
IBM DB2 Alphablox

DB2 Alphablox Cube Server

Administrator’s Guide

Version 8.3

SC18-9433-01

���

IBM DB2 Alphablox

DB2 Alphablox Cube Server

Administrator’s Guide

Version 8.3

SC18-9433-01

���

Note:

Before using this information and the product it supports, read the information in “Notices” on page 39.

Second Edition (November 2005)

This edition applies to version 8, release 3, of IBM DB2 Alphablox for Linux, UNIX and Windows (product number

5724-L14) and to all subsequent releases and modifications until otherwise indicated in new editions.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

Copyright © 1996 - 2005 Alphablox Corporation. All rights reserved.

© Copyright International Business Machines Corporation 1996, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Chapter 1. Cubing Concepts . 1

Overview . 1

Cubing Relational Data . 1

Applications of the DB2 Alphablox Cube Server . 2

Relatively Small Cube Data Sets From Potentially Very Large RDBMSs 2

Prototyping . 2

Cubes With Straightforward Dimensions and Measures 3

Advantages of the DB2 Alphablox Cube Server . 3

DB2 Alphablox Cube Server in an DB2 Alphablox Application Environment 3

DB2 Alphablox Cube Server Architecture . 4

DB2 Alphablox Cube Server Components . 4

Administration User Interface . 4

Cube Manager . 5

In-Memory Cache . 5

Compiler . 5

Executor . 5

MDX to SQL Query Translation . 5

Schema Requirements . 5

Clean Data . 5

Dimensional Schema . 6

Chapter 2. Dimensional Schema Design . 7

Dimensional Schemas . 7

Star and Snowflake Schemas . 7

Primary Keys . 8

Foreign Keys . 8

Fact Tables . 8

Dimension Tables . 8

Star Schemas . 8

Snowflake Schemas . 9

Hierarchies . 9

Many-to-One Relationships . 10

Mapping the Relational Schema to a Cube . 10

Dimensions, Levels, and Attributes . 10

Measures . 10

Chapter 3. Creating and Modifying a Cube . 13

Checklist of Tasks to Create a Cube . 14

Create the Relational Data Source . 14

Define the Cube . 15

Define the Measures . 16

Define the Dimensions . 17

Create or Edit Dimensions . 17

Create or Edit a Fact Table Join . 18

Create or Edit a Dimension Join . 18

Create or Edit Levels . 18

Create or Edit Attributes . 19

Create Alphablox Cube Server Adapter Data Source . 19

Specify and Manage Cube Resources . 20

Defining a Refresh Schedule . 20

Setting Tuning Parameters . 20

Review the Cube . 21

Chapter 4. Maintaining a Cube . 23

Starting, Stopping, and Rebuilding a Cube . 23

© Copyright IBM Corp. 1996, 2005 iii

Starting a DB2 Alphablox Cube . 23

Start Cube From the Home Page . 23

Start Cube From a Console Window . 23

Troubleshooting If the Cube Does Not Start . 24

Stopping a DB2 Alphablox Cube . 24

Stop Cube From the Home Page . 24

Stop Cube From a Console Window . 25

Rebuilding a DB2 Alphablox Cube . 25

Deciding on an Administration Strategy . 25

Understanding the Database Environment . 26

Scheduling Periodic Updates . 26

Console Commands . 27

Modifying a Cube . 28

Tuning a cube . 28

Tuning controls . 28

Connection and cache size limits . 28

Maximum Number of Cubes . 30

Maximum Rows and Columns . 30

DB2 Alphablox Cube Memory Considerations . 30

Changing the Maximum Memory Heap Size . 30

Adding More Memory to Your System . 31

Chapter 5. Using MDX to Query DB2 Alphablox Cubes 33

Supported MDX Syntax . 33

Basic Syntax . 33

Usage Notes . 33

Specifying Member Sets . 34

Qualified Member Names . 34

Curly Braces . 34

FROM:TO Syntax . 34

Functions . 34

MDX Query Examples . 37

Example 1 . 37

Example 2 . 38

Notices . 39

Trademarks . 40

Index . 43

iv IBM DB2 Alphablox: DB2 Alphablox Cube Server Administrator’s Guide

Chapter 1. Cubing Concepts

IBM DB2 Alphablox for Linux, UNIX and Windows includes the DB2 Alphablox

Cube Server. The DB2 Alphablox Cube Server is designed to provide a

multidimensional view of data stored in a relational database. This chapter

introduces the DB2 Alphablox Cube Server, provides background into the types of

applications it is designed for, and describes the requirements for its use.

v “Overview” on page 1

v “DB2 Alphablox Cube Server Architecture” on page 4

v “Schema Requirements” on page 5

Overview

DB2 Alphablox Cube Server allows administrators to create a multidimensional

representation of data that resides in a relational database. A cube is a data model

often used in online analytical processing (OLAP) to represent business data that is

typically analyzed over multiple dimensions. A dimension is a conceptual axis over

which a business is analyzed. For example, a retail business’s performance might

be analyzed over time, products, and stores. For this business, time, products, and

stores are each dimensions. Each of the dimensions has one or more levels which

together define the overall hierarchy of the dimension. For example, the time

dimension might have levels year, quarter, and month.

A cube is used to model the business. A three-dimensional cube is easy to visualize

because it can be drawn as a geometric cube, but a cube can have any number of

dimensions, from one to n.

At the intersection points of a cube’s dimensions, analysts can view the measures.

Measures are numeric values, usually business metrics (such as sales, profit and

cost of goods), at a given set of dimension intersections. For example, to view the

sales of a given product at a given store at a given time, examine the cube at the

point where those dimensions intersect to find the measures.

Cubing Relational Data

Many organizations have invested in Data Marts and Data Warehouses to store

their relational data in a queryable form. This data is typically moved, cleansed,

Products

Stores

Time

© Copyright IBM Corp. 1996, 2005 1

and transformed from the transactional systems where the data originated into

another relational database that is optimized for query performance.

These transformed databases contain historical information on one or more

subjects, and are sometimes known as data warehouses or data marts. Some

common data mart and data warehouse databases are IBM® DB2 Universal

Database™, Oracle, Microsoft® SQL Server, and Sybase. Whatever the systems are

called and in whatever relational database management system (RDBMS) they are

stored, the primary purpose of these databases is to allow users to query historical

information. For details on the schema designs typical of these data warehouse and

data mart databases, see Chapter 2, “Dimensional Schema Design,” on page 7.

Querying relational databases can be made easier for end users if a dimensional

model is used, because dimensional models make it easier to pose business

questions related to a particular business process or business area. Depending

upon the size and complexity of the dimensional model and the business

requirements, your users may need the power of a dedicated OLAP server such as

IBM DB2 OLAP Server™. In these cases, you extract the data from the relational

database and build dedicated high speed cubes that provide advanced analytical

functions. In those cases where you do not need the full power of a dedicated

OLAP Server, but you do want to provide your users with the power of OLAP,

you can use the Cube capability of DB2 Alphablox.

With DB2 Alphablox, an administrator can build a DB2 Alphablox cube on top of

relational data; that is, the DB2 Alphablox cube is populated using queries to the

underlying RDBMS.

Applications of the DB2 Alphablox Cube Server

The DB2 Alphablox Cube Server allows you to quickly present relational data in

the form of an OLAP cube. It provides an intelligent subset of the functionality of

a full-featured OLAP server, such as IBM DB2 OLAP Server, Hyperion Essbase, or

Microsoft Analysis Services. A DB2 Alphablox cube is designed to take advantage

of clean data that resides in data warehouse and data marts; it is not intended as a

replacement for a full-featured OLAP server. It is useful for creating

multidimensional data sources for which you do not have the time and resources

to develop full-featured OLAP databases, and it is very good at presenting

relatively small cubes, even if they are built from very large databases.

Relatively Small Cube Data Sets From Potentially Very Large

RDBMSs

The DB2 Alphablox Cube Server is well-suited to building cubes that return

relatively small data sets compared to the underlying databases from which they

are populated. The underlying databases can be very large, including potentially

billions of rows in the fact table (for a definition of a fact table, see “Fact Tables”

on page 8). DB2 Alphablox cubes store precomputed results in memory, not on

disk. Any results not stored in memory remain in the underlying database; the

cube retrieves results on an as-needed basis by sending SQL queries to the

database. The results from the query are then stored in memory and are instantly

accessible to DB2 Alphablox applications.

Prototyping

A DB2 Alphablox cube can be created very rapidly and can therefore allow

applications to access and gain value out of real data very quickly. DB2 Alphablox

applications that access DB2 Alphablox cubes can be easily modified to access data

that resides in DB2® Cube Views, a DB2 OLAP Server cube, a Hyperion Essbase

cube or in a Microsoft Analysis Services cube. Therefore, DB2 Alphablox cubes

2 IBM DB2 Alphablox: DB2 Alphablox Cube Server Administrator’s Guide

provides an excellent platform for prototyping larger scale applications during a

development cycle. In some cases, keeping the data in DB2 Alphablox cubes might

prove sufficient for the needs of the application. Other times, the features and

scalability of the full-featured products might be beneficial.

Cubes With Straightforward Dimensions and Measures

A DB2 Alphablox cube can have a single hierarchy per dimension. To represent

complex dimensions with multiple hierarchies, use a full-featured OLAP server

such as DB2 OLAP Server, Hyperion Essbase or Microsoft Analysis Services. Many

complex business scenarios, however, do not require multiple hierarchies per

dimension.

Note: If your application requires multiple hierarchies in a single dimension, you

can create multiple dimensions having the same root level but different

hierarchies.

Measures in a DB2 Alphablox cube are defined with a valid SQL expression to the

underlying database. In order to prevent problems with ambiguity, which happens

when there are different tables with columns having the same name, there are a

few restrictions on the SQL expression specified. See “Measures” on page 10 for

more detail.

Different RDBMS vendors support different levels of calculations, but all of the

major RDBMS vendors support a fairly rich set of calculations. If an application

requires calculations that cannot be expressed in SQL, consider using a

full-featured OLAP server.

Advantages of the DB2 Alphablox Cube Server

Because the DB2 Alphablox Cube Server is part of DB2 Alphablox and there is no

physical disk storage to manage, many administrative tasks typical of full-featured

OLAP servers are simplified or eliminated. The following are some of the

advantages:

v DB2 Alphablox Cube Server has no disk space to manage.

v DB2 Alphablox Cube Server uses the DB2 Alphablox security model, requiring

no additional work to manage users.

v DB2 Alphablox Cube Server is included with DB2 Alphablox, requiring no

additional software to install.

