
DB2 Content Manager / Process Choreographer Integration Quick Start

Revision1

DB2 Content Manager Enterprise Edition Version 8.3 introduced a tutorial and sample code "Integrating with business
processes" using the Process Choreographer component of WebSphere Business Integration Server Foundation V5.1.1.. This
Integration Quick Start Guide replaces the tutorial and describes Revision 1 of this integration based on the following chapters:

1. Introduction
2. Setting up the Development Environment and Testing the Sample Process
3. A Tour of the Sample Process
4. Developing a Custom Content Manager / Process Choreographer Integration Solution
5. Deploying an Integrated Solution on a Production Simulation Environment
6. Hints and Troubleshooting
7. Further Reading

1. Introduction

DB2 Content Manager Enterprise Edition V8.3 includes a high-performance document routing engine to manage the lifecycle of
content objects. For complex process environments that involve a variety of applications and services in a heterogenous IT and
business environment WebSphere Business Integration Server Foundation Version 5.1.1 is the process management
environment of choice as it provides a rich infrastructure for intra-enterprise and inter-enterprise services based on the
WebSphere Application Server. These processes can involve both human and IT resources. The types of processes can vary
greatly, ranging from Web services or Web page navigation to business transaction support. Processes can be based on
automated steps that together constitue a single transaction of they can involve human interaction any may run for days weeks
or months.

The Content Manager / Process Choreographer (CM/PC) Integration Quick Start provides some key ingredients for the creation
of content-centric processes. The term content-centric process refers to a process in which a content object stored in the
Enterprise Content Management system plays an important role. This typically means that the content object may be
investigated at human-activities and that it is modified throughout the process. This content object (a Content Manager item)
which typically is a container of content objects (a folder) is said to be routed through the process or (work)flow. Modifying it can
mean a number of things such as adding or removing objects from it (if it is a folder), changing attribute values, modfying access
rights, adding annotations, signatures, or watermarks, etc.

The main purpose of the Integration Quick Start is to provide best practices and pre-assembled building blocks that support the
creation and management of content-centric processes based on the Process Choreographer environment.

1.1 What's New in Revision 1

Revision 1 of the Content Manager / Process Choreographer Integration Quick Start consists of the following elements:

Integration Toolkit
Quick Start Client
Auto Claims Process

The Integration Toolkit is a collection of service components (Java classes, EJBs) that implement the following interaction
patterns between the content management and process management system:

Content Event Handling ... item creation or deletion events in Content Manager trigger corresponding actions in Process
Choreographer
Collection Point ... let a process instance wait until the folder that is routed through the process contains a certain
number of items of a certain type or until a timeout or exception occurs.
Content Attribute Access ... efficiently access the value of content attributes from within the business process, e.g. to
enable content-specific decisions (Decision points)
Folder Service ... add the item routed through the process to a retrieved folder or add a retrieved item to the folder routed
through the process
Combined Query ... efficiently retrieve process information from Process Choreographer and associated content attribute
values from Content Manager
Common Staff Repository ... map Content Manager user and group definitions to the Process Choreographer staff
resolution facility based on a WebSphere® custom user registry

1 of 65

The Quick Start Client is a Web application that enables process users to see work that is assigned to them, fetch work items
and work with content objects in DB2® Content Manager Enterprise Edition V8.3. Though the Quick Start Client is customized
for use with the Auto Claims Process it provides generic out of the box capabilities and can easily be adjusted to the needs of
other processes.

The Auto Claims Process illustrates how the Integration Toolkit can be used to create a content-aware process. This process
involves human-based activities that can be performed using the Quick Start Client, services provided by the Integration Toolkit
and some simulated internal or external Web services that may involve legacy applications or B2B transactions.

Both, the Integration Toolkit and the Quick Start Client are provided as sample code. They also serve as educational resources
for learning how to integrate the two products. The Quick Start Guide that can be downloaded below describes how the source
code can be modified to meet specific requirements of a custom integration solution. See the license statements in the
documentation or source files for details.

1.2 Notices, License and Support Terms

Note that the following statements apply to the source code of the Content Manager / Process Choreographer Integration Quick
Start:

Licensed Materials - Property of IBM
IBM DB2 Content Manager Enterprise Edition V8 (program number 5724-B19)
(c) Copyright IBM Corp. 1994, 2005. All Rights Reserved.

US Government Users Restricted Rights
Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

DISCLAIMER OF WARRANTIES :

Permission is granted to copy and modify this Sample code, and to distribute
modified versions
provided that both the copyright notice, and this permission notice and warranty
disclaimer
appear in all copies and modified versions.

This software is provided "AS IS." IBM and its Suppliers and Licensors expressly
disclaim all
warranties, whether EXPRESS OR IMPLIED, INCLUDING ANY IMPLIED WARRANTY OF
MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE OR WARRANTY OF NON-INFRINGEMENT.
IBM AND ITS SUPPLIERS AND LICENSORS SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFEREDBY
LICENSEE
THAT RESULT FROM USE OR DISTRIBUTION OF THE SOFTWARE OR THE COMBINATION OF THE
SOFTWARE WITH
ANY OTHER CODE.
IN NO EVENT WILL IBM OR ITS SUPPLIERS AND LICENSORS BE LIABLE FOR ANY LOST REVENUE,
PROFIT OR
DATA, OR FOR DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE
DAMAGES, HOWEVER
CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF OR
INABILITY TO USE
SOFTWARE, EVEN IF IBM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Note that the integration toolkit requires a DB2 Universal Database-based library server and that it does not support WebSphere
Process Server V6, the z/OS or i5/OS environments, nor clustered environments.

See Trademarks for details on the trademarks used in this document.

1.3 Software Requirements

For both the development and runtime environments, the Content Manager library server needs to be based on a DB2 Universal
Database V8.2. The integration toolkit only supports a DB2 Universal Database-based library server.

The following system configuration is required for the development and test environment (chapter 3):

a. Development workstation A hosts:
WebSphere Studio Application Developer Integration Edition V5.1.1

2 of 65

DB2 Universal Database V8.2 Runtime Client
DB2 Content Manager V8.3 Client for Windows
DB2 Information Integrator for Content V8.3 - Content Manager version 8 connector and Java connector toolkit

b. Repository server B with:
DB2 Content Manager Enterprise Edition V8.3

For simulating a production environment (chapter 5) the repository server B additionally requires:

WebSphere Business Integration Server Foundation V5.1.1
Tivoli Directory Server V5.2.2 or V5.3

The development workstation as well as the server should have at least 1 GByte of main memory. However, recommended are
at least 2 GByte.

This guide uses Windows platform conventions for path names. Before proceeding we recommend that you look up the install
directories of the following products as they will be used later in this guide:

<IBMCMROOT> = Content Manager installation folder (e.g. c:\Program Files\IBM\db2cmv8 or /usr/db2cmv8)
<DB2HOME> = home folder of the DB2 instance which hosts the Content Manager library server (e.g. c:\Program

Files\IBM\sqllib or /home/db2inst1/sqllib)
<WSADIE_
HOME>

= WebSphere Studio Application Developer Integration Edition install folder (e.g. c:\Program
Files\IBM\Websphere Studio\Application Developer IE\v5.1.1)

<WAS_HOME> = WebSphere Application Server install folder (e.g. c:\Program Files\IBM\Websphere\Appserver)

1.4 A guideline for reading this document

We recommend starting with 2. Setting up the Development Environment and Testing the Sample Process as this lays the
foundations for further explorations in the area of integrating content and workflow. This chapter describes how to set up the
infrastructure to build and test integrated workflows. You may want to take a tour of the sample process as described in 3. A
Tour of the Sample Process and continue either with 4. Developing a Custom Content Manager / Process Choreographer
Integration Solution to understand what it means to create a custom CM /PC integration solution based on the Integration Toolkit
and Quick Start Client or to 5. Deploying an Integrated Solution on a Production Simulation Environment which explains how the
sample process can be deployed on a production environment. 6. Hints and Troubleshooting provides some hints and tips
which may be useful when working with the sample. 7. Further Reading provides links to product documentation, Redbooks and
Support pages.

2. Setting up the Development Environment and Testing the Sample Process

This chapter describes the steps needed to set up a development environment for the Integration Quick Start. At the end of this
chapter the Quick Start Client can be used to work the sample process and to explore the results of running the server-side
integration functions. Depending on the reader's previous experience with the WebSphere Studio Application Developer
environment completing this paragraph will take approximately 1-2 hours.

2.1 Prerequisites and Installation Hints

Detailed instructions on how to install and configure the required software can be found in the product documentation. See 7.
Further Reading at the end of this document. This section gives some hints about configuration settings that are specific to the
use of these products in the context of the Integration Quick Start. See 1.3 Software Requirements for details on the system
configuration required for chapter 1.

Installation hints for Information Integrator for Content

In each of the following installation windows, perform the described task:

Installation Destination
Verify that the target directory is set to <IBMCMROOT>.
Setup Type
Select Custom.
Select the components that you want to install
Select DB2 Content Manager Version 8 connector and DB2 Content Manager Version 8 Java
connector toolkit.

3 of 65

Working Directory
Keep the default <IBMCMROOT>.
Server Connection Configuration
Select Configure RMI for remote connection to the above selected servers to set up the connection from the
Development Workstation to the Content Manager server.

Installation hints for WebSphere Application Developer Integration Edition

No special hints are required: follow the steps described in the product documentation.

Note that WebSphere Business Integration Server Foundation and Tivoli Directory Server are not required in the development
and test environment.

2.2 Preparing the Content Manager Sample Data for use with the Sample Process

The Quick Start sample process is based on a modified version of the Content Manager sample data. This step describes how
to load the sample data and adjust it for use with the sample process. The sample process uses a new attribute XYZ_
ClaimAmount to distinguish 'cheap' cases for which a high process throughput is desirable from 'expensive' cases for which
additional research is required. Furthermore, two new attributes WF_OnCreate and WF_OnDelete are required to enable
creation and termination of process instances based on content events (see Content Event Handling for details).

Start the Content Manager First Steps program.
If you have worked with the sample data before, click Remove Sample Data to ensure all data is in a clean state.
Click Load Sample Data.
Wait until the sample data creation completes.
Click Work with Sample Data to start the Content Manager Administration client.
Log on to the administration client with your library server administrator userid and password.
Select Data Modelling, right-click Attributes, select New to define a new attribute XYZ_ClaimAmount with the
properties shown below:

Click OK to store the new attribute.

4 of 65

Right-click Attributes, select New to define a new attribute WF_OnCreate with the properties shown below and click OK
to store the new attribute:

Repeat the previous step to define a new attribute WF_OnDelete with the same characteristics as WF_OnCreate.
In the Data Modelling view, expand Item Types, right-click on XYZ_ClaimFolder, right-click Properties, open the
Attributes tab and add two new attributes: WF_OnCreate and WF_OnDelete both with the default value
ClaimsHandlingProcess

Right-click XYZ_AdjReport and select Properties.
On the definition tab change the New version policy for attributes to Never create.
Switch to the Attributes tab and add the attribute XYZ_ClaimAmount to this item type:

5 of 65

Close the System Administration Client.
Close the First Steps program.

