
DB2 Alphablox for UNIX and Windows v5.6

Developer’s Guide
for the DHTML Client
SC18- 9360-00

2

Note: Before using this information and the product it supports, read the information in
“Notices” on page 15.

First edition (August 2004)

This edition applies to version 5, release 6, of IBM DB2 Alphablox for UNIX and Windows V5.6
(product number 5724-J16) and to all subsequent releases and modifications until otherwise
indicated in new editions.

Copyright © 1996 - 2004 Alphablox Corporation. All rights reserved.

© Copyright International Business Machines Corporation 1996, 2004. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

Contents
Developer’s Guide
for the DHTML Client

Notices . 15
Trademarks . 17

Preface . 19
About This Book . 20

Intended Audience . 20
Organization . 20

Related Documents . 24
Online Documentation User Interface . 25
Document Conventions . 26

Icons . 26
Typography . 26

Contacting IBM . 27
Product Information . 27
Comments on the Documentation . 28

Chapter 1
Alphablox Analytics Applications and the Underlying Blox . 29

Key Characteristics of an Alphablox Analytics Application . 30
Real-time Data Access and Analysis . 30
Interactive End-user Interface . 32
Personalization . 35
Sharing and Collaboration . 36
Real-time Planning . 38

The Underlying Blox Components . 38
DataBlox . 40
GridBlox . 42
ChartBlox . 43
DataLayoutBlox . 43
PageBlox . 44
ToolbarBlox . 45
PresentBlox . 45

Alphablox FastForward . 45

4 Contents
Chapter 2
Alphablox Analytics Application Program Flow .47

Application File Structure . 47
Application Context . 47
Alphablox Analytics Repository . 48
Working with Blox in JavaServer Pages . 49

Request Processing . 51
Alphablox Analytics Program Flow . 53
Bookmarking, Application States, and the Repository 55

Application Development and Programming Model . 55
Blox Components . 56
Server-side API vs. Client-side API . 56

Chapter 3
Your Development Environment .59

Choosing Application Development Tools . 59
Web Browsers . 59

General Considerations . 60
Working with DHTML Mode . 60
Task: Configuring and Developing with Microsoft Internet Explorer 61

Application Studio . 62

Chapter 4
Design Considerations .63

Defining Application Requirements . 63
Data Requirements . 63
User Interface Requirements . 65

User Groups . 65
Content Presentation . 65
User Instructions . 66
User Navigation . 66
Data Manipulation . 66
Saving and Restoring Work . 67

Application Logic Requirements . 67
Custom Properties . 67

Chapter 5
Building Your First Application .69

Defining Your Application . 69
Accessing Data . 70
Creating Your Application Home Page . 71
Setting Default Home Page . 72
Creating Your First Analytic View . 72

Contents 5
Creating Your Second Analytic View .75
Summary .77

Chapter 6
Using JavaServer Pages and the Blox Tag Library . 79

JavaServer Pages Technology .79
Book Recommendations .80
Web Sites .81

Using JavaServer Pages with Alphablox Analytics .82
Server-Side Programming with Alphablox Analytics .82
Using the Blox Tag Libraries .83
Accessing the Blox Tag Library .84
Using the Blox Header Tag .85
Defining Blox .86
Setting Blox Properties Using Tag Attributes .89
Setting Blox Properties Using Style Property Tags .90
Setting Indexed Blox Properties Using Property Tags .92
Controlling Visibility of Blox .95

For Processing Logic Before Rendering .95
Rendering Blox on Multiple Pages .96
Blox Utility Tags .96

Blox Header Tag .96
Blox Debug Tag .97
Blox Display Tag .97

Using Standard JSP Syntax .97
More to Learn .98

Chapter 7
Using Blox Form Tags . 99

Using the Blox Form Tag Library .99
Overview of FormBlox Components .100

Types of FormBlox Components .100
Getting and Setting Properties in Blox and JavaBeans Components103
FormBlox Event Model .103

Examples Using Blox Form Tags .104
Ad Hoc Analysis using DataSourceSelectFormBlox .104
DHTML Query Builder .104
Specifying Report Options using FormBlox .104
Navigation Menu Using TreeFormBlox .105
Report Templates in FastForward Applications .105
DB2 Alphablox
Developer’s Guide for the DHTML Client

6 Contents
Chapter 8
Using Blox Logic Tags . 107

Using the Blox Logic Tag Library . 107
Overview of the Blox Logic Components . 107
Using the MDBQueryBlox to Select Products . 108
Listing Cube Members using MemberSecurityBlox . 111
Using TimeSchemaBlox . 113

Chapter 9
Blox UI Tags . 115

Blox UI Tag Library Overview . 115
Blox UI Tag Categories . 115
Blox UI Tag Examples . 116

Component Customization . 116
Custom Layout Tags . 117
Analysis Tags . 118
Utility Tags . 119
More Examples . 119

Chapter 10
DHTML Client UI Extensibility . 121

The Blox UI Model . 121
Purpose of the Blox UI Model . 123
Components Overview . 124

Components . 125
Containers . 128

Layout . 128
Compound Components . 128
Using ContainerBlox . 129

Controllers . 130
The Controller base class . 131
“Implied” Controllers . 131

Events . 132
Adding Dedicated Controllers to Components . 133
Adding Listeners to Pre-existing Controllers . 133

Model Dispatcher . 134
Dialogs . 135

Creating a Simple Dialog . 135
MessageBox . 138

DHTML Client Application Logic and Flow . 139
DHTML Client Is Theme-Based . 140

Styles . 141
Setting Multiple Theme Classes . 142

Contents 7
Charting .142
The Chart Component .143
Controlling Chart Settings .145
Chart Event Handling .146
Code samples .147

Javadoc Documentation .150
Blox UI Model Examples .150

Single Toolbar .150
Disabling Context (Right-Click) Menu .151
Customized Context (Right-Click) Menu .152
Custom Grid Layout .153
Mapping Grid Cells to Underlying Result Set .155

Chapter 11
DHTML Client API . 157

DHTML Client API Overview .157
Using the DHTML Client API .157
The DHTML Client API Framework .158

BloxAPI Object .158
Blox Object .159
Utility Objects .159

Sending Events .160
Initiating Model Events From JavaScript .160

Intercepting Events .161
Intercepting Client-Side Events Example .161

Invoking JavaScript Directly From the User Interface .162
Exception Handling .163
Invoking Server-side Logic using the DHTML Client API .163

BloxAPI.call() and Blox.call() .163
BloxAPI.callBean() .164
<blox:clientBean> .165
Using <blox:clientBean> With Server-Side Blox .165

The DHTML Client DOM API .168
Using Multiple Frames .168
Refreshing Pages .169

Chapter 12
Connecting to Data .171

Creating Data Sources .171
Task: Defining a Data Source .171

Defining the DataBlox dataSourceName Property .172
Setting the dataSourceName attribute .173
Using the setDataSourceName() JavaScript Method .173
Task: Setting Different Data Sources Using DataSourceSelectFormBlox . . .173
DB2 Alphablox
Developer’s Guide for the DHTML Client

8 Contents
Connecting To and Disconnecting From Data Sources . 176
Auto-connecting and Auto-Disconnecting . 179

Chapter 13
Retrieving Data . 181

Overview . 181
Setting the DataBlox query Property . 182

Task: Setting and Executing a Query Using a JSP Scriptlet 183
Multidimensional Data Sources . 185

IBM DB2 OLAP Server and Hyperion Essbase . 185
Creating Essbase Report Scripts . 185
Essbase Report Script Commands Supported by Alphablox Analytics 186
Unsupported Report Script Commands with Alphablox Analytics Equivalents .
190
Unsupported Report Script Commands with no Alphablox Analytics Equivalents
192
Calc Scripts . 192
Substitution Variables . 193
Using Aliases . 193
Working with Decimals . 194
Microsoft Analysis Services . 194
Alphablox Cube Server . 197

Drillthrough Support for DB2 OLAP Server and Hyperion Essbase (using EIS) 197
Out-of-the-Box Integration Services DrillThrough Support 198
Controlling EIS DrillThrough Window Styles . 198
Custom EIS Drillthrough Support Using Relational Reporting 199
Other Custom EIS DrillThrough Support . 201

Drillthrough Support for Microsoft Analysis Services . 201
Out-of-the-Box DrillThrough Support . 203
Controlling DrillThrough Window Styles . 203
Custom Drillthrough Support Using Alphablox Analytics Relational Reporting
204
Other Custom DrillThrough Support . 207

Relational Data Sources . 208
Creating SQL Statements . 208

Using DHTML Query Builder . 209
Task: Using DHTML Query Builder . 210

Chapter 14
Presenting Data . 213

Choosing Blox for Presenting Data . 213
Data Presentation Blox - Advantages and Disadvantages 213

Render Formats Available to the DHTML Client . 215
DHTML Format (render=dhtml) . 216

Contents 9
Printer Format (render=printer) .216
PDF Format .216
Export To Excel Format (render=xls) .217
XML Format .217
Specifying a Delivery Format .218
Printing Blox Output .218
Printing with HTML-based Printing .219
Task: Creating a Printable Page Using the render=printer URL Attribute . . .219
Task: Creating Custom Print Pages Using the <blox:display> Tag220
Exporting Blox Views to Microsoft Excel .221

CSS Themes .221
Specifying HTML Themes in Applications .221
CSS Theme Files .222
CSS Theme Properties Defined In The themeName.properties File 223
CSS Classes Defined in the .css File .226

Overriding Defined Styles .229
Applying Styles to Cell Alerts .229
Look and Feel .230
Grid Appearance .231

Row Banding .232
Cell Appearance .232

Chart Appearance .232
Chart Types .232
Task: Adding 3-D Appearance to Charts .233
Chart Colors .233

PresentBlox Appearance .233
Split Panes .233
DataLayout .234
Menubar .235
Toolbar .235

Data Appearance .236
GridBlox Properties .236
Task: Formatting Values in Thousands and Billions .236
Task: Displaying % For a Specific Member .237
Task: Controlling the Behavior of Decimals .238

Chapter 15
Highlighting and Commenting on Information . 241

Overview .242
Using Format Masks to Highlight Data .242

Task: Highlighting Negative Values in Red .242
Task: Highlighting Negative Values with Parentheses 243

Using Cell Alerts to Highlight Data .243
Cell Formatting .244
DB2 Alphablox
Developer’s Guide for the DHTML Client

10 Contents
Task: A Simple Traffic Lighting Reporting System . 244
Cell Alert Links . 246
Task: Creating an Alert Message for a Cell Alert . 246

Information Links . 248
Header Links . 249
Cell Links . 250
Cell Alert Links . 251

Adding Comments to Cells to Grid Data Cells . 252
Key Terms . 252
Elements of a Comment . 253
Defining a Comments Collection . 254
Enabling Cell Comments . 255
Custom Comments Support . 256

Chapter 16
Interacting with Data .257

Interactivity Considerations . 257
Limited or No Interactivity . 257
Task: Disabling Pivoting and Drilling on Columns . 258
Modifying Interactivity Using Blox Properties . 259

Grids . 262
Charts . 262

Task: Allowing User Control of Generations Displayed 263
DataLayout Interface . 264
Interactions Between Grids and Charts . 264

Setting the “No data available” Message in Grids and Charts 265
Using HTML Form Elements and FormBlox Components . 266

Selection Lists . 267
Check Boxes and Radio Buttons . 268
Standard HTML Buttons . 268
Text Fields . 268

Using Toolbar Buttons . 269
Turn the Menu Bar On . 269
Turn Toolbar Text On . 269
Turn Tool Tips Off . 269
Change to Colored Buttons . 270
Turn Toolbars Off . 270

Events . 270

Chapter 17
Inputting and Modifying Data . 271

Writeback to Multidimensional Data Sources . 271
Editing Data Values in a Grid . 271
GridBlox Properties and Associated Methods for Writeback 271

Contents 11
GridBlox Java Writeback Methods .272
Task: Enabling a GridBlox for Writeback .272
DataBlox Methods for Writeback .273
Task: Writeback To Multidimensional Databases .274

Updating Relational Data Sources .276
Task: Updating a Relational Data Source Using Writeback 276
Writeback to Microsoft Analysis Services .276

Calculated Members (Derived Members) .276
Creating Calculated Members in Alphablox Analytics .277

Custom Calculation Guidelines .277
Conditions That Prevent Proper Display of Data .279
Property Syntax .279
Functions Available for CalculatedMembers .280
Examples .283

Calculated Members Using Essbase Report Script Commands284

Chapter 18
Filtering Data .285

Hiding Dimensions and Members .285
Using Dimension Root .286
Task: Setting a Virtual Root for Users .287

Creating Fixed Choice Lists .288
fixedChoiceLists .288
moreChoicesEnabledDefault and moreChoicesEnabled 289
Using MemberSecurityBlox to Filter Members .289

Using HTML Form Elements and FormBlox .290
Using Queries .290
Suppressing Data using Blox Properties .291

suppressMissingOnRows/suppressMissingOnColumns 291
suppressZeros .292
suppressDuplicates .292
suppressNoAccess .293

Personalization .293

Chapter 19
Persisting and Bookmarking Data .295

Persistence of Data in Alphablox Analytics .295
Application States .296
Using Custom Properties Stored in the Alphablox Analytics Repository 297

Task: Creating a Custom User Property .297
JavaServer Pages .298

Task: Using Request Parameters to Retrieve a URL Attribute Value299
DB2 Alphablox
Developer’s Guide for the DHTML Client

12 Contents
Chapter 20
Bookmarking Data . 301

Bookmarks - Developer Details . 302
Task: Getting a Count of All Bookmarks . 303
Task: Getting the properties set for a bookmark . 303
Task: Using server-side bookmarkLoad event filter 305

Customizing Applications Using BookmarksBlox API . 306
Example: Using Dynamic Queries with Bookmarks 307
Task: Getting a list of bookmarks that match the specified criteria 309
Task: Creating a bookmark using the BookmarksBlox API 310
Task: Getting a DB2 OLAP Server or Essbase serialized query in text form when
a bookmark is loaded . 312
Task: Using Custom Properties to Restrict Access . 313

Chapter 21
Distributing Views . 315

E-Mail . 315
Task: Creating a Mail Link Using the E-Mail Bean . 316

Bookmarks . 318
Printing . 319

Chapter 22
Exporting Data . 321

Exporting to Spreadsheets . 321
Exporting a Grid View . 321
Task: Exporting a Grid View to Microsoft Excel . 322

Exporting to XML . 323
Task: Rendering a Result Set into XML Format . 323
Sample Alphablox Analytics XML Document . 324

Chapter 23
Converting to PDF .327

Converting a Blox to a PDF File . 328
Default User Interface Options . 328
Global Default PDF Report Properties . 328
Using JSP Tags to Customize PDF Reports . 332

Multiple Blox to a Single PDF File . 337
Using a Remote PDF Processor . 338

Chapter 24
Error Handling . 339

Exceptions . 339

Contents 13
Custom Error Pages .340
errorPage Attribute .340
isErrorPage Attribute .340
Task: Creating a Simple Custom Error Page .340

Using Blox Properties and Methods to Handle Errors .342
noDataMessage .342
onErrorClearResultset .343

Chapter 25
Adding User Help . 345

User Help in Alphablox Analytics Applications .345
Using Existing Alphablox Analytics User Help .345
Creating Custom User Help .346
Using Information Links for Help .347

Chapter 26
Troubleshooting Applications . 349

Errors in JSP Files .349
Compilation Errors .349
Run-time Errors .350
JSP Error Pages .350

Blox Tag Behavior .350
Task: Testing Blox Tag Modifications .350

Common Blox Tag Errors .351
Forgetting to include the taglib directive .351
Incorrect case of a tag or tag attribute .351
Leaving off required quotes .351
Failing to include required tag attributes .352
Using an invalid data source .352
Refreshed page doesn’t reflect code modifications .352
Page loaded in new session still doesn’t reflect code changes352

The Blox Debug Tag .353
Alphablox Analytics Console Messages .354

Chapter 27
Working with Alphablox FastForward . 357

Alphablox FastForward Overview .357
Roles of FastForward Users .358
Customizing Alphablox FastForward .359

FastForward Application Architecture .359
Report Templates .361

Sample Report Templates .363
Creating Custom Report Templates .364
DB2 Alphablox
Developer’s Guide for the DHTML Client

14 Contents
Report Page (report.jsp) . 364
Template Parameters File (template.xml) . 368
Edit Page (edit.jsp) . 371
Optional Template Pages . 375
Testing Report Templates . 375
Saving Report Templates . 376
Sharing Report Templates . 376
Using the savedState Object . 376
Next Steps . 378

Chapter 28
Appendix: DHTML Client DOM API .379

GridBlox Client API . 379
Defining Blox . 379
Grids . 379
Selection . 380

Index . 383

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document
in other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY
10504-1785 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation, Licensing, 2-31 Roppongi 3-chome,
Minato-ku, Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country
where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION
"AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement
may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

16
Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation, J46A/G4, 555 Bailey Avenue, San Jose, CA 95141-1003 U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement or any equivalent
agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-
level systems and there is no guarantee that these measurements will be the same
on generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual
business enterprise is entirely coincidental.
CHAPTER
Notices

Trademarks 17
This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM's application programming interfaces.

Trademarks
Alphablox, InLine Analytics, Alphablox Analysis Server, Blox, SpreadsheetBlox,
and the Alphablox logo are trademarks or registered trademarks of Alphablox
Corporation.

IBM, DB2, DB2 Universal Database, WebSphere, and DB2 OLAP Server are
trademarks of International Business Machines Corporation in the United States,
other countries, or both.

Intel and Pentium are trademarks of Intel Corporation in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in
the United States, other countries, or both.

Other company, product or service names may be trademarks or service marks of
others.
DB2 Alphablox
Developer’s Guide for the DHTML Client

18 Trademarks
CHAPTER
Notices

Preface

This Preface describes intended audience, organization, and the conventions used
in the Developer’s Guide for the DHTML Client. It also contains information about
the DB2 Alphablox documentation set and information about how to contact IBM
for technical problems or comments on the documentation.

Contents

• “About This Book” on page 20

• “Related Documents” on page 24

• “Online Documentation User Interface” on page 25

• “Document Conventions” on page 26

• “Contacting IBM” on page 27

20 About This Book
About This Book
This book includes information on the DB2 Alphablox application design and
development process and techniques to build analytic applications using the DB2
Alphablox DHTML client.

 All of the examples used in the Developer’s Guide and in the Blox Sampler
application use the QCC databases, QCC-Essbase (for DB2 OLAP Server and
Essbase) and QCC-MSAS (for Microsoft Analysis Services). To install and
configure QCC, see the readme.txt file, which is located on the Alphablox
Analytics CD under the sample data directory:

<cdromDir>/sampledata/qcc/

Intended Audience

This book is written for application developers with the following skills and
knowledge:

• OLAP concepts and database schema

• relational database concepts and database schema

• the query languages used to access application data sources

• client-server application environments

• web application environments

• analytic applications

• Hypertext Markup Language (HTML)

• Cascading Style Sheets (CSS)

• JavaScript

• Document Object Model (DOM)

• JavaServer Pages (JSP) technology

• application design experience

Organization

This Developer’s Guide for the DHTML Client is organized into the following
chapters:

Preface

About This Book 21
• Chapter 1, “Alphablox Analytics Applications and the Underlying Blox” on
page 29

This chapter describes the major characteristics of an DB2 Alphablox application
and how the underlying Blox work together to provide a visual data analysis
experience to end-users and extensive programmatic control to application
developers.

• Chapter 2, “Alphablox Analytics Application Program Flow” on page 47

This chapter describes the file structure and program flow of an DB2 Alphablox
application.

• Chapter 3, “Your Development Environment” on page 59

This chapter provides general guidelines on choosing development tools and
setting up a development environment.

• Chapter 4, “Design Considerations” on page 63

This chapter provides guidance on gathering and defining application
requirements and designing efficient queries.

• Chapter 5, “Building Your First Application” on page 69

This chapter provides a step-by-step tutorial for building an DB2 Alphablox
application.

• Chapter 6, “Using JavaServer Pages and the Blox Tag Library” on page 79

This chapter describes the use of JavaServer Pages technology in DB2 Alphablox
applications and provides an overview of the Blox tag libraries.

• Chapter 7, “Using Blox Form Tags” on page 99

This chapter includes overviews and usage examples of the Blox Form Tag
Library.

• Chapter 8, “Using Blox Logic Tags” on page 107

This chapter includes overviews and usage examples of the Blox Logic Tag
Library.

• Chapter 9, “Blox UI Tags” on page 115

This chapter describes the Blox User Interface Model behind the DHTML Client.
DB2 Alphablox
Developer’s Guide for the DHTML Client

22 About This Book
• Chapter 10, “DHTML Client UI Extensibility” on page 121

This chapter explains how the Blox UI can be extended, using the Blox UI
Model.

• Chapter 11, “DHTML Client API” on page 157

This chapter covers the Blox Client API, including JavaScript methods for
invoking server-side APIs and actions.

• Chapter 12, “Connecting to Data” on page 171

This chapter explains how to create, connect to, and manage the access to data
sources.

• Chapter 13, “Retrieving Data” on page 181

This chapter describes how to retrieve data for viewing in DB2 Alphablox
applications from various data sources.

• Chapter 14, “Presenting Data” on page 213

This chapter provides guidelines on how to effectively use and control the
appearances of presentation Blox. It explains the use of different render modes
and themes.

• Chapter 15, “Highlighting and Commenting on Information” on page 241

This chapter explains the use of cell alerts, information links, and cell styles to
highlight data and offer additional information. Also, includes a discussion of
CommentsBlox usage to annotate data cells in multidimensional databases.

• Chapter 16, “Interacting with Data” on page 257

This chapter focuses on user behavior and describes techniques to capture user
actions and control interactivity of Blox.

• Chapter 17, “Inputting and Modifying Data” on page 271

This chapter explains how to input, or writeback, data to data sources. It also
discussed the use of calculated members to create new data.

• Chapter 18, “Filtering Data” on page 285

This chapter provides tips and techniques for filtering or hiding data to limit
access to information, help users work more effectively with large result sets, or
personalize the information they see.

Preface

About This Book 23
• Chapter 19, “Persisting and Bookmarking Data” on page 295

This chapter explains how to manage data persistence for application states,
bookmarks, and custom properties.

• Chapter 21, “Distributing Views” on page 315

This chapter describes ways to share information from Alphablox Analytics
applications.

• Chapter 23, “Converting to PDF” on page 327

This chapter describes how to use the Convert to PDF feature to provide users the
option to convert specific Blox views into customized Adobe Acrobat PDF file
versions.

• Chapter 22, “Exporting Data” on page 321

This chapter explains how you can create applications that support exporting grid
views to Microsoft Excel, or in an XML format.

• Chapter 24, “Error Handling” on page 339

This chapter provides information on how you can use Blox exceptions,
properties, and methods to handle errors that may occur.

• Chapter 25, “Adding User Help” on page 345

This chapter discusses some of the issues and design considerations involved in
supplying user help in applications created with Alphablox Analytics.

• Chapter 26, “Troubleshooting Applications” on page 349

This chapter explains the common errors when using JSP and the Blox tag
libraries and provides tips and techniques for troubleshooting.

• Chapter 27, “Working with Alphablox FastForward” on page 357

This chapter gives an overview of the Alphablox FastForward application
framework and how to build custom report templates for FastForward
appllications.
DB2 Alphablox
Developer’s Guide for the DHTML Client

24 Related Documents
Related Documents
The Alphablox Analytics documentation set includes books and online help. The
books are available in HTML, PDF, and printed format. Context-sensitive online
help is available for all parts of the Alphablox Analytics Admin pages as well as
within Alphablox Analytics applications. The DB2 Alphablox documentation set
includes the following books:

Javadoc documentation is available for the server-side API, ReportBlox API, and
FastForward API, and can be from the following directory:

<alphablox_dir>/system/documentation/javadoc

where <alphablox_dir> is the directory in which Alphablox Analytics is
installed. You can also access the Javadoc documentation from the the Help menu
in the Alphablox Analytics Admin pages.

Title Description

Administrator’s Guide Contains information about setting up and managing
Alphablox Analytics and about Alphablox Analytics in
a J2EE environment.

Developer’s Guide for
the DHTML Client

Provides guidance on designing, developing, and
deploying analytic applications using the DHTML
client. If you are new to Alphablox Analytics or are
developing new applications, it is recommended that
you start with this book.

Developer’s Reference
for the DHTML Client

A complete API reference for developing applications
using the DHTML client; contains information on each
Blox, including its JSP syntax, properties, methods, and
objects.

Relational Reporting
Developer’s Guide

Contains information about setting up ReportBlox to
build a report from relational data.

Alphablox Cube Server
Administrator’s Guide

Contains information about setting up Alphablox cubes.
Alphablox Cube Server allow you to present a
multidimensional view of data stored in a relational
data warehouse or data mart database.

Installation Guide Contains information on system requirements,
installing and configuring Alphablox Analytics,
installing sample data, and migrating applications from
previous versions.

Preface

Online Documentation User Interface 25
Online Documentation User Interface
The DB2 Alphablox documentation is also available online in HTML and PDF
formats. To open the Online Documentation, select the Online Documentation
link on the Help menu or from any help page on the Alphablox Analytics home
page.

When you select the Online Documentation, it opens in a frameset. The right
frame displays documentation pages; the left frame contains the following
navigation tabs:

Tab Description

Contents The Contents tab presents a tree view of all the online books in
the documentation set. Click on a book icon beside a heading to
expand or collapse the tree, displaying or hiding the topics within
that heading. To view a topic, click on its hyperlinked heading.

To access a page containing links to all of the PDF versions of the
documentation, click the PDF Documentation book icon.

Index The Index tab presents an alphabetical list of all indexed words
for every document in the DB2 Alphablox documentation set. To
view a topic, click on the indexed item. If multiple pages are
available for a topic, click the link with the page title for the first
topic, click the link with the number 2 for the second topic, and
so on.

Search The Search tab provides a text search.

The search feature provides a simple search on words entered.
You can search a single book instead of the entire documentation
set by selecting a book from the dropdown list. The search
supports the use of asterisks (*) for wildcard searches, but does
not use “near” logic or perform partial word search. Entering
multiple words implies an and between the words, returning pages
that contain all the words entered. The search is not case
sensitive.

To enter a search, click the Search tab, type one or more words in
the search box, and press the Search button. The search presents a
list of HTML pages containing the search word(s).

To view a page, click on its hyperlinked heading. When the page
appears in the right frame, use its hyperlinks or the browser’s
Find command to locate the word(s) within the page.
DB2 Alphablox
Developer’s Guide for the DHTML Client

26 Document Conventions
Document Conventions
Icons and typography call attention to or elaborate on areas of interest throughout
the Alphablox Analytics documentation set.

Icons

The icons used in the documentation are as follows:

Typography

The typography used in the documentation is as follows:

Icons Description

Identifies information helpful for the current task.

Identifies conceptual information on a particular topic or suggestions for
usage.

Identifies important information that the audience should know before
proceeding with a task.

Convention Description

Bold Caution statements, labels, headings, and table headers
appear in a bold font.

Italics Italics indicate an emphasized word or phrase as well as
book titles.

Monospace type Code examples, filenames, object names, property names,
and method names appear monospace type.

“Quotation marks” The proper syntax for Blox properties and methods or
queries may require single or double quotation marks. In
addition, quotation marks surround a cross-reference to
another topic.

Preface

Contacting IBM 27
Contacting IBM
If you have a technical problem, please review and carry out the actions
suggested by the product documentation before contacting DB2 Alphablox
Customer Support. This guide suggests information that you can gather to help
DB2 Alphablox Customer Support to serve you better.

For information or to order any products, contact an IBM representative at a local
branch office or contact any authorized IBM software remarketer. If you live in
the U.S.A., you can call one of the following numbers:

• 1-800-IBM-SERV for customer support

• 1-888-426-4343 to learn about available service options

Product Information

If you live in the U.S.A., then you can call one of the following numbers:

• 1-800-IBM-CALL (1-800-426-2255) or 1-800-3IBM-OS2 (1-800-342-6672)
to order products or get general information.

• 1-800-879-2755 to order publications.

http://www.ibm.com/software/data/db2/alphablox

Provides links to information about DB2 Alphablox.

http://www.ibm.com/software/data/db2/udb

The DB2 Universal Database Web pages provide current information about
news, product descriptions, education schedules, and more.

http://www.elink.ibmlink.ibm.com/

Click Publications to open the International Publications ordering Web site that
provides information about how to order books.

http://www.ibm.com/education/certify/

The Professional Certification Program from the IBM Web site provides
certification test information for a variety of IBM products.

Note: In some countries, IBM-authorized dealers should contact their dealer
support structure instead of the IBM Support Center.
DB2 Alphablox
Developer’s Guide for the DHTML Client

http://www.ibm.com/software/data/db2/alphablox
http://www.ibm.com/software/data/db2/udb
http://www.elink.ibmlink.ibm.com/
http://www.ibm.com/education/certify/

28 Contacting IBM
Comments on the Documentation

Your feedback helps IBM to provide quality information. Please send any
comments that you have about this book or other DB2 Alphablox documentation.
You can use any of the following methods to provide comments:

• Send your comments using the online readers' comment form at
www.ibm.com/software/data/rcf.

• Send your comments by electronic mail (e-mail) to comments@us.ibm.com.
Be sure to include the name of the product, the version number of the
product, and the name and part number of the book (if applicable). If you are
commenting on specific text, please include the location of the text (for
example, a title, a table number, or a page number).

Preface

mailto: comments@us.ibm.com
http://www.ibm.com/software/data/rcf

1
Alphablox Analytics Applications

and the Underlying Blox

Alphablox Analytics enables you to create custom business analytic
applications—applications that help your end users visualize and analyze live
business data and transactions from various data sources. Rather than just
providing data in the manner of query and reporting tools, an Alphablox
Analytics application typically incorporates business logic and offers guided
analysis via an easy-to-use interface.

An Alphablox Analytics application can be any Web application containing
Alphablox Analytics’ building blocks, known as Blox. The application can be as
simple as one JSP page, or as complex as a whole collection of web pages that
communicate with various application servers and data sources.

Blox are reusable software components that you can add to your JSP pages using
JSP tags or Java code to connect to data sources, perform data transformation and
calculations, and provide interactive, data analysis functionality.

The focus of this section is to highlight the key characteristics that are common to
Alphablox Analytics applications. With graphical representation and sample
scenarios, this section demonstrates how the features and components in
Alphablox Analytics make these characteristics possible.

For details on Alphablox Analytics application program flow and development
approaches, see “Alphablox Analytics Application Program Flow” on page 47.
Actual application development steps and implementation details are provided in
the subsequent chapters of this book.

30 Key Characteristics of an Alphablox Analytics Application
Key Characteristics of an Alphablox Analytics Application
An Alphablox Analytics application typically has the following characteristics.
Each characteristic may be implemented using various combinations of features
in Alphablox Analytics:

• Real-time Data Access and Analysis

• Interactive End-user Interface

• Personalization

• Sharing and Collaboration

• Real-time Planning

Real-time Data Access and Analysis

An Alphablox Analytics application can drive analysis of data from multiple data
sources, both relational and multidimensional. Through native access to the
database (MDX for Microsoft Analysis Services, Report Script for DB2 OLAP
Server and Essbase, and JDBC for relational databases), Alphablox Analytics
exposes the analytic functionality in the database engine such as ranking, derived
calculations, ordering, filtering, percentiles, variances, standard deviations,
correlations, trending, statistical functions, and other sophisticated calculations.

There are different ways live data can be presented to your users. If your users
need data presented in grids and charts, first you add a DataBlox to your
application and specify the data source to use for that instance of DataBlox. You
immediately have access to all the analytic functionality inherent in the data
source. Then add a PresentBlox, which embeds a GridBlox and a ChartBlox, to
use the data from that DataBlox. Now your users can interact with up-to-date data
through the Blox user interface to meet their data analysis needs.

For example, for the CFO, the first screen she sees when she logs in may be an
executive dashboard that contains a monthly income statement and a summary on
market profit ranking. The data is live, and the CFO can choose to drill down on
the data if she wants to find out which customer is buying which product.
CHAPTER 1
Alphablox Analytics Applications and the Underlying Blox

Key Characteristics of an Alphablox Analytics Application 31
For creating reports from a relational database, you can use Relational Reporting.
At the core of Relational Reporting is ReportBlox, which renders a relational
result set to a report in dynamic HTML (DHTML). There are a set of granular
Blox that supports data access, data transformation, calculation, and formatting in
Relational Reporting. Each of these granular Blox performs the specific task that
its name suggests.

An relational report can be static or interactive. If you offer to render the report in
interactive mode, your users can sort, filter, or re-order data on the fly using
Relational Reporting’s Report Editor user interface to design their own relational
reports.
DB2 Alphablox
Developer’s Guide for the DHTML Client

32 Key Characteristics of an Alphablox Analytics Application
Interactive End-user Interface

An Alphablox Analytics application typically has grids and charts that can be
served in a DHTML rendering, accessible using Microsoft Internet Explorer.

The grids and charts rendered in the DHTML client have an easy-to-use user
interface that shields the users from the complexity of analyzing data. When you
add a PresentBlox, it can nest a GridBlox, a ChartBlox, a ToolbarBlox, a
PageBlox, and a DataLayoutBlox to offer users interactive data analysis,
bookmarking, data exporting, and view customization capability. As a developer
you can customize and personalize various components in the interface to meet
your design needs.

In the example below, the DataLayoutBlox appears as a data layout panel,
enabling users to interactively move and view dimensions among axes. The
ToolbarBlox appears as a toolbar, providing quick access to commonly performed
data analysis tasks with a click of the mouse. The menu bar offers all the options
and actions available to the users. Users can bookmark a view, hide and show the
grid or chart, sort data, export the data to PDF or Excel, and navigate the data.
The PageBlox, appears as a page filter, allowing users to filter data to appear in
the GridBlox and ChartBlox. All these Blox are “nested” inside a PresentBlox to
simplify application development and conserve screen real estate.

PageBlox ToolbarBlox

ChartBlox

GridBlox

DataLayoutBlox
A PresentBlox with nested Blox

Menu Bar
CHAPTER 1
Alphablox Analytics Applications and the Underlying Blox

Key Characteristics of an Alphablox Analytics Application 33
The components in the user interface can be customized using JSP tags provided
in the Alphablox Analytics Tag Libraries. For example, you can specify the colors
to use, add or remove buttons in the toolbar, add or remove menus from the menu
bar, or add or remove data navigation options. You can also specify a set of
criteria for highlighting cells, a feature called Cell Alerts (such as displaying cells
in red if they have a value lower than the minimum specified).

Alphablox Analytics Themes

Alphablox Analytics offers two themes out of the box for the DHTML client with
different associated style sheets and GIF images that you can use immediately.
You can define your own theme by copying an existing Alphablox Analytics
theme and modifying the style sheet and images used in that theme.

The following example shows a PresentBlox rendered in DHTML mode using the
“financial” theme.

Member Filter

Sometimes users may want to see more specific data rather than drill up and down
one level at a time. They may want to see data for specific members from
different parents in the dimension hierarchy. For example, a user may just want to
compare data from a representative state within each region.
DB2 Alphablox
Developer’s Guide for the DHTML Client

34 Key Characteristics of an Alphablox Analytics Application
Alphablox Analytics’ Member Filter allows them to navigate the Market
dimension and select New York from the East region, California from the West
region, Illinois from the Central region, and Texas from the South region.

Member Filter is available from various right-click and pop-up menus in
GridBlox, DataLayoutBlox, and PageBlox when data navigation options are
offered. The dimension listed in Member Filter dialog window depends on where
the user right-clicks to bring up the menu.

Relational Reporting User Interface

When you use ReportBlox and its supporting Blox to create an interactive report,
your users can sort, hide, or re-order columns, create break groups, and add
summary data for each break group via the Report Editor user interface.

Report Editor consists of three context-sensitive pop-up menus. All these are
supported with DHTML. The reports and the interactive menus are rendered with
specific CSS style classes. You can customize the colors and fonts by specifying
your styles to use.
CHAPTER 1
Alphablox Analytics Applications and the Underlying Blox

Key Characteristics of an Alphablox Analytics Application 35
Personalization

As each user has different data and business needs, an Alphablox Analytics
application often needs to be personalized. For example, depending on the users,
the first screen they see when they log in may be different. You may want to
control data navigation so users in the West region will not see data in the East
region. Or, you may want to let your users specify their preference for chart types,
or what the threshold numbers they want for highlighting data in the grids.

Group Header Context Menu

Column Header Context Menu

Group Total Context Menu
DB2 Alphablox
Developer’s Guide for the DHTML Client

36 Key Characteristics of an Alphablox Analytics Application
Custom Properties

Alphablox Analytics supports personalization through custom properties. You
can define your custom user properties and specify the valid values for each
property. Then for each user, you can assign a value for each of the defined
properties. Based on the user logged in and the property values associated with
the user, you can dynamically specify what to display, how the data should be
displayed, or what data navigation functions should be enabled or disabled.

Sharing and Collaboration

Some of the common features of Alphablox Analytics that are used to support
sharing and collaboration are bookmarking, commenting on data, and PDF
conversion.

Allowing the user to specify whether he
wants to receive email notification if
thresholds are exceeded.

Allowing the user to specify
thresholds for highlighting data.
CHAPTER 1
Alphablox Analytics Applications and the Underlying Blox

Key Characteristics of an Alphablox Analytics Application 37
Bookmarking

A key feature of Alphablox Analytics is its Bookmarks functionality. Through the
user interface, users can bookmark a data view and later retrieve the same view
with up-to-date data. Bookmarks can be private, available to users in a specific
group, or public to all users that have access to the server.

BookmarksBlox provides an extensive API for managing and manipulating
bookmarks. For example, you can programmatically update all bookmarks to
reflect changes in the data outline.

Commenting on Data

To support collaborative analysis, you can utilize CommentsBlox to support cell-
level, page-level, or application-level annotations. Users can add comments to
data cell in a GridBlox by right-clicking the cell and select Add Comments. Cells
with comments have a comment indicator on the corner so users can quickly spot
them and choose to view them.
DB2 Alphablox
Developer’s Guide for the DHTML Client

38 The Underlying Blox Components
Convert to PDF

Users often want to save their work or share their view of the data. Alphablox
Analytics has a Convert to PDF option that enables you to offer the capability to
save the data in Blox to PDF format. This solves a host of problems common to
printing or saving web pages using the browser, such as improper page breaks,
inappropriate page width to display charts, cross-browser printing differences,
and having to email all HTML and images used in the report.

The Convert to PDF option gives you— or your users if you choose to— control
of the page layout, margins, page orientation, font sizes, colors, header and footer
texts, and where the header and footer should be positioned.

Real-time Planning

An analytic application may extend from historical analysis to forward looking
forecasting and proactive resource allocation. You can build real-time planning
applications such as budgeting, sales forecasting, and collaborative demand
planning through Alphablox Analytics’s data writeback capability.

For example, you can extract the data from the data source into a GridBlox, allow
regional managers to enter sales forecast numbers within the GridBlox, and upon
submitting the data, write the data back to the data source. Together with custom
properties, the application can dynamically create the sales forecast worksheet
based on the region to which a user belongs.

The Underlying Blox Components
The key components underlying an Alphablox Analytics application are Blox
components. Blox are reusable software components that enable you to connect to
data sources, perform various data manipulation and presentation tasks, and build
dynamic, personalized data analytic applications.

One Blox may provide several of the above functionality through its properties
and associated methods. These properties and methods enable you to specify and
control Blox appearance and behavior. There are also event filters for handling
user events such as drilling up/down, pivoting, changing the page filter, or
loading a bookmark.
CHAPTER 1
Alphablox Analytics Applications and the Underlying Blox

The Underlying Blox Components 39
The following table provides a brief description of each of the Blox.

Blox Description

DataBlox • DataBlox: the key Blox that provides data access, retrieval, and
manipulation functionality for all data presentation Blox.

• StoredProceduresBlox: allows you to create a connection to a
relational database and prepare a stored procedure statement for
use.

User Interface
Blox

There are six Blox that enable you to present data in a grid or chart
format with interactive user interfaces with which your users can
analyze data, change page filters, add or load a bookmark, specify
grid or chart layout, and more. These Blox are:

• GridBlox
• ChartBlox
• DataLayoutBlox
• PageBlox
• ToolbarBlox
• PresentBlox

Each of these Blox has a user interface component and an application
programming interface (API) that gives you control over their
presentation and actions allowed. Many return a result set that you can
gather meta information from.

Analytic
Infrastructure
Blox

These Blox provide means to building analytic infrastructure.

• RepositoryBlox: provides a means for developers to save and
retrieve application properties in the Alphablox Analytics
Repository.

• BookmarksBlox: allows you to programmatically create and
manage bookmarks and dynamically set the bookmark properties

• CommentsBlox: provides cell commenting (also known as cell
annotations) as well as general page/application commenting
functionality to your application.

• AdminBlox: provides programmatic access to information on the
server, users, groups, roles, data sources, and applications set
through the Administration pages in the Alphablox Analytics
home page
DB2 Alphablox
Developer’s Guide for the DHTML Client

40 The Underlying Blox Components
The focus of following sections is on what DataBlox and each of the user
interface Blox enables and how they work together to provide the following:

• programmatic control to developers

• the visual data analysis experience to users

DataBlox

DataBlox is the Blox that specifically offers the needed functionality for data
access. It has no graphical user interface. Instead, it is at the heart of all the Blox
that provide a graphical user interface for users to interact with the data. It has an
extensive application programming interface (API). For example, you can detect
if the data source needed has been successfully connected to or whether the

Business Logic
Blox

These Blox components let you add business logic to your
application:

• MDBQueryBlox: enables OLAP queries to be built with one
language regardless of the underlying server's query language

• MemberSecurityBlox: gives you the ability to hide members from
unauthorized users

• TimeSchemaBlox: supports dynamic time series, such as showing
data from the “last 3 months”

FormBlox A series of FormBlox are available to provide a familiar HTML form
interface and handle state management for you. These FormBlox are
data-aware and allow users to select a data source, dimensions,
members, or other options you offer to create personalized queries.

ContainerBlox The ContainerBlox, available only in the DHTML mode, can be used
to create custom Blox components and manages persistence during
your user sessions.

ReportBlox ReportBlox, rendered in an interactive HTML format, is the core Blox
for building reports from relational data sources. Details on
ReportBlox and its supporting Blox are in the Relational Reporting
Developer’s Guide.

Blox Description
CHAPTER 1
Alphablox Analytics Applications and the Underlying Blox

The Underlying Blox Components 41
current database operation is complete, etc. You can prevent a user from
performing certain data navigation actions or seeing certain data in the result set
based on who the user is. The following table shows some of properties and
methods associated with DataBlox to demonstrate the extensiveness of its API.

.

Categories of
DataBlox
Properties/Methods

Description Examples

Data sources Properties related to the
data source

aliasTable, catalog, query,
schema, connectOnStartup,
userName, password,
dataSourceName

Data
manipulation

Properties related to data
manipulation such as
calculated members,
sorting, and drilling

calculatedMembers, columnSort,
rowsort, hiddenMembers, keepOnly,
parentFirst

Data appearance Related to data
appearances such as
whether or how duplicate,
missing, zero data or
prefix in member names
should be displayed

memberNameRemovePrefix,
memberNameRemoveSuffix,
suppressDuplicates,
suppressMissing,
suppressNoAccess,
suppressZeros

Write back Related to data update commitData()

Result set Related to the result set
containing the data

clearResultSet(), getResultSet()

MetaData Related to the MetaData
object of the underlying
data source for the current
DataBlox

dimensionRoot, getMetaData()

MDB result set Related to the axes,
dimensions, tuples, and
cells in the
multidimensional data
result set

((MDBResultSet) getResultSet())

RDB result set Related to the columns
and rows in the relational
data result set

((RDBResultSet) getResultSet())
DB2 Alphablox
Developer’s Guide for the DHTML Client

42 The Underlying Blox Components
GridBlox

GridBlox displays relational or multidimensional data in an advanced grid format,
enabling users to drill, pivot, sort, and explore the data. It has an extensive set of
properties and associated methods to let you control its appearances, numeric
formatting, and others. By default, a standalone GridBlox has:

• a menubar that offers all options and functionality available to the GridBlox
and the underlying DataBlox

• a ToolbarBlox that offers users quick access to common functionality by
clicking a button

MDB metadata Related to the
multidimensional
metadata for the result set

((MDBMetaData) getMetaData())

RDB metadata Related to the relational
metadata for the result set

((RDBMetaData) getMetaData())

Event filters Related to the server-side
event filters

addFilter(), removeColumnSort()

Categories of
DataBlox
Properties/Methods

Description Examples

Right-click menu

ToolbarBlox
CHAPTER 1
Alphablox Analytics Applications and the Underlying Blox

The Underlying Blox Components 43
ChartBlox

ChartBlox displays relational or multidimensional data in a variety of chart
formats, enabling users to change chart appearances and explore the data.
ChartBlox needs a DataBlox to provide data access and data manipulation
functions. By default, a standalone ChartBlox has:

• a menubar that offers all options and functionality available to the ChartBlox
and the underlying DataBlox

• a ToolbarBlox that offers users quick access to common functionality by
clicking a button

The following image shows a ChartBlox with a menubar and a ToolbarBlox.
Upon right-click, a menu pops up, offering data analysis control to users.

DataLayoutBlox

DataLayoutBlox displays available data dimensions and the axes on which they
currently reside, enabling users to move dimensions between axes.
DataLayoutBlox nests within a PresentBlox. It cannot nest within a standalone
GridBlox or a standalone ChartBlox.

Right-click menu

A ToolbarBlox
nested within
the ChartBlox
DB2 Alphablox
Developer’s Guide for the DHTML Client

44 The Underlying Blox Components
When users move a dimension from one axis to another, data in both GridBlox
and ChartBlox within the same nesting PresentBlox will automatically reflect the
changes.

PageBlox

PageBlox displays dimensions residing on the page axis, effectively filtering data
in the chart or grid, enabling users to change data filters. PageBlox nests within a
PresentBlox. It cannot nest within a standalone GridBlox or a standalone
ChartBlox. When the user makes a selection from the dimension in the PageBlox,
the data in the GridBlox and ChartBlox within the same nesting PresentBlox will
reflect the filter selected.

PageBlox

The Product dimension
resides on the page axis
CHAPTER 1
Alphablox Analytics Applications and the Underlying Blox

Alphablox FastForward 45
ToolbarBlox

ToolbarBlox displays buttons, enabling user access to various Blox functionality.
ToolbarBlox needs to nest within a PresentBlox or a standalone GridBlox or
ChartBlox. By default, ToolbarBlox is turned on in these user interface Blox and
appears as two toolbars. These toolbars are customizable. You can add or remove
buttons in the existing toolbars. You can even add or remove a toolbar.

PresentBlox

PresentBlox combines all the above Blox into a single Blox to simplify
application development and conserve screen real estate. All Blox nested within
PresentBlox interact with each other. They use the same data source, and data
navigation actions done in PageBlox, for instance, affect the data displayed in
both the nested GridBlox and ChartBlox. Data options specified are reflected in
all its nested Blox when applicable. For example, if you specify to use aliases for
member names, aliases will be used in GridBlox, ChartBlox, and PageBlox.

Alphablox FastForward
Alphablox FastForward is a sample application framework for quickly
developing, deploying, and sharing custom analytic views. Out-of-the-box, the
FastForward framework delivers common application services, including
security, collaboration, customization, and personalization. Application
administrators, typically OLAP administrators, can create new versions of an
FastForward application, publish reports by selecting report templates and
configuring report parameters, and then deploy the new application without ever

Toggle the display for
Grid, Chart, DataLayout
Panel, and Page Filter

copy
Undo/Redo last
data operation

Load a
Bookmark

Bring up
user help

Export
to PDF

Export
to Excel

Data navigation Sort
data

Bring up
Member Filter
DB2 Alphablox
Developer’s Guide for the DHTML Client

46 Alphablox FastForward
looking at code. JSP developers can further modify or extend the application
framework and add new custom report templates for application administrators to
configure and deploy. See the Working with Alphablox FastForward chapter in the
Developer’s Guide for the DHTML Client for more information.
CHAPTER 1
Alphablox Analytics Applications and the Underlying Blox

../index.html?context=developerguide&topic=FastForward

2
Alphablox Analytics Application

Program Flow

This section describes the file structure of an Alphablox Analytics application,
how an application is processed by the Alphablox Analytics and the application
server, and how an application developer develops an application using standard
web technologies to achieve the desired end-user interaction and program control.

Application File Structure
Since Alphablox Analytics runs in a Java 2 Enterprise Edition (J2EE) web
application server environment, this section describes the file structure in the
underlying web application server (referred to hereafter as application server)
when you create an Alphablox Analytics application.

Application Context

When you create an application from the Alphablox Analytics home page, you are
asked to specify information such as application context, display name, Home
URL, default saved state, and write privileges security role. Based on this set of
information, Alphablox Analytics creates the application definition in the
Alphablox Analytics repository as well as the application directory structure. A
directory with the name of the application context that you specified is created,
and is usually referred to as the application “docroot,” application context, or
application directory.

Where this application directory physically resides depends on the underlying
application server. When Alphablox Analytics is installed using WebSphere, the
application directory is in WebSphere’s installedApps directory. For more
information, refer to the Administrator’s Guide.

48 Application File Structure
Once the application directory is created, it will have a file structure similar to the
following:

All files for the application that you create must reside within this application
directory structure. Typically, these are a combination of JSP, HTML, Cascading
Style Sheet (.css), JavaScript (.js), and image files. If you have Java classes or
other Java Archive files that contain servlets, beans, or other utility classes, they
should reside in sub-directories under WEB-INF/, in classes/ and lib/ as
suggested by the J2EE specification.

Alphablox Analytics Repository

The Alphablox Analytics Repository is a store of objects that Alphablox Analytics
uses to keep track of applications, users, groups, bookmarks, and other such
information. Physical files associated with the Alphablox Analytics Repository
reside in the <alphablox_dir>/repository directory (when you use the
Alphablox Analytics filesystem repository), where <alphablox_dir> is where
Alphablox Analytics is installed.

For example, when you create an application called “MyApp1” from the
Alphablox Analytics home page, a folder named “MyApp1” for that application is
created under the <alphablox_dir>/repository/applications/ directory.
When you define a custom application property, the application properties
descriptor file appprodesc.properties is updated to store the information.

Likewise, when you add a user, a folder with that username is created under the
<alphablox_dir>/repository/users/ directory. Each user has an associated
user property file that stores information such as password, email address, and
group association, as defined through the Alphablox Analytics home page.

<ApplicationContext>/

WEB-INF/
web.xml
tlds/

blox.tld

(JSP, HTML, CSS, JS, and images files)

classes/
lib/
CHAPTER 2
Alphablox Analytics Application Program Flow

Application File Structure 49
By using the RepositoryBlox API, you can get, set, save, or delete an application
state, or get the user name and groups to which the user belongs.

Working with Blox in JavaServer Pages

In a J2EE environment, to serve dynamic content, the key technology to use is
JavaServer Pages (JSP). The JSP technologies allow for the combination of
HTML, JavaScript, and Java code in one physical file.

Since Blox are typically Java beans, to add a Blox, you use a JSP tag to include
the bean as you normally would with any Java bean, by using the
<jsp:useBean> tag. You can also take advantage of Alphablox Analytics custom
JSP tags to add Blox using XML-like syntax.

The following is a sample JSP file that uses a combination of standard HTML for
page layout, Java code for some calculation, and Alphablox Analytics custom tags
to add a GridBlox.

<alphablox_dir>/

applications/

groups/

users/

theme/
DB2 Alphablox
Developer’s Guide for the DHTML Client

50 Application File Structure
This firstGrid.jsp file contains typical HTML code for page layout, some
Java code to randomly set the value of the variable banding to either true or
false, and a block of Alphablox Analytics custom JSP tags for adding a GridBlox
that uses a DataBlox. Cell banding (alternate row colors) is enabled or not
depending on the randomly generated value of the variable banding.

You can embed all these different web development technologies in one JSP file.

/MyApp1/firstGrid.jsp

<%@ taglib uri="bloxtld"

<html>
<head>

</head>
<body>

<h1> Data Analysis</h1>
<p>

<blox:grid id = "MyGridBlox"
height = �50%�
width = �90%�

<blox:data
dataSourceName = �TBC�

</blox:grid>

</p>
</body>
</html>

prefix="blox"%>

%>

<%
String banding =

(Math.random() >= 0.5) ? �true� : �false�;

query = �!� />

...

...

<title>Data Analysis Grid</title>

bandingEnabled = �<%= banding %>�

HTML code for
page layout and
look and feel

Java scriptlet (Java
code snippet) to
dynamically set the
value of a variable

Alphablox Analytics
custom JSP tags for
adding Blox and
dynamically setting
the property
of Blox using a Java
expression that is
evaluated at page
request time

<blox:header/>
CHAPTER 2
Alphablox Analytics Application Program Flow

Request Processing 51
Request Processing
This section describes how an HTTP request for an Alphablox Analytics
application is processed by the underlying application server and Alphablox
Analytics. The following sections provide a high-level, simplified view of the
process. For a more complete picture, see a book on JavaServer Pages
technology.

The description is based on an application with an application context of
“MyApp1” with the following files:

• welcome.html: the application entry page. This page has a link that points to
intro.jsp and firstGrid.jsp.

• intro.jsp: a JSP file with some general Java and JavaScript code.

• firstGrid.jsp: a JSP file with a GridBlox in it, similar to the one shown
earlier in the section “Working with Blox in JavaServer Pages” on page 49.

The description also assumes that the application server is responsible for serving
web pages without a separate web server.

User Request 1
http://myAppServer/MyApp1/welcome.html

1 User “dave” accesses http://myAppServer/MyApp1/welcome.html
through his browser.

2 The application server goes to MyApp1/ and looks at the security information
defined in the application deployment descriptor file web.xml in the WEB-
INF/ directory.

3 Based on the security constraints defined, the application server challenges
the request for username and password.

4 A J2EE session is started upon authentication. The application server sends a
cookie in the response back to the browser. The cookie that is sent contains a
session ID.

5 The application server parses through welcome.html and sends it back to
the browser.

User Request 2
http://myAppServer/MyApp1/intro.jsp

1 Dave clicks on the link that points to intro.jsp. An HTTP request for
http://myAppServer/MyApp1/intro.jsp is sent.

2 The application server accesses the cookie and header information to look up
the J2EE session ID and verify the security.
DB2 Alphablox
Developer’s Guide for the DHTML Client

52 Request Processing
3 The application server has a JSP engine that compiles and executes the JSP
file. The application server first checks to see if this file has been compiled or
has changed since it was last compiled.

If compilation is needed, the engine processes and compiles the file into a Java
class file. It checks whether or not the classes and package referenced in the JSP
file exist, and whether or not the syntax is correct.

4 The application server executes the complied file and issues a response back
to the browser.

User Request 3
http://myAppServer/MyApp1/firstGrid.jsp

1 Dave goes back to welcome.html and clicks a link that points to
firstGrid.jsp. An HTTP request for http://myAppServer/MyApp1/
firstGrid.jsp is sent.

2 The application server accesses the cookie and header information to look up
the J2EE session ID and verify the security.

3 The application server first checks to see if this file has been compiled or has
changed since it was last compiled.

4 If compilation is needed, its JSP engine processes and compiles the file into a
Java class file. The application server checks whether the classes, packages,
tag library descriptor files (TLD) as referenced in the <%@ ...%> directive
exist, whether the Java methods and custom tags used are valid, and whether
the syntax is correct. The application server then execute through
firstGrid.jsp.

5 It encounters the following scriptlet and processes it. The variable banding
gets a value of true or false:

<% String banding =
(Math.random() >= 0.5) ? "true" : "false"; %>

6 Then it encounters a tag it is unfamiliar with—<blox:grid...>. The prefix
blox matches what is specified in the taglib directive <%@ taglib
uri="bloxtld" prefix="blox" %>.

7 The application server goes to the tag library as defined in the taglib
directive. Tags are “macros” that are replaced by actual Java code that creates
and initializes beans. The application deployment descriptor file /MyApp1/
CHAPTER 2
Alphablox Analytics Application Program Flow

Request Processing 53
WEB-INF/web.xml tells the application server where the tag library
descriptor file (TLD) is located:

<taglib>
<taglib-uri>bloxtld</taglib-uri>
<taglib-location>/WEB-INF/tlds/blox.tld</taglib-

location>
</taglib>

8 Alphablox Analytics is now called into duty. Alphablox Analytics initializes
the bean, user session, application instance, and peers, and sends the results
back to the application server. The details on how Blox are processed and
served are discussed in the next section, “Alphablox Analytics Program
Flow” on page 53.

9 The application server continues to process the lines in firstGrid.jsp until
it reaches the end.

10 The application server sends the result back to the browser.

The Role of the Application Server

In summary, the application server is responsible for the following tasks:

• user authentication and security

• processing and serving HTML files

• processing and compiling JSP files with help from its servlet/JSP engine,
then serving the entire response generated back to the browser

Alphablox Analytics Program Flow

When the application server encounters custom tags such as <blox:grid>, it
calls upon the tag library specified. Based on specifications in the application’s
web.xml file, the application server knows which Java package to use to replace
the tags into Java code:

At this point, Alphablox Analytics performs the following tasks:

1 Alphablox Analytics gets the user from the request object (an API in J2EE)
and checks to see if a user object for Dave has already been created. If this is
the first request from the user, Alphablox Analytics creates the Alphablox
Analytics user.

2 Alphablox Analytics loads the user profile from the Alphablox Analytics
repository and creates a user instance.

3 Alphablox Analytics next creates a session instance, assigning a new session
ID that is included in the response header. An instance of the user object is
added to the session.
DB2 Alphablox
Developer’s Guide for the DHTML Client

54 Request Processing
4 Alphablox Analytics then creates the application instance.

5 Next, Alphablox Analytics retrieves the application name from the request
object and checks to see if an application object that matches the application
name already exists. If not, Alphablox Analytics creates the application
object and an instance of that application is added to the session instance.

6 Now that instances for the user, the session, and the application have been
created, Alphablox Analytics creates peers.

a firstGrid.jsp has a GridBlox with an ID of MyGridBlox. Alphablox
Analytics checks to see if a grid peer for MyGridBlox already exists. If it
doesn’t exist, Alphablox Analytics creates one.

b The grid peer looks for an associated data peer. If it doesn’t exist yet,
Alphablox Analytics creates one.

7 Alphablox Analytics sends the rendered result back to the application server.
The application server takes the output sent by Alphablox Analytics, merges
it into the rest of the file before it sends the result back to the browser.

If another request comes from the same user for the same application in the same
session, the existing peers are reused.

The Role of Alphablox Analytics

In summary, Alphablox Analytics is responsible for the following tasks:

J2
E

E
 A

pp
lic

at
io

n
Se

rv
er

Alphablox Analytics<alphablox_dir>

users
dave
dave.properties

dave (an instance of a User
object)
dave.properties

Session ID: 12345

Instance of MyApp1
MyGridBlox

peer
MyDataBlox

 peer

MyApp1

MyApp1.properties

User: dave

MyApp1

groups

applications

administrators

MyApp1

mygridblox

bookmark
CHAPTER 2
Alphablox Analytics Application Program Flow

Application Development and Programming Model 55
• data access and manipulation

• building and deploying interactive analytic applications

• personalization of data views (more detail in the following sections)

Bookmarking, Application States, and the Repository

When user “dave” bookmarks a data view, depending on whether the bookmark is
saved as private, public, or visible to a named group, a folder with the name of
that instance of the presentation Blox (usually a PresentBlox, GridBlox, or
ChartBlox) will be created under either the user’s, the application’s, or the
group’s folder in the repository.

Information pertaining to each bookmark stored in the repository includes its
visibility (private, public, or a specified group), the application name, width, and
height of the presentation Blox, data source and data query for that view,
description of the bookmark, as well as the color schemes and other data display
options associated with that view.

Through the APIs provided, you can programmatically get names of bookmarks
with a specified visibility. You can save, delete, rename or restore bookmarks,
and detect bookmark saving and loading events. You can also programmatically
create bookmarks or change all data queries saved with bookmarks to reflect
changes in the data outline.

The repository also stores the state of an application if you specify to
automatically save an application’s state through the application definition page
on Alphablox Analytics Administration pages. Alphablox Analytics will save the
information on all Blox (if you have multiple PresentBlox or multiple
independent Blox) in the application, including the query result sets, grid and
chart appearance, and other changes made by the user.

Application Development and Programming Model
The Developer’s Guide for the Java Client covers the setup of your application
development environment, JSP and the Blox Tag Library, and task-based
implementation steps and details. Before delving into those details, it will be
helpful to understand the following concepts.
DB2 Alphablox
Developer’s Guide for the DHTML Client

56 Application Development and Programming Model
Blox Components

Blox components are built on Java beans. An extensive API is available for you to
access and control Blox and Java objects on the server using Java, scriptlet, or
Blox custom JSP tags. The server-side API gives you control over Blox
presentation and behavior, prevents your business logic from being exposed to
users (through source viewing or file saving options from the browser), and
shields the programming complexity from page designers on your development
team.

JSP and Custom Tags

JSP is the key technology in J2EE that enables the combination of static and
dynamic content in one file. By default, the application server will only invoke its
JSP engine to process a request and generate dynamic content if the file has the
.jsp extension. An HTML page will not go through the servlet compilation and
request generation process. The application server will serve the page as a static
HTML page, and browsers will ignore the JSP code and Java scriptlet. Therefore,
in order to use the functionality offered by Alphablox Analytics, Blox should be
added to JSP pages.

Since Blox are built on Java beans, you can expect them to have the same
attributes Java beans have. For example, they have properties, and setter and
getter methods for the properties. You can use the standard <jsp:useBean> tag
to add a Blox, and then use the <jsp:getProperty> and <jsp:setProperty>
tags to get/set a Blox property. However, you should use the Alphablox Analytics
Tag Libraries whenever possible. When you use the custom Blox tags, the scope
is automatically set to “session” and Alphablox Analytics takes care of the session
managment and automatically cleans up unused/expired resources for you.

For information on both approaches, and on the Blox Tag Library, see “Using
JavaServer Pages and the Blox Tag Library” on page 79.

Server-side API vs. Client-side API

Since Blox are Java beans, you can access Blox and their peers on the server to
get information and control Blox behavior and appearances. The processing is
done on the server before the output is sent to the client. This allows you to use
other resources on the server, reuse components, and reduce the discrepancies and
inconsistencies often found among different browsers or browser versions.
Typically, on the server side you can do the following using JSP, Java scriptlets,
or custom tags:

• create an instance of a Blox

• set the properties of the Blox dynamically

• get the properties of the Blox
CHAPTER 2
Alphablox Analytics Application Program Flow

Application Development and Programming Model 57
In some case where you want users to be able to make a selection such as
choosing the region for which they want to see the data or specifying some
parameters for displaying a grid, you will need to to call some JavaScript
functions that communicate the choices to the server. The DHTML client has a
straightforward client-side API that allows you to call a JSP page on the server or
a server-side bean and set its property. The client-side API is detailed later in this
book.
DB2 Alphablox
Developer’s Guide for the DHTML Client

58 Application Development and Programming Model
CHAPTER 2
Alphablox Analytics Application Program Flow

3
Your Development Environment

Alphablox Analytics solutions are based on the open standards of the World Wide
Web, enabling you to have many options for development tools which you can
use to build analytic applications using Alphablox Analytics components.

If you already have web development tools that you are comfortable with, you
can most likely continue to use them to develop analytic applications using
Alphablox Analytics. In this section, some important developer issues are
discussed in hopes of maximizing your success.

Choosing Application Development Tools
The Alphablox Analytics solution was intentionally designed to support the open
standards technologies of the Internet, including HTML, CSS, JavaScript, and
others. By not requiring a proprietary development environment, Alphablox
Analytics allows you to choose the tools with which you are most familiar or
comfortable. Experienced Java developers may already be comfortable using
IBM WebSphere Studio Application Developer, Eclipse, or another IDEs. If
you’re not familiar with Java, or frequently author web pages, you may be
familiar with your favorite HTML editor. Some of you will be more comfortable
using powerful text editors, such as Visual SlickEdit or jEdit. If you haven’t
already found your ideal development environment yet, you can explore the many
choices available, and know that the one you choose can likely be used to develop
analytic applications based on Alphablox Analytics.

Web Browsers
Alphablox Analytics applications are supported using Microsoft Internet Explorer
only (see the Installation Guide for specific requirements).

60 Web Browsers
As a developer, you will be working back and forth between coding in your
development environment and testing your code in a web browser and should be
aware of some commonly encountered issues that may affect your work. First,
there are some general browser considerations and issues to be aware of during
development. Second, to enhance your development experience, you will want to
optimally configure your testing browsers for use during your development.
These issues are covered in the following sections.

General Considerations

During application development, you may find it advantageous to configure your
browsers for what could be considered “development mode.” In the tasks below,
steps are given for configuring Microsoft Internet Explorer to be optimized for
developer efficiency. Keep in mind that you should always test your final
applications and their behavior using web browsers and configurations that the
users will be using. Most likely, the differences in configurations between
development mode and end user modes will not affect the end result, but it is
always a best practice to test your applications using the full range of possible
browsers and configurations that are likely to be encountered by end users.

Working with DHTML Mode

There are a couple of important points that you should be aware of when you are
working with the DHTML client during application development. It is not the
intent here to completely discuss how to code using DHTML technologies, but to
explain a few of the frequently encountered behaviors that you should understand
when working with Alphablox Analytics applications.

Modifying Blox Tags

One of the first lessons you’ll learn when working with the DHTML client is that
modifications to Blox tags will not take effect during your current browsing
session. Instead, in order to see the changes made after modifying Blox tags, the
browser must be closed, and a new browsing session started. This is expected
behavior that results from how the DHTML client works with the server-side
code.

Another frequent error that you might make when developing applications is to
inadvertently create multiple Blox components with the same id attribute.
Typically, this will happen when you copy and paste code, including a Blox
definition tag to create another Blox on the same or a different page, but forget to
change the id attribute of the new Blox. If two Blox have the same id, then the
first one loaded into the browser memory will determine what the second Blox
will look like -- the property settings on the second Blox are ignored.
CHAPTER 3
Your Development Environment

Web Browsers 61
Task: Configuring and Developing with Microsoft Internet Explorer

The following steps apply to Microsoft Internet Explorer version 5 or later.

1 Open your Microsoft Internet Explorer browser.

2 Click on the Tools menu and select Internet Options on the submenu to open
the Internet Options window.

3 In the Temporary Internet Files section, click on the Settings button.

4 The default setting for “Check for newer versions of stored pages” is
“Automatically.” Change this setting to “Every visit to the page.” This
selection will make it more likely that the web page you open will be the
newest version of a page you are working on.

5 Close this dialog by clicking on the OK button, but do not close the Internet
Options dialog window.

6 Now select the Advanced tab in the Internet Options. A long, scrollable list
of check boxes should be visible. The following sections cover different
portions of this long options window. The settings below are optional, but are
recommended for enhancing your troubleshooting web pages.

JavaScript Error Notification

7 [Optional] To help you recognize JavaScript errors, it is recommended that
you check the “Display a notification about every script error” in the
Browsing section of the Advanced options. What this does is to pop up a
dialog box that you cannot miss stating that a JavaScript error has occurred.
If you do not enable this, you will be have to pay attention and notice any
JavaScript alert message that appears in the lower left corner status window.

