREV 212
ABS 213
AddDesktopIcon 242
AddGroup 244
AddItem 244
AddShortCut 243
ALLAT 143
ALLINDEX 143
ARRAYIN 189
ARRAYOUT 190
AssocWindow 269
AT

of Array class 120
of Directory class 128
of List class 135
of Queue class 139
of Relation class 143
of Set class 149
of Table class 151

AVAILABLE 240
B2X 215
BASECLASS 162
BITAND 213
BITOR 214
BITXOR 215
C2D 218
C2X 219
CANCEL 160
CENTER 216
CENTRE 216
CHANGESTR 217
CHARIN 190
CHAROUT 190
CHARS 191
ChildAtPosition 273
CLASS 180
CLASSES_ROOT 250
CLASSES_ROOT= 251
Clear 263
CLOSE 191

method (continued)
of WindowsEventLog

class 259
of WindowsRegistry

class 251
COMMAND 191
COMPARE 217
COMPLETED 171
CONNECT 251
ConsoleTitle 266
ConsoleTitle= 267
Coordinates 270
COPIES 217
Copy 180, 283
COUNTSTR 218
CREATE 251
creation 89
CURRENT 178
CURRENT_KEY 251
CURRENT_KEY= 252
CURRENT_USER 252
CURRENT_USER= 252
D2C 222
D2X 223
DATATYPE 219
DEFAULTNAME

of Class class 162
of Object class 181

DEFINE 163
definition 6
DELETE

of Class class 163
of WindowsRegistry

class 252
DeleteGroup 245
DeleteItem 245
DELETEVALUE 252
DELSTR 221
DELWORD 221
DESCRIPTION 198
DESTINATION 178
DIFFERENCE

of Directory class 131
of Relation class 145
of Table class 153

DIMENSION 120
Disable 271
Empty 283
Enable 271
ENHANCED 164
ENTRY 128
EnumerateChildren 274
Find 266
FindChild 273
FindItem 282

Index 561

method (continued)
FindSubMenu 282
FIRST

of Array class 121
of List class 135
of WindowObject class 273

FirstChild 274
FIRSTITEM 135
FLUSH

of Stream class 198
of WindowsRegistry

class 253
FocusItem 272
FocusNextItem 272
FocusPreviousItem 272
ForegroundWindow 266
FORMAT 224
GetConstant 286
GetKnownEvents 286
GETKNOWNMETHODS 287
GetNumber 264
GETOBJECT 289
GETOUTPARAMETERS 290
GETVALUE 253
Handle 269
HASENTRY 129
HASINDEX

of Array class 121
of Bag class 125
of Directory class 129
of List class 135
of Queue class 140
of Relation class 143
of Set class 149
of Table class 151

HASITEM 144
HASMETHOD 181
Hide 271
ID 164, 270
IdOf 281
INDEX

of Relation class 144
of Supplier class 240

INHERIT 165
Init

of Alarm class 160
of Class class 165
of Message class 171
of Monitor class 178
of Object class 181
of OLEObject class 285
of Stream class 198
of WindowsEventLog

class 258

method (continued)
Init (continued)

of WindowsProgramManager
class 245

of WindowsRegistry
class 253

INSERT
of List class 136
of String class 225

instance 8
INTERSECTION

of Directory class 131
of Relation class 146
of Table class 153

IsDataAvailable 283
ITEM 240
ITEMS

of Array class 121
of Directory class 129
of List class 136
of MenuObject class 281
of Queue class 140
of Relation class 144
of Set class 149
of Table class 152

LAST
of Array class 121
of List class 136

LASTITEM 137
LASTPOS 225
LEFT 226
LENGTH 226
LINEIN 198
LINEOUT 199
LINES 199
LIST 253
LISTVALUES 254
LOAD 254
LOCAL_MACHINE 255
LOCAL_MACHINE= 255
MAKEARRAY

of Array class 121
of Bag class 126
of Directory class 129
of List class 137
of Queue class 140
of Relation class 144
of Set class 149
of Stem class 188
of Stream class 200
of Table class 152

MAKESTRING 227
MAX 227
Maximize 271
Menu 280

method (continued)
METACLASS method 166
METHOD 166
METHODS 166
MIN 227
Minimize 271
MIXINCLASS 167
MoveTo 272
NEW

of Array class 119
of Class class 168
of Method class 175
of Object class 179
of Stem class 187
of String class 208
of Supplier class 240

NEWFILE 176
NEXT

of Array class 122
of List class 137
of Supplier class 241
of WindowObject class 273,

274
NOTIFY 172
OBJECTNAME 181
OBJECTNAME= 182
OPEN 200

of WindowsEventLog
class 258

of WindowsRegistry
class 255

OVERLAY 228
Owner 274
Paste 283
PEEK 140
POS 228
POSITION 202
prefix - 209
prefix + 209
PREVIOUS

of Array class 122
of List class 137
of WindowObject class 273

ProcessItem 283
ProcessMenuCommand

of WindowObject class 280
of WindowsManager

class 267
public 103
PULL 140
PUSH 141
PushButton 278
PushButtonInWindow 267
PUT

of Array class 122

562 Object REXX Reference

method (continued)
of Bag class 126
of Directory class 129
of List class 137
of Queue class 141
of Relation class 144
of Set class 149
of Table class 152

QUALIFY 202
QUERY

of Stream class 202
of WindowsRegistry

class 256
QUERYMIXINCLASS 168
QUEUE 141
Read 260
REMOVE

of Array class 122
of Directory class 130
of List class 137
of Queue class 141
of Relation class 145
of Set class 149
of Table class 152

REMOVEITEM 145
REPLACE 256
Resize 271
RESTORE

of WindowObject class 271
of WindowsRegistry

class 256
RESULT 173
REVERSE 229
RIGHT 229
RUN 183
SAVE 257
scope 101
search order 102

changing 102
SECTION

of Array class 122
of List class 138

SEEK 204
selection 101

search order 102
SEND 173
SendChar 279
SendCommand 275
SendKey 278
SendKeyDown 279
SendKeyUp 279
SendMenuCommand 275
SendMessage 275
SendMouseClick 276
SendSysCommand 277

method (continued)
SendText 279
SendTextToWindow 267
SETENTRY 130
SETGUARDED 176
SETMETHOD

of Directory class 130
of Object class 184

SETPRIVATE 176
SETPROTECTED 176
SETSECURITYMANAGER 177
SETUNGUARDED 177, 445
SETVALUE 257
ShowGroup 246
SIGN 229
SIZE 123
SOURCE 177
SPACE 230
START

of Message class 173
of Object class 184

State 206, 270
STRING

of Object class 185
of String class 230

STRIP 231
SUBCLASS 168
SUBCLASSES 169
SubMenu 282
SUBSET

of Directory class 132
of Relation class 146
of Table class 153

SUBSTR 231
SUBWORD 232
SUPERCLASSES 169
SUPPLIER

of Array class 123
of Bag class 126
of Directory class 130
of List class 138
of Queue class 141
of Relation class 145
of Set class 150
of Stream class 206
of Table class 152

