
C/C++ Productivity Tools for OS/390

Performance Analyzer

���

Edition notice (November 2000)

This edition applies to C/C++ Productivity Tools fo OS/390 Release 1.0, program number 5655-B85 and to all
subsequent releases and modifications until otherwise indicated in new editions. Consult the latest edition of the
applicable system bibliography for current information on these products.

Order publications through your IBM representative or through the IBM branch office serving your locality.

© Copyright International Business Machines Corporation 1999, 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Note!
Before using this information and the product it supports, be sure to read the general
information under Notices.

Contents

Chapter 1. The Performance Analyzer for
OS/390 1
Performance Analyzer product files. 2

Chapter 2. Diagrams for analyzing a
trace file 5
Diagrams for analyzing a trace file 5
Call Nesting diagram 6
Dynamic Call Graph diagram. 6
Execution Density diagram 8
Statistics diagram 9
Time Line diagram 10

Chapter 3. Trace file generation 13
Call frequency counting 13
Time stamps 13
Trace events 14
Function trace 14
Overhead time 16
Multiple process support 16
Delay tracing 17

Chapter 4. Trace file viewing and
analysis 19
Function groups 19
Pattern recognition 19
Diagram filters 20
Correlation 21

Chapter 5. Tips for using the
Performance Analyzer to understand
your program 23
Use a combination of diagrams to understand your
program 23
Annotate your trace file 23

Chapter 6. Preparing your program for
analysis 25
Compiling your program 25
Setting environment variables for Performance
Analyzer 26
Setting run-time option PROFILE for Performance
Analyzer 27
Creating a trace file. 28

Chapter 7. Starting and exiting the
Performance Analyzer 31
Starting the Performance Analyzer. 31
Starting the Performance Analyzer from a command
line 31
Exiting the Performance Analyzer 31

Chapter 8. Controlling what data is
collected in the trace file 33
Collecting call frequency data 33
Tracing a specific DLL 34
Tracing a Webserver application 34
Specifying trace file name 35
Performing delay tracing 35

Chapter 9. Viewing your trace file in a
diagram 37
Downloading the trace file from the host 37
Starting the Performance Analyzer to analyze a trace
file 38
Opening a trace file in a diagram 38

Chapter 10. Navigating the trace view 39
Correlating events between diagrams 39
Enlarging or reducing a diagram 39
Seeing details by combining the zoom and
correlation features 40
Viewing a specific time or range of time 41

Chapter 11. Searching for trace data in
a diagram 43
Warning: Temporary Level 2 Header 43

Finding a specific annotation 43
Finding a specific function call or return. . . . 43
Finding trace data for a specific function . . . 44
Finding trace data for a specific class 45
Finding trace data for a specific executable . . . 46

Chapter 12. Controlling what data is
shown in the diagrams 47
Filtering events by component type 47
Filtering events by function 47
Filtering events by thread 48
Filtering events by group 48
Filtering nodes and arcs in the Dynamic Call Graph
diagram 50
Recognizing call sequence patterns 51
Viewing class activity 51

Chapter 13. Analyzing your trace file 53
Adding, changing, or deleting annotations 53
Determining the elapsed time between two events 53
Selecting functions to inline 53
Viewing thread interactions in a multithreaded
program 54

Chapter 14. Tracing applications in a
CICS environment 55
Initial setup 55
Creating a C/C++ executable 56

© Copyright IBM Corp. 1999, 2000 iii

Creating a trace for a C/C++ executable 56
Analyzing the trace. 57

Chapter 15. Reference 59
Limitations when analyzing trace data 59
Limitations when creating a trace 59
Performance Analyzer invocation parameters . . . 60
Tracing programs that have interlanguage calls . . 61
Run-time option for program tracing 62
Run-time environment variables for program tracing 64

Troubleshooting Performance Analyzer problems . . 67
Performance Analyzer error messages on the host 69
Sample JCL for creating trace files 72
Sample Unix system service commands for creating
trace files 74
Sample TSO commands for creating trace files. . . 75
Sample trace file names from tracing a multiprocess
program 76

Notices 79

iv Performance Analyzer: C/C++ Productivity Tools

Chapter 1. The Performance Analyzer for OS/390

The Performance Analyzer helps you understand and improve the performance of
your C/C++ programs. It traces the execution of a program and creates a trace file
which contains data that can be examined in several diagrams at the workstation.
Sometimes this tracing is also referred to as profiling. With the trace information,
you can improve the performance of a program, examine a sequence of calls
leading up to an exception, and understand the execution flow when a program
runs.

The Performance Analyzer can complement other application development tools by
helping you understand aspects of the program that would otherwise be difficult
to visualize. For instance, with the Performance Analyzer you can:
v Time and tune programs

The Performance Analyzer records the time stamp of each trace event. As a
result, the trace file contains a detailed record of when your program called and
exited each traced function. The trace data also shows how long each function
ran, which helps you identify code that you may want to tune.

v Diagnose program abends
The Performance Analyzer provides a complete history of events leading up to
the point where a program abends.

v Trace multithreaded programs
After tracing a multithreaded program, you can examine the individual threads
to identify their function usage.

v Trace multiple processes
When your POSIX programs use the fork and spawn functions to create new
processes, you can still view the events in the different processes because a
separate trace file is created for each process.

The Performance Analzyer performs function tracing on a program. Function
tracing records information about each function call and return made during the
execution of the program.

Performance Analyzer components
The Performance Analyzer has two components:
v Host component

Traces your host program’s execution and creates a binary trace file containing
the trace data that was collected. You then download this file to the workstation
for analysis.

v Workstation component
Allows you to analyze the trace file that you have created on the host. You can
take advantage of graphical and textual diagrams to assist you with the analysis
of the trace data.

Performance Analyzer product files“Performance Analyzer product files” on page 2
Function trace“Function trace” on page 14
Call frequency counting“Call frequency counting” on page 13
Multiple process support“Multiple process support” on page 16

© Copyright IBM Corp. 1999, 2000 1

Creating a trace file“Creating a trace file” on page 28
Starting the Performance Analyzer to analyze a trace file“Starting the Performance
Analyzer to analyze a trace file” on page 38
Collecting call frequency data“Collecting call frequency data” on page 33
Downloading the trace file from the host“Downloading the trace file from the
host” on page 37

Run-time option for program tracing “Run-time option for program tracing” on
page 62
Run-time environment variables for program tracing “Run-time environment
variables for program tracing” on page 64
Limitations when creating a trace“Limitations when creating a trace” on page 59

Performance Analyzer product files
Host Data Sets
The host component runs from a data set, CBC.SCTVMOD, which contains the
following members:
v CEEEVPRF

Alias for the Performance Analyzer module
v CTVMSGE

English messages
v CTVMSGK

Kanji messages
v CTVMSGT

Message table
v CTVPFILE

Performance Analyzer module
v ICTVMSGT

Alias for the message table

OS/390 Version 2 Release 4 and subsequent releases ship the dataset. To use the
Performance Analyzer product dataset you must purchase and enable the OS/390
C/C++ Compiler with Debug feature in OS/390.The installation program adds an
entry to the IFAPRDxx parmlib member with the feature name “C/C++/DEBUG”
to enable this feature in OS/390. You must also apply the latest service to FMIDs,
H24P111 and J24P112. See OS/390 Planning for Installation and OS/390 MVS
Initialization and Tuning Guide or contact your system programmer for more
information about enabling OS/390 features and applying service to this data set.

To run the Performance Analyzer on the host system, the CBC.SCTVMOD data set
must be included in the OS/390 modules’ search path. To do this, your system
programmer can add it to the Link Pack Area, you can add it to your STEPLIB DD
statement in your JCL, or you can use the export command in the OS/390 shell to
add it to your STEPLIB before you run your program.

The Performance Analyzer for OS/390“Chapter 1. The Performance Analyzer for
OS/390” on page 1

2 Performance Analyzer: C/C++ Productivity Tools

Creating a trace file“Creating a trace file” on page 28
Starting the Performance Analyzer to analyze a trace file“Starting the Performance
Analyzer to analyze a trace file” on page 38

Chapter 1. The Performance Analyzer for OS/390 3

4 Performance Analyzer: C/C++ Productivity Tools

Chapter 2. Diagrams for analyzing a trace file

Diagrams for analyzing a trace file
The Performance Analyzer provides several diagrams in which you can view and
analyze the data contained in your trace file. Each diagram presents a different
view of the trace data to give you an overall idea of how your program performs.
The following list contains the names of the diagrams, the icons used to represent
them, and a brief description of each; more detailed introductions to the diagrams
and their uses are included in the related topics below.

Call Nesting
The Call Nesting diagram shows the trace file as a sequential series of
function calls and returns. This diagram helps in diagnosing problems with
critical sections, sequencing protocols, thread delays, and crashes.

Dynamic Call Graph
The Dynamic Call Graph diagram is a two-dimensional graphical
representation of your program’s execution. It shows the relative
importance (in terms of execution time) of program components, and the
call hierarchy.

Execution Density
The Execution Density diagram shows your program in terms of execution
time. It shows trace data chronologically from top to bottom as thin
horizontal lines of various colors in columns assigned to each traced
function.

Statistics
The Statistics diagram is a textual report of cumulative information about
your program’s execution. It provides summary and detailed statistics on
execution time and event generation for each component type: function,
class, and executable.

Time Line
The Time Line diagram shows function calls and returns in chronological
order along a vertical line. A function call is represented by a short
horizontal line to the right, and a function return is represented by a short
horizontal line to the left. The horizontal lines are connected by vertical
lines whose length is proportional to the amount of time that elapsed
between the respective events.

Call Nesting Diagram“Call Nesting diagram” on page 6
Dynamic Call Graph Diagram“Dynamic Call Graph diagram” on page 6
Execution Density Diagram“Execution Density diagram” on page 8
Statistics Diagram
“Statistics diagram” on page 9Time Line Diagram“Time Line diagram” on page 10

© Copyright IBM Corp. 1999, 2000 5

Opening a Trace File in a Diagram“Opening a trace file in a diagram” on page 38

Call Nesting diagram
The Call Nesting diagram shows the trace file as a series of function calls and
returns, arranged vertically. Use this diagram to diagnose problems with critical
sections, sequencing protocols, program crashes, or thread delays.

Trace Data

The trace data shown by the Call Nesting diagram includes the following elements:
v The functions that were called during program execution
v The order in which the functions were called and in which they returned
v The nesting of function calls (the call stack) at any point during program

execution
v The points at which control switched from one thread to another during

program execution

Uses

Use the Call Nesting diagram to perform the following tasks:
v Examine the specific elements of trace data listed above.
v See the interactions among the threads.
v Get a better understanding of the program’s flow.
v View and create annotations of trace file events.

Diagrams for Analyzing a Trace File“Diagrams for analyzing a trace file” on page 5

Opening a Trace File in a Diagram“Opening a trace file in a diagram” on page 38
Filtering Events by Function“Filtering events by function” on page 47
Filtering Events by Thread“Filtering events by thread” on page 48
Correlating Events between Diagrams“Correlating events between diagrams” on
page 39
Recognizing Call Sequence Patterns“Recognizing call sequence patterns” on
page 51
Viewing Thread Interactions in a Multithreaded Program“Viewing thread
interactions in a multithreaded program” on page 54

Dynamic Call Graph diagram
The Dynamic Call Graph diagram is a two-dimensional graphical representation of
your program’s execution. It shows the relative importance in terms of execution
time of the different components, and the call hierarchy.

Trace Data

The trace data shown by the Dynamic Call Graph diagram includes the following
elements:

6 Performance Analyzer: C/C++ Productivity Tools

v The functions, classes, or executables (components) that ran during program
execution

v The calls that were made from one component to another
v The call hierarchy
v The caller, the callee, and the number of times a call was made between each

pair of components
v The relative importance of each call between components in terms of the number

of calls made between components
v The relative importance of each component in terms of execution time and time

on stack

You can show trace data for one type of component at a time:
v When you choose to show information on functions, the following trace data is

available for each function that ran:
– Function name
– Compile unit
– Object file (workstation programs) or Compile unit (host programs)
– Executable name
– Execution time
– Number of calls
– Time on stack

v When you choose to show information on classes (possible only if your trace file
contains class information), the following trace data is available for each class
whose code was executed:
– Class name
– Names of member functions and their associated statistics
– Execution time
– Number of calls to the member functions in the class

v When you choose to show information on executables, the following trace data
is available for each executable that ran:
– Executable name
– Functions in the executable, and their associated statistics
– Execution time
– Number of calls

Uses

Use the Dynamic Call Graph diagram to perform the following tasks:
v Examine the specific types of trace data listed above.
v Get an overall view of your program and its flow.
v See the relative importance in terms of execution time of program components.
v See where time is spent in your program.
v See your program’s call hierarchy.

Diagrams for Analyzing a Trace File“Diagrams for analyzing a trace file” on page 5

Chapter 2. Diagrams for analyzing a trace file 7

Opening a Trace File in a Diagram“Opening a trace file in a diagram” on page 38
Filtering Events by Thread“Filtering events by thread” on page 48
Filtering Nodes and Arcs in the Dynamic Call Graph Diagram“Filtering nodes and
arcs in the Dynamic Call Graph diagram” on page 50
Enlarging or Reducing a Diagram“Enlarging or reducing a diagram” on page 39

Execution Density diagram
The Execution Density diagram shows the trace data chronologically from top to
bottom, as follows:
v Each vertical column represents a function (or collapsed group of functions if

you have included group information in the diagram).
v Each horizontal line represents a time slice.
v The color of each horizontal line represents the percentage of execution time

spent in the given function for that time slice. (Only included threads, functions,
and groups are used in calculating this percentage.)
For instance, in the default setting, functions executing more than 50% of a given
time slice are represented by a red horizontal line drawn in the appropriate
column at the vertical location corresponding to that time slice.

Trace Data

The trace data shown by the Execution Density diagram includes the following
elements:
v The percentage of execution time spent in every traced function or group of

functions for each time slice
v The total time, start time, and end time for a selected range of time

You can also show information on collections of functions, called groups. That is,
you can define groups of functions that are meaningful to you using the Options >
Work with groups... dialog, and can then optionally select a subset of the groups
to include in the diagram using the View > Include groups... dialog. You can
toggle the showing of group information on or off by repeatedly selecting the
View > Group filter option.

Uses

Use the Execution Density diagram to perform the following tasks:
v Get an overview of what functions were the most active at various stages of

your program’s execution.
v Spot execution trends.

Diagrams for Analyzing a Trace File“Diagrams for analyzing a trace file” on page 5
Function Groups“Function groups” on page 19

Opening a Trace File in a Diagram“Opening a trace file in a diagram” on page 38
Filtering Events by Function“Filtering events by function” on page 47
Filtering Events by Thread“Filtering events by thread” on page 48
Filtering Events by Group“Filtering events by group” on page 48
Correlating Events between Diagrams“Correlating events between diagrams” on
page 39

8 Performance Analyzer: C/C++ Productivity Tools

page 37
Enlarging or Reducing a Diagram“Enlarging or reducing a diagram” on page 39

Statistics diagram
The Statistics diagram gives you a textual report of execution time by function (or
group of functions, if you include group information in the diagram), class (if your
trace file contains class information), or executable. Use this information to find hot
spots in the overall program execution.

Trace Data

The trace data shown by the Statistics diagram consists of summary and detailed
information.

The summary information shown by the Statistics diagram can include the
following elements:
v Executable name
v Trace file description (if a description was entered when the file was created)
v Execution date
v Execution time
v Number of executables generating events
v Number of classes generating events
v Number of functions generating events
v Number of threads generating events
v Total number of events
v Total number of annotations
v Number of user events
v Maximum call nest depth
v Number of trace buffer flushes
v Total trace time excluding overhead
v Trace overhead
v Indication of whether time is task (CPU) time, or real (clock) time

Note: Data for classes is shown only if your trace file contains class information.
The default class C_Function always exists, however.