Start the DB2 Content Manager Client for Windows and log on as library server administrator (icmadmin). Note that if the
Content Manager Client for Windows was already started while you changed the sample data definitions in the previous
step you need to close and restart it so the new definitions are available.
Select Search -> Basic and locate all instances of item type Adjuster Report (Content Manager v8.1 Sample
Item Type).
Right-click on each of the three entries in the result list, select Attributes and enter different Claim Amount values to the
three items: for example 1000 (small claim), 10000 (large claim) , 2000 (small claim) as shown below. The sample
process introduced later will handle documents with a small claim amount (i.e. less than or equal to $5000) differently:

6 of 65

Close the DB2 Content Manager Client for Windows.

2.3 Setting up the Test Environment

This section copies the files that are required for the build environment to the appropriate locations of the development
workstation's file system. Two JAR files need to be located in the lib directory of the application server in order to be accessible
from Java snippets in business processes. The build environment uses a file-based custom user registry for authentication with
the process environment (via the application server). This user registry stores userIDs and passwords of the process staff in two
files that need to be placed into a folder in the application server install directory. The settings in the password file (especially for
userID icmadmin) need to be adapted to the settings of the Content Manager server. Note that the runtime environment uses a
common LDAP-based user repository for both Content Manager and the process environment so there will be no duplication of
credentials and passwords will not be stored in readable form when moving to the runtime environment. The file-based
approach is only used for the development environment.

Unzip quickStartSampleRev1wbi.zip into a temporary folder <TMP>.
Copy the files bpecm.jar and bpecmutil.jar from <TMP>\runtime to <WSADIE_HOME>\runtime\ee_v51\lib.
Open <TMP>\rumtime\bpecm.properties in an editor and make sure the
propertyContentManagerAuthenticationPwd=... contains the password of the library server administrator
(icmadmin). Note that a simple encryption method referred to as ROT13 can be used to avoid storing the password un-
encrypted. Apply ROT13 encryption by adding a decimal 13 to the numeric character representation of each character in
the password string, e.g. ABC would become NOP. Set ContentManagerAuthenticationPwdEncryption to 1 to
enable the use of ROT13 encryption. Note that the proposed encryption is for demo purposes only. If you plan to use the
code in a production environment you might want to choose a more enhanced encryption method.
Copy the file bpecm.properties from <TMP>\runtime to <WSADIE_HOME>\runtimes\ee_v51\properties.
Open <TMP>\runtime\users.prop in an editor, locate the line icmadmin:passw0rd:2:2: and replace passw0rd
with the password of the library server administrator (icmadmin) on your system.
Create a folder security under <WSADIE_HOME>\runtimes\ee_v51 and copy the files users.prop and
groups.prop from <TMP>\runtime to this new directory.
Create a folder in your file system that will server as the workspace folder for WebSphere Application Developer
Integration Edition referred to as <WORKSPACE_FOLDER> later in this document.
Recursively copy all contents of <TMP>\projects\ into this directory so that it contains the folders
ClaimsHandlingProject, ContentManagerIntegration, etc. and all files located in these folders.

2.4 Configuring the Build environment and Importing the Sample Projects

7 of 65

This step adjusts compiler settings and makes the project files available to the build environment. We recommend setting the
browser configuration so it opens the Web browser in a new window which provides more flexibility when watching project
contents and running the Web client at the same time.

Start WebSphere Studio Application Developer Integration Edition and specify the folder created in the previous step as
your workspace. If not prompted for a workspace, start it from the command line as follows: %WSADIE_HOME%
\wsappdevie.exe -setworkspace.
Select Window > Preferences. The Preferences window opens.
Select Java > Classpath Variables and click the button labeled New. The 'New Variable Entry' window opens.
Enter IBMCMROOT into the 'Name' field and the value of <IBMCMROOT> into the 'Path' field.

Select Java > Compiler, click the Compliance and Classfiles tab and change the Compiler compliance level from
default 1.3 to 1.4

8 of 65

Select Java > Installed JREs and change the JVM from default Eclipse to WebSphere v5.1 EE JRE

Recommended: select Web Browser and click Use external Web Browser and make sure the Location field points to
the browser executable.
Click OK in the preferences window to make the changes permanent. On the pop-up window 'The compiler settings have
changed. A full rebuild is required...' click No as there are no projects yet that need to be rebuilt.
Perform the following steps on the folders ClaimsHandlingProject, ContentManagerIntegration,
ContentManagerIntegrationEjb, ContentManagerIntegrationJar, QuickStartClient, Servers
located in your workspace. Any errors or warnings that might show up in the task view may temporarily be ignored. They
should disappear when the deploy code has been generated by the end of this task.

Select File > Import from the main menu. The Import window opens.
Select Existing Project into Workspace. Click Next. The Import window opens.
Click Browse..., select the appropriate project folder and click OK.
Click Finish.

Switch to the Services view of the business integration perspective.
Expand Deployable Services, right-click ContentManagerIntegrationEjb, and select Generate > Deployment and
RMIC Code. This opens the 'Generate Deployment and RMIC Code' window , On this window choose Select All and
click Finish.
On the menu select Project > Rebuild All.
The three information messages CHKJ2500I ... must be serializable at runtime can safely be ignored.
In the Services view expand Service Projects > ClaimsHandlingProject > com.ibm.bpe.cm.sample, right-click
ClaimsHandlingProcess.bpel and select Enterprise Services > Generate Deploy Code. The 'Generate BPEL Deploy
Code' window opens.
Click OK to start deploy code generation. Wait until the progress information window disappears.
The 9 remaining messages in the task view (IWAE0034W EJB link element ... is unresolvable in

module....) can safely be ignored. Alternatively, they may be filtered by clicking the Filters button () in the task
view menu, selecting does not contain in the box following Where description and entering IWAE0034W in the input
field.

9 of 65

If Fix Pack 1 of DB2 Content Manager Enterprise Edition V8.3 is installed we recommend taking the step Upgrading the content
viewer applet to Fix Pack 1 or (re-)creating the content viewer applet to upgrade to the latest version of the content viewer
applet.

You may now want to spend a moment and investigate the process and its elements. Useful resources are the process
definitions (ClaimsHandlingProcess.bpel, ClaimsHandlingProcess.wsdl, ClaimsHandlingProcess.component) located in the
Service Project ClaimsHandlingProject.

2.5 Enabling Content Manager for Single Sign On

The Quick Start Client uses Single Sign On (SSO) so users need to authenticate only once instead of having to logon to the
process environment and to the Content Manager server. This step configures Content Manager so it can use the credentials
provided by the application server to authenticate a user. Note that some of these settings are global (allow trusted logon,
password not required for all users) so it is important to understand their potential impact on other Content Manager-based
applications.

Start the DB2 Content Manager System Administration Client and log on as library server administrator (i.e. icmadmin).
In the navigation panel, click Library server parameters > Configurations.
Right-click Library Server Configuration in the configuration window on the right and select Properties.
Set Max user action to Allow logon without warning and select the Allow trusted logon check box

10 of 65

Click OK to save the changes.
Select Tools > Manage Database Connection ID > Change Database Shared Connection ID from the menu. The
Change Shared Database Connection ID and Password window opens.
Enter the connection user password (The default connection user is icmconct). Clear the Password is required for all
users check box.
Click OK to save the change.
Click Authorization > Privilege Sets. A list of privilege sets shows up in the right pane.
Right-click ClientUserAllPrivs and select Copy > Advanced. The Copy Privilege Set window opens.
Enter the name ClientUserAllPrivsSSO, select AllowTrustedLogon in the Privileges field and click OK to save the
new privilege set.

11 of 65

In the navigation panel click Authentication > Users. The right pane now shows the list of DB2 Content Manager users
currently defined.
For the each of the users Agent1, Agent2, Adjuster1, Adjuster2, Underwriter1, Underwriter2,
UnderwriterAssistant1, and UnderwriterAssistant1 double-click the name to open the properties window and
replace the value in the Maximum Privilege set field with ClientUserAllPrivsSSO

12 of 65

Close the System Administration client.

2.6 Configuring and Starting the Test Server

The Server project imported with the previous step configures a test server that can be used to run the sample process within
WebSphere Studio Application Developer Integration Edition. The test server configuration points to the WebSphere Business
Integration Server Foundation located in <WSADIE_HOME>\runtimes\ee_v51 (note that it was formely named Enterprise
Edition). This step adjusts the environment and security settings of the test server configuration to the settings of your Content
Manager Server.

In WebSphere Studio Application Developer Integration Edition switch to the Server perspective by clicking Window >
Open Perspective > Server or using the shortcut in the toolbar.
In the Server Configuration view, expand Servers and double-click IntegrationTestServer to open the Server
Configuration editor.
Click the Variables tab and verify that the following two variables point to the appropriate locations in your file system:

In the section Node settings ensure that DB2_JDBC_DRIVER_PATH points to <DB2HOME>\java

In the section Server settings ensure that IBMCMROOT points to <IBMCMROOT>

13 of 65

Click the Ports tab and ensure that the ports used by the test server (9046, 9093, 11605...11607) do not conflict with
port settings on your system. Change the ports in case of a conflict. Note that in this case the link that opens the initial
page of the Quick Start Client shown in the next section might not work since it assumes the port number is 11605.

Click the Security tab and specify the following authentication settings:

In the Current Active Authentication Settings section enter the userid/password of the CM library server
administrator (icmadmin) into the Server ID/Server password fields

14 of 65

In the JAAS Authentication Entries section click edit for the two fields localhost/BPEAuthDataAliasEmb_
localhost_server1 and localhost/ICMNLSDBAuthDataAlias and enter the userid/password of the CM
library server administrator

Save your changes by pressing CTRL-S and close the editor for the IntegrationTestServer, because this editor must be
closed before deploying projects later on.
Right-click the Server Configuration IntegrationTestServer in the Server Configuration view and select Add and remove
projects. On the Add and Remove Projects window select Add All >> and click Finish

15 of 65

Right-click the Server Configuration IntegrationTestServer in the Server Configuration view and select Create Tables
and Data Sources. The result window looks as follows:

Click OK to close this window.
In the Server view select the Servers tab, right click IntegrationTestServer and select Start. This publishes the project
definitions to the server and then starts it.
Wait until the message "Server server1 is ready for e-business" shows up in the console tab. The end of the console
output should look similar to the one shown below:

16 of 65

Note that the output says ** Content Manager startup bean called which indicates that the initialization step of
the integration component has been passed successfully.

3. A Tour of the Sample Process

A note on the new sample process: the integration sample process provided with DB2 Content Manager Enterprise Edition V8.3
was designed to be compatible with the sample process used to illustrate document routing (DB2 Content Manager Enterprise
Edition V8.3 includes a document routing engine for use with document lifecycle management within Content Manager).

The new sample process provided with CM / PC Integration Quick Start focuses on the integration of different services both
human-based and automatic. Automated services such as retrieval of the insurance policy or the fraud history check illustrate
the inclusion of third party applications or B2B transactions with external service providers.

This is a more natural way of demonstrating the use of Process Choreographer since the Content Manager Enterprise Edition
V8.3 sample process is a simple human-centric document flow example that can easily be implemented on the basis of
Document Routing.