SystemMenu 280
TextOf(id) 282
TextOf(position) 281
Title 269
Title= 270
ToForeground 272
TRANSLATE 232
TRUNC 233
UNINHERIT 170

method (continued)
UNION

of Directory class 132
of Relation class 146
of Table class 153

UNKNOWN
of Directory class 131
of Monitor class 178
of OLEObject class 291
of Stem class 188

UNLOAD 257
UNSETMETHOD 185
USERS 257
USERS= 258
VERIFY 234
WClass 270
WindowAtPosition 266
WORD 235
WORDINDEX 235
WORDLENGTH 235
WORDPOS 236
WORDS 236
Write 261
X2B 237
X2C 237
X2D 238
XOR

of Directory class 132
of Relation class 146
of Table class 154

Method class 175
METHOD method 166
METHODS method 166
Microsoft Internet Explorer 494, 507
Microsoft Internet Explorer events

(WSH engine) 506
MIN function 332
MIN method 227
Minimize method 271
minutes calculated from

midnight 347
mixin 96
MIXINCLASS method 167
model of input and output 463
modularizing data 2
monitor 452
Monitor class 177
Month option of DATE

function 319
MoveTo method 272
multiple inheritance 9
multiplication operator 21

N
names

of functions 298

Index 563

names (continued)
of programs 65
of subroutines 45
of variables 14

negation
of logical values 23
of numbers 21

NEWFILE method 176
NEWmethod

of Array class 119
of Class class 168
of Method class 175
of Object class 179
of Stem class 187
of String class 208
of Supplier class 240

NEXT method
of Array class 122
of List class 137
of Supplier class 241
of WindowObject class 273, 274

nibbles 14
NIL object 294
NOMETHOD condition of SIGNAL

instruction 430
descriptive string 435

NOP instruction 61
Normal option of DATE

function 319
NOSTRING condition of SIGNAL

instruction 430
descriptive string 435

not equal operator 22
not greater than operator 22
not less than operator 22
NOT operator 16, 23
notation

engineering 425
exponential, example 425
scientific 425

Notices 547
NOTIFY method 172
NOTREADY condition

condition trapping 472
description 431
raised by stream errors 472
SIGNAL and CALL

instructions 435
NOVALUE condition

descriptive string 435
not raised by VALUE

function 353
on SIGNAL instruction 431
use of 479

null
clauses 27
strings 12

numbers
arithmetic on 21, 421, 422
checking with DATATYPE 219,

317
comparison of 21, 426
description 15, 421
formatting for display 224, 325
implementation maximum 16
in DO instruction 49
truncating 233, 350
use in the language 427

numbers for display 224
numeric

comparisons, example 426
options in TRACE 82

NUMERIC instruction
description 62
DIGITS option 62
FORM option 62, 425
FUZZ option 63
settings saved during subroutine

calls 48

O
object 18

as data value 19
definition 4
kinds of 4

object-based concurrency 439
Object class 179
object classes 8, 95
object method 95
object-oriented programming 2
Object REXX Sandbox 512
object variable pool 52, 442
OBJECTNAME= method 182
OBJECTNAME method 181
objects, declaring (WSH

engine) 512
OF method

of Array class 120
of Bag class 125
of List class 134
of Set class 148

OLEObject class 284
OPEN method 200

of WindowsEventLog class 258
of WindowsRegistry class 255

operations
tracing results 79

operator
arithmetic

description 19, 421, 422
list 21

as message 19
as special characters 16
characters 16
comparison 21, 426
concatenation 20
examples 424
logical 22
precedence (priorities) of 23

options
alphabetic character word in

TRACE 80
numeric in TRACE 82

OR, logical 23
Ordered option of DATE

function 319
ORing character strings

together 214, 308
output

errors during 472
object 296
to the user 463

overflow, arithmetic 427
OVERLAY function 333
OVERLAY method 228
overlaying a string onto

another 228, 333
overview of parsing 416
Owner method 274

P
packing a string with X2C 237, 357
pad character, definition 303
page, code 10
parentheses

adjacent to blanks 16
in expressions 23
in function calls 297
in parsing templates 411

PARSE instruction
description 63
examples 403
PARSE LINEIN, role in input and

output 463
PARSE PULL, role in input and

output 463
parsing

advanced topics 414
combining patterns and parsing

into words 410
combining string and positional

patterns 415
conceptual overview 416

564 Object REXX Reference

parsing (continued)
description 403, 419
equal sign 408
examples

combining positional pattern
and parsing into words 410

combining string and
positional patterns 415

combining string pattern and
parsing into words 410

parsing instructions 413
parsing multiple strings in a

subroutine 414
period as a placeholder 405
simple templates 403
templates containing

positional patterns 407
templates containing string

patterns 406
using a variable as a

positional pattern 412
using a variable as a string

pattern 411
into words 403
LOWER, use of 412
patterns

conceptual view 418
positional 403, 407
string 403, 405

period as placeholder 405
positional patterns 403

absolute 407
relative 408
variable 412

selecting words 403
several assignments 410
several strings 414
source string 403
special case 415
steps 416
string patterns 403

literal string patterns 405
variable string patterns 411

summary of instructions 413
templates

in ARG instruction 43
in PARSE instruction 63
in PULL instruction 69

treatment of blanks 405
UPPER, use of 412
variable patterns

positional 412
string 411

word parsing
conceptual view 419

parsing (continued)
word parsing (continued)

description and
examples 403

Paste method 283
patterns in parsing

combined with parsing into
words 410

conceptual view 418
positional 403, 407
string 403, 405

PEEK method 140
period

as placeholder in parsing 405
causing substitution in variable

names 33
in numbers 421

permanent command destination
change 42

persistent input and output 463
polymorphism 6
POS function 333
POS method 228
position

last occurrence of a string 225,
327

POSITION method 202
positional patterns

absolute 407
description 403
relative 408
variable 412

powers of ten in numbers 15
precedence of operators 23
precision of arithmetic 422
prefix

