
IBM DB2 Alphablox

DB2 Alphablox Cube Server

Administrator’s Guide

Version 8.4

SC18-9433-02

���

IBM DB2 Alphablox

DB2 Alphablox Cube Server

Administrator’s Guide

Version 8.4

SC18-9433-02

���

Note:

Before using this information and the product it supports, read the information in “Notices” on page 49.

Third Edition (March 2006)

This edition applies to version 8, release 4, of IBM DB2 Alphablox for Linux, UNIX and Windows (product number

5724-L14) and to all subsequent releases and modifications until otherwise indicated in new editions.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

Copyright © 1996 - 2006 Alphablox Corporation. All rights reserved.

© Copyright International Business Machines Corporation 1996, 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Chapter 1. Cubing concepts 1

DB2 Alphablox Cube Server Overview 1

Cubing relational data 2

Applications of the DB2 Alphablox Cube Server . 2

DB2 Alphablox Cube Server architecture 4

DB2 Alphablox Cube Server components 4

MDX to SQL query translations 6

Schema requirements 6

Clean data 6

Dimensional schema 7

Chapter 2. Dimensional schema design 9

Dimensional schemas 9

Star and snowflake schemas 9

Hierarchies 11

Mapping relational schemas to cubes 14

Dimensions, levels, and attributes 14

Measures 15

Chapter 3. Creating and modifying

cubes 17

Checklist of tasks for creating cubes 17

Creating relational data sources 18

Defining cubes 19

Defining measures 20

Defining dimensions 21

Creating dimensions 21

Creating fact table joins 22

Creating dimension joins 22

Creating levels 23

Setting level orders 25

Creating and editing attributes 25

Setting member ordering within a level 25

Creating persistent calculated members 26

Creating Alphablox Cube Server Adapter data

source definitions 26

Specifying and managing cube resources 27

Defining a refresh schedule 27

Setting tuning parameters 28

Reviewing a cube 29

Chapter 4. Maintaining cubes 31

Starting, stopping, and rebuilding cubes 31

Starting a DB2 Alphablox cube 31

Stopping DB2 Alphablox cubes 32

Rebuilding DB2 Alphablox cubes 33

Administration strategies 33

Understanding database environments 34

Scheduling periodic updates 34

Console commands 35

Modifying cubes 36

Tuning cubes 36

Tuning controls 36

DB2 Alphablox cube memory considerations . . 39

Chapter 5. Using MDX to query DB2

Alphablox cubes 41

Supported MDX syntax 41

Basic syntax 41

Specifying member sets 42

Calculated members 42

Supported MDX Functions 43

MDX query examples 47

Example 1 47

Example 2 48

Notices 49

Trademarks 50

Index 53

© Copyright IBM Corp. 1996, 2006 iii

iv IBM DB2 Alphablox: DB2 Alphablox Cube Server Administrator’s Guide

Chapter 1. Cubing concepts

IBM DB2 Alphablox for Linux, UNIX and Windows includes the DB2 Alphablox

Cube Server. The DB2 Alphablox Cube Server is designed to provide a

multidimensional view of data stored in a relational database. This topic introduces

the DB2 Alphablox Cube Server, provides background into the types of

applications it is designed for, and describes the requirements for its use.

DB2 Alphablox Cube Server Overview

IBM DB2 Alphablox for Linux, UNIX and Windows includes the DB2 Alphablox

Cube Server. The DB2 Alphablox Cube Server is designed to provide a

multidimensional view of data stored in a relational database. This topic introduces

the DB2 Alphablox Cube Server, provides background into the types of

applications it is designed for, and describes the requirements for its use.

DB2 Alphablox Cube Server allows administrators to create a multidimensional

representation of data that resides in a relational database. A cube is a data model

often used in online analytical processing (OLAP) to represent business data that is

typically analyzed over multiple dimensions. A dimension is a conceptual axis over

which a business is analyzed. For example, a retail business’s performance might

be analyzed over time, products, and stores. For this business, time, products, and

stores are each dimensions. Each of the dimensions has one or more levels which

together define the overall hierarchy of the dimension. For example, the time

dimension might have levels year, quarter, and month.

A cube is used to model the business. A three-dimensional cube is easy to visualize

because it can be drawn as a geometric cube, but a cube can have any number of

dimensions, from one to n.

At the intersection points of a cube’s dimensions, analysts can view the measures.

Measures are numeric values, usually business metrics (such as sales, profit and

cost of goods), at a given set of dimension intersections. For example, to view the

sales of a given product at a given store at a given time, examine the cube at the

point where those dimensions intersect to find the measures.

Products

Stores

Time

© Copyright IBM Corp. 1996, 2006 1

Cubing relational data

Many organizations have invested in data marts and data warehouses to store their

relational data in a queryable form. This data is typically moved, cleansed, and

transformed from the transactional systems where the data originated into another

relational database that is optimized for query performance.

These transformed databases contain historical information on one or more

subjects, and are sometimes known as data warehouses or data marts. These data

mart and data warehouses are created using IBM® DB2™, Oracle, Microsoft® SQL

Server, Sybase, or other relational databases. The primary purpose of these

databases is to allow users to query historical information. For details on the

schema designs typical of these data warehouse and data mart databases, see

Chapter 2, “Dimensional schema design,” on page 9.

Querying relational databases can be made easier for users if a dimensional model

is used, because dimensional models make it easier to pose business questions

related to a particular business process or business area. The structure of data,

when organized in dimension hierarchies, is more intuitively familiar to users and

their understanding of the relationships among data categories. Depending upon

the size and complexity of the dimensional model and the business requirements,

users may need the power of a dedicated OLAP servers, such as IBM DB2 OLAP

Server™ or Microsoft Analysis Services. In these cases, data is extracted from

relational databases and built into dedicated high speed cubes that provide

advanced analytical functions. In cases where the full power of dedicated OLAP

servers are not necessary, but you want to provide your users with the power of

OLAP analysis functionality, you can use the relational cubing capability of the

DB2 Alphablox Cube Server.

With DB2 Alphablox Cube Server, an administrator can build a DB2 Alphablox

cube on top of relational data; that is, the DB2 Alphablox cube is populated using

queries to the underlying RDBMS.

Applications of the DB2 Alphablox Cube Server

The DB2 Alphablox Cube Server allows you to quickly present relational data in

the form of an OLAP cube. It provides an intelligent subset of the functionality of

full-featured OLAP servers, such as IBM DB2 OLAP Server, Hyperion Essbase, or

Microsoft Analysis Services. A DB2 Alphablox cube is designed to take advantage

of clean data that resides in data warehouse and data marts; it is not intended as a

replacement for a full-featured OLAP server. It is useful for creating

multidimensional data sources for which you do not have the time and resources

to develop full-featured OLAP databases, and it is very good at presenting

relatively small cubes, even if they are built from very large databases.

The DB2 Alphablox Cube Server is well-suited to building cubes that return

relatively small data sets compared to the underlying databases from which they

are populated. The underlying databases can be very large, including potentially

billions of rows in the fact table (for a definition of a fact table, see “Fact tables” on

page 10). DB2 Alphablox cubes store precomputed results in memory, not on disk.

Any results not stored in memory remain in the underlying database; the cube

retrieves results on an as-needed basis by sending SQL queries to the database. The

results from the query are then stored in memory and are instantly accessible to

DB2 Alphablox applications.

2 IBM DB2 Alphablox: DB2 Alphablox Cube Server Administrator’s Guide

Prototyping

A relational OLAP (ROLAP) cube created using DB2 Alphablox Cube Server offers

a quick way to test the potential value of a dedicated MOLAP cube. It is also

possible that the DB2 Alphablox cube will offer your users a satisfactory solution

without having to subsequently build a MOLAP cube on a separate MOLAP

server.

Since DB2 Alphablox cubes can be created quickly, you can give users access to

DB2 Alphablox applications that can quickly access corporate data and offer

insights to business users. If you already have DB2 databases enabled with Cube

Views functionality, you can use the DB2 Cube Views metadata to quickly define

DB2 Alphablox cubes and rapidly offer users access to DB2 data. Another benefit

of building DB2 Alphablox cubes using predefined Cube Views metadata is that

the performance gains offered by the materialized query tables (MQTs) become

available to users of your DB2 Alphablox cubes. Alternatively, DB2 Alphablox

cubes can access data residing on other supported relational databases. DB2

Alphablox cubes provide an excellent way for you to prototype large scale OLAP

solutions early in your development cycles. And, it is often the case that the use of

DB2 Alphablox cubes is sufficient for the needs of your DB2 Alphablox application

users.

Cubes with straightforward dimensions and measures

A DB2 Alphablox cube can have a single hierarchy per dimension. To represent

complex dimensions with multiple hierarchies, use a full-featured OLAP server

such as DB2 OLAP Server, Hyperion Essbase, or Microsoft Analysis Services. Many

complex business scenarios, however, do not require multiple hierarchies per

dimension.

Note: If your application requires multiple hierarchies in a single dimension, you

can create multiple dimensions having the same root level but different

hierarchies.

Measures in a DB2 Alphablox cube are defined with a valid SQL expression to the

underlying database. In order to prevent problems with ambiguity, which happens

when there are different tables with columns having the same name, there are a

few restrictions on the SQL expression specified. See “Measures” on page 15 for

more detail.

Different RDBMS vendors support different levels of calculations, but all of the

major RDBMS vendors support a fairly rich set of calculations. If an application

requires calculations that cannot be expressed in SQL, you might need to consider

using a full-featured OLAP server.

Advantages of the DB2 Alphablox Cube Server

Because the DB2 Alphablox Cube Server is included with DB2 Alphablox and there

is no physical disk storage to manage, many administrative tasks typical of

full-featured OLAP servers are simplified or eliminated. Some of the advantages

include the following:

v DB2 Alphablox Cube Server has no disk space to manage.

v DB2 Alphablox Cube Server uses the DB2 Alphablox security model, requiring

no additional work to manage users.

v DB2 Alphablox Cube Server is included with DB2 Alphablox, requiring no

additional software to install.

Chapter 1. Cubing concepts 3

DB2 Alphablox Cube Server in an DB2 Alphablox application

environment

For a DB2 Alphablox application, a DB2 Alphablox cube is just another data

source; that is, Blox components work with DB2 Alphablox cubes just like they do

with any other supported data source. DB2 Alphablox cubes can use the same Blox

components as other data sources. For example, you can change an application that

accesses a DB2 Alphablox cube to access an DB2 OLAP Server cube by simply

changing the values of the query and data source DataBlox parameters. The

application performs the same way; it is simply accessing different data. The rich

Blox component functionality available for manipulating other multidimensional

and relational data sources are also available for DB2 Alphablox cubes.

DB2 Alphablox Cube Server architecture

The DB2 Alphablox Cube Server is a high performance, scalable cubing engine

designed to support many users querying many different cubes. It is designed to

enable quick multidimensional access to relational data stored in a data warehouse

or data mart database.

DB2 Alphablox Cube Server components

The DB2 Alphablox Cube Server is composed of several components. These

complementary components provide the infrastructure to define, manage, and

execute queries against DB2 Alphablox cubes. The components of the DB2

Alphablox Cube Server work within the framework of DB2 Alphablox, as shown in

the following figure.

4 IBM DB2 Alphablox: DB2 Alphablox Cube Server Administrator’s Guide

Administration user interface

A cube administrator performs the tasks for setting up and managing DB2

Alphablox cubes using the DB2 Alphablox Admin Pages. Under the General

section of the Administration tab, there are two relevant links for administering

DB2 Alphablox cubes. Selecting the DB2 Alphablox Cube Manager link opens a

dialog to optionally specify a maximum number of cubes to be running

simultaneously and to specify an alternate location for the member cache directory.

Under Runtime Management, selecting the DB2 Alphablox Cubes link opens a

dialog for starting and stopping DB2 Alphablox cubes.

The Cubes link under the Administration tab of the DB2 Alphablox home page

gives access to dialogs for creating and editing cube definitions; this is where

dimensions, levels, and measures for DB2 Alphablox cubes are defined.

A DB2 Alphablox user must be a member of the administrators group in order to

create, view, or modify DB2 Alphablox cubes. For detailed information on using

the DB2 Alphablox cubes administration user interface, see Chapter 3, “Creating

and modifying cubes,” on page 17 and Chapter 4, “Maintaining cubes,” on page

31. Also, online help is available from the DB2 Alphablox Admin Pages.

Cube Manager

The Cube Manager is the component that creates objects, performs verification

checks, starts and stops, and performs other work on DB2 Alphablox cubes. The

Create, edit and
manage cubes

Internet/
Intranet

DB Alphablox application
with Blox that access an
Alphablox Cube

2

DB Alphablox2

Cube server

MDX query/
result set object

Administration
user interface

Cube
manager

Compiler Executor

In-memory
cache RDBMS

Query
cubes

Results

Chapter 1. Cubing concepts 5

DB2 Alphablox console also accepts commands that are carried out by the Cube

Manager. For a description of the Cube Manager console commands, see “Console

commands” on page 35.