DB2 Alphablox Cube Server in an DB2 Alphablox Application

Environment

For a DB2 Alphablox application, a DB2 Alphablox cube is just another data

source; that is, the Blox functionality works with a DB2 Alphablox cube just like it

does with any other data source. DB2 Alphablox cubes use the same Blox as other

data sources. For example, you can change an application that accesses a DB2

Alphablox cube to access an DB2 OLAP Server cube by simply changing the values

of the query and data source DataBlox parameters. The application performs the

same way; it is simply accessing different data. The rich Blox functionality

available for manipulating other multidimensional and relational data sources are

also available for DB2 Alphablox cubes.

Chapter 1. Cubing Concepts 3

DB2 Alphablox Cube Server Architecture

The DB2 Alphablox Cube Server is a high performance, scalable cubing engine

designed to support many users querying many different cubes. It is designed to

enable quick multidimensional access to relational data stored in a data warehouse

or data mart database.

DB2 Alphablox Cube Server Components

The DB2 Alphablox Cube Server is composed of several components. These

complementary components provide the infrastructure to define, manage, and

execute queries against DB2 Alphablox cubes. The components of the DB2

Alphablox Cube Server work within the framework of DB2 Alphablox, as shown in

the following figure.

Administration User Interface

A cube administrator performs the tasks for setting up and managing DB2

Alphablox cubes through the administration interface of DB2 Alphablox. The

Cubes link under the Administration tab of the DB2 Alphablox home page is

devoted to cube setup and administration; this is where dimensions, levels, and

measures for a cube are defined. An DB2 Alphablox user must be a member of the

administrators group in order to create, view, or modify DB2 Alphablox cubes. For

detailed information on using the DB2 Alphablox cubes administration user

interface, see Chapter 3, “Creating and Modifying a Cube,” on page 13 and

Chapter 4, “Maintaining a Cube,” on page 23.

Create, edit and
manage cubes

Internet/
Intranet

DB Alphablox application
with Blox that access an
Alphablox Cube

2

DB Alphablox2

Cube server

MDX query/
result set object

Administration
user interface

Cube
manager

Compiler Executor

In-memory
cache RDBMS

Query
cubes

Results

4 IBM DB2 Alphablox: DB2 Alphablox Cube Server Administrator’s Guide

Cube Manager

The Cube Manager is the component that creates objects, performs verification

checks, starts and stops, and performs other work on DB2 Alphablox cubes. The

DB2 Alphablox console also accepts commands that are carried out by the Cube

Manager. For a description of the Cube Manager console commands, see “Console

Commands” on page 27.

In-Memory Cache

The Cube Server stores calculated results in a cache that resides in memory. These

stored results are then shared among all users accessing the DB2 Alphablox cube.

Internally, each cube is broken down into smaller sections of results. Each of these

sections is potentially stored in the cube’s in-memory cache. Depending on how

much memory the cube results require and how much memory is available to the

cube, some entries might need to be removed from the cache. If memory needs to

be freed, entries are purged from the cache. The cache is populated with queries

made to the underlying relational database. If a query against a DB2 Alphablox

cube requests data that is not already stored in the cache, then that data is

retrieved from the underlying database and, if necessary, old data is aged out of

the cache. The system performs all of these caching functions automatically.

Compiler

Query requests against DB2 Alphablox cubes use the MDX query language. The

Compiler parses MDX queries, validates the requests, and generates a plan to

return the results to the client application. The Compiler takes advantage of

metadata stored for each cube to generate an optimized plan for each request.

Executor

The Executor runs the plan generated by the Compiler and retrieves the result set

from the cache. After the results are generated, they are returned to the DataBlox,

GridBlox, or PresentBlox that requested them.

MDX to SQL Query Translation

DB2 Alphablox applications request results from a cube through MDX queries. DB2

Alphablox Cube Server processes the MDX query which results in a plan for

retrieving results from a DB2 Alphablox cube. The DB2 Alphablox cube in turn

calculates those results by running SQL queries against the underlying relational

database. These SQL queries either were run before the MDX query was issued

and are already stored in the cache or are executed during runtime of the MDX

query. If the results are already stored in the cube’s in-memory cache, then there is

no need to run the SQL query again for that result set. When the DB2 Alphablox

application issues the MDX query, DB2 Alphablox Cube Server automatically

issues any needed SQL queries. Often, many SQL queries are needed to fulfill a

single MDX request.

Schema Requirements

This section describes the requirements for the underlying database a DB2

Alphablox cube references. A DB2 Alphablox cube must reference a supported

relational database. The Installation Guide describes the databases supported by

DB2 Alphablox. The databases should have clean data that is stored in a dimensional

schema.

Clean Data

The term clean data refers to data that follows the rules of referential integrity

(whether or not referential integrity is enforced by the RDBMS). Clean data also

Chapter 1. Cubing Concepts 5

implies that any fields in the data that might have had different values with the

same meaning have been transformed to have the same values. For example, if the

transaction level data has some records in which the second quarter is referred to

as Q2 and some in which it is referred to as Quarter_2, the records must be

transformed so that there is a unique value to identify the second quarter.

Dimensional Schema

A dimensional schema in a relational database has a structure for storing clean

data against which it is easy to perform historical queries. Typically, a dimensional

schema can take one of the following forms:

v Single table

v Star schema

v Snowflake schema

v Combination of star and snowflake schemas

The underlying database for a DB2 Alphablox cube must contain only one fact

table; multiple fact table schemas are not supported. Each dimension in a DB2

Alphablox cube must have a single hierarchy. For more information about schemas,

see “Dimensional Schemas” on page 7.

Note: If the database has multiple fact tables or does not conform to a dimensional

schema, you can create views in the database to create a “virtual” single fact

table dimensional schema for use with a DB2 Alphablox cube.

6 IBM DB2 Alphablox: DB2 Alphablox Cube Server Administrator’s Guide

Chapter 2. Dimensional Schema Design

DB2 Alphablox Cube Server requires that the underlying databases have a

dimensional schema. To set up a DB2 Alphablox cube correctly, the administrator

should understand the data in the underlying RDBMS. This chapter explains the

concepts of dimensional schema design, defines terms such as star schema and

snowflake schema, and explains the relationship between the database structure

and the cube hierarchies.

v “Dimensional Schemas” on page 7

v “Mapping the Relational Schema to a Cube” on page 10

Dimensional Schemas

A database is comprised of one or more tables, and the relationships among all the

tables in the database is collectively called the database schema. Although there are

many different schema designs, databases used for querying historical data are

usually set up with a dimensional schema design, typically a star schema or a

snowflake schema. There are many historical and practical reasons for dimensional

schemas, but the reason for their growth in popularity for decision support

relational databases is driven by two main benefits:

v The ability to form queries that answer business questions. Typically, a query

calculates some measure of performance over several business dimensions.

v The necessity to form these queries in the SQL language, used by most RDBMS

vendors.

A dimensional schema physically separates the measures (also called facts) that

quantify the business from the descriptive elements (also called dimensions) that

describe and categorize the business. DB2 Alphablox cubes require the underlying

database to use a dimensional schema; that is, the data for the facts and the

dimensions must be physically separate (at least in different columns). Typically,

this is in the form of a star schema, a snowflake schema, or some hybrid of the

two. While not as common a scenario, the dimensional schema can also take the

form of a single table, where the facts and the dimensions are simply in separate

columns of the table.

Note: If the database does not conform to a dimensional schema, you can create

views in the database to create a “virtual” dimensional schema for use with

a DB2 Alphablox cube.

This section describes star and snowflake schemas and the way the business

hierarchies are represented in these schemas. The following sections are included:

v “Star and Snowflake Schemas”

v “Hierarchies” on page 9

For a thorough background of dimensional schema design and all of its

ramifications, read The Data Warehouse Toolkit by Ralph Kimball, published by John

Wiley and Sons, Inc.

Star and Snowflake Schemas

Star and snowflake schema designs are mechanisms to separate facts and

dimensions into separate tables. Snowflake schemas further separate the different

© Copyright IBM Corp. 1996, 2005 7

levels of a hierarchy into separate tables. In either schema design, each table is

related to another table with a primary key/foreign key relationship. Primary

key/foreign key relationships are used in relational databases to define

many-to-one relationships between tables.

Primary Keys

A primary key is a column or a set of columns in a table whose values uniquely

identify a row in the table. A relational database is designed to enforce the

uniqueness of primary keys by allowing only one row with a given primary key

value in a table.

Foreign Keys

A foreign key is a column or a set of columns in a table whose values correspond to

the values of the primary key in another table. In order to add a row with a given

foreign key value, there must exist a row in the related table with the same

primary key value.

The primary key/foreign key relationships between tables in a star or snowflake

schema, sometimes called many-to-one relationships, represent the paths along

which related tables are joined together in the RDBMS. These join paths are the

basis for forming queries against historical data. For more information about

many-to-one relationships, see “Many-to-One Relationships” on page 10.

Fact Tables

A fact table is a table in a star or snowflake schema that stores facts that measure

the business, such as sales, cost of goods, or profit. Fact tables also contain foreign

keys to the dimension tables. These foreign keys relate each row of data in the fact

table to its corresponding dimensions and levels.

Dimension Tables

A dimension table is a table in a star or snowflake schema that stores attributes that

describe aspects of a dimension. For example, a time table stores the various

aspects of time such as year, quarter, month, and day. A foreign key of a fact table

references the primary key in a dimension table in a many-to-one relationship.

Star Schemas

The following figure shows a star schema with a single fact table and four

dimension tables. A star schema can have any number of dimension tables. The

crow’s feet at the end of the links connecting the tables indicate a many-to-one

relationship between the fact table and each dimension table.

8 IBM DB2 Alphablox: DB2 Alphablox Cube Server Administrator’s Guide

Snowflake Schemas

The following figure shows a snowflake schema with two dimensions, each having

three levels. A snowflake schema can have any number of dimensions and each

dimension can have any number of levels.

For details about how the different levels of a dimension form a hierarchy, see

“Hierarchies” on page 9.

Hierarchies

A hierarchy is a set of levels having many-to-one relationships between each other,

and the set of levels collectively makes up a dimension. In a relational database,

the different levels of a hierarchy can be stored in a single table (as in a star

schema) or in separate tables (as in a snowflake schema).

Dimension
Table 3

Fact Table

Dimension
Table 1

Dimension
Table 2

Dimension
Table n

Star Schema

Fact Table

Dimension 1
Level 3

Snowflake Schema

Dimension 1
Level 2

Dimension 1
Level 1

Dimension 2
Level 3

Dimension 2
Level 2

Dimension 2
Level 1

Chapter 2. Dimensional Schema Design 9

Many-to-One Relationships

A many-to-one relationship is where one entity (typically a column or set of

columns) contains values that refer to another entity (a column or set of columns)

that has unique values. In relational databases, these many-to-one relationships are

often enforced by foreign key/primary key relationships, and the relationships

typically are between fact and dimension tables and between levels in a hierarchy.

