
DB2 Universal Database Text Extender

Administration and Programming
Version 5 Release 2

SC26-9108-01

IBM

DB2 Universal Database Text Extender

Administration and Programming
Version 5 Release 2

SC26-9108-01

IBM

Note!
Before using this information and the product it supports, be sure to read the general information under
“Notices” on page 257.

Second Edition, September 1998

This edition replaces and makes obsolete SC26-9108-00. The technical changes for this edition are summarized under
″Summary of Changes″. The changes are indicated by a vertical bar to the left of the change.

© Copyright International Business Machines Corporation 1995, 1998. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Summary of Changes . ix

About this book . xi
Who should use this book. xi
How this book is structured xi
How to read the syntax diagrams xii
Related information . xiii
How to send your comments xv

Part 1. Guide . 1

Chapter 1. An overview of DB2 extenders 3
Text Extender . 3
Other DB2 Extenders . 4

Image Extender . 4
Video Extender . 5
Audio Extender . 5

Text Extender in the DB2 client/server environment 5
Text Extender in the partitioned database environment 8

Chapter 2. Planning a text index 11
Why text documents need to be indexed 11
Types of index . 13

Linguistic index . 13
Precise index . 14
Dual index . 15
Ngram index . 15
Changing the text index type 16

Creating one or several text indexes for a table 16
Calculating the size of an index 17

Chapter 3. Linguistic processing 19
Linguistic processing for indexing 19

Basic text analysis . 20
Reducing terms to their base form (lemmatization) 22
Stop-word filtering . 22
Decomposition (splitting compound terms) 22
Feature extraction . 23

Linguistic processing for retrieval 24
Synonyms . 25
Thesaurus expansion . 26
Sound expansion . 26
Domain terms and abbreviations 26
Names expansion . 26
Character and word masking. 26

© Copyright IBM Corp. 1995, 1998 iii

Linguistic processing for browsing 27
Stage 1: Normalization and term expansion 27
Stage 2: Extended matching 27

Linguistic functions for the supported languages 29
Dictionaries, stop-word lists, and abbreviation lists. 30
Thesaurus concepts . 31

Terms . 31
Relations . 32
Creating a thesaurus . 34

Chapter 4. Administration 39
Text Extender instances . 39

Creating a Text Extender instance 39
Managing a Text Extender server 40

Start the server . 40
Display the status of the server 40
Stop the server . 40

Overview of the client administration tasks 41
Administration overview 41

Before you begin. 42
Starting administration . 43

Starting the Text Extender command line processor (optional) 43
Connecting to a database 44

Preparing text documents for searching 45
Changing the text configuration 45
Modifying the stop-word and abbreviation files 46
Creating a sample table 47
Enabling a database . 49
Enabling a text table . 50
Enabling a text column. 53
Enabling external text files 59
Ending the administration session 60

Reversing the text preparation process 61
Disabling a text column 61
Disabling text files . 62
Disabling a text table . 62
Disabling a database . 63

Maintaining text indexes . 63
Updating an index . 64
Updating an index for external files. 64
Changing the settings of an index 65
Resetting the index status. 66
Deleting index events . 66

Getting useful information . 67
Displaying enabled-status information 67
Displaying the settings of the environment variables 68
Displaying the text configuration settings 68
Displaying the index status 69
Displaying error events. 70

iv Text Extender: Administration and Programming

Displaying the index settings 71
Displaying the text settings for a column 72

Working with the Text Extender catalog view 72
Tracing faults . 74
Backing up and restoring indexes and enabled databases 75

Chapter 5. Searching with Text Extender’s UDFs 77
The sample UDFs . 77
The sample table DB2TX.SAMPLE. 78
Handles for external files . 81
Setting the current function path 81
Searching for text . 82

Making a query . 83
Searching and returning the number of matches found 83
Searching and returning the rank of a found text document. 84

Specifying search arguments. 84
Searching for several terms 84
Searching with the Boolean operators AND and OR 84
Searching for variations of a term 85
Searching for parts of a term (character masking) 86
Searching for terms that already contain a masking character 87
Searching for terms in any sequence 87
Searching for terms in the same sentence or paragraph. 87
Searching for synonyms of terms 88
Making a linguistic search. 88
Searching with the Boolean operator NOT 89
Fuzzy search . 90
Respecting word-phrase boundaries 90
Searching for similar-sounding words 90
Feature search . 91
Thesaurus search . 91
Free-text and hybrid search 92

Refining a previous search 93
Setting and extracting information in handles 94

Setting text information when inserting new text 94
Extracting information from handles 95
Changing information in handles 96

Improving search performance 96
Using the SEARCH_RESULT UDF 96
Using the HANDLE_LIST UDF 97

Chapter 6. Using the API functions for searching and browsing 101
Setting up your application 101

Linking a UNIX application 101
Linking an OS/2 or a Windows application 101

Overview of the API functions 102
Searching for text . 102
Browsing text . 102

Searching for text . 103

Contents v

Get a search result table (DesGetSearchResultTable) 103
Browsing text . 104

Get browse information (DesGetBrowseInfo) 104
Start a browse session (DesStartBrowseSession) 105
Open a document (DesOpenDocument) 105
Get matches (DesGetMatches) 106
Close a document (DesCloseDocument) 106
End a browse session (DesEndBrowseSession) 107
Free the browse information (DesFreeBrowseInfo) 107

Part 2. Reference . 109

Chapter 7. Administration commands for the client 111
Command line processor help 112
CHANGE INDEX SETTINGS. 113
CHANGE TEXT CONFIGURATION 115
CONNECT. 118
DELETE INDEX EVENTS. 120
DISABLE DATABASE . 121
DISABLE TEXT COLUMN 122
DISABLE TEXT FILES . 123
DISABLE TEXT TABLE . 124
ENABLE DATABASE . 125
ENABLE TEXT COLUMN . 126
ENABLE TEXT FILES . 132
ENABLE TEXT TABLE . 135
GET ENVIRONMENT . 139
GET INDEX SETTINGS . 140
GET INDEX STATUS . 141
GET STATUS . 142
GET TEXT CONFIGURATION 143
GET TEXT INFO. 144
QUIT. 145
RESET INDEX STATUS . 146
UPDATE INDEX . 147

Chapter 8. Administration commands for the server 149
TXICRT. 150
TXIDROP . 152
TXNADD . 153
TXNCHECK . 154
TXNDROP . 155
TXSAMPLE . 156
TXSTART . 157
TXSTATUS . 158
TXSTOP . 159
TXTRACE . 160
TXVERIFY . 165

vi Text Extender: Administration and Programming

Chapter 9. UDTs and UDFs 167
UDTs provided by Text Extender 167
UDFs provided by Text Extender 168
CCSID . 170
CONTAINS . 171
FILE . 172
FORMAT . 173
HANDLE . 174
HANDLE_LIST . 175
INIT_TEXT_HANDLE . 176
LANGUAGE . 177
NO_OF_DOCUMENTS . 178
NO_OF_MATCHES . 179
RANK . 180
REFINE. 181
SEARCH_RESULT . 182

Chapter 10. Syntax of search arguments 183
Search argument . 184

Chapter 11. API functions for searching and browsing 193
DesCloseDocument . 194
DesEndBrowseSession . 195
DesFreeBrowseInfo . 196
DesGetBrowseInfo . 197
DesGetMatches . 200
DesGetSearchResultTable 205
DesOpenDocument . 210
DesStartBrowseSession . 213

Chapter 12. Return codes 215

Chapter 13. Messages . 223
SQL states returned by UDFs 223
Messages from Text Extender 225

Chapter 14. Configuring Text Extender 235
Environment variables . 235
Text configuration settings. 236

Text characteristics . 236
Index characteristics . 236
Processing characteristics. 236

Information about text documents 237
Formats. 237
Languages. 238
CCSIDs. 240

Setting the frequency of index updates 241

Chapter 15. Sample API programs 243

Contents vii

A program that uses your browser 243
A program that uses the sample browser provided with Text Extender 243

Browsing text using the sample browser 244
The sample API function DesBrowseDocument. 244

Chapter 16. Error event reason codes 249

Notices . 257
Programming interface information 257
Trademarks and service marks 257

Glossary . 259

Index . 265

viii Text Extender: Administration and Programming

Summary of Changes

DB2 extenders now operate with and exploit the partitioned database support of DB2
UDB V5 Extended Enterprise Edition in Windows NT, Solaris Operating Environment,
and AIX platforms. This means that extender data can be distributed across multiple
machines, and queries can be run in parallel, thereby speeding up transaction
processing.

v A Text Extender server runs on each partition of a nodegroup to manage the indexed
rows. Each partition has its own index for text search.

v Backing up and restoring enabled databases is described.

v The following keywords are no longer available for the CHANGE INDEX SETTINGS
command:

INDEXTYPE

UPDATEINDEX

COMMITCOUNT

v The DIRECTORY keyword in the following commands allows the specification of
node numbers for partitioned databases:

ENABLE TEXT COLUMN

ENABLE TEXT FILES

ENABLE TEXT TABLE

v The administration commands DB2TXINSTANCE and DESICRT have been
combined into a single, cross-platform command TXICRT.

v The administration command DESIDROP has been renamed TXIDROP.

v The following administration commands have been added for managing partitioned
databases:

TXNADD to add a Text Extender server to a node

TXNCHECK to check which Text Extender-enabled databases need to be
reindexed if nodes have been reorganized

TXNDROP to drop a Text Extender server from a node

v The RESULT LIMIT keyword has been added to the search argument to allow the
size of the search result to be specified.

v The DESTHESC command for creating a thesaurus has been renamed TXTHESC.

v The RECREATE command has been removed.

v The catalog view DB2TX.TEXTCOLUMNS is now called DB2TX.TEXTINDEXES. A
catalog view DB2TX.TEXTCOLUMNS still exists, but is used only in “performance”
queries.

© Copyright IBM Corp. 1995, 1998 ix

|
|
|
|
|

|
|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|
|

|

|
|

|

|
|

|

|

|
|
|

x Text Extender: Administration and Programming

About this book

DB2 Text Extender is a full-text retrieval program primarily for searching in text files
stored in DB2 Universal Database V5.2 (DB2 V5.2) databases, but also for searching in
text files stored elsewhere. It provides extensions to the Structured Query Language
(SQL) that work with a powerful and intelligent search engine to let you search quickly
and efficiently for information in unstructured text.

Who should use this book

This book is intended for those who are responsible for the administration of Text
Extender, and for those who intend to use Text Extender for searching for text in DB2
V5.2 databases, either directly or by writing an application program. It assumes that you
are familiar with DB2 V5.2 and SQL.

How this book is structured

This book contains the following chapters:

Part 1: Guide

Chapter 1. An overview of DB2 extenders
Introduces Text Extender and describes other products in the DB2 Extender
family.

Chapter 2. Planning a text index
Helps you decide which type of text index suits your requirements.

Text Extender administrators need this information to help them set up the
default index type in the text configuration information.

Text Extender users need this information when enabling a text table, or
individual text columns for searching.

Chapter 3. Linguistic processing
How Text Extender analyses document terms when indexing, search terms
when searching, and matched terms when highlighting in a found document.

Text Extender users need this information to help them build more effective
search terms.

Chapter 4. Administration
Describes the Text Extender command line processor.

Text Extender administrators need this information when setting up a
database for Text Extender users.

Text Extender users need this information to prepare tables and individual
text columns for use by Text Extender.

© Copyright IBM Corp. 1995, 1998 xi

Chapter 5. Searching with Text Extender’s UDFs
Describes the user-defined SQL functions (UDFs) provided by Text Extender.

Text Extender users need this information when including text search
subqueries in SQL queries.

Chapter 6. Using the API functions for searching and browsing
Describes the application program interface (API) functions provided by Text
Extender.

Text Extender users need this information when including text search
subqueries in application programs.

Part 2: Reference

Chapter 7. Administration commands for the client
Syntax and description of the administration commands for the client in
alphabetical order.

Chapter 8. Administration commands for the server
Syntax and description of the administration commands for the server in
alphabetical order.

Chapter 9. UDTs and UDFs
Description of the UDTs provided by Text Extender, and the syntax and
description of the Text Extender UDFs in alphabetical order.

Chapter 10. Syntax of search arguments
The syntax of search arguments used in SQL queries and in the API functions.

Chapter 11. API functions for searching and browsing
The syntax and description of the API functions in alphabetical order.

Chapter 12. Return codes
An explanation of the return codes from the API functions.

Chapter 13. Messages
An explanation of the messages from the UDFs, and from the administration
command line processor.

Chapter 14. Configuring Text Extender
A description of environment variables for Text Extender for the C, Korn, and
Bourne shells, and of the text configuration that contains default setup
information.

Chapter 15. Sample API programs
Sample C programs that use the API functions.

Chapter 16. Error event reason codes
A description of error-event reason codes that can occur during indexing.

How to read the syntax diagrams

Throughout this book, syntax is described using the structure defined as follows:

xii Text Extender: Administration and Programming

v Read the syntax diagrams from left to right and top to bottom, following the path of
the line.

The ÊÊ─── symbol indicates the beginning of a statement.

The ───Ê symbol indicates that the statement syntax is continued on the next line.

The Ê─── symbol indicates that a statement is continued from the previous line.

The ──ÊÍ symbol indicates the end of a statement.

v Required items appear on the horizontal line (the main path).

ÊÊ required item ÊÍ

v Optional items appear below the main path.

ÊÊ
optional item

ÊÍ

v If you can choose from two or more items, they appear in a stack.

If you must choose one of the items, one item of the stack appears on the main path.

ÊÊ required choice1
required choice2

ÊÍ

If choosing none of the items is an option, the entire stack appears below the main
path.

ÊÊ
optional choice1
optional choice2

ÊÍ

A repeat arrow above a stack indicates that you can make more than one choice
from the stacked items.

ÊÊ »

optional choice1
optional choice2

ÊÍ

v Keywords appear in uppercase; they must be spelled exactly as shown. Variables
appear in lowercase (for example, srcpath). They represent user-supplied names or
values in the syntax.

v If punctuation marks, parentheses, arithmetic operators, or other such symbols are
shown, you must enter them as part of the syntax.

Related information
DB2 Universal Database Version 5

About this book xiii

DB2 Universal Database Version 5 Quick Beginnings, S10J-8147 (OS/2),
S10J-8149 (Windows), S10J-8148 (UNIX). These books describe how to plan for
and perform installation of DB2 in the appropriate platform.

DB2 Universal Database Version 5 Administration Guide, S10J-8157. This book
describes how to design, implement, and maintain a DB2 database.

DB2 Universal Database Version 5 Embedded SQL Programming Guide ,
S10J-8158. This book describes the application development process, and how
to code, compile, and execute programs that use embedded SQL and APIs to
access a DB2 database.

DB2 Universal Database Version 5 Call Level Interface Guide and Reference,
S10J-8159. This book describes how to write applications using DB2 CLI to
access DB2 servers.

DB2 Universal Database Version 5 Command Reference, S10J-8166. This book
gives reference information about commands that are used to perform DB2
administrative tasks.

DB2 Universal Database Version 5 Messages Reference, S10J-8168. This book
lists DB2 messages that identify errors or problems, and recovery actions.

IBM DB2 Universal Database Extended Enterprise Edition

IBM DB2 Universal Database Extended Enterprise Edition for Windows NT Quick
Beginnings Version 5, SO9L-6713. This book describes how to install and use
the basic functions of DB2 UDB V5 Extended Enterprise Edition in a Windows
NT operating environment.

IBM DB2 Universal Database Extended Enterprise Edition for UNIX Quick
Beginnings Version 5, S99H-8314. This book describes how to install and use
the basic functions of DB2 UDB V5 Extended Enterprise Edition in a UNIX
operating environment.

DB2 Image, Audio, and Video Extenders

DB2 Universal Database Image, Audio, and Video Extenders Administration and
Programming, SC26-9107. This book describes how to administer a DB2
database for image, audio, and video data. It also describes how to use
application programming interfaces that are provided by the extenders to access
and manipulate these types of data.

World Wide Web

DB2 Extenders page. This page contains information about the DB2 Extenders
as well as technologies that are pertinent to the extenders. The Universal
Resource Location (URL) of the DB2 Extenders page is:
http://www.software.ibm.com/data/db2/extenders.

xiv Text Extender: Administration and Programming

|
|
|

|

|
|
|
|

|
|
|
|

How to send your comments

Your feedback is important in helping to provide the most accurate and high-quality
information. If you have any comments about this book or any other DB2 extenders
documentation:

v Visit our home page at:

http://www.software.ibm.com/data/db2/extenders

There you will find the feedback page where you can enter comments and send
them.

v Send your comments by e-mail to comments@vnet.ibm.com. Be sure to include the
name of the book, the part number of the book, the version of DB2 extenders, and, if
applicable, the specific location of the text you are commenting on (for example, a
page number or table number).

v Mail comments to:

IBM Corporation
Department W92/H3
P.O. Box 49023
San Jose, CA 95161-9023
U.S.A.

When you send information to IBM, you grant IBM a nonexclusive right to use or
distribute the information in any way it believes appropriate without incurring any
obligation to you.

About this book xv

xvi Text Extender: Administration and Programming

Part 1. Guide

© Copyright IBM Corp. 1995, 1998 1

2 Text Extender: Administration and Programming

Chapter 1. An overview of DB2 extenders

Text Extender is one of a family of DB2 extenders. It enables programmers to include
SQL queries for text documents in their applications.

The other extenders can search for images, video and voice data.

Text Extender

Text Extender adds the power of full-text retrieval to SQL queries by making use of
features available in DB2 V5.2 that let you store unstructured text documents of up to 2
gigabytes in databases.