Using the Java Console

When viewing Alphablox Analytics application pages within Microsoft
Internet Explorer, the browser may not process the page you are attempting to
display in a way you expect. Sometimes the browser may re-display a cached
page instead of the new updated page. The setting above is supposed to help
prevent this, but can be unreliable. Even when you click on the browser’s Reload
button, the page displayed may continue to be a cached page. When you think this
might be the problem, you have a couple of other options. First, you can force a
hard refresh the page (getting a fresh copy from the server instead of a cached
copy) by using the Control-Refresh technique: hold down the Control key while
clicking on the Refresh button. The second option is to close and reopen the
browser. This results in a new browser session, and is the most certain way to
guarantee that the page being displayed is the newest page.
DB2 Alphablox
Developer’s Guide for the DHTML Client

62 Application Studio
Application Studio
Application Studio has examples and other tools that can be useful for learning
and development purposes. The Application Studio can be accessed through the
Assembly tab on the Alphablox Analytics home page. To examine and reuse the
sample code for your application, the files are located under the Application
Studio directory at:

<alphablox_dir>\system\ApplicationStudio\Examples

The Blox Sampler example set, referenced throughout this Guide, demonstrates
many of the techniques discussed and resides in the Examples directory.
CHAPTER 3
Your Development Environment

4
Design Considerations

As with any application development, you need to clearly identify the
requirements before you can proceed with the design and development, and
subsequently evaluate the success of your application. This chapter includes some
general requirement gathering guidelines that will help you identify the needs of
your users and other issues you will want to take into consideration before you
begin.

Defining Application Requirements
The goal of application design is to ensure the application provides appropriate
information and functionality to meet the particular needs of a specific user
audience. As you gather the requirements, you need to look into four areas: data,
user interface, application delivery, and application logic.

• Data Requirements

• User Interface Requirements

• Application Logic Requirements

• Application Logic Requirements

Data Requirements
The specific class of application that Alphablox Analytics supports is online
analytical processing (OLAP). In contrast to on-line transactional processing
(OLTP) applications that generate and access data in transactional data sources,
OLAP applications access data in data sources. These data sources usually
contain data consolidated from transactional detail and stored in a
multidimensional architecture.

64 Data Requirements
Part of the application design process is identifying required data, as well as any
security issues surrounding access to that data. Answering the following
questions can help define application data requirements.

1 What information do the users want or need?

Answering this question as precisely as possible is the first step toward locating
the information and defining efficient queries against it. It is important to
determine if users already have access to the required information, if there are
security issues involved in enabling access, and so forth. For example, regional
sales managers may be able to view data for all regions, while regional sales
representatives may be able to view data for only their region.

2 Where does the information reside?

Alphablox Analytics applications can access data from a wide variety of
multidimensional and relational databases. Before beginning to develop
applications, make sure you consider which data sources you will need to access
and verify that Alphablox Analytics supports your requirements. (For details on
support for specific data sources, see the Installation Guide.) Many analytic
applications rely on multidimensional data sources that organize information into
a hierarchy of dimensions and members. Blox are specifically designed to exploit
this data hierarchy; their user interfaces enable drilling up and down through the
hierarchy, filtering data based on dimensions and members, moving one or more
dimensions to a different axis, and so forth.

Alphablox Analytics also supports relational data sources that organize
information into a row-and-column format. One use for relational data is “drill to
detail,” enabling users to move from a multidimensional data source of
consolidated information into its underlying detail in a relational data source.

The Cube Server component of Alphablox Analytics enables administrators to
create multidimensional data cubes from information residing in relational data
sources. The Cube Server is useful for applications that do not require the
scalability and overhead of full-featured OLAP data sources. The Cube Server
contains dimensional metadata so that users can perform such operations as
drilling, pivoting, and filtering. For information on how to transform relational
data into multidimensional data, see the Alphablox Cube Server Administrator’s
Guide.

Note that when data appears in an Alphablox Analytics application, the
underlying data format is not apparent to the user. However, user actions that
require multidimensional format (such as drilling) are disabled if the data is in
relational format.
CHAPTER 4
Design Considerations

User Interface Requirements 65
Beginning with Alphablox Analytics, you can use ReportBlox to develop
interactive reports from relational data sources, allowing your users to add break
groups, re-order columns, sort data, rename columns, and edit cell and header
styles through the built-in Report Editor user interface. For information on
ReportBlox and its support Blox, see the Relational Reporting Developer’s Guide.

User Interface Requirements
The user interface is key to application usability. The application should include
content presentation, application navigation, and user assistance. While a
comprehensive discussion of effective user interface and web page design is
beyond the scope of this document, this section provides some guidelines in the
following areas:

• User Groups

• Content Presentation

• User Instructions

• User Navigation

• Data Manipulation

• Saving and Restoring Work

User Groups

When defining the requirements for user groups, keep the following
considerations in mind:

• Users often have different usability requirements. One way to address these
differences is to place users within small groups within a larger group. For
example, the Financial user group might contain an Analyst group and an
Administrative group. An application’s interface can change dynamically
based on the group to which the user belongs.

• Users also have different data access requirements. Typically, the security
facilities of the data sources themselves support user- and group-level access
restrictions. To ensure easy user access to data, Alphablox Analytics user
groups should parallel those implemented on the data source.

Content Presentation

Alphablox Analytics enables you and, to a lesser degree, your users to control
content presentation. You have considerable latitude in organizing and presenting
information. The look and feel of an application page might be an executive
dashboard, an intranet portal, or a printable report.
DB2 Alphablox
Developer’s Guide for the DHTML Client

66 User Interface Requirements
You also have choices in data presentation. By selecting appropriate Blox and
setting property values on those Blox, you can choose whether data appears in a
grid, a chart, or a grid/chart combination. Because Alphablox Analytics provides
many different chart types, you can experiment with the most effective data
presentation.

Where appropriate, you can permit users to change chart types, toggle between
grid and chart presentations, and so forth. For example, some users may prefer a
pie chart that quickly conveys percentages and trends, while others may prefer a
grid that supplies numeric values and supports complex analyses. You should
clearly understand an application’s target audience to facilitate the design of
appropriate and effective content presentations.

User Instructions

Alphablox Analytics provides online help that includes comprehensive
instructions on using each Blox. The default mechanism for accessing Alphablox
Analytics help pages is clicking the question mark on the toolbar or the Help >
Help... menu option in the menu bar. However, to reduce the users’ learning
curve, you may find it helpful to provide application-level user instructions right
on each application page.

If this approach is not appropriate, or if the user instructions are quite extensive,
you can edit and expand on the Alphablox Analytics online help. For more
information, see “Adding User Help” on page 345.

User Navigation

The simplest application is a single JSP page with one or more Blox. However, if
an application calls for several Blox with which the user interacts, two situations
may occur. If multiple Blox reside on a single page, some Blox may scroll out of
the browser window when others appear. Therefore, consider providing links
within the page that move quickly from area to area.

More typically, several JSP pages comprise an application. This application
design should include backward and forward links between pages. An application
“home page” might link to all other pages in the application and provides an
appropriate place for notifying users of application features and enhancements.

Data Manipulation

You can produce applications that range from fully interactive analytic and what-
if scenarios to static presentations for quick management snapshots. In fact,
simply by enabling or disabling Blox interactivity and toolbars, you may be able
to develop a single application that serves multiple user needs. Successful
application design requires knowledge of how the target audience will interact
with the data.
CHAPTER 4
Design Considerations

Application Logic Requirements 67
Saving and Restoring Work

Users performing complex analyses often want to save their work at a certain
point, or make a particular view of the data available to other users. Alphablox
Analytics supports these requirements through toolbar buttons. For more
information, see “Persisting and Bookmarking Data” on page 295.

Application Logic Requirements
Another major design area is application logic. While Blox provide for data
access, presentation, and manipulation, most Alphablox Analytics applications
provide logic to meet specific user needs, such as:

• offering a list of predefined queries from which users make a selection

• enabling users to construct queries dynamically through a series of related
selections

• setting the initial query, delivery format, and application appearance based on
user login

• highlighting exception data based on user-entered values

• toggling content presentation based on user actions

• performing “what-if” scenarios and optionally writing the results back to the
data source

You can use a combination of JSP, HTML forms, JavaScript functions, Java and
Alphablox Analytics custom properties to implement application logic.

Custom Properties

Through the Alphablox Analytics administration pages, you can define custom
properties that are available on applications, data sources, and users. After
defining a custom property, you can use it via RepositoryBlox server-side Java
code. For more information, see “Persisting and Bookmarking Data” on page 295.
DB2 Alphablox
Developer’s Guide for the DHTML Client

68 Application Logic Requirements
CHAPTER 4
Design Considerations

5
Building Your First Application

If you are just becoming familiar with Alphablox Analytics, the following tutorial
will teach you important basics while guiding you through steps you can follow to
quickly build an Alphablox Analytics application.

If you are using JavaServer Pages (JSP) technology for the first time, you will
learn that the steps needed to build analytic applications are relatively easy and
build upon your previous web technology skills.

For the following tutorial, it is assumed that you are using the Alphablox
Analytics running on a WebSphere application server. If you are using BEA
WebLogic or Apache Tomcat as your application server, you may need to modify
a few of the following steps to fit particular differences in your server.

Defining Your Application
Working with JSP is in many ways similar to working with HTML, but the
creation of an application requires a bit different initial start. To create an
application in the J2EE world, you need to have the proper directory structure,
including a required WEB-INF directory with a web.xml file within it. The
simplest way to accomplish this in Alphablox Analytics is to create a new
application in the Application page within the Alphablox Analytics Admin Pages.
More information about defining applications can be found in the Administrator’s
Guide. For this tutorial, you can follow these steps to create your application and
folder:

1 Create a new application, called MyApp, in Alphablox Analytics by following
the steps described in the Application Definitions section of the
Administrator’s Guide.

• Use MyApp as the Application Context Name.

../index.html?context=admin&topic=createApps

70 Accessing Data
• Use My App (with a space) for the Display Name, which defines the label
for the application that appears in list of available applications on the
Applications page.

2 Click the top Applications tab at the top left of the page. This will open the
list of available applications that can be accessed by users.

3 Click the name of your newly created application, My App, in the list of
applications. Since you have not created any files yet, you should see an
empty directory of files.

4 Navigate to the new application folder on your application server (for
WebSphere, located in WebSphere server’s installedApps directory).
Notice that within the application, there is a WEB-INF directory, which
includes the web.xml file and the tlds folder. The web.xml file defines
application information. The tlds directory includes the Blox tag library
descriptor file (blox.tld), which defines the Blox tags you will be using to
create your application views in this tutorial. There are also other TLD files
for other Blox tag libraries (not used in this tutorial), including
bloxform.tld, bloxlogic.tld, bloxreport.tld, and bloxui.tld.

You should now have successfully defined your first Alphablox Analytics
application. For details about creating applications in Alphablox Analytics, see the
Administrator’s Guide.

Accessing Data
For this tutorial, you will be using a predefined data source that was installed
during your Alphablox Analytics installation. This data source will allow you to
quickly develop a basic application without having to worry about configuring a
custom data source right now.

To make certain that this data source is available, take a look at the Data Sources
page by following these steps:

1 Open your browser again to the Alphablox Analytics Home page.

2 Click the Administration tab.

3 Click the Data Sources submenu link.

4 On the Data Sources page, you should see Canned in the selection ist on the
left side of the page. This predefined data source uses the built-in Canned
Data Adapter, which is handy for testing the server and learning basic
concepts.
CHAPTER 5
Building Your First Application

Creating Your Application Home Page 71
The Administrator’s Guide includes detailed information about how you can
define Alphablox Analytics data sources which can access data from sample
databases included with your databases or custom databases that are available
within your company.

Creating Your Application Home Page
Using your basic web skills, create a simple home page using the following steps
as a guide.

1 Create your home page, naming it myapp.html. On the home page, place an
application title (for example, “My Alphablox Analytics Application”) and
two links to the two pages. If you wish, you can copy and paste the following
code into your myapp.html file:

<html>
<head>
<title>My Alphablox Analytics Application</title>
</head>
<body>
<h2>My Alphablox Analytics Application</h2>
<p>
GridBlox and ChartBlox
Views
</p>
<p>
PresentBlox View
</p>
</body>
</html>

2 Save this file to the MyApp directory you created earlier.

3 Open Microsoft Internet Explorer to the Alphablox Analytics Home page. By
default, the browser displays the Applications tab.

4 Click the My App link to verify that the file is included in the directory
listing. Click on the myapp.html link to view your home page. If you are
using BEA WebLogic, you may see an HTTP 403 error (directory listings are
not allowed by default). To see your page, you will need to add the filename
myapp.html to the end of the URL.

You should now have created a home page with links to the two pages you will be
creating shortly.
DB2 Alphablox
Developer’s Guide for the DHTML Client

72 Setting Default Home Page
Setting Default Home Page
In previous steps, you accessed the home page directly by clicking on the file link
in the MyApp application directory listing, or by specifying the home page
myapp.html in the URL. You now need to set the default home page through the
Alphablox Analytics Administration pages:

1 Open your browser to the Alphablox Analytics home page.

2 Click the Administration tab.

3 Click the Applications link.

4 Select MyApp in the applications list and click the Edit button below the list.

5 On the Edit Application page for MyApp, add myapp.html to the Home URL
field.

6 Click the Save button to save the change you made.

7 Click the main Applications tab, the top left folder tab, to return to the
Applications page.

8 Click the My App application name. Note that the application now opens
directly to the defined home page.

By using the Alphablox Analytics Admin pages to define the home page in the
application definition, the server will know where to start, and will direct the
application to open at this page, even if the user fails to specify the home page in
their URL. Thus, if a user enters http://<yourServerName>/MyApp/ in their
browser address bar, the application will open to the defined home page,
myapp.html.

In the upcoming steps, you will finally begin to create your initial Alphablox
Analytics views using simple Blox tags.

Creating Your First Analytic View
For the first view, you will be using JSP custom tags defined by Alphablox
Analytics to quickly create a JSP page with two presentation Blox, a GridBlox and
a ChartBlox, on it. If you have already read the first part of this book, you should
have a basic understanding of what Blox are and how JSP and custom tags work.
If you skipped that section, especially if you are not familiar with J2EE and
JavaServer Pages technology, you should stop and read that section before
proceeding. You can still complete this tutorial without having read it, but what
you’re about to do will make a lot more sense. In a nutshell, JSP and custom tags
enable HTML pages to include dynamic content that is processed on the server
instead of in the user’s browsers.
CHAPTER 5
Building Your First Application

Creating Your First Analytic View 73
The following steps will show you how to create your first Alphablox Analytics
analysis page, adding two of the three common presentation Blox to a JSP page.
The GridBlox and ChartBlox components you will be working with will create
two views of the sample data, a grid table view and a graphic view.

1 Open a new file in your HTML editor.

2 Create a basic analytic view page with a title, a GridBlox, and a ChartBlox by
typing the following code:

<%@ taglib uri="bloxtld" prefix="blox" %>
<html>
<head>
<blox:header/>
</head>
<body>
<h2>GridBlox and ChartBlox Views</h2>
<p>
<blox:grid id="MyGridBlox"

height="50%"
width="90%">
<blox:data

dataSourceName="Canned"/>
</blox:grid>
</p>
<p>
<blox:chart id="MyChartBlox"

height="50%"
width="90%"
chartType="Bar">
<blox:data

dataSourceName="Canned"/>
</blox:chart>
</p>
</body>
</html>

3 Save the file within your MyApp directory, naming it
GridandChartViews.jsp.

4 Open the Alphablox Analytics home page in your browser and, if you are not
already on the Applications page, click the Applications tab.

5 Click the My App application name and the home page should be displayed.

6 Click the GridBlox and ChartBlox Views link that calls the
GridAndChartViews.jsp page to see your first Alphablox Analytics view. If
you do not see a grid and a chart displayed shortly, but instead see an error
page, review your code for any errors and try again.
DB2 Alphablox
Developer’s Guide for the DHTML Client

74 Creating Your First Analytic View
You should have now successfully created an analysis view using the simple Blox
tags. Since the Blox tags you just used are similar to HTML tags and their tag
attributes, they should have been easy to use and understand. Now let’s review the
code that you entered, to see what the key elements did.

On the first line of the page is the following line:

<%@ taglib uri="bloxtld" prefix="blox" %>

This line is a JSP taglib directive which informs the server that you intend to
use the Blox tag library. The uri is a pointer to the directory location where the
tag library descriptor file is located. The prefix value, defined as blox, tells the
server to look for any tags on this page that begin with blox, then process the
contents using the Blox tag library as defined in the tag library descriptor file.

In the <head> section of the page, there is a special blox tag for adding important
code to the page before it is rendered:

<blox:header/>

This tag is used by Alphablox Analytics to automatically add required HTML,
JavaScript, and CSS code into the head section of the page. When a page is
rendered by the server, this tag results in the inclusion of CSS links to defined
HTML themes and a meta tag for preventing caching. It is important for you to
remember to enter this tag into every JSP page that use Blox—if not included,
HTML versions of the page will not render properly.

In the body of this page, the first presentation Blox, a GridBlox, is defined by the
following lines:

<blox:grid id="MyGridBlox"
height="50%"
width="90%">
<blox:data

dataSourceName="Canned"/>
</blox:grid>

The <blox:grid> specifies that you want a GridBlox to appear here with an id
attribute value of MyGridBlox. The id allows you to identify this particular Blox
for scripting purposes. There are many attributes available for each Blox defined
using tags, but unless specified differently than the default values, there is no
need to include them. In the grid example, you also specified a height of 50%
and a width of 90%. Height and width can be defined in pixels or in percentages.
CHAPTER 5
Building Your First Application

Creating Your Second Analytic View 75
In order to access data, a nested DataBlox is included, listing the
dataSourceName as Canned. [Note: If no data source is specified, you will
typically see the “No data available” message in the grid.] The Canned data
source is pre-defined during installation and includes a small amount of sample
data, does not require installation and configuration of a real external database,
and can be used for troubleshooting and learning. Since we don’t need to specify
a query, there is no query attribute.

In the following lines, a ChartBlox defined using the <blox:chart> tag:

<blox:chart id="MyChartBlox"
height="50%"
width="90%"
chartType="Bar">
<blox:data

dataSourceName="Canned"/>
</blox:chart>

As in the GridBlox before, the specified attributes include id, height, and
width. In addition to those common attributes, a chartType attribute with a
value of Bar (a standard bar chart) was defined to overrule the default value of 3D
Bar (a 3-dimensional bar chart). Similar to the GridBlox, a nested DataBlox is
specified by using the <blox:data> tag. Without specifying a data source, the
Blox would not have any result sets available.

To summarize, three Blox tags were used on this page: <blox:header/>,
<blox:grid>, and <blox:chart>. These three simple-to-use tags allowed you
to quickly specify an analytic view without using any Java code on the page. The
complexity of the presentation logic is being managed by these simple Blox tags.
By adding nested Blox and modifying the attribute values, you can customize
views based on your business requirements.

Creating Your Second Analytic View
So far, you have seen both the GridBlox and the ChartBlox delivering analytic
views that are not synchronized to work together. In many applications, a view of
the data using just a grid or a chart is all that is wanted. At other times, you may
prefer to show data in an analytic view that allows users to toggle between a grid
view or a chart view, and possibly even allow them to see both a grid and a chart
simultaneously. The PresentBlox combines both the GridBlox and the ChartBlox
as nested components within the PresentBlox. In the following steps, you will
define a PresentBlox on a JSP page, and use PresentBlox properties to create a
view that initially shows both a grid and a chart side-by-side, but can also allow a
user to see just a grid or a chart. By combining both views in one Blox, you not
only get synchronized views of the data, but also make efficient use of the limited
space on a page.
DB2 Alphablox
Developer’s Guide for the DHTML Client

76 Creating Your Second Analytic View
Steps
1 Open a new file in your HTML editor.

2 Create a basic analytic view page with a title and a single PresentBlox by
typing the following code:

<%@ taglib uri="bloxtld" prefix="blox" %>
<html>
<head>
<blox:header/>
</head>
<body>
<h2>PresentBlox View</h2>
<p>
<blox:present id="MyPresentBlox"

height="50%"
width="90%">
<blox:data

dataSourceName="Canned"/>
<blox:grid

bandingEnabled="true"/>
<blox:chart

chartType="Bar"/>
</blox:present>
</p>
</body>
</html>

3 Save the file within your MyApp directory, naming it
PresentBloxView.jsp.

4 Open the Alphablox Analytics home page in your browser and, if you are not
already on the Applications page, click the Applications tab.

5 Click the My App application name to launch the home page.

6 Click the PresentBlox View link that calls the PresentBloxView.jsp page
to see your new analytic view. If you don’t see a PresentBlox shortly, but
instead see an error page, review your code for any errors and try again.

In the PresentBlox tag above, there are a few new nested tags and attributes
introduced. Once again, let’s review the new elements introduced.

A PresentBlox is more complicated than a GridBlox or a ChartBlox, since it
includes several other nested Blox within this container Blox. The Blox nested
within a PresentBlox include ChartBlox, DataBlox, DataLayoutBlox, GridBlox,
PageBlox, and ToolbarBlox. DataLayoutBlox and PageBlox add the ability for
users to manipulate the dimensions and set selectable members. ToolbarBlox
adds a series of buttons, further adding end-user access to additional
functionality. Just like the attributes of a Blox, the nested Blox are assumed to
CHAPTER 5
Building Your First Application

Summary 77
exist by default, with their default property values. You only need to include a
nested Blox tag within the PresentBlox if you are going to be changing the default
property values for the nested Blox.For example, in the code example above, the
<blox:data> tag includes the dataSourceName attribute to define the data
source to be used. In this example, setting bandingEnabled to true results in
alternating rows of the grid to be highlighted in a default background color of
yellow.

Summary
If you have finished all of the tutorial tasks above, you have learned how to build
a basic Alphablox Analytics application using the Alphablox Analytics Admin
Pages and Blox tags. If you have already perused the Developer’s Reference for the
DHTML Client, you are aware that there are an incredible number of properties
and methods available for defining and manipulating Blox on JSP pages. So what
next?

If you are anxious to see your corporate data in an Alphablox Analytics view, you
now know how to create an application from scratch and add analytic views to
your application. If you are particularly anxious to see something right away, you
could make a couple of quick and simple modifications to the MyApp
application. Here’s what you need to know. In order to display data from your
corporate databases, you need to create a new data source that points to a
corporate data source, modify the dataSourceName attributes to point to the
newly defined data source, then add an appropriate query attribute. For details on
creating data sources, see the Administrator’s Guide. To learn how to create
appropriate queries, see “Retrieving Data” on page 181 and the DataBlox section
of the Developer’s Reference for the DHTML Client.

Once you have your own corporate data appearing in Blox views, you can also
begin exploring the many properties that can be set by using the simple Blox tags.
And, when you’re comfortable with some of the capabilities possible within
Alphablox Analytics, you will likely want to learn how to use JavaServer Pages
technology and JavaScript to create custom scripts and functions to further
enhance your applications.
DB2 Alphablox
Developer’s Guide for the DHTML Client

78 Summary
CHAPTER 5
Building Your First Application

6
Using JavaServer Pages and the

Blox Tag Library
The use of JavaServer Pages technology in Alphablox Analytics applications
enables developers to rapidly create and easily maintain web-based analytic
applications. In addition to developing with DHTML technologies (including
HTML, JavaScript, and CSS), JSP technologies add dynamic scripting elements
that let you tap into the power of Java without having to master Java. This chapter
explains how JavaServer Pages technology are used within Alphablox Analytics
applications.

JavaServer Pages Technology
JavaServer Pages (JSP) technology allows developers to rapidly create and easily
maintain web-based analytic applications using familiar DHTML technologies,
including HTML, CSS, and JavaScript, along with dynamic scripting elements
that enable developers to use Java and server-side processing. This technology
also helps developers create applications that are less prone to the vulnerabilities
of cross-browser idiosyncrasies. In a nutshell, the primary advantages of JSP
technology are:

• Separating content generation from presentation

Using JSP technology, web page developers can use HTML or XML tags to
design and format web application pages. JSP tags and scriptlets allow web page
developers to use familiar tag syntax and scripting capabilities to generate pages,
with the core program logic being hidden within custom tag libraries and Java
beans. Advanced Java developers can use Java to create these reusable
components that can be used by web page designers and application developers.

80 JavaServer Pages Technology
• Emphasis on reusable components

Most JSP pages rely on the use of cross-platform, reusable components, such as
Java beans and servlets. Using JSP makes it easier for web page designers and
developers to generate content using Java beans and servlet components. For
example, Blox are Java beans that interact with server peers, but developers can
use simple tags to define these beans.

• Simplification of web development with tags

JSP technology enables dynamic content generation by encapsulating much of
the functionality in easy-to-use, JSP-specific XML tags. These standard JSP tags
are used to interact with JavaBeans components, set and get bean attributes, and
perform other functions that would otherwise be more difficult and time-
consuming to code. The use of JSP custom tag libraries allow Alphablox
Analytics and others to create easy-to-use tags that can be used by web page
designers and developers, while hiding the complexity that they don’t need to be
concerned with.

The Developer’s Guide for the DHTML Client assumes basic familiarity with
JavaServer Pages technology, but even without this knowledge, you can still
create some basic Alphablox Analytics applications. The remainder of this chapter
focuses on explaining how to use JSP with Alphablox Analytics.

To learn more about the JavaServer Pages technology, the following books and
web sites are recommended by Alphablox:

Book Recommendations

Bergsten, Hans. 2004. JavaServer Pages. Sebastapol, CA: O’Reilly & Associates.

An excellent guide to JavaServer Pages and application development without
having to be a hard-core developer. The first part, targeted for web page
designers and developers, discusses JSP concepts and how JSP fits into web
application development. The later programming-oriented parts discuss how to
create JSP components and custom JSP tags.

Fields, Duane K.; Kolb, Mark A.; and Bayern, Shawn. 2001. Web Development
with JavaServer Pages (2nd edition). Greenwich, CT: Manning Publications.

Another excellent guide to JavaServer Pages, intended for both web page
designers and Java developers. Includes discussions on using the JSP 1.2 and
Servlet 2.3 specifications and examples for common web application tasks.
CHAPTER 6
Using JavaServer Pages and the Blox Tag Library

JavaServer Pages Technology 81
Falkner, Jason (editor). 2001. Beginning JSP Web Development. Birmingham, UK:
Wrox Press.

This introduction to JavaServer Pages assumes no previous programming
experience and only prior HTML experience. While introducing how to build
web-based applications, it explains the relevant JSP and Java concepts. By the
third chapter, you are creating simple Java beans.

Web Sites

JavaServer Pages (Sun) - http://java.sun.com/products/jsp/

Sun invented the JavaServer Pages technology and this is the place for the latest
information, including news, specifications, software, and tutorials. In the
Technical Resources section, you can get PDF versions of quick syntax reference
cards and guides.

JavaBeans (Sun) - http://java.sun.com/products/javabeans/

Includes the JavaBeans specifications, tutorials, and the latest news about
JavaBeans technology.

Servlets (Sun) - http://java.sun.com/products/servlets/

Sun’s site for the latest in servlet technology, including news, specifications, and
tutorials.

JSP Insider - http://www.jspinsider.com/

An excellent source for JSP articles, reference guides, and links to other JSP
resources. The JSP Buzz newsletter offers news and articles, and is a good way to
stay current on JSP products and features.

JGuru - http://www.jguru.com/

This site has many articles on topics relevant to JSP web application
development. There are also useful FAQs about JSP and servlets.
DB2 Alphablox
Developer’s Guide for the DHTML Client

http://java.sun.com/products/jsp/
http://java.sun.com/products/javabeans/
http://www.jspinsider.com/
http://java.sun.com/products/servlets/
http://www.jguru.com/

82 Using JavaServer Pages with Alphablox Analytics
Using JavaServer Pages with Alphablox Analytics
With JavaServer Pages technology and Alphablox Analytics, you can rapidly
create and more easily maintain sophisticated analytic applications. Although JSP
is a server-based technology, it allows you to incorporate standard client-side
technologies, including HTML, JavaScript, and Cascading Style Sheets. This
allows you, as an Alphablox Analytics developer, to use these technologies to
build flexible and extensible applications.

Analytic applications typically employ both client-side and server-side
techniques, using the best of both technologies to deliver your applications. The
entire Blox API, including the Blox Client API and the server-side Java API, are
detailed in the Developer’s Reference for the DHTML Client.

Most often Blox, including the presentation Blox, will be defined in JSP files
using the Blox tag library. The Blox tag library, developed using JavaServer
Pages technology, includes easy-to-use tags for specifying Blox and their
properties. Other Blox tags can be used to handle common developer tasks,
including application and business logic debugging. Although you could use
standard JSP actions (including the jsp:useBean, jsp:setProperty, and
jsp:getProperty tags) to develop JSP applications with Alphablox Analytics,
the Blox tag library offers almost identical functionality with less effort. The
remainder of this chapter focuses on the use of the core Blox tags in the Blox Tag
Library to define Blox. Other Blox tag libraries, including the Blox Form Tag
Library, the Blox Logic Tag Library, and the Blox UI Tag Library are discussed
later in this guide.

Server-Side Programming with Alphablox Analytics
The Alphablox Analytics server-side programming model (SSPM) emphasizes
processing application and business logic, whenever possible, on web application
servers. Alphablox Analytics offers a rich set of server-side functionality with its
support for JavaServer Pages and the Java programming language. In conjunction
with powerful application servers, like BEA WebLogic and IBM WebSphere,
Alphablox is able to offer a powerful J2EE-compliant environment for
developers. Alphablox Analytics offers a Blox Java API that gives developers the
full power of Java, JavaServer Pages, JavaBeans components, and Java Servlets
technologies.

This developer’s guide focuses on teaching you — even if you have limited or no
Java experience — how you can tap into the power of Java server-side
programming models to rapidly deliver analytic applications. By being task-
focused, this guide will help you quickly learn to use the power of Alphablox
Analytics for solving immediate business needs.
CHAPTER 6
Using JavaServer Pages and the Blox Tag Library

Using the Blox Tag Libraries 83
Using the Blox Tag Libraries
Developed with JavaServer Pages technology supporting JSP custom tags, the
Alphablox Analytics Blox Tag Library includes easy-to-use tags that can be used
by web page authors and Java developers.

The core Blox tags are used to define the common user interface Blox, including
ChartBlox, DataBlox, DataLayoutBlox, GridBlox, PageBlox, PresentBlox, and
ToolbarBlox. Blox tags are also available for defining Blox used specifically in
building relational reporting applications. Other Blox tag libraries are useful for
creating powerful form elements (Blox Form Tag Library), extending the Blox UI
(Blox UI Tag Library), and handling complex business logic (Blox Logic Tag
Library). For relational reporting requirements, the Blox Reporting Tag Library,
including the ReportBlox and other associated Blox, is discussed in the Relational
Reporting Developer’s Guide.

Before describing the advantages of using the Blox Tag Library, take a look at the
following code examples and you should be able to see for yourself advantages in
using Blox tags. Don’t worry right now about understanding the details of how
the Blox tags work — that will be explained shortly. Instead, focus on the layout
and readability of the code examples.

If you already know how to use standard JSP syntax to define Java beans, you
should be able to understand the following code example without difficulty. If
this syntax is new to you, however, you may have lots of questions and be
concerned that you have lots to learn before you can begin making any progress.
Keep in mind that this example highlights the more difficult way to code Blox,
using standard JSP syntax to define a PresentBlox:

<jsp:useBean id="myPresentBlox"
scope="session"
class="com.alphablox.blox.PresentBlox">

<%
myPresentBlox.init(request,response,"myPresentBlox");
myPresentBlox.setProperty("width","540");
myPresentBlox.setProperty("height","350");

DataBlox myDataBlox=myPresentBlox.getDataBlox();
myDataBlox.setProperty("dataSourceName","TBC");
myDataBlox.setProperty("query","<ROW(Market) <ICHILD Market

<COLUMN(Year) Year !");
myDataBlox.connect();

%>
</jsp:useBean>

Luckily for you, perhaps, the Developer’s Guide for the DHTML Client spends
little time on this syntax—if you know it, great—it may come in handy on some
occasions. If this syntax is new to you, don’t worry—you may never need to learn
how to use it— the Blox tag library provides an easier way to build Blox
DB2 Alphablox
Developer’s Guide for the DHTML Client

84 Accessing the Blox Tag Library
components and applications. On some occasions standard JSP syntax will be the
only way to code a solution, but most of the time you’ll be able to use the Blox
tags instead. Now compare the previous code example with the following
example, using Blox tags to define the same PresentBlox:

<blox:present id="myPresentBlox"
width="540"
height="350">
<blox:data

dataSourceName="TBC"
query="<ROW(Market) <ICHILD Market <COLUMN(Year) Year !"/>

</blox:present>

As you can see, the code is easier to read and maintain. Here are the primary
reasons you should be interested in using the JSP custom tag approach:

• Easier to read

In the PresentBlox example, code created using the Blox tag library is much
easier to read— the properties are mapped using tag attributes as simple name/
value pairs, which can be formatted for easy readability.

• Easier to code

Since there is less to type, Blox created using Blox tags can be more rapidly
coded. There is no need to add a number of additional lines for initializing and
connecting to the data source—it is handled automatically by the Blox tags.

• Easier to maintain

As a result of being easier to read and code, Blox tags should be easier to
maintain. Details, including initialization of the Blox (Java beans) and
connecting to the data source, are automatically handled for you. You focus on
defining the Blox and its properties, and the tag library takes care of making it all
work. Also, one of the advantages of encapsulating Java code with tag libraries is
that it makes future updates to the Java code easier to manage for both Alphablox
and you.

So, let’s get started learning about how to use these Blox tags to define the Blox
you will be using in your analytic applications.

Accessing the Blox Tag Library
By default, a web page will ignore tags that it doesn’t know about. This means
that if you put Blox tags on a page without telling the page where to find
information about them, it will ignore them.
CHAPTER 6
Using JavaServer Pages and the Blox Tag Library

Using the Blox Header Tag 85
So, before you take advantage of Blox tags, you need to add a single line, called a
taglib directive, to the top of your JSP pages. Here is the JSP taglib directive
that you should use:

<%@ taglib uri="bloxtld" prefix="blox" %>

This line of code tells the JSP compiler that you intend to use a custom tag library
that is located at the URI (uniform resource identifier) specified as bloxtld. This
URI, bloxtld, is a shorthand label that defines the location where your
Alphablox Analytics can find the tag library descriptor file (blox.tld) for the
Blox custom tag library. The blox.tld file is located within each application you
create, typically at the following location:

/webapps/<applicationName>/WEB-INF/tlds/blox.tld

The blox.tld file determines which tags and tag attributes are supported in
Alphablox Analytics applications, and is automatically created in new applications
created using the Alphablox Analytics home pages.

 If you are curious to learn more about tag library descriptor (.tld) files, see
one of the recommended JavaServer Pages technology resources listed above in
the JavaServer Pages Technology section. To learn more about how Alphablox
Analytics applications are created, see the Administrator’s Guide.

The taglib directive can be placed anywhere on a JSP page, as long as it occurs
before you use Blox tags on that page. The best practice, however, is to place the
taglib directive at the top of your JSP page, above the <html> tag, like this:

<%@ taglib uri="bloxtld" prefix="blox" %>
<html>
<head>
...

Once again, the taglib directive notifies your web application server that you
intend to use Blox tags, and need the library to be available. The JSP Engine then
parses through the JSP page, looking for any tags on a page that begin with the
“blox” prefix, as defined in the taglib directive, and when it finds one, it
executes the Java code in the tag library— you don’t need to see it.

Using the Blox Header Tag
After you’ve added the taglib directive to the top of your page, an important tag
you need to include on the page is the Blox header tag (<blox:header>). This
tag manages the rendering of Blox on your pages, making critical external
JavaScript and Cascading Style Sheets (CSS) files available. Also, it adds a few
lines of code that manage file caching.
DB2 Alphablox
Developer’s Guide for the DHTML Client

86 Defining Blox
The Blox header tag should be placed somewhere within the <head> section of
your JSP page, but after the taglib directive:

<%@ taglib uri="bloxtld" prefix="blox" %>
<html>
<head>

<blox:header/>
...

</head>

Minimally, you need to add the shorthand <blox:header> tag, as shown in the
example above. Depending on your particular application, though, you may need
to add nested tags within this tag for performing other important Blox actions.
This usage will be explained later in this guide. For details about the syntax and
usage of the <blox:header> tag, see the Developer’s Reference for the DHTML
Client.

 When using <jsp:include> to include a file that has a Blox on a JSP
page, you need to add a <blox:header> tag to the top of that page so that the
Blox doesn’t hang at the initializing stage.

 When developing applications using framesets and multiple frames from
more than one application, you can use the <blox:session> tag to help
manage user sessions properly. See the Developer’s Reference for the DHTML
Client for further information on this tag.

The next section, on defining Blox, explains how to use Blox tags from the Blox
Tag Library to define Blox on your application pages.

Defining Blox
The following table lists the user interface Blox and their JSP custom tags:

Blox Name Blox Tag

ChartBlox <blox:chart>

DataBlox <blox:data>

DataLayoutBlox <blox:dataLayout>

GridBlox <blox:grid>

PageBlox <blox:page>
CHAPTER 6
Using JavaServer Pages and the Blox Tag Library

../index.html?context=reference&topic=ReferenceBook
../index.html?context=reference&topic=ReferenceBook

Defining Blox 87
 Details on these Blox and complete syntax for their tags, attributes, and
usage can be found in the Developer’s Reference for the DHTML Client.

 There are no spaces between the blox prefix, the colon, and the name of the
tag. If you put a space after the colon, you will generate JSP compiler errors.

 In discussions about Blox tags throughout the Developer’s Guide for the
DHTML Client, you will see references to the shorthand syntax for tags. This is to
help you be clear when the tag is being discussed instead of the Blox itself. For
example, instead of referring to the Blox GridBlox tag, this guide will frequently
refer to the <blox:grid> tag.

As discussed earlier in “Alphablox Analytics Applications and the Underlying
Blox” on page 29, Blox can be standalone or nested as children within other
parent Blox, depending on which Blox is being used and their particular usage.
By default, a standalone Blox includes nested Blox set to their default values. A
PresentBlox, for example, includes a nested ChartBlox, DataBlox,
DataLayoutBlox, GridBlox, PageBlox, and ToolbarBlox.

The following table lists the nested Blox components for each standalone
presentation Blox:

PresentBlox <blox:present>

ReportBlox <blox:report>
For Blox supporting ReportBlox and
their tags, see the Relational Reporting
Developer’s Guide.

Standalone Blox Nested Blox Components

ChartBlox DataBlox
ToolbarBlox

DataBlox CommentsBlox [optional]

DataLayoutBlox DataBlox

GridBlox DataBlox
ToolbarBlox

PageBlox DataBlox

Blox Name Blox Tag
DB2 Alphablox
Developer’s Guide for the DHTML Client

../index.html?context=reference&topic=ReferenceBook

88 Defining Blox
Rather than have to include nested tags for the nested Blox, you can just include
just the top-level parent Blox tag — the nested Blox listed above are implicitly
included.

A minimal PresentBlox, for example, defined with <blox:present> tag would
look like this when coded with opening and closing tags:

<blox:present id="myPresentBlox"></blox:present>

or like this, when using the shorthand method:

<blox:present id="myPresentBlox"/>

The shorthand method is recommended most of the time — opening and closing
tags are only required when content (called the body) needs to be added between
the tags.

 The minimal examples above include an id attribute, since this is the
minimum definition required for a Blox to be rendered properly. All parent Blox
within an application must be uniquely identified, but nested Blox don’t require
id attributes.

If you included all of the possible nested Blox tags that are implicit to the
PresentBlox, this is what the same PresentBlox would look like:

<blox:present id="myPresentBlox">
<blox:grid/>
<blox:chart/>
<blox:toolbar/>
<blox:page/>
<blox:dataLayout/>
<blox:data/>

</blox:present>

Since the nested Blox are implicitly included, even when you do not explicitly
add the nested Blox tag, include nested Blox tags only when you need to include
required tag attributes or tag attributes for properties that you need to change
from their default settings.

PresentBlox ChartBlox
DataBlox
DataLayoutBlox
GridBlox
PageBlox
ToolbarBlox

Standalone Blox Nested Blox Components
CHAPTER 6
Using JavaServer Pages and the Blox Tag Library

Setting Blox Properties Using Tag Attributes 89
If you placed a PresentBlox tag on a page without any defined nested Blox or
defined tag attributes, a PresentBlox would be rendered on the page, but the Blox
would not do anything interesting — without defining a data source and query on
the nested <blox:data> tag at least, no data would be retrieved. In order for
Blox to do something useful, you usually need to add tag attributes or nested
property tags.

At this point, you should understand how to get a Blox to appear on a JSP page
and how to include nested Blox. The next section explains how to add simple tag
properties to Blox.

Setting Blox Properties Using Tag Attributes
The initial Blox properties that are used when a Blox is instantiated on a JSP page
are determined by the settings defined in Blox tag attributes or nested property
tags. Property tags will be explained in the next section, “Setting Blox Properties
Using Property Tags.”

Blox have both common and unique properties. And, just like the implicit Blox
that occur within other Blox, all of the properties on Blox have default values.
Most of these default values may never need to be changed by you, but when you
need to change their values, most of these properties can be exposed and changed
using tag attributes. Details about the hundreds of tag attributes that can be used
to customize Blox are described in the Developer’s Reference for the DHTML
Client, but let’s take a look at two of the commonly modified attributes as
examples.

Without defining a data source and an initial query for a PresentBlox, it would
render properly and display No data available messages in the grid and chart
sections. To retrieve data for display, you must define two DataBlox properties,
using the dataSourceName and the query attributes. As mentioned earlier, to
access and modify a nested Blox, you need to add the nested Blox tag within the
top-level Blox, then add the required tag attributes or nested property tags. In the
following PresentBlox example, a nested DataBlox tag is added with two tag
attributes, dataSourceName and query:

<blox:present id="uniqueName">
<blox:data

dataSourceName="definedDataSource"
DB2 Alphablox
Developer’s Guide for the DHTML Client

../index.html?context=reference&topic=ReferenceBook

90 Setting Blox Properties Using Style Property Tags
query="query"/>
</blox:present>

If you wanted to change the default chart type setting on a PresentBlox, you
would have to add a nested ChartBlox tag, defining an alternate chart type using
the ChartBlox chartType attribute. In the following example, the PresentBlox
will now display a line chart instead of the default bar chart:

<blox:present id="uniqueName">
<blox:data

dataSourceName="definedDataSource"
query="query"/>

<blox:chart chartType="Line"/>
</blox:present>

To customize Blox to meet your user requirements, you’ll be adding and
modifying many Blox properties using the tag attributes. In addition to the tag
attributes, some Blox require special property tags of their own to define
properties. The next two sections discuss how these “nested” property tags are
used to define some specific Blox style properties.

Setting Blox Properties Using Style Property Tags
While most Blox properties are exposed and defined using tag attributes, other
properties, including all styles and indexed properties (properties that use an
index value to allow multiple instances within the same Blox) are relatively more
complex and most include sub-properties that also need to be defined. Some of
these properties require the use of their own tags while others can be used as
property tags or tag attributes on a Blox.

The following table lists all of the non-indexed Blox properties (properties that
cannot have multiple instances, each identified by an index value) that are
exposed and defined using property tags:

Property
Associated Sub-properties
or Attributes

Applies To

titleStyle foreground
font

ChartBlox

footnoteStyle foreground
font

ChartBlox

labelStyle foreground
font

ChartBlox
CHAPTER 6
Using JavaServer Pages and the Blox Tag Library

Setting Blox Properties Using Style Property Tags 91
For each of the style properties listed above, a Blox property tag defines the
property and its associated sub-properties. Attributes on the tags are used to set
the individual sub-properties of the style property. Like the nested Blox definition
tags, the Blox property tags are nested within the Blox to which their properties
apply. Unlike the Blox definition tags, though, these tags do not define objects,
but are used instead to define properties on Blox.

The following GridBlox tag example includes several GridBlox tag attributes,
including id, bandingEnabled, and defaultCellFormat. In the body of the
GridBlox tag, you can see a nested property tag (<blox:titleStyle>), being
used to define how all of the cells in the grid should appear:

<blox:grid id="myGridBlox"
bandingEnabled="false"
defaultCellFormat="#,###.00"/>
<blox:titleStyle

foreground="red"
font="Helvetica:10"/>

</blox:grid>

Property tags enable developers to code complex properties without having to put
all of these sub-properties on a single value string. This is a convenience for
readability and coding, helping to reduce the likelihood of coding errors. Also,
since long value strings cannot contain line breaks, they cannot be formatted as
nicely as the examples above. Using a single value string, the previous example
would look like this:

<blox:grid id="myGridBlox"
bandingEnabled="false"
defaultCellFormat="#,###.00"
titleStyle="foreground=red,font=Helvetica:10;"/>

</blox:grid>

Whether to define styles using tag attributes or nested property tags is up to your
personal preference, although being consistent in your approach makes
debugging easier. Also, using nested quotation marks in a style tag attribute is
trickier.

Usage of the style property tags is explained further under each style property of
the Developer’s Reference for the DHTML Client.

axisTitleStyle foreground
font

ChartBlox

Property
Associated Sub-properties
or Attributes

Applies To
DB2 Alphablox
Developer’s Guide for the DHTML Client

92 Setting Indexed Blox Properties Using Property Tags
Setting Indexed Blox Properties Using Property Tags
Indexed Blox properties, also defined using Blox property tags, include an index
value to allow multiple instances of these properties to be used within a Blox.
Unlike the previous style property tags, these property tags include index
attributes to allow handling multiple instances of the same tag within a Blox tag.

There are two important differences between indexed and non-indexed property
tags:

• You can have multiple instances of the same indexed property tag within a
parent Blox tag.

• The order in which you place indexed Blox property tags in your code affects
the outcome, unless you explicitly define the index values in your attribute.

Indexed property tags have a common index attribute for defining the order of
interpretation when multiple examples exist. The index attribute allows you to:

• script to the indexed properties defined in these property tags

• assign the order of interpretation, so that you don’t need to reorder these
property tags within a nested Blox (although keeping them in order should
help you better interpret the expected behaviors).

If the index attribute is not defined, an implicit index value is assigned
automatically. The first index attribute is assigned a value of 1. If you intend to
use multiple indexed property tags and will be scripting to these tags, you should
consider adding the index attribute to your tags and assigning values that you can
see in your code. This will help ensure that you are scripting to the right tag.
CHAPTER 6
Using JavaServer Pages and the Blox Tag Library

Setting Indexed Blox Properties Using Property Tags 93
The following table lists all indexed properties, their sub-properties, and the Blox
to which they belong:

Index Property
Associated Sub-properties
or Attributes

Applies To

cellAlert index
enabled
condition
value
value2
description
font
foreground
background
apply
format
align
valign
link
image
image_align
scope

GridBlox

cellFormat index
format
scope

GridBlox

cellEditor index
scope

GridBlox

cellLink index
description
image
image_align
link
scope

GridBlox

generationStyle index
foreground
background
font
align
valign

GridBlox
DB2 Alphablox
Developer’s Guide for the DHTML Client

94 Setting Indexed Blox Properties Using Property Tags
As previously mentioned, when you script to an indexed property tag, it has either
an implied or defined index attribute. In the following example, the GridBlox has
two GridBlox cellAlert tags, but neither of them have index attributes
defined:

<blox:grid id="myGridBlox">
<blox:cellAlert

condition="GT"
value="50"
scope="{Scenario:Variance}"/>

<blox:cellAlert
condition="GT"
value="50"
scope="{Scenario:Variance}"/>

</blox:grid>

To modify the second <blox:cellAlert> tag, your Java method might look like
this:

myGridBlox.setCellAlert(2,�condition=GT,value=50, background=red,
scope={Scenario:Variable}")

Even though the GridBlox tag doesn’t explicitly show an index attribute, the
index property for the second cellAlert property is automatically set to 2.
While this works, it would be better to define your cell alerts by setting explicit
index attributes, like this:

<blox:grid id="myGridBlox">
<blox:cellAlert index="1"

condition="GT"
value="50"
scope="{Scenario:Variance}"/>

<blox:cellAlert index="2"
condition="GT"
value="50"
scope="{Scenario:Variance}"/>

</blox:grid>

Doing this, especially with many more cell alerts defined, would make it easier to
know the index values on each of the cell alerts.
CHAPTER 6
Using JavaServer Pages and the Blox Tag Library

Controlling Visibility of Blox 95
Controlling Visibility of Blox
The visible common Blox property allows developers to control the rendering,
or display, of a Blox on a JSP page. This property can be applied to the following
Blox: ChartBlox, DataBlox, DataLayoutBlox, GridBlox, PageBlox, PresentBlox,
RepositoryBlox, and the nested ToolbarBlox. By default, the value for visible
on these Blox is true. You can set the visible property to false and later use
the <blox:display> tag to display it after you are done with some processing
logic.

 When using the DHTML client, Blox JavaScript objects are created on the
client page, allowing the page to communicate with Alphablox Analytics using the
Client API. But, if the visible property is set to false, the client-side JavaScript
Blox object will not be created.

Details about the visible tag attribute can be found in Developer’s Reference for
the DHTML Client.

For Processing Logic Before Rendering

In more advanced analytic applications, you may find the need to use Java
methods in scriptlets to process some business logic before making a Blox visible
on a JSP page. In these instances, you can set the visible attribute of the Blox to
false, then use the Blox display tag (<blox:display>) to control the visibility
of a Blox.

Before rendering a view to a JSP page, you can set the visible attribute of the
Blox to false, include your processing logic code, then render Blox after the
processing has been completed.

The following example shows a PresentBlox with the visible attribute set to
false, followed by a scriptlet with some processing logic using Java, and finally
the <blox:display> tag, resulting in the PresentBlox being displayed on a
page:

<blox:present id="myPresentBlox"
visible="false"
...

/>

<%
your processing logic would go here

%>
DB2 Alphablox
Developer’s Guide for the DHTML Client

../index.html?context=reference&topic=ReferenceBook
../index.html?context=reference&topic=ReferenceBook

96 Rendering Blox on Multiple Pages
<blox:display bloxRef="myPresentBlox"/>

In this example, if you did not set the PresentBlox’s visible attribute to false,
the JSP container would have rendered two Blox on the page, one before the
processing logic was done and one after. And, the first PresentBlox would not
show the effects of the logic you performed.

For Blox such as the RepositoryBlox and the DataBlox, that are not visible on a
page anyway, setting the visible property to false will have no effect. For both
of these Blox, the visible property is ignored since these Blox are never visible.

Rendering Blox on Multiple Pages
The <blox:display> tag also comes in handy when you need to create a Blox
on one page, or a frame in a frameset, but render the same Blox on a different
page. There are two common instances where this might be useful: when you
have a Blox on a page and you would like to have custom pages for printing or
exporting to Microsoft Excel. When a Blox view is exported to Microsoft Excel,
for example, you can define your Blox on one page that has an “Export to Excel”
button. When a user clicks on that button, you could load a page into Excel
displaying only the grid and the chart, without unnecessary text or buttons from
the originating page appearing.

Also, once a Blox has been instantiated during a session, its current view can be
made available to other pages using the <blox:display> tag.

For details about the <blox:display> tag, see the Developer’s Reference for the
DHTML Client and the “Task: Creating Custom Print Pages Using the
<blox:display> Tag” on page 220 of this guide.

Blox Utility Tags
Some Blox tags are not used to define Blox that appear on a page, but instead
provide access to additional functionality. Here is a brief description of the Blox
utility tags, but details can be found in the Developer’s Reference for the DHTML
Client.

Blox Header Tag

The Blox header tag (<blox:header>) was described earlier in “Using the Blox
Header Tag” on page 85.
CHAPTER 6
Using JavaServer Pages and the Blox Tag Library

../index.html?context=reference&topic=ReferenceBook
../index.html?context=reference&topic=ReferenceBook
../index.html?context=reference&topic=ReferenceBook
../index.html?context=reference&topic=ReferenceBook

Using Standard JSP Syntax 97
Blox Debug Tag

The Blox debug tag (<blox:debug>), another special tag, can be added to a JSP
page to have useful debugging information sent to the system console.

More information about the use of the Blox debug tag can be found in
“Troubleshooting Applications” on page 349. For information on using the
system console, see the Administrator’s Guide.

Blox Display Tag

The <blox:display> tag, discussed earlier, is useful for either rendering a Blox
after some processing logic has occurred or rendering a Blox on different pages
than it was originally created on. Details about using the <blox:display> tag
can be found in “Presenting Data” on page 213 and the Developer’s Reference for
the DHTML Client.

Using Standard JSP Syntax
Blox can be defined using the standard JSP syntax instead of the Blox custom
tags. As discussed earlier in this chapter, Blox tags almost always offer the best
method for defining Blox. In some situations, however, you may find that the
only alternative is to use standard JSP syntax.

If you have only coded using the standard JSP syntax before and have never used
tag libraries, you may prefer to use that syntax than Blox tags because it is
familiar. But before you decide to use standard JSP syntax, you should try to use
the Blox custom tags for the reasons described earlier in this chapter.
DB2 Alphablox
Developer’s Guide for the DHTML Client

../index.html?context=reference&topic=ReferenceBook
../index.html?context=reference&topic=ReferenceBook
../index.html?context=admin&topic=AdminBook

98 More to Learn
 If you use both standard JSP syntax and the Blox tags on the same page, you
need the following two lines at the top of your page:

<%@ taglib uri="bloxtld" prefix="blox" %>
<%@ page import="com.alphablox.blox.*" %>

 Blox tags define Blox (Java beans) using a scope set to session. If you are
using standard JSP syntax, you almost always should use your bean (in this case,
a Blox) with a session scope. The default for the useBean syntax sets the scope to
page. Here is an example of what this might look like:

<jsp:useBean id="regionsPresentBlox"
class="com.alphablox.blox.PresentBlox" scope="session">

More to Learn
Throughout this section, you’ve learned how to use the core Blox tags to define
presentation Blox and their properties. You’ve also learned about the Blox utility
tags, including <blox:display>, <blox:debug>, and <blox:header>. To
learn specifics about the syntax and usage of these tags, see the Developer’s
Reference for the DHTML Client and this guide.

In the rest of this Developer’s Guide for the DHTML Client, you will be introduced
to commonly encountered tasks and some potential solutions. The Developer’s
Guide for the DHTML Client and the Developer’s Reference for the DHTML Client,
along with some good JavaServer Pages references, should take you a long way
towards helping you develop sophisticated analytic applications for your users.
CHAPTER 6
Using JavaServer Pages and the Blox Tag Library

../index.html?context=reference&topic=ReferenceBook
../index.html?context=reference&topic=ReferenceBook
../index.html?context=reference&topic=ReferenceBook

7
Using Blox Form Tags

The Blox Form Tag Library includes FormBlox and other tags for generating
HTML form elements with built-in enhancements. Some of the tags automatically
generate selection lists for data sources, dimensions, and dimension members.
Others can be used to manage radio buttons and checkboxes, or to create tree
controls for navigation and other purposes. And, when you use these tags,
persistence of state is handled during the session. As a result, you do not need to
write additional Java or JavaScript code to manage the persistence of selections
during a user’s browsing session. The checkboxes maintain their checked state,
the last radio button selected stays selected, and tree menus maintain their state
even if a user leaves that page and returns to it later during the same session.

Using the Blox Form Tag Library
The FormBlox and related tags are defined in the bloxform.tld file. When you
create a new Alphablox Analytics application, this file is automatically included in
the following directory:

<applicationDirectory>/WEB-INF/tlds/bloxform.tld

 If the TLD file is not found, or is accidentally deleted, a copy of the current
version of this TLD file can be found in the following directory:

<alphabloxDirectory>/bin/

100 Overview of FormBlox Components
The FormBlox and related tags are collectively defined in the bloxform.tld file.
When you create a new Alphablox Analytics application, this file is automatically
included in the following directory:

/<applicationContext>/WEB-INF/tlds/bloxform.tld

To use Blox form tags, the following taglib directive must be included at the top
of JSP pages for the tag library to be recognized.

<%@ taglib uri=�bloxformtld� prefix=�bloxform� %>

Overview of FormBlox Components
The FormBlox components are briefly described below and some simple
examples of usage are described. The FormBlox components have been built
using the same lower-level Blox UI components that you have access to as a
developer, but the work of building these convenient Blox components has
already been done for you.

Detailed information (including syntax, usage, and examples) about the
FormBlox API and other form-related tags can be found in the Blox Form Tags
Reference section of the Developer’s Reference for the DHTML Client and in the
Server-Side API Javadoc.

Types of FormBlox Components

The FormBlox components of the Blox Form Tag Library can be grouped into
four categories: form controls, metadata selection lists, time schema selection
lists, and tree controls. Below is a brief overview of these component groups.

Basic Form Controls

This group of FormBlox components create basic HTML form controls, including
checkboxes, text fields or textareas, radio buttons, and selection lists. For the
most part, these Blox components offer similar capabilities as the standard HTML
elements, but also have the benefit of maintaining state throughout a session.
When a user event occurs, such as checking a checkbox or selecting an item in a
selection list, the changed value is sent to the appropriate object without
refreshing the page.

FormBlox Component Description

CheckBoxFormBlox Creates checkboxes (either individual or grouped)
for selecting or deselecting items using HTML
<input type="checkbox"> tags.
CHAPTER 7
Using Blox Form Tags

../index.html?context=reference&topic=ReferenceBook

Overview of FormBlox Components 101
Metadata Selection Lists

This group of FormBlox components create specialized HTML selection lists that
generate selection list options from data source metadata. These include
selections lists for data sources, multidimensional databases, cubes, dimensions,
and members. Since these lists are dynamically generated, you do not need to
worry about remembering to add or remove list options.

Unlike other basic HTML selection lists, these metadata selection lists maintain
state throughout a user session. When a user event occurs, such as checking a
checkbox or selecting an item in a selection list, the changed value is sent to the
appropriate object without refreshing the page.

EditFormBlox Creates text fields or textareas using HTML
<input type="text"> or <textarea> tags.

RadioButtonFormBlox Creates radio button form controls with <input
type="radio"> tags.

SelectFormBlox Creates drop-down and scrolling selection lists
using the HTML <select> and <option> tags.

FormBlox Component Description

FormBlox Component Description

DataSourceSelectFormBlox Creates a dynamically-generated HTML
selection list of Alphablox Analytics data
sources.

CubeSelectFormBlox Creates a dynamically-populated HTML
selection list containing the available cubes in
a specified Alphablox Analytics data source.

DimensionSelectFormBlox Creates a dynamically-populated HTML
selection list of the available dimensions in a
specified multidimensional cube.

MemberSelectFormBlox Creates a dynamically-populated HTML
selection list includng the available members
in a selected dimension.
DB2 Alphablox
Developer’s Guide for the DHTML Client

102 Overview of FormBlox Components
Time Schema Selection Lists

The time schema-related Blox Form tags allow developers to dynamically
generate selection lists for users to choose common business time periods and
time units. These selection lists can be used to drive analytic views that users see.
Here is a summary of the two major time schema tags, the
TimePeriodSelectFormBlox and the TimeUnitSelectFormBlox.

Tree Controls

This category includes one item, the TreeFormBlox. The TreeFormBlox creates
tree controls composed of folders and items. These folders and items, when
selected, which can have actions associated with them. A TreeFormBlox can be
used to create hierarchical selection lists and navigation menus. It can also use the
HTML form POST method. If enabled, items and folders can be dragged and
dropped within the tree control.

Blox Component Description

TimePeriodSelectFormBlox Creates selection lists offering common
business time periods, including current week,
current month, month to current, quarter to
current, year to current, last quarter, last two
quarters, four quarters, last two months, last
three months, last six months, last year, and last
two years. Can include custom time periods.

TimeUnitSelectFormBlox Creates HTML selection lists offering time unit
options, which can include day, week, month,
quarter, and year.

Blox Component Description

TreeFormBlox Creates DHTML tree controls that can be used
for creating hierarchical selection lists as well
as navigation menus.
CHAPTER 7
Using Blox Form Tags

Overview of FormBlox Components 103
Getting and Setting Properties in Blox and JavaBeans Components

The Blox Form Tag Library includes two nested tags,
<blox:getChangedProperty> and <blox:setChangedProperty>. The
<blox:getChangedProperty> is useful for passing pass values, or linking,
between two FormBlox. The <blox:setChangedProperty> can be used
between two FormBlox, between a FormBlox and another Blox component (e.g.,
a DataBlox), or between a FormBlox and other custom JavaBeans components.
The <blox:setChangedProperty> also includes a callAfterChange attribute
that can invoke a server-side Java method after a change has happened. The
boolean debugEnabled attribute can be useful in debugging unexpected
behavior.

Here is a summary of these two nested FormBlox tags:

Detailed information (including syntax, usage, and examples) about the
<bloxform:getChangedProperty> and <bloxform:setChangedProperty>
tags can be found in the Blox Form Tags Reference section of the Developer’s
Reference for the DHTML Client and in the Server-Side API Reference (Javadoc).

FormBlox Event Model

If you find it necessary, you can write your own event handlers for FormBlox
components. The simple FormBlox event model provides before and after values
from a control whenever it changes. The FormBlox components are not intended
to be comprehensive solutions for development, but offers a simple event model

Blox Component Description

<bloxform:getChangedProperty> Nested within a FormBlox to
target another FormBlox. The
specified property value from the
target FormBlox is passed to the
FormBlox with this tag.

<bloxform:setChangedProperty> Nested within a FormBlox to
target any other JavaBeans
components, including other
FormBlox, Blox, or custom beans.
The specified property value from
the owning FormBlox is passed to
the target bean.
DB2 Alphablox
Developer’s Guide for the DHTML Client

../index.html?context=reference&topic=ReferenceBook
../index.html?context=reference&topic=ReferenceBook
../../documentation/javadoc/blox/index.html

104 Examples Using Blox Form Tags
that can be used to handle basic events, which occurs most of the time. If you
need to create more sophisticated components that can handle more complex
requirements, you can build your own using the Blox UI Model components,
which support a richer event model as well.

Examples Using Blox Form Tags
Many examples in Blox Sampler and elsewhere include the use of FormBlox
components. And, throughout this guide, examples appear using FormBlox. The
FormBlox components are a great resource for developers, handling many of the
onerous tasks involving coding for dynamic generation of lists and state
management. Highlighted below are some examples that make use of various
FormBlox components.

Ad Hoc Analysis using DataSourceSelectFormBlox

In Blox Sampler, under the Using FormBlox and Logic Blox section, there is an
example of using a DataSourceSelectFormBlox to create a simple view for users
to select a data source, then use a fully interactive PresentBlox to analyse using
the cube specified. A step-by-step description of the code used in this example
can be found in “Task: Setting Different Data Sources Using
DataSourceSelectFormBlox” on page 173, in the Connecting to Data chapter of
this guide.

DHTML Query Builder

The DHTML Query Builder, found under the Workbench section of the Assembly
tab in the Alphablox Analytics Admin pages, is an interface that helps developers
generate multidimensional query statements for use with DB2 OLAP Server,
Hyperion Essbase, and Microsoft Analysis Services. Behind the scenes, if you
view the source code for DHTML Query Builder, you will find instances of
FormBlox components being used, including the DataSourceSelectFormBlox, the
CubeSelectFormBlox,

Specifying Report Options using FormBlox

Another good example of usage of FormBlox components can be found in the
Using HTML Form Elements example under the Interacting with Data section of
Blox Sampler. In this example, the RadioButtonFormBlox and the
CheckboxSelectFormBlox are used to select report options.
CHAPTER 7
Using Blox Form Tags

Examples Using Blox Form Tags 105
Navigation Menu Using TreeFormBlox

When you open the Blox Sampler application, the navigation menu that opens in
the left frame uses the TreeFormBlox. See the navigation.jsp file in the Blox
Sampler application for an example of a large navigation menu created using this
FormBlox.

Report Templates in FastForward Applications

The Alphablox FastForward application makes extensive use of FormBlox
components to build report templates and for the navigationg menu. To examine
the code used in the Alphablox FastForward application, create a new copy of the
application. Code examples of the use of FormBlox components are also
described in “Working with Alphablox FastForward” on page 357.
DB2 Alphablox
Developer’s Guide for the DHTML Client

106 Examples Using Blox Form Tags
CHAPTER 7
Using Blox Form Tags

8
Using Blox Logic Tags

The Blox Logic Tag Library includes more easy-to-use tags that can be used for
handling time period selections, manipulation of multidimensional database
queries without a user needing to know how to create Essbase report scripts (for
use with DB2 OLAP Server and Essbase) or MDX statements (for use with
Microsoft Analysis Services) and member security.

Using the Blox Logic Tag Library
Tags available in the Blox Logic Tag Library are defined in the bloxform.tld
file. When you create a new Alphablox Analytics application, this file is
automatically included in the following directory of your application:

<applicationDirectory>/WEB-INF/tlds/bloxlogic.tld

 If the TLD file is not found, or is accidentally deleted, a copy of the current
version of this TLD file can be found in the following directory:

<alphabloxDirectory>/bin/

To access the Blox Logic Tag Library on a page, the following JSP taglib
directive needs to be included:

<%@ taglib uri="bloxlogictld" prefix="bloxlogic" %>

Overview of the Blox Logic Components
The major Blox Logic components in the Blox Logic Tag Library include the
MDBQueryBlox, the MemberSecurityBlox, and the TimeSchemaBlox
summarized below.

108 Using the MDBQueryBlox to Select Products
Detailed information (including syntax, usage, and examples) about the Blox
Logic Tag Library components can be found in the Business Logic Blox and
TimeSchema DTD Reference section of the Developer’s Reference for the DHTML
Client and in the Server-Side API Reference (Javadoc).

Using the MDBQueryBlox to Select Products
Through easy-to-use tags, the MDBQueryBlox can be used to manipulate
multidimensional queries without having any logic specific to DB2 OLAP Server,
Hyperion Essbase, or Microsoft Analysis Services.

Logic Blox Description

MDBQueryBlox MDBQueryBlox is an object representation of a
multidimensional data query. It allows you to
manipulate an MDB query without using the query
language associated with the data source. Using the
<bloxlogic:mdbQuery> tag or its API, you can
manipulate parts of the query such as changing parts
of the tuples of an axis. Once a change is made in
MDBQueryBlox (by calling its changed() method), its
source DataBlox is automatically updated with the
data query re-executed.

MemberSecurityBlox MemberSecurityBlox provides a list of members a
user has access to on a given dimension. It constructs
the list by performing a suppressNoAccess on the
DataBlox based on the specified
MemberSecurityFilter. To set a
MemberSecurityFilter, specify the the dimension and
the member(s) in that dimension using the
addMember() or setMember() method.