In-memory cache

The DB2 Alphablox Cube Server stores calculated results in a cache that resides in

memory. These stored results are then shared among all users accessing the DB2

Alphablox cube. Internally, each cube is broken down into smaller sections of

results. Each of these sections is potentially stored in the cube’s in-memory cache.

Depending on how much memory the cube results require and how much memory

is available to the cube, some entries might need to be removed from the cache. If

memory needs to be freed, entries are purged from the cache. The cache is

populated with queries made to the underlying relational database. If a query

against a DB2 Alphablox cube requests data that is not already stored in the cache,

then that data is retrieved from the underlying database and, if necessary, old data

is aged out of the cache. The system performs all of these caching functions

automatically.

Compiler

Query requests against DB2 Alphablox cubes use the MDX query language. The

Compiler parses MDX queries, validates the requests, and generates a plan to

return the results to the client application. The Compiler takes advantage of

metadata stored for each cube to generate an optimized plan for each request.

Executor

The Executor runs the plan generated by the Compiler and retrieves the result set

from the cache. After the results are generated, they are returned to the DataBlox,

GridBlox, or PresentBlox that requested them.

MDX to SQL query translations

DB2 Alphablox applications request results from a cube through MDX queries. DB2

Alphablox Cube Server processes the MDX query which results in a plan for

retrieving results from a DB2 Alphablox cube. The DB2 Alphablox cube in turn

calculates those results by running SQL queries against the underlying relational

database. These SQL queries either were run before the MDX query was issued

and are already stored in the cache or are executed during runtime of the MDX

query. If the results are already stored in the cube’s in-memory cache, then there is

no need to run the SQL query again for that result set. When the DB2 Alphablox

application issues the MDX query, DB2 Alphablox Cube Server automatically

issues any required SQL queries. Often, multiple SQL queries are needed to fulfill a

single MDX request.

Schema requirements

This topic describes the requirements for the underlying database a DB2 Alphablox

cube references. A DB2 Alphablox cube must reference a supported relational

database. The DB2 Alphablox Installation Guide describes the databases supported by

DB2 Alphablox. The databases should have clean data that is stored in a dimensional

schema.

Clean data

The term clean data refers to data that follows the rules of referential integrity

(whether or not referential integrity is enforced by the RDBMS). Clean data also

implies that any fields in the data that might have had different values with the

same meaning have been transformed to have the same values. For example, if the

6 IBM DB2 Alphablox: DB2 Alphablox Cube Server Administrator’s Guide

transaction level data has some records in which the second quarter is referred to

as Q2 and some in which it is referred to as Quarter_2, the records must be

transformed so that there is a unique value to identify the second quarter.

Dimensional schema

A dimensional schema in a relational database has a structure for storing clean

data against which it is easy to perform historical queries. Typically, a dimensional

schema can take one of the following forms:

v Single table

v Star schema

v Snowflake schema

v Combination of star and snowflake schemas

The underlying database for a DB2 Alphablox cube must contain only one fact

table; multiple fact table schemas are not supported. Each dimension in a DB2

Alphablox cube must have a single hierarchy. For more information about schemas,

see “Dimensional schemas” on page 9.

Note: If the database has multiple fact tables or does not conform to a dimensional

schema, you can create views in the database to create a “virtual” single fact

table dimensional schema for use with a DB2 Alphablox cube.

Chapter 1. Cubing concepts 7

8 IBM DB2 Alphablox: DB2 Alphablox Cube Server Administrator’s Guide

Chapter 2. Dimensional schema design

DB2 Alphablox Cube Server requires that the underlying databases have a

dimensional schema. To set up a DB2 Alphablox cube correctly, the administrator

should understand the data in the underlying RDBMS. This topic explains the

concepts of dimensional schema design, defines terms such as star schema and

snowflake schema, and explains the relationship between the database structure

and the cube hierarchies.

Dimensional schemas

A database is comprised of one or more tables, and the relationships among all the

tables in the database is collectively called the database schema. Although there are

many different schema designs, databases used for querying historical data are

usually set up with a dimensional schema design, typically a star schema or a

snowflake schema. There are many historical and practical reasons for dimensional

schemas, but the reason for their growth in popularity for decision support

relational databases is driven by two main benefits:

v The ability to form queries that answer business questions. Typically, a query

calculates some measure of performance over several business dimensions.

v The necessity to form these queries in the SQL language, used by most RDBMS

vendors.

A dimensional schema physically separates the measures (also called facts) that

quantify the business from the descriptive elements (also called dimensions) that

describe and categorize the business. DB2 Alphablox cubes require the underlying

database to use a dimensional schema; that is, the data for the facts and the

dimensions must be physically separate (at least in different columns). Typically,

this is in the form of a star schema, a snowflake schema, or a hybrid of the two.

While not a common scenario, the dimensional schema can also take the form of a

single table, where the facts and the dimensions are simply in separate columns of

the table.

Note: If the database does not conform to a dimensional schema, you can create

views in the database to create a “virtual” dimensional schema for use with

a DB2 Alphablox cube.

This topic describes star and snowflake schemas and the way the business

hierarchies are represented in these schemas.

For a thorough background of dimensional schema design and all of its

ramifications, read The Data Warehouse Toolkit by Ralph Kimball, published by John

Wiley and Sons, Inc.

Star and snowflake schemas

Star and snowflake schema designs are mechanisms to separate facts and

dimensions into separate tables. Snowflake schemas further separate the different

levels of a hierarchy into separate tables. In either schema design, each table is

related to another table with a primary key/foreign key relationship. Primary

key/foreign key relationships are used in relational databases to define

many-to-one relationships between tables.

© Copyright IBM Corp. 1996, 2006 9

Primary keys

A primary key is a column or a set of columns in a table whose values uniquely

identify a row in the table. A relational database is designed to enforce the

uniqueness of primary keys by allowing only one row with a given primary key

value in a table.

Foreign keys

A foreign key is a column or a set of columns in a table whose values correspond to

the values of the primary key in another table. In order to add a row with a given

foreign key value, there must exist a row in the related table with the same

primary key value.

The primary key/foreign key relationships between tables in a star or snowflake

schema, sometimes called many-to-one relationships, represent the paths along

which related tables are joined together in the database. These join paths are the

basis for forming queries against historical data. For more information about

many-to-one relationships, see “Many-to-one relationships” on page 12.

Fact tables

A fact table is a table in a star or snowflake schema that stores facts that measure

the business, such as sales, cost of goods, or profit. Fact tables also contain foreign

keys to the dimension tables. These foreign keys relate each row of data in the fact

table to its corresponding dimensions and levels.

In the DB2 Alphablox Cube Server, the Measures fact table for a DB2 Alphablox

cube can be specified in the cube definition for new or existing cubes, available

under the Cubes link in the Administration tab of the DB2 Alphablox Admin

Pages. To specify the measures fact table, you must select a valid schema and

catalog combination to populate the list of available table options and then select

the table or type a valid table name.

Dimension Tables

A dimension table is a table in a star or snowflake schema that stores attributes that

describe aspects of a dimension. For example, a time table stores the various

aspects of time such as year, quarter, month, and day. A foreign key of a fact table

references the primary key in a dimension table in a many-to-one relationship.

Star schemas

The following figure shows a star schema with a single fact table and four

dimension tables. A star schema can have any number of dimension tables. The

multiple branches at the end of the links connecting the tables indicate a

many-to-one relationship between the fact table and each dimension table.

10 IBM DB2 Alphablox: DB2 Alphablox Cube Server Administrator’s Guide

Snowflake schemas

The following figure shows a snowflake schema with two dimensions, each having

three levels. A snowflake schema can have any number of dimensions and each

dimension can have any number of levels.

For details about how the different levels of a dimension form a hierarchy, see

“Hierarchies.”

Hierarchies

A hierarchy is a set of levels having many-to-one relationships between each other,

and the set of levels collectively makes up a dimension. In a relational database,

the different levels of a hierarchy can be stored in a single table (as in a star

schema) or in separate tables (as in a snowflake schema).

Dimension
Table 3

Fact Table

Dimension
Table 1

Dimension
Table 2

Dimension
Table n

Star Schema

Fact Table

Dimension 1
Level 3

Snowflake Schema

Dimension 1
Level 2

Dimension 1
Level 1

Dimension 2
Level 3

Dimension 2
Level 2

Dimension 2
Level 1

Chapter 2. Dimensional schema design 11

In the DB2 Alphablox Cube Server, the following hierarchy types are supported:

v balanced

v ragged

v unbalanced

Many-to-one relationships

A many-to-one relationship is where one entity (typically a column or set of

columns) contains values that refer to another entity (a column or set of columns)

that has unique values. In relational databases, these many-to-one relationships are

often enforced by foreign key/primary key relationships, and the relationships

typically are between fact and dimension tables and between levels in a hierarchy.

The relationship is often used to describe classifications or groupings. For example,

in a geography schema having tables Region, State, and City, there are many states

that are in a given region, but no states are in two regions. Similarly for cities, a

city is in only one state (cities that have the same name but are in more than one

state must be handled slightly differently). The key point is that each city exists in

exactly one state, but a state may have many cities, hence the term “many-to-one.”

The different elements, or levels, of a hierarchy must have many-to-one

relationships between children and parent levels, regardless of whether the

hierarchy is physically represented in a star or snowflake schema; that is, the data

must abide by these relationships. The clean data required to enforce the

many-to-one relationships is an important characteristic of a dimensional schema.

Furthermore, these relationships make it possible to create DB2 Alphablox cubes

out of the relational data.

When you define a DB2® Alphablox cube, the many-to-one relationships that

define the hierarchy become levels in a dimension. You enter this information

through the administration user interface. For details about setting up the metadata

to define a DB2 Alphablox cube, see Chapter 3, “Creating and modifying cubes,”

on page 17.

Balanced and unbalanced hierarchies

When a dimension has a recursive hierarchy, you do not need to create any levels.

Instead, you need to specify any required member information.

Balanced hierarchies

In balanced hierarchies (balanced/standard), the branches of the hierarchy all

descend to the same level, with each member’s parent being at the level

immediately above the member. An common example of a balanced hierarchy is

one that represents time, where the depth of each level (year, quarter, and month)

is consistent. DB2 Alphablox Cube Server supports balanced hierarchies.

Unbalanced hierarchies

Unbalanced hierarchies includes levels that have a consistent parent-child

relationship, but have logically inconsistent levels. The hierarchy branches can also

have inconsistent depths. An example of an unbalanced hierarchy is an

organization chart, which show reporting relationships among employees in an

organization. The levels within the organizational structure are unbalanced, with

some branches in the hierarchy having more levels than others.

For standard unbalanced hierarchies (unbalanced/standard), DB2 Alphablox Cube

Server ignores skipped levels, treating them as if they do not exist. Standard

12 IBM DB2 Alphablox: DB2 Alphablox Cube Server Administrator’s Guide

deployment hierarchies use the relationship of the level definitions of the hierarchy,

where each level in the hierarchy is used as one item in the deployment. Standard

deployment hierarchies are supported for unbalanced hierarchies. The levels of the

hierarchy are used, at least one column in the dimension table is required for each

level, and missing levels contain null values. Recursive deployment hierarchies that

are unbalanced and use the inherent parent-child relationships between the levels

of the hierarchy are not supported in DB2 Alphablox cubes.

The recursive variation of the unbalanced hierarchy (unbalanced/recursive), is also

supported in DB2 Alphablox Cube Server. When this hierarchy type is selected,

you must also specify whether data members should be hidden or visible. By

default, the data members are hidden. With a recursive hierarchy, any member can

have data in the fact table, not just leaf members. For example, if your fact table

has sales value of 100 for California, 15 for San Jose, and 20 for Oakland, and cities

roll up to states, then the sales value for California will be 135. If ″data member″ is

visible, then the California member will have a child called something like

″California data″ with value 100. If the ″data member″ is hidden, then California

will only have 2 children (San Jose & Oakland) in the member hierarchy, but still

have rolled up sales value of 135 (the hidden value of 100 is still included).

In an unbalanced hierarchy, null values can appear on the lower levels of the

hierarchy. A parent member’s children will always be in the level below that of the

parent. In this hierarchy, the levels do not provide a meaningful context to its

members - Washington DC is at the same level as CA in this example. A better

example of an unbalanced hierarchy might be an organizational chart.

 Level 1 Level 2 Level 3

USA CA San Francisco

USA CA Los Angeles

USA Washington DC <NULL>

Vatican City Vatican City <NULL>

For more information about null values and level keys, see “Creating levels” on

page 23.

Ragged hierarchies

In ragged hierarchies, the parent member of at least one member of a dimension is

not in the level immediately above the member. Like unbalanced hierarchies, the

branches of the hierarchies can descend to different levels.

DB2 Alphablox Cube Server supports the use of ragged hierarchies. Skipped levels

in ragged hierarchies are ignored and treated as if they do not exist. Only standard

deployment hierarchies are supported for ragged hierarchies. The levels of the

hierarchy are used, at least one column in the dimension table is required for each

level, and missing levels will contain null values.