Text Extender offers DB2 V5.2 users and application programmers a fast, versatile, and
intelligent method of searching through such text documents. Text Extender’s strength
lies in its ability to search through many thousands of large text documents at high
speed, finding not only what you directly ask for, but also word variations and
synonyms.

You are not restricted to searching only in text documents stored in DB2 V5.2
databases, you can also search in text documents stored in files.

Text Extender can access any kind of text document, including word-processing
documents in their original native form, and offers a rich set of retrieval capabilities
including word, phrase, wildcard, and proximity searching using Boolean logic.

At the heart of Text Extender is IBM’s high-performance linguistic search technology. It
allows your applications to access and retrieve text documents in a variety of ways.
Your applications can:

v Search for documents that contain specific text, synonyms of a word or phrase, or
sought-for words in proximity, such as in the same sentence or paragraph.

v Do wildcard searches, using front, middle, and end masking, for word and character
masking.

v Search for documents of various languages in various document formats.

v Make a “fuzzy” search for words having a similar spelling as the search term. This is
useful for finding words even when they are misspelled.

v Make a free-text search in which the search argument is expressed in natural
language.

v Search for the names of people, places, or organizations.

v Search for words that sound like the search term.

You can integrate your text search with business data queries. For example, you can
code an SQL query in an application to search for text documents that are created by a

© Copyright IBM Corp. 1995, 1998 3

specific author, within a range of dates, and that contain a particular word or phrase.
Using the Text Extender programming interface, you can also allow your application
users to browse the documents.

By integrating full-text search into DB2 V5.2’s SELECT queries, you have a powerful
retrieval function that combines attribute and full-text search. The following SQL
statement shows an example:

SELECT * FROM MyTextTable
WHERE version = '2'
AND DB2TX.CONTAINS (

DB2BOOKS,
'"authorization"
IN SAME PARAGRAPH AS "table"
AND SYNONYM FORM OF "delete"') = 1

DB2TX.CONTAINS is one of several Text Extender search functions. DB2BOOKS is the
name of a handle column containing the text documents to be searched. The remainder
of the statement is an example of a search argument that looks for authorization,
occurring in the same paragraph as table, and delete, or any of delete’s synonyms.

Other DB2 Extenders

The other extenders in the family let you search for a combination of image, video, and
voice data types in one SQL query.

As with Text Extender, these extenders define new data types and functions using DB2
V5.2’s built-in support for user-defined types and user-defined functions. You can couple
any combination of these data types, that is, image, audio, and video, with a text search
query.

The extenders exploit DB2 V5.2’s support for large objects of up to 2 gigabytes, and for
triggers that provide integrity checking across database tables ensuring the referential
integrity of the multimedia data.

Image Extender

With the Image Extender, your applications can:

v Import and export images and their attributes into and out of a database

v Control access to images with the same level of protection as traditional business
data

v Select and update images based on image attributes such as format, width, and
height

v Display miniature images and full images.

You can integrate an image query with traditional business database queries. For
example, you can program an SQL statement in an application to return miniature
images of all pictures whose width and height are smaller than 512 x 512 pixels and

4 Text Extender: Administration and Programming

whose price is less than $500, and also list the names of each picture’s photographer.
Using the Image Extender, you can also allow your application users to browse the
images.

Video Extender

With the Video Extender, your applications can:

v Import and export video clips and their attributes to and from a DB2 V5.2 database

v Select and update video clips based on video attributes such as compression
method, length, frame rate, and number of frames

v Retrieve specific shots in a video clip through shot detection

v Play video clips.

You can integrate a video query with traditional business database queries. For
example, you can code an SQL statement in an application to return miniature images
and names of the advertising agencies of all commercials whose length is less than 30
seconds, whose frame rate is greater than 15 frames a second, and that contain
remarks such as “OS/2 Warp” in the commercial script. Using the Video Extender, you
can also allow your application users to play the commercials.

Audio Extender

With the Audio Extender, your applications can:

v Import and export audio clips and their attributes to and from a DB2 V5.2 database

v Select and update audio clips based on audio attributes, such as number of
channels, length, and sampling rate

v Play audio clips.

The Audio Extender supports a variety of audio file formats, such as WAVE and MIDI.
Like the Video Extender, the Audio Extender works with different file-based audio
servers.

Using the Audio Extender, your applications can integrate audio data and traditional
business data in a query. For example, you can code an SQL statement in an
application to retrieve miniature images of compact disk (CD) album covers, and the
name of singers of all music segments on the CD whose length is less than 1 minute
and that were produced in 1990. Using the Audio Extender, you can also allow your
application users to play the music segments.

Text Extender in the DB2 client/server environment

Figure 1 on page 6 shows how Text Extender is integrated into the DB2 client/server
environment.

Chapter 1. An overview of DB2 extenders 5

The main part of the Text Extender product is installed on the same machine as the
DB2 server. Only one Text Extender server instance can be installed with one DB2
server instance.

A Text Extender installation in a LAN is flexible and can comprise:

v One or several Text Extender LAN servers (on AIX, OS/2, Windows NT, SUN-Solaris,
or HP-UX workstations)

v AIX, OS/2, Windows NT, Windows 95 (and Windows 98 when it becomes available),
Windows 3.1, SUN-Solaris, and HP-UX clients with access to one or several remote
Text Extender servers

v AIX clients containing a local Text Extender server and having access to remote
servers.

Figure 2 on page 7 shows a typical Text Extender configuration. To run Text Extender
from a client, you must first install a DB2 client and some Text Extender utilities. These
utilities constitute the Text Extender “client” although it is not a client in the strict sense
of the word. The client communicates with the Text Extender server via the DB2 client
connection.

DB2 client

DB2 server DB2 server DB2 server

DB2 client DB2 client DB2 client DB2 client

UNIX

UNIX OS/2 Windows NT

OS/2

LAN

Windows NT Windows 95 Windows 3.1

Text
Extender

client

Text Extender
server

Text Extender
server

Text Extender
server

Text
Extender

client

Text
Extender

client

Text
Extender

client

Text
Extender

client

Figure 1. Integration of Text Extender into the DB2 client/server environment

6 Text Extender: Administration and Programming

Text Extender has the following main components:

v A command line interpreter similar to the one offered by DB2 V5.2 for
administration commands. Commands are available that let you prepare text in
columns for searching, and maintain text indexes.

v User-defined functions (UDFs) that you can include in SQL queries for searching in
text, and finding, for example, the number of times the search term occurs in the text.

For clarity, the figure shows the UDFs on the client because they are available at the
client API. In fact, they are part of the server installation, and are executed there.
However, the UDFs can be used from any DB2 client without the need to install the
Text Extender client.

v An application programming interface (API) consisting of functions that can be
called in C programs for searching in text and displaying the search results.

DB2 server

LAN

Server

Database

Text Extender
server

User-defined
functions (UDFs)

DB2 client

SQL
queries

Command line
interpreter

Administration
commands

Text Extender client

Client

API
functions

Customer
applications

Figure 2. A Text Extender configuration

Chapter 1. An overview of DB2 extenders 7

Tip
The Text Extender client utilities offer the two main functions: administration and
the API. (The UDFs are available on the server.)

To use the Text Extender administration functions or the API on the client, you
must install the Text Extender client. If you do Text Extender administration only at
the Text Extender server, then you need to install the Text Extender client utilities
only on clients that use the API functions.

If you need only the search capability on the client using DB2 V5.2 SQL
statements, you do not need to install the Text Extender client. All communication
is handled by DB2 V5.2 and the Text Extender search engine runs only on the
server.

Text Extender in the partitioned database environment

Figure 3 shows how Text Extender is integrated into the DB2 partitioned database
environment.

Each database partition server, known as a node, can be assigned to a separate
machine, or they can be located on a single machine. Database partition servers
located on separate machines are known as physical nodes. Those located on a single
machine are known as logical nodes. Text Extender supports both configurations.

Figure 3. Integration of Text Extender into the DB2 partitioned database environment

8 Text Extender: Administration and Programming

|
|

|
|
|

|
|
|
|

A nodegroup is a named subset of one or more database partitions servers. If a Text
Extender-enabled table is assigned to a multipartition nodegroup, the text indexes that
are created by Text Extender are located on the same node as each corresponding
table partition. This ensures that data does not have to be moved between nodes
during indexing.

A Text Extender server runs on every partition of a nodegroup and manages the
indexed rows of the corresponding partition. You interact with Text Extender through
one database partition. Each database partition can be used to issue Text Extender
requests. The requests are routed to all the involved database partitions.

Chapter 1. An overview of DB2 extenders 9

|
|
|
|
|

|
|
|
|

10 Text Extender: Administration and Programming

Chapter 2. Planning a text index

To answer text content queries efficiently, an information retrieval system creates
indexes that contain the significant words from text documents, together with a list of
the documents that contain them. When a search is made, the information retrieval
system searches through the index rather than through the text itself.

Before you begin the steps described in “Chapter 4. Administration” on page 39, you
must decide whether to create a common text index, or to create individual indexes,
one for each text column. This chapter helps you make this decision, and to calculate
approximately how much disk space you will need for text indexes.

There are several types of index to choose from: linguistic, precise, dual, and ngram.
The choice of index type is significant. For example, if you choose linguistic as the
index type, you can search for word variations and synonyms of the search term. The
index type also affects indexing performance and the size of the index. In many cases,
you cannot change the index type without indexing all the text documents again.

Why text documents need to be indexed

A fast information retrieval system does not sequentially scan through text documents;
this would take too long. Instead, it operates on a previously built text index. You can
think of a text index as consisting of significant terms extracted from the text
documents, each term stored together with information about the document that
contains it.

A text index contains only relevant information; insignificant words, such as “and”, “of”,
and “which”, are not indexed. Text Extender uses a list of these words, known as stop
words to prevent them from being indexed. The retrieval system searches through the
index for the terms requested to find which text documents contain those terms.

Tip
If you need to modify the list of stop words, do it only once, and at installation
time.

A list of stop words per language is stored in a file that you can modify (see “Modifying
the stop-word and abbreviation files” on page 46), but, because there is one file for the
whole system, you should change it only once while you are setting up Text Extender
for the first time. If you change the file later, existing indexes will not reflect the change.

As an example, let’s say that some documents contain the name of a weekly magazine
called “Now”. If you remove this word from the stop words, it will be indexed and can be
found by future searches. However, any indexes created before you removed the stop
word will not contain the word “now”, and a search for it will be unsuccessful.

© Copyright IBM Corp. 1995, 1998 11

If you do decide to change the stop words, and you want this change to be reflected
throughout, you must recreate all your indexes.

Indexing is a two-step process. The first step is to record in a log table the text
documents that need to be indexed. This occurs automatically through DB2 triggers
whenever you insert, update, or delete a text document in a column.

The second step is to index the text documents listed in the log table. This may be
done periodically. The terms of those documents that were inserted or changed in the
column are added to the index. The terms of those documents that were deleted from
the column are removed from the index.

text

The price of your holiday
is subject to increases due
to government action, fuel
surcharges by ferry and air-
craft operators and due to
other increases by the
companies
providing
ferries.

Motorrail, flights, vehicle
hire, hotel or other acc-
ommodation, ...

TEXT COLUMN

Local taxation

Vehicle hire

Holiday rates

Holiday rates

Stop-word list

Document
index

DOCUMENTS
Local taxation
Holiday rates
Vehicle hire

European tours
Exclusive cruises
Holiday rates

Holiday rates
:
:

TERMS
price

holiday

subject
:
:

a about after
although an any
at before but ...

Document

significant terms

Figure 4. Indexing only significant terms

12 Text Extender: Administration and Programming

Types of index

You can assign one of these index types to a column containing text to be searched:
linguistic, precise, dual, and ngram. You must decide which index type to create before
you prepare any such columns for use by Text Extender. For a more detailed
description of how each type of index affects linguistic processing, read “Chapter 3.
Linguistic processing” on page 19.

Tip
Text Extender offers a wide variety of search options, though not all are available
for all index types. See Table 7 on page 188 and Table 8 on page 188 before
making your decision about which index type to use.

Linguistic index

For a linguistic index, linguistic processing is applied while analyzing each document’s
text for indexing. This means that words are reduced to their base form before being
stored in an index; the term “mice”, for example, is stored in the index as mouse.

For a query against a linguistic index, the same linguistic processing is applied to the
search terms before searching in the text index. So, if you search for “mice”, it is
reduced to its base form mouse before the search begins. Table 1 on page 19
summarizes how terms are extracted for indexing when you use a linguistic index.

The advantage of this type of index is that any variation of a search term matches any
other variation occurring in one of the indexed text documents. The search term mouse
matches the document terms “mouse”, “mice”, “MICE” (capital letters), and so on.
Similarly, the search term Mice matches the same document terms.

This index type requires the least amount of disk space. However, indexing and
searching can take longer than for a precise index.

The types of linguistic processing available depend on the document’s language. See
“Linguistic functions for the supported languages” on page 29 for details. Here is a list of
the types:

v Word and sentence separation.

v Sentence-begin processing.

v Dehyphenation.

v Normalizing terms to a standard form in which there are no capital letters, and in
which accented letters like “ü” are changed to a form without accents. For example,
the German word “Tür” (door) is indexed as tuer.

v Reducing terms to their base form. For example, “bought” is indexed as buy, “mice”
as mouse.

Chapter 2. Planning a text index 13

Tip
Word fragments (words masked by wildcard characters) cannot be reduced to
a base form. So, if you search for swu%, you will not find the word “swum”,
because it is reduced to its base form in the index. To find it, you must search
for swi%.

v Word decomposition, where compound words like the German “Wetterbericht”
(weather report) are indexed not only as wetterbericht, but also as wetter and
bericht.

v Stop-word filtering in which irrelevant terms are not indexed. “A report about all
animals” is indexed as report and animal.

v Part-of-speech filtering, which is similar to stop-word filtering; only nouns, verbs, and
adjectives are indexed. “I drive my car quickly” is indexed as drive and car. The
words “I” and “my” are removed as stop words, but additionally the adverb “quickly”
is removed by part-of-speech filtering.

v Feature extraction, which lets you identify special terms as types of names, and
recognize a set of patterns for proper names (such as Bill Clinton, President Bill
Clinton, Clinton), domain terms (such as ROM, read-only memory, read only
memory), and abbreviations (such as IBM, International Business Machines). See
“Feature extraction” on page 23.

Precise index

In a precise index, the terms in the text documents are indexed exactly as they occur in
the document. For example, the search term mouse can find “mouse” but not “mice” and
not “Mouse”; the search in a precise index is case-sensitive.

In a query, the same processing is applied to the query terms, which are then
compared with the terms found in the index. This means that the terms found are
exactly the same as the search term. You can use masking characters to broaden the
search; for example, the search term experiment* can find “experimental”,
“experimented”, and so on.

Table 2 on page 20 gives some examples of how terms are extracted from document
text for indexing when you use a precise index.

The advantage of this type of index is that the search is more precise, and indexing and
retrieval is faster. Because each different form and spelling of every term is indexed,
more disk space is needed than for a linguistic index.

The linguistic processes used to index text documents for a precise index are:

Word and sentence separation

Stop-word filtering.

14 Text Extender: Administration and Programming

Dual index

A dual index is a combination of precise and linguistic indexes. It contains the
normalized form (standard form in all lower-case letters, and without accents), the base
form, such as the infinitives of verbs, and the precise form of each term.

This index type allows the user to decide for each search term whether to search
linguistically or precisely.

In a query, you can choose the processing that is applied to the query terms:

v Linguistic search (STEMMED FORM OF option); any form and any case of a search
term matches any other form and any other case in a text document.

v Precise search (PRECISE FORM OF option); only the exact form and exact case
matches are searched for.

This index type needs the most disk space. Indexing and searching are slower than for
a linguistic index.

Tip
In a dual index, word fragments are always looked for as in a precise index; the
result is that matching for word fragments is case sensitive.

Ngram index

An ngram index analyzes text by parsing sets of characters. This analysis is not based
on a dictionary.

If your text contains DBCS characters, you must use an ngram index. No other index
type supports DBCS characters.

This index type supports “fuzzy” search, meaning that you can find character strings
that are similar to the specified search term. For example, a search for Extender finds
the mistyped word Extendrrs. You can also specify a required degree of similarity.

Note: Even if you use fuzzy search, the first three characters must match.

To make a case-sensitive search in an ngram index, it is not enough to specify the
PRECISE FORM OF keyword in the query, as you can for a dual or (by default) for a
precise index. This is because an ngram index normally does not distinguish between
the case of the characters indexed. You can make an ngram index case-sensitive,
however, by specifying the CASE_ENABLED option when the index is created. Then, in
your query, specify the PRECISE FORM OF keyword.

When the CASE_ENABLED option is used, the index needs more space, and searches
can take longer.

Chapter 2. Planning a text index 15

The SBCS CCSIDs supported by ngram indexes are 819, and 850. The DBCS CCSID’s
supported by ngram indexes are: 932, 942, 943, 948, 949,950, 970, 1363, 1381, 1383,
and 5039.

Although the ngram index type was designed to be used for indexing DBCS documents,
it can also be used for SBCS documents. However, it supports only TDS documents
and the document CCSID must be 850.

Note also that not all of the search syntax options are supported. See the summary of
rules and restrictions in “Chapter 10. Syntax of search arguments” on page 183.

Changing the text index type

If you decide that the index type you are using is not suitable, you can change it. When
you do so, however, the existing index is deleted, an empty index is created, and
entries for all the text documents in the column are added to the log table for
reindexing. The command that lets you do this is “CHANGE INDEX SETTINGS” on
page 113 .

You can choose to have the documents reindexed immediately or the next time
periodical indexing occurs.

