
DB2 Content Manager / WebSphere Process Server Integration Quick Start

Revision2

This tutorial describes the integration of DB2 Content Manager Enterprise Edition Version 8.3 with WebSphere Process Server
V6.0.1. This document consists of the the following chapters:

1. Introduction
2. Setting up the Development Environment and Testing the Sample Process
3. A Tour of the Sample Process
4. Developing a Custom DB2 Content Manager / WebSphere Process Server Integration Solution
5. Invoking DB2 Content Manager Web Services from within a process
6. Hints and Troubleshooting
7. Further Reading

1. Introduction

DB2 Content Manager Enterprise Edition V8.3 includes a high-performance document routing engine to direct documents and
folders of documents from one user to another. For complex process automation requirements such as those that involve
human tasks outside the document environment or integrations with a variety of applications, systems and services,
WebSphere Process Server is the process management environment of choice.

WebSphere Process Server uses a service-component architecture to deliver one programming model to connect and use
existing IT resources to solve business problems. Using simplified tooling to describe and create the solution, components can
be brought together to create a managed business process. Processes can be based on automated steps that together
constitute a single transaction or they can involve human interaction and can run for days, weeks or months. Processes types
vary greatly, ranging from Web services or Web page navigation to business transaction support.

The DB2 Content Manager / WebSphere Process Server (CM/WPS) Integration Quick Start provides some key ingredients for
the creation of content-centric processes. The term "content-centric" refers to a process in which a content object, typically a
document or image, stored in the content management system plays an important role. Examples are review processes such as
those involved in publishing, invoice processing, or claims handling. Content-centric processing is also seen in Business To
Business (B2B) scenarios where electronic documents are exchanged between different companies.

Human activities and automated steps that modify the content object are key elements of content-centric processes. The
content object is usually a folder and is said to be routed through the process or (work)flow. Modifying it can mean a number of
things such as adding documents to or removing documents from the folder, changing attribute values on documents, modifying
access rights, adding annotations, signatures, or watermarks, etc.

The DB2 Content Manager / WebSphere Process Server Integration Quick Start provides best practices and pre-assembled
building blocks that support the creation and management of content-centric processes based on the WebSphere Process
Server and DB2 Content Manager environments. Typical interaction patterns between the process engine and the content
management system are demonstrated through code samples and comprehensive documentation.

This Quick Start builds on previous versions which showed interaction between DB2 Content Manager and the Business
Process Choreographer component of WebSphere Business Integration Server Foundation.

1.1 What's New in Revision 2

The main topic of Revision 2 is support of WebSphere Process Server V6. Revision 2 of the Integration Quick Start consists of
the following elements:

Integration Toolkit
Quick Start Client
Auto Claims Process

The Integration Toolkit is a collection of service components (Java classes and EJBs) that implement the following interaction
patterns between the content management and process management system:

Content Event Handling⇒ Item creation or deletion events in DB2 Content Manager trigger corresponding actions in
Process Server.

1 of 80

Collection Point ⇒ A point where a process instance waits until the folder that is routed through the process contains a
certain number of items of a certain type or until a timeout or exception occurs.
Content Attribute Access⇒ Efficiently access the value of content attributes from within the business process, e.g. to
enable content-specific decisions (Decision points).
Folder Service ⇒ Add the item routed through the process to a retrieved folder or add a retrieved item to the folder
routed through the process.
Combined Query⇒ Efficiently retrieve process information from Process Server and associated content attribute values
from DB2 Content Manager.
Common Staff Repository ⇒ Map DB2 Content Manager user and group definitions to the Process Server staff
resolution facility based on a WebSphere® custom user registry.

The Quick Start Client is a Web application that enables process users to see work that is assigned to them, fetch work items
and work with content objects in DB2® Content Manager Enterprise Edition V8.3. Though the Quick Start Client is customized
for use with the Auto Claims Process it provides generic out of the box capabilities and can easily be adjusted to the needs of
other processes.

The Auto Claims Process illustrates how the Integration Toolkit can be used to create a content-aware process. This process
involves human-based activities that can be performed using the Quick Start Client, services provided by the Integration Toolkit
and some simulated internal or external Web services that can involve legacy applications or B2B transactions.

The Integration Toolkit and the Quick Start Client are provided as sample code. They also serve as educational resources for
learning how to integrate the two products. The Quick Start Guide that can be downloaded below describes how the source
code can be modified to meet specific requirements of a custom integration solution. See the license statements in the
documentation or source files for details.

1.2 Notices, License and Support Terms

The following statements apply to the source code of the DB2 Content Manager / WebSphere Process Server Integration Quick
Start:

Licensed Materials - Property of IBM
IBM DB2 Content Manager Enterprise Edition V8 (program number 5724-B19)
(c) Copyright IBM Corp. 1994, 2005. All Rights Reserved.

US Government Users Restricted Rights
Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

DISCLAIMER OF WARRANTIES :

Permission is granted to copy and modify this Sample code, and to distribute
modified versions
provided that both the copyright notice, and this permission notice and warranty
disclaimer
appear in all copies and modified versions.

This software is provided "AS IS." IBM and its Suppliers and Licensors expressly
disclaim all
warranties, whether EXPRESS OR IMPLIED, INCLUDING ANY IMPLIED WARRANTY OF
MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE OR WARRANTY OF NON-INFRINGEMENT.
IBM AND ITS SUPPLIERS AND LICENSORS SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFEREDBY
LICENSEE
THAT RESULT FROM USE OR DISTRIBUTION OF THE SOFTWARE OR THE COMBINATION OF THE
SOFTWARE WITH
ANY OTHER CODE.
IN NO EVENT WILL IBM OR ITS SUPPLIERS AND LICENSORS BE LIABLE FOR ANY LOST REVENUE,
PROFIT OR
DATA, OR FOR DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE
DAMAGES, HOWEVER
CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF OR
INABILITY TO USE
SOFTWARE, EVEN IF IBM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The integration toolkit requires a DB2 Universal Database-based library server and it does not support z/OS or i5/OS
environments, nor clustered environments.

See Trademarks for details on the trademarks used in this document.

2 of 80

1.3 Software Requirements

For both the development and runtime environments, the DB2 Content Manager library server needs to be based on a DB2
Universal Database V8. For details on the required DB2 UDB fixpack levels see the DB2 Content Manager product
documentation. The integration toolkit only supports a DB2 Universal Database-based library server. Note that Fixpack 2 of DB2
Content Manager V8.3 is a prerequisite of the CM/WPS Integration Quick Start if you want to use the Custom CM-based user
registry. Where DB2 Content Manager V8.3 is mentioned in the following sections this alway implies at least Fixpack 2.

The following system configuration is required for the development and test environment (chapter 2):

a. Development workstation A hosts:
WebSphere Integration Developer V6.0.1
WebSphere Process Server V6.0.1 with JDK 1.4.2 Service Release 4-1 (SR4-1) - installed as integrated test
environment of WebSphere Integration Developer or separately (recommended)
DB2 Universal Database V8.2 Runtime Client
DB2 Content Manager V8.3 Client for Windows
DB2 Information Integrator for Content V8.3 - Content Manager version 8 connector and Java connector toolkit

b. Repository server B with:
DB2 Content Manager Enterprise Edition V8.3 (Fix Pack 2)

The development workstation as well as the server should have at least 1 GByte of main memory. However, at least 2 GByte
are recommended.

This guide uses Windows platform conventions for path names. Before proceeding we recommend that you look up the install
directories of the following products because they will be used later in this guide:

<IBMCMROOT> = DB2 Content Manager installation folder (e.g. c:\Program Files\IBM\db2cmv8 or /usr/db2cmv8)
<DB2HOME> = home folder of the DB2 instance which hosts the Content Manager library server (e.g. c:\Program

Files\IBM\sqllib or /home/db2inst1/sqllib)
<WID_HOME> = WebSphere Integration Developer install folder (e.g. c:\Program Files\IBM\Websphere\ID\6.0)
<WPS_HOME> = WebSphere Process Server install folder (e.g. c:\Program

Files\IBM\Websphere\ProcessServer)
<WPS_
PROFILE_
HOME>

= folder of the WebSphere Integration Developer profile to be used on the development workstation (e.g.
c:\Program Files\IBM\Websphere\IntegrationDeveloper\profiles\ProcSrv01)

Note that we are using the default icmadmin to refer to the ID of the library server administrator. If the ID of your library server
administrator is different, replace all occurences of icmadmin with the ID used on your system.

1.4 A guideline for reading this document

We recommend starting with 2. Setting up the Development Environment and Testing the Sample Process as this lays the
foundations for further explorations in the area of integrating content and workflow. This chapter describes how to set up the
infrastructure to build and test integrated workflows. You may want to take a tour of the sample process as described in 3. A
Tour of the Sample Process. 4. Developing a Custom DB2 Content Manager / WebSphere Process Server Integration Solution
introduces the individual elements of the Integration Toolkit and describes the steps necessary when creating a custom CM/
WPS integration solution based on the Integration Toolkit and Quick Start Client 5. Invoking DB2 Content Manager Web
Services from within a process outlines how Content Manager Web Services can be incorporated into a process. 6. Hints and
Troubleshooting provides some hints and tips which may be useful when working with the sample. 7. Further Reading provides
links to product documentation, Redbooks and Support pages.

2. Setting up the Development Environment and Testing the Sample Process

This chapter describes the steps needed to set up a development environment for the Integration Quick Start. At the end of this
chapter the Quick Start Client can be used to work the sample process and to explore the results of running the server-side
integration functions. Depending on the reader's previous experience with the WebSphere Studio Application Developer
environment, completing this paragraph will take approximately 1-2 hours.

2.1 Prerequisites and Installation Hints

3 of 80

Detailed instructions on how to install and configure the required software can be found in the product documentation. See 7.
Further Reading at the end of this document. This section contains some hints about configuration settings that are specific to
the use of these products in the context of the Integration Quick Start. See 1.3 Software Requirements for details on the system
configuration required for chapter 1.

Installation hints for Information Integrator for Content

In each of the following installation windows, perform the described task:

Installation Destination
Verify that the target directory is set to <IBMCMROOT>.
Setup Type
Select Custom.
Select the components that you want to install
Select DB2 Content Manager Version 8 connector and DB2 Content Manager Version 8 Java
connector toolkit.
Working Directory
Keep the default <IBMCMROOT>.
Server Connection Configuration
Select Configure RMI for remote connection to the above selected servers to set up the connection from the
Development Workstation to the DB2 Content Manager server.

Installation hints for the test environment

You can either install with the WebSphere Integration Developer V6.0.1 with a test environment or install WebSphere Process
Server V6.0.1 separately. We recommend a separate installation of WebSphere Process Server as this offers more explicit
control over port and user settings. If you want to install WebSphere Process Server with the WebSphere Integration Developer
product you need to check Integrated Test Environment during installation. In this case a default profile is created
automatically with <WPS_PROFILE_HOME> set to <WID_HOME>\pf\wps .

If you decide to install WebSphere Process Server separately, you need to create a profile to be used as test environment
based on the following steps:

1. Start the Profile Creation Wizard
2. Select a profile name. The suggested name ProcSrv01 may be OK. You may want to make this your default profile.

4 of 80

3. Specify a profile directory. We recommend that you make the path to this directory as short as possible especially on
Windows systems where the operating system limit of 256 characters is exceeded easily.

4. Verify if the node name and fully specified host name are correct. They should usually be OK.
5. Carefully investigate the port assignments on the 'Port valua assignment' page. Make sure there is no conflict with other

applications on the server. Potential candidates might be the (probably WebSphere Application Server V5-based) servers
that are hosting the administrative console (server1) resource manager (icmrm) or the Content Manager Web services
(cmwebsvc). If necessary, modify the port assignments so there are no conflicts. Make notices of the port assignments
for HTTP transport and SOAP communication as these are needed later on.

6. It is recommended to uncheck 'Run the WebSphere Process Server process as a Windows service'. The process can be
started manually as described in section 6.2.

7. Check 'Configure the Service Integration Bus in secured mode' and enter icmadmin as user ID and the corresponding
password.

8. On the 'Common Event Infrastructure Configuration' page enter icmadmin, the corresponding password, server1 as
the server name, and Cloudscape V5.1 as the database product.

9. On the 'Business Process Choreographer Configuration' page select Configure a sample Business Process
Choreographer and enter icmadmin with the corresponding password. As the name of the administrative group enter
the administrative group to which icmadmin belongs. On a Windows system this is usually Administrators.

10. Skip the 'Application Scheduler configuration' page.
11. On the 'Database Configuration' page select Create new (local) database and accept the default settings for the

database product (Cloudscape) and name (WPRCSDB).
12. Double-check the summary, click Next and wait until the wizard signals completion.

2.2 Preparing the DB2 Content Manager Sample Data for use with the Sample Process

The Quick Start sample process is based on a modified version of the DB2 Content Manager sample data. This step describes
how to load the sample data and adjust it for use with the sample process. The sample process uses a new attribute XYZ_
ClaimAmount to distinguish 'cheap' cases for which a high process throughput is desirable and 'expensive' cases for which
additional research is required. Furthermore, two new attributes, WF_OnCreate and WF_OnDelete, are required to enable
creation and termination of process instances based on content events (see Content Event Handling for details).

1. Ensure that the resource manager application is started. This can be verified by running serverStatus.bat -all in
the bin folder of the WebSphere Application Server installation that hosts the resource manager. Run
startServer.bat icmrm to start the resource manager if it is not yet running.

2. Start the DB2 Content Manager First Steps program.
3. If you have worked with the sample data before, click Unload Sample Data to ensure all data is in a clean state.
4. Click Load Sample Data.
5. Wait until the sample data creation completes.
6. Click Work with Sample Data to start the DB2 Content Manager system administration client.
7. Log on to the system administration client with your library server administrator userid and password.
8. Select Data Modeling, right-click Attributes, select New to define a new attribute XYZ_ClaimAmount with the

properties shown below:

5 of 80

9. Click OK to store the new attribute.

10. Right-click Attributes, select New to define a new attribute WF_OnCreate with the properties shown below and click OK
to store the new attribute:

6 of 80

11. Repeat the previous step to define a new attribute WF_OnDelete with the same characteristics as WF_OnCreate.
12. In the Data Modeling view, expand Item Types, right-click on XYZ_ClaimFolder, right-click Properties, open the

Attributes tab and add two new attributes: WF_OnCreate and WF_OnDelete both with the default value
ClaimsHandlingProcess.

7 of 80

13. Right-click XYZ_AdjReport and select Properties.
14. On the definition tab, change the New version policy for attributes to Never create.
15. Switch to the Attributes tab and add the attribute XYZ_ClaimAmount to this item type, as shown below:

8 of 80

16. Close the System Administration Client.
17. Close the First Steps program.

Entering values for the previously created attributes

1. Start the DB2 Content Manager Client for Windows and log on as library server administrator (icmadmin). Note that if the
DB2 Content Manager Client for Windows was already started while you changed the sample data definitions in the
previous step, you need to close and restart it so the new definitions are available.

2. Select Search > Basic and locate all instances of item type Adjuster Report (Content Manager v8.1 Sample
Item Type).

3. Right-click on each of the three entries in the result list, select Attributes and enter different Claim Amount values to the
three items: For example 1000 (small claim), 10000 (large claim) , 2000 (small claim) as shown below. The sample
process introduced later will handle documents with a small claim amount (i.e. less than or equal to $5000) differently.

9 of 80

4. Close the DB2 Content Manager Client for Windows.

2.3 Enabling DB2 Content Manager for Single Sign On

The Quick Start Client uses Single Sign On (SSO) so users need to authenticate only once instead of having to log on to the
process environment and to the DB2 Content Manager server. This step configures DB2 Content Manager so it can use the
credentials provided by the application server to authenticate a user. Note that some of these settings are global (allow trusted
logon, password not required for all users) so it is important to understand their potential impact on other DB2 Content Manager-
based applications.

1. Start the DB2 Content Manager System Administration Client and log on as library server administrator (i.e. icmadmin).
2. In the navigation panel, click Library server parameters > Configurations.
3. Right-click Library Server Configuration in the configuration window on the right and select Properties.
4. Set Max user action to Allow logon without warning and select the Allow trusted logon check box.

10 of 80

5. Click OK to save the changes.
6. Select Tools > Manage Database Connection ID > Change Database Shared Connection ID from the menu. The

Change Shared Database Connection ID and Password window opens.
7. Enter the connection user password (The default connection user is icmconct). Clear the Password is required for all

users check box.
8. Click OK to save the change.
9. Click Authorization > Privilege Sets. A list of privilege sets shows up in the right pane.