\ 23
operators 21, 22

prefix − method 209
prefix + method 209
presumed command

destinations 42
PREVIOUS method

of Array class 122
of List class 137
of WindowObject class 273

PROCEDURE instruction 66
ProcessItem method 283
ProcessMenuCommand method

of WindowObject class 280
of WindowsManager class 267

programming restrictions 1
programs

arguments to 43
examples 471

programs (continued)
retrieving lines with

SOURCELINE 336
retrieving name of 65

programs without source 490
properties (WSH engine) 510
protecting variables 66
pseudo random number function of

RANDOM 334
public method 103
public object 293

environment object 293
input object 295
NIL object 294
output object 296

PULL instruction
description 69
example 69
role in input and output 463

PULL method 140
PULL option of PARSE

instruction 65
PUSH instruction

description 70
example 70
role in input and output 463

PUSH method 141
PushButton method 278
PushButtonInWindow method 267
PUT method

of Array class 122
of Bag class 126
of Directory class 129
of List class 137
of Queue class 141
of Relation class 144
of Set class 149
of Table class 152

Q
QUALIFY method 202
QUERY method

of Stream class 202
of WindowsRegistry class 256

querying TRACE setting 349
QUERYMIXINCLASS method 168
queue

creating and deleting
queues 359

named 466
naming and querying 359
RXQUEUE function 359
session 466

Queue class 138

Index 565

QUEUE instruction
description 70
example 70
role in input and output 463

Queue interface from REXX
programs 359

QUEUE method 141
QUEUED function

description 334
example 334
role in input and output 466

R
RAISE instruction 71
RANDOM function 334
random number function of

RANDOM 334
RC (return code)

not set during interactive
debug 475

set by commands 37
special variable 436, 481

Read method 260
read position in a stream 464
readers and writers problem 453
recursive call 47
register external function 358
Relation class 141
relative positional patterns 408
remainder

description 423
operator 21

REMOVE method
of Array class 122
of Directory class 130
of List class 137
of Queue class 141
of Relation class 145
of Set class 149
of Table class 152

REMOVEITEM method 145
reordering data 232, 349
repeating a string with

COPIES 217, 315
repetitive loops

altering flow 61
controlled repetitive loops 516
exiting 60
simple DO group 515
simple repetitive loops 515

REPLACE method 256
REPLY instruction

description 73
example 74

REQUEST method
of Object class 182
of Stem class 188
refid=method REQUEST

of Object class 182
of Stem class 188

reservation of keywords 479
Resize method 271
RESTORE method

of WindowObject class 271
of WindowsRegistry class 256

restoring variables 50
restrictions

embedded blanks in
numbers 15

first character of variable
name 29

in programming 1
RESULT method 173
RESULT special variable

description 481
return value from a routine 302
set by RETURN instruction 47,

74
retrieving

argument strings with ARG 43
arguments with ARG

function 305
lines with SOURCELINE 336

return
code

as set by commands 37
setting on exit 51

string
setting on exit 51

RETURN instruction
description 74

returning control from REXX
program 74

REVERSE function
description 335
example 335

REVERSE method 229
REXXC utility 490
rexxutil functions 361

RxMessageBox 361
RxWinExec 363
SysAddRexxMacro 364
SysBootDrive 365
SysClearRexxMacroSpace 365
SysCloseEventSem 365
SysCloseMutexSem 366
SysCls 366
SysCreateEventSem 366
SysCreateMutexSem 367

rexxutil functions 361 (continued)
SysCurPos 367
SysCurState 368
SysDriveInfo 368
SysDriveMap 369
SysDropFuncs 370
SysDropRexxMacro 370
SysDumpVariables 370
SysFileDelete 371
SysFileSearch 371
SysFileSystemType 373
SysFileTree 373
SysFromUnicode 376
SysGetErrortext 379
SysGetFileDateTime 379
SysGetKey 380
SysIni 381
SysLoadFuncs 383
SysLoadRexxMacroSpace 383
SysMkDir 383
SysOpenEventSem 384
SysOpenMutexSem 384
SysPostEventSem 385
SysPulseEventSem 385
SysQueryProcess 385
SysQueryRexxMacro 386
SysReleaseMutexSem 387
SysReorderRexxMacro 387
SysRequestMutexSem 387
SysResetEventSem 388
SysRmDir 388
SysSaveRexxMacroSpace 389
SysSearchPath 389
SysSetFileDateTime 390
SysSetPriority 391
SysSleep 392
SysStemCopy 392
SysStemDelete 393
SysStemInsert 394
SysStemSort 395
SysSwitchSession 396
SysSystemDirectory 396
SysTempFileName 396
SysTextScreenRead 397
SysTextScreenSize 398
SysToUnicode 377
SysUtilVersion 398
SysVersion 399
SysVolumeLabel 399
SysWaitEventSem 399
SysWaitNamedPipe 400
SysWinDecryptFile 400
SysWinEncryptFile 401
SysWinVer 401

566 Object REXX Reference

RIGHT function
description 335
example 335

RIGHT method 229
rounding

using a character string as a
number 15

RUN method 183
running off the end of a

program 51
RXFUNCADD 358
RXFUNCDROP 358
RXFUNCQUERY 359
RxMessageBox 361
RXQUEUE filter 488
RXQUEUE function 359
RXSUBCOM command 485
RXTRACE environment

variable 477
RxWinExec 363

S
samples (WSH engine) 506
Sandbox, Object REXX 512
SAVE method 257
SAY instruction

description 75
displaying data 75
example 76
role in input and output 463

scientific notation 425
scope

alternating exclusive access 446
description 101

search order
external functions 299
for functions 299
for methods

changing 102
default 102

for subroutines 46
seconds calculated from

midnight 347
SECTION method

of Array class 122
of List class 138

Security Manager 457
calls to 457

SEEK method 204
SELECT instruction 76
selecting a default with ABBREV

function 304
selecting a default with ABBREV

method 212
SELF special variable 481
semaphore 447

semicolons
implied 17
omission of 41
within a clause 9

SEND method 173
SendChar method 279
SendCommand method 275
SendKey method 278
SendKeyDown method 279
SendKeyUp method 279
SendMenuCommand method 275
SendMessage method 275
SendMouseClick method 276
SendSysCommand method 277
SendText method 279
SendTextToWindow method 267
sequence, collating using