Creating one or several text indexes for a table

“Chapter 4. Administration” on page 39 describes how to prepare tables so that you can
search in them for text. Before you do this preparation, however, you must decide to
create either one text index that is common to all text columns in a table, or several text
indexes, one for each text column.

Having a separate text index for each text column (a multi-index table) offers flexibility;
you can create a different index type for each text column. This flexibility also applies to
the other characteristics that are associated with a text column; that is, when its index is
periodically updated, and in which directory the index is stored. See “ENABLE TEXT
COLUMN” on page 126 for a description of these characteristics. Indexing can be a
time- and resource-consuming activity. By having a multi-index table, you can spread
this activity over a period of time by indexing the columns at different times.

If you do not need the flexibility offered by a multi-index table, a common index makes
Text Extender easier to maintain; if you need to change the index characteristics, you
have to make the change only once.

16 Text Extender: Administration and Programming

|

Tip
If you intend to index external files (see “Enabling external text files” on page 59),
the associated table must be a multi-index table.

Calculating the size of an index

The disk space you need for an index depends on the size and type of data to be
indexed, and on the index type. Text documents written with word processors need less
space because much of their content is taken up with control characters. As a guideline,
reserve disk space for about 0.7 times the size of the documents being indexed.

Chapter 2. Planning a text index 17

18 Text Extender: Administration and Programming

Chapter 3. Linguistic processing

Text Extender offers linguistic processing in these areas of retrieval:

v Indexing . When Text Extender analyzes documents to extract the terms to be stored
in the text index, the text is processed linguistically to extract the right terms for the
index. This is done to make retrieval as simple and as fast as possible.

v Retrieval . When Text Extender searches through the document index to find the
documents that contain occurrences of the search terms you have specified, the
search terms are also processed linguistically to match them with the indexed terms.

v Browsing . When you browse a document that has been found after a search,
linguistic processing is used to highlight the terms found in the document.

Linguistic processing for indexing

When Text Extender indexes and retrieves documents, it makes a linguistic analysis of
the text.

The linguistic processing used for indexing documents consists of:

Basic text analysis

Recognizing terms (tokenization)

Normalizing terms to a standard form

Recognizing sentences

Reducing terms to their base form

Stop-word filtering

Decomposition (splitting compound terms).

Table 1 shows a summary of how terms are indexed when the index type is linguistic
and no additional index properties have been requested.

Table 1. Term extraction for a linguistic index

Document text Term in index Linguistic processing

Mouse
Käfer

mouse
kaefer

Basic text analysis
(normalization)

mice
swum

mouse
swim

Reduction to base form

system-based

Wetterbericht

system-based,
system
base
wetterbericht,
wetter
bericht

Decomposition

a report on animals report
animal

Stop-word filtering. Stop words

are: a, on

© Copyright IBM Corp. 1995, 1998 19

By comparison, Table 2 shows a summary of how terms are indexed when the index
type is precise.

Table 2. Term extraction for a precise index

Document text Term in index Linguistic processing

Mouse
Käfer

Mouse
Käfer

No normalization

mice
swum

mice
swum

No reduction to base form

a report on animals report
animals

Stop-word filtering.
Stop words are: a, on

system-based
Wetterbericht

system-based
Wetterbericht

No decomposition

Additional processing occurs when the target index has been created using the
feature-extraction option and the document’s language is British or American English,
namely:

Extraction of proper names

Proper name occurrences are detected

A proper name type is assigned

A canonical form of the name is assigned

Extraction of domain terms

A canonical form of the term is assigned

Extraction of abbreviations

Some abbreviations are resolved

Abbreviations are linked with canonical names or terms

Consolidation of extraction results from different documents or extractors
(aggregation).

Basic text analysis

Text Extender processes basic text analysis without using an electronic dictionary.

Recognizing terms that contain nonalphanumeric characters

When documents are indexed, terms are recognized even when they contain
nonalphanumeric characters, for example: “$14,225.23”, “mother-in-law”, and
“10/22/90”.

The following are regarded as part of a term:

Accents

Currency signs

Number separator characters (like “/” or “·”)

20 Text Extender: Administration and Programming

The “@” character in e-mail addresses (English only)

The “+” sign.

Language-specific rules are also used to recognize terms containing:

v Accented prefixes in Roman languages, such as l’aventure in French.

v National formats for dates, time, and numbers.

v Alternatives, such as mission/responsibility, indicated in English using the “/”
character.

v Trailing apostrophes in Italian words like securita'. It is usual in typed Italian text,
when the character set does not include characters with accents, to type the accent
after the character; for example, “à” is typed “a'”.

Normalizing terms to a standard form

Normalizing reduces mixed-case terms, and terms containing accented or special
characters, to a standard form. This is done by default when the index type is linguistic,
or when a dual index is used with the search parameter STEMMED FORM OF. (In a
precise index the case of letters is left unchanged—searches are case-sensitive.)

For example, the term Computer is indexed as computer, the uppercase letter is
changed to lowercase. A search for the term computer finds occurrences not only of
computer, but also of Computer. The effect of normalization during indexing is that terms
are indexed in the same way, regardless of how they are capitalized in the document.

Normalization is applied not only during indexing, but also during retrieval. Uppercase
characters in a search term are changed to lowercase before the search is made.
When your search term is, for example, Computer, the term used in the search is
computer.

Accented and special characters are normalized in a similar way. Any variation of école,
such as École, finds école, Ecole, and so on. Bürger finds buerger, Maße finds masse.

If the search term includes masking (wildcard) characters, normalization is done before
the masking characters are processed. Example: Bür_er becomes buer_er.

Recognizing sentences

You can search for terms that occur in the same sentence. To make this possible, each
document is analyzed during indexing to find out where each sentence begins and
ends. The end of a sentence is indicated by a period, exclamation mark, or a question
mark, followed by a blank character. Many abbreviations ending in a period are ignored.

Chapter 3. Linguistic processing 21

Reducing terms to their base form (lemmatization)

In a linguistic or a dual index, you can search for mouse, for example, and find mice.
Terms are reduced to their base form for indexing; the term mice is indexed as mouse.
Later, when you use the search term mouse, the document is found. The document is
found also if you search for mice.

The effect is that you find documents containing information about mice, regardless of
which variation of the term mouse occurs in the document, or is used as a search term.

In the same way, conjugated verbs are reduced to their infinitive; bought, for example,
becomes buy.

Stop-word filtering

Stop words are words such as prepositions and pronouns that occur very frequently in
documents, and are therefore not suitable as search terms. Such words are in a
stop-word list associated with each dictionary, and are excluded from the indexing
process.

Stop word processing is case–insensitive. So a stop word about also excludes the first
word in a sentence About. This is normally not true for an ngram index which is case
insensitive unless it is created using an option making it case sensitive. The stop word
lists supplied in various languages can be modified.

Decomposition (splitting compound terms)

Germanic languages, such as German or Dutch, are rich in compound terms, like
Versandetiketten, which means mail (Versand) labels (Etiketten). Such compound
terms can be split into their components.

For a precise index, compound terms are indexed unchanged as one word. For a
linguistic or dual index, compound terms are split during indexing. When you search,
compound terms are split if you have a linguistic index, or if you use the STEMMED
FORM OF option with a dual index.

The components are found if they occur in any sequence in a document as long as
they are contained within one sentence. For example, when searching for the German
word Wetterbericht (weather report), a document containing the phrase Bericht über
das Wetter (report about the weather) would also be found.

An attempt is made to split a term if:

v The term’s language uses compound terms

v The term has a certain minimum length

v The term is not itself an entry in the electronic dictionary—compounds that are
commonly used like the German word Geschäftsbericht (business report) are in the
German dictionary.

22 Text Extender: Administration and Programming

If a split is found to be possible, the term’s component parts are then reduced to their
base form. Here are some examples from Danish, German, and Dutch:

Compound term Component parts

børsmæglerselskab børsmæglerselskab
børs
mægler selskab

Kindersprachen kindersprache
kind
sprache

probleemkinderen probleemkinderen
probleemkind
kind
probleem

Feature extraction

Feature extraction includes several processes designed to extract sets of terms from
documents that can be stored and used to expand a search term. A search for Clinton,
for example, could be expanded to search also for president. The relation between
these terms cannot be known in advance, as can the relation among synonyms, for
example. Only by analyzing the documents can these relations be discovered and
stored for search expansion.

The feature-extraction processes are:

v Proper-name extraction

v Domain-term extraction

v Abbreviation extraction

Proper-name extraction

The extraction of proper names is done only for English documents. It is done in two
processing steps:

1. Specific patterns for proper names are applied to the internal representation of a
document, as it exists after tokenization. There are different types of names, where
each type corresponds to a set of patterns recognizing it. Most patterns rely on the
initial uppercase writing of proper names in English. The following types are
supported, with pattern elements used to identify the name shown in parentheses:

Person names, such as (President) George Washington, (Prof.) John M.
Keynes, or (Mrs.) Billy Boy.

Organization names, such as International Business Machines (Corp.), the
Port Authority () or Pink Panther (Inc.).

Place names such as New York(, NY), Stuttgart(, Alabama), or the United
(Kingdom).

2. During indexing, sets of names are established that refer to the same item or
person. For example, President Bill Clinton, Mr. William Clinton and President

Chapter 3. Linguistic processing 23

Clinton are grouped together. A search for any one of these terms can be
expanded to search also for the other terms in the group.

Domain-term extraction

Domain terms are multi-word terms (at least two words) that occur in a document with a
certain minimal frequency. A set of similar terms occurring in a document, are stored
and used for expansion during a search. Abbreviations as part of a term are also taken
into account.

The following are examples of domain terms that have been extracted from a
document.

system board
enhanced mode
free reader
release candidate
UNIX platform
operating system
document editor
error message

Expansion can associate these stored terms with each part of a query term that
matches part of the extracted domain term. So, for example, a query term systems is
expanded to system system board operating system which may retrieve documents
not accessible through the unexpanded query.

Abbreviation extraction

This extractor looks for all uppercase abbreviations and tries to resolve them from the
local context. Text Extender supports a variety of abbreviation patterns in extraction. All
of the following would match the term International Business Machines Corporation
regardless of the frequency of occurrences within a document:

I.B.M.
IBM
IBM Corp.
IBM Corporation
I.B.M. Corporation

Linguistic processing for retrieval

Query processing aims at making search terms weaker so that the recall rate of
searches is increased, that is, more relevant documents are found. There are two basic
operations on query terms to achieve that goal; they are expansions and reductions. In
addition, some search term operations involve both expansion and reduction.

v Expansions take a word or a multi-word term from within a search term and
associate it with a set of alternative search terms, each of which may be a multi-word
term itself. The source expression and the set of target expressions form a Boolean

24 Text Extender: Administration and Programming

OR-expression in Text Extender’s query language. As expansions leave the source
term unchanged, they are to some extent independent of the index type. The
following are expansion operations:

Synonym expansion

Thesaurus expansion

Expansion of domain terms and abbreviations.

v Reductions change the search term to a form that is more general than the one
specified by the user. Because it changes the search term, reductions are dependent
on the index type to ensure that the changed term matches. Therefore, Text Extender
derives reduction information from the type of those indices or index that the query is
directed against. The following are reductions:

Lemmatization (see “Reducing terms to their base form (lemmatization)” on
page 22)

Normalization

Stop words.

v Some operations both change the search term and expand it with a set of alternative
terms. Due to the inherent reduction, these again depend on information contained in
the index. The following operations fall into this class:

Character and word masking

Names expansion

Sound expansion.

Synonyms

Synonyms are semantically related words. Usually, these words have the same word
class or classes (such as noun, verb, and so on) as the source term. Synonyms are
obtained from a separate file for each language. They are always returned in base form
and, up to a few exceptions, are not multi-word terms. Search term words are always
reduced to their base form when looking up synonyms. Here are some examples of a
word’s synonyms in three languages:

v English

word:
comment remark statement utterance term expression
communication message assurance guarantee warrant bidding command
charge commandment dictate direction directive injunction instruction
mandate order news advice intelligence tidings gossip buzz cry
hearsay murmur report rumor scuttlebutt tattle tittle-tattle
whispering

v French

mot:
expression parole terme vocable lettre billet missive epître
plaisanterie

v German

Chapter 3. Linguistic processing 25

Wort:
Vokabel Bezeichnung Benennung Ausdruck Begriff Terminus
Ehrenwort Brocken Bekräftigung Versprechen Zusicherung Gelöbnis
Beteuerung Manneswort Schwur Eid Ausspruch

Thesaurus expansion

A search term can be expanded using thesaurus terms that can be reached through a
specific relation. These relations may be hierarchical (such as the “Narrower term”
relation), associative (such as a “Related term” relationship), or it may be a synonym
relationship. A thesaurus term may be, and often is, a multi-word term.

“Thesaurus concepts” on page 31 describes thesaurus expansion in more detail.

Sound expansion

Sound expansion expands single words through a set of similarly sounding words. It is
particularly useful whenever the exact spelling of a term to be searched is not known.

Domain terms and abbreviations

A domain term or an abbreviation as part of the search term is expanded with all
domain terms or abbreviations stored in the feature index that have the same canonical
term. Note that both source term and target terms may be multi-word terms.

Names expansion

A name variant as part of a search term is expanded using all the canonical names that
have been identified in indexed documents. This is possible because Text Extender
stores canonical names in its index. The source term, that is, a name variant, may be a
multi-word term, and there may be any number of variants in a search term.

Note that, due to space optimization, a canonical name occurring very seldomly may be
deleted from the future index in some cases. This has the effect that this expansion is
not done, but does not affect your search otherwise.

Name expansion is controlled through the various name types mentioned above. You
can also request that all name expansions be done.

Note that stop-word extraction, lemmatization, and normalization are not applied to
name variants or to canonical names.

Character and word masking

Masking is a non-linguistic expansion technique, where a regular expression is replaced
with the disjunction of all indexed words that satisfy it. Neither a masked expression nor
any of its expansions is subject to lemmatization, stop-word extraction, or any of the

26 Text Extender: Administration and Programming

other expansion techniques. This may have the effect that, for example, an irregular
verb form like swum, when searched with the masked term swu*, is matched on a
precise index, but not on a linguistic index, where this form has been lemmatized to
become swim.

Linguistic processing for browsing

Linguistic processing is also used when you browse documents that have been found
after a search. It is done in two stages:

1. Basic text analysis: normalization and term expansion

2. Extended matching.

Stage 1: Normalization and term expansion

The first stage is done without using an electronic dictionary.

Normalization

Normalization is described in “Basic text analysis” on page 20.

Term expansion

Term expansion is the inverse of reducing a term to its base form. If the index is
linguistic, or if the index is dual and the search argument contains the option for
linguistic processing STEMMED FORM OF, then search terms are reduced to their
base form before the search begins.

Similarly, if you have a linguistic or a dual index, a document’s terms are reduced to
their base form before being added to the index. Documents are therefore found on the
basis of a term’s base form.

When you browse a found document, however, you expect to see all variants of the
base form highlighted. To highlight these variants, the found base term is expanded.

All variants (inflections) for each term found in the dictionaries can be produced. These
are the inflections produced for the German word gehen (to go):

gegangen geh gehe gehen gehend gehest gehet gehst
ging ginge gingen gingest ginget gingst gingt geht

Stage 2: Extended matching

The second stage is extended matching, which can be used on the rare occasions
when basic text analysis and normalization cannot highlight a found term. Extended
matching finds the more obscure matches.

Chapter 3. Linguistic processing 27

You choose extended matching by specifying DES_EXTENDED as a parameter in the
DesOpenDocument API function.

Extended matching uses the same linguistic processing that is done while linguistically
indexing.

These are the occasions when extended matching can find additional matches:

v The search term includes masking characters and is an inflection.

Masking characters are processed and stem reduction is done for the search term
and the corresponding documents are found. Without extended matching, text that
matches the specified search criteria would not be highlighted.

Example: A document contains the inflected term swam.

– During indexing this term is reduced to swim.

– If the search term is swi%, the above document is found, because the stem
reduction is swim.

– Without extended matching, only those words that match the term swi% are
highlighted. With extended matching, the inflected term swam is also highlighted.

v If compound words have been indexed.

When a document in a Germanic language contains a compound word and is
indexed using a linguistic index, the document index retains the parts of the
compound word and the compound word itself. When you search for a part of a
compound word, the documents containing the compound word are found, but
without extended matching the word is not highlighted.

Example: A document contains the German word Apfelbaum (apple tree).

– During linguistic indexing, this word is reduced to apfel and baum.

– When the index is searched for the term baum, the term Baum and the document
that contains it is found through the index.

– Without extended matching, no terms are highlighted because the document
contains Apfelbaum, but not Baum. With extended matching, the Apfelbaum
compound is split and the Baum part is found for highlighting.

v If words are hyphenated at the end of a line.

If the hyphen is inserted automatically by a word processor, the hyphenated word
can be found and highlighted. If, however, the hyphen is typed by the user, the
documents containing the word are found, but without extended matching the word is
not highlighted.

Example: A document contains the hyphenated word container, broken at the end of
a line like this:

Another name for a folder is a con-
tainer.

– During indexing the word is normalized to container.

– When the index is searched for the term container, the term and the document
that contains it is found.

28 Text Extender: Administration and Programming

– An attempt is made to highlight any words in the document that match container.
Without extended matching, a match is found only if the hyphen in con-tainer
was inserted by the text processor, and not typed by a user.

Linguistic functions for the supported languages

The following table shows how languages are supported linguistically by Text Extender.
The treatment of proper names, abbreviations, and domain terms is available for US
and UK English only.

Table 3. Linguistic functions used for the various languages

Language Linguistic functions

Brazilian No decomposition

Canadian French No decomposition

Catalan No decomposition

Danish All functions

Dutch All functions

Finnish Basic text analysis, normalization,

dehyphenation, stop-word filter.