TimeSchemaBlox Creates a time table for a given data source based on
your definition of a time schema. Using the
TimeSchema Data Type Definition (DTD), you can
define how the Time dimension is structured by
specifying: name(s) of the time dimension(s),
generation levels (for Year, Quarter, Month and
Week), start date of the time period in the cube,
whether normal calendar time or weekly time should
be applied, and if the length of a year is exceptional
(such as 48-week year).
CHAPTER 8
Using Blox Logic Tags

../index.html?context=reference&topic=ReferenceBook
../index.html?context=reference&topic=ReferenceBook
../../documentation/javadoc/blox/index.html

Using the MDBQueryBlox to Select Products 109
In Blox Sampler, under Using Logic Blox, there is an example of using the
MDBQueryBlox with a PresentBlox to allow users to select a product from a
select list (created using a MemberSelectFormBlox). Here we’ll quickly go
through the major steps in creating a similar page:

1 Add the JSP taglib directives for the Blox tag libraries to be used on the
page:

<%@ taglib uri="bloxtld" prefix="blox" %>
<%@ taglib uri="bloxlogictld" prefix="bloxlogic" %>
<%@ taglib uri="bloxformtld" prefix="bloxform" %>

2 Define the DataBlox that will be used, setting the visible attribute to false
and enabling the use of alias member names by setting useAliases to true:

<blox:data id="dataBlox"
visible="false"
dataSourceName="QCC-Essbase"
useAliases="true" />

3 Specify the lists of tuples to be used on the column, row, and page axes:

<!-- Column Time tuples -->

<bloxlogic:tupleList id="timeTuples">
<bloxlogic:dimension>All Time Periods</bloxlogic:dimension>
<bloxlogic:tuple>

<bloxlogic:member>Qtr 1 01</bloxlogic:member>
</bloxlogic:tuple>
<bloxlogic:tuple>

<bloxlogic:member>Qtr 2 01</bloxlogic:member>
</bloxlogic:tuple>

</bloxlogic:tupleList>

<!-- Column Measures tuples -->

<bloxlogic:tupleList id="measuresTuples">
 <bloxlogic:dimension>Measures</bloxlogic:dimension>
<bloxlogic:tuple>

<bloxlogic:member>Sales</bloxlogic:member>
</bloxlogic:tuple>
<bloxlogic:tuple>

<bloxlogic:member>Sales % of All Locations</
bloxlogic:member>

</bloxlogic:tuple>
</bloxlogic:tupleList>

<!-- Page tuples -->

<bloxlogic:tupleList id="pageTuples">
<bloxlogic:dimension>Scenario</bloxlogic:dimension>
DB2 Alphablox
Developer’s Guide for the DHTML Client

110 Using the MDBQueryBlox to Select Products
<bloxlogic:dimension>All Products</bloxlogic:dimension>
<bloxlogic:tuple>

<bloxlogic:member>Actual</bloxlogic:member>
<bloxlogic:member>All Products</bloxlogic:member>

</bloxlogic:tuple>
</bloxlogic:tupleList>

4 Add a MemberSelectFormBlox for users to be able to select products from
the Product dimension:

<!-- MemberSelect FormBlox for the Product dimension -->

<!-- On change event, MemberSelect FormBlox will change the
pageTuples -->

<bloxform:memberSelect id="selector"
visible="false"
dataBloxRef="dataBlox"
dimensionName="All Products"
rootMemberName="100"
selectedMemberName="100">
<bloxform:setChangedProperty formProperty="selectedMembers"

targetRef="pageTuples"
targetProperty="listFromMetadataMembers"
callAfterChange="changed"/>

</bloxform:memberSelect>

5 Add an MDBQueryBlox:

<!-- The MDBQuery creates a query from the 2 column tuples, the
page tuple and the row query fragment -->

<bloxlogic:mdbQuery id="query"
dataBloxRef="dataBlox">
<bloxlogic:axis type="columns">

<bloxlogic:crossJoin>
<bloxlogic:tupleList tuplesRef="timeTuples" />
<bloxlogic:tupleList tuplesRef="measuresTuples" />

</bloxlogic:crossJoin>
</bloxlogic:axis>
<bloxlogic:axis type="rows" queryFragment=�<ROW ("All

Locations") <ICHILD "All Locations"' />
<bloxlogic:axis type="pages">

<bloxlogic:tupleList tuplesRef="pageTuples" />
</bloxlogic:axis>

</bloxlogic:mdbQuery>

6 Add the PresentBlox, refering to the DataBlox specified earlier:
CHAPTER 8
Using Blox Logic Tags

Listing Cube Members using MemberSecurityBlox 111
<blox:present id="presentBlox"
visible="false">
<blox:data

bloxRef="dataBlox" />
</blox:present>

7 Add the rest of the page to render the Blox and layout the view:

<html>
<head>

<blox:header />
</head>

<body>

<table width="100%" height="400">
<tr>

<td align="center" height="10">Product: <blox:display
bloxRef="selector" /></td>

</tr>
<tr>

<td><blox:display bloxRef="presentBlox" render="dhtml"
width="100%" height="100%" /></td>

</tr>
</table>
</body>
</html>

See Blox Sampler, under Using Blox Logic Tags, for the complete code and a
working example using the MDBQueryBlox and MemberSelectFormBlox.

Listing Cube Members using MemberSecurityBlox
The MemberSecurityBlox tag allows you to list members in a dimension based on
access permission rights. It uses the DataBlox suppressNoAccess property to
filter members and can take multiple root members. It can also be used to specify
multiple dimension:members pairs for filtering.

Here’s an example of how a MemberSecurityBlox can be used to :

1 Add the JSP page directive at the top of the file specifying the Java class that
needs to be accessed:

<%@ page import="com.alphablox.blox.logic.MemberSecurityFilter"
%>

2 Add the JSP taglib directives for the Blox tag libraries you will be using:

<%@ taglib uri="bloxtld" prefix="blox"%>
<%@ taglib uri="bloxformtld" prefix="bloxform"%>
<%@ taglib uri="bloxlogictld" prefix="bloxlogic"%>
DB2 Alphablox
Developer’s Guide for the DHTML Client

112 Listing Cube Members using MemberSecurityBlox
3 Remember to add the <blox:header> tag to the head section of the page:

<head>

<blox:header />

</head>
4 Add a DataBlox to the page:

<blox:data id="myDataBlox"
query="" dataSourceName="QCC-MSAS" />

5 Add the MemberSecurityBlox tag:

<bloxlogic:memberSecurity id="memberSecurityMsas"
dataBloxRef="myDataBlox"
cubeName="QCC"
dimensionName="[Products].[Category]">
<bloxlogic:memberSecurityFilter

dimensionName="[Measures]"
memberName="[Measures].[Sales]" />

<bloxlogic:memberSecurityFilter
dimensionName="[Measures]"
memberName="[Measures].[COGS]" />

</bloxlogic:memberSecurity>

6 Add a SelectFormBlox:

<bloxform:select id="members"
visible="false"
multiple="true"
size="5" >

<%
members.setItems(memberSecurityMsas.getDisplayMemberNames());

%>
</bloxform:select>

7 Add a <blox:display> tag to the page where you want the selection list to
appear:

<body>
<blox:display bloxRef="members" />

</body>
CHAPTER 8
Using Blox Logic Tags

Using TimeSchemaBlox 113
Using TimeSchemaBlox
The TimeSchemaBlox creates a time table for a given data source based on your
definition of a time schema. Using the TimeSchema Data Type Definition (DTD),
you can define the structure of the Time dimension by specifying: names of the
time dimensions, generation levels (for Year, Quarter, Month and Week), start
date of the time period in the cube, whether normal calendar time or weekly time
should be applied, and if the length of a year is exceptional (such as 48-week
year).

The <bloxlogic:timeSchema> tag creates a TimeSchemaBlox that can be
referenced by a TimePeriodSelectFormBlox, a TimeUnitSelectFormBlox, or a
MDBQueryBlox to create a time period selection list or to manipulate the data
query.

The XML file containing the definition of the TimeSchema should be named
timeschema.xml and stored in your application’s WEB-INF directory. The Data
Type Definition (DTD) used to define the TimeSchema XML is described in
TimeSchema XML DTD.

Details about the syntax and usage of TimeSchemaBlox and the TimeSchema
XML DTD can be found in the Business Logic Blox and TimeSchema DTD
Reference section of the Developer’s Reference for the DHTML Client.

The following code snippet shows a TimeSchemaBlox used by a
TimePeriodSelectFormBlox . By default, TimePeriodSelectFormBlox presents
the users with a list of time periods to choose from. When a selection is made, the
histTuples’ listFromMetadataTuples property is changed accordingly as the
changed() method is called.

<blox:data id="dataBlox"
dataSourceName="QCC-MSAS"/>
<bloxlogic:timeSchema id="timeSchema"

name="MSAS"
dataBloxRef="dataBlox" />

<bloxlogic:tupleList id="histTuples">
<bloxlogic:dimension

list="<%=timeSchema.getDimensions()%>">
</bloxlogic:dimension>
</bloxlogic:tupleList>

<bloxform:timePeriodSelect id="historySelector"
timeSchemaBloxRef="timeSchema"
selectedSeriesString="SEQUENCE(QUARTER,-1,1)(QUARTER)"
visible="false">
<bloxform:setChangedProperty

formProperty="tuples"
targetRef="histTuples"
targetProperty="listFromMetadataTuples"
DB2 Alphablox
Developer’s Guide for the DHTML Client

114 Using TimeSchemaBlox
callAfterChange="changed"/>
</bloxform:timePeriodSelect>
CHAPTER 8
Using Blox Logic Tags

9
Blox UI Tags

This section introduces the Blox UI Tag Library and shows some of the ways that
Blox UI tags can be used to easily extend the DHTML client.

Blox UI Tag Library Overview
The DHTML Client UI model provides a library of tags to enable easy access to
commonly used UI manipulations. The tags are contained in the library
bloxui.tld and a full listing of each tag with properties can be found in the
Blox UI Tags Reference section of the Developer’s Reference for the DHTML
Client.

Alphablox Analytics provides a tag library for manipulating the Blox, called the
Blox Tag Library. The Blox UI Tag Libary is complementary to the Blox Tag
Library. Developers should use the Blox Tag Library to set data properties,
perform general UI manipulations (such as chart/grid orientation, making
menubars visible, and adjust the split pane), and access general Alphablox
Analytics functionality, such as cell alerts and calculated members. If you are
using the DHTML client and need a higher level of control over the user interface
that cannot be provided by the Blox library, the Blox UI Tag Library may provide
the functionality that you need.

Blox UI Tag Categories
The Blox UI tags are grouped into four categories:

../index.html?context=reference&topic=ReferenceBook
../index.html?context=reference&topic=ReferenceBook

116 Blox UI Tag Examples
Blox UI Tag Examples
In this section, a few examples of the many Blox UI tags are shown to give you a
flavor of the power of these easy-to-use tags.

Component Customization

The following example shows a component customization tag. These tags can be
used to add and remove, or enable and disable, menus in the user interface.

For example, in the following application, the tools menu is disabled and the
bookmarks menu is removed:

Category Description

Component
Customization

For customizing the UI at the component level. Examples:
customizing menus and toolbars.

Custom Layout Provide control over the layout of the grid, such as adding
blank rows or columns, or producing the grid in a butterfly
layout.

Analysis Used to incorporate analysis features into your application.

Utility Convenience tags for facilitating the processing of actions.
Developers can use utility tags to intercept user selections
or take action when the grid changes.
CHAPTER 9
Blox UI Tags

Blox UI Tag Examples 117
To achieve this, use the following Blox and Blox UI tags:

<blox:grid id="testGridBlox"
visible="true"
width="600"
height="700"
bandingEnabled="true"
rowIndentation="None"
commentsEnabled="false">
<blox:data bloxRef="dataBlox" />
<bloxui:menu name="toolsMenu" disabled="true" />
<bloxui:menu name="bookmarkMenu" visible="false" />

</blox:grid>

Custom Layout Tags

This next example shows the use of a custom layout tag to change the display of
the grid to a butterfly layout, which moves the row header into the middle of the
grid as shown in the following picture:

<blox:present id="bfpresent"
visible="true"
width="600"
height="400"
chartAvailable="false">
<blox:grid bandingEnabled="true" />
<blox:data bloxRef="bfdata" />
<bloxui:butterflyLayout

scope="{ Scenario:Budget }"
showOnLayoutMenu="true"
DB2 Alphablox
Developer’s Guide for the DHTML Client

118 Blox UI Tag Examples
addSeparatorColumns="false" />
</blox:present>

Using the properties of this tag, developers can specify the position of the row
headers as well as whether or not separator columns should be introduced
between the header and the data.

Analysis Tags

Developers can also incorporate analytics directly into their applications using an
analysis tag. For example, the assembler might want to incorporate a ‘bottom N’
calculation into their application:

This view can be achieved using the following PresentBlox tag and the Blox UI
bottomN tag:

<blox:present id="tbnpresent"
width="600"
height="500"
chartAvailable="false">
<blox:grid bandingEnabled="true" />
<blox:data bloxRef="tbndata" />
<bloxui:bottomN

prompt="true"
showRank="true"
CHAPTER 9
Blox UI Tags

Blox UI Tag Examples 119
number="7"/>
</blox:present>

Blox UI analysis tags also include a general tag that enables developers to
incorporate calculations into their application.

Utility Tags

Finally, the Blox UI Tag Library offers tags to make processing of user input
much easier. The following code sample uses a utility tag to intercept the user
clicking on the Pivot menu item to display a dialog.

<blox:grid id="testActionFilter"
width="80%"
height="500"
bandingEnabled="true">
<blox:toolbar visible="true" />
<blox:data bloxRef="dataBlox" />
<bloxui:actionFilter

className="<%= MyActionFilter.class.getName() %>"
componentName="dataPivot" />

</blox:grid>

<%!
public static class MyActionFilter implements IActionFilter
{

public void actionFilter(DataViewBlox blox,
Component component) throws Exception

{
MessageBox.message(component, "Action Filter",

"Item clicked!");
}

}
%>

In this example, the actionFilter class is defined in the JSP file and then
associated with the grid and the pivot menu item. Event filters are further
discussed in in the Utility Tags section of the Blox UI Tags Reference in the
Developer’s Reference for the DHTML Client.

More Examples

Check out Blox Sampler for running examples, with source code, of these and
other Blox UI Tag Library tags.
DB2 Alphablox
Developer’s Guide for the DHTML Client

120 Blox UI Tag Examples
CHAPTER 9
Blox UI Tags

10
DHTML Client UI Extensibility

This advanced topic is for developers comfortable working with server-side Java
APIs. The Blox UI Model, described in depth here, offers a rich and powerful API
for customizing user interfaces beyond the use of simple Blox UI tags. The next
chapter, “DHTML Client API” on page 157, discusses the DHTML Client API,
which helps application developers bridge the gap between client-side and server-
side programming models.

The Blox UI Model
The DHTML User Interface Model is a programmatic API allowing application
developers to examine and control the end user’s user interface. This API provide
direct control over all aspects of the user interface, including what gets displayed
as well as the processing of user input. The UI Model API also provides a level of
control over the user interface similar to the control developers have over
metadata and result set data using the data API. Together, the data and user
interface APIs provide a developer total control and customization of all aspects
of an application.

As shown in the diagram below, the Alphablox Analytics framework includes:

• Alphablox Analytics internal architecture

• Alphablox Analytics server-side programming model, which includes the UI
Model

• Alphablox Analytics application logic

• Blox Tag Libraries, including the Blox UI Tag Library

• DHTML Client API

122 The Blox UI Model
The Blox UI Model API is a key part of the Alphablox Analytics’s server-side
programming model and is supported by all of the presentation Blox, including
PresentBlox, GridBlox, ChartBlox, DataLayoutBlox, and PageBlox. The server-
side getBloxModel() method allows the application developer to access the
model for a specific Blox instance.

When we refer to the Blox UI Model, we are actually referring to three distinct
user interface concepts: components, controllers, and events. These components
are summarized here:

Concepts Description

Components The individual controls and containers that make up the user
interface such as buttons, list boxes, edit fields, grids, and
charts. Components exist in a hierarchy of containers to
provide structure to the user interface. The resulting model
is a logical representation of the user interface presented to
the user.
CHAPTER 10
DHTML Client UI Extensibility

Purpose of the Blox UI Model 123
The main points to remember about the UI Model include:

• The Model is a server-side representation of the state of user interface objects
on the client. This allows server-side Java code to set up components, deal
with interactions between components, and process user input without having
to actually write any actual client-side code. The Model itself doesn’t really
have an input button; instead it allows server-side code to control the state of
such a button that is present to the user on the browser. For example, this
allows server-side code to determine which grid cells a user has selected.

• Programming directly to the UI Model is optional. Application developers
only need to interact with the model if and when they want to add new
features or modify existing features.

Purpose of the Blox UI Model
Each presentation Blox already provides a wide array of features and properties
that change the Blox’s appearance and behavior. These include:

1 Blox tag attributes (bandingEnabled, chartFirst, etc.)

Controllers Used to process events from components, translating
generic component behaviors into application-defined
behaviors. For example, a chart may be displayed in
response to a user selecting a CheckBox. In this case, a
controller interprets the checking of the checkbox as a
signal to display the chart. All application logic should
reside in the one or more controllers attached to model
Components (or containers).

Events Communicate state changes from the user interface, the
underlying application logic, and from the model itself to
the Model’s components and controllers. Each component
and controller has a predefined set of events that it
recognizes and understands. Recognized events usually
result in modifying the locally stored state of the
Component. Application code should use events to trigger
application logic based on user actions. For example, when
the state of CheckBox is changed on the browser, a
ClickEvent is generated and sent to the server. When an
application’s custom controller receives the ClickEvent it
can perform the associated application behavior such as
displaying a chart.

Concepts Description
DB2 Alphablox
Developer’s Guide for the DHTML Client

124 Components Overview
2 Blox properties, manipulated in JSP scriptlets by method calls

3 Blox UI modifier tags, such as butterfly layout, compressed headers, etc.

If the built-in behavior is what the application developer desired then all that is
required is to add an attribute to the Blox tag or call a server-side Java method.

In some cases, the application developer desires a new feature that is not available
as a built-in property or wishes to tweak the implementation of built-in feature.
Prior to the introduction of the UI Model, the only recourse was to request a
change and wait for it to appear is a future product release.

Using the UI model, an application developer can change the behavior of built-in
features as well as add new features to the UI. Some examples of these
customizations include:

• Adding a new toolbar that provides a custom calculation operations

• Changing the appearance of grid

• Adding checkbox or other controls to grid cells and providing the logic to
process the user’s selections

• Modifying the right click menu depending on what user interface component
the user clicks on

The UI Model does not take the place of easy-to-implement built-in product
features, but it does provide application developers with practically unlimited
customization possibilities when needed.

Components Overview
Every component in the model corresponds to a particular control on the user
interface. These controls include buttons, grids, trees, check boxes, list boxes,
charts, menus, toolbars, etc. Changing the state of a component in the UI Model
will affect the state of the control in the user interface. Likewise, as the user
interacts with the controls in the user interface, the UI Model is updated to reflect
the state of the control.

Since the model maintains the state of all the components, even if the user
refreshes the page, the server-based model will maintain the state of the
components and will use that state when refreshing the page. Server-based
application code can, at any time, inspect the state of any of the components used
in the user interface and does not need to store or mange state information
separately. For example, if a Checkbox component is added to the UI Model, the
Checkbox.isChecked() method will provide up-to-date information regarding
the checked state.
CHAPTER 10
DHTML Client UI Extensibility

Components Overview 125
Within the UI Model, Components are arranged in a hierarchy that provides both
formatting control as well as a way to centrally manage sets of primitive
Components. This hierarchy is made possible by using one or more
ComponentContainers, which, in turn, can contain Components as well as other
ComponentContainers.

The resulting hierarchy might look something like this for a simple dialog:

Dialog
ComponentContainer

ComponentContainer
CheckBox
RadioButton
RadioButton

ComponentContainer
Button
Button

UI Model components can be changed, modified, added, or deleted at any time
during the lifetime of a Blox. This allows the user interface to change as the user
interacts with the interface, selecting options and features. When changing
components after the initial page has been delivered to the browser, the developer
must invoke the changed() method as follows:

• If a component is modified either directly or indirectly (i.e., its style is
changed), then changed() should be invoked on the component itself

• If a component is added or deleted, then changed() should be invoked on
the parent container.

The changed() method has no effect (either positive or negative) when called on
components before the initial page is delivered to the user.

Components

Every component in the model corresponds to a particular control on the user
interface (except those that are hidden). These controls include buttons, grids,
trees, check boxes, list boxes, charts, menus, toolbars, etc. In the UI Model,
Component is the base class for all visual components and containers. Thus,
every visual component is derived from Component. The Component class
provides the base set of properties and behaviors needed for a visual component
to participate in the UI Model framework. Likewise, all non-visual model objects
such as styles, layouts and chart axis definitions do not descend from the
Component base class.
DB2 Alphablox
Developer’s Guide for the DHTML Client

126 Components Overview
Component UIDs

Every component in the system has a unique identifier called a UID. This
identifier is guaranteed to be unique not only within the model for a specific Blox
but also across all Blox for the lifetime of the server process. The UID is
automatically assigned when a component is created and may not be changed.

Client-side code that wishes to create and send events to the server will need the
UID of the component. This can be found using the getUID() method available
on the Component object.

Component Names

All components can be assigned a name. The name is changeable during the
lifetime of the Component, but most likely it will be set once and remain
unchanged for the lifetime of the component. The name serves two purposes:

1 The name is used to identify the component and its role in the model. For
example, each menu item has a name that is used to identify its specific
function. If components did not have names, then it would be very difficult to
identify the components purpose – especially when components are moved
around inside of the model. Named components can be moved around inside
of the model and still operate normally.

2 A component’s name serves as its “action code.” Components that generate
action events (e.g., ClickEvent) use the name of the component, if
available, to map the action to a method. This is fully described later in the
Controller section.

Handling non-unique component names

Names do not have to be unique and in the default Blox models, some names are
shared by different components. This is very handy when multiple components
map to the same action and also allows components to be freely moved between
different Models.

Since names are not guaranteed to be unique, code that searches for components
by name should be prepared to deal with multiple results. To reduce the chances
of multiple results from a name-based search, start the search as deep in the
component hierarchy as possible. For example, if you are looking for a toolbar
button named “sort” you should start the search in each toolbar rather than at the
top of the model.

The example below shows you how to lookup all components with the same name
in order to perform some action on them (in this case to hide them).

ArrayList components =
myBlox.getBloxModel().searchForAllComponents(�componentName�);

for (int i=0; i < components.size(); i++) {
Component component = (Component)components.get(i);
CHAPTER 10
DHTML Client UI Extensibility

Components Overview 127
component.setVisible(false);
}

Finally, there is no written “law” that names have to not be unique. Custom
model code can easily stick to a unique naming convention for the components it
adds and not worry about multiple results from component searches.

Built-in names

All components added by the Blox Model’s have a standard set of names. Avoid
using the same names for unrelated functions. Standard names for all major Blox
components are defined in the
com.Alphablox.blox.uimodel.ModelConstants class file in the Server-Side
API Reference (Javadoc) as well as in the Blox UI Tags Reference section of the
Developer’s Reference for the DHTML Client. Always use the defined constants in
your code rather than using hard-coded strings.

Component titles

The title is used to describe the component to the user. For example, the title
added to a CheckBox would be used to tell the user why they are checking the
box. Each component uses the title in a slightly different manner, but the purpose
is the same. Below is a list of each component and how the title is used.

Component Type How the “title” is used

Static The displayed value

ComponentCon
tainer

Title for top-level containers, otherwise ignored

Checkbox Displayed after the CheckBox

RadioButton Displayed after the RadioButton

Edit Ignored

GroupBox Title of the GroupBox

ListBox,
DropDownList

Ignored

Image,
StaticImage

Ignored

Toolbar,
Menubar

Used in menus to refer to Toolbars, otherwise ignored
DB2 Alphablox
Developer’s Guide for the DHTML Client

../index.html?context=reference&topic=ReferenceBook
../../documentation/javadoc/blox/index.html
../../documentation/javadoc/blox/index.html

128 Containers
Containers
Every component must be in a container in order to be displayed. Containers can
be arranged in a hierarchy to provide encapsulation of sets of components as well
as for layout control. ComponentContainers provide services such as searching
for components inside of the container as well as searching for components
anywhere in a container’s hierarchy.

ComponentContainers are descendents of Component which allows containers to
be added to other containers and to share the base Component capabilities. For
example, containers can have names, UIDs, borders and background colors.

Components inside of a container are displayed according to the order in which
the components were added to the container. The container’s layout defines how
this order should be interpreted.

Layout

ComponentContainer layouts are limited to specifying the orientation used to
display Components in the container. Attach a VerticalLayout to a container to
cause the components to be stacked vertically. Attach a HorizontalLayout to a
container to cause the components to be displayed left to right.

// Show the components in the container vertically stacked
ComponentContainer.setLayout(new VerticalLayout());

// Show the components in the container left to right
ComponentContainer.setLayout(new HorizontalLayout());

Compound Components

The Model provides a number of core user interface Components. But, in many
cases, it may be desirable to create higher-level Components consisting of some
number of core components working in harmony. These “compound components”
can then be treated as any other component and can be added to the UI as needed.

Creating a compound Component is as simple as extending the
ComponentContainer class and adding the desired user interface Components.

Menu,
MenuItem

The menu label

Button The button label

Spacer Ignored

Component Type How the “title” is used
CHAPTER 10
DHTML Client UI Extensibility

Containers 129
For example:

Class MyComponent extends ComponentContainer {
public MyComponent() {
add(new Static(�label:�));
add(new ListBox());
}

// Deal with events and add custom behaviors

}

The above MyComponent class can then be added to any ComponentContainer
as easily as any of the core Component classes:

myContainer.add(new MyComponent());

Create compound Components to create reusable custom Components with built-
in behavior that can be used as easily as one of the core Components.

Using ContainerBlox

In order to display any UI Model components on the page, they must be placed
inside of a Blox frame. ContainerBlox is essentially an empty Blox frame with no
predefined Alphablox Analytics application logic. It provides developers with an
area on the page to create custom user interfaces using the UI Model’s user
interface components. Since the ContainerBlox has no predefined behavior, the
developer needs to manually add all required Components including menus,
toolbars, grids, etc.

An application developer would use a ContainerBlox when the application
requires a custom user interface which is not provided by any of the presentation
Blox. For example, use a ContainerBlox to place a UI Model Tree component on
the page to assist in user navigation. In this example, it is desirable not to inherit
any of the existing Blox behaviors since the tree operation is 100% defined by the
application.

ContainerBlox can be used like any other Blox with a UI Model such as:

<blox:container id="myComponent" >
<%

BloxModel model = myComponent.getBloxModel();

// Add user interface components and handlers
// Keep in mind that the model is empty
%>
</blox:container>
DB2 Alphablox
Developer’s Guide for the DHTML Client

130 Controllers
Alternatively, the ContainerBlox can be subclassed in order to create a self-
contained custom Blox component based on the Model.

class MyComponent extends ContainerBlox
{

public MyComponent()
{

BloxModel model = myComponent.getBloxModel();

// Add user interface components and handlers
}

}

The above class could then be used in a <jsp:useBean> tag, such as:

<jsp:useBean id="myBlox" class="MyComponent" scope="session" />

Controllers
Controllers provide the application logic that defines the behavior of one or more
components. The UI Model’s base controller class also provides a number of
services, which make processing events easier, as well as provide a framework to
easily override standard controller behavior. Any Component or Component-
derived class can have an attached controller, however, not all Components need
to have a controller and in most cases this will be the norm.

When a Component receives an event, the event is dispatched to the Controller
attached to the component. If a controller is not available or the attached
controller indicates that the event should be passed along (by returning false
from the event handler), the event is sent to the component’s parent. The process
repeats until the event is handled or the component has no parent, as in the case of
the top-level container, and the event is just ignored.

Since controllers typically provide application logic that translates the state of
many components into a single action, they are most likely to be attached to
containers rather than the individual components. A prime example of this are
Dialogs where many components will be controlled by the controller attached to
the dialog.

Even though containers are more likely to have an attached controller, there is
nothing preventing a component from having a dedicated controller. Typically
components will have their own controller in the following situations:

• The Component is an addition to the user interface that does a specific task.
Most application developer added menu items and toolbar buttons fall into
this category and it makes sense to simply add a controller to the added
component.
CHAPTER 10
DHTML Client UI Extensibility

Controllers 131
• The Component is part of a container with a controller, but the component
does some special processing that affects its state. For example, an edit
control could have a controller that specifically validates user input.

The Controller base class

All controller classes must descend from the Controller class. This base class
provides a number of services, including:

• Converting all received events to method calls. Each event received by the
controller causes a method of the form public boolean
handleEventType(EventType event) throws Exception to be
invoked. EventType should be replaced with the actual event class such as
SelectionChangedEvent. If the method does not exist, then the controller
will ignore the event.

• Converts ClickEvents, which are the primary user action events, into
method calls based on the name of the Component the user clicked. For
example, a ClickEvent on the Button Component named “myButton” will
cause the method public void actionMyButton(ModelEvent event)
throws Exception to be invoked. If the method does not exist, then the
controller will ignore the event and pass it along to the next interested party,
if any.

• Invokes the closedDialogName() method when a dialog created by a
component associated with the controller is closed.

• Provides the infrastructure that allows custom code to add event handlers to
override the controller’s built-in event behavior.

“Implied” Controllers

A number of the core Components have implied controller that cannot be
overridden. These implied controllers handle internal state changes so that the
Component reflects the correct state before the attached controller can examine
the Component’s state. For example, when a check box is checked, the CheckBox
component will immediately check itself when it receives a ClickEvent before
any controllers receive the ClickEvent.

When a controller receives an event, the controller can safely interrogate the
Component for state information and be assured that the Component’s model on
the server accurately reflects the state of the control on the client.
DB2 Alphablox
Developer’s Guide for the DHTML Client

132 Events
Events
Events are used to communicate component state changes and actions between
the browser and the UI Model. They are also used inside the UI Model to notify
controllers of model and property changes.

The main points about UI Model events:

• Most events convey granular user interface actions. For example, button
clicks, menu clicks, scrolling, etc.

• Events can be intercepted by a application developer’s code. For example,
code can intercept a users click on the drill down menu item.

• Events in the UI Model are similar to JavaScript events in that they are both
concerned with user interface actions

• An event is dispatched to the component which generated the event and then
to its parents

• Events are also used to transmit information between controllers and
components inside of the model

• These internal events allow code to intercept key actions inside of the model
as well user interface actions. For example, when the grid creates a cell it
generates an event that allows code to customize the cell.

Events are dispatched in a specific order that lets all related components and
controllers participate in event processing as follows:

1 Model object – the specific model component generating the event (such as
an edit field content change).

2 Model object controller – if the component has a controller, that controller
will receive the event

3 Model object’s parents - Steps 1 and 2 above are repeated until the top-level
container is reached.

4 Model controller – The top-level controller for the model will be the last stop
for the event. If the controller does not handle the event, it will be discarded.

In all cases, an event handler can do one of the following:

• Ignore the event and do nothing which causes the event to continue being
dispatched

• Absorb the event and optionally take some action, which may include
generating additional events. No further dispatching of the event will take
place.

• Modify the event and allow it to continue being dispatched.
CHAPTER 10
DHTML Client UI Extensibility

Events 133
• React to the event, but allow it to continue being dispatched

• Access the component which generated the event using getComponent()

• Access any other properties specific to the event

The following examples describe how you can intercept an event from a Button
Component. For each example, the component is a button named MyButton and
it is being added to a Blox named blox. All buttons generate a ClickEvent when
the user presses the button.

Adding Dedicated Controllers to Components

In this example, we will add a controller to the button itself, which will process
the button click. This makes it simple to add behavior when single Components
are added to the model, but can make it difficult to coordinate behavior across
multiple Components. You would use this method of handling events when a
component does not already contain a controller or when you wish to replace the
pre-existing controller.

<blox:grid � >
<%

BloxModel model = blox.getBloxModel();
Button button = new Button("MyButton");

button.setController(new Controller() {
public boolean actionMyButton(ModelEvent event) throws Exception
{
// Do something
}

});

model.add(button);
%>
</blox:grid>

Adding Listeners to Pre-existing Controllers

This example adds the button handler to the Blox model’s controller. Here we are
adding our listener to a controller higher in the model hierarchy. The event will
be sent to the component that caused the event (i.e., the Button component), and
then percolate up the component hierarchy.

<blox:grid �. >
<%

BloxModel model = blox.getBloxModel();
model.add(new Button("MyButton"));
model.getController().addEventHandler(new IEventHandler() {

public boolean handleClickEvent(ClickEvent event)
throws Exception {

if (�MyButton�.equals(event.getComponent().getName())){
DB2 Alphablox
Developer’s Guide for the DHTML Client

134 Model Dispatcher
// Do something
return true;

}
return false;

}
});

%>
</blox:grid>

Notice that in all of the above examples, the event handler is being added inside
of the Blox tag. This is an important point because you do not want the handler
added every time the page is refreshed. All code inside of the Blox tag is only
executed when the Blox is initially created and not on every page refresh. There is
a similar convention when <jsp:useBean> is used with session scope.

Model Dispatcher
Once a component is attached to a Blox model, that component can be used to
obtain a model dispatcher. The dispatcher is a service point provided by the top-
level container in the model, and offers a number of model-related services. The
following services are available from the dispatcher (see BloxModel and the
IModelDispatcher interface):

• Displaying a dialog – causes a dialog to be displayed on the client using
showDialog()

• Closing a dialog – cause the dialog to be closed on the client using
closeDialog()

• Obtaining a reference to the top-level container with
getTopLevelContainer()

• Dispatching events – dispatches an event inside the model using
dispatchEvent()

• Displaying a browser window – causes the browser to display a new window
with the provided URL with showBrowserWindow()

• Sending JavaScript commands to the client with sendClientCommand()

• Displaying a right click menu – causes the browser to immediately display a
right click menu at the specified location using
setAttachedRightClickMenu()

• Controlling the busy state – allows code to put the browser UI into a busy
state until release using setBusy()

The most common use of the dispatcher is to display a Dialog as follows:

component.getDispatcher().showDialog(myDialog);
CHAPTER 10
DHTML Client UI Extensibility

Dialogs 135
Components not attached to a Model will not have model dispatcher.

Dialogs
Dialogs are used to collect input from users in order to set options or clarify user
intentions. The UI Model makes it easy for application developers to quickly
construct and display a dialog to the user. A Dialog is a container which extends
the base ComponentContainer model object by adding two special abilities:

1 The Dialog lives in its own separate, sizable, moveable window on the
browser

2 The dialog can optionally stop the rest of the user interface from accepting
input until it is dismissed.

Otherwise, Dialogs work like other ComponentContainers. Most, if not all
Dialogs will also require a Controller to interpret a user’s selections and take
action.

To focus the user’s attention on a Dialog, set the dialog’s modal property using
the Dialog.setModal(boolean) method. Modal Dialogs prohibit interaction
with other parts of the user interface until they are dismissed. Modeless Dialogs
do not prohibit user interface interaction and are best used for Dialogs having an
“apply” feature. Multiple Dialogs can be simultaneously displayed with the last
displayed Modal Dialog in control of the user interface.

Dialogs will be redisplayed if the user refreshes the browser page.

Creating a Simple Dialog

Using the Blox UI Model, you can create dialogs for capturing input from users.
To create a dialog, follow these basic steps::

1 Create the dialog from a UI Model resource file.

2 Create a controller which extends DialogController to handle all user
interactions with the dialog. In most cases OK, cancel, and apply will be the
only user actions that the controller is interested in.

3 Attach the controller to the Dialog object.

4 Instruct the model dispatcher to display the dialog.

In the example that follows, the JSP page adds a custom menu item labeled “My
Menu Choice,” available under Data in the menubar of a PresentBlox. When a
user clicks on “My Menu Choice,” the dialog defined in an XML resource file is
displayed. In this simple example, the dialog asks the user a question with an OK
DB2 Alphablox
Developer’s Guide for the DHTML Client

136 Dialogs
or Cancel response. Shown below is the code for the two files, the JSP page
displaying the PresentBlox and custom menu item and the XML resource file
used to define the dialog window. The JSP page expects the XML resource file to
be found at the application’s root directory.

JSP page (customDialog.jsp)

The following JSP file will display a PresentBlox on a page, with a custom “My
Menu Choice” menu option available at the bottom of the Data menu. To
understand what is happening, read the comments in the JSP file.

<%@ page import="com.alphablox.blox.*,
com.alphablox.blox.uimodel.*,
com.alphablox.blox.uimodel.core.*,
com.alphablox.blox.uimodel.core.event.*,
com.alphablox.blox.uimodel.core.Component.*,
com.alphablox.blox.uimodel.core.grid.*,
com.alphablox.blox.uimodel.tags.IActionFilter,
com.alphablox.blox.uimodel.tags.internal.ActionFilterAdapter,
com.alphablox.blox.data.*,
com.alphablox.blox.data.mdb.*" %>

<%@ page import="java.io.*,
java.io.File.*,
java.util.*" %>

<%@ taglib uri="bloxtld" prefix="blox"%>
<%@ taglib uri="bloxuitld" prefix="bloxui"%>

<%!
// class needs to be static in order to be used by the
// bloxui:actionFilter tag

public static class MyActionFilter implements IActionFilter {
String dialogPath;

public MyActionFilter(PageContext pageContext) {
File ctxPath = new

File(pageContext.getServletContext().getRealPath(""));
dialogPath = ctxPath.getAbsolutePath() + File.separator +

"MyDialog.xml";
}

// handle the action for the MyMenuChoice component
public void actionFilter(DataViewBlox blox, Component component)

throws Exception {
System.out.println("actionMyMenuChoice() was called");
try {

Dialog dialog = Dialog.createFromResource(dialogPath);
DialogController dialogController = new

MyDialogController(dialog);

// Attach the controller to the dialog
CHAPTER 10
DHTML Client UI Extensibility

Dialogs 137
dialog.setController(dialogController);

// Get component from the event so we can get model dispatcher
// The dispatcher is used to send the dialog to the client
component.getDispatcher().showDialog(dialog);

}
catch(Exception e) {

System.out.println("actionMyMenuChoice() exception" +
e.getMessage());

throw e;
}

}
}

 public static class MyDialogController extends DialogController {
public MyDialogController(Dialog dialog) {

super(dialog); // must be the first thing in this constructor
System.out.println("MyDialogController () was called");

}
public void actionOk() {

// Take some action
System.out.println("actionOk() was called");
// Invoke default OK handler after taking the action
super.actionOk();

}
 }
%>

<blox:data id="analyticsDataBlox"
dataSourceName="QCC-Essbase"
query="!">

</blox:data>

<blox:present id="analyticsBlox"
visible="false"
width="95%"
height="45%"
splitPane="false"

>
<blox:data bloxRef="analyticsDataBlox"/>

<bloxui:menu name="dataMenu">
<bloxui:menuItem separator="true" />
<bloxui:menuItem name="MyMenuChoice"

title="My Menu Choice" />
</bloxui:menu>
<bloxui:actionFilter

filter="<%= new MyActionFilter(pageContext) %>"
componentName="MyMenuChoice" />

</blox:present>

<html>
<head>
DB2 Alphablox
Developer’s Guide for the DHTML Client

138 Dialogs
<blox:header/>
</head>
<body>
<blox:display bloxRef="analyticsBlox" />
</body>
</html>

XML Resource File (MyDialog.xml)

In the example above, we created the dialog using a resource file. Alternatively,
we could create the dialog by creating and adding the individual components that
make up the dialog. The resource file consists of a language localizable XML
representation of Components in the dialog and is a simple way to create dialogs,
menubars, and toolbars.

The dialog resource MyDialog for the example would look something like this:

<?xml version="1.0" ?>
<Dialog name="MyDialog"

title="My Dialog"
cache="false"
modal="true"
height="150"
width="500"
layout="vertical">

<Static title="Do you really want to do this?" />
<ComponentContainer layout="horizontal" alignment="center">

<Button name="ok" title="OK" />
<Button name="cancel" title="Cancel" />

</ComponentContainer>
<Spacer />
</Dialog>

Any of the core Model Components can be added to the resource file as children
of a container. For more information about resource files, refer to the XML
Resource Files Reference section of the Developer’s Reference for the DHTML
Client.

MessageBox

A MessageBox is a modal Dialog with a simple API to enable developers to
quickly and easily display a text-based message to the user. The MessageBox can
collect simple input from the user in the form of OK, Yes/No, Yes/No/Cancel,
and OK/Cancel responses. The MessageBox is always modal in nature so that the
user must respond before continuing to interact with other parts of the user
interface.
CHAPTER 10
DHTML Client UI Extensibility

../index.html?context=reference&topic=ReferenceBook
../index.html?context=reference&topic=ReferenceBook
../index.html?context=reference&topic=resourceXML
../index.html?context=reference&topic=resourceXML

DHTML Client Application Logic and Flow 139
If the application logic needs to inform the user about some situation, then a
MessageBox can be sent to the user and the user’s response can be ignored.

MessageBox.message(myBlox.getBloxModel().getModelDispatcher(),
"Attention User",
"Some situation has occurred you should know about");

When the application logic is interested in the user’s response, it can use the
callback mechanism provided by the MessageBox class to be informed of the
user’s wishes. In this case, the MessageBox invokes a method on the
IMessageCallback interface to communicate the user’s response back to the
application code. Any class can implement this interface in order to receive
notification when user responds to the MessageBox.

An example of a Class displaying a MessageBox and providing a response
handler:

class MyClass implements IMessageCallback
{

public void ask(IModelDispatcher dispatcher) {
MessageBox.message(dispatcher, �MessageBox Title�,

�MessageBox message�,
MessageBox.MESSAGE_OKCANCEL,this);

}
public boolean action(MessageBox messageBox,String action){

// handle the user response
}

}

// To invoke the above MessageBox

MyClass mine = new MyClass();
mine.ask(myBlox.getBloxModel().getModelDispatcher());

DHTML Client Application Logic and Flow
The UI Model controls a user interface that is split across multiple tiers - the
Alphablox Analytics on one tier and the browser on the other. This is similar to
the tiered nature of HTML, but there are some critical differences.

The UI Model updates the DHTML user interface without page refreshes. As the
user interacts with the UI, changes are made to the page without refreshing the
entire page or frameset.

The UI Model keeps a representation of the user interface on the server that
maintains the state of the UI and provides a server-based programmatic interface
to the UI. This means that the two tiers need to be kept in sync with each other
and changes on the server need to be reflected on the client and vise versa.
DB2 Alphablox
Developer’s Guide for the DHTML Client

140 DHTML Client Is Theme-Based
Having the user interface split across multiple tiers and based on the HTTP
protocol impacts the way server-side code is written and how it handles user
actions. Server side code cannot wait around for user responses because those
responses happen on different threads and each thread is a limited server
resource. Most of this is not all that different than the way other user interfaces
operate whether it is done with message loops, callbacks, or handlers. In the UI
Model, controllers are used to handle user actions.

Code will typically be structured as follows:

Thread 1 (assume the user hit a button on the user interface)

1 Intercept the ClickEvent

2 Create a Dialog object

3 Populate the dialog with the required components

4 Attach a controller to the dialog to handle events from the dialog

5 Use the dispatcher to show the dialog (the dialog is not really shown at this
point, rather it is queued to be show as soon as possible)

6 Return from the ClickEvent handler

Some time passes …

Thread 2 (assume the user hit OK on the dialog created by in thread 1)

1 Intercept the ClickEvent for the OK button in the dialog controller

2 Act on the state of the components in the dialog

3 Cause the dialog to close (again, the dialog is queued to be closed as soon as
possible)

4 Return from the ClickEvent

The example uses the case of displaying and collecting input from a Dialog, but
the general structure is the same for all Model components. The processing of
user actions and the creation of the model are always on different threads.

DHTML Client Is Theme-Based
The UI Model is driven by the same theme mechanism as the HTML client,
although it uses different CSS files and class names (i.e., the DHTML client CSS
files do not affect the HTML client and vise versa). All of the CSS class names
used by the DHTML client are published and available for override by application
developers who what to create their own custom themes. Keep in mind that the
UI Model’s chart object does not use the theme’s CSS setting since it is an image
(see “Charting” on page 142).
CHAPTER 10
DHTML Client UI Extensibility

DHTML Client Is Theme-Based 141
The CSS files are organized so that the common visual attributes such as color,
font, font size, and background image are easy to locate and change. All of these
attributes are located in each theme’s directory in a file named
themeName_dhtml.css (for example, coleman_dhtml.css). Refer to the CSS
themes documentation (“CSS Themes” on page 221) for a list of the CSS class
names and their functions.

The theme’s layout is applied to each Blox immediately before it is rendered. If
you have custom code that dramatically modified the layout of the UI Model, you
should turn off the theme layout application for that Blox. If you do not turn off
the theme layout application, it is very likely that your changes will be undone in
favor of the theme’s default layout.

The setApplyThemeLayout(boolean) method controls the application of the
theme’s layout to the Blox Model. Set this to false to stop the server from
applying the layout.

Styles

All UI Model components allow the developer to apply styles to override the
default styles provided by the controlling theme. Styles which may be applied to a
component include the foreground and background colors, fonts, borders, and
other text attributes such as underline, bold and italic.

UI Model styles work in conjunction with the styles defined in the controlling
theme’s CSS classes. When a style is applied to a component, only the attributes
specifically set in the style are applied to the component. Attributes not set will
continue to inherit the values supplied by the theme. This allows a developer to
set the foreground or background of a component and not worry about all the
other attributes such as fonts and borders.

Chart components use a slightly different style mechanism since charts are based
on images files which are not affected by a theme’s CSS styles. See the chart
section for a description of the chart-specific styles.

To apply a style to a UI Model component, you create a Style object and set it in
the component as follows:

// Make the text in a component bold
Style myStyle = new Style();
myStyle.setBold(true);
myComponent.setStyle(myStyle);
DB2 Alphablox
Developer’s Guide for the DHTML Client

142 Charting
Alternatively, you can create a Style object using a CSS-like shorthand notation.
Please note that the shorthand notation is a limited subset of CSS and only
supports those CSS styles that are specifically supported by the model’s Style
object.

// Make the text in a component bold
Style myStyle = new Style("font-weight:bold;");
myComponent.setStyle(myStyle);

In addition to the Style object, developers can also specify a specific CSS class
to be used for each UI Model component. You should use this when you want to
apply CSS styles that are not supported by the model’s Style object. The class
specified can be located in a CSS file or specified on the HTML page using the
<Style> element.

// Set the CSS class to be used by tha component

myComponent.setThemeClass("myCssClass");

Care should be exercised when taking this approach since it also has the effect of
overriding the default DHTML theme classes specified for some components.
Further, some model components modify the theme class names depending on the
state of the component. For example, appending Disabled or Enabled to the
CSS class name.

Setting Multiple Theme Classes

If you want to extend the CSS class used for a component, it is possible to add
multiple theme class names separated by a space. For example, to add your CSS
class to a component which already has a class defined do the following:

button.setThemeClass("myThemeClass "+ button.getThemeClass());

Charting
One particularly interesting feature of the UI Model is charting. There are Chart
components that allow the assembler to create a chart or modify existing charts.
The purpose of this section is to provide a general structure of the chart UI Model
and several examples of common tasks so that an assembler can get started with
charting extensibility.
CHAPTER 10
DHTML Client UI Extensibility

Charting 143
Key Terms

DataSeries

A data series is a list of data values each of which generally represents a single
member. For instance, if I have a grid with Sales vs. Region (East, West, North,
and South), then I would have a data series that has 4 data values (1 for East,
West, North, and South) and my data series would have a name "Sales". Then,
when the data is plotted on the chart, it would make one line with 4 points on it
(or 4 bars, etc.).Different charts accept different types of data series objects. One
type of data series used by Bar, Line, Area, and Pie charts is a
SingleValueDataSeries where each point on the chart is just a single value.
BarDataSeries and LineDataSeries both extend SingleValueDataSeries.
Additionally there are multi-value data series as well (such as ScatterDataSeries
and BubbleDataSeries). For instance, a ScatterDataSeries has an X and Y value
for each data point.Some chart types support only 1 data series. Currently the
PieChart only supports a single pie and there is only 1 data series per pie. Most
chart types support multiple data series. Imagine a line chart with 3 lines on it.
Each line represents a single data series (might be Sales, COGS, and Inventory
for instance) Each line has 4 points (East, West, North, South).Each data series is
plotted against 1 or more Axis. Axes can either be an OrdinalAxis or a
NumericAxis. See the bar chart code sample for how you might set up your own
BarChart.

OrdinalAxis

An OrdinalAxis is essentially an axis with string based labels. This is the axis that
contains the labels for groups of data. For instance, if I am plotting a data series
with values 3, 5, 4, 6 and these values come from the East, West, South, and
North Sales numbers, then the OrdinalAxis would contain labels "East", "West",
"South", and "North". The reason it is called Ordinal is because the order of the
data series matches the order of the labels. Each label is essentially a bucket for
data points.

NumericAxis

A NumericAxis is an axis on the chart where the actual data values (from the data
series) are plotted. For instance, if I have a data series with values 3, 5, 4, 6 then
the NumericAxis would have a range of 0 to 10 (controllable) and have tic marks
every 1 (controllable) and would show up on the left hand side of the chart
(controllable).

The Chart Component

There is no single "Chart" component that represents all charts. The chart UI
Model has a different component for every basic class of charts (PieChart,
BarChart, LineChart, ScatterChart, DialChart, etc.). There are slightly
different APIs for each basic class of charts. For example, on a bar chart, several
DB2 Alphablox
Developer’s Guide for the DHTML Client

144 Charting
visual properties can be set such as bar border styles, and bar width. These visual
properties have no analog in a LineChart (lines don't have borders or width
although they do have thickness). So BarChart has a
setBarBorder(borderStyle) method while a LineChart does not.

All chart classes descend from the ChartObject. There are other logical
groupings where various chart classes can be treated similarly. The diagram
below illustrates the chart types and how they are grouped. For instance, there
could be code that works for all RectangularChart objects to put grid lines in
the chart region.

One important point in using the Chart UI Model involves casting the Chart
object to the appropriate type (see the above diagram). In order to get to the
BarChart APIs, a developer should first check that the Chart object is actually a
BarChart and then cast it accordingly:

Component chart = bloxModel.searchForComponent(ModelConstants.CHART);

// Checks to see if the chart is actually a BarChart
if (chart != null && chart instanceof BarChart) {
BarChart barChart = (BarChart) chart;

// Now we can use the specific BarChart APIs
barChart.setBarWidth(20);

}

Chart objects can be created from scratch (see BarChart example below) but more
frequently, an assembler may want to modify an existing Chart object which has
been created from a ChartBlox. To illustrate how this is best done, see the Change
Context (Right-Click) Menu example below) which places a custom context
(right-click) menu on the Chart object.
CHAPTER 10
DHTML Client UI Extensibility

Charting 145
Controlling Chart Settings

There are some common items that an assembler may want to configure. For more
details on the specific APIs, refer to the Server-Side API Reference (JavaDoc),
available from the Help menu in the Alphablox Analytics Admin Pages.

NumericAxis

OrdinalAxis

DataSeries

Legend

Attribute Description

axisTitle The title for the axis. Will be displayed if possible (not
possible for pies).

formatMask Sets the format mask for how the numbers along the tic
marks will be displayed.

scale Sets the minimum, maximum and step size values for this
axis.

Attribute Description

axisTitle The title for the axis. Will be displayed if possible (not
possible for pies).

labels Sets the text labels displayed below each tic mark.

Attribute Description

seriesName The title for the data series. Will be displayed in the legend.

dataValues Sets the data values.

Attribute Description

legendTitle The legend title is displayed just above the legend items.
DB2 Alphablox
Developer’s Guide for the DHTML Client

../../documentation/javadoc/blox/index.html

146 Charting
ChartTitle, Footnote, AxisTitle

These are all ChartStatic objects.

Chart Event Handling

The chart component itself has the same event handling mechanisms as any other
Component. However, end-users can click on various portions of the chart (a data
point, a label, a legend item, etc.) and these events are handled differently since
these are not full-fledged Components (they don’t extend the Component class).
Instead, there is a ChartComponent that serves as a superclass to Axis, Legend,
AbstractDataSeries, and ChartStatic (title, footnote). One ChartComponent can
be selected on a Chart at a time. An assembler can intercept this selected event in
the Chart’s Controller (or any parent Controller) using the example below. Note
in the example that only SelectedEvents which contain a special attribute
(Chart.EVENT_ATTR_TARGET) are processed. This “target” is the
ChartComponent that was selected:

chart.setController(new Controller() {
public void handleSelectedEvent(SelectedEvent event) {
Chart theChart = (Chart) event.getComponent();

if (event.getAttribute(Chart.EVENT_ATTR_TARGET) != null) {

position Along with Right and Bottom, TopLeft, TopRight,
BottomLeft, BottomRight, and Center. Center puts the
Legend inside the chart.

legendLayout Vertical or Horizontal orientation for the legend items.
Horizontal means all the legend items go on one line.
Vertical puts 1 on each line.

Attribute Description

Attribute Description

displayText The displayed text

tooltip The tooltip that will be displayed if dwellLabelsEnabled is
turned on

textStyle Gives the ability to control the foreground color, font name,
font size, and font angle

regionStyle Gives the ability to control the background color/image,
border width, border type, and border color.
CHAPTER 10
DHTML Client UI Extensibility

Charting 147
ChartComponent chartComponent =
theChart.getSelectedChartComponent();

// If the user clicked on an OrdinalAxis, then figure
// out the label and print it out
if (chartComponent instanceof OrdinalAxis) {
OrdinalAxis axis = (OrdinalAxis) chartComponent;
Label label = axis.getLabels()[axis.getSelectedIndex()];
MessageBox.message(theChart, "OrdinalAxis", "Label "
+ axis.getSelectedIndex() + ": " + label.getDisplayText());

}

if (chartComponent instanceof Legend
&& theChart instanceof OrdinalChart)
{

// Remember that the legend items map to 1 to each data series.
Legend legend = (Legend) chartComponent;
SingleValueDataSeries dataSeries = ((OrdinalChart)

theChart).getAllDataSeries()[legend.getSelectedIndex()];
MessageBox.message(theChart, "Legend", "Legend Item "
+ legend.getSelectedIndex() + ": " +

dataSeries.getSeriesName());
}

if (chartComponent instanceof AbstractDataSeries
&& theChart instanceof OrdinalChart)

{

SingleValueDataSeries dataSeries = (SingleValueDataSeries)
chartComponent;

Number value = dataSeries.get(dataSeries.getSelectedIndex());
MessageBox.message(theChart, "DataSeries", "Data Point "

+ dataSeries.getSelectedIndex() + ": " + value);
}

}
}

});

Code samples

Included below are a couple of code examples of working charting.

Bar Chart Example

Below is a code sample illustrating how to setup a bar chart. For a ChartBlox on a
page, all of this work is done for you:

<blox:container id="container" width="400" height="400">
<%

BloxModel model = container.getBloxModel();
BarChart chart = new BarChart("myChart");
NumericAxis numericAxis = new NumericAxis();
DB2 Alphablox
Developer’s Guide for the DHTML Client

148 Charting
OrdinalAxis ordAxis = new OrdinalAxis();

/*** Setup the labels for the ordinal axis. ***/
ordAxis.addLabel(new Label("East"));
ordAxis.addLabel(new Label("West"));
ordAxis.addLabel(new Label("North"));
ordAxis.addLabel(new Label("South"));

/*** Add the axes to the chart. ***/
// By default this will be on the Axis.LEFT side in the 0th position
chart.addNumericAxis(numericAxis);
// By default this will be on the Axis.BOTTOM side in the 0th position

 chart.setOrdinalAxis(ordAxis);

/*** Setup the first data series. ***/
BarDataSeries data = new BarDataSeries();
data.add(new Integer(3));
data.add(new Integer(5));
data.add(new Integer(4));
data.add(new Integer(6));
data.setSeriesName("Sales");

chart.addDataSeries(data, numericAxis);

/*** Add a second data series ***/
BarDataSeries data2 = new BarDataSeries();
data2.add(new Integer(10));
data2.add(new Integer(12));
data2.add(new Integer(9));
data2.add(new Integer(10));
data2.setSeriesName("Sales 2");
chart.addDataSeries(data2,numericAxis);

// Setup the directory where the chart will be saved
String directory = request.getServletPath();
if (directory.indexOf(".") != -1) {
directory = directory.substring(0,

directory.lastIndexOf("/")+1);
}

chart.setChartWorkAreaAbsolutePath(
application.getRealPath(directory + "tmpCharts/"));

chart.setChartWorkAreaPath(request.getContextPath() +
directory + "tmpCharts/");

model.add(chart);
%>
</blox:container>
CHAPTER 10
DHTML Client UI Extensibility

Charting 149
Custom Context (Right-Click) Menu for Chart

This example demonstrates attaching a custom right click menu to an existing
Chart object. When the end user right-clicks on a chart’s data points, axis labels,
legends, etc. the custom contextual (right-click) menu will be seen. One
interesting point to note is that anytime the end-user does a data operation (e.g.
drill down) or changes chart types, the Chart object is rebuilt completely. The
custom right click menu needs to be re-attached every time this occurs. The
ComponentRebuiltNotify event is sent anytime the Chart object is rebuilt. A
handleComponentRebuiltNotify event handler is to re-attach the context menu in
these cases. It is crucial that any modifications to the Chart object are done
inside the handleComponentRebuiltNotify() event handler otherwise as soon
as the chart type is changed (or there is some data operation), your customizations
will be lost:

<blox:present id="customRightClick"
width="80%"
height="500">

<%
PresentBloxModel bloxModel =

customRightClick.getPresentBloxModel();

// Find the chartBrixModel and its controller
bloxModel.addEventHandler(new IEventHandler() {
public boolean handleComponentRebuiltNotify(

ComponentRebuiltNotify event)
throws Exception

{
Component component = event.getComponent();
if (component instanceof ChartBrixModel) {
ChartBrixModel chartBrixModel = ((ChartBrixModel) component);
Component chartMaybe = chartBrixModel.searchForComponent(

ModelConstants.CHART);

if (chartMaybe != null) {
Chart chart = (Chart) chartMaybe;

/*** Make the menu ***/

Menu headerMenu = new Menu();
headerMenu.add(new MenuItem("headerItem",

"Header Menu Item ..."));

// Add a dedicated controller to the header menu
headerMenu.setController(new Controller() {
public void actionHeaderItem(ModelEvent event) {
MessageBox.message(event.getComponent(), "Right Click",

"Test");
}

});
chart.setRightClickMenu(headerMenu);

return true;
DB2 Alphablox
Developer’s Guide for the DHTML Client

150 Javadoc Documentation
}
}
return false;
}

});
%>

<blox:data
dataSourceName="qcc-essbase"
useAliases="true"
query="<ROW (\"All Products\") <ICHILD \"All Products\" <COLUMN

(\"All Time Periods\") <CHILD \"All Time Periods\" !"/>
</blox:present>

Javadoc Documentation
See the Alphablox Analytics Online Documentation for complete UI Model
Javadoc. The server-side Javadoc documentation lists all of the UI Model classes
and their methods. The Server-Side Java API Reference (Javadoc) is available by
clicking on the Help menu option in the Alphablox Analytics Admin Pages.

Blox UI Model Examples

Single Toolbar

In this example, the two default DHTML client toolbars are combined into a
single toolbar. This saves vertical space at the expense of horizontal width.
Instead of constructing an entirely new toolbar, the code appends all of the
navigation toolbar buttons onto the end of the standard toolbar and then removes
the empty navigation toolbar. Since UI Model components can only exist in a
single container at one time, adding a component to a container also removes it
from its old container.

<blox:present id="task1present"
width="800"
height="400">

<%
// Get the model
PresentBloxModel model = task1present.getPresentBloxModel();

// Get the two default toolbars
Toolbar standard = model.getStandardToolbar();
Toolbar navigation = model.getNavigateToolbar();

// Add a separator
standard.add(ToolbarButton.separator());
// Move the buttons (don't use an iterator because the component is

changing)
CHAPTER 10
DHTML Client UI Extensibility

../../documentation/javadoc/blox/index.html

Blox UI Model Examples 151
while (navigation.size() > 0)
standard.add(navigation.get(0));

// Remove the navigation toolbar and update the toolbar menu
navigation.delete();
model.populateToolbarMenu();

%>
</blox:present>

Disabling Context (Right-Click) Menu

This example will intercept the right click event on a Blox’s grid and, rather than
displaying the right click menu, it will display a message to the user. Since the
grid already has an attached controller, the example adds an event handler to that
controller which intercepts all RightClickEvents. Returning true from the event
handler will stop future processing of the event (return false to allow other
handlers to handle the event).

A Blox property exists which will disable the right click menu, but this example
is important because it is the foundation for customizing right clicking behavior.
For example, the handler could enable or disable the right click menu based on
the type of cell (row header, column header, data) or based on the contents of the
cell the user has selected.

<blox:present id="task2present"
width="800"
height="400">

<%
// Get the model
PresentBloxModel model = task2present.getPresentBloxModel();

// Find the grid and its controller
GridBrixModel grid = model.getGrid();
Controller controller = grid.getController();

//Add custom event handler to intercept the right-click event
controller.addEventHandler(new IEventHandler() {
public boolean handleRightClickEvent(RightClickEvent event) {
MessageBox.message(event.getComponent(), "Not allowed",

"Right clicking the grid is not allowed");

// Return true to stop the processing this event
return true;
}

});
%>
</blox:present>
DB2 Alphablox
Developer’s Guide for the DHTML Client

152 Blox UI Model Examples
Customized Context (Right-Click) Menu

By default, the grid’s contextual (right-click) menu is a copy of the Blox’s Data
menu found on the menu bar. This example overrides this default behavior by
setting a custom right click menu for grid header cells and another for grid data
cells. The menu items will display a MessageBox to the user indicating the type
of cell selected as well as the cell’s value.

Although the right click menus added by this example are static (i.e., they do not
change based on the cell selected) the action that results from selecting the menu
item is very dynamic as the message displayed is adjusted for the cell(s) selected.
To do this, the controller attached to each menu item examines the current grid
cell selection and tailors the message using that selection.

For simplicity, this example only examines the first cell in the selection list which
may not be the actual clicked cell if multiple cells are selected.

<blox:present id="task3present"
width="800"
height="400">

<%
// Get the model
PresentBloxModel model = task3present.getPresentBloxModel();

// Find the grid and its controller
final GridBrixModel grid = model.getGrid();
Controller controller = grid.getController();

// Make and add the header right click menu
Menu headerMenu = new Menu();
headerMenu.add(new MenuItem("headerItem","Header Menu Item ..."));
grid.setHeaderCellRightClickMenu(headerMenu);

// Add a dedicated controller to the header menu
headerMenu.setController(new Controller() {
public void actionHeaderItem(ModelEvent event) {

// Get the selected cell(s)
GridCell[] cells = grid.getSelectedCells();
MessageBox.message(event.getComponent(),"Right Click",
"You right clicked on a header cell - " +

cells[0].getValue());
}

});

// Make and add the data cell right click menu
Menu cellMenu = new Menu();
cellMenu.add(new MenuItem("cellItem","Cell Menu

Item ..."));
grid.setCellsRightClickMenu(cellMenu);

// Add a dedicated controller to the cell menu
CHAPTER 10
DHTML Client UI Extensibility

Blox UI Model Examples 153
cellMenu.setController(new Controller() {
public void actionCellItem(ModelEvent event) {

// Get the selected cell(s)
GridCell[] cells = grid.getSelectedCells();
MessageBox.message(event.getComponent(),"Right Click",

"You right clicked on a data cell - " +
cells[0].getValue());

}
});

%>

Custom Grid Layout

This example shows you how to create a custom grid layout that can modify the
contents of individual grid cells when the grid cell is created. In this example, the
layout modifies the cell by adding the MSOLAP cell attributes as a tool tip to
each header cell (this example will only work for MSOLAP data sources).

The custom layout tag provides application developers with a way to customize
the entire grid or individual cells by taking care of most of the details of hooking
into the grid. These details include dealing with grid rebuild notifications and
handling cell modifications as the cells are needed rather than upfront when the
grid is built.

By default, the cells in a grid are not actually created until either (1) the user
requests a page containing the cell or (2) server-side code requests the cell from
the grid. In general, it is better to not cause the grid to create all cells.

The first part of this example demonstrates the <bloxui:customLayout> tag,
which hooks the custom layout class to the Grid. The tag will create an instance
of the layout class and attach it to the grid. It will also manage the layout’s
appearance on the layout menu which is an optional feature letting the user turn
the layout on and off. Further, the tag will save the user’s setting in all
bookmarks saved by the user.

<blox:present id="task5present" width="800" height="400"
visible="true">

<bloxui:customLayout
className="CustomLayout"
showOnLayoutMenu="true" />

</blox:present>

The class specified by the className attribute in the tag must exist on the
server’s class path or the tag will not be able to create an instance of the layout
class. The class itself must extend
com.alphablox.blox.uimodel.layout.AbstractLayout. Refer to the
AbstractLayout JavaDoc for a complete listing of all the methods and services
provided. In this example, our layout class is only concerned with cell creation
and ignores grid creation.
DB2 Alphablox
Developer’s Guide for the DHTML Client

154 Blox UI Model Examples
The second part of the example is the actual class which extends
AbastractLayout and performs all of the work. The getFormatName()
method returns the name of the layout and will be used as the menu item if the
layout is added to the menu system.

All of the real work is done in the layoutCell() method. Each time a grid cell is
created; the layoutCell() method is invoked with a reference to the newly
created cell. The method checks the cell to see if it is a header cell and if so adds
a tool tip to the cell containing the member attribute information.

public class CustomLayout extends AbstractLayout {
protected String getFormatName() {

return "Custom Layout (show MSAS member attributes)";
}

protected void layoutCell(GridCell gridCell,DataViewBlox
dataViewBlox) throws Exception {

// Make sure this is a header cell, and it belongs to the grid brix

// (i.e. not added by another layout)
if (!gridCell.isColumnHeader() && !gridCell.isRowHeader())

return;
Property[] properties = getHeaderCellProperties(gridCell,

dataViewBlox);

if (properties.length > 0) {
// Create a tooltip with the properties and add to the cell
StringBuffer buffer = new StringBuffer(200);
for (int i=0; i < properties.length; i++) {

if (i > 0)
buffer.append("\r\n");
buffer.append(properties[i].getName());
buffer.append("=");

buffer.append(properties[i].getValue());
}
gridCell.setTooltip(buffer.toString());

}
}

private Property[] getHeaderCellProperties(GridCell gridCell,
DataViewBlox dataViewBlox) throws ServerBloxException {
if (!(gridCell instanceof GridBrixCellModel))

return new Property[0];

GridBrixCellModel cell = (GridBrixCellModel)gridCell;

MDBResultSet results =
(MDBResultSet)dataViewBlox.getDataBlox().getResultSet();

Axis axis = results.getAxis(cell.isColumnHeader() ?
Axis.COLUMN_AXIS_ID : Axis.ROW_AXIS_ID);
CHAPTER 10
DHTML Client UI Extensibility

Blox UI Model Examples 155
Tuple tuple = axis.getTuple(cell.isColumnHeader() ?
cell.getNativeColumn() : cell.getNativeRow());

TupleMember tupleMember =
tuple.getMember(cell.isColumnHeader() ?

cell.getNativeRow() : cell.getNativeColumn());

MDBMetaData meta =
(MDBMetaData)dataViewBlox.getDataBlox().getMetaData();

Property[] properties =
meta.getPropertiesOfMember(tupleMember.getUniqueName());

return properties;
}

}

Mapping Grid Cells to Underlying Result Set

This example of a custom grid layout adds a tool tip to each cell with information
about the unique name of header cells and the value of data cells. The example
demonstrates two important concepts:

1 The grid layout class can be put directly in the JSP page which may be
appropriate if the layout is only going to be used with a single Blox. Placing
the class code in the JSP file can quicken the development debugging cycle
for all layouts. However when a layout is developed in this manner it should
be placed in a separate class file after debugging.

2 The layout uses the MDBResultSet to UI Model conversion methods
available on the GridBrixModel to map UI Model grid cells to
MDBResultSet objects.

The first part of this example shows you how to reference a class defined in the
actual JSP page. Since most web servers mangle the class name each time the
JSP file is compiled, the code obtains the layout’s class name directly from the
class itself. The application developer does not need to worry about the class path
when the layout class is placed in the JSP file.

<blox:present id="lookupGridCell"
width="700"
height="500">
<bloxui:customLayout

className="<%= CustomLayout.class.getName() %>"
showOnLayoutMenu="true"/>

</blox:present>
DB2 Alphablox
Developer’s Guide for the DHTML Client

156 Blox UI Model Examples
The second part of this example demonstrates the Java class that implements the
layout. When each UI Model grid cell is created the custom layout invokes
findGridBrixCell() to obtain the MDBResultSet object corresponding to
created cell. The value returned from this method will depend on the result set
object matching the UI Model cell (this object will be a Cell, TupleMember or
null). GridBrixModel also provides methods to map cells from the result set to
cells in the UI Model.

Keep in mind when implementing custom layouts that the order of cells in the UI
Model grid may not match the order of cells in the actual MDBResultSet. This is
especially true for layouts such as the butterfly layout which moves the row
headers.

<%!
public static class CustomLayout extends AbstractLayout {

protected String getFormatName() {
return "Custom Layout";

}
protected void layoutCell(GridCell gridCell, DataViewBlox

dataViewBlox) throws Exception {
MDBResultSet results =

(MDBResultSet)dataViewBlox.getDataBlox().getResultSet();
GridBrixModel grid = (GridBrixModel)gridCell.getGrid();
Object object = grid.findGridBrixCell(results, gridCell);
if (object == null) {
gridCell.setTooltip("This cell is not from the MDB result set");

}
else if (object instanceof Cell) {

gridCell.setTooltip("This is a Cell\r\nValue: " +
((Cell)object).getDoubleValue());

}
else if (object instanceof TupleMember) {
TupleMember member = (TupleMember)object;
gridCell.setTooltip("This is a TupleMember" + \r\nUniqueName: " +

member.getUniqueName() +
"\r\nDimension: " + member.getDimension().getUniqueName() +
"\r\nAxis :" + member.getDimension().getAxis().getIndex());

}
else
gridCell.setTooltip("Unexpected object: "

+ object .getClass().getName());
}

}
%>
CHAPTER 10
DHTML Client UI Extensibility

11
DHTML Client API

This chapter covers the DHTML Client API, which enables easy access to server-
side application logic and APIs using JavaScript methods and allows the
assembler to leverage client-side scripting to add value to the application by
offloading navigation, some UI manipulation, and entry validation from the
server.