Detailed information is shown for each component traced. Depending upon
whether you are viewing information on functions, classes, or executables, the
information shown by the Statistics diagram can include the following elements:
v Percent of total execution time spent in the component
v Percent of the total execution time that the component was on the call stack
v Number of times the component was called
v Cumulative execution time spent in the component
v Cumulative execution time that the component was on the call stack
v Execution time for the shortest call to the component
v Execution time for the longest call to the component
v Average execution time for a call to the component

You can also show information on collections of functions, called groups. That is,
you can define groups of functions that are meaningful to you using the Options >

Chapter 2. Diagrams for analyzing a trace file 9

Work with groups... dialog, and can then optionally select a subset of the groups
to include in the diagram using the View > Include groups... dialog. If View >
Details on is set to Functions, you can toggle the showing of group information
on or off by repeatedly selecting the View > Group filter option.

Uses

Use the Statistics diagram to perform the following tasks:
v Quickly determine which components are consuming the largest amount of

execution time. These components are likely to be ones for which performance
tuning would prove most beneficial.

v Determine which of your functions are good candidates for inlining. If a
function has a small average execution time and is called often, it is a good
candidate for inlining.

v Analyze your algorithms by comparing the number of calls that were made to a
particular component with the number of calls that you expected, in order to
isolate possible inefficiencies.

v Determine which of several algorithms performs better by comparing the
statistics recorded in a trace file generated separately for each different version
of the algorithm.

Diagrams for Analyzing a Trace File“Diagrams for analyzing a trace file” on page 5
Function Groups“Function groups” on page 19

Opening a Trace File in a Diagram“Opening a trace file in a diagram” on page 38
Filtering Events by Group“Filtering events by group” on page 48
Correlating Events between Diagrams“Correlating events between diagrams” on
page 39
Viewing Class Activity“Viewing class activity” on page 51
Selecting Functions to Inline“Selecting functions to inline” on page 53

Time Line diagram
The Time Line diagram shows the sequence of nested function calls and returns,
with a vertical distance between events that is proportional to the amount of time
that elapsed between the respective events. It provides a direct and natural
presentation of the chronological relationships of events. The Time Line diagram
also shows when the flow of execution switches from one thread to another by
means of a dashed horizontal line.

Trace Data

The trace data shown by the Time Line diagram includes the following elements:
v The functions that were called during program execution
v The order in which the functions were called and in which they returned
v The time at which the functions were called and at which they returned, and the

time that elapsed between events
v The nesting of function calls (the call stack) at any point during program

execution
v The points at which control switched from one thread to another during

program execution

10 Performance Analyzer: C/C++ Productivity Tools

Uses

Use the Time Line diagram to perform the following tasks:
v Examine the specific elements of trace data listed above.
v See the interactions among various threads.
v Get a better understanding of a program’s flow.
v Determine the elapsed time between two events.

Diagrams for Analyzing a Trace File“Diagrams for analyzing a trace file” on page 5

Opening a Trace File in a Diagram“Opening a trace file in a diagram” on page 38
Enlarging or Reducing a Diagram“Enlarging or reducing a diagram” on page 39
Correlating Events between Diagrams“Correlating events between diagrams” on
page 39
Determining the Elapsed Time between Two Events“Determining the elapsed time
between two events” on page 53
Viewing Thread Interactions in a Multithreaded Program“Viewing thread
interactions in a multithreaded program” on page 54

Chapter 2. Diagrams for analyzing a trace file 11

12 Performance Analyzer: C/C++ Productivity Tools

Chapter 3. Trace file generation

Call frequency counting
During function tracing, instead of collecting all tracing data, you can limit the
information collected by the Performance Analyzer to the following:
v The functions that each function calls and how many times it calls them
v A count of the number of times each function is called

This data provides information about the call relationships between functions and
indicates which functions are being called most frequently. You can use this
information to analyze your program and to fine tune its performance.

When you specify FUNCTION=COUNTS as a suboption of the PROFILE run-time
option, call frequency data is written to a trace file. After you download this file to
the workstation, you can display the file graphically using the Dynamic Call Graph
diagram and the Statistics diagram. No other diagrams display call frequency
information.

Note: Call Frequency Counting does not provide call timing information nor does
it include a chronological list of events that occur during the execution of the
program (function calls, function returns, thread creation, thread switches). This
reduces the size of the trace file, making it more manageable and easier to analyze.

A sample call frequency counting trace file called CallFrequency.trc is available in
the 390ProductivityTools\samples directory.

Time stamps“Time stamps”
Trace events“Trace events” on page 14
Overhead time“Overhead time” on page 16

Collecting call frequency data “Collecting call frequency data” on page 33
Downloading the trace files from the host“Downloading the trace file from the
host” on page 37

Limitations when creating a trace“Limitations when creating a trace” on page 59
Run-time option for program tracing“Run-time option for program tracing” on
page 62
Run-time environment variables for program tracing“Run-time environment
variables for program tracing” on page 64

Time stamps
During function tracing, the Performance Analyzer collects time stamp data. A time
stamp is a number representing a point in time. At each trace event during the
execution of a program, the Performance Analyzer records a time stamp,
representing the precise time that the trace event occurred. By comparing the time

© Copyright IBM Corp. 1999, 2000 13

stamps of two trace events, the elapsed time between the two trace events can be
determined. Use the time stamp data associated with the trace events to analyze
your program’s performance, such as identifying performance bottlenecks.

Note: Time stamps are not collected when Call Frequency Counting is specified.

Trace events“Trace events”
Function trace“Function trace”
Overhead time“Overhead time” on page 16
Call frequency counting“Call frequency counting” on page 13

Trace events
To enable your program to be traced, compile it using the TEST(HOOK) and
NOGONUMBER compile options. NOGONUMBER is optional, however it will
significantly reduce the load module size. If the module is going to be both traced
and debugged then do not specify NOGONUMBER. The Test(HOOK) option
enables the compiler to generate hooks in the code at the following points:
v Function entry
v Function exit
v Before a function call
v After a function call

The Performance Analyzer uses these points in the code as trace events. A hook in
the code enables the Performance Analyzer to get control and record various
information about the event such as the time of the event and the thread and
function associated with the event. By default, each event is recorded in
chronological order.

By default, the first event in the trace will be a call to a dummy function called
__PROGRAM__. This event represents the program start time. The last event in the
trace will be the return from the __PROGRAM__ function and represents the
program end time. The _PROGRAM_ events are not included in traces created
with delay tracing and traces of Webserver applications.

Note: When Call Frequency Counting is specified, the events are not recorded. The
only processing that is done for a trace event in this case is incrementing the call
counter for the function and recording call frequency data.

Time stamps“Time stamps” on page 13
Function trace“Function trace”
Overhead time“Overhead time” on page 16
Call frequency counting“Call frequency counting” on page 13
Delay tracing“Delay tracing” on page 17

Function trace
The Performance Analzyer performs function tracing, during which information is
recorded about the function calls and returns made during the execution of the
program.

14 Performance Analyzer: C/C++ Productivity Tools

To enable your program to be traced, compile it using the TEST(HOOK) and
NOGONUMBER compile options. These options enable the compiler to generate
hooks in the code at the following points:
v Function entry
v Function exit
v Before a function call
v After a function call

The Performance Analyzer uses these points in the code as trace events. A hook in
the code enables the Performance Analyzer to get control and record the time of
the event. These hooks call a small monitoring function that creates a time stamp
on each event. The monitoring function also determines which function the trace
event is for and the module that the function is in. By comparing the time stamps
of the function entry and the function exit events, the Performance Analyzer
determines the time taken to execute the function.

By default, the first event in the trace will be a call to a dummy function called
__PROGRAM__. This event represents the program start time, which may be
different than the time that the first hook is encountered in the program. There is a
corresponding function call return event at the end of the trace that represents the
program end time. The _PROGRAM_ events are not included in traces created
with delay tracing and traces of Webserver applications. The execution time of the
__PROGRAM__ function and module represents the time spent during the
execution of the program when there are no functions containing hooks on the
stack. The __PROGRAM__ execution time will be more significant when not all of
the program source files are compiled with TEST(HOOK).

Use Function trace files to accomplish the following objectives:
v Identify costly or time-consuming functions
v Show logic flow (useful for constructors and destructors)
v Identify potential inline functions
v Determine which functions of a DLL are being called
v Track library calls
v Verify all built-in functions are used
v Track function calls among threads
v Track class interaction
v Track module interaction

Time stamps“Time stamps” on page 13
Trace events“Trace events” on page 14
Overhead time“Overhead time” on page 16
Call frequency counting“Call frequency counting” on page 13
Delay tracing“Delay tracing” on page 17

Creating a trace file“Creating a trace file” on page 28

Limitations when creating a trace“Limitations when creating a trace” on page 59
Run-time option for program tracing“Run-time option for program tracing” on
page 62

Chapter 3. Trace file generation 15

page 60
Run-time environment variables for program tracing“Run-time environment
variables for program tracing” on page 64
Call nesting diagram“Call Nesting diagram” on page 6
Dynamic call graph diagram“Dynamic Call Graph diagram” on page 6
Execution density diagram“Execution Density diagram” on page 8
Statistics diagram“Statistics diagram” on page 9
Time line diagram“Time Line diagram” on page 10

Overhead time
Function Tracing
Whenever the Performance Analyzer logs an event for function tracing, it adds
overhead to the normal execution time of your program. This increases the overall
execution time of your program. The monitoring function calculates the overhead
time on each event. The Performance Analyzer compensates for this overhead time
by adjusting the timestamp for the event. It subtracts the overhead time from the
event’s timestamp. This adjustment ensures that your program’s true execution
performance is reported as accurately as possible.

When tracing is turned off, the monitoring function will not be executed, even if
the code contains hooks. However, when hooks are placed in the code, the code
size increases. This, along with the small amount of time to execute the hook
instructions, may affect the performance of your program, even when tracing is
turned off. When you have finished using the Performance Analyzer to tune your
program, rebuild it without generating hooks by compiling it without the
TEST(HOOK) option. This will improve the execution performance of your
program.

Trace events“Trace events” on page 14
Function trace“Function trace” on page 14
Time stamps“Time stamps” on page 13

Multiple process support
Use the Performance Analyzer to trace a single-process program or to trace a
program that uses the fork or spawn function to create new processes. A separate
trace file with a unique name is generated for each process created by the
program. If the process is the result of a fork or spawn call, the name of the trace
file for the process has the ID of the process (PID) appended to it.

The names of process and program trace files are based on the value of the
__PROF_FILE_NAME environment variable.

Function trace“Function trace” on page 14

Creating a trace file“Creating a trace file” on page 28

16 Performance Analyzer: C/C++ Productivity Tools

Sample trace file names from tracing a multiprocess program“Sample trace file
names from tracing a multiprocess program” on page 76
Run-time environment variables for program tracing“Run-time environment
variables for program tracing” on page 64

Delay tracing
Instead of tracing the entire execution of a program, you can trace portions of the
execution by using delay tracing. With delay tracing, you delay the start of tracing
until after the program has started executing. It allows you to dynamically start
and stop tracing one or more times during the execution of the program. Each time
you stop tracing, a new trace file is created containing the data collected since the
last time tracing was started. If tracing is not stopped manually, tracing will
continue until the program being traced terminates.

To use delay tracing, include the DELAY option in the sub-option string passed on
the PROFILE run-time option. To start or stop tracing, a SIGPROF signal is sent to
the process on which the program is running, using the OS/390 UNIX System
Services command kill. The same command is used for both starting and stopping
tracing.

Note: Since the OS/390 UNIX System Services kill command is used, delay tracing
can only be performed from the OS/390 UNIX System Services shell.

Time stamps“Time stamps” on page 13
Function trace“Function trace” on page 14
Overhead time“Overhead time” on page 16
Call frequency counting“Call frequency counting” on page 13

Chapter 3. Trace file generation 17

18 Performance Analyzer: C/C++ Productivity Tools

Chapter 4. Trace file viewing and analysis

Function groups
You can create arbitrary collections of functions, called groups, and then analyze
performance data for one or more selected groups only, instead of analyzing data
for all of the functions in your program.

For example, you could create a group called storage, assign all storage-related
functions to that group, and then analyze only the storage group to understand
how much time your program is spending in storage-management activities.

You can create multiple group definitions and save them in a grouping file for later
recall, and can create multiple grouping files.

You can view performance information by groups in several diagrams.

In any diagram that supports grouping, select Collapse group to combine all of the
functions in a group into a single entry. This option is available from the View,
Selected, or selected item pop-up menu when the diagram is showing group
information and a function in one of the groups shown is selected.

You can likewise select Expand group to restore a collapsed group to its
component entries, one per function. This option is available from the View,
Selected, or selected item pop-up menu when the diagram is showing group
information and a collapsed group is selected.

Execution Density Diagram“Execution Density diagram” on page 8
Statistics Diagram“Statistics diagram” on page 9

Filtering Events by Group“Filtering events by group” on page 48

Pattern recognition
Loops in your program cause the same sequence of calls and returns to be
repeated in the trace. The Performance Analyzer lets you combine like sequences
in the Call Nesting diagram by using pattern recognition. The pattern recognition
facility looks at a single thread and indicates patterns of calls and returns using
curved arcs that show the number of repetitions of each pattern to the right.

This technique reduces the amount of screen space the diagram uses, and therefore
shortens the number of pages you must scroll through to look at your trace file.

If you see a pattern repeated numerous times, for workstation programs you can
group the functions in the pattern together with pragma alloc_text statements to
limit the number of page swaps between calls, and thus improve performance. For
host programs, group all of the functions in the pattern in one source file, close to
each other, to limit the number of page swaps.

© Copyright IBM Corp. 1999, 2000 19

Pattern recognition can only be used when you include a single thread for analysis,
and there are no collapsed functions in the diagram.

Call Nesting Diagram“Call Nesting diagram” on page 6

Recognizing Call Sequence Patterns“Recognizing call sequence patterns” on
page 51
Filtering Events by Thread“Filtering events by thread” on page 48

Diagram filters
There are several techniques for filtering the trace file to reduce the amount of
trace data shown in a diagram, or for isolating interesting or problematic areas in a
diagram.

Some techniques have associated tasks that need to be performed in order to apply
a filter; such tasks are indicated in the related topics below. Other techniques
involve a straightforward manipulation of the objects shown in a diagram’s
display. The following list contains filtering techniques that you can use in each of
the diagrams.

Call Nesting diagram
In this diagram, you can filter data in the following ways:
v Selecting specific functions or specific threads to include. The

Performance Analyzer shows trace information only for those functions
or threads selected.

v Selecting a time or time range to view.
v Collapsing calls so that all calls and returns subordinate to a calling

function are hidden.

Dynamic Call Graph diagram
In this diagram, you can filter data in the following ways:
v Selecting specific threads to include. The Performance Analyzer shows

trace information only for those threads selected.
v Removing nodes in the call path to or from a selected node.
v Hiding arcs.
v Hiding selected nodes.
v Creating a subgraph to work with. Doing so cleans up the diagram by

deleting hidden nodes, repositioning remaining nodes, and centering the
diagram.

v Zooming in.
v Showing data by function, class (only if your trace file contains class

information), or executable by selecting from the View > Nodes of
menu.

v Specifying that only nodes meeting selected criteria of number of calls,
percent of execution time, percent of time on stack, execution time, or
time on stack are shown.

v Specifying that only arcs meeting a criterion of number of calls are
shown.

20 Performance Analyzer: C/C++ Productivity Tools

Execution Density diagram
In this diagram, you can filter data in the following ways:
v Selecting specific functions or threads to include. The Performance

Analyzer shows trace information only for those functions or threads
selected.

v Selecting specific groups of functions to include. The Performance
Analyzer shows trace information only for those groups selected.

v Scaling the diagram to increase the number of pages shown.
v Zooming in.
v Selecting a time or time range to view.

Statistics diagram
In this diagram, you can filter data in the following ways:
v Selecting specific threads to include. The Performance Analyzer shows

trace information only for those threads selected.
v Selecting specific groups of functions to include. The Performance

Analyzer shows trace information only for those groups selected.
v Showing data by function, class (only if your trace file contains class

information), or executable by selecting from the View > Details on
menu.

Time Line diagram
In this diagram, you can filter data in the following ways:
v Scaling the diagram to increase the number of pages shown.
v Zooming in.
v Selecting a time or time range to view.