French No decomposition

German All functions

Icelandic Reduction to base form, dehyphenation,

stop-word filter, and part-of-speech filter are not

supported.

Italian No decomposition

Norwegian Bokmal All functions

Norwegian Nynorsk No synonyms

Norwegian Bokmal and Nynorsk No synonyms

Portuguese No decomposition

Spanish No decomposition

Swedish All functions

Swiss German All functions

UK English No decomposition

US English No decomposition

Chapter 3. Linguistic processing 29

Dictionaries, stop-word lists, and abbreviation lists

The following table shows the names of the files that are provided as dictionaries,
stop-word lists, and lists of abbreviations.

The files are distinguished by their extension:

Content Extension

Dictionary DIC

Stop-word list STW

Abbreviation list ABR

Table 4. Linguistic functions used for the various languages

Language File name Dictionary

Stop-word

list

Abbreviation

list

Brazilian brazil X X

Canadian French canadien X X X

Catalan catala X X

Danish dansk X X X

Dutch nederlnd X X X

Finnish suomi X X

French francais X X X

German deutsch X X X

Icelandic islensk X X

Italian italiano X X X

Norwegian Bokmal norbook X X X

Norwegian Nynorsk norntn X X

Portuguese portugal X X

Spanish espana X X X

Swedish svensk X X X

Swiss German dschweiz X X X

UK English uk X X X

US English us X X X

30 Text Extender: Administration and Programming

Thesaurus concepts

Text Extender lets you expand a search term by adding additional terms from a
thesaurus that you have previously created. A thesaurus is a controlled vocabulary of
semantically related terms that usually covers a specific subject area.

Figure 5 shows an example of the structure of a very small thesaurus.

The basic components of a Text Extender thesaurus are “terms” and “relations”.

Terms

A term is a word or expression denoting a concept within the subject domain of the
thesaurus. For example, the following could be terms in one or more thesauri:

data processing

Figure 5. An extract from a thesaurus

Chapter 3. Linguistic processing 31

helicopter

gross national product

Terms are classified as either descriptors or nondescriptors. A descriptor is a term in a
class of synonyms that is the preferred term for indexing and searching. The other
terms in the class are called nondescriptors. For example, outline and shape are
synonymous, where shape could be the descriptor and outline a nondescriptor.

Relations

A relation is an expression of an association between two terms. Relations have the
following properties:

v The depth of a relation is the number of levels over which the relation extends. This
is specified in the search syntax using the COUNT keyword.

v The directionality of a relation specifies whether the relation is true equally from one
term to the other (bidirectional), or in one direction only (unidirectional).

Thesaurus expansion can use every relation defined in the thesaurus. You can also
specify the depth of the expansion. This is the maximum number of transitions from a
source term to a target term. Note however that the term set may increase
exponentially as the depth is incremented.

The following example shows those terms that are newly added as the depth increases.

health

health service, paramedical, medicine, illness

allergology, virology, veterinary medicine, toxicology, surgery,
stomatology, rhumatology, radiotherapy, psychiatry, preventive
medicine, pathology, odontology, nutrition, nuclear medicine,
neurology, nephrology, medical check up, industrial medicine,
hematology, general medicine, epidemiology, clinical trial,
cardiology, cancerology

These are the relation types:

v Associative

v Synonymous

v Hierarchical

v Other

You can give each relation type a name, such as BROADER TERM, which can be a
mnemonic abbreviation, such as BT. The common relations used in thesaurus design
are:

v BT or BROADER TERM

v NT or NARROWER TERM

v RT or RELATED TERM

v SYN or SYNONYM

v USE

32 Text Extender: Administration and Programming

v UF or USE FOR

Associative

An associative relation is a bidirectional relation between descriptors, extending to any
depth. It binds two terms that are neither equivalent nor hierarchical, yet are
semantically associated to such an extent that the link between them may suggest
additional terms for use in indexing or retrieval.

Associative relations are commonly designated as RT (related term). Examples are:

dog RT security

pet RT veterinarian

Synonymous

The synonymous relation is unidirectional between two terms that have the same or
similar meaning. In a class of synonyms, one of the terms is designated as the
descriptor. The other terms are then called nondescriptors.

The common designation USE leads from a given nondescriptor to its descriptor. The
common designation USE FOR leads from the descriptor to each nondescriptor. For
example:

feline USE cat

lawyer UF advocate

Hierarchical

A hierarchical relation is a unidirectional relation between descriptors that states that
one of the terms is more specific, or less general, than the other. This difference leads
to representation of the terms as a hierarchy, where one term represents a class, and
subordinate terms refer to its member parts. For example, the term “mouse” belongs to
the class “rodent”.

BROADER TERM and NARROWER TERM are hierarchical relations. For example:

car NT limousine

equine BT horse

Other

A relation of type other is the most general. It represents an association that does not
easily fall into one of the other categories. A relation of type other can be bidirectional
or unidirectional, there is no depth restriction, and relations may exist between
descriptors and nondescriptors.

This relation is often used when added new terms to a thesaurus until the proper
relation with other terms can be determined.

Chapter 3. Linguistic processing 33

Creating a thesaurus

There is a sample English thesaurus compiler input file desthes.sgm stored in the
\samples directory. A compiled version of this SGML input is already stored in the \dict
subdirectory of the installation path. The files belonging to this thesaurus are called
desthes.th1, desthes.th2, ..., and desthes.th6.

To create a thesaurus, first define its content in a file, then compile the file by running:

txthesc filename [-v]

The optional -v flag writes an internal model of the thesaurus to stdout.

TXTHESC produces thesaurus files having the extension th1 to th6. To access a
thesaurus using Text Extender, move these files into the directory where the dictionaries
are stored.

Specify the content of a thesaurus using the Standard Generalized Markup Language
(SGML). Figure 6 on page 35 shows the SGML definition of the thesaurus shown in
Figure 5 on page 31.

34 Text Extender: Administration and Programming

|

|
|
|

<thesaurus>
<!----------- Header ------------------>
<header>
<thname>thesc example thesaurus</thname>
<!----- Relation Definitions ---------->
<rldef>

<rls>
<rlname>Related Term</rlname>
<rltype>associated</rltype>
</rls>

<rls>
<rlname>Narrower Term</rlname>
<rltype>hierarchical</rltype>
</rls>

<rls>
<rlname>Instance</rlname>
<rltype>hierarchical</rltype>
</rls>

<rls>
<rlname>Synonym</rlname>
<rltype>synonymous</rltype>
</rls>
/
</rldef>
<!-- End of Relation Definitions -->
</header>
<!----------- End of Header ----------->

Figure 6. The definition of a simple thesaurus (Part 1 of 3)

Chapter 3. Linguistic processing 35

<!----------- Entry ------------------->
<en> 2, 1
<t>database management system</t>
<r>
<l>Narrower Term
<t>oo database management system</t>
<t>relational database management system</t>
</l>

<l>Synonym
<t>DBMS</t>
</l>

<l>Related Term
<t>document management system</t>
</l>

<l>Instance
<t>database</t>
</l>

</r>
</en>
<!----------- Entry ------------------->
<en> 5, 1
<t> relational database management system </t>
<r>
<l>Narrower Term
<t>object relational database management system</t>
</l>

<l>Instance
<t>DB2</t>
</l>

</r>
</en>
<en> 3, 1

Figure 6. The definition of a simple thesaurus (Part 2 of 3)

36 Text Extender: Administration and Programming

The following diagram shows the syntax rules to follow when creating a thesaurus.

ÊÊ <thesaurus> <header> <thname> thesaurus-name </thname> Ê

Ê » relation-definition </header> » thesaurus-entry Ê

Ê </thesaurus> ÊÍ

relation-definition

<!----------- Entry ------------------->
<en> 6, 1
<t>object oriented database management system</t>
<r>
<l>Narrower Term
<t>object relational database management system</t>
</l>

</r>
</en>
<!----------- Entry ------------------->
<en> 4, 1
<t>document management system</t>
<r>
<l>Synonym
<t>library</t>
</l>

</r>
</en>
<!----------- Entry ------------------->
<en> 9, 1
<t>library</t>
</en>
<!----------- Entry ------------------->
<en> 10, 1
<t>DB2</t>
</en>
<!----------- Entry ------------------->
<en> 11, 1
<t>database</t>
</en>
</thesaurus>

Figure 6. The definition of a simple thesaurus (Part 3 of 3)

Chapter 3. Linguistic processing 37

<rls> <rlname> relation-name </rlname> Ê

Ê <rltype> ASSOCIATIVE </rltype>
SYNONYMOUS
HIERARCHICAL
OTHER

</rls>

thesaurus-entry

<en> unique-number 1 <t> term </t>
2

<r> Ê

Ê » »<l> relation <t> term </t> </l> </r> </en>

38 Text Extender: Administration and Programming

Chapter 4. Administration

This chapter begins with a short section on managing a Text Extender server, but is
mainly concerned with the administration of Text Extender clients. It describes how to
prepare text documents for use by Text Extender, and how to maintain text indexes.
This chapter assumes that the text documents you intend to search for are already
stored in one or more table columns.

If you prefer, at this stage, to test Text Extender’s search capabilities by working with a
sample database containing text documents that are already prepared, you can skip to
“Preparing a sample database containing enabled text” on page 48, and then continue
with “Chapter 5. Searching with Text Extender’s UDFs” on page 77.

Tips

1. This version of Text Extender cannot work with indexes created using an
earlier release. Use the migration utility provided with Text Extender to migrate
your indexes.

2. If you are using DB2 UDB V5 Extended Enterprise Edition, and have tables
partitioned among several nodes, there may be a difference between the
system time of the nodes (when one of the nodes is on summer time, for
example). To prevent problems, ensure that the difference between the
system time settings of the nodes is within the value of DB2’s
MAX_TIME_DIFF setting. In Windows NT, use the NET TIME command to
synchronize the system time settings.

Text Extender instances

Text Extender has the same instance concept as DB2 V5.2. Each instance that you
create offers an isolated administration environment in which you can maintain indexes,
storing them in separate directories.

To determine with which instance you want to work:

1. Set the appropriate environment variable:

set DB2INSTANCE = instance-name

2. Start DB2 V5.2

3. Start Text Extender.

Creating a Text Extender instance

To create an instance in a UNIX single-node environment, enter:

txicrt instance-name db2-instance-name

© Copyright IBM Corp. 1995, 1998 39

|
|
|
|
|
|
|

|

|

|

where instance-name is the user ID of the instance owner, and db2-instance-name is
the name of the DB2 V5.2 instance to be associated with it.

The command in Windows NT is:

txicrt db2-instance-name

To create instances in a multinode environment, see “TXICRT” on page 150.

The command to drop an instance in UNIX systems is:

txidrop instance-name db2-instance-name

The command to drop an instance in Windows NT systems is:

txidrop instance-name

Managing a Text Extender server

Use the Text Extender server administration commands to do the following:

v Start the server

v Display the status of the server

v Stop the server.

Start the server

To start the server:

1. In UNIX systems only, log on to the instance owner user ID.

2. Enter the following command:

txstart

Display the status of the server

To display the status of the server, enter the following command:

txstatus

Stop the server

To stop the server, enter the following command:

txstop

40 Text Extender: Administration and Programming

|
|

|

|

|

|

||

|

||

Overview of the client administration tasks

Text Extender must already be started at the server before you can use the client
administration commands. If you are in doubt, ask an administrator to check whether
Text Extender has been started by entering txstatus at the server where the Text
Extender instance is installed.

If you have just installed Text Extender, do the tasks in this chapter in sequence, up to
and including “Enabling a text column” on page 53. The remainder of the sections
concern index maintenance.

In this chapter you need a DB2 V5.2 database to work with. If you do not yet have a
database, create one now.

Each task includes a summary showing when to do it, the command to use, and the
required authorization. Refer to “Chapter 7. Administration commands for the client” on
page 111 for a description of the command parameters.

You do the client administration tasks by entering commands at the operating system
prompt. These are similar to DB2 commands, but instead of preceding them with db2,
you precede them with db2tx.

Administration overview
v Starting administration:

Do these tasks before any of the other administration tasks:

1. Start the Text Extender command line processor (optional)

2. Connect to a database (optional)

v Preparing text documents for searching:

Do these tasks in the sequence shown before you search:

1. Change the text configuration (optional)

2. Modify the stop-word and abbreviation files (optional)

3. Enable a database for use by Text Extender

4. Create sample tables (optional)

5. Enable a text table for use by Text Extender (optional)

6. Enable a text column for use by Text Extender

7. Enable external text files for use by Text Extender (optional)

v Reversing the text preparation process:

Disable a text column from use by Text Extender

Disable external text files from use by Text Extender

Disable a text table from use by Text Extender

Disable a database from use by Text Extender

v Maintaining text indexes:

Chapter 4. Administration 41

Update an index

Change the settings of an index

Reset the status of an index

Delete index events

v Getting information:

Display enabled status information

Display the settings of the environment variables

Display the text configuration settings

Display the index status

Display error events

Display the index settings

Display the text settings for a column

v Working with the Text Extender catalog view

v Tracing errors

v Backing up and restoring indexes and enabled databases

Before you begin

Tips for UNIX users

v Remember to run your Text Extender profile. You can do this explicitly, but it is
easier to run it automatically by including it in your shell profile. It is described
in “Chapter 14. Configuring Text Extender” on page 235.

v To avoid possible errors occuring during indexing, check that the LANG
environment variable is correctly set.

During these administration steps, you make decisions based on your knowledge of
Text Extender concepts. So before you begin, you should know the following:

v The concept of stop word lists and abbreviation lists, and whether you want to modify
them before you begin indexing (see “Why text documents need to be indexed” on
page 11).

v Whether to create one index for the whole text table, or a separate index for each
text column (see “Creating one or several text indexes for a table” on page 16).

v The CCSIDs, the languages, and the formats of the text in which you intend to
search (see “Information about text documents” on page 237), and the text
configuration settings for CCSID, LANGUAGE, and FORMAT that set the default
values for these parameters (see “Text characteristics” on page 236).

v The type of text indexes you will use (see “Chapter 2. Planning a text index” on
page 11), and the default index type set in the text configuration settings (see “Index
characteristics” on page 236).

42 Text Extender: Administration and Programming

|
|

v The directory where you intend to store indexes and the value of the text
configuration setting for DIRECTORY that sets the default value for this parameter
(see “Index characteristics” on page 236).

v The default database name in the DB2 environment variable DB2DBDFT (see
“Environment variables” on page 235).

Starting administration

This section describes what you must do at the start of each administration session.

Starting the Text Extender command line processor (optional)

Summary

When At the beginning of each administration session.

Command
db2tx

Authorization
Any

Enter the following command to start the Text Extender command line processor:

db2tx

The db2tx prompt is displayed; all subsequent commands are interpreted as Text
Extender commands.

db2tx =>

To leave this mode, enter QUIT.

For Windows 3.1, open the Text Extender folder and then double-click on the Command
Line Processor icon.

For Windows 95, you can use the db2tx command as described above, or you can click
the Start button, point to Programs, point to DB2 Client for Windows 95, and then click
DB2 Command Window.

If you leave out this step, you can issue Text Extender commands directly from the
operating system prompt by prefixing them with db2tx. Here is an example of a
command issued from the operating system prompt:

db2tx enable database

Chapter 4. Administration 43

Tip
If you are doing administration from a client, you must be in the Text Extender
command environment and use the full form of the connect statement, specifying
your user ID and password.

db2tx => connect user user-id using password

Connecting to a database

Summary

When Optional. To start an administration session with a database other than
the default specified in the DB2DBDFT environment variable.

Command
CONNECT

Authorization
CONNECT on the database

Before you can issue further administration commands in a Text Extender session, you
must be connected to a database. You can connect to a database explicitly using the
Text Extender CONNECT TO command. If you issue an administration command
without being connected to a database, Text Extender connects you to the default
database specified in the DB2DBDFT environment variable.

db2tx "CONNECT TO sample-database"

The following is displayed (as seen on AIX):

>------------Database Connection Information ------------<
Database Product = DB2/6000 05.02.0000
User = user-name
Database alias = sample-database

Later administration examples assume that you are connected to the database that
contains the sample table described in “Creating a sample table” on page 47.

Note: If you subsequently issue a Text Extender command outside of the command
processor by prefixing it with db2tx, the current database connection is lost and
a new connection is made to the default database.

If you are using an OS/2 client, and this is the first time that you are connecting to a
database after you have started the system, you are prompted for a user ID and a
password by User Profile Management (UPM). If you are already logged on, UPM takes
the user ID and password from this session and tries to connect to the remote database
on the server.

44 Text Extender: Administration and Programming

|
|
|
|

Preparing text documents for searching

This section describes how to prepare a database so that its text tables can be
searched by Text Extender. The steps are:

1. Change the text configuration (optional)

2. Modify the stop-word and abbreviation files (optional)

3. Enable a database for use by Text Extender

4. Create sample tables (optional)

5. Enable a text table for use by Text Extender (optional)

6. Enable a text column for use by Text Extender

7. Enable Text Extender to search in external text files (optional).

An extract from the sample table is shown in Table 6 on page 78.

If you have just installed Text Extender, do these steps in sequence.

Changing the text configuration

Summary

When When you want to make different default settings used for creating and
updating an index.

Command
CHANGE TEXT CONFIGURATION

Authorization
SELECT

When you create an index, the following parameters described in “Text configuration
settings” on page 236, are set for that index:

v Coded character set ID

v Language

v Format

v Index type

v Update frequency

v Index directory

v Update index option

v Commit count

When Text Extender is first installed, default values for these settings are established in
the text configuration. To display the current text configuration values, see “Displaying
the text configuration settings” on page 68.