DHTML Client API Overview
The core logic for an application built for the DHTML client is made up of
server-side components such as the UI Model, scriptlets, beans and other
supporting classes. As a result, the focus of the DHTML Client API is to enable
easy access to server-side application logic and APIs rather than exposing a large,
RPC-based API on the client. It also allows the assembler to leverage client-side
script to add value to the application by offloading navigation, some UI
manipulation and entry validation from the server.

The DHTML Client API is a client framework that provides services such as
event processing, error handling, communications services and an RPC
mechanism for JavaScript code.

Using the DHTML Client API
The DHTML Client API is used when HTML or JavaScript on the surrounding
page needs to interact with one or more Blox on the page. The main uses of the
client API include:

• Invoking server-side application logic: The DHTML Client API provides
methods to directly invoke methods on server-side beans. In addition, return
values from the server side beans are returned to the client and converted to
the appropriate JavaScript object.

158 The DHTML Client API Framework
• Event processing: Through the API, assemblers can send events to the server
to simulate a user interaction with the UI. JavaScript can be used to create
event objects such as click events and methods are provided to send the event
to the server. This allows HTML buttons and other controls outside of the
Blox framework to simulate user interactions. Events may also be used to
change the state of components within the model.

• Intercepting events: JavaScript methods can be registered as listeners for all
events generated by all Blox on the page. The event listener can choose to
ignore the event or let the event be processed normally. JavasScript can be
written which changes the behavior of the UI and/or processes some user
selections on the client.

• Polling the server for changes: The client API framework, in conjunction
with the server, automatically handles all UI updates and transfer of
information between client and server. However, the assembler does have the
ability to explicitly poll for changes. This is most often useful if the
application is making changes outside of the client framework. Common
examples of this would include communicating with the server through other
frames or by using an HTTP communications facility such as the XMLHTTP
object.

• Handling errors returned by the server or communications layer: The client
framework will invoke a JavaScript method to handle server and
communications errors. Client code can register its own error handler to
process these errors.

Later in this section, examples of common uses of the DHTML Client API will be
provided.

The DHTML Client API Framework
The client framework consists of two main objects, the BloxAPI object and the
Blox object, that power the UI and handle communications with the server. Some
related utility objects are also available.

BloxAPI Object

The BloxAPI JavaScript object contains a number of generic services used by all
Blox on the page. It provides communications services between the client and
server as well as a convenient RPC mechanism for JavaScript code. There is
exactly one BloxAPI object per frame controlling all incoming and outgoing
traffic between the server and all Blox in that frame.

The BloxAPI object handles the following:

• Polling the server for changes
CHAPTER 11
DHTML Client API

The DHTML Client API Framework 159
• Providing APIs for event and error management

• Dispatchiing changes to the various Blox in the frame

• Handling communication and server errors

• Providing APIs for RPC access

• Providing an API to send events

Blox Object

Each Blox in the frame has an associated JavaScript Blox object. The Blox object
is responsible for the following:

• Responding to change notifications from the server

• Responding to and handling busy state and busy indication

• Providing Alphablox 4.x compatibility methods: isBusy(),
updateProperties(), flushProperties(), call(), and
setDataBusy()

• Handling and managing Dialogs associated with the Blox

• Handling the right click menu associated with the Blox

Utility Objects

In addition to the BloxAPI and Blox objects, the framework also supports some
utility objects, the most important of which include:

• xxxEvent – Specific objects for each type of model event that can be issued
by the client. Example: ClickEvent

• Grid – Provide read-only access to some grid properties such as the list of
visible selected cells

• Exception - Object used to communicate server exceptions to the client
DB2 Alphablox
Developer’s Guide for the DHTML Client

160 Sending Events
Sending Events
The UI model exposes a number of events that can be issued by the client, such as
a ClickEvent. For each of these events, the DHTML Client API defines
JavaScript objects. As a result, JavaScript can be used to create event objects and
sent the event to the server. This allows HTML buttons and other controls outside
of the Blox framework to simulate user interactions. Events may also be used to
change state on custom model components. For example, the following HTML
code will send a ClickEvent to a model component with a UID of UID:

<input type=button value=�Show Dialog�
onclick=�bloxAPI.sendEvent(new ClickEvent(�container�,

UID));� >

For a list of events that are exposed to the client, see the Developer’s Reference for
the DHTML Client.

Initiating Model Events From JavaScript

It is possible to generate and send UI Model events from JavaScript back to the
server. Doing this allows regular HTML controls on the page to simulate the user
clicking on the Blox used interface. For example, the Blox’s menu can be turned
off, but HTML buttons can be placed on the page to give a user to some features
of the UI.

The example below will create an HTML button which invokes the data options
menu item when clicked.

<blox:present id="samplePresent"
width="700"
height="500">

</blox:present>
<%
/* In order to send an event from the client, we need the
component's UID */

BloxModel model = samplePresent.getBloxModel();
Component component = model.searchForComponent(

ModelConstants.DATA_OPTIONS);
int uid = component.getUID();

%>

<input type=button value="Data Options"
onclick="bloxAPI.sendEvent(new ClickEvent(' samplePresent ',
<%= uid %>));" >
CHAPTER 11
DHTML Client API

../index.html?context=reference&topic=ReferenceBook
../index.html?context=reference&topic=ReferenceBook

Intercepting Events 161
The input element’s onclick event handler is using the BloxAPI to send a
ClickEvent to the server. The ClickEvent is a JavaScript object which takes
the Blox name and the UID of the target component. Since the UID is
dynamically assigned, the code has to look it up in the model when the page is
requested.

Intercepting Events
There are two facilities available for intercepting events on the client side:

1 JavaScript code can register a listener for all client-side events. This means
that every action a user takes can be intercepted, examined, and either
ignored or processed. This approach provides control over just about every
user interaction with the UI. For example, each time the user selected a menu
item a ClickEvent is generated containing the Blox, the UID of the menu
item, and the name of the menu item.

2 The UI Model provides a ClientLink object that can be attached to most
Model Components that have the concept of a clicked action (i.e., generate
that ClickEvent). The ClientLink object causes the view layer to handle
the user’s click using its own logic rather than sending the action back to the
server. For the DHTML client, any Component which has an attached
ClientLink will be processed on the client in the form of a JavaScript call
or the opening of a new browser window.

Intercepting Client-Side Events Example

This example demonstrates how to intercept UI Model events on the client. A
developer would do this when the UI Model event performs some client-side
action that does not require server involvement.

The JavaScript eventHandler() function will be invoked for all events
generated by the UI. Since the handler sees all events, the code must examine the
type of event as well as the destination UID (or name) in order to intercept
specific UI events. Returning false from the handler will allow the event to be
processed and sent to the server. Return true to stop all further processing of the
event.

The example is client-side JavaScript code:

<script>
function eventHandler(event) {

alert("At handler for event " + event.getEventClass() +
" on component " + event.getDestinationName() +
" UID � + event. getDestinationUID());
return false;
DB2 Alphablox
Developer’s Guide for the DHTML Client

162 Invoking JavaScript Directly From the User Interface
}
</script>

bloxAPI.addEventListener(eventHandler);

Invoking JavaScript Directly From the User Interface
Rather than intercepting every event generated by the UI on the client,
components can be instructed to invoke client-side JavaScript directly. In this
case, the component will not sent a ClickEvent event to the server.

The code for assigning JavaScript methods to clickable components resides on the
server. The example below finds the options menu item on the Data Menu and
forces the menu item to invoke a JavaScript method (alternatively, the menu item
can be set to load a browser URL).

<blox:present id="samplePresent" width="700" height="500">

<%
// Find the component
BloxModel model = samplePresent .getBloxModel();
Component component = model.searchForComponent(

ModelConstants.DATA_OPTIONS);

// Create a client link using javascript:protocol method
ClientLink link = new ClientLink(�javascript:

myJavaScriptFunction();�);

// Set the link on the component
component.setClientLink(link);

%>
</blox:present>

When the Data Options menu item is clicked, the client will invoke the JavaScript
myJavaScriptFunction() function rather than send the event to the server. It
is assumed that the JavaScript function has been already defined on the page.
CHAPTER 11
DHTML Client API

Exception Handling 163
Exception Handling
When using callBean to invoke server-side code your code should be prepared
to handle Java exceptions if your server-side method has the possibility of
throwing exceptions. Given the exceptionThrower() method on the client bean
myBean, your JavaScript code should examine the return value to determine if an
exception has been thrown before processing the result as follows:

var retval = myBean.exceptionThrower();
if (retval.constructor == Exception) {

alert(�Exception returned: � + retval);
} else {

// Process the response
}

Invoking Server-side Logic using the DHTML Client API
There are essentially three methods for invoking server side logic from the
DHTML client. The method you choose depends on how much of the process you
want the server to automate. The methods are listed here in order of least
automation to the most automation.

BloxAPI.call() and Blox.call()

This is the same call() method that was available in Alphablox 4. It allows you
to invoke URLs on the server, passing arguments as URL parameters. This
method can call rmi.jsp to provide automated argument passing and bean
method invocation. Values returned to JavaScript must be parsed and converted
into the desired data types.

For example, the following code uses the bloxAPI.call() method to invoke a
method on a bean (MyBean) that toggles the visibility of the data layout panel.

<%@ taglib uri='bloxtld' prefix='blox'%>
<%@ taglib uri='bloxuitld' prefix='bloxui'%>
<blox:present id="callpresent"

visible="false"
width="600"
height="500"
chartAvailable="false" >
<blox:grid bandingEnabled="true" />
<blox:data bloxRef="calldata" />

</blox:present>

<jsp:useBean class="MyBean" scope="session" id="myBean">
<%

myBean.setBlox(callpresent);
DB2 Alphablox
Developer’s Guide for the DHTML Client

164 Invoking Server-side Logic using the DHTML Client API
%>
</jsp:useBean>

<html>
<head>

<blox:header />
<script>
// Use call to invoke method on the bean
function showDataLayout(show) {

var result =
bloxAPI.call("rmi.jsp?bean=myBean&method=showDataLayout&arg1="
+ show);

alert("Result type: " + typeof result + "\r\n\r\n" + result);
}
</script>
</head>
<body>
<blox:display bloxRef="callpresent" />

<input type="button" value="Hide Data Layout"
onclick="showDataLayout(false);" >

<input type="button" value="Show Data Layout"
onclick="showDataLayout(true);" >
</body>
</html>

BloxAPI.callBean()

This method will call a Java bean on the server similar to the combination of the
call method and rmi.jsp described above. It differs from that combination as
follows:

• It works directly with the server in finding and invoking a bean method.
There is no extra JSP file involved (i.e., you don’t need rmi.jsp).

• You can specify data types for outgoing method arguments.

• The return value is converted to a real JavaScript object.

• Most simple data types and arrays are supported as arguments and return
values.

To use callBean in the above example, simply replace the call() invocation
with the following:

var result=bloxAPI.callBean("myBean","showDataLayout",new
Array(show));
CHAPTER 11
DHTML Client API

Invoking Server-side Logic using the DHTML Client API 165
<blox:clientBean>

The Blox clientBean tag (<blox:clientBean>) can be nested inside of the
<blox:header> tag, and results in the server generating a JavaScript object for
the specified Java bean (or Blox). To use <blox:clientBean> in the above
example, incorporate the client bean tag into the blox header. At that point, the
developer can make normal JavaScript method calls:

<blox:header>
<blox:clientBean name="myBean" />

</blox:header>

<script>

// Use ClientBean to invoke method on the bean

function showDataLayout(show) {
var result = myBean.showDataLayout(show);
alert("Result type: " + typeof result + "\r\n\r\n" + result

);

}
</script>

 In this example, no method was specified in the clientBean tag. As a result,
a JavaScript method will be generated for each public method in the bean. This
can result in significant overhead for beans with more than a few methods. As a
result, it is recommended that assemblers explicitly list the methods for which
JavaScript is generated, and that assemblers keep the number of methods to a
minimum.

Note that the only restriction on the use of <blox:clientBean> is that the
arguments passed and returned need to be supported by JavaScript, which
effectively limits the supported arguments to primitives and arrays.

Using <blox:clientBean> With Server-Side Blox

The clientbean can be used to access server-side Blox from the client as well.
Here is an example of how a JavaScript object for a PresentBlox could be
generated:

<blox:header>
<blox:clientBean name=�myPresentBlox�>

<blox:method name=�setDividerLocation�>
<blox:method name=�setChartFirst�/>
DB2 Alphablox
Developer’s Guide for the DHTML Client

166 Invoking Server-side Logic using the DHTML Client API
</blox:clientBean>
</blox:header>

 In this example, two methods are exposed. Given the number of methods
available on most of the SSPM Blox objects, it is mandatory that the methods
used be explicitly listed in the clientBean tag in the header.

In order to use a server-side Blox in the header, define the Blox with
visible="false" and then use the <blox:display> tag to render the Blox in
the body of the HTML.

When an server-side Blox is used with clientBean, the following special
processing takes place:

• The name of the bean on the client has API appended to the end. This is done
regardless of the type of server-side Blox. In the above example, the actual
JavaScript object would be named myPresentBloxAPI. This is done
because, in most cases, there will already be a JavaScript object on the page
added by the DHTML client.

• As a convenience, if the DHTML client finds a JavaScript object with the
Blox name ending in API, it will allow developers to call the methods
directly on the main DHTML client’s Blox object. So, even though the client
bean is called myPresentBloxAPI, you can call methods on the
myPresentBlox Blox object directly. For example, both
myPresentBlox.setChartFirst() and
myPresentBloxAPI.setChartFirst() will set the chart first.

• If a server-side Blox has a DataBlox or other nested Blox, such as within a
PresentBlox, you can access the nested Blox on the client without having to
create a separate client bean section. To do this, add methods to the parent
Blox’s list prefixed by data, grid, chart, dataLayout, toolbar, and
page. To invoke the method, use the appropriate getter with the main Blox
for example, myPresentBlox.getDataBlox().connect().

The example below is a full JSP page which demonstrates the use of embedded
Blox and the API suffix. Note that the data.setQuery in the GridBlox’s client
bean section which makes that DataBlox method available to JavaScript code.

<%@ page import="com.alphablox.blox.uimodel.*"%>
<%@ taglib uri='bloxtld' prefix='blox'%>
<%@ taglib uri='bloxuitld' prefix='bloxui'%>

<blox:data id="gridDB" � />

<blox:grid id="grid" width="700" height="500">
CHAPTER 11
DHTML Client API

Invoking Server-side Logic using the DHTML Client API 167
<blox:data bloxRef="gridDB" />
</blox:grid>

<html>
<head>

<blox:header>
<blox:clientBean name="grid">

<blox:method name="setBandingEnabled" />
<blox:method name="isBandingEnabled" />
<blox:method name="data.setQuery" />
<blox:method name="data.connect" />

</blox:clientBean>
<blox:clientBean name="gridDB">

<blox:method name="setQuery" />
<blox:method name="connect" />

</blox:clientBean>
</blox:header>
</head>
<body>
...
<!-- Calling DataBlox methods via the GridBlox. Since the
GridBlox is a DHTML Blox and appears on the page, the API suffix
is optional. -->
<input type="button" value="Set query via grid"
onclick="grid.getDataBlox().setQuery('!');
grid.getDataBlox().connect();">

<!-- Calling datablox methods directly on the DataBlox. Note
that here the API suffix is mandatory because there is not DHTML
client Blox for the DataBlox -->

<input type="button" value="Set query via datablox"
onclick="gridDBAPI.setQuery('!'); gridDBAPI.connect();">
<input type="button" value="Toggle grid banding"
onclick="grid.setBandingEnabled(!grid.isBandingEnabled());">
<blox:display bloxRef="grid" />
</body>
</html>
DB2 Alphablox
Developer’s Guide for the DHTML Client

168 The DHTML Client DOM API
The DHTML Client DOM API
The Internet Explorer DOM is used extensively by the DHTML Client. The client
updates portions of the DOM as the user interacts with the client. As this is part of
the implementation the DHTML client, the DOM objects and attributes created by
the DHTML client will change in future versions.

 Developers should not write client-side code that manipulates or traverses
the DOM generated by the DHTML client, as the implementation will likely
change going forward.

The DHTML Client DOM API is included in “Appendix: DHTML Client DOM
API” on page 379.

Using Multiple Frames
The DHTML client treats each frame in an application as a separate entity. This
means that each frame containing a <blox:header> tag will have its own Client
API framework BloxAPI object. As far as the server and client API are
concerned, Blox in separate frames may as well be in different browsers.

Because Blox in separate frames are treated as separate entities, unexpected
results can occur if:

1 Blox in different frames refer to a common DataBlox. In this case, drilling or
other navigation operations performed on the Blox in one frame will not
cause the immediate update of a Blox dependent on the same DataBlox
sitting in a different frame. In practice, this shouldn’t occur too often, if at
all.

2 Server-side code executed in one frame modifies or otherwise affects Blox in
a different frame.

In both cases, only the Blox in the frame causing the modification will be
immediately updated. Blox in other frames will not be updated until those frames
perform their automatic polls.

If this situation does occur, the automatic poll in its default state will not be
adequate since it may take as long as two minutes to update the Blox in all
frames. Some suggested options include:

1 Performing a manual poll using the BloxAPI object in each frame with
affected Blox.

2 Decreasing the poll timer from its default to a faster interval.

3 Avoiding the situation altogether by keeping Blox in a single frame or by not
allowing Blox in different frames to depend on the same DataBlox.
CHAPTER 11
DHTML Client API

Refreshing Pages 169
Refreshing Pages
The DHTML client updates without refreshing the page by changing the contents
of HTML elements. Thus, as a user interacts with the client, HTML is constantly
changing in order to present new information. However, the browser does not
track any of these HTML changes. Instead, the browser caches HTML received
when the page was first requested. The browser also displays the HTML of the
initial page if you do a view source.

 Due to incremental page updates that occur with the DHTML client, the
HTML source code viewed from a browser’s View Source option will usually
not match the current state of the browser. This can make debugging more
difficult.

When a user refreshes a page or returns to a page using the browser’s Back
button, the browser restores the cached version of the page. Because changes to
the DHTML client are maintained on the server, the client and server have a
method of detecting and handling this situation to insure that the user is viewing
the up-to-date representation of the Blox. A side effect of this mechanism is that
when refreshing the page or using the Back button, you may see the original state
of the Blox momentarily before they are updated to the current state.
DB2 Alphablox
Developer’s Guide for the DHTML Client

170 Refreshing Pages
CHAPTER 11
DHTML Client API

12
Connecting to Data

Before you can do anything useful with Alphablox Analytics applications, the
first task you need to do is connect to your data sources. In this section, you’ll
learn more about creating data sources, connecting to data sources, and how to
manage access to data sources.

Creating Data Sources
Before analytic applications can do anything useful, they need access to data that
can be viewed and analyzed by users. One of the first tasks that you need to do is
to create Data Source definitions in the Alphablox Analytics Admin pages. These
data source definitions point to the relational or multidimensional databases you
will be connecting to, and allow you to quickly connect and retrieve result sets
from them.

Creating data source definitions is more of an administrative task, but can be done
by either server administrators or developers, as long as they have administrative
rights. Following is a short description of the task that developers or
administrators must perform to define an Alphablox Analytics data source.

 All of the examples used in the Developer’s Guide and in the Blox Sampler
application use the QCC databases, either QCC-Essbase (for DB2 OLAP Server
and Essbase) or QCC-MSAS (for Microsoft Analysis Services). To install and
configure QCC, see the readme.txt file, which is located on the Alphablox
Analytics CD under the sample data directory:

<cdromDir>/sampledata/qcc/

Task: Defining a Data Source

Defining a data source involves the following steps:

172 Defining the DataBlox dataSourceName Property
1 Access the Alphablox Analytics Home Page using the Start menu or by
entering the following URL in a web browser:

http://<serverName>/AlphabloxAdmin/home/

2 Log in with a user name and password with administrator rights. The
Alphablox Analytics Admin Pages with three tabs should appear, defaulting
to the Applications page.

3 Click the Administration tab. Then click Data Sources to view the list of
available data source definitions.

4 To define a data source, click the Create button below the list of existing data
source definitions. (If the data source definition you need for your application
already exists, you can skip the rest of these steps.)

5 Complete the entries on the Create Data Source panel. For assistance, click
on the Help button on this page.

6 Click Save to save the new definition. The newly defined data source name
should appear in the list of available data source definitions.

See the Defining A New Data Source section of the Administrator’s Guide for
complete descriptions of data sources and more details about the steps involved in
defining them for supported multidimensional and relational databases.

Defining the DataBlox dataSourceName Property
A DataBlox, whether used as a standalone or nested Blox, is used to manage the
connection between your presentation Blox and the appropriate data source.
DataBlox are also responsible for submitting queries and retrieving result sets
from data sources. After you have defined your data source in the Alphablox
Analytics Admin pages, you need to tell a DataBlox where to go to get
information on accessing the appropriate database. To point a DataBlox to a data
source, you use the DataBlox dataSourceName property.

Two techniques are available for pointing a DataBlox to a data source:

• setting the DataBlox dataSourceName attribute

• setting the DataBlox setDataSourceName method, using either the server-
side Java method or JavaScript to invoke the server-side method (using the
DHTML Client API).
CHAPTER 12
Connecting to Data

Defining the DataBlox dataSourceName Property 173
Setting the dataSourceName attribute

The most frequently used technique for defining a data sourceis to add a
dataSourceName as an attribute and set its value. The value should be the name
of one of the data sources you have already defined in the Alphablox Analytics
Admin Pages.

For example, in the following code example the nested DataBlox sets the data
source to QCC-Essbase:

<blox:present id="myPresent" ...>
...

<blox:data dataSourceName="QCC-Essbase" query='<SYM <ROW("All
Products") <COLUMN ("All Time Periods") "2000" Sales !' />
</blox:present>

 If you forget to add the dataSourceName attribute to a DataBlox, your data
presentation Blox will display a No data available message. Or, if the data
source is undefined, the JSP page will not compile properly, resulting in an
exception being generated.

Using the setDataSourceName() JavaScript Method

Sometimes you may want to change the data source programmatically, using
JavaScript or Java, perhaps when a user clicks on a button. The following
example shows an example using the Blox JavaScript setDataSourceName
method:

Task: Setting Different Data Sources Using DataSourceSelectFormBlox

Follow these steps to create a JSP page that has a selection list for DB2 OLAP
Server and Essbase data sources. When a data source is selected, a default query
is executed that loads the available dimensions into the DataLayout panel
alloying users to perform ad hoc analysis. A complete version of this example can
be found in the Ad Hoc Analysis example in Blox Sampler uder the Using
FormBlox section. The following example uses the DB2 OLAP Server and
Essbase version, but the Microsoft Analysis Services version works similarly.
DB2 Alphablox
Developer’s Guide for the DHTML Client

174 Defining the DataBlox dataSourceName Property
1 At the top of the page, add a JSP page directive specifying the Java classes
that need to be made available:

<%@ page import="com.alphablox.blox.form.FormEventListener,
com.alphablox.blox.DataBlox,
com.alphablox.blox.form.FormEvent" %>

2 Below the page directive, add taglib directives for the Blox tag libraries that
will be used on this page, in this case the standard Blox tag library and the
Blox Form tag library:

<%@ taglib uri="bloxtld" prefix="blox" %>
<%@ taglib uri="bloxformtld" prefix="bloxform" %>

3 Specify the DataBlox that will be used, enabling alias member names (DB2
OLAP Server and Essbase only) and telling the DataBlox not to connect to
the data source on startup:

<blox:data id="AdHocDataBlox"
connectOnStartup="false"
useAliases="true" />

4 Specify the PresentBlox:

<blox:present id="AdHocPresentBlox"
visible="false"
width="600"

height="350">
<blox:grid noDataMessage="Select a data source" />
<blox:chart noDataMessage="Select a data source" />
<blox:data bloxRef="AdHocDataBlox" />

</blox:present>

We set the common Blox noDataMessage value to “Select a data source”
as a better message than the default No data available message. And, the
nested DataBlox tag says to use the previously defined DataBlox.

5 Now we can add a DataSourceSelectFormBlox, which will automatically
generate a list of available DB2 OLAP Server and Essbase data sources:

<bloxform:dataSourceSelect id="dataSourceSelector"
type="MDB"
adapter="IBM DB2 for OLAP"
visible="false"
nullDataSourceLabel="Select the data source">

<%
dataSourceSelector.addFormEventListener(new

DataSourceFormBloxEventListener(AdHocDataBlox));
CHAPTER 12
Connecting to Data

Defining the DataBlox dataSourceName Property 175
%>
</bloxform:dataSourceSelect>

The type attribute says that we’re specifying multidimensional data sources only
and the adapter attribute setting limits the data sources to DB2 OLAP Server or
Essbase only. And, rather than have a data source specified when the page loads,
adding the nullDataSourceLabel option will tell the user to “Select the data
source.”

Also, the nested Java scriptlet tells the DataSourceSelectFormBlox that it needs
to add a FormEventListener included at the bottom of the page. This event
listener will allow us to create the DataBlox without specifying the data source
until a user selects one.

6 Layout the page and specify where the DataSourceSelectFormBlox and
PresentBlox should appear by using the following <blox:display> tags:

<blox:display bloxRef="dataSourceSelector"/>

<blox:display bloxRef="AdHocPresentBlox" />

See the Blox Sampler example for the complete code laying out the page.

7 Finally, add the FormBloxEventListener class:

<%!
public class DataSourceFormBloxEventListener implements

FormEventListener {

private DataBlox dataBlox;

public DataSourceFormBloxEventListener(DataBlox dataBlox) {
this.dataBlox = dataBlox;

}

public void valueChanged(FormEvent event) throws Exception {

String dataSourceName = event.getFormBlox().getFormValue();
dataBlox.setDataSourceName(dataSourceName);

if (dataSourceName != null) {
dataBlox.setQuery("!");
dataBlox.updateResultSet();

}
else

dataBlox.disconnect(true);
}

DB2 Alphablox
Developer’s Guide for the DHTML Client

176 Connecting To and Disconnecting From Data Sources
}
%>

This DataSourceFormBloxEventListener class will get the FormBlox value for
the data source and set the default query, which will populate the DataLayout panel of
the PresentBlox with all of the available dimensions.

 For details about the syntax and usage of the FormBlox or DataBlox properties
and methods, see the Developer’s Reference for the DHTML Client.

Connecting To and Disconnecting From Data Sources
When a standalone or nested DataBlox is instantiated, an implicit connect
method is invoked. If a query has been specified in the DataBlox, the query is
executed and a result set is generated. If the DataBlox connectOnStartup
property is set to false (default is true), then the connect method will not be
invoked and you will have to programmatically connect later.

After a Blox has made a connection to its data source, the connection persists
throughout the current session. This default behavior is optimal for performance,
preventing an application from repeatedly opening and closing database
connections for every query (including initial queries and queries resulting from
user interaction with a Blox).

Depending on your task, there are a number of different options availabe for
managing data source connections with DataBlox properties and methods,
summarized here:
CHAPTER 12
Connecting to Data

../index.html?context=reference&topic=ReferenceBook

Connecting To and Disconnecting From Data Sources 177
Goal DataBlox Properties and Methods Result

Connect to
data source,
but do not
execute
query

<blox:data ...
connectOnStartup="true"

...
</blox:data>

[Note: query attribute not set]

• no result set retrieved
• users see common Blox

noDataMessage
property’s message
(default: "No data
available") which can
be customized

...
connect(false);
...

• if connection already
exists, disconnect, then
reconnect

• connection is made
• defined query is not

executed
• users see common Blox

noDataMessage
property’s message
(default: "No data
available") which can
be customized

Connect to
data source
and execute
query

...
connect();
or
connect(true);
...

[Note: assumes query is already set]

• defined textual query is
executed

• result set is retrieved

...
setQuery();
updateResultSet();
...

• query is set, connection
established, and result set
is retrieved
DB2 Alphablox
Developer’s Guide for the DHTML Client

178 Connecting To and Disconnecting From Data Sources
 For details about the syntax and usage of these DataBlox properties and
methods, see the Developer’s Reference for the DHTML Client.

Here’s an example of what a Java scriptlet would look like for setting a query,
then connecting:

<%
String query = "<ROW (\"All Products\") <ICHILD \"All

Products\" "+
"<COLUMN (\"All Time Periods\") <CHILD \"All Time Periods\" "+

(Measures) Sales !";

PresentBlox3.getDataBlox().setQuery(query);
PresentBlox3.getDataBlox().connect();

%>

 The “Initial Query Using JSP Scriptlet” example in the Retrieving Data
section of Blox Sampler demonstrates this technique.

Sometimes you may prefer to control when a Blox connects and disconnects from
data sources programmatically. For example, you might have a page designed to
let the users make a number of selections using selection lists, radio buttons, and
checkboxes before they can submit their view request by clicking on a button.
There are many ways that this could be implemented, including loading a default
view and presetting HTML form elements or FormBlox with default values or
loading a Blox with no view until the users have made their selections. For an
example of how this could be done, see “Auto-connecting and Auto-
Disconnecting” on page 179 below.

Update a
result set
based on
connection
property
changes

// Change properties first

...
updateResultSet();

...

• updates the result set
after applying result set
property changes (e.g.,
after setting useAliases
to true or false)

[Note: Use the connect
method instead if applying
connection properties (such
as dataSourceName,
username, schema, and
password).]

Goal DataBlox Properties and Methods Result
CHAPTER 12
Connecting to Data

../index.html?context=reference&topic=ReferenceBook

Connecting To and Disconnecting From Data Sources 179
Auto-connecting and Auto-Disconnecting

As described below, the DataBlox autoConnect and autoDisconnect
properties can be used in certain situations with relational and multidimensional
data sources for better managing performance and scalability of Alphablox
Analytics analytic applications.

Details on the syntax and usage of the autoConnect and autoDisconnect
attributes, see the DataBlox section of the Developer’s Reference for the DHTML
Client.

Relational Data Sources

When you have a limited number of ports available and are using relational data
sources, you can set the autoConnect and autoDisconnect properties on
DataBlox to manage the use of application connections. The following table
summarizes all possible setting combinations of the autoConnect and
autoDisconnect properties and the resulting behavior:

autoConnect autoDisconnect Behavior

false false These are the default settings on a
DataBlox. Defined queries are executed
against defined data sources using an
implicit connect method. Once a
connection is established, it is maintained
during the current browsing session.

true true Recommended only when there are
limited database ports available. The
initial database connection is made and
the query executes, followed by the return
and display of the result set and automatic
disconnection from the database.
Remember that many of the user
interactions on a Blox will repeat this
cycle and require a connection to be re-
established.

true false This is really no different from the default
behavior.
DB2 Alphablox
Developer’s Guide for the DHTML Client

180 Connecting To and Disconnecting From Data Sources
Multidimensional Data Sources

The DataBlox autoConnect property has no effect on multidimensional
databases, but the autoDisconnect property can be used with Microsoft
Analysis Services data sources to manage scalability and performance of analytic
applications.

For Microsoft Analysis Services data sources only, setting the autoDisconnect
property to true results in data source connections immediately disconnecting
after query executions, which include executing queries, drilling down and up,
pivoting, using Keep Only, and Remove Only. Metadata calls are not affected.
After each disconnection, the PivotTable Services cache memory is cleared from
the java.exe process and the DataBlox immediately reconnects using the
previous connection information.

Only consider using the autoDisconnect property with Microsoft Analysis
Service if you are experiencing scalability issues resulting from excessive
PivotTable Services cache memory consumption. Each MSAS connection that is
maintained can consume up to about 250MB of memory, rapidly consuming
available server memory resources. By setting autoDisconnect to true,
PivotTable Services memory consumption will be prevented. With
autoDisconnect set to false (default value), the PivotTable Services cache is
maintained and may result in faster display of frequently accessed data to users.

false true After the initial result set is displayed, the
user will not be able to perform any
operations on the result set. While this
combination of settings is possible, it is
generally not recommended.

autoConnect autoDisconnect Behavior
CHAPTER 12
Connecting to Data

13
Retrieving Data

After connecting to a data source, the next task is to retrieve data in result sets
generated from your submitted queries. Sometimes, these queries will be
provided to you by database administrators or data analysts. More often, you’ll be
writing query statements on your own, or in collaboration with others. The more
familiar you are with the data sources you’ll be accessing, the more will you will
be able to work independently. In this section, you’ll learn only the basics of
retrieving data for viewing in Alphablox Analytics applications from various data
sources. The goal here is to help you through some of the frequently encountered
issues.

Overview
Depending on the data source you are accessing, the syntax used for specifying
application queries can vary considerably. In Alphablox Analytics applications,
query strings can be one of the following:

• Essbase report scripts: for IBM DB2 OLAP Server and Hyperion Essbase
data sources

• Multidimensional expressions (MDX): for Microsoft SQL Server Analysis
Services and Alphablox Cube Server

• SQL statements: for relational data sources

If you are familiar with a particular data source and know how to create queries to
retrieve data, most of your knowledge is directly applicable in Alphablox
Analytics applications. When working with Alphablox Analytics, though, there
are some useful tips and techniques that you should know about, so be sure to
read the appropriate sections in this chapter on data sources you’ll be working
with.

182 Setting the DataBlox query Property
If you are not familiar with a particular data source, the sections that follow
should help give a brief overview of syntax and Alphablox Analytics-specific
issues you might encounter when working with data sources. For more complete
information on working with data sources, see the appropriate sections below for
where to find more information.

The DHTML Query Builder, included in the Application Studio Workbench, can
be used to enter and test queries against data sources you will be using in your
analytic applications. This tool connects to any data source defined in Alphablox
Analytics. You can use DHTML Query Builder in several ways to develop
queries:

• enter a text string and see the resulting analysis view

• invoke the last query against the data source and see the resulting analysis
view

• execute the data source’s default query (if one exists) and see the resulting
analysis view

• use the GridBlox user interface to move dimensions among axes; pivot, drill,
and filter data; and perform other actions to arrive at the application’s
required analysis view. Then retrieve the query string required to generate
that view.

After arriving at the appropriate query string, you can cut and paste it into a
DataBlox’s query value, or save it in a text file for later use. For more
information, see “Using DHTML Query Builder” on page 209.

The application design determines where to specify an application’s queries. An
Alphablox Analytics application can issue a query request based on:

• Blox instantiation (through the DataBlox query property)

• a user selecting from a list of predefined queries, perhaps though HTML form
buttons

• a custom property, containing a query string, that is associated with a user
profile

Setting the DataBlox query Property
The DataBlox’ query property determines the initial query that should be
executed on a database after a DataBlox or a nested DataBlox is loaded. If a query
is not defined, the default query is an empty string. By default, a Blox that loads
without a result set will display a message stating No data available.

To define an initial query for a Blox, there are two options:
CHAPTER 13
Retrieving Data

Setting the DataBlox query Property 183
• Define an initial query in the value for the query attribute of the DataBlox,
or

• Use a Java method to set the query and then execute it

To define the query string using the DataBlox query attribute, just add a query
attribute to a DataBlox. The DataBlox query attribute should be entered as
follows:

query="queryString"

where queryString is a string defining the query to be executed against the data
source defined using the dataSourceName attribute.

In the following example, the nested DataBlox of a GridBlox will execute the
defined queryString against the QCC-Essbase data source:

<blox:grid id="myGrid">
<blox:data

dataSourceName="QCC-Essbase"
query='<ROW("All Products") <CHILD "All Products"

<COLUMN("All Time Periods") <CHILD "2000" Sales !'/>
</blox:grid>

For readability purposes and ease of coding, you may find it useful to define the
query property in a Java function. The two tasks below show how this can be
done.When you use the query attribute, the Blox, by default, will take care of
connecting to the defined data source and executing the query. When using
methods, you need to use the DataBlox connect() method to have the defined
query executed. The following task shows an example of how to use Java
methods to retrieve result sets from defined data sources.

Task: Setting and Executing a Query Using a JSP Scriptlet

When performance becomes an issue, you may want to use this simple trick to
enhance the speed of response of a displayed view by taking advantage of a JSP
scriptlet, in which two server-side methods are used to generate a result set. The
DataBlox setQuery() method can be used to define the initial query, then the
connect() method will result in the execution of that query and return the result
set to the containing Blox.

1 At the top of your JSP page, but after the taglib directive, add the appropriate
Blox tags to define your presentation Blox, but setting the visible attribute
to false so that the Blox is not rendered before the data is available. Include a
DB2 Alphablox
Developer’s Guide for the DHTML Client

184 Setting the DataBlox query Property
nested DataBlox with the dataSourceName attribute to define the data
source, but don’t include the query attribute.

For example, the following Blox tag defines a PresentBlox with visible set to
false and with a dataSourceName set to QCC:

<blox:present id="PresentBlox3"
visible="false"
width="550"
height="350">
<blox:data

dataSourceName="QCC"/>
<blox:grid

bandingEnabled="true"/>
<blox:chart

chartType="Bar"/>
</blox:present>

2 Below the Blox tag defining your presentation Blox, add a JSP scriptlet that
does three sub-steps:

• Declare a query variable

• Set the query defined in the query variable

• Connect the Blox to the data source, resulting in the result set being
returned

The following scriptlet example shows a query being defined and executed using
Java methods:

<%
String query="<ROW(\"All Products\") <ICHILD \"All
Products\""+

"<COLUMN(\"All Time Periods\") <CHILD 2000 "+
"<PAGE(Measures) Sales !";

PresentBlox3.getDataBlox().setQuery(query);
PresentBlox3.getDataBlox().connect();
%>

In this example, the query variable is declared as a string (by placing String in
front of the variable declaration), then setting that variable equal to the desired
query statement (in this example, the query is an Essbase report script). Notice
that the query is laid out for easy reading and maintenance using concatenated
strings. After the query is declared, two DataBlox methods, setQuery() and
connect(), are used. The setQuery() method sets the query in the DataBlox
CHAPTER 13
Retrieving Data

Multidimensional Data Sources 185
(in this example, notice that the defined query can be substituted in the argument
of the method by placing query as the argument). Then, using the connect()
method, the DataBlox is instructed to connect to the data source and execute the
set query.

3 Further down in the <body> of your JSP page, place a Blox display tag where
you want the Blox to be rendered for viewing. Reference the presentation
Blox using the bloxRef attribute, setting its value to the name of the Blox
being rendered.

For the example here, within the <body> tag, you would place the following tag:

<blox:display bloxRef="PresentBlox3"/>

As you can see in this example, you can use this technique even with limited Java
knowledge.

Multidimensional Data Sources
An overview on multidimensional databases is available in the Administrator’s
Guide. See the following sections for more information on:

• OLAP Terms and Concepts

• Multidimensional Analysis

• OLAP Database Terms

IBM DB2 OLAP Server and Hyperion Essbase

IBM DB2 OLAP Server and Hyperion Essbase are multidimensional databases
optimized for analysis, typically generating sub-second responses to queries.

To retrieve data from DB2 OLAP Server or Essbase cubes, you need to use the
Essbase Report Specification Language to generate report scripts, which can be
used for query values in Alphablox Analytics applications.

Following is a basic summary of how to create Essbase report scripts with
important tips on how to use report scripts in conjunction with Alphablox
Analytics functionality.

For details about using DB2 OLAP Server or Essbase and Essbase report scripts,
see your DB2 OLAP Server or Essbase documentation.

Creating Essbase Report Scripts

To pass a query to a IBM DB2 OLAP Server or Hyperion Essbase data source,
use the Essbase Report Specification language to create report scripts.
DB2 Alphablox
Developer’s Guide for the DHTML Client

../admin/OLAPConcepts3.html
../admin/OLAPConcepts.html
../admin/OLAPConcepts4.html

186 Multidimensional Data Sources
 For information on the Report Script Specification Language, see the online
documentation in the DB2 OLAP Server or Essbase installation directory at /
docs/techref/RPTIND.HTM. If you have the DB2 OLAP Server or Essbase
Application Manager installed on your workstation you can access this
documentation through the Help menu.

The following example on a DataBlox specifies that:

• The Market and Accounts dimensions are to appear on the column axis.
• The Scenario and Product dimensions are to appear on the row axis.
• The children of all four dimensions should be included in the result set.
• Any unused dimensions appear on the “Other” axis.

<blox:data ...
query="<SYM <ROW (Scenario,Product) <ICHILD Scenario

<ICHILD Product <COLUMN (Market, Accounts) <ICHILD Market
<ICHILD Accounts !"/>

Essbase Report Script Commands Supported by Alphablox Analytics

The following table lists most Essbase report script commands, whether they are
supported by Alphablox Analytics (that is, they work when entered in report
scripts), the equivalent or near-equivalent Alphablox Analytics functionality, and
report script examples using these commands.

Report Script Command Report Script Example and Comments

! This is required to execute a report script
query. By itself, the “bang” query returns one
dimension on a grid or chart, and a list of all
available dimensions in the DataLayout panel.
Multiple bang report output commands are not
supported by Alphablox Analytics. See note
below this table.

&1 &CurrentMonth
If defined in IBM DB2 OLAP Server or
Hyperion Essbase, server substitution variables
can be added to report scripts. They are
primarily used to simplify maintenance of
scripts.
CHAPTER 13
Retrieving Data

Multidimensional Data Sources 187
ALLINSAMEDIM <ROW (Scenario) <ALLINSAMEDIM Actual
!

ALLSIBLINGS <ROW (Scenario) <ALLSIBLINGS Actual !

ANCESTORS <ROW (Measures) <ANCESTORS
"Marketing" !

ASYM <ASYM <COL (Scenario, Year) Actual
Jan Budget Feb !

ATTRIBUTE <ROW (Product) <ATTRIBUTE Bottle !

BOTTOM <ROW (Year) <DIMBOTTOM Year <BOTTOM
(6, @DataCol(1)) !

CALCULATECOLUMN See DB2 OLAP Server or Essbase
documentation for examples.

CALCULATEROW See DB2 OLAP Server or Essbase
documentation for examples.

CHILDREN <ROW (Market) <CHILDREN Market !

CLEARALLROWCALC See DB2 OLAP Server or Essbase
documentation for examples.

CLEARROWCALC See DB2 OLAP Server or Essbase
documentation for examples.

COLUMN <COLUMN (Year) <CHILD Year !

DESCENDANTS <ROW (Year) <DESCENDANTS Year !

DIMBOTTOM <ROW (Year) <DIMBOTTOM Year !

DUPLICATE <ROW (Year) <Child Year <DUPLICATE
Qtr1 !

FIXCOLUMNS <COL (Year) {FIXCOLUMNS 3} <DIMBOTTOM
Year !

GEN <ROW (Product) gen2,Product !

IANCESTORS <ROW (Year) <IANCESTORS Jan !

ICHILDREN <ROW (Product) <ICHILDREN Colas !

IDESCENDANTS <ROW (Product) <IDESCENDANTS Product
!

Report Script Command Report Script Example and Comments
DB2 Alphablox
Developer’s Guide for the DHTML Client

188 Multidimensional Data Sources
INCMISSINGROWS {SUPMISSINGROWS} {INCMISSINGROWS}
<PAGE (Market) "New York" <ROW
(Product) lev0,Product !

INCZEROROWS {SUPZEROROWS} {INCZEROROWS} <PAGE
(Market) "New York" <ROW (Product)
lev0,Product !

IPARENT <ROW (Year) <IPARENT Jan !

LATEST <LATEST Aug <ROW (Year) <CHILD QTR3
Q-T-D !

LEV <ROW (Product) lev0,Product !

LINK <ROW (Year) <LINK(<DIMBOTTOM(Year)
AND <DESCENDANTS(Qtr1)) !

MATCH <ROW (Market) <MATCH (Market, C*) !

NAMESON {SUPNAMES} {NAMESON} <ROW (Market)
<CHILD East !

NOROWREPEAT {NOROWREPEAT} <ROW (Market, Product)
<CHILD East <CHILD Product !

OFFCOLVCALCS See DB2 OLAP Server or Essbase
documentation for examples.

OFFROWCALCS See DB2 OLAP Server or Essbase
documentation for examples.

OFSAMEGEN <ROW (Market) <OFSAMEGEN East !

ONSAMELEVELAS <ROW (Market) <ONSAMELEVELAS East !

ORDER {ORDER 0 5 4 3 2 1} <COL (Product)
<CHILD Product !

ORDERBY <ROW (Product) <DIMBOTTOM Product
<ORDERBY ("Product", @DATACOL(1) ASC)
!

PAGE <PAGE (Market) East <ROW (Product)
<CHILD Product !

PARENT <ROW (Year) <PARENT Jan !

REMOVECOLCALCS See DB2 OLAP Server or Essbase
documentation for examples.

Report Script Command Report Script Example and Comments
CHAPTER 13
Retrieving Data

Multidimensional Data Sources 189
RESTRICT <ROW (Product) <DIMBOTTOM Product
<RESTRICT (@DATACOL(1) > 10000) !

ROW <ROW (Year) <PARENT Jan !

SCALE {SCALE 100} <ROW (Product) <CHILD
Product !

SETROWOP See DB2 OLAP Server or Essbase
documentation for examples.

SINGLECOLUMN <SINGLECOLUMN <COL (Year) Year <ROW
(Product) <CHILD Product !

SORTALTNAMES <ROW (Product) <SORTALTNAMES
<DIMBOTTOM Product !

SORTASC <ROW (Market) <SORTASC <DIMBOTTOM
Market !

SORTDESC <ROW (Market) <SORTDESC <DIMBOTTOM
Market !

SORTGEN <ROW (Product) <SORTGEN <DESCENDANTS
Product !

SORTLEVEL <ROW (Product) <SORTLEV <DESCENDANTS
Product !

SORTMBRNAMES <ROW (Product) <SORTMBRNAMES
<SORTDESC <DIMBOTTOM Product !

SORTNONE <ROW (Product) <SORTMBRNAMES
<SORTDESC <SORTNONE <DIMBOTTOM
Product !

SPARSE <SPARSE <ROW (Product, Market)
<DIMBOTTOM Product <DIMBOTTOM Market
!

SUPEMPTYROWS {SUPEMPTYROWS} <PAGE (Market) "New
York" <ROW (Product) lev0,Product !

SUPMISSINGROWS {SUPMISSINGROWS} <PAGE (Market) "New
York" <ROW (Product) lev0,Product !

SUPSHARE <SUPSHARE <ROW (Product) lev0,Product
!

Report Script Command Report Script Example and Comments
DB2 Alphablox
Developer’s Guide for the DHTML Client

190 Multidimensional Data Sources
Notes:

1 Alphablox Analytics custom properties can be used.

2 Alphablox Analytics uses selectableSlicerDimensions to control page
displays, but the <PAGE command works in report scripts to slice the data.

3 suppressMissingOnRows, suppressMissingOnColumns, and
suppressZeros can be used in Alphablox Analytics for a similar effect.

4 suppressMissingOnRows and suppressMissingOnColumns in Alphablox
Analytics suppresses missing values in rows and columns.

5 suppressZeros can be used in Alphablox Analytics, but this property
suppresses zeros in both rows and columns.

 Multi-bang queries, including multiple bang (!) report output commands are not
supported in Alphablox Analytics. You may discover that a few select report scripts
employing multiple bang report output commands may display results within Blox,
but you use them at your own risk.

Unsupported Report Script Commands with Alphablox Analytics Equivalents

SUPSHAREOFF <SUPSHARE <SUPSHAREOFF <ROW (Product)
lev0,Product !

SUPZEROROWS {SUPZEROROWS} <COL (Measures) Sales
<ROW (Year) Jan Feb Mar !

SYM <SYM <COL (Measures, Year) Sales COGS
Jan Feb !

TOP <ROW (Market) <DIMBOTTOM Market
<TOP(5, @DATACOL(1)) !

UDA <ROW (Market) <UDA (Market, "Major
Market") !

WITHATTR <ROW (Product)
<WITHATTR(Caffeinated,"<>",True) !

Report Script Command Report Script Example and Comments

Report Script Command Alphablox Analytics Equivalents

AFTER defaultCellFormat (GridBlox)
CHAPTER 13
Retrieving Data

Multidimensional Data Sources 191
BEFORE defaultCellFormat (GridBlox)

COMMAS defaultCellFormat (GridBlox)

DECIMAL defaultCellFormat (GridBlox)

EUROPEAN defaultCellFormat (GridBlox)

MISSINGTEXT missingValueString (GridBlox)

NOINDENTGEN rowIndentation (GridBlox)

OUTALT useAliases (DataBlox)

OUTALTNAMES useAliases (DataBlox)

OUTALTSELECT aliasTable (DataBlox)

OUTMBRNAMES useAliases (DataBlox)

SUPBRACKETS defaultCellFormat (GridBlox)

SUPCOMMAS defaultCellFormat (GridBlox)

Report Script Command Alphablox Analytics Equivalents
DB2 Alphablox
Developer’s Guide for the DHTML Client

192 Multidimensional Data Sources
Unsupported Report Script Commands with no Alphablox Analytics Equivalents

Calc Scripts

Calc (calculation) scripts are text files containing instructions to calculate data in
DB2 OLAP Server or Essbase cubes. Calc scripts can be invoked in Alphablox
Analytics applications using the following DataBlox methods:

� executeCustomCalc
� executeNamedDBCalcScript
� substituteCalcScriptTokens
� writeback

For details on using these methods, see the Developer’s Reference for the DHTML
Client. For more information on using calc scripts in your DB2 OLAP Server or
Essbase cubes, see the DB2 OLAP Server or Hyperion Essbase documentation.

BLOCKHEADERS
BRACKETS
COLHEADING
CURHEADING
CURRENCY
DIMEND
DIMTOP
DIMBOTTOM
ENDHEADING
FEEDON
FORMATCOLUMNS
HEADING
IMMHEADING
INCEMPTYROWS
INCFORMATS
INCMASK
INDENT
INDENTGEN
LMARGIN
MASK
NAMESCOL
NAMEWIDTH
NEWPAGE
NOPAGEONDIMENSION
NOSKIPONDIMENSION
PAGEHEADING
PAGELENGTH
PAGEONDIMENSIONS
PRINTROW

SAVEANDOUTPUT
SAVEROW
SETCENTER
SETROWOP
SKIP
SKIPONDIMENSION
STARTHEADING
SUPALL
SUPCOLHEADING
SUPCURRHEADING
SUPEUROPEAN
SUPFEED
SUPFORMATS
SUPHEADING
SUPMASK
SUPNAMES
SUPOUTPUT
SUPPAGEHEADING
TABDELIMIT
TEXT
TODATE
UCHARACTERS
UCOLUMNS
UDATA
UNAME
UNAMEONDIMENSION
UNDERLINECHAR
UNDERSCORECHAR
WIDTH
ZEROTEXT
CHAPTER 13
Retrieving Data

Multidimensional Data Sources 193
Substitution Variables

In IBM DB2 OLAP Server or Hyperion Essbase cubes, substitution variables act
as global placeholders for information that changes regularly. Each variable has a
value assigned to it and can be changed at any time by the database administrator.
The use of substitution variables helps reduce maintenance of report scripts,
eliminating the need for manual changes to individual report scripts in Alphablox
Analytics applications.

For example, many report scripts refer to reporting periods, such as current month
or current quarter. By using substitution variables set on the IBM DB2 OLAP
Server or Hyperion Essbase server, such as CurrentMonth or CurrentQuarter,
you can change the assigned value in one place, and the appropriate report scripts
are dynamically updated when the report script is executed.

To refer to a substitution variable in your report script, place an ampersand (&) in
front of the variable name. For example, use &CurrentMonth in your report
script to reference the substitution variable CurrentMonth. The following
DataBlox example shows the use of &CurrentMonth in the query attribute:

<blox:data
dataSourceName="QCC-Essbase"
query='<ROW("All Products") <COLUMN("All Time Periods")
&CurrentMonth <PAGE(Measures) Sales !'/>

When the query is executed, &CurrentMonth is substituted with the value
defined in the IBM DB2 OLAP Server or Hyperion Essbase server.

While substitution variables help reduce maintenance in report scripts, someone
still has to manually change the values in the IBM DB2 OLAP Server or
Hyperion Essbase server. As an alternative in Alphablox Analytics applications,
you could use Java methods in your JSP pages to automatically calculate a value
for the current month or other reporting period, then substitute that value in your
report scripts.

Using Aliases

DB2 OLAP Server or Essbase aliases, or alternate names for members defined in
DB2 OLAP Server or Essbase cubes, can be used to improve the readability of an
analytic view. Aliases can be used to refer to alternate member names, such as in
a foreign language, or to refer to product identification values. Alphablox
Analytics supports the use of aliases in report scripts and values in various
properties.

By default, Alphablox Analytics applications display unique members names and
not aliases. If you want to display aliases in your analytic views, set the DataBlox
useAliases property to true. For more information, see the DataBlox
Reference section within the Developer’s Reference for the DHTML Client.
DB2 Alphablox
Developer’s Guide for the DHTML Client

194 Multidimensional Data Sources
Working with Decimals

When displaying numeric data values with a specified number of decimal places,
you may need to add the {DECIMAL} report script command to your DB2 OLAP
Server or Essbase query statement. For more information, see the detailed
descriptions of these properties in the Developer’s Reference for the DHTML
Client.

Microsoft Analysis Services

Microsoft SQL Server includes Microsoft Analysis Services, and can be used to
retrieve data from multiple relational data sources, including Microsoft SQL
Server, Oracle, and others. While similar to IBM DB2 OLAP Server and
Hyperion Essbase in functionality, Microsoft uses the Multidimensional
Expressions Language (MDX) to query the Microsoft Analysis Services
multidimensional data cubes.

For more information on Microsoft Analysis Services, see the following
resources:

Books

Spofford, George. 2001. MDX Solutions: With Microsoft SQL Server Analysis
Services. New York: John Wiley & Sons.

An excellent and thorough tutorial/reference guide on how to use MDX to access
and analyze data for decision support. Cover basic and advanced MDX
statements, offering clear solutions to the most commonly-encountered
problems. Strongly recommended for serious developers.

Use the following Blox tag attributes: On this Blox:
And this Report Spec
directive:

<blox:grid id="myGrid"
...
defaultCellFormat="#,###.00;

-#,###.00" >
<blox:cellFormat scope="{Sales}"

format="#,###.##"/>
<blox:cellAlert

background="#3333ff"
format="#,###.##;(#,###.##"
scope="{Scenario}"/>

</box:grid>

GridBlox {DECIMAL 2}
CHAPTER 13
Retrieving Data

Multidimensional Data Sources 195
Jacobsen, Reed. 2000. Microsoft SQL Server Analysis Services Step by Step.
Redmond, Washington: Microsoft Press.

A good tutorial introduction to all aspects of Microsoft Analysis Services,
including database administration, building databases, and basic MDX usage.

Newsgroups

If you cannot get your questions answered in the books above or the Microsoft
documentation, you can turn to another great resource— Internet newsgroups. For
MSAS, though, there is really only one newsgroup to go to get answers to your
questions: microsoft.public.sqlserver.olap. Use this peer-to-peer
newsgroup to discuss MSAS with other administrators and developers. Many
great contributors on this newsgroup make it one of the most useful computing
newsgroups. George Spofford, the author of MDX Solutions, has been a frequent
contributor, asking many tough questions. Also, several Microsoft Analysis
Services team members follow this newsgroup and contribute insights that may
not be found elsewhere.

To join, point your news server to:

news:msnews.microsoft.com/microsoft.public.sqlserver.olap

Alternatively, you can access the OLAP newsgroup from the following link,
which lists all Microsoft SQL Server-related newsgroups:

http://www.microsoft.com/sql/support/newsgroups/default.asp

And, to search the archives of this newsgroup, point your web browser to Google
Groups, a search engine for Usenet newsgroups, available at:

http://groups.google.com/

In the search field on the home page for Google Groups, enter the following:

microsoft.public.sqlserver.olap

and click the Google Search button. Almost immediately, you will be presented
with the most recent postings. You can also narrow your search further by
searching on keywords while limiting your search to just this newsgroup. This is
a great resource when you need answers in a hurry.
DB2 Alphablox
Developer’s Guide for the DHTML Client

http://www.microsoft.com/sql/support/newsgroups/default.asp
http://groups.google.com/

196 Multidimensional Data Sources
Creating MDX Statements

To pass a query to Microsoft® SQL Server™ 2000 Analysis Services, use a valid
MDX SELECT statement. MDX syntax is somewhat similar to SQL syntax. In
the following syntax for simple queries, note the use of the SELECT, FROM, and
WHERE keywords:

SELECT axis specification ON COLUMNS,
axis specification ON ROWS
FROM cube_name
WHERE slicer_specification

 MDX statements queries on rows are not valid unless a column is
defined.

The following expression queries the Sales cube and returns a summary of the
measures dimension for all the stores in California and Washington. The
Measures dimension appears on the column axis; the Store dimension on the row
axis:

SELECT Measures.MEMBERS ON COLUMNS, {[Store].[Store
State].[CA], [Store].[Store State].[WA]} ON ROWS
FROM [Sales]

To obtain the detail for the members (stores) in each of these states, add the
CHILDREN key word:

SELECT Measures.MEMBERS ON COLUMNS, {[Store].[Store State].
[CA].CHILDREN, [Store].[Store State].[WA].CHILDREN} ON ROWS
FROM [Sales]

Note that the approach for obtaining a unique member name is to cascade down
the dimension hierarchy. For example, assume a dimension named Stores with
the following hierarchy:

All Stores
Canada
USA

CA
OR

Mexico

The following are valid unique member names in that hierarchy:

[Store].[All Stores]
[Store].[All Stores].[USA]
[Store].[All Stores].[USA].[CA]
CHAPTER 13
Retrieving Data

Drillthrough Support for DB2 OLAP Server and Hyperion Essbase (using EIS) 197
For more information on the subset of MDX syntax that Alphablox Analytics
supports, please see the Alphablox Cube Server Administrator’s Guide.

An Introduction to Multidimensional Expressions (MDX) is available online
through the Microsoft site: http://msdn.microsoft.com. The Introduction provides
these and many more examples.

Clearing PivotTable Services Cache using autoDisconnect Property

If you have a large MSAS cube and are experiencing scalability issues resulting
from excessive PivotTable Services memory cache consumption that occurs from
MDX queries returning large result sets, you may be able to use the DataBlox
autoDisconnect property to help manage the scalability and performance of
MSAS-based analytic applications. See “Auto-connecting and Auto-
Disconnecting” on page 179 for details about using this property.

Alphablox Cube Server

The Alphablox Cube Server supports queries generated using a limited subset of
MDX commands. For complete information on these commands and their use, see
the Alphablox Cube Server Administrator’s Guide.

Drillthrough Support for DB2 OLAP Server and Hyperion Essbase
(using EIS)

OLAP data sources offer business analysts and line of business users deep
insights into trends in data, but do not give these users ready access to the raw
data unless some mechanism is provided to drillthrough into the underlying data
sources. Drillthrough support, if available in an OLAP data source, allows users
to reach deeper into the raw data contained in the underlying fact table records for
selected cells in the OLAP database.

DB2 OLAP Server or Essbase Integration Services allows DB2 OLAP Server or
Essbase administrators to map multidimensional data to more detailed relational
data. Out-of-the box, Integration Services can be used with Microsoft Excel to
view any predefined drilltrhough reports available on the EIS server. The reports
generated using Excel are basic reports, offering:

• rows and columns only

• no data formatting

• no control over user interactions

• users cannot view multiple reports or sheets simultaneously
DB2 Alphablox
Developer’s Guide for the DHTML Client

http://msdn.microsoft.com

198 Drillthrough Support for DB2 OLAP Server and Hyperion Essbase (using EIS)
Using Alphablox Analytics drillthrough support for EIS, users can drill from
summarized and calculated data stored in DB2 OLAP Server (or Essbase) into
detailed data stored in a relational wareshouse (using a star schema). Alphablox
Analytics drillthrough support for Integration Services leverages predefined
Integration Services drillthrough relational reports, is easy to enable and
configure, offers powerful functionality and flexible customization.

Out-of-the-Box Integration Services DrillThrough Support

With minimal effort, you can begin using the native DB2 OLAP Server or
Hyperion Essbase Integration Services drillthrough support by setting the
GridBlox drillThroughEnabled property to true (default is false). Once
enabled, a Drill Through menu option is added to the contextual (right-click)
menu, available when right-clicking on a data cell in a grid. Alphablox Analytics
automatically generates a dialog window offering a list of the available
Integration Services drillthrough reports (predefined by the EIS administrator).
After a user selects a report, a built-in default JSP page returns the report data
displayed in a basic interactive Alphablox Relational Reporting view within a
separate browser window.

Detailed information about Alphablox Analytics’ relational reporting
functionality is available in the Relational Reporting Developer’s Guide.

Controlling EIS DrillThrough Window Styles

While the default drillthrough window may be adequate for your purposes,
Alphablox Analytics also allows you to customize the display window by use of
the nested GridBlox <blox:drillThroughWindow> tag. When this tag is nested
in a GridBlox that has drillthrough support enabled, it overrides the default out-
of-the-box behavior and allows custom browser window properties to be defined.

The tag attributes on the <blox:drillThroughWindow> are modeled after the
most commonly used window definition properties defined in the features
argument of the JavaScript window.open(url,windowName,features) method
that is used to open browser windows. The supported properties include the
following:

Tag Attribute Description

url Defines the location of the JSP for the drillthrough
window

name Name of the drillthrough window

height Height of the window

width Width of the window
CHAPTER 13
Retrieving Data

Drillthrough Support for DB2 OLAP Server and Hyperion Essbase (using EIS) 199
For details about the <blox:drillThroughWindow> tag and its attributes, see
the GridBlox Reference section of the Developer’s Reference for the DHTML
Client.

Custom EIS Drillthrough Support Using Relational Reporting

Alphablox Analytics Relational Reporting Blox, discussed fully in the Relational
Reporting Developer’s Guide, can be used to generate custom drillthrough support
with many desirable features not possible in the native EIS drillthrough support
using Microsoft Excel. The flexibility of Alphablox Analytics allows you to
customize how your drillthrough behaves. Using the Alphablox Analytics EIS
drillthrough support, developers can:

• provide security at the user or role level by permanently hiding columns in
the resultset

• control the order of the resultset columns

• add calculated columns to the resultset

• create break groups and totals

• rename columns

resizable Boolean property determining if the drillthrough
window can be resized by users. True by default.

statusbarVisible Boolean property determining if the drillthrough
browser window’s statusbar should be visible. True
by default.

scrollbarVisible Boolean property determining if the drillthrough
browser window’s scrollbars should be available.
True by default.

locationbarVisible Boolean property determining if the drillthrough
browser window’s location bar (address bar) should
be displayed. True by default.

toolbarVisible Boolean property determining if the drillthrough
browser window’s toolbar should be displayed. True
by default.

menubarVisible Boolean property determining if the drillthrough
browser window’s menubar should be displayed.
True by default.

Tag Attribute Description
DB2 Alphablox
Developer’s Guide for the DHTML Client

../index.html?context=reference&topic=ReferenceBook
../index.html?context=reference&topic=ReferenceBook

200 Drillthrough Support for DB2 OLAP Server and Hyperion Essbase (using EIS)
• format data

• open multiple reports simultaneously

Using RDBREsultSetDataBlox and RDBResultSetTag

When using Relational Reporting to display custom reports, consider the
following points:

• RDBResultSetDataBlox and RDBResultSetTag allow you to reference a
DataBlox and take its RDBResultSet and place it as the data “producer” of
the relational reporting pipeline.

• RDBResultSetDataBlox works with DataBlox pointing to a relational
datasource or DataBlox pointing to a drillthrough-enabled DB2 OLAP Server
or Essbase datasource. If rowCoordinate and columnCoordinate are
specified, the data for the RDBResultSet should come from a drillthrough
performed on the DataBlox referenced by the bloxRef attribute. For
drillthrough to work on DB2 OLAP Server or Essbase data sources, a report
name must also be set. If rowCoordinate or columnCoordinate are not
specified, the data for the RDBResultSet should come from a
getResultSet call on the DataBlox referenced by the bloxRef attribute. In
both cases, null will be returned if the action (drillthrough or
getResultSet) cannot be performed correctly.

Supporting multiple reports

To support multiple reports for each cell, you application must be able to handle
multiple reports. For example, for each report you may want to group on different
columns. Also, each report might also use different CSS style sheets. A
controller.jsp file could be used to distribute reports to the appropriate JSP
pages. Or, if the reports are not complicated, you could use a single JSP file to
handle all of the reports. In either case, you need to pass the report name into the
JSP page since the report name is required for the RDBResultSetDataBlox to
work.

Adding custom menu options

Using the Blox UI Model, you can create your own custom menu option (for
example, “Drill to Relational”) to appear when a user right-clicks on a data cell.
In this case, you can use your own custom options instead of the menu options
provided out-of-the-box in Alphablox Analytics.

In the following Java code example, a “Drill to Relational” option is added to the
grid’s right-click menu:

Menu cellMenu = new Menu();
cellMenu.add(new MenuItem("cellItem","Drill To Relational"));
grid.setCellsRightClickMenu(cellMenu);
// Add a dedicated controller to the cell menu
CHAPTER 13
Retrieving Data

Drillthrough Support for Microsoft Analysis Services 201
DataBlox db = presentBlox.getDataBlox();
cellMenu.setController(new DrillingController(db,grid,

abSessionName,appName));

Depending on your needs, you could create a DrillController to handle the
drillthrough and disable drillthrough on particular cells if the report would return
too many rows of data. Or, you could even open two different reports
simultaneously from a single cell.

Other Custom EIS DrillThrough Support

If you decide to build your own custom drillthrough support and do not want to
display the data using Alphablox Analytics Relational Reporting, you will need to
use the following DataBlox methods:

� RDBResultSet drillThrough(String reportName,
Tuple[] coordinates);

� RDBResultSet drillThrough(String reportName,
int columnCoordinate, int rowCoordinate);

� String[] getDrillThroughReportNames(int columnCoordinate,
int rowCoordinate);

Use the RDBResultSet that is returned to build your own custom reports,
iterating through the rows and columns to get the data. Also, use
getDrillThroughReportNames to return a list of the available drillthrough
reports for the specific cell, then call drillthrough a specific report and cell.

For details about the RDBResultSet object and DataBlox methods, see the
DataBlox Reference in the Developer’s Reference for the DHTML Client.

Drillthrough Support for Microsoft Analysis Services
OLAP data sources offer business analysts and line of business users deep
insights into trends in data, but do not give these users ready access to the raw
data unless some mechanism is provided to drillthrough into the underlying data
sources. Drillthrough support, if available in an OLAP data source, allows users
to reach deeper into the raw data contained in the underlying fact table records for
selected cells in the OLAP database.

An MDX DRILLTHROUGH statement can be used to retrieve the source rowset(s)
from the fact table (the relational data source) that was used to create a specified
cell, or tuple in a Microsoft Analysis Services cube. Here is an example
DRILLTHROUGH statement for Foodmart, a sample OLAP database that ships with
Microsoft Analysis Services:
DB2 Alphablox
Developer’s Guide for the DHTML Client

../index.html?context=reference&topic=ReferenceBook

202 Drillthrough Support for Microsoft Analysis Services
DRILLTHROUGH
SELECT FROM [Inventory]
WHERE (

[Product].[ByManufacturer].[All Product].[Acme],
[Warehouse].[Whse 8], [Time].[Aug. 2000]

)

Alphablox Analytics native DrillThrough support for MSAS retrieves the underlying
resultset using the following DRILLTHROUGH statement:

DRILLTHROUGH [<Max_Rows>] [<First_Rowset>] <MDX SELECT>

where <Max_Rows> is equivalent to the MDX MAXROWS value, <First_Rowset> is
equivalent to the MDX FIRSTROWSET value, and <MDX SELECT> is the
automatically generated SQL query. The value for <Max_Rows> is taken from the
setting in the Alphablox Analytics data source definition.