10. Right-click ClientUserAllPrivs and select Copy > Advanced. The Copy Privilege Set window opens.
11. Enter the name ClientUserAllPrivsSSO, select AllowTrustedLogon in the Privileges field and click OK to save the

new privilege set.

11 of 80

12. In the navigation panel click Authentication > Users. The right pane now shows the list of DB2 Content Manager users

currently defined.
13. For the each of the users Agent1, Agent2, Adjuster1, Adjuster2, Underwriter1, Underwriter2,

UnderwriterAssistant1, and UnderwriterAssistant2 double-click the name to open the properties window and
replace the value in the Maximum Privilege set field with ClientUserAllPrivsSSO

12 of 80

14. Close the system administration client.

2.4 Installing supplementary files

1. Unzip quickStartSampleRev2wps.zip into a temporary folder <TMP>.
2. Copy the file bpecm.properties from <TMP> to <WPS_PROFILE_HOME>\properties.
3. Open bpecm.properties with an editor and make sure the propertyContentManagerAuthenticationPwd=...

contains the password of the library server administrator (icmadmin). Note that a simple encryption method referred to as
ROT13 can be used to avoid storing the password in un-encrypted form. Apply ROT13 encryption by adding a decimal 13
to the numeric character representation of each character in the password string, e.g. ABC would become NOP. Set
ContentManagerAuthenticationPwdEncryption to 1 to enable the use of ROT13 encryption. Note that the
proposed encryption is for demo purposes only. If you plan to use the code in a production environment you might want
to choose a more enhanced encryption method.

4. Create a folder security under <WPS_PROFILE_HOME> and copy the files users.prop and groups.prop from
<TMP> to this new directory.

5. Open <WPS_PROFILE_HOME>\security\users.prop in an editor, locate the line icmadmin:passw0rd:2:2: and
replace passw0rd with the password of the library server administrator (icmadmin) on your system.

2.5 Configuring the Build environment

This step adjusts compiler settings and makes the project files available to the build environment. We recommend setting the
browser configuration so it opens the Web browser in a new window which provides more flexibility when watching project
contents and running the Web client at the same time.

1. Start WebSphere Integration Developer and specify a directory that serves as the <WORKSPACE_FOLDER>. If not
prompted for a workspace, start it from the command line as follows: <WID_HOME>\wid.exe -setworkspace
<WORKSPACE_FOLDER>.

2. On the menu select Window > Open Perspective > Other. The Select Perspective window opens. Check Show All,
select J2EE, and click OK. Click OK on the Confirm Enablement dialogue. Close the Welcome view.

13 of 80

3. On the menu select Window > Preferences. The Preferences window opens.
4. Select Java > Build Path > Classpath Variables and click the button labeled New. The 'New Variable Entry' window

opens.
5. Enter IBMCMROOT into the 'Name' field and the value of <IBMCMROOT> into the 'Path' field.
6. Enter IBMWPSROOT into the 'Name' field and the value of <WPSROOT> into the 'Path' field.

7. Select Java > Installed JREs and change the JVM from default Eclipse to WPS Server v6.0 JRE

8. Select Server and ensure that Automatically publish before starting servers is not checked.

14 of 80

9. Recommended: Select Internet > Web Browser and replace the default Internal Web Browser with a supported

browser of your choice.
10. Click OK to close the preferences window.
11. Click the Servers tab to switch to the Servers view.
12. If you have installed WebSphere Integration Developer with the integrated test environment the Servers view already

contains a entry for the generated profile wps. Double-click the entry to open the Server Overview editor and modify the
settings as follows:

In the Server connection type and admin port section click SOAP as connection type and make sure the SOAP
connector port matches the port settings of the Process Server profile you have created.
Press CTRL-S to save your changes and close the editor.

13. If you have installed WebSphere Process Server separately, you need to create an entry in the server view as follows:
Right-click the blank area of the server view and select New > Server. On the New Server window select
WebSphere Process v6.0 Server from the list of server types. The default host name localhost should be OK.
Click Next and specify or verify the path to the install directory. It should point to <WPS_HOME>.
Click Next. On the WebSphere Server Settings page select SOAP as connection type. And verify that the
WebSphere profile name points to the profile you have created.
Click Finish to complete the server definition.

15 of 80

2.6 Setting up the test environment

The Integration uses a JDBC connection to access the library server database. This connection and other settings such as
global security need to be configured with the Process Server's administrative console.

1. Perform the steps in 6.2 Starting the Process Server and launching the administrative console and log on as icmadmin.
Since security is not yet enabled this only serves as a name for your session. In case you close the admin console
without saving your changes you will be able to recover by logging on with this same userid again.

2. In the navigation panel select Environment > WebSphere Variables and set the scope to Node level by checking
the radio button labeled Node and clicking Apply.

3. Ensure that the variable DB2_JDBC_DRIVER_PATH is present (you may need to switch the scope to Node) and that it
points to <DB2HOME>/java

16 of 80

4. Create a new variable IBMCMROOT. In the Scope section click Server: server1 and Apply. Click New, enter

IBMCMROOT into the Name field, and <IBMCMROOT> into the Value field. Click OK to store the new variable.

17 of 80

5. In the navigation panel select Servers > Application Servers, click server1.
6. If Run in development mode is not checked, check it and click Apply. It is checked by default for the integrated test

environment but it must be explicitly enabled when using a separate stand-alone installation of WebSphere Process
Server. Setting it simplifies development and re-deployment of changed modules as process data does not need to be
explicitly deleted. Note that in development mode changes to a deployed process automatically trigger the deletion of any
existing process or activity instances. If development mode is not enabled, process instances need to be deleted (e.g.
using the BPC Explorer) before the process template can be stopped. The process template needs to be stopped before
the process can be un-deployed if development mode is not enabled. See section 6.7 on starting and stopping the
process application manually.

7. On the configuration page locate the section Server Infrastructure, expand Java and Process Management, and

select Process Definition. In the Additional Properties section of the Process Definition page select Java Virtual
Machine.

8. If you have not updated the WAS JRE as described in 6.4 you need to check Disable JIT to avoid a problem that might
cause the server to shut down. However, we strongly recommend to update the WAS JRE as described in 6.4 since
disabling the JIT has a significant performance impact.

9. Enter ${IBMCMROOT}/cmgmt into the Classpath field and click Apply

18 of 80

10. In the Additional Properties section select Custom Properties.
11. If a property with the name ws.ext.dirs exists, add a semicolon followed by ${IBMCMROOT}/lib;${DB2_JDBC_

DRIVER_PATH}/db2java.zip to the end of its value. If no such property exists, create a new one with this value.

12. Click Save on top of the window to open the Save to Master Configuration window. Click Save to make the changes

permanent.

2.7 Configure JDBC connections and data sources

1. In the navigation panel select Security > Global Security.
19 of 80

2. In the Authentication section select JAAS Configuration > J2C Authentication data.
3. Verify the existence of the authentication alias <HOSTNAME><NODENAME><CELLNAME>/BPEAuthDataAliasJMS_

<HOSTNAME>_server1 that has been created during process container configuration.
4. Click New, add the following entries and click OK to store them.

Alias ICMNLSDBAuthDataAlias

User ID icmadmin

Password icmadmin's password
Description (optional) Authentication data alias for CM library server administrator

5. In the navigation panel select Resources > JDBC Providers. Ensure the scope is on server1.
6. If DB2 Legacy CLI-based Type 2 JDBC Driver (XA) is not listed on the cell, node, or server1 level, perform the

following steps to add it at the server1 level:
1. Set the scope to server1 and click OK.
2. Step1: select the database type DB2
3. Step2: select the provider type DB2 Legacy CLI-based Type 2 JDBC Driver
4. Step3: select XA data source
5. Click Next
6. Verify that the Class path field contains ${DB2_JDBC_DRIVER_PATH}/db2java.zip and that the

Implementation class name is COM.ibm.db2.jdbc.DB2XADataSource.
7. Click OK to add the JDBC provider to the list of providers available at server scope.

20 of 80

7. Click DB2 Legacy CLI-based Type 2 JDBC Driver (XA) and click Data Sources in the Additional Properties

to display the data sources that are based on this JDBC provider. If the JDBC provider has just been added, the list will
be empty.

8. Click New to create a new data source based on the following information:

Name replace DB2 Legacy CLI-based Type 2 JDBC Driver XA Data
Source with icmnlsdb

JNDI Name replace jdbc/DB2 Legacy CLI-based JDBC Driver XA DataSource
with jdbc/ICMNLSDB

Description (optional) replace New JDBC Datasource with CM library server

Component-managed
Authentication Alias select <HOSTNAME><NODE>/ICMNLSDBAuthDataAlias from the list

Container-managed
Authentication Alias select <HOSTNAME><NODE>/ICMNLSDBAuthDataAlias from the list

Mapping-configuration alias select DefaultPrincipalMapping from the list
Database name icmnlsdb

9. Click OK to save the data source definition.

21 of 80

10. Back on the Data Sources page click Save on top of the window to open the Save to Master Configuration window.

Click Save to make the changes permanent.
11. Perform the following steps to verify if the data source can be accessed:

1. Select the check box left of icmnlsdb.
2. Click Test Connection.
3. Verify that the information message on top of the page says Test Connection for datasource icmnlsdb

on server server1 at node <HOSTNAME><NODE> was successful.

22 of 80

2.8 Configure security

The following steps need to be performed for both the integrated test environment and a separately installed WebSphere
Process Server.

1. In the navigation panel select Security > Global Security.
2. In the User Registries section to the right select Custom.
3. Enter icmadmin into the Server user ID field and the corresponding password into the Server user password field.
4. Enter com.ibm.websphere.security.FileRegistrySample into the Custom registry class name field.
5. Check Ignore case for authorization.
6. Click Apply.

7. In the Additional Properties section click Custom Properties.
8. Create a new property with name groupsFile and value ${USER_INSTALL_ROOT}/security/groups.prop.
9. Create a new property with name usersFile and value ${USER_INSTALL_ROOT}/security/users.prop.

10. Click OK.

23 of 80

11. In the Authentication section of the Security > Global Security page select Authentication mechanisms> LTPA.
12. Enter a password into the Password and Confirm password fields (for example icmadmin's password).

13. In the Additional Properties section to the right click Single signon (SSO) and ensure that the Enabled box is

checked.

24 of 80

14. Click OK on the Single signon page and OK on the Global security > LTPA page to store the changes
15. On the Security > Global Security panel check the Enabled check box and uncheck the Enforce Java 2 Security

check box.

16. Click Save on top of the window to open the Save to Master Configuration window. Click Save to make the changes

permanent.
17. Stop server1 as described in section 6.2.

25 of 80

18. Click the Servers tab in WebSphere Integration Developer and double click your test server entry to open the Server
Overview editor. Expand the Security section, check Security is enabled on this server and enter icmadmin and the
corresponding password (you may need to collapse and re-expand the section to see the input fields). Press CTRL-S to
store the changes.

19. Start server1 (see 6.2 for details).
20. If you have installed the integrated test environment (you are not using a stand-alone installation of the WebSphere

Process Server) you need to perform the following steps to enable it for use with security:
In the navigation panel select Security > Global Security. In the Authentication section expand JAAS
Configuration and click J2C Authentication data.
For all predefined Authentication aliases which contain the user ID wid, change the user ID and password to
icmadmin and the corresponding password.
In the navigation panel select Applications > Enterprise Applications.
Click the application with a name similar to BPEContainer_widNode_server1.
In the Additional Properties section click Map security roles to users/roles.
Check the box left of BPESystemAdministrator and click Look up groups.
Remove the group wid and add AdminsGroup to the list and click OK

Perform the same sequence of steps with the enterprise application TaskContainer_widNode_server1 (the
role name is TaskSystemAdministrator.
Click Save on top of the window to open the Save to Master Configuration window. Click Save to make the
changes permanent.

2.9 Importing, deploying, and running the sample

1. In WebSphere Integration Developer select File > Import from the menu. The Import window opens. Select Project
Interchange and click Next. In the From zip file section click Browse to locate <TMP>\projects.zip and click OK. A
list of 8 projects (ClaimsHandling, CMBPCIntegration, CMBPCIntegrationBeans, CMBPCIntegrationLibrary,
CMConnectionManagement, ContentViewerApplet, QuickStartClient, QuickStartClientApp) shows up in
the section below. Click Select All and Finish to import the projects.

26 of 80

2. In the Project Explorer view of the J2EE perspective expand EJB Projects > CMBPCIntegrationBeans and double-
click the Deployment Descriptor

3. In the Overview tab of the deployment descriptor editor locate and expand the section Ejb Client Jar. Click the Create
button. Accept the proposed name CMBPCIntegrationBeansClient in the EJB client JAR Creation dialogue and
click Finish to start project creation.

4. Note that the creation of the client project has updated the build path of the corresponding server project. This raises a
number of build path errors that need to be fixed as follows: in the EJB Projects section of the Project Explorer view
right-click CMBPCIntegrationBeans and select Properties. Click Java Build Path, switch to the Projects tab and check
CMBPCIntegration. Click OK to close the properties window and verify that the exceptions are gone.

5. In the Project Explorer view expand Enterprise Applications > CMBPCIntegrationApp and double click the
Deployment Descriptor

6. In the Application Deployment Descriptor editor select the Security tab and click Gather to add the CMAdministrator
role to the list. Click CMAdministrator and check Users/Groups in the WebSphere Bindings section. Scroll down to
the Groups section and add the administrator group of this system (to which icmadmin belongs, on a Windows system
typically Administrators) to the list by clicking Add entering the group name and clicking Finish. Scroll down to the
Security Role Run As Bindings section and add icmadmin and the corresponding password. Press CTRL-S to save
your changes.

7. Note that the Problems view lists about 100 warnings concerning unused imports and calls to deprecated methods.
These refer to the generated resources and can safely be ignored.

8. Perform the steps described in 6.6 to deploy the three enterprise applications on the test server.
You are now ready to explore the sample process as described in the next chapter.

3. A Tour of the Sample Process

The integration sample process provided with DB2 Content Manager Enterprise Edition V8.3 was designed to be compatible
with the sample process used to illustrate document routing (DB2 Content Manager Enterprise Edition V8.3 includes a
document routing engine for use with document lifecycle management within DB2 Content Manager).

The new sample process provided with CM/WPS Integration Quick Start focuses on the integration of different services both
human-based and automatic. Automated services such as retrieval of the insurance policy or the fraud history check illustrate
the inclusion of third party applications or B2B transactions with external service providers.

This is a more natural way of demonstrating the use of WebSphere Process Server since the DB2 Content Manager Enterprise
Edition V8.3 sample process is a simple human-centric document flow example that can easily be implemented on the basis of
document routing.

3.1 The sample process

The sample process provided with the CM/WPS Integration Quick Start implements a simplified Claims Handling Process.
Though it uses some insurance terminology and corresponding sample data, it can be seen as an example of a more abstract
review and approval process.

A link similar to (depending on the port your server is using): http://localhost:9080/QuickStartClient opens the initial
page of the Quick Start Client. This page shows an abstract representation of the process outlining important steps and
roles. You may want to bookmark this link so you can easily launch the client without reference to this documentation.

27 of 80

http://localhost:9080/QuickStartClient

The boxes that have a schematic representation of a person in their top right corner represent staff activities. The other
boxes represent (automated) services. Diamonds represent decisions and the rounded rectangles indicate the beginning
and end of a process instance's lifetime (note that the sample process is configured such that process instances are
deleted upon termination).
The Mailroom represents an activity that is outside the scope of the process. This activity is responsible for adding
incoming documents to the Content Management System.
The process enclosed by rounded rectangles consists of three sections: 1. data validation, 2. review, 3. completion.

1. Data validation ensures that the information needed to review the case is accurate and complete. It consists of
an automated step (Retrieve Policy), a staff-based one (Validate and Adjust) and a so-called Collection Point.
Retrieve Policy uses the Folder Management service provided by the Integration Toolkit to locate the insurance
policy for the claim. The staff-based activity Validate and Adjust assumes that additional information may be
required as input for the review such as an Adjuster Report. Members of the AdjustersGroup are responsible for
pre-assessing the case and making sure all required information needed for the review is available. The
Collection Point is a service provided by the Integration Toolkit that lets a process instance wait until a certain
number of specified items are stored in the claim folder. The members of the AdjustersGroup can modify these
conditions to a certain degree (such as removing the dependency on a Police Report). The collection point service
performs regular checks on the condition and lets the process instance continue if all required documents are in
the folder. A timeout occurs if the required documents are not available in a specified period of time. In this case
process execution loops back to the Validate and Adjust activity where a reminder count keeps track of the
number of timeout cycles that happened so far. At this activity staff personnel can perform appropriate actions by

28 of 80

requesting the required documents or weakening the collection point condition. When the collection point condition
is passed, the communication service (that keeps track of the communication with external parties) sends a
notification out to the client.