Diagrams for Analyzing a Trace File“Diagrams for analyzing a trace file” on page 5
Function Groups“Function groups” on page 19

Filtering Events by Function“Filtering events by function” on page 47
Filtering Events by Thread“Filtering events by thread” on page 48
Filtering Events by Group“Filtering events by group” on page 48
Filtering Events by Component Type“Filtering events by component type” on
page 47

Correlation

One diagram cannot show everything of interest within a trace file. Some events
are easier to find in one diagram, but the information in another is more
meaningful; in such cases it is helpful to find the event in one diagram and then
locate that same event in one or more of the other open diagrams. Correlation
allows you to do so.

The Performance Analyzer provides three diagrams whose events can be correlated
between any two of them, or between all three: Call Nesting, Execution Density,
and Time Line. You can correlate the diagrams based on a specific time or event, or
on a range of time or events. You can also correlate (in one direction) from a
function in the Statistics diagram to a call to that same function in the Call Nesting
diagram; the call located is the one that used the most time of all calls to the
function.

Chapter 4. Trace file viewing and analysis 21

For example, use the Call Nesting diagram to identify the order and names of
functions called, and then correlate to the Time Line diagram to find out how long
the functions took to run. Or you can use the Execution Density diagram to see
general patterns that lead up to a certain point, and then correlate to the Call
Nesting diagram to see the exact order of the function calls.

Note that it is possible to correlate events between two instances of the same
diagram, which could prove useful, for example, if each is scaled differently.

Call Nesting Diagram
“Call Nesting diagram” on page 6Execution Density Diagram
“Execution Density diagram” on page 8Statistics Diagram
“Statistics diagram” on page 9Time Line Diagram“Time Line diagram” on page 10

Correlating Events between Diagrams“Correlating events between diagrams” on
page 39

22 Performance Analyzer: C/C++ Productivity Tools

Chapter 5. Tips for using the Performance Analyzer to
understand your program

Use a combination of diagrams to understand your program
The Performance Analyzer allows you to open a trace file in several diagrams, and
to open multiple views of the same diagram simultaneously. Sometimes opening a
trace file in two or more diagrams can help you understand a program better.

For instance, if you do not want to wade through code listings to determine how
the code works, use the Dynamic Call Graph diagram, and the Call Nesting and
Time Line diagrams in conjunction with each another to get a better understanding
of the program’s flow.

In the Call Nesting diagram you can see the order in which functions are called
and return, and in the Time Line diagram you can see the timing of the calls and
returns.

The Dynamic Call Graph diagram shows all of the program’s threads, the relative
consumption of execution time by the different functions, and the call hierarchy.

Diagrams for Analyzing a Trace File“Diagrams for analyzing a trace file” on page 5

Opening a Trace File in a Diagram“Opening a trace file in a diagram” on page 38
Correlating Events between Diagrams“Correlating events between diagrams” on
page 39
Seeing Details by Combining the Zoom and Correlation Features“Seeing details by
combining the zoom and correlation features” on page 40

Annotate your trace file
An annotation is a bookmark or reminder that you can place in the trace file after
it is created. In the Call Nesting diagram, select Edit > Annotate... to insert notes
or reminders next to any function you highlight.

Workstation Programs Only: The following information is applicable to
workstation programs only.

© Copyright IBM Corp. 1999, 2000 23

24 Performance Analyzer: C/C++ Productivity Tools

Chapter 6. Preparing your program for analysis

Compiling your program

Specify the following compile options:
v TEST(HOOK)

Generates the following hooks in your code:
– Function entry and exit
– Before function call and after function call

v NOGONUMBER
NOGONUMBER is optional. However, if it is specified, NOGONUMBER
significantly reduces the size of the load module produced because no line
number tables are generated in the code. Line number tables are required
debugging, not for tracing. If the module is going to be both traced and
debugged do not specify NOGONUMBER.

v OPT(1) or OPT(2)
Optimization will improve the performance of the application.

Note: For C programs compiled with NOOPT, specify the TEST option as
TEST(HOOK,PATH,NOLINE,NOBLOCK,NOSYM).

You can build executables and DLLs from multiple compilation units (object files).
You can specify the TEST(HOOK) compile option for only those compilation units
that you want to trace. When your executable or DLL is running, the Performance
Analyzer only captures trace information for those compilation units built with
TEST(HOOK).

For example, if you use the TEST(HOOK) option when compiling both the caller
function A and the called function B, the Performance Analyzer sees hooks in the
following order:
1. Function A entry hook
2. Before function B call hook
3. Function B entry hook
4. Function B exit hook
5. After function B call hook
6. Function A exit hook

In the example, if function B calls a third function C in another DLL which was
compiled with NOTEST, then the Performance Analyzer sees hooks in the
following order:
1. Function A entry hook
2. Before function B call hook
3. Function B entry hook
4. Before function C call hook
5. After function C call hook
6. Function B exit hook
7. After function B call hook
8. Function A exit hook

© Copyright IBM Corp. 1999, 2000 25

Note that no hooks are available for entry and exit of function C.

Although the hooks exist, you can reduce the overhead time of tracing and,
therefore, the overall program execution time by setting the environment variable
__PROF_HOOKS to BEFORE_AFTER or to ENTRY_EXIT. This reduces the number
of hooks that Performance Analyzer processes. If you set __PROF_HOOKS to ALL,
the Performance Analyzer processes all hooks.

Note: Do not compile the program with the NOEXECOPS compile option because
it will prevent the processing of run-time options and therefore the invocation of
the Performance Analyzer.

Refer to the OS/390 C/C++ User’s Guide for more information on compiling
programs.

Function trace“Function trace” on page 14

Setting environment variables for Performance Analyzer“Setting environment
variables for Performance Analyzer”
Setting run-time option PROFILE for Performance Analyzer“Setting run-time
option PROFILE for Performance Analyzer” on page 27
Creating a trace file“Creating a trace file” on page 28

Run-time option for program tracing “Run-time option for program tracing” on
page 62
Run-time environment variables for program tracing“Run-time environment
variables for program tracing” on page 64
Sample JCL for creating trace files“Sample JCL for creating trace files” on page 72
Sample TSO commands for creating trace files“Sample TSO commands for creating
trace files” on page 75
Sample Unix system service commands for creating trace files“Sample Unix system
service commands for creating trace files” on page 74

Setting environment variables for Performance Analyzer
The following environment variables allow you to control the trace data that is
created by the Performance Analyzer.

You can set these environment variables before executing your program for tracing:
v __PROF_APPEND_PID = YES|NO specifies whether the process identifier

(PID) is appended to the trace file name.
v __PROF_FILE_NAME=filename specifies the name of the trace file to be

generated.
v __PROF_HOOKS = ALL|ENTRY_EXIT|BEFORE_AFTER identifies the type of

hooks that are to be processed.
v __PROF_WEBSERVER=NO|YES indicates whether tracing is to be performed

in a Lotus Domino Go Webserver environment.

The following samples are available for setting the environment variables:

26 Performance Analyzer: C/C++ Productivity Tools

v Sample JCL for creating trace files“Sample JCL for creating trace files” on
page 72

v Sample Unix system service commands for creating trace files“Sample Unix
system service commands for creating trace files” on page 74

v Sample TSO Commands for creating trace files“Sample TSO commands for
creating trace files” on page 75

Refer to the OS/390 C/C++ Programming Guide and OS/390 UNIX System Services
User’s Guide for more information on environment variables. These books are
available through the OS/390 C/C++ Library page.

Function trace“Function trace” on page 14

Compiling your program“Compiling your program” on page 25
Setting run-time option PROFILE for Performance Analyzer“Setting run-time
option PROFILE for Performance Analyzer”
Creating a trace file“Creating a trace file” on page 28

Run-time environment variables for program tracing“Run-time environment
variables for program tracing” on page 64

Setting run-time option PROFILE for Performance Analyzer
To enable the tracing of a program during its execution, set the Language
Environment run-time option, PROFILE, using the following syntax:
PROFile(ON,'string')

You specify tracing details with the string suboption.

The following samples are available for setting the Language Environment
run-time option, PROFILE:
v Sample JCL for creating trace files“Sample JCL for creating trace files” on

page 72
v Sample Unix system service commands for creating trace files“Sample Unix

system service commands for creating trace files” on page 74
v Sample TSO Commands for creating trace files“Sample TSO commands for

creating trace files” on page 75

Note: Do not compile the program with the NOEXECOPS compile option because
it will prevent the processing of run-time options and therefore the invocation of
the Performance Analyzer.

Refer to the Language Environment for OS/390 and VM Programming Reference for
more information on run-time options.

Function trace“Function trace” on page 14

Chapter 6. Preparing your program for analysis 27

Compiling your program“Compiling your program” on page 25
Setting environment variables for Performance Analyzer“Setting environment
variables for Performance Analyzer” on page 26
Creating a trace file“Creating a trace file”
Specifying trace file name“Specifying trace file name” on page 35

Run-time option for program tracing“Run-time option for program tracing” on
page 62
Run-time environment variables for program tracing“Run-time environment
variables for program tracing” on page 64

Creating a trace file
When you run a program, the Performance Analyzer is started by setting the
run-time option, PROFILE(ON,’string’). You must complete the following steps
before running your program:
1. Compile your program with TEST(HOOK), NOGONUMBER.
2. Set the desired Performance Analyzer environment variables.
3. Add the Performance Analzyer product dataset called CBC.SCTVMOD to the

STEPLIB of the program if it has not been installed in the link pack area (LPA).
4. Set the run-time option, PROFILE(ON,’string’).

The program can run under any of the following environments:
v OS/390 batch
v TSO
v OS/390 UNIX shell

Refer to the OS/390 C/C++ User’s Guide for more information on compiling and
running your applications.

Function trace“Function trace” on page 14
Performance Analyzer product files“Performance Analyzer product files” on page 2

Compiling your program“Compiling your program” on page 25
Setting environment variables for Performance Analyzer“Setting environment
variables for Performance Analyzer” on page 26
Setting run-time option PROFILE for Performance Analyzer“Setting run-time
option PROFILE for Performance Analyzer” on page 27

Run-time option for program tracing“Run-time option for program tracing” on
page 62
Run-time environment variables for program tracing“Run-time environment
variables for program tracing” on page 64
Sample JCL for creating trace files“Sample JCL for creating trace files” on page 72
Sample Unix system service commands for creating trace files“Sample Unix system

28 Performance Analyzer: C/C++ Productivity Tools

service commands for creating trace files” on page 74
Sample TSO Commands for creating trace files“Sample TSO commands for
creating trace files” on page 75

Chapter 6. Preparing your program for analysis 29

30 Performance Analyzer: C/C++ Productivity Tools

Chapter 7. Starting and exiting the Performance Analyzer

Starting the Performance Analyzer
You can start the Performance Analyzer in any of the following ways:
v By double-clicking on its icon
v By entering the Performance Analyzer command on a command line

Starting the Performance Analyzer from a Command Line“Starting the
Performance Analyzer from a command line”
Exiting the Performance Analyzer“Exiting the Performance Analyzer”

Starting the Performance Analyzer from a command line
You can start the Performance Analyzer from a command line, a command (CMD)
file, or a batch (BAT) file.

To start the Performance Analyzer use the following command:
ianalyze [/x]

Where /x represents any number of Performance Analyzer invocation parameters
documented in the related reference material indicated below.

You can invoke the Performance Analyzer with the Performance Analyzer -
Window Manager window shown by issuing the command without invocation
parameters. By issuing the command with the appropriate invocation parameters,
you can invoke the Performance Analyzer so that it immediately begins to trace an
executable or opens an existing trace file in one or more trace file analysis
diagrams.

Diagrams for Analyzing a Trace File“Diagrams for analyzing a trace file” on page 5

Opening a Trace File in a Diagram“Opening a trace file in a diagram” on page 38

Performance Analyzer Invocation Parameters“Performance Analyzer invocation
parameters” on page 60

Exiting the Performance Analyzer
To exit the Performance Analyzer, do the following:
1. Select Exit the Performance Analyzer from one of the following menus:

v File menu in the Performance Analyzer - Window Manager window
v Trace file menu in any of the diagrams

2. Select Yes if necessary.

© Copyright IBM Corp. 1999, 2000 31

Select Options > Quick exit in the Performance Analyzer - Window Manager
window to cause the application to exit immediately without confirmation each
time you select Exit the Performance Analyzer.

32 Performance Analyzer: C/C++ Productivity Tools

Chapter 8. Controlling what data is collected in the trace file

Collecting call frequency data
By default, the Performance Analyzer collects and records all tracing data,
including timing, call count, and call relationship information for each function
traced. It also records a chronological list of the events that occur during the trace.
To collect only a count of the number of times each function is called and the
functions each function calls, you must specify the following suboption in the
PROFILE run-time option:

FUNCTION=COUNTS

For example:

PROFILE (ON, ’FUNCTION=COUNTS’)

This capability of the Performance Analyzer is called call frequency counting.

To view the call frequency information collected with this suboption, make the
trace file generated as a result of this suboption accessible on the workstation by
using NFS or by downloading it. You can then display the file graphically on the
workstation with the following diagrams:

Diagram Information available Information not available

Dynamic
Call Graph

v Call counts on arcs and
information windows

v Call Frequency Data

v Colour-coded arcs

v Execution time and Time on Stack values and percentages on
information windows

v Scaled node sizes

v Colour-coded nodes

Statistics v Number of calls column

v Partial summary section, which
includes the number of
executables, classes, functions,
and threads plus call depth for
each thread

The following columns:

v % of Execution

v % on Stack

v Execution time

v Time on stack

v Minimum Call

v Maximum Call

v Average Call

Note: Call Frequency Counting does not provide call timing information nor does
it include a chronological list of events that occur during the execution of the
program (function calls, function returns, thread creation, thread switches). This
reduces the size of the trace file, making it more manageable and easier to analyze.

A sample call frequency counting trace file called CallFrequency.trc is available in
the 390ProductivityTools\samples directory.

Function trace“Function trace” on page 14
Call frequency counting“Call frequency counting” on page 13

© Copyright IBM Corp. 1999, 2000 33

Compiling your program“Compiling your program” on page 25
Creating a trace file“Creating a trace file” on page 28

Run-time option for program trace“Run-time option for program tracing” on
page 62

Tracing a specific DLL
To trace a specific DLL, compile the files that make up the DLL with the
TEST(HOOK) and NOGONUMBER options. Do not use the TEST(HOOK) option
when compiling any other code that calls the DLL; otherwise, when you perform
the trace, you would get trace data for the other code. Perform the trace as you
would do normally by setting the PROFILE run-time option and executing the
program that calls the DLL.

Function trace“Function trace” on page 14

Compiling your program“Compiling your program” on page 25
Creating a trace file“Creating a trace file” on page 28

Tracing a Webserver application
To trace a Lotus Domino Go Webserver application, do the following:
1. Compile the application code using the TEST(HOOK) and NOGONUMBER

compile options. NOGONUMBER is optional and will significantly reduce the
load module size. If the module is going to be both traced and debugged, do
not specify NOGONUMBER.

2. Start the Lotus Domino Go Webserver with tracing turned on by doing the
following:
a. Set the Performance Analyzer environment variable

__PROF_WEBSERVER=YES
b. Set the Performance Analyzer environment variable __PROF_FILE_NAME

to the desired name for the trace file.
c. Set the Performance Analyzer environment variable __PROF_HOOKS if

desired.
d. Add the Performance Analyzer product dataset called CBC.SCTVMOD to

the STEPLIB.
e. Set the run-time option, PROFILE(ON,’string’)
f. Start the Lotus Domino Go Webserver in the environment where the

previous steps were done.
3. Run the Webserver application.
4. Stop tracing and create a trace file by sending the SIGPROF signal to the Lotus

Domino Go Webserver with the OS/390 Unix System Services kill command.
For example, issue the following command from another OS/390 Unix System
Services shell session: kill -s PROF webspid where webspid is the process ID of
the Lotus Domino Go Webserver.

34 Performance Analyzer: C/C++ Productivity Tools

Note: To trace another Webserver application, you must stop then restart the Lotus
Domino Go Webserver with tracing turned on again.