Before being able to retrieve rowsets from the underlying data source using the
DRILLTHROUGH statement, you must first enable the MSAS cube to allow
drillthrough in the Drillthrough Options dialog and specify which columns you
want to be returned. And, your client application must provide drillthrough
support. [See Microsoft’s SQL Server Books Online documentation, available
from the Microsoft SQL Server menu, for details about configuring drillthrough
options on a cube.]

While some client applications provide limited drillthrough support, Alphablox
Analytics support for MSAS Drillthrough is easy to configure, yet also allows
customized drillthrough behavior that other client applications do not offer. With
Alphablox Analytics drillthrough support, you can:

• control the order of the result set columns

While Microsoft Analysis Services allows you to choose which columns you
want to be displayed in a drillthrough operation, you cannot order the columns in
the resulting records. Alphablox Analytics ReportBlox functionality allows you
to define the order of columns displayed. The OrderBlox can be configured to
specify the order in which resultset columns should be displayed.

• provide security at the user/role level by permanently hiding columns in the
resultset

The built-in security of MSAS only allows you to enable drillthrough or not; you
cannot control which drillthrough coluns are available based on user roles. Using
a nested MembersBlox of a ReportBlox, you can permanently hide columns. End
users will not be able to show the columns again using the UI, but the developer
can reveal columns using the appropriate API calls.
CHAPTER 13
Retrieving Data

Drillthrough Support for Microsoft Analysis Services 203
• add calculated columns to the resultset

Using the ReportBlox’s CalculateBlox, you can replicate calculations in the
relational report, even though MSAS doesn’t natively let you return calculated
columns.

• open multiple reports in separate windows

The out-of-the-box drillthrough support provided by Alphablox Analytics allows
end users to open multiple report windows to compare drillthrough data from
multiple cells in a grid. You can also custom code your own solution for opening
multiple windows -- a Blox Sampler example, in the Retrieving Data section
under Microsoft Analysis Services, shows one way of accomplishng this.

Out-of-the-Box DrillThrough Support

With minimal effort, you can quickly begin using the native Microsoft Analysis
Services Drillthrough support by setting the GridBlox drillThroughEnabled
property to true (default is false). Once enabled, the Drill Through option is
added to the context (right-click) menu, available when right-clicking on a data
cell in a grid. Alphablox Analytics automatically generates the appropriate
DRILLTHROUGH statement and executes the query. The returned resultset is
displayed in an interactive ReportBlox within a separate browser window.

Controlling DrillThrough Window Styles

While the default drillthrough window may be adequate for your purposes,
Alphablox Analytics also allows you to customize the display window by use of
the nested GridBlox <blox:drillThroughWindow> tag. When this tag is nested
in a GridBlox that has drillthrough support enabled, it overrides the default out-
of-the-box behavior and allows custom browser window properties to be defined.

The tag attributes on the <blox:drillThroughWindow> are modeled after the
most commonly used window definition properties defined in the features
argument of the JavaScript window.open(url,windowName,features) method
that is used to open browser windows. The supported properties include the
following:

Tag Attribute Description

url Defines the location of the JSP for the drillthrough
window

name Name of the drillthrough window

height Height of the window
DB2 Alphablox
Developer’s Guide for the DHTML Client

204 Drillthrough Support for Microsoft Analysis Services
For details about the <blox:drillThroughWindow> tag and its attributes, see the
GridBlox Reference section of the Developer’s Reference for the DHTML Client.

Custom Drillthrough Support Using Alphablox Analytics Relational Reporting

Alphablox Analytics Relational Reporting Blox, discussed fully in Relational
Reporting Developer’s Guide, can be used to generate custom drillthrough support
with many desirable features not possible in the native Microsoft Analysis
Services drillthrough support. In Blox Sampler, under Retrieving Data for both
DB2 OLAP Server (and Essbase) and Microsoft Analysis Services, there is an
example of custom drillthrough support. Here we walk through the code,
explaining the most important code parts:

1 In your JSP file, enable the Drillthrough context (right-click) menu option by
adding the drillThroughEnabled attribute to the <blox:grid> tag, setting
the value to true:

<blox:grid ...
drillThroughEnabled="true" ... />

width Width of the window

resizable Boolean property determining if the drillthrough
window can be resized by users. True by default.

statusbarVisible Boolean property determining if the drillthrough
browser window’s statusbar should be visible. True
by default.

scrollbarVisible Boolean property determining if the drillthrough
browser window’s scrollbars should be available.
True by default.

locationbarVisible Boolean property determining if the drillthrough
browser window’s location bar (address bar) should
be displayed. True by default.

toolbarVisible Boolean property determining if the drillthrough
browser window’s toolbar should be displayed. True
by default.

menubarVisible Boolean property determining if the drillthrough
browser window’s menubar should be displayed.
True by default.

Tag Attribute Description
CHAPTER 13
Retrieving Data

../index.html?context=reference&topic=ReferenceBook

Drillthrough Support for Microsoft Analysis Services 205
2 Set up the interception and handling of the right-click event on the
Drillthrough context (right-click) menu option by adding a
<bloxui:actionFilter> tag to the PresentBlox:

<bloxui:actionFilter
className="<%= MyDrillThroughClass.class.getName() %>"
componentName="dataAdvancedDrillThrough" />

The componentName attribute is set to the value of dataAdvancedDrillThrough
and the className attribute must be set to the name of the class you’re adding
to handle the right-click event.

3 Add a JSP page directive at the top of the page, specifying the required
classes for your page:

<%@ page import="com.alphablox.blox.uimodel.ModelConstants,
com.alphablox.blox.uimodel.tags.IActionFilter,
com.alphablox.blox.DataViewBlox,
com.alphablox.blox.uimodel.core.Component,
com.alphablox.blox.uimodel.core.MessageBox,
com.alphablox.blox.uimodel.GridBrixModel,
com.alphablox.blox.uimodel.PresentBloxModel,
com.alphablox.blox.uimodel.core.grid.GridCell,
com.alphablox.blox.uimodel.GridBrixCellModel,
com.alphablox.blox.uimodel.core.ClientLink" %>

4 Add the handler class for the actionFilter:

<%!
public static class MyDrillThroughClass implements IActionFilter
{

public void actionFilter(DataViewBlox blox, Component component
) throws Exception {

GridBrixModel grid =
((PresentBloxModel)blox.getBloxModel()).getGrid();

GridCell[] cells = grid.getSelectedCells();

// Make sure that a single data cell is selected
if (cells.length != 1 || cells[0].isRowHeader() ||

cells[0].isColumnHeader() || !(cells[0] instanceof
GridBrixCellModel)) {
MessageBox.message(component, "Error", "You must select a single

data cell to drill through");
return;

}
GridBrixCellModel cell = (GridBrixCellModel)cells[0];
int rowIndex = cell.getNativeRow();
int colIndex = cell.getNativeColumn();
String bloxName = blox.getBloxName();
String urlStr = "someReportBlox.jsp?bloxRef="+bloxName;
DB2 Alphablox
Developer’s Guide for the DHTML Client

206 Drillthrough Support for Microsoft Analysis Services
urlStr += "&colIndex=";
urlStr += colIndex;
urlStr += "&rowIndex=";
urlStr += rowIndex;

String timestamp =
String.valueOf(System.currentTimeMillis());

urlStr += "&reportName=";
urlStr = urlStr + "reportBlox"+timestamp;

ClientLink link = new ClientLink(urlStr,
"reportBlox"+timestamp);

component.getDispatcher().showBrowserWindow(link);
}

}
%>

5 Set up the custom relational report. In this example, someReportBlox.jsp:

<%
String reportName = request.getParameter("reportName");
if(reportName == null) {
reportName = "defaultName";
}

%>

6 Set up your custom relational report using the <blox:RDBResultSetData>
or <bloxreport:RDBResultSetData> tag of the Blox Reporting Tag
Library.

<blox:report id="drillThrough"
bloxName="<%= reportName %>"
interactive="true">
<blox:rdbResultSetData
bloxRef="<%= request.getParameter(\"bloxRef\") %>"
columnCoordinate="<%= request.getParameter(\"colIndex\")

%>"
rowCoordinate="<%= request.getParameter(\"rowIndex\") %>">

</blox:rdbResultSetData>

...

[Optional] Setup a default ReportBlox name if you want to support the opening
of multiple reports.

[Optional] Set the bloxName attribute for the ReportBlox if you are using
multiple reports. Details about the use of the bloxName attribute can be found in
CHAPTER 13
Retrieving Data

Drillthrough Support for Microsoft Analysis Services 207
the Common Blox Reference section of the Developer’s Reference for the
DHTML Client.

[Optional] Define a MembersBlox if you want to permanently exclude members
from the view.

[Optional] Define a GroupBlox if you want to create a cleaner layout using break
groups and aggregations.

[Optional] Define a CalculateBlox to add replicated calculations which MSAS
does not natively support.

[Optional] Define an OrderBlox to order the columns. Natively, MSAS
DrillThrough support does not let you re-order the columns.

Review the complete code to perform the custom drillthrough in the Blox
Sampler example.

For details on creating relational reporting views, see the Relational Reporting
Developer’s Guide. In the following example, we’ll cover some important points
relevant to using relational reporting for drillthrough. In this example, we’ll call
the page being retrieved someReportBlox.jsp and use the
<blox:RDBResultSetData> tag to get the drillthrough data into the relational
pipeline.

Other Custom DrillThrough Support

To provide your own customization, one option is to intercept the right-click
event controlling the drillthrough support provided by Alphablox Analytics, then
use a server-side ClickEvent to manage drillthrough customization.

If you want to develop a drillthrough report using your own solution, instead of
using the Blox Reporting Tag Library, you need to use one of the following
DataBlox methods:

� RDBResultSet drillThrough(Tuple[] coordinates)

� RDBResultSet drillThrough(int columnCoordinate, int
rowCoordinate)

These methods will return an RDBResultSet containing the relational data for
the drillthrough performed at the specified coordinates. Then, you can display the
relational drillthrough data as you’d like.

For details about the RDBResultSet object, see the Relational Result Set Methods
section of the DataBlox Reference in the Developer’s Reference for the DHTML
Client.
DB2 Alphablox
Developer’s Guide for the DHTML Client

../index.html?context=reference&topic=ReferenceBook

208 Relational Data Sources
Relational Data Sources
Alphablox Analytics supports the viewing of relational result sets using the
presentation Blox. Similar to the other supported databases, you need to specify a
data source and a query. When relational result sets are displayed, a limited subset
of Alphablox Analytics functionality is available in the standard presentation
Blox. ReportBlox can also be used to display relational data, and offers support
for many reporting purposes. See the Relational Reporting Developer’s Guide for
details on using the new relational reporting functionality to display relational
reports.

Below is a quick overview and summary of SQL statements, and how to use them
with Alphablox Analytics.

Creating SQL Statements

To pass a query to a relational data source, use the SQL SELECT statement syntax
supported by your RDBMS. For example, the following SQL syntax is supported
by several relational data sources:

SELECT... FROM... WHERE... ORDER BY... GROUP BY...

• SELECT (ALL|DISTINCT) [COLUMNS] to identify the data columns to
include in the result set

• FROM [TABLELIST] to identify the name of each database table from which
to obtain data

• WHERE [PREDICATE EXPRESSION] to specify filters and joins on the data
• ORDER BY [COLUMNNAMES] to specify a sort sequence
• GROUP BY [COLUMNNAMES] to specify a group list

Functions are not supported.

The following example specifies that:

• Columns named SalesQty and ProductID are selected from two tables
(named Actual and Projected)

• Only those rows are selected where the actual quantity sold is less than the
projected quantity sold

<blox:data query="SELECT Actual.SalesQty, Actual.ProductID,
Projected.SalesQty, Projected.ProductID FROM Actual,
Projected WHERE Actual.SalesQty < Projected.SalesQty".../>
CHAPTER 13
Retrieving Data

Using DHTML Query Builder 209
Using DHTML Query Builder
The DHTML Query Builder provides an easy way to develop and test query
syntax. The tool uses a point-and-click interface and does not require in-depth
knowledge of a data source’s query language.

DHTML Query Builder supports interactive query development. You simply
manipulate a grid that displays a default result set until they achieve the
appropriate data view. Clicking the Get Current Query button displays the query
statement in the correct syntax. You can copy and paste the statement into a text
file for later use, or directly into the value of a query within an application
template.

Another powerful feature of the DHTML Query builder is the Generate Blox Tag
button, which allows you to retrieve the Blox tag syntax required to reproduce the
PresentBlox showing the same view and result set. Similarly, you can copy and
paste the tag into a text file for later use, or paste it directly into your application.
DB2 Alphablox
Developer’s Guide for the DHTML Client

210 Using DHTML Query Builder
Task: Using DHTML Query Builder

The following task shows you how you can use the DHTML Query Builder to
begin learning about query statements and how they impact views in Alphablox
Analytics applications.

To access DHTML Query Builder:

1 On the Application Studio page, click Workbench.
The Workbench page opens.

2 Click the DHTML Query Builder link.

3 Click on the Connection Settings button to open the drop down list. Select the
data source for which you want to build a query. Values for the Catalog,
Schema, Username, and Password fields are taken from the data source
definition and appear in the text boxes.

4 If necessary, change the values for Catalog, Schema, Username and
Password. Click the Execute Default Query checkbox if you want to execute
the default query upon connection.

5 Click the Connect button.
Upon successful connection, a confirming indicator appears in the Status
Frame.

6 Do any of the following:

• Type a query string into the text box and click the Execute Query button.
The results appear in the PresentBlox at the bottom of the page.

Click the Get Current Query button to retrieve the most recent successful
query against this data source. The query string appears in the text box.

• Click the Default Query button. The default query string associated with
this data source appears in the text window. If the data source is an
Alphablox cube or an Microsoft Analysis Services cube, ensure that the
cube name is correct.
CHAPTER 13
Retrieving Data

Using DHTML Query Builder 211
With the Relational Database connection pooling feature, you will
not be able use the Default Query button to get the default query on a
relational cube.

• To view the results of the query, click the Execute Query button. The
result set appears in the PresentBlox at the bottom of the page.

• When data appears in the PresentBlox at the bottom of the page, use the
standard user interface to swap axes, drill up or down, move dimensions
between axes, and so forth.

• Click the Generate Blox Tag button. This opens a text box containing the
complete tag to duplicate the view and result set seen in the PresentBlox.

• Expand the Asymmetrical Query Builder pane, deselect any columns to
remove, and click the Apply Column Set button.

The Asymmetrical Query Builder pane only works with DB2
OLAP Server or Essbase data sources, and only on column headers.

7 After developing the appropriate data view, click the Get Current Query
button. The text box displays the query string required to develop the current
data view.

After deriving the appropriate query string, you can copy and paste it into a text
file for future use, or directly into the value of your query. To exit DHTML Query
Builder, close its browser window.

8 Click the Generate Blox Tag button. A text box opens displaying the tag to
reproduce the PresentBlox layout and result set. You can copy and paste this
tag into a text file for later use, or paste it directly into an application.
DB2 Alphablox
Developer’s Guide for the DHTML Client

212 Using DHTML Query Builder
CHAPTER 13
Retrieving Data

14
Presenting Data

The common presentation Blox (GridBlox, ChartBlox, and PresentBlox) offer
many alternatives to developers for customizing the analytic views. This chapter
will help you decide which Blox you should use and how to effectively use
presentation Blox.

Choosing Blox for Presenting Data
In Alphablox Analytics applications, you can use any of the common presentation
Blox (GridBlox, ChartBlox, and PresentBlox) to display result sets to end users,
but the decision on which particular Blox to use depends on your user
requirements.

Presentation Blox can only display the results from one data source at a time. If
you need to display results from multiple data sources simultaneously on the
same page, you have a couple of options:

• Place multiple Blox on a page, each pointing to a different data source.

• Use a single Blox on a page to display results from multiple data sources by
using either the server-side Java API or client-side Blox Client API to change
data sources. See the “Task: Setting Different Data Sources Using
DataSourceSelectFormBlox” on page 173 for an example.

Data Presentation Blox - Advantages and Disadvantages

As discussed earlier in this guide, the primary Blox of interest to users are the
Blox which display data: ChartBlox, GridBlox, and PresentBlox. This guide
focuses on the use of the presentation Blox available in the DHTML client.

Below is a table summarizing the pros and cons of each of the data presentation
Blox:

214 Choosing Blox for Presenting Data
Blox Advantages Disadvantages

GridBlox • users can readily
compare numbers that
show small
differences

• alerts can be created
to highlight
information in
particular cells

• information links
(using the cellLink
and cellAlert
properties) can be
added to individual
cells or groups of
cells

• information links
(using header links
defined in the
application definition)
can be used to add
links to information in
row and column
headers

• users may have more
difficulty spotting large
differences between
values, when trying to
quickly view differences

• no access to DataLayout
panel

ChartBlox • displays
multidimensional or
relational data in a
variety of chart
formats

• viewing data visually
can obscure the
differences between
values when values vary
only slightly

• information links (see
GridBlox advantages)
cannot be accessed on
charts

• users cannot see alerts
tied to the data

• no access to DataLayout
panel
CHAPTER 14
Presenting Data

Render Formats Available to the DHTML Client 215
Render Formats Available to the DHTML Client
The DHTML client’s rendering is one of many different Blox rendering formats
available. By default, new applications created on the Alphablox Analytics render
pages in the DHTML format. Other application default rendering options are
definable in the application’s definition page. These other available rendering
formats, printer and export to Excel, are based on the original Alphablox
Analytics rendering model. Depending on the particular rendering format being
used, the rendering format may be accessed through the common Blox render
property, the render URL attribute, or through other mechanisms described below.

 DHTML rendering uses the UI Model-based rendering mechanism,
allowing the UI to be fully customized. When a Blox is exported to Microsoft
Excel, the code responsible for performing the operation is not based on the UI
Model and may appear different from the current view in the DHTML client.

A summary of the rendering modes available for use with the DHTML client
follows.

PresentBlox • combines both grid
and chart views of
data into a single Blox

• users can toggle
between grid and
chart view, or display
both views
simultaneously (when
split pane is enabled)

• DataLayout panel
allows advanced users
to manipulate display
of dimensions

• with only a grid or a
chart enabled, users
can have access to the
DataLayout panel or
the Page panel (these
are not available in
standalone GridBlox
and Chartblox)

• sometimes users should
only be allowed to see
only a grid, when data
density is too high (too
many data points in a
chart can be difficult to
interpret); the
PresentBlox
chartEnabled property
can be set to false, but
this eliminates one of the
advantages of a
PresentBlox

Blox Advantages Disadvantages
DB2 Alphablox
Developer’s Guide for the DHTML Client

216 Render Formats Available to the DHTML Client
DHTML Format (render=dhtml)

By default, applications created on the Alphablox Analytics are rendered using
DHTML. This format uses standard DHTML technologies (HTML, CSS, DOM,
and JavaScript) along with server-side Java technologies to create renderings of
data in a highly interactive format that matches previous Java clients in power,
but without the need to use Java plug-ins or Java-enabled browsers. An additional
benefit of the DHTML rendering format is that the user interface, defined by the
Blox UI Model, can be extended and customized beyond the built-in support of
the DHTML format.

The DHTML rendering format is supported as both the common Blox render
property or using the render URL attribute.

 Blox cannot be rendered in DHTML if a page is set to render in a different
format since essential JavaScript files will not load.

Printer Format (render=printer)

The Printer format generates a view of a Blox’s data that is optimized for printing
purposes using your browser’s built-in printing functionality. The Blox view is
generated using HTML tables and CSS styles, and also converts all selectable
page filters into a list of selected filters including the dimension names and their
selected members. The Printer format generates visual representations based on
the original Alphablox Analytics rendering model, and thus will appear different
than views presented in the DHTML client. Charts rendered using the Printer
format will display using the chart package supported by the DHTML client. To
use the NetCharts charting package used with the DHTML client, the
application’s default rendering mode (specified on the application definition page
in the Alphablox Analytics Admin Pages) must also be set to DHTML.

The Printer rendering format is supported as both the common Blox render
property or using the render URL attribute.

Typically, to use this format, you would include an HTML button or link on a
page with a Blox view, allowing the user clicks to request a printable copy. In
response to a user’s request, the Alphablox Analytics renders the page in pure
HTML before delivering it to the client. After the page appears in the browser, the
user can click the browser’s Print button to send the page to the printer. For
details, see “Printing Blox Output” on page 218.

PDF Format

Alphablox Analytics offers an alternative print delivery mechanism, Convert to
PDF, which can be used to convert individual Blox views into Adobe Acrobat
PDF files. Users frequently like having access to PDF files for future reference or
for sharing with others. Alphablox Analytics PDF format offers options for
CHAPTER 14
Presenting Data

Render Formats Available to the DHTML Client 217
limited customization of page layouts, for example, including the generation of
headers and footers with logos and defined text. Unlike the other rendering
formats covered in this section, the PDF format cannot be selected using a
render URL attribute or the common Blox render property. This format
generates PDF files based on the original Alphablox Analytics rendering model,
and thus will appear different than views presented in the DHTML client. Charts
rendered using the PDF format will display using the chart package associated
with the render mode for the application. To use the NetCharts charting package
used with the DHTML client, the application’s default rendering mode (specified
on the application definition page in the Alphablox Analytics Admin Pages) must
also be set to DHTML.

To learn more about how Convert to PDF works and to add this feature to your
applications, see “Converting to PDF” on page 327.

Export To Excel Format (render=xls)

Alphablox Analytics can deliver the output of a page in an HTML format that is
loaded into a Microsoft Excel spreadsheet. When using this format, the MIME
type on the page being returned is set to application/vnd.ms-excel, the
standard MIME type for Microsoft Excel. With this export facility, which uses the
render=xls URL attribute, users can deliver the grid data to the spreadsheet
program for further analysis. For a complete explanation, see “Exporting Blox
Views to Microsoft Excel” on page 221.

XML Format

With an standalone DataBlox (that is, one that is not nested inside of another
Blox), you can render a query result set from an application data source into XML
format by setting the render URL attribute to xml (render=xml). Using the
XML format is explained further in “Exporting to XML” on page 323.
DB2 Alphablox
Developer’s Guide for the DHTML Client

218 Render Formats Available to the DHTML Client
Specifying a Delivery Format

By default, application pages are delivered in DHTML format. There are no
special steps required to enable multiple application delivery formats. An
attribute added to an application’s URL informs Alphablox Analytics to deliver
the page in the specified format. For example, the following URL requests that
the MyApplication page be delivered in DHTML format:

http://<server>/applications/ThisView.jsp?render=dhtml

And, if you want a page to be rendered in Printer format, the URL would look
similar to this:

http://<server>/applications/ThisView.jsp?render=printer

Valid values when using the render URL attribute with the DHTML client
include:

Printing Blox Output

Two alternatives, the Printer format and the Convert to PDF option, are available
for generating printable pages displaying Blox results. The Printer format renders
Blox components on a web page using PNG images and HTML tables. Also, any
PageBlox page filters (either standalone or nested in a PresentBlox) are converted
from interactive HTML selection lists into static lists of dimensions and the
selected slicers for each dimension.

The Convert to PDF option generates a PDF file allowing more flexibility over
the resulting printable file by the assembler and user. For details on using the
Convert to PDF option, see “Converting to PDF” on page 327.

Render attribute Description

dhtml Default. Renders Blox using DHTML technologies on the
client.

none Remove all Blox from the page.

printer Render in printer-ready format with no interactivity

xls Render the page to an HTML format and sets the page’s
MIME type to application/vnd.ms-excel, resulting in
the page being exported to Microsoft Excel

xml Render into XML format (applicable only to explicit
DataBlox)
CHAPTER 14
Presenting Data

Render Formats Available to the DHTML Client 219
Printing with HTML-based Printing

Although Blox on HTML pages can be printed using the browser’s Print button,
Alphablox Analytics can be used to render Blox output into a more printer-
friendly format, as described in the example below. The rendered output appears
in a browser window, replacing the interactive Blox with its printable version.

 By default, Microsoft Internet Explorer browsers do not print background
colors and images. In order for users to print background colors and images in
Internet Explorer, the user must manually configure their browser. As a result,
you should assume that the majority of users will not have this setting enabled.
Since you have no control over this browser setting, you should design printable
pages with the assumption that most users have not modified this setting— most
will neither know about this setting nor where it can be found in their browser
options.

To set this property, from the browser's menu bar, click View, then Internet
Options. Select the Advanced tab and scroll down to the Printing section. Then
check the Print background colors and images option, and click Apply.

Task: Creating a Printable Page Using the render=printer URL Attribute

The simplest method for rendering a printable page is to use the
render=printer URL attribute. By appending ?render=printer to the end of
the URL for a page, the Blox on that page will be rendered in a printer-friendly
format. If the Blox is a PresentBlox, selectable page filters will appear in a list at
the top of the Blox view, indicating to viewers which slicers were active when the
printable copy was generated. Instead of applying the URL attribute to the
existing page, it is usually preferable to open a new browser window displaying
the printable version of a view.

Follow these steps to create printable pages using this method:

1 On a page with Blox on it, add a button or link to generate a printable page.

For example, the following HTML code creates a button, labeled “Print Preview”
in the body of a JSP page, that will open the current page’s view in a new
window, rendering it in printer mode:

<form>
<input type="button" value="Print Preview"
onclick="window.open('mView.jsp?render=printer','_new')">
</form>

2 Now open your view and test the button. You should see a new window pop
open with the current view rendered in a printable format.
DB2 Alphablox
Developer’s Guide for the DHTML Client

220 Render Formats Available to the DHTML Client
You should also notice that this page includes the button you added. Typically,
this would not be desired, so you could, for example, place common services
buttons in one frame of a frameset, including a print button and export to Excel
button, and display your analytic views in a separate frame. Then your buttons
could trigger the opening of your view page in a separate, printable page without
the buttons appearing on it.

A better alternative would be to open a new page in a separate window. A custom
print page offers more potential as a reasonable printable page. The following
task gives one approach for generating custom print pages.

Task: Creating Custom Print Pages Using the <blox:display> Tag

The following steps show you how to create a page that uses the
<blox:display> tag to render a new page with the same data view, but in a
printable format:

1 Create your analytic view and add a button that will be used to open a custom
print page for this view. In the following code snippet, a button is created that
will open a new window with MyView-print.jsp displayed within it.

<form>
<input type="button" value="Print View"
onclick="window.open('MyView-print.jsp','_new')">

</form>

2 Now, create your custom print page. Besides including a <blox:display>
tag for rendering the view, you might consider including the following items:

• title for the view being printed
• summary of content
• company name or logo graphic
• date the page was generated
• warning about usage (i.e., internal or confidential)
• copyright notice

The following code snippet is an example of of a simple print page, which would
generate a printable page that includes a title, Blox rendered in printer mode, and
the date it was printed:

<h2>My Grid View</h2>
<blox:display bloxRef="MyGridBlox2" render="printer"/>
<p>

Printed: <script>document.write(new Date());</script>
</p>

3 Save your custom print page.
CHAPTER 14
Presenting Data

CSS Themes 221
Using this approach, you can offer many customized printing options.

A working example of the example above can be seen in Blox Sampler under
Presenting Data. In the print page that is generated, users can select the browser's
File menu to print the page.

Exporting Blox Views to Microsoft Excel

Out of the box, an option for Export to Excel can be found on the Blox menubars
under the File menu. If a menubar is not displayed, you may decide to offer an
export to Excel option through a button or link on an analytic view. When
rendering a PresentBlox to Microsoft Excel in xls format, only the grid output
will be displayed in the spreadsheet. A ChartBlox cannot be rendered using the
xls format.

The Alphablox Analytics export to Excel option is available for use by end users
with the following minimum configurations:

• Microsoft Excel (see Installation Guide for supported versions).
• Microsoft Internet Explorer (see Installation Guide for supported versions).

 An example on creating an Export to Excel button is available in the
Exporting Data chapter in the “Task: Exporting a Grid View to Microsoft Excel”
on page 322.

CSS Themes
Alphablox Analytics uses Cascading Style Sheets (CSS) themes to control aspects
of the layout and appearance of pages rendered. Themes enhance the look-and-
feel of applications. Custom themes can be created, helping your organization to
adopt a corporate appearance in your Alphablox Analytics applications or to
create appearances that integrate well with existing web-based applications or
portals.

Specifying HTML Themes in Applications

Themes can be specified for the appearance of Blox in DHTML renderings in the
server’s Default HTML Client Theme setting in the Alphablox Analytics Admin
Pages or using the theme URL attribute on a page.
DB2 Alphablox
Developer’s Guide for the DHTML Client

222 CSS Themes
Default HTML Client Theme

Alphablox Analytics’s Default HTML Client Theme can be specified in the
Alphablox Analytics Admin Pages. Upon initial installation, the coleman theme
is selected. To specify a different server default theme, click on the
Administration tab, then under Server Properties on the left menu select System.
Although the Default HTML Client Theme option allows many different theme
options, only two themes, coleman and financial, are supported for use with
the DHTML client.

theme URL Attribute

To specify the theme property as a URL attribute, use the following format:

http://.../application/view.jsp?theme=financial

When you define a theme using a URL attribute, the theme property defined
applies to all Blox on that page.

CSS Theme Files

The files for the two Alphablox Analytics CSS themes supported by the DHTML
client, coleman and financial, can be found in the theme directory of the
Alphablox Analytics Repository:

<alphabloxDirectory>/repository/theme

For the DHTML client, an Alphablox Analytics theme consists of the following
structure:

a CSS file to define the styles for HTML and Blox elements, an associated
properties file, and an optional images folder.

File/Folder Description

<themeName>.css

<themeName>.properties Includes theme specifications about file
locations, layout, and color. The
<themeName>.properties file settings are
specified below.

<themeName>_dhtml.css Includes theme specifications unique to the
DHTML rendering format

i Folder containing images specific to the
theme
CHAPTER 14
Presenting Data

CSS Themes 223
Alphablox Analytics theme files are named based on the theme to which they
belong (for example, financial.properties and financial_dhtml.css are
the theme files for the finanical theme option. These files are located in a
theme directory, also named based on the theme option. For example, the
financial theme files are located in the following directory:

<alphabloxDirectory>/repository/theme/financial

CSS Theme Properties Defined In The themeName.properties File

The theme properties file (themeName.properties) is a plain text file that
defines the following DHTML-related theme properties:

Property Description

name = themeName The name of the theme (e.g., coleman or
financial)

description =
description

A description of the theme which appears on
the server console

bgcolor = #3d3d5f The background color for areas of ChartBlox
not specified in themeName.css

fgcolor = white The foreground (text) color for areas of
ChartBlox not specified in themeName.css

css = themeName.css The name of the themeName.css file

background = true Causes the Blox background to appear

layout=string Controls the placement of nested Blox
within PresentBlox. For more information,
see “Layout Strings” on page 224.

privateimages = true For all the images used by this theme, use
the theme's private images directory
(<alphabloxRepository>/theme/
<themeName>/i/)

windowbgcolor = #655973 The background color for a chart's display
area within PresentBlox

windowfgcolor = white The foreground (text) color for the chart
display area within PresentBlox

bkgrd_image_chart =
imageFile

The background image to appear in charts
DB2 Alphablox
Developer’s Guide for the DHTML Client

224 CSS Themes
Layout Strings

The display of a rendered PresentBlox is divided into multiple components:

Each of these components can accept two options:

• title sets the title for the component.

• orientation specifies a vertical or horizontal orientation for the component
(viewarea ignores this option).

Layout strings must be specified as a single unbroken line in the Properties
file (themeName.properties). The format and example shown are broken into
multiple lines here for readability.

The simplest format of the layout string is:

layout = component1 {option: value; option: value;};
component2 {option: value; option: value;}; ...
componentN {option: value; option: value;};

The following example is the default.

layout = toolbar {title: Tool Bar; orientation:
horizontal;};
minimizearea {title: Minimize Area; orientation:
horizontal;};
page {title:Page Filters; orientation: horizontal;};

chart_color_series The 18 colors used in creating chart colors,
including lines, bars, pie slices, etc.

Property Description

Component Name Contents

viewarea The area presenting the grid and/or chart

toolbar The Blox toolbar

page The PageBlox area

layout The DataLayoutBlox area
CHAPTER 14
Presenting Data

CSS Themes 225
layout {title:Data Layout; orientation: vertical;},
viewarea {title: View Area;}

 Note the comma (not semicolon) between the layout and viewarea
components, causing those two components to reside side by side in a single
section, rather than in separate sections.

It produces the following PresentBlox layout:

Important points to know about the layout string syntax:

• The PresentBlox display area can be divided into as many as six sections.

• Semicolons are used to separate sections.

• Up to three components can occupy a single section.

• Commas are used to separate components that occupy the same section.

• Layout strings must be specified as a single unbroken line in the Properties
file (<themeName>.properties). They are broken into multiple lines here
for readability.

• The extended format of the layout string is:

layout = componentN {option: value; option:
value;}[,componentN {option: value; option: value;}];
componentN {option: value; option: value;}[,componentN
{option: value; option: value;}];

Blox Toolbar

Minimize Area [links rendering mode only]

Interactive Settings [links rendering mode only]

Page Filters

Data Layout View Area
DB2 Alphablox
Developer’s Guide for the DHTML Client

226 CSS Themes
Example :

The financial theme uses the following layout string:

layout = toolbar { title: Tool Bar; orientation: horizontal;
}; minimizearea { title: Minimize Area; orientation:
horizontal; }; ibar { title: Interactive Settings;
orientation: horizontal; }; page { title: Page Filters;
orientation: horizontal; }; layout { title: Data Layout;
orientation: vertical; }, viewarea { title: View Area; };

CSS Classes Defined in the .css File

The themeName.css file is a plain text file that defines the CSS classes
described below. To see the values set for a class in a particular theme, open the
theme’s themeName.css file, found here:

<alphabloxRepository>/theme/<themeName>/themeName.css

 Cascading Style Sheets specifications can be found at the World Wide Web
Consortium (http://www.w3c.org/style/css).

The following tables list the application-wide styles, the legacy styles, and the
overrides available in the themeName_dhtml.css file:

Application-wide Styles

Style Class Description

csApBg Application background color -
overall background of a blox

csCmpBg Component background color -
data area backgrounds of individual
blox

csCmpBrdr Component border - borders of
individual blox and controls

csThmClr Base theme color - used by text
labels, information text, decorative
elements

csFntClr Default font color - used by data,
messages, functional text
CHAPTER 14
Presenting Data

http://www.w3.org/style/css/
http://www.w3.org/style/css/

CSS Themes 227
csFntSpc Default font spec - used mainly by
menus, toolbars and buttons

csLblFnt Default label font spec - used by
labels for GUI interactive-controls

csGrdFnt Default grid font spec - used by all
grid cells

csSlctBg Default selection background color

csSlctClr Default selection font color

csDsbldClr Default disabled font color

csThrDBrdrRsd 3-D raised border

csThrDBrdrLwrd 3-D depressed border

Application-wide Styles

Style Class Description
DB2 Alphablox
Developer’s Guide for the DHTML Client

228 CSS Themes
Legacy Styles

Style Class Description

csDmnsnHdrs Dimension headers

csClmnHdrs Column headers

csRwHdrs Row headers

csRwHdrsNnBnd Row headers - non-banded

csRwHdrsBnd Row headers - banded

csDtCl Data cell

csTdClBnd Data cell - banded

csDtClNnBnd Data cell - non-banded

Overrides

Style Class Description

csBckClr Background color (Blox components)

csWndwClr ‘Window’ color (Blox components)

csRwHdrs Row headers

csRwHdrsNnBnd Row headers - non-banded

csRwHdrsBnd Row headers - banded

csDtCl Data cell

csTdClBnd Data cell - banded

csDtClNnBnd Data cell - non-banded
CHAPTER 14
Presenting Data

Overriding Defined Styles 229
Overriding Defined Styles
One of the results of adding the <blox:header> tag to the head section of JSP
pages is to provide an automatic link to the appropriate CSS file.

 See also the information on applying styles to data cells and cell alerts,
described in “Using Format Masks to Highlight Data” on page 242 and “Using
Cell Alerts to Highlight Data” on page 243)

To override defined styles, you can create an entirely new theme:

1 Copy an existing theme directory, giving it a new name.

2 Rename the themeName.css and themeName.properties within that
directory.

3 Make the appropriate content changes to these files.

4 In the application URL, provide the name of the new theme. For a page
named view.jsp, the URL might become:

/<applicationName>/view.jsp?theme=MyTheme

To load a new theme or reload a modified theme, use the load theme
command in the Alphablox Analytics console. Note that this command does not
accept a specific theme name as a parameter; the command simply loads all
themes from the Repository.

 Web browsers frequently cache files, such as buttons and icon GIFs. When
testing a new or modified theme, you may need to make sure the browser cache’s
cache is cleared before you can see changes you’ve made.

Applying Styles to Cell Alerts
The styles for cell alerts are not defined in a CSS file. Instead, they are defined
inline in the HTML, based on the DataBlox cellAlert property. Because CSS
has cascading effect, the inline style is the one rendered by the browser,
overriding any other styles defined for a data cell.
DB2 Alphablox
Developer’s Guide for the DHTML Client

../admin/ServerCommands3.html

230 Look and Feel
Look and Feel
Blox can be configured to display different color schemes, fonts, and banding
characteristics which can complement the appearance, or “look and feel,” of your
application pages. Just as you can control the colors of fonts and background
colors on web pages using Cascading Style Sheets, you can also use Blox
properties and HTML themes to control the appearance of Blox on your
application pages. In the following sections, common appearance properties are
discussed.

Included in the table below is a list of the most commonly modified appearance
features on the presentation Blox:

Blox Common Appearance Properties

GridBlox • missingValueString: determines what
to display in place of default #MISSING

• rowHeadingsVisible: specifies
whether the row headings to the left of
the data values appear on the grid

• gridLinesVisible: turn grid lines on or
off

ChartBlox • chartType: change chart type
• depthRadius: can be used to create a

slight 3-D effect on standard bar charts
• labels and placement

PresentBlox • dividerLocation: when splitPane is
enabled, determines where the divider
should appear on loading of the
PresentBlox

• splitPane: enables a splitter bar that
allows simultaneous display of grid and
chart

• splitPaneOrientation: determines
whether the splitter bar is horizontal or
vertical
CHAPTER 14
Presenting Data

Grid Appearance 231
For complete listings of appearance properties, see the listings of appearance
properties and methods in the “by Category” sections of each Blox Reference
section in Developer’s Reference for the DHTML Client.

The next sections, discuss in more detail some of the common appearance
properties used in the GridBlox, ChartBlox, and PresentBlox.

Grid Appearance
Grids can be a great source of information, but sometimes reading them or being
able to notice important information is difficult. As a developer, you can change
many of the appearance properties of grids, but the following are the most
commonly changed properties:

• missingValueString: determines what to display in place of default
#MISSING

• rowHeadingsVisible: specifies whether the row headings to the left of the
data values appear on a grid

• gridLinesVisible: turn grid lines on or off

The sections below discuss some of these properties and how to use them to
create more usable grids.

DataBlox • suppressMissing: supresses rows or
columns where there is no data

• suppressNoAccess: supresses visibility
of rows and columns where the user has
no access rights to the data

• suppressZeros: suppresses rows or
columns where all zeros appear

ToolbarBlox • removeButton: removes defined buttons
from the toolbar

• button color and size

ReportBlox • See Relational Reporting Developer’s
Guide. CSS style settings can be modified
for most HTML elements

Blox Common Appearance Properties
DB2 Alphablox
Developer’s Guide for the DHTML Client

232 Chart Appearance
Row Banding

In a grid with many rows, row banding is enabled by default. If necessary, for
aesthetic reasons or to avoid classes with cell alert colors you may have selected,
you can changed the background and foreground colors used in row banding by
modifying CSS theme properties. For information on CSS themes, including a list
of modifiable modifying CSS themes, see “CSS Themes” on page 221

Cell Appearance

The grid data cells that display the result sets can be customized to display in
different foreground and background colors, and fonts. To control these options,
use CSS themes. For information on CSS themes, including a list of modifiable
modifying CSS themes, see “CSS Themes” on page 221

Chart Appearance
The appearance of charts within Alphablox Analytics applications can be
customized in many ways to meet your users’ particular needs. A few of the
commonly changed ChartBlox properties, chartType, depthRadius, and
chart_color_series are discussed here.

Chart Types

The most frequently changed property on a ChartBlox is chartType., which
defaults to Vertical Bar, Side-by-Side, 3D Effect. ChartBlox has many
other chart types available to cover almost every user’s needs, but four of the
most commonly used chart types are Bar, Line, 3D Bar, and Pie. You can either
use these short names or their full chart type names in the chartType property
setting. For a complete listing of valid names for all of the supported chart types,
see the ChartBlox Reference section of the Developer’s Reference for the DHTML
Client. The following table lists the four available chart shortcut names and their
full chart type names:

Shortcut Name Full Chart Type Name

Bar Vertical Bar, Side-by-Side

3D Bar 3D Bar

Line Vertical Line, Absolute

Pie Pie
CHAPTER 14
Presenting Data

../index.html?context=reference&topic=ReferenceBook
../index.html?context=reference&topic=ReferenceBook

PresentBlox Appearance 233
Task: Adding 3-D Appearance to Charts

The default chartType property for ChartBlox is Vertical Bar, Side-by-
Side, 3D Effect, which results in a two-dimensional bar chart with a slight 3-
D effect. A standard bar chart (Bar or Vertical Bar, Side-by-Side) or line
chart (Line or Vertical Line, Absolute) is flat and two dimensional, but by
setting the depthRadius property, you can add a subtle 3-D effect of your own
choice to the these charts, giving them a different look. To add a subtle bit of
depth to the flat bar and line charts, combine the depthRadius property along
with the chartType property, for example like this:

<blox:chart ... chartType="Bar" depthRadius="5" .../>

Acceptable values for depthRadius are integers between 0 and 100. The
depthRadius setting will also affect the appearance of other 2D charts.

Chart Colors

The chart colors used to create the lines, bars, and pie slices can be set based on
the CSS theme being used. To specify chart colors other than the default colors
used in a particular theme, you can define your own chart color series, consisting
of 18 different colors. To specify a different color series to be used in a theme,
open the themeName.properties file (e.g., coleman.properties), found in
the following directory:

<alphabloxRepository>/theme/themeName/

Find the chart_color_series property and redefine the 18 colors used to
define colors. Chart colors are specified using hexadecimal code (e.g., #E0CB68),
like the values commonly used in web pages.

PresentBlox Appearance

Split Panes

By default, the PresentBlox instantiates displaying two panes, one with a grid and
the other with a chart. The splitPane property, by default set to true, allows
users to view their data in tabular and graphical representations simultaneously.
Also, as a user interacts with the data in one pane, the other pane is
simultaneously updated to reflect those changes. For example, when the user
drills down on the data in the chart, the grid pane reflects the new result set.
DB2 Alphablox
Developer’s Guide for the DHTML Client

234 PresentBlox Appearance
With split panes available, the divider is set to vertical by default. When more
than a few items will appear on the y-axis of your graph, you may want to
consider changing dividerLocation to horizontal, displaying both the grid
and chart across the full width of the PresentBlox. Frequently, when using a
horizontal setting, you may also find that the chart looks better when it appears
above the grid. This can be specified by setting the chartFirst property to
true, overriding the default.

Due to a lack of available screen space, or because the data density of the initial
result set may make the initial graph unreadable, you may think it would be better
to set splitPane to false. While this is a reasonable choice, you may want to
consider leaving the split pane option available to the user (consider that this
particular option cannot be changed in any of the available Toolbar options), but
change the initial display location of the split pane divider, setting it to one side
but leaving it available.

The dividerLocation property allows you to set the initial location of the
splitter bar. The acceptable values range from 0 to 1, with value of 0 meaning that
only the display on the right (or bottom, depending on the
splitPaneOrientation setting) should appear, and a value of 1 meaning that
only the display on the left (or top) should appear. Try a few different settings to
see if it makes sense to change it from the default value of 0.5.

For complete information about the splitPane, splitPaneOrientation,
dividerLocation, and chartFirst properties, see the PresentBlox Reference
in the Developer’s Reference for the DHTML Client.

DataLayout

By default, the DataLayoutBlox, or DataLayout panel, is available, but not visible
to end users. For analytic views where you will have mostly advanced users, you
may decide that you want to have the DataLayout panel visible when a
PresentBlox loads. To make the DataLayout panel visible when the PresentBlox
loads, you need to set the nested DataLayoutBlox’s visible attribute to true, as
in this example:

<blox:present id="myPresentBlox">
...
<blox:dataLayout visible="true"/>
...

</blox:present>
CHAPTER 14
Presenting Data

PresentBlox Appearance 235
If you do not want the DataLayout panel to be available to users, for example if
you expect only casual users to view and use a PresentBlox, you can disable the
DataLayout panel by setting the PresentBlox dataLayoutAvailable attribute to
false. This will automatically result in the DataLayout button not appearing on the
toolbar. The following code snippet shows the proper usage of this property:

<blox:present id="myPresentBlox"
dataLayoutAvailable="false">
...

</blox:present>

The availability of the DataLayout panel is determined by the PresentBlox
dataLayoutAvailable property setting, and is an attribute on the
<blox:present> tag. The visibility of the DataLayout panel is a property of the
DataLayoutBlox object itself and is thus controlled using the visible attribute
of the <blox:dataLayout> tag.

Menubar

The menubar is the text-based menu appearing at the top of Blox, automatically
incorporating relevant menus based on whether the Blox is a GridBlox,
ChartBlox, or PresentBlox. By default, the menubarVisible tag attribute of the
<blox:grid>, <blox:chart>, and <blox:present> is set to true. To remove
the menubar from one of these Blox, add the menubarVisible tag attribute to the
Blox tag and set the value to false.

Other than displaying or not displaying the menubar, there are no tags or tag
attributes to control its appearance. Advanced developers can use the Blox UI
model’s extensibility to uniquely customize the menubar.

Toolbar

By default, the toolbar is available to users on a PresentBlox. There are a couple
of common appearance settings that are frequently modified by developers. The
toolbar is considered always available, but can be set to not be visible to users
using the visible attribute of the ToolBarBlox tag.
DB2 Alphablox
Developer’s Guide for the DHTML Client

236 Data Appearance
If you decide to keep the toolbar visible, you may still choose to disable, or
remove, some of the toolbar buttons. To remove buttons from the toolbar, use the
removeButtons property of the nested ToolbarBlox to remove any buttons you
decide are unwanted. For example, the following example shows the Help would
be removed from a ToolbarBlox:

<blox:present ...>
<blox:toolbar removeButtons="Load,Save,Help"/>

</blox:present>

 Note that you must remember to add Load and Save to the
removeButtons tag attribute since they are included in the default value
string for this property. If you forget to add them to the string, the Load and
Save buttons will appear in the toolbar.

Data Appearance
When you retrieve result sets from a data source, the data may either be returned
preformatted or not. Once the results are retrieved into an Alphablox Analytics
application, you have several options for controlling the appearance and
formatting of data. Using DataBlox properties, you can suppress rows or columns
with zeros, missing data (or null values), duplicate data, or data that a user does
not have access rights to. In a GridBlox, you can format the numbers, including
symbols ($, %, etc.) or groupings (showing commas or periods). Also, in a
GridBlox, you can display numbers in thousands, millions, or whatever grouping
you find appropriate for your data.

GridBlox Properties

Three GridBlox properties are useful for changing the formatting of data values,
and thus your data’s appearance on grids, include defaultCellFormat,
cellFormat, and formatMask. In the following tasks, you’ll learn how to use
these format mask properties to solve some frequently encountered tasks. For
complete details on the use of these properties, see the GridBlox Reference in the
Developer’s Reference for the DHTML Client.

Task: Formatting Values in Thousands and Billions

A common request from end users is to get rid of unnecessary noise in the data by
eliminating, or essentially rounding out, irrelevant numbers. If a user is working
on a budget that is many thousands of dollars, then seeing the cents and even
dollars may not be of any use, and will occupy unnecessary space in the data
CHAPTER 14
Presenting Data

../index.html?context=reference&topic=ReferenceBook

Data Appearance 237
cells. As a developer, you can help this user out by changing the
defaultCellFormat property of the GridBlox. For example, to display all grid
values in thousands you have two options. To display the value in thousands
followed by a “K,” representing thousands, enter the following setting:

defaultCellFormat="#,###K"

The K in the value tells Alphablox Analytics that you want the numbers in
thousands, but to append a K to the end of the value.

While the K indicates that the value is displaying in thousands, many users prefer
not to see the K in every field. To display the grid values in thousands, but without
the K suffix, you can use a feature, available on all format masks in Alphablox
Analytics applications to calculate the numbers in thousands by entering the
following setting:

defaultCellFormat="#,###/1000"

In some situations, you may want to display a special character at end, for
example a “B” for billions. To add a “B” to the end of this value, modify the
previous setting to show:

defaultCellFormat="#,###/1000�B�"

For details on use of defaultCellFormat and other format mask properties, see
the GridBlox Reference in the Developer’s Reference for the DHTML Client.

Task: Displaying % For a Specific Member

When using the GridBlox defaultCellFormat property, the entire grid of
values is affected. Frequently, you will want to limit the formatting of values to a
particular row or column, or use the defaultCellFormat property for all data
values except for those for a particular member. To limit number formatting to a
specific member, affecting only a single row or column, you can use the
cellFormat property. Unlike the defaultCellFormat property, cellFormat is
an indexed property and requires the use of its own Blox tag. Because it is a
separate tag and represents a GridBlox property, the cellFormat tag must be
nested within the body of a GridBlox tag. Here is a code snippet showing what a
cellFormat tag would look in a non-nested GridBlox if you only wanted to
display your Variance % values with the percent symbol (%) after each value for
that member:

<blox:grid id="myGridBlox">
<blox:cellFormat

format="#,###.00%"
DB2 Alphablox
Developer’s Guide for the DHTML Client

../index.html?context=reference&topic=ReferenceBook

238 Data Appearance
scope="{Scenario: Variance %}" />
</blox:grid>

In this example, Variance % would show values in percent to two decimal places.

Task: Controlling the Behavior of Decimals

While it may not be immediate obvious to you how decimals affect the
appearance of your data, here’s an example where data display makes the
readability of a grid more difficult. In the following grid, notice how the numbers
in the column do not line up in a row with any of the value places appearing in
alignment:

7.654

3.21

43.21

543.2

3

3.2
CHAPTER 14
Presenting Data

Data Appearance 239
As you notice, even in this small sample of numbers, it is difficult to compare
values since you have to mentally try to line up the numbers based on the decimal
location. You can define format masks so that all of the decimals on these values
line up in the column. For example, you could have the Variance % column up
using a cellFormat tag, like this:

<blox:cellFormat
format="#,###.000"
scope="{Scenario:Variance %}"/>

The Variance % column would now display data like this:

As you have learned in this example, the appropriate format mask will make your
data more readable, more meaningful, and better looking. Format masks can also
be used to display negative values in parentheses or in red, display currency
symbols, and percentage symbols. See the GridBlox Reference in the Developer’s
Reference for the DHTML Client for other format mask options.

7.654

3.210

43.210

543.200

3.000

3.200
DB2 Alphablox
Developer’s Guide for the DHTML Client

../index.html?context=reference&topic=ReferenceBook
../index.html?context=reference&topic=ReferenceBook

240 Data Appearance
CHAPTER 14
Presenting Data

15
Highlighting and Commenting on

Information

How can you call attention to information that differs in some significant way
from the rest of the data? Commonly referred to as “exception reporting” or
“traffic lighting,” a common goal is to alert users to information that may be
important to make decisions upon. This chapter discusses the use of Alphablox
Analytics cell alerts and information links to solve this problem. Cell alerts can
be used to highlight information by changing data cell styles, and can also be used
to show links based on some criteria. Information links, including header and cell
links, can also provide a way to highlight cells, leading users to more information.

The ability for users to add and view comments on specific data in a grid is
another powerful way to highlight information. A section in this chapter covers
how to use CommentsBlox to add this feature your applications.

242 Overview
Overview
Along with access to the wealth of information stored within your company’s
databases comes the problem of how to help users find important information
quickly. Alphablox Analytics developers can use techniques such as cell alerts
and hyperlinks on grids to either highlight information based on some business
criteria or to link users to further information relevant to the application they are
using. In the following sections, you will learn how to use cell alerts, cell links,
and cell alert links to bring attention to important or ancillary information.

The ability for users to add and view comments on specific data in a grid is
another powerful way to highlight information. In this chapter, you will also learn
about how to enable users to add and display comments (or annotations) to data
cells in multidimensional databases.

Using Format Masks to Highlight Data
Negative values in a grid show minus signs in front of the values by default. As
an alternative, you can use the defaultCellFormat or other format mask
properties to display negative values with parentheses around them or in red. Like
Microsoft Excel, format masks in Alphablox Analytics applications can be used
to display negative values in red.

Task: Highlighting Negative Values in Red

To highlight all negative values on a grid in red, set the defaultCellFormat
using one of the format masks that will display negative values in red. All values
are formatted according to the values in the cellStyle, which by default
displays all values in black.

In the following example, the positive values will display all values with two
decimal places and groupings will be separated with commas. All negative values
(indicated by the format mask to the right of the semicolon) will show the same
formatting as the positive values, except that these values will be red:

<blox:grid ...
defaultCellFormat="#,###.00;[red]#,###.00"

</blox:grid>

If you only wanted negative values for specific members to be displayed in red,
you would need to use the cellFormat property. In the following example, the
negative values for the member Actual will be displayed in red:

<blox:grid ...>
<blox:cellFormat

format="#,###.00;[red]#,###.00"
CHAPTER 15
Highlighting and Commenting on Information

Using Cell Alerts to Highlight Data 243
scope="{Scenario:Actual}"/>
</blox:grid>

For details on the use of defaultCellFormat and cellFormat properties, see
the GridBlox section of the Developer’s Reference for the DHTML Client.

Task: Highlighting Negative Values with Parentheses

Another alternative, which reflects a common practice in the financial
community, is to display negative values within parentheses (but without minus
signs). While this is a common number formatting practice, it also may help call
attention to negative values in a grid. In the following example, negative values
will be surrounded by parentheses:

<blox:grid ...
defaultCellFormat="#,###.00;(#,###.00)"

</blox:grid>

If desired, you can combine these two highlighting methods. The following
setting will result in negative values being displayed within parentheses and in
red:

<blox:grid ...
defaultCellFormat="#,###.00;[red](#,###.00)"

</blox:grid>

For details on the use of defaultCellFormat and cellFormat properties, see
the GridBlox section of the Developer’s Reference for the DHTML Client.

Using Cell Alerts to Highlight Data
Analyzing information is difficult enough to do without having to carefully
scrutinize all of the numbers in a large grid to spot deviations or trends that
warrant further attention. If an analyst misses an important deviation in even a
single value, it could have costly consequences for a company. Since time is
scarce, anything that can be done to speed up their work yet help keep them from
missing important changes will be a productivity boost. Many analytic
applications, including flash reports and executive scorecards, use exception
reporting or traffic lighting to signal that attention needs to be given to some data.
Alphablox Analytics supplies Blox properties and methods that can be used to
highlight this critical information.

In Alphablox Analytics applications, the GridBlox cellAlert property can be
used to highlight important information that users might be interested in being
alerted to:

• significant deviations from expected values
DB2 Alphablox
Developer’s Guide for the DHTML Client

244 Using Cell Alerts to Highlight Data
• negative values, pointing out potential profitability issues
• ratios that are out of bounds from acceptable ranges

Two ways of using the cellAlert property to highlight information will
discussed below: cell formatting and cell alert links.

Cell Formatting

Depending on the application you are working on, it might be a user requirement
for you to perform “traffic lighting” on values based on some business logic.
Traffic lighting is a catch-all phrase used to describe a form of exception
reporting in which different ranges of values are highlighted to users using
something as simple as the red, yellow, and green light metaphors of the real
traffic lights you encounter when driving your car around town. Traffic lighting is
an easy-to-comprehend technique that uses knowledge from one domain of life
(driving a car or walking across a street) to another domain— business
intelligence. A typical application of traffic lighting in an analytic application is
to highlight the backgrounds of data values according to some criteria that are
commonly reflected in the three standard traffic light colors. The following table
lists the three standard traffic light colors and describes their commonly used
meanings:

The following task explains how you can create a simple traffic lighting reporting
system to alert your users to important changes in their data.

Task: A Simple Traffic Lighting Reporting System

There are many possible variations possible in creating a traffic lighting
notification system for reporting. Earlier in this chapter, you learned about how
you could use the GridBlox defaultCellFormat or cellFormat properties to
highlight negative values in a grid. While this is a good solution for many
situations, there will be instances when negative values are actually “good”
values, so highlighting them in red using format masks may not work. The
GridBlox cellAlert property allows you to customize alerting by

Background Color Description

Red Dangerous levels, values which should be of major concern
to users.

Yellow Values are not within acceptable, or desired, ranges and
could merit attention.

Green Acceptable values that are “safe” or “good” ranges and do
not necessarily need attention.
CHAPTER 15
Highlighting and Commenting on Information

Using Cell Alerts to Highlight Data 245
• background colors of cells
• data value styles, including font and color
• cell links that appear when criteria are met

For complete details about all attributes that can be used with the cellAlert
property, see the GridBlox section of the Developer’s Reference for the DHTML
Client. Follow these steps to create a simple traffic lighting system for a member
on a grid:

1 Pick the member on which you want to highlight ranges of values.

In this example, the member on which traffic lighting will be done is Variance %.
While three columns (Actual, Forecast, Variance, and Variance %) will appear in
the grid, only the Variance % member will display background colors indicating
levels of concern.

2 Add a <blox:cellAlert> tag to define values that should appear with red
backgrounds.

<blox:cellAlert
scope="{Scenario:Variance %}"
condition="LT"
value="0"
background="red">

</blox:cellAlert>

3 Add a <blox:cellAlert> tag to define values that should appear with
yellow backgrounds.

<blox:cellAlert
scope="{Scenario:Variance %}"
condition="between"
value="0"
value2="10"
background="yellow">

</blox:cellAlert>

4 Add a <blox:cellAlert> tag for values that should appear with green
backgrounds.

<blox:cellAlert
scope="{Scenario:Variance %}"
condition="GT"
value="10"
background="green">

</blox:cellAlert>

5 Run your report.
DB2 Alphablox
Developer’s Guide for the DHTML Client

246 Using Cell Alerts to Highlight Data
Example: To see a working example of this reporting system, see the Traffic
Lighting example in the Highlighting Data section of Blox Sampler.

When you use traffic lighting and exception reporting, here are a few important
points to keep in mind:

• Be careful that ranges cover all values. For example, if you have values
greater than zero appearing in green and values less than zero appearing in
yellow, then when the value is zero, no highlighting will occur.

• For extremes, unless there are fixed limits on the range of values, consider
using GT or GTEQ on one end of your range and LT or LTEQ at the other
end of the value ranges. This prevents having to perform extra maintenance
later, if values exceeded predefined ranges.

• Color schemes used in row banding, generation styles, and cell styles can
interfere with your cell alerts, causing an important alert to be missed. For
example, if your default row banding displays alternate row backgrounds in
yellow, and an alert is also using yellow as its background color, a user
would most likely miss the alert.

• Color schemes used in alerts can affect the results of printed pages. Cells
with red backgrounds, depending on the printer, may turn black or very dark
on printing, obscuring the value in those cells.

• Online readability of cells with alerting background colors may be difficult
because of the low contrast between the value color and the background
color. Black values with red backgrounds can be particularly difficult to read.
And, keep in mind that variations in colors and color contrasts can vary from
monitor to monitor.

Cell Alert Links

In addition to changing the appearance of a cell as the result of a match with a cell
alert’s criteria, you can also define a link that will appear when certain criteria are
met. For example, when a particular value matches your conditions, then you may
want to pop open a text window saying something about that value, and why the
cell alert applies in this case.

Task: Creating an Alert Message for a Cell Alert

In this task, the goal is to pop open a text window when a user clicks on the link
icon for a cell. Here are the steps to follow:
CHAPTER 15
Highlighting and Commenting on Information

Using Cell Alerts to Highlight Data 247
1 Create the window that will be popped up for the alert.

For example, your window might be a simple HTML window with a short
message, no navigation elements, and a Close Window button. It might look like
this:

<html>
<head>
<title>Alert Message</title>
</head>
<body>
Your alert message here
</body>
</html>

In this example, assume that the file is saved as alertMessage.html.

2 Nest a GridBlox cellAlert tag within the GridBlox tag.

<blox:grid id="myGridBlox"
 ...>
<blox:cellAlert

condition="LT"
value="0"
link="http://<serverName>/<appName>/notes/

alertMessage.html"/>
</blox:grid>

 Links used within cellAlert tags should be either absolute URLs,
showing the entire path to the page, or a relative URL (including an initial
forward slash) from the application context. When the link is an absolute URL, it
must include the server name in the URL. The following two examples are both
valid:

link="http://<serverName>/<appName>/notes/alertMessage.html"
link="/notes/alertMessage.html"

In the URL above, serverName must be the server in which your Alphablox
Analytics application is running.

3 Test your application page.
DB2 Alphablox
Developer’s Guide for the DHTML Client

248 Information Links
 When used in conjunction with cell links, you need to be aware that cell
alerts take precedence over cell links when images are included in both. If a cell
alert applies to a data cell, and there is also a defined cell link with an image or
image alignment defined, the cell link will not appear. However, if you have a cell
alert that does not include a link or an image, then both will be applied.

Information Links
In analytic applications, there may be times when you may need to include links
to more information about the data within your grids. Links can serve many
different uses, including:

• links to more information about a heading

• links to information about a particular cell

• links to alert information on a cell, based on business logic

In Alphablox Analytics, there are three types of information links available:
header links, cell links, and cell alert links. The following table lists the
advantages and disadvantages of each of these link types:

Link Type Summary of Uses

Header Links • Links appear to the right of dimensional members
when they appear in row or column headers

• Defined in the application definition page of the
Alphablox Analytics Admin pages

• Always visible when member has an associated
link

• Only one icon image available for all header links

Cell Links • Links can be defined using scope.
• Defined using GridBlox cellLink property
• Different images can be defined based on

cellLink
• Can result in opening of information window or

can trigger execution of JavaScript function
CHAPTER 15
Highlighting and Commenting on Information

Information Links 249
See details about the use of each of these information link types below.

Header Links

Header links are application-specific information links you can define to display
web pages or trigger JavaScript functions when a user clicks on an information
icon (represented as a blue circle with a white “i” within it) appearing next to a
row or column member in a grid. Header links only appear in the headers for
members which have been defined in the Header Links text box of the application
definition page.

To add a header link for a specific application, open the application definition page in
the Alphablox Analytics home page. Near the bottom of the page is the Header Links
text box, where you can define header links using the following syntax:

memberName = URL

where the memberName is the unique member name defined in your data source
and URL is either an absolute URL, showing the entire path to the page, or a relative
URL (including an initial forward slash) from the application context. When the link
is an absolute URL, it must include the server name in the URL. For example, to
create an information link to a product page for Diet Cola, the following header
link definition might be used:

Diet Cola = http://productServer/products/dietcola.html

or

Diet Cola = /<pathTo>/dietcola.html

 JavaScript protocol methods are not supported.

Cell Alert Links • Defined as part of the cellAlert property
• Can be used in conjunction with cell links, but if

images appear in both, cell alert links take
precedence

• Can be used to appear based on conditional logic
or scoping

• Can result in opening of information window or
can trigger execution of JavaScript functions

Link Type Summary of Uses
DB2 Alphablox
Developer’s Guide for the DHTML Client

250 Information Links
Cell Links

Just as header links can be used to place links in the row and column headers, the
GridBlox cellLink property can be used to define hyperlinks on data cells.
Unlike header links, cell links can also be used to invoke a JavaScript method
using the JavaScript protocol method. Cell links, like other indexed properties,
are evaluated according to their index values, which are either dynamically
generated at run-time or defined by the developer.

The number of the cell link dictates the order in which it is evaluated, starting
with the cellLink with an index value of 1. The first defined cell link that
matches the cell's condition and scope is the only link applied to that cell. Be sure
to consider possible overlaps when defining cell links. Also, cell alert links take
precedence over links created using cellLink. That is, if there is a cell alert link
and a cell link defined for a particular data cell, the cell alert link will appear in
the cell, but the cell link will not.

It is possible to have both cell alerts and cell links on the same data cell, but if
both have image elements (image, image_align, or link) defined, the cell alert
link will take precedence over the cell link— only one icon and link can be
available on a cell and cell alerts (with a link) are assumed to be more important
than a cell link.

Here is an example of a cell link property tag, which is nested within a GridBlox
tag:

<blox:grid id="cellLinkGridBlox">
<blox:cellLink
scope="{Scenario:Variance %}"
description="Opens information window"
link="/<applicationDirectory>/links/Manhattan.html"/>
<blox:data dataSourceName="QCC-Essbase"

query='<ROW("All Products") "All Products" '+
'<COLUMN(Scenario) <CHILD Scenario '+
'<PAGE("All Locations") Manhattan Sales !'/>

</blox:grid>

The cell link defined above would appear only in the Manhattan data cell under
Variance %. The page that would be opened is located in the links sub-directory
in the application folder.

The specified URL can either be an absolute URL, showing the entire path to the
page, or a relative URL (including an initial forward slash) from the application
context. When the link is an absolute URL, it must include the server name in the
URL. In the example above, <serverName> represents the server, and
<applicationDirectory> represents the name of the application directory where
the file is located.
CHAPTER 15
Highlighting and Commenting on Information

Information Links 251
See the Developer’s Reference for the DHTML Client for details about the syntax
and usage of the cellLink property and its associated methods getCellLink()
and setCellLink().

Cell Alert Links

As described in “Cell Alert Links” on page 246, a cellAlert can also display a
link. The combination of both links created with the cellAlert property and
links created with the cellLink property provide you with different alternatives
on how to highlight information your users may want to know.

Another option is to extend the user interface to get multiple images on a cell by
using the UI Model’s extensibility.

For details about both cellAlert links and links created with cellLink, see the
GridBlox Reference section of the Developer’s Reference for the DHTML Client.
DB2 Alphablox
Developer’s Guide for the DHTML Client

252 Adding Comments to Cells to Grid Data Cells
Adding Comments to Cells to Grid Data Cells
The sharing of information within an organization frequently involves
commentary on data, but often these comments get lost in e-mail messages or
elsewhere. Incorporated into Alphablox Analytics is the ability to add these
important comments to a commentary database and view them in the context of
user analysis. Using this feature, users can view comments associated with
particular data cells by retrieving comments on those cells, or by viewing
comments in separate listings on an application page.

There are two types of comments supported using CommentsBlox components,
cell-level comments and named comments. Cell level comments are comments
attached to a specific data cells and displayed in a grid. They can be defined over
a set of dimensions. Named comments are comments have string addresses that
can be used to define the scope of the comments.

If comments have been added for a data cell in a grid and the grid has been
comments-enabled, a comments indicator will appear. By default, the comments
indicator is a small red triangle appearing in the upper right corner of data cells
that have comments associated with them. When a user right-clicks on cells with
comments indicators, a Comments option appears in the context (right-click)
menu. Two submenu options are availabe, Add Comment for allowing users to
add new comments to the selected cell and Display Comments for allowing users
to view available comments on the selected cell.

 To use the Comments Management Dialog, you need to have rights for
creating and dropping relational tables. For using the CommentsBlox API in
developing custom commentary applications, you may need rights for selecting,
inserting, updating, deleting, creating, and dropping tables.

Key Terms

Key Terms Description

Comments Collection A repository for a group of comments for a single
multidimensional cube. Stored in a relational
database.

CommentsBlox Represents the comments collecition on a page.
Includes a set of tags which are nested within a
DataBlox.
CHAPTER 15
Highlighting and Commenting on Information

Adding Comments to Cells to Grid Data Cells 253
Elements of a Comment

An individual comment has the following parts:

CommentsSet A group of comments that exist for a single data
cell or with the same address or name. Includes all
comments that have one scope or address (e.g.,
comments for Product:100, Year:Qtr1,
Scenario:Actual).

Key Terms Description

Comment Element Description

Author Required. The author of the comment. By default, this field
is set by Alphablox Analytics at the time of comment
creation to the currently logged in user.