2. The Review section of the process begins with a Decision Point (switch activity in BPEL terminology) where one
of two available paths is taken depending on the size of the claim expressed in an estimated overall cost that is
part of the adjuster report (ClaimAmount attribute). For small claims, members of the
UnderwriterAssistantsGroup investigate the documents in the folder and complete the review activity by approving
or rejecting the claim. With a ClaimAmount > $5000 claims are considered big. In this case, an external
FraudHistory service is consulted that prepares a fraud history report assessing the trustworthiness of the
claimant based on certain criteria derived from the case and policy data. The fraud history report is made available
to members of the UnderwritersGroup who are entitled to review either small or large claims. However, only
members of the UnderwritersGroup can approve or reject large claims.

3. The Completion section of the process sends an approval or rejection letter back to the client depending on the
outcome of the review. In case of approval it triggers a payment transaction that runs in parallel to the notification.

Moving the cursor over the boxes of the process diagram displays a brief description of the purpose of the corresponding
element.
To perform a staff-based activity, click on a box that represents a human activity and log on as a member of the group
displayed in italics right below the box title. The following table shows the mapping of actions to group names and group
members:

Group Group members
Mailroom AgentsGroup Agent1, Agent2

ValidateAndAdjust AdjustersGroup Adjuster1, Adjuster2

ReviewSmallClaim UnderwriterAssistantsGroup UnderwriterAssistant1, UnderwriterAssistant2

ReviewLargeClaim UnderwritersGroup Underwriter1, Underwriter2

If your library server name is not icmnlsdb you need to open <WORKSPACE_
FOLDER>\QuickStartClient\JavaSource\com\ibm\bpe\cm\util\ProcessData.java in WebSphere Application
Developer Integration Edition, change the value of CM_DATASTORE_NAME accordingly, and re-build the project
QuickStartClient . Note that the update is enabled in the active Web project on the fly so the server does not need to be
re-started.

3.2 Process initiation

This section explains two different ways to create process instances either explicitly by an application or implicitly based on
Content Event Handling. Explicit creation may be preferred if the application that manages incoming documents is within the
control of your organization so that code can be added to explicitly create process instances where needed. The code used to
create instances based on existing items can serve as a basis for custom development. Implicit creation may be preferred in
cases where document import is treated as a black box or the corresponding application is not within the control of your
organization.

1. Click the box titled Mailroom and log on as Agent1 with password passw0rd (which by default is the same for all roles
of the sample process).

2. The Mailroom user's initial page contains three sections titled Create documents based on blank forms, Create
documents based on predefined form data, and Create process instances for existing items

29 of 80

3. The section titled Create documents based on blank forms can be used to create instances of the four item types

XYZ_InsPolicy, XYZ_ClaimForm, XYZ_AdjReport, and XYZ_PolReport. The latter three are linked to a XYZ_
ClaimFolder that has the attribute WF_OnCreate with a default value of ClaimsHandlingProcess. Creating an item
of type XYZ_ClaimForm triggers the creation of an item of type XYZ_ClaimFolder which contains it due to auto-
foldering. The creation of this folder triggers the creation of an instance of the ClaimsHandlingProcess which carries
a reference to the claim folder due to the WF_OnCreate attribute and its default value (the process name).

4. Since creating an item may involve entering many mandatory values, the section Create documents based on
predefined form data can be used to create items of the three types based on pre-defined attribute values. These
values make use of the DB2 Content Manager First Steps sample data and are expliticly defined in
startProcessInstances.jsp. Click any of the links to open the corresponding form.

5. The section Create process instances for existing items can be used to create process instances based on the
sample data already importet into DB2 Content Manager during the 'Create Sample Data' step of the DB2 Content
Manager First Steps application. Click Submit to run the default query /XYZ_ClaimFolder which locates all instances
of XYZ_ClaimFolder and creates instances of the ClaimsHandlingProcess for each element of the result list. By adding
additional conditions (as for example /XYZ_ClaimFolder/OUTBOUNDLINK[@LINKTYPE = "DKFolder"]/@
TARGETITEMREF => XYZ_ClaimForm[@XYZ_ClaimNumber = "4-852369"]) the query can be refined to restrict
the items for which process instances should be created to e.g. all claim forms with claim number 4-852369. Note that
when starting processes for the DB2 Content Manager sample data based on a query you may see warnings in the
console indicating that the policy can not be added to the folder since the folder already contains it. This is due to the fact
that each folder of the sample data already contains instances of all three item types. The message can be ignored.

Import predefined documents

1. This tour starts with the section Create documents based on predefined form data since this illustrates the use of
content event handling and is based on existing data.

2. Click Mary Twain in the section titled Claim Forms to display the attributes of a predefined claim form. Review the
displayed values and make sure the claim number is a new unique value. If you re-use an already existing claim number
the claim form will be added to an existing folder that is already part of a running process so no new process will be
created (see 6.1 for details).

3. Click Save to store an instance of the XYZ_ClaimForm item type in DB2 Content Manager. Due to auto foldering this
triggers the creation of a corresponding XYZ_ClaimFolder. Since the XYZ_ClaimFolder item type has the attribute WF_
OnCreate defined and pointing to a default value of ClaimsHandlingProcess this triggers the creation of a process
instance.

4. The console output of the test server confirms the creation of an item (-> Item created). If content event handling
works properly, another message is displayed that says => Process started with ItemPID [...]. Note that the

30 of 80

message prefix indicates its origin. Messages starting with -> originate from the Quick Start Client. Those starting with
=> result from the integration toolkit and if the prefix is >> they originate from the process. The messages => Looking
up policy with number: ... and => Number of matching insurance policies for claim [...]:
1) indicate the successful completion of the first process activity (RetrievePolicy).

5. The client now displays an Add part link that can be used to attach the actual document. Clicking Add part switches to
the Import part page.

6. Locate the TIFF image of a scanned claim form in <IBMCMROOT>\firststeps\data\4-852369.tif and click

Import to add it to the new item. Note that the console output confirms the upload with a message (-> imported
file of length: 27688 mime type: image/tiff). You may add another part by importing the incident photo
<IBMCMROOT>\firststeps\data\1ABC089.jpg. Note that in this case you need to explicitly select the mime type
JPEG from the list since automatic detection fails for files of this type.

7. Clicking Create item in the menu leads back to the Mailroom home page from which further items can be created. For

now we leave the Mailroom dialogue by clicking Logout at the right end of the client menu.

3.3 Data validation

31 of 80

The message => Number of matching insurance policies for claim [...]: 1 in the server console confirms
that an appropriate insurance policy has been located in DB2 Content Manager which has the policy number as entered in the
claim form. The RetrievePolicy service has retrieved this item from Content Manager and added it to the folder that is routed
through the process.

1. On the process diagram click the box Validate and Adjust and log on as Adjuster1.
2. The adjuster's initial page shows the adjuster's worklist. It contains a single work item corresponding to the process

instance that has been created in the previous step (Mary Twain's claim form). The worklist might be empty due to the
process being in the 'Retrieve Policy' state. In this case the Refresh may need to be clicked to update the worklist to its
most recent state. Note that the worklist display results from a combined query that returns item attributes (Date of
Incident, Claim Number, etc.) as well as process properties (Activated, Work Item State). The console output shows the
DB2 Content Manager query in the form >> Query [/XYZ_ClaimFolder[@ITEMID IN ("...")]]

3. Click Fetch to check out this work item. This makes it unavailable for any other member of the AdjustersGroup and

brings up the work item view. The console output confirms that the work item has been checked out with the message ->
Work item claimed. Note that Adjuster1 now owns this work item. If another member of the AdjustersGroup
runs a work list query by opening his work list page, this work item will not show up any longer.

32 of 80

4. The work item page contains three sections titled Process activity, Folder, and Items in Folder. The Process activity

section basically displays the input and output message of the staff activity that consists of the relevant process
properties (input message) and of the controls which the adjuster needs to work with to complete this step of the
process. The Folder and Items in folder section display the content-related information. The first column shows the
folder or item name as specified by the 'represents item' property of the corresponding item type. The second column
shows the item type or part number and the third/fourth column display attribute value pairs of the corresponding item or
folder.

5. Optional: At this point you may want to explore how a user would modify attribute values. You can do so by clicking Edit
and for example change the value of the Street field in the address to 259 Blue Rd.. When clicking Save you will
see the effect of the modification on the updated work item page.

6. Click View to open the viewer in a separate window. Create an annotation (you may highlight a part of the document or
put a note on it) which may be used to communicate important information to a human role (e.g. Underwriter) later in the
process.
Note that the Insurance Policy has been retrieved and added to the folder by the first activity of the process.

33 of 80

7. Click the Add Report action in the folder section to add an item of type Adjuster Report. This opens the Edit attributes
and parts page. Note that the claim number is already instantiated to the claim number of the folder. Enter values for the
mandatory fields (marked by a red asterisk) as shown below and click Save to store the adjuster report in DB2 Content
Manager.

8. Click Add part and import <IBMCMROOT>\firststeps\data\4-852369_adjustment.tif. Click Work Item in the

menu bar to return to the Work Item View and note that the Adjuster Report is now a member of the claim folder.

9. Note that the collection point conditions require an additional Police Report before the process can continue. Click

Complete in the 'Process activity' section to move the folder to the next step in the process to experience the effect of a
collection point timeout.

10. After 10 seconds (depending on the 'Remind me' setting) the following message shows up in the console view:
Reminder: submit remaining documents for claim number 3-742019 iteration (1). Click Refresh in
the menu bar of the Quick Start Client to refresh the adjuster's worklist. Notice that it again contains an entry referring to
case 3-742019.

11. Notice that the 'Reminder count' now has the value 1 since this is the first time the process has cycled back to the
ValidateAndAdjust activity due to the collection point conditions not being met.

12. In the 'Process activity' section set the number of required documents of type Police Report to 0 assuming that the police
report is not required for a decision later in the process. This shows how collection point conditions can be set
dynamically on a process instance.

34 of 80

13. Click Complete to complete the adjuster's activity and forward the work item to the next step in the process. The console

output displays the message -> Work item completed to confirm successful completion of this step.
14. Since Adjuster1 has changed the number of required Police Reports to 0 the collection point condition is now met by the

folder since it contains the three required documents: a ClaimForm, an Insurance Policy, and an Adjuster Report. The
console output confirms that the collection point has been passed successfully with the message => Documents are
ready for claim: 3-742019 and a confirmation is sent to the person that submitted the claim (=> Dear...).
Furthermore, the following two messages are shown: => Claim Amount is large (10000.00) and => Fraud
report for Mary Twain is good that result from the decision point and the Check Fraud History service
respectively.

15. Log out Adjuster1 to return to the process overview.

3.4 Approval or rejection

Since the adjuster report created in the previous step lists a claim amount of $10000, the claim is considered a large claim by
the decision at the beginning of this section which moves it along the path with the two activities CheckFraudHistory and
ReviewLargeClaim .

The CheckFraudHistory service is a service that decides, based on some data extracted from the relevant documents, if the
claimant's fraud history is good or bad. This could be realized by a BI tool that investigates certain company-internal data bases
such as statistics about incident locations, customer credibility, etc. Alternatively, it could be an external service provided by
some sort of agency with which the insurance company shares a contract. The sample implements this as a Java-based service
that returns a bad fraud history if the initial letter of the claimant is in the range 'A'...'L' and returns good otherwise.

1. On the process diagram click the box Review Large Claim and log on as Underwriter1.
The home page of the underwriter activity shows the Underwriter's worklist. It contains a single work item corresponding
to case number 3-742019. Note that the columns in the work list differ from the adjuster's worklist in that they now
contain the name of the current activity (members of the group UnderwritersGroup may perform either the
ReviewSmallClaim or the ReviewLargeClaim activity) and the creation date of the adjuster report.

2. Click Fetch to check out this work item and open the work item page.

35 of 80

3. The Process activity section displays the result returned by the Check Fraud History service and the controls for

approving or rejecting the claim and adding a justification. The justification is stored in a process variable and not in DB2
Content Manager. Thus it is available throughout the process and potentially stored in the process log but not made
persistent in the content repository.

4. Click View in the Actions column for the Auto Claim Form and investigate the annotations which the Adjuster has added
to the document.

5. Type OK into the field Justify decision, select Approve, and click Complete.

36 of 80

6. The console output of the test server now displays the message =;> Dear Mr. Twain, your claim (3-742019)
has been accepted. <Reason: OK>. Yours Sincerely XYZ_Insurance. Note that <Reason: ...<
corresponds to a text module which might be rendered into an acceptable text by the communication service.

7. => Pay claim subprocess started on item [...] [...] [...] indicate a subprocess that performs the
corresponding financial transaction in parallel to the notification. Note that in place of a real BPEL process we simulate
this activity by a simple Java class that implements the CMProcessInterface and displays this message.

3.5 Exploring alternative options

Use the Mailroom activities to create adjuster reports and police reports. Ensure that the claim numbers of these reports
are correct so auto foldering assigns them to the appropriate folders.
Create process instances explicitly based on the claim folders in DB2 Content Manager (using the query option).
Set Claim Amount to 1000 to explore the 'small claim' path. In this case log on as UnderwriterAssistant1.
Reject a claim and notice the message => Dear Mr. Twain, we apologize that your claim(...) has
been rejected. <Reason: ...>....
Note that the availibility of operations in the right-most column of a staff activity (for example Edit, View, Delete) depends
on the access rights members of this user group have for the corresponding item type. Remove rights to see the action
list changes accordingly.
Import parts with different mime types (note that when importing files with extension .jpg or .jpeg mime the mime type
should be selected explicitly).
Explore the capabilities of the viewer applet.

3.6 How the Sample Process is defined

This section points to some important concepts and artifacts in WebSphere Integration Developer and explains their role for the
sample process.

Dependencies
Right-click the ClaimsHandling module (the module hosting the sample process) and select Open Dependency
Editor. Note that this module depends on the library CMBPCIntegrationLibrary which is provided by the Integration
Toolkit. This library contains interface, business object, and Java definitions needed when working with the functions of
the Integration Toolkit.
Close the project dependency editor.
Expand CMBPCIntegrationLibrary and note that it consists of definitions for Data Types (business objects) and
Interfaces. In the Physical Resources view (Window > Show View > Physical Resources) you can see that this
library also contains a Java interface com\ibm\bpe\cm\CMBPCConstants

The Assembly Diagram

In the Business Integration view expand the ClaimsHandling module und double click ClaimsHandling right below.
This opens the Assembly Diagram of the ClaimsHandling SCA component in the assembly editor

Note that the ClaimsHandlingProcess component is wired to five supplementary services. The first two
(CMServicesImport, CollectionPointServiceImport) are imported from the Integration Toolkit. The other three
(FraudHistoryService, CommunicationService, PayClaimSubprocess) are specific to the sample process. For
the sake of keeping the sample process simple and concentrating on the integration with DB2 Content Manager, these
services have a simple Java implementation that can be found in the com\ibm\bpe\cm\sca\ folder of this module

37 of 80

(Physical Resources view). Double-clicking a component's box in the assembly diagram opens the corresponding
implementation if it is in the same module. In case of Java implementations it opens the Java source page editor. In case
of the process, it opens the BPEL definition of the process.
The Communication Service that handles all external communication of the insurance company writes skeletons of the
corresponding mails to the server's output console.
The Fraud History Services decides on a client's trustworthiness based on the initial letter of the client's last name treating
all fraud reports for clients who's last name starts with A-L as bad and the others as good -- not a real fair treatment but
deterministic for demonstration purposes.
As the other services, the PayClaimSubprocess is implemented by a Java class that prints a corresponding statement to
the server's output console. Its name suggests that it would normally be implemented as a subprocess. If you click it and
investigate the Details tab of the Properties view you can see that it implements the same interface
(CMProcessInterface) as the ClaimsHandlingProcess so it would also be a content-centric process.

The Process Definition

Double-click the box representing the ClaimsHandlingProcess in the assembly diagram. This opens the process
definition in the BPEL editor.
The process is defined on the basis of simple or structured activities represented as boxes. In the following we explain
some of these activities and their role in the process. Clicking the box representing an activity and investigating the
Properties view below the process diagram (especially the information under the Details tab) provides useful
information about what the activity actually does how it is defined.
The following screenshot shows the Data Validation segment of the process (according to the terminology used in the
Overview section).