Function trace“Function trace” on page 14

Compiling your program“Compiling your program” on page 25
Creating a trace file“Creating a trace file” on page 28

Specifying trace file name
Use the __PROF_FILE_NAME environment variable to name a trace file. Set this
environment variable before you run your program for tracing.

If you do not set the __PROF_FILE_NAME environment variable, the Performance
Analyzer generates a default name for the trace file. Default trace file names are
explained in Run-Time Environment Variables for Program Trace.

Note: If the program is executing in the OS/390 UNIX System Services shell or
executing with the POSIX(ON) run-time option, then by default, the process ID
will be appended to the trace file name. If you do not want the process ID to be
appended to the trace file name, specify the environment variable
__PROF_APPEND_PID=no.

Function trace“Function trace” on page 14

Setting environment variables for Performance Analyzer“Setting environment
variables for Performance Analyzer” on page 26

Run-time environment variables for program tracing“Run-time environment
variables for program tracing” on page 64

Performing delay tracing
The default tracing behavior of Performance Analyzer is to start tracing as soon as
your program begins executing and to stop tracing when your program terminates.
With delay tracing, you delay the start of tracing until after your program has
started executing. Then you can stop and restart tracing any number of times, with
a new trace file being created each time tracing is stopped. The trace file contains
the trace data collected only since the last start command.

To perform delay tracing, specify the DELAY option in the PROFILE run-time
option string sub-option. For example, you can use the export command in the
UNIX System Services (USS) shell to set the run-time option before executing the
program to be traced:

export _CEE_RUNOPTS=“PROFILE(ON,’DELAY’)”

Chapter 8. Controlling what data is collected in the trace file 35

Then start the program to be traced as you normally do.

Starting the trace

To start tracing the program, use the kill -s PROF command from the USS shell.
This will send a SIGPROF signal to the Performance Analyzer, indicating that
tracing is to be started. If the program was started as a background job, specify the
job number on the kill command. For example:

kill -s PROF %n

where n is the job number. If the program was not started as a background job,
determine the ID of the process the program is running in using the USS ps
command. Then specify the process ID on the kill command. For example:

kill -s PROF nnnnnnnn

where nnnnnnnn is the process ID. For the syntax of the kill and ps commands,
please refer to the OS/390 UNIX System Services Command Reference.

Stopping the trace

To stop tracing, issue the same kill -s PROF command as you did to start tracing.
Each time you issue the kill -s PROF command, it alternately turns tracing on or
off. When tracing is turned off, a trace file is created for that particular tracing
session. If tracing is not turned off using a kill -s PROF command, tracing will
continue until the program terminates, at which time a trace file will be created.

The trace files created during a particular execution of the program are given
unique names by appending a integral sequence number to the second and
subsequent trace file names. For example, if the environment variables
__PROF_FILE_NAME=testpgm.trc and __PROF_APPEND_PID=NO are set and
three trace sequences are issued during the program execution, the following files
are produced:
v testpgm.trc
v testpgm.trc.2
v testpgm.trc.3

Unless the value of __PROF_FILE_NAME is changed, these files will be
overwritten the next time the program is traced.

Note: Since the OS/390 UNIX System Services kill command is used, delay tracing
can only be performed from the OS/390 UNIX System Services shell.

Function trace“Function trace” on page 14

Compiling your program“Compiling your program” on page 25
Creating a trace file“Creating a trace file” on page 28

36 Performance Analyzer: C/C++ Productivity Tools

Chapter 9. Viewing your trace file in a diagram

Downloading the trace file from the host
After creating a trace file, you can view the data contained in it by using the
workstation component of Performance Analyzer. However, the trace file created
on the host must be accessible on the workstation to view the data. You can use a
remote file access program like Network File System (NFS) to access the binary
trace file on the host, or you can physically download the file to the workstation as
a binary file.

Example
The following example shows you how to use FTP to download a trace file
userid/sample.trc to a file called newsamp.trc in the directory c:\pa\traces.
1. Create this directory on your workstation:

[C:\]md pa
[C:\]md pa\traces

2. Make that your current directory:
[C:\]cd pa\traces

3. Logon to FTP:
[C:\pa\traces]ftp system
Name (system):userid
Password: **********
This message appears:
230userid is logged on. Working directory is “userid”.

4. Transfer the file in binary:
ftp>binary
ftp>get sample.trc newsamp.trc

Note: You may need to change the trace file names due to differences in host
and workstation file naming conventions. To rename files when transferring
them from the host, specify the new file name in the get command. In the
example, sample.trc is transferred and renamed to newsamp.trc at the
workstation.

5. Logoff from FTP:
ftp>bye

Function trace“Function trace” on page 14

Compiling your program“Compiling your program” on page 25
Setting environment variables for Performance Analyzer“Setting environment
variables for Performance Analyzer” on page 26
Setting run-time option PROFILE for Performance Analyzer“Setting run-time
option PROFILE for Performance Analyzer” on page 27
Creating a trace file“Creating a trace file” on page 28

© Copyright IBM Corp. 1999, 2000 37

Starting the Performance Analyzer to analyze a trace file
Once you have downloaded the trace file, you can analyze your data from your
workstation. After you start the Performance Analyzer on your workstation, follow
these steps:
1. In the Performance Analyzer Window Manager window, select Analyze Trace.
2. In the Analyze Trace window, specify the trace file name in the dialog box; or

search for the trace file by clicking the Find button.
3. Select the appropriate diagrams to view the data.
4. Click the OK button.

Function trace“Function trace” on page 14

Creating a trace file“Creating a trace file” on page 28
Downloading the trace file from the host“Downloading the trace file from the
host” on page 37

Opening a trace file in a diagram
To open a trace file in a Performance Analyzer diagram when the Performance
Analyzer is already running, use one of the following methods:
v Click the Analyze Trace... push button in the Performance Analyzer - Window

Manager window, and then, in the Analyze Trace window, enter a trace file
name and select one or more of the diagram check boxes.

v Double-click the file name or icon of a trace file in the Performance Analyzer -
Window Manager window, then select one of the diagram check boxes in the
Analyze Trace window and click OK.

v Click mouse button 2 on the file name or icon of a trace file in the Performance
Analyzer - Window Manager window, then select a diagram from the trace file
pop-up menu.

v From the Trace file menu of an open diagram, select Open as and then select a
diagram from the cascaded menu.

v From any open diagram, click the appropriate button in the tool bar.

To immediately open a trace file in one or more Performance Analyzer diagrams
when starting the Performance Analyzer from the command line, see the related
procedure indicated below.

Starting the Performance Analyzer from a Command Line“Starting the
Performance Analyzer from a command line” on page 31

38 Performance Analyzer: C/C++ Productivity Tools

Chapter 10. Navigating the trace view

Correlating events between diagrams
To correlate events between the Call Nesting, Execution Density, or Time Line
diagrams, complete these steps:
1. Open the trace file in the diagrams between which you want to correlate

events.
2. Highlight the event range of interest in one of the diagrams by taking these

steps:
a. Click and hold mouse button 1 on the first event.
b. Drag the pointer to the last event.
c. Release the mouse button.

3. Select Options > Correlation... in the highlighted diagram. The Correlation
window appears.

4. In the Correlation window, click the names of one or more diagrams to which
you want to correlate, or click the Select all push button to correlate to all of
the diagrams listed.

5. Click OK.

To correlate from a function in the Statistics diagram to the instance of the call to
that same function in the Call Nesting diagram that used the most time of all calls
to that function, complete these steps:
1. Open the trace file in the Statistics and Call Nesting Diagrams.
2. Highlight a single function in the Statistics diagram.
3. Select Options > Correlation... in the Statistics diagram. The Correlation

window appears.
4. In the Correlation window, click the names of one or more diagrams to which

you want to correlate, or click the Select all push button to correlate to all of
the diagrams listed.

5. Click OK.

Correlation“Correlation” on page 21

Opening a Trace File in a Diagram“Opening a trace file in a diagram” on page 38
Seeing Details by Combining the Zoom and Correlation Features“Seeing details by
combining the zoom and correlation features” on page 40

Enlarging or reducing a diagram
The Dynamic Call Graph, Execution Density, and Time Line diagrams have
zooming capabilities that allow you to enlarge (Zoom in) or reduce (Zoom out) the
size of the diagram in order to focus on the area that is of most interest.

To enlarge the region of a diagram that is of most interest, follow these steps:
1. Highlight the area that you want to enlarge.

© Copyright IBM Corp. 1999, 2000 39

2. Select View > Zoom in.
3. Scroll until you see the area you highlighted.
4. Continue alternately selecting Zoom in and scrolling to the highlighted area

until the diagram is enlarged to the degree you want.
5. If you zoom in too far, select View > Zoom out to quickly back out one step.

A quick way to zoom in on an area of interest in the Execution Density or Time
Line diagram is to use the Zoom to selected range option in the View menu. It
also provides an easy way to restore the diagram to full scale. To quickly restore
the diagram to full scale after it has been reduced, follow these steps:
1. Select Edit > Select all.
2. Select View > Zoom to selected range.

A quick way to navigate and to zoom in or out in the Dynamic Call Graph
diagram is to use the Overview feature. When you select View > Overview, a
miniature version of the Dynamic Call Graph diagram appears in the Overview
window, and a small gray box in the window highlights the area of the diagram
that is currently in view. Use the gray box as follows:
v To change the area of the diagram that is currently in view, click and hold

mouse button 1 inside the gray box, and then move the box until the desired
area is in view.

v To resize the area shown in the diagram, grab and move the sides of the gray
box with the mouse until the area shown has the desired size.

To restore the Dynamic Call Graph diagram to the original view and size, select
View > Re-lay graph.

Diagrams for Analyzing a Trace File“Diagrams for analyzing a trace file” on page 5

Opening a Trace File in a Diagram“Opening a trace file in a diagram” on page 38
Seeing Details by Combining the Zoom and Correlation Features“Seeing details by
combining the zoom and correlation features”

Seeing details by combining the zoom and correlation features
A useful technique for examining specific areas of the Execution Density and Time
Line diagrams is to use the zoom and correlation features together. Zooming
sometimes forces the highlighted region off the page; correlation can help you
quickly find it again.

To use this technique, complete these steps:
1. Open your trace file in the Execution Density or Time Line diagram.
2. Open another diagram that allows correlation (Call Nesting, Execution Density,

or Time Line).
3. Highlight the area that you want to zoom in on (enlarge) in the first diagram.
4. Correlate the first diagram to the second.
5. In the first diagram, select View > Zoom in as many times as you want.

If you zoom in too far, select View > Zoom out to quickly back out one step.
6. Correlate the second diagram to the first.

40 Performance Analyzer: C/C++ Productivity Tools

The region you originally highlighted is now back in view.

Diagrams for Analyzing a Trace File“Diagrams for analyzing a trace file” on page 5
Correlation“Correlation” on page 21

Opening a Trace File in a Diagram“Opening a trace file in a diagram” on page 38
Correlating Events between Diagrams“Correlating events between diagrams” on
page 39
Enlarging or Reducing a Diagram“Enlarging or reducing a diagram” on page 39

Viewing a specific time or range of time
You can view trace data for a specific time or range of time in the following
diagrams:
v Call Nesting
v Execution Density
v Time Line

To view a specific time in one of these diagrams, complete these steps:
1. Select Edit > Select Time.... The Select Time window appears.
2. Click the appropriate radio button to select the desired unit of time.
3. Use the arrows in the spin button if you want to change the time already

shown.
4. Click the appropriate push button to continue.

To view a specific range of time in one of these diagrams, complete these steps:
1. Select Edit > Select Time Range.... The Select Time Range window appears.
2. Select the start time:

a. Click the appropriate radio button to select the desired unit of time.
b. In the Start Time group box, use the spin button arrows to select the time

at which you want the highlight to start.
3. Select the end time:

a. Click the appropriate radio button to select the desired unit of time.
b. In the End Time group box, use the spin button arrows to select the time at

which you want the highlight to end.
4. Click the appropriate push button to continue.

Chapter 10. Navigating the trace view 41

42 Performance Analyzer: C/C++ Productivity Tools

Chapter 11. Searching for trace data in a diagram

Warning: Temporary Level 2 Header

Finding a specific annotation
An annotation is a bookmark or comment that you can place in the trace file after
the trace file is created. Annotations are saved to the trace file so that you can see
them at a later time. You can search for an annotation in the Call Nesting diagram.

To search for an annotation, complete these steps:
1. Select Edit > Find.

2. Select Annotation... from the cascaded menu. The Find Annotation window
appears.

3. Follow the directions in the dialog window to get a list of all annotations.
You can enter an asterisk (*) with a few characters of the annotation in the Find
entry field, as follows:
v Use an asterisk (*) to represent zero or more arbitrary characters. For

example, enter:
– * to show a list of all annotations
– b* to show all annotations, regardless of length, that begin with the

character b

– *b to show all annotations that end with the character b

v Use a question mark (?) to represent a single arbitrary character. For
example, enter ?b* to show all annotations that start with any character and
have the character b as their second character.

4. Click the appropriate push button to continue.
5. If more than one annotation matches your search criteria, select the desired

annotation in the list box, and click OK.

The search for the annotation begins at the currently selected annotation, user
event, or function (or the first such instance in the currently selected range). The
search continues until the annotation is found or the end of the diagram is
reached. If the annotation is found, it is highlighted; if it is not found, a message
box to that effect appears.

Adding, Changing, or Deleting Annotations“Adding, changing, or deleting
annotations” on page 53

Finding a specific function call or return
You can search for a function call or return in the following diagrams:
v Call Nesting
v Execution Density
v Time Line

To search for a function call or return in one of these diagrams, complete the
following steps:

© Copyright IBM Corp. 1999, 2000 43

1. Open the Find Function window:
v In the Call Nesting or Time Line diagrams, select Edit > Find > Function....
v In the Execution Density diagram, select Edit > Find function....

2. Enter the function name in the Find entry field. You can use wildcard
characters (* and ?) in the entry field, as follows:
v Use an asterisk (*) to represent zero or more arbitrary characters. For

example, enter:
– * to show a list of all function names
– b* to show all function names, regardless of length, that begin with the

character b

– *b to show all function names that end with the character b

v Use a question mark (?) to represent a single arbitrary character. For
example, enter ?b* to show all function names that start with any character
and have the character b as their second character.
Wildcards are especially useful when you are searching for a fully qualified
function name (for example, myClass::function[parameter]).

3. Be sure the Case sensitive box is checked if you want to enable case-sensitive
searching.

4. Select the thread that you want searched.
5. Click the appropriate radio button to search for occurrences of when the

function:
v Was called
v Returned
v Was either called, or returned

6. Click the appropriate push button to continue.
7. If more than one function matches your search criteria, select the desired

function in the list box, and click OK.
8. Select Edit > Find next to find the next occurrence of the function call or

return.

The search for the function begins at the currently selected function, annotation
(Call Nesting only), or user event (or the first such instance in the currently
selected range). The search continues until the function is found or the end of the
diagram is reached. If the function is found, it is highlighted; if it is not found, a
message box to that effect appears.

Finding trace data for a specific function
You can search for trace data for a specific function in the following diagrams:
v Dynamic Call Graph
v Statistics

To search for a function in one of these diagrams, complete the following steps:
1. Make sure trace data for functions is shown in the diagram. See the Filter

Events by Component Type topic for instructions.
2. Select Options > Find.... The Find Function window appears.
3. Enter the function name in the Find entry field. You can use wildcard

characters (* and ?) in the entry field, as follows:
v Use an asterisk (*) to represent zero or more arbitrary characters. For

example, enter:

44 Performance Analyzer: C/C++ Productivity Tools

– * to show a list of all function names
– b* to show all function names, regardless of length, that begin with the

character b

– *b to show all function names that end with the character b

v Use a question mark (?) to represent a single arbitrary character. For
example, enter ?b* to show all function names that start with any character
and have the character b as their second character.
Wildcards are especially useful when you are searching for a fully qualified
function name (for example, myClass:: function[parameter]).

4. Be sure the Case sensitive box is checked if you want to enable case-sensitive
searching.

5. Click the appropriate push button to continue.
6. If more than one function matches your search criteria, click the desired

function in the list box, and click OK.