Timestamp Required. The time the comment was created.
Automatically set by the server when the comment is first
saved to the comment set.

Comment Text Required. The text of the comment, which can include
hyperlinks and could even formatted text (using HTML). No
limit on text size.

Custom fields To provide maximum flexibility, you can define additional
custom fields for the comments in a comment set.
Examples: subject, importance, cell value.
DB2 Alphablox
Developer’s Guide for the DHTML Client

254 Adding Comments to Cells to Grid Data Cells
Defining a Comments Collection

To define a comments collection, you need to create a relational data source. This
data source can hold multiple collections. Two steps are required to create a
comments collection:

1 Create a data source and defined it on the Alphablox Analytics data source
definition page.

Address Each comment has an address. For cell level comments, the
address will be a list of <dimension, member> that uniquely
identify the cell to which the comment is attached. For
named comments, the address is simply a string whose
meaning is defined by the developer. For example, a set of
Blox-level comments might have an address that consists of
the name of the Blox to which the comments are associated.
For an application-level comment, the address might be the
name of the application. Assemblers can use this string to
define a namespace for comments as well as to assist in
personalization capabilities.

Cell level comments may have an addressing scheme that
incorporates a subset of the dimensions in a particular cube.
Dimensions not included in the collection's definition are
considered 'nops' -- that is, they are ignored. As an
example, if your cube contains three dimensions, Time,
Measures and Product, and you define that comments in
your current collection are specified using values of Time
and Measures, then any comments that are defined apply for
any value of Product. Generally, you should include all
dimensions in the comments definition that might be
manipulated as part of the report.

This addressing scheme for cell level comments serves two
purposes. First, it makes administration of comments
easier, especially in larger outlines. Second, it makes it
easier to share comments across cubes and data sources. A
comment set defined over Product, Time and Measures may
be applicable over a number of data sources, while a
comment set defined over an every dimension in an outline
runs the risk of becoming cube and data source specific.

Comment Element Description
CHAPTER 15
Highlighting and Commenting on Information

Adding Comments to Cells to Grid Data Cells 255
2 Create the comments collection repository.

To define a comments collection, open the Alphablox Analytics Admin Pages,
then click on Administration tab. In the menu on the left, under Runtime
Management, click on Comments Management to open the Comments
Management window.

A collection requires a collection name, selected dimensions from a cube and the
creation of fields to be used. The author, timestamp, and comment text fields are
automatically defined, but custom fields can also be created.

Help on configuring a comments collection is also available in the Comments
Management window.

Enabling Cell Comments

To enable comments on data cells in a grid, you need to follow these steps:

1 In a standalone or nested GridBlox, add the commentsEnabled attribute and
set it to true.

2 In the standalone or nested DataBlox for the grid above, add the CommentsBlox
tag, specifying the collectionName and dataSourceName attributes for your
comments collection. The data source and the collection names are defined using
Comments Management under Administration tab of the Alphablox Analytics
Admin Pages.

Here is an example of what a PresentBlox enabled to support comments would
look like:

<blox:present id="myPresentBlox">
<blox:grid

commentsEnabled="true" />
<blox:data

dataSourceName="QCC-Essbase"
query="<%=query%>">
<blox:comments
collectionName="sales_comments"
dataSourceName="CommentsCollection" >

</blox:comments>
</blox:data>

</blox:present>

Once this has been done, users can right-click on data cells and add or view
comments. No other steps are required by developers for basic comments support.
DB2 Alphablox
Developer’s Guide for the DHTML Client

256 Adding Comments to Cells to Grid Data Cells
Custom Comments Support

The ability for users to add their own comments and view the comments of others
is a powerful collaboration and information sharing mechanism. Out-of-the-box,
enabling comments is easy to configure and use. But, the power and flexibility of
the CommentsBlox capabilities allow developers to customize the use of
commenting. Below are a couple of examples of potential customizations that can
further enhance your applications using CommentsBlox.

 For details about the syntax and usage of CommentsBlox, see the
CommentsBlox Reference section of the Developer’s Reference for the DHTML
Client.

General Comments on a Page

Sometimes, users may prefer to be able to add comments about a particular topic
or a particular analtyic view without having to associate those comments with a
particular data cell. This can easily be accomplished using the CommentsBlox
tags and server-side Java API. Under the Commenting on Data section of the
Blox Sampler application, the General Comments on a Page example shows an
example of allowing general comments, appearing below a grid, to be added and
viewed in a separate comments window.

Printing Comments in a Grid

Users may also want to be able to print out all of the comments associated with a
particular grid. The Printing Comments in a Grid example, included in the
Commenting on Data section of Blox Sampler , includes a button which will open
a new browser window and display all of the comments in the grid.
CHAPTER 15
Highlighting and Commenting on Information

16
Interacting with Data

This chapter focuses on user behavior and interactivity with Blox. Primary issues
discussed include how Blox behavior can be controlled and modified, basic
techniques used to limit behavior, and how you can capture user actions and
control interactivity and actions.

Interactivity Considerations
The interactive, visual presentation Blox enable users to manipulate the views
presented to them, drilling down or up in the data, changing chart types, and
many other options. Depending on your applications, your audience, and their
skill levels, you may decide you want to exclude or limit the control of the
applications. The following subsections discuss issues to consider when limiting
interaction with Blox.

Limited or No Interactivity

If your users only require a simple view of important data, and are not interested
in manipulating the data for deeper analysis, a GridBlox, ChartBlox, or
PresentBlox will be fine. You may even consider displaying a slice of data in a
Blox view that offers no interactivity.

To prevent interactivity with a Blox, for example, you can add the Blox UI
component tag (<bloxui:component>), setting the clickable tag attribute to
false. For example, the following code shows the use of a nested
<bloxui:component> tag to generate a PresentBlox with user interaction
disabled:

<blox:present id="myPresentBlox"
width="80%" height="70%" menubarVisible="false">
<blox:toolbar visible="false" />
<blox:data bloxRef="dataBlox" />

258 Interactivity Considerations
<bloxui:component name="myPresentBlox"
clickable="false" />

</blox:present>

Disabling interactivity may be the best solution for users who are either “too
busy” to drill into data or are not interested in learning how to manipulate data.
Upper management executives in your company, for example, may only be
interested in seeing snapshot views of how the company is doing, leaving detailed
analysis to business or financial analysts.

The following task shows how you can either disable an entire Blox or selected
Blox nested within another Blox.

Task: Disabling Pivoting and Drilling on Columns

In the Blox UI Tags section of Blox Sampler, the butterfly report example
includes an event filter to prevent users from pivoting or drilling on columns.
Both of these user operations would result in the displayed asymmetric report no
longer displaying properly. To prevent users from getting themselves into a
situation that is confusing and difficult to get back out of, you can add an event
filter, using the UI Model, that traps a user’s attempts to pivot or drill keeps the
view usable.

The following code snippet shows an event handler used on the grid to prevent
pivoting and drilling on columns:

<%
GridBloxModel model =

butterflyReportGridBlox.getGridBloxModel();
model.populateDataNavigationButton();
model.getGrid().getController().addEventHandler(

new IEventHandler() {
public boolean handleGridDataActionEvent(GridDataActionEvent

event) throws Exception {
GridBrixCellModel cells[] = event.getGridCells();

// If any of the cells is a header cell, then ignore the data
action

for (int i=0; i < cells.length; i++)
if (cells[i].isColumnHeader())
return true;
return false;

}

CHAPTER 16
Interacting with Data

Interactivity Considerations 259
});
%>

For the entire code example, see Blox Sampler.

For details about using event handlers with the DHTML extensibility capabilities
of the Blox UI Model to customize application like this example, see “Events” on
page 132.

Modifying Interactivity Using Blox Properties

User interaction can also be controlled using Blox properties and methods. When
the Toolbar, DataLayout, and Page panels are enabled on data presentation Blox,
users can interact more with the data. You may find that while this helps some
users, others will quickly become lost in the data, especially if they are not
familiar with the structure of the data. Besides the techniques described above
using the <bloxui:component> tag and Blox visible attributes, you can also
use other Blox properties to tune the interactivity of your views, enabling some
panels and not others, limiting the number of ways a user can get into a confusing
situation. And, using personalization techniques, you can use server-side Java,
JavaServer Pages, and JavaScript methods to customize interactivity based on the
user login.
DB2 Alphablox
Developer’s Guide for the DHTML Client

260 Interactivity Considerations
The following table lists some of the commonly used Blox properties that can
affect user interactions with the data:

Blox Property (or Associated Methods)
Description and
Comments

GridBlox cellAlert Cell alert links can
be used to open an
information
window or invoke a
JavaScript function

cellLink Cell links can be
used to open an
information
window or invoke a
JavaScript function

expandCollapseMode Enables Windows
Explorer-like use of
plus and minus
icons to drill up and
down in grid

writebackEnabled Allows authorized
users to enter data
directly into grid
based on scoped
cells
CHAPTER 16
Interacting with Data

Interactivity Considerations 261
 Changes in interaction behavior resulting from property changes can result in
users becoming confused or surprised when normally familiar behaviors don’t act
as expected. For example, setting the DataBlox drillKeepSelectedMember
and drillRemoveUnselectedMembers to true can be useful at times, helping
users effectively manage the amount of information visible on a grid or chart. An

DataBlox drillDownOption Determines
whether drilling
goes to next
generation, all
descendants,
bottom generation,
siblings, or same
generation

drillKeepSelectedMember Keeps the selected
member that is
being drilled on

drillRemoveUnselectedMembers Removes members
not selected when
drilling

enableKeepRemove Specifies whether
the Keep Only and
Remove Only
options are
available

enableShowHide Specifies whether
the Show Only,
Show All, and Hide
Only options are
available

DataLayoutBlox interfaceType Specifies how users
select dimensions,
either using a drop
lists or a drag-and-
drop tree interface.

ReportBlox See Relational Reporting Developer’s Guide

Blox Property (or Associated Methods)
Description and
Comments
DB2 Alphablox
Developer’s Guide for the DHTML Client

262 Grids
important consideration is that if all views in an application or across multiple
applications do not behave the same way when the user drills, he may become
confused when a particular Blox view behaves differently than all of the others
encountered. One way to help users in situations like this is to clearly note on the
page what the user should expect. Alternatively, radio buttons or check boxes can
be used to allow users to toggle between the two drilling behaviors.

Grids
Grids are available as either a standalone GridBlox or nested within a
PresentBlox. In either mode, users can drill, pivot, sort, and explore their data. A
grid used in a PresentBlox, though, includes some additional functionality not
available in the explicit GridBlox. The following table shows a summary of the
key differences between stand-alone GridBlox and a nested GridBlox:

Since the functionality listed above is available by using a PresentBlox, the
majority of the time you want to give access to users to this functionality.

Charts
Like grids, users can drill up or down in the data being displayed in charts. But,
unlike grids, users may not realize they can interact with charts -- no visual cues,
such as the grid’s up/down arrows or plus/minus icons, exist to help users
understand that they can directly interact with charts. The first time a user might

Functionality Standalone GridBlox
Nested GridBlox (within
PresentBlox)

DataLayoutBlox • Requires
standalone
DataLayoutBlox,
using same
DataBlox

• Made available using
PresentBlox
dataLayoutAvailable

PageBlox • Requires
standalone
PageBlox, using
same DataBlox

• Available by setting
pageAvailable to true

ChartBlox • Requires
standalone
ChartBlox, using
same DataBlox

• Grid automatically
synchronizes with chart

• Chart can be made
available
CHAPTER 16
Interacting with Data

Charts 263
realize they can drill on charts is when they see someone else doing it, or just
happen to try it, or right-click on chart elements and see menu options. Most users
discover that data values and labels will appear when they hover over chart bars
and data points. If necessary, you can use ChartBlox properties, such as
pieFeelerTextDisplay for pie charts and dataTextDisplay for bar charts,
to display values or labels without requiring the users to move their cursors over a
chart element.

Whether a user is accessing an application over the Internet from a remote
location or using it while sitting in an office nearby you, they may not have
received training or know much about your applications and how to use them. As
a developer or application designer, you need to consider how to make analytic
applications as easy to use as possible. If you present them with pages of charts
and no directions, you shouldn’t be surprised to discover that many users will
never interact with your charts, instead just viewing what you present to them. As
you design, consider how you can increase the likelihood that your users will be
successful and learn to use your charts more productively. Adding Help or Tips
buttons to access Alphablox Analytics help or custom help pages will help them
learn what they can do with applications. Alternatively, you could place some
short hints directly on the pages. In some situations, you may find it useful to
place user information directly in footnotes on a chart, using the ChartBlox
footnote property.

Task: Allowing User Control of Generations Displayed

A simple way to add interactivity to a chart is to add the totalsFilter attribute
to a ChartBlox, setting the property to 2. By setting the value to 2, you enable a
totals filter slider panel to appear at the bottom of a chart. Depending on the query
used, users may then be able to control which dimension levels are displayed. In
the following ChartBlox example, the totalsFilter attribute is set to 2:

<blox:chart id="totalsFilterChartBlox"
width="90%"
height="90%"
chartType="Bar"
totalsFilter="2"
title="Truffle Sales for 2001">
<blox:data

dataSourceName="QCC-Essbase"
query='<ROW ("All Products") <ICHILD "All Products"

<COLUMN ("All Time Periods") <DESCENDANTS "2001" Sales !'/>
</blox:chart>

When rendered on a page, two generation selectors will appear on the panel
below the chart. The selector on the left allows users to control the generation
level of the All Products dimension, and the selector on the right allows them to
select the generation level of several time periods in the year 2001.
DB2 Alphablox
Developer’s Guide for the DHTML Client

264 DataLayout Interface
Example: The “Chart totalsFilter Selector Enabled” example under the Interacting
With Data section in Blox Sampler shows the use of the totalsFilter slider panel.

DataLayout Interface
When a DataLayout panel (DataLayoutBlox) is available on a PresentBlox, users
can access it to move dimensions between the Row, Column, and Other (page
filter) axes in order to create the layout of data within grids and charts that they
are interested in seeing. By default, the DataLayout panel displays the dimensions
in drop lists (or selection lists) that allows users to click on a dimension name and
select an option for the movement of the dimension. Alternatively, developers can
set the DataLayout panel to use a drag-and-drop tree interface, more similar to
Windows Explorer in behavior. To explicitly set the interface type for the
DataLayout panel, set the DataLayoutBlox interfaceType attribute to one of
two values, dropLists (default) or tree. The following example shows a
DataLayoutBlox set to display a tree interface:

<blox:present ...>
...
<blox:dataLayout interfaceType="tree" />
...
</blox:present>

 The interface type can only be set by the developer -- there is no user
interface option for users to select this interface option. By default, users will see
the drop list interface.

Interactions Between Grids and Charts
Grids and charts can appear individually using GridBlox and ChartBlox
components, or nested together within a PresentBlox component. When occurring
as standalone Blox, each Blox can use implicit data sources (defined in the nested
DataBlox) or explicit independent data sources (using standalone DataBlox
components). Grid and chart views can also share a common standalone DataBlox
as their data source. This is always the case with the GridBlox and ChartBlox
nested within a PresentBlox.

When GridBlox and ChartBlox components share a common data source (using a
standalone DataBlox), operations on a GridBlox are reflected in the ChartBlox.
Thus, when a user drills down on a member in a GridBlox, a ChartBlox sharing
the same DataBlox, will also perform and display the same drill operation. This
synchronization between grids and charts occurs within a PresentBlox since they
share the same data source.
CHAPTER 16
Interacting with Data

Interactions Between Grids and Charts 265
Header links, cell alerts, cell links, and other GridBlox features are not available
in charts. In order to have both charts and these features, you will probably want
to use a PresentBlox. Also, if a grid is not visible in the PresentBlox view, users
will not see alerts or be able to access grid-based links unless they access them
through the grid component.

Another important point to realize is that the formatting of data is set
independently in grids and charts. Thus, if you want both grids and charts to use
the same formatting of values, you’ll need to remember to set all of the following
Blox properties:

Setting the “No data available” Message in Grids and Charts

When a data source is not available or a result set has not yet been retrieved,
Alphablox Analytics grids and charts will display the following default message
“No data available.”

If the retrieval of a result set takes longer than a user might expect, the default
“No data available” message can be deceiving. While it is true that no data is
available at that moment, if the user waits a while longer, the data will usually
appear. If the retrieval takes more than a few seconds, users may think that the

Blox Property

ChartBlox y1FormatMask
y2FormatMask

GridBlox defaultCellFormat
cellFormat
DB2 Alphablox
Developer’s Guide for the DHTML Client

266 Using HTML Form Elements and FormBlox Components
application is not working properly and try reloading the application or the page,
without waiting long enough for the data to appear. When this could be an issue,
many Alphablox Analytics developers set the noDataMessage to a message like
one of the following:

Please wait for data...

or

Waiting for data...

This may be a good solution, except when there really is no data available. In this
case, the message wouldn’t change to indicate that no data is available. Consider
the implications of your noDataMessage carefully before deciding to modify it,
but frequently the benefit of a clearer message outweighs the likelihood that the
data source will actually not be available. Depending on your application and user
requirements, you may decide to change the message, but keep these
considerations in mind.

To modify the message that appears in grids and charts, add the noDataMessage
attribute to a PresentBlox, GridBlox, or ChartBlox. If the noDataMessage
attribute is added to a PresentBlox, the new message will appear in both the
nested GridBlox and ChartBlox displays. If you would prefer to set the values
separately for the nested GridBlox and ChartBlox, you can set the
noDataMessage attributes on each nested Blox separately. The following settings
on the nested GridBlox and ChartBlox in a PresentBlox will result in the different
messages appearing in a grid and a chart:

<blox:present ...>
<blox:grid noDataMessage="Grid not available"/>
<blox:chart noDataMessage="Chart not available"/>

</blox:present>

If used cautiously, changing the noDataMessage attribute can result in a better
application. For more information on the noDataMessage, see the Common Blox
section of the Developer’s Reference for the DHTML Client.

Using HTML Form Elements and FormBlox Components
Grid and chart views created using PresentBlox, GridBlox, and ChartBlox can
include built-in features such as toolbars, page filters, and contextual (right-click)
menus. If a toolbar is available, the user has options menus available for
modifying charts, grids, and data appearance and behavior. Sometimes, though,
tooo much choice can be overwhelming for novices and casual users. Depending
on your specific needs, the best option may be to offer a limited number of
choices instead. Using a combination of HTML form elements, JavaScript, Java,
CHAPTER 16
Interacting with Data

../index.html?context=reference&topic=ReferenceBook

Using HTML Form Elements and FormBlox Components 267
and the a rich Blox API, you can create custom analytic applications with options
tuned to the needs and skills of your users, or to customize interaction. And, in
Blox Sampler, you will find some examples using HTML form elements (buttons,
checkboxes, etc.) to offer controlled interactivity or options for changing data
views.

Most often, though, a more compelling option may be to use the FormBlox
components, available when using the Blox Form Tag Library, to manage HTML
form elements. Details about the FormBlox components and how to use them are
discussed more thoroughly in “Using the Blox Form Tag Library” on page 99 of
this guide and in the Blox.

Also, Blox Sampler includes many examples of interactivity with Blox controlled
using HTML elements and FormBlox components. In particular, take a look at the
examples in the Using FormBlox and Logic Blox section or the Interacting with Data
section.

In the following subsections, some of the standard HTML form elements and their
FormBlox equivalents will be highlighted.

Selection Lists

Using Blox API properties and methods, PageBlox page filters can be customized
with fixed choice lists (using fixedChoiceLists), virtual roots (using
dimensionRoot), and the Member Filter (using moreChoicesEnabled and
moreChoicesEnabledDefault). Sometimes, though, a PageBlox page filter
can’t solve all of your requirements.

If you turn off the toolbar on a grid and chart views, you can create drop-down
menu items to replace ones no longer available. Hard-coded selection lists let you
offer controlled options for end users while making your analytic views easier to
use. For example, the chart types list available with the Charts button can be
overkill for a particular view, so you could offer a limited subset of chart types in
a selection list. This way users can have some choices in how data is displayed,
while not being offered choices that may not make sense on a particular view.

Cascading selection menus are useful for letting end users select an option from
one list, then offering secondary menu choices based on their selections on other
lists. Creating your own cascading menus using HTMl form elements and
JavaScript can be a major undertaking. But, using the MemberSelectFormblox
available in the Blox Form Tag Library, and with much less coding, you can
quickly create a cascading menu and tie it to a data view. The FormBlox
components used will also handle persistence. That is, during a user’s session, the
dynamically-generated HTML form elements will maintain their selections when
users leave the page and return later. To see this in action, take a look in the Using
FormBlox and Logic Blox section of Blox Sampler, where you can find a
MemberSelectFormBlox example that has three selection lists that change
dynamically based on user selections.
DB2 Alphablox
Developer’s Guide for the DHTML Client

268 Using HTML Form Elements and FormBlox Components
Page filters within a Blox will typically display only members of a dimension in a
prescribed order. But, by moving page filter selections to HTML form elements,
either custom-coded or using the MemberSelectFormBlox, you can create
dynamically-generated page filters that are based on customized queries against
your data sources.

Check Boxes and Radio Buttons

When you do not include a toolbar on a grid or a chart view, you can use check
boxes and radio buttons, either custom-coded or created using FormBlox
components (CheckBoxFormBlox and RadioButtonFormBlox) to give users
choices that are not accessible when the menubar or toolbar is not available. Since
users frequently don’t make their way to various dialog boxes available in the
toolbar, they may not even know that some options are available. Another
advantage of not using the toolbar and menubar on a view is that you can offera
limited set of clear options more visibly on the page. For example, you might
include Suppress Missing and Suppress Zeros check boxes that toggle states
depending on whether the check box is checked or not. Radio buttons are great for
offering options that are not compatible with each other. Blox Sampler has
examples throughout using FormBlox components to manage check boxes and
radio buttons.

Standard HTML Buttons

Standard HTML buttons are useful in applications for executing queries, resetting
queries, and generating views. But these buttons are less desirable for showing
different views, since unless the title changes on the page, a user may not be able
to tell which button they used to get the current view. Using radio buttons can be
a good alternative, since the particular item selected always has the radio button
highlighted.

Text Fields

Text entry fields are not used as often as other HTML form elements in analytic
application, but they can be useful in special situations. Most of the time, fixed
choice options (such as those available with radio buttons, check boxes, and
selection lists) are preferable, since they help prevent misspellings and issues you
can encounter with expected values (e.g. users entering characters instead of
numbers). In some situations, your best or only practical option is to allow users
to enter values on their own. For example, in analytic applications text fields can
be usee to allow users to input data for writeback to a data source or to
personalize applications by setting their own threshold levels on cell alerts. Text
fields and text areas can be used in allowing users to add comments in an
application. In Alphablox Analytics applicaitons, you have the option of either
CHAPTER 16
Interacting with Data

Using Toolbar Buttons 269
using custom-coded HTML text fields or to use the EditFormBlox component to
create text fields for use in your analytic applications. The EditFormBlox has
built-in capabilities of automatically changing properties in other Blox
components.

Using Toolbar Buttons
By default, each Blox with which the user interacts includes a toolbar for
accessing Blox functionality. Alphablox Analytics provides several ways to
create tailored Blox toolbars, which may enhance the user experience. This
section describes the following ways to tailor Blox toolbars:

• “Turn the Menu Bar On” on page 269

• “Turn Toolbar Text On” on page 269

• “Turn Tool Tips Off” on page 269

• “Change to Colored Buttons” on page 270

• “Turn Toolbars Off” on page 270

You can specify the specify buttons to be removed from the toolbar using the
removeButtons property of the nested ToolbarBlox. For details on these and other
ToolbarBlox functionality, see the ToolbarBlox section of the Developer’s
Reference for the DHTML Client.

Turn the Menu Bar On

By default, a text-based menu bar appears above the Blox toolbar. To make it
appear, set the Blox menubarVisible property to true. Unless

Turn Toolbar Text On

By default, each button on the toolbar does not display a descriptive text label. To
turn on this text (thus increasing the display space required for some buttons), set
the textVisible property to true Note that turning on toolbar text results in a
bigger toolbar, which will take more of the Blox area.

Turn Tool Tips Off

By default, a tool tip appears whenever the cursor lingers over a toolbar button,
and is particularly useful when toolbar text is turned off. To turn tool tips off, set
the tooltipsVisible property to false.
DB2 Alphablox
Developer’s Guide for the DHTML Client

../index.html?context=reference&topic=ReferenceBook
../index.html?context=reference&topic=ReferenceBook

270 Events
Change to Colored Buttons

By default, toolbar buttons appear in gray scale until the cursor moves over them,
when they change to color. To make buttons appear in color and not change to
reflect cursor movement, set the rolloverEnabled property to false.

Turn Toolbars Off

By default, each Blox displays its toolbar. To make a toolbar invisible on a
specific Blox, set the Blox’s visible property to false.

Used in combination with the clickable property of the Blox set to false (see
“Limited or No Interactivity” on page 257), the result is a static data presentation,
rather than an interactive UI. This may be appropriate for quick snapshots and
executive reports. Making Blox toolbars invisible may also be appropriate where
an application uses a custom HTML user interface to replace toolbar
functionality.

Events
Alphablox Analytics provides properties and methods for handling events. An
event is a normal action that you can use to trigger further processing.

Blox can capture the following user actions and treat them as events:

• drill down or up

• pivot

• select header or cell menu item

• change the page filter

• load or saving a bookmark

• change the data value in a grid cell

• keep or remove only

• hide or show only

Descriptions on Blox UI Model events are described beginning in “Events” on
page 132. Also, the UI Model exposes a number of events that can be issued by
the client, such as a ClickEvent. For each of these events, the DHTML Client
API defines JavaScript objects. As a result, JavaScript can be used to create event
objects and sent the event to the server. For more information, see “Sending
Events” on page 160, “Intercepting Events” on page 161, and “Invoking
JavaScript Directly From the User Interface” on page 162.
CHAPTER 16
Interacting with Data

17
Inputting and Modifying Data

This chapter explains how to input, or writeback, data to data sources using
Alphablox Analytics. Also discussed is the use of calculated members to create
new data derived from data retrieved from your data source.

Writeback to Multidimensional Data Sources
Alphablox Analytics Blox Java methods can be used by developers to modify a
result set and update its underlying data source. In addition, users can review, edit
or input new values into a grid’s data cells and update the underlying database.

Editing Data Values in a Grid

To give users the ability to update values in data cells and then write those values
back to the underlying data source, developers need to include the following in
the application:

• A set of properties and associated methods that:

• enable the grid to be edited

• define the cells available for editing

• specify the style (usually a foreground or background color) for
displaying an editable cell

• specify the style for displaying an edited cell

• optionally, specify the processing to occur when a user edits a cell

GridBlox Properties and Associated Methods for Writeback

The following GridBlox properties and associated Java methods are required or
available for designing and managing writeback applications:

272 Writeback to Multidimensional Data Sources
GridBlox Java Writeback Methods

The following table lists all GridBlox Java methods that do not have associated
properties:

For complete information on each of the server-side GridBlox Java methods
available for writeback, see the GridBlox sections of the Developer’s Reference for
the DHTML Client.

Task: Enabling a GridBlox for Writeback

The following example includes the minimum properties required to enable
writeback on a GridBlox and other commonly used properties.

<blox:grid id="Grid1"
width="800"
height="500"
writebackEnabled="true">

Property And Methods Description

writebackEnabled

isWritebackEnabled()
setWritebackEnabled()

Required to enable writeback; permits
users to edit cells in the grid

cellEditor

getCellEditor()
setCellEditor()

Required to enable writeback; specifies a
rule for defining and highlighting an
editable area of data cells

CSS Themes Can be used to specify the appearance of
cells the user has edited or can edit

Methods Descriptions

getWritebackValue()
setWritebackValue()

Sets or returns the value of a specific
data cell changed in the grid

listCellEditorIds() Returns a list of IDs of all the cell editors
defined as an array of integers

getChangedCellList() Returns a String of edited cells

getChangedCellValues() Returns a String of edited cell values
CHAPTER 17
Inputting and Modifying Data

Writeback to Multidimensional Data Sources 273
<blox:data bloxRef="Data1"/>
<blox:cellEditor scope="{Market:New_York}"/>

</blox:grid>

For complete information on each of these properties, see the GridBlox section of
the Developer’s Reference for the DHTML Client.

The GridBlox properties above are for enabling writeback, defining editable cells,
and changing the appearance of writeable data cells. To writeback to a data
source, DataBlox writeback methods must be used.

DataBlox Methods for Writeback

After you have configured a GridBlox for writeback, you need to use server-side
DataBlox methods to perform the writeback operations. The write back methods
are designed for applications that write back data to a DB2 OLAP Server,
Essbase, or Microsoft Analysis Services 2000 data source. Some of the methods
are specific to DB2 OLAP Server or Essbase only. The following table lists all
available DataBlox Java writeback methods:

Method Description

writeback() A convenience writeback method that
takes 3 arguments, and uses these
methods:

� lockCurrentDataSet()
� setDataValues()
� commitData()
� unlockAll()
� executeCustomCalc()
� refresh()

lockCurrentDataSet() Locks the called-upon result set; does not
lock the entire database

setDataValues() Changes data values in the result set at the
coordinates specified

commitData() Writes the current data set back to the
database

unlockAll() Unlocks any data that was previously
locked in a DB2 OLAP Server or Essbase
database
DB2 Alphablox
Developer’s Guide for the DHTML Client

../reference/DataBlox6.html#31838
../index.html?context=reference&topic=ReferenceBook
../reference/DataBlox6.html#31939
../reference/DataBlox6.html#153101

274 Writeback to Multidimensional Data Sources
For complete details about these writeback methods, see the DataBlox Reference
in the Developer’s Reference for the DHTML Client.

Task: Writeback To Multidimensional Databases

Using the server-side Java APIs, you can create application pages that allow users
to writeback to multidimensional databases. Included in Blox Sampler are three
examples, one using a custom Java class (recommended approach) and two using
Blox UI controllers (generic and custom).

The following steps go through code for using the custom Writeback class
available in Blox Sampler:

1 Add a JSP page directive importing the required classes:

<%@ page import="bloxsampler.writeback.Writeback,
com.alphablox.internal.PresentBlox" %>

2 Add a JSP taglib directive for the Blox tag libraries that to be used on the
page:

<%@ taglib uri="bloxtld" prefix="blox" %>
<%@ taglib uri="bloxuitld" prefix="bloxui" %>

3 In the head section of the page, don’t forget to add the required
<blox:header/> tag which automatically adds required CSS and JavaScript
methods:

<head>
<blox:header />

</head>

4 Add a JavaScript function that uses the Blox UI Model to perform a
simulated click event on the server, as if the user had clicked the Writeback
menu option under Data in the PresentBlox menubar:

<script language="JavaScript">
function wb() {

executeCustomCalc() Executes a calculation script on a DB2
OLAP Server or Essbase database

refresh() Refreshes the current data set

executeNamedDBCalcScript() Executes the named DB2 OLAP Server or
Essbase calc script

Method Description
CHAPTER 17
Inputting and Modifying Data

../index.html?context=reference&topic=ReferenceBook

Writeback to Multidimensional Data Sources 275
bloxAPI.sendEvent(new ClickEvent('wb3PresentBlox',
<%= wb3PresentBlox.getBloxModel().searchForComponent(
"dataWriteback").getUID() %>));

}
</script>

5 Add a PresentBlox with the grid writebackEnabled attribute set to true
and include a scriplet that references the custom Writeback class (with two
arguments, the Blox name and the scope:

<blox:present id="wb3PresentBlox"
height="400"
width="600"
pageAvailable="true"
chartAvailable="false"
dataLayoutAvailable="false">

<blox:data
dataSourceName="QCC-Essbase"
query='<SYM <ROW("All Products") <CHILD Truffles

<COLUMN(Scenario) "Initial Budget" Manhattan <ICHILD "Jan 01" "Units
Sold" !' />

<%
new Writeback(wb3PresentBlox,"{Scenario:Initial Budget}");

%>
</blox:present>

6 Add a button on the page for users to click in order to invoke writeback to the
data source.

<form>
<input type="button" value="Submit Changes" onclick='setTimeout(

"wb();", 1);'>
</form>

The JavaScript wb function is called after a brief timeout in order to allow the
data to be updated on the server before this function is called. If the JavaScript
setTimeout function is not used, the correct data may not be written back to the
data source.

In this example, writeback has now been incorporated into the PresentBlox. A
working example of this writeback technique is included in Blox Sampler in the
section on Inputting and Changing Data. The source code for the Java class is
available in the application’s WEB-INF/src/ directory. You can modify this
source code to make any further changes you may want, then compile it for use in
your applications.
DB2 Alphablox
Developer’s Guide for the DHTML Client

276 Updating Relational Data Sources
Updating Relational Data Sources
Alphablox Analytics supports standard SQL statements for updating relational
data sources. These statements include, but are not limited to INSERT, UPDATE,
CREATE, and DELETE. You can use Java methods to construct the appropriate SQL
statement, then pass the statement to the the application’s DataBlox.

 Writing data back to a relational data source does not affect the user’s view
of the data, but before the user can see the effect of the changed data, the query
must be re-executed.

Task: Updating a Relational Data Source Using Writeback

The following steps illustrate how to update a relational data source using Java
methods. The example inserts a new column containing current date into a table.

1 Create SQL query string named query1. It will insert the current date into a
table named "review_data".

String query1 = "insert into review_data values(TO_CHAR(SYSDATE,
'HH:MM:SS-MMDD'))";

2 Call the appropriate setQuery and connect methods on the data source for
a PresentBlox named Present1. Pass the SQL query that inserts the new
column.

Present1.getDataBlox().setQuery(query1);
Present1.getDataBlox().connect();

Writeback to Microsoft Analysis Services

For Microsoft Analysis Services, you can writeback to the leaf-level members
only using the techniques described above. To update data in non-leaf members
requires the use of the MDX UPDATE CUBE command in a DataBlox setQuery or
executeQuery method. For more information on the UPDATE CUBE command,
see the Microsoft Analysis Services documentation.

Calculated Members (Derived Members)
Calculated members are data members that include dynamically generated data
derived from calculations performed against members that actually exist in your
result set, and then displayed in newly created rows or columns. Some data
sources, such as DB2 OLAP Server, Hyperion Essbase, and Microsoft Analysis
Services, can generate calculated members using their query languages, the
Essbase Report Specification Language and the Microsoft Multidimensional
Expression (MDX) Language. These calculated members, however, cannot
CHAPTER 17
Inputting and Modifying Data

Creating Calculated Members in Alphablox Analytics 277
typically be interacted with. For example, drilling up or down in cubes using
calculated members derived from queries result in the calculated member names
being resubmitted to the database—and since these members do not exist natively
in the data sources, these queries will fail.

Alphablox Analytics provides a built-in capability to create calculated members
after the result sets have been returned from the data sources and manages the
interactions so that users can interact with the data and use these calculated
members as if they were real members.

Creating Calculated Members in Alphablox Analytics
Calculated members are created in Alphablox Analytics applications using the
calculatedMembers property of the DataBlox. One important advantage of
using Alphablox Analytics calculated members is that they allow you to add new
data to your resultsets without having to modify the actual data sources. This can
be especially useful when you cannot wait for database changes or just want to
experiment with new measures that can be derived from existing data. Here are
some examples where calculated members might be useful to your users:

• the variance and variance percentage between the values of two members
(such as Budget and Actual)

• the average for all members on a designated dimension (such as Dollar
Sales)

• percentage of total sales

For details on the syntax and usage of the DataBlox calculatedMembers
property, see the Developer’s Reference for the DHTML Client. In the following
sections, a few important topics about calculated members are presented.

Custom Calculation Guidelines

You should be aware of the following guidelines and restrictions when working
with custom calculations:

Defining a Custom Calculation

The following guidelines apply to defining a custom calculation:

• The definition of a calculated member is an arithmetic expression that is
evaluated according to the normal rules of mathematical precedence.

• To position a calculated member, you can specify a reference member that
the calculated member should come before in the grid. Otherwise, the
calculated member will appear at the end of the existing dimension.
DB2 Alphablox
Developer’s Guide for the DHTML Client

278 Creating Calculated Members in Alphablox Analytics
• When more than one calculated member is defined to be positioned before
the same reference member, the calculated members are ordered with the last
calculated member in the definition closest to the reference member.

• A calculated member must be defined in terms of existing, displayed
members of that dimension.

• When more than one calculated member is defined on a dimension without
positioning, the members are added to the dimension in the order of
definition.

• The definition expression for a calculated member can use a previously
defined calculated member (backward reference), but not an as-yet-undefined
calculated member (forward reference).

Custom Calculation Restrictions
• In order for calculated members to be charted, the Generation Filter must be

set to show all generations. This can be done by setting the totalsFilter
property to 0 or by setting the Generation Filter to “Show all generations” in
the DHTML client’s Chart Options dialog box.

• Calculated members can be saved and restored through normal bookmark
operations.

• Member names cannot contain the equal sign (=), curly brackets ({}), or
double quotes (").

• Unique members names are required when using Microsoft Analysis Services
or Alphablox Cube Server data sources.

• With DB2 OLAP Server or Essbase, you are strongly advised to use unique
member names in calculated member expressions -- if the DataBlox
useAliases property is set to false or users disable alias names in the UI,
calculations may fail.

• Use the ifNotNumber function in an expression to provide special case logic
if you want missing or null values for a given member to be treated as a
specified number.

Make sure you understand what the resulting values for the calculations will
be when specifying values with the ifNotNumber function. Substituting a value
for some missing or null values might not make sense when used in a calculation.
CHAPTER 17
Inputting and Modifying Data

Creating Calculated Members in Alphablox Analytics 279
Conditions That Prevent Proper Display of Data

The following table lists conditions that prevent the display of meaningful data,
and the consequences in grid displays when the conditions occur.

Property Syntax

To specify one or more custom calculations on a member, use the DataBlox
calculatedMembers property (or the setCalculatedMembers method). Note
that the tag attribute syntax can include multiple custom calculations in a single
statement:

calculatedMembers="dim1:calc1{refMember1:gen:missingIsZero}=
expr1{scopeDim:scopeMember}, dim2:calc2{refMember2} =
expr2{scopeDim:scopeMember},..., dimn:calcN
{refMemberN:gen:missingIsZero} = exprN{scopeDim:scopeMember}"

where:

• The dimN value is the name of the dimension on which to create a calculated
member.

• The calcN value is the name of calculated member.
• [Optional] The refMemberN value is the name of an existing member which

the calculated member calculation will come before in the grid. The
refMemberN cannot be another calculated member.

• [Optional] The missingIsZero component of the definitionString can be
used if you want all missing values for members involved in the calculation
to be treated as zero. By default, all missing values in calculations are treated
as missing. [Note: This keyword only affects calculations using member
variables. It has no effect on calculation functions.]

Condition The Grid Cell Displays:

Divide by zero The calculated member does not
appear in the grid

Reference to members not in the
result set

Empty string (or the value specified
in the missingValueString
property)

Invalid calculation expression #Error (and an error appears on the
console or log)

Reference to a missing or non-
numeric value

Empty string (or the value specified
in the missingValueString
property)
DB2 Alphablox
Developer’s Guide for the DHTML Client

280 Creating Calculated Members in Alphablox Analytics
• The exprN value is the arithmetical expression involving members of dim.
You can substitute the function ifNotNumber for a member value to provide
special case logic to handle missing or null values in the result set used in the
calculation.

The ifNotNumber function has the following syntax:

ifNotNumber(memberName, value)

where:

• memberName is the name of the member in which the function operates
on.

• value is the numeric value which replaces the missing or null member
value. The value specified must contain no commas.

Functions Available for CalculatedMembers

In the calculation expressions you use, the following tables summarize the
arithmetic, search, special calculation, and missing value related functions
available. For details on the syntax and usage, see the DataBlox section of the
Developer’s Reference for the DHTML Client.
CHAPTER 17
Inputting and Modifying Data

Creating Calculated Members in Alphablox Analytics 281
Arithmetic Function Description

Abs Returns the absolute value of a
member. This can only be used on a
single number item such as the result
of another calculation or a single
member.

Average Returns the average of all the
numbers in the definition, which is
the sum divided by count.

Count Returns the count of all numbers in
the definition. Missing values are
ignored. If there are no values to
count, zero is returned.

Max Returns the highest value in all the
numbers in the definition.

Median Returns the value of the number in
the middle of the set.

Min Returns the lowest value in all the
numbers in the definition.

Product Returns the multiplication of all the
values in the definition.

Round Returns the integer part of the number
rounded to the nearest whole number;
can only be used on a single number
item such as the result of another
calculation or a single member.

Sqrt Returns the square root of a number;
can only be used on a single number
item, such as the result of another
calculation or a single member.

Stdev Returns the standard deviation of all
the numbers in the definition.
DB2 Alphablox
Developer’s Guide for the DHTML Client

282 Creating Calculated Members in Alphablox Analytics
Details on the syntax and usage of these arithmetic, search, special calculation,
and missing value related functions can be found in the calculatedMembers
property description in the DataBlox section of the Developer’s Reference for the
DHTML Client.

Sum Returns the addition of all the
numbers in the definition; missing
values are ignored. If there are no
values to add, zero will be returned.

Var Returns the variance, which is the
average squared deviation of each
number in the set from the average.

Search Function Description

Child Returns all children of a specified member.

Leaf Returns all leaf-level descendants of the specified member.

Special Calculation
Function

Description

Rank Returns the values from the specified dimensions in
ascending or descending order for the specified member.

RunningTotal Returns the cumulative sum of values from the specified
dimension for the specified member.

Missing Value
Related Function

Description

ifNotNumber Can be used to provide special case logic to handle missing
or null values in the result set used in the calculation.

Arithmetic Function Description
CHAPTER 17
Inputting and Modifying Data

Creating Calculated Members in Alphablox Analytics 283
Examples

The following examples illustrate some common uses for calculated members:

• Define a custom calculation with cell values showing the variance percentage
between actual and budget values:

calculatedMembers = "Scenario: Variance % = (Actual-Budget)/ Budget
* 100"

• Define a custom calculation with cell values showing the variance percentage
between actual and budget values, and provide logic to substitute a value of
1,000,000 for Actual and a value of 5,000 for Budget (do not use commas
when specifying the number):

calculatedMembers = "Scenario:Variance % =
(ifNotNumber(Actual,1000000)-ifNotNumber(Budget, 5000))/
ifNotNumber(Budget,5000) * 100"

• Define a custom calculation that displays the sales to date for the first two
quarters of the year:

calculatedMembers = "Year: YTD = \"Q1,2000\" + \"Q2,2000\""

• Combine two custom calculations in a single attribute (where Scenario is on
one dimension and Year on another):

calculatedMembers = "Scenario: Variance % = (Actual-Budget)/Budget *
100, Year: YTD = \"Q1,2000\" + \"Q2,2000\""

• Combine two custom calculations in a single attribute, and substitute
different values for the same member used in different expressions:

calculatedMembers ="Scenario:Variance % =
(Actual-ifNotNumber(Budget, 10000))/ifNotNumber(Budget, 10000) *
100, Scenario: Difference = Actual-ifNotNumber(Budget, 0)"

• Define a custom calculation with cell values showing the variance percentage
between actual and budget values. Position the calculated member
Variance % to come before the member Actual on the grid.

calculatedMembers = "Scenario: Variance % {Actual} = (Actual-
Budget)/Budget * 100"

• To add a separate ranking within each group, you can use the Rank function,
as shown in this example:

calculatedMembers=�All Products:Rank = Rank(All Products,All
Locations,2,DESC,GROUPDIM)
DB2 Alphablox
Developer’s Guide for the DHTML Client

284 Calculated Members Using Essbase Report Script Commands
 To clear calculated members, pass an empty string to
setCalculatedMembers.

You can also perform calculations with nested dimensions on the same axis or
calculations within calculations. Specifying the scope of the calculated members
or assign a generation number to your calculation which aids in positioning the
calculated member. For more details and examples showing the use of the
calculatedMembers property and associated methods, see the DataBlox section
of the Developer’s Reference for the DHTML Client.

Calculated Members Using Essbase Report Script Commands
Calculated members can also be created using Essbase report script commands.
While this can be useful in some situations, the data displayed as a result cannot
be interacted with without generating DB2 OLAP Server or Essbase error
messages indicating that calculated members (which do not actually exist in the
DB2 OLAP Server or Essbase cube) do not exist. For example, when you drill on
a grid in which calculated members exist, drilling and other operations are
disabled. As a preferred alternative, whenever possible, you should create
calculated members using Alphablox Analytics.

For details about creating calculated members using Essbase report script
commands, see your DB2 OLAP Server or Essbase documentation. Also, be sure
to check the “Essbase Report Script Commands Supported by Alphablox
Analytics” on page 186.
CHAPTER 17
Inputting and Modifying Data

../reference/DataBlox5.html#741967

18
Filtering Data

This chapter discusses tips and techniques for filtering data for the users, either to
help more effectively work with large result sets, limit access to information, or
personalize the information they see.

Hiding Dimensions and Members
Access to data allows users to creatively ask questions and compare data in
creative ways, but sometimes the amount of available information can be
overwhelming. For naive end users, too much data to look at can leave them at a
loss for where to begin. For savvy users, lots of data can actually become “noise”
to them, distracting them from being able to focus on the essential data. As a
developer, you need to keep your intended audience in mind, and develop analytic
applications which give users just the right amount of information. Users with full
access to the DataLayout panel, the Member Filter dialogs, and complete listings
of data can end up spending a lot of their time using Hide/Show and Keep/
Remove functionality to winnow down information to the information they need.
But, as a developer, you can help them out by using DataBlox properties to filter
out data which is not relevant to the task at hand, or is data that is seldom used.

With attribute dimensions in DB2 OLAP Server and Hyperion Essbase as well as
virtual dimensions in Microsoft Analysis Services, businesses slice their data in
many ways unavailable before. For example, in the QCC sample data sources,
you can analyze chocolate sales by groupings of pieces per package or ounces per
package, whether they have nuts or, list products by their introduction dates, or
analyze stores considering their square footage. This is great, when you want to
use this information in your analysis. But, if you don’t, their presence in views
can just become a nuisance. Luckily, Alphablox Analytics has two properties
which make it easy to hide dimensions and members, the DataLayout
hiddenDimensionsOnOtherAxis property and the DataBlox hiddenMembers
property.

286 Hiding Dimensions and Members
The DataLayoutBlox hiddenDimensionsOnOtherAxis property can be used to
list dimensions which you do not want to appear in the DataLayout panel. For an
example, see the Filtering Data section of Blox Sampler - DHTML. For details
about the syntax and usage of hiddenDimensionsOnOtherAxis, see the
DataLayoutBlox Reference section of the Developer’s Reference for the DHTML
Client.

The DataBlox hiddenMembers property can be used sometimes to hide members
that don’t make sense to be displayed. In the Scenario dimension, for example,
the top-level member is Scenario, but this member is really just a bucket for
holding the members grouped as children under it. And, in DB2 OLAP Server and
Hyperion Essbase, Scenario actually displays the data from the first child under it
-- but there is no data for the member Scenario. In the Filtering Data section of
Blox Sampler, an example of hiding the Scenario member (in DB2 OLAP Server,
Essbase, and Microsoft Analysis Services) shows the children of Scenario. Note
that when you drill up on one of the children, Scenario will actually appear (even
though it is listed as a hidden member). But, when you drill back down into
Scenario, it disappears once again. This behavior is unavoidable, due to
limitations of how drilling operations need to perform. For details about the
syntax and usage of hiddenMembers, see the DataBlox Reference section of the
Developer’s Reference for the DHTML Client.

Using Dimension Root

One of the simplest ways to filter information, or control access to it, is to use the
DataBlox dimensionRoot property specify specific members on dimensions to
be used as virtual roots for your users. Once a particular dimension root member
is defined as a new “virtual” root, users will be prevented from drilling up into
members above the defined root. This setting applies to page filters, rows and
columns, and lists of dimension members that appear in the Member Filter. A
virtual root may be useful for limiting access to areas of your data that you do not
want others to access. This property can be used for limited security use or just to
help prevent users from getting lost in the data.

You are probably using database security to prevent users from seeing data values
that they should not have access to, however, sometimes it is possible that just
seeing the member names may be too much information to be shared. In limited
cases like this, the dimensionRoot may be useful. For example, a database
listing prospective customers in all regions of the country may provide useful
information to a disgruntled employee who is just about to leave your company
for a competitor. If you minimizing access to information like this is important to
you, then the dimensionRoot property may present a useful option.

 You should not use the dimensionRoot property as your only means to
prevent users from accessing private information. It is always possible that other
CHAPTER 18
Filtering Data

../index.html?context=reference&topic=ReferenceBook

Hiding Dimensions and Members 287
database tools may be used against the same data source to access information
that you have blocked using a virtual root defined in a DataBlox.

Your primary goal could also be to improve usability by blocking paths to
information that are not relevant to the needs of particular users, thus preventing
them from drilling around in information paths that may cause them to become
lost in the data. If some information is not relevant to the task they need to
perform, then the use of dimensionRoot could help minimize this “lost in
navigation space” problem.

Task: Setting a Virtual Root for Users

In the following example, users are restricted in their ability to access information
about particular regions in the country. These simple steps will allow you to
configure a DataBlox to create “virtual” roots for your users tied to the region of
the country they work in:

1 Add the dimensionRoot attribute to a standalone or nested DataBlox.

<blox:data id="myDataBlox"
dimensionRoot=""
...

</blox:data>

2 Add a dimension and the single member in that dimension that you want to
use as a “virtual” root for your users.

For example, if you wanted to limit access to the East region in the QCC
database, here’s what the dimensionRoot setting would look like:

dimensionRoot="All Locations:East"

3 Save your page and test it.

This is a very simple example, with a hard-coded dimensionRoot setting. The
dimensionRoot could also be dynamically set as a page loads, by basing the
dimensionRoot setting on a value stored in the Alphablox Analytics Repository.
A custom user property could have as its value the name of the region that should
appear in the data source.

 For security reasons, you will probably want to disallow user editing in
situations like this, to prevent users from changing their own regions and gaining
access to other regions.

 See the Administrator’s Guide for instructions on how to create custom user
properties for users and applications.
DB2 Alphablox
Developer’s Guide for the DHTML Client

288 Creating Fixed Choice Lists
Once a custom user property is configured using Alphablox Analytics, you can
access that value using server-side Java methods. On a JSP page with a DataBlox,
your dimensionRoot setting could be configured dynamically in the DataBlox
tag or using the associated setDimensionRoot() method. If you included a
RepositoryBlox above the DataBlox tag on a JSP page, you can dynamically
include the value within the DataBlox tag using a JSP expression statement. The
code would look similar this example:

dimensionRoot="<%= myRB.getUserProperty("userRegion") %>"

where myRB stands for the name of the RepositoryBlox that is defined above this
setting that can get the value from the Alphablox Analytics Repository. In this
example, the custom user property is userRegion. This very simple technique
can also be applied to other properties as well.

Creating Fixed Choice Lists
Typically, page filters in Alphablox Analytics applications let users roam up and
down in information within a dimension without any restrictions, and limit access
to the Member Filter. The dimensionRoot property allows you to restrict
information access by defining a root that a user cannot get below. But sometimes
the better option is to limit the number of choices a user can select from by setting
the PageBlox fixedChoiceLists, moreChoicesEnabledDefault, and
moreChoicesEnabled properties to create fixed choice lists.

Example: A “Fixed Choice List” example showing the use two of these PageBlox
properties is available in the Filtering Data section of the Blox Sampler
application.

fixedChoiceLists

The PageBlox fixedChoiceLists property places named dimensions and
members on a page filter’s drop list for users to pick from. Unlike normal page
filters, fixed choice lists limit users’ options to the ones specified by you. The
default value of fixedChoiceLists is an empty string, giving users full access
to dimensions and their members. When dimensions and specific members are
specified using this property, users can access only the members you have
defined. For example, to limit a user to see only two regions, Central and East, the
PageBlox fixedChoiceLists attribute would look similar to this example:

fixedChoiceLists="All Locations:Central,East"

If your initial query does not include one of the fixed choice list members in it,
the top-level member for a dimension specified in the fixed choice list will also
initially appear in the list. After a user selects one of the fixed choice list
members, the top-level member will then disappear from the list.
CHAPTER 18
Filtering Data

Creating Fixed Choice Lists 289
In order for a fixed choice list to appear in the PageBlox, you must also remember
to specify the dimensions from that list in the selectableSlicerDimensions
property of the DataBlox. In our example, the DataBlox (not PageBlox) attribute
would appear like this:

selectableSlicerDimensions="All Locations"

 If your initial query has more than one member from a dimension in the
fixed choice, then the fixed choice list page filter will not appear in the PageBlox.
For example, if your initial query was:

query='<SYM <ROW ("All Products") <ICHILD "All Products"
<COL(Scenario) <CHILD Scenario "2001" Central East !'/>

then the fixed choice list would not appear in the PageBlox. To make this query
work, you should only include the member in the query that you want to appear
by default in the fixed choice list, either Central or East.

moreChoicesEnabledDefault and moreChoicesEnabled

The DataBlox moreChoicesEnabledDefault property, by default, allows users
to select the “More Choices...” option on a page filter. To disable this default
feature, set the property to false, as shown here:

moreChoicesEnabledDefault="false"

Alternatively, you can use the more selective version of this property, the
moreChoicesEnabled property. This option requires you to specify individual
dimensions for which you do not want the “More Choices...” menu option to
appear.

See the Developer’s Reference for the DHTML Client for details about the two
variants of the moreChoicesEnabled property.

Using MemberSecurityBlox to Filter Members

MemberSecurityBlox, included in the Blox Logic Tag Library, can be used to
filter lists of dimension members based on access permissions.
MemberSecurityBlox suppresses access to members using the DataBlox
suppressNoAccess property based on specified MemberSecurityFilter
values. This property can take multiple root members and allows specifying
multiple dimension:member pairings for filtering.

For an example of the use of MemberSecurityBlox, see “Listing Cube Members
using MemberSecurityBlox” on page 111. For details about the syntax and usage
of the MemberSecurityBlox, see the Business Logic Blox and TimeSchema DTD
Reference section of the Developer’s Reference for the DHTML Client.
DB2 Alphablox
Developer’s Guide for the DHTML Client

../index.html/context=reference&topic=ReferenceBook
../index.html?context=reference&topic=ReferenceBook

290 Using HTML Form Elements and FormBlox
Using HTML Form Elements and FormBlox
Even though Alphablox Analytics provides many properties for configuring and
filtering information delivery within the presentation Blox components, you can
also move some of this functionality out of these Blox and onto web pages.
HTML form elements, including selection lists, check boxes, and radio buttons,
as well as FormBlox can be used to access information and make selections. You
can create powerful, yet easy-to-use applications that any web user can use by
removing Blox menubar and toolbars, incorporating HTML form elements that
invoke server-side logic using the DHTML Client API’s JavaScript methods.

Besides using standard HTML form elements and the Blox Client API, you can
also use the Blox Form Tag Library, including FormBlox, to build analytic
applications. FormBlox generate customized form elements with commonly used
functionality required for building analytic applications. For example, the
DimensionSelectFormBlox and MemberSelectFormBlox generate HTML
selection lists automatically populated with dimension names and member names,
and can be used to create simple lists for users to select from. An additional
benefit of FormBlox components is that they persist and maintain state even when
users leave a page and return to it later in their browser session.

Using both standard HTML form elements and the FormBlox components, you
can restrict the interactivity of user interactions and filtering out options you do
not want to expose to users. For details about the available FormBlox
components, see “Using Blox Form Tags” on page 99 and the Blox Form Tags
Reference section of the Developer’s Reference for the DHTML Client.

Using Queries
Perhaps the most effective way to filter data before it gets to the user is to
construct good query statements. Using queries that only return data that is
relevant to the immediate task, you can avoid large result sets, which take longer
to execute on the database server and impact network traffic.

It is outside the scope of this guide to explain how to optimize queries for your
particular data source. Check your database documentation and other resources
for details about filtering data using query statements. Also, “Retrieving Data” on
page 181 in this guide provides limited information about query techniques which
might be useful for filtering information from supported multidimensional and
relational databases.
CHAPTER 18
Filtering Data

../index.html?context=reference&topic=ReferenceBook

Suppressing Data using Blox Properties 291
Suppressing Data using Blox Properties
Alphablox Analytics offers several properties that can enhance the usability and
performance of your analytic applications. The following sections briefly
describe how suppressMissingOnRows, suppressMissingOnColunns,
suppressZeros, suppressDuplicates, and suppressNoAccess properties of
the DataBlox can be used. See the DataBlox Reference section of the Developer’s
Reference for the DHTML Client for more details on the syntax and usage of these
properties.

While suppressing data makes sense in many situations where there are lots of
rows or columns of data that would be filled entirely of zeros or missing data,
suppressing this information can mislead a business user who, for example, would
actually need to know that data is missing in order to take action on this. If users
have access to menu bars on Blox, they can change this setting manually in the
Data Options dialog but they may not know about the setting or may not think of
unsuppressing data that they didn’t know was missing. If menu bars are not
available and you want to suppress data, consider placing form elements (such as
a checkbox or radio buttons) on pages, allow users to control this setting and
realize that a suppression of data is in use.

suppressMissingOnRows/suppressMissingOnColumns

The suppressMissingOnRows and suppressMissingOnColumns properties
removes rows or columns from your grids when there is no data at all in the
returned rows or columns. If any cells in a row or column in your data set has a
value in it, the entire row or column is visible.

To enable this feature, add the suppressMissingOnRows and
suppressMissingOnColumns attribute to a DataBlox and set the value to true,
like this:

suppressMissingOnRows="true"

suppressMissingOnColumns="true"

You can also programmatically control this feature using the associated Java
methods listed in the DataBlox Reference section of the Developer’s Reference for
the DHTML Client.

For DB2 OLAP Server and Essbase data sources, when
suppressMissingOnRows or suppressMissingOnColumns is enabled by
setting the property to true in your DataBlox, suppression is performed on both
the database server and within Alphablox Analytics. Here is a summary of the
behavior you should expect when using DB2 OLAP Server or Essbase:

• If the initial query is a report script (as opposed to a bookmark), Alphablox
Analytics does the suppression of the missing data.
DB2 Alphablox
Developer’s Guide for the DHTML Client

../index.html?context=reference&topic=ReferenceBook
../index.html?context=reference&topic=ReferenceBook
../index.html?context=reference&topic=ReferenceBook
../index.html?context=reference&topic=ReferenceBook

292 Suppressing Data using Blox Properties
• If the query is the result of a bookmark, a drill, or a pivot, the DB2 OLAP
Server or Essbase server is asked to suppress rows with missing values.

Relying on the Essbase report script command <SUPPRESSMISSING alone is not
generally the best solution, since Alphablox Analytics will not then remove
missing data that results from drilling or other operations.

When end users are using the DHTML client, the addition of the Essbase
<SUPPRESSMISSING command to your initial report script command most likely
will not noticeably affect performance, even when queries return large result sets
(more than 1000 rows). The DHTML client optimizes the result sets it retrieves,
limiting it to what can be viewed in a particular instance.

 Use the GridBlox missingValueString property or its associated methods
to specify what should be displayed in cells that have no value. This property is
useful when entire rows or columns are not suppressed with the DataBlox
suppressMissing property or the Essbase <SUPPRESSMISSING report script
command.

See the DataBlox Reference section of the Developer’s Reference for the DHTML
Client for details about the missingValueString property.

suppressZeros

When the DataBlox suppressZeros property is set to true (default is false),
all rows or columns containing only zeros will be suppressed. If any cells in a row
or column in your data set have values other than zero in it, the entire row or
column will be displayed.

To enable this feature, add the suppressZeros attribute to a DataBlox and set
the value to true, like this:

suppressZeros="true"

You can also programmatically control this feature using the associated Java
methods listed in the DataBlox section of the Developer’s Reference for the
DHTML Client.

suppressDuplicates

The suppressDuplicates property of a DataBlox, when set to true (the default
setting), removes all duplicate header values from rows or columns in your grids.

If you do not want to suppress duplicate header values, add the
suppressDuplicates attribute to a DataBlox and set the value to false, like
this:

suppressDuplicates="false"
CHAPTER 18
Filtering Data

../index.html?context=reference&topic=ReferenceBook
../index.html?context=reference&topic=ReferenceBook
../index.html?context=reference&topic=ReferenceBook
../index.html?context=reference&topic=ReferenceBook

Personalization 293
You can also programmatically control this feature using the associated Java
methods listed in the DataBlox Reference section of the Developer’s Reference for
the DHTML Client.

 To suppress duplicate DB2 OLAP Server or Essbase shared members in the
initial query, use the <SUPSHARE report script command in your query statement.
For more information about the suppression of DB2 OLAP Server or Essbase
shared members, see the DB2 OLAP Server or Hyperion Essbase documentation.

suppressNoAccess

By default, the suppressNoAccess property of a DataBlox is set to false and
will not suppress data the users cannot access. As a result, users will see #NO
ACCESS in cells which represent data for they have no access rights.

To enable this feature, add the suppressNoAccess attribute to a DataBlox and
set the value to true, like this:

suppressNoAccess="true"

The suppressNoAccess property has no associated Java methods available.

 The noAccessValueString property of a GridBlox can be used to specify a
string to display in a grid cell for which the user does not have read access rights.
By default, DB2 OLAP Server and Essbase data cells display “#No Access” in
cells to which users do not have access. Having a grid full of these can be
distracting to users. It is best to use database queries and other filtering
techniques to prevent these cells from appearing in a grid, but if you cannot
prevent no access data cells from appearing, you could replace the default string
with a better alternative, perhaps “No Access,” “n/a,” a hyphen (“-”), or other
string.

Personalization
One of the most important challenges facing developers is how to make
information more personal and useful to their users. Filtering information based
on user information provided in the Alphablox Analytics Repository or other
database repositories can help improve the daily work experience of your users.
With increased personalization of applications, however, the complexity of the
underlying code increases as well. The challenge for you is to weigh the needs of
your users against the additional development and maintenance costs for those
features.
DB2 Alphablox
Developer’s Guide for the DHTML Client

../index.html?context=reference&topic=ReferenceBook
../index.html?context=reference&topic=ReferenceBook

294 Personalization
As discussed earlier, the DataBlox dimensionRoot property can be used to filter
information based on user logins and custom user property settings. Refer to
“Using Dimension Root” on page 286 for an example using a custom user
property to filter information without the user having to make any choices.

Using Java methods available in the Blox API, you can create sophisticated
applications that offer some of the following possibilities:

• opening analytic views to display products, customers, or regions of specific
interest to the user (this level of filtering information helps users spend less
time hunting for information of particular relevance to them)

• modify queries to target the result sets to the user, rather than returning a
broader and much larger result set (this can help improve the performance of
your applications as well)

• enabling the suppression of zeros, no access, or missing data based on user
preferences (you can either create personalization preference dialog box or
allow users to set options that are maintained between sessions)
CHAPTER 18
Filtering Data

19
Persisting and Bookmarking Data

Persistence of data and views is an important consideration for analytic
applications. While most of the data accessed is stored in databases, Alphablox
Analytics can be used to manage data persistence for application states,
bookmarks, and custom properties. A brief discussion and example of using
JavaServer Pages techniques for persisting data values during a session is
included.

Persistence of Data in Alphablox Analytics
An Alphablox Analytics application is a collection of resources. Alphablox
Analytics provides built-in features that can be used to allow users to save and
restore a variety of bookmarks and application states. For example, after drilling
and pivoting, or selecting a preferred chart layout, a user can bookmark the
current view for later recall. And, depending on application settings you have
defined, application states can be maintained and automatically stored when a
session is over, either when a user closes a browser window or when the current
session times out.

Bookmarks and saved application states can be saved publicly or privately. Public
bookmarks and application states can be shared among all users with access to
that application. For information on using this feature through the Blox user
interface, see the user help page. The following sections discuss further details
about bookmarks and application states, and list the available Blox properties and
methods that developers can use for managing bookmarks and application states.

../help/SavingViews/SavingViews.html

296 Application States
Application States
Application states are another way for the Alphablox Analytics to save
information in your application. When a user starts a session that accesses an
application, Alphablox Analytics creates an instance of the application. As long as
the session is alive, this instance maintains the state of a user's current application
session, including the status of application resources, such as query result sets,
grid and chart appearance, sorts and other changes made by the user.

An application state in an Alphablox Analytics application is a representation of
the state of all of the Blox in that application at a particular moment in time.
During the process of using an Alphablox Analytics application, a user’s current
application state is tracked and maintained by the Alphablox Analytics. This state
is defined as the current application state. Alternatively, a saved application
state is a representation of all of the Blox within an application at the particular
time the application state was saved.

While bookmarks save the state of an individual Blox, application states save the
state of the entire application. Application states can be saved and restored later
as needed. Also, application states can be saved publicly for sharing between all
users with access to an application, or privately for each individual user.

Application state management is typically handled automatically by the
Alphablox Analytics based on settings made in the application definitions. If the
application definition has the Automatic Save Enabled property set to yes,
Alphablox Analytics automatically saves the current state of an application in the
Repository when:

• the user exits the application (by closing the browser)
• the user session times out (by default, after 15 minutes of inactivity)

When the user next accesses the application, Alphablox Analytics restores the
most recent saved state of the application if the Restore Application State setting
in the application definition is set to yes (default is no). If both Automatic Save
Enabled and Restore Application State are set to yes, then the user can access the
original, default application state through the Applications page on the Alphablox
Analytics home page. Also, a developer could include a custom button on a page
within an application to allow users to restore the last saved state.

After a session times out, if the user attempts to work with it in the browser
window, a message appears instructing the user to press the browser’s Refresh (or
Reload) button to reconnect to the Alphablox Analytics.

 Alphablox Analytics does not save the data in an application state. When a
saved application state is restored, the application retrieves fresh data from the
database.
CHAPTER 19
Persisting and Bookmarking Data

../admin/DataSourceDefs.html

Using Custom Properties Stored in the Alphablox Analytics Repository 297
The following table lists RepositoryBlox methods relevant to managing
application states:

Using Custom Properties Stored in the Alphablox Analytics
Repository

Using the Alphablox Analytics Repository, you can create custom user, group,
and application properties that can be retrieved or modified using standard JSP
methods. After being created in the user, group, and application definitions, these
custom properties can be stored and retrieved using a RepositoryBlox. Using
JavaServer Pages technology, you can substitute the values from these properties
into your Java code and within your Blox tag attributes as run-time expression
values. Custom properties are available according to the Alphablox Analytics
property inheritance hierarchy.

Task: Creating a Custom User Property

To understand how to use a custom property, consider the ChartBlox chartType
property. The default value is 3D Bar, but for a set of financial applications, a
CFO may prefer line charts. A developer could define a custom property to
specify a different default for this user. The custom property name would be the
same as the Blox property (chartType) and would have a value of Line.

Based on this example, the following steps would create the necessary custom
user property:

1 From the Alphablox Analytics home page, choose the Administration tab.

2 Click the Server link and then User Definitions under Custom Properties. The
User Definitions page opens.

Java Methods

delete()
deleteApplicationState()
exists()
getApplicationStateNameAndDescription()
list()
load()
rename()
renameApplicationState()
restoreApplicationState()
save()
saveApplicationState()
search()
DB2 Alphablox
Developer’s Guide for the DHTML Client

298 JavaServer Pages
3 Click the Create button at the bottom of the page. The Create User Custom
Property page appears.

4 Complete the following entries:

• Property Name: chartType

• Default Value: Line

• Value List: Line, 3D Bar

5 Click Save to save the new property.

Now, you will assign this custom property to a user’s definition:

6 From the Alphablox Analytics home page, choose the Administration tab.

7 Click the Users link. The User Definition page opens, displaying a list of
existing user definitions.

8 To define a new user, click the Create button. The Create User page appears,
displaying the General Properties panel. (To assign a value for a custom
property to an existing user definition, select the user name from the list and
click the Edit button.)

9 Provide (or edit) entries for Username, Password, and Confirm Password.

10 The chartType property appears at the bottom of the General Properties
panel. Ensure that the property value is set to Line.