XRANGE 356
serial input and output 463
Set class 147
set-operator methods 154
SETENTRY method 130
SETGUARDED method 176
SETMETHOD method

of Directory class 130
of Object class 184

SETPRIVATE method 176
SETPROTECTED method 176
SETSECURITYMANAGER

method 177
SETUNGUARDED method 177,

445
SETVALUE method 257
ShowGroup method 246
SIGL

description 481
in condition trapping 436
set by CALL instruction 47
set by SIGNAL instruction 79

SIGN function
description 335
example 335

SIGN method 229
SIGNAL instruction

description 77
example 79
execution of in subroutines 48

significant digits in arithmetic 422
simple

repetitive loops 515
symbols 30

SIZE method 123
source

of program and retrieval of
information 65

source (continued)
string 403

SOURCE method 177
SOURCE option of PARSE

instruction 65
sourceless programs 490
SOURCELINE function 336
SPACE function 336
SPACE method 230
spacing, formatting, SPACE

function 336
spacing, formatting, SPACE

method 230
special

characters and example 16
parsing case 415
variables

RC 37, 436, 481
RESULT 47, 74, 302, 481
SELF 481
SIGL 47, 436, 481
SUPER 481

specification (WSH engine) 507
standard input and output 468
Standard option of DATE

function 319
START method

of Message class 173
of Object class 184

State method 206, 270, 473
Stem class 186
stem of a variable

assignment to 30
description 33
used in DROP instruction 50
used in PROCEDURE

instruction 66
steps in parsing 416
stream 463

character positioning 469
function overview 470
line positioning 469

Stream class 188
stream errors 472
STREAM function

command option 337
description 336
description option 337
example 337
state option 337

strict comparison 21
strictly equal operator 21, 22
strictly greater than operator 21, 22
strictly greater than or equal

operator 22

Index 567

strictly less than operator 21, 22
strictly less than or equal

operator 22
strictly not equal operator 21, 22
strictly not greater than operator 22
strictly not less than operator 22
string

as literal constant 12
as name of function 12
as name of subroutine 45
binary specification of 14
centering using CENTER

function 309
centering using CENTER

method 216
centering using CENTRE

function 309
centering using CENTRE

method 216
comparison of 21
concatenation of 20
copying using COPIES 217, 315
deleting part, DELSTR

function 321
deleting part, DELSTR

method 221
description 12
extracting words with

SUBWORD 232, 345
from stream 310
hexadecimal specification of 13
interpretation of 57
null 12
patterns

description 403
literal 405
variable 411

quotation marks in 12
repeating using COPIES 217,

315
verifying contents of 234, 353

String class 206
STRING method

of Object class 185
of String class 230

STRIP function
description 344
example 344

STRIP method 231
structure and syntax 9
SUBCLASS method 168
subclasses 8
SUBCLASSES method 169
Subcom vs the host interface (WSH

engine) 513

subexpression 19
subkeyword 29
SubMenu method 282
subroutines

calling of 45
definition 297
forcing built-in or external

reference 46
naming of 45
passing back values from 74
return from 74
use of labels 45
variables in 66

SUBSET method
of Directory class 132
of Relation class 146
of Table class 153

subsidiary list 50, 52, 67
substitution

in expressions 19
in variable names 33

SUBSTR function 344
SUBSTR method 231
substring, extracting with SUBSTR

function 344
substring, extracting with SUBSTR

method 231
subtraction operator 21
SUBWORD function

description 345
example 345

SUBWORD method 232
summary

methods 108
parsing instructions 413

SUPER special variable 481
superclasses 8
SUPERCLASSES method 169
Supplier class 239
SUPPLIER method

of Array class 123
of Bag class 126
of Directory class 130
of List class 138
of Queue class 141
of Relation class 145
of Set class 150
of Stream class 206
of Table class 152

symbol
assigning values to 29
classifying 30
compound 33
constant 30
description 14

symbol (continued)
simple 30
uppercase translation 14
use of 29
valid names 14

SYMBOL function 345
symbols

.METHODS 455
environment 35

syntax
error

traceback after 83
trapping with SIGNAL

instruction 429
general 9

SYNTAX condition of SIGNAL
instruction 431

SYNTAX condition of SIGNAL
instructions 435

SysAddRexxMacro 364
SysBootDrive 365
SysClearRexxMacroSpace 365
SysCloseEventSem 365
SysCloseMutexSem 366
SysCls 366
SysCreateEventSem 366
SysCreateMutexSem 367
SysCurPos 367
SysCurState 368
SysDriveInfo 368
SysDriveMap 369
SysDropFuncs 370
SysDropRexxMacro 370
SysDumpVariables 370
SysFileDelete 371
SysFileSearch 371
SysFileSystemType 373
SysFileTree 373
SysFromUnicode 376
SysGetErrortext 379
SysGetFileDateTime 379
SysGetKey 380
SysIni 381
SysLoadFuncs 383
SysLoadRexxMacroSpace 383
SysMkDir 383
SysOpenEventSem 384
SysOpenMutexSem 384
SysPostEventSem 385
SysPulseEventSem 385
SysQueryProcess 385
SysQueryRexxMacro 386
SysReleaseMutexSem 387
SysReorderRexxMacro 387
SysRequestMutexSem 387

568 Object REXX Reference

SysResetEventSem 388
SysRmDir 388
SysSaveRexxMacroSpace 389
SysSearchPath 389
SysSetFileDateTime 390
SysSetPriority 391
SysSleep 392
SysStemCopy 392
SysStemDelete 393
SysStemInsert 394
SysStemSort 395
SysSwitchSession 396
SysSystemDirectory 396
SystemMenu method 280
SysTempFileName 396
SysTextScreenRead 397
SysTextScreenSize 398
SysToUnicode 377
SysUtilVersion 398
SysVersion 399
SysVolumeLabel 399
SysWaitEventSem 399
SysWaitNamedPipe 400
SysWinDecryptFile 400
SysWinEncryptFile 401
SysWinVer 401