The relationship is often used to describe classifications or groupings. For example,

in a geography schema having tables Region, State and City, there are many states

that are in a given region, but no states are in two regions. Similarly for cities, a

city is in only one state (cities that have the same name but are in more than one

state must be handled slightly differently). The key point is that each city exists in

exactly one state, but a state may have many cities, hence the term “many-to-one.”

The different elements, or levels, of a hierarchy must have many-to-one

relationships between children and parent levels, regardless of whether the

hierarchy is physically represented in a star or snowflake schema; that is, the data

must abide by these relationships. The clean data required to enforce the

many-to-one relationships is an important characteristic of a dimensional schema.

Furthermore, these relationships make it possible to create DB2 Alphablox cubes

out of the relational data.

When you define a DB2 Alphablox cube, the many-to-one relationships that define

the hierarchy become levels in a dimension. You enter this information through the

administration user interface. For details about setting up the metadata to define a

DB2 Alphablox cube, see Chapter 3, “Creating and Modifying a Cube,” on page 13.

Mapping the Relational Schema to a Cube

It is important for the administrator who designs and builds a DB2 Alphablox cube

to understand, at least at a high level, the mapping between the relational database

and the DB2 Alphablox cube. Understanding this mapping helps to ensure there

are no errors in the design or creation of the DB2 Alphablox cube. Because the

cube is populated by queries to the underlying relational database, it is possible to

perform quality assurance testing on the cube by comparing query results on the

cube to query results on the relational database.

Dimensions, Levels, and Attributes

You can define any number of dimensions in a DB2 Alphablox cube and for each

dimension, you can define any number of levels. In a typical snowflake schema,

each level is normalized into a separate table, and the most detailed level is

referenced by a foreign key from the fact table. The DB2 Alphablox Cube Server

relies on the relationships among these different tables to create dimensions in the

cube. When you define a DB2 Alphablox cube, you must provide details about the

schema as part of the DB2 Alphablox cube definition.

Note: By using views in the database, it is possible for all logical tables to be

stored in a single physical table.

Measures

The measures for the DB2 Alphablox cube are calculated from the fact table in the

relational database. When a query requests a measure, the Cube Server calculates

the values for the immediate siblings of every member specified in the query. For

example, the Cube Server calculates the sales measures for a year as the sum of the

sales measures for the twelve months in the year.

10 IBM DB2 Alphablox: DB2 Alphablox Cube Server Administrator’s Guide

Note that in the SQL expression that defines the measures, all column names are

qualified with the table they are from in order to prevent problems with ambiguity,

which happens when there are different tables with columns having the same

name. As a result, there are a few restrictions with the SQL expression for

measures:

1. The first token in the expression must be a column from the measures table.

The following expression is invalid because it starts with an open parenthesis:

(store_sales - unit_sales) / store_cost

2. All columns in the rest of the expression must exist in exactly one table.

3. The columns in the expression must not be any of the foreign key columns in

the measures table.

Chapter 2. Dimensional Schema Design 11

12 IBM DB2 Alphablox: DB2 Alphablox Cube Server Administrator’s Guide

Chapter 3. Creating and Modifying a Cube

An administrator uses the Cubes section of the Administration tab to define DB2

Alphablox cubes. This chapter describes the steps necessary to create a DB2

Alphablox cube.

v “Checklist of Tasks to Create a Cube” on page 14

v “Create the Relational Data Source” on page 14

v “Define the Cube” on page 15

v “Define the Measures” on page 16

v “Define the Dimensions” on page 17

v “Create Alphablox Cube Server Adapter Data Source” on page 19

v “Specify and Manage Cube Resources” on page 20

v “Review the Cube” on page 21

© Copyright IBM Corp. 1996, 2005 13

Checklist of Tasks to Create a Cube

This section provides a checklist of tasks needed to define a DB2 Alphablox cube,

with a brief description of each task. Detailed task instructions appear later in this

chapter.

 Task Description

1 Understand the schema of the

underlying database.

To define a DB2 Alphablox cube, you must know

the schema in the relational database from which

the cube is built. Use database tools to browse the

database and make sure you have access to the

names of the tables, columns, primary keys, and

foreign keys in the database. For information about

schemas, see Chapter 2, “Dimensional Schema

Design,” on page 7.

2 Decide what measures,

dimensions, and levels you

need for the cube.

In addition to understanding the schema, you must

know the data in the relational database

underlying a DB2 Alphablox cube. You must

understand what measures to define in the cube,

where those measures are stored in the database,

and the relationships between the different levels

of the hierarchy for each dimension.

3 “Create the Relational Data

Source” on page 14.

Create an DB2 Alphablox data source definition for

the underlying relational database from which the

DB2 Alphablox cube is created.

4 “Define the Cube” on page 15. Use the Cubes administration user interface to

define the properties of a DB2 Alphablox cube.

5 “Define the Measures” on page

16.

Specify what facts are measured in the DB2

Alphablox cube and the mapping for each measure

from the relational fact table to the DB2 Alphablox

cube.

6 “Define the Dimensions” on

page 17.

Specify each dimension in the DB2 Alphablox cube

and each level for each dimension. Define the

mapping between the relational tables and the DB2

Alphablox cube dimensions and levels.

7 “Create Alphablox Cube Server

Adapter Data Source” on page

19.

To query a DB2 Alphablox cube, define a data

source created with the Alphablox Cube Adapter

multidimensional driver.

8 “Specify and Manage Cube

Resources” on page 20.

Enter the DB2 Alphablox cube connection limits,

update frequency, and other administrative

parameters.

9 “Review the Cube” on page 21. Make sure there are no errors in the information

you entered to define the DB2 Alphablox cube.

Create the Relational Data Source

A DB2 Alphablox cube requires that its underlying relational data source be

defined in an DB2 Alphablox data source. Each DB2 Alphablox cube must

reference a relational data source. The data source must reference a relational

database with a dimensional schema design. For a description of the relational

schema requirements for a DB2 Alphablox cube, see “Schema Requirements” on

page 5. For a discussion of dimensional schemas, see Chapter 2, “Dimensional

Schema Design,” on page 7.

14 IBM DB2 Alphablox: DB2 Alphablox Cube Server Administrator’s Guide

If you have already defined a data source for the relational database, skip to the

next topic, “Define the Cube” on page 15. For more information about data

sources, see the Administrator's Guide.

To specify a relational database as an DB2 Alphablox data source, perform the

following steps:

 1. Log into the DB2 Alphablox home page as the admin user or as a user who is

a member of the administrators group.

 2. Click the Administration tab.

 3. Click the Data Sources link.

 4. Click the Create button.

 5. From the Adapter drop-down list, select one of the Relational Driver options

(for example, IBM DB2 JDBC Type 4 Driver).

 6. Enter a name for your new data source in the Data Source Name text box.

 7. Enter the appropriate information for Client Host Name, Port Number, SID,

and Database fields (available fields depend the driver selected). If you do not

know the correct connect information, contact the database administrator for

the relational database to which you are trying to connect.

 8. Enter a Default Username and Default Password. The username and

password must be valid on the relational database. The default username and

password are always used when a DB2 Alphablox cube accesses a relational

database. The specified database user requires read access to the database.

Note: The value of the Use DB2 Alphablox Username and Password

drop-down list is ignored when the data source is being used to

populate a DB2 Alphablox cube. Use access control lists (ACLs) to

control user access to DB2 Alphablox cubes. For information about

ACLs, see the Administrator's Guide.

 9. The Maximum Rows and Maximum Columns text boxes are ignored when

the data source is being used to populate a DB2 Alphablox cube. You can still

enter values and they will be used when other applications use the data

source, but a DB2 Alphablox cube ignores these text boxes.

10. Set the JDBC Tracing Enabled drop-down list to No unless you want to write

JDBC logging information to the DB2 Alphablox log file. Enable JDBC tracing

only if you are experiencing problems and you need to debug their causes.

11. Click the Save button to save the data source.

Define the Cube

Define the general properties of a DB2 Alphablox cube as follows:

 1. Log into the DB2 Alphablox home page as the admin user or as a user who is

a member of the administrators group.

 2. Click the Administration tab.

 3. Click the Cubes link.

 4. Click the Create button. A Cube Administration dialog will appear in a new

web page window.

 5. In the DB2 Alphablox Cube Name text box, enter a unique name for the DB2

Alphablox cube. Allowable characters for DB2 Alphablox cube names are A-Z,

a-z, 0-9, underscore (_), and space.

 6. Check the Enabled checkbox to the right of the DB2 Alphablox Cube Name

text box if you want the cube to start automatically whenever the server

restarts. If you are working on the cube definition and do not expect it to run

Chapter 3. Creating and Modifying a Cube 15

properly or you do not want to give others access to it yet, you can leave the

checkbox unchecked and enable the cube later.

 7. Using the Relational Data Source drop-down list, select a relational data

source previously defined in “Create the Relational Data Source” on page 14.

If DB2 Alphablox relational data sources have not been defined, the list is

blank.

 8. Using the Security Role drop-down list, you can pick a role (predefined in the

application server or in DB2 Alphablox) that can restrict users of this cube to

the selected role. To enable the use of the selected security role, the Enabled

checkbox must be checked.

 9. Optionally, if you are using IBM DB2 UDB as a data source and have DB2

Cube Views cubes available on this data source, the Enable DB2 Cube Views

Settings option will become available. By selecting this option, you can use

the available cube definitions in DB2 Cube Views to specify your DB2

Alphablox cube. To use this option, perform the following sub-steps:

a. Using the Cube Model drop-down list, select a cube model.

b. Using the Cube drop-down list, select a cube.

c. Selecting either the Use Business Names or Use Object Names radio

button to specify the names to be used to define objects in your DB2

Alphablox cube.

d. Click the Import Cube Definition button to import a cube definition and

pre-populate measures and dimensions in your DB2 Alphablox cube.

Depending on the cube definition imported, DB2 Alphablox Cube Server

attempts to specify a DB2 Alphablox cube that closely matches the one in

DB2 Cube Views. Click on the Show Import Log button to see a log

specifying information and debugging messages related to the import

operation.

e. At this point, you can edit the imported cube measures and dimensions

(as described below) to customize your cube, or you can optionally check

the Import cube definition (on start, rebuild, and edit) option. Selecting

this option will result in your DB2 Alphablox cube loading the latest DB2

Cube Views cube definition each time your DB2 Alphablox cube is started,

rebuilt, or opened for edit.
10. Click the Save button to save the DB2 Alphablox cube.