The function is highlighted when found.

Filtering Events by Component Type“Filtering events by component type” on
page 47

Finding trace data for a specific class
You can search for trace data for a specific class in the following diagrams:
v Dynamic Call Graph
v Statistics

This is possible only if your trace file contains class information.

To search for a class in one of these diagrams, complete these steps:
1. Make sure trace data for classes is shown in the diagram:

v In the Dynamic Call Graph diagram, select View > Nodes of > Classes.
v In the Statistics diagram, select View > Details on > Classes.

2. Select Options > Find.... The Find Class window appears.
3. Enter the class name in the Find entry field. You can use wildcard characters

(* and ?) in the entry field, as follows:
v Use an asterisk (*) to represent zero or more arbitrary characters. For

example, enter:
– * to show a list of all class names.
– b* to show all class names, regardless of length, that begin with the

character b.
– *b to show all class names that end with the character b.

v Use a question mark (?) to represent a single arbitrary character. For
example, enter ?b* to show all class names that start with any character and
have the character b as their second character.

4. Be sure the Case sensitive box is checked if you want to enable case-sensitive
searching.

5. Click the appropriate push button to continue.
6. If more than one class name matches your search criteria, click the desired class

name in the list box, and click OK.

Chapter 11. Searching for trace data in a diagram 45

The class is highlighted when found.

Opening a Trace File in a Diagram“Opening a trace file in a diagram” on page 38

Finding trace data for a specific executable
You can search for trace data for a specific executable in the following diagrams:
v Dynamic Call Graph
v Statistics

To search for an executable in one of these diagrams, complete these steps:
1. Make sure trace data for executables is shown in the diagram:

v In the Dynamic Call Graph diagram, select View > Nodes of > Executables.
v In the Statistics diagram, select View > Details on > Executables.

2. Select Options > Find.... The Find Executable window appears.
3. Enter the executable name in the Find entry field. You can use wildcard

characters (* and ?) in the entry field, as follows:
v Use an asterisk (*) to represent zero or more arbitrary characters. For

example, enter:
– * to show a list of all executable names.
– b* to show all executable names, regardless of length, that begin with the

character b.
– *b to show all executable names that end with the character b.

v Use a question mark (?) to represent a single arbitrary character. For
example, enter ?b* to show all executable names that start with any character
and have the character b as their second character.

4. Be sure the Case sensitive box is checked if you want to enable case-sensitive
searching.

5. Click the appropriate push button to continue.
6. If more than one executable matches your search criteria, click the desired

executable in the list box, and click OK.

The executable is highlighted when found.

Opening a Trace File in a Diagram“Opening a trace file in a diagram” on page 38

46 Performance Analyzer: C/C++ Productivity Tools

Chapter 12. Controlling what data is shown in the diagrams

Filtering events by component type
You can show trace data for a specific component type in the following diagrams:
v Statistics
v Dynamic Call Graph

To show trace data for a specific component type in the Statistics or Dynamic Call
Graph diagram, complete the following steps:
1. Open the trace file in one of the diagrams.
2. Select View > Details on in the Statistics diagram or View > Nodes of in the

Dynamic Call Graph diagram.
3. Select the component type for which you want to show data:

v Select Functions to show data on functions.
v Select Classes to show data on classes (only possible if your trace file

contains class information).
v Select Executables to show data on executables.

A mark is shown next to the component type that is currently selected.

Opening a Trace File in a Diagram“Opening a trace file in a diagram” on page 38

Filtering events by function
Filters allow you to temporarily reduce the amount of trace data shown in a
diagram, or to isolate interesting or problematic areas. There are several techniques
for filtering the trace data.

You can filter events by function in the following diagrams:
v Call Nesting
v Execution Density

To filter specific functions from one of these diagrams, complete these steps:
1. Select View > Include functions.... The Include Functions window appears.
2. Scroll the list to find the function or functions you want to filter from the

diagram’s display.
3. Click each function you want to remove so that it is no longer highlighted.
4. Click the appropriate push button to continue.

To include specific functions in one of these diagrams, complete these steps:
1. Select View > Include functions.... The Include Functions window appears.
2. Click the Deselect all push button.
3. Scroll the list to find the function or functions you want shown.
4. Select each function you want shown.
5. Click the appropriate push button to continue.

© Copyright IBM Corp. 1999, 2000 47

To include all functions in one of these diagrams, complete these steps:
1. Select View > Include functions.... The Include Functions window appears.
2. Click the Select all push button.
3. Click the appropriate push button to continue.

In the Execution Density diagram, only those functions selected are shown. In the
Call Nesting diagram, each selected function and any function in its call stack are
shown.

Opening a Trace File in a Diagram“Opening a trace file in a diagram” on page 38

Filtering events by thread
Filters allow you to temporarily reduce the amount of trace data shown in a
diagram. There are several techniques for filtering the trace file and isolating
interesting or problematic areas.

When you apply a thread filter, only the data from the selected threads is
processed and displayed in the diagram. You can filter events by thread in the
following diagrams:
v Call Nesting
v Execution Density
v Dynamic Call Graph
v Statistics

To filter events by thread, complete these steps:
1. Open the trace file in one of the diagrams listed above.
2. Select View > Include threads.... The Include Threads dialog appears.
3. Select the thread or threads for which you want to see trace information in one

of the following ways:
v Select specific threads by highlighting them with the mouse.
v Click the Select all push button to highlight all threads.

4. Click the OK push button.

Opening a Trace File in a Diagram“Opening a trace file in a diagram” on page 38

Filtering events by group
Filters allow you to temporarily reduce the amount of trace data shown in a
diagram, or to isolate interesting or problematic areas. There are several techniques
for filtering the trace data.

You can filter events by function group in the following diagrams:
v Execution Density
v Statistics

To define one or more groups of functions that can be analyzed as a whole in one
of the diagrams that supports groups, complete the following steps:
1. Select Options > Work with groups....

48 Performance Analyzer: C/C++ Productivity Tools

2. On the Grouping File page of the Work with Groups window, define a
grouping file by entering a file name and optional description in the
appropriate fields.

3. On the Group Names page of the Work with Groups window, enter a group
name and optional description in the appropriate fields. Click Add. Repeat this
step for as many groups of functions as you want to define in the grouping file.

4. On the Group Definition page of the Work with Groups window, add functions
to a group by completing the following steps:
a. Select the group you want to add functions to from the Group Name

drop-down combination box.
b. Enter a search string in the Filter Mask entry field that matches the

function names you want to add to the group. Use * as a wildcard to match
zero or more characters, or ? as a wildcard to match any single character.

c. Select the appropriate check boxes to indicate whether you want to select
functions that currently belong to no group, to exactly one group, or to
more than one group.

d. Be sure the Case sensitive box is checked if you want to enable
case-sensitive searching.

e. Click Filter to see the function names that match your search criteria.
f. In the Available Functions container, highlight the functions you want to

add to the group, and click Add.

Repeat this step for each group of functions you want to define in the grouping
file.

Note that if you add a function to more than one group, and are showing
group information in a diagram, the function appears once for each group it
belongs to that is included in the diagram.

5. When you are finished defining groups and their functions, select the Save
grouping file on OK check box in the Work with Groups window, and click
OK. (If you just click OK without having saved your changes to a grouping
file, the defined groups remain in effect for the current trace file in the current
Performance Analyzer session only.)

To indicate which collection of function groups you want to analyze, complete
these steps:
1. Select Options > Work with groups....
2. On the Grouping File page of the Work with Groups window, click Find....
3. Select a grouping file from the files found, and click OK.
4. Click Open.

To include specific groups in one of the diagrams that supports groups, complete
these steps:
1. Select View > Include groups.... The Include Groups window appears.
2. Click the Deselect all push button.
3. Scroll the list to find the groups you want.
4. Select each group you want to include.
5. Click the appropriate push button to continue.
6. To view groups in a diagram, you must be viewing functions in that diagram:

v In the Statistics diagram, select View > Details on > Functions if you are not
currently viewing functions.

Chapter 12. Controlling what data is shown in the diagrams 49

To view group information in a diagram after having removed it from the
diagram, select View > Group filter. A mark appears next to the option to indicate
that it is in effect.

To remove group information from a diagram that is showing group information,
select View > Group filter. The mark next to the option is removed to indicate that
it is not in effect.

Function Groups“Function groups” on page 19
Execution Density Diagram“Execution Density diagram” on page 8
Statistics Diagram“Statistics diagram” on page 9

Filtering nodes and arcs in the Dynamic Call Graph diagram
To define a specific cross section of nodes that you want shown in the Dynamic
Call Graph diagram, complete these steps:
1. Select View > Filters > Nodes.... The Nodes Filter window appears.
2. Select the check boxes for the desired filter criteria, and fill in the

corresponding values by which you want to filter the nodes.
3. Click the And radio button to show the nodes that meet the values for all the

selected criteria. Alternatively, click the Or radio button to show the nodes that
meet the values of at least one of the selected criteria.

4. Select one or more compile units in which you want to search for nodes that
meet the filter criteria.

5. Click the OK push button to apply the filters and close the Nodes Filter
window. (The Apply push button applies the filters but leaves the Nodes Filter
window open.)

The nodes that meet the filter criteria are shown and the nodes that do not
meet the criteria are hidden.

To define a specific cross section of arcs that you want shown in the Dynamic Call
Graph diagram, complete these steps:
1. Select View > Filters > Arcs.... The Arcs Filter window appears.
2. Select the check box for the Number of Calls criterion, and fill in the

corresponding values by which you want to filter the arcs.
3. Select one or more compile units in which you want to search for arcs that

meet the filter criterion.
4. Click the OK push button to apply the filter and close the Arcs Filter window.

(The Apply push button applies the filter but leaves the Arcs Filter window
open.)

The arcs that meet the filter criterion are shown and the arcs that do not meet
the criterion are hidden.

At any time, you can restore nodes or arcs that were hidden as a result of the
filtering by bringing up the appropriate filter window again, clearing the check
boxes, and clicking OK. Alternatively, you can select the Restore graph or Restore
subgraph option, as appropriate, from the View menu.

50 Performance Analyzer: C/C++ Productivity Tools

Dynamic Call Graph Diagram“Dynamic Call Graph diagram” on page 6

Opening a Trace File in a Diagram“Opening a trace file in a diagram” on page 38

Recognizing call sequence patterns
The Performance Analyzer lets you combine like sequences of calls and returns in
the Call Nesting diagram, by using a pattern recognition facility.

To recognize patterns in the Call Nesting Diagram, complete these steps:
1. If any calls in the diagram are collapsed (indicated by a plus (+) sign next to

the function name), return to the diagram and expand them by selecting View
> Expand all.

2. Select View > Include threads....
3. Select a single thread for which you want to see patterns by highlighting it

with the mouse.
4. Select the Use pattern recognition check box.
5. Click OK.

The Call Nesting diagram indicates patterns with curved lines that show the
number of repetitions on the right.

Pattern Recognition“Pattern recognition” on page 19
Call Nesting Diagram“Call Nesting diagram” on page 6

Filtering Events by Thread“Filtering events by thread” on page 48

Viewing class activity
If you are analyzing a trace file that contains class information, you can view class
activity in a Dynamic Call Graph or Statistics diagram. For example, you might
want to view class activity to do one of the following:
v Discern patterns more easily. Viewing class details in a Dynamic Call Graph

diagram condenses the data shown because activity in all functions defined for a
class is combined, which simplifies observing patterns.

v Identify the function that consumes the most time. Viewing class details in a
Statistics diagram shows you how long a particular process (group of functions)
takes to run, which helps you reduce the number of functions that you must
look at when trying to identify the one consuming the most time.

To view a Dynamic Call Graph or Statistics diagram by class, do the following:
1. Create a trace file.
2. Open the trace file in a Dynamic Call Graph or Statistics diagram.
3. In the Dynamic Call Graph diagram, select View > Nodes of > Classes. Each

node then represents the data for every member function contained in that
class.
In the Statistics diagram, select View > Details on > Classes. The Summary
and Details panes then provide statistics about the classes used in your
executable.

Chapter 12. Controlling what data is shown in the diagrams 51

Opening a Trace File in a Diagram“Opening a trace file in a diagram” on page 38

52 Performance Analyzer: C/C++ Productivity Tools

Chapter 13. Analyzing your trace file

Adding, changing, or deleting annotations
An annotation is a bookmark or comment that you can place in the trace file after
it is created. You can add, change, or delete annotations in the Call Nesting
diagram. The Performance Analyzer saves the annotations to the trace file so you
can see them later.

To add or change an annotation, complete these steps:
1. Select the function in which you want to add or change the comment.
2. Select Edit > Annotate....
3. Type the comment in the window. The comment is limited to 64 characters.
4. Click the appropriate push button to continue.

To delete an annotation, complete these steps:
1. Select the comment you want to remove.
2. Select Edit > Annotate....
3. Click Remove.

Finding a Specific Annotation“Finding a specific annotation” on page 43

Determining the elapsed time between two events
To determine the elapsed time between two events, complete these steps:
1. Create a trace file.
2. Open the trace file in the Time Line diagram.
3. Highlight the area between the two events in the Time Line diagram. To

highlight an area:
a. Click and hold mouse button 1 on the first event.
b. While holding mouse button 1, drag the pointer to the second event.
c. Release the mouse button.

4. Check the status area of the Time Line diagram for the elapsed time between
events. Elapsed time is shown at the beginning of the line labeled Selected
region.

Time Line Diagram“Time Line diagram” on page 10

Opening a Trace File in a Diagram“Opening a trace file in a diagram” on page 38

Selecting functions to inline
Your trace file can help you determine which functions to inline. To do this,
complete these steps:
1. Use the OPT compiler option.

© Copyright IBM Corp. 1999, 2000 53

2. Create a trace file and view it in the Statistics diagram. If an inlined function
appears in the Statistics diagram, the compiler chose not to inline it.

3. Look for functions in the Statistics diagram that were called frequently and had
small average execution times. These functions could be good candidates for
inlining.

Although inlining functions improves the performance of your application, it also
increases the size of your executable.

Opening a Trace File in a Diagram“Opening a trace file in a diagram” on page 38

Viewing thread interactions in a multithreaded program
To view thread interactions in a multithreaded program, complete these steps:
1. Create a trace file.
2. Open the trace file in a Call Nesting or Time Line diagram.
3. Scroll through the diagram using the vertical scroll bar. Look for horizontal

dashed lines, which indicate that your program has switched from one thread
to another.
Doing so allows you to see the flow of execution across threads, and could be
helpful in identifying timing problems.

Correlation“Correlation” on page 21
Call Nesting Diagram“Call Nesting diagram” on page 6
Time Line Diagram“Time Line diagram” on page 10

Opening a Trace File in a Diagram“Opening a trace file in a diagram” on page 38

54 Performance Analyzer: C/C++ Productivity Tools

Chapter 14. Tracing applications in a CICS environment

Initial setup
To use the Performance Analyzer to trace the performance of C/C++ applications
and DLLs in the CICS environment, do the following:
1. Install the Debug Tool on OS/390, and perform the CICS setup for the Debug

Tool including the DTCN setup. For DTCN setup, refer to the Debug Tool User’s
Guide and Reference.

2. Install the Performance Analyzer on OS/390, and merge the Performance
Analyzer CSD CBC.SCTVJCL(CTVCCSD) into the CSD defined in the CICS
startup job.

To run the Performace Analyzer on the host system, the run-time libraries for
Debug Tool and Performance Analyzer must be included in the DFHRPL
section of the CICS startup job. You should also include the libraries that
contain the user programs and DLLs.

//DFHRPL DD DISP=SHR,DSN=USER1.PROG1.LOAD // USER PROGRAM LIBRARY 1
// DD DISP=SHR,DSN=USER1.PROG2.LOAD // USER PROGRAM LIBRARY 2
// DD DISP=SHR,DSN=CBC.SCTVMOD // Performace Analyzer RUNTIME LIBRARY
// DD DISP=SHR,DSN=DTOOL.DEBUG.VISUAL.SEQAMOD // DEBUG TOOL RUNTIME LIBRARY

Start the CICS region (for example, IYKC54), and logon to CICS using the
following command:
logon applid(IYKC54)

3. Create a VSAM RRDS dataset using the sample JCL CBC.SCTVJCL(CTVSJCL)
with the appropriate modifications for your site. This dataset is used by the
Performance Analyzer to save some temporary trace data before the trace data
is written to a sequential trace dataset (allocated in the next step). The size of
the dataset should be big enough to contain the trace data. The size of the trace
data depends on the application and the tracing options.