T
Table class 150
tail 33
template

definition 403
list

ARG instruction 43
PARSE instruction 64
PULL instruction 69

temporary command destination
change 42

ten, powers of 424
terminal

reading from with PULL 69
writing to with SAY 75

terms and data 18
testing

abbreviations with ABBREV
function 304

abbreviations with ABBREV
method 212

variable initialization 345
TextOf(id) method 282
TextOf(position) method 281
THEN

as free standing clause 41
following IF clause 56
following WHEN clause 76

thread 376, 378, 385, 386, 439

tilde (∼) 5
TIME function

description 346
example 347
implementation maximum 348

tips, tracing 82
Title= method 270
Title method 269
TO phrase of DO instruction 49
ToForeground method 272
tokens

binary strings 14
description 12
hexadecimal strings 13
literal strings 12
numbers 15
operator characters 16
special characters 16
symbols 14

TRACE function 349
TRACE instruction

alphabetic character word
options 80

description 79
example 82

TRACE setting
altering with TRACE

function 349
altering with TRACE

instruction 79
querying 349

traceback, on syntax error 83
tracing

action saved during subroutine
calls 48

by interactive debug 475
data identifiers 82
execution of programs 79
tips 82

tracing flags
- 83
+++ 83
>.> 83
>>> 83
>C> 83
>F> 83
>L> 83
>M> 83
>O> 83
>P> 83
>V> 83

trailing
blank removed using STRIP

function 344

trailing (continued)
blank removed using STRIP

method 231
transient input and output 463
TRANSLATE function

description 349
example 350

TRANSLATE method 232
translation

with TRANSLATE function 349
with TRANSLATE method 232

trap conditions
explanation 429
how to trap 429
information about trapped

condition 313
using CONDITION function 313

trapname 432
TRUNC function 350
TRUNC method 233
truncating numbers 233, 350
twiddle (∼) 5
Type conversion 291
type of data, checking with

DATATYPE 219, 317
Typelib generation (WSH

engine) 504
typewriter input and output 463

U
unassigning variables 50
unconditionally leaving your

program 51
underflow, arithmetic 427
UNGUARDED option of

::METHOD 90, 446
UNINHERIT method 170
uninitialized variable 29
UNION method

of Directory class 132
of Relation class 146
of Table class 153

UNKNOWN method
of Directory class 131
of Monitor class 178
of OLEObject class 291
of Stem class 188

UNLOAD method 257
unpacking a string

with B2X 215, 309
with C2X 219, 316

UNSETMETHOD method 185
UNTIL phrase of DO instruction 49
unusual change in flow of

control 429

Index 569

UPPER
in parsing 412
option of PARSE instruction 64

uppercase translation
during ARG instruction 43
during PULL instruction 69
of symbols 14
with PARSE UPPER 64
with TRANSLATE function 349
with TRANSLATE method 232

Usa option of DATE function 319
USE instruction

description 84
examples 84

USER condition of SIGNAL and
CALL instructions 432, 435

user input and output 463, 475
USERS= method 258
USERS method 257

V
value 18
VALUE function 350
value of variable, getting with

VALUE 350
VALUE option of PARSE

instruction 65
VAR option of PARSE

instruction 66
variable

checking name 353
compound 33
controlling loops 516
description 29
dropping of 50
exposing to caller 66
external collections 351
getting value with VALUE 350
global 351
in internal functions 66
in subroutines 66
names 14
new level of 66
parsing of 66
patterns, parsing with

positional 412
string 411

pool interface 29
positional patterns 412
reference 411
resetting of 50
setting new value 29
SIGL 436
simple 30
special

RC 37, 436, 481

variable (continued)
special (continued)

RESULT 74, 302, 481
SELF 481
SIGL 47, 436, 481
SUPER 481

string patterns 411
testing for initialization 345
valid names 29

variables
acquiring 7, 9
in objects 4

VBScript 508
VERIFY function 353
VERIFY method 234
verifying contents of a string 234,

353
VERSION option of PARSE

instruction 66
virtual keys 246

W
WClass method 270
Weekday option of DATE

function 319
WHILE phrase of DO

instruction 49
whole numbers

checking with DATATYPE 219,
317

description 16
WindowAtPosition method 266
WindowObject class 268
Windows Scripting Host

engine 493
.dll vs COM 513
.wsc file type 499
.wsf file type 497
and Microsoft Internet

Explorer 494, 507
boolean values 506
cancelling Internet Explorer

events 506
COM events 505
COM object registration 504
CScript 494, 507
declaring objects 512
Domain Object Model

(DOM) 508
events 505
features duplicated in Object

REXX 512
file types 496
Internet Explorer events 506
invocation as a COM object 503
invocation by browser 495

Windows Scripting Host
engine 493 (continued)

invocation from a command
prompt 502

invoking a script 504
JScript 508
Object REXX Sandbox 512
properties 510
samples 506
specification, interpretation of

and deviation from 507
Subcom vs the host

interface 513
Typelib generation 504
VBScript 508
WScript 494, 507

WindowsClipboard class 283
WindowsEventLog class 258
WindowsManager class 265
WindowsProgramManager

class 241
WindowsRegistry class 249
word

alphabetic character options in
TRACE 80

counting in a string 236, 355
deleting from a string 221, 321
extracting from a string 232,

235, 345, 354, 403
finding length of 235, 355
in parsing 403
locating in a string 235, 354
parsing

conceptual view 419
description and

examples 403
WORD function 354
WORD method 235
WORDINDEX function 354
WORDINDEX method 235
WORDLENGTH function 355
WORDLENGTH method 235
WORDPOS function 355
WORDPOS method 236
WORDS function 355
WORDS method 236
Write method 261
write position in a stream 465
writing to external data queue

with PUSH 70
with QUEUE 70

WScript 494, 507
WSH engine: see Windows Scripting

Host engine 493

570 Object REXX Reference

X
X2B function 356

X2B method 237

X2C function 357

X2C method 237

X2D function 357

X2D method 238

XOR, logical 23

XOR method

of Directory class 132
of Relation class 146
of Table class 154

XORing character strings
together 215, 308

XRANGE function 356

Z
zeros

added on left with RIGHT
function 335

added on left with RIGHT
method 229

removal with STRIP
function 344

removal with STRIP method 231

Index 571

572 Object REXX Reference

Readers’ Comments — We’d Like to Hear from You

Object REXX for Windows
Reference
Version 2.1

Publication No. SH12-6725-00

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SH12-6725-00

SH12-6725-00

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

PLACE

POSTAGE

STAMP

HERE

IBM Deutschland Entwicklung GmbH
Information Development, Dept. 0446
Schoenaicher Str. 220
71032 Boeblingen
Germany

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Part Number: CT81CIE
Program Number: 5639-M68 Development Edition

5639-M69 Interpreter Edition

Printed in Denmark by IBM Danmark A/S

SH12-6725-00

(1
P)