In a ragged hierarchy, null values can appear in any of the level columns. Null

column values between member names are skipped, so a parent can have a child

member multiple levels below the parent level. The children of USA shown in the

example below are CA and Washington DC . The levels provide a meaningful

context to its members in the ragged hierarchies. Thus, while Washington DC is a

child of USA , it is included at the City level with San Francisco and Los Angeles.

Chapter 2. Dimensional schema design 13

Country State City

USA CA San Francisco

USA CA Los Angeles

USA <NULL> Washington DC

Vatican City <NULL> Vatican City

For more information about null values and level keys, see “Creating levels” on

page 23.

Mapping relational schemas to cubes

It is important for the administrator who designs and builds a DB2 Alphablox cube

to understand, at least at a high level, the mapping between the relational database

and the DB2 Alphablox cube. Understanding this mapping helps to ensure there

are no errors in the design or creation of the DB2 Alphablox cube. Because the

cube is populated by queries to the underlying relational database, it is possible to

perform quality assurance testing on the cube by comparing query results on the

cube to query results on the relational database.

Dimensions, levels, and attributes

You can define any number of dimensions in a DB2 Alphablox cube and for each

dimension, you can define any number of levels. In a typical snowflake schema,

each level is normalized into a separate table, and the most detailed level is

referenced by a foreign key from the fact table. The DB2 Alphablox Cube Server

relies on the relationships among these different tables to create dimensions in the

cube. When you define a DB2 Alphablox cube, you must provide details about the

schema as part of the DB2 Alphablox cube definition.

For each dimension, you can specify levels in a dimensional hierarchy. At least one

level is required for each dimension. Levels are used to indicate a position within a

hierarchy. For example, in a Time dimension, you could have levels for Year,

Quarter, Month, and Week.

The ’All’ level is a level at the top of the hierarchy with a single member. This

member in the ’All’ level is know as the ’All’ level member and represents the

aggregation of all members below it as it is modeled by the level objects in a

dimension. For most dimensions, it makes sense to have an ’All’ level, but for the

Scenario dimension, and sometimes a time dimension, you will not want to display

an ’All’ level.

For each level in a dimension, you must have a level key defined. A level key

consists of one or more level key expressions. Taken together, the level key

expressions uniquely identify each member in the level. For example, the level key

for a city level might consist of three level key expressions, <Country Name, State

Name, City Name>, or it could consist of a single expression (for example,

<city_id>). The order of the level key expressions might influence the member

ordering in the level if member ordering expressions have not been defined. Note

that best practices dictate that level key expressions should not be completely

nullable (at least one of the level key expressions should be not null for each

member of the level).

Note: During migration of cube definitions existing in DB2 Alphablox Cube Server

prior to DB2 Alphablox 8.4, level keys will be automatically generated and

14 IBM DB2 Alphablox: DB2 Alphablox Cube Server Administrator’s Guide

added. The generated level key of a level at the top of a hierarchy will

consist of one level key expression that matches the level expression. Any

level below the top level will have level key expressions that correspond to

the level expressions of itself and all of its ancestors

Measures

The measures for a DB2 Alphablox cube are calculated from a fact table in the

relational database. When a query requests a measure, DB2 Alphablox Cube Server

calculates the values for the immediate siblings of every member specified in the

query. For example, the DB2 Alphablox Cube Server calculates the sales measures

for a year as the sum of the sales measures for the twelve months in the year.

Note that in the SQL expression that defines the measures, all column names are

qualified with the table they are from in order to prevent problems with ambiguity,

which happens when there are different tables with columns having the same

name. As a result, there are a few restrictions with the SQL expression for

measures:

1. The first token in the expression must be a column from the measures table.

The following expression is invalid because it starts with an open parenthesis:

(store_sales - unit_sales) / store_cost

2. All columns in the rest of the expression must exist in exactly one table.

3. The columns in the expression must not be any of the foreign key columns in

the measures table.

Chapter 2. Dimensional schema design 15

16 IBM DB2 Alphablox: DB2 Alphablox Cube Server Administrator’s Guide

Chapter 3. Creating and modifying cubes

An administrator uses the Cubes section of the Administration tab to define DB2

Alphablox cubes. This topic describes the steps necessary to create a DB2

Alphablox cube.

v “Checklist of tasks for creating cubes”

v “Creating relational data sources” on page 18

v “Defining cubes” on page 19

v “Defining measures” on page 20

v “Defining dimensions” on page 21

v “Creating Alphablox Cube Server Adapter data source definitions” on page 26

v “Specifying and managing cube resources” on page 27

v “Reviewing a cube” on page 29

Checklist of tasks for creating cubes

This section provides a checklist of tasks needed to define a DB2 Alphablox cube,

with a brief description of each task. Detailed task instructions appear later in this

chapter.

 Task Description

1 Understanding the schema of

the underlying database

To define a DB2 Alphablox cube, you must know

the schema in the relational database from which

the cube is built. Use database tools to browse the

database and make sure you have access to the

names of the tables, columns, primary keys, and

foreign keys in the database. For information about

schemas, see Chapter 2, “Dimensional schema

design,” on page 9.

2 Deciding which dimensions,

measures, and levels are

needed for your cube

In addition to understanding the schema, you must

know the data in the relational database

underlying a DB2 Alphablox cube. You must

understand what measures to define in the cube,

where those measures are stored in the database,

and the relationships between the different levels

of the hierarchy for each dimension.

3 “Creating relational data

sources” on page 18

Create an DB2 Alphablox data source definition for

the underlying relational database from which the

DB2 Alphablox cube is created.

4 “Defining cubes” on page 19 Use the Cubes administration user interface to

define the properties of a DB2 Alphablox cube.

5 “Defining measures” on page

20

Specify what facts are measured in the DB2

Alphablox cube and the mapping for each measure

from the relational fact table to the DB2 Alphablox

cube.

© Copyright IBM Corp. 1996, 2006 17

Task Description

6 “Defining dimensions” on page

21

Specify each dimension in the DB2 Alphablox cube

and each level for each dimension. Define the

mapping between the relational tables and the DB2

Alphablox cube dimensions and levels.

7 “Creating Alphablox Cube

Server Adapter data source

definitions” on page 26

To query a DB2 Alphablox cube, define a data

source created with the Alphablox Cube Adapter

multidimensional driver.

8 “Specifying and managing

cube resources” on page 27

Enter the DB2 Alphablox cube connection limits,

update frequency, and other administrative

parameters.

9 “Reviewing a cube” on page 29 Make sure there are no errors in the information

you entered to define the DB2 Alphablox cube.

Creating relational data sources

A DB2 Alphablox cube requires that its underlying relational data source be

defined as a DB2 Alphablox data source. Each DB2 Alphablox cube must reference

a relational data source. The data source must reference a relational database with

a dimensional schema design. For a description of the relational schema

requirements for a DB2 Alphablox cube, see “Schema requirements” on page 6. For

a discussion of dimensional schemas, see Chapter 2, “Dimensional schema design,”

on page 9.

If you have already defined a data source for the relational database, skip to the

next topic, “Defining cubes” on page 19. For more information about data sources,

see the Administrator’s Guide.

To specify a relational database as an DB2 Alphablox data source, perform the

following steps:

 1. Log into the DB2 Alphablox home page as the admin user or as a user who is

a member of the administrators group.

 2. Click the Administration tab and then click the Data Sources link.

 3. On the Data Sources window, click the Create button, which is located below

the data sources list.

 4. From the Adapter menu, select one of the available Relational Driver options

(for example, IBM DB2 JDBC Type 4 Driver).

 5. Type a name for your new data source in the Data Source Name field.

 6. Add the appropriate information for Client Host Name, Port Number, SID,

and Database fields. When you select a particular driver option, the relevant

fields appear.

 7. Type a Default Username and Default Password. The username and

password must be valid on the relational database. The default username and

password are always used when a DB2 Alphablox cube accesses a relational

database. The specified database user requires read access to the database.

Note: The value of the Use DB2 Alphablox Username and Password list is

ignored when the data source is used to populate a DB2 Alphablox

18 IBM DB2 Alphablox: DB2 Alphablox Cube Server Administrator’s Guide

cube. Use access control lists (ACLs) to control user access to DB2

Alphablox cubes. For information about ACLs, see the Administrator’s

Guide.

 8. The Maximum Rows and Maximum Columns values are ignored when the

data source is being used to populate a DB2 Alphablox cube. You can still

enter values and they will be used when other applications use the data

source, but a DB2 Alphablox cube ignores these values.

 9. Set the JDBC Tracing Enabled menu to No unless you want to write JDBC

logging information to the DB2 Alphablox log file. JDBC tracing should only

be enabled when you are experiencing problems and need to debug their

causes.

10. Click the Save button to save the data source.

Defining cubes

To define the general properties of a DB2 Alphablox cube:

1. Log into the DB2 Alphablox Admin Pages as the admin user or as a user who is

a member of the administrators group.

2. Click the Administration tab and then click the Cubes link.

3. Click the Create button. The Cube Administration dialog appears in a new

browser window.

4. In the DB2 Alphablox Cube Name field, type a unique name for the DB2

Alphablox cube. Allowable characters for DB2 Alphablox cube names are A-Z,

a-z, 0-9, underscore (_), and space.

5. Check the Enabled check box to the right of the DB2 Alphablox Cube Name

field now, or later when you are ready to start this cube. When Enabled is

selected, this cube will start automatically whenever the server restarts. If you

are working on the cube definition and do not expect it to run properly or you

do not want to give others access to it yet, leave the check box cleared and

enable the cube later.

6. From the Relational Data Source menu, select a relational data source

previously defined in “Creating relational data sources” on page 18. If the list is

empty, no DB2 Alphablox relational data sources have been defined.

7. (Optional) If you need to restrict access to your cube, type a predefined role

(either defined in your application server or in DB2 Alphablox) into the

Security Role field and check the Enabled check box.

8. (Optional) If you are using IBM DB2 UDB as the data source and have DB2

Cube Views cubes available on your data source, the Enable DB2 Cube Views

Settings option is available. If you select this option, the available cube

definitions in DB2 Cube Views can be used to specify your DB2 Alphablox

cube. To use this option:

a. Using the Cube Model menu, select a cube model.

b. Using the Cube menu, select a cube.

c. Select either the Use Business Names or Use Object Names radio button to

specify the type of names to be used to define objects in your DB2

Alphablox cube.

The Use Business Names option displays alternative descriptive names for

objects that are more meaningful way to users, while the Use Object Names

option displays the labels assigned to the physical objects.

d. Click the Import Cube Definition button to import a cube definition and

pre-populate measures and dimensions in your DB2 Alphablox cube.

Chapter 3. Creating and modifying cubes 19

Depending on the cube definition imported, DB2 Alphablox Cube Server

attempts to specify a DB2 Alphablox cube that closely matches the one in

DB2 Cube Views. Click the Show Import Log button to see a log specifying

information and debugging messages related to the import operation.

e. At this point, you can edit the imported cube measures and dimensions (as

described below) to customize your cube, or you can optionally check the

Import cube definition (on start, rebuild, and edit) option. When selected,

the DB2 Alphablox cube loads the latest DB2 Cube Views cube definition

every time the cube is started, rebuilt, or opened for edit.
9. Click the OK button to save the DB2 Alphablox cube.

Defining measures

All DB2 Alphablox cubes must have one or more measures defined. For a

description of measures, see “Measures” on page 15. To define measures in a DB2

Alphablox cube:

 1. Log into the DB2 Alphablox home page as the admin user or as another user

belonging to the administrators group.

 2. Click the Administration tab and then click the Cubes link.

 3. Select the DB2 Alphablox cube from the list of cubes and click the Edit button.

The DB2 Alphablox Cube Administration dialog for the selected cube appears

in a new web browser window.

 4. In the cube navigation tree, click the Measures node. The measures panel

appears.

 5. In the Measures Fact Table field, type the fully-qualified name of the fact

table as it is defined in the underlying relational database (for example,

CVSAMPLE.SALESFACT). Alternatively, select the correct schema, catalog, and

table combination in the menus to automatically insert the fact table name.

 6. After the fact table has been specified, you can create a new measure by

clicking the Create New Measure button. A new set of options appears.

 7. In the Name field, replace ″New Measure″ by entering the name for your new

measure. Allowable characters for measure names are A-Z, a-z, 0-9,

underscore (_), and space.

Note: The name you enter will appear in result sets sent to DB2 Alphablox

applications, so enter a name that is easy to read and descriptive of its

content. For example, if the measure calculates the sum of sales at a

store, you can name the measure Store Sales.

 8. In the Expression field, type a valid expression. The Expression Builder tool

can be used to help in entering the correct syntax for columns and functions.

There are shortcut buttons available for frequently used functions (AVG,

COUNT, MAX, MIN, and SUM), but you can manually enter any valid

function you need. These functions are used in generating the SQL sent to the

underlying database to calculate the new measure. The following expression

example defines the COGS measure:

SUM(@col(CVSAMPLE.SALESFACT.COGS))

 9. Click the Apply button to add the measure to the list.

10. Repeat these steps as needed to define any other measures you need. To

delete a measure, click the measure label in the navigation tree, then click the

Delete Selected button below the tree.