4. After Performance Analyzer finishes collecting the trace data, it is dumped into
a sequential dataset. Allocate a sequential dataset using the sample JCL
CBC.SCTVJCL(CTVSJCL) . The size of the dataset should be big enough to
contain the trace data. The size of the trace data depends on the application
and the tracing options.

5. Install CICS RDO definitions for the work dataset allocated in step 3 and also
for the sequential dataset allocated in step 4. The sample RDO definitions are
given in CBC.SCTVJCL(CTVSCSD).

Creating a C/C++ executable“Creating a C/C++ executable” on page 56
Creating a trace for a C/C++ executable“Creating a trace for a C/C++ executable”
on page 56

Analyzing the trace“Analyzing the trace” on page 57

© Copyright IBM Corp. 1999, 2000 55

Creating a C/C++ executable
The following steps show you how to create a C/C++ executable that you can
analyze using the Performance Analyzer:
1. To include Performance Analyzer hooks in the CICS executable, use the

TEST(HOOK) NOGONUMBER compiler options.
2. CICS does not support setting environment variables or LE run-time options at

run time using the export command. You have to either compile the LE
run-time options with the user application, or use the Debug Tool Control
utility (DTCN) to set the LE run-time options at the run time. Performance
Analyzer uses LE run-time options to determine if the application is to be
traced or not.

a. To compile LE run-time options with the CICS C/C++ executable, insert the
#pragma runopts compiler directive in your main program source file to set
run-time Performance Analyzer options and environment variables for
tracing.

#pragma runopts(PROFILE(ON) ENVAR(__PROF_FILE_NAME=PATR))
b. If you don’t compile LE run-time options into the executable, use the Debug

Tool Control utility(DTCN) as explained in CBC.SCTVJCL(CTVSREAD)

Note that the Performace Analyzer trace file name for a CICS program is not
the physical file name as it is in OS/390 UNIX System Services. It is the CICS
Resource Definition name (for example, PATR) for a physical file (for example,
USER1.PA.PATR). The value for __PROF_FILE_NAME should be exactly the
same as the TDQueue name defined in step 5 of the Initial Setup.

Specifying the environment variable __PROF_FILE_NAME is optional. The
default value for __PROF_FILE_NAME is PATR.

Initial setup“Initial setup” on page 55
Creating a trace for a C/C++ executable“Creating a trace for a C/C++ executable”
Analyzing the trace“Analyzing the trace” on page 57

Creating a trace for a C/C++ executable
The following steps show you how to create a trace file for a C/C++ executable:
1. Define the program and a transaction to CICS using RDO:

CEDA DEFINE PROGRAM(HELLO) GROUP(GROUP1)
CEDA DEFINE TRANS(HLLO) PROGRAM(HELLO) GROUP(GROUP1)

CEDA INSTALL PROGRAM(HELLO) GROUP(GROUP1)
CEDA INSTALL TRANS(HLLO) GROUP(GROUP1)

2. If the C/C++ executable does not have the Performace Analyzer LE runtime
options compiled in, use DTCN to define the Performace Analyzer LE runtime
options for the transaction HLLO as described in CBC.SCTVJCL(CTVSREAD).
Otherwise, skip to the next step.

3. Run the transaction from the CICS console by typing the name of the
transaction.

56 Performance Analyzer: C/C++ Productivity Tools

If the trace created by the Performance Analyzer is too big and you get a space
abend, you may need to reallocate the two datasets that were allocated during
the initial setup with a larger size and then trace the program again.

Initial setup“Initial setup” on page 55
Analyzing the trace“Analyzing the trace”

Analyzing the trace
Follow these steps to analyze the trace:
1. After the transaction has finished running, close and disable the open files:

CEMT SET FILE(PATRWORK) CLOSED DISABLED
CEMT SET TDQUEUE(PATRWORK) CLOSED DISABLED

2. Use ftp to download the binary trace dataset (e.g. USER.PA.PATR) in a
temporary directory on the workstation.

3. Launch the Performance Analyzer from your workstation.
4. Open the trace file that you downloaded in step 2.

Creating a C/C++ executable“Creating a C/C++ executable” on page 56
Creating a trace for a C/C++ executable“Creating a trace for a C/C++ executable”
on page 56

Chapter 14. Tracing applications in a CICS environment 57

58 Performance Analyzer: C/C++ Productivity Tools

Chapter 15. Reference

Limitations when analyzing trace data
Note the following limitations when using the Performance Analyzer:
v The Performance Analyzer runs only on Windows 95, Windows NT, or Windows

2000. It does not run on Windows 3.1x or Windows for Workgroups, even with
the Win32s extension.

v The pattern recognition feature in the Call Nesting diagram has the following
limitations:
– The Performance Analyzer only searches for patterns in the first 32,768 events

in the selected thread.
– The maximum number of patterns for which the Performance Analyzer

searches is 8191.

If the Performance Analyzer reaches either of these limits, it stops searching for
patterns.

v The Dynamic Call Graph diagram cannot analyze trace files that have more than
7000 functions.

v If you minimize the Overview window in the Dynamic Call Graph diagram, it
does not appear in the list of open applications.

Limitations when creating a trace
When creating a trace with the Performance Analyzer on OS/390, the following
limitations apply:
v The Performance Analyzer can trace C/C++ applications that have multiple

threads. However, it cannot accurately determine when the processor switches
active threads. It can determine only the following points because they are the
points where the Performance Analyzer gets control:
– When a thread is created
– When a function is called or returns within a thread
– When a thread terminates

Consequently, thread switches are recorded only at function call and return
points.

v Because an OS/390 system can have multiple processors, threads can execute
concurrently. For a particular function call in one thread, the Performance
Analyzer calculates the function’s execution time independent of the execution
time calculations for functions running in other threads. On an OS/390 system
with a single processor, this may result in the reporting of function execution
time that is larger than the actual execution time. Another consequence of this
method of function execution time calculation for a multithread application is
that the data in the Statistics diagram may show a total execution time for all
functions exceeding the total execution time for the program.

v Because of the overhead time required for tracing, the program takes longer to
execute when it is tracing. This overhead time is factored out in the Performance
Analyzer data.

© Copyright IBM Corp. 1999, 2000 59

v When tracing multithreaded applications with TASK time, the source code for
the parent thread must be compiled with the TEST(HOOK) option in order for
the child threads to be traced.

v The time period between the time a C++ exception is thrown and the time the
next method is called will be charged to the method that throws the exception.
A consequence of this is that time spent in a method that catches the exception
but does not call any other methods or functions will not be charged to that
method but to the method that threw the exception.

v When you compile your program with the TEST(HOOK) option, tracing hooks
are inserted into your program. This increases your program’s size, and because
time is required to execute the hook instructions, the program runs slower even
when tracing is turned off. For this reason, it is recommended that you rebuild
your program without the TEST(HOOK) option after you have finished using
the Performance Analyzer to trace and tune your program.

Function trace“Function trace” on page 14

Creating a trace file“Creating a trace file” on page 28
Compiling your program“Compiling your program” on page 25

Run-time option for program tracing“Run-time option for program tracing” on
page 62

Performance Analyzer invocation parameters
When you start the Performance Analyzer from a command line, a command
(CMD) file, or a batch (BAT) file, you can control which of the following initial
actions the Performance Analyzer takes:
v Show the Performance Analyzer - Window Manager window
v Open an existing trace file (in one or more diagrams)

This is accomplished by specifying the appropriate invocation parameters, as
described below.

Show the Performance Analyzer - Window Manager window

To start the Performance Analyzer and show the Performance Analyzer - Window
Manager window, use the following command:
ianalyze

Open an Existing Trace File

To start the Performance Analyzer and open an existing trace file in one or more
trace file analysis diagrams, use the following command:
ianalyze /x myprog.trc

Where:

/x Represents one or more of the following options. If you have already
created a trace file, these options cause the trace file to be shown in their

60 Performance Analyzer: C/C++ Productivity Tools

respective diagrams. You can quickly open the diagrams by entering one or
more of these options in your startup command.

/cn Shows the trace file in the Call Nesting diagram.
/ed Shows the trace file in the Execution Density diagram.
/cg Shows the trace file in the Dynamic Call Graph diagram.
/ss Shows the trace file in the Statistics diagram.
/tl Shows the trace file in the Time Line diagram.

myprog
Represents a trace file name.

For example, if you want to show the myprog.trc trace file in both the Call Nesting
and Execution Density diagrams, enter the command:
ianalyze /cn /ed myprog.trc

Diagrams for Analyzing a Trace File“Diagrams for analyzing a trace file” on page 5

Opening a Trace File in a Diagram“Opening a trace file in a diagram” on page 38

Tracing programs that have interlanguage calls
The Performance Analyzer does not trace calls to functions written in languages
other than C and C++.

If your C or C++ application makes an interlanguage call, and the
__PROF_HOOKS environment variable was set to ALL or BEFORE_AFTER, the
called function is displayed with name Unknown_Function_xxxxxxxx in the
Performance Analyzer trace diagrams, where xxxxxxxx is the hex offset within the
module of the function entry point. . If __PROF_HOOKS was set to ENTRY_EXIT,
the interlanguage function call does not appear in the function trace diagrams.

If the non-C/C++ function in turn calls a C or C++ function, the called C or C++
function appears in the function trace if it was compiled with TEST(HOOK) and
__PROF_HOOKS was set to ALL or ENTRY_EXIT.

In the class views of the Performance Analyzer diagrams, C function calls are
included in a class called C_Function and calls to routines of programming
languages other than C++ are included in a class called Unknown_Language.

Function trace“Function trace” on page 14

Creating a trace file“Creating a trace file” on page 28
Compiling your program“Compiling your program” on page 25

Chapter 15. Reference 61

Run-time option for program tracing“Run-time option for program tracing”
Run-time environment variables for program tracing“Run-time environment
variables for program tracing” on page 64

Run-time option for program tracing
To enable the tracing of a program during its execution, you must set the
Language Environment run-time option, PROFILE, which has the following syntax:
PROFILE(ON|OFF,'string')

or
PROF (ON|OFF,'string')

The PROFILE run-time option has two suboptions:
v ON|OFF switch to turn on or off the trace for program execution
v ’string’ to specify the type of tracing to be performed

Suboption ON|OFF

Specify ON to activate the Performance Analyzer tracing. Specify OFF if you do
not want the Performance Analyzer to take any trace. You must specify the
ON|OFF suboption.

SuboptionString

The suboption string consists of a list of parameters enclosed in either single or
double quotation marks. The parameters are separated by commas (,), and can
occur in any order in the string. They can also be in any case or mixed case
because all values are converted to uppercase before being processed. The
parameters are provided in the following table:

Parameters Abbreviation Default Description

FUNCTION=ALL or
FUNCTION=COUNTS

F=A or F=C F=A FUNCTION=ALL counts how many times
each function is called, records what
functions are called by each function and
how many times they are called, provides
total execution and stack times for each
function, and records event data (every
function call/return, thread creation and
time of that event).

FUNCTION=COUNTS collect a count of the
number of times each function is called and
what functions are called by each function
and how many times they were called..

Note: The TASK|REAL suboption is ignored
if FUNCTION=COUNTS is specified.

TASK | REAL T | R T Specifies the type of time used during
tracing. Specify TASK for CPU time or REAL
for elapsed time.

Note: This suboption is ignored if
FUNCTION=COUNTS is specified.

62 Performance Analyzer: C/C++ Productivity Tools

Parameters Abbreviation Default Description

DELAY | NODELAY D | N N NODELAY specifies that tracing starts when
the program begins execution. DELAY
specifies that tracing starts when the
Performance Analyzer receives the SIGPROF
signal sent by the kill -s PROF command.

Note:

v Invalid parameters result in a warning message.
v Defaults are used for unspecified parameters.
v If conflicting parameters in the suboption string are specified, the last one is

used. For example, if the suboption string is “REAL, FUNCTION=COUNTS,
TASK, FUNCTION=ALL”, the Performance Analyzer will use TASK and
FUNCTION=ALL.

Multiple Specifications of PROFILE Options
Because run-time options can be specified a number of ways, multiple PROFILE
settings may exist when the program executes. The whole suboption string is used
as a single value. If the suboption string (including a null string) is specified in the
run-time option, the whole suboption string is used. If not, the suboption string
from #pragma runopts is used. If no suboption string is specified in #pragma
runopts, the suboption string in the installation defaults is used. If the installation
defaults do not have a PROFILE suboption string, then the default parameters
(which are FUNCTION=ALL, and TASK) are used. The IBM supplied installation
default for the PROFILE run-time option is PROFILE(OFF,“”)

Note: When a suboption string is used, the Performance Analyzer fills in missing
parameters in the string with defaults. For example if neither TASK nor REAL was
specified in the suboption string, the Performance Analyzer uses TASK as the type
of time when tracing.

Examples

1. Installation Default: PROFILE(OFF,’FUNCTION=COUNTS,REAL’)
Program Code: #pragma runopts(prof(on))
Specified Run-time PROFILE Option: None
PROFILE Option Used for Tracing:
PROFILE(ON,’FUNCTION=COUNTS,REAL’)
Suboption String Used for Tracing:FUNCTION=COUNTS,REAL

2. Installation Default: PROFILE(ON,’FUNCTION=COUNTS,REAL’)
Program Code: #pragma runopts(prof(off,’function’))
Specified Run-time PROFILE Option: prof(on)
PROFILE Option Used for Tracing: PROFILE(ON,’FUNCTION’)
Suboptions String Used for Tracing: FUNCTION=ALL,TASK

3. Installation Default: PROFILE(OFF,’FUNCTION=COUNTS’)
Program Code: No #pragma runopts was specified
Specified Run-time PROFILE Option: prof(on)
PROFILE Option Used for Tracing: PROFILE(ON,’FUNCTION=COUNTS’)
Suboption String Used for Tracing: FUNCTION=COUNTS,TASK

4. Installation Default: PROFILE(OFF,“’’)
Program Code: #pragma runopts(prof(on,’f=c,real’))
Specified Run-time PROFILE Option: prof(on,’task’)
PROFILE Option Used for Tracing: PROFILE(ON,’TASK’)
Suboption String Used for Tracing: FUNCTION=ALL,TASK

Chapter 15. Reference 63

5. Installation Default: PROFILE(ON,’FUNCTION=COUNTS’)
Program Code: #pragma runopts(prof(off,’function=counts,real’))
Specified Run-time PROFILE Option: prof(on,”’’)
PROFILE Option Used for Tracing: PROFILE(ON,“’’)
Suboption String Used for Tracing: FUNCTION=ALL,TASK

Refer to the Language Environment for OS/390 and VM Programming Reference
for more information on run-time options.

Function trace“Function trace” on page 14
Call frequency counting“Call frequency counting” on page 13
Delay tracing“Delay tracing” on page 17

Setting run-time option PROFILE for Performance Analyzer“Setting run-time
option PROFILE for Performance Analyzer” on page 27
Specifying trace file name“Specifying trace file name” on page 35
Creating a trace file“Creating a trace file” on page 28
Collecting call frequency data“Collecting call frequency data” on page 33
Performing delay tracing“Performing delay tracing” on page 35

Run-time environment variables for program tracing“Run-time environment
variables for program tracing”
Sample JCL for creating trace files“Sample JCL for creating trace files” on page 72
Sample TSO Commands for creating trace files“Sample TSO commands for
creating trace files” on page 75
Sample Unix system service commands for creating trace files“Sample Unix system
service commands for creating trace files” on page 74

Run-time environment variables for program tracing
Before tracing a program during its execution, the following environment variables
can be set:

__PROF_APPEND_PID=YES|NO

Default: __PROF_APPEND_PID=YES

Description:

Use this environment variable to control whether the ID of the process, where
the program that is being traced is running, is appended to the trace file
name. This environment variable is only used when the program is executing
in OS/390 UNIX System Services or the POSIX(ON) run-time option is
specified.
v YES - causes the process ID to be appended to the trace file name. This is

useful for identifying different traces of the same program without having
to change the trace file name specified with the __PROF_FILE_NAME
environment variable. For example, if __PROF_FILE_NAME=testpgm.trc is
set, then the resulting trace file name will be testpgm.trc.nnnnnnnn where
nnnnnnnn is the process ID.