3.1 The sample process

The sample process provided with the CM / PC Integration Quick Start implements a simplified Claims Handling Process.
Though it uses some insurance terminology and corresponding sample data it can be seen as an example of a more abstract
review and approval process.

Click this link: http://localhost:11605/QuickStartClient to display the initial page of the Quick Start Client. This page
shows an abstract representation of the process outlining important steps and roles. You may want to bookmark this link
so you can easily launch the client without reference to this documentation. Note that you have to adapt the port number
in the link to the Quick Start Client if you have changed it during configuration (see Configure and Start the Test Server)

17 of 65

http://localhost:11605/QuickStartClient

The blocks that have a schematic representation of a person in their top right corner represent staff activities. The other
blocks represent (automated) services. Diamonds represent decisions and the rounded rectangles indicate the beginning
and end of a process instance's lifetime (the process is configured such that process instances are deleted as soon as
they terminate.
You can move the cursor over the graphical elements to see a brief description of their purpose.
The Mailroom represents an activity that is outside the scope of the process. This activity is responsible for adding
incoming documents to the Content Management System. Note that the functions of the Mailroom could also be
performed with a Content Manager client such as the DB2 Content Manager Client for Windows.
The process enclosed by rounded rectangles consists of three sections: 1. data validation, 2. approval or rejection, 3.
notification.

1. Data validation ensures all information needed to review the case is available. It consists of an automated step
(RetrievePolicy), a staff-based one (Validate and Adjust) and a so-called Collection Point. Retrieve Policy uses
the Folder Management service provided by the Integration Toolkit to locate the insurance policy for the claim.
The staff-based activity Validate and Adjust assumes that additional information may be required as input for the
review such as an Adjuster Report. Members of the AdjustersGroup are responsible for pre-assessing the case
and making sure all required information that is needed to decide on the case is available. The collection point is a
service provided by the Integration Toolkit that lets a process instance wait until a certain number of specified
items is in the claim folder. The members of the AdjustersGroup can modify these conditions to a certain degree
(such as removing the dependency on a Police Report). The collection point service performs regular checks on
the condition and lets the process instance continue if all required documents are in the folder. A timeout occurs if
the required documents are not available in a specified time frame. In this case process execution loops back to
the Validate and Adjust activity where a reminder count keeps track of the number of timeout cycles that
happened so far. At this activity staff personnel can act accordingly by requesting the required documents or
weakening the collection point condition. See the section The collection point service for details on the collection
point service.

18 of 65

2. The Approval or rejection section of the process begins with a switch activity (also called a decision point) where
one of two paths is taken depending on the value of the Claim Amount attribute. For small claims members of
the UnderwritersGroup investigate the documents in the folder and complete the review activity by approving or
rejecting the claim. For large claims (Claim Amount > $5000) a FraudHistory service assesses the
trustworthiness of the claimant and might check certain criteria of the case. The result of this service is made
available to members of the UnderwritersGroup who are entitled to review either small or large claims. Only
members of the UnderwritersGroup can approve or reject large claims.

3. The Notification section of the process evaluates the result of the review and either sends an approval letter and
pays the claim amount or sends a rejection letter. Note that sending of the approval letter and payment (which we
assume to be a sub-process) can run in parallel. The CheckFraudHistory service and the three services involved
in the notification section are implemented as simple Java methods that write a message to the server's standard
output since illustrate the use of internal or external services but are beyond the scope of the sample. These
methods can be found in <WORKSPACE_
FOLDER>\ClaimsHandlingProject\com\ibm\bpe\cm\sample\ClaimsHandlingUtilities.java.

Moving the cursor over the boxes of the process diagram displays a brief description of the purpose of the corresponding
element.
To perform a staff-based activity, click on a box that represents a human activity and log on as a member of the group
displayed in italics right below the box title. The following table shows the mapping of actions to group names and group
members:

Group Group members
Mailroom AgentsGroup Agent1, Agent2

ValidateAndAdjust AdjustersGroup Adjuster1, Adjuster2

ReviewSmallClaim UnderwriterAssistantsGroup UnderwriterAssistant1, UnderwriterAssistant2

ReviewLargeClaim UnderwritersGroup Underwriter1, Underwriter2

If your library server name is not icmnlsdb you need to open <WORKSPACE_
FOLDER>\QuickStartClient\JavaSource\com\ibm\bpe\cm\util\ProcessData.java in WebSphere Application
Developer Integration Edition, change the value of CM_DATASTORE_NAME accordingly, and re-build the project
QuickStartClient . Note that the update is enabled in the active Web project on the fly so the server does not need to be
re-started.

3.2 Process initiation

This section explains the different ways to create process instances corresponding to a variety of options to import documents
into the Content Manager server. The key distinction is if process instances are created explicitly by an application or implicitly
based on events. The former option may be preferred if the application that manages incoming documents is within the control
of your organization so that code can be added to explicitly create process instances where needed. The code used to create
instances based on existing items may be investigated to see how this works. The latter option may be preferred in cases where
document import is treated as a black box or the corresponding application is not within the control of your organization.

Click the box titled Mailroom and log on as Agent1 with password passw0rd (which by default is the same for all roles
of the sample process).
The Mailroom user's initial page contains three sections titled Create documents, Import predefined documents, and
Create process instances for existing items

19 of 65

The section titled Create documents can be used to create instance of the three item types XYZ_ClaimForm, XYZ_
AdjReport, and XYZ_PolReport. Since each of these is linked to a XYZ_ClaimFolder that has the attribute WF_OnCreate
with a default value of ClaimsHandlingProcess creating an instance of any of these creates an instance of an
enclosing XYZ_ClaimFolder which is started on a ClaimsHandlingProcess instance.
Since creating an item may involve entering many mandatory values the section Import predefined documents can be
used to create items of the three types based on pre-defined attribute values. These values refer to the Content Manager
first steps sample data and are expliticly stored in startProcessInstances.jsp. The ClaimNumber is displayed in
an input field to enable simple creation of new cases. Note that the Claim Number is the attribute that uniquely defines a
case. Set the value in the Claim Number appropriately to trigger the creation of a new claim folder or to ensure proper
linkage of documents to an existing claim folder. For items of type Adjuster Report the claim amount can be specified to
be either small ($1000) or large ($10000, $50000) based on pre-defined values. Click Store to create a new item in
Content Manager and store the predefined / modified attribute values. Note that the actual document files need to be
added in a separate step by clicking Add Part on the 'edit attributes and parts' dialogue.
The section Create process instances for existing items can be used to create process instances based on the
sample data already importet into Content Manager during the 'Create Sample Data' step of the Content Manager First
Steps application. Click Submit to run the default query /XYZ_ClaimFolder which locates all instances of XYZ_
ClaimFolder and creates instances of the ClaimsHandlingProcess for each element of the result list. By adding additional
conditions (as for example /XYZ_ClaimFolder/OUTBOUNDLINK[@LINKTYPE = "DKFolder"]/@TARGETITEMREF
=> XYZ_ClaimForm[@ClaimLName = "Twain"]) the query can be refined to restrict the items for which process
instances should be created to e.g. all claim forms submitted by a person with family name Twain.

This tour starts with the section Import predefined documents since this illustrates the use of content event handling
and is based on existing data.
Click the Store link for Mary Twain's claim form in the Import predefined documents section to create an instance of
the XYZ_ClaimForm item type in Content Manager. Due to auto foldering this triggers the creation of a corresponding
XYZ_ClaimFolder. Since the XYZ_ClaimFolder item type has the attribute WF_OnCreate defined and pointing to a default
value of ClaimsHandlingProcess this triggers the creation of a process instance.
The console output of the test server confirms the creation of an item (-> Item created) and completion of the first
step in the process (>> Number of matching insurance policies: 1).
Click Add part on Agent1's activity page to attach the actual document to the item.

20 of 65

Locate the TIFF image of a scanned claim form in <IBMCMROOT>\firststeps\data\4-852369.tif and click
Import to add it to the new item. Note that the console output confirms the upload with a message (-> imported
file of length: 27688 mime type: image/tiff)

You can click Create item to get back to the Mailroom home page and create further items. For now we log out Agent1
by clicking Logout at the right hand side of the menu bar.

3.3 Data validation

The message >> Number of matching insurance policies: 1 in the server console confirms that an
appropriate insurance policy has been located in content manager which has the policy number as entered in the claim
form. The RetrievePolicy service has retrieved this item from Content Manager and added it to the folder that is routed
through the process.

On the process diagram click the box Validate and Adjust and log on as Adjuster1.
The adjuster's initial page shows the adjuster's worklist. It contains a single work item corresponding to the process
instance that has been created in the previous step (Mary Twain's claim form). The worklist might be empty due to the
process being in the 'Retrieve Policy' state. In this case the Refresh may need to be clicked to update the worklist to its

21 of 65

most recent state. Note that the worklist display results from a combined query that returns item attributes (Date of
Incident, Claim Number, etc.) as well as process properties (Activated, Work Item State). The console output shows the
Content Manager query in the form query= /XYZ_ClaimFolder[@ITEMID IN]

Click Fetch to check out this work item. This makes it unavailable for any other member of the AdjustersGroup and
brings up the work item view. The console output confirms that the work item has been checked out with the message->
Work item claimed

22 of 65

Note that the work item page contains three sections titled Process activity, Folder, and Items in Folder. The Process
activity section basically displays the in- and output message of the staff activity that consists of the relevant process
properties (input message) and of the controls which the Adjuster needs to work with to complete this step of the
process. The Folder and Items in folder section display the content-related information. The first column shows the
folder or item name as specified by the 'represents item' property of the corresponding item type. The second column
shows the item type or part number and the third/fourth column display attribute value pairs of the corresponding item or
folder.
Optional: at this point you may want to explore how a user would modify attribute values. You can do so by clicking Edit
and for example change the value of the Street field in the address to 259 Blue Rd.. When clicking Save you will
see the effect of the modification on the updated work item page.
Click View to open the viewer in a separate window. Create an annotation (you may highlight a part of the document or
put a note on it) which may be used to communicate important information to a human role (e.g. Underwriter) later in the
process.
Note that the Insurance Policy has been retrieved and added to the folder by the first activity of the process.
Click the Add Report action in the folder section to add an item of type Adjuster Report. This opens the Edit attributes
and parts page. Note that the claim number is already instantiated to the claim number of the folder. Enter values for the
mandatory fields (marked by a red asterisk) as shown below and click Save to store the adjuster report in Content
Manager.

23 of 65

Click Add part and import <IBMCMROOT>\firststeps\data\4-852369_adjustment.tif. Click Work Item in the
menu bar to return to the Work Item View and note that the Adjuster Report is now a member of the claim folder.

Note that the collection point conditions require an additional Police Report before the process can continue. Click
Complete in the 'Process activity' section to move the folder to the next step in the process to experience the effect of a
collection point timeout.
After 10 seconds (depending on the 'Remind me' setting) the following message shows up in the console view:
Reminder: submit remaining documents for claim number 3-742019 iteration (1). Click Refresh in
the menu bar of the Quick Start Client to refresh the adjuster's worklist. Notice that it again contains an entry referring to
case 3-742019.
Notice that the 'Reminder count' now has the value 1 since this is the first time the process has cycled back to the
ValidateAndAdjust activity due to the collection point conditions not being met.
In the 'Process activity' section set the number of required documents of type Police Report to 0 assuming that the police
report is not required for a decision later in the process. This shows how collection point conditions can be set
dynamically on a process instance.