Chapter 4. Administration 45

To change the text configuration to be used as default values when indexes are
created, enter:

db2tx "CHANGE TEXT CFG USING settings"

Examples

To change the default index type and the default index directory for future indexes:

db2tx "CHANGE TEXT CONFIGURATION USING
INDEXTYPE linguistic
INDEXOPTION feature_extraction
DIRECTORY DB2TX_INSTOWNER/db2tx/indexes"

To change the default update frequency for indexes so that they are updated at 12:00
or 15:00, on Monday to Friday, if there is a minimum of 100 text documents queued:

db2tx "CHANGE TEXT CONFIGURATION USING
UPDATEFREQ min(100) d(1,2,3,4,5) h(12,15) m(00)"

To stop the periodic updating of an index:

db2tx "CHANGE TEXT CONFIGURATION USING
UPDATEFREQ none"

Modifying the stop-word and abbreviation files

Summary

When If possible, only once when Text Extender is first installed. Optional.

Command
Your own editor command

Authorization
None

There is one stop-word file and one abbreviation file per language. To understand the
implications of editing these files, see “Why text documents need to be indexed” on
page 11 .

Tip
Before you begin editing one of these files, make a backup copy.

The stop word and abbreviation files on OS/2 and Windows systems are in:

drive:\dmb\db2tx\dict

On AIX, HP-UX, and SUN-Solaris systems, they are in:

DB2TX_INSTOWNER/db2tx/dicts

46 Text Extender: Administration and Programming

Use your own editor to edit these files. They use CCSID 850, so ensure that your
application CCSID is also set to 850 before you begin.

Remove words and abbreviations that you want to be indexed. Add words that you do
not want to be indexed.

Creating a sample table

Summary

When Optional. To create a table that can be used in later examples.

Command
db2 "CREATE TABLE ..."

Authorization
SYSADM or DBADM

This section describes how to create table DB2TX.SAMPLE that is used in many of the
examples in this chapter, and in many of the examples in “Chapter 5. Searching with
Text Extender’s UDFs” on page 77.

Alternatively, you can run TXVERIFY and TXSAMPLE to automatically create sample
tables to be enabled for each index type. See “Preparing a sample database containing
enabled text” on page 48. If you do this, however, you can no longer use the
DB2TX.SAMPLE table name as shown in the examples of administration commands to
enable a text table and to enable a text column.

If you decide not to use TXSAMPLE to automatically create the sample tables, make
and run a command script to do the following:

1. To create the sample table:

db2 "CREATE TABLE db2tx.sample (
docid VARCHAR(30),
author VARCHAR(50),
subject VARCHAR(100),
date TIMESTAMP,
comment LONG VARCHAR)"

2. To fill the table with data:

db2 "import from \"dessamp.imp\" of del insert into db2tx.sample"

The file DESSAMP.IMP is in the /samples subdirectory in the directory in which Text
Extender is installed.

Chapter 4. Administration 47

Preparing a sample database containing enabled text

Text Extender offers utilities for preparing a sample database. They are useful for
quickly preparing text for testing Text Extender’s search capabilities immediately after
installation, and for general test purposes at any time after that.

These utilities are in the following directories:

v For OS/2 and Windows NT: DMBMMPATH\samples

where DMBMMPATH is the installation path.

v For AIX, HP-UX, and SUN-Solaris: $HOME/db2tx/sample

To prepare a sample database, either at the server or at a client workstation:

1. At the operating system prompt, run:

TXVERIFY [database-name] [user-id] [password]

This command creates and enables a sample database. The user ID and password
are required only if you are working from a client workstation.

2. At the operating system prompt, run:

TXSAMPLE [database-name] [user-id] [password]

This command does the following:

a. Connects to the default or specified database

b. Creates the following tables:

v db2tx.sample_p for enabling with index type precise

v db2tx.sample_l for enabling with index type linguistic

v db2tx.sample_lfe for enabling with index type linguistic (feature extraction)

v db2tx.sample_d for enabling with index type dual

v db2tx.sample_n for enabling with index type ngram

v db2tx.sample_nce for enabling with index type ngram (case enabled)

c. Imports sample English documents to fill the table

d. Enables a text column in the table, with the index type specified above

e. Waits for the text index to be built.

48 Text Extender: Administration and Programming

Enabling a database

Summary

When Once for each database that contains columns of text to be searched in.

Command
ENABLE DATABASE

Authorization
SYSADM or DBADM

To enable the connected database, enter:

db2tx "ENABLE DATABASE"

This command takes no parameters. It prepares a database for use by Text Extender.

This command also declares user-defined functions (UDFs) and user-defined distinct
types (UDTs) to DB2. These are the SQL functions that you use later to search for text.
They are described in “Chapter 9. UDTs and UDFs” on page 167. These declarations
apply to all future sessions.

A catalog view called TEXTINDEXES is also created that later keeps track of enabled
text columns. This is described in “Working with the Text Extender catalog view” on
page 72 .

This command creates text configuration information for the database, containing
default values for index, text, and processing characteristics. They are described in
“Text configuration settings” on page 236.

Once a database has been enabled, it remains so until you disable it. To reverse the
changes made by ENABLE DATABASE, refer to “Disabling a database” on page 63.

SQL search
functions
provided by
Text Extender

UDFs and UDTs

TEXTCOLUMNSEnabled database

Catalog
view

Figure 7. Enabling a database

Chapter 4. Administration 49

|
|
|

Tips

1. If the environment variable DB2TX_INSTOWNER is used, it must be set to
the name of the instance owner before the database is enabled. This is
particularly important for UNIX users because, in UNIX, this variable is set by
default.

2. If you later decide to drop an enabled database, you should first disable it to
ensure that the declared UDFs, the catalog view, and so on, are removed.

Enabling a text table

Summary

When Optional. Once to create a common index for all text columns in the
table.

Command
ENABLE TEXT TABLE

Authorization
ALTER, SELECT, UPDATE on the table

This step determines whether you have one common index for all the text columns in
the table, or several indexes, that is, a separate index for each text column. See
“Creating one or several text indexes for a table” on page 16 for further information.

To have a common index, run ENABLE TEXT TABLE, then run ENABLE TEXT
COLUMN for each text column. To have separate indexes, skip ENABLE TEXT TABLE,
and run only ENABLE TEXT COLUMN for each text column. This is shown in
Figure 8 and Figure 9 on page 53.

During this step, Text Extender creates an empty text index that is common to all
subsequently enabled text columns. You specify the type of index, how frequently the
index is to be updated, and in which directory the index is to be stored. Default values
for any parameters that you do not specify are taken from the text configuration
settings.

The examples in other chapters assume that the index type is dual.

50 Text Extender: Administration and Programming

|
|

Tip
If a setting, such as the index update frequency, should be the same for most text
tables, it may be more convenient to use text configuration information to specify
default settings. See “CHANGE TEXT CONFIGURATION” on page 115.

This step also creates an empty log table for recording which documents in the table
are added, changed, or deleted. Triggers are created to keep the log table updated.

You cannot run ENABLE TEXT TABLE for a table that already contains a text column
that has been enabled for Text Extender.

To delete an index created by ENABLE TEXT TABLE, see “Disabling a text table” on
page 62 .

Tip
If you later decide to drop an enabled text table, you should first disable it to
ensure that the index, the log table, and so on, are removed.

Examples

The following example enables text table DB2TX.SAMPLE:

db2tx "ENABLE TEXT TABLE db2tx.sample"

Default values for the index characteristics are taken from the text configuration
settings.

The next example explicitly sets the characteristics of the common index that is created
for the table.

For a UNIX server:

db2tx "ENABLE TEXT TABLE db2tx.sample
INDEXTYPE linguistic
UPDATEFREQ min(100) d(1,2,3,4,5) h(12,15) m(00)
DIRECTORY DB2TX_INSTOWNER/db2tx/indexes"

For an OS/2, or Windows NT server:

db2tx "ENABLE TEXT TABLE db2tx.sample
INDEXTYPE linguistic
UPDATEFREQ min(100) d(1,2,3,4,5) h(12,15) m(00)
DIRECTORY \dmb\db2tx\indexes"

The example sets the index type and the index directory, and then sets the index
update frequency so that the index is updated at 12:00 or 15:00, on Monday to Friday,
if there is a minimum of 100 text documents queued.

Chapter 4. Administration 51

A

A

A

B

B

B

Text

Text

Text

Text

Text

Text

Empty

Column
A

index

Column
A

index

Column
B

index

Common index

Common index

Common index

Log table

Log table

Log table

1. Enable text table

2. Enable text column A

3. Enable text column B

Figure 8. Creating a common index for all text columns in a table

52 Text Extender: Administration and Programming

Enabling a text column

Summary

When Once for each column that contains text to be searched.

Command
ENABLE TEXT COLUMN

Authorization
ALTER, SELECT, UPDATE on the table

Tip
If a setting, such as the index update frequency, should be the same for most text
columns, use the text configuration information to specify default settings.

To reverse the changes made by ENABLE TEXT COLUMN, use the DISABLE TEXT
COLUMN command. To disable all enabled text columns in a table, use the DISABLE
TEXT TABLE command.

When you enable a text column, a handle column is added to the table, the
documentation information is set, a log table is created, and an index is created,

A

A

B

B

Text

Text

Text

Text

Column A
index

Column A
index

Column B
index

Separate
column index

Separate
column indexes

Log table

Log table

1. Enable text column A

2. Enable text column B

Figure 9. Creating a separate index for each text column

Chapter 4. Administration 53

A handle column is added

During this step, Text Extender adds to the table a 60-byte VARCHAR handlecolumn –
a column that contains handles associated with the text column that is being enabled.
Handles contain information about the text in the associated text column and in the
associated external files. This information includes a unique document ID, the
document’s language, format, and CCSID, and the index name. They are described in
“The sample table DB2TX.SAMPLE” on page 78.

Tip
This version of Text Extender cannot work with indexes created using an earlier
release. You must disable and then re-enable all Text Extender-enabled
databases and tables.

The column containing text blocks is COMMENT. Before you can search through the
text in this column, you must prepare the database and the COMMENT column for use
by Text Extender.

After this preparation step, the DB2TX.SAMPLE table contains an additional column for
handles.

Note: When you subsequently search for text, you specify the handle column, not the
text column, as the column to be searched.

The document information is set

You specify the type of text documents you typically store in this text column: their
format (such as ASCII), their language, and their CCSID. Defaults for this information
can be specified in the text configuration settings. See “Text configuration settings” on
page 236 .

DOCID

Data

DB2TX.SAMPLE

DATE

Data

AUTHOR

Data

SUBJECT

Data

COMMENT

Text

Figure 10. Structure of the DB2TX.SAMPLE table—before enabling

DOCID

Data

DB2TX.SAMPLE

DATE

Data

AUTHOR

Data

SUBJECT

Data

COMMENT

Text

COMMENTHANDLE

Text handles

Figure 11. Structure of the DB2TX.SAMPLE table—after enabling

54 Text Extender: Administration and Programming

|

|
|
|

A log table is created

During this step, a log table and a view called LOGIXnnnnnn is created, where
IXnnnnnn is the index name (available from the catalog view). To optimize performance
and the use of disk space, you can specify a tablespace to be used for the log tables.

Triggers are also created that add information to the log table whenever a document in
the column is added or changed. This information causes these documents to be
indexed the next time indexing takes place.

If external files are added or changed, these triggers are not aware of the changes. In
such cases, to cause the triggers to add the information to the log table, use an
UPDATE statement as shown in the example in “Updating an index for external files” on
page 64 .

If errors occur during indexing, such as when a document queued for indexing could not
be found, so-called error events are added to the log table and can be displayed, as
described in “Displaying error events” on page 70.

Tip
If you run out of log space in this step, see “Enabling a text column in a large
table” on page 56 for possible solutions.

In partitioned databases, each table is assigned to a tablespace and a nodegroup. It is
important that the log table is assigned to a tablespace that belongs to the same
nodegroup as the enabled user table. Text Extender checks this during the ENABLE
command.

An index is created

If you intend to have a separate index for each text column, that is, you have skipped
the step ENABLE TEXT TABLE, Text Extender creates a separate index for the text
column during this step. You specify the type of index, how frequently the index is to be
updated, and in which directory the index is to be stored. If, on the other hand, you
intend to have one index for the whole table, then you have already run ENABLE TEXT
TABLE and specified the index parameters; they are ignored if you repeat them here.

Use the UPDATEINDEX keyword to determine whether the indexing of the text
documents in the specified text column begins immediately, or when periodic indexing is
next scheduled. If you do not use this keyword, the value specified in the text
configuration settings is taken.

Chapter 4. Administration 55

|
|

|
|
|
|

Tip
If you are using a partitioned database, and you decided to change the
configuration of a nodegroup and start a redistribution of the table rows, you must
recreate the text indexes and log tables, that is, you must disable and enable
again all Text Extender-enabled tables of that nodegroup.

Enabling a text column in a large table

If you are working with a table that has a large row length, keep in mind that enabling a
text column adds a handle column of type DB2TEXTH (VARCHAR 60). Similarly,
enabling an external file adds a handle column of type DB2TEXTFH (VARCHAR 210).
This could be significant if the table is approaching its maximum row length as
determined by DB2.

Also when you enable a text column in large table, use the DB2 V5.2 REORG utility to
check whether the table needs to be reorganized. When you enable a large table for
the first time, the following steps make indexing faster:

1. Enable the table using the NOUPDATE option. This creates the handles, but does
not yet index the documents.

2. Reorganize the table using the DB2 V5.2 REORG utility.

3. Create the index by running UPDATE INDEX.

When you enable a text column or external files, Text Extender adds a handle column
to the table and initializes the handle values, thereby causing DB2 V5.2 log entries to
be written. If there is an unusually large number of log entries to be written, DB2 V5.2
can run out of log space.

There are two ways to handle this situation; the first is better for performance reasons:

v Increase the available log space by using the DB2 V5.2 UPDATE DB CFG command
to modify the database configuration parameters for LOGPRIMARY, LOGSECOND,
and LOGFILSIZ. The following values are taken from experience; you may need to
change them to suit your installation.

LOGSECOND 50

Ensure that the sum of LOGPRIMARY and LOGSECOND is not greater than 128.
You should also increase the application heap size.

APPLHEAPSZ 512

v Force DB2 V5.2 to make an intermediate COMMIT by using the COMMITCOUNT
configuration parameter described in “Chapter 14. Configuring Text Extender” on
page 235 . The value you specify indicates after how many insert or update
statements Text Extender issues a DB2 V5.2 commit statement. This reduces the
size required for log tables, although it also increases the time required for the
enabling step.

56 Text Extender: Administration and Programming

|
|
|
|

|
|
|
|
|

Examples

The following example enables text column COMMENT in table DB2TX.SAMPLE, and assigns
the name COMMENTHANDLE to the handle column that is created:

db2tx "ENABLE TEXT COLUMN db2tx.sample comment
HANDLE commenthandle"

Default values for the text information and for the index characteristics are taken from
the text configuration settings.

The next example explicitly sets the values for the type of documents that are in the
COMMENT column. Default values for the index characteristics are taken from the text
configuration settings.

db2tx "ENABLE TEXT COLUMN db2tx.sample comment
HANDLE commenthandle
CCSID 819
LANGUAGE uk_english
FORMAT rft"

The next example explicitly sets the values for the characteristics of the index that is
created for the COMMENT column. The example sets the index type and the index
directory, and sets the index update frequency so that the index is updated at 12:00 or
15:00, on Monday to Friday, if there is a minimum of 100 text documents queued.
Default values for the text information are taken from the text configuration settings.

For a UNIX server:

db2tx "ENABLE TEXT COLUMN db2tx.sample comment
HANDLE commenthandle
INDEXTYPE linguistic
UPDATEFREQ min(100) d(1,2,3,4,5) h(12,15) m(00)
UPDATEINDEX UPDATE
DIRECTORY DB2TX_INSTOWNER/db2tx/indexes"

For an OS/2 or Windows NT server:

db2tx "ENABLE TEXT COLUMN db2tx.sample comment
HANDLE commenthandle
INDEXTYPE linguistic
UPDATEFREQ min(100) d(1,2,3,4,5) h(12,15) m(00)
UPDATEINDEX UPDATE
DIRECTORY \dmb\db2tx\indexes"

Enabling text columns of a nonsupported data type

Text columns must be CHAR, GRAPHIC, VARGRAPHIC, LONG VARGRAPHIC,
DBCLOB, VARCHAR, LONG VARCHAR, or CLOB to be enabled by Text Extender. If
the documents are in a column of a different type, such as a user-defined distinct type
(UDT), you must provide a user-defined function that takes the user type as input and
provides as output type CHAR, GRAPHIC, VARGRAPHIC, LONG VARGRAPHIC,
DBCLOB, VARCHAR, LONG VARCHAR, or CLOB.

Chapter 4. Administration 57

Use the FUNCTION keyword in ENABLE TEXT COLUMN to specify the name of this
function.

Example: You intend to store compressed text in a table.

1. Create a UDT for the text:

db2 CREATE DISTINCT TYPE COMPRESSED_TEXT AS CLOB(1M)

2. Create a table and insert the text into it:

db2 CREATE TABLE MYTEXT (author VARCHAR(50),
text COMPRESSED_TEXT)

db2 INSERT ...

To enable the text column for use by Text Extender:

1. Create a UDF called, for example, UNCOMPRESS, that receives a value of type
COMPRESSED_TEXT and returns the corresponding uncompressed text as, for
example, a CLOB(10M) value.