64 Performance Analyzer: C/C++ Productivity Tools

v NO - causes the process ID not to be appended to the trace file name.

Note: For some applications that create new processes, process ID’s may be
appended to the trace file names irregardless of the setting of this
environment variable.

__PROF_FILE_NAME=filename

Default:

The filename is name.trc, where name is the name of the executable or DLL
which has the first main function is used as the name. If no main function is
encountered, the name of the first executable or DLL encountered is used as
the name.

When tracing an OS/390 UNIX System Services (formerly known as
OpenEdition) application in the OS/390 UNIX shell, the file is written to the
current directory.

When tracing an OS/390 batch or TSO application, the trace data is written to
a sequential data set. A high level qualifier may be added to the file name,
depending on the configuration of your system.

Description:

Use this environment variable to specify the name of the output trace file(s)
created by the Performance Analyzer.
v HFS output file

When you are tracing an OS/390 UNIX application, you can specify a file
name for the output trace file. If you want to write the file to a directory
other than the current directory, specify a path with filename, for example,
__PROF_FILE_NAME=/u/smith/trace.trc.

v Output to sequential data set
If you want to force the output file to an OS/390 sequential data set, you
can prefix filename with double slashes (//), for example
__PROF_FILE_NAME=//smith.trace. The filename is prefixed with the
userid as the high-level qualifier. You can specify a fully qualified filename
by adding single quotation marks (’) around the filename, for example
__PROF_FILE_NAME=//’smith.trace’.

Examples of Generated Trace Files When __PROF_APPEND_PID=NO Is
Set

__PROF_FILE_NAME= Generated Trace File For Program Running Under

OS/390 Batch/TSO OS/390 UNIX

trace.ftrc Sequential data set
USERID.TRACE.TRC

HFS file
./trace.trc

trace Sequential data set
USERID.TRACE

HFS file
./trace

’test.trace.trc’ Sequential data set
TEST.TRACE.TRC

HFS file
./’test.trace.trc’

/u/smith/test/trace.trc HFS file
/u/smith/test/trace.trc

HFS file
/u/smith/test/trace.trc

Chapter 15. Reference 65

//test.trace.trc Sequential data set
USERID.TEST.TRACE.TRC

Sequential data set
USERID.TEST.TRACE.TRC

//’first.test.trace.trc’ Sequential data set
FIRST.TEST.TRACE.TRC

Sequential data set
FIRST.TEST.TRACE.TRC

./trace.trc HFS file
./trace.trc

HFS file
./trace.trc

__PROF_WEBSERVER=NO|YES

Default: __PROF_WEBSERVER=NO

Description:
To trace the application running in a Lotus Domino Go Webserver
environment, this variable must be se to YES. Otherwise, set this variable to
NO.

__PROF_HOOKS=ALL|ENTRY_EXIT|BEFORE_AFTER

Default: __PROF_HOOKS=ALL

Description:

Use this environment variable to control which hooks are processed for
function calls.
v ENTRY_EXIT

Trace data is only collected at entry and exit points of a function. Exercise
caution when specifying ENTRY_EXIT because you may lose some trace
information. For example, if you specified ENTRY_EXIT, and function B in
another file was called, unless the function B’s file was built with
TEST(HOOK), there would be no trace record indicating that function B
was ever executed. This would be conspicuous if a whole DLL is built
without theTEST(HOOK) compile option because none of the calls to the
DLL would be recorded.

v BEFORE_AFTER
Trace data is collected before and after a function call.

v ALL
Events are processed before and after a function call and also at the entry
and exit points of a function. If all files of a program are compiled with
TEST(HOOK), then tracing the program will be faster when you specify
BEFORE_AFTER instead of ALL because fewer hooks are processed.
However, the main function does not appear in the trace data because
nothing calls it.

Refer to the OS/390 C/C++ Programming Guide and the OS/390 UNIX System
Services User’s Guide for more information on environment variables.

Function trace“Function trace” on page 14
Call frequency counting“Call frequency counting” on page 13

66 Performance Analyzer: C/C++ Productivity Tools

Setting environment variables for Performance Analyzer“Setting environment
variables for Performance Analyzer” on page 26
Collecting call frequency data“Collecting call frequency data” on page 33
Creating a trace file“Creating a trace file” on page 28

Sample JCL for creating trace files“Sample JCL for creating trace files” on page 72
Sample TSO Commands for creating trace files“Sample TSO commands for
creating trace files” on page 75
Sample Unix system service commands for creating trace files“Sample Unix system
service commands for creating trace files” on page 74

Troubleshooting Performance Analyzer problems
No Trace File Created

By default, the Performance Analyzer creates the trace file as xxxxxx.trc, where
xxxxxx is the name of the module in which the first main function is found. If the
Performance Analyzer cannot find the main function, it creates a file named
module_name.trc, where module_name is the name of the first executable or DLL
encountered.

If you specified the environment variable __PROF_FILE_NAME, then the trace file
will be created with the name you specified. If you cannot find the file, check the
following:
v The PROFILE run-time option must be turned on.
v If your application is running with run-time option POSIX(ON), your trace file

may be stored as an HFS file.
v If your application creates other processes with the fork or spawn functions, the

names of the trace files created for the different processes of the application will
have the process ID’s appended to the name that was specified with
__PROF_FILE_NAME.

v If your application is running with run-time option POSIX(ON) or in OS/390
UNIX System Services, and you did not set the environment variable
__PROF_APPEND_PID=NO, the Performance Analyzer appends the process ID
to the trace file name.

v Your program must be compiled with the TEST(HOOK) option.
v Check for Performance Analyzer error messages in stdout or stderr.
v If an OS/390 UNIX kill command was used to stop the process, no trace files will

be generated.
v If the operator used a cancel command to stop the process, no trace files will be

generated.

ianalyze Not Found - Workstation Error

Ensure that the workstation part of the Performance Analyzer was installed
properly. For more details on installing it on the workstation, see Installing and
Getting Started with OS/390 C/C++ Productivity Tools for Windows NT.

Error Reading the Trace File - Workstation Error

If you are using the ianalyze command to display a graph, the following message
may appear:

Chapter 15. Reference 67

28104E: Error reading trace file,“trace file name”

it means that the trace file cannot be displayed. The cause of the error may be one
or more of the situations described in the following table:

Situation Response

The trace file was downloaded from the host
machine as a text file instead of a binary file.

Download the file again as a binary file.

The version of the Performance Analyzer’s
host component is different from the version
of the workstation component.

Ensure that both the host and workstation
components of Performance Analyzer are at
the most recent service level.

The workstation is out of storage. Close other programs that are running and
use the ianalyze command again.

29104E: No events were logged in trace file error - Workstation Error

You cannot open the Call Nesting, Time Line, or Execution Density diagrams with
a trace file generated by specifying the call frequency counting sub-option
FUNCTION=COUNTS. Only the Dynamic Call Graph diagram and Statistics
diagram show call frequency information.

34002E: Error number 100 occured - Workstation Error

This error message is issued when a diagram cannot be displayed because the data
in the trace file includes a thread call depth of greater than 512. The Call Nesting,
Execution Density, and Time Line diagrams do not support thread call depths
greater than 512.

Loading Help Error - Workstation Error

When the Performance Analyzer is invoked at the workstation to analyze a trace
file, the following error message may appear: “Failed to load Help Manager.
IPTPW10.HLP must be in your HELP and DPATH environment variables” The
cause of the error is usually a user HELP variable setting that does not include
%HELP%. The installation of OS/390 C/C++ Productivity Tools sets a system
HELP environment variable to include the path containing the required file. If you
have specified a user HELP variable, add %HELP% at the end of your path
specifications. Note: The DPATH environment variable does not need to be set.

Function trace“Function trace” on page 14
Call frequency counting“Call frequency counting” on page 13

Creating a trace file“Creating a trace file” on page 28
Collecting call frequency data“Collecting call frequency data” on page 33

Performance Analyzer error messages on the host“Performance Analyzer error
messages on the host” on page 69
Run-time option for program tracing“Run-time option for program tracing” on
page 62
Run-time environment variables for program tracing“Run-time environment

68 Performance Analyzer: C/C++ Productivity Tools

variables for program tracing” on page 64
Limitations when creating a trace“Limitations when creating a trace” on page 59

Performance Analyzer error messages on the host
These are error messages that the Performance Analyzer generates during tracing:

CTV0001
Cannot allocate memory.

Explanation:

The Performance Analyzer is unable to acquire some heap storage and
cannot continue.

Programmer Response:

Run the program with a larger storage region.

CTV0002
Invalid value specified for environment variable%1. The default value %2
is used.

Explanation:

%1 is the environment variable name and %2 is the default environment
variable value. An invalid value was specified for the indicated
environment variable. The default value is used instead. Tracing continues.

Programmer Response:

Ensure that the environment variable is set to the desired value and try
again.

CTV0004
Cannot create data space.

Explanation:

Data space creation failed. Data spaces might not be supported by the
system. Data space support is required to run the Performance Analyzer.
Tracing is discontinued.

Programmer Response:

Contact your systems administrator to determine whether or not data
spaces are supported on your system.

CTV0005
Cannot release storage.

Explanation:

A failure occurred while trying to release data space or address space
storage. If this condition continues, a storage shortage may occur.

Programmer Response:

Try tracing again. If this message continues to reappear, notify your
systems administrator of this problem.

CTV0006
Cannot initialize Performance Analyzer for “DELAY” tracing.

Explanation:

Chapter 15. Reference 69

A failure occurred while initializing the Performance Analyzer for
“DELAY” tracing. Tracing cannot be started.

Programmer Response:

Try tracing again. If this message continues to reappear, contact your IBM
representative to report the problem.

CTV0007
Tracing cannot continue due to a Performance Analyzer internal error.

Explanation:

The Performance Analyzer has encountered inconsistent data and cannot
continue processing the data. If a trace file is generated, it is incomplete.

Programmer Response:

Try tracing again. If this message continues to reappear, contact your IBM
representative to report this problem.

CTV0008
No tracing data is available because tracing was not activated.

Explanation:

The “DELAY” option was specified but tracing was not started with a “kill
-s PROF” command. No trace data was produced and therefore no trace
file is created.

Programmer Response:

If you specify the “DELAY” option, you must start tracing by sending the
“SIGPROF” signal with the “kill” command to the process which is
running the application program to be traced. Try tracing again and issue
the “kill -s PROF” command to start tracing.

CTV0009
Cannot open iconv table.

Explanation:

A failure occurred trying to open the iconv conversion table of the
Language Environment Run-Time Library. Tracing is stopped and no trace
file is created.

Programmer Response:

Try tracing again. If this message continues to reappear, contact your
systems administrator to ensure that the Language Environment run time
is installed properly and available to your program.

CTV0010
Cannot open the trace file %1.

Explanation:

%1 is the trace file name. The specified trace file cannot be opened for
writing. Tracing is stopped and no trace file is created.

Programmer Response:

Ensure that space is available in the file system or volume and that you
have the correct permissions to create the file.

CTV0011
Cannot write to the trace file.

70 Performance Analyzer: C/C++ Productivity Tools

Explanation:

A failure occurred writing to the Performance Analyzer trace file. Tracing is
stopped and the trace file is incomplete.

Programmer Response:

Ensure that the file system or volume is operational and not full, then try
tracing again. If this message continues to reappear, contact your IBM
representative to report the problem.

CTV0012
Cannot convert string to ASCII.

Explanation:

A failure occurred doing code page conversion using the iconv functions of
the Language Environment Run-Time Library. Tracing is stopped and the
Performance Analyzer trace is incomplete.

Programmer Response:

Try tracing again. If this message continues to reappear, contact your
systems administrator to ensure that the Language Environment run time
is installed properly and available to your program

CTV0013
Cannot read from data space.

Explanation:

Reading from a data space failed. Tracing continues but the Performance
Analyzer trace is incomplete. A serious system problem may exist.

Programmer Response:

If this message continues to be reappear, a serious system problem may
exist. Contact your systems administrator to ensure that data space support
is operational. Try tracing again. If the problem persists, contact your IBM
representative to report the problem.

CTV0015
%1 is an invalid Performance Analyzer option and is ignored.

Explanation:

%1 is the invalid option that was specified. An invalid Performance
Analyzer option was specified. The option is ignored and tracing
continues.

Programmer Response:

Specify valid Performance Analyzer options in the “PROFILE” run-time
option and try again.

CTV0016
The %1 feature of OS/390 is not enabled. Contact your system
programmer.

Explanation:

%1 is the name of the OS/390 feature. This feature of OS/390 is not
enabled at your installation. This feature is required in order to use the
Performance Analyzer. Your system programmer can contact IBM OS/390
service to have this element enabled.

Programmer Response:

Chapter 15. Reference 71

Contact your system programmer to have this feature enabled.

CTV0017
No tracing data is available because no hooks were encountered.

Explanation:

No tracing hooks were found in the program code. The program cannot be
traced.

Programmer Response:

Compile the program code with the TEST(HOOK) option and try tracing
again.

CTV0018
Cannot write to data space.

Explanation:

Writing to a data space failed. Tracing continues but is incomplete. A
serious system problem may exist.

Programmer Response:

If this message continues to reappear, a serious system problem may exist.
Contact your systems administrator to ensure that data space support is
operational. Try tracing again. If the problem persists, contact your IBM
representative to report the problem.

CTV0019
Data space is full and it cannot be extended.

Explanation:

Extending a data space failed. Tracing continues but is incomplete. A
serious system problem may exist.

Programmer Response:

If this message continues to reappear, a serious system problem may exist.
Contact your systems administrator to ensure that data space support is
operational. Try tracing again. If the problem persists, contact your IBM
representative to report the problem.

Function trace“Function trace” on page 14

Creating a trace file“Creating a trace file” on page 28

Troubleshooting Performance Analyzer problems“Troubleshooting Performance
Analyzer problems” on page 67

Sample JCL for creating trace files
You can customize this sample JCL to execute your program and turn on the
Performance Analyzer for function tracing. The JCL compiles, binds, and traces the
sample program CBC3GDC1 that comes with the OS/390 C/C++ Compiler.