24 of 65

Click Complete to complete the adjuster's activity and forward the work item to the next step in the process. The console
output displays the message -> Work item completed to confirm successful completion of this step.
Since Adjuster1 has changed the number of required Police Reports to 0 the collection point condition is now met by the
folder since it contains the three required documents: a ClaimForm, an Insurance Policy, and an Adjuster Report. The
console output confirms that the collection point has been passed successfully with the message >> Documents are
ready for claim number 3-742019. It further displays the following two messages: >> Claim Amount is
large (10000.00) and >> Fraud report for Mary Twain is good that result from the decision point and the
Check Fraud History service respectively.
Log out Adjuster1.

3.4 Approval or rejection

Since the adjuster report created in the previous step lists a claim amount of $10000 the claim is considered a large claim
by the decision at the beginning of this section which moves it along the path with the two activities CheckFraudHistory
and ReviewLargeClaim.
The CheckFraudHistory service is a service that decides based on some data extracted from the relevant documents if
the claimant's fraud history is good or bad. This could be realized by a BI tool that investigates certain company-internal
data bases such as statistics about incident locations, customer credibility, etc. Alternatively it could be an external
service provided by some sort of agency with which the insurance company shares a contract. The sample implements
this as a Java-based service that returns a bad fraud history if the initial letter of the claimant is in the range 'A'...'L' and
returns good otherwise.

On the process diagram click the box Review Large Claim and log on as Underwriter1.
The home page of the underwriter activity shows the Underwriter's worklist. It contains a single work item corresponding
to case number 3-742019. Note that the columns in the work list differ from the adjuster's worklist in that they now
contain the name of the current activity (members of the group UnderwritersGroup may perform either the
ReviewSmallClaim or the ReviewLargeClaim activity) and the creation date of the adjuster report.

Click Fetch to check out this work item and open the work item page

25 of 65

The Process activity section displays the result returned by the Check Fraud History service and the controls for
approving or rejecting the claim and adding a justification. The justification is stored in a process variable and not in
Content Manager. Thus it is available throughout the process and potentially stored in the process log but not made
persistent in the content repository.
Click View in the Actions column for the Auto Claim Form and investigate the annotations which the Adjuster has added
to the document.
Select Approve leave the justification field empty and click Complete.
Notice the messages >> Paying for claim number 3-742019 and >> Sending approval letter for
claim number 3-742019 that signal successful completion of the process.

3.5 Exploring alternative options

Use the Mailroom activities to create adjuster reports and police reports. Ensure that the claim numbers of these reports
are correct so auto foldering assigns them to the appropriate folders.
Create process instances explicitly based on the claim folders in DB2 Content Manager (using the query option).

26 of 65

Set Claim Amount to 1000 to explore the 'small claim' path. In this case log on as UnderwriterAssistant1.
Reject a claim and notice the message >> Sending rejection letter for claim number etc...
Note that the availibility of operations in the right-most column of a staff activity (for example Edit, View, Delete) depends
on the access rights members of this user group have for the corresponding item type. Remove rights to see the action
list changes accordingly.
Import parts with different mime types (note that when importing files with extension .jpg or .jpeg mime the mime type
should be selected explicitly).
Explore the capabilities of the viewer applet.

4. Developing a Custom Content Manager / Process Choreographer Integration Solution

This chapter describes the elements of the Integration Toolkit and outlines how they can be combined to create a custom
integration solution.

4.1 How a CM/PC integration workspace is organized

The following sections assume a basic familiarity with DB2 Content Manager Enterprise Edition V8.3, WebSphere Studio
Application Developer Integration Edition V5.1.x, and WebSphere Business Integration Server Foundation V5.1.x. They focus
on the concepts that are specific to an integration solution based on the Integration Toolkit and Quick Start Client. Valuable
resources to get familiar with the environment are the redbooks and documentation referenced in the literature section at the
end of this document. From the point of view of business process creation we recommend the business process samples that
can be found in WebSphere Application Developer Integration Edition under New > Other > Examples > business integration
> scenarios > BPEL. We recommend working through at least one of the 'build it yourself' style samples and taking the time to
look up new concepts in the redbooks or documentation.

A workspace of a custom solution that integrates DB2 Content Manager with Process Choreographer typically consists of the
following projects:

Service project(s) that host(s) one or more processes. A useful convention may be to use a name ending with 'Process'
to distinguish it from the other projects in the workspace.
Integration Toolkit (ContentManagerIntegration, ContentManagerIntegrationJar, ContentManagerIntegrationEjb).
Quick Start Client adjusted to the needs of the custom process.

In the following we describe the elements of an integration solution based on the three types of projects and their interaction.

4.2 The Integration Toolkit

The Integration Toolkit is a set of Java classes and EJBs that support the creation of content-centric processes. See the figure
below for a schematic representation of the Quick Start architecture:

27 of 65

The three red blocks mark the three elements of the Content Manager / Process Choreographer Integration Quick Start: the
Quick Start Client, the claims handling sample process and the Integration Toolkit.

The Integration Toolkit methods are implemented within a stateless session bean context that permits the current global
transaction to be suspended while invoking the Content Manager API. This enables efficient use of Content Manager within the
WebSphere Application Server environment. A Java class named ContentManager provides static methods that simplify
programmatic exploitation of underlying services, including EJB access. This class is especially useful in the Process
Choreographer Java Snippet environment, where process designers may have limited Java skills.

The API documentation for the static methods in ContentManager can be found in
ContentManagerIntegrationJar\doc\index.html

Startup beans are WebSphere-specific stateful session beans that are automatically notified when a WebSphere application is
started or stopped. A bean is designated as a startup bean by implementing special home and remote interfaces. When
WebSphere starts an application, it looks for beans that implement these special startup bean interfaces. If it finds any, it
arranges to invoke the beans start() and stop() methods on application initialization and termination. The Integration Toolkit uses
the startup bean to start and stop the asynchronous bean described below.

Asynchronous beans are WebSphere-specific enterprise beans that are executed asynchronously and provide support for
application threading within a J2EE environment. There are three types of asynchronous beans:

Worker Beans
Alarm Listener Beans
Event Listener Beans

The Integration Toolkit uses a worker asynchronous bean. A worker asynchronous bean is like a Windows service or a Unix/
Linux daemon process. It runs until asked to terminate. The integration asynchronous bean runs in a loop, doing its work and
then sleeping for a period of time before waking up and repeating the process. When started by the startup bean, the
asynchronous bean used by the Integration Toolkit invokes methods in the Content Manager Integration Stateless Session Bean
to perform the following operations:

Check for satisfied collection point criteria
Process content manager events that require process initiation or termination actions (content event handling)

The asynchronous bean loops until its stop method is invoked by the startup bean at application termination.

The Collection Point MDB (Message Driven Bean) is invoked in response to messages from Collection Point activities in
content-centric processes. In other words, when such a process encounters an Invoke activity which is bound to the Collection

28 of 65

Point service, it puts a message on a specific Java Message Service (JMS) queue (CollectionPointQueue). When that message
reaches the head of the queue, an associated listener gets the message from the queue and WebSphere invokes the Collection
Point MDB. The Collection Point MDB retrieves the elements of the request (item id, name and quantity of items to wait for) and
invokes a method in the Content Manager Integration Stateless Session Bean to register the collection point for subsequent
processing by the Content Manager Integration Asynchronous Bean, which sends a reply message back to the business
process when the collection point condition is satisfied.
You can invoke an asynchronous service (e.g. bound to a JMS implementation) with a single invoke activity or use a invoke/
receive pair in the BPEL process to communicate asynchronously with a partner. In the first case a correlation set needs to be
maintained to locate the process instance to which the response should be sent. With JMS binding locating the appropriate
process instance can more easily be done based on the JMS message ID.

The Content Manager Integration Stateless Session Bean does most of the work. Note that the implementation of most of
these functions can be found in the com.ibm.bpe.cm.util package of the ContentManagerIntegrationJar project.

At the level of content / workflow interaction patterns the Integration Toolkit offers the following functions:

Content Event Handling - item creation or deletion events in Content Manager trigger corresponding actions in Process
Choreographer
Collection Point - let a process instance wait until a certain number of items of a certain type are in a folder (or a timeout
or exception occurs)
Content Attribute Access - efficient means to access the value of content attributes from within the business process, e.g.
to enable content-specific decisions
Folder Service - add the item routed through the flow to a retrieved folder or add a retrieved item to the folder routed
through the flow
Combined Query - efficiently retrieve process information from Process Choreographer and associated business
attributes from Content Manager
Common Staff Repository - the Integration Toolkit includes a WebSphere User Registry that leverages the Process
Choreographer staff resolution facility to map Content Manager user and group definitions to the role / verb model used
to identify user access for a work item

A process that uses any of the toolkit functions needs to comply with the following conventions:

It has a single receive activity.
The input message definition (WSDL) of the process contains a part with the name itemPid and type (xsd:string).
The receive activity is followed by a Java snippet which performs the following initialization:

ContentManager.initializeCustomProperties(this, get<ProcessRequestVariableName>
().getItemPid());

When creating a new CM/PC integration project make sure that ContentManagerIntegrationJar is included in the list of
project references of the corresponding service project. The initial Java snippet copies the itemPid value of the input message
to process properties where they are available e.g. for combined query evaluation. The Integration Toolkit stores an item's
unique identifier as both a fully specified itemPid and as a triple <ITEMID, COMPONENTID, VERSIONID>. When starting a
process instance based on content event handling, only the triple-based information is available. During initialization of the
process, the method initializeCustomProperties() retrieves the fully specified item PID that contains among other
information the library server name and item type.

29 of 65

4.3 Content Event Handling

With content event handling, activities in DB2 Content Manager generate events that can be handled by the business process
management system. The Integration Toolkit provides an implementation of content event handling that deals with item creation
and deletion events. If defined properly, an item creation event triggers the creation of a process instance as soon as an item of
a certain type is stored in DB2 Content Manager. The newly created process instance contains a reference to the item just
created. If capturing of deletion events is specified, the deletion of an item in DB2 Content Manager triggers the removal of any
process instances 'carrying' it.

How to use Content Event Handling

The administrator specifies which items trigger creation or deletion events based on the custom attributes WF_OnCreate and
WF_OnDelete that need to be assigned to the item types for which content event handling should be enabled. Both attributes
need to be defined as a variable length character string with a minimum length of zero and a maximum length of 254 as shown
below:

30 of 65

To enable an item type for content event handling add WF_OnCreate or WF_OnDelete to its list of attributes and enter the
template name of the process to be notified as the default value.