11. Click the OK button when you are finished modifying the DB2 Alphablox

cube definition, or proceed on to define the dimensions and levels.

20 IBM DB2 Alphablox: DB2 Alphablox Cube Server Administrator’s Guide

Defining dimensions

You must enter information to define the dimensions, levels, joins, attributes, and

other information for the DB2 Alphablox cube. The following tasks explain how to

create and modify dimensions, fact table joins, dimension joins, and levels.

For a description of dimensions and levels, see “Dimensions, levels, and attributes”

on page 14.

Creating dimensions

To create or edit a dimension:

 1. Log into the DB2 Alphablox home page as the admin user or as a user who is

a member of the administrators group.

 2. Click the Administration tab and then click the Cubes link.

 3. Select a DB2 Alphablox cube from the list of cubes and click the Edit button.

The DB2 Alphablox Cube Administration dialog for the selected cube appears

in a new web browser window.

 4. In the DB2 Alphablox cube tree on the left, click the Dimensions label. In the

right panel the Create Dimension button appears. To edit an existing

dimension, click the dimension name and the existing dimension definition

appears.

 5. Click the Create New Dimension button to create a new dimension or select a

dimension from the Dimensions list to edit an existing dimension.

 6. In the Name text box, enter a name for the dimension. Allowable characters

for dimension names are A-Z, a-z, 0-9, underscore (_), and space. The name

specified here will appear in DB2 Alphablox cubes. For a dimension listing

product members ,you might enter Products to appear as the dimension

name.

 7. (Optional) In the Description field, type a short description of the dimension.

This description is a comment field only; it has no effect on the dimension

definition.

 8. Specify the Dimension Type. By default, Regular is selected. If the new

dimension is related displays time values, select Time.

 9. (Optional) Type a default member in the Default Member field. The value

you entered will be the displayed by default. For example, in a Time

dimension, it is common to have the current year as the default member to be

displayed.

Note: If no default member is specified and the dimension does not have an

″all″ level, the first visible member becomes the default member.

10. From the Hierarchy Type menu, choose the appropriate type of hierarchy

being represented. The options include balanced/standard, ragged/standard,

unbalanced/recursive, or unbalanced/standard. When unbalanced/recursive

is selected, the Data Members option allows you to select Showing or Hidden

(the default value).

11. For the ″All″ Level settings, indicate whether you want your dimension to

display an ″all″ level by checking the Has ’All’ level option. By default, this

option is selected. You can also specify the ’All’ Level Member Name. For

example, if you have a Product dimension, you may choose to set the default

Chapter 3. Creating and modifying cubes 21

all level member name to All Products. If you do not type a value in the ’All’

Level Member Name, the default member name will be displayed as All

Product instead.

Note: When ’All’ Level Member Name is left blank, ″All″ is translated based

on the server locale. You can override this by specifying the ’All’ Level

Member Name based on what you want to appear in the user interface.

12. Click the OK button to save the dimension.

After you have created your new dimensions, you can begin defining the required

fact table joins and dimension joins.

Creating fact table joins

For star or snowflake schemas, you need to define a fact table join between the fact

table and each table directly related to the fact table. If you have a snowflake

schema, you must create a fact table join for every table that is directly joined to

the fact table. Also in a snowflake schema, you need to create dimension joins for

other related tables that ware not directly related to the fact table.

To create or edit a fact table join in a dimension, perform the following steps:

1. Click on the Fact Table Join node under the selected dimension.

2. To create a fact table join, click the Create New Join button. A join specification

panel appears. If a fact table join already exists, expand the Fact Table Join

folder and click on the join.

3. In the Expression text box, enter an expression that specifies the fact table join.

You can also use the Expression Builder to assist you in entering an expression

defining the join. Example:

@col(qcc_fact.Week_Ending) = @col(qcc_time.Week_Ending)

4. Click the Apply button to apply and save these settings without closing the

dialog. Click the OK button to save the level definition and close the Cube

Administration dialog.

Creating dimension joins

A dimension join is a join between related tables in a dimension that are not

directly related to the fact table. Dimension joins are used only with snowflake

schemas.

To create or edit a dimension join in the selected dimension:

1. In the Cube Administration dialog, click the Dimension Joins node under Joins

folder of the dimension.

2. To create a new dimension join, click the Create New Join button that appears.

A dimension join dialog appears. To edit an existing dimension join, expand the

Dimension Joins folder and select the join to be edited.

3. In the Expression field, type an expression for the dimension join. You can also

use the Expression Builder to assist you in entering an expression defining the

join. Example:

@col(QCC_PRODUCTS.FAMILYID) = @col(QCC_PRODUCTFAMILIES.FAMILYID)

4. Click the Apply button to apply and save these settings without closing the

Cube Administration dialog. Click the OK button to save your changes and

close the Cube Administration dialog.

22 IBM DB2 Alphablox: DB2 Alphablox Cube Server Administrator’s Guide

Creating levels

For each dimension, you can specify levels in a dimensional hierarchy. At least one

level is required for each dimension. Levels are used to indicate a position within a

hierarchy. For example, in a Time dimension, you could have levels for Year,

Quarter, Month, and Week.

The ’All’ level is a level at the top of the hierarchy with a single member. This

member in the ’All’ level is know as the ’All’ level member and represents the

aggregation of all members below it as it is modeled by the level objects in a

dimension. For most dimensions, it makes sense to have an ’All’ level, but for the

Scenario dimension, and sometimes a time dimension, you will not want to display

an ’All’ level.

For each level in a dimension, you must have a level key defined. A level key

consists of one or more level key expressions. Taken together, the level key

expressions uniquely identify each member in the level. For example, the level key

for a city level might consist of three level key expressions <Country Name, State

Name, City Name>, or it could consist of a single expression (for example,

<city_id>). The order of the level key expressions might influence the member

ordering in the level if member ordering expressions have not been defined. Note

that best practices dictate that level key expressions should not be completely

nullable (at least one of the level key expressions should be not null for each

member of the level).

When you have an unbalanced or ragged hierarchy and use standard deployment,

then your dimension table might have null values. Suppose you have a geography

table which includes the following columns:

 Country Region State City City_ID

USA West California San Jose 1

USA East <null> Washington,

D.C.

2

Canada Quebec <null> Quebec 3

Canada Quebec <null> Montreal 4

Canada British Columbia <null> Vancouver 5

When you model a dimension like this, you need to create four level and specify a

unique level key for each level. An initial reaction might be to create the following

four levels:

v Country: level key = Country; level expression = Country

v Region: level key = Country, Region; level expression = Region

v State: level key = State; level expression = State

v City: level key = City_ID; level expression = City

Looking at the data represented above, there are two countries, four regions, and

five cities. But, how many states are there? Because of the null values, at first

glance it seems that there is only one state (California). The DB2 Alphablox Cube

Server, however, will create internal ″dummy″ States for the null values. If you

drill into Quebec, for example, you will see the Quebec and Montreal. To the end

user, there is only one state, California. Because of this internal representation,

there would be four members in the State level (California, <null>, <null>, and

Chapter 3. Creating and modifying cubes 23

<null>). This would result in the cube not starting because there are three members

(the three <null> values) with the same key at the State level.

To fix this, you need to change the level key for the State level to something like

this:

v State: level key = Country, Region, State; level expression = State

Then the level keys for the four State members (one regular member plus three

dummy members) would be:

v <USA, West, California>

v <USA, East, null>

v <Canada, Quebec, null>

v <Canada, British Columbia, null>

Since these level keys are unique, the cube will start properly.

The important point is that unique keys are required for level expression values

that evaluate to <null>, even though the <null> members are not visible when you

query a cube at runtime.

To create or edit levels in a dimension:

1. To create a new level, click the Levels node under that dimension and click the

Create New Level button. To edit an existing level, open the Levels folder and

select the level you want to edit.

2. For a new level, type a name in the Name field. The default name that appears

is ″New Level.″ Allowable characters for DB2 Alphablox cube names are A-Z,

a-z, 0-9, underscore (_), and space.

3. In the Type menu, select the level type. By default, the type is REGULAR. The

optional types include: REGULAR, TIME, UNKNOWN, TIME_YEARS,

TIME_HALF_YEARS, TIME_QUARTERS, TIME_MONTHS, TIME_WEEKS,

TIME_DAYS, TIME_HOURS, TIME_MINUTES, TIME_SECONDS, or

TIME_UNDEFINED. If you are using a Time dimension, choose the appropriate

time-related level type (for example, TIME_QUARTERS). If an appropriate

time-related level type is not available, then use the TIME_UNDEFINED level

type. The TIME level type should only be used with levels in a regular

dimension. Time-related MDX functions depend on the correct use of the

time-related level types to work properly. If you are not using the TIME_*

levels within a dimension, then you can use a mix of REGULAR, TIME, and

UNKNOWN level types.

4. In the Expression field, enter an expression that specifies the level. You can also

use the Expression Builder to assist you in entering an expression defining the

level. An expression may have an associated performance penalty that you

need to consider. In the following example, a SQL expression using a date

function is used to create three new levels called Year, Month, and Week

Ending:

YEAR(week_ending_date)

MONTHNAME(week_ending_date)

week_ending_date

5. Before applying or saving these changes, you must create at least one or more

level keys that uniquely identify the level (see description above).

a. Under the new level (displayed as ″New Level″ before changes are applied

or saved) in the navigation tree, click on the Level Keys folder and then

click the Create New Level Key button.

24 IBM DB2 Alphablox: DB2 Alphablox Cube Server Administrator’s Guide

b. Manually type in a level key expression or create one using the Expression

builder.

c. Click the Apply button to save your new level key. Your new level key will

appear in the navigation tree under the Level Keys folder. Continue creating

additional level keys, if needed.
6. Click the Apply button to apply and save these settings without closing the

Cube Administration dialog or click the OK button to save your changes and

close the Cube Administration dialog.

Setting level orders

If the default ordering of the levels is not what you expected, you can modify the

level order that will be displayed.

To set the level order:

1. Click the Levels node under the dimension that you are modifying. The Set

Level Order option appears.

2. To move a level up or down in the level order list, select the level in the list

and then click the Move Up or Move Down buttons.

3. When you are finished modifying the level orders, click the Save button.

Creating and editing attributes

Attributes are properties that can be defined for a level and can be used to provide

additional information about the members of that level. For example, a member

named Product might have attributes for size, color, cost, or other related product

information. The MDX Properties() function, supported by the DB2 Alphablox

Cube Server, can be used to display attributes in DB2 Alphablox applications.

To create or edit attributes:

1. To create a new attribute, click the Attributes node that appears under your

dimension and then click the Create New Attribute button. An attribute

definition dialog appears. To edit an existing attribute, click the attribute node

that you want to edit.

2. In the Expression text box, enter an expression that specifies your attribute.

You can also use the Expression Builder to assist you in entering an expression

defining the attribute. Example:

@col(FAMILY.FAMILYID)

3. Click the Apply button to apply and save these settings without closing the

Cube Administration dialog. Click the OK button to save your changes and

close the Cube Administration dialog.

Setting member ordering within a level

The default ordering of members is by member names. If the default ordering is

not what you want, you can use Member Ordering to modify the ordering of

members displayed in a level. If you do not specify a different ordering expression,

the level will be ordered by the member name.

For example, months returned are ordered alphabetically by default and you will

want to change the member ordering so that the months appear in their

chronological order.

Chapter 3. Creating and modifying cubes 25

If months that were defined in a time dimension like this:

MONTHNAME(week_ending_date)

and displayed alphabetically, you can create a member ordering expression like

this:

MONTH(@COL(week_ending_date)

which results in the months being ordered chronologically, as desired.

To modify the member ordering in a level:

1. Click on the Member Ordering label under the level that you want to modify.

2. Click on the Create New Member Ordering button.

3. Use the Expression builder to create an expression, or manually enter an

expression, for the member ordering that you want to use.

4. Click the Apply button to apply and save these settings without closing the

Cube Administration window, or click the OK button to save your changes and

close the window.

Creating persistent calculated members

1. Log into the DB2 Alphablox home page as the admin user or as a user who is a

member of the administrators group.

2. Click the Administration tab.

3. Click the Cubes link.

4. Select a DB2 Alphablox cube from the list of cubes and click the Edit button.

The DB2 Alphablox Cube Administration dialog for the selected cube appears

in a new browser window.

5. In the navigation tree for the selected cube, locate and click on the Calculated

Members label.

6. Click the Create New Calculated Member button.

7. In the Member Name field, enter a valid member name, which includes the

dimension name and member name ([DimensionName].[MemberName]. For

example, to add a new calculated measure to represent an inventory backlog,

the calculated member name might be ″[Measures].[CalculatedCost].″

8. In the MDX Expression field, enter a valid MDX expression that specifies the

new member value. For example, for a new [Measures].[CalculatedCost]

calculated member, a valid MDX expression might look like this:

[Measures].[Sales Amount]-[Measures].[Profit Amount]

9. Select an integer for the Solve Order value. The solve order value must be an

integer value (positive, zero, or negative) for the order in which the specified

calculated member should be evaluated. The solve order values are evaluated

relative to each other, with negative values solved before zero or positive

values.