38 of 80

When you click on the initial Receive activity, you see that this process implements the CMProcessInterface which
is mandatory for all content-centric processes that use the Integration Toolkit.
GetItemPid and Initialize retrieve the unique identifier of the item that is routed through the process and makes it
available as a process property (see chapter 4 for details.
RetrieveClaimNumber, RetrievePolicyNumer and the subsequent Java snippets (SetClaimNumber and
InitAddPolicyToFolder do some further initialization by retrieving attribute values from DB2 Content Manager.
AddPolicyToFolder invokes the Folder Management service to retrieve the corresponding insurance policy. Click
InitAddPolicyToFolder and inspect the details view to see the Content Manager XPath query that identifies the
appropriate policies: /XYZ_InsPolicy[@XYZ_PolicyNum=\"" + policyNum + "\" AND @VERSIONID =
latest-version(.)].

39 of 80

DisplayNumRetrievedPolicies is a Java snippet that displays the result of the policy retrieval
The assign activity DefineWaitCondition initializes the reminder count (number of loops due to collection point
timeout) and the document types and quantities required to proceed with the process (collection point condition).
Note that DefineWaitCondition initializes the response variable of the ValidateAndAdjust activity since the first
activity inside the loop (SetValidateAndAdjustRequest) copies the values from the response to the request variable
to ensure changes which tha adjuster may have made to the collection point condition are retained throughout the loop.
WhileDocumentsAreNotReady is a structured activity that executes a loop while its entry condition is true. Click its box
and check out the Details to see that the entry condition is based on the reminder count. Setting it to a negative value
forces the loop to terminate.
The first activity inside the loop (SetValidateAndAdjustRequest) is an assignment activity that prepares the input
message for the human activity that follows (ValidateAndAdjust) by initializing the number of retrieved contracts to
the results of the number of matches returned from the AddPolicyToFolder service and the number of iterations to
the reminder count.
The human activity ValidateAndAdjust corresponds to a Participating Task ClaimsHandlingProcessTask3.
Clicking the link to this task in the Details view shows the staff settings. Click Potential Owner in the Receiver settings
section to see that its verb is Group Members with a group name of AdjustersGroup. Close the task definition to
return to the process.
InitCollectionPointService and SetTimeoutValue define the parameters needed for the collection point
service such as the timeout in seconds and the item types and respective quantities to wait for. The timeout value is set
in a separate Java snippet (instead of an assign activity) since it involves a type change from String to Integer. The Quick
Start Client that serves as user interface for the participating tasks relies on the convention that all tasks return data in
String format which makes this conversion necessary.
CollectionPointService invokes an asynchronous mechanism that lets the process wait until the folder that is
routed through the process satisfies the conditions defined by its input parameters. See section 4.5 for details.
The collection point service is followed by a structured activity CheckCollectionPointResult that consists of three case
activities corresponding to a certain outcome of the collection point and an otherwise activity. If the condition
corresponding to a case evaluates to true, the activities within its scope are executed. If none of them evaluates to true,
the process continues with the 'otherwise branch'.
The three case statements evaluate the result value that is passed back from the collection point service. Note that their
Java implementation makes use of the constants defined in the CMBPCConstants interface of the
CMBPCIntegrationLibrary.
PrepareLoopExit and Remind are Java snippets that print a status message to the console output and leave
(condition met) or re-enter (timeout) the loop.
Both FolderDeleted? and Otherwise signal undesirable results and are consequently followed by activities that
initialize an error message and trigger and throw an exception. Note that the process is enclosed by a scope with an
exception handler that ensures that any exception triggered within the process is properly caught and displayed on the
console.

40 of 80

The Review section of the process starts with an assign activity PrepareAttributeLookup that initializes the fraud
History value and specifies the attribute values that are retrieved for subsequent use in the remainder of the process: the
first and last name of the client who submitted the claim, the date of incident and the adjusters estimate of the claim
amount.
LookupContentAttributes retrieves the corresponding values and AssignValues assigns them to input messages
for the human tasks that implement the review.
SendNotificationLetter is an operation of the CommunicationService that sends a notification back to the client
(implemented as a Java method that displays a mail skeleton on the server log).
The structured activity CheckClaimAmount contains a case activity that evaluates the adjuster's estimate of the claim
amount. If it is small, it continues with the ReviewSmallClaim activity. Otherwise it invokes the
ExternalFraudHistoryService and then the ReviewLargeClaim activity.
Clicking on the activities that represent participating tasks and opening the task definition in the editor shows that the
corresponding potential owner groups are UnderwriterAssistantsGroup and UnderwritersGroup respectively.
The PrepareFraudHistorySummary activity in the 'otherwise branch' assigns the result of the
ExternalFraudHistoryService to the input message of the ReviewLargeClaim activity.

The first activity of the Completion section (AssignReviewComment) pulls the reviewer's comment from the output
message of the review activity (both are of the same type) and stores it in a variable ReviewerComment that will be
given as input parameter to the communication service for sending the review notification to the client.
The case activity Accepted? evaluates the decision property of the reviewer's output message. If true, it proceeds to
the parallel section that contains two activities: NotifyAcceptance, an operation of the communication service that
notifies the client about the acceptance of the case and PayClaimSubprocess that performs the corresponding
financial transaction.
If the case has not been accepted, the 'otherwise path' is taken which sends a notification to the client that the case has
been rejected (NotifyRejection).
Note that the mail skeleton displayed in the servers output console contains a section between angle brackets that
contains the reviewer's comment. This is meant as input to a 'communication department' which would replace this
comment with the proper wording, double check the mail text and then send it out to the client.
At the end of the process you might expect some archival activity that triggers proper retention management for the
case. A simple version of this could be implemented based on the setACL service of the Integration Toolkit. However,
changing the ACL of items may involve additional administrative steps to ensure proper deletion when cleaning up data
associated with the sample. To keep management of the sample and its data simple we have not incorporated such a
step. See section 6.3 for details on how to clean up data used by the sample process.

41 of 80

There are a number of situations in which a step of the process might fail. The sample process illustrates the use of a fault
handler by encapsulating all activities following the initial receive activity within a scope and attaching a fault handler to this
scope. This fault handler catches faults of the type FolderDeletedFault that occur if the folder on which an active collection
point condition is registered is deleted. See the throw activity ThrowFolderDeletedFault in the Data Validation segment of
the process for a cause of this fault. The fault is thrown as a consequence of the COLLECTIONPOINT_ITEM_DELETED result
code of the collection point service. The Initialize activity at the beginning of the process shows how faults can be thrown
from within a Java snippet. Information about the fault is communicated with the variable FaultVariable of type
ProcessFault. In our example ProcessFault only specifies a messageText. It may be extended to provide more details
about the fault. By adding further fault handlers to the scope other types of faults can be managed accordingly.

4. Developing a Custom DB2 Content Manager / WebSphere Process Server Integration Solution

This chapter describes the elements of the Integration Toolkit and outlines how they can be combined to create a custom
integration solution.

4.1 How the Integration Quick Start workspace is organized

The following sections assume a basic familiarity with DB2 Content Manager Enterprise Edition V8.3, WebSphere Integration
Developer V6, and WebSphere Process Server V6. They focus on the concepts that are specific to an integration solution
based on the Integration Toolkit and Quick Start Client. Valuable resources to get familiar with the environment are the redbooks
and documentation referenced in chapter 7 at the end of this document. From the point of view of business process creation we
recommend the Business Integration samples that can be found in the Samples Gallery of the local WebSphere Integration
Developer Information center which can be opened by clicking Help > Samples Gallery. We recommend working through at
least one of the 'Build it yourself' style samples such as the Loan application sample in the Application Samples > Business
Integration section and taking the time to look up new concepts in the redbooks or documentation.

42 of 80

From a resource perspective, a workspace of a custom solution that integrates DB2 Content Manager with WebSphere Process
Server typically consists of the following three enterprise applications each consisting of a number of modules:

The application hosting the business process (ClaimsHandling in the sample).
The application CMBPCIntegrationApp hosting the modules provided by the Integration Toolkit:
CMBPCIntegrationLibrary, CMBPCIntegration, CMBPCIntegrationBeans,
CMBPCIntegrationBeansClient, CMConnectionManagement.
The application QuickStartClientApp hosting the Web module QuickStartClient.

A solution that uses a custom Web-based (that may be built based on the JSF components of the BPC explorer) or Portal-
based client only needs to deploy the first two enterprise applications while the Quick Start Client builts on top of the functions
provided by the Integration Toolkit.

The following sections describe the individual elements of the Integration Toolkit and Quick Start Client that can be used to build
on custom integration solution in more detail.

4.2 The Integration Toolkit

The Integration Toolkit is a set of artifacts (SCA components, Interfaces, Business Objects, EJBs, and Java classes) that
support the creation of content-centric processes. See the figure below for a schematic representation of the Integration Quick
Start architecture:

The yellow and red blocks mark the elements of the Integration Quick Start: the Claims Handling sample process, the Quick
Start Client, and the Integration Toolkit. The CM-based user registry is a special case as it may be installed and used
independently from the other elements of the Integration Quick Start. See section 4.9 for details on the CM-based user registry.

The Integration Toolkit provides building blocks for functions that are typically found in business processes that work with
content. They are especially important for content-centric business processes but can also be found in processes that involve
content but have a different main focus. This document refers to this set of common functions as content / workflow interaction
patterns.

The Integration Toolkit offers building blocks for the following interaction patterns:

43 of 80

Content Event Handling ⇒ Item creation or deletion events in DB2 Content Manager trigger corresponding actions in
WebSphere Process Server.
Collection Point ⇒ A step in the process where a process instance waits until the folder that is routed through the
process contains a certain number of items of a certain type or until a timeout or exception occurs.
Content Attribute Access ⇒ Efficiently access the value of content attributes from within the business process, e.g. to
enable content-specific decisions (Decision points).
Folder Service ⇒ Add the item routed through the process to a retrieved folder or add a retrieved item to the folder
routed through the process.
Combined Query ⇒ Efficiently retrieve process information from Process Server and associated content attribute values
from DB2 Content Manager. Typically used to create worklists for client users.
Common Staff Repository ⇒ Map DB2 Content Manager user and group definitions to the Process Server staff resolution
facility based on a WebSphere® custom user registry.

These building blocks are available in the form of SCA (Service Component Architecture) components, Enterprise Java Beans,
and Java classes. The SCA components are the main vehicle for incorporating the functions offered by the Integration Toolkit
into business processes. They are supported by interface definitions and business objects that define how the business process
interacts with the SCA components. The EJBs provide the infrastructure needed to implement the Content Event Handling and
Collection Point, and Combined Query patterns. The rest of this section provides some background about the available EJBs
and their role within the Integration Toolkit.

Startup beans are WebSphere-specific stateful session beans that are automatically notified when a WebSphere application is
started or stopped. A bean is designated as a startup bean by implementing special home and remote interfaces. When
WebSphere starts an application, it looks for beans that implement these special startup bean interfaces. If it finds any, it
arranges to invoke the beans start() and stop() methods on application initialization and termination. The Integration Toolkit uses
the startup bean (CMBPCIntegrationBeans\com\ibm\bpe\cm\CMBPCIntegrationStartupBean) to start and stop the
asynchronous bean described below. Note that the startup bean starts when the enterprise application is started. It terminates
when the enterprise application is stopped.

Asynchronous beans are WebSphere-specific enterprise beans that are executed asynchronously and provide support for
application threading within a J2EE environment. There are three types of asynchronous beans:

Worker Beans
Alarm Listener Beans
Event Listener Beans

The Integration Toolkit uses a worker asynchronous bean. A worker asynchronous bean is like a Windows service or a Unix/
Linux daemon process. It runs until asked to terminate. The integration asynchronous bean runs in a loop, doing its work and
then sleeping for a period of time before waking up and repeating the process. When started by the startup bean, the
asynchronous bean used by the Integration Toolkit invokes static methods in the CMBPCIntegration class which perform the
following operations:

Check for satisfied collection point criteria
Process DB2 Content Manager events that require process initiation or termination actions (content event handling)

The asynchronous bean loops until its stop method is invoked by the startup bean at application termination or server
shutdown.

The Stateless Session Bean of the Quick Start Integration
(CMBPCIntegrationBeans\com\ibm\bpe\cm\CMBPCIntegrationBean) provides a remote interface for the Combined
Query function described in 4.8.

4.3 Creating a process based the Integration Toolkit

A process that uses any of the toolkit functions needs to comply with the following conventions:

It is based on the CMProcessInterface provided by the CMBPCIntegrationLibrary.
It has a single receive activity.
This receive activity is followed by an activity that invokes the createItemRef operation of the CMServices
component
This invoke activity is followed by a Java snippet that initializes custom properties that are needed for the Combined
Query function of the Integration Toolkit.

44 of 80

Details can be found in the sample process or in the step-by-step instructions below.

To create a new content-centric process proceed as follows:

1. Start WebSphere Integration Developer and switch to the Business Integration view.
2. In the menu click New > Project > Business Integration > Module and enter a name for the Module such as

MyModule (the default location should be OK).
3. In the project tree right-click MyModule and select Open Dependency Editor. In the Libraries section of the

dependency editor click Add and select CMBPCIntegrationLibrary. Press CTRL-S to store the change and close the
dependency editor.

4. Double-click the assembly diagram of your new module to open the assembly editor.
5. Drag CMProcessInterface from CMBPCIntegrationLibrary > Interfaces and drop it into the assembly editor

and select Component with no implementation type.
6. Select the new component and replace its default name Component1 with a more useful name in the properties view

such as MyProcess.
7. Right-click the component MyProcess and select Generate Implementation > Process. On the Generate

Implementation dialogue you can define a folder for the process such as com.ibm.bpe.cm.myprocess.
8. When you click OK a new process definition MyProcess is created based on the interface partner

MyProcessComponent and is displayed with the process editor.
9. In the Variables section to the right of the business process editor create five variables with the data types shown below:

Variable name Data Type
ItemId string

ComponentId string

VersionNo int

ItemPid string

ItemRef ItemRef

10. Click the Receive activity and select the Details tab in the Properties view. Check Use Data Type Variables and
assign the three variables ItemId, ComponentId, and VersionNo to the corresponding input parameters of the
startProcess operation. You may now delete InputVariable from the list of variables.

11. Drag CMServicesInterface from CMBPCIntegrationLibrary > Interfaces and drop it into the Reference
Partners section at the right-hand side of the business process editor.

12. Drag the symbol of an Invoke activity from the graphical menu of the business process editor and drop it right below the
Receive activity (within the Sequence block).

13. Click the new Invoke activity. In the Description tab of the Properties view replace the default name Invoke with
CreateItemRef and in the Details tab click Browse and select the CMServicesInterface partner. Select the
operation createItemRef from the list and assign the input variables (ItemId, ComponentId, VersionNo) to the
corresponding input parameters and the output variable (ItemRef) to the output parameter.

14. Press CTRL-S to store the project definition.
15. Switch to the assembly editor. Note that the referenced partners have now changed so the assembly diagram needs to

be updated. Right-click MyProcess and select Delete. Press CTRL-S to update the assembly diagram and wait for the
progress information to signal completion of the build. Drag MyProcess from MyModule > Business Logic >
Processes and drop it into the assembly diagram. Note that it now contains a small icon 1:1 on the right hand side that
represents its partner link to CMServices.

16. Drag CMServicesInterface from CMBPCIntegrationLibrary > Interfaces and drop it into the assembly editor
right of MyProcess. Select Import with no binding on the Component Creation dialogue.

17. Click the new component and replace its default name Import1 in the Description tab of the Properties view with
CMServicesImport.

18. Right-click CMServicesImport and select Generate Binding > SCA Binding.
19. Select the Binding tab in the Properties view and click Browse. Select CMServicesExport on the SCA Export

Selection dialogue and click OK.
20. In the assembly editor right-click MyProcess and select Wire to existing. Note that this connects the process

component MyModule with its referenced partner CMServicesImport.
21. Press CTRL-S to save the changes to the assembly diagram. It should now look as shown below:

45 of 80

22. Switch to the business process editor, click the background of the process definition and select the Java Imports tab in
the Properties view. Add import com.ibm.bpe.cm.CMBPCConstants; to the (so far empty) list of Java imports.

23. Drag the symbol of a Java Snippet from the graphical menu on the left and drop it right below the CreateItemRef
Invoke activity.

24. In the Description tab of the Properties view replace the default name Snippet with Initialize and switch to the
Details tab.

25. Select Java. On the confirmation dialogue click Yes and paste the following code fragment into the source code editor
area of the Details view.

ItemPid = ItemRef.getString(CMBPCConstants.BOATT_ITEM_REF_PIDSTRING);
setProcessCustomProperty(CMBPCConstants.PROCESS_PROPERTY_ITEMPID, ItemPid);
setProcessCustomProperty(CMBPCConstants.PROCESS_PROPERTY_ITEMID, ItemId);
setProcessCustomProperty(CMBPCConstants.PROCESS_PROPERTY_COMPONENTID,
ComponentId);
setProcessCustomProperty(CMBPCConstants.PROCESS_PROPERTY_VERSIONNUMBER,
VersionNo.toString());

26. Press CTRL-S to store the updated process definition.
27. Add further activities to the process as needed and proceed as described in 6.6 to deploy and run your new process.
28. It is recommended to have a scope at the top level of the process so dedicated treatment can be established for errors

that may show up during the process. The Claims Handling sample process shows an example how this can be done.