31 of 65

The value of the attribute WF_OnCreate specifies the name of a process to start whenever the corresponding event occurs. So,
for example, if the WF_OnCreate attribute for the XYZ_ClaimFolder item type is set to ClaimsHandlingProcess, then
whenever a user creates a new item of type XYZ_ClaimFolder, a new instance of the ClaimsHandlingProcess is started with a
reference to this item in its input message. Note that this assumes a certain definition of the input message for these processes,
in particular the message must contain at least a String part named itemPid. If multiple versions of this process are deployed,
the most recent process with respect to the Valid From date is selected. If the attribute WF_OnDelete is present in the
definition of the item type XYZ_ClaimFolder with a default value of ClaimsHandlingProcess, deleting an item of this type
terminates all instances of the ClaimsHandlingProcess that carry this item.

With this create and delete linkage, content event handling enables some degree of referential integrity between the content
repository and the process management system in the sense that document creation or deletion causes corresponding action in
the process management system in order to keep the two systems synchronized.

How Content Event Handling is implemented

Item type definitions that have a WF_OnCreate or WF_OnDelete attribute are registered in a table BPECONTENTENVENTS that
the Integration Toolkit creates in the library server database. Each row in the BPECONTENTEVENTS table constitutes a content
event request. The method checkContentEvent() of the stateless session bean is called regularly from the asynchronous
bean to see if a new process instance should be created or if process instances should be deleted. It scans the
BPECONTENTEVENTS table in the order and performs the corresponding creation or deletion operations in the order in which
requests have been added to the table deleting the rows as soon as the corresponding action has been performed successfully.
If an action fails, an error message is written to the log the row remains in the table and the event is retried during the next cycle
of the asynchronous bean. The BPECONTENTEVENTS table is created during server startup if it does not exist yet.

32 of 65

The BPECONTENTEVENTS table has the following structure:

CREATETS TIMESTAMP
ITEMID CHAR(26)
COMPONENTID CHAR(18)
VERSIONID SMALLINT
REQUEST SMALLINT
PROCESSNAME VARCHAR(254)

The CREATETS column is the creation date and time of the content event. It ensures that content events are processed in the
order in which they are received. The ITEMID, COMPONENTID and VERSIONID columns are the key values of the
corresponding itemPid the creation or deletion of which triggered the event. The REQUEST column indicates the type of CM
event: 1 for creation, 2 for deletion. The PROCESSNAME column indicates the name of the process to be created in case of
creation events. Rows are written to the BPECONTENTEVENTS table using database triggers. These triggers are automatically
created by the Asynchronous Bean for Content Manager item types that contain the custom attributes WF_OnCreate or WF_
OnDelete. The trigger is created on the underlying Content Manager Component Table (a table of the form ICMUTnnnnnsss).
Once the trigger is created, create and delete operations for the item type result in requests being written to the
BPECONTENTEVENTS table. This has the benefit of decoupling the Content Manager transaction from the subsequent Check
Content Event transaction so that the performance impact to the Content Manager transaction is minimal. The
BPECONTENTEVENTS table is created (if it doesn't already exist) via the ejbCreate method, the first time the Content Manager
Integration Stateless Session Bean is created.

Apart from this specific mechanism content event handling can also be viewed as specific instance of a more general concept
that may be applied to other special processing, as needed.

Examples might be:

Notify process instances if the item they are referring to is updated
Trigger a 'review process' within a certain period of time after a document has been created
Trigger a process if a document is moved to a different storage system
etc.

4.4 The Collection Point Service

A collection point can be used where the item that is routed through the process is a folder. A collection point is an activity in the
process which waits until a certain folder condition is valid. This condition is expressed in terms of <ITEMTYPE, QUANTITY>
pairs. A set of such pairs specifies how many instances of the named item types need to be in the folder for the process
instance to resume execution. <1, XYZ_ClaimForm>, <2, XYZ_AdjReport>, <1, XYZ_PolReport> is an example that
lets the process instance wait until one claim form, two adjuster reports, and one police report are available in the claim folder
that is routed through the process.

How to use the Collection Point Service

A collection point is modeled by two activities, a Java Snippet that defines the collection point conditions and an invoke activity
that calls the collection point service provided by the Integration Toolkit. Note that a process using a collection point must be
defined as long running since the availibility of documents usually depends on some external conditions that are beyond the
control of the process and typically person-based. Furthermore, a timeout may be specified to ensure the process instance
resumes execution in lack of the required documents. In most cases, the timeout triggers a reminder or corrective action to
ensure the process instance does not wait forever.

The collection point service takes an input message consisting of two arrays with the item type names and their respective
quantities and a numeric part for the timeout. It returns a numeric status value that represents one of the following situations:

Success - in this case the condition is met by the folder content
Timeout - the condition has not been met within the number of milliseconds specified by the timeout parameter of the
input message
Folder has deleted - the folder that is routed through the process (on which the collection point condition is defined) has
been deleted
Failure - an exception has occurred while the process instance was waiting for the collection point condition to be met

A typical implementation of the collection point looks as shown below:

33 of 65

The Java snippet InitializeCollectionPoint instantiates the input message of the collection point service. It stores the
item PID of the folder, and defines the collection point condition and timeout value as shown above. A decision inside the loop
evaluates the return value of the collection point service and triggers corresponding actions such as sending a notification in
case of a timeout or terminating the process instance in case of a failure.

A collection point service can be added to a process definition by dragging the CollectionPoint.wsdl from
ContentManagerIntegrationJar/com.ibm.bpe.cm/ and dropping it into the appropriate location of the process diagram.
Since the collection point condition is specified by the input message of the collection point service, it can be read and modified
at process runtime. The ValidateAndAdjust activity of the sample process demonstrates how a person with this role can
adjust the collection point conditions within a certain range.

How the Collection Point Service is Implemented

34 of 65

Invoking a collection point service produces a JMS message that triggers the registration of a collection point. For each
message, registerCollectionPoint() retrieves the parameters initialized by the process and writes them to a table
BPECOLLECTIONPOINTITEMTYPES in the Content Manager library server using JDBC.

The Content Manager library server database contains two tables for collection point support provided by the Integration Toolkit.

The table BPECOLLECTIONPOINTITEMTYPES contains one row for each item type and quantity specified in the collection point
request. It is defined as follows:

CORRELATIONID VARCHAR(254)
ITEMTYPENAME VARCHAR(254)
ITEMTYPEQUANTITY INTEGER

The CORRELATIONID column contains the JMS Correlation ID of the original message. The ITEMTYPENAME column contains
the name of the item type to wait for. ITEMTYPEQUANTITY specifies the number of items of type ITEMTYPENAME to wait for.

The table BPECOLLECTIONPOINTS contains one row for each active collection point request. It is defined as follows:

CREATETS TIMESTAMP
CORRELATIONID VARCHAR(254)
ITEMID VARCHAR(254)

The CREATETS column is the creation date and time of the collection point request. It ensures that collection point requests are
processed in the order in which they are created. The CORRELATIONID column is the JMS Correlation ID of the original
message. Process Choreographer uses it to correlate the response message with the request message so that the Invoke
activity in the process completes. The ITEMID column is the Item ID of the folder to be checked.

There is a one-to-many relationship between BPECOLLECTIONPOINTS and BPECOLLECTIONPOINTITEMTYPES, based on the
CORRELATIONID. Any of these tables is created during server startup if it does not already exist.

The method checkCollectionPoint() uses JDBC to perform an SQL query which returns a list of collection points that are
satisfied. For each satisfied collection point, it deletes the collection point request from the BPECOLLECTIONPOINTS table and
sends a response message back to the Collection Point Invoke activity of the process. A request is also removed if the folder
that is routed through the process has been deleted before the collection point condition is satisfied. Each row in the
BPECOLLECTIONPOINTS table represents a collection point, and each row in the BPECOLLECTIONPOINTITEMTYPES table
represents an item type condition for a collection point. checkCollectionPoint() joins these tables with the Content
Manager Links, Items and NLS Keywords tables to efficiently identify all satisfied collection points in a single request to the
library server database. checkCollectionPoint() uses the "Folder Contains" link type to determine the contents of folders.
It sums the items for the specified Content Manager folder, and if the resulting counts are greater than or equal to the quantities
specified in the collection point conditions, then the collection point is considered to be satisfied. The NLS Keywords table maps
the Content Manager item type names to numeric Item Type ID's using the base name for the item type, which may be
expressed in any language. However, to avoid a potential cross product, the join is limited to ENU, which must be present
(though not necessarily in use). The collection point tables are created (if they don't already exist) via the ejbCreate()
method, the first time the Content Manager Integration Stateless Session Bean is created. Rows are written to the
BPECOLLECTIONPOINTITEMTYPES by registerCollectionPoint(). checkCollectionPoint() is invoked from the
Content Manager Integration Asynchronous Bean.

4.5 Content Attribute Access

There are a number of situations in which there is a need to access the attribute values of the item that is routed through the
process or of items in the folder that is routed through the process. Typical situations are conditions on links in a parallel section
(flow) of the process or on switch statements in a 'case' section that determine the path to be taken depending on the value of
an attribute. Another typical situation is instantiating the input message of a staff activity or other service by extracting attribute
values from the folder or from an item in the folder and placing them into parts of the input message to make them available as
input parameters to the service. The integration toolkit offers the following methods to extract attribute values from items or to
evaluate conditions over attributes:

Object ContentManager.getContentAttribute(processBean, attributeSpec)
Object[] ContentManager.getContentAttributes(processBean, attributeSpec)
Object ContentManager.getFolderContentAttribute(processBean, attributeSpec)

35 of 65

Object[] ContentManager.getFolderContentAttributes(processBean, attributeSpec)
boolean ContentManager.evaluateCondition(String xPath)
boolean ContentManager.evaluateCondition(ProcessBean bean, String xPath)

Each of these methods takes a reference to the process bean and an attribute specification as input parameters. The attribute
specification is an array of Strings of the form <itemTypeName>/<attributePath>, where <itemTypeName> specifies the
type of item that holds the attribute value of interest (the same attribute may be defined for many different items).
<attributePath> can be an atomic attribute name or a sequence of attribute names separated by '/' in case of an attribute
hierarchy (as for example in customer/address/city).

getContentAttribute() and getFolderContentAttribute() can be used if no more than a single value can be
returned from the query (if the queried attribute is single-valued and no more than a single item of this type is contained in the
folder). getContentAttributes() and getFolderContentAttributes() return arrays of objects and are thus capable
of returning multiple values.

Decision points are an example for using attribute value access. Many business processes contain conditional processing, in
which the path through the process is controlled by the value of attributes or variables in the process. Furthermore, the links
between activities in a parallel section (flow) can be conditional, meaning that the link is only followed if the condition is true.
These conditions can be specified in a variety of ways, including Java expressions. To use a decision point, a process designer
adds a link between activities, specifies the value of the condition as Expression, and enters a Java expression that uses one of
the methods listed above to evaluate the condition.