2. Enable the text column using the FUNCTION keyword to identify the
UNCOMPRESS UDF:

db2tx "ENABLE TEXT COLUMN MYTABLE text
FUNCTION uncompress
HANDLE handle
..."

Maintaining indexes in a multiple-node environment

If the text column that you are enabling belongs to a table that is part of a multiple-node
nodegroup, the index directory that you specify must be available on all physical nodes.
If you use the default directory specified in the text configuration, make sure that the
path is available on all nodes of the nodegroup. If this is not convenient, you can
specify a specific path for each node in the ENABLE TEXT COLUMN command.

If you change the node configuration of a nodegroup that contains a table that is
enabled for Text Extender, you must reindex the table.

Tip
You can check if the node configuration has been changed by using the
command TXNCHECK.

58 Text Extender: Administration and Programming

|

|
|
|
|
|

|
|
|

|
|
|||

Enabling external text files

Summary

When Optional. Once for each table associated with external files that are to be
searched.

Command
ENABLE TEXT FILES

Authorization
ALTER, SELECT, UPDATE on the table

Text Extender can search not only in text stored in DB2 V5.2 tables, but also in text
documents stored in files. This preparation step is needed if you intend to search for
text in external files. The table associated with the external text files must not have
been enabled by the command ENABLE TEXT TABLE.

An index is created, a log table is created, and the document information is set, in the
same way as described in “Enabling a text column” on page 53.

Tips

1. If you run out of log space in this step, see “Enabling a text column in a large
table” on page 56 for possible solutions.

2. If the table you are enabling is partitioned and using a nodegroup that has
multiple physical nodes, make sure that the external files you are referencing
in the table columns are located on the node where their respective table
partition resides.

A handle column of type DB2TEXTFH is added to an existing DB2 V5.2 table. The
handle column will hold the references for the external files, each handle containing
index and the document information (CCSID, format, and language).

See “Handles for external files” on page 81 for a description.

You can specify additional parameters, such as the default index characteristics, in the
same way as for enabling a text column.

After the index has been created, you can move or delete the external files. You can
still search on the files.You can insert new rows in the table and use UPDATE INDEX to
update the index with the new file references.

If the table you are enabling is using a nodegroup with multiple physical nodes, make
sure that the external files you are referencing in the columns of your table are located
on the node where the table partition resides.

Chapter 4. Administration 59

|
|
|
|

|
|

|
|
|

Examples
1. Create a table DB2TX.EXTFILE having at least one column, or use an existing table.

2. Add handle column FILEHANDLES to table DB2TX.EXTFILE

db2tx "ENABLE TEXT FILES db2tx.extfile
HANDLE filehandles
INDEXTYPE linguistic
UPDATEFREQ min(100) d(1,2,3,4,5) h(12,15) m(00)
UPDATEINDEX NOUPDATE
DIRECTORY \any\db2tx\indices"

3. Initialize the handle

v For each row in a new table:

db2 INSERT INTO db2tx.EXTFILE (FILEHANDLES)
VALUES (db2tx.INIT_TEXT_HANDLE

(850, 'TDS' 'US_ENGLISH',
'd:\dmb\samples\tx')

v For an existing table, update the handle columns to reflect the external file
reference, specifying the name of the external file:

db2 UPDATE db2tx.EXTFILE
SET FILEHANDLES = db2tx.file(FILEHANDLES,'d:\dmb\samples\tx')
WHERE DOCID = 'doc1'

Tip
Do not use INIT_TEXT_HANDLE for updating handle columns that refer to
external files.

4. Update the index

db2tx "UPDATE INDEX db2tx.extfile
HANDLE filehandles"

Ending the administration session

You have now completed the steps to prepare your text documents to be searched.

If you specified NOUPDATE for the UPDATEINDEX keyword when you enabled the text
column, Text Extender does not index the text immediately, but waits for the next
periodic indexing. To update the index now, see “Updating an index” on page 64.

When indexing of the documents has finished, you can begin retrieving information as
described in “Chapter 5. Searching with Text Extender’s UDFs” on page 77.

Enter QUIT to end the Text Extender command processor.

60 Text Extender: Administration and Programming

|
|
|
|

|
|
|

|
|

Tip
Use GET INDEX STATUS to determine when indexing has finished.

Reversing the text preparation process

When text is prepared for use by Text Extender, certain administrative changes are
made. This section describes functions that help you to reverse this process.

Disabling a text column

Summary

When When you no longer intend to make text searches in a text column.

Command
DISABLE TEXT COLUMN

Authorization
ALTER, SELECT, UPDATE on the table

Example:

db2tx "DISABLE TEXT COLUMN db2tx.sample
HANDLE commenthandle"

When you disable a text column, the following occurs:

v If this is a multi-index table, that is, the column has its own text index and log table,
then the index, the log table, and the log table triggers are deleted.

v If this is a common-index table, that is, there is one index shared by all text columns,
then the terms for this column’s documents are removed from the common index. If
this is the only remaining enabled text column in the table, then the index, the log
table, and the log table triggers are deleted.

Chapter 4. Administration 61

Disabling text files

Summary

When When you no longer intend to make text searches in a set of external
text files.

Command
DISABLE TEXT FILES

Authorization
ALTER, SELECT, UPDATE on the table

Example:

db2tx "DISABLE TEXT FILES db2tx.sample
HANDLE commenthandle"

When you disable external text files, the following occurs:

v The index for this handle column is deleted.

v The log table and triggers are deleted.

Disabling a text table

Summary

When When you no longer intend to make text searches in a text table.

Command
DISABLE TEXT TABLE

Authorization
ALTER, SELECT, UPDATE on the table

Example:

db2tx "DISABLE TEXT TABLE db2tx.sample"

When you disable a text table, the following occurs:

v If there is a common index for the text columns of the table, this index is deleted. If,
instead, there are individual indexes for each text column, all the indexes for the text
columns are deleted.

v The common log table used to automatically record which text documents are to be
indexed is deleted. If, instead, there are individual log tables for each text column, all
the log tables are deleted.

v The triggers used to maintain the log tables are deleted.

v The content of the handle columns is set to null.

62 Text Extender: Administration and Programming

Disabling a database

Summary

When When you no longer intend to make text searches in this database.

Command
DISABLE DATABASE

Authorization
SYSADM or DBADM on the database

To disable the connected database, enter:

db2tx "DISABLE DATABASE"

When you disable a database, the following objects are deleted:

v The Text Extender catalog view that was created when the database was enabled

v The declaration of Text Extender’s user-defined functions (UDFs), and user-defined
distinct types (UDTs) for this database

v All indexes related to any of this database’s text tables or text columns

v The log tables used to automatically record which text documents are to be indexed,
and the triggers used to maintain them.

Because handle columns cannot be deleted, and the handle column is of a distinct
type, some distinct types are not deleted.

Maintaining text indexes

These are the maintenance tasks:

v Updating an index

v Changing the settings of an index

v Resetting the status of an index

v Deleting index events.

You can run these tasks at any time and in any sequence.

Chapter 4. Administration 63

Updating an index

Summary

When When an index must be updated immediately without waiting for periodic
indexing to occur. (See “Enabling a text column” on page 53 and
“Changing the settings of an index” on page 65 for information about
periodic indexing.)

Command
UPDATE INDEX

Authorization
ALTER, SELECT, UPDATE on the table

This example updates the index for a common-index table:

db2tx "UPDATE INDEX db2tx.sample"

This example updates the index for a column of a multi-index table:

db2tx "UPDATE INDEX db2tx.sample HANDLE commenthandle"

Use this command to update the index immediately, without waiting for the next periodic
indexing to take place automatically. This is useful when you have added several text
documents to a database and want to search them immediately.

Text Extender indexes the text documents in this column (or all columns in the table)
that have been inserted or changed, and removes from the index the terms from
documents that have been deleted. The log table associated with the index contains
information about which documents have been inserted, updated, and deleted.

Updating an index for external files

A log table does not automatically contain information about changes to any external
files that you may have indexed (see “Enabling external text files” on page 59), such as
replacing a document by a newer version having the same absolute path name.
Updates occurring on such files cannot be monitored by Text Extender in log tables
because the updates do not occur within the scope of DB2 V5.2.

To have updates on external files reflected in a Text Extender index, you can do the
following:

1. Force a “change” entry to be placed in the log table by issuing an update statement
on the corresponding handle column that effectively does nothing:

UPDATE table
SET filehandlecol = filehandlecol
WHERE DB2TX.FILE(filehandlecol) = filename

where filename is the absolute path name of the external file that was updated.

64 Text Extender: Administration and Programming

2. Run UPDATE INDEX to bring the index up to date, including the change made to
the external file.

Changing the settings of an index

Summary

When When the update frequency of an index has to be changed.

Command
CHANGE INDEX SETTINGS

Authorization
ALTER, SELECT, UPDATE on the table

Use this command to change the update frequency of an index.

Update frequency

See “Setting the frequency of index updates” on page 241 for more information. If you
do not specify an update frequency, the current settings are left unchanged.

Use the UPDATEINDEX keyword to determine whether the indexing of the text
documents begins immediately, or when periodic indexing is next scheduled. If you do
not use this keyword, the current setting is left unchanged.

Examples

To change the update frequency for the index so that it is updated at 12:00 or 15:00, on
Monday to Friday, if there is a minimum of 100 text documents queued:

db2tx "CHANGE INDEX SETTINGS db2tx.sample
HANDLE commenthandle
UPDATEFREQ min(100) d(1,2,3,4,5) h(12,15) m(00)"

To stop the periodic updating of an index:

db2tx "CHANGE INDEX SETTINGS db2tx.sample
HANDLE commenthandle
UPDATEFREQ none"

Chapter 4. Administration 65

|

|

Resetting the index status

Summary

When When an index can no longer be searched or updated.

Command
RESET INDEX STATUS

Authorization
None

Some situations can occur that prevent you from searching in an index, or from
updating it. “Displaying the index status” on page 69 describes how to determine if one
of these events has occurred. RESET INDEX STATUS reactivates the index so that you
can use it again.

This example resets the index status for the index of a common-index table:

db2tx "RESET INDEX STATUS db2tx.sample"

The syntax lets you reset the index status for a particular text column. This example
resets the index status for the index of a multi-index table column:

db2tx "RESET INDEX STATUS db2tx.sample HANDLE commenthandle"

Deleting index events

Summary

When When you no longer need the messages in an index’s log table.

Command
DELETE INDEX EVENTS

Authorization
None

If something prevents you from searching in an index, or from updating it, or if a
document cannot be indexed, this is known as an indexing event. Information about
indexing events is stored in the index’s log table. It can help you determine the cause of
the problem. When you no longer need these messages, you can delete them.

This example deletes messages from the index of a common-index table:

db2tx "DELETE INDEX EVENTS db2tx.sample"

The syntax lets you delete indexing events for a particular text column. This example
deletes the messages for the index of a multi-index table column:

db2tx "DELETE INDEX EVENTS db2tx.sample HANDLE commenthandle"

66 Text Extender: Administration and Programming

Getting useful information

This section describes the administration commands for displaying information about:

v The enabled status of databases, tables, columns, and files

v The settings of the environment variables

v The text configuration settings

v The index status

v The error events

v The index settings

v The text settings for a column.

Displaying enabled-status information

Summary

When When you need information about the enabled status of databases,
tables, text columns or external files.

Command
GET STATUS

Authorization
None

Enter:

db2tx "GET STATUS"

Here is an example of the output displayed by GET STATUS. It shows the enabled
status of the database, and of any enabled tables, text columns, or text files that it
contains.

Database is enabled for Text Extender

Table DB2TX.MYTABLE is enabled as a common-index table

Table DB2TX.SAMPLE is enabled as a common-index table
TextColumnName HandleColumnName
-------------- ----------------
COMMENT COMMENTHANDLE

Table DB2TX.TEST is enabled as a multi-index table
TextColumnName HandleColumnName
-------------- ----------------
ABSTRACT1 ABSTRACT1HANDLE
ABSTRACT2 ABSTRACT2HANDLE

Chapter 4. Administration 67

Displaying the settings of the environment variables

Summary

When When you need information about the settings of the environment
variables.

Command
GET ENVIRONMENT

Authorization
None

Enter:

db2tx "GET ENVIRONMENT"

Here is an example of the output displayed by GET ENVIRONMENT. It shows the
current settings of the Text Extender environment variables.

Current database manager instance (DB2INSTANCE) = db2
Default database name (DB2DBDFT) = my_database
Instance name (DB2TX_INSTOWNER) = user1
Instance directory (DB2TX_INSTOWNERHOMEDIR) = /usr/instance1

Displaying the text configuration settings

Summary

When When you need the default settings for text, index, and process
information.

Command
GET TEXT CONFIGURATION

Authorization
None

These settings are described in “Text configuration settings” on page 236. To change
them, see “Changing the text configuration” on page 45.

To display the text configuration, enter:

db2tx "GET TEXT CFG"

Here is an example of the output displayed by GET TEXT CONFIGURATION. It shows
the current text configuration settings.

Coded character set ID (CCSID) = 850
Language (LANGUAGE) = US_ENGLISH
Format (FORMAT) = TDS

68 Text Extender: Administration and Programming

Index type (INDEXTYPE) = LINGUISTIC
Update frequency (UPDATEFREQ) = NONE
Index directory (DIRECTORY) = user1/db2tx/indexes

Update index option (UPDATEINDEX) = UPDATE
Commit count (COMMITCOUNT) = 10 000
Tablespace name (TABLESPACE) = TXLOG

Displaying the index status

Summary

When When you need to determine whether an index can be searched or
updated.

Command
GET INDEX STATUS

Authorization
None

Some situations can occur that prevent you from searching in an index, or from
updating it. In such situations, messages are stored in the index’s log table that can
help you determine the cause. So it can be useful to check the status of an index, and
whether there are any messages available.

This example displays the index status for the index of a common-index table:

db2tx "GET INDEX STATUS db2tx.sample"

The syntax lets you display the index status for a particular text column. This example
gets the index status for the index of a multi-index table column:

db2tx "GET INDEX STATUS db2tx.sample HANDLE commenthandle"

Here is an example of the output displayed by GET INDEX STATUS.

Node 1
Search status = Search available
Index status = Update available
Scheduled documents = 0
Indexed documents = 304
Error events = No error events

If the index is split among several nodes, the node information is displayed per node.

Search status
Indicates whether you can use the specified handle column to search in the
index. If search is not available, check the indicated reason code for more
information about why the situation occurred, and then use RESET INDEX
STATUS to be able to work with the index again. See “Chapter 16. Error event
reason codes” on page 249.

Chapter 4. Administration 69

|
|
|
|
|
|

|

Index status
Indicates whether you can update the index for the specified table or column. If
the index update function is not available, check the indicated reason code for
more information about why the situation occurred, and then use RESET
INDEX STATUS to be able to work with the index again.

Scheduled documents
Shows the number of documents that are listed in the queue for indexing (or
for deleting from the index).

Indexed documents
Shows the number of documents that have already been indexed from the
queue of scheduled documents.

Error events
Shows the number of events that are available in the index’s log table. You
can display this information as described in “Displaying error events”. When
you no longer need this information, you can delete it as described in “Deleting
index events” on page 66.

Displaying error events

When problems occur during indexing, such as a document scheduled for indexing
could not be found, these so-called error events are written to the index’s log table.

The event return codes are described in “Chapter 16. Error event reason codes” on
page 249 .

You can access the error events in a view of the log table called db2tx.LOGIXnnnnnn,
where IXnnnnnn is the name of the index, obtainable from the catalog view.

To get the name of the index:

DB2 SELECT TABLENAME,
HANDLENAME,
INDEXNAME

FROM DB2TX.TEXTCOLUMNS

The error event view has the following layout:

UPDATESTATUS SMALLINT
EVENTREASON INTEGER
EVENTMESSAGE VARCHAR(1024)
UPDATETIME TIMESTAMP
HANDLE DB2TEXTH or DB2TEXTFH
NODENUMBER INTEGER

Here is an example showing how to access the information from the index log:

70 Text Extender: Administration and Programming

DB2 SELECT EVENTREASON,
EVENTMESSAGE,
UPDATETIME,
HANDLE

FROM DB2TX.LOGIXNNNNNN

Displaying the index settings

Summary

When When you need information about the settings of an index.

Command
GET INDEX SETTINGS

Authorization
None

This example gets the index settings for the index of a common-index table:

db2tx "GET INDEX SETTINGS db2tx.sample"

This example gets the index settings for the index of a multi-index table column:

db2tx "GET INDEX SETTINGS db2tx.sample
HANDLE commenthandle"

If the table is enabled as a multi-index table, this command displays the index settings
of all enabled text columns in the table.

Here is an example of the output displayed by GET INDEX SETTINGS for a
common-index table. The output for a multi-index table shows similar information for
each index. The syntax lets you request the index settings for a particular text column.

Current index settings:

Index type (INDEXTYPE) = LINGUISTIC
Update index option (UPDATEINDEX) = UPDATE
Update frequency (UPDATEFREQ) = NONE
Node 1
Index directory (DIRECTORY) = /home/user1/db2tx/indices

If the index is split among several nodes, the node information is displayed for the index
directory.

Chapter 4. Administration 71

|
|
|
|
|
|
|

|
|

Displaying the text settings for a column

Summary

When When you need information about the text settings for a column.

Command
GET TEXT INFO

Authorization
None

This example gets the text information for the index of a common-index table:

db2tx "GET TEXT INFO db2tx.sample"

This example gets the text information for the index of a multi-index table column:

db2tx "GET TEXT INFO db2tx.sample HANDLE commenthandle"

The syntax lets you specify a table name and the name of a handle column.

If you specify only a table name in the command, the text information for each enabled
column in this table is displayed. If you also specify a handle column name, only the
text information for that column is displayed.