The CreateItemRef activity invokes the createItemRef operation of the CMServices component. Its implementation
creates a DKItemPid object from the supplied ItemId, ComponentId, and VersionNo parameters and runs a Content
Manager query that returns the missing information such as the server name and item type from the Content Manager Library
server.

46 of 80

The Java snippet Initialize copies the values of the four variables ItemId, ComponentId, VersionNo, and the ItemPid
stored in the variable ItemRef into custom properties of the process where it can be used by Integration Toolkit functionality
such as Combined Queries or Collection Points.

The following sections describe the individual building blocks for content-centric processes that are provided by the Integration
Toolkit in more detail.

47 of 80

4.4 Content Event Handling

With content event handling, activities in DB2 Content Manager generate events that can be handled by the business process
management system. The Integration Toolkit provides an implementation of content event handling that deals with item creation
and deletion events. If defined properly, an item creation event triggers the creation of a process instance as soon as an item of
a certain type is stored in DB2 Content Manager. The newly created process instance contains a reference to the item just
created. If capturing of deletion events is specified, the deletion of an item in DB2 Content Manager triggers the removal of any
process instances 'carrying' it.

How to use Content Event Handling

The DB2 Content Manager administrator specifies which items trigger creation or deletion events based on the custom attributes
WF_OnCreate and WF_OnDelete that need to be assigned to the item types for which content event handling should be
enabled. Both attributes need to be defined as a variable length character string with a minimum length of zero and a maximum
length of 254 as shown below:

To enable an item type for content event handling add WF_OnCreate or WF_OnDelete to its list of attributes and enter the
template name of the process to be notified as the default value.

48 of 80

The value of the attribute WF_OnCreate specifies the name of a process to start whenever the corresponding event occurs. So,
for example, if the WF_OnCreate attribute for the XYZ_ClaimFolder item type is set to ClaimsHandlingProcess, then
whenever a user creates a new item of type XYZ_ClaimFolder, a new instance of the process ClaimsHandlingProcess is
started by submitting the item's itemId, componentId, versionNumber as input message to the process which needs to
implement the appropriate interface of type CMProcessInterface. If multiple versions of this process are deployed, the most
recent process with respect to the Valid From date is selected. If the attribute WF_OnDelete is present in the definition of the
item type XYZ_ClaimFolder with a default value of ClaimsHandlingProcess, deleting an item of this type terminates all
instances of the process ClaimsHandlingProcess that carry this item.

With this synchronization mechanism, content event handling enables some degree of referential integrity between the content
repository and the process management system in the sense that document creation or deletion causes corresponding action in
the process management system in order to keep the two systems in synch.

How Content Event Handling is implemented

Item type definitions that have a WF_OnCreate or WF_OnDelete attribute are registered in a table BPECONTENTENVENTS that
the Integration Toolkit creates in the library server database. Each row in the BPECONTENTEVENTS table constitutes a content
event request. The method checkContentEvent() of the utility class
CMBPCIntegration\com\ibm\bpe\cm\util\ContentEventHandling is called regularly from the asynchronous bean
(CMBPCIntegration\com\ibm\bpe\cm\util\AsyncBeanWork) to see if a new process instance should be created or if
process instances should be deleted. It scans the BPECONTENTEVENTS table and performs the corresponding creation or
deletion operations in the order in which requests have been added to the table deleting the rows as soon as the corresponding
action has been performed successfully. If an action fails, an error message is written to the log the row remains in the table

49 of 80

and the event is retried during the next cycle of the asynchronous bean. The BPECONTENTEVENTS table is created during
server startup by the startup bean
(CMBPCIntegrationBeans\com\ibm\bpe\cm\util\CMBPCIntegrationStartupBean) if it does not exist yet.

The BPECONTENTEVENTS table has the following structure:

CREATETS TIMESTAMP
ITEMID CHAR(26)
COMPONENTID CHAR(18)
VERSIONID SMALLINT
REQUEST SMALLINT
PROCESSNAME VARCHAR(254)

The CREATETS column is the creation date and time of the content event. It ensures that content events are processed in the
order in which they are received. The ITEMID, COMPONENTID and VERSIONID columns are the key values of the
corresponding itemPid the creation or deletion of which triggered the event. The REQUEST column indicates the type of CM
event: 1 for creation, 2 for deletion. The PROCESSNAME column indicates the name of the process to be created or deleted.
Rows are written to the BPECONTENTEVENTS table using database triggers. These triggers are automatically created by the
Asynchronous Bean for DB2 Content Manager item types that contain the custom attributes WF_OnCreate or WF_OnDelete.
The trigger is created on the underlying DB2 Content Manager Component Table (a table of the form ICMUTnnnnnsss where
nnnnn and sss are sequences of numbers representing the component type ID and the segment ID respectively) by the startup
bean. The startup bean deletes all existing triggers and replaces them with triggers that correspond to the current state of the
library server database. Note that when adding or removing WF_OnCreate or WF_OnDelete attributes to/from item types, the
server needs to be re-started (or the CMBPCIntegrationApp re-deployed) to ensure the Content Event Handling mechanism
can pick up the change.

Once the trigger is created, create and delete operations for the item type result in requests being written to the
BPECONTENTEVENTS table. This has the benefit of decoupling the DB2 Content Manager transaction from the subsequent
Check Content Event transaction so that the performance impact to the DB2 Content Manager transaction is minimal. The
BPECONTENTEVENTS table is created by the startup bean if it does not yet exist.

In addition to this 'standard usage', content event handling can also be viewed as specific instance of a more general concept
that may be applied to other special processing, as needed.

Examples:

Notify process instances if the item they are referring to is updated.
Trigger a 'review process' within a certain period of time after a document has been created.
Trigger a process if a document is moved to a different storage system.
etc.

4.5 The Collection Point Service

A collection point can be used where the item that is routed through the process is a folder. A collection point is an activity in the
process which waits until a certain folder condition is valid. This condition is expressed in terms of <ITEMTYPE, QUANTITY>
pairs. A set of such pairs specifies how many instances of the named item types need to be in the folder for the process
instance to resume execution. <1, XYZ_ClaimForm>, <2, XYZ_AdjReport>, <1, XYZ_PolReport> is an example that
lets the process instance wait until one claim form, two adjuster reports, and one police report are available in the claim folder
that is routed through the process.

How to use the Collection Point Service

A collection point is modeled by an invoke activity that invokes the collectionPoint operation on the CMServices
component.

To add a collection point service invocation to a content-centric process proceed as follows:
1. In the Variables section to the right of the business process editor create three variables with the data types shown

below:

Variable name Data Type
CollectionPointCondition CollectionPointCondition

TimeoutSeconds int

50 of 80

CollectionPointResult int

2. Drag CollectionPointService from CMBPCIntegrationLibrary > Interfaces and drop it into the Reference
Partners section at the right-hand side of the business process editor.

3. Drag the symbol of an Assign activity from the graphical menu of the business process editor and drop it to the position
where the collection point service should be inserted.

4. Click the new Assign activity. In the Description tab of the Properties view replace the default name Assign with
InitCollectionPointCondition and in the Details tab add three assignments to this activity as shown below (for
illustration purposes we are using fixed values based on the sample data. Note that requiredItems is an array. To
assign a value to elements of this array select Variable in the target section and click
CollectionPointCondition... > requiredItems... > itemType. Note that this only displays the scalar
variant of the query: /requiredItems/itemType. You need to manually enter the index value of the array into the
query field so that it displays /requiredItems[1]/itemType. Note that array positions start with 1.

51 of 80

5. Press CTRL-S to store the project definition.
6. Drag the symbol of an Invoke activity from the graphical menu of the business process editor and drop it right below the

Assign activity InitCollectionPointCondition.
7. Click the new Invoke activity. In the Description tab of the Properties view replace the default name Invoke with

CollectionPointService and in the Details tab click Browse and select the CollectionPointService
partner. The operation is set to collectionPoint since this is the only operation available at this interface.

8. Assign the input variables (ItemRef, CollectionPointCondition, TimeoutSeconds) to the corresponding input
parameters and the output variable (CollectionPointResult) to the output parameter.

9. Press CTRL-S to store the project definition.
10. Switch to the assembly editor. Note that the referenced partners have now changed so the assembly diagram needs to

be updated. Right-click MyProcess and select Delete. Press CTRL-S to update the assembly diagram and wait for the
progress information to signal completion of the build. Drag MyProcess from MyModule > Business Logic >
Processes and drop it into the assembly diagram. Note that it now contains a small icon 1:1 on the right hand side that
represents its partner link to CMServices.

52 of 80

11. Drag CollectionPointService from CMBPCIntegrationLibrary > Interfaces and drop it into the assembly
editor right of MyProcess. Select Import with no binding on the Component Creation dialogue.

12. Click the new component and replace its default name Import1 in the Description tab of the Properties view with
CollectionPointServiceImport.

13. Right-click CollectionPointServiceImport and select Generate Binding > SCA Binding.
14. Right-click MyProcess and select Wire to existing. Note that this connects the process component MyModule with its

referenced partner CMServicesImport.
15. Press CTRL-S to save the changes to the assembly diagram.

Note that a process using a collection point must be defined as long running since the availibility of documents usually depends
on some external conditions that are beyond the control of the process and typically person-based. Furthermore, a timeout may
be specified to ensure the process instance resumes execution in lack of the required documents. The timeout value is typically
used to trigger a reminder or corrective action to ensure the process instance does not wait forever.

The CollectionPointResult parameter returns a numeric status value that represents one of the following situations:

Success - In this case the condition is met by the folder content
Timeout - The condition has not been met within the number of seconds specified by the timeout parameter of the input
message
Folder has been deleted - The folder that is routed through the process (on which the collection point condition is defined)
has been deleted
Failure - An exception has occurred while the process instance was waiting for the collection point condition to be met

A typical implementation of the collection point looks as shown below:

53 of 80

The Assign activity instantiates the input parameters of the collection point service. It submits the reference to the folder
(ItemRef), and defines the collection point condition and timeout value as shown above. The case statements inside the
Choice activity evaluate the return value of the collection point service and triggers corresponding actions such as sending a
notification in case of a timeout or terminating the process instance in case of a failure. Invoking the collection point service and
evaluating its results is typically done inside a loop so the collection point service can be re-entered in case of a timeout as
shown by the Claims Handling sample process. If the initialization also happens within the loop, collection point conditions and
timeout values can be modified dynamically with each iteration to, for example, loosen the conditions in case of a timeout.

How the Collection Point Service is Implemented

Since the class implementing the collection point SCA component
(CMBPCIntegration\com\ibm\bpe\cm\sca\CollectionPointServiceImpl) instantiates the ServiceImplAsync
interface, the SCA infrastructure redirects calls to any of its operations (there only is one: collectionPoint) to the method
invokeAsynch which has a caller ticket and service callback as parameters. invokeAsynch calls the collectionPoint
method in CMBPCIntegration\com\ibm\bpe\cm\api\CMBPCIntegration where in- and output parameter mapping takes
place. Then the condition is registered by the addCollectionPointRequest method in
CMBPCIntegration\com\ibm\bpe\cm\util\CollectionPoint that writes it to a table
BPECOLLECTIONPOINTITEMTYPES in the DB2 Content Manager library server.

The DB2 Content Manager library server database contains two tables for collection point support provided by the Integration
Toolkit.

The table BPECOLLECTIONPOINTS contains one row for each active collection point request. It is defined as follows:

SEQID INTEGER NOT NULL PRIMARY KEY
CREATETS TIMESTAMP NOT NULL DEFAULT CURRENT TIMESTAMP
CORRELATION BLOB(1M) NOT NULL
ITEMID VARCHAR(26) NOT NULL
TIMEOUT BIGINT NOT NULL

The SEQID column contains a unique sequence ID serving as foreign key for the BPECOLLECTIONPOINTITEMTYPES table.
The CREATETS column contains the creation date and time of the collection point request. It ensures that collection point
requests are processed in the order in which they are created. The CORRELATION column keeps a serialized instance of the
CollectionPointCallbackInfo class that stores the serviceCallback and Ticket which the invokeAsynch method has
obtained from the SCA infrastructure. The process engine uses this information to correlate the response message with the
request message so it knows which process instance should be notified if the collection point condition evaluates to true. The
ITEMID column is the Item ID of the folder to be checked. TIMEOUT stores the time in milliseconds at which the collection point
condition times out

The table BPECOLLECTIONPOINTITEMTYPES contains one row for each item type and quantity specified in the collection point
request. It is defined as follows:

SEQID INTEGER NOT NULL
ITEMTYPENAME VARCHAR(254)
ITEMTYPEQUANTITY INTEGER

The SEQID references a sequence ID of BPECOLLECTIONPOINTS (foreign key). The ITEMTYPENAME column contains the
name of the item type to wait for. ITEMTYPEQUANTITY specifies the number of items of type ITEMTYPENAME to wait for.

There is a one-to-many relationship between BPECOLLECTIONPOINTS and BPECOLLECTIONPOINTITEMTYPES, based on the
SEQID key. Any of these tables is created by the CMBPCIntegrationStartupBean if it does not already exist.

The method checkCollectionPoint() that is called by the asynch bean performs a (JDBC-based) SQL query which returns
a list of collection points that are satisfied. For each satisfied collection point, it deletes the collection point request from the
BPECOLLECTIONPOINTS table and sends a response message back to the Collection Point Invoke activity of the process. A
request is also removed if the folder that is routed through the process has been deleted before the collection point condition is
satisfied. Each row in the BPECOLLECTIONPOINTS table represents a collection point, and each row in the
BPECOLLECTIONPOINTITEMTYPES table represents an item type condition for a collection point. checkCollectionPoint()
effectively joins these tables with the DB2 Content Manager Links, Items and NLS Keywords tables to identify all satisfied
collection points within two requests to the library server database. checkCollectionPoint() uses the "Folder Contains"
link type to determine the contents of folders. It sums the items for the specified DB2 Content Manager folder, and if the
resulting counts are greater than or equal to the quantities specified in the collection point conditions, then the collection point is

54 of 80

considered to be satisfied. The NLS Keywords table maps the DB2 Content Manager item type names to numeric Item Type IDs
using the base name for the item type, which may be expressed in any language. However, to avoid a potential cross product,
the join is limited to ENU, which must be present (though not necessarily in use).

4.6 Content Attribute Access

There are a number of situations in which there is a need to access the attribute values of the item that is routed through the
process or of items in the folder that is routed through the process. Typical situations are conditions on links in a parallel section
(flow) of the process or on switch statements in a 'case' section that determine the path to be taken depending on the value of
an attribute. Another typical situation is instantiating the input message of a staff activity or other service by extracting attribute
values from the folder or from an item in the folder and placing them into parts of the input message to make them available as
input parameters to the service. The CMServices component of the Integration Toolkit offers the following operations to extract
attribute values from items or to evaluate conditions over attributes:

Each of these operations takes an item PID (ItemRef) as input parameter and either a single attribute specification in the form
<itemTypeName>/<attributePath> or an AttributeSpecs data object that carries a list of individual attribute
specifications.

<itemTypeName> specifies the type of item that holds the attribute value of interest (the same attribute may be defined for
many different items).
<attributePath> can be an atomic attribute name or a sequence of attribute names separated by '/' in case of an attribute
hierarchy (as for example in customer/address/city).

getContentAttribute and getFolderContentAttribute are the 'single specification, single value' variants of the
attribute lookup. They return a single value based on a single attribute specification and should not be used for looking up
attributes of item types where more than one instance may be stored in a folder. In this case the 'multiple specification, multiple
values' variants getContentAttributes and getFolderContentAttributes should be preferred. They return arrays of
values where each array corresponds to an item in the folder. Note that these variants can also be used to look up multiple
attribute values within a single request to the library server.

The two variants getContentAttribute(s) and getFolderContentAttribute(s) differ in that the former looks up
attributes of the folder while the latter looks up attributes belonging to items within the folder. Note that only a single level of
embedding is supported by the Integration Toolkit. The table below summarizes the available variants:

attribute of folder attribute of item in folder
single spec, single value getContentAttribute getFolderContentAttribute

multiple spec, multiple value getContentAttributes getFolderContentAttributes

The following figure shows the typical use of a multiple attribute value lookup that consists of a preparational step that initializes
the attribute specifications, the lookup service invocation, and an evaluation step that (in this example) prints the attribute values
to the server's console.