72 Performance Analyzer: C/C++ Productivity Tools

//PROFFUNC JOB 1,'PP5647-A01',MSGLEVEL=(1,1),MSGCLASS=A
// SET #CPP=CBC
// SET #PA=CBC
// SET #LE=CEE
//PROC JCLLIB ORDER=(&#CPP..SCBCPRC,
// &#LE..SCEEPROC)
//*---
//* PROFFUNC - OS/390 C/C++ Performance Analyzer Sample JCL For
//* Function Level Trace
//*
//* COPYRIGHT:
//* LICENSED MATERIALS - PROPERTY OF IBM.
//*
//* 5647-A01
//* (C) COPYRIGHT IBM CORP. 1997,1999 ALL RIGHTS RESERVED
//* US GOVERNMENT USERS RESTRICTED RIGHTS - USE,
//* DUPLICATION OR DISCLOSURE RESTRICTED BY GSA
//* ADP SCHEDULE CONTRACT WITH IBM CORP.
//*
//* INSTRUCTIONS:
//* Before submitting this job, the JCL must be customized
//* for your installation. The following changes need to be
//* made:
//*
//* 1. Update the JOB card with the installation specific
//* parameters.
//* 2. If you chose to use a different prefix than the IBM supplied
//* one for the C/C++ Compiler, please change the value of CBC
//* to your chosen prefix on the // SET #CPP=CBC statement.
//* 3. If you chose to use a different prefix than the IBM supplied
//* one for the C/C++ Host Performance Analyzer, please change
//* the value of CBC to your chosen prefix on the // SET #PA=CBC
//* statement.
//* 4. If you chose to use a different prefix than the IBM supplied
//* one for the Language Environment, please change the value
//* of CEE to your chosen prefix on the // SET #LE=CEE
//* statement.
//* 5. If you have installed Kanji Messages for the C/C++ Compiler
//* on your system and want to enable it, uncomment the CRUN
//* line.
//* 6. You may have to change the unit TUNIT='VIO' to your
//* locally-defined esoteric name.
//*
//* REQUIRED ENVIRONMENT:
//* 1. C/C++ Compiler and Language Environment must be installed on
//* the system prior to execution of this JCL.
//*
//* INPUT:
//* 1. Input data set: CBC.SCBCSAM(CBC3GDC1).
//*
//* OUTPUT:
//* 1. Return code of zero for all steps.
//* 2. Function trace file yourid.CBC3GDC1.FUNCTION.TRC is
//* generated.
//* 3. Output from the program:
//* res_add =11.87655
//* res_sub =0.34
//* res_mul =-1.4814000
//* res_div =1.12079927338782
//*--
//PROFTST EXEC EDCCBG,
// CPARM='OPTFILE(DD:OPTION)',
// TUNIT='VIO',
// LIBPRFX=&#LE.,
// LNGPRFX=&#CPP.,
//* CRUN='NATLANG(JPN)',
// INFILE=&#CPP..SCBCSAM(CBC3GDC1),

Chapter 15. Reference 73

// OUTFILE='&&GSET(GO),DISP=(NEW,PASS),SPACE=(TRK,(7,7,1))',
// GPARM='PROFILE(ON,“FUNC=A,T”)),ENVAR(“_CEE_ENVFILE=DD:MYVARS”)/'
//OPTION DD *
LIST
TEST(HOOK)
NOGONUMBER
OPT(1)
/*
//BIND.SYSLMOD DD DSNAME=&OUTFILE,UNIT=&TUNIT.
//GO.MYVARS DD *
__PROF_FILE_NAME=CBC3GDC1.FUNCTION.TRC
__PROF_HOOKS=ALL
/*
//GO.STEPLIB DD
// DD DSN=&#PA..SCTVMOD,DISP=SHR
//* ========> END OF JOB PROFFUNC <========

Function trace“Function trace” on page 14

Compiling your program“Compiling your program” on page 25
Setting environment variables for Performance Analyzer“Setting environment
variables for Performance Analyzer” on page 26
Setting run-time option PROFILE for Performance Analyzer“Setting run-time
option PROFILE for Performance Analyzer” on page 27

Sample TSO Commands for creating trace files“Sample TSO commands for
creating trace files” on page 75
Sample Unix system service commands for creating trace files“Sample Unix system
service commands for creating trace files”
Sample trace file names from tracing a multiprocess program“Sample trace file
names from tracing a multiprocess program” on page 76

Sample Unix system service commands for creating trace files
Here are some examples of OS/390 UNIX shell commands used to compile and
execute a program and turn on the Performance Analyzer for function tracing.

Compile and Bind C Programs for Tracing
Use the c89 command to compile and bind test.c:
c89 -o ./test -0 -Wc,“TEST(HOOK),NOGONUMBER” test.c

Compile and Bind C++ Programs for Tracing
Use the c++ command to compile and bind test.cxx:
c++ -o ./test -0 -Wc,“TEST(HOOK),NOGONUMBER” test.cxx

Set Run-Time PROFILE Option and Environment Variables
Use the export command for setting run-time options and environment variables,
for example:
export _CEE_RUNOPTS=“PROFILE(ON,'FUNCTION=ALL,REAL')”
export __PROF_FILE_NAME=./test.trc

74 Performance Analyzer: C/C++ Productivity Tools

Set the STEPLIB environment variable so that Language Environment can find the
Performance Analyzer module (only required if it is not included in the Link Pack
Area):
export STEPLIB=CBC.SCTVMOD:$STEPLIB

Execute Your Program and Start Performance Analyzer
Start your program as follows, and the Performance Analyzer tracing will begin at
the same time:
test

Turn off tracing after running your program by setting the _CEE_RUNOPTS
environment variable as follows:
export _CEE_RUNOPTS=“PROFILE(OFF)”

Note: If tracing is not turned off in this way, any other program that is executed in
the current shell will be traced, including some OS/390 UNIX shell commands.

Refer to the OS/390 UNIX System Services Command Reference for more information
on the use of the OS/390 UNIX commands.

Function trace“Function trace” on page 14

Compiling your program“Compiling your program” on page 25
Setting environment variables for Performance Analyzer“Setting environment
variables for Performance Analyzer” on page 26
Setting run-time option PROFILE for Performance Analyzer“Setting run-time
option PROFILE for Performance Analyzer” on page 27

Sample JCL for creating trace files“Sample JCL for creating trace files” on page 72
Sample TSO Commands for creating trace files“Sample TSO commands for
creating trace files”
Sample trace file names from tracing a multiprocess program“Sample trace file
names from tracing a multiprocess program” on page 76

Sample TSO commands for creating trace files
Here are some examples of TSO commands used to compile and execute your
program and turn on the Performance Analyzer for function tracing.

Compile and Bind C Programs for Tracing
Use the following to compile and bind your C program:
cc testprof.c(testcpgm) (test(hook) nogonumber search('cee.sceeh.+') obj(testpgm.obj(testcpgm))

cxxbind obj(testpgm.obj(testcpgm)) load(testpgm.load(testcpgm))

Compile and Bind C++ Programs for Tracing
Use the following to compile and bind your C++ program:
cxx testprof.cpp(testcpp) (test(hook) nogonumber lsearch(testprof.hpp)

se('cbc.sclbh.+','cee.sceeh.+') obj(testpgm.obj(testcpp))

Chapter 15. Reference 75

cxxbind obj(testpgm.obj(testcpp)) load(testpgm.load(testcpp))

Set Run-Time PROFILE Option and Environment Variables and Run Your
Program
You use the following to set run-time options and environment variables and run
your program. In this case, the program being executed is testpgm.load(testprof).
tsolib act dsname('CBC.SCTVMOD')
call testpgm(testprof) 'PROFILE(ON,“F=A,R”),ENVAR(__PROF_FILE_NAME=testprof.trace)/'

Refer to the OS/390 C/C++ User’s Guide for more information on compiling and
running your applications.

Function trace“Function trace” on page 14

Compiling your program“Compiling your program” on page 25
Setting environment variables for Performance Analyzer“Setting environment
variables for Performance Analyzer” on page 26
Setting run-time option PROFILE for Performance Analyzer“Setting run-time
option PROFILE for Performance Analyzer” on page 27

Sample JCL for creating trace files“Sample JCL for creating trace files” on page 72
Sample Unix system service commands for creating trace files“Sample Unix system
service commands for creating trace files” on page 74
Sample trace file names from tracing a multiprocess program“Sample trace file
names from tracing a multiprocess program”

Sample trace file names from tracing a multiprocess program
In this example, program prog1 calls the fork function and the resulting child
process calls the exec function to execute program prog2:
/* prog1.c */

int main()

{ /* start of program */

/* ...some code...*/

if ((pid = fork()) < 0) {
perror(“fork failed”);
exit(2);
}

if (pid == (pid_t)0) { /* CHILD process */
execl(“./prog2”, NULL);
perror(“The execl() call must have failed”);
exit(255); /* return failure to parent */
}

else { /* PARENT process */
pid = wait(&c_status);

if (WIFEXITED(c_status)) {
printf(“\nchild exited with code %d\n”,WEXITSTATUS(c_status));
}

else

76 Performance Analyzer: C/C++ Productivity Tools

puts(“\nchild did not exit successfully\n”);

}

exit(0);
}

Output Trace Files Default Names

If __PROF_FILE_NAME is not set, the following trace files are produced:
v prog1.trc.11111111 - parent process (PID=11111111)
v prog1.trc.22222222 - child process (PID=22222222)
v prog2.trc.22222222 if __PROF_APPEND_PID is not set or is set to YES or

prog2.trc if __PROF_APPEND_PID=NO is set (PID=22222222)

Note:

1. Because the __PROF_FILE_NAME environment variable was not set, the trace
file is named after the program that contains the main function, prog1, and the
default file extension, .trc, is added.

2. With the fork function a new process is created, and to distinguish the trace file
for the second process from the first one, the process ID (PID) number is
appended at the end of each trace file’s name, irregardless of the value of the
environment variable __PROF_APPEND_PID.

3. When the exec function is executed, a new trace file is created for the process
(which happens to be the child process in this case) up to that point of the
execution. For the example above, this trace file has the name
prog1.trc.22222222.

4. The exec function replaces the current process image with a new process image
to run program prog2, without changing the PID number. Because program
prog2 contains the main function, prog2 is used as the file name, with the
default file name extension .trc appended to the name. The PID is appended to
the trace file name depending on the value of the environment variable
__PROF_APPEND_PID. prog2.trc or prog2.trc.22222222 will contain the trace
data for program2 only.

Output Trace Files That Are Explicitly Named

If __PROF_FILE_NAME=prog1.trace is specified, the following trace files are
produced:
v prog1.trace.11111112 - parent process (PID=11111112)
v prog1.trace.22222223 - child process (PID=22222223)
v prog1.trace if __PROF_APPEND_PID=NO is set (PID=22222223)

Note:

1. Because the __PROF_FILE_NAME environment variable is set to prog1.trace,
the prog1.trace is used for all processes, including the process that executes the
prog2 program.

2. With the fork function a new process is created and to distinguish the trace file
for the second process from the first one, the process ID (PID) number is
appended at the end of each trace file’s name, irregardless of the value of the
environment variable __PROF_APPEND_PID.

Chapter 15. Reference 77

3. When the exec function is executed, a new trace file is created for the process
(which happens to be the child process in this case) up to that point of the
execution. For the example above, this trace file has the name
prog1.trace.22222223.

4. The exec function replaces the current process image with a new process image
to run program prog2, without changing the PID number. The PID is appended
to the trace file name depending on the value of the environment variable
__PROF_APPEND_PID. The consequence of not settting
__PROF_APPEND_PID or setting it to YES, when __PROF_FILE_NAME is
specified, is that the trace file for program prog2 will overwrite the trace file for
the child process up until the exec function call. For the example above, if
__PROF_APPEND_PID is not set or is set to YES, both trace files will have the
name prog1.trace.22222223. In this case, it is recommended that
__PROF_APPEND_PID=NO be set so no data is lost.

Function trace“Function trace” on page 14
Multiple process support“Multiple process support” on page 16

Setting environment variables for Performance Analyzer“Setting environment
variables for Performance Analyzer” on page 26

Sample JCL for creating trace files“Sample JCL for creating trace files” on page 72
Sample TSO commands for creating trace files“Sample TSO commands for creating
trace files” on page 75
Sample Unix system service commands for creating trace files“Sample Unix system
service commands for creating trace files” on page 74

78 Performance Analyzer: C/C++ Productivity Tools

Notices

Note to U.S. Government Users Restricted Rights — Use, duplication or disclosure
restricted by GSA ADP Schedule Contract with IBM Corp.

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OR CONDITIONS OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states
do not allow disclaimer of express or implied warranties in certain transactions,
therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1999, 2000 79

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Lab Director
IBM Canada Ltd.
1150 Eglinton Avenue East
Toronto, Ontario M3C 1H7
Canada

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples may include
the names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

(C) (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. (C) Copyright IBM Corp. 1997, 2000. All rights reserved.

Programming interface information

80 Performance Analyzer: C/C++ Productivity Tools

Programming interface information is intended to help you create application
software using this program.

General-use programming interfaces allow the customer to write application
software that obtain the services of this program’s tools.

However, this information may also contain diagnosis, modification, and tuning
information. Diagnosis, modification and tuning information is provided to help
you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a
programming interface because it is subject to change.

Trademarks and service marks

The following terms are trademarks of International Business Machines
Corporation in the United States, or other countries, or both:
v AIX
v AS/400
v DB2
v CICS
v CICS/ESA
v IBM
v IMS
v Language Environment
v MQSeries
v Network Station
v OS/2
v OS/390
v OS/400
v RS/6000
v S/390
v VisualAge
v VTAM
v WebSphere

Lotus, Lotus Notes and Domino are trademarks or registered trademarks of Lotus
Development Corporation in the United States, or other countries, or both.

Tivoli Enterprise Console and Tivoli Module Designer are trademarks of Tivoli
Systems Inc. in the United States, or other countries, or both.

Encina and DCE Encina Lightweight Client are trademarks of Transarc Corporation
in the United States, or other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other countries.

ActiveX, Microsoft, SourceSafe, Visual C++, Visual SourceSafe, Windows, Windows
NT, Win32, Win32s and the Windows logo are trademarks or registered trademarks
of Microsoft Corporation in the United States, or other countries, or both.

Notices 81

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

Intel and Pentium are trademarks of Intel Corporation in the United States, or
other countries, or both.

Other company, product, and service names, which may be denoted by a double
asterisk(**), may be trademarks or service marks of others.

82 Performance Analyzer: C/C++ Productivity Tools

	Contents
	Chapter 1. The Performance Analyzer for OS/390
	Performance Analyzer product files

	Chapter 2. Diagrams for analyzing a trace file
	Diagrams for analyzing a trace file
	Call Nesting diagram
	Dynamic Call Graph diagram
	Execution Density diagram
	Statistics diagram
	Time Line diagram

	Chapter 3. Trace file generation
	Call frequency counting
	Time stamps
	Trace events
	Function trace
	Overhead time
	Multiple process support
	Delay tracing

	Chapter 4. Trace file viewing and analysis
	Function groups
	Pattern recognition
	Diagram filters
	Correlation

	Chapter 5. Tips for using the Performance Analyzer tounderstand your program
	Use a combination of diagrams to understand your program
	Annotate your trace file

	Chapter 6. Preparing your program for analysis
	Compiling your program
	Setting environment variables for Performance Analyzer
	Setting run-time option PROFILE for Performance Analyzer
	Creating a trace file

	Chapter 7. Starting and exiting the Performance Analyzer
	Starting the Performance Analyzer
	Starting the Performance Analyzer from a command line
	Exiting the Performance Analyzer

	Chapter 8. Controlling what data is collected in the trace file
	Collecting call frequency data
	Tracing a specific DLL
	Tracing a Webserver application
	Specifying trace file name
	Performing delay tracing

	Chapter 9. Viewing your trace file in a diagram
	Downloading the trace file from the host
	Starting the Performance Analyzer to analyze a trace file
	Opening a trace file in a diagram

	Chapter 10. Navigating the trace view
	Correlating events between diagrams
	Enlarging or reducing a diagram
	Seeing details by combining the zoom and correlation features
	Viewing a specific time or range of time

	Chapter 11. Searching for trace data in a diagram
	Warning: Temporary Level 2 Header
	Finding a specific annotation
	Finding a specific function call or return
	Finding trace data for a specific function
	Finding trace data for a specific class
	Finding trace data for a specific executable

	Chapter 12. Controlling what data is shown in the diagrams
	Filtering events by component type
	Filtering events by function
	Filtering events by thread
	Filtering events by group
	Filtering nodes and arcs in the Dynamic Call Graph diagram
	Recognizing call sequence patterns
	Viewing class activity

	Chapter 13. Analyzing your trace file
	Adding, changing, or deleting annotations
	Determining the elapsed time between two events
	Selecting functions to inline
	Viewing thread interactions in a multithreaded program

	Chapter 14. Tracing applications in a CICS environment
	Initial setup
	Creating a C/C++ executable
	Creating a trace for a C/C++ executable
	Analyzing the trace

	Chapter 15. Reference
	Limitations when analyzing trace data
	Limitations when creating a trace
	Performance Analyzer invocation parameters
	Tracing programs that have interlanguage calls
	Run-time option for program tracing
	Run-time environment variables for program tracing
	Troubleshooting Performance Analyzer problems
	Performance Analyzer error messages on the host
	Sample JCL for creating trace files
	Sample Unix system service commands for creating trace files
	Sample TSO commands for creating trace files
	Sample trace file names from tracing a multiprocess program

	Notices