Here is an example of a Decision Point condition based on getFolderContentAttribute(). The condition verifies if the
value of the attribute XYZ_ClaimAmount exceeds a certain limit. The query looks for this value in items of type XYZ_
AdjReport located in the folder which is routed through the process. If the attribute would be multi-valued or more than one
item of this type could be part of the folder, getFolderContentAttributes() should be used instead because
getFolderContentAttribute() accesses only the first element of the result set.

evaluateCondition() is based on a different concept to implement conditions on links or switch statements. When called
with the process bean and an XPath expression as parameters, it returns true if the result of the query is non empty. The
evaluateCondition(ProcessBean bean, String xPath) form of this method supports the following substitutable
parameters, which can be included in XPath expressions to further qualify the results:

%ITEMID%
%COMPONENTID%
%VERSIONID%

These substitutable parameters are replaced with the values of the Item ID, Component ID and Version ID (respectively) of the
CM item associated with the process (typically a folder). The Item ID and Component ID parameters are character strings, and
the substituted values include quotes to produce a valid XPath expression. The Version ID parameter is a number, which can
be used in numeric expressions (e.g. %VERSIONID% > 3). Note that use of these substitutable parameters is optional and that
the XPath expression is not limited to querying attributes of items associated with the process.

Here is an example of a Process Choreographer conditional link expression that checks to see if the mortgage amount exceeds
$333,700:

36 of 65

This Java expression uses the %ITEMID% substitutable parameter to get the CM Item ID associated with the process. This Item
ID qualifies the search so that it only applies to the CM item associated with the current process. In this example, the item type
is Mortgage and the name of the CM attribute is Amount. If the mortgage amount exceeds $333,700 for the item associated
with the current process instance, then the link will be followed and the next activity on that link will be executed.

4.6 Folder Service

The folder service adds one or more items to a folder. The two available operations are addFlowItemToFolder and
addItemToFlowFolder. Both operations take the itemPid of the item that is routed through the folder and an XPath query as
input and return a numeric value that represents the size of the result list obtained from running the XPath query. The
operations differ as follows:

addFlowItemToFolder
In this case the XPath query needs to return a folder. This operation adds the item that is routed through the process to this
folder. If the item routed through the process is itself a folder this will create a nested folder structure.

addItemToFlowFolder
In this case the item routed through the process needs to be a folder. This operation adds the items returned by the XPath query
to the folder that is routed through the process.

4.7 Combined Query

Typically, end users are not aware of underlying technologies and need not be concerned with whether they are using a
process management system or a content repository. Ideally, these users have a single user interface that enables them to
efficiently search for information, regardless of how that information is stored. In order for this to be the case, the Integration
Toolkit provides a combined query capability that efficiently searches for information in both the Content Manager library server
and the process engine database (i.e. not only content and its attributes, but also properties of the enclosing process instance).
This query capability utilizes search criteria for both systems (the "where" clause) as well as attributes (the "select" clause).
Combined query results only include items to which the caller has access. This means that the item must exist in a work list,
and that the caller be authenticated as a user who has access to the work item.

To take advantage of this combined query capability, a Web programmer uses the combinedQuery method of the Integration
Toolkit which has the following interface:

public QueryResultSet combinedQuery(
 String selectClauseWorkflow,
 String flowItemTypeNameContent,
 String flowItemTypeAttributesContent,
 String additionalAttributesContent,
 String whereClauseWorkflow,
 String xPathContent,
 String orderByClauseWorkflow,
 java.util.TimeZone timezoneWorkflow);

The combinedQuery method returns a com.ibm.bpe.api.CombinedQueryResultSet which enables a programmer to
access the combined query results. This interface is designed to be used e.g. in a Web application. The Integration Sample
Client implements the concept of user work lists based on the combined query capability of the Integration Toolkit. below.

4.8 Staff Resolution

As work flows through a process management system, it is acted on by a variety of automated and manual steps. When a work
item arrives at a manual step, the process management system must decide which users should have access to the item. This
is referred to as staff resolution. Process Choreographer provides a highly configurable staff resolution facility that uses a role /
verb model to identify user access for a work item. These are the predefined roles that describe the types of access supported:

Administrators - People response for upper level administrative tasks

37 of 65

Potential Owners - People who may claim the item, perform the activity, and complete it
Editors - People who may update the item, but not complete the activity
Readers - People who may only view the activity, but not work on it

Process Choreographer uses staff verbs to assign users to these staff roles. The staff verbs are configurable queries to an
underlying directory service, and are limited only by the power and flexibility of that service. For example, if the directory service
supports a "manager of" relationship, then the staff verb can utilize that relationship to resolve a role to a manager of a user.
Process Choreographer utilizes a pluggable interface to the underlying staff repository, and comes preconfigured with interfaces
for LDAP, the WebSphere User Repository and a System directory.

The Integration Toolkit includes a WebSphere User Registry implementation for DB2 Content Manager. This uses the Content
Manager user and group definitions to support group membership. This means that users only need to be defined once, using
the Content Manager system administration interface, and that staff resolution can be performed at the group level. Alternatively
an LDAP server can be used as a centralized repository for user and group definitions as will be done in Chapter 5 of this
document.

Note that the WebSphere user registry for DB2 Content Manager provided by the Integration Toolkit can not be used to
implement Single Sign On (SSO) since enabling Content Manager for SSO requires disabling of the password checks. When
used with an SSO-enabled application server this would bypass password checking and allow users to log on with an arbitrary
password. The preferred way to implement SSO is by using a simple file-based user registry in the build environment (based on
the files users.prop and groups.prop) and to use an LDAP system such as the Tivoli Directory Server for the runtime
environment.

Note: Using a custom WebSphere User Registry affects all application running on the Application Server such as the
Administrative Console. With a dedicated WAS installation for Content Manager and Process Choreographer (potentially also
hosting the Resource Manager application) this should typically not be a problem as we recommend to use the library server
userid (icmadmin) as Application Server and process administrator. If the Application Server is intended to host other
applications as well, potential side effects when using a custom user registry need to be well-understood.

4.9 Customizing the Quick Start Client

The Quick Start Client is a generic DB2 Content Manager and Process Choreographer client that does not cover the full range
of capabilities offered by DB2 Content Manager and Process Choreographer but it provides what can be thought of as a
reasonable set of the most typically used functions and since it is available as source code it can be adjusted to the specific
needs of your application.

The process-specific information is stored in
QuickStartClient\JavaSource\com\ibm\bpe\cm\util\ProcessData.java. The following settings may need to be
adjusted:

Global constants

CM_DATASTORE_NAME ... the name of the library server database (e.g. icmnlsdb)
AUTO_LINK_ATTRIBUTE ... the name of the attribute that defines folder membership if a folder is routed through the
process

QuickStartClient\JavaSource\com\ibm\bpe\cm\util\Helpers.java contains a method prepareName() that can be used to map a
display name to some potentially truncated form that displays well on the client pages. For the First Steps sample data this
means cutting off the comment in parenthesis: (Content Manager V8.1 Sample Item Type) or to truncate the display
name of the XYZ_ClaimFolder Claim Application Folder to contain other claim related documents (e.g.
adjuster report, auto photos, claim form, etc) and linked by Claim Number at character position 24.
This method may be helpful in cases like this where the display name serves as a 'description' of the item type in addition to
being the (localizable) name that is displayed to users. prepareName() assumes display names have the form <actual
display name> (<description>) where <actual display name is the name to be shown in the client and
(<description>) is the comment that describes the item type in more detail. The constants DISPLAY_NAME_SIZE_LIMIT
and DISPLAY_NAME_TRUNCATION_POS can be used additionally to truncate long names (those the length of which exceeds
DISPLAY_NAME_SIZE_LIMIT) to a maximum size of DISPLAY_NAME_TRUNCATION_POS. Note that specific rules may need to
be applied depending on the locale (see the section on Globalization and Accessibility Considerations for more details on this
topic).

Roles

38 of 65

Roles define certain aspects of the client's look and feel. A user who logs on to the client gets a role ID assigned by one of the
following two mechanisms:

a. it is passed as a parameter to listWorkItems.jsp with a URL such as http://localhost:11605/
QuickStartClient/listWorkItems.jsp/role=5. This is the preferred option used with the ClaimsHandlingProcess
sample.
b. a map translates user IDs into role IDs (see the comments in header.jsp for an example of how this could be done)

Role IDs are used as an index into three arrays: workListStyleMap, addToFolderActionItemTypes, and
addToFolderActionNames. They should be defined using symbolic constants as in the following example:

static public final int USER1_ROLE = 0;
static public final int USER2_ROLE = 1;
static public final int NUM_OF_ROLES = 2;
static public final int DEFAULT_ROLE = USER1_ROLE;

The workListStyleMap defines the columns of a worklist for this role in terms of process properties and item attributes. A
WorkListStyleMap defines the parameter of the combined query to be run when retrieving work items for this role.

addToFolderActionItemTypes and addToFolderActionNames define which documents a user with this role can add to
the folder that is routed through the flow. For example

addToFolderActionItemTypes[USER1_ROLE] = { "AdjReport", "FraudReport",
"ReliabilityStudy" };
addToFolderActionNames[USER1_ROLE] = { "Adjuster Report", "Fraud Report",
"Reliability Study" };

...means that a user with role USER1_ROLE may add instande of the item types AdjReport, FraudReport, ReliabilityStudy to the
folder that is routed through the flow. The action column of the work page will refer to these actions by 'Add Adjuster Report',
'Add Fraud Report', 'Add Reliability Study' based on the elements of addToFolderActionNames .

User Actions

The method staffActions(String activityName, WSIFDefaultMessage inputMsg) defines the display elements
for the 'Process activity' section of the work page. This section is defined as a table segment spanning four columns. There is no
limit on the number of rows. The final column always contains the available actions (Complete and Cancel). This section
typically displays some parts from the input message of this staff activity (2nd parameter) and contains form elements that can
be used to instantiate its output message. The name of the form element needs be of the form msgpart.xxx where xxx is the
name of the corresponding message part. If all parts of the output message are of type String, no custom logic needs to be
added to the servlet CompleteWorkServlet that maps the form values to the output message. If non-string-typed variables
are involved, either output message parts are mapped to the target type by a Java snippet in the process or custom logic needs
to be added to the CompleteWorkServlet

Here a simple example of a 'review activity' with an input message that contains the text to be reviewed and an output message
consting of a rating in the range 1..5.

static public String staffActions(String activityName, WSIFDefaultMessage inMsg) {

 try {
 String result = "<td colspan=\"4\"></td>"; // default

 if (activityName.equals("Review")) {
 String textToBeReviewed = (String)inMsg.getObjectPart("TextToBeReviewed");
 result = "<TD colspan=\"2\">\n" +

 "Text to be reviewed:" + textToBeReviewed +
 "</TD>" +

"<TD colspan=\"2\">\n" +
 "<SELECT name=\"msgpart.NumAdjReports\">" +

"<OPTION value=\"1\" SELECTED>1</OPTION>" +
"<OPTION value=\"2\">2</OPTION>" +
"<OPTION value=\"3\">3</OPTION>" +
"<OPTION value=\"4\">4</OPTION>" +
"<OPTION value=\"5\">5</OPTION>" +

39 of 65

http://localhost:11605/

"</SELECT>" +
"</TD>";

 } // 'Review' activity
 else if (activityName.equals("SomeOtherActivity")) {

 }
 } catch (WSIFException e) {

e.printStackTrace();
 }
return result;
}

4.10 The project structure of a custom integration solution

To create a custom integration solution the following projects need to be import from quickStartSampleRev1wbi.zip:

ContentManagerIntegration
ContentManagerIntegrationEjb
ContentManagerIntegrationJar
QuickStartClient
Server

Make sure that the properties of the service project that hosts the custom process includes
ContentManagerIntegrationJar in the list of project references and in the list of projects that participate in the build path.
CollectionPoint or FolderManagement services can be added to the process definition by dragging their .wsdl file from
ContentManagerIntegrationJar\com\ibm\bpe\cm and dropping at the appropriate position of the process flow and
adding the corresponding Java snippets or assign activities that create and interpret in- and output messages of the service.
When generating deploy code for the process the corresponding XXXService.wsdl files need to be located in the 'Referenced
Partners' section of the Generate Deploy Code window. See the section on how to Resolve BPEL references by binding
services to port types for details.