Creating Alphablox Cube Server Adapter data source definitions

Before you can query a DB2 Alphablox cube, a DB2 Alphablox data source that

uses the Alphablox Cube Server Adapter must be defined. A single data source

can be used to access multiple DB2 Alphablox cubes from multiple applications.

The cube that is accessed is determined by the FROM clause of the MDX query

used by an Alphablox application. To create a DB2 Alphablox Cube Server Adapter

data source, perform the following steps.

26 IBM DB2 Alphablox: DB2 Alphablox Cube Server Administrator’s Guide

1. Log into the DB2 Alphablox home page as the admin user or as a user who is a

member of the administrators group.

2. Click the Administration tab and then click the Data Sources link.

3. Click the Create button.

4. From the Adapter menu, select the adapter named Alphablox Cube Server

Adapter.

5. Enter a name in the Data Source Name text box.

6. (Optional) Enter a description in the Description text box.

7. Specify a number in the Maximum Rows and the Maximum Columns text

boxes. The values limit the number of rows or columns returned for queries

entered through this data source. The default values are 1000.

8. Click the Save button to save the data source.

Specifying and managing cube resources

For each DB2 Alphablox cube, you can define a schedule for refreshing its data

from the underlying database. You can also set several tuning parameters for each

cube.

Defining a refresh schedule

When the underlying data in the relational database used with a DB2 Alphablox

cube changes, any data cached in a DB2 Alphablox cube might be stale. When the

data becomes stale, you should rebuild the cube to guarantee that answers derived

from the DB2 Alphablox cube are correct with respect to the underlying database.

You can manually rebuild the cube, which rebuilds the dimensions and empties the

in-memory cache, by either stopping and restarting the DB2 Alphablox cube or

using the REBUILD CUBE <cube_name> console command. Alternatively, if the

dimensions have not changed but new or changed data has been added to the

database, you can manually empty only the in-memory cache by using the

EMPTYCACHE <cube_name> console command.

If the underlying database is updated at regular and predictable intervals, it might

make sense to schedule regular updates to the DB2 Alphablox cube that references

that database. For example, if the database is updated every night at 9:00 PM, you

might want to rebuild the DB2 Alphablox cube every morning at 3:00 AM.

To configure a DB2 Alphablox cube to rebuild itself at regular intervals, perform

the following steps:

1. Log into the DB2 Alphablox home page as the admin user or as a user who is a

member of the administrators group.

2. Click the Administration tab.

3. Click the Cubes link.

4. Select a DB2 Alphablox cube from the list of cubes and click the Edit button.

The DB2 Alphablox Cube Administration dialog for the selected cube will

appear in a new web page window.

5. In the cube navigation tree on the left, click the Schedule label. A scheduling

panel appears.

6. Check the Refresh every box to enable scheduled DB2 Alphablox cube

rebuilding.

Chapter 3. Creating and modifying cubes 27

7. Set the refresh interval by clicking the desired buttons and modifying the

corresponding time periods. For example, to set the DB2 Alphablox cube to

rebuild every day at 3:00 AM, select the second button and enter 3:00 AM for

the time.

8. Click the Save button to update the DB2 Alphablox cube definition.

Setting tuning parameters

For each DB2 Alphablox cube, you can set several tuning parameters for resource

management. To do so, perform the following steps:

1. Log into the DB2 Alphablox home page as the admin user or as a user who is a

member of the administrators group.

2. Click the Administration tab.

3. Click the Cubes link.

4. Select a DB2 Alphablox cube from the list of cubes and click the Edit button.

The DB2 Alphablox Cube Administration dialog for the selected cube will

appear in a new web page window.

5. In the cube navigation tree on the left, click the Tuning node to open the

tuning panel.

6. Set the tuning parameter options, based on your system and user requirements.

The following table describes the available options. For more detailed

information on these and other tuning parameters, see “Tuning cubes” on page

36.

 Tuning Parameter Description

Maximum

Concurrent

Connections

The maximum number of concurrent connections to this DB2

Alphablox cube. The limit is reached only when the connections are

all executing queries simultaneously. When the limit is reached, a

new connection must wait for a free connection.

Data Source

Connection Pooling

Connection pooling for DB2 Alphablox cubes can be enabled by

selecting the Connection Pooling Enabled check box in the Data

Source Connection Pooling group. When connection pooling is

enabled, you should also specify the maximum number of

persistent connections that can be made to the underlying relational

database. The default value for Maximum Persistent Connections is

10. When the specified number of connections is reached, a new

connection must wait for a free database connection. When using

this limit, once each connection is opened it remains open (up to the

specified maximum number of persistent connection) for use by

other SQL queries. When Connection Pooling Enabled is not

selected, each query uses and then closes a separate connection.

Note: Although connection pooling is available using this setting in

the DB2 Alphablox Cube Server, this setting is primarily useful for

DB2 Alphablox installations on Apache Tomcat 3.2.4, where

connection pooling is not available. For DB2 Alphablox installations

on WebSphere and WebLogic servers, you should use the

connection pooling capabilities of the application server. To use

connection pooling on your WebSphere or WebLogic servers, you

need to use the Application Server Adapter option when defining

DB2 Alphablox relational data source definitions. See your

application server documentation for details on configuring

connection pooling with supported data sources.

28 IBM DB2 Alphablox: DB2 Alphablox Cube Server Administrator’s Guide

Tuning Parameter Description

Data Cache By default, the Unlimited option is selected for the data cache

associated with the selected DB2 Alphablox cube. To restrict the size

of the data cache for the selected cube, you can uncheck the

Unlimited option and then specify the maximum size (number of

rows) of the data cache to be stored in the DB2 Alphablox Cube

Server’s in-memory data cache. After the maximum size is reached,

the results from the least recently used cached queries are aged out

of the cache to make room for the new rows.

Optionally, you can specify an MDX query in the Cache seeding

query (optional) field. By default, no seeding query is specified. To

enable the optional query, you must also select the Enabled option.

The query entered in this text box executes when the cube is started

or rebuilt. This query will populate the DB2 Alphablox Cube Server

in-memory cache with an initial set of results. These results seed the

cache with data retrieved from the underlying database. Any

subsequent DB2 Alphablox cube queries requiring only data that is

already in the DB2 Alphablox Cube Server cache are answered

directly from the cache, thus improving response time by avoiding

additional SQL queries to the underlying database. The name of the

cube referenced in the FROM clause of the MDX query must be the

name previously defined in the DB2 Alphablox Cube Name text

box.

Member Cache By default, the Static (All members loaded into memory) option is

selected and all members will be loaded into the member cache.

Optionally, you can choose the Dynamic (Members loaded into

memory as needed) option and members will be loaded into the

member cache only as they are needed. If this dynamic member

cache option is selected, the default maximum size (number of

members) is set to 100,000. You can choose another non-zero value,

or select the Unlimited option, loading all members into the data

cache memory as they are needed.

7. Click the Save button to update the DB2 Alphablox cube definition.

Reviewing a cube

It is usually worthwhile to take a few minutes after you have created a DB2

Alphablox cube to ensure that the measures, dimensions, and levels are defined

correctly. If you find any errors, you can easily correct them. To do a review on a

DB2 Alphablox cube, perform the following steps:

 1. Log into the DB2 Alphablox home page as the admin user or as a user who is

a member of the administrators group.

 2. Click the Administration tab.

 3. Click the Cubes link.

 4. Select the DB2 Alphablox cube from the list of cubes and click the Edit button.

A page showing the Edit DB2 Alphablox Cube General tab appears.

 5. Verify that the data source specified in the Relational Data Source text box

references the desired relational database. You might need to check the

settings for the data source on the Data Sources administration page.

 6. Before attempting to start the DB2 Alphablox cube, verify that Enabled is

selected next to the Alphablox Cube Name text box. If it is not enabled, you

will see an error message when attempting to start the cube.

Chapter 3. Creating and modifying cubes 29

7. Verify that your measures are properly created:

a. Click the Measures node to verify that the table specified in the Measures

Fact Table text box is the correct table in the relational schema, the name is

spelled correctly, and the name is a fully-qualified name.

b. For each defined measure, check that the desired aggregation is specified

in the Expression text box.
 8. Verify that all the desired dimensions have been correctly defined, and that

the names are correct. For each dimension, check the following:

a. Verify that you had added any required fact table join and dimension

joins, and that the expressions are correct.

b. Verify that the levels are correctly specified and appear in the correct

order. The first level should be the most summarized level, and each

successive level should be the next level down in the hierarchy. For

example, if the hierarchy for the Time dimension is Year, Month, Day, then

Year should be the first level, followed by Month , followed by Day .

c. Verify that any attributes that you have defined are correct, including the

expected names and expressions.
 9. Click the Schedule tab and verify that all the settings are the way you want

them.

10. Click the Tuning tab and verify that all the settings are the way you want

them.

After completing this review of your DB2 Alphablox cube, you can start the cube.

For details on starting a DB2 Alphablox cube, see “Starting, stopping, and

rebuilding cubes” on page 31.

30 IBM DB2 Alphablox: DB2 Alphablox Cube Server Administrator’s Guide

Chapter 4. Maintaining cubes

DB2 Alphablox Cube Server provides functionality to perform administrative tasks

on DB2 Alphablox cubes. These tasks are performed either through the DB2

Alphablox administration user interface or through the Console.

Starting, stopping, and rebuilding cubes

The most common administrative tasks you need to perform on a DB2 Alphablox

cube are to start, stop, and rebuild the cube.

Starting a DB2 Alphablox cube

You must start a DB2 Alphablox cube to make it available for querying. You can

start a cube either from the DB2 Alphablox Home Page from the command line of

a Console window. When you start a cube, the Cube Server runs queries to the

underlying relational database. The results of these queries are used to load the

dimension members into the cube’s in-memory cache. A DB2 Alphablox cube can

have a cache seeding MDX query specified as part of its definition, which is used

to precompute some results to store in the cube’s cache. If one is specified, at

startup time the Cube Server runs the MDX query against the DB2 Alphablox cube

to populate the cache with the measure values returned from the MDX query.

Starting cubes from the DB2 Alphablox Admin Pages

To start a DB2 Alphablox cube from the DB2 Alphablox Admin Pages:

1. Log into the DB2 Alphablox Admin Pages as the admin user or as a user who is

a member of the administrators group.

2. Click the Administration tab. The General page opens.

3. Under the Runtime Management section, click the Cubes link.

4. From the DB2 Alphablox Cubes list, select the DB2 Alphablox cube to start.

5. To view the current status of the DB2 Alphablox cube, click the Details button.

6. Click the Start button. When the DB2 Alphablox cube has completed the

startup operation, the status field displays Running.

Starting cubes from a console window

To start a DB2 Alphablox cube from a console window, perform the following.

1. If DB2 Alphablox is not already running, start it. See Administrator’s Guide for

details about starting DB2 Alphablox.

2. In a Console window, enter the following command:

start cube cube_name

where cube_name is the name of the DB2 Alphablox cube to start. When using

the DB2 Alphablox Admin Pages in a web browser, you can also open a

console window by selecting Administration > General > Start Console

Session.

Troubleshooting when a cube does not start

If the DB2 Alphablox cube fails to start, an error message appears that can help

determine why the problem. When troubleshooting a problem, the following

logging tools can provide more information:

© Copyright IBM Corp. 1996, 2006 31

v Check the DB2 Alphablox log file.

v Raise the message level on the Console to DEBUG by entering the following in a

Console window:

report debug

v Enable JDBC tracing in the DB2 Alphablox relational data source.

For information about enabling any of these logging options, see the

Administrator’s Guide.

The following table shows some common scenarios that might cause the startup

operation to fail and lists suggestions for correcting the problem. After you

determine the problem, correct it and try to start the DB2 Alphablox cube again.

 Error Description

“Make sure the cube is

enabled.”

Check to see if your cube is enabled. On the command line,

enter the following to see if the cube is enabled:

show cube cube_name

To enable a DB2 Alphablox cube, from the General tab in

the Cubes user interface, select Enabled next to the DB2

Alphablox Cube Name text box.

An error connecting to the

underlying database.

Connection errors can be caused by a variety of problems.

The following are some common things to check:

v Check that the relational data source has the correct

connect information.

v Check that the relational data source has a valid, non-null

username and password.

v Make sure the database is available for connections.

A syntax error from the

underlying database.

Syntax errors from the relational database generally indicate

an error in the cube definition. For example, if the syntax

error indicates that a column is not found, check the

dimension definitions to ensure that the column and table

names are named exactly as they are in the database.

Stopping DB2 Alphablox cubes

Stopping a DB2 Alphablox cube makes it unavailable for querying and removes all

entries in the cube’s in-memory cache and all the dimension members from the

cube’s outline.

Stopping cubes from the DB2 Alphablox Admin Pages

To stop a DB2 Alphablox cube through the DB2 Alphablox Admin Pages:

1. Log into the DB2 Alphablox Admin Pages as the admin user or as a user who is

a member of the administrators group.