Define the Measures

All DB2 Alphablox cubes must have one or more measures defined. For a

description of measures, see “Measures” on page 10. To define measures in a DB2

Alphablox cube, perform the following steps:

 1. Log into the DB2 Alphablox home page as the admin user or as a user who is

a member of the administrators group.

 2. Click the Administration tab.

 3. Click the Cubes link.

 4. Select the DB2 Alphablox cube from the list of cubes and click the Edit button.

The DB2 Alphablox Cube Administration dialog for the selected cube will

appear in a new web page window.

 5. In the cube navigation tree, click on the Measures node. A measures panel

appears.

 6. In the Measures Fact Table text box, you must enter the fully-qualified name

of the fact table as it is defined in the underlying relational database (for

16 IBM DB2 Alphablox: DB2 Alphablox Cube Server Administrator’s Guide

example, CVSAMPLE.SALESFACT). Alternatively, select the correct schema,

catalog, and table combination in the drop-down lists to automatically insert

the fact table name.

 7. After the fact table has been specified, you can create a new measure by

clicking the Create New Measure button. A new set of options appears.

 8. In the Name text box, replace ″New Measure″ with a name for your new

measure. Allowable characters for measure names are A-Z, a-z, 0-9,

underscore (_), and space.

The name will appear in result sets sent to DB2 Alphablox applications, so

enter a name that is easy to read and descriptive of its content. For example, if

the measure calculates the sum of sales at a store, you can name the measure

Store Sales.

 9. In the Expression text box, enter a valid expression. The Expression Builder

tool can be used to help in entering the correct syntax for columns and

functions. There are shortcut buttons available for frequently used functions

(AVG, COUNT, MAX, MIN, and SUM), but you can manually enter any valid

function you need. These functions are used in generating the SQL sent to the

underlying database to calculate the new measure. The following expression

example defines the COGS measure:

SUM(@col(CVSAMPLE.SALESFACT.COGS))

10. Click the Apply button to add the measure to the list.

11. Repeat these steps as needed to define any other measures you need. To delete

a measure, click on the measure label in the navigation tree, then click the

Delete Selected button below the tree.

12. Click the OK button if you are finished modifying your DB2 Alphablox cube

definition, or proceed on to define the dimensions and levels.

Note: Any changes made to a started DB2 Alphablox cube do not take effect

until the cube is either restarted or rebuilt. For information on restarting

and rebuilding a cube, see “Starting, Stopping, and Rebuilding a Cube”

on page 23.

Define the Dimensions

You must enter information to define the dimensions, levels, joins, attributes, and

other information for the DB2 Alphablox cube.

For a description of dimensions and levels, see “Dimensions, Levels, and

Attributes” on page 10.

Create or Edit Dimensions

To create or edit a dimension, perform the following steps:

 1. Log into the DB2 Alphablox home page as the admin user or as a user who is

a member of the administrators group.

 2. Click the Administration tab.

 3. Click the Cubes link.

 4. Select a DB2 Alphablox cube from the list of cubes and click the Edit button.

The DB2 Alphablox Cube Administration dialog for the selected cube will

appear in a new web page window.

Chapter 3. Creating and Modifying a Cube 17

5. In the DB2 Alphablox cube tree on the left, click on the Dimensions label. In

the right panel the Create Dimension button will appear. To edit an existing

dimension, click on the dimension name and the existing dimension definition

will appear.

 6. Click the Create New Dimension button to create a new dimension or select a

dimension from the Dimensions list to edit an existing dimension.

 7. In the Name text box, enter a name for the dimension. Allowable characters

for dimension names are A-Z, a-z, 0-9, underscore (_), and space.

 8. Optionally, in the Description text box enter a description of the dimension.

The description is a comment field only; it has no effect on the dimension

definition.

 9. After you have named your new dimension, you can define any required fact

table joins and dimension joins.

10. Click the OK button to save the dimension.

Create or Edit a Fact Table Join

For each dimension that you create, you need to define a fact table join. To create

or edit a fact table join in a dimension, perform the following steps:

1. After creating a new dimension using the Cube Administration dialog, click on

the Fact Table Join node under the new dimension.

2. To create a fact table join (if one does not exist yet), click on the Create New

Join button that appears. A join specification panel appears. If a fact table join

already exists, expand the Fact Table Join folder and click on the join.

3. In the Expression text box, enter an expression that specifies the fact table join.

You can also use the Expression Builder to assist you in entering an expression

defining the join. Example:

@col(MDSAMPLE.MARKET.STATEID) = @col(MDSAMPLE.SALESFACT.STATEID)

4. Click the Apply button to apply and save these settings without closing the

dialog. Click the OK button to save the level definition.

Create or Edit a Dimension Join

For each dimension that you create, you can also create dimension joins between

relevant tables. To create or edit a dimension join in the selected dimension,

perform the following steps:

1. After creating a new dimension using the Cube Administration dialog, click on

the Dimension Joins node under Joins folder of the new dimension.

2. To create a new dimension join, click on the Create New Join button that

appears. A dimension join dialog appears. To edit an existing dimension join,

expand the Dimension Joins folder and select the join you want to edit.

3. In the Expression text box, enter an expression that specifies the dimension

join. You can also use the Expression Builder to assist you in entering an

expression defining the join. Example:

@col(MDSAMPLE.PRODUCT.FAMILYID) = @col(MDSAMPLE.FAMILY.FAMILYID)

4. Click the Apply button to apply and save these settings without closing the

Cube Administration dialog. Click the OK button to save your changes and

close the Cube Administration dialog.

Create or Edit Levels

For each dimension, you can specify levels in a dimensional hierarchy. To create or

edit levels, perform the following steps:

18 IBM DB2 Alphablox: DB2 Alphablox Cube Server Administrator’s Guide

1. To create a new level, click on the Levels node under that dimension and click

the Create New Level button. To edit an existing level, open the Levels folder

and select the level you want to edit.

2. For a new level, specify a name in the Name text box. Allowable characters for

DB2 Alphablox cube names are A-Z, a-z, 0-9, underscore (_), and space.

3. In the Expression text box, enter an expression that specifies the level. You can

also use the Expression Builder to assist you in entering an expression defining

the level. Example:

@col(MDSAMPLE.TIME.QUARTER)

4. Click the Apply button to apply and save these settings without closing the

Cube Administration dialog. Click the OK button to save your changes and

close the Cube Administration dialog.

Create or Edit Attributes

Attributes represent additional database table columns that belong to a level.

Attributes are specified by a SQL expression that can either be a simple mapping

to a single table column or a more complex expression combining multiple

columns or attributes and using SQL functions. To create or edit attributes, perform

the following steps:

1. To create a new attribute, click on the Attributes node that appears under your

dimension, then click the Create New Attribute button. An attribute definition

dialog appears. To edit an existing attribute, click on the attribute node that

you want to edit.

2. In the Expression text box, enter an expression that specifies your attribute.

You can also use the Expression Builder to assist you in entering an expression

defining the attribute. Example:

@col(FAMILY.FAMILYID)

3. Click the Apply button to apply and save these settings without closing the

Cube Administration dialog. Click the OK button to save your changes and

close the Cube Administration dialog.

Create Alphablox Cube Server Adapter Data Source

To query a DB2 Alphablox cube, a DB2 Alphablox data source that uses the

Alphablox Cube Server Adapter must be defined. A single data source can be

used to access multiple DB2 Alphablox cubes from multiple applications. The cube

that is accessed is determined by the FROM clause of the MDX query used by an

Alphablox application. To create a DB2 Alphablox Cube Server Adapter data

source, perform the following steps.

1. Log into the DB2 Alphablox home page as the admin user or as a user who is a

member of the administrators group.

2. Click the Administration tab.

3. Click the Data Sources link.

4. Click the Create button.

5. From the Adapter drop-down list, select the adapter named Alphablox Cube

Server Adapter.

6. Enter a name in the Data Source Name text box.

7. Optionally, enter a description in the Description text box.

8. Specify a number in the Maximum Rows and the Maximum Columns text

boxes. The values limit the number of rows or columns returned for queries

entered through this data source. The default values are 1000.

Chapter 3. Creating and Modifying a Cube 19

9. Click the Save button to save the data source.

Specify and Manage Cube Resources

For each DB2 Alphablox cube, you can define a schedule for refreshing its data

from the underlying database. You can also set several tuning parameters for each

cube.

Defining a Refresh Schedule

If the data in the relational database that underlies a DB2 Alphablox cube changes,

any data cached in a DB2 Alphablox cube might be stale. When the data becomes

stale, you should rebuild the cube to guarantee that answers derived from the DB2

Alphablox cube are correct with respect to the underlying database. You can

manually rebuild the cube, which rebuilds the dimensions and empties the

in-memory cache, by either stopping and restarting the DB2 Alphablox cube or

using the REBUILD CUBE <cube_name> console command. Alternatively, if the

dimensions have not changed but new or changed data has been added to the

database, you can manually empty only the in-memory cache by using the

EMPTYCACHE <cube_name> console command.

If the underlying database is updated at regular and predictable intervals, it might

make sense to schedule regular updates to the DB2 Alphablox cube that references

that database. For example, if the database is updated every night at 9:00 PM, you

might want to rebuild the DB2 Alphablox cube every morning at 3:00 AM.

To configure a DB2 Alphablox cube to rebuild itself at regular intervals, perform

the following steps:

1. Log into the DB2 Alphablox home page as the admin user or as a user who is a

member of the administrators group.

2. Click the Administration tab.

3. Click the Cubes link.

4. Select a DB2 Alphablox cube from the list of cubes and click the Edit button.

The DB2 Alphablox Cube Administration dialog for the selected cube will

appear in a new web page window.

5. In the cube navigation tree on the left, click on the Schedule label. A

scheduling panel appears.

6. Check the Refresh every box to enable scheduled DB2 Alphablox cube

rebuilding.

7. Set the refresh interval by clicking the desired buttons and modifying the

corresponding time periods. For example, to set the DB2 Alphablox cube to

rebuild every day at 3:00 AM, select the second button and enter 3:00 AM for

the time.

8. Click the Save button to update the DB2 Alphablox cube definition.

Setting Tuning Parameters

For each DB2 Alphablox cube, you can set several tuning parameters for resource

management. To do so, perform the following steps:

1. Log into the DB2 Alphablox home page as the admin user or as a user who is a

member of the administrators group.