4.11 Globalization and accessibility considerations

All Web pages of the Quick Start Client use UTF8 encoding. The static content can easily be localized by creating translated
versions of these pages. To avoid code duplication for JSPs we recommend using a different approach for most of the JSPs
except help.jsp, namely using Java Resource Bundles since most JSPs only contain small portions of static text such as
banner or column titles. A similar approach needs to be taken to internationalize messages of the Integration Toolkit such as
those thrown in case of an IntegrationException.

Note that using images to represent the process flow as in index.jsp requires a corresponding text-only version to meet
accessibility requirements.

5. Deploying an Integrated Solution on a Production Simulation Environment

This chapter describes the steps needed to set up a stand-alone environment that can be used to simulate and test the process
in a system configuration that matches a production environment. This is done by deploying the process, Integration Toolkit
runtime and Quick Start client on a WebSphere Business Integration Server Foundation, using an LDAP server as a common
user repository and storing the Process Choreographer data in a DB2 database. Depending on previous experience with LDAP
and the WebSphere server environment completing this paragraph will take about 2 hours.

5.1 Prerequisites and Installation Hints

See 1.3 Software Requirements for details on the system configuration required for chapter 5.

Configuring the business process container

The Quick Start Integration assumes both, the Content Manager data and Process Choreographer data reside in DB2.
Therefore the business process container has to be configured to use the DB2 Universal Database.

Make sure DB2 is installed and server 1 is running.
Optionally: investigate the process choreographer documentation about information on table spaces for the Process
Choreographer database. Creating a custom tablespace for Process Choreographer may be an advantage from a
performance optimization perspective.

40 of 65

In <WAS_HOME> run bin\wsadmin -f ProcessChoreographer\sample\bpeconfig.jacl. If you want to
unconfigure an existing configuration, you may need to use bpeunconfig.jacl first. If security is active you need to
add the parameters -user <ICMADMIN> -password <ICMADMINPW>.

Make sure Process Choreographer is configured on server1 since more than one server may be present (e.g. icmrm).
Defaults are appropriate except for the following settings:

Name Value
Server where Process Choreographer is configured server1

BPESystemAdministrator icmadmin

JMSAPIUser icmadmin

database DB2

Server of Process Choreographer to connect to server1

DB2 user ID depending on your system
JMSAPIUser icmadmin

WebSphere MQ user ID icmadmin

Enable global security using the Local OS user registry no (this will be done manually later)
Enforce Java 2 security no

Optionally: investigate <WAS_HOME>\logs\bpeconfig.log to ensure the settings are correct.

(Re)start server1.

5.2 Setting up LDAP

Refer to the product documentation (DB2 Content Manager V8.3 Information Center) and follow the instructions Planning and
Installing Your Content Management System > After-installation configuration and setup procedures > Integrating with business
processes > Part2: Setting up a production environment > Preparing a common organizational directory to perform the following
steps:

Import the directory data into Tivoli Directory Server.
Configure DB2 Content Manager for LDAP. For this topic we recommend the section Planning and Installing Your
Content Management System > Using DB2 Content Manager after-installation programs and procedures > Enabling
LDAP.

41 of 65

http://publib.boulder.ibm.com/infocenter/cmgmt/v8r3m0/index.jsp

Configure WebSphere Application Server for LDAP.
Configure the LDAP staff plug-in for Process Choreographer.
Follow the steps in Planning and Installing Your Content Management System > After-installation configuration and setup
procedures > Part2: Setting up a production environment > Configure the business process for use in the production
environment > Enable the business process for LDAP. Note that the name of the business process is now
ClaimsHandlingProcess instead of WPCAutoClaimsProcessing.

5.3 Configure the server environment

Launch the WebSphere Administrative console by loading <http://<HOSTNAME>:9090/admin in your browser and
log on as administrator.
In the navigation panel select Environment > Manage WebSphere Variables and set the scope to server1.
Ensure that the variable DB2_JDBC_DRIVER_PATH is present and that it points to <DB2HOME>/java

Click New, enter IBMCMROOT into the Name field, <IBMCMROOT> into the Value field, and click OK

42 of 65

In the navigation panel select Servers > Application Servers, click server1 and follow the Additional Properties
to Process Definition > Java Virtual Machine.
Enter ${IBMCMROOT}/cmgmt into the Classpath field and click Apply

43 of 65

In the Additional Properties section select Custom Properties.
In the Custom Properties section add the following entries by clicking New entering the data and clicking OK:

ws.ext.dirs ${IBMCMROOT}/lib

ws.ext.dirs ${DB2_JDBC_DRIVER_PATH}/db2java.zip

44 of 65

Click Save on top of the window to open the Save to Master Configuration window. Click Save to make the changes
permanent.

5.4 Configure JDBC connections and data sources

In the navigation panel select Security > JAAS Configuration > J2C Authentication Data.
Verify the existence of the authentication alias <HOSTNAME>/BPEAuthDataAliasEmb_<HOSTNAME>_server1 that
has been created during process container configuration.
Click New, add the following entries and click OK

Alias ICMNLSDBAuthDataAlias

User ID icmadmin

Password icmadmin's password

45 of 65

In the navigation panel select Resources > JDBC Providers. Ensure the scope is on server1.
Verify the existence of the JDBC driver DB2 Legacy CLI-based Type 2 JDBC Driver (XA) that has been
created during process container configuration. Click on it.
In the Additional Properties section of the configuration panel select Data Sources, Verify the existence of the data
source BPEDataSourceDb2 that has been created during process container configuration.
Select New to create a new data source based on the following information:

Name replace DB2 Legacy CLI-based Type 2 JDBC Driver XA Data
Source with icmnlsdb

JNDI Name jdbc/ICMNLSDB

Component-managed
Authentication Alias select <HOSTNAME>/ICMNLSDBAuthDataAlias from the list

Container-managed
Authentication Alias select <HOSTNAME>/ICMNLSDBAuthDataAlias from the list

Description CM library server data source for CM/PC Integration Quick Start

Click OK to save the data source definition.

46 of 65

Click on the new icmnlsdb data source definition and in the Additional Properties section select Custom Properties and
click sample in the value column of the Custom Properties page.

47 of 65

Replace the default value sample in the Value field with icmnlsdb and click OK.
Click Save on top of the window to open the Save to Master Configuration window. Click Save to make the changes
permanent.
Select Resources > JDBC Providers on the navigation panel and ensure the scope is on server1.
Click on DB2 Legacy CLI-based Type 2 JDBC Driver (XA), scroll down to the Additional Properties section, click on
Data Sources and perform the following steps:

Select the check box left of icmnlsdb.
Click Test Connection.
Verify that the information message on top of the page says Test Connection for datasource icmnlsdb
on server server1 at node <HOSTNAME> was successful.

48 of 65

5.5 Configure connection factories, queues, and consumers

In the navigation panel select Resources > WebSphere JMS Provider and set the scope to server1.
In the Additional Properties section select WebSphere Queue Connection Factories and verify the existence of the two
queue connection factories BPECF and BPECFC that have been created during process container configuration.
Click New to create a new queue connection factory based on the following information:

Name CollectionPointQCF

JNDI Name jms/CollectionPointQCF

Component-managed
Authentication Alias select <HOSTNAME>/ICMNLSDBAuthDataAlias from the list

Container-managed Authentication
Alias select <HOSTNAME>/ICMNLSDBAuthDataAlias from the list

Mapping-Configuration Alias select DefaultPrincipalMapping from the list

Description optionally: Queue connection factory for the CM/PC
Integration Quick Start

Click OK to save the queue connection factory definition.

49 of 65

Navigate back to the WebSphere JMS Provider page and click WebSphere Queue Destinations in the Additional
Properties section.
Verify the existence of the four queue destinations BPEApiQueue_<SERVERNAME>, BPEHidQueue_<SERVERNAME>,
BPEIntQueue_<SERVERNAME>, and BPERetQueue_<SERVERNAME> that have been created during process container
configuration.
Click New to create a new queue destination based on the following information:

Name CollectionPointQueue

JNDI Name jms/CollectionPointQueue

Description optionally: Queue destination for the CM/PC Integration Quick Start

Click OK to save the queue destination definition.
Repeat the previous steps to create a new queue destination with name receiverQ and JNDI name jms/receiverQ.

50 of 65

In the navigation panel select Servers > Application Servers, click server1 and follow the Additional Properties
to Message Listener Service > Listener Ports.
Verify the existence of the three listener ports BPEApiListenerPort, BPEHoldListenerPort, and
BPEInternalListenerPort that have been created during process container configuration.
Click New to configure a new listener port for server1 as follows:

Name CollectionPointQListenerPort

Description optionally Listener port for the CM/PC Integration Quick Start

Connection factory JNDI Name jms/CollectionPointQCF

Destination JNDI Name jms/CollectionPointQueue

Click OK to save the listener port definition.

51 of 65

In the navigation panel select Servers > Application Servers, click server1 and follow the Additional Properties
to Server Components > JMS Servers.
Verify that the Queue names field lists the four queues BPEIntQueue_<SERVERNAME>, BPEApiQueue_
<SERVERNAME>, BPEHidQueue_<SERVERNAME>, and BPERetQueue_<SERVERNAME> that have been added during
process container configuration.
Add CollectionPointQueue and receiverQ to the list of Queue names and click OK

52 of 65

Click Save on top of the window to open the Save to Master Configuration window. Click Save to make the changes
permanent.

5.6 Configure security

Double-check the security settings in Security > Global Security that have been configured during LDAP enablement:
The Enabled checkmark is checked
Enforce Java 2 Security is unchecked
The Active User Registry is set to LDAP

Double-check the LDAP settings in Security > User Registries > LDAP:
Server User ID and Server Password are set to the library server credentials.
Type is set to Custom.
The Hostname and Port are correct.
The Base Distinguished Name is o=XYZInsurance.
Click Advanced LDAP Settings and ensure the UserFilter is set to (&uid=%v)(objectlass=person)).

In the navigation panel select Security > Authentication Mechanisms > LTPA.
Enter icmadmin's password into the Password and Confirm Password fields (any other password will do as well).
Click Apply.
Verify that Single Sign on is enabled by clicking Single Sign (SSO) in the Additional Properties section and validate if the
Enabled check-box is checked.
In the navigation panel select Security > Global Security.
Ensure the Enabled check box is checked and the Enforce Java 2 Security check box is unchecked.