55 of 80

The PrepareAttributeLookup activity assigns the two attribute specification XYZ_AdjReport/XYZ_LicPlate and XYZ_
AdjReport/XYZ_ClaimAmount (not shown) to the variable AttributeSpecs that serves as input parameter to the 'multiple
spec, multiple values' operation getFolderContentAttributes that looks up attribute values on items that reside in the
folder.

The result of the getFolderContentAttributes operation is a data object of type AttributeValues that contains a list of
attribute values.

56 of 80

The Java snippet DisplayAttributeValues retrieves the result list and prints their attribute values to the server log. Note
that type conversion takes place while looking up values from the data object. It is important to understand that though an
AttributeValue contains an element of type anySimpleType that corresponds to the class Object, it can not simply be
retrieved as follows:

BigDecimal ca = (BigDecimal)claimAmount.get("value");

This leads to a class cast exception as claimAmount.get("value") returns a string value. Instead the following format
needs to be used as in the example shown above:

BigDecimal ca = claimAmount.getBigDecimal("value");

Instead of printing the values to the server log, a typical use of attribute values is in conditional processing where the path
through the process is controlled by the value of attributes or variables in the process. Furthermore, the links between activities
in a parallel section (flow) can be conditional, meaning that the link is only followed if the condition is true. Since the values
returned from an attribute lookup are mapped to Java classes they can be used in Java expressions that form case statements
or link conditions. In the example above different paths of a process can be taken by comparing the claim amount value with a
predefined threshold.

Alternatively, the boolean result of the operation evaluateCondition can be used in conditional processing to base a
decision on a content query. evaluateCondition takes a Content Manager XPath expression as input parameter and returns
true if the result of the query is non empty. The following substitutable parameters can be included in XPath expressions to
further qualify the results:

%ITEMID%
%COMPONENTID%
%VERSIONID%

These substitutable parameters are replaced with the values of the Item ID, Component ID and Version ID (respectively) of the
DB2 Content Manager item routed through the process. The Item ID and Component ID parameters are character strings, and
the substituted values include quotes to produce a valid XPath expression. The Version ID parameter is a number, which can
be used in numeric expressions (e.g. %VERSIONID% > 3). Note that use of these substitutable parameters is optional and that
the XPath expression is not limited to querying attributes of items associated with the process.

Here is an example of a conditional link expression that checks to see if the mortgage amount exceeds $333,700:

57 of 80

This Java expression uses the %ITEMID% substitutable parameter to get the Content Manager Item ID associated with the
process. This Item ID qualifies the search so that it only applies to the Content Manager item associated with the current
process. In this example, the item type is Mortgage and the name of the Content Manager attribute is Amount. If the mortgage
amount exceeds $333,700 for the item associated with the current process instance, then the link will be followed and the next
activity on that link will be executed.

58 of 80

4.7 Additional content services

The Integration Toolkit provides some additional content services that operate on the folder which is routed through the process

Folder Services

The folder service adds one or more items to a folder. The two available operations are addFlowItemToFolder and
addItemToFlowFolder. Both operations take the itemPid of the item that is routed through the folder and an XPath query as
input and return a numeric value that represents the size of the result list obtained from running the XPath query. The
operations differ as follows:

addFlowItemToFolder
In this case the XPath query needs to return a folder. This operation adds the item that is routed through the process to this
folder. If the item routed through the process is itself a folder this will create a nested folder structure.

addItemToFlowFolder
In this case the item routed through the process needs to be a folder. This operation adds the items returned by the XPath query
to the folder that is routed through the process.

setACL

The setACL service sets the ACL of an item to a new value. If this item is a folder, it recursively changes the ACLs of all items
in the folder to match this new ACL. Note that only a single level of folder-containment is supported.

The input parameters of the setACL service are the ItemRef of the item to be re-indexed (usually the item routed through the
folder) and the name of the new ACL.

reindex

The reindex service assigns a new item type to an item. Note that if this service is invoked on the item that is routed through
the folder, the activity that invokes it needs to be followed by createItemRef and Initialize activities as done at the
beginning of a content-centric process to ensure the information about this item is consistent. For details on createItemRef
and Initialize see section 4.3.

The input parameters of the reindex service are the ItemRef of the item to be re-indexed and the name of the target item type.
The source and target item type need to be compatible for the reindex operation to suceed as specified in the DB2 Content
Manager documentation. This operation has no output parameter.

4.8 Combined Query

Typically, end users are not aware of underlying technologies and need not be concerned with whether they are using a
process management system or a content repository. Ideally, these users have a single user interface that enables them to
efficiently search for information, regardless of how that information is stored. In order for this to be the case, the Integration
Toolkit provides a combined query capability that efficiently searches for information in both the DB2 Content Manager library
server and the process engine database (i.e. not only content and its attributes, but also properties of the enclosing process
instance). This query capability utilizes search criteria for both systems (the "where" clause) as well as attributes (the "select"
clause). Combined query results only include items to which the caller has access. This means that the item must exist in a
work list, and that the caller be authenticated as a user who has access to the work item.

To take advantage of this combined query capability, a Web programmer uses the combinedQuery method available on the
session bean of the Integration Toolkit which has the following interface:

public QueryResultSet combinedQuery(
 String selectClauseWorkflow,
 String flowItemTypeNameContent,
 String flowItemTypeAttributesContent,
 String additionalAttributesContent,
 String whereClauseWorkflow,
 String xPathContent,
 String orderByClauseWorkflow,
 java.util.TimeZone timezoneWorkflow);

59 of 80

The combinedQuery method returns a List of result rows. Each result row is a List of columns that contains the values in the
order in which they are specified by the select clauses of the query (first the process properties, then the item attributes). For
details on how this can be used to implement the concept of a worklist see
QuickStartClient\WebContent\listWorkItems.jsp.

4.9 The DB2 Content Manager-based user registry

As work flows through a process management system, it is acted on by a variety of automated and manual steps. When a work
item arrives at a manual step (task), the process management system must decide which users should have access to the item.
This is referred to as staff resolution. WebSphere Process Server provides a highly configurable staff resolution facility that uses
a role / verb model to identify user access for a work item. These are the predefined roles that describe the types of access
supported:

Administrators - People responsible for upper level administrative tasks.
Potential Owners - People who may claim the item, perform the activity, and complete it.
Editors - People who may update the item, but not complete the activity.
Readers - People who may only view the activity, but not work on it.

Process Server uses staff verbs to assign users to these staff roles. The staff verbs are configurable queries to an underlying
directory service, and are limited only by the power and flexibility of that service. For example, if the directory service supports a
manager of relationship, then the staff verb can utilize that relationship to resolve a role to a manager of a user. WebSphere
Process Server utilizes a pluggable interface to the underlying staff repository, and comes preconfigured with interfaces for
LDAP, the WebSphere User Repository and a System directory.

One of the building blocks offered by the Integration Toolkit is the Content Manager-based user registry which uses the DB2
Content Manager user and group definitions to support group membership. This means that users only need to be defined once,
using the DB2 Content Manager system administration interface, and that staff resolution can be performed at the group level.
Alternatively an LDAP server can be used as a centralized repository for user and group definitions.

Note: Using a custom WebSphere User Registry affects all application running on the WebSphere Application Server such as
the Administrative Console. With a dedicated WebSphere Application Server installation for DB2 Content Manager and Business
Process Choreographer (potentially also hosting the Resource Manager application) this should typically not be a problem as we
recommend to use the library server userid (icmadmin) as Application Server and process administrator. If the Application
Server is intended to host other applications as well, potential side effects when using a custom user registry need to be
considered.

quickStartSampleRev2wps.zip contains a JAR file icmuserregistry.jar with the CM-based user registry that is ready
to be used. To install it on a WebSphere Application Server proceed as follows:

Make sure the WebSphere Application Server on which the CM-based user registry should be installed is stopped.
Extract icmuserregistry.jar from quickStartSampleRev2wps.zip and copy it to <WPS_HOME>\lib.
Start the server.
Start the WebSphere administrative console and log on as icmadmin.
In the navigation panel select Security > Global Security.
Ensure the Enabled check box is checked and the Enforce Java 2 Security check box is unchecked.
In the User Registries section to the right select Custom.
Enter icmadmin into the Server user ID field and the corresponding password into the Server user password field.
Enter com.ibm.bpe.cm.conmgmt.ContentManagerWebSphereUserRegistry into the Custom registry class
name field.
Check Ignore case for authorization.
Click Apply. This verifies the proper operation of the user registry. In case of a configuration problem this step fails with
an error message on top of the window. If it suceeds, icmadmin will be able to logon the next time the server is
restarted.
To enable the runtime use of the library, a valid bpecm.properties file needs to be in the Application Server's
properties directory. Furthermore, the cmbsdk81.jar library, the JDBC driver and the <IBMCMROOT>\cmgmt folder
need to be in the class path of the application server. If you have performed the steps in Chapter 2 on this application
server, this is all set up properly. If not, you need to do the following:

Copy the file bpecm.properties to the properties directory of your application server and make sure it contains
the correct password of the library server administrator. See 2.4 for details.
Set up the runtime class path as described in 2.6.

60 of 80

Click Save on top of the window to open the Save to Master Configuration window. Click Save to store the updated
configuration.
Stop and restart the server to make the changes effective.

Important: When using the integrated test environment with the BPE and HTM administrator roles mapped to AdminsGroup a
corresponding group definition needs to be created in DB2 Content Manager using the Content Manager system administration
client.

If the server log periodically shows the following sequence of messages:

>> CM WAS User Registry - getUniqueUserId [...]
>> CM WAS User Registry - getUniqueGroupIds, user=ICMADMIN
>> CM WAS User Registry - check password for user icmadmin
Cleaning up CM connection...>> successful.

perform the steps described in section 6.11 to re-enable credential caching as described.

Section 6.8 describes how the user registry library can be exported from a Quick Start workspace. This may be important, e.g. if
you want to replace the simple algorithm used to encrypt the password in bpecm.properties with a more sophisticated one.
Note that the 'ROT13 encryption' only prevents the password from being obvious. This may be OK if proper file access rights
are in place for the Application Server's install folders. For a real production use this method may need to be replaced with a
more sophisticated encryption.

4.10 Customizing the Quick Start Client

The Quick Start Client is a generic Web-based client that does not cover the full range of capabilities offered by DB2 Content
Manager and WebSphere Process Server but it provides what can be thought of as a reasonable set of typically used functions
and illustrates the use of the Integration Toolkit. Since it is available as source code it can be extended and adjusted to fit the
specific needs of a certain solution.

All process-specific information can be found in
QuickStartClient\JavaSource\com\ibm\bpe\cm\util\ProcessData.java. This class needs to be modified when
using the client with different roles and data. The following settings are typically subject to modification:

Global constants

CM_DATASTORE_NAME ⇒ The name of the library server database (e.g. icmnlsdb)
AUTO_LINK_ATTRIBUTE ⇒ The name of the attribute that defines folder membership if a folder is routed through the
process

Worklist definitions

A worklist defines certain aspects of the client's look and feel. listWorkItems.jsp lists the available work items based on a
work list ID and showWorkItems.jsp displays the available actions based on this work list ID. When a user logs on to the
system with a specific role, a work list ID must be provided as parameter to listWorkItems.jsp which it passes along to
showWorkItems.jsp. The example customization of the Quick Start client has an initial page index.jsp from which users
can log on to different roles of the sample process. When clicking on the map, a corresponding work list ID (WLID) is assigned
so that each user sees the appropriate list of work items.

Work list IDs are used as an index into three arrays: workListQueryMap, addToFolderActionItemTypes, and
addToFolderActionNames. They should be defined using symbolic constants as in the following example:

static public final int ROLE1_WLID = 0;
static public final int ROLE2_WLID = 1;
static public final int NUM_OF_WLIDS = 2;
static public final int DEFAULT_WLID = ROLE1_WLID;

The workListQueryMap defines the columns of a worklist for a given WLID in terms of process properties and item attributes.
A WorkListQueryMap defines the parameter of the combined query to be run when retrieving work items for the role having
this WLID.

61 of 80

addToFolderActionItemTypes and addToFolderActionNames define which documents a user with this WLID can add to
the folder that is routed through the flow. For example

addToFolderActionItemTypes[ROLE1_WLID] = { "AdjReport", "FraudReport",
"ReliabilityStudy" };
addToFolderActionNames[ROLE1_WLID] = { "Adjuster Report", "Fraud Report",
"Reliability Study" };

...means that a user with WLID ROLE1_WLID may add instances of the item types djReport, FraudReport, and
ReliabilityStudy to the folder that is routed through the flow. The action column of the work page will refer to these actions
by Add Adjuster Report, Add Fraud Report, Add Reliability Study based on the elements of
addToFolderActionNames .

Staff conventions

In- and output messages of participating tasks are implemented based on input and output data objects assigned to the staff
operation in a WSDL file. We recommend a naming convention such as: <TaskName>TaskInterface.wsdl for the WSDL
and <TaskName>Request.xsd for the input data object and <TaskName>Response.xsd for the output data object. The
name of the input parameter in the WSDL should be request, the name of the output parameter response.
JavaSource\com\ibm\bpe\cm\CompleteWorkServlet.java relies on this naming convention. If all properties of the
output data object are of type String, this servlet automatically maps parameters of the HTML form to the corresponding
properties of the output data object if the parameter name is identical with the name of the property. The WSDL and XSD files
are stored in QuickStartClient\WebContent\WEB-INF\lib so they are in the runtime classpath of the Web application.

The method staffActions(String activityName, DataObject inDO) defines the display elements for the 'Process
activity' section of the work page. This section is defined as a table segment spanning four columns. There is no limit on the
number of rows. The final column always contains the available actions (Complete and Cancel). This section typically displays
some parts from the input message of this staff activity (2nd parameter) and contains form elements that can be used to
instantiate its output message. The name of the form element needs be of the form msgpart.xxx where xxx is the name of
the corresponding message part. If all properties of the output data object (<TaskName>Response.xsd) are of type String, no
custom logic needs to be added to JavaSource\com\ibm\bpe\cm\CompleteWorkServlet.java as it automatically maps
form values to output properties with the same name. If non-string-typed variables are involved, an additional conversion step is
required in the process or custom logic needs to be added to this servlet.

Here a simple example of a 'review activity' with an input data object that contains the text to be reviewed and an output
message consisting of a rating in the range 1 to 5.

static public String staffActions(String activityName, DataObject inDO) {

 try {
 String result = "<td colspan=\"4\"></td>"; // default

 if (activityName.equals("Review")) {
 String textToBeReviewed = inDO.getString("TextToBeReviewed");
 result = "<TD colspan=\"2\">\n" +

 "Text to be reviewed:" + textToBeReviewed +
 "</TD>" +

"<TD colspan=\"2\">\n" +
 "<SELECT name=\"msgpart.rating\">" +

"<OPTION value=\"1\" SELECTED>1</OPTION>" +
"<OPTION value=\"2\">2</OPTION>" +
"<OPTION value=\"3\">3</OPTION>" +
"<OPTION value=\"4\">4</OPTION>" +
"<OPTION value=\"5\">5</OPTION>" +
"</SELECT>" +
"</TD>";

 } // 'Review' activity
 else if (activityName.equals("SomeOtherActivity")) {

 }
 } catch (WSIFException e) {

e.printStackTrace();
 }
return result;
}

62 of 80

QuickStartClient\JavaSource\com\ibm\bpe\cm\util\Helpers.java contains a method prepareName() that can be used to map a
display name to some potentially truncated form that displays well on the client pages. For the First Steps sample data this
means cutting off the comment in parenthesis: (Content Manager V8.1 Sample Item Type) or to truncate the display
name of the XYZ_ClaimFolder Claim Application Folder to contain other claim related documents (e.g.
adjuster report, auto photos, claim form, etc) and linked by Claim Number at character position 24.
This method may be helpful in cases like this where the display name serves as a 'description' of the item type in addition to
being the (localizable) name that is displayed to users. prepareName() assumes display names have the form <actual
display name> (<description>) where <actual display name is the name to be shown in the client and
(<description>) is the comment that describes the item type in more detail. The constants DISPLAY_NAME_SIZE_LIMIT
and DISPLAY_NAME_TRUNCATION_POS can be used additionally to truncate long names (those the length of which exceeds
DISPLAY_NAME_SIZE_LIMIT) to a maximum size of DISPLAY_NAME_TRUNCATION_POS. Note that specific rules may need to
be applied depending on the locale .

Limitations of the QuickStartClient

Since the QuickStartClient is a sample, it is not considered a complete Content Manager or Process Choreographer client.
However, as the this section should have demonstrated, it is not specific to the sample process but can be easily modified to
support other content and process models. Individual functions can be added by extending the available source code. Here is a
list of some of the client's limitations.