P/
N:

CT
81
CI
E

	Contents
	About This Book
	Related Information
	How to Send Your Comments
	How to Read the Syntax Diagrams

	Chapter 1. REXX General Concepts
	What Is Object-Oriented Programming?
	Modularizing Data
	Modeling Objects
	How Objects Interact
	Methods
	Polymorphism
	Classes and Instances
	Data Abstraction
	Subclasses, Superclasses, and Inheritance
	Structure and General Syntax
	Characters
	Comments
	Tokens
	Literal Strings
	Hexadecimal Strings
	Binary Strings
	Symbols
	Numbers
	Operator Characters
	Special Characters
	Example

	Implied Semicolons
	Continuations

	Terms, Expressions, and Operators
	Terms and Expressions
	Operators
	String Concatenation
	Arithmetic
	Comparison
	Logical (Boolean)

	Parentheses and Operator Precedence
	Message Terms
	Message Sequences

	Clauses and Instructions
	Null Clauses
	Directives
	Labels
	Instructions
	Assignments
	Message Instructions
	Keyword Instructions
	Commands

	Assignments and Symbols
	Constant Symbols
	Simple Symbols
	Stems
	Compound Symbols
	Evaluated Compound Variables

	Environment Symbols

	Message Instructions
	Commands to External Environments
	Environment
	Commands

	Using REXX on Windows

	Chapter 2. Keyword Instructions
	ADDRESS
	ARG
	CALL
	DO
	DROP
	EXIT
	EXPOSE
	FORWARD
	GUARD
	IF
	INTERPRET
	ITERATE
	LEAVE
	NOP
	NUMERIC
	PARSE
	PROCEDURE
	PULL
	PUSH
	QUEUE
	RAISE
	REPLY
	RETURN
	SAY
	SELECT
	SIGNAL
	TRACE
	USE

	Chapter 3. Directives
	::CLASS
	::METHOD
	::REQUIRES
	::ROUTINE

	Chapter 4. Objects and Classes
	Types of Classes
	Object Classes
	Mixin Classes
	Abstract Classes
	Metaclasses
	Creating Classes and Methods
	Using Classes
	Scope
	Defining Instance Methods with SETMETHOD or ENHANCED
	Method Names
	Default Search Order for Method Selection
	Defining an UNKNOWN Method
	Changing the Search Order for Methods
	Public and Private Methods
	The Class Hierarchy
	Initialization
	Object Destruction and Uninitialization
	Required String Values
	Concurrency
	Classes and Methods Provided by REXX
	Summary of Methods by Class

	Chapter 5. The Collection Classes
	The Array Class
	NEW (Class Method)
	OF (Class Method)
	[]
	[]=
	AT
	DIMENSION
	FIRST
	HASINDEX
	ITEMS
	LAST
	MAKEARRAY
	NEXT
	PREVIOUS
	PUT
	REMOVE
	SECTION
	SIZE
	SUPPLIER
	Examples

	The Bag Class
	OF (Class Method)
	[]
	[]=
	HASINDEX
	MAKEARRAY
	PUT
	SUPPLIER
	Examples

	The Directory Class
	[]
	[]=
	AT
	ENTRY
	HASENTRY
	HASINDEX
	ITEMS
	MAKEARRAY
	PUT
	REMOVE
	SETENTRY
	SETMETHOD
	SUPPLIER
	UNKNOWN
	DIFFERENCE
	INTERSECTION
	SUBSET
	UNION
	XOR
	Examples

	The List Class
	OF (Class Method)
	[]
	[]=
	AT
	FIRST
	FIRSTITEM
	HASINDEX
	INSERT
	ITEMS
	LAST
	LASTITEM
	MAKEARRAY
	NEXT
	PREVIOUS
	PUT
	REMOVE
	SECTION
	SUPPLIER

	The Queue Class
	[]
	[]=
	AT
	HASINDEX
	ITEMS
	MAKEARRAY
	PEEK
	PULL
	PUSH
	PUT
	QUEUE
	REMOVE
	SUPPLIER

	The Relation Class
	[]
	[]=
	ALLAT
	ALLINDEX
	AT
	HASINDEX
	HASITEM
	INDEX
	ITEMS
	MAKEARRAY
	PUT
	REMOVE
	REMOVEITEM
	SUPPLIER
	DIFFERENCE
	INTERSECTION
	SUBSET
	UNION
	XOR
	Examples

	The Set Class
	OF (Class Method)
	[]
	[]=
	AT
	HASINDEX
	ITEMS
	MAKEARRAY
	PUT
	REMOVE
	SUPPLIER

	The Table Class
	[]
	[]=
	AT
	HASINDEX
	ITEMS
	MAKEARRAY
	PUT
	REMOVE
	SUPPLIER
	DIFFERENCE
	INTERSECTION
	SUBSET
	UNION
	XOR

	The Concept of Set Operations
	The Principles of Operation
	Set Operations on Collections without Duplicates
	Set-Like Operations on Collections with Duplicates

	Determining the Identity of an Item
	The Argument Collection Classes
	The Receiver Collection Classes
	Classifying Collections

	Chapter 6. Other Classes
	The Alarm Class
	CANCEL
	INIT
	Examples

	The Class Class
	BASECLASS
	DEFAULTNAME
	DEFINE
	DELETE
	ENHANCED
	ID
	INHERIT
	INIT
	METACLASS
	METHOD
	METHODS
	MIXINCLASS
	NEW
	QUERYMIXINCLASS
	SUBCLASS
	SUBCLASSES
	SUPERCLASSES
	UNINHERIT

	The Message Class
	COMPLETED
	INIT
	NOTIFY
	RESULT
	SEND
	START
	Example

	The Method Class
	NEW (Class Method)
	NEWFILE (Class Method)
	SETGUARDED
	SETPRIVATE
	SETPROTECTED
	SETSECURITYMANAGER
	SETUNGUARDED
	SOURCE

	The Monitor Class
	CURRENT
	DESTINATION
	INIT
	UNKNOWN
	Examples

	The Object Class
	NEW (Class Method)
	Operator Methods
	CLASS
	COPY
	DEFAULTNAME
	HASMETHOD
	INIT
	OBJECTNAME
	OBJECTNAME=
	REQUEST
	RUN
	SETMETHOD
	START
	STRING
	UNSETMETHOD