11 Click Save.

12 Now test your property by logging in as the user you just created.

JavaServer Pages
JavaServer Pages technology offers several methods for managing data values
throughout user sessions and between sessions. JavaServer Pages technology
offers several different ways that data values can be stored and retrieved,
including URL rewriting, hidden form values, request object methods, and
session object methods. See a JavaServer Pages book or other JSP resources for
descriptions of the techniques available within JSP-based applications.

In the following task, you will learn an example of using one of these
techniques—the request object getParameter method.
CHAPTER 19
Persisting and Bookmarking Data

JavaServer Pages 299
Task: Using Request Parameters to Retrieve a URL Attribute Value

When a web page is submitted, the URL address can pass information that can be
retrieved within a linked page. A common use in an Alphablox Analytics
application is to create a custom print page using the Blox view on a page. Using
the Alphablox Analytics URL render attribute, you could simply open a new print
page a line like this:

window.open("view-print.jsp?render=printer","_blank");

Using this JavaScript method, a new browser window would open displaying the
current Blox view rendered into HTML for printing. But, if you use HTML form
elements (buttons, check boxes, etc.) and text on the page being rendered, all of
those elements and text would be included on the printable page. This would not
be an ideal solution.

Instead of this, you can create a custom print page that will retrieve elements from
the Blox view and incorporate them into a custom print page. The following steps
show you how you can pass a value between JSP pages using the getParameter
method:

1 On the page with a Blox view that you want to print, create a JavaScript
function that will construct a URL that will pass information to the custom
print page.

Here is an example of a JavaScript function that creates a URL address, passing
the time, region (from the selected value in an HTML selection list), render
mode, and HTML theme:

function printPreview() {
var region=document.RegionForm.RegionSelectionList.

options[document.RegionForm.RegionSelectionList,
selectedIndex].text;

var timestamp=new Date();

var URL="passingValues-print.jsp?Region="+escape(region)+
"&TimeStamp="+escape(timestamp.toString())+
DB2 Alphablox
Developer’s Guide for the DHTML Client

300 JavaServer Pages
"&render=printer"+
"&theme=printer";

window.open(URL,"PrintPreviewWindow");
}

2 In your custom print page, capture the values from the URL query string,
incorporating them into your page as needed.

In the body of the custom print page, the following example shows the time and
region being placed on the page using the request object getParameter
method:

<h1>Sales for <%= request.getParameter("Region") %></h1>
<p>
<blox:display bloxRef="RegionPresentBlox"/>
</p>
<h3><%= request.getParameter("timestamp") %></h3>

 The “Passing Values Between Pages” example under the Persisting and
Bookmarking section in the Blox Sampler example set demonstrates the use of
request parameters.
CHAPTER 19
Persisting and Bookmarking Data

20
Bookmarking Data

After users have drilled around a grid or chart, added or changed page filters,
changed chart types, or made other changes, they can bookmark, or save, a view
for later use or for sharing with others. Bookmarking a view is done via the
Bookmark button in the Toolbar or the Bookmark option from the right-click
menu. Users can also load, delete, or rename existing bookmarks that are visible
to them. Bookmarks save the current state of an individual Blox. Essentially,
bookmarks are snapshots of Blox states that are stored in the Alphablox Analytics
Repository. Users can save multiple bookmarks for a particular Blox and recall
them as needed. Bookmarks can also be saved publicly for sharing between all
users with access to an application.

 Alphablox Analytics does not save the data in a bookmark. When a saved
bookmark is restored, the application retrieves fresh data from the database using
the bookmarked layout and settings.

Typically, bookmarking of data views is primarily seen as an end user feature,
accessible from the Blox menubar and used by end users as they work with Blox
in analytic applications. Using functionality in the new BookmarksBlox
component and APIs, however, you can use BookmarksBlox and its powerful API
to customize bookmarking and even create menuing systems based on
bookmarked views. Using the new functionality, developers can implement
bookmark passwords and control access to the deletion of public bookmarks.
Additionally, develops can now better manage changes in multidimensional
databases by repairing queries, setting dynamic bookmarks based on textual
queries, and adding parameterized bookmarks.

302 Bookmarks - Developer Details
Bookmarks - Developer Details
As a developer, there are some important details to be aware of when working
with bookmarking:

• A bookmark is a collection of property sets (name-value pairs) used to restore
the state of a Blox. Here’s an example of a property set for a Blox property:

� dividerLocation = 0.25

• A bookmark includes not only Blox properties, but also bookmark properties.
These bookmark properties include:

• application

• Blox type (Present, Chart, Grid, etc.)

• Description

• Bookmark name

• Hidden (boolean)

• Reference to Blox properties

• When a bookmark is saved, it is the difference between the initial Blox state
and the current state of the Blox when the bookmark is saved. The initial
state includes the defaults plus the defined tag and tag attribute properties. In
the Alphablox Analytics Repository, bookmarks with property sets only exist
for Blox whose properties that have changed since their initial state.

• When a bookmark is saved, it is saved to and restored from a specific
location in the Alphablox Analytics Repository based on the application
name, Blox name, bookmark type (public, group, private), and the group or
user name.

• The bookmarks query file, includes a serialized Query object, which is much
like a grid result set with no data (that is, tuples of member objects). This is
not the textual query, which represents the query defined in the initial Blox
state.

• Using bookmark filters, you can created context filters for bookmarks, which
are useful in creating applications with a single Blox on a page, setting views
based on bookmark menu items. And, using shared bookmarks, you can
create “published” and self-service applications.

Details about common Blox properties, BookmarksBlox tags and tag attributes,
and the available server-side APIs can be found in the Common Blox Reference
and BookmarksBlox Reference sections of the Developer’s Reference for the
DHTML Client.
CHAPTER 20
Bookmarking Data

../index.html?context=reference&topic=ReferenceBook
../index.html?context=reference&topic=ReferenceBook

Bookmarks - Developer Details 303
Task: Getting a Count of All Bookmarks

This example demonstrates the following:

• the use of BookmarksBlox and its listBookmarks() method to gain access to
all bookmarks stored in the repository. The listBookmarks() method returns
an array of bookmark objects

• how to get a count of the total number of bookmarks by getting the length of
the array

<%@ taglib uri="bloxtld" prefix="blox" %>
<!--import the following package in order to access the

com.alphablox.blox.repository.Bookmark class-->
<%@ page import="com.alphablox.blox.repository.*" %>

<blox:bookmarks id="myBookmarksBlox"/>

<%
Bookmark bks[] = null;
bks = myBookmarksBlox.listBookmarks();

%>
There are <%= bks.length %> bookmark(s).

Task: Getting the properties set for a bookmark

This example demonstrates how to access a bookmark based on the bookmark
name, application name, user name, Blox name, and bookmark visibility and get
information on its properties set. In particularly, it demonstrates:

• the use of the BookmarksBlox to access individual bookmarks (the
Bookmark object)

• the use of the Bookmark object’s getName(), getVisibility(),
getDescription(), getBloxType(), and getBinding() methods

• the use of the Bookmark object’s getBookmarkProperties() method to access
the individual properties (one for each nested Blox)

The generated output looks like the following:

The bookmark you are looking for exists.

1 The Repository JNDI binding for this bookmark is:

users/admin/salesapp/mygrid/bookmark/q2fy02WestSales/properties

2 The bookmark name is: q2fy02WestSales

3 The type of Blox this bookmark was saved for is: grid

4 The bookmark description is: The Q2 West Sales

5 The bookmark visibility is: private
DB2 Alphablox
Developer’s Guide for the DHTML Client

304 Bookmarks - Developer Details
6 The bookmark contains Blox properties in the repository

7 Types of Blox properties saved in the bookmark:

• grid
• data

The code is as follows:

<%@ page import="com.alphablox.blox.repository.*,
com.alphablox.blox.ServerBloxMissingResourceExcept

ion,
com.alphablox.blox.ServerBloxException,
com.alphablox.blox.BookmarksBlox" %>

<%@ page import="java.util.*" %>
<%@ page import="java.io.*" %>
<%@ taglib uri="bloxtld" prefix="blox"%>

<html>
<head>
<!-- Blox header tag -->
<blox:header/>
</head>

<body>
<!-- Get an SSPM BookmarkBlox -->
<blox:bookmarks id="bookmarks" />

<!--getting the bookmark you want-->
<%

String bookmarkName = "q2fy02WestSales";
String applicationName = "SalesApp";
String userName = "admin";
String bloxName = "myGrid";
String visibility = Bookmark.PRIVATE_VISIBILITY;
Bookmark bk = null;
try {

bk = bookmarks.getBookmark(bookmarkName, applicationName,
userName, bloxName, visibility);

} catch (ServerBloxException e){
if (e instanceof ServerBloxMissingResourceException){

%>The bookmark DOES NOT EXIST!<%
}
else

throw e;
}
if (bk != null) {

%>The bookmark you are looking for exists.
The Repository JNDI binding for this bookmark is:

 <%= bk.getBinding() %>
The bookmark name is: <%= bk.getName() %>
The type of Blox this bookmark was saved for is: <%=

bk.getBloxType() %>
The bookmark description is: <%= bk.getDescription() %>
CHAPTER 20
Bookmarking Data

Bookmarks - Developer Details 305

The bookmark visibility is: <%= bk.getVisibility() %>

<!---Getting the individual BookmarkProperties ---->
<%

BookmarkProperties props[] = bk.getBookmarkProperties();
if (props != null) {

%>The bookmark contains Blox properties in the
repository

Types of Blox properties saved in the bookmark:

<%
for (int i = 0; i < props.length; i++) {

%><%= props[i].getType() %><%
}
%>
<%

}
else {

%>The bookmark DOES NOT CONTAIN Blox properties in
the

repository<%
}

}%>
 </body>
 </html>

Task: Using server-side bookmarkLoad event filter

This example demonstrates how to use the server-side event filters to perform
custom tasks (in this example, we add a message to the console) when the
bookmarkLoad event is triggered.

1 To use server-side event filters, first add the specific event filter object using
the common Blox method addEventFilter().

<% myPresent.addEventFilter(new LoadFilter()); %>

2 Then write your own class that implements the corresponding event filter
object (BookmarkLoadFilter) and the corresponding method
(bookmarkLoad(BookmarkLoadEvent) that will be called with the event is
triggered.

public class LoadFilter implements BookmarkLoadFilter
{

public void bookmarkLoad(BookmarkLoadEvent bre)
{

//actions to take when the event is triggered
}

}

DB2 Alphablox
Developer’s Guide for the DHTML Client

306 Customizing Applications Using BookmarksBlox API
Here is the code:

<%@ page import="com.alphablox.blox.filter.*" %>
<%@ page import="com.alphablox.blox.*" %>
<%@ page import="com.alphablox.blox.repository.Bookmark" %>
<%@ taglib uri="bloxtld" prefix="blox"%>

<html>
<head>

<title>Bookmarks Filter Events</title>
<!-- Blox header tag -->
<blox:header/>

</head>

<%!
public class LoadFilter implements BookmarkLoadFilter {

public void bookmarkLoad(BookmarkLoadEvent ble) throws
Exception {

Bookmark bookmark = ble.getBookmark();
String name = bookmark.getName();
System.out.println("A bookmark called " + name + " is

loaded.");
}

}
%>

<body>
<blox:present id="myPresent" >

<blox:data dataSourceName="TBC" query="<Row(Market) <ICHILD
Market <Column(Year) Year !"/>
<%

myPresent.addEventFilter(new LoadFilter());
%>
</blox:present>

</body>
</html>

Customizing Applications Using BookmarksBlox API
BookmarksBlox, with its extensive API, allows you to programmatically create
and manage bookmarks and dynamically set the bookmark properties. For
example, you can create time-series reports or reports that always fetch the data
for the current quarter by dynamically modifying the data query stored with a
bookmark. You can use custom bookmark properties to store each user’s choice
of report layout or implement your own security. You can modify the query
stored with a bookmark in the case of change of member names or outline in the
data source. You can even create your own bookmark management user interface.

To use the BookmarksBlox API, add a BookmarksBlox to your page. This gives
you access to each bookmark as a Bookmark object.
CHAPTER 20
Bookmarking Data

Customizing Applications Using BookmarksBlox API 307
Here are a couple of interesting examples of bookmark customization examples
that are included in Blox Sampler.

Bookmark Events

Four bookmark events are available to be used within Alphablox Analytics
applications: load, save, rename, and delete. Any combination of these events
can be registered with a Blox, including multiple events of a similar type. When
registered, these events will be called before the actual process is started,
allowing you a chance to customize bookmark behavior.

A typical event looks like:

public class LoadFilter implements BookmarkLoadFilter {
public void bookmarkLoad(BookmarkLoadEvent ble) throws Exception {

Bookmark bookmark = ble.getBookmark();
String name = bookmark.getName();

System.out.println("Bookmark " + name + " applied");
}

}

In this example, an event gets the name of the bookmark being loaded, then
displays it in the console.

Registering Events

Registering events is done within Blox tags, like this:

<blox:present id="myPresent3" >
<blox:data

dataSourceName="QCC-Essbase"
query="!"/>

<%
myPresent3.addEventFilter(new LoadFilter());
myPresent3.addEventFilter(new SaveFilter());
myPresent3.addEventFilter(new RenameFilter());
myPresent3.addEventFilter(new DeleteFilter());

%>
</blox:present>

The Blox tag above registers all four bookmark events.

Example: Using Dynamic Queries with Bookmarks

With the new bookmark APIs, you can tell the server to execute a query different
than the one that originally saved with the bookmark and to use the result as the
result set.
DB2 Alphablox
Developer’s Guide for the DHTML Client

308 Customizing Applications Using BookmarksBlox API
The following example, using a Microsoft Analysis Services MDX query
statement, shows the modification of a bookmark to store a parameterized textual
query that will be used when the bookmark is loaded. Forcing a bookmark to use
a different textual query involves saving the query with the bookmark properties
and setting the textualQueryEnabled property to true.

In a bookmark save event, you can do the following to save a parameterized
query:

// Parameterized query (NOTE: :year and :quarter)

final String PARAM_QUERY = "SELECT {[Products].[Category].[All
Products], [Products].[Category].[All Products].children} ON ROWS,
{[Time].[Calendar].[All Time Periods].[:year], [Time].[Calendar].[All
Time Periods].[:year].[:quarter]} ON COLUMNS FROM [QCC]";

// get the Bookmark Object from the BookmarkSaveEvent

Bookmark bookmark = bse.getBookmark();

// Find DataBlox properties for this bookmark

BookmarkProperties data =
bookmark.getBookmarkPropertiesByType(Bookmark.DATA_BLOX_TYPE);

// If DataBlox properties not found in existing property set, create

if (data == null) {
data = bookmark.createBookmarkProperties(Bookmark.DATA_BLOX_TYPE);
}

// Set textualQueryEnabled to true, saving the query above to bookmark

data.setProperty("textualQueryEnabled", true);
data.setProperty("query", PARAM_QUERY);

When the bookmark is loaded, you can use a bookmark load event to replace the
parameters with relevant information given by a user, for example:

// get the Bookmark Object from the BookmarkLoadEvent
Bookmark bookmark = ble.getBookmark();

// find a DataBlox properties for this bookmark

BookmarkProperties data =
bookmark.getBookmarkPropertiesByType(Bookmark.DATA_BLOX_TYPE);

if (data != null) {

// Get the parameterized query from the bookmark
String query = data.getProperty("query");
CHAPTER 20
Bookmarking Data

Customizing Applications Using BookmarksBlox API 309
// Replace the parameters with real information

// NOTE: replaceText simply replaces any references to the 2nd argument
// with the contents of the third argument.

query = replaceText(query, ":year", "2002");
query = replaceText(query, ":quarter", �Qtr2�);

// set the new un-parameterized query

data.setProperty("query", query);
}

When the bookmark is loaded, the parameters will be exchanged for 2002 and
Qtr2 and the query will be executed.

Task: Getting a list of bookmarks that match the specified criteria

This example demonstrates the following:

• getting bookmarks for a specified user, and in this example, the user “admin”
with the use of the BookmarkMatcher object

• the use of the Bookmark object’s getBinding() and getBloxType() methods
and their output

The generated output is as follows:

Got 5 Bookmark Object(s) for user admin.

The Bookmarks are:

users/admin/salesapp/salesgrid/bookmark/salesq1fy03/properties
(grid)
users/admin/salesapp/salespresent/bookmark/eastq2fy03/properties
(present)
users/admin/budgetapp/mypresent/bookmark/eastq3budget/properties
(present)
users/admin/budgetapp/mypresent/bookmark/westq3budget/properties
(present)
users/admin/budgetapp/present2/bookmark/mybudget/properties
(present)

The code is as follows:

<%@ taglib uri="bloxtld" prefix="blox" %>
<!--import the following package in order to access the

com.alphablox.blox.repository.BookmarkMatcherUsers class-->
<%@ page import="com.alphablox.blox.repository.*" %>
<html>
<head>

<blox:header/>
</head>
DB2 Alphablox
Developer’s Guide for the DHTML Client

310 Customizing Applications Using BookmarksBlox API
<body>
<blox:bookmarks id="myBookmarksBlox" />
<%

Bookmark bks[] = null;
BookmarkMatcherUsers matcher = new BookmarkMatcherUsers();
bks = null;
matcher.setUser("admin");
bks = myBookmarksBlox.listBookmarks(matcher);

%>
<div>Got <%= bks.length %> Bookmark Object(s) for

user <%= matcher.getUser() %></div>
<div>The Bookmarks are:</div>

<%
for (int i = 0; i < bks.length; i++) {

%><%= bks[i].getBinding() %> (<%= bks[i].getBloxType() %>)

<%

}
%></div>

</body>
</html>

Task: Creating a bookmark using the BookmarksBlox API

This example shows how to use a BookmarksBlox, Bookmark and
BookmarkProperties classes to create a new bookmark. There are two ways to
create a bookmark programmatically:

• Supply all the bookmark options to BookmarksBlox.createBookmark(...)

• Supply a Blox along with other information needed to
BookmarksBlox.createBookmark(...)

This example demonstrates the later approach.

1 We specify the bookmark name, application name, user name, Blox name,
visibility, and description associated with the bookmark.

2 Then we create a Bookmark object called “bk” using the createBookmark()
method, and specify the Blox type to be GRID_BLOX_TYPE.

3 For the “bk” object, we create an instance of the BookmarkProperties object
called “gridBloxProp” to store GridBlox specific properties and another
called “dataBloxProp” to store DataBlox specific properties. For
gridBloxProp, we set cellBandingEnabled to true; for dataBloxProp, we set
the query to “!” and specify to reconnect to the data source.

4 Call the saveAll() method to save the bookmark we just created into the
repository.
CHAPTER 20
Bookmarking Data

Customizing Applications Using BookmarksBlox API 311
The generated output looks like the following:

We�ve got a Bookmark object from BookmarksBlox.createBookmark()!

Created a bookmark: q2fy02WestSales
At binding: users/jdoe/salesapp/mygrid/bookmark/

q2fy02westsales/properties

Here is the code:

<%@ taglib uri="bloxtld" prefix="blox" %>
<!--import the following package in order to access the

com.alphablox.blox.repository.BookmarkMatcherUsers class-->
<%@ page import="com.alphablox.blox.repository.*" %>
<blox:header />
<blox:bookmarks id="myBookmarksBlox" />

<blox:grid id="myGrid" width="500" height="320">
<blox:data dataSourceName="qcc-essbase" query="!"/>

</blox:grid>
<%
// (1) Specify the bookmark properties

String bookmarkName = "q2fy02WestSales";
String applicationName = "SalesApp";
String userName = "jdoe";
String bloxName = "myGrid";
String visibility = myBookmarksBlox.PRIVATE_VISIBILITY;
String description = "Bookmark for Q2FY02 West Region Sales";
Bookmark bk = null;

// (2) Create a Bookmark object called "bk"
bk = myBookmarksBlox.createBookmark(bookmarkName,

applicationName, userName, bloxName, visibility,
myBookmarksBlox.GRID_BLOX_TYPE);

%>
<p>We�ve got a Bookmark object from
BookmarksBlox.createBookmark()!<p/>

<%
// (3) Set the bookmark�s description and its GridBlox and DataBlox
// properties

bk.setDescription(description);
bk.setCustomProperty("Report", "West Region Sales Report");

BookmarkProperties gridBloxProp =
bk.createBookmarkProperties(myBookmarksBlox.GRID_BLOX_TYPE);

A 500 X 320 GridBlox Here...
DB2 Alphablox
Developer’s Guide for the DHTML Client

312 Customizing Applications Using BookmarksBlox API
gridBloxProp.setProperty("bandingEnabled", true);
BookmarkProperties dataBloxProp =

bk.createBookmarkProperties(myBookmarksBlox.DATA_BLOX_TYPE);
dataBloxProp.setProperty("connectOnStartup", true);
dataBloxProp.setProperty("query", "!");

// (4) Save the bookmarks to the repository. Must call save() or
// saveAll() to save the bookmark to the repository.

bk.saveAll();

%>
Created a bookmark: <%= bookmarkName %>

At binding: <%= bk.getBinding() %>
<%

bk = null;
%>

Task: Getting a DB2 OLAP Server or Essbase serialized query in text form when a
bookmark is loaded

This example demonstrates how to get a serialized query in text form from the
bookmark (which is not the same as the query that is in the DataBlox). Note that
this example only works with DB2 OLAP Server and Essbase data sources. To
reference Microsoft Analysis Services, you need to save the query yourself.

1 Set the DataBlox’s textualQueryEnabled property to true:

<blox:data...
textualQueryEnabled="true" />

2 The server-side event filter, BookmarkLoadFilter, is used to trigger the
custom action when the bookmark is loaded. See “Task: Using server-side
bookmarkLoad event filter” on page 305 for an example of the server-side
event filter.

3 When a bookmark is loaded, a serialized query in text form is retrieved.

Here is the complete code:

<%@ page import="com.alphablox.blox.filter.*,
com.alphablox.blox.repository.BookmarkProperties,
com.alphablox.blox.repository.SerializedQuery,
com.alphablox.blox.repository.SerializedTextualQuery,
com.alphablox.blox.repository.SerializedMDBQuery,
com.alphablox.blox.repository.Bookmark" %>

<%@ taglib uri="bloxtld" prefix="blox"%>
<html>
<head>
<blox:header/>
<%!

public class LoadFilter implements BookmarkLoadFilter
{

CHAPTER 20
Bookmarking Data

Customizing Applications Using BookmarksBlox API 313
public void bookmarkLoad(BookmarkLoadEvent ble) throws Exception
{
Bookmark bookmark = ble.getBookmark();
SerializedQuery sq = bookmark.getSerializedQuery();
SerializedTextualQuery stq = null;
SerializedMDBQuery smq = null;
String query = null;

if(sq instanceof SerializedTextualQuery)
{
stq = (SerializedTextualQuery)sq;
query = stq.getQuery();
}
else if(sq instanceof SerializedMDBQuery)
{

smq = (SerializedMDBQuery)sq;
query = smq.generateQuery();

}

System.out.println("query=" + query);
}

}
%>
<body>
<blox:present id="myPresent"

width="800"
height="600">
<blox:data

dataSourceName="QCC-Essbase"
query='<ROW ("All Locations") Central East West <COLUMN ("All Time

Periods") 2001 !"
useAliases="true"
textualQueryEnabled="true" />

<%
myPresent.addEventFilter(new LoadFilter());

%>
</blox:present>
</body>
</html>

Task: Using Custom Properties to Restrict Access

Custom properties are an enhancement to existing bookmarks. You can now place
additional key/value information into a bookmark to be used when the bookmark
is loaded during a bookmark load event.

In a bookmark save event, you can add custom properties to the bookmark, for
example:

// get the Bookmark Object from the BookmarkSaveEvent
Bookmark bookmark = bse.getBookmark();
DB2 Alphablox
Developer’s Guide for the DHTML Client

314 Customizing Applications Using BookmarksBlox API
// add username of bookmark owner as a custom property
bookmark.setCustomProperty(�Owner�, �Admin�);

 You can create a constructor for your BookmarkSaveEvent class, or any
other bookmark event for that matter, to take a parameter such as an owner name

When the bookmark is loaded, you can use a bookmark load event to get the
custom property and see if the owners match:

// get the Bookmark Object from the BookmarkLoadEvent
Bookmark bookmark = ble.getBookmark();

// get the owner custom property
String owner = bookmark.getCustomProperty(�Owner�);

// compare this user and the owner
if (!owner.equalsIgnoreCase(currentUser)) {

// if user and owner do not match, stop bookmark load
ble.cancelEvent();

}

You can also do the same to stop the deletion of a bookmark that the
current user does not own:

// get the Bookmark Object from the BookmarkDeleteEvent
Bookmark bookmark = bde.getBookmark();

// get the owner custom property
String owner = bookmark.getCustomProperty(�Owner�);

// compare this user and the owner
if (!owner.equalsIgnoreCase(currentUser)) {

// if user and owner don�t match, stop bookmark delete
bde.cancelEvent();

}

CHAPTER 20
Bookmarking Data

21
Distributing Views

Even though most analysis happens by individuals sitting alone in either an office
or cubicle, the information and results of analysis are often shared with others in a
business, including executives, colleagues, and customers. Alphablox Analytics
applications, thanks to the ubiquity of the Internet and web browsers, can be
shared with others in your office or company to distances around the world. In the
following sections, some of the most common methods of distributing and
sharing information are discussed.

E-Mail
E-mail is often the preferred mode of sharing of information, thanks to its wide-
spread availability, low costs, and speed of delivery. In the past, e-mail was
primarily a means of sharing static views of information internally to a company
or around the world. But thanks to the World Wide Web, e-mail is now frequently
used to send URL links to others, allowing others to access shared web-based
resources with dynamic content.

Alphablox Analytics applications can be customized to allow users to e-mail
static views from Blox for others to view. Static analytic views with URL links to
dynamic versions can be e-mailed to other business users with access permission
to an application, enabling them to open a dynamic view that can be drilled into
and manipulated.

The following task explains how you can create an e-mail link in an application,
allowing user to share a snapshot view of the data with others and, optionally,
include a URL link on the e-mail message pointing to a common shared
Alphablox Analytics application.

316 E-Mail
Task: Creating a Mail Link Using the E-Mail Bean

An email bean is available for emailing a static view of the data to one or more
email recipients. This bean and a set of support JSP files and images are provided
in the e-mail example under the Application Studio. The core file in this example
is EmailBean.class file that needs to be included with your application.

To use this bean, an SMTP server needs to be specified to Alphablox Analytics.
This can be done in the Alphablox Analytics Admin Pages, under the System link
of the Administration tab.

Below is a general overview of the steps involved. For detailed step-by-step
instructions on configuring and customizing the files for your application, please
see the live example.

1 The first step involves copying Java class files into your application. In
particular, the EmailBean.class file and two other support class files
(HTMLFileParser.class and HTMLFile.class) need to be copied into
your application's WEB-INF\classes\alphablox\ directory. All Java
classes, servlets, beans, or other utility classes need to reside in WEB-
INF\classes\. In this case, we create a sub-directory called alphablox\
under classes\.

2 The next step involves copying following files into your application
directory:

� emailSend.jsp

� emailError.jsp

� emailTemplate.jsp

� emailDialog.html

The purpose of each file is listed in the table at the end of this section. You may
wish to modify or customize emailError.jsp, emailTemplate.jsp and
emailDialog.html. Suggested modifications are included in the table.

3 There are a number of images that are part of the example implementation, as
well as a style sheet. You may wish to modify and/or use these files as well.
If you use the images, copy them into your application directory in an images
subdirectory. The stylesheet (styles1.css) can be copied directly into your
application directory. See the table at the end of this section.

4 There is a file included with the example called emailExample.jsp. You
can use this file as an example of how to incorporate the email functionality
into your application. In emailExample.jsp, a javascript function is defined
called openEmailDialog(). This function invokes the email dialog. Code is
CHAPTER 21
Distributing Views

E-Mail 317
also added so that when the button in the example is clicked the
openEmailDialog function is invoked.

File Description Modification

emailExample.jsp The JSP file that
contains:

• the user interface
Blox to be emailed

• an email link or
button that triggers
the email
functionality

Copy the block of
JavaScript code in this file
that brings up
emailDialog.html in a
separate, sized browser
window into your JSP file
containing Blox.

In your e-mail link or
button, specify to call the
JavaScript function
copied.

emailDialog.html The HTML file called
by
emailExample.jsp;
contains a form for
filling in sender,
recipient, subject, and
body of the email
message.

Upon form submission,
the emailSend.jsp
file is invoked with all
the parameters passed
via form post.

You can use it as it is or
modify the title, logo, or
style sheet reference for
your application.

emailSend.jsp The JSP file that
interfaces with the
Email bean to send the
email.

Do not modify this file.

emailTemplate.jsp The returned page
informing the user the
email has been sent.

You can use it as it is or
modify the title or text for
your application.
DB2 Alphablox
Developer’s Guide for the DHTML Client

318 Bookmarks
Bookmarks
Bookmarks can be used to share instances of Blox views with fresh data among
others within defined groups or publicly (to others with application access rights).
Bookmarks allow analysts and managers to quickly share customized views of
data without requiring them to wait for developers to become freed up to create
custom application views. Instead, by bookmarking views and sharing them with
others, all members of a group can share information.

emailError.jsp The error page for
emailSend.jsp. If
something goes wrong
trying to send the
email, the error
information will be
displayed in this page.

You can use it as it is or
customize it for your
environment.

emailBlox.gif The “mailbox” image
used in
emailExample.jsp as
the email icon.

You can use it as it is or
modify.

required.gif The small red arrow
that indicates a
required field in the
email dialog.

You can use it as it is or
modify.

gridlogo-sm.gif Alphablox logo shown
to the left of the “send
e-mail” button in the
email dialog.

You can use it or replace it
with an image of your
own.

grid-bg.gif The image that is tiled
to form the background
of the email dialog.

You can use it or replace it
with an image of your
own.

style1.css The style sheet used by
emailDialog.html.

You can use it as it is or
modify.

File Description Modification
CHAPTER 21
Distributing Views

Printing 319
Bookmarks can also be used for groups to share saved views that will potentially
be added to applications as fully customized views.

 The use of bookmarks for long-term use of views is not recommended since
bookmarked views maintain the use of member names that may not be valid after
a few months. Also, the addition of new members to a data source may not be
reflected in the bookmark view without modifications to the bookmarks.

 Sometimes users become concerned about bookmarks, misunderstanding
what is actually being saved. When a bookmark is saved, there is no data stored.
Every time a bookmark view is opened, an appropriate query is resubmitted to
the server, and fresh data is retrieved. Also, a bookmarked view does not give
others access to information which database security would keep from them.

For more information about bookmark functionality that you can use in
developing analytic applications, see “Bookmarking Data” on page 301. For
details about the available bookmark-related properties and methods, see
Common Blox Reference and BookmarksBlox Reference sections of the
Developer’s Reference for the DHTML Client.

Printing
One of the advantages of Alphablox Analytics applications is that the data
presented to users is available immediately, it is updated when the data source is
updated, and can be shared without having to be printed and distributed though
company mail. But, inevitably, users want to print copies for sharing with others.
See other sections in this guide to learn more about how to effectively deliver
analytic view through print and PDF renderings:

• “Printer Format (render=printer)” on page 216

• “PDF Format” on page 216

• “Printing Blox Output” on page 218

• “Converting to PDF” on page 327
DB2 Alphablox
Developer’s Guide for the DHTML Client

../index.html?context=reference&topic=ReferenceBook

320 Printing
CHAPTER 21
Distributing Views

22
Exporting Data

Exporting is a way to output data to a spreadsheet or other formats. This chapter
discusses how you can create applications that support exporting grid views to
Microsoft Excel or in an XML format.

Exporting to Spreadsheets
By default, the toolbar includes an Export to Excel button and the menu bar
includes a File > Export to Excel option that allows users to export the data in the
grid to Microsoft Excel. To copy only selected cells into a spreadsheet, users can
alos select a range of cells within a grid, copy this data (via the File > Copy menu
option or the Copy button in the toolbar), and then paste it into a spreadsheet,
such as Excel or Lotus 1-2-3.

Exporting a Grid View

The example provided here illustrates how to render active Blox output for export
to another application (in this case, Microsoft Excel). The rendered grid output
appears in the same browser window.

 When rendering a PresentBlox in xls format, only the grid output will be
displayed in the spreadsheet. A ChartBlox cannot be rendered using the xls
format.

Note the following user requirements for exporting Blox output to Excel:

• Microsoft Office 2000 or later must be installed on the client.
• Microsoft Internet Explorer 5 or later, must be installed on the client.

322 Exporting to Spreadsheets
Task: Exporting a Grid View to Microsoft Excel

If you need to turn off the menu bar and the toolbar entirely, you can still provide
a way for users to export the data in a grid to Excel. The steps are very similar to
the technique used to render a page in a printable format. The following steps
show how to render a grid view into Microsoft Excel.

1 Create a custom export to Excel page, with just a <blox:display> tag
within the <body> tag of the JSP file. Also, make sure to include the
<blox:header/> tag in the <head> of the page.

For example, the following compressed code for a JSP page results in a simple
export to Excel page:

<%@ taglib uri="bloxtld" prefix="blox"%>
<html>
<head>

<blox:header/>
</head>
<body>

<blox:display bloxRef="SaleViewGrid"/>
</body>
</html>

When this page is exported to Excel using the render=xls URL attribute, the
currently viewed grid in SalesViewGridBlox will be displayed within the
browser Microsoft Excel window.

2 On a page with a Blox on it, add a button or link to generate the grid within
Microsoft Excel.

For example, the following HTML code creates a button, labeled “Export to
Excel,” within the body of a JSP page that will be used to open the current page’s
view in a new browser window, with Excel displaying the grid:

<form>
<input type="button" value="Export to Excel"
onclick="window.open('SalesView-excel.jsp?render=xls','_new')">

</form>

3 Open your analytic view and test the button. You should see a new window
open with a grid rendered within an Excel browser window.

In Internet Explorer, the browser loads Excel and places the exported Blox grid
output into an Excel page.
CHAPTER 22
Exporting Data

Exporting to XML 323
 When exporting to Excel in situations where double-byte characters occur,
you should include the following page directive at the top of the exported JSP
page:

<%@ page contentType="text/html; charset=UTF-8" %>

Exporting to XML
Data that is exported to XML format can be used by application developers to
deliver information to other applications or can be used with Java, JavaScript, and
JavaServer Pages technologies to create custom views of data. The following task
explains how a query result can be exported into an XML format.

Task: Rendering a Result Set into XML Format

Rendering a query result set from an application data source into XML format
involves the following steps:

1 Define an HTML page with a standard DataBlox.

The Alphablox Analytics XML Cube can only access the result set of an
explicitly-defined DataBlox. It cannot access the result set of the implicitly-
defined DataBlox that underlies a PresentBlox, GridBlox, or ChartBlox.

2 Use DataBlox properties or methods to specify its data source and query
string.

3 Define both the application and data source to Alphablox Analytics.

4 Invoke the application, being sure to add the render attribute to the
application’s URL:

.../AppName.jsp?render=XML

The value of XML for the render attribute triggers Alphablox Analytics to
perform the following processing:

• access the Alphablox Analytics XML Cube DTD (Document Type
Definition)

• render the DataBlox result set in XML (replacing the DataBlox on the
page)

• make the XML document available for further processing
DB2 Alphablox
Developer’s Guide for the DHTML Client

324 Exporting to XML
 When using an stand-alone DataBlox for rendering to XML, the Blox header
tag (<blox:header/>) is not required on your application page, and may result
in the page not being displayed properly. Alternatively, instead of using the
render=xml URL attribute, you may want to use a DataBlox with the common
render property, setting its value to xml.

The next section shows the example result set from the previous page rendered
into XML.

Sample Alphablox Analytics XML Document

Below is the example result set rendered as an XML document. In some cases,
line breaks have been added for readability.

<?xml version="1.0"?>

<!DOCTYPE cube SYSTEM '/AlphabloxServer/xml/dtd/cube.dtd'>

<cube>
<bloxInfo>

<bloxID>15</bloxID>
<bloxName>MyDataBlox</bloxName>
<appName>MyXMLDoc</appName>

</bloxInfo>
<data>
<slicer>

<slicerDimension name="Period">Period</slicerDimension>
<slicerMember name="Period" gen="1"

leaf="false">Period</slicerMember>
</slicer>
<slicer>

<slicerDimension name="Accounts">Accounts
</slicerDimension>
<slicerMember name="Accounts" gen="1"

leaf="false">Accounts
</slicerMember>

</slicer>
<slicer>

<slicerDimension name="Scenario">Scenario
</slicerDimension>
<slicerMember name="Scenario" gen="1"

leaf="false">Scenario
</slicerMember>

</slicer>
<axis name="columns" index="0">

<dimensions>
<dimension name="Market" index="0">Market</dimension>

</dimensions>
<tuple index="0">

<member name="East" index="0" gen="2" span="1"
spanIndex="0" leaf="false">East
CHAPTER 22
Exporting Data

Exporting to XML 325
</member>
</tuple>
<tuple index="1">

<member name="West" index="0" gen="2" span="1"
spanIndex="0" leaf="false">West

</member>
</tuple>
<tuple index="2">

<member name="South" index="0" gen="2" span="1"
spanIndex="0" leaf="false">South

</member>
</tuple>
<tuple index="3">

<member name="Market" index="0" gen="1" span="1"
spanIndex="0" leaf="false">Market

</member>
</tuple>

</axis>
<axis name="rows" index="1">

<dimensions>
<dimension name="Product" index="0">Product
</dimension>

</dimensions>
<tuple index="0">

<member name="Audio" index="0" gen="2" span="1"
spanIndex="0" leaf="false">Audio

</member>
</tuple>
<tuple index="1">

<member name="Visual" index="0" gen="2" span="1"
spanIndex="0" leaf="false">Visual

</member>
</tuple>
<tuple index="2">

<member name="Product" index="0" gen="1" span="1"
spanIndex="0" leaf="false">Product

</member>
</tuple>

</axis>
<cells>

<row>
<column>

<cell>13438.0</cell>
</column>
<column>

<cell>22488.0</cell>
</column>
<column>

<cell>0.0</cell>
</column>
<column>

<cell>35926.0</cell>
</column>

</row>
DB2 Alphablox
Developer’s Guide for the DHTML Client

326 Exporting to XML
<row>
<column>

<cell>33138.0</cell>
</column>
<column>

<cell>40351.0</cell>
</column>
<column>

<cell>24565.0</cell>
</column>
<column>

<cell>98054.0</cell>
</column>

</row>
<row>

<column>
<cell>46576.0</cell>

</column>
<column>

<cell>62839.0</cell>
</column>
<column>

<cell>24565.0</cell>
</column>
<column>

<cell>133980.0</cell>
</column>

</row>
</cells>

</data>
</cube>
CHAPTER 22
Exporting Data

23
Converting to PDF

Alphablox Analytics offers out-of-the box support for exporting analytic views
within Blox to Adobe Acrobat PDF files suitable for printing, saving for later
reference, or sharing with others. Users of web-based applications frequently
need to save their current work, either printing or saving it for later reference or
sharing with others. The Convert to PDF option provided by Alphablox Analytics
offers advantages that address many of the problems frequently found when using
standard web-based printing. These problems include:

• Web browser printing. By default, Microsoft Internet Explorer does not print
background colors and images. To print a file the way it appears on the
screen, Microsoft Internet Explorer users must be familiar with and check the
“Print background colors and images” option on the Advanced dialog
window of the Internet Options under the Tools menu.

• Page size issues. When a table or chart is wider than the width of the selected
paper, information on the right side of the page will be lost during printing.

• Saving for later use. Saving web pages for later reference can be a challenge.
Microsoft Internet Explorer offers the option of saving a file as a single
MIME HTML (.mht) file, with web page images embedded within the file.

• E-mailing reports to others. If Alphablox Analytics users e-mail web pages
to others using the browser options, recipients usually receive files with
missing images, which includes any chart images. The e-mailed pages
include links to temporary chart image files on the server, but these files do
not exist after the sender’s session has ended. Also, recipients may be
prompted to log into systems they do not have access to

Using the Alphablox Analytics Convert to PDF option, both assemblers and users
have more control over their files and printing. Some of the benefits of using this
option include:

328 Converting a Blox to a PDF File
• Better page layout control. With the assembler or user page layout options
available with the Convert to PDF functionality, the layout of a saved or
printed view can be more finely controlled than using standard browser
controls.

• Single file format. A generated PDF file is a single file that can be easily be
printed, saved to a hard disk, or e-mailed to other people.

Converting a Blox to a PDF File
Using Convert to PDF, developers can offer users customizable reports based on
analytic views presented in either a single Blox or with multiple Blox on a web
page. In this section, the default user interface options are discussed, then several
ways that the Convert to PDF process can be customized by you.

Default User Interface Options

By default, Export to PDF options are available on the menubar and toolbar of
PresentBlox, GridBlox, and ChartBlox components. When a user either selects
File > Export to PDF on the menubar or presses the Export to PDF button on
the Blox toolbar, the user will see the default Create PDF Report Dialog window.
Within this dialog, users can modify the following settings:

• Orientation: Landscape (default) or Portrait

• Page Size: Letter (default), Legal, A3, A4

• Theme: a selection list of themes available on the server, with a default value
the same as the server’s Default HTML Theme (default server theme is
coleman)

• Header Text: blank text entry field

• Footer Text: blank text entry field

As discussed below, you can customize this dialog or even choose to not have the
dialog appear.

Global Default PDF Report Properties

Custom global default PDF report properties can defined in an optional PDF
Report properties file (pdfreport.properties) placed in the following
directory:

<alphabloxAnalytics_dir>/repository/theme/
CHAPTER 23
Converting to PDF

Converting a Blox to a PDF File 329
Any settings in this file will be used by default in all Alphablox Analytics
applications. An example PDF report properties file
(example_pdfreport.properties) is available in the same directory. This
example file uses the same properties that are hard-coded into Alphablox
Analytics. When you add a pdfreport.properties file in the directory
specified above, it will override the hard-coded values and use your new global
default settings.

To create a default PDF report properties file, make a copy of the example file,
renaming it to pdfreports.properties and modify the properties in that file to
meet your needs. The following properties can be specified in this file:

Property Description

header Header, including text and layout. Defined using
XHTML (see note below table) and macros.

Available macros:
Date: <date/>
Time: <time/>
Page count: <totalpages/>
Current page: <pagenumber/>
PDF Dialog Input: <pdfDialogInputN/> (where
N is integer from 1 to 5). By default,
<pdfDialogInput1/> defines the header and
<pdfDialogInput2/> defines the footer.

Example:

header=<table border-bottom='1px'
width='100%'><tr><td
valign='middle'><img src='/
AlphabloxServer/theme/i/brand.gif'/></
td><td align='center' style='font: bold
30px Helvetica; color: #333333;'
valign='middle'><pdfDialogInput1/
></td><td align='right'
style='font: 8px Helvetica; color:
black;' valign='top'></td></
tr></table>
DB2 Alphablox
Developer’s Guide for the DHTML Client

330 Converting a Blox to a PDF File
footer Footer, including text and layout. Defined using
XHTML tags (see note below table) and macros.

Available macros:
Date: <date/>
Time: <time/>
Page count: <totalpages/>
Current page: <pagenumber/>
PDF Dialog Input: <pdfDialogInputN/> (where
N is integer from 1 to 5). By default,
<pdfDialogInput1/> defines the header and
<pdfDialogInput2/> defines the footer.

Example:

footer=<table border-top='1px'
width='100%'><tr><td align='left'
style='font: 8px Helvetica; color:
black;' valign='bottom'
width='33%'><date/> <time/></
span></td><td align='center'
style='font: bold 10px Helvetica; color:
#333333;' valign='bottom'
width='33%'><pdfDialogInput2/></
span></td><td valign='bottom'
width='34%'><p style='font-
size:10;align:right;valign:bottom;'><pa
genumber/> of <totalpages/></p></td></
tr></table>

headerHeight Header height. Valid units include: pixels (px),
points (pt), inches (in), millimeters (mm), and
centimeters (cm). If not specified, pixels (px) will
be used.

Example:

headerHeight=50

Property Description
CHAPTER 23
Converting to PDF

Converting a Blox to a PDF File 331
footerHeight Footer height. Valid units include: pixels (px),
points (pt), inches (in), millimeters (mm), and
centimeters (cm). If not specified, pixels (px) will
be used.

Example:

footerHeight=10

footerHeight=0.5in

margin Margin. Valid units include: pixels (px), points
(pt), inches (in), millimeters (mm), and centimeters
(cm). If not specified, pixels (px) will be used..

Example:

margin=18

size Paper size, used to define paper size (A3, A4,
Letter, Legal) and orientation (landscape,
portrait). Valid attributes are: [A3 | A4 |
Letter | Legal | Custom [[Portrait |
Landscape] | [width | [height]]].
Default page size is locale-specific: In US or
Canada, default is Letter, otherwise the page size
default will be A4. Default orientation is
Landscape.

Examples:

size=Letter Portrait

size=A4 Landscape

size=Legal

size=Custom 15in 100mm

size=Custom 8in (in this case, the default height
is used)

themeListEnabled Theme list enabled. Value can be true (default) or
false.

themeListEnabled=true

pdfDialogInput1

pdfDialogInput1=Header Text

Property Description
DB2 Alphablox
Developer’s Guide for the DHTML Client

332 Converting a Blox to a PDF File
#example pdfDialogInput1=Footer Text, my footer

 XHTML tag and CSS limitations:

a <center> is not supported.

b For a non-breaking space, use the Unicode character ()
instead of the XHTML character ().

c CSS shorthand attributes should follow CSS specifications.

Using JSP Tags to Customize PDF Reports

The Alphablox Analytics Blox Tag Library offers two custom JSP tags,
<blox:pdfReport> and <blox:pdfDialogInput>, that can be used to
customize PDF properties on your JSP pages.

Custom PDF Report Properties Using <blox:pdfReport> Tags

The <blox:pdfReport> tag can be used by developers to specify custom PDF
report properties either at the Blox-level or the session-level (overriding the hard-
coded PDF report properties). To set PDF properties that only affect a single
Blox, add a nested <blox:pdfReport> tag to the Blox for which you want the
properties to be applied when rendering to PDF.

To specify PDF properties that will apply to all Blox on the same JSP page,
placing the <blox:pdfReport> tag outside of a Blox on a JSP page will result in
the PDF properties being applied to all PDF dialogs for Blox on that page.

pdfDialogInput2

pdfDialogInput2=Footer Text

repeatPageFilters Repeat page filter on pages after the first page.

repeatPageFilters=true

theme Theme name, same as theme name used in
Alphablox Analytics Repository.

theme=my_own_theme

Property Description
CHAPTER 23
Converting to PDF

Converting a Blox to a PDF File 333
The following table describes the tag attributes that can be used in defining PDF
properties with the <blox:pdfReport> tag:

Property Description

footer Footer. Defined using XHTML tags (see note
below table) and macros.

Available macros:
Date: <date/>
Time: <time/>
Page count: <totalpages/>
Current page: <pagenumber/>

Examples:

footer="<table border-top='1px'
width='100%'><tr><td align='left'
style='font: 8px Helvetica; color:
black;' valign='bottom'
width='33%'><date/> <time/></
span></td><td align='center'
style='font: bold 10px Helvetica; color:
#333333;' valign='bottom'
width='33%'><pdfDialogInput2/></
span></td><td valign='bottom'
width='34%'><p style='font-
size:10;align:right;valign:bottom;'><pa
genumber/> of <totalpages/></p></td></
tr></table>"

footerHeight Footer height. Valid units include: pixels (px),
points (pt), inches (in), millimeters (mm), and
centimeters (cm). If not specified, pixels (px) will
be used.

Examples:

footerHeight="10"

footerHeight="0.5in"
DB2 Alphablox
Developer’s Guide for the DHTML Client

334 Converting a Blox to a PDF File
header Header. Defined using XHTML tags (see note
below table) and macros.

Available macros:
Date: <date/>
Time: <time/>
Page count: <totalpages/>
Current page: <pagenumber/>

Examples:

header="<table border-bottom='1px'
width='100%'><tr><td
valign='middle'><img src='/
AlphabloxServer/theme/i/brand.gif'/></
td><td align='center' style='font: bold
30px Helvetica; color: #333333;'
valign='middle'><pdfDialogInput1/
></td><td align='right'
style='font: 8px Helvetica; color:
black;' valign='top'></td></
tr></table>"

headerHeight Header height. Valid units include: pixels (px),
points (pt), inches (in), millimeters (mm), and
centimeters (cm). If not specified, pixels (px) is
used.

Examples:

headerHeight="10"

headerHeight="1in"

margin Margin. Valid units are: pixels (px), points (pt),
inches (in), millimeters (mm), and centimeters (cm).
If not specified, pixels (px) will be used. Value of
1in results in pages with one-inch margins.

Examples:

margin="1in"

margin="40"

Property Description
CHAPTER 23
Converting to PDF

Converting a Blox to a PDF File 335
 XHTML tag and CSS limitations:

a <center> is not supported.

b For a non-breaking space, use the Unicode character ()
instead of the XHTML character ().

c CSS shorthand attributes should follow CSS specification.

size Paper size, used to define paper size (A3, A4,
Letter, Legal) and orientation (landscape or
portrait). Valid attributes are: [A3 | A4 |
Letter | Legal | Custom [[Portrait |
Landscape] | [width | [height]]].
Default page size is locale-specific: In US or
Canada, default is Letter, otherwise the page
size default will be A4. Default orientation is
Landscape.

Examples:

size="Letter Portrait"

size="A4 Landscape"

size="Legal"

size="Custom 15in 100mm"

size="Custom 8in" (in this case, the default
page size height is used)

theme Server HTML theme defining layout styles. Value
can be any predefined or custom Alphablox
Analytics theme.

Example:

theme="coleman"

themeListEnabled Theme list enabled. Value can be true (default) or
false.

Example:

themeListEnabled="false"

Property Description
DB2 Alphablox
Developer’s Guide for the DHTML Client

336 Converting a Blox to a PDF File
Examples:

<blox:pdfReport
size="A3 portrait"
margin="30mm" />

<blox:pdfReport
size="Letter portrait"
margin="0"
theme="myTheme"
themeListEnabled="false"/>

<%
String header="This report has

<totalpages> pages ";
%>

<blox:pdfReport
header="<%=header%>"
headerHeight"50px"
footer="<%=some_xhtml_variable%>"
footerHeight"1in"

Custom Create PDF Report Dialog Options Using the <blox:pdfDialogInput> Tag

The <blox:pdfDialogInput> tag is used to specify the input field labels and
text fields to be added to the Create PDF Report dialog. It can only be used as a
nested tag within a <blox:pdfReport> tag.

The following table describes the tag attributes and brief descriptions available on
the <blox:pdfDialogInput> tag:

Tag Attribute Description

index An integer from 1 to 5 that defines which of five
fields to be defined.

Example:

index="5"
CHAPTER 23
Converting to PDF

Multiple Blox to a Single PDF File 337
Examples:

<blox:pdfReport>
<blox:pdfDialogInput index="1"
displayName="Report Title"
defaultValue="My Application Name" />

</blox:pdfReport>

<blox:pdfReport>
<blox:pdfDialogInput index="1"

displayName="Report Title"
defaultValue="My Application Report" />

<blox:pdfDialogInput index="2"
displayName="Footer"
defaultValue="My Application Report" />

</blox:pdfReport>

Multiple Blox to a Single PDF File
On some web pages, where you are displaying multiple Blox on a page, you may
want to offer users the option of exporting all of the Blox to a single PDF file.

The following steps can be used to create a single button that users can press to
generate a single PDF file from multiple Blox on the page:

1 Add any required page directives and taglib directives at the top of the page.

<%@ taglib uri="bloxtld" prefix="blox" %>
<%@ taglib uri="bloxuitld" prefix="bloxui" %>
<%@ page import="com.alphablox.blox.Blox,

com.alphablox.blox.pdfreport.PDFReport" %>

In this example, the standard Blox tag library and the Blox UI tag library are used
to define the presentation Blox and nested titles of those Blox. The page directive

displayName The label for the text.

Example:

displayName="Report Header"

defaultValue [Optional] Default string appearing within the text
field defined by the displayName attribute.

Example:

defaultValue="2004 Revenue Report"

Tag Attribute Description
DB2 Alphablox
Developer’s Guide for the DHTML Client

338 Using a Remote PDF Processor
gives access to the Java classes required for creating the button to be used to
generate the multiple Blox on a single PDF file.

2 [Optional] Add a title to the individual Blox using a <bloxui:title> tag
nested within the presentation Blox.

<blox:grid id="myGridBlox">
...

<bloxui:title
title="PresentBlox View"
style="padding:10;font-weight:bold;"
alignment="left" />

...
</blox:grid>

In this example, the <bloxui:title> tag creates a title appearing just above
this PresentBlox on the JSP page. And, since this tag is nested within the
PresentBlox tag, it will also appear on the PDF file. Note that any titles or other
text placed on the JSP page will not appear in the PDF file.

3 Add the button for rendering multiple Blox to a single PDF file.

<blox:container visible=�true� id="containerName">
<%

String bloxNames="myGridBlox,myChartBlox,myPresentBlox";

PDFReport.addButton(containerName,"buttonName","Create PDF
Report",request,bloxNames);

%>
</blox:container>

In this example, the bloxName string defines the list of Blox that will be
rendered to PDF, in the order in which they should appear in the PDF file.

4 With these additions to the JSP file, users will be able to generate a single
PDF file displaying all of the presentation Blox defined above.

Using a Remote PDF Processor
For performance, memory management, or to share PDF processing for multiple
Alphablox Analytics hosts, you may decide to run your PDF engine on an remote
dedicated server. For details about configuring a remote PFF server, see the Using
a Remote PDF Processor in the Administrator’s Guide.
CHAPTER 23
Converting to PDF

24
Error Handling

Unfortunately, errors happen in software problems—we all know it is a fact of
life. As a developer, though, you have some capability to manage how errors are
handled. This chapter includes information on how you can use Blox exceptions,
properties, and methods to handle errors that may occur.

Exceptions
Although errors occur in software (hopefully, seldom), what matters to the end
user is what happens after the error happens. Does the program just stop working?
Or, does it recover gracefully? An exception is an event that disrupts the normal
execution of a program. The Java language allows you to catch, or try to catch,
exceptions that occur in order to handle them gracefully in a controlled manner.
For more information about exceptions in general and how to handle them, see a
good Java or JavaServer Pages reference.

Many of the Blox Java classes will throw an exception, allowing you to use the
error-handling capabilities of the Java language. The Blox exceptions that are
available can be found in the javadoc documentation included in the following
directory on Alphablox Analytics:

<alphablox_dir>/system/documentation/javadocs/index.html

where <alphablox_dir> is the directory into which Alphablox Analytics is
installed.

340 Custom Error Pages
Custom Error Pages
When the JSP Engine attempts to compile a page but fails, an error message and
stack trace are generated and displayed to the end user. Most of these messages
mean little to the end users and tell them little to understand what happened. As a
developer, you have the option of creating custom error messages to be displayed
to your users instead of the default standard JSP error page. Two page directive
attributes, errorPage and isErrorPage, allow you to define where a JSP page
should look for the custom error page and to define particular JSP pages as
custom error pages. Brief descriptions of these attributes and the steps for using
them to create your own custom error pages are included below. For more
information on the use of the error page directives, see a basic JSP book.

errorPage Attribute

The errorPage attribute of a page directive specifies an alternate page to use as
an error page, and is defined as follows:

<% page errorPage="/errorPage.jsp" %>

The errorPage value specifies the relative URL where a JSP page can be found
within the same web application. In the example above, the value includes a
forward slash (“/”) in front of the specified page. The forward slash, although not
required, informs the application server that the URL that follows is relative to
the root directory of your web application. By using the forward slash in this page
directive, you can place a custom error page in one location in your application
directory and use this same page directive in all of the application’s JSP files,
even if they are located within sub-directories.

isErrorPage Attribute

A custom error page must include a page directive with an isErrorPage attribute
set to true. The page directive, with its boolean isErrorPage value set to true,
appears as follows:

<%@ page isErrorPage="true" %>

This directive gives the page access to information from the exception implicit
object, and allows you to control the display of information the user sees.

Task: Creating a Simple Custom Error Page

The following steps will guide you through the process of creating a custom error
page:

1 Create a basic JSP file that will be used as your custom error page and save it
as errorPage.jsp.
CHAPTER 24
Error Handling

Custom Error Pages 341
2 Add a page directive, with an isErrorPage attribute set to true, at the top of
the page. For example:

<%@ page isErrorPage="true" %>
<html>
...
</html>

3 Create the layout for the body of the error page, displaying what you want
your end users to see if an error occurs.

For example, you might want to display an error page heading and include the
URL of the page that the error occurred on. Also, you may decide to display the
top-level error message and not display the stack trace of the exception, since
your users would not be likely to know how to interpret it.

Here is a simple example:

<%@ page isErrorPage="true" %>
<html>
<head>

<title>Error Page</title>
</head>
<body>
<h2>Your application has generated an error</h2>
<h3>Please notify your help desk.</h3>
Exception:

<%= exception.toString() %>
</body>
</html>

4 To test your custom error page, add the following page directive, with the
errorPage attribute value pointing to the location of your custom page:

<%@ page errorPage="errorPage.jsp" %>

In this example, the custom error page resides within the same directory as the
test JSP page.

5 Test your error page by generating an error.

One way to generate an error is to include the following scriptlet, which will
cause a “divide by zero” run-time error:

<%
int i = 10;
DB2 Alphablox
Developer’s Guide for the DHTML Client

342 Using Blox Properties and Methods to Handle Errors
i = i / 0;
%>

Example: This custom error page example is included in the Error Handling
section of the Blox Sampler example set.

 The various examples and the Basic Template in the Application Studio all
include an error page that you can examine and copy for your own use.

Using Blox Properties and Methods to Handle Errors
The following Blox properties and methods are available to be used in
customizing your applications to handle error conditions. For details on these
properties and methods, see the Developer’s Reference for the DHTML Client.

noDataMessage

The noDataMessage property, which defines a string that is displayed in Blox
when no data is available, is one way to notify users of possible application
errors. This common Blox property, applicable to the ChartBlox, GridBlox, and
PresentBlox, is displayed when one of these Blox has been instantiated, but the
data is not available, either because it has not yet been received or because an
error has occurred. The default message is “No data available” and appears
prominently in grids and charts.

If the default “No data available” message is displayed in a grid or chart for more
than a few seconds, users may perceive this as an error message indicating that no
data will become available. Most of the time this is a reasonable assumption, and
the message should not be modified.

Sometimes data retrieval can take longer than anticipated. This could be caused
by a complex query, a large data set returned, or a slow connection. In instances
like these, some developers modify the noDataMessage string to “Please wait...”
or some other alternate message. Even though this is a reasonable use of this
property, you should be aware that changing the displayed message can
sometimes cause confusion to end users when data is actually not available. When
data is actually not available, the message may still show “Please wait...” If you
consider changing this message, the benefit of having an initial message that
more often than not is accurate may outweigh the small risk that a user will
actually be told to wait when there is a real data availability issue.

Another alternative is to use the associated setNoDataMessage method
programmatically to return a different message depending on the events that
occur. While more complicated to create than just using the noDataMessage
attribute, you may want to explore this option.
CHAPTER 24
Error Handling

Using Blox Properties and Methods to Handle Errors 343
onErrorClearResultset

The DataBlox onErrorClearResultSet boolean property specifies whether the
existing result set should be cleared from a DataBlox if a subsequent database
operation fails. For more information on this property and its associated methods,
see the DataBlox section of the Developer’s Reference for the DHTML Client.
DB2 Alphablox
Developer’s Guide for the DHTML Client

344 Using Blox Properties and Methods to Handle Errors
CHAPTER 24
Error Handling

25
Adding User Help

This chapter discusses some of the issues involved in supplying user help in
applications created with Alphablox Analytics.

User Help in Alphablox Analytics Applications
In an ideal world, applications are intuitive and users don’t need any help figuring
out how to use them. Unfortunately, this is rare, and the more complex the
application, the more likely it is that you will need to offer user help.

It is a common oversight in the design and development of applications to forget
to consider adding help to your applications. If the users of your application will
be frequent, skilled users, and receive training, adding help throughout an
application may not be critical, but can be useful. If instead your users will be
untrained or casual (infrequent) users, offering user help can and important step
in your application success. Hopefully, your design group considers user help
and, if necessary, schedules time and resources for help development into your
application development cycle.

The following sections discuss the availability and behavior of user help in
Alphablox Analytics applications and the implications of your design decisions.

Using Existing Alphablox Analytics User Help

When your applications include a GridBlox, ChartBlox, or PresentBlox, a toolbar
can be made available for users. Depending on which Blox is being used, the Help
button on the toolbar opens up the Alphablox Analytics user help system with a
help page about that particular Blox. For example, clicking the Help button on the
PresentBlox toolbar opens up a page titled, “Using PresentBlox,” which describes
PresentBlox and has additional links for further help.

346 User Help in Alphablox Analytics Applications
Alternatively, if a toolbar is not available, selecting Help... from the Help menu in
the menu bar brings up a help page for the user interface Blox, depending on if it
is a PresentBlox or a standalone GridBlox or ChartBlox. For example, on a
standalone GridBlox, selecting the Help... menu option brings up a help page,
titled “Using the Grid.”

Frequently, you may decide not to include a toolbar on analytic views in your
applications. In these cases, you should make sure the menu bar is available. By
default, the menu bar is available in these user interface Blox. If for any reason
you need to turn off both the menu bar and the toolbar, you may want to consider
offering custom user help.

Creating Custom User Help

If you decide not to make the toolbar available on your analytic views, or you
decide you want to provide target custom user help for your users, you can add
appropriate help links or buttons. In particular, you may want to consider offering
custom user help in the following situations:

• neither the toolbar or the menu bar will be unavailable

• the toolbar or menu bar are customized with custom buttons and menu
options

• your pages make use of custom HTML form elements instead of built-in Blox
user interface elements (such as page filters and toolbar buttons) to manage
the interaction and analysis of Blox views

• your views include members or other labels that would benefit from a
glossary or other help information

If the toolbar and menu bar are customized, you may need to customize the
existing user help as well. The help files are located in the documentation
directory:

<alphablox_dir>/system/documentation/help/dhtml

Before modifying the files, you should first make a copy of the directory. Also
keep in mind that files in this directory will be removed and replaced with
Alphablox Analytics user help files when you upgrade the server.

If you turn off the toolbar and the menu bar entirely, besides using standard
HTML technology to provide custom user help, you may also want to consider
using Alphablox Analytics information links, discussed in the next section, as a
way to provide targeted and visible help information.
CHAPTER 25
Adding User Help

User Help in Alphablox Analytics Applications 347
Using Information Links for Help

As discussed in “Information Links” on page 248, there are three types of
information links available on Blox: header links, cell links, and cell alert links.
These links (by default, represented with a white “i” within a blue circle) can be
used for many purposes, including linking to information relevant to the row or
column headers, or on specified data cells. Keep in mind that these links can also
be used for targeted user help, perhaps defining what a particular member
represents, or how a particular data cell should be evaluated. One of the benefits
of information links is that they are highly visible and hard to ignore. Of course,
that can also be a reason to not include them, or at least to use them judiciously.
DB2 Alphablox
Developer’s Guide for the DHTML Client

348 User Help in Alphablox Analytics Applications
CHAPTER 25
Adding User Help

26
Troubleshooting Applications

Troubleshooting applications can be the most difficult task for an application
developer. This chapter includes tips and techniques for troubleshooting some
commonly encountered troubleshooting issues.

Errors in JSP Files
Working with JavaServer Pages is more complicated than working with standard
HTML pages. When a JSP page is run for the first time, the page needs to be
compiled before you can view the page. During compilation and when pages are
executed, you may encounter compilation and run-time errors. And, using JSP
custom tag libraries and Java coding adds complexity to troubleshooting. For
details about troubleshooting Java and JSP files, see a good book or online
resources. The sections below briefly discuss error types, how to work with tag
modifications, and other issues frequently encountered when working on
Alphablox Analytics applications.

Compilation Errors

During compilation of JSP pages, errors can occur due to the code not following
required language syntax. If such an error occurs, the Java compiler will point out
that error, so they are usually easy to find and fix. Most of the time the error
messages are useful and lead you right away to the source of the problem. Even if
an error page is referred to on a JSP page, if there is a compilation error, it cannot
be invoked since the page did not compile.

350 Blox Tag Behavior
Run-time Errors

Run-time errors happen when the code compiles correctly, but does not execute in
a way that was expected. In Alphablox Analytics applications, this can happen for
many different reasons, for example, when a DataBlox cannot connect or when a
scriptlet throws an exception during execution. Exceptions thrown during run-
time errors can be captured and displayed in custom error pages, if the
problematic JSP page has an error page reference. Without a custom error page,
the standard JSP error message will appear.

JSP Error Pages

If your JSP pages reference a custom error page and a run-time error occurs with
an exception being thrown, the custom error page can handle the error page and
display a customized view of the exception. It is a best practice to include custom
error pages to handle run-time errors that may occur in your applications. To
learn more about custom error pages, see “Error Handling” on page 339. Included
is a task describing how to create a simple custom error page. Also, refer to a
good JSP book for more tips about creating and using custom error pages.

Blox Tag Behavior
Although JSP custom tags are similar to HTML tags, they behave differently.
Any code within a Blox tag is interpreted only the first time the page is loaded.
Thus, any changes to the tags or scriptlets included within the tags are ignored on
reloading since Blox tags have a session scope.

When Blox are instantiated, outer tags are interpreted before inner tags. Thus, if
you have a PresentBlox tag with nested DataBlox or other tags, the PresentBlox
container is created first, followed by the nested Blox.

Task: Testing Blox Tag Modifications

To test page modifications within Blox tags, you can use the following methods:

• Close the browser and reload the page in a new browser session. The
page should be recompiled again.

• Open a telnet session to Alphablox Analytics and get your session
number by entering the following server console command:

show session

Then, kill the session (be careful to kill only your session) by entering this
command:

kill session sessionID
CHAPTER 26
Troubleshooting Applications

Common Blox Tag Errors 351
where sessionID is the number for your session. Then, refresh your
browser window. The page should now compile again.

Common Blox Tag Errors
Included in the following list are the most frequently encountered errors that you
are likely to encounter when working with the Blox tag library. In the exception
messages included below, only the first line is shown; the stack trace is not
included.

Forgetting to include the taglib directive

If you forget to place the required taglib directive at the top of your JSP page,
none of the Blox tags will be recognized. The rest of the page may load, but
without the taglib directive, you may only see the HTML elements and text.

Incorrect case of a tag or tag attribute

Case and spelling errors will result in compilation errors. In these cases, the JSP
compiler will throw an exception indicating that an invalid tag or tag attribute has
been used. For example, if you spelled dataSourceName incorrectly as
datasourceName, in the exception you should see a message that includes the
following line:

org.apache.jasper.compiler.CompileException:
C:\alphablox\webapps\MyTests\example.jsp(20,1) Attribute
datasourceName invalid according to the specified TLD

Notice that this message also includes the line number.

Leaving off required quotes

If your tag attribute is missing a required quote around a tag attribute value, like
this:

dataSourceName=QCC-Essbase"

you will see a message like the following in the JSP compiler exception message:

org.apache.jasper.compiler.ParseException:
C:\alphablox\webapps\MyTests\example.jsp(21,17) Attribute value
should be quoted

Although, it doesn’t indicate which attribute is missing a quote, it does tell you
that it occurs on line 21.
DB2 Alphablox
Developer’s Guide for the DHTML Client

352 Common Blox Tag Errors
Failing to include required tag attributes

If you accidentally leave out a required tag attribute, an exception error will
occur. For example, leaving out the dataSourceName on a DataBlox tag will
generate this message:

javax.servlet.ServletException: Required property 'dataSourceName'
of Blox 'CommonPresentBlox_data' does not have a value

Using an invalid data source

When you have an non-existent or misspelled data source, you will see a run-time
exception like the following:

javax.servlet.ServletException: Cannot find datasource: 'CC-
Essbase'

If you think the data source is spelled correctly, check for a data source definition
in the Alphablox Analytics Admin pages. You may have forgotten to create it, or
it may have been deleted.