2. Click the Administration tab. The General page appears.

3. Under the Runtime Management section, click the DB2 Alphablox Cubes link.

4. Select the Alphablox cube you want to stop from the DB2 Alphablox Cubes

list.

5. To view the current status of the DB2 Alphablox cube, click the Details button.

32 IBM DB2 Alphablox: DB2 Alphablox Cube Server Administrator’s Guide

6. Click the Stop button. When the DB2 Alphablox cube has completed the

shutdown operation, the status field displays Stopped.

Stopping cubes from a console window

To stop a DB2 Alphablox cube from a Console window, enter the following

command:

stop cube cube_name

where cube_name is the name of the DB2 Alphablox cube to stop. When using the

DB2 Alphablox Admin Pages in a web browser, you can also open a console

window by selecting Administration > General > Start Console Session.

Note: The DB2 Alphablox cube will not stop until any executing queries have

completed.

Rebuilding DB2 Alphablox cubes

You should either rebuild or restart a DB2 Alphablox cube when the data,

including the dimension data, changes in the underlying database. You must

rebuild or restart (or wait for the next refresh interval, if one is configured) the

cube when you change the cube definition in order for the changes to take effect in

queries.

During a rebuild operation, the cube is unavailable for querying; new queries wait

and are executed after the rebuild operation completes. The rebuild operation waits

until any running queries complete before starting the operation. The size of the

dimensions and the performance of the queries that populate the dimension from

the underlying database determine how long the operation takes.

To rebuild a DB2 Alphablox cube type the following command from a Console

window:

rebuild cube cubeName

where cubeName is the name of the DB2 Alphablox cube to rebuild. When using

the DB2 Alphablox Admin Pages in a web browser, you can also open a console

window by clicking Administration > General > Start Console Session.

If the dimension data has not changed but the fact data has (for example, the sales

numbers for the last quarter were added to the database), then you can empty the

contents of the in-memory cache only. To empty all the entries in the cache but

leave the dimension members as is, enter the following command from a Console

window:

emptycache cube cubeName

Administration strategies

After you have defined and started a DB2 Alphablox cube, maintenance tasks are

needed only if one of the following occurs:

v The data changes in the underlying database.

v The cube definition changes.

Because the DB2 Alphablox cube resides in memory, there is no disk space to

manage. There are memory considerations, but those are not usually day-to-day

Chapter 4. Maintaining cubes 33

administrative tasks. For information about memory issues, see “DB2 Alphablox

cube memory considerations” on page 39.

You do have to be aware of the environment in which the underlying relational

database operates. The way the underlying database is managed can have

important implications on a DB2 Alphablox cube.

Understanding database environments

Every time data changes in the database underlying a DB2 Alphablox cube, the

data within the DB2 Alphablox cube may not be in synchronization (or up-to-date)

with the underlying relational data changes. A DB2 Alphablox cube obtains data

from queries to the underlying database. When a query requests data from a DB2

Alphablox cube, DB2 Alphablox Cube Server checks to see if the results are in its

in-memory data cache. If the results are there, they are immediately available to

the application, resulting in fast response times. Although the results were

originally retrieved from the underlying database, those results were retrieved at

some point in the past. If the data in the underlying data source has not changed,

there is no problem. If the data in the underlying database changes between the

time when the cache entry occurred and the time a query asks for the results, then

the results will not match.

Furthermore, if some of the members in the DB2 Alphablox cube were inserted,

updated, or deleted from the database, the results from the DB2 Alphablox cube

would not reflect the true state of the dimensions. The results from a new query to

the DB2 Alphablox cube might still match the results in the underlying database,

but they might not. It depends on exactly what values changed in the database,

what is stored in the in-memory cache for the Alphablox cube, and what data the

query requests.

Because there is no sure way to know if the DB2 Alphablox cube is still valid and

up-to-date when the data in the underlying database changes, the safest action is

to rebuild the cube. Therefore, it is critical to know when and how the underlying

database changes.

For example, if you know the database never changes, you never need to rebuild

the DB2 Alphablox cube. If the database only adds new data to parts of the

database you do not have defined in the cube, you might not need to rebuild.

If the database is updated nightly with potential changes to all parts, you probably

need to rebuild the DB2 Alphablox cube nightly, after the database update is

completed. The more you know about the environment in which the database

operates, the better you can predict when the data in your DB2 Alphablox cube

becomes stale.

Scheduling periodic updates

It is very common for data warehouse and data mart databases to be updated on a

planned, periodic schedule. Based on that schedule, you can schedule periodic

updates to DB2 Alphablox cubes. You can perform the updates manually using the

REBUILD CUBE or the EMPTYCACHE CUBE console commands. Alternatively, you can set

up an automated rebuild schedule for each DB2 Alphablox cube. For details on

setting up an automatic schedule, see “Defining a refresh schedule” on page 27.

There is no one best way to schedule updates to a DB2 Alphablox cube. It is very

important to know what is going on in the relational database. It is equally

important to know the habits and requirements of your user community.

34 IBM DB2 Alphablox: DB2 Alphablox Cube Server Administrator’s Guide

Rebuilding a DB2 Alphablox cube might take some time, depending on the size of

the cube and its underlying database. Typically, the best time to schedule rebuilds

is late at night when there are few or no users on the system. Also, particularly if

the rebuild operations take a long time, make sure the users know that the cube

will not be available during those times.

Console commands

You can perform most cube management tasks from the DB2 Alphablox console

window. To access the console, click the Administration tab, General page, Start

Console Sessionlink, or use the DB2 Alphablox Console window that opens when

you start DB2 Alphablox. The following table lists the cube commands and a

description of what each does.

Command Syntax

Description

delete cube cubeName

Deletes a cube and its entire definition.

disable cube cubeName

Sets a cube in the disabled state. A disabled cube cannot be started until it

is enabled and therefore does not automatically start when DB2 Alphablox

starts. A cube should be stopped before it is disabled.

emptycache cube cubeName

Removes all entries from the cube’s in-memory cache. After emptying the

cache, a query against the DB2 Alphablox cube must retrieve the results

from the underlying database. Use this command when the underlying

database has changed to ensure the results retrieved from the DB2

Alphablox cube are equivalent to the data stored in the database. Note that

the EMPTYCACHE command does not rebuild the dimension outlines of the

cube. To rebuild the dimension outlines, use the REBUILD command or

stop and start the cube.

enable cube cubeName

Sets a cube to the enabled state. A cube must be enabled before it can be

started. Enabled cubes start automatically when DB2 Alphablox starts.

rebuild cube cubeName

First removes the member names for all the dimensions and all the

measures from the in-memory cache; then queries the underlying database

to repopulate the dimension member names for all the dimensions. If an

initial MDX cache seeding query is specified in the cube definition, that

query is executed to populate the cache.

show cube cubeName

Shows the current status of the cube. The cube status can be:

v disabled

v stopped

v starting

v running

To show the status of all defined DB2 Alphablox cubes, enter the following

command:

show cube

start cube <cube_name>

Starts a cube and makes it available for querying. When a cube starts, it

Chapter 4. Maintaining cubes 35

queries the underlying database to populate the dimension members and

runs the MDX cache seeding query (if one is specified in the cube

definition).

stop cube <cube_name>

Stops a cube that is running. When a cube stops, it becomes unavailable

for querying and the dimension members and the measures are removed

from the in-memory cache.

Modifying cubes

You can change any part of the DB2 Alphablox cube definition at any time.

Changes to a stopped cube apply immediately. Changes to a running cube are

saved to the cube definition immediately but are not applied to the running cube

until it is either rebuilt or restarted, either through the Console or scheduled

refreshes.

You use the Cubes administration page to modify a DB2 Alphablox cube the same

way as you create one. You can update any part of the cube definition and save it.

For details on how to enter your definitions in each part of the user interface, see

Chapter 3, “Creating and modifying cubes,” on page 17.

Tuning cubes

There are a number of administrative controls for tuning and configuring DB2

Alphablox cubes. Because DB2 Alphablox cubes run in memory and can

potentially grow to use large amounts of memory, you should be aware of some

memory considerations.

Tuning controls

Use the controls described in this section to control the resources DB2 Alphablox

cubes.

Connection and cache size limits

You can specify connection and cache size limits for each defined DB2 Alphablox

cube on the Cubes page, opening the Cube Administration dialog, and clicking on

the Tuning label in the cube navigation tree.

Maximum concurrent connections:

When there are many users querying the DB2 Alphablox cube simultaneously,

machine resources on the computer running DB2 Alphablox can be consumed

faster than if there are only a few users. Keep in mind, however, that the queries

have to be executing at exactly the same time for there to be contention for resources.

This might not happen very often, even if there are many users connected at the

same time. If this becomes a problem on your system, you can limit the number of

connections allowed for each DB2 Alphablox cube.

The amount of resources used is completely dependent on the types of queries that

are being issued. Many queries use very little machine resources, but some

long-running queries might consume significant resources.

To tune the maximum concurrent connections for a DB2 Alphablox cube:

1. Log into the DB2 Alphablox Home Page as the admin user or as a user who is a

member of the administrators group.

36 IBM DB2 Alphablox: DB2 Alphablox Cube Server Administrator’s Guide

2. Click the Administration tab.

3. Click the Cubes link.

4. Select the DB2 Alphablox cube from the list of cubes and click the Edit button.

The DB2 Alphablox Cube Administration dialog for the selected cube will

appear in a new web page window.

5. Click the Tuning tab.

6. Check any of the boxes for the limits you want to set and enter a

corresponding number.

7. Click the Save button to save the limits to the DB2 Alphablox cube definition.

Data source connection pooling:

Connection pooling for DB2 Alphablox cubes can be enabled by selecting the

Connection Pooling Enabled check box in the Data Source Connection Pooling

group of the Tuning section of a DB2 Alphablox cube definition. When connection

pooling is enabled, you must also specify the maximum number of persistent

connections that can be made to the underlying relational database. The default

value for Maximum Persistent Connections is 10. When the specified number of

connections is reached, a new connection must wait for a free database connection.

When using this limit, once each connection is opened it remains open (up to the

specified maximum number of persistent connection) for use by other SQL queries.

When Connection Pooling Enabled is not selected, each query the DB2 Alphablox

Cube Server sends to the database opens a new connection and then closes it when

the results are returned. The new connections are opened regardless of the status

of any of the other connections. The connections are never shared and are never

left idle.

Note: Although connection pooling is available using this setting in the DB2

Alphablox Cube Server, this setting is primarily useful for DB2 Alphablox

installations on Apache Tomcat 3.2.4, where connection pooling is not

available. For DB2 Alphablox installations on WebSphere and WebLogic

servers, you should use the connection pooling capabilities of the

application server. To use connection pooling on your WebSphere or

WebLogic servers, you need to use the Application Server Adapter option

when defining DB2 Alphablox relational data source definitions. See your

application server documentation for details on configuring connection

pooling with supported data sources.

Each connection to the database has a cost associated with it, however small. In

many cases, the difference in response time is not noticeable, but in some cases it

might be. It is also possible that the underlying database might restrict the number

of connections it accepts, so the DBA might not want you using up too many

connections.

Data and member caching:

Using the options available in the Tuning panel for a particular DB2 Alphablox

cube, you can improve the performance of the cube. Two available caches, the data

cache and member cache, can be modified to potentially improve the performance

of a cube. The more data that is stored in the caches, the less often queries to the

DB2 Alphablox cube will need to retrieve results from the underlying database,

thus providing faster query response time. However, if the cache grows too large,

it will use up memory on the machine, potentially slowing the performance for all

users. To determine the optimal size for your system, you will need to experiment

Chapter 4. Maintaining cubes 37

and consider memory resources, user load, and query load. Depending on the user

and query loads, balance the trade offs to decide the best data and member cache

sizes.

The data cache stores cube cells fetched from the relational database. Once loaded

into the data cache, the stored data is shared among concurrent and subsequent

queries when available. The size of the data cache is configurable. See “Setting

tuning parameters” on page 28 for details about data cache options.

The member cache stores dimension metadata (members) and can be tuned to

either completely or partially cache members. For member caching, there are two

modes available: static caching (default) and dynamic caching. When static caching

is used, dimension members are read from the relational data source and

preloaded into memory during cube startup.

When dynamic caching is selected, dimension members are read from the

relational data source and stored in compressed data files in a user-specified

location on the file system. Disk space usage is proportional to the number of

members in the cube. The amount of memory used for the member cache is

proportional to the number of members and the size of each member. The fixed

cost for each member is approximately 168 bytes on 32-bit systems and

approximately 290 bytes on 64-bit systems. Variable costs depend on the member

keys, the average member name length, the number and type of member

properties, the number of children a member has, and other costs.

For each dimension in a cube, two files are created in the member cache directory,

one containing dimension data (named [cubeName].[dimensionName] and an

associated index file (named [cubeName].[dimensionName].idx). The dimension file

contains information about member names, member properties, member keys, and

other member data. For each cube, there is also a cube index file (named

[cubeName].idx).

When a cube is started or refreshed, the cube’s member cache files are generated

and any previous files are overwritten. As long as the cube is running, dimension

members are dynamically read into memory from the dimension files on an

as-needed basis. If the member cache grows larger than user-specified parameters,

the space is managed according to the DB2 Alphablox Cube Server’s caching

policies.