	The Stem Class
	NEW (Class Method)
	[]
	[]=
	MAKEARRAY
	REQUEST
	UNKNOWN

	The Stream Class
	ARRAYIN
	ARRAYOUT
	CHARIN
	CHAROUT
	CHARS
	CLOSE
	COMMAND
	Command Strings

	DESCRIPTION
	FLUSH
	INIT
	LINEIN
	LINEOUT
	LINES
	MAKEARRAY
	OPEN
	POSITION
	QUALIFY
	QUERY
	SEEK
	STATE
	SUPPLIER

	The String Class
	NEW (Class Method)
	Arithmetic Methods
	Comparison Methods
	Logical Methods
	Concatenation Methods
	ABBREV
	ABS
	BITAND
	BITOR
	BITXOR
	B2X
	CENTER/CENTRE
	CHANGESTR
	COMPARE
	COPIES
	COUNTSTR
	C2D
	C2X
	DATATYPE
	DELSTR
	DELWORD
	D2C
	D2X
	FORMAT
	INSERT
	LASTPOS
	LEFT
	LENGTH
	MAKESTRING
	MAX
	MIN
	OVERLAY
	POS
	REVERSE
	RIGHT
	SIGN
	SPACE
	STRING
	STRIP
	SUBSTR
	SUBWORD
	TRANSLATE
	TRUNC
	VERIFY
	WORD
	WORDINDEX
	WORDLENGTH
	WORDPOS
	WORDS
	X2B
	X2C
	X2D

	The Supplier Class
	NEW (Class Method)
	AVAILABLE
	INDEX
	ITEM
	NEXT
	Examples

	The WindowsProgramManager Class
	AddDesktopIcon
	AddShortCut
	AddGroup
	AddItem
	DeleteGroup
	DeleteItem
	Init
	ShowGroup
	Symbolic Names for Virtual Keys

	The WindowsRegistry Class
	CLASSES_ROOT
	CLASSES_ROOT=
	CLOSE
	CONNECT
	CREATE
	CURRENT_KEY
	CURRENT_KEY=
	CURRENT_USER
	CURRENT_USER=
	DELETE
	DELETEVALUE
	FLUSH
	GETVALUE
	INIT
	LIST
	LISTVALUES
	LOAD
	LOCAL_MACHINE
	LOCAL_MACHINE=
	OPEN
	QUERY
	REPLACE
	RESTORE
	SAVE
	SETVALUE
	UNLOAD
	USERS
	USERS=

	The WindowsEventLog Class
	INIT
	OPEN
	CLOSE
	READ
	WRITE
	CLEAR
	GETNUMBER

	The WindowsManager Class
	FIND
	FOREGROUNDWINDOW
	WINDOWATPOSITION
	CONSOLETITLE
	CONSOLETITLE=
	SENDTEXTTOWINDOW
	PUSHBUTTONINWINDOW
	PROCESSMENUCOMMAND

	The WindowObject Class
	ASSOCWINDOW
	HANDLE
	TITLE
	TITLE=
	WCLASS
	ID
	COORDINATES
	STATE
	RESTORE
	HIDE
	MINIMIZE
	MAXIMIZE
	RESIZE
	ENABLE
	DISABLE
	MOVETO
	TOFOREGROUND
	FOCUSNEXTITEM
	FOCUSPREVIOUSITEM
	FOCUSITEM
	FINDCHILD
	CHILDATPOSITION
	NEXT
	PREVIOUS
	FIRST
	LAST
	OWNER
	FIRSTCHILD
	ENUMERATECHILDREN
	SENDMESSAGE
	SENDCOMMAND
	SENDMENUCOMMAND
	SENDMOUSECLICK
	SENDSYSCOMMAND
	PUSHBUTTON
	SENDKEY
	SENDCHAR
	SENDKEYDOWN
	SENDKEYUP
	SENDTEXT
	MENU
	SYSTEMMENU
	ISMENU
	PROCESSMENUCOMMAND

	The MenuObject Class
	ISMENU
	ITEMS
	IDOF
	TEXTOF(position)
	TEXTOF(id)
	SUBMENU
	FINDSUBMENU
	FINDITEM
	PROCESSITEM

	The WindowsClipboard Class
	COPY
	PASTE
	EMPTY
	ISDATAAVAILABLE

	The OLEObject Class
	INIT
	GETCONSTANT
	GETKNOWNEVENTS
	GETKNOWNMETHODS
	GETOBJECT
	GETOUTPARAMETERS
	UNKNOWN
	Type Conversion

	Chapter 7. Other Objects
	The Environment Object
	The NIL Object
	The Local Environment Object (.LOCAL)

	The Error Object
	The Input Object
	The Output Object

	Chapter 8. Functions
	Syntax
	Functions and Subroutines
	Search Order
	Errors during Execution

	Return Values
	Built-in Functions
	ABBREV (Abbreviation)
	ABS (Absolute Value)
	ADDRESS
	ARG (Argument)
	BEEP
	BITAND (Bit by Bit AND)
	BITOR (Bit by Bit OR)
	BITXOR (Bit by Bit Exclusive OR)
	B2X (Binary to Hexadecimal)
	CENTER (or CENTRE)
	CHANGESTR
	CHARIN (Character Input)
	CHAROUT (Character Output)
	CHARS (Characters Remaining)
	COMPARE
	CONDITION
	COPIES
	COUNTSTR
	C2D (Character to Decimal)
	C2X (Character to Hexadecimal)
	DATATYPE
	DATE
	DELSTR (Delete String)
	DELWORD (Delete Word)
	DIGITS
	DIRECTORY
	D2C (Decimal to Character)
	D2X (Decimal to Hexadecimal)
	ERRORTEXT
	FILESPEC
	FORM
	FORMAT
	FUZZ
	INSERT
	LASTPOS (Last Position)
	LEFT
	LENGTH
	LINEIN (Line Input)
	LINEOUT (Line Output)
	LINES (Lines Remaining)
	MAX (Maximum)
	MIN (Minimum)
	OVERLAY
	POS (Position)
	QUEUED
	RANDOM
	REVERSE
	RIGHT
	SIGN
	SOURCELINE
	SPACE
	STREAM
	STRIP
	SUBSTR (Substring)
	SUBWORD
	SYMBOL
	TIME
	TRACE
	TRANSLATE
	TRUNC (Truncate)
	VALUE
	VAR
	VERIFY
	WORD
	WORDINDEX
	WORDLENGTH
	WORDPOS (Word Position)
	WORDS
	XRANGE (Hexadecimal Range)
	X2B (Hexadecimal to Binary)
	X2C (Hexadecimal to Character)
	X2D (Hexadecimal to Decimal)