Refreshed page doesn’t reflect code modifications

As mentioned earlier, Blox tags and JSP statements within these tags are
interpreted only the first time a page is loaded. Read the “Blox Tag Behavior” on
page 350 above to learn more about expected tag behavior and how to efficiently
test code changes within tags.

Page loaded in new session still doesn’t reflect code changes

This problem can be particularly frustrating. Sometimes, a cached, compiled Java
class file will not be removed automatically from the cache. In situations like this,
or when everything else seems to fail, try deleting these files, and restarting the
server.

Depending on your Alphablox Analytics configuration, these cached Java class
files are located in different directories, as follows:
CHAPTER 26
Troubleshooting Applications

The Blox Debug Tag 353
IBM Websphere Server:

/Websphere/AppServer/temp/<nodeName>/<serverName>/
<enterpriseAppName>/<appName>

Alphablox Analytics using Apache Tomcat application server:

/alphablox/appserver/work/

BEA Weblogic:

<applicationDocBase>/WEB-INF/
_tmp_war_<serverName>_<appName>/jsp_servlet

Shut down your server, then open the directory for storing cached JSP files, and
delete all files within this folder. Then, restart the server. This should guarantee
that fresh copies of your JSP pages will compiled (unless, of course, an exception
is thrown).

The Blox Debug Tag
The Blox debug tag can be added to a JSP file to help you troubleshoot problems.
To use this tag, include the following line in your JSP page:

<blox:debug/>

When included on a JSP page with Blox on them, useful debugging information
will be sent to the system console (not to a telnet session). Starting immediately
where this tag occurs on a page, the system console will begin listing information
about Blox tags, including their attribute and property settings. This may be
handy for verifying how Alphablox Analytics is interpreting the values you’ve
included for properties and attributes.

Following is a sample listing of the debugging information provided in the system
console when the Blox debug tag is included on a JSP page:

-> Starting Blox Tag:
com.alphablox.server.tags.simple.miscTags.DebugTag
Blox Tag Lib version 1.0 loaded

<- Ending Blox Tag:
com.alphablox.server.tags.simple.miscTags.DebugTag

-> Starting Blox Tag:
com.alphablox.server.tags.simple.createTags.PresentTag

- Attribute Id = CommonPresentBlox
- Attribute DividerLocation = .5
- Attribute Height = 450
- Attribute Width = 650
- Attribute SplitPane = true

Creating Blox for CommonPresentBlox
DB2 Alphablox
Developer’s Guide for the DHTML Client

354 Alphablox Analytics Console Messages
- Set property on blox CommonPresentBlox: dividerLocation = .5
- Set property on blox CommonPresentBlox: height = 450
- Set property on blox CommonPresentBlox: splitPane = true
- Set property on blox CommonPresentBlox: width = 650

-> Starting Blox Tag:
com.alphablox.server.tags.simple.createTags.DataTag

- Attribute SelectableSlicerDimensions = 'All Locations'
- Attribute Query = <ROW ('All Products') <ICHILD 'All

Products' <COLUMN ('All Time Periods') <CHILD 'All Time
Periods' <PAGE (Measures) Sales !

- Attribute DataSourceName = QCC-Essbase
Creating Blox for CommonPresentBlox_data

- Set property on blox CommonPresentBlox_data: dataSourceName =
QCC-Essbase

- Set property on blox CommonPresentBlox_data:
selectableSlicerDimensions ='All Locations'

- Set property on blox CommonPresentBlox_data: query = <ROW
('All Products') <ICHILD 'All Products' <COLUMN ('All Time
Periods') <CHILD 'All Time Periods' <PAGE (Measures) Sales!
Found Blox in session context for CommonPresentBlox

<- Ending Blox Tag:
com.alphablox.server.tags.simple.createTags.DataTag

-> Starting Blox Tag:
com.alphablox.server.tags.simple.createTags.GridTag

- Attribute BandingEnabled = true
- Attribute DefaultCellFormat = #,###

Found Blox in session context for CommonPresentBlox
- Set property on blox CommonPresentBlox_grid: bandingEnabled = true
- Set property on blox

CommonPresentBlox_grid:defaultCellFormat = #,###
<- Ending Blox Tag:

com.alphablox.server.tags.simple.createTags.GridTag
-> Starting Blox Tag:

com.alphablox.server.tags.simple.createTags.ChartTag
- Attribute ChartType = Bar

Found Blox in session context for CommonPresentBlox
- Set property on blox CommonPresentBlox_chart: chartType = Bar

<- Ending Blox Tag:
com.alphablox.server.tags.simple.createTags.ChartTag

<- Ending Blox Tag:
com.alphablox.server.tags.simple.createTags.PresentTag

Alphablox Analytics Console Messages
The Alphablox Analytics system and telnet consoles can be helpful in debugging
problems with your JSP files. You can use the server console for viewing system
properties, including information about services, users, sessions, and history.
CHAPTER 26
Troubleshooting Applications

Alphablox Analytics Console Messages 355
The default message level for Alphablox Analytics is INFO, which displays minor
system events for which no administrator action is necessary. For debugging
purposes, you can set the message level to DEBUG, which will result in debug
information being sent to the system console.

To learn more about server console commands and messages, see the
Administrator’s Guide.
DB2 Alphablox
Developer’s Guide for the DHTML Client

356 Alphablox Analytics Console Messages
CHAPTER 26
Troubleshooting Applications

27
Working with Alphablox

FastForward

The Alphablox FastForward application framework allows application
administrators (OLAP administrators) to copy the framework, configure report
templates, and quickly deploy analytic applications to line of business users. This
section includes an overview of the FastForward framework and new report
templates can be added to customize the application framework.

Alphablox FastForward Overview
Alphablox FastForward is a sample application framework, pre-installed on
Alphablox Analytics, for quickly developing, deploying, and sharing custom
analytic views throughout business organizations. Out-of-the-box, the
FastForward framework delivers common application services, including
security, collaboration, customization, and personalization. Application
administrators, typically OLAP administrators, can create new versions of an
FastForward application, publish reports by selecting report templates and
configuring report parameters, and then deploy the new application without ever
looking at code. And, because of its flexibility and extensibility, JSP developers
can modify or extend the application framework, and add new custom report
templates for application administrators to configure and deploy.

Built into the FastForward application framework are features commonly found
in reporting and analytic applications, including:

• exporting to Microsoft Excel

• generation of printable views

• easy saving and sharing of personal views of data

358 Alphablox FastForward Overview
• emailing views to others

• easy navigation between different views

By including these features, Alphablox Analytics makes it easy for you to
expedite the development of this class of commonly-used reporting and analytic
applications. You don’t need to create navigation systems, toolbars, security, and
mechanisms for the saving and sharing of reports -- these have already been pre-
coded for you. By separating out the development and configuration tasks,
application administrators can focus on configuring and deploying existing report
templates, letting you focus your attention on the more challenging requirements.

Roles of FastForward Users

The three major roles of Alphablox FastForward users include those of
application administrators, template developers, and end users. A good synergy
between these three groups will help ensure the success of FastForward-based
applications. More about these three roles are briefly described below.

Application Administrators

Application administrators, typically OLAP administrators, should be able to
create new versions of FastForward applications by defining a few settings, create
reports based on the available report templates, then quickly deploy solutions to
end users. If end user requirements cannot be met using an existing report
template, the application administrator works together with template developers
to create new report templates. An application administrator should be able to
accomplish their work using their OLAP database experience, the documentation
on administering Alphablox FastForward applications (see the Administrator’s
Guide), and the online Administration Help (available in the Admin Tasks mode
of a FastForward application).

Template Developers

Template developers are typically JSP developers primarily responsible for
creating custom report templates when existing ones cannot be used by an
application administrator to configure requested reports. In consultation with
application administrators and end users, template developers should be able to
create new report templates by modifying existing report templates or creating
new ones as necessary.

Using the Blox tag libraries, server-side Java API, and DHTML Client API, as
well as your web programming experience, template developers should be able to
create templates for almost every conceivable need. Besides being familiar with
building Alphablox Analytics applications and views, developers should also be
familiar with the FastForward User Help (available from the Help button in user
mode), the Administrator Help (available from the Help button in Admin Tasks
mode, when logged in as an administrator), and Administering FastForward
Applications in the Administrator’s Guide.
CHAPTER 27
Working with Alphablox FastForward

../index.html?context=admin&topic=AdminBook
../index.html?context=admin&topic=AdminBook
../index.html?context=admin&topic=AdminBook

FastForward Application Architecture 359
End Users

End users, typically business analysts and other line of business users in your
organization, should be able to log into a FastForward application and use
published reports to analyze business issues. Depending on the interactivity
available in a particular FastForward-based application, end users can manipulate
data, drill around data hierarchies, change chart types, add comments, and more.
After modifying views to answer particular business questions, users can preserve
their current views, creating saved reports under the Private tab for later use or by
sharing them under the Groups tab to defined groups of application users.

For each report, users typically have a few other options available from the
application toolbar, located above the reports. Besides saving reports for online
analysis, the export to Excel option allows users to export views to Microsoft
Excel spreadsheets for offline analysis at a later time. Users can also print a copy
of a particular view using the Print Preview option. And, if desired, they can open
an email message containing a link to the current view, add comments, and send it
to other application users.

If necessary reports are not available in their applications, end users typically
request new reports directly from application administrators.

Customizing Alphablox FastForward

While Alphablox FastForward includes some sample report templates that can be
used out-of-the-box to start creating applications immediately, most likely your
reporting and analytic applications will require you to create custom report
templates for application administrators. To help you get started in working with
Alphablox FastForward applications, this chapter includes overviews of the
FastForward architecture and report templates. You’ll then learn how to create
new report templates.

FastForward Application Architecture
A FastForward application consists of two major components, the framework and
the report templates used within that framework. The FastForward framework
includes JSP pages, JavaBeans components, and many other files that define an
application framework, including common application services such as
application configuration, navigation, and security.
DB2 Alphablox
Developer’s Guide for the DHTML Client

360 FastForward Application Architecture
The sample Alphablox FastForward application is located in the following
directory:

<alphabloxDirectory>/system/ApplicationStudio/FastForward/

 Do not delete or modify this directory - it contains the files used in the
sample application. When upgrading Alphablox Analytics, this directory will be
overwritten.

When logged in as an Alphablox Analytics administrator (with an
AlphabloxAdministrator or other defined administrator role), you can create new
FastForward applications by clicking on the Admin Tasks button, then create a
new version of the sample application by clicking on Create in the dialog box.
When you click on the Create option, a dialog window will prompt you to define
your new application’s context name (directory name), display name (which
appears on the Applications page), a brief application description, and the
Administrator role allowed to edit the application.

 When a new FastForward application is created, an administrator role is
assigned. Only users who are members of that assigned role (default is
AlphabloxAdministrator) can administer that particular application.

After clicking OK, a new J2EE application is automatically created and a copy of
the FastForward application framework and sample report templates are copied to
that application’s directory, typically located here:

<alphabloxDirectory>/webapps/<applicationDirectory>

 For details about configuring FastForward applications, see
Configuring Alphablox FastForward Applications in the Administrator’s
Guide.

When you create a copy of a FastForward application, the following directories
and files are added to the web application you created. Following is a summary of
the directory structure and files that included in the FastForward framework

Directory Description

admin Includes most of the files used when a FastForward
application is used in Admin mode, including the admin
help directory.

admin/help Help files specific to application administration

admin/images Contains images used in Admin mode.
CHAPTER 27
Working with Alphablox FastForward

Report Templates 361
For most applications, you will be primarily interested in the templates directory,
where the report templates are stored. The next section describes report templates
and the templates directory in more detail.

Report Templates
Report templates are the heart of a FastForward application, supplying the
application administrator with the edit pages used to quickly configure reports for
end users. A report template consists minimally of four files: the edit page, the
template parameters file, the report page, and the help page. The edit page is the
page used by application administrators to create a new report by selecting from
selection lists, radio buttons, and checkboxes representing to define report and
data options. The options, or parameters, available in the edit page are defined in
the template parameters file. What the end user sees is determined by the layout
of the report page. A help page, tied to a particular report, is also included.

help Contains user help files. Can be customized by application
developers as needed.

images Contains image files used in User mode.

templates Includes the collection of report templates available to the
application. Subcomponents of this directory are described
below in the Report Templates section.

WEB-INF The standard J2EE application directory that contains files
required to run the application.

WEB-INF/classes Includes compiled Java class files for the JavaBeans
components used in the application.

WEB-INF/src Source files for the JavaBeans components, allowing you
to customize or extend as needed.

WEB-INF/tlds Copies of the Blox tag library descriptor files, including
blox.tld, bloxform.tld, bloxlogic.tld, bloxreport.tld,
and bloxui.tld.

WEB-INF/ui Includes XML files used to define the look-and-feel of the
application, including buttons.xml, toolbar.xml, and
toolbarhelp.xml. These files can be edited to add or
remove buttons, change button images, and tooltip
descriptions as needed. The remaining XML files should
not be changed by application developers.

Directory Description
DB2 Alphablox
Developer’s Guide for the DHTML Client

362 Report Templates
Optionally, print and Excel pages may be included in report templates. New
report templates can be created by template developers, adding to the collection
of report templates available and reducing the need for custom report
development of frequently used classes of reports. And, as a result, end users can
access, modify, and save copies of reports for later reuse and sharing.

For each FastForward application, the collection of report templates available to
that application are located in the following directory:

<applicationDirectory>/templates/

Inside of the templates directory are a collection of report template
subdirectories, each of which makes up a self-contained report template. When a
new version of a FastForward application is created, sample report templates are
copied and included in this directory. New report templates can also be added, on-
the-fly, by simply dropping the template into the directory containing the set of
available report templates. Besides the sample report templates included with
Alphablox Analytics, others will be downloadable from Alphablox, shared among
template developers in your organization, or created by third-party developers.
When a new report template is added to the templates directory, it becomes
immediately available to application administrators in their list of available report
templates. Also, zipped copies of report templates dropped into the templates
directory are automatically uncompressed and made available in the menu. You
can continue to add new report templates as needed, making them quickly
available to application administrators without having to stop and start the server.

Inside of each report template directory are at least the following three required
files, summarized here

:

The following template files are optional:

File Name Description

edit.jsp The edit page, viewed and configured by administrators to
create new reports or to edit existing reports.

template.xml The template parameters file that includes a list of all of the
parameters (properties) that can be set by the application
administrator.

report.jsp The report page, which when combined with the values
defined by administrators, generates the report that users can
view and manipulate.
CHAPTER 27
Working with Alphablox FastForward

Report Templates 363
The complexity of a report template is determined by what users expect to see
(displayed in the report.jsp file), by the number and types of parameters
(specified in the template.xml file), and the user interface for configuring those
parameters (generated using the edit.jsp). With simple report templates, a
limited number of parameter settings may be possible, with many of the setting
predefined. More flexible templates offer more configuration options, but also
require a larger number of parameters to be made available.

Following the description of the sample report templates that ship with Alphablox
Analytics, the section, “Creating Custom Report Templates” on page 364, will
cover more details about these three files in the context of describing the steps to
create new report templates.

Sample Report Templates

The sample report templates that ship with Alphablox Analytics include a variety
of commonly used report types, typically encountered in most businesses.
Although some of these samples may be useful as they exist, these templates can
also be used to help you learn how to develop your own custom report templates.

The sample templates included with Alphablox Analytics target different types of
reporting needs and are summarized here:

File Name Description

help.jsp The help page provides useful information to users about
this particular report. The sample templates include a help
page prototype.

excel.jsp The Excel page providing customization of the HTML page
sent to Microsoft Excel.

print.jsp The print page provides customization of the HTML page
that is made available for printing.

Sample Template Directory Name Description

Interactive Present Blox InteractiveBlox Sample reports: Interactive
Analysis

Sample Allocation SampleAllocation Sample reports: Sales by Store
(Sales Analysis)

Sample Report SampleReport Sample reports: Sample
Report (Sales Analysis)
DB2 Alphablox
Developer’s Guide for the DHTML Client

364 Creating Custom Report Templates
The sample templates will not address all of your particular user needs, but are
useful for giving a jump start in learning about the power and flexibility of report
templates as well as serving as great examples for learning how to code solutions
for particular problems. While it is possible for you to deploy a copy of the
sample Alphablox FastForward application with little modification, the power of
the application framework and report templates is realized as you begin adding
custom report templates tailored to your unique user needs. The next section
explains how to create a simple report template.

Creating Custom Report Templates
To help you get started in developing your own report templates, this section
walks you through the most important steps you need to know to begin creating
custom report templates. As described earlier, each report template contains three
important files, the report page (report.jsp), the template parameters file
(template.xml), and the edit page (edit.jsp). The following steps describe how
to create each of these required files for a simple allocation report template.

Report Page (report.jsp)

The report page (report.jsp) generates the view that FastForward application
users will see, after the report has been configured by an application
administrator. This page typically includes the following information: report title,
data views, and user controls. Report pages range from static viewing pages to
guided analysis reports and at the high-end may include many user controls.

To create a report page, start by creating a representative JSP page that includes
the functionality that your end users will be using. For our example, here’s a
screenshot of what a simple allocations report prototype might look like:

Sample Trending SampleTrending Sample reports: Sales Trend
by Region (Sales Analysis)

Sales Variance SampleVariance Sample reports: Sales
Variance (Variance Analysis)

Interactive Variance VarianceQCC Sample reports: Ad-Hoc
Variance Analysis (Variance
Analysis)

Sample Template Directory Name Description
CHAPTER 27
Working with Alphablox FastForward

Creating Custom Report Templates 365
In this example, the report loads with a title and basic pie chart view showing
percentages of subcategories of specified product grouping.

To create a report template that can be used to generate this view, you need to
create parameters that will be read in to generate the report. These parameters,
which will be defined later in the template parameters file (template.xml),
include the properties that an application administrator will be able to set when
using the edit page (edit.jsp) to configure an application. You’ll learn how to
create the edit page after we’ve finished creating the report page and template
parameters file.

Taking the report prototype file, we add the following line to the top of your file:

<%@ include file="../../reportdata.jsp" %>
DB2 Alphablox
Developer’s Guide for the DHTML Client

366 Creating Custom Report Templates
This JSP include directive results in the contents of the reportdata.jsp, located
in the template’s root directory, being added to the report page when it is
compiled. The reportdata.jsp file imports necessary class files, adds taglib
directives for bloxtld and bloxformtld, and makes the following objects
available for use inside the report.jsp:

These objects implement the following methods:

To parameterize your report prototype, you now need to define a JSP scriptlet at
the top of the report page specifying the parameters you want to use. You need to
specify the pie slice parent member and the measure to be used, then generate a
query string that reads in these two parameters, like this for a DB2 OLAP Server
or Essbase data source:

<%
String pieSliceParent =

report.getParameter("pieSliceParent","Specialties");

Object Purpose

report Provides access to report parameters (or properties)

user Provides access to user parameters

appContext Provides access to application parameters

template Provides access to the template and its parameters

savedState Provides access to the saved private and group reports

Method

String getParameter(String name)
- Returns the parameter value of the named parameter or null. Returns null if
the named parameter is not defined.

String getParameter(String name, String default)
- Returns the parameter value of the named parameter or the defaultValue
argument. Returns the given defaultValue if the named parameter is not
defined.

String[] getParameterValues(String name)
- Returns the parameter values defined for the named parameter. Returns an
empty array if no parameter values are defined.

String[] getParameterNames()
- Returns an array containing all of the named parameters defined for this
object.
CHAPTER 27
Working with Alphablox FastForward

Creating Custom Report Templates 367
String measure = user.getParameter("preferredMeasure", "Sales");
String query = "<SYM <COLUMN (\"Measures\") \""+measure+"\"

<ROW (\"All Products\") <CHILD \""+pieSliceParent+"\" !";
%>

If you are using Microsoft Analysis Services, the third line, specifying the query
string, would look like this:

String query = "SELECT DISTINCT({[Measures].["+measure+"]}) ON
COLUMNS, {"+pieSliceParent+".children} ON ROWS FROM [qcc]";

Note that the getParameter method used in this example allows you to set default
values for both properties using an optional second argument, following the
parameter name.

Next, substitute a JSP expression in each place on the page that you want to have
a parameter value appear. In the DataBlox tag, you need to read in a user’s query
using <%= query %>:

<blox:data id="dataBlox"
dataSourceName="QCC-Essbase"
useAliases="true"
query="<%= query %>"/>

You also need to add two more JSP expressions, <%= measure %> and <%=
pieSliceParent %>, to substitute the measure and pieSliceParent values into
the report title, like this:

<h3>Comparing <%=measure%> for subcategories of <%= pieSliceParent %>
</h3>

The result will be a title that is appropriate for the pie chart displayed.

After you’ve added the JSP include directive at the top of the page and the JSP
expressions that will read in the saved values, the complete report.jsp file
should look similar to this:

<%@ include file="../../reportdata.jsp" %>
<%@ taglib uri="bloxlogictld" prefix="bloxlogic"%>
<%@ taglib uri="bloxuitld" prefix="bloxui"%>

<%
String pieSliceParent =

report.getParameter("pieSliceParent","Specialties");
String measure = user.getParameter("preferredMeasure", "Sales");
String query = "<SYM <COLUMN (\"Measures\") \""+measure+"\" <ROW

(\"All Products\") <CHILD \""+pieSliceParent+"\" !";
%>

<blox:header/>
<body>
<blox:data id="dataBlox"

dataSourceName="QCC-Essbase"
DB2 Alphablox
Developer’s Guide for the DHTML Client

368 Creating Custom Report Templates
useAliases="true"
query="<%=query%>"/>

<h3>Comparing <%=measure%> for subcategories of product code:
<%=pieSliceParent%></h3>

<blox:chart id="chartBlox"
bloxName="chart"
height="100%"
width="100%"
chartType="Pie"
totalsFilter="0" >
<blox:data bloxRef="dataBlox" />

</blox:chart>
</body>

Template Parameters File (template.xml)

Next, you need to define the parameters, or properties, that a FastForward
application administrator will be configuring. To do this, you need to create or
modify an example template.xml file, including only the parameters required for
the report template. This should be a relatively quick process.
CHAPTER 27
Working with Alphablox FastForward

Creating Custom Report Templates 369
At the top of the template.xml file is the required DTD specification for this
XML file:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE template PUBLIC "-//Sun Microsystems, Inc.//DTD Web
Application 2.2//EN" "../template.dtd">

Following this specification, the template element is included, incorporating the
parameters for this particular template. The following table lists the available
nested elements of the template element:

Element Description

display-name Contains the name to be displayed in the selection list of
report template choices in the edit page

description [Optional] Brief report description that will appear in the
edit page

report-page Specifies the report page that will be used to generate the
report

edit-page Specifies the file name for the edit page that creates the
view used by application administrators to define the
report

report-params [Optional] Defines the collection of report parameters that
can be set by the administrator. Each param element is
nested within this element.

param [Optional] Specifies that the contents of this element
define a parameter.

param-name [Optional] Nested within the param element, this tag
specifies the name of the parameter used in coding
templates.

param-label [Optional] Nested within the param element, this tag
specifies the display name for a parameter, and is seen by
application administrators in the edit page of a report
template.

default-value [Optional] Default value for the parameter. When a report
doesn’t supply a value, this value will be used.

print-page [Optional] Specifies the print page used in a report
DB2 Alphablox
Developer’s Guide for the DHTML Client

370 Creating Custom Report Templates
 The template parameters must be defined in the order should appear in the
edit page. Also, the edit page and report page file names can be anything
reasonable. The file names used in the example below follow the practice used in
the sample report templates included with FastForward, and make a reasonable
naming practice you may want to continue following.

In this example, you need to modify the display-name, description, and report-
params elements. The report-page and edit-page elements define the actual file
names for those pages.

Following with this example, here is the contents of the entire template.xml file,
with the defined parameters:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE template PUBLIC "-//Sun Microsystems, Inc.//DTD Web
Application 2.2//EN" "../template.dtd">

<template>
<display-name>Allocation (Essbase Version)</display-name>
<description>First Allocation Template (Essbase Version)
</description>
<report-page>report.jsp</report-page>
<edit-page>edit.jsp</edit-page>
<report-params>

<param>
<param-name>pieSliceParent</param-name>
<param-label>Parent Member of Pie Slices:</param-label>

</param>
</report-params>

</template>

Note that the report-params element defines the collection of report parameters
that will be used in this template. The nested param element above,
pieSliceParent, defines the parameter for specifying the parent member of the
pie slices to be displayed. After the report page and the template parameters file
have been created, your final task is to create the edit page, which displays the
selectable options for application administrators to configure.

excel-page [Optional] Specifies the export to Excel page used in a
report

help-page [Optional] Specifies the help page used in a report

Element Description
CHAPTER 27
Working with Alphablox FastForward

Creating Custom Report Templates 371
Edit Page (edit.jsp)

The edit page is the page that application administrators use to define the report
parameters, or properties, that typically appear in selection lists, radio buttons,
and checkboxes. The edit pages in the sample report templates included in the
sample FastForward application are more complex than the edit page required for
this example, but the same essential steps are involved.

Here is a screenshot of the sample edit page you’ll create:

Let’s begin creating the edit page. At the top of the edit.jsp file, add a JSP page
directive that specifies any of the required classes that need to be imported:

<%@ page import="com.alphablox.blox.form.FormEventListener,
com.alphablox.blox.DataBlox,
com.alphablox.blox.form.TimePeriodSelectFormBlox,
com.alphablox.blox.logic.timeschema.TimeSchemaBlox,
com.alphablox.blox.form.FormEvent,
com.alphablox.blox.ServerBloxException,
fastforward.*,
com.alphablox.blox.form.MemberSelectFormBlox,
com.alphablox.blox.data.mdb.Member" %>

Next, add JSP taglib directives to access Blox tag libraries used on the page:

<%@ taglib uri="bloxtld" prefix="blox" %>
<%@ taglib uri="bloxformtld" prefix="bloxform" %>
<%@ taglib uri="bloxlogictld" prefix="bloxlogic" %>

And, required on all JSP pages that access the Blox tags is the <blox:header> tag:

<blox:header />
DB2 Alphablox
Developer’s Guide for the DHTML Client

372 Creating Custom Report Templates
Next, specify the DataBlox that the edit page will use to generate the selection list
options. The following <blox:data> tag defines a DataBlox which is
preconfigured to use the QCC-Essbase data source (which should already be
specified in the Alphablox Analytics applications definition page):

<blox:data id="dataBlox"
useAliases="true"
dataSourceName="QCC-Essbase" />

Additionally, specify any tag attributes you might need. In this example, the
useAliases tag attribute value of true tells the server that you want to see the
display member names, not the unique member names, from the defined DB2
OLAP Server or Hyperion Essbase data source. If you are using Microsoft
Analysis Services, the data source name for this example would be QCC-MSAS, and
you wouldn’t add the useAliases tag attribute since it applies only to DB2 OLAP
Server and Essbase data sources.

Next, specify the MemberSelectFormBlox with an id of pieSliceParent to
generate the selection list with the pie slice parent options returned from the data
source:

<formblox:memberSelect id="pieSliceParent"
visible="false"
dataBloxRef="dataBlox"
dimensionName="All Products"/>

 A couple of important points about using FormBlox here:

• FormBlox defined in the edit.jsp page must have id attribute names
identically matching parameter names used in the template.xml file. In
the example here, note that the MemberSelectFormBlox id is
pieSliceParent, matching the pieSliceParent paramter defined in the
template.xml file.

• Remember to set the visible tag attribute to false in order to prevent
the Blox from rendering before any processing logic is done. After the
processing logic is finished, in this example, the renderControls method
of the TemplateHelper class below will render the Blox on the page. If
you forget to add this visible attribute (visible=�false"), or if you
accidentally set it to true, you will unexpectedly see duplicate Blox on a
page.

Now you are finished defining the selection list that will appear in the edit page
and can build the page.
CHAPTER 27
Working with Alphablox FastForward

Creating Custom Report Templates 373
The following JSP scriptlet generates the page to be displayed, applying
previously saved parameter values and rendering the page controls (previously set
to not be visible). It also establishes a validator that will be used to ensure that
administrators enter the expected information. The validation step is optional, but
enhances the robustness of your application, helping to ensure that users enter
expected values:

<%
TemplateHelper.applySavedParameters(pageContext);
TemplateHelper.renderControls(pageContext);
Template template=(Template)request.getAttribute("template");
template.setValidator(new Validator());

%>

Next, the Validator is defined, which implements ReportValidator.
Implementing ReportValidator requires the class to define one function,
validate(ReportData data), which does the critical work. The validator gives
access to the defined parameters the same way the report gets access to the
parameters -- by calling getParameterValue() on the data object for any
parameters that need to be checked.

In this example, a check verifies that administrators do not select a
pieSliceParent that is a leaf member (i.e., it has no children). Also, an
appropriate error message is added, appearing if a user attempts to use a
disallowed value.

<%!
public class Validator implements ReportValidator {

public void validate(ReportData data) throws ServerBloxException {
String pieSliceParent=data.getParameterValue("pieSliceParent");

if (pieSliceParent == null){
data.addError("Please select a member from the products.");

return;
}

// There is a FormBlox associated with pieSliceParent
// Use this FormBlox to get the selected member object and validate it

MemberSelectFormBlox select =
(MemberSelectFormBlox)data.getFormBlox("pieSliceParent");

Member members[] = select.getSelectedMembers();
// there is only one selected member -- it cannot be a leaf

if (members[0].isLeaf() == true) {
data.addError("The selected member must have some children");

}
}

}
%>

The edit page is now complete. Here is a complete copy of the entire edit.jsp
file for reference:
DB2 Alphablox
Developer’s Guide for the DHTML Client

374 Creating Custom Report Templates
<%@ page import="com.alphablox.blox.form.FormEventListener,
 com.alphablox.blox.DataBlox,
 com.alphablox.blox.form.TimePeriodSelectFormBlox,
 com.alphablox.blox.logic.timeschema.TimeSchemaBlox,
 com.alphablox.blox.form.FormEvent,
 com.alphablox.blox.ServerBloxException,
 fastforward.*,
 com.alphablox.blox.form.MemberSelectFormBlox,
 com.alphablox.blox.data.mdb.Member"%>

<%@ taglib uri="bloxtld" prefix="blox"%>
<%@ taglib uri="bloxformtld" prefix="formblox"%>
<%@ taglib uri="bloxlogictld" prefix="bloxlogic"%>

<blox:header />

<blox:data id="dataBlox"
useAliases="true"
dataSourceName="QCC-Essbase" />

<formblox:memberSelect id="pieSliceParent"
visible="false"
dataBloxRef="dataBlox"
dimensionName="All Products" />

<%
TemplateHelper.applySavedParameters(pageContext);
TemplateHelper.renderControls(pageContext);
Template template=(Template)request.getAttribute("template");
template.setValidator(new Validator());

%>

<%!
public class Validator implements ReportValidator {

public void validate(ReportData data) throws ServerBloxException {
String

pieSliceParent=data.getParameterValue("pieSliceParent");
if (pieSliceParent == null){

data.addError("Please select a member from the products.");
return;

}
// There is a formblox associated with pieSliceParent
// I can use this formblox to get the selected member object

and validate it
MemberSelectFormBlox select =

(MemberSelectFormBlox)data.getFormBlox("pieSliceParent");
Member members[] = select.getSelectedMembers();
// there is only one selected member -- it should not be a leaf
if (members[0].isLeaf() == true) {

data.addError("The selected member must have some
children");
CHAPTER 27
Working with Alphablox FastForward

Creating Custom Report Templates 375
}
}

}
%>

The edit page was the final page that you needed to create to have a working
template. After you’ve finished this simple template, you can use the edit pages in
the sample report templates to help you when you begin building more complex
templates. Before moving on to more ambitious report templates, though, you
should test the report template you just created.

Optional Template Pages

As described earlier, a template can include a help page, a print page, and an
Excel page. These can be customized to meet your specific application
requirements.

Help Page

For each report template created, it is recommended that you include a help page
tied to the usage of the report made available to users. The sample report
templates include a link, called “Report Help,” pointing to an example report help
page. The file name of the help page is specified in the help-page parameter of
the template.xml file.

Print Page

In a FastForward application, the Print Preview button located on the application
toolbar results in the current report being rendered with the render URL attribute
set to printer. For details about the Printer format, see “Printer Format
(render=printer)” on page 216. Other details about creating custom print pages
can be found in “Printing with HTML-based Printing” on page 219.

Excel Page

Also on the applications toolbar is the Export to Excel option for FastForward
reports. This option generates results in the current report being rendered with the
render URL attribute set to xls. For details about the Excel format, see
“Exporting to Spreadsheets” on page 321.

Testing Report Templates

Assuming you’ve correctly created the report page (report.jsp), parameters
definition page (template.xml), and the edit page (edit.jsp), you now have a
simple report template that can be used in your FastForward application’s
administration pages. To test the template, place this entire template in the
templates directory of a FastForward test application. Next, open your
application in Microsoft Internet Explorer, then click on the Admin Tasks button.
DB2 Alphablox
Developer’s Guide for the DHTML Client

376 Creating Custom Report Templates
Go ahead and create a new report, select your new template from the list of
available report templates, and see how it works. You can preview the report
while on edit page by clicking the Preview button, or click Return to Application
to test it as an end user.

Saving Report Templates

To use a report template, all of the template files you have created (including
report.jsp, template.xml, and edit.jsp) should be stored in a subdirectory of
the application’s template directory. The name of the template displayed in the
edit page is read from the display-name element defined in the template.xml file.

Sharing Report Templates

Now that you have a working template, keep in mind that you may want to share
your handiwork with other template developers. An exchange of templates can be
useful for meeting the needs of other application users, or may become good
learning examples for others. Remember that if you zip up your template
directory and pass it on to others, they can just drop the zip file in their
FastForward application’s template directory and begin allowing the application
administrator to begin using it immediately. New report templates will appear
after a new browser session opens the FastForward application.

Using the savedState Object

When a reports are created by an administrator and made available to users, they
become "published" reports, which are simply JSP pages with defined
parameters. When a report is saved by a user for either private or group access,
Fastforward attempts to save the report so that it can be restored later with the
user’s current changes. Here is a summary of how this works:

1 When the user clicks the Save Report button, FastForward stores the
following information:

a the name of the template and report template that the new saved report is
based on

b the parameters associated with that report

c the FormValues property of every FormBlox on the page

d a bookmark for every bookmarkable Blox (GridBlox, ChartBlox,
PresentBlox, and DataBlox) on the page

2 When the saved report is reloaded again later by the user, the report becomes
reconstituted in essentially the same order:

a the page is loaded and compiled based on the saved parameters

b call setFormValues() with the saved FormValues property
CHAPTER 27
Working with Alphablox FastForward

Creating Custom Report Templates 377
c call the restoreBookmark() method on each Blox with a saved bookmark

This is usually acceptable for most situations. Sometimes, though, you may want
to deviate from this standard restore procedure. For example, you may want to
change the data shown in the report so that it is based on the current calendar day/
quarter/month or, in the case of group access reports, you may want to load a
personalized report, with certain values being set based on which user loads a
report.

In order to make this easier, FastForward provides the savedState object, which
is available from the JSP page whenever the report has been restored from private
or group access. If a report has been “published,” the savedState object is
unavailable and all references to it will return null.

The savedState object provides the following capabilities:

• the ability to turn off (or on) the default restore behavior

• the ability to get any FormBlox or other standard Blox on the page

• the ability to get a bookmark associated with any bookmarkable Blox

• the ability to restore the state of the various Blox in any order desired.

For details on these and other capabilities of the savedState object, refer to the
FastForward Javadoc documentation, available from the Help menu in the
Alphablox Analytics Admin Pages.

In order to use this object in creating new reports, you need to add your custom
report restore logic to the end of the JSP file, thus applying your logic after the
affected Blox are instantiated but before they are rendered on the page.

In the following example, a GridBlox is modified on the restored report to have
row banding disabled on the grid:

<blox:present id="myBlox"
visible="false"
width="100%"
height="100%"
dataLayoutAvailable="<%=dataLayoutVisible%>"
menubarVisible="<%= menubarVisible %>">
<blox:grid

visible="<%=gridVisible%>"
bandingEnabled="<%=gridBanding%>"/>
<blox:chart visible="<%=chartVisible%>"

chartType="<%=chartType%>"
totalsFilter="0"/>

<blox:data bloxRef="dataBlox" />
<blox:toolbar visible="<%=toolbarVisible%>"

removeButton="Save,Load" />

combineToolbars(myBlox.getBloxModel());
%>
DB2 Alphablox
Developer’s Guide for the DHTML Client

378 Creating Custom Report Templates
</blox:present>
<%

if (savedState != null) {
Bookmark bookmark = savedState.getBloxBookmark("myBlox");
BookmarkProperties gridProps =

bookmark.getBookmarkPropertiesByType(Bookmark.GRID_BLOX_TYPE);
gridProps.setProperty("bandingEnabled", "false");

}
%>

<blox:display bloxRef="myBlox"/>

Next Steps

After you have mastered some simple report templates, you can move onto more
challenging ones. Once again, the sample report templates included in the sample
Alphablox FastForward application are a fertile source of ideas and code for you
to use in constructing your own templates.

Also, use all of the available developer resources, including the Developer’s
Reference for the DHTML Client, this developer’s guide, the FastForward Javadoc
files, and the Server-Side API Reference (Javadoc) files. These are also available
from the Help menu on the Alphablox Admin Pages.
CHAPTER 27
Working with Alphablox FastForward

../index.html?context=reference&topic=ReferenceBook
../index.html?context=reference&topic=ReferenceBook
../../documentation/javadocs/fastforward/index.html
../../documentation/javadocs/index.html

28
Appendix: DHTML Client DOM API

Developers should not write client-side code that manipulates or traverses the
DOM generated by the DHTML Alphablox Analytics client unless using the
published DHTML Client DOM API described in the folowing sections, as the
implementation will likely change going forward.

GridBlox Client API

Defining Blox

<blox:grid id="myBlox"
width="80%"
height="30%"
bandingEnabled="true"
visible="false">
<blox:data bloxRef="dataBlox" />

</blox:grid>

The DHTML client will return a JavaScript object in the document namespace.

To get a reference to the JavaScript object for a Blox, use:

var gridBlox = document.myBlox;

or

var gridBlox = myBlox;

Grids

The GridBlox provides access to the grids contained within it using a zero-based
grids array.

380 GridBlox Client API
To get a reference to a grid contained in a GridBlox defined earlier, use:

var myGrid = myBlox.grids[n];

where n is the zero-based number of the grid.

This returns the element that represents the grid. In addition, the grid contains
two attributes for the total number of rows and columns.

To return the number of scrollable rows or collumns in a grid:

var numRows=myGrid.getRowCount();
var numCols=myGrid.getColumnCount();

These values represent the total number of scrollable elements and do not
distinguish between header and data rows or columns, if they are scrollable. If
the number of scrollable elements does not fill the available area, then scrolling is
not required. If the size of the grid area changes, scrollbars will be automatically
added or removed as needed.

To scroll the grid to the indicated row and column, use the scrollTo method:

myGrid.scrollTo(row,column)

The scrollTo method scrolls the grid to the indicated row and column.

To determine if scrolling is enabled for the grid:

var enabled = myGrid.isScrollingEnabled()

The isScrollingEnabled method returns true if scrolling is enabled for the
grid.

Selection

The grid provides end users with the ability to select one or more cells. They may
then perform an action on the selected cells. The DHTML client provide
programmatic access to those selected cells using the following methods.

Selection Object

To access the selection object representing the cells that are currently selected in
that grid, use:

var myGrid=myBlox.grids[0];
var select = myGrid.selection;
CHAPTER 28
Appendix: DHTML Client DOM API

GridBlox Client API 381
Retrieving Visible Selected Cell IDs

The selection object provides a method for retrieving a zero based array of strings
where each string is the id of a cell currently selected in the associated grid.

var selectedCellIds = select.getCellIds();

This array will only contain the IDs of the cells that are both selected and
currently visible. If you require the full set of selected cells you should access
the model instead.

To determine if a cell is selected, use:

var selected = selection.isSelected(cellID)

Returns true if the cell is selected. Selected cells may or may not be visible on
the client, but their selected state is preserved by the client.

To control the selection of the cell, use:

selection.selectCell(cellID,selected)

The cellID must be a valid grid cell ID. Set selected to true to select the cell
or false to unselect the cell.

To clear all selected cells:

selection.clearSelection()

All cell selections will be cleared.
DB2 Alphablox
Developer’s Guide for the DHTML Client

382 GridBlox Client API
CHAPTER 28
Appendix: DHTML Client DOM API

Index

A
actions, capturing 270
alerts, see cell alerts
Alphablox Analytics

program flow 53
Alphablox Analytics applications

also see applications
development tools, choosing 59
key characteristics 30
overview 29
user interface 32

application requirements
user interface 65

application server
request processing 51

application states
see states

Application Studio
location 62

applications
delivery options, specifying 218
home page, defining 72
HTML only, specifying 218
key characteristics, Alphablox Analytics

30
requirements, application logic 67
requirements, data 63
requirements, user interface 65
troubleshooting 349
user help 345

autoConnect property
performance and scalability 179
relational data sources 179

autoDisconnect property
performance and scalability 179
relational data sources 179
use with Microsoft Analysis Services 180
use with multidimensional data sources

180

B
Blox

tag library, accessing 84
tag library, using 83

Blox components
attributes 89
common appearance properties 230
defining, using tags 86
interaction among nested Blox 264
interactivity, see interactivity
output, printing 218
special tags 96
style property tags 90
understanding 38
user help files 345

Blox object
DHTML Client API 159

Blox properties
indexed property tags 92
indexed property tags listing 93
non-indexed property tags listing 90

384 Index
Blox Sampler
location 62

Blox UI Model 134
charts 143
dialogs 135
examples 150
model dispatchers 134
purpose 123
styles 141

Blox UI Tag Library
analysis tags 118
component customization tags 116
custom layout tags 117
examples 116
overview 115
tag categories 115
utility tags 119

BloxAPI
callBean method 164

BloxAPI object 158
bookmarks

definition 301
browsers

development setup 59
Internet Explorer, configuring for

development 61
session, killing 350

browsers, configuring for development 61

C
cache

server, clearing 352
server, location 352

calculated members, see custom calculations
calculatedMembers property 279
calculations, custom

examples 283
callBean method, BloxAPI 164
cell

alerts, using links 246
also see cell alerts
header links 249
links 250
traffic lighting, setting

cell alerts
links 251
setting 244
understanding

cell links 250
cellFormat property 243
cells

mapping grid cells to result set 155
cellStyle property 242
chart_color_series property 233
ChartBlox

3-D appearance in Bar charts, adding 233
interactivity 262
overview 43
user interface 43

charts
Chart component 143
chart_color_series property 233
context (right-click) menus, custom 149
data series 143
NumericAxis 143
OrdinalAxis 143

clientBean tag 165
using with Blox 165

color series, chart
specifying 233

colors
chart, specifying 233
toolbars, changing to color 270

comments
cell-level 252
customization 256
defining a comments collection 254
elements 253
enabling 255
named 252

comments, adding 252
CommentsBlox, adding comments to grid cells

252
ComponentContainer 128

Index 385
components
adding dedicated controllers 133
Blox UI Model 125
Blox UI Model, overview 124
built-in names 127
chart 143
compound 128
containers 128
HorizontalLayout 128
layouts 128
ModelConstants class 127
titles 127
UIDs 126
VerticalLayout 128

compound components 128
connect() method 176
containers

dialogs 135
overview 128

context (right-click) menus
charts 149
custom 152
disabling 151

controllers
adding listeners 133
Blox UI Model 130
Controller base class 131
implied 131

convert to PDF
files associated with conversion 328

CSS files
overriding styles 229
themes, using with URL attributes 222
values, viewing 226

CSS styles
theme definitions 226

CSS theme
properties file 223

CSS themes
multiple class selectors 142

custom calculations
Essbase Report Scripts 284
examples 283
guidelines 277
ifNotNumber function 280
property syntax 279
restrictions 278

custom properties
understanding 297
user property, example 297

D
data

access, restricting 285
access, restricting using dimension root

286
access, restricting using fixed choice lists

288
accessing 171
appearance, specifying 236
cell format, specifying 237
errors in displaying data 279
exporting, see exporting data
filtering, see filtering data
formatting, see formatting
hiding, see filtering data
input, see writeback
interaction 257
interaction, controlling using HTML forms

266
persisting views 295
presenting 213
retrieving 181
security 285, 286, 288
user interaction, limiting 257
writeback, see writeback

data layout
tree vs. drop lists 264

data queries
also see queries

data requirements when designing applications
63

data series
charts 143
DB2 Alphablox
Developer’s Guide for the DHTML Client

386 Index
data sources
auto-connecting and auto-disconnecting,

relational 179
auto-disconnecting, multidimensional 180
changing using

DataSourceSelectFormBlox 173
connecting and disconnecting 176
dataSourceName attribute, setting 172
definition tutorial 171

databases
writeback 274

DataBlox
overview 40
properties and methods 40
writeback methods 273

DataLayouBlox
interfaceType property 264

DataLayoutBlox
appearance, specifying 234
overview 43
user interface 43

debugging 97
debugging, see troubleshooting
defaultCellFormat property 242
delivery formats

PDF 216
printer 216
specifying 218
xls 217
XML 217

derived members, see custom calculations
DHTML Client

Blox object 159
BloxAPI object 158

DHTML client
invoking server-side logic 163

DHTML Client API
framework 158
overview 157
utility objects 159

DHTML Client API Framework
Blox object 159
BloxAPI object 158

DHTML Query Builder
using 209

dialogs
Blox UI Model 135
creating 135
display, using Blox UI Model dispatchers

134
modal 135
modeless 135
resource files 138

dimensionRoot property 286
dispatchers

displaying dialogs 134
display tag 96
distributing views

bookmarks, using 318
email, using 316

drillthrough support
Hyperion Essbase 197
Microsoft Analysis Services 201

E
edit page, FastForward 361
error handling

Blox properties and methods, using 342
custom error page 350
custom error page, steps to creating 340
custom error pages 340
understanding 339

error messages
also see error handling
noDataMessage 342

errorPage attribute 340
errors

common Blox tag errors 351
types, in JSP files 349

Index 387
Essbase
aliases 193
calc scripts 192
calculated members 284
DECIMAL command 194
queries 185
report script commands, not supported 190
report script commands, supported 186
report scripts 185
report scripts, supported 186
report scripts, unsupported with Alphablox

equivalents 190
report scripts, unsupported with no

Alphablox Analytics equivalents
192

substitution variables 193
eventHandler method 161
events

Blox UI Model, overview 132
definition of 270
DHTML client 161
DHTML Client API 160
intercepting 270
JavaScript 160
using 270

Excel
exporting to 321, 322

exception handling
DHTML client 163

Exception object
DHTML Client API 159

exceptionThrower method 163
executeCustomCalc() method 274
executeNamedDBCalcScript() method 274
exporting data

options
to Excel, steps to 321, 322
to XML, steps to 323

F
FastForward

architecture 359
edit page 361
overview 357
report page 361, 364
report templates 361
report templates, creating 364
report templates, sample 363
report templates, saving 376
report templates, sharing 375, 376
report templates, testing 375
savedState object 376
template parameters file 361
template parameters file (template.xml)

368
user roles 358

filtering data
dimension root, using 286
fixed choice lists, using 288
hiding dimensions 285
hiding members 285
queries, using 290
using MemberSecurityBlox 289
virtual root, specifying 287

fixedChoiceLists property 288
formatting

cell format, specifying 237
decimal alignment, setting 238
negative values, highlighting 242

FormBlox components
event model 103
linking 103
overview 100
passing values 103

frames
multiple, using 168

frames, using multiple 86
framesets 86

G
generation level

setting, in ChartBlox 263
Grid object, DHTML Client API 159
DB2 Alphablox
Developer’s Guide for the DHTML Client

388 Index
GridBlox
interactivity
overview 42
user interface 42
writeback methods 272
writeback properties 271

grids
layout, custom 153

H
header links 249
header tag 85
hiddenDimensionsOnOtherAxis property 285
hiddenMembers 285
HorizontalLayout 128
HTML render mode

specifying 218
Hyperion Essbase

drillthrough support 197

I
ifNotNumber function, calculated members

280
information links 248
interactivity

controlling using Blox properties 259
controlling using HTML forms 267
limiting 257

Internet Explorer, Microsoft
configuring for development 61

isErrorPage attribute 340

J
Java render mode 218
JavaBeans components

using with FormBlox 103
JavaScript callbacks, see events

JavaServer Pages
getProperty 56
learning resources, recommended 80
overview 79
setProperty 56
standard syntax, using 97
useBean 56
using

JSP, seeJavaServer Pages

L
layout strings, using 224
layouts

ComponentContainer 128
load theme command 229
lockCurrentDataSet method 273

M
MDBQueryBlox 108
MDX

queries, using 196
Member Filter

overview 33
members

calculatedMembers property 279
links, adding to headers 249

MemberSecurityBlox 111
menu bar, turning on 269
menus

context (right-click), custom 152
context (right-click), disabling 151

MessageBox
dialogs

model 138
Microsoft Analysis Services

drillthrough support 201
MDX, learning 194
performance and scalability 180
retrieving data 194

Microsoft Excel
exporting Blox views to spreadsheets 221

model dispatchers 134
ModelConstants class 127
moreChoicesEnabledDefault property 289

Index 389
N
noAccessValueString property 293
noDataMessage property 342
NumericAxis

charts 143

O
onErrorClearResultSet property 343
OrdinalAxis

charts 143

P
page refreshing 169
PageBlox

overview 44
user interface 44

PDF reports
customizing, using custom JSP tags 332
default user interface options 328
setting global default properties 328
using remote PDF processor 338

personalization
custom properties 297
general techniques 293
understanding 35

Presentation Blox, comparison 213
PresentBlox

appearance, specifying 233
overview 45
user interface 45

printing
Blox output 218
printable page, technique for creating 219,

220
printer render mode 216

programming model 56, 82
properties

custom properties, see custom properties
DataBlox 40
user properties, see custom properties 297

Q
QCC database

installing and configuring 171

QCC-Essbase
installing and configuring 171

QCC-MSAS
installing and configuring 171

queries
DHTML Query Builder, using 182
Essbase report scripts, multi-bang 190
Essbase Report Specifications 185
executing, using JSP scriptlet 183
generating using DHTML Query Builder

209
MDX statements 196
query property, setting 182
SQL statements 208

Query Builder, DHTML
using 182, 209

query, setting using DataBlox query property
182

R
refresh() method 274
refreshing pages 169
Relational Reporting

user interface 34
render

modes, printer 216
modes, xls 217
modes, XML 217
URL attribute 323

report page, FastForward 361, 364
report templates, FastForward 361

saving 376
sharing 376

repository
Alphablox, understanding 55
state, managing using RepositoryBlox 297

request object methods 298
request processing 51
resource files

dialog 138
result sets

mapping grid cells to 155
DB2 Alphablox
Developer’s Guide for the DHTML Client

390 Index
S
savedState object, FastForward 376
session

killing browser session 350
session object methods 298
sessions

managing 86
setCalculatedMembers method 279
Split Panes, specifying location 233
spreadsheets

exporting Blox views to Microsoft Excel
221

SQL queries, writing 208
states

definition
managing, using RepositoryBlox methods

297
Style object 141
styles

cell alerts 229
overriding 229
property tags 90
Style object 141

suppressDuplicates property 292
suppressMissing property 291
suppressNoAccess method

using to filter members 289
suppressNoAccess property 293
suppressZeros property 292

T
tags

attributes, setting Blox properties 89
Blox header tag 85
Blox tag library, accessing 84
Blox tag library, understanding
Blox tag library, using 83
Blox tags, behavior 350
common errors 351
display tag 96
indexed properties 92
indexed properties, listing 93
non-indexed properties 90
scope 350
special Blox tags 96
style property 90

template parameters file (template.xml),
FastForward 368

template parameters file, FastForward 361
template.xml files, FastForward 368
theme

CCS style classes, listing 226
defining CSS styles, using 226
layout strings, using 224
loading modified themes 229
overriding styles 229
PresentBlox layout strings, specifying 224
understanding 33
URL attribute, using to define theme 222

themes
CSS 223

TimeSchemaBlox 113
ToolbarBlox

appearance, specifying 235
overview 45
user interface 45

toolbars
colored buttons, changing to 270
custom 150
menu bar, turning on 269
text, turning on 269
Tool Tips, turning off 269
turning off 270

Index 391
troubleshooting 349
Blox debug tag 353
server console, using 354

tutorials
application development 69
data sources, defining 171

U
unlockAll() method 273
URL attributes

render 323
theme 222
value, retrieving 299

user help 345
creating 346
information links, using 347

user interaction, see interactivity
user interface

ChartBlox 43
DataLayoutBlox 43
GridBlox 42
PageBlox 44
PresentBlox 45
requirements gathering 65
ToolbarBlox 45

user properties
utility objects

DHTML client 159

V
VerticalLayout 128
visibility

understanding 95

W
writeback

enabling GridBlox 272
example, multidimensional 272
example, relational 276
general steps 271
methods in DataBlox 273
Microsoft Analysis Services 276
properties and methods in GridBlox 271
relational data sources 276
to multidimensional databases 274

writeback() method 273

X
XML

exporting to 323
sample Alphablox XML document 324
URL render attribute 323

XML resource files 138
DB2 Alphablox
Developer’s Guide for the DHTML Client

392 Index

	Developer’s Guide for the DHTML Client
	Contents
	Notices
	Trademarks

	Preface
	About This Book
	Intended Audience
	Organization

	Related Documents
	Online Documentation User Interface
	Document Conventions
	Icons
	Typography

	Contacting IBM
	Product Information
	Comments on the Documentation

	Alphablox Analytics Applications and the Underlying Blox
	Key Characteristics of an Alphablox Analytics Application
	Real-time Data Access and Analysis
	Interactive End-user Interface
	Alphablox Analytics Themes
	Member Filter
	Relational Reporting User Interface

	Personalization
	Sharing and Collaboration
	Real-time Planning

	The Underlying Blox Components
	DataBlox
	GridBlox
	ChartBlox
	DataLayoutBlox
	PageBlox
	ToolbarBlox
	PresentBlox

	Alphablox FastForward

	Alphablox Analytics Application Program Flow
	Application File Structure
	Application Context
	Alphablox Analytics Repository
	Working with Blox in JavaServer Pages

	Request Processing
	The Role of the Application Server
	Alphablox Analytics Program Flow
	The Role of Alphablox Analytics

	Bookmarking, Application States, and the Repository

	Application Development and Programming Model
	Blox Components
	Server-side API vs. Client-side API

	Your Development Environment
	Choosing Application Development Tools
	Web Browsers
	General Considerations
	Working with DHTML Mode
	Task: Configuring and Developing with Microsoft Internet Explorer

	Application Studio

	Design Considerations
	Defining Application Requirements
	Data Requirements
	User Interface Requirements
	User Groups
	Content Presentation
	User Instructions
	User Navigation
	Data Manipulation
	Saving and Restoring Work

	Application Logic Requirements
	Custom Properties

	Building Your First Application
	Defining Your Application
	Accessing Data
	Creating Your Application Home Page
	Setting Default Home Page
	Creating Your First Analytic View
	Creating Your Second Analytic View
	Summary

	Using JavaServer Pages and the Blox Tag Library
	JavaServer Pages Technology
	Book Recommendations
	Web Sites

	Using JavaServer Pages with Alphablox Analytics
	Server-Side Programming with Alphablox Analytics
	Using the Blox Tag Libraries
	Accessing the Blox Tag Library
	Using the Blox Header Tag
	Defining Blox
	Setting Blox Properties Using Tag Attributes
	Setting Blox Properties Using Style Property Tags
	Setting Indexed Blox Properties Using Property Tags
	Controlling Visibility of Blox
	For Processing Logic Before Rendering

	Rendering Blox on Multiple Pages
	Blox Utility Tags
	Blox Header Tag
	Blox Debug Tag
	Blox Display Tag

	Using Standard JSP Syntax
	More to Learn

	Using Blox Form Tags
	Using the Blox Form Tag Library
	Overview of FormBlox Components
	Types of FormBlox Components
	Basic Form Controls
	Metadata Selection Lists
	Time Schema Selection Lists
	Tree Controls

	Getting and Setting Properties in Blox and JavaBeans Components
	FormBlox Event Model

	Examples Using Blox Form Tags
	Ad Hoc Analysis using DataSourceSelectFormBlox
	DHTML Query Builder
	Specifying Report Options using FormBlox
	Navigation Menu Using TreeFormBlox
	Report Templates in FastForward Applications

	Using Blox Logic Tags
	Using the Blox Logic Tag Library
	Overview of the Blox Logic Components
	Using the MDBQueryBlox to Select Products
	Listing Cube Members using MemberSecurityBlox
	Using TimeSchemaBlox

	Blox UI Tags
	Blox UI Tag Library Overview
	Blox UI Tag Categories
	Blox UI Tag Examples
	Component Customization
	Custom Layout Tags
	Analysis Tags
	Utility Tags
	More Examples

	DHTML Client UI Extensibility
	The Blox UI Model
	Purpose of the Blox UI Model
	Components Overview
	Components
	Component UIDs
	Component Names
	Handling non-unique component names
	Built-in names
	Component titles

	Containers
	Layout
	Compound Components
	Using ContainerBlox

	Controllers
	The Controller base class
	“Implied” Controllers

	Events
	Adding Dedicated Controllers to Components
	Adding Listeners to Pre-existing Controllers

	Model Dispatcher
	Dialogs
	Creating a Simple Dialog
	JSP page (customDialog.jsp)
	XML Resource File (MyDialog.xml)

	MessageBox

	DHTML Client Application Logic and Flow
	DHTML Client Is Theme-Based
	Styles
	Setting Multiple Theme Classes

	Charting
	Key Terms
	The Chart Component
	Controlling Chart Settings
	NumericAxis
	OrdinalAxis
	DataSeries
	Legend
	ChartTitle, Footnote, AxisTitle

	Chart Event Handling
	Code samples
	Bar Chart Example
	Custom Context (Right-Click) Menu for Chart

	Javadoc Documentation
	Blox UI Model Examples
	Single Toolbar
	Disabling Context (Right-Click) Menu
	Customized Context (Right-Click) Menu
	Custom Grid Layout
	Mapping Grid Cells to Underlying Result Set

	DHTML Client API
	DHTML Client API Overview
	Using the DHTML Client API
	The DHTML Client API Framework
	BloxAPI Object
	Blox Object
	Utility Objects

	Sending Events
	Initiating Model Events From JavaScript

	Intercepting Events
	Intercepting Client-Side Events Example

	Invoking JavaScript Directly From the User Interface
	Exception Handling
	Invoking Server-side Logic using the DHTML Client API
	BloxAPI.call() and Blox.call()
	BloxAPI.callBean()
	<blox:clientBean>
	Using <blox:clientBean> With Server-Side Blox

	The DHTML Client DOM API
	Using Multiple Frames
	Refreshing Pages

	Connecting to Data
	Creating Data Sources
	Task: Defining a Data Source

	Defining the DataBlox dataSourceName Property
	Setting the dataSourceName attribute
	Using the setDataSourceName() JavaScript Method
	Task: Setting Different Data Sources Using DataSourceSelectFormBlox

	Connecting To and Disconnecting From Data Sources
	Auto-connecting and Auto-Disconnecting
	Relational Data Sources
	Multidimensional Data Sources

	Retrieving Data
	Overview
	Setting the DataBlox query Property
	Task: Setting and Executing a Query Using a JSP Scriptlet

	Multidimensional Data Sources
	IBM DB2 OLAP Server and Hyperion Essbase
	Creating Essbase Report Scripts
	Essbase Report Script Commands Supported by Alphablox Analytics
	Unsupported Report Script Commands with Alphablox Analytics Equivalents
	Unsupported Report Script Commands with no Alphablox Analytics Equivalents
	Calc Scripts
	Substitution Variables
	Using Aliases
	Working with Decimals
	Microsoft Analysis Services
	Creating MDX Statements
	Clearing PivotTable Services Cache using autoDisconnect Property

	Alphablox Cube Server

	Drillthrough Support for DB2 OLAP Server and Hyperion Essbase (using EIS)
	Out-of-the-Box Integration Services DrillThrough Support
	Controlling EIS DrillThrough Window Styles
	Custom EIS Drillthrough Support Using Relational Reporting
	Using RDBREsultSetDataBlox and RDBResultSetTag
	Supporting multiple reports
	Adding custom menu options

	Other Custom EIS DrillThrough Support

	Drillthrough Support for Microsoft Analysis Services
	Out-of-the-Box DrillThrough Support
	Controlling DrillThrough Window Styles
	Custom Drillthrough Support Using Alphablox Analytics Relational Reporting
	Other Custom DrillThrough Support

	Relational Data Sources
	Creating SQL Statements

	Using DHTML Query Builder
	Task: Using DHTML Query Builder

	Presenting Data
	Choosing Blox for Presenting Data
	Data Presentation Blox - Advantages and Disadvantages

	Render Formats Available to the DHTML Client
	DHTML Format (render=dhtml)
	Printer Format (render=printer)
	PDF Format
	Export To Excel Format (render=xls)
	XML Format
	Specifying a Delivery Format
	Printing Blox Output
	Printing with HTML-based Printing
	Task: Creating a Printable Page Using the render=printer URL Attribute
	Task: Creating Custom Print Pages Using the <blox:display> Tag
	Exporting Blox Views to Microsoft Excel

	CSS Themes
	Specifying HTML Themes in Applications
	Default HTML Client Theme
	theme URL Attribute

	CSS Theme Files
	CSS Theme Properties Defined In The themeName.properties File
	Layout Strings

	CSS Classes Defined in the .css File

	Overriding Defined Styles
	Applying Styles to Cell Alerts
	Look and Feel
	Grid Appearance
	Row Banding
	Cell Appearance

	Chart Appearance
	Chart Types
	Task: Adding 3-D Appearance to Charts
	Chart Colors

	PresentBlox Appearance
	Split Panes
	DataLayout
	Menubar
	Toolbar

	Data Appearance
	GridBlox Properties
	Task: Formatting Values in Thousands and Billions
	Task: Displaying % For a Specific Member
	Task: Controlling the Behavior of Decimals

	Highlighting and Commenting on Information
	Overview
	Using Format Masks to Highlight Data
	Task: Highlighting Negative Values in Red
	Task: Highlighting Negative Values with Parentheses

	Using Cell Alerts to Highlight Data
	Cell Formatting
	Task: A Simple Traffic Lighting Reporting System
	Cell Alert Links
	Task: Creating an Alert Message for a Cell Alert

	Information Links
	Header Links
	Cell Links
	Cell Alert Links

	Adding Comments to Cells to Grid Data Cells
	Key Terms
	Elements of a Comment
	Defining a Comments Collection
	Enabling Cell Comments
	Custom Comments Support
	General Comments on a Page
	Printing Comments in a Grid

	Interacting with Data
	Interactivity Considerations
	Limited or No Interactivity
	Task: Disabling Pivoting and Drilling on Columns
	Modifying Interactivity Using Blox Properties

	Grids
	Charts
	Task: Allowing User Control of Generations Displayed

	DataLayout Interface
	Interactions Between Grids and Charts
	Setting the “No data available” Message in Grids and Charts

	Using HTML Form Elements and FormBlox Components
	Selection Lists
	Check Boxes and Radio Buttons
	Standard HTML Buttons
	Text Fields

	Using Toolbar Buttons
	Turn the Menu Bar On
	Turn Toolbar Text On
	Turn Tool Tips Off
	Change to Colored Buttons
	Turn Toolbars Off

	Events

	Inputting and Modifying Data
	Writeback to Multidimensional Data Sources
	Editing Data Values in a Grid
	GridBlox Properties and Associated Methods for Writeback
	GridBlox Java Writeback Methods
	Task: Enabling a GridBlox for Writeback
	DataBlox Methods for Writeback
	Task: Writeback To Multidimensional Databases

	Updating Relational Data Sources
	Task: Updating a Relational Data Source Using Writeback
	Writeback to Microsoft Analysis Services

	Calculated Members (Derived Members)
	Creating Calculated Members in Alphablox Analytics
	Custom Calculation Guidelines
	Defining a Custom Calculation
	Custom Calculation Restrictions

	Conditions That Prevent Proper Display of Data
	Property Syntax
	Functions Available for CalculatedMembers
	Examples

	Calculated Members Using Essbase Report Script Commands

	Filtering Data
	Hiding Dimensions and Members
	Using Dimension Root
	Task: Setting a Virtual Root for Users

	Creating Fixed Choice Lists
	fixedChoiceLists
	moreChoicesEnabledDefault and moreChoicesEnabled
	Using MemberSecurityBlox to Filter Members

	Using HTML Form Elements and FormBlox
	Using Queries
	Suppressing Data using Blox Properties
	suppressMissingOnRows/suppressMissingOnColumns
	suppressZeros
	suppressDuplicates
	suppressNoAccess

	Personalization

	Persisting and Bookmarking Data
	Persistence of Data in Alphablox Analytics
	Application States
	Using Custom Properties Stored in the Alphablox Analytics Repository
	Task: Creating a Custom User Property

	JavaServer Pages
	Task: Using Request Parameters to Retrieve a URL Attribute Value

	Bookmarking Data
	Bookmarks - Developer Details
	Task: Getting a Count of All Bookmarks
	Task: Getting the properties set for a bookmark
	Task: Using server-side bookmarkLoad event filter

	Customizing Applications Using BookmarksBlox API
	Bookmark Events
	Registering Events
	Example: Using Dynamic Queries with Bookmarks
	Task: Getting a list of bookmarks that match the specified criteria
	Task: Creating a bookmark using the BookmarksBlox API
	Task: Getting a DB2 OLAP Server or Essbase serialized query in text form when a bookmark is loaded
	Task: Using Custom Properties to Restrict Access

	Distributing Views
	E-Mail
	Task: Creating a Mail Link Using the E-Mail Bean

	Bookmarks
	Printing

	Exporting Data
	Exporting to Spreadsheets
	Exporting a Grid View
	Task: Exporting a Grid View to Microsoft Excel

	Exporting to XML
	Task: Rendering a Result Set into XML Format
	Sample Alphablox Analytics XML Document

	Converting to PDF
	Converting a Blox to a PDF File
	Default User Interface Options
	Global Default PDF Report Properties
	Using JSP Tags to Customize PDF Reports
	Custom PDF Report Properties Using <blox:pdfReport> Tags
	Custom Create PDF Report Dialog Options Using the <blox:pdfDialogInput> Tag

	Multiple Blox to a Single PDF File
	Using a Remote PDF Processor

	Error Handling
	Exceptions
	Custom Error Pages
	errorPage Attribute
	isErrorPage Attribute
	Task: Creating a Simple Custom Error Page

	Using Blox Properties and Methods to Handle Errors
	noDataMessage
	onErrorClearResultset

	Adding User Help
	User Help in Alphablox Analytics Applications
	Using Existing Alphablox Analytics User Help
	Creating Custom User Help
	Using Information Links for Help

	Troubleshooting Applications
	Errors in JSP Files
	Compilation Errors
	Run-time Errors
	JSP Error Pages

	Blox Tag Behavior
	Task: Testing Blox Tag Modifications

	Common Blox Tag Errors
	Forgetting to include the taglib directive
	Incorrect case of a tag or tag attribute
	Leaving off required quotes
	Failing to include required tag attributes
	Using an invalid data source
	Refreshed page doesn’t reflect code modifications
	Page loaded in new session still doesn’t reflect code changes

	The Blox Debug Tag
	Alphablox Analytics Console Messages

	Working with Alphablox FastForward
	Alphablox FastForward Overview
	Roles of FastForward Users
	Application Administrators
	Template Developers
	End Users

	Customizing Alphablox FastForward

	FastForward Application Architecture
	Report Templates
	Sample Report Templates

	Creating Custom Report Templates
	Report Page (report.jsp)
	Template Parameters File (template.xml)
	Edit Page (edit.jsp)
	Optional Template Pages
	Help Page
	Print Page
	Excel Page

	Testing Report Templates
	Saving Report Templates
	Sharing Report Templates
	Using the savedState Object
	Next Steps

	Appendix: DHTML Client DOM API
	GridBlox Client API
	Defining Blox
	Grids
	Selection
	Selection Object
	Retrieving Visible Selected Cell IDs

	Index