The location of this directory, which applies to all cubes, can be specified using the

DB2 Alphablox Cube Manager link on the Administration tab of the DB2

Alphablox Admin Pages. The Member Cache Directory Path value specifies the

directory path for the disk storage of dimension data for each DB2 Alphablox cube.

By default, the directory path is alphablox_dir\analytics\repository\temp (for

example, c:\alphablox\analytics\repository\temp). You can specify a different

directory path location, based on performance or backup requirements. For optimal

I/O performance, the member cache directory should be on a local file system

rather than a network-mounted file system. See “Setting tuning parameters” on

page 28 for details about member cache options.

F

For more information about memory, see “DB2 Alphablox cube memory

considerations” on page 39.

To tune the data and member caches for a DB2 Alphablox cube:

38 IBM DB2 Alphablox: DB2 Alphablox Cube Server Administrator’s Guide

1. Log into the DB2 Alphablox Home Page as the admin user or as a user who is a

member of the administrators group.

2. Click the Administration tab.

3. Click the Cubes link.

4. Select the DB2 Alphablox cube from the list of cubes and click the Edit button.

The DB2 Alphablox Cube Administration dialog for the selected cube will

appear in a new web page window.

5. Click the Tuning tab.

6. Check any of the boxes for the limits you want to set and enter a

corresponding number.

7. Click the Save button to save the limits to the DB2 Alphablox cube definition.

Maximum number of cubes

If you have defined many DB2 Alphablox cubes, and if each cube starts using large

amounts of memory and machine resources, the performance of your entire system

will be affected. To help control this, you can limit the number of DB2 Alphablox

cubes allowed to run in DB2 Alphablox. The limit controls the number of DB2

Alphablox cubes that can run simultaneously; it does not limit the number that can

be defined.

To set a limit on the number of concurrently running DB2 Alphablox cubes,

perform the following steps:

1. Log into the DB2 Alphablox Home Page as the admin user or as a user who is a

member of the administrators group.

2. Click the Administration tab. The General page appears.

3. Under the General Properties section, click the DB2 Alphablox Cube Manager

link.

4. Check the box labeled Maximum Cubes and enter a number for the limit you

want to set.

5. Click the Save button to save your changes.

Maximum rows and columns

By restricting the maximum number of rows and columns in a DB2 Alphablox

Cube Data Source, you can restrict applications from issuing queries that return

large amounts of data. You set these limits in the DB2 Alphablox cube data source

on the Data Sources administration page. The data source is the one used to issue

MDX queries against a DB2 Alphablox cube.

DB2 Alphablox cube memory considerations

The DB2 Alphablox Cube Server runs as part of the Java™ process in which DB2

Alphablox runs. Therefore, as the Cube Server uses more memory, the Java process

uses more memory. The memory limits for the DB2 Alphablox Java process are set

at installation. If you find that the DB2 Alphablox is running out of memory due to

DB2 Alphablox cubes using large amounts of memory, there are several possible

actions you might take:

v Limit the size of the in-memory cache for each cube. For details, see “Connection

and cache size limits” on page 36.

v Limit the number of Alphablox cubes in the system. For details, see “Maximum

number of cubes.”

Chapter 4. Maintaining cubes 39

v Change the maximum size of the memory heap for the Java process in which

DB2 Alphablox runs. For details, see “Changing the maximum memory heap

size” below.

v Increase the memory capacity of the computer in which DB2 Alphablox runs.

For details, see “Adding more memory to your system.”

Changing the maximum memory heap size

The DB2 Alphablox Cube Server runs as part of the Java process for DB2

Alphablox. If you are experiencing out-of-memory errors in DB2 Alphablox, you

might need to raise the maximum memory heap size of the Java process. Set the

maximum memory heap size to a value high enough to accommodate your

memory requirements but low enough so that it does not cause the operating

system to excessively swap to disk when the process size approaches the

maximum. Also, leave some room for unexpected memory use on the machine. For

example, if your machine has 1024 megabytes of memory and other resources on

the machine use about 300 megabytes of memory, consider setting the maximum

memory heap size to a value as large as 600 megabytes.

It might require some experimentation to find the ideal maximum for your system.

If you are not having any problems, performance is good, and there are no

out-of-memory errors in your DB2 Alphablox cubes, then the limits are set well for

your environment.

Adding more memory to your system

One often overlooked solution to memory issues is to add more memory to the

system in which DB2 Alphablox runs. Check with your hardware vendor to

determine how much memory you can install on your computer. As the memory

use on a system grows toward the limits of the installed physical memory, the

system will swap memory to disk to make room for new memory requests,

resulting in much more inefficient memory management.

A memory upgrade is often a relatively inexpensive way to increase server

capacity. Also, it often helps or eliminates memory usage issues. If there is room on

the system for adding more memory, consider doing so.

40 IBM DB2 Alphablox: DB2 Alphablox Cube Server Administrator’s Guide

Chapter 5. Using MDX to query DB2 Alphablox cubes

DB2 Alphablox applications use the Multidimensional Expressions (MDX) language

to query a DB2 Alphablox cube. MDX is the query language component of the

OLE DB for OLAP specification, created and maintained by Microsoft. DB2

Alphablox cubes support a subset of the MDX syntax and functions. This section

describes the supported MDX syntax for querying DB2 Alphablox cubes and

provides example queries.

Supported MDX syntax

MDX is a multidimensional query language used by several multidimensional

databases including Microsoft Analysis Services. DB2 Alphablox Cube Server uses

a subset of the MDX syntax as the query language for DB2 Alphablox cubes. For a

DB2 Alphablox application that accesses a DB2 Alphablox cube, the MDX query is

used as the value for the DataBlox query parameter (or associated methods).

Basic syntax

The basic syntax for an MDX query against a DB2 Alphablox cube is as follows:

SELECT {axisSpecification} ON COLUMNS,

 {axisSpecification} ON ROWS

FROM cubeName

WHERE (slicerItems)

where:

axisSpecification

is a set of one or more tuples. Tuples can be entered as a list or

“generated” with the CrossJoin function.

cubeName

is the name of a defined Alphablox cube.

slicerItems

is a tuple (often a comma-separated list of members) on which the query

result set is filtered. If there is more than one slicer member, each must be

from a different dimension, and the dimension cannot be referenced in any

of the axes specified in the query.

Usage notes

The following points include important information about MDX usage in the

context of DB2 Alphablox.

v A dimension can only appear on a single axis in a query. Queries that place a

dimension on more than one axis fail with an error.

v A query can specify zero or more axes, although it is typical to specify two axes.

The COLUMNS axes can also be specified as AXIS(0), the ROWS axis as AXIS(1).

Each subsequent axis are referred to as AXIS(n), where n is the next consecutive

integer. Note that DB2 Alphablox applications that display the data from a query

(GridBlox, ChartBlox, or PresentBlox) can only accept queries with at most two

specified axes. A query rendered as an XML data set can accept any number of

axes.

v Keywords in MDX on DB2 Alphablox are not case-sensitive, but member names

in an MDX query are case-sensitive when surrounded by square brackets [].

© Copyright IBM Corp. 1996, 2006 41

When member names are not surrounded by square brackets [], they are

converted to uppercase before being sent to the server. Unless all of your

member names are uppercase in the database, you should use the square bracket

syntax

v If you include only a dimension name in an MDX function where a member was

expected, DB2 Alphablox Cube Server will return results using the

[dimensionName].currentMember as the value.

Specifying member sets

A member set is comprised of one or more members from the same dimension. It is

good practice to always enclose member names in square brackets [], although it

is not required. When a member name contains spaces, the square brackets are

required. Member names are case sensitive; therefore, the following member

specifications are not equivalent:

[Time].[Fiscal Year]

[Time].[fiscal year]

Qualifying member names

You can qualify a member name by using the dimension name and its parents in

the hierarchy, similar to object syntax, as follows:

[Dimension].[Level].[Member]

You can also qualify a member name by using the dimension name and one or

more ancestors of the member, as follows:

[Dimension].[Member].[Member]

Note: Always qualify a member name at least enough to make it unique.

Curly braces

Curly braces denote sets, and a set placed on an axis in an MDX query must be

enclosed in curly braces { }. For example, the syntax to specify a set containing the

products Golden Oats and Sugar Grains is as follows:

{[Product].[Golden Oats], [Product].[Sugar Grains]}

FROM:TO syntax

You can specify a member set that extends from one point in the level to another

(inclusive) by using a colon (:) to separate the members. For example, if you have a

dimension called Alphabet with members A-Z, the following evaluates to the set {D,

E, F, G, H}:

{[Alphabet].[D]:[Alphabet].[H]}

Calculated members

Calculated members enable derived members to be created without adding new

members to the underlying relational data source.

Calculated members (also known as derived members) are members of dimensions

that are derived from the values of other members by using mathematical or

logical operations. Any values written to them are overwritten when the next

calculation occurs.

Calculated members allow new members to be added to your data source, without

requiring the rebuilding of the cube or adding new values to a data source.

Calculated members are also useful in situations where the derived values are

infrequently accessed.

42 IBM DB2 Alphablox: DB2 Alphablox Cube Server Administrator’s Guide

Non-persistent calculated members

Non-persistent calculated members can be defined as part of an MDX query, using

the WITH MEMBER clause. Non-persistent calculated members are only available

for the lifetime of the query and may have limited usefulness in analytic

applications.

Persistent calculated members

Persistent calculated members are defined as part of the cube, during cube

definition. The advantage of persistent calculated members is that they are

available for any query. In DB2 Alphablox Cube Server, the persistent calculated

members belong to the specified dimension and act similar to regular members,

having a parent and fitting into the dimension hierarchy. To create a persistent

calculated member, you must specify the full name of the calculated member,

including the dimension and the place in the hierarchy where the calculated

member fits, and you must specify the expression that respresents the calculated

member. Optionally, you can also specify the solve order.

Supported MDX Functions

MDX functions are used to simplify and broaden the possible scope of MDX

queries. The following table lists the subset of MDX functions and operators

supported in queries against DB2 Alphablox cubes.

For information on the syntax and usage of the MDX functions listed below, see

the following information resources:

v Microsoft MDX Function Reference (http://msdn.microsoft.com/library/en-
us/olapdmad/agmdxfunctintro_6n5f.asp)

v Spofford, George. 2001. MDX Solutions. New York: John Wiley & Sons.

 Operators

Is, And, Or, Not, XOR, >, >=, <, <=, =, <>

 MDX Function Syntax

Operators Supported

Aggregate Aggregate(Set[,NumericExpression])

AllMembers Dimension.AllMembers

Ancestor Ancestor(Member,Level)

Ancestor(Member,NumericExpression)

Ancestors Ancestors(Member,Level)

Ancestors(Member,NumericExpression)

Ascendants Ascendants(Member)

Avg Avg(Set[,Count])

BottomCount BottomCount(Set,Member[,NumericExpression])

Chapter 5. Using MDX to query DB2 Alphablox cubes 43

http://msdn.microsoft.com/library/en-us/olapdmad/agmdxfunctintro_6n5f.asp
http://msdn.microsoft.com/library/en-us/olapdmad/agmdxfunctintro_6n5f.asp

MDX Function Syntax

BottomPercent BottomPercent(Set,Percentage[,NumericExpression])

Note: NumericExpression is optional here, but is required in

MSAS.

BottomSum BottomSum(Set,Value[,NumericExpression])

Note: NumericExpression is optional here, but is required in

MSAS.

Children Member.Children

ClosingPeriod ClosingPeriod(Level,Member)

CoaleseEmpty CoalesceEmpty(NumericExpression [,NumericExpression]... |

StringExpression[,StringExpression]...)

Count Count(Set[, ExcludeEmpty | IncludeEmpty])

Note: OnlyCount(Set[,ExcludeEmpty | IncludeEmpty]) is

supported here. The .Count syntax is not supported here.

Cousin Cousin(Member1,Member2)

CrossJoin Crossjoin(Level,Member)

CurrentMember Dimension.CurrentMember

DataMember Member.DataMember

DefaultMember {DimensionExpression | HierarchyExpression}.DefaultMember

Descendants Descendants(Member,[Level[,DescFlags]])

Note: OnlyDescendants(Member,[Level[,DescFlags]]) is

supported here. Descendants() with the Set option is not

supported here.

Distinct Distinct(Set)

DrilldownLevel DrilldownLevel(Set[,{Level|,Index}])

DrilldownMember DrilldownMember(Set1,Set2[,RECURSIVE])

DrillupMember DrillupMember(Set1,Set2)

Except Except(Set1,Set2[,ALL])

Filter

Filter(SetExpression, { Logical_Expression | [CAPTION | KEY

| NAME] =String_Expression })

FirstChild Member.FirstChild

FirstSibling Member.FirstSibling

44 IBM DB2 Alphablox: DB2 Alphablox Cube Server Administrator’s Guide

MDX Function Syntax

Generate Generate(Set1,Set2[,ALL])

Note: Generate(Set1,Set2[,ALL]) is supported.