	Windows Application Programming Interface Functions
	RXFUNCADD
	RXFUNCDROP
	RXFUNCQUERY
	RXQUEUE

	Chapter 9. REXX Utilities (RexxUtil)
	RxMessageBox
	RxWinExec
	SysAddRexxMacro
	SysBootDrive
	SysClearRexxMacroSpace
	SysCloseEventSem
	SysCloseMutexSem
	SysCls
	SysCreateEventSem
	SysCreateMutexSem
	SysCurPos
	SysCurState
	SysDriveInfo
	SysDriveMap
	SysDropFuncs
	SysDropRexxMacro
	SysDumpVariables
	SysFileDelete
	SysFileSearch
	SysFileSystemType
	SysFileTree
	SysFromUnicode
	SysToUnicode
	SysGetErrortext
	SysGetFileDateTime
	SysGetKey
	SysIni
	SysLoadFuncs
	SysLoadRexxMacroSpace
	SysMkDir
	SysOpenEventSem
	SysOpenMutexSem
	SysPostEventSem
	SysPulseEventSem
	SysQueryProcess
	SysQueryRexxMacro
	SysReleaseMutexSem
	SysReorderRexxMacro
	SysRequestMutexSem
	SysResetEventSem
	SysRmDir
	SysSaveRexxMacroSpace
	SysSearchPath
	SysSetFileDateTime
	SysSetPriority
	SysSleep
	SysStemCopy
	SysStemDelete
	SysStemInsert
	SysStemSort
	SysSwitchSession
	SysSystemDirectory
	SysTempFileName
	SysTextScreenRead
	SysTextScreenSize
	SysUtilVersion
	SysVersion
	SysVolumeLabel
	SysWaitEventSem
	SysWaitNamedPipe
	SysWinDecryptFile
	SysWinEncryptFile
	SysWinVer

	Chapter 10. Parsing
	Simple Templates for Parsing into Words
	The Period as a Placeholder

	Templates Containing String Patterns
	Templates Containing Positional (Numeric) Patterns
	Combining Patterns and Parsing into Words

	Parsing with Variable Patterns
	Using UPPER, LOWER, and CASELESS
	Parsing Instructions Summary
	Parsing Instructions Examples
	Advanced Topics in Parsing
	Parsing Several Strings
	Combining String and Positional Patterns
	Conceptual Overview of Parsing

	Chapter 11. Numbers and Arithmetic
	Precision
	Arithmetic Operators
	Power
	Integer Division
	Remainder
	Operator Examples

	Exponential Notation
	Numeric Comparisons
	Limits and Errors when REXX Uses Numbers Directly

	Chapter 12. Conditions and Condition Traps
	Action Taken when a Condition Is Not Trapped
	Action Taken when a Condition Is Trapped
	Condition Information
	Descriptive Strings
	Additional Object Information
	The Special Variable RC
	The Special Variable SIGL
	Condition Objects

	Chapter 13. Concurrency
	Early Reply
	Message Objects
	Default Concurrency
	Sending Messages within an Activity

	Using Additional Concurrency Mechanisms
	SETUNGUARDED Method and UNGUARDED Option
	GUARD ON and GUARD OFF
	Guarded Methods
	Additional Examples
	Semaphores
	Monitors (Bounded Buffer)
	Readers and Writers

	Chapter 14. Built-in Objects
	.METHODS
	.RS

	Chapter 15. The Security Manager
	Calls to the Security Manager
	Example

	Chapter 16. Input and Output Streams
	The Input and Output Model
	Input Streams
	Output Streams
	External Data Queue
	Unnamed Queues
	Named Queues
	Multiprogramming Considerations

	Default Stream Names
	Line versus Character Positioning

	Implementation
	Operating System Specifics
	Examples of Input and Output
	Errors during Input and Output
	Summary of REXX I/O Instructions and Methods

	Chapter 17. Debugging Aids
	Interactive Debugging of Programs
	RXTRACE Variable
	Object REXX Workbench

	Chapter 18. Reserved Keywords
	Chapter 19. Special Variables
	Chapter 20. Useful Services
	Windows Commands
	Subcommand Handler Services
	The RXSUBCOM Command
	RXSUBCOM REGISTER
	RXSUBCOM DROP
	RXSUBCOM QUERY
	RXSUBCOM LOAD

	The RXQUEUE Filter

	Distributing Programs without Source

	Chapter 21. Windows Scripting Host Engine
	Object REXX as a Windows Scripting Host Engine
	Windows Scripting Host Overview
	The Gestation of WSH
	Hosts Provided by Microsoft

	Scripting in the Windows Style
	Invocation by the Browser
	WSH File Types and Formats
	.wsf
	.wsc

	Invocation from a Command Prompt
	As a Conventional Object REXX File
	As a Windows Scripting Host File

	Invocation as a COM Object
	Registering the COM Object
	Generating a Typelib
	Invoking
	Events

	WSH Samples

	Interpretation of and Deviation from the WSH Specification
	Windows Scripting Host (WSH) Advanced Overview
	Hosts Provided by Microsoft
	Additional COM Objects
	Where to Find Additional Documentation

	Object REXX in the WSH Environment
	Object REXX Features Available
	Changes in Object REXX due to WSH
	Parameters

	Properties
	The Object REXX "Sandbox"
	Implications of Browser Applications That Run Outside the "Sandbox"

	Features Duplicated in Object REXX and WSH
	Declaring Objects with Object REXX or WScript
	Subcom versus the Host Interface
	.dll vs COM

	Appendix A. Using the DO Keyword
	Simple DO Group
	Repetitive DO Loops
	Simple Repetitive Loops
	Controlled Repetitive Loops

	Repetitive Loops over Collections
	Conditional Phrases (WHILE and UNTIL)

	Appendix B. Migration
	Error Codes and Return Codes
	Error Detection and Reporting
	Environment Variables
	Stems versus Collections
	Input and Output Using Functions and Methods
	.Environment
	Deleting Environment Variables
	Queuing
	Trace in Macrospace
	The RxMessageBox Function

	Appendix C. Error Numbers and Messages
	Error List
	RXSUBCOM Utility Program
	RXQUEUE Utility Program
	REXXC Utility Program
	REXXRT Utility Program

	Appendix D. Notices
	Trademarks

	Index
	Readers’ Comments — We'd Like to Hear from You