Checkin / -out of Content Manager items can not be done explicitly (it is done implicitly when e.g. modifying them).
There is no general Content Manager or Process Choreographer search capability. The only search capability that is
available is implicit in the worklist creation (combined query).
Items in folders are listed as they are retrieved from Content Manager. No special sort order is applied. However, this
can easily be added based on the Content Manager method sortFolderItmes() of the CMBItem class.
Child items may be created but the client currently does not provide a 'delete child' option.
When adding multiple parts to an item, at most one part may be edited in the sense of adding annotations. This is not a
problem when using the Document class (as supported by the Content Manager clients) since it restricts the use of parts
to one per item.

4.11 Considerations for production use

Chapter 2 explained the steps required to set up a test environment. This section briefly covers some aspects that are important
when planning to move to a production environment.

Globalization and Accessibility

All Web pages of the Quick Start Client use UTF8 encoding. The static content can easily be localized by creating translated
versions of these pages. To avoid code duplication for JSPs we recommend using a different approach for most of the JSPs
except help.jsp, namely using Java Resource Bundles since most JSPs only contain small portions of static text such as
banner or column titles. A similar approach needs to be taken to internationalize messages of the Integration Toolkit such as
those thrown in case of an IntegrationException or ConnectionException.

Note that using images to represent the process flow as in index.jsp requires a corresponding text-only version to meet
accessibility requirements.

Scalability and Performance

For long-running processes in a production environment we recommend to consider replacing the use of Cloudscape as platform
for the BPE database with an enterprise-level database such as DB2 UDB. See the WebSphere Process Server documentation
for details on how this is done.

To avoid the server termination problem apply the steps in 6.4. Disabling the just in time compiler is not an option in a
production environment.

Security and User Management

For evaluation purposes the development environment set up in chapter 2 used a file based custom registry. However, in a
production environment this is not recommended as it relies on a file that contains passwords in readable format. For use in a

63 of 80

production environment we recommend to use either the Content Manager-based user registry or an LDAP directory server. The
steps required to use the Content Manager-based user registry are described in section 4.9 and 6.8. Details on using an LDAP
server can be found in the product documentation referenced at the end of this document.

It may be advisable to consider implementing a 'real' encryption method for the password stored in bpecm.properties. The
sample offers a simple encryption method referred to as ROT13 which prevents the password from being obvious but this does
not offer a real protection in cases where access to the Process Server's lib directory is not (or can not be) properly protected.
CMConnectionManagement\com\ibm\bpe\cm\conmgmt\Environment.java supports the extension with stronger
encryption mechanisms based on the configuration property ContentManagerAuthenticationPwdEncryption.

4.12 The project structure of a custom integration solution

To create a custom integration solution the following projects need to be imported from quickStartSampleRev2wps.zip:

CMBPCIntegrationLibrary
CMBPCIntegration
CMBPCIntegrationBeans
CMConnectionManagement
QuickStartClient
QuickStartClientApp

The folder QuickStartClient\WebContent\WEB-INF\lib that is in the runtime classpath of the Quick Start Client needs
to include the following resources: copies of bpe137650.jar, task137650.jar from <WPS_
ROOT>\ProcessChoreographer\client, bpecmutil.jar from the same directory of the Integration Quick Start, and
CMProcessInterface.wsdl from CMBPCIntegrationLibrary\com\ibm\bpe\cm\. Furthermore the WSDL and XSD
files for the task interfaces are to be placed into this directory.

Create a process as described in section 4.3 adding functionality of the Integration Toolkit as described in the respective
sections of this chapter. As tasks are added, adjust the definitions in
QuickStartClient\JavaSource\com\ibm\bpe\cm\utils\ProcessData.java accordingly. For testing purposes it may
be useful to create a modified QuickStartClient\WebContent\index.jsp that allows logging on to the process with
different roles or starting the process either explicitly (using a query) or implicitly (using Content Event Handling).

It may be useful to disable the feature Automatically delete the process after completion during testing as this simplifies
investigating error conditions since failed work items remain the process database and can be retrieved using the BPC Explorer.
Note that if the process contains a collection point or one or more human tasks it needs to be defined as long running. Both
settings, Process is long-running and Automatically delete... can be made on the Details tab of the process properties view.
To switch to this view click the white background of the process definition in the BPEL editor and click the Properties tab. Click
Details to switch to the details view. This displays two check boxes with which these properties can be dis- or enabled.

5. Invoking DB2 Content Manager Web Services from within a process

Service invocation is one of the key integration patterns in service orientation architectures (SOA). DB2 Content Manager V8.3
offers a powerful web service interface and thereby adds a standards-based access to the content repository which can be
invoked from any service consumer. WebSphere Process Server V6 comes with a BPEL compliant business process engine
(Business Process Choreographer) that allows orchestrating and choreographing (web) service calls. This chapter explains the
steps needed to invoke DB2 Content Manager web services from a BPEL process and how to build an integrated solution
based on web service technology.

Here is an outline of the scenario used in this chapter:

Prompt a user for a DB2 Content Manager XPath query expression based on the XYZ_AdjReport item type of the
sample data.
Pass the expression as an input message into a BPEL business process.
In the business process, invoke the Content Manager RunQuery web service.
Processes the result set in the BPEL business process.
Print the values of the first name and last name attributes for each adjuster report in the result set.

Important: If you want to use both the Content Manager Web Services and the Integration Toolkit you need to perform the steps
in 6.10 to avoid a conflict with libraries in the classpath.

64 of 80

5.1 Setting up and configuring the system environment

This chapter assumes the following system configuration:

a. Development workstation A hosts:
WebSphere Integration Developer V 6.0.1 optionally with the WebSphere Test Environment (WTE)
If the WTE is not installed: WebSphere Process Server V6.0.1
DB2 Universal Database V8.2 Runtime Client
DB2 Content Manager V8.3 Client for Windows
DB2 Information Integrator for Content V8.3 - Content Manager version 8 connector and Java connector toolkit

b. Repository server B with:
DB2 Content Manager Enterprise Edition V8.3
DB2 Information Integrator for Content V8.3 - Web services support

Details on how to install the DB2 Content Manager web service support can be found in the product documentation (see Further
Reading). The Content Manager web services support installs an additional server cmwebsvc on the WebSphere Application
Server. To perform the scenario described in this chapter the DB2 Content Manager web service server must be properly
installed and running. To verify this point your browser to the URL shown below. Note that you may need to replace
localhost with the name of the repository server and and you may need to add a port number.

To use the DB2 Content Manager web services in a Process Server environment, the following step needs to be performed to
ensure proper treatment of namespaces.

Open the file <IBMCMROOT>\cmgmt\cmbxmlservices.properties in an editor and add the line

forceItemNamespace=http://www.ibm.com/xmlns/db2/cm/beans/1.0/schema

Make sure you have installed WebSphere Integration Developer 6.0.1 with the WebSphere Test Environment (WTE) or an
additional standalone WebSphere Process Server 6.0.1. No additional setup or configuration steps are required to work with the
DB2 Content Manager web services.

5.2 Exporting the web service and data definition

In order to invoke a DB2 Content Manager web service, you need to export a WSDL package from the System Administration
Client that contains WSDL and XSD files with information about...

Where the web service server is installed
Which operations are available
Which data types are available

Item type and attribute definitions are important ingredients of a DB2 Content Manager data model. When exporting the data
model or parts of it to a WSDL package, the data definitions are translated to XSD definitions and thereby made available at the
web service interface. If you plan to access your item type definition in a business process, make sure you defined them in DB2
Content Manager prior to exporting the web service definition. To export a complete data model into a WSDL package log on to
the System Administration Client, select Data Modeling - Item Types and then right-click to bring up the pop-up menu. Select
Export All to WSDL file. You can also export item types individually or subsets of item types by clicking them and selecting
Export to WSDL file.

65 of 80

Specify a location for the resulting zip file. Then, extract the zip file to a location in your file system. As a result, you get the
following four files:

CMWebService.wsdl

cmbmessages_modified.xsd

cmdatamodel_modified.xsd

itemtype_modified.xsd

Important: ensure that the port number and host namematches your settings of the cmwebsvc service. This information can be
found near to the end of CMWebService.wsdl:

 <wsdl:port binding="tns:CMWebServiceBinding" name="CMWebServicePort">
 <soap:address
 location="http://localhost:9081/CMBSpecificWebService/services/
CMWebService"/>
 </wsdl:port>

5.3 Creating a new Project in WebSphere Integration Developer

Start WebSphere Integration Developer 6.0.1 (WID), point the workbench to a new empty workspace, and proceed as follows:

1. Right-click in the Business Integration view and select New > Module. This opens the New Module window.
2. Enter the module name QueryCM_Module and click Finish.
3. Expand Business Logic, right-click Processes and select New > Business Process. The New Business Process

window opens.
4. Enter QueryCM_Process into the name field and click Finish. This creates the artifacts for a new business process

based on a simple interface with a single input variable Input1 of type String. This variable will be used later to specify
a DB2 Content Manager XPath query string.

When the process generation step is completed the WID screen look as follows:

66 of 80

5.4 Importing Web Service and Data Definition

In order to work with the DB2 Content Manager web services, you need to import both the web service definition and the data
definitions (based on the item types) to WebSphere Integration Developer.

Note: You might have to disable XML schema validation before importing the Content Manager WSDL and XSD files. Select
Window > Preferences > Validation and disable the XML Schema Validator checkbox.

1. Right-click in the Business Integration view and select the Import … command from the pop-up menu.
2. On the Import window select File system and specify the file system location where you previously stored the WSDL

and XSD files that you have exported from the DB2 Content Manager System Administration Client.
3. Click Select all and Finish.

67 of 80

Explore the imported definitions in the Data Object, Interface and Web Service Ports sections of the Business Integration
view.

5.5 Modeling the BPEL process to invoke the DB2 Content Manager Web Services

In order to run our scenario, we need input and output messages for the RunQuery web service call. For result processing in a
loop, we also need a counter and a variable to store an item from the result set.

1. Define process variables based on the table below

Variable name Data Type
QueryRequest RunQueryRequest (CM definition)

68 of 80

QueryReply RunQueryReply (CM definition)

Item Item (CM definition)

ResultCount int

FirstName string

LastName string

Click the + in the Variables section of the BPEL editor to create a new variable named Variable.
Replace the default name Variable with the corresponding name from the table below.

While the variable name is selected, click the Details tab in the Properties view (Note that you need to perform
this only once as this tab stays selected in the view while adding variables).
Click Browse and select the corresponding type as specified in the table above.

2. Define a new partner for the BPEL process

In the Business Integration view expand Interfaces.
Drag the CMWebServicePortType interface definition from the Business Integration view and drop it to the
Reference Partners section of the BPEL editor. This creates a new partner which can be referenced by invoke
activities of the BPEL process.

3. Define the BPEL Process

Model the BPEL process according to the following layout by selecting activity types from the menu on the left of the
BPEL editor and dropping them onto the appropriate location of the business process. While the activity stays selected,
click the Description tab of the Properties view to enter the activity name.

69 of 80

Note that this is an example of a non-interruptible process (micro flow) since it does not involve human activities (tasks)
and potentially long-running services such as a collection point. Non-interruptible processes do not need to store
information about intermediate process states in the process engine's database and run in a single transaction. If a
process does not qualify as non-interruptable, this needs to be explicitly set by right-clicking the background of the BPEL
editor and selecting Process is long-running in the Details pane.

4. Further specify the activities as follows:

Initiating Receive activity
receive is an initiating receive activity which takes the value of variable Input1 (as a String). No additional
parameters need to be set - just use the Receive activity which the tools create for you.

set query parameter activity
set query parameter is an assign activity which sets all attributes required to invoke the web service.
Use the Details panel in the Properties tab to set the following values for variable QueryRequest as shown
below:

"From" parameter
type

"From" parameter
value

"To" parameter
type "To" parameter - QueryRequest

Fixed Value ICM Variable /AuthenticationData/ServerDef/
ServerType

Fixed Value icmnlsdb Variable /AuthenticationData/ServerDef/
ServerName

Fixed Value icmadmin Variable /AuthenticationData/LoginData/
UserID

Fixed Value <password> Variable /AuthenticationData/LoginData/
Password

Variable Input1 Variable /QueryCriteria/QueryString

Fixed Value ATTRONLY Variable /retrieveOption

70 of 80

run query activity
run query is an invoke activity which uses the CMWebServicePortType partner link to invoke the DB2 Content
Manager RunQuery web service.
Use the Details panel in the Properties tab to associate the invoke activity with the CMWebServicePortType
partner:

1. Click Browse and select the CMWebServicePortType from the list of partners. Click OK.
2. Specify the Operation: select RunQuery from the list of available operations.
3. Ensure Use Data Type Variables is selected.
4. Click ... in the right-most column of the Input(s) row and select QueryRequest as input variable.
5. Click ... in the right-most column of the Output(s) row and select QueryReply as output variable.

set result count activity
set result count is an assign activity which extracts the result count value from the query result to a process
variable ResultCount . Use the details panel to copy /ResultSet/count in QueryReply to variable
ResultCount .

process result set activity
process result set is a loop activity which executes an associated block of activities multiple times as long as
ResultCount is larger than 0. Result count is also decremented by 1 in this activity. You can use the visual editor
to compare the value of the ResultCount variable with 0 as follows:

1. Select the activity and click Details in the Properties view.
2. Select Same as process (Java) from the list of Expression Languages. Ensure the expression type is set

to Visual.
3. Delete the input element named false.
4. Click the symbol for Standard Visual Snippets, select math > greater than and click OK to insert the

corresponding visual snippet into the drawing area.
5. Drag the ResultCount variable from the list to the right into the drawing area.
6. Click the symbol x+y to create a new expression. Right click it and enter 0.

71 of 80

7. Wire the snippet representing the ResultCount variable to the first and the snippet representing the
constant 0 to the second input slot of the comparison operator and wire the output slot of the comparison
to snippet labeled Result.

decrement result count activity
You have to decrement the result count variable with each run of the loop.
Proceed as in the previous step to combine the visual snippets needed to subtract 1 from the ResultCount
variable:

set item activity
set item is a visual snippet activity which copies one item from the result set for further processing.
This is the first activity inside the loop. Use a visual snippet as in the preceding steps to extract a single item from
the result list (according to the index value stored in ResultCount). Note that the get item at index snippet is
located in the list package of the standard visual snippet library.

72 of 80

set first and last name activity
set first and last name is an assign activity which extracts the adjuster's first and last name from the item to
dedicated string variables (FirstName and LastName respectively).
Use the Details panel in the Properties tab to set the following values from Item to for variables FirstName and
LastName.

"From" variable Item "To" variable
/ItemXML/XYZ_AdjReport/XYZ_AdjustFName FirstName

/ItemXML/XYZ_AdjReport/XYZ_ClaimLName LastName

print name to log activity
print name to log is again a visual snippet which prints (for demo purposes) the adjuster's first and last name
(stored in the BPEL variables) to the Application Server's log file. Note that the append text snippet is located in
the text package and print to log in the utility package of the standard visual snippet library.

5. Press Ctrl-S in the BPEL editor to store the process definition. Note that this builds the workspace in the background.

5.6 Assembling the module and testing the sample process

The QueryCM_Module will now be completed by connecting the sample process with the required partner. Then we describe
how the business process can be tested using the BPC Explorer.

1. Double click QueryCM_Module right above the Business Logic in the Business Integration view to open the
assembly editor.

2. Drag and drop the BPEL process QueryCM_Process you just modeled into the editor view.

3. Drag CMWebServicePortType from the Business Integration view and drop it into the assembly area. The
Component Creation window opens.

4. Select Import with Web Service Binding and click OK. This creates a new import element with the appropriate interface
and binding.

5. With the new import element selected click the Description tab in the Properties view and enter CMWebService into
the name field.

6. Right-click any of the two elements and select Wire to existing to wire the process with its referenced partner.
73 of 80

Now that the module creation has been completed the new application is ready to be deployed and tested. Create a new server
configuration pointing to a WebSphere Process Server installation and add your module to the server (right-click the server
configuration, select Add and remove projects, and add QueryCM_ModuleApp to the list of configured projects). Start the
server and use the BPC explorer to submit a new request to your business process (right-click the server configuration and
select Launch > BPC Explorer). In the BPC Explorer start a new Process (click on My Process Templates, select QueryCM_
Process and click on Start Instance). To test your business process, add /XYZ_AdjReport as the input string for the input
message. This will return all adjuster report data stored with the DB2 Content Manager first steps sample data.

The console output created by the BPEL process looks as follows:

Please note that for simplicity of this description, no error handling has been implemented. In particular, the business process
logic assumes that the Content Manager query returns solely items of type XYZ_AdjReport. If you specify an XPath query that
results in a set of items of a different type, the business process will fail with an exception.