2. Click the Administration tab.

3. Click the Cubes link.

20 IBM DB2 Alphablox: DB2 Alphablox Cube Server Administrator’s Guide

4. Select a DB2 Alphablox cube from the list of cubes and click the Edit button.

The DB2 Alphablox Cube Administration dialog for the selected cube will

appear in a new web page window.

5. In the cube navigation tree on the left, click on the Tuning node to open the

tuning panel.

6. Check the box to the left of each parameter you want to enable and specify a

numerical value for the limit. The following table shows each available

parameter and its description. For more detailed information of these and other

tuning parameters, see “Tuning a cube” on page 28.

 Tuning Parameter Description

Maximum

Connections

The maximum number of concurrent connections to this DB2

Alphablox cube. The limit is reached only when the connections are

all executing queries simultaneously. When the limit is reached, a

new connection must wait for a free connection.

Maximum Data

Source Connections

The maximum number of connections made to the underlying

relational database. When the limit is reached, a new connection

must wait for a free database connection. When using this limit,

once each connection is opened it remains open (up to the specified

limit) for use by other SQL queries. When not using this limit, each

query uses and then closes a separate connection.

Maximum Rows

Cached

The maximum number of rows returned from the database to be

stored in the Cube Server’s in-memory cache. This is limit is

controlled separately for each cube. When this limit is reached, the

results from the least recently used cached queries are aged out of

the cache to make room for the new rows.

7. Optionally, you can enter an MDX query in the MDX Query to preload

performance cache text box and check the Enabled checkbox.

The query entered in this text box executes when the cube is started or rebuilt.

This query will populate the DB2 Alphablox Cube Server in-memory cache

with an initial set of results. These results seed the cache with data retrieved

from the underlying database. Any subsequent DB2 Alphablox cube queries

requiring only data that is already in the DB2 Alphablox Cube Server cache are

answered directly from the cache, thus improving response time by avoiding

additional SQL queries to the underlying database. The name of the cube

referenced in the FROM clause of the MDX query must be the name previously

defined in the DB2 Alphablox Cube Name text box.

8. Click the Save button to update the DB2 Alphablox cube definition.

Review the Cube

It is usually worthwhile to take a few minutes after you have created a DB2

Alphablox cube to ensure that the measures, dimensions, and levels are defined

correctly. If you find any errors, you can easily correct them. To do a review on a

DB2 Alphablox cube, perform the following steps:

 1. Log into the DB2 Alphablox home page as the admin user or as a user who is

a member of the administrators group.

 2. Click the Administration tab.

 3. Click the Cubes link.

 4. Select the DB2 Alphablox cube from the list of cubes and click the Edit button.

A page showing the Edit DB2 Alphablox Cube General tab appears.

Chapter 3. Creating and Modifying a Cube 21

5. Verify that the data source specified in the Relational Data Source text box

references the desired relational database. You might need to check the

settings for the data source on the Data Sources administration page.

 6. Before attempting to start the DB2 Alphablox cube, verify that Enabled is

selected next to the Alphablox Cube Name text box. If it is not enabled, you

will see an error message when attempting to start the cube.

 7. Verify that your measures are properly created:

a. Click on the Measures node to verify that the table specified in the

Measures Fact Table text box is the correct table in the relational schema,

the name is spelled correctly, and the name is a fully-qualified name.

b. For each defined measure, check that the desired aggregation is specified

in the Expression text box.
 8. Verify that all the desired dimensions have been correctly defined, and that

the names are correct. For each dimension, check the following:

a. Verify that you had added any required fact table join and dimension

joins, and that the expressions are correct.

b. Verify that the levels are correctly specified and appear in the correct

order. The first level should be the most summarized level, and each

successive level should be the next level down in the hierarchy. For

example, if the hierarchy for the Time dimension is Year, Month, Day, then

Year should be the first level, followed by Month , followed by Day .

c. Verify that any attributes that you have defined are correct, including the

expected names and expressions.
 9. Click the Schedule tab and verify that all the settings are the way you want

them.

10. Click the Tuning tab and verify that all the settings are the way you want

them.

After completing this review of your DB2 Alphablox cube, you can start the cube.

For details on starting a DB2 Alphablox cube, see “Starting, Stopping, and

Rebuilding a Cube” on page 23.

22 IBM DB2 Alphablox: DB2 Alphablox Cube Server Administrator’s Guide

Chapter 4. Maintaining a Cube

DB2 Alphablox Cube Server provides functionality to perform administrative tasks

on DB2 Alphablox cubes. These tasks are performed either through the DB2

Alphablox administration user interface or through the Console. This chapter

describes these tasks.

v “Starting, Stopping, and Rebuilding a Cube” on page 23

v “Deciding on an Administration Strategy” on page 25

v “Console Commands” on page 27

v “Modifying a Cube” on page 28

v “Tuning a cube” on page 28

Starting, Stopping, and Rebuilding a Cube

The most common administrative tasks you need to perform on a DB2 Alphablox

cube are to start, stop, and rebuild the cube.

Starting a DB2 Alphablox Cube

You must start a DB2 Alphablox cube to make it available for querying. You can

start a cube either from the DB2 Alphablox Home Page from the command line of

a Console window. When you start a cube, the Cube Server runs queries to the

underlying relational database. The results of these queries are used to load the

dimension members into the cube’s in-memory cache. A DB2 Alphablox cube can

have a cache seeding MDX query specified as part of its definition, which is used

to precompute some results to store in the cube’s cache. If one is specified, at

startup time the Cube Server runs the MDX query against the DB2 Alphablox cube

to populate the cache with the measure values returned from the MDX query.

Start Cube From the Home Page

To start a DB2 Alphablox cube from the DB2 Alphablox Home Page, perform the

following steps:

1. Log into the DB2 Alphablox Home Page as the admin user or as a user who is a

member of the administrators group.

2. Click the Administration tab. The General page appears.

3. Under the Runtime Management section, click the Cubes link.

4. From the DB2 Alphablox Cubes list, select the DB2 Alphablox cube to start.

5. To view the current status of the DB2 Alphablox cube, click the Details button.

6. Click the Start button. When the DB2 Alphablox cube has completed the

startup operation, the status field displays Running.

Start Cube From a Console Window

To start a DB2 Alphablox cube from a console window, perform the following.

1. If DB2 Alphablox is not already running, start it. See Administrator's Guide for

details about starting DB2 Alphablox.

2. In a Console window, enter the following command:

start cube cube_name

© Copyright IBM Corp. 1996, 2005 23

where cube_name is the name of the DB2 Alphablox cube to start. When using

the DB2 Alphablox Admin Pages in a web browser, you can also open a

console window by clicking on Administration -> General -> Start Console

Session.

Troubleshooting If the Cube Does Not Start

If the DB2 Alphablox cube fails to start, an error message appears that can help

determine why the problem. When troubleshooting a problem, the following

logging tools can provide more information:

v Check the DB2 Alphablox log file.

v Raise the message level on the Console to DEBUG by entering the following in a

Console window:

report debug

v Enable JDBC tracing in the DB2 Alphablox relational data source.

For information about enabling any of these logging options, see the

Administrator's Guide.

The following table shows some common scenarios that might cause the startup

operation to fail and lists suggestions for correcting the problem. After you

determine the problem, correct it and try to start the DB2 Alphablox cube again.

 Error Description

“Make sure the cube is

enabled.”

Check to see if your cube is enabled. On the command line,

enter the following to see if the cube is enabled:

show cube cube_name

To enable a DB2 Alphablox cube, from the General tab in

the Cubes user interface, select Enabled next to the DB2

Alphablox Cube Name text box.

An error connecting to the

underlying database.

Connection errors can be caused by a variety of problems.

The following are some common things to check:

v Check that the relational data source has the correct

connect information.

v Check that the relational data source has a valid, non-null

username and password.

v Make sure the database is available for connections.

A syntax error from the

underlying database.

Syntax errors from the relational database generally indicate

an error in the cube definition. For example, if the syntax

error indicates that a column is not found, check the

dimension definitions to ensure that the column and table

names are named exactly as they are in the database.

Stopping a DB2 Alphablox Cube

Stopping a DB2 Alphablox cube makes it unavailable for querying and removes all

entries in the cube’s in-memory cache and all the dimension members from the

cube’s outline.

Stop Cube From the Home Page

To stop a DB2 Alphablox cube through the DB2 Alphablox Home Page, perform

the following steps:

1. Log into the DB2 Alphablox Home Page as the admin user or as a user who is a

member of the administrators group.

2. Click the Administration tab. The General page appears.

24 IBM DB2 Alphablox: DB2 Alphablox Cube Server Administrator’s Guide

3. Under the Runtime Management section, click the DB2 Alphablox Cubes link.

4. Select the Alphablox cube you want to stop from the DB2 Alphablox Cubes

list.

5. To view the current status of the Alphablox cube, click the Details button.

6. Click the Stop button. When the Alphablox cube has completed the shutdown

operation, the status field displays Stopped.

Stop Cube From a Console Window

To stop a DB2 Alphablox cube from a Console window, enter the following

command:

stop cube cube_name

where cube_name is the name of the DB2 Alphablox cube to stop. When using the

DB2 Alphablox Admin Pages in a web browser, you can also open a console

window by clicking on Administration -> General -> Start Console Session.

Note: The DB2 Alphablox cube will not stop until any executing queries have

completed.

Rebuilding a DB2 Alphablox Cube

You should either rebuild or restart a DB2 Alphablox cube when the data,

including the dimension data, changes in the underlying database. You must

rebuild or restart (or wait for the next refresh interval, if one is configured) the

cube when you change the cube definition in order for the changes to take effect in

queries.

During a rebuild operation, the cube is unavailable for querying; new queries wait

and are executed after the rebuild operation completes. The rebuild operation waits

until any running queries complete before starting the operation. The size of the

dimensions and the performance of the queries that populate the dimension from

the underlying database determine how long the operation takes.

To rebuild a DB2 Alphablox cube enter the following command from a Console

window:

rebuild cube cube_name

where cube_name is the name of the DB2 Alphablox cube to rebuild. When using

the DB2 Alphablox Admin Pages in a web browser, you can also open a console

window by clicking on Administration -> General -> Start Console Session.

If the dimension data has not changed but the fact data has (for example, the sales

numbers for the last quarter were added to the database), then you can empty the

contents of the in-memory cache only. To empty all the entries in the cache but

leave the dimension members as is, enter the following command from a Console

window:

emptycache cube cube_name

Deciding on an Administration Strategy

After you have defined and started a DB2 Alphablox cube, maintenance tasks are

needed only if one of the following occurs:

v The data changes in the underlying database.

v The cube definition changes.