Generate(Set,<String Expression>[,Delimiter]) is not supported

here.

Head Head(Set[,NumericExpression])

Hierarchize Hierarchize(Set[,POST])

Hierarchy Member.Hierarchy

Level.Hierarchy

IIf IIf(LogicalExpression, {Expression1, Expression2})

Intersect Intersect(Set1,Set2[,ALL])

IsEmpty IsEmpty(MDXExpression)

Item Set.Item(Index)

Note: Set.Item(StringExpression[,StringExpression]) is not

supported.

Lag Member.Lag(NumericExpression)

LastChild Member.LastChild

LastPeriods LastPeriods(Index,Member)

LastSibling Member.LastSibling

Lead Member.Lead(NumericExpression)

Level Member.Level

Max Max(Set[,NumericExpression])

Median Median(Set[,NumericExpression])

Members Dimension.Members

Hierarchy.Members

Level.Members

Note: Members(StringExpression) is not supported.

Min Min(Set[,NumericExpression])

MTD MTD([MemberExpression])

Chapter 5. Using MDX to query DB2 Alphablox cubes 45

MDX Function Syntax

Name Dimension.Name

Level.Name

Member.Name

Hierarchy.Name

NameToSet NameToSet(MemberName)

NextMember Member.NextMember

NonEmptyCrossjoin NonEmptyCrossjoin(SetExpression[,SetExpression ...]

[,CrossjoinSetCount])

OpeningPeriod OpeningPeriod(Level,Member)

Order Order(Set,NumericExpression[,ASC|DESC|BASC|BDESC])

Ordinal Level.Ordinal

ParallelPeriod ParallelPeriod(Level,NumericExpression,Member)

Parent Member.Parent

PeriodsToDate PeriodsToDate(Level,Member)

PrevMember Member.PreviousMember

Properties Member.Properties(StringExpression)

Note: Only user-defined member properties are supported here by

the Properties() function. This function can be used to access

member properties for members in a level and are generally

referenced in calculated member definitions.

QTD QTD([MemberExpression])

Rank Rank(Tuple, Set[, CalcExpression])

Stdev Stdev(SetExpression[,NumericExpression])

Stdevp Stdevp(SetExpression[,NumericExpression])

Stddev Stddev(SetExpression[,NumericExpression])

Stddevp Stddevp(SetExpression[,NumericExpression])

Subset Subset(Set,Start[,Count])

Sum Sum(Set,NumericExpression)

Tail Tail(Set[,Count])

TopCount TopCount(Set,Count[,NumericExpression])

TopPercent TopPercent(Set,Percentage[,NumericExpression])

Note: NumericExpression is optional here; required in MSAS.

46 IBM DB2 Alphablox: DB2 Alphablox Cube Server Administrator’s Guide

MDX Function Syntax

TopSum TopSum(Set,Value[,NumericExpression])

Note: NumericExpression is optional here; required in MSAS.

Union Union(Set1,Set2[,ALL])

Union({Set1,Set2})

UniqueName Dimension.UniqueName

Level.UniqueName

Member.UniqueName

Hierarchy.UniqueName

Value SetExpression.Value

Var Var(NumericExpression[,NumericExpression])

Variance Variance(SetExpression[,NumericExpression])

VarianceP VarianceP(SetExpression[,NumericExpression])

VarP VarP(SetExpression[,NumericExpression])

WTD WTD([MemberExpression])

YTD YTD([MemberExpression])

MDX query examples

This section shows some examples of MDX queries against an DB2 Alphablox cube

named DB2AlphabloxCube. Assume the DB2 Alphablox cube in the examples has

the following dimensions, levels, and measures.

 Time Products Measures

Year {1998, 1999, 2000, 2001} Imported {Yes, No} {Sales, Cost, Profit}

Quarter {Q1, Q2, Q3, Q4} Product Name {A-Z}

Month {1-12}

Example 1

The following query selects several members (A, B, C, D, and Z) from the Product

Name level on the columns axis, uses the Children function on the Time dimension

for the rows axis to generate a set of years, and slices the query by the Sales

measure in the WHERE clause.

SELECT {[Products].[Product Name].[A]:[D],

 [Products].[Product Name].[Z]} ON COLUMNS,

 {[Time].Children} ON ROWS

FROM [DB2AlphabloxCube]

WHERE ([Sales])

 Time A B C D Z

2001 12.5 14.25 34.95 2,503.22

Chapter 5. Using MDX to query DB2 Alphablox cubes 47

2002

2003

2004 179.7

Example 2

The following query uses the CrossJoin function to show both the product

members E and F and the 4 quarters from 1999 on the columns axis. The rows axis

shows the three measures in the DB2 Alphablox cube.

SELECT CrossJoin({[Products].[Product Name].[E],

 [Products].[Product Name].[F]}, [Time].[1999].Children)

 ON COLUMNS,

 {[Sales], [Cost], [Profit]} ON ROWS

FROM [DB2AlphabloxCube]

 E F

Measures Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

Sales 17,700 16,80044 44 18,100 1,413.87 1413.87 5,510 1,413.87

Cost 12,300 12,300 50 13,200 599.97 599.97 4,400 599.97

Profit 5,400 4,500 —6 4,900 813.9 813.9 1,110 813.9

48 IBM DB2 Alphablox: DB2 Alphablox Cube Server Administrator’s Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY

10504-1785 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation, Licensing, 2-31 Roppongi 3-chome, Minato-ku, Tokyo

106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country

where such provisions are inconsistent with local law: INTERNATIONAL BUSINESS

MACHINES CORPORATION PROVIDES THIS PUBLICATION ″AS IS″ WITHOUT

WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT

NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states

do not allow disclaimer of express or implied warranties in certain transactions,

therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

© Copyright IBM Corp. 1996, 2006 49

IBM Corporation, J46A/G4, 555 Bailey Avenue, San Jose, CA 95141-1003 U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application

programs conforming to IBM’s application programming interfaces.

Trademarks

The following terms are trademarks or registered trademarks of International

Business Machines Corporation in the United States, other countries, or both:

 DB2 DB2 OLAP Server DB2 Universal Database

IBM WebSphere®

50 IBM DB2 Alphablox: DB2 Alphablox Cube Server Administrator’s Guide

Alphablox and Blox are trademarks or registered trademarks of Alphablox

Corporation in the United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

Linux® is a trademark of Linus Torvalds in the United States, other countries, or

both.

Other company, product or service names may be trademarks or service marks of

others.

Notices 51

52 IBM DB2 Alphablox: DB2 Alphablox Cube Server Administrator’s Guide

Index

A
access control lists

DB2 Alphablox cubes, using with 18

architecture
DB2 Alphablox Cube Server 4

C
cache, cube

in architecture 6

cache, data 37

cache, member 37

calculated members
persistent 26

clean data
defined 6

columns and rows, maximum, setting for

a cube 39

connection pooling, DB2 Alphablox

cube 37

connections, maximum concurrent 36

console
command list, cube 35

creating a cube, checklist 17

Cube Manager 5

cube, DB2 Alphablox 6

cubes
prototyping 3

D
data

caching 37

data sources
Alphablox Cube Server Adapter,

creating 26

DB2 Alphablox cubes 37

maximum persistent connections 37

relational, creating for a cube 18

DB2 Alphablox cube 6

administration strategy 33

applications of 2

cache 6, 36

console commands 35

creating, checklist for 17

data source, relational, creating 18

dimensions and levels, defining 21

MDX, supported syntax 41

measures, defining 20

members
calculated 26

memory considerations 39

modifying 36

overview 1

rebuilding 33

requirements 6

resources, specify and manage 27

sanity check 29

starting 31

stopping 32

DB2 Alphablox cube (continued)
troubleshooting 31

tuning controls 36

DB2 Alphablox Cube Server 6

advantages 3

architecture 4

requirements 6

DB2 Alphablox cubes
balanced hierarchies 12

defining 19

maximum number 39

ragged hierarchies 13

recursive hierarchies 12

refreshing 27

relational schema, mapping to

cubes 14

unbalanced hierarchies 12

DELETE CUBE command 35

dimension tables 10

dimensional schemas
described 9

hierarchies 11

requirements for DB2 Alphablox Cube

Server 7

snowflake 9

star 9

dimensions 14

dimensions, cube, defining 21

DISABLE CUBE command 35

E
EMPTYCACHE CUBE command 35

ENABLE CUBE command 35

F
fact tables 10

foreign key
defined 10

H
heap size, memory, changing 40

hierarchies
ragged 13

relational database schema 11

K
keys, foreign, 10

keys, primary, 10

L
level order 25

levels 14

All level 23

attributes 25

levels (continued)
level keys 14, 23

level types 23

levels
creating 23

member ordering 25

ordering 25

levels, cube, define 21

M
many-to-one relationships 12

maximum rows and columns, cube 39

MDX
FROM TO syntax 42

functions 43

member sets 42

query examples 47

SQL queries, relationship to 6

supported syntax 41

syntax 41

measures, cube, defining 20

measures, cube, restrictions 15

member ordering 25

member sets, MDX
specifying 42

members
caching 37

calculated 42

derived 42

memory considerations, cube 39

memory heap size, changing size 40

memory usage
caches 37

P
primary key

defined 10

R
REBUILD command 33

REBUILD CUBE command 35

refreshing a cube 27

relational data
cubing 2

database schemas 6, 9

dimensional schemas 9

mapping schemas to cubes 14

measures expression restriction 15

schema requirements 6

requirements
DB2 Alphablox cube 6

rows and columns, maximum, setting for

a cube 39

© Copyright IBM Corp. 1996, 2006 53

S
SHOW CUBE command 35

snowflake schema 9

star schema 9

START CUBE command 31, 35

starting a cube 31

from console 31

troubleshooting 31

starting cubes
from DB2 Alphablox Admin

Pages 31

STOP CUBE command 32, 36

T
tables

dimension 10

fact 10

54 IBM DB2 Alphablox: DB2 Alphablox Cube Server Administrator’s Guide

����

Program Number: 5724-L14

Printed in USA

SC18-9433-02

Sp
in
e
in
fo
rm
at
io
n:

 �
�

�

IB
M

D

B
2

A
lp

ha
bl

ox

D
B

2
A

lp
ha

bl
ox

Cu

be

Se

rv
er

Ad

m
in

is
tr

at
or

’s
G

ui
de

Ve

rs
io

n
8.

4

	Contents
	Chapter 1. Cubing concepts
	DB2 Alphablox Cube Server Overview
	Cubing relational data
	Applications of the DB2 Alphablox Cube Server
	Prototyping
	Cubes with straightforward dimensions and measures
	Advantages of the DB2 Alphablox Cube Server
	DB2 Alphablox Cube Server in an DB2 Alphablox application environment

	DB2 Alphablox Cube Server architecture
	DB2 Alphablox Cube Server components
	Administration user interface
	Cube Manager
	In-memory cache
	Compiler
	Executor

	MDX to SQL query translations

	Schema requirements
	Clean data
	Dimensional schema

	Chapter 2. Dimensional schema design
	Dimensional schemas
	Star and snowflake schemas
	Primary keys
	Foreign keys
	Fact tables
	Dimension Tables
	Star schemas
	Snowflake schemas

	Hierarchies
	Many-to-one relationships
	Balanced and unbalanced hierarchies
	Ragged hierarchies

	Mapping relational schemas to cubes
	Dimensions, levels, and attributes
	Measures

	Chapter 3. Creating and modifying cubes
	Checklist of tasks for creating cubes
	Creating relational data sources
	Defining cubes
	Defining measures
	Defining dimensions
	Creating dimensions
	Creating fact table joins
	Creating dimension joins
	Creating levels
	Setting level orders
	Creating and editing attributes
	Setting member ordering within a level
	Creating persistent calculated members

	Creating Alphablox Cube Server Adapter data source definitions
	Specifying and managing cube resources
	Defining a refresh schedule
	Setting tuning parameters

	Reviewing a cube

	Chapter 4. Maintaining cubes
	Starting, stopping, and rebuilding cubes
	Starting a DB2 Alphablox cube
	Starting cubes from the DB2 Alphablox Admin Pages
	Starting cubes from a console window
	Troubleshooting when a cube does not start

	Stopping DB2 Alphablox cubes
	Stopping cubes from the DB2 Alphablox Admin Pages
	Stopping cubes from a console window

	Rebuilding DB2 Alphablox cubes

	Administration strategies
	Understanding database environments
	Scheduling periodic updates

	Console commands
	Modifying cubes
	Tuning cubes
	Tuning controls
	Connection and cache size limits
	Maximum number of cubes
	Maximum rows and columns

	DB2 Alphablox cube memory considerations
	Changing the maximum memory heap size
	Adding more memory to your system

	Chapter 5. Using MDX to query DB2 Alphablox cubes
	Supported MDX syntax
	Basic syntax
	Usage notes

	Specifying member sets
	Qualifying member names
	Curly braces
	FROM:TO syntax

	Calculated members
	Supported MDX Functions

	MDX query examples
	Example 1
	Example 2

	Notices
	Trademarks

	Index