Here is an example of what is displayed by this command for a multi-index table:

Text information for column ABSTRACT1
with handle column ABSTRACT1HANDLE:

Coded character set ID (CCSID) = 850
Language (LANGUAGE) = US_ENGLISH
Format (FORMAT) = TDS

Text information for column ABSTRACT2
with handle column ABSTRACT2HANDLE:

Coded character set ID (CCSID) = 850
Language (LANGUAGE) = US_ENGLISH
Format (FORMAT) = TDS

Working with the Text Extender catalog view

Text Extender creates and maintains a catalog view called DB2TX.TEXTINDEXESfor
each database. It is created when you run the ENABLE DATABASE routine. It contains
information about the tables and columns that are enabled for Text Extender.

New entries are created in DB2TX.TEXTINDEXESwhenever a table, a column, or
external files are enabled. Entries are updated whenever index settings are modified
using the CHANGE INDEX SETTINGS command. Entries are deleted if columns or
tables are disabled.

72 Text Extender: Administration and Programming

|

|

Data in the catalog view is available through normal SQL query facilities. However, you
cannot modify the catalog view using normal SQL data manipulation commands. You
cannot explicitly create or drop the catalog view. Table 5 shows the contents of the
catalog view.

Table 5. Text Extender catalog view

Column name Data type Null- able Description

TABLESCHEMA CHAR(8) No Schema of the table to which this entry applies.

TABLENAME VARCHAR(18) No Name of the table to which this entry applies.

COLUMNNAME VARCHAR(18) Yes Name of a column that has been enabled within this

table. This value is null if the table has been enabled,

but no column has been enabled.

HANDLENAME VARCHAR(18) Yes Name of a handle column. This value is null if there is

no column enabled in the table

TABLESCHEMA.TABLENAME.

INDEXNAME CHAR(8) No Name of the text index created during enabling of the

text table or a text column.

LOGTABLE VARCHAR(18) No Name of the log table for the index INDEXNAME. The

table DB2TX.LOGTABLE contains information about

which text documents are scheduled for the next

update of the text index, and error events.

INDEXTYPE VARCHAR(30) No Type of index: DUAL, LINGUISTIC, PRECISE,

NGRAM.

MINIMUM INTEGER Yes The smallest number of index update requests required

before an index update is performed. See “Setting the

frequency of index updates” on page 241. This value is

null if the update frequency is set to NONE.

DAYS VARCHAR(15) Yes The days when an update is to be scheduled. See

“Setting the frequency of index updates” on page 241.

This value is null if the update frequency is set to

NONE.

HOURS VARCHAR(75) Yes The hours when an index update is to be scheduled.

See “Setting the frequency of index updates” on

page 241 . This value is null if the update frequency is

set to NONE.

MINUTES VARCHAR(185) Yes The minutes when an update is scheduled. See

“Setting the frequency of index updates” on page 241.

This value is null if the update frequency is set to

NONE.

INDEXDIRECTORY VARCHAR(254) No Name of the directory where the text index is stored

within the file system.

Chapter 4. Administration 73

Table 5. Text Extender catalog view (continued)

Column name Data type Null- able Description

UPDATEONCREATE VARCHAR(10) No The value “update” or “noupdate”, whatever has been

specified with the UPDATEINDEX option in ENABLE

TEXT TABLE or ENABLE TEXT COLUMN, or in the

last CHANGE INDEX SETTINGS.

COMMONINDEX VARCHAR(4) No “yes” if the table TABLESCHEMA.TABLENAME is a

common-index table. “no” if the table

TABLESCHEMA.TABLENAME is a multi-index table.

CCSID SMALLINT Yes CCSID for the text column TEXTCOLUMN specified

with the enable text column command. This value is

null if TEXTCOLUMN is null.

LANGUAGE VARCHAR(30) Yes The name of the dictionary used when processing text

column TEXTCOLUMN. This value is null if

TEXTCOLUMN is null.

FORMAT VARCHAR(30) Yes The format specified for text column TEXTCOLUMN.

This value is null if TEXTCOLUMN is null.

FUNCTIONSCHEMA CHAR(8) Yes Schema of the access UDF specified in the ENABLE

TEXT COLUMN command using the FUNCTION

option. This value is null if no FUNCTION option is

specified.

FUNCTIONNAME VARCHAR(18) Yes Name of the access UDF specified in the ENABLE

TEXT COLUMN command using the FUNCTION

option. This value is null if no FUNCTION option is

specified.

PROTOTYPEHANDLE VARCHAR(60) Yes A handle for use in performance UDFs. It contains only

the index name which is common for the whole text

column.

INDEXOPTION VARCHAR(30) Yes Option used when creating the index:

FEATURE_EXTRACTION, CASE_ENABLED.

NODENUMBER INTEGER No Node number of the table partition.

Tracing faults

If you need to report an error to an IBM representative, you may be asked to switch on
tracing so that information can be written to a file that can be used for locating the error.
Use the trace facility only as directed by an IBM Support Center representative, or by
your technical support representative.

74 Text Extender: Administration and Programming

|

||||

System performance is affected when tracing is switched on, so use it only when error
conditions are occurring.

To turn tracing on, enter:

txtrace on options

The syntax, and lists of the events and components are given in “TXTRACE” on
page 160 . Other options are also described there.

You can filter the trace by specifying a “mask” which causes the trace to accept or
reject each trace record on the basis of its ID. The default is to trace everything.

A mask has four parts separated by periods, for example: 2.2-6.1,3.* where:

2 indicates DB2 UDB Text Extender.

2-6 includes only entries with an event ID between 2 and 6.

1,3 includes only those events reported by components 1 and 3.

* includes all functions of the components.

You can exclude system errors below a certain severity, and you can specify, if the
trace buffer becomes full, whether to keep the first or the last records.

To reproduce the error and write the trace information in binary to a dump file, enter:

txtrace dump dump-filename

After you have written the trace information to a dump file, turn tracing off:

txtrace off

To produce a formatted version of the dump file, enter:

txtrace format dump-filename formatted-filename

You can also write the trace information directly from shared memory to a formatted file
while tracing is switched on:

txtrace format > formatted-file

Backing up and restoring indexes and enabled databases

You can backup and restore enabled databases and the text indexes that Text Extender
has created.

To backup :

1. Find out which tables have been enabled by Text Extender. To this, enter

Chapter 4. Administration 75

|

|||

||

||

||

|
|

|
|

|

|

db2tx "GET STATUS"

2. Find out the names of the index directories used by the database. To do this, enter

db2tx "GET INDEX SETTINGS"

3. Stop the Text Extender server. To do this enter TXSTOP

4. Backup the index directories and their subdirectories index and work.

5. Backup the file desmastr.dat which is located in:

instance_owner_home_directory/db2tx/txins000 (UNIX)
or

DMBMMPATH\db2tx\txins000 (OS/2 and Windows NT)

Note that for partitioned databases, there are several instance directories, named
txins000, txins001, ..., so it would be more convenient to backup the whole
.../db2tx directory rather than the files in the individual directories.

6. Restart the Text Extender server:

TXSTART

To restore :

1. Stop the Text Extender server:

TXSTOP

2. Save the existing desmastr.dat file.

3. Restore the backup copy of the desmastr.dat file.

4. Restore the backup copies of the index directories to the same path as before.

5. Restart the Text Extender server:

TXSTART

76 Text Extender: Administration and Programming

|

|

|

|

|

|

|
|
|

|
|
|

|

|

|

|

|

|

|

|

|

|

Chapter 5. Searching with Text Extender’s UDFs

Text Extender provides SQL functions that enable you to include text search subqueries
in SQL queries. These functions are provided in addition to those normally available in
SQL. They are known in DB2 as user-defined functions (UDFs).

Refer to “Chapter 9. UDTs and UDFs” on page 167 for a description of the UDFs’
syntax.

Before searching, read “Types of index” on page 13, and also use GET INDEX
SETTINGS to find out which index type is associated with the text you are searching in.
A search can produce different results according to the index type.

The index type assumed in the examples in this chapter is dual.

Tip
This version of Text Extender cannot work with indexes created using an earlier
release. Use the migration utility provided with Text Extender to migrate your
indexes.

This chapter describes:

v The sample UDFs

v The sample table

v Handles for external files

v Setting the function path to give SQL access to the UDFs

v Searching for text, using CONTAINS, NO_OF_MATCHES, and RANK

v Specifying search arguments in UDFs, using examples of CONTAINS

v Refining a previous search, using CONTAINS and REFINE

v Setting and extracting information in handles, using INIT_TEXT_HANDLE, CCSID,
FORMAT, and LANGUAGE

v Improving search performance, using HANDLE_LIST, HANDLE, NO_OF_MATCHES,
and SEARCH_RESULT.

The sample UDFs

Text Extender provides a DB2 V5.2 command line processor input file called
txsample.udf. It contains examples of Text Extender UDFs that run against the sample
tables created with the txsampleutility. Use this file to see examples of the syntax of the
administration and search UDFs, and of the syntax used in search arguments.

To run this file, enter:

db2 -t -v -f txsample.udf

© Copyright IBM Corp. 1995, 1998 77

The sample table DB2TX.SAMPLE

“Creating a sample table” on page 47 describes how to create the table
DB2TX.SAMPLE. This table is used in many of the examples given here. You can try
these examples yourself using Text Extender.

An extract from the DB2TX.SAMPLE table is shown in Table 6.

Table 6. An extract from the example table DB2TX.SAMPLE

DOCID AUTHOR SUBJECT DATE COMMENT

doc 5 RSSHERM at

CHGVMIC1

LIBDB2E.A

error

1995-07-25

-20.13.59

Customer is getting a ’No such file or

directory’ on LIBDB2E.A. It does not

appear to be the same error message that

relates to the asynchronous I/O driver. He

is using beta 4 on 3.2.5. I have had him

compare the permissions and ownership of

/usr/lpp/db2_02_01/lib files with mine, and

they are now the same. His .profile and

ENV also look good. He has, unfortunately,

COMMITTED the install. What else could

be wrong.

doc 6 EDWARDSC at

SYDVM1

Lowercase

Userid and

Password from

DDCS/2

1995-07-25

-20.15.20

After rechecking, the instance where I had

problems with case-sensitivity was using a

DB2/2 gateway to MVS. It didn’t like it

when I passed a lower case userid (didn’t

care about passwd). Connection was only

successful if I actually typed an upper case

userid. So, I guess this doesn’t help your

situation. Sorry.

78 Text Extender: Administration and Programming

Table 6. An extract from the example table DB2TX.SAMPLE (continued)

DOCID AUTHOR SUBJECT DATE COMMENT

doc 7 SKY at

TOROLAB4

ODBC &

Stored

Procedures

1995-07-25

-20.42.27

There are two sets of sample programs

explaining the use of Stored Procedures

using CLI (ODBC).

The C file inpsrv2.c (placed on the server),

and the C file inpcli2.c (placed on the

client) make up the sample that

demonstrates using stored procedures for

input. The files outsrv2.c and outcli2.c

make up the sample that demonstrates

using stored procedures for output.

These files are part of the

.../sqllib/samples/cli files. The MAKE file will

automatically build them and transfer the

server file to the correct subdirectory.

doc 8 ADAMACHE at

TOROLAB2

DB2SYS.DLL

access

violation

1995-07-25

-21.13.22

Did you have a previous beta version

installed? If so, did you remove it using

Software Installer?

Did you remove the database directories

(SQLDBDIR and SQL00001, etc.) from

previous beta drivers?

doc 9 ADAMACHE at

TOROLAB2

CREATE DB =

SYS3175:

db2sysc.exe in

db2eng.dll

1995-07-25

-21.40.09

Many DB2/2 beta users delete a previous

beta with Software Installer, install beta 5

(or golden code now), create a database,

and get: SYS3175: db2sysc.exe in

db2eng.dll

This happens because the directory format

has changed between beta4 and beta5.

Our DB2/2 installation does not migrate the

sqldbdir directory between beta drivers.

You should remove all occurrences of

sqldbdir and sql000x directories and

\sqllib\db2\sqldbdir directory.

What you should do is delete the previous

beta with Software Installer, remove all

occurrences of sqldbdir and sql000x

directories and \sqllib\db2\sqldbdir directory,

and then install the new code.

Chapter 5. Searching with Text Extender’s UDFs 79

Table 6. An extract from the example table DB2TX.SAMPLE (continued)

DOCID AUTHOR SUBJECT DATE COMMENT

doc 10 RSSHERM at

CHGVMIC1

DB2/NT - SNA

support

1995-07-25

-22.10.15

Will DB2/NT be able to act as both a

server to CAE/WIN clients and also as a

client (hopping) to DB2/6000 and/or

DB2/MVS over an SNA network? The other

alternative would be DRDA from DB2/NT to

DB2/6000 and/or DB2/MVS - again via

SNA, which I assume is supported?

Here is a part of the table structure showing the first and last columns:

The column containing text to be searched is COMMENT. Before you can search
through the text in this column, however, you must prepare the COMMENT column for
use by Text Extender using the ENABLE TEXT COLUMN command. This is described
in “Preparing text documents for searching” on page 45.

After this preparation step, the DB2TX.SAMPLE table looks like this:

The table now has an additional column for handles, and each text object has a unique
handle that represents it.

When you later insert text into an enabled text column, an insert trigger creates a
handle for it.

doc 2

doc 1

DOCID

DB2TX.SAMPLE

After rechecking ...

Customer is ...

COMMENT

Figure 12. The structure of the DB2TX.SAMPLE table

doc 2

doc 1

DOCID

DB2TX.SAMPLE

After rechecking ...

Customer is ... X’..handle..’

X’..handle..’

COMMENT COMMENTHANDLE

Figure 13. The DB2TX.SAMPLE table after being enabled

80 Text Extender: Administration and Programming

A handle contains the following information:

A document ID

The name and location of the associated index

The document information: CCSID, format, and language.

The UDFs provided by Text Extender take a handle as a parameter and store, access,
search for, and manipulate the text as part of the SQL processing of the table.

Handles for external files

Text Extender can search not only in text stored in DB2 V5.2 tables, but also in text
files stored elsewhere. “Enabling external text files” on page 59 describes the
preparation step that makes it possible to search in text documents that are not stored
in DB2 V5.2 tables. In this step, the ENABLE TEXT FILES command creates a handle
column of type DB2TEXTFH for external-file handles. The handle column is added to
an existing table.

You could, for example, create a table that contains columns for the name of the author
and for the date when the document was created.

You initialize the files’ handles using INIT_TEXT_HANDLE. Each handle contains not
only a document ID, the name and location of the associated index, and the document
information (CCSID, format, and language), but also the reference to the external file.

Setting the current function path

ÊÊ SET CURRENT FUNCTION PATH
=

DB2TX, ... ÊÍ

Use the SQL statement SET CURRENT FUNCTION PATH to add DB2TX to your
current path names so that SQL can find the Text Extender UDFs. If you decide not to
do this, you can qualify the UDF names explicitly by typing, for example,
DB2TX.CONTAINS for the CONTAINS UDF.

doc 2

doc 11

Inserted row:

doc 1

DOCID

DB2TX.SAMPLE

After rechecking ...

I have installed ...

Customer is ... X’..handle..’

X’..handle..’

X’..handle..’
Handle created by
an insert trigger

Handles created by
ENABLE TEXT COLUMN

COMMENT COMMENTHANDLE

Figure 14. The handle for an inserted row is created by a trigger

Chapter 5. Searching with Text Extender’s UDFs 81

The examples in this chapter use the qualified form for Text Extender functions. You
can use the example statements exactly as they are written without having to set the
current function path.

Tip
Remember to set the current function path each time you connect to a database.

Searching for text

ÊÊ CONTAINS
NO_OF_MATCHES
RANK
SEARCH_RESULT

(handle , search-argument) ÊÍ

This section describes how to use the UDFs provided with Text Extender to search in
DB2 databases containing text. It tells you how to:

v Make a query

v Determine how many matches were found in a text document

v Get the rank of a found text document.

The use of SEARCH_RESULT is described in “Improving search performance” on
page 96 .

Each of these UDFs searches in the text index for occurrences of the search argument.
If there are, say, 100 000 text documents in the table, the CONTAINS, RANK, or
NO_OF_MATCHES UDF is called 100 000 times. But the text index is not searched
100 000 times. Instead, the first time the UDF is called, an internal list of all the
documents containing the search term is created; subsequent calls of the UDF
determine if the document concerned is in the list.

Tip
When you use the Text Extender UDFs to search in a table, be sure to pass the
handle column to the UDF, rather than the text column. If you try to search in a
text column, SQL responds with a message indicating that the data type is wrong,
for example:

No function by the name "CONTAINS" having compatible
arguments was found in the function path.

If you search for text immediately after issuing the ENABLE TEXT TABLE or ENABLE
TEXT COLUMN command, an error RC_SE_EMPTY_INDEX can occur which indicates
that the index being created by the command does not yet exist. The time taken for an
index to be created depends on factors such as the number of documents being
indexed, and the performance of the system doing the indexing. It can vary from
several minutes to several hours, and should be done when the system is lightly
loaded, such as over night.

82 Text Extender: Administration and Programming

If this message occurs, try searching again later, or use GET INDEX STATUS to check
whether indexing errors have occurred.

Making a query

This example demonstrates how the CONTAINS function searches for text in
documents identified by a handle. It returns 1 if the text satisfies the search argument,
otherwise it returns 0.

SELECT DATE, SUBJECT
FROM DB2TX.SAMPLE
WHERE DB2TX.CONTAINS (COMMENTHANDLE, '"compress"') = 1

In this example, you search for the term compress in the text referred to by the handles
in the column COMMENTHANDLE. The handles in the COMMENTHANDLE column
indicate where the COMMENT text is indexed.