Chapter 4. Maintaining a Cube 25

Because the DB2 Alphablox cube resides in memory, there is no disk space to

manage. There are memory considerations, but those are not usually day-to-day

administrative tasks. For information about memory issues, see “DB2 Alphablox

Cube Memory Considerations” on page 30.

You do have to be aware of the environment in which the underlying relational

database operates. The way the underlying database is managed can have

important implications on a DB2 Alphablox cube.

Understanding the Database Environment

Every time data changes in the database underlying a DB2 Alphablox cube, parts

of the cube potentially become out of date. A DB2 Alphablox cube gets its data

from queries to the underlying database. When a query requests data from a DB2

Alphablox cube, DB2 Alphablox Cube Server checks to see if the results are in its

in-memory cache. If the results are there, they are immediately available to the

application, resulting in very fast response times. Although the results were

originally retrieved from the underlying database, those results were retrieved at

some point in the past. If the data has not changed, there is no problem. If the data

in the underlying database changed between the time when the cache entry

occurred and the time a query asks for the results, then the results are out of date.

Furthermore, if some of the members in the DB2 Alphablox cube were inserted,

updated, or deleted from the database, the results from the DB2 Alphablox cube

would not reflect the true state of the dimensions. The results from a new query to

the DB2 Alphablox cube might still match the results in the underlying database,

but they might not. It depends on exactly what values changed in the database,

what is stored in the in-memory cache for the Alphablox cube, and what data the

query requests.

Because there is no sure way to know if the DB2 Alphablox cube is still valid and

up-to-date when the data in the underlying database changes, the safest action is

to rebuild the cube. Therefore, it is critical to know when and how the underlying

database changes.

For example, if you know the database never changes, you never need to rebuild

the DB2 Alphablox cube. If the database only adds new data to parts of the

database you do not have defined in the cube, you might not need to rebuild.

If the database is updated nightly with potential changes to all parts, you probably

need to rebuild the DB2 Alphablox cube nightly, after the database update is

completed. The more you know about the environment in which the database

operates, the better you can predict when the data in your DB2 Alphablox cube

becomes stale.

Scheduling Periodic Updates

It is very common for data warehouse and data mart databases to be updated on a

known schedule. Based on that schedule, you can schedule periodic updates to

DB2 Alphablox cubes. You can perform the updates ad-hoc with the REBUILD CUBE

or the EMPTYCACHE CUBE commands. Alternatively, you can set up an automated

rebuild schedule for each DB2 Alphablox cube. For details on setting up an

automatic schedule, see “Defining a Refresh Schedule” on page 20.

There is no one best way to schedule updates to a DB2 Alphablox cube. It is very

important to know what is going on in the relational database. It is equally

important to know the habits and requirements of your user community.

26 IBM DB2 Alphablox: DB2 Alphablox Cube Server Administrator’s Guide

Rebuilding a DB2 Alphablox cube might take some time, depending on the size of

the cube and its underlying database. Typically, the best time to schedule rebuilds

is late at night when there are few or no users on the system. Also, particularly if

the rebuild operations take a long time, make sure the users know that the cube

will not be available during those times.

Console Commands

You can perform most cube management tasks from the DB2 Alphablox console

window. To access the console, click the Administration tab, General page, Start

Console Sessionlink, or use the DB2 Alphablox Console window that opens when

you start DB2 Alphablox. The following table lists the cube commands and a

description of what each does.

Command Syntax Description

delete cube <cube_name> Deletes a cube and its entire definition.

disable cube <cube_name> Sets a cube in the disabled state. A disabled cube

cannot be started until it is enabled and therefore

does not automatically start when DB2 Alphablox

starts. A cube should be stopped before it is

disabled.

emptycache cube <cube_name>

Removes all entries from the cube’s in-memory

cache. After emptying the cache, a query against

the DB2 Alphablox cube must retrieve the results

from the underlying database. Use this command

when the underlying database has changed to

ensure the results retrieved from the DB2

Alphablox cube are equivalent to the data stored in

the database. Note that the EMPTYCACHE command

does not rebuild the dimension outlines of the

cube. To rebuild the dimension outlines, use the

REBUILD command or stop and start the cube.

enable cube <cube_name> Sets a cube to the enabled state. A cube must be

enabled before it can be started. Enabled cubes

start automatically when DB2 Alphablox starts.

rebuild cube <cube_name> First removes the member names for all the

dimensions and all the measures from the

in-memory cache; then queries the underlying

database to repopulate the dimension member

names for all the dimensions. If an initial MDX

cache seeding query is specified in the cube

definition, that query is executed to populate the

cache.

show cube <cube_name> Shows the current status of the cube. The cube

status can be:

v disabled

v stopped

v starting

v running

To show the status of all defined DB2 Alphablox

cubes, enter the following command:

show cube

Chapter 4. Maintaining a Cube 27

start cube <cube_name> Starts a cube and makes it available for querying.

When a cube starts, it queries the underlying

database to populate the dimension members and

runs the MDX cache seeding query (if one is

specified in the cube definition).

stop cube <cube_name> Stops a cube that is running. When a cube stops, it

becomes unavailable for querying and the

dimension members and the measures are removed

from the in-memory cache.

Modifying a Cube

You can change any part of the DB2 Alphablox cube definition at any time.

Changes to a stopped cube apply immediately. Changes to a running cube are

saved to the cube definition immediately but are not applied to the running cube

until it is either rebuilt or restarted, either through the Console or scheduled

refreshes.

You use the Cubes administration page to modify a DB2 Alphablox cube the same

way as you create one. You can update any part of the cube definition and save it.

For details on how to enter your definitions in each part of the user interface, see

Chapter 3, “Creating and Modifying a Cube,” on page 13.

Tuning a cube

There are a number of administrative controls for tuning and configuring DB2

Alphablox cubes. Because DB2 Alphablox cubes run in memory and can

potentially grow to use large amounts of memory, you should be aware of some

memory considerations.

Tuning controls

Use the controls described in this section to control the resources DB2 Alphablox

cubes.

Connection and cache size limits

You can specify connection and cache size limits for each defined DB2 Alphablox

cube on the Cubes page, opening the Cube Administration dialog, and clicking on

the Tuning label in the cube navigation tree.

Maximum Connections: When there are many users querying the DB2 Alphablox

cube simultaneously, machine resources on the computer running DB2 Alphablox

can be consumed faster than if there are only a few users. Keep in mind, however,

that the queries have to be executing at exactly the same time for there to be

contention for resources. This might not happen very often, even if there are many

users connected at the same time. If this becomes a problem on your system, you

can limit the number of connections allowed for each DB2 Alphablox cube.

The amount of resources used is completely dependent on the types of queries that

are being issued. Many queries use very little machine resources, but some

long-running queries might consume significant resources.

Maximum Data Source Connections: The Maximum Data Source Connections

limits the number of connections to the underlying database. If the box is checked,

it enables “connection pooling” to the database. In this mode, each time a query is

sent to the database, a connection is opened and the query issued. The connection

28 IBM DB2 Alphablox: DB2 Alphablox Cube Server Administrator’s Guide

remains open, even after the query completes, for subsequent queries. When

another query is sent, if there is an open and idle connection, it is used. If all the

connections are busy, then it opens a new connection, up to the limit specified.

The database “connection pooling” is useful because it limits the number of

backend database connections. The result is that after a period of time, you might

have the specified number of connections open to the database, but never any

more than the specified number.

If the box is not checked, each query the Cube Server sends to the database opens

a new connection and then closes it when the results are returned. The new

connections are opened regardless of the status of any of the other connections.

The connections are never shared and are never left idle.

Each connection to the database has a cost associated with it, however small. In

many cases, the difference in response time is not noticeable, but in some cases it

might be. It is also possible that the underlying database might restrict the number

of connections it accepts, so the DBA might not want you using up too many

connections. If you do not want to keep connections open, do not check the

Maximum Data Source Connections box.

Maximum Rows Cached: The Maximum Rows Cached limits the number of

rows returned from the database that the cache can store. If the box is checked,

when the limit is reached, the least recently used rows are removed to make room

for rows returned by a new query. If the box is not checked, there is no limit to the

size of the cache, allowing it to grow indefinitely (up to the amount of data in the

underlying database). In some situations, not checking the box can cause the

system to run out of memory. For more information about memory, see “DB2

Alphablox Cube Memory Considerations” on page 30.

The more data that is stored in the cache, the less often queries to the DB2

Alphablox cube will need to retrieve results from the underlying database, thus

providing faster query response time. However, if the cache grows too big, it will

use up memory on the machine, potentially slowing the performance for all users.

To find the optimal size for your system, you will need to experiment and consider

memory resources, user load, and query load. Depending on the user and query

loads, balance the trade offs to decide the best cache size.

To specify a limit for the number of connections, number of data source

connections, and the maximum cache size for each DB2 Alphablox cube, perform

the following steps:

1. Log into the DB2 Alphablox Home Page as the admin user or as a user who is a

member of the administrators group.

2. Click the Administration tab.

3. Click the Cubes link.

4. Select the DB2 Alphablox cube from the list of cubes and click the Edit button.

The DB2 Alphablox Cube Administration dialog for the selected cube will

appear in a new web page window.

5. Click the Tuning tab.

6. Check any of the boxes for the limits you want to set and enter a

corresponding number.

7. Click the Save button to save the limits to the DB2 Alphablox cube definition.

Chapter 4. Maintaining a Cube 29

Maximum Number of Cubes

If you have defined many DB2 Alphablox cubes, and if each cube starts using large

amounts of memory and machine resources, the performance of your entire system

will be affected. To help control this, you can limit the number of DB2 Alphablox

cubes allowed to run in DB2 Alphablox. The limit controls the number of DB2

Alphablox cubes that can run simultaneously; it does not limit the number that can

be defined.

To set a limit on the number of concurrently running DB2 Alphablox cubes,

perform the following steps:

1. Log into the DB2 Alphablox Home Page as the admin user or as a user who is a

member of the administrators group.

2. Click the Administration tab. The General page appears.

3. Under the General Properties section, click the DB2 Alphablox Cube Manager

link.

4. Check the box labeled Maximum Cubes and enter a number for the limit you

want to set.

5. Click the Save button to save your changes.

Maximum Rows and Columns

By restricting the maximum number of rows and columns in a DB2 Alphablox

Cube Data Source, you can restrict applications from issuing queries that return

large amounts of data. You set these limits in the DB2 Alphablox cube data source

on the Data Sources administration page. The data source is the one used to issue

MDX queries against a DB2 Alphablox cube.