53 of 65

Select LTPA (Light weight Third Party Authentication) from the list of values for the field Active
Authentication Mechanism and Custom from the list of values for the field Active User Registry.
Click Save on top of the window to open the Save to Master Configuration window. Click Save to make the changes
permanent.

54 of 65

Stop and re-start server1.

5.7 Deploying an Integrated Solution on WebSphere Business Integration Server Foundation

Though the title of this section refers to the sample process the same set of steps needs to be performed when installing a
custom Content Manager / Process Choreographer Integration solution. Note that connection factory and queue definitions may
not be needed if the solution does involve Content Event Handling or the Collection Point Service. In this case the
corresponding dependencies need to be disabled in the Integration Toolkit (e.g. the Asynch Bean).

Start WebSphere Studio Application Developer Integration Edition with the workspace created in chapter 1.
In the Services view of the Business Integration perspective expand Deployable Services, right-click
ClaimsHandlingProjectEJB and select Generate > EJB to RDB Mapping.
Click Create a new backend folder and click Next.
On the page Create new EJB/RDB Mapping keep the default Top down and click Next.
On the page Select Top Down Mapping Options select DB2 Universal Database V8.1 from the list of values for the
Target Database field and enter BPEDB into the Database name field.

55 of 65

Click Finish to create the mapping. The right hand window now displays the database mapping editor with the enterprise
beans that are associated with the process. Close this window.
In the Services view expand Service Projects > ClaimsHandlingProject > com.ibm.bpe.cm.sample, right-click
ClaimsHandlingProcess.bpel and select Enterprise Services > Generate Deploy Code.
Click OK in the Generate BPEL Deploy Code window to initiate the deploy code generation.
Wait until the progress information window disappears which indicates completion of this step.
Create a target folder in your file system where the EAR files will be stored.
On the menu bar select File > Export. From the list of export formats select EAR file.
Export the two projects ClaimsHandlingProjectEAR and ContentManagerIntegration by selecting the project from the
list, entering the target folder with the project name followed by .ear into the Destination field and clicking Finish.

56 of 65

Launch the WebSphere Administrative Console and logon as icmadmin.
In the navigation panel select Applications > Install New Application.
Select Browse to locate ContentManagerIntegration.ear and click Next.
On the panel for default binding and mapping generation click Next.
On the panel Step 1: Provide options to perform the installation check Deploy EJBs and click Next

57 of 65

On the panel Step 2: Provide options to perform the EJB Deploy verify that the value of the field Deploy EJBs
Option - Database Type is set to DB2UDB_V81.
Go to panel Step 13: Summary, verify the settings, and click Finish.

58 of 65

Wait for the message Application ContentManagerIntegration installed successfully (you may need to
scroll down the panel content to see it).
Select the link Save to master configuration and click Save to make the update permanent.

59 of 65

In the navigation panel select Applications > Enterprise Applications, check the checkmark left of
ContentManagerIntegration and click Start. The Status of this application should then turn into a green arrow indicating
that the application has been started successfully.
In the navigation panel select Applications > Install New Application.
Select Browse to locate ClaimsHandlingProjectEAR and click Next.
On the panel for default binding and mapping generation click Next.
On the panel Step 1: Provide options to perform the installation check Deploy EJBs and click Next.
On the panel Step 2: Provide options to perform the EJB Deploy verify that the value of the field Deploy EJBs
Option - Database Type is set to DB2UDB_V81 and click Next.
On the panel Step 3: Select current backend ID verify that the value of the column CurrentBackendId is set to
DB2UDBNT_V8_1 and click Next.
Go to panel Step 13: Automatically create database tables for Business Process entity beans and check Enable.
Go to panel Step 14: Summary, verify the settings, and click Finish.

60 of 65

Wait for the message Application ClaimsHandlingProjectEAR installed successfully (you may need to
scroll down the panel content to see it).
Select the link Save to master configuration and click Save to make the update permanent.

5.8 Install the runtime files, start the server and run the sample

Copy the files bpecm.jar and bpecmutil.jar from <WSADIE_HOME>\runtimes\ee_v51\lib to <WAS_
HOME>\lib.
Copy the file bpecm.properties from <WSADIE_HOME>\runtimes\ee_v51\properties to <WAS_
HOME>\properties.
In the navigation panel of the WAS administrative console select Applications > Enterprise Applications,
check the checkmark left of ClaimsHandlingProjectEAR and click Start. The Status of this application should then turn
into a green arrow indicating that the application has been started successfully.

61 of 65

Now you should be able to access the application through your browser.

6. Hints and Troubleshooting

Traps when working with the sample
When opening a new case the claim form needs to be the first document that is imported and it needs to have claim
number that has not yet been used. In case of doubt you can use the Client for Windows to find all instances of XYZ_
ClaimFolder and check their values for XYZ_ClaimNumber.
If an adjuster or police report with a new claim number is stored in DB2 Content Manager this triggers the creation of a
corresponding folder and process instance. Since neither of these items has a policy insurance number assigned, the
'RetrievePolicy' service fails but the process continues as usual.
If two claim forms with the same claim number exist, creating the second one causes an error message to show up in the
console output since the 'RetrievePolicy' services tries to add the insurance policy to the folder. The document can not be
added to a folder twice.

Resolve BPEL references by binding services to port types
If a project has been deleted and needs to be re-installed the references may need to be re-bound as follows.

In the Generate BPEL Deploy Code window select Referenced Partners > CollectionPoint in the navigation
pane on the left, click Browse on the right hand side, locate the file
ContentManagerIntegrationJar\com\ibm\bpe\cm\CollectionPointJMSService.wsdl in your workspace
and click OK to link the port type to this service.
Select Referenced Partners > FolderManagement in the navigation pane on the left, click Browse on the right
hand side, locate the file
ContentManagerIntegrationJar\com\ibm\bpe\cm\FolderManagementJavaService.wsdl in your workspace
and click OK to link the port type to this service.

Clean up the process environment
Stop the test server.

62 of 65

Run the following advanced query in the DB2 Content Manager Client for Windows: /*[<Claim Number (Content
Manager V8.1 Sample Attribute)> LIKE "3-%"] to identify all items created when running the Quick Start
Client.
Delete all items of the result list.
Connect to icmnlsdb as icmadmin and drop the three tables bpecontentevents, bpecollectionpoints,
bpecollectionpointitemtypes.
Restart the test server. This re-creates the three tables.

Upgrading the content viewer applet to fix pack 1 or (re-)creating the content viewer applet
The Quick Start Client uses a modified version of the Content Manager viewer applet to display document content. This applet
and the required resources need to be placed into a specific directory where the files are available for download by the client.
This step copies the required resources from the Content Manager install directory and (re-)creates the JAR file for the modified
viewer applet. This step should be performed when Fix Pack 1 is used or when the code in TViewerApplet.java has been
changed (See DB2 Content Manager Enterprise Edition (multiplatform) Support for Fix Pack downloads, etc.).
Important: (Re-)creating the applet viewer requires DB2 Content Manager Enterprise Edition V8.3 Fix Pack 1 to be installed. If
Fix Pack 1 is installed we recommend to (re-)create the viewer applet to take advantage of the latest changes in the viewer
code.

Switch to the Services view of the business integration perspective.
Expand Deployable Services > QuickStartClient > WebContent.
Perform the following steps to import cmbview81.jar into this folder.

From the workspace menu select File > Import. The 'Import' window opens.
Select File system and click Next >.
Click the Browse button to the right of the From directory: field, locate the folder <IBMCMROOT>\lib, and click
OK.
In the field to the right select cmbview81.jar.
Enter QuickStartClient/WebContent/appletViewer in the Into folder: field.
Click Finish.

In the 'Services' view right-click QuickStartClient/WebContent/appletViewer/cmbview81.jar and select
Refresh.
Switch to the 'Package Explorer' view and perform the following steps to create the JAR file for the viewer applet. You
need to re-run these steps if you have modified the source code of the viewer applet:

Right-click ContentViewerApplet and select Export. The 'Export' window opens.
Select JAR file and click Next> which switches to the 'JAR Package Specification' dialogue.
In the 'Select the export destination' field click Browse and locate the folder <WORKSPACE_
FOLDER>\QuickStartClient\WebContent\appletViewer. Type appletViewer.jar into the File name:
field and click Save.
Check 'Overwrite existing files without warning' and click Finish.

In the 'Package Explorer' view right-click QuickStartClient/WebContent/appletViewer/appletViewer.jar
and select Refresh.

Creating and deploying a new Integration Toolkit library
Stop the test server.
Back up the current version of <WSADIE_ROOT>/runtimes/ee_v51/lib/bpecm.jar.
Click ContentManagerIntegrationJar in the navigation pane and select Project > Rebuild All on the menu to
make sure all files of the project are up-to-date.
Right-click ContentManagerIntegrationJar in the navigation pane and select Export. The Export window opens.
Select Jar file and click Next >. On the Jar Package Specification window verify that it looks as follows:

63 of 65

http://www-306.ibm.com/software/data/cm/cmgr/mp/support.html

Click browse to locate <WSADIE_ROOT>/runtimes/ee_v51/lib and enter the file name bpecm.jar.
When asked if you want to overwrite the existing file click Yes.
Upon completion, a JAR Export window might pop up that says JAR export finished with warnings. See
details for additional information. The details say /ContentManagerIntegration/META-INF/
MANIFEST.MF was replaced by the generated MANIFEST.MF and is no longer in the JAR. This can
safely be ignored. Click OK to close the JAR export window.

7. Further Reading

Product documentation

DB2 Content Manager V8.3 Infocenter on the Web
WebSphere Application Server Version 5.1.x information center on the Web (also covering WebSphere Business
Integration Server Foundation, Version 5.1.x)

Background information and documents on specific topics
WebSphere Business Integration Server Foundation V5.1 Handbook (IBM redbook SG24-6318)
BPEL4WS Business Processes with WebSphere Business Integration: Understanding, Modelling, Migrating (IBM redbook
SG24-6381)
WebSphere Business Integration Server Foundation Using the programming API and the Common Event Infrastructure
(IBM Redpaper REDP-3915)

Product support Web sites

WebSphere Studio Application Developer Integration Edition Support
WebSphere Business Integration Server Foundation Support
DB2 Content Manager Enterprise Edition (multiplatform) Support

64 of 65

http://publib.boulder.ibm.com/infocenter/cmgmt/v8r3m0/
http://publib.boulder.ibm.com/infocenter/wasinfo/v5r1/
http://www.redbooks.ibm.com/abstracts/sg246318.html?Open
http://www.redbooks.ibm.com/abstracts/sg246381.html?Open
http://www.redbooks.ibm.com/abstracts/redp3915.html?Open
http://www-306.ibm.com/software/integration/wsadie/support/
http://www-306.ibm.com/software/integration/wbisf/support/
http://www-306.ibm.com/software/data/cm/cmgr/mp/support.html

Trademarks

The following terms are trademarks of the International Business Machines Corporation in the United States, other countries, or
both:

IBM i5/OS z/OS
Redbooks AIX Cloudscape
DB2 DB2 UDB DB2 Universal Database
WebSphere Lotus Tivoli

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in the United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

65 of 65