Extending and Aggregating the Service

74 of 80

With this business process, you have built a new service which implements a certain interface and performs a certain task. In
the SOA programming model, it is straightforward to reuse this new service and aggregate it to create new services based on
the existing ones. The SCA programming model in WebSphere Integration Developer allows you to export the new service in
several different ways (e.g. as SCA service, web service or JMS service) and to use it within other modules.

6. Hints and Troubleshooting

6.1 Considerations when working with the sample
When opening a new case the claim form needs to be the first document that is imported and it needs to have a claim
number that has not yet been used. In case of doubt you can use the Client for Windows to find all instances of XYZ_
ClaimFolder and check their values for XYZ_ClaimNumber.
If an adjuster or police report with a new claim number is stored in DB2 Content Manager this triggers the creation of a
corresponding folder and process instance. Since neither of these items has a policy insurance number assigned, the
'RetrievePolicy' service fails but the process continues as usual.
If two claim forms with the same claim number exist, creating the second one causes an error message to show up in the
console output since the 'RetrievePolicy' services tries to add the insurance policy to the folder. The document can not be
added to a folder twice.
See section 6.3 for details on how to clean up data used by the sample process.

6.2 Starting the server and launching the administrative console
Option A: from within WebSphere Integration Developer

1. In the Servers view of WebSphere Integration Developer right-click the name of your server profile and select start. This
switches to the console view that displays the output messages of the server startup.

2. Wait until the message Server server1 open for e-business shows up in the console view. Note that other
messages may follow so it may not be the last one that shows up during the startup procedure.

3. Switch to the Servers view, right-click the name of your server profile and select Run administrative console.
4. If security is enabled you may see a security alert. Click OK to open the logon page with your browser. If your workspace

preferences have Internet > Web Browser set to Internal Web Browser, the browser window opens in a view of your
WebSphere Integration Developer. We recommend using an external browser which that uses a separate independent
window.

5. To stop the server log out from the administrative console and ensure that no changes are pending by saving or
discarding uncommitted changes, right-click the server profile in the Servers view and select Stop. The message
Server server1 is stopped. signals successful completion of the step.

Option B: from the command line
1. Optionally clean up the server logs by deleting all files in the folder <WPS_PROFILE_HOME>\logs\server1.
2. Start the process server by running the command script <WPS_PROFILE_HOME>\bin\startServer.bat (hint:you

may want to create a script that cleans up the logs and then starts a process to automatize the cleanup).
3. The startup is completed as soon as the message Server server1 open for e-business shows up. Note that

other messages may follow so it may not be the last one that shows up during the startup procedure.
4. Open <WPS_PROFILE_HOME>\logs\server1\SystemOut.log with an editor and search for a line that says Web

Module adminconsole has been bound to admin_host[*:9060,*:9043]. The first number shown between
the square brackets is the <ADMINPORT> and the second one is the <SECURED_ADMINPORT> that needs to be used if
security is enabled.

5. To start the administrative console, point your browser to <http://<HOSTNAME>:<ADMINPORT>/ibm/console (if
security is not enabled) or <https://<HOSTNAME>:<SECURED_ADMINPORT>/ibm/console (if security is enabled).

6. To stop the server log out from the administrative console and ensure that no changes are pending by saving or
discarding uncommitted changes, run <WPS_PROFILE_HOME>\bin\stopServer.bat and wait for the message
Server server1 is stopped. which signals successful completion of the step.

6.3 Clean up the process environment
1. Stop the test server.
2. Run the following advanced query in the DB2 Content Manager Client for Windows: /*[<Claim Number (Content

Manager V8.1 Sample Attribute)> LIKE "3-%"] to identify all items created when running the Quick Start
Client.

3. Delete all items of the result list.
4. Connect to icmnlsdb as icmadmin and drop the three tables bpecontentevents, bpecollectionpoints,

bpecollectionpointitemtypes.
5. Restart the test server. This re-creates the three tables.

6.4 Install JRE update on WebSphere Process Server

75 of 80

With the just in time compiler enabled the server may terminate due to a mismatch between the Java Runtime Environment and
the legacy DB2 JDBC driver. Disabling the just in time compiler is a quick but undesirable fix with significant performance
impact. It is recommended to update the Java Runtime Environment to the latest interim fix or fixpack to get rid of this problem.
By the time this documentation is published, this is Service Release 4 that can be downloaded from this support page. The
required files and instructions are on the support site. Here are some hints that help to install the update:

1. Download the ZIP file of the update installer into a temporary folder and unzip it into the <WPS_HOME> folder.
2. Download the interim fix into <WPS_HOME>\updateinstaller\maintenance.
3. Run <WPS_HOME>\updateinstaller\update.exe.
4. Verify the information on the update installer pages. The default settings should be OK. Click Next to proceed through

the pages and Relaunch to re-start the update installer with the updated JRE. When the update has been completed
successfully, click Finish to close the update installer.

5. The Java Runtime Environment of the WebSphere Process Server has now been updated to the required fix level so the
Just in Time Compiler can be re-enabled as follows:

Start server1 and log on to the administrative console.
In the navigation panel select Servers > Application Servers, and click server1.
On the configuration page locate the section Server Infrastructure, expand Java and Process Management,
and select Process Definition.
In the Additional Properties section of the Process Definition page select Java Virtual Machine.
Uncheck Disable JIT and click OK.
Click Save on top of the window to open the Save to Master Configuration window. Click Save to make the
changes permanent.
Log out from the administrative console and re-start the server.

6.5 Recreating the content viewer applet
The Quick Start Client uses a modified version of the DB2 Content Manager viewer applet to display document content. This
applet and the required resources need to be placed into a specific directory where the files are available for download by the
client. This step copies the required resources from the DB2 Content Manager install directory and (re-)creates the JAR file for
the modified viewer applet. This step should be performed whenever the code in TViewerApplet.java has been changed.

1. Switch to the Physical Resources view of the business integration perspective.
2. Expand QuickStartClient > WebContent.
3. Perform the following steps to import cmbview81.jar into this folder.

a. From the workspace menu select File > Import. The 'Import' window opens.
b. Select File system and click Next >.
c. Click the Browse button to the right of the From directory: field, locate the folder <IBMCMROOT>\lib, and click

OK.
d. In the field to the right select cmbview81.jar.
e. Enter QuickStartClient/WebContent/appletViewer in the Into folder: field.
f. Click Finish.

4. Right-click QuickStartClient/WebContent/appletViewer/cmbview81.jar and select Refresh.
5. Switch to the 'Package Explorer' view and perform the following steps to create the JAR file for the viewer applet. You

need to re-run these steps if you have modified the source code of the viewer applet:
From the menu select File > Export.
Select JAR file and click Next> which switches to the 'JAR Package Specification' dialogue.
In the section Select resources to export select ContentViewerApplet.
In the Select the export destination field click Browse and locate the folder <WORKSPACE_
FOLDER>\QuickStartClient\WebContent\appletViewer. Type appletViewer.jar into the File name:
field and click Save.
Check Overwrite existing files without warning and click Finish.

6. In the 'Package Explorer' view right-click QuickStartClient/WebContent/appletViewer/appletViewer.jar
and select Refresh.

6.6 (Re-)deploying the applications on the test environment
This section explains the steps required to optionally clean up the work space and (re-)deploy the three applications on the test
environment.

1. If any of the three applications CMBPCIntegrationApp, QuickStartClientApp, or ClaimsHandlingApp is
currently deployed on the server, perform the following steps to undeploy them:

1. right-click the server configuration in the Servers view, select Add and remove projects
2. Click Select All, and click Finish to remove them.

76 of 80

http://www-1.ibm.com/support/docview.wss?rs=180&uid=swg24011133

3. Wait for the progress indicator to signal completion of this step.
2. Optional: from time to time it might be useful to clean up the workspace to ensure all data in and across projects is

consistent. To clean up the workspace proceed as follows:
1. On the main menu select Project > Clean. Ensure Clean all projects is selected and click OK. Wait until the

progress information signals completion of the step.
2. Click the Problems tab to check for potential problems.
3. If the Problems view displays an error The project cannot be built until its prerequisite XXX

is built. Cleaning and building all projects is recommended (where XXX is a project name
such as CMBPCIntegration) you can get rid of this error with the following trick: on the main menu select
Project > Build Automatically which switches off the automatic build mode. Do the same again to switch the
automatic build mode back on again. This re-builds the projects and removes the error message. Wait for the
progress information that says Building workspace to complete.

3. Make sure no errors show up in the Problems view (warnings may be ignored).
4. Switch to the Servers view, right-click the server configuration, select Add and remove projects, click Select All, and

click Finish.

5. Wait for the progress information to signal successful deployment of all three applications.
6. Inspect the console output (or <WPS_PROFILE_HOME<\logs\server1\SystemOut.log and <WPS_PROFILE_

HOME<\logs\server1\SystemErr.log) for potential problems.
7. Optionally investigate the lines that start with >>. These contain output from the Integration Toolkit. The startup

sequence should, for example, list the message >> CMBPCIntegration services started that signals successful
initialization of the asynchronous bean. If Content Event Handling is used (based on attributes WF_OnCreate or WF_
OnDelete, you may see messages of the type >> Dropping trigger WP... or >> Adding trigger ... to
column ... of table If Content Event Handling or the Collection Point mechanism is used the first time, the
startup sequence will contain messages that indicate the creation of the corresponding tables (BPECONTENTEVENTS,
BPECOLLECTIONPOINTS, and/or BPECOLLECTIONPOINTITEMTYPES. Potential warnings may savely be ignored.

6.7 Manually Starting and Stopping ClaimsHandlingApp

The enterprise application ClaimsHandlingApp can be started as follows:

1. In the WebSphere administrative console follow the links to Applications > Enterprise Applications >
ClaimsHandlingApp.

2. Check the box left of the ClaimsHandlingApp application. Click the Start button. Wait until the status column displays a
green arrow.

77 of 80

3. Follow the links to Applications > Enterprise Applications > ClaimsHandlingApp > EJB Modules >
ClaimsHandlingProcessEJB.jar > Business Processes. Check if the ClaimsHandlingProcess template has been
started. If not, click the Start button and wait until the progress information disappears.

To stop an enterprise application ClaimsHandlingApp perform the following steps:

1. Right-click the server configuration and select Launch > BPC Explorer
2. Log on as WebSphere administrator (e.g. wasadmin or icmadmin) and select Process Instances > Administered by

me.
3. Select all available process instances and click terminate.
4. If any process instances are left: select them and click Delete.
5. Log off from the BPC Explorer.
6. Start the WebSphere administrative console and log in as administrator.
7. Follow the links to Applications > Enterprise Applications > ClaimsHandlingApp > EJB Modules >

ClaimsHandlingProcessEJB.jar > Business Processes, select the ClaimsHandlingProcess template and click the
Stop button. Wait until the progress information disappears.

8. Follow the links to Applications > Enterprise Applications > ClaimsHandlingApp.
9. Check the box left of the ClaimsHandlingProcess application. Click the Stop button. Wait until the status column displays

a red cross.

6.8 (Re-) generating a JAR file for the DB2 Content Manager-based user registry

Perform the following steps to generate a (new) icmuserregistry.jar from your workspace:

1. In WebSphere Integration Developer select File > Export from the menu and select JAR file.
2. On the JAR Package Specification window select CMConnectionManagement
3. Enter <WPS_HOME>\lib\icmuserregistry.jar into the Select the export destination field.
4. The message JAR export finished with warnings. See details for additional information may

show up where the details say /CMConnectionManagement/META-INF/MANIFEST.MF was replaced by the
generated MANIFEST.MF and is no longer in the JAR.. This message can safely be ignored. Click OK to
close the message window.

6.9 Re-activating the console output in WebSphere Integration Developer

With global security enabled, the console view of WebSphere Integration Developer may refuse to display log files. A solution
for this problem is described in this Technote.

6.10 Avoiding conflicts when invoking CM WebServices from a process that also uses the Integration Toolkit

The XSD specification allows different data types to have the same QName. cmbwebservices.jar in <IBMCMROOT>\lib
contains an instance of cmbmessages.xsd which shares QNames with definitions in cmbmessages_modified.xsd that has
been imported from the Content Manager administration client. To ensure definitions with the same QName occur only once on
the classpath, perform the following steps when using the Web Services in combination with the Integration Toolkit:

1. Start the administrative console and log on as icmadmin
2. In the navigation pane select Servers > Application Servers > server1
3. Locate the section Server Infrastructure to the right, expand Java and Process Management, and select Process

Definition. In the Additional Properties section click Java Virtual Machine.
4. Click Custom Properties in the Additional Properties section to open the custom properties of the JVM.
5. Click ws.ext.dirs and replace ${IBMCMROOT}/lib; with ${IBMCMROOT}/lib/cmbsdk81.jar;${IBMCMROOT}/

lib/cmb81.jar;${IBMCMROOT}/lib/log4j-1.2.8.jar;.
6. Click OK to update the property.
7. Click Save on top of the window to open the Save to Master Configuration window. Click Save to make the changes

permanent.
8. Log out from the administrative console and re-start the server.

The following steps are only needed if you plan to use the Quick Start Client:

1. In WebSphere Integration Developer open the deployment descriptor of the Quick Start Client as follows:
Switch to the J2EE view.
In the project view locate Enterprise Applications > QuickStartClientApp > Deployment Descriptor:
QuickStartClientApp.

78 of 80

http://www-1.ibm.com/support/docview.wss?uid=swg21198280

Double-click Deployment Descriptor: QuickStartClientApp to open it with the editor.
2. Switch to the Deployment tab and scroll down until the Shared Library section appears at the lower right corner.
3. Expand the section and click Add to add a new library.
4. Enter ICMLIB into the Name: field.
5. Optional but recommended: enter DB2 Content Manager libraries for use with the CM/WPS

Integration Quick Start into the Description: field.
6. Enter the following libraries into the Class path: field by clicking Add, entering the path, and clicking OK:

${IBMCMROOT}/lib/cmbservlets81.jar

${IBMCMROOT}/lib/cmbtag81.jar

${IBMCMROOT}/lib/cmbview81.jar

7. Click OK to store the definition.
8. Press CTRL-S to store the updated deployment descriptor and close the editor.

6.11 Re-enable credential caching for the Content Manager-based user registry

If the following sequence of messages shows up test server console periodically (approx. every second) this means that
credential caching is disabled and the server has to go to DB2 Content Manager each time it needs to authenticate the user
icmadmin. Perform the steps listed below to re-enable credential caching.

>> CM WAS User Registry - getUniqueUserId [...]
>> CM WAS User Registry - getUniqueGroupIds, user=ICMADMIN
>> CM WAS User Registry - check password for user icmadmin
Cleaning up CM connection...>> successful.

1. Launch the administrative console of the test server and log on as icmadmin.
2. In the navigation panel select Security > Global Security.
3. In the General Properties section set the Active authentication mechanism to Simple WebSphere

Authentication Mechanism (SWAM) and click OK.
4. Click Save on top of the window to open the Save to Master Configuration window. Click Save to make the changes

permanent.
5. Re-start the server.
6. Repeat the above listed steps to set the Active authentication mechanism back to Lightweight Third Party

Authentication.

7. Further Reading

Product documentation

WebSphere Business Process Management Version 6.0 information center
WebSphere Process Server documentation
WebSphere Integration Developer documentation
DB2 Content Manager V8.3 Infocenter

Background information and documents on specific topics
Technical Overview of WebSphere Process Server and WebSphere Integration Developer (IBM Redpaper REDP-4041)
Content Manager Implementation and Migration Cookbook (IBM Redbook SG24-7051)

Product support Web sites

WebSphere Integration Developer Support
WebSphere Process Server Support
DB2 Content Manager Enterprise Edition (multiplatform) Support

Trademarks

The following terms are trademarks of the International Business Machines Corporation in the United States, other countries, or
both:

IBM i5/OS z/OS
Redbooks AIX Cloudscape
DB2 DB2 UDB DB2 Universal Database
WebSphere Lotus Tivoli

79 of 80

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp?topic=/com.ibm.wsps.doc/welcome_wps.html
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp?topic=/com.ibm.wbit.help.nav.doc/topics/welcome.html
http://publib.boulder.ibm.com/infocenter/cmgmt/v8r3m0/
http://www.redbooks.ibm.com/abstracts/redp4041.html?Open
http://www.redbooks.ibm.com/redpieces/abstracts/sg247051.html
http://www-306.ibm.com/software/integration/wid/support/
http://www.ibm.com/software/integration/wps/support
http://www-306.ibm.com/software/data/cm/cmgr/mp/support.html

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in the United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

80 of 80