DB2 Alphablox Cube Memory Considerations

The DB2 Alphablox Cube Server runs as part of the Java™ process in which DB2

Alphablox runs. Therefore, as the Cube Server uses more memory, the Java process

uses more memory. The memory limits for the DB2 Alphablox Java process are set

at installation. If you find that the DB2 Alphablox is running out of memory due to

DB2 Alphablox cubes using large amounts of memory, there are several possible

actions you might take:

v Limit the size of the in-memory cache for each cube. For details, see “Connection

and cache size limits” on page 28.

v Limit the number of Alphablox cubes in the system. For details, see “Maximum

Number of Cubes” on page 30.

v Change the maximum size of the memory heap for the Java process in which

DB2 Alphablox runs. For details, see “Changing the Maximum Memory Heap

Size” below.

v Increase the memory capacity of the computer in which DB2 Alphablox runs.

For details, see “Adding More Memory to Your System” on page 31.

Changing the Maximum Memory Heap Size

The Cube Server runs as part of that Java process. If you are experiencing

out-of-memory errors in DB2 Alphablox, you might need to raise the maximum

memory heap size of the Java process. Set the maximum memory heap size to a

value high enough to accommodate your memory requirements but low enough so

that it does not cause the operating system to excessively swap to disk when the

process size approaches the maximum. Also, leave some room for unexpected

memory use on the machine. For example, if your machine has 1024 megabytes of

30 IBM DB2 Alphablox: DB2 Alphablox Cube Server Administrator’s Guide

memory and other resources on the machine use about 300 megabytes of memory,

consider setting the maximum memory heap size to a value as large as 600

megabytes.

It might require some experimentation to find the ideal maximum for your system.

If you are not having any problems, performance is good, and there are no

out-of-memory errors in your DB2 Alphablox cubes, then the limits are set well for

your environment.

Adding More Memory to Your System

One often overlooked solution to memory issues is to add more memory to the

system in which DB2 Alphablox runs. Check with your hardware vendor to

determine how much memory you can install on your computer. As the memory

use on a system grows toward the limits of the installed physical memory, the

system will swap memory to disk to make room for new memory requests,

resulting in much more inefficient memory management.

A memory upgrade is often a relatively inexpensive way to increase server

capacity. Also, it often helps or eliminates memory usage issues. If there is room on

the system for adding more memory, consider doing so.

Chapter 4. Maintaining a Cube 31

32 IBM DB2 Alphablox: DB2 Alphablox Cube Server Administrator’s Guide

Chapter 5. Using MDX to Query DB2 Alphablox Cubes

DB2 Alphablox applications use the Multidimensional Expressions (MDX) language

to query a DB2 Alphablox cube. MDX is the query language component of the

OLE DB for OLAP specification, created and maintained by Microsoft. DB2

Alphablox cubes support a subset of the MDX syntax and functions. This section

describes the supported MDX syntax for querying DB2 Alphablox cubes and

provides example queries.

Supported MDX Syntax

MDX is a multidimensional query language used by several multidimensional

databases including Microsoft Analysis Services. DB2 Alphablox Cube Server uses

a subset of the MDX syntax as the query language for DB2 Alphablox cubes. For a

DB2 Alphablox application that accesses a DB2 Alphablox cube, the MDX query is

used as the value for the DataBlox query parameter (or associated methods).

Basic Syntax

The basic syntax for an MDX query against a DB2 Alphablox cube is as follows:

SELECT {axis_specification} ON COLUMNS,

 {axis_specification} ON ROWS

FROM cube_name

WHERE (slicer_items)

where:

axis_specification is a set of one or more tuples. Tuples can be

entered as a list or “generated” with the CrossJoin

function.

cube_name is the name of a defined Alphablox cube.

slicer_items is a tuple (often a comma-separated list of

members) on which the query result set is filtered.

If there is more than one slicer member, each must

be from a different dimension, and the dimension

cannot be referenced in any of the axes specified in

the query.

Usage Notes

A dimension can only appear on a single axis in a query. Queries that place a

dimension on more than one axis fail with an error.

A query can specify zero or more axes, although it is typical to specify two axes.

The COLUMNS axes can also be specified as AXIS(0), the ROWS axis as AXIS(1).

Subsequent axis are referred to as AXIS(n), where n is the next consecutive integer.

Note that DB2 Alphablox applications that display the data from a query

(GridBlox, ChartBlox, or PresentBlox) can only accept queries with at most two

specified axes. A query rendered as an XML data set can accept any number of

axes.

The keywords in MDX om DB2 Alphablox are not case-sensitive, but member

names in an MDX query are case-sensitive when surrounded by square brackets [

]. When member names are not surrounded by square brackets [], they are

© Copyright IBM Corp. 1996, 2005 33

converted to uppercase before being sent to the server. Unless all of your member

names are uppercased in the database, you should use the square bracket syntax

Specifying Member Sets

A member set is comprised of one or more members from the same dimension. It is

good practice to always enclose member names in square brackets [], although it

is not required. When a member name contains spaces, the square brackets are

required. Member names are case sensitive; therefore, the following member

specifications are not equivalent:

[Time].[Fiscal Year]

[Time].[fiscal year]

Qualified Member Names

You can qualify a member name by using the dimension name and its parents in

the hierarchy, similar to object syntax, as follows:

[Dimension].[Level].[Member]

You can also qualify a member name by using the dimension name and one or

more ancestors of the member, as follows:

[Dimension].[Member].[Member]

Note: Always qualify a member name at least enough to make it unique.

Curly Braces

Curly braces denote sets, and a set placed on an axis in an MDX query must be

enclosed in curly braces { }. For example, the syntax to specify a set containing the

products Golden Oats and Sugar Grains is as follows:

{[Product].[Golden Oats], [Product].[Sugar Grains]}

FROM:TO Syntax

You can specify a member set that extends from one point in the level to another

(inclusive) by using a colon (:) to separate the members. For example, if you have a

dimension called Alphabet with members A-Z, the following evaluates to the set {D,

E, F, G, H}:

{[Alphabet].[D]:[Alphabet].[H]}

Functions

MDX functions are used to simplify and broaden the possible scope of MDX

queries. The following table lists the subset of MDX functions supported in queries

against DB2 Alphablox cubes.

For information on the syntax and usage of the MDX functions listed below, see

the following information resources:

v Microsoft MDX Function Reference (http://msdn.microsoft.com/library/en-
us/olapdmad/agmdxfunctintro_6n5f.asp)

v Spofford, George. 2001. MDX Solutions. New York: John Wiley & Sons.

 MDX Function Syntax

Ancestor Ancestor(<Member>,<Level>)

Ancestor(<Member>,<Numeric Expression>)

Ancestors Ancestors(<Member>,<Level>)

Ancestors(<Member>,<Numeric Expression>)

34 IBM DB2 Alphablox: DB2 Alphablox Cube Server Administrator’s Guide

http://msdn.microsoft.com/library/en-us/olapdmad/agmdxfunctintro_6n5f.asp
http://msdn.microsoft.com/library/en-us/olapdmad/agmdxfunctintro_6n5f.asp

MDX Function Syntax

Ascendants Ascendants(<Member>)

Avg Avg(<Set>[,<Numeric Expression>])

BottomCount BottomCount(<Set>,<Count>[,<Numeric Expression>])

BottomPercent BottomPercent(<Set>,<Percentage>[,<Numeric Expression>])

Note: <Numeric Expression> is optional here, but is required in

MSAS.

BottomSum BottomSum(<Set>,<Value>[,<Numeric Expression>])

Note: <Numeric Expression> is optional here, but is required in

MSAS.

Children <Member>.Children

ClosingPeriod ClosingPeriod(<Level>,<Member>)

Note: <Level> and <Member> are required here, but are optional in

MSAS.

Count Count(<Set>[, ExcludeEmpty | IncludeEmpty])

Note: OnlyCount(<Set>[, ExcludeEmpty | IncludeEmpty]) is

supported here. The .Count syntax is not supported here.

Cousin Cousin(<Member1>,<Member2>)

CrossJoin Crossjoin(<Level>,<Member>)

CurrentMember <Dimension>.CurrentMember

DefaultMember <Dimension>.DefaultMember

Descendants Descendants(<Member>,[<Level>[,<Desc flags>]])

Note: OnlyDescendants(<Member>,[<Level>[,<Desc flags>]]) is

supported here. Descendants() with the <set> option is not

supported here.

Distinct Distinct(<Set>)

DrilldownLevel DrilldownLevel(<Set>[,{<Level>|,<Index>}])

DrilldownMember DrilldownMember(<Set1>,<Set2>[,RECURSIVE])

DrillupMember DrillupMember(<Set1>,<Set2>)

Except Except(<Set1>,<Set2>[,ALL])

FirstChild <Member>.FirstChild

FirstSibling <Member>.FirstSibling

Generate Generate(<Set1>,<Set2>[,ALL])

Note: Generate(<Set1>,<Set2>[,ALL]) is supported.

Generate(<Set>,<String Expression>[,<Delimiter>]) is not

supported here.

Head Head(<Set>[,<Numeric Expression])

Hierarchize Hierarchize(<Set>[,POST])

Hierarchy <Member>.Hierarchy

<Level>.Hierarchy

Intersect Intersect(<Set1>,<Set2>[,ALL])

Chapter 5. Using MDX to Query DB2 Alphablox Cubes 35

MDX Function Syntax

Item <Set>.Item(Index)

Note: <Set>.Item(<StringExpression>[,<String Expression>]) and

<Tuple>.Item(<Index>) are not supported here.

Lag <Member>.Lag(<Numeric Expression>)

LastChild <Member>.LastChild

LastPeriods LastPeriods(<Index>,<Member>)

Note: <Member> is required here; optional in MSAS.

LastSibling <Member>.LastSibling

Lead <Member>.Lead(<Numeric Expression>)

Level <Member>.Level

Max Max(<Set>[,<Numeric Expression>])

Median Median(<Set>[,<Numeric Expression>])

Members <Dimension>.Members

<Hierarchy>.Members

<Level>.Members

Note: Members(<String Expression>) is not supported.

Min Min(<Set>[,<Numeric Expression>])

Name <Dimension>.Name

<Level>.Name

<Member>.Name

<Hierarchy>.Name

NextMember <Member>.NextMember

OpeningPeriod OpeningPeriod(<Level>,<Member>)

Note: <Level> and <Member> required here; optional in MSAS.

Order Order(<Set>,<Numeric Expression>[,ASC|DESC|BASC|BDESC])

ParallelPeriod ParallelPeriod(<Level>,<Numeric Expression>,<Member>)

Note: <Level>, <Numeric Expression>, and <Member> are required

here, but are optional in MSAS.

Parent <Member>.Parent

PeriodsToDate PeriodsToDate(<Level>,<Member>)

Note: <Level> and <Member> are required here; optional in MSAS.

PrevMember <Member>.PreviousMember

Properties <Member>.Properties(<String Expression>)

Note: Only user-defined member properties are supported here by

the Properties() function.

Subset Subset(<Set>,<Start>[,<Count>])

Sum Sum(<Set>,<Numeric Expression>)

Tail Tail(<Set>[,<Count>])

TopCount TopCount(<Set>,<Count>[,<Numeric Expression>])

36 IBM DB2 Alphablox: DB2 Alphablox Cube Server Administrator’s Guide

MDX Function Syntax

TopPercent TopPercent(<Set>,<Percentage>[,<Numeric Expression>])

Note: <Numeric Expression> is optional here; required in MSAS.

TopSum TopSum(<Set>,<Value>[,<Numeric Expression>])

Note: <Numeric Expression> is optional here; required in MSAS.

Union Union(<Set1>,<Set2>[,ALL])

Union({<Set1>,<Set2>})

UniqueName <Dimension>.UniqueName

<Level>.UniqueName

<Member>.UniqueName

<Hierarchy>.UniqueName

Note: As implemented in DB2 Alphablox, functions that assume a Time dimension

(for example, ParallelPeriod or PeriodsToDate) only implement the variants

that do not require knowing about that dimension, thus leaving level

arguments out is not supported currently in the DB2 Alphablox Cube Server.

MDX Query Examples

This section shows some examples of MDX queries against an DB2 Alphablox cube

named DB2AlphabloxCube. Assume the DB2 Alphablox cube in the examples has

the following dimensions, levels, and measures.

 Time Products Measures

Year {1998, 1999, 2000, 2001} Imported {Yes, No} {Sales, Cost, Profit}

Quarter {Q1, Q2, Q3, Q4} Product Name {A-Z}

Month {1-12}

Example 1

The following query selects several members (A, B, C, D, and Z) from the Product

Name level on the columns axis, uses the Children function on the Time dimension

for the rows axis to generate a set of years, and slices the query by the Sales

measure in the WHERE clause.

SELECT {[Products].[Product Name].[A]:[D],

 [Products].[Product Name].[Z]} ON COLUMNS,

 {[Time].Children} ON ROWS

FROM [DB2AlphabloxCube]

WHERE ([Sales])

 Time A B C D Z

2001 12.5 14.25 34.95 2,503.22

2002

2003

2004 179.7

Chapter 5. Using MDX to Query DB2 Alphablox Cubes 37

Example 2

The following query uses the CrossJoin function to show both the product

members E and F and the 4 quarters from 1999 on the columns axis. The rows axis

shows the three measures in the DB2 Alphablox cube.

SELECT CrossJoin({[Products].[Product Name].[E],

 [Products].[Product Name].[F]}, [Time].[1999].Children)

 ON COLUMNS,

 {[Sales], [Cost], [Profit]} ON ROWS

FROM [DB2AlphabloxCube]

 E F

Measures Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

Sales 17,700 16,80044 44 18,100 1,413.87 1413.87 5,510 1,413.87

Cost 12,300 12,300 50 13,200 599.97 599.97 4,400 599.97

Profit 5,400 4,500 —6 4,900 813.9 813.9 1,110 813.9

38 IBM DB2 Alphablox: DB2 Alphablox Cube Server Administrator’s Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY

10504-1785 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation, Licensing, 2-31 Roppongi 3-chome, Minato-ku, Tokyo

106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country

where such provisions are inconsistent with local law: INTERNATIONAL BUSINESS

MACHINES CORPORATION PROVIDES THIS PUBLICATION ″AS IS″ WITHOUT

WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT

NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states

do not allow disclaimer of express or implied warranties in certain transactions,

therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

© Copyright IBM Corp. 1996, 2005 39

IBM Corporation, J46A/G4, 555 Bailey Avenue, San Jose, CA 95141-1003 U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application

programs conforming to IBM’s application programming interfaces.

Trademarks

The following terms are trademarks or registered trademarks of International

Business Machines Corporation in the United States, other countries, or both:

 IBM DB2 DB2 OLAP Server

DB2 Universal Database WebSphere

40 IBM DB2 Alphablox: DB2 Alphablox Cube Server Administrator’s Guide

Alphablox and Blox are trademarks or registered trademarks of Alphablox

Corporation in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

Other company, product or service names may be trademarks or service marks of

others.

Notices 41

42 IBM DB2 Alphablox: DB2 Alphablox Cube Server Administrator’s Guide

Index

A
access control lists

DB2 Alphablox cubes, using with 15

architecture
DB2 Alphablox Cube Server 4

attributes, dimension levels, defining 19

C
cache 21

cache, cube
in architecture 5

maximum rows 29

clean data
defined 5

columns and rows, maximum, setting for a cube 30

Console
command list, cube 27

creating a cube, checklist 14

Cube Manager 5

cube, DB2 Alphablox
See Alphablox cube

D
data sources

Alphablox Cube Server Adapter, creating 19

maximum connections for a cube 28

relational, creating for a cube 14

DB2 Alphablox cube
See also Alphablox Cube

administration strategy 25

applications of 2

cache 5, 28

Console commands 27

creating, checklist for 14

data source, relational, creating 14

defining 15

dimensions and levels, defining 17

MDX, supported syntax 33

measures, defining 16

memory considerations 30

modifying 28

overview 1

rebuilding 25

refreshing 20

relational schema, mapping to cube 10

requirements 5

resources, specify and manage 20

sanity check 21

starting 23

stopping 24

troubleshooting 24

tuning controls 28

DB2 Alphablox Cube Server 5

architecture 4

requirements 5

DELETE CUBE command 27

dimension joins, dimensions, defining 18

dimension tables 8

dimensional schemas
described 7

hierarchies 9

requirements for DB2 Alphablox Cube Server 6

snowflake 7

star 7

dimensions, cube, defining 17

dimensions, defining 17

DISABLE CUBE command 27

E
EMPTYCACHE CUBE command 27

ENABLE CUBE command 27

F
fact table join, dimension, defining 18

fact tables 8

foreign key
defined 8

H
heap size, memory, changing 30

hierarchies
relational database schema 9

J
joins, dimension, defining 18

K
keys, foreign,

See foreign keys

keys, primary,
See primary keys

L
levels, cube, define 17

levels, dimensions, defining 18

M
many-to-one relationships 10

maximum connections, cube 28

maximum data source connections, cube 28

maximum number of cubes 30

maximum rows and columns, cube 30

MDX
basic syntax 33

FROM TO syntax 34

member sets 34

query examples 37

SQL queries, relationship to 5

measures, cube, defining 16

© Copyright IBM Corp. 1996, 2005 43

measures, cube, restrictions 10

member sets, specifying 34

memory considerations, cube 30

memory heap size, changing size 30

N
Normalized button, level dialog box 10

P
primary key

defined 8

R
REBUILD command 25

REBUILD CUBE command 27

rebuilding a cube 25

refreshing a cube 20

relational data
cubing 1

database schemas 5, 7

dimensional schemas 7

mapping schema to a cube 10

measures expression restriction 10

schema requirements 5

requirements
DB2 Alphablox cube 5

rows and columns, maximum, setting for a cube 30

S
SHOW CUBE command 27

snowflake schema 7

star schema 7

START CUBE command 23, 28

starting a cube 23

from console 23

from DB2 Alphablox Home Page 23

troubleshooting 24

STOP CUBE command 24, 28

T
tables

dimension 8

fact 8

44 IBM DB2 Alphablox: DB2 Alphablox Cube Server Administrator’s Guide

����

Program Number: 5724-L14

Printed in USA

SC18-9433-01

	Contents
	Chapter 1. Cubing Concepts
	Overview
	Cubing Relational Data
	Applications of the DB2 Alphablox Cube Server
	Relatively Small Cube Data Sets From Potentially Very Large RDBMSs
	Prototyping
	Cubes With Straightforward Dimensions and Measures
	Advantages of the DB2 Alphablox Cube Server
	DB2 Alphablox Cube Server in an DB2 Alphablox Application Environment

	DB2 Alphablox Cube Server Architecture
	DB2 Alphablox Cube Server Components
	Administration User Interface
	Cube Manager
	In-Memory Cache
	Compiler
	Executor

	MDX to SQL Query Translation

	Schema Requirements
	Clean Data
	Dimensional Schema

	Chapter 2. Dimensional Schema Design
	Dimensional Schemas
	Star and Snowflake Schemas
	Primary Keys
	Foreign Keys
	Fact Tables
	Dimension Tables
	Star Schemas
	Snowflake Schemas

	Hierarchies
	Many-to-One Relationships

	Mapping the Relational Schema to a Cube
	Dimensions, Levels, and Attributes
	Measures

	Chapter 3. Creating and Modifying a Cube
	Checklist of Tasks to Create a Cube
	Create the Relational Data Source
	Define the Cube
	Define the Measures
	Define the Dimensions
	Create or Edit Dimensions
	Create or Edit a Fact Table Join
	Create or Edit a Dimension Join
	Create or Edit Levels
	Create or Edit Attributes

	Create Alphablox Cube Server Adapter Data Source
	Specify and Manage Cube Resources
	Defining a Refresh Schedule
	Setting Tuning Parameters

	Review the Cube

	Chapter 4. Maintaining a Cube
	Starting, Stopping, and Rebuilding a Cube
	Starting a DB2 Alphablox Cube
	Start Cube From the Home Page
	Start Cube From a Console Window
	Troubleshooting If the Cube Does Not Start

	Stopping a DB2 Alphablox Cube
	Stop Cube From the Home Page
	Stop Cube From a Console Window

	Rebuilding a DB2 Alphablox Cube

	Deciding on an Administration Strategy
	Understanding the Database Environment
	Scheduling Periodic Updates

	Console Commands
	Modifying a Cube
	Tuning a cube
	Tuning controls
	Connection and cache size limits
	Maximum Connections
	Maximum Data Source Connections
	Maximum Rows Cached

	Maximum Number of Cubes
	Maximum Rows and Columns

	DB2 Alphablox Cube Memory Considerations
	Changing the Maximum Memory Heap Size
	Adding More Memory to Your System

	Chapter 5. Using MDX to Query DB2 Alphablox Cubes
	Supported MDX Syntax
	Basic Syntax
	Usage Notes

	Specifying Member Sets
	Qualified Member Names
	Curly Braces
	FROM:TO Syntax

	Functions

	MDX Query Examples
	Example 1
	Example 2

	Notices
	Trademarks

	Index