Tip
If you have created mixed-case identifiers for tables or columns, remember that
these names must be enclosed in double quotes. For example:

SELECT DATE, SUBJECT
FROM "DB2TX.Sample"
WHERE DB2TX.CONTAINS (COMMENTHANDLE, '"compress"') = 1

If you specify DB2 V5.2 select statements from the command line, the operating
system command-line parser removes special characters such as double quotes
from the command string, so you must use a backslash to mask these special
symbols. For example:

DB2 "SELECT DB2TX.file(COMMENTHANDLE)
FROM DB2TX.Sample"
WHERE DB2TX.CONTAINS (COMMENTHANDLE, '\"compress\"') = 1

Searching and returning the number of matches found

Use the NO_OF_MATCHES function to determine how often the search criteria are
found in each text document.

WITH TEMPTABLE(DATE, SUBJECT, MATCHES)
AS (SELECT DATE, SUBJECT,

DB2TX.NO_OF_MATCHES(COMMENTHANDLE,'"compress"')
FROM DB2TX.SAMPLE)

SELECT *
FROM TEMPTABLE
WHERE MATCHES > 0

NO_OF_MATCHES returns an integer value.

Chapter 5. Searching with Text Extender’s UDFs 83

Searching and returning the rank of a found text document

RANK is an absolute value that indicates how well the document met the search criteria
relative to other found documents. The value indicates the number of matches found in
the document in relation to the document’s size.

You can get the rank of a found document by using the RANK UDF.

Here is an example:

WITH TEMPTABLE(DATE, SUBJECT, RANK)
AS (SELECT DATE, SUBJECT,

DB2TX.RANK(COMMENTHANDLE,'"compress"')
FROM DB2TX.SAMPLE)

SELECT *
FROM TEMPTABLE
WHERE RANK > 0
ORDER BY RANK DESC

RANK returns a DOUBLE value between 0 and 1.

Specifying search arguments

Search arguments are used in CONTAINS, NO_OF_MATCHES, RANK, and
HANDLE_LIST. This section uses the CONTAINS function to show different examples of
search arguments in UDFs.

Searching for several terms

You can have more than one term in a search argument. One way to combine several
search terms is to connect them together using commas, like this:

SELECT DATE, SUBJECT
FROM DB2TX.SAMPLE
WHERE DB2TX.CONTAINS (COMMENTHANDLE,
'("compress", "compiler", "pack", "zip", "compact")') = 1

This form of search argument finds text that contains any of the search terms. In logical
terms, the search terms are connected by an OR operator.

Searching with the Boolean operators AND and OR

(See also “Searching with the Boolean operator NOT” on page 89.)

Search terms can be combined with other search terms using the Boolean operators
“&” (AND) and “|” (OR). For example:

84 Text Extender: Administration and Programming

SELECT DATE, SUBJECT
FROM DB2TX.SAMPLE
WHERE DB2TX.CONTAINS (COMMENTHANDLE,

'"compress" | "compiler"') = 1

You can combine several terms using Boolean operators:

SELECT DATE, SUBJECT
FROM DB2TX.SAMPLE
WHERE DB2TX.CONTAINS (COMMENTHANDLE,

'"compress" | "compiler" & "DB2"') = 1

If you use more than one Boolean operator, Text Extender evaluates them from left to
right, but the logical AND operator (&) binds stronger than the logical OR operator (|).
For example, if you do not include parentheses,

"DB2" & "compiler" | "support" & "compress"

is evaluated as:

("DB2" & "compiler") | ("support" & "compress")

So in the following example you must include the parentheses:

"DB2" & ("compiler" | "support") & "compress"

If you combine Boolean operators with search terms chained together using the comma
separator, like this:

("compress", "compiler") & "DB2"

the comma is interpreted as a Boolean OR operator, like this:

("compress" | "compiler") & "DB2"

Searching for variations of a term

If you are using a precise index, Text Extender searches for the terms exactly as you
type them. For example, the term media finds only text that contains “media”. Text that
contains the singular “medium” is not found.

If you are using a linguistic index, Text Extender searches also for variations of the
terms, such as the plural of a noun, or a different tense of a verb.

For example, the term drive finds text that contains “drive”, “drives”, “driving”, “drove”,
and “driven.”.

If you are using a dual index, you can choose to search for word variations or not. For
example, the following query finds only occurrences of “utility”:

SELECT DATE, SUBJECT
FROM DB2TX.SAMPLE
WHERE DB2TX.CONTAINS (COMMENTHANDLE, 'PRECISE FORM OF "utility"') = 1

Chapter 5. Searching with Text Extender’s UDFs 85

By contrast, this example finds occurrences of “utility” and “utilities”:

SELECT DATE, SUBJECT
FROM DB2TX.SAMPLE
WHERE DB2TX.CONTAINS (COMMENTHANDLE, 'STEMMED FORM OF "utility"') = 1

Searching for parts of a term (character masking)

Masking characters, otherwise known as “wildcard” characters, offer a way to make a
search more flexible. They represent optional characters at the front, middle, or end of
a search term. They increase the number of text documents found by a search.

Tip
If you use masking characters, you cannot use the SYNONYM FORM OF
keyword. If you use a dual index type, the masked search is case-sensitive.

Masking characters are particularly useful for finding variations of terms if you have a
precise index. If you have a linguistic index, many of the variations found by using
masking characters would be found anyway.

Note that word fragments (words masked by wildcard characters) cannot be reduced to
a base form. So, if you search for passe%, you will not find the words “passes” or
“passed”, because they are reduced to their base form “pass” in the index. To find
them, you must search for pass%.

Text Extender uses two masking characters: underscore (_) and percent (%):

v % represents any number of arbitrary characters . Here is an example of % used
as a masking character at the front of a search term:

SELECT DATE, SUBJECT
FROM DB2TX.SAMPLE
WHERE DB2TX.CONTAINS (COMMENTHANDLE, '"%name"') = 1

This search term finds text documents containing, for example, “username”,
“filename”, and “table-name”.

% can also represent a whole word : The following example finds text documents
containing phrases such as “graphic function” and “query function”.

SELECT DATE, SUBJECT
FROM DB2TX.SAMPLE
WHERE DB2TX.CONTAINS (COMMENTHANDLE, '"% function"') = 1

v _ represents one character in a search term: The following example finds text
documents containing “CLOB” and “BLOB”.

SELECT DATE, SUBJECT
FROM DB2TX.SAMPLE
WHERE DB2TX.CONTAINS (COMMENTHANDLE, '"_LOB"') = 1

86 Text Extender: Administration and Programming

|
|
|
|

Searching for terms that already contain a masking character

If you want to search for a term that contains the “%” character or the “_” character, you
must precede the character by a so-called escape character, and then identify the
escape character using the ESCAPE keyword.

For example, to search for “10% interest”:

SELECT DATE, SUBJECT
FROM DB2TX.SAMPLE
WHERE DB2TX.CONTAINS (COMMENTHANDLE,

'"10!% interest" ESCAPE "!"') = 1

The escape character in this example is "!".

Searching for terms in any sequence

If you search for “hard disk” as shown in the following example, you find the two terms
only if they are adjacent and occur in the sequence shown, regardless of the index type
you are using.

SELECT DATE, SUBJECT
FROM DB2TX.SAMPLE
WHERE DB2TX.CONTAINS (COMMENTHANDLE, '"hard disk"') = 1

To search for terms in any sequence, as in “data disks and hard drives”, for example,
use a comma to separate the terms:

SELECT DATE, SUBJECT
FROM DB2TX.SAMPLE
WHERE DB2TX.CONTAINS (COMMENTHANDLE, '("hard", "disk")') = 1

Searching for terms in the same sentence or paragraph

Here is an example of a search argument that finds text documents in which the search
terms occur in the same sentence:

SELECT DATE, SUBJECT
FROM DB2TX.SAMPLE
WHERE DB2TX.CONTAINS (COMMENTHANDLE,

'"compress" IN SAME SENTENCE AS "decompress"') = 1

You can also search for more than two words occurring together. In the next example, a
search is made for several words occurring in the same paragraph:

SELECT DATE, SUBJECT
FROM DB2TX.SAMPLE
WHERE DB2TX.CONTAINS (COMMENTHANDLE,

'"compress" IN SAME PARAGRAPH AS "decompress"
AND "encryption"') = 1

Chapter 5. Searching with Text Extender’s UDFs 87

Searching for synonyms of terms

For a linguistic or a dual index, you can make your searches more flexible by looking
not only for the search terms you specify, but also for words having a similar meaning.
For example, when you search for the word “book”, it can be useful to search also for
its synonyms. To do this, specify:

SELECT DATE, SUBJECT
FROM DB2TX.SAMPLE
WHERE DB2TX.CONTAINS (COMMENTHANDLE, 'SYNONYM FORM OF "book"') = 1

When you use SYNONYM FORM OF, it is assumed that the synonyms of the term are
connected by a logical OR operator, that is, the search argument is interpreted as:

"book" | "article" | "volume" | "manual"

The synonyms are in a dictionary that is provided with Text Extender. The default
dictionary used for synonyms is always US_ENGLISH, not the language specified in the
text configuration settings.

You can change the dictionary for a particular query by specifying a different language.
Here is an example:

SELECT DATE, SUBJECT
FROM DB2TX.SAMPLE
WHERE DB2TX.CONTAINS (COMMENTHANDLE,

'SYNONYM FORM OF UK_ENGLISH "programme"') = 1

Tip
You cannot use the SYNONYM keyword if there are masking characters in a
search term, or if NOT is used with the search argument.

Making a linguistic search

Text Extender offers powerful linguistic processing for making a search based on the
search terms that you provide. The linguistic functions are applied when the index is
linguistic or when a dual index is used with STEMMED FORM OF parameter. The
linguistic functions are described in “Chapter 3. Linguistic processing” on page 19.

An example of this is searching for a plural form, such as “utilities”, and finding “utility”.
The plural is reduced to its base form utility, using an English dictionary, before the
search begins.

The English dictionary, however, does not have the information for reducing variations
of terms in other languages to their base form. To search for the plural of a term in a
different language you must use the dictionary for that language.

88 Text Extender: Administration and Programming

If you specify GERMAN, for example, you can search for “geflogen” (flown) and find all
variations of its base form “fliegen” (fly)—not only “geflogen”, but also “fliege”, “fliegt”,
and so on.

SELECT DATE, SUBJECT
FROM DB2TX.SAMPLE
WHERE DB2TX.CONTAINS (COMMENTHANDLE,

'STEMMED FORM OF GERMAN "geflogen"') = 1

Tip
When searching in documents that are not in U.S. English, specify the language
in the search argument regardless of the default language.

If you always specify the base form of a search term, rather than a variation of it, you
do not need to specify a language.

To understand why, consider what happens when the text in your database is indexed.
If you are using a linguistic or a dual index, all variations of a term are reduced to their
base form before the terms are stored in the index. This means that, in the
DB2TX.SAMPLE table, although the term “decompress” occurs in the first entry in the
COMMENT column, “decompression” occurs in the second entry, the index contains
only the base form “decompress”and identifies this term (or its variations) as being in
both entries.

Later, if you search for the base form “decompress”,you find all the variations. If,
however, you search for a variation like “decompression”, you cannot find it directly. You
must specify an appropriate dictionary for the search, so that the variation can first be
converted to its base form.

Searching with the Boolean operator NOT

You can use the Boolean operator NOT to exclude particular text documents from the
search. For example:

("compress", "compiler") & NOT "DB2"

Any text documents containing the term “DB2” are excluded from the search for
“compress” or “compiler”.

You cannot use the NOT operator in combination with IN SAME SENTENCE AS or IN
SAME PARAGRAPH AS described in “Searching for terms in the same sentence or
paragraph” on page 87, neither can you use it with SYNONYM FORM OF described in
“Searching for synonyms of terms” on page 88.

You can use the NOT operator only with a search-primary, that is, you cannot freely
combine the &, |, and NOT operators (see “Search argument syntax” on page 184).

Example of the use of NOT that is not allowed:

Chapter 5. Searching with Text Extender’s UDFs 89

|

|

NOT("compress" & "compiler")

Allowed is:

NOT("compress" , "compiler")

Fuzzy search

“Fuzzy” search searches for words that are spelled in a similar way to the search term.
It is available for ngram indexes.

For example:

SELECT DATE, SUBJECT
FROM DB2TX.SAMPLE
WHERE DB2TX.CONTAINS (COMMENTHANDLE,

'FUZZY FORM OF 2 "compress"') = 1

This search could find an occurrence of the misspelled word conpress.

The match level, in the example “2”, specifies the degree of accuracy. Five levels are
supported, where level 1 gives the loosest matching of about 20 percent, and level 5
gives the tightest matching of about 90 percent. Use a fuzzy search when the
misspellings are possible in the document, as is often the case when the document was
created using an Optical Character Recognition device, or phonetic input.

Respecting word-phrase boundaries

“Bound” search has been developed for the Korean language. It ensures that Text
Extender respects word boundaries during the search. For example:

SELECT DATE, SUBJECT
FROM DB2TX.SAMPLE
WHERE DB2TX.CONTAINS (COMMENTHANDLE,

'BOUND "korean-expression"') = 1

Searching for similar-sounding words

“Sound” search finds words that sound like the search argument. This is useful when
documents can contain words that sound alike, but are spelled differently. The German
name that is pronounced my-er, for example, has several spellings.

SELECT DATE, SUBJECT
FROM DB2TX.SAMPLE
WHERE DB2TX.CONTAINS (COMMENTHANDLE,

'SOUNDS LIKE "Meyer"') = 1

This search could find occurrences of “Meyer”, “Mayer”, and “Maier”.

90 Text Extender: Administration and Programming

Feature search

Text Extender’s feature-extraction processes are:

v Proper-name extraction

v Domain-term extraction

v Abbreviation extraction

If you use Text Extender’s powerful feature extraction, you can expand a search term
using proper names, domain terms, or abbreviations that were extracted from
documents during indexing. See “Feature extraction” on page 23. You can use these
possibilities on a linguistic index that was built for English documents using the
FEATURE_EXTRACTION option.

For example:

SELECT DATE, SUBJECT
FROM DB2TX.SAMPLE
WHERE DB2TX.CONTAINS (COMMENTHANDLE,

'PERSON "Bill Clinton"') = 1

This example can find “President Clinton”.

Here is another example that finds a place name:

SELECT DATE, SUBJECT
FROM DB2TX.SAMPLE
WHERE DB2TX.CONTAINS (COMMENTHANDLE,

'PLACE "United States"') = 1

This example can find all occurrences of “USA” on condition that at least one of the
documents included “United States (USA)”.

Thesaurus search

Thesaurus search is another of Text Extender’s powerful search-term expansion
functions. The additional terms searched for are taken from a thesaurus that you build
yourself, so you have direct control over them. You search for “database”, for example,
and could find terms like “repository” and “DB2”.

This type of search is intended for specific areas of interest in which you make frequent
searches; an area in which it is worth the investment in time to build a thesaurus in
order to produce significantly more effective search results.

See “Thesaurus concepts” on page 31 for more information and a description of how to
build a thesaurus. The example in Figure 5 on page 31 is a small extract from a
thesaurus on the subject of databases. It is used in the following examples that
demonstrate the syntax for using thesaurus expansion.

Chapter 5. Searching with Text Extender’s UDFs 91

This example takes the term “object relational database management system” and
expands it, adding all instances of this term found in the thesaurus “myterms”. Here,
“DB2” is added to the search.

SELECT DATE, SUBJECT
FROM DB2TX.SAMPLE
WHERE DB2TX.CONTAINS (COMMENTHANDLE,

'THESAURUS "myterms"
EXPAND "INST"
TERM OF "object relational database management system"
') = 1

The next example takes the term “document management system” and expands it,
adding all its synonyms. There is one synonym – “library”.

SELECT DATE, SUBJECT
FROM DB2TX.SAMPLE
WHERE DB2TX.CONTAINS (COMMENTHANDLE,

'THESAURUS "myterms"
EXPAND "SYN"
TERM OF "document management system"
') = 1

Free-text and hybrid search

“Free-text search” is a search in which the search term is expressed as free-form text. A
phrase or a sentence describes in natural language the subject to be searched for. The
sequence of words in a free-text query are not relevant. Furthermore, so-called lexical
affinities are supported. In retrieval, these are certain pairs of words occurring in a
free-text query term, and occurring in the document collection, with a certain minimal
frequency and a certain minimal distance. The distance for English documents is five
words.

Note that the masking of characters or words is not supported for search strings in a
free-text argument.

For example:

SELECT DATE, SUBJECT
FROM DB2TX.SAMPLE
WHERE DB2TX.CONTAINS (COMMENTHANDLE,

'IS ABOUT "everything related to AIX installation"') = 1

Hybrid search is a combination of Boolean search and free-text search. For example:

SELECT DATE, SUBJECT
FROM DB2TX.SAMPLE
WHERE DB2TX.CONTAINS (COMMENTHANDLE,

'"DB2" & IS ABOUT "everything related to AIX installation"') = 1

92 Text Extender: Administration and Programming

Refining a previous search

When a search argument finds too many occurrences, it can often be useful to narrow,
or refine, the search by combining the initial search argument with a second search
argument in a Boolean-AND relationship.

You can refine search results without using the REFINE function, by storing the results
in a table and making the next search against this table. However, depending on the
number of qualifying terms, this method is less efficient than that of storing the latest
search argument and using REFINE.

The following steps show how to make a search, and then refine it using the REFINE
function. The REFINE function returns a search argument that is a Boolean-AND
combination of its two input parameters. The combined search argument returned by
REFINE is a value of type LONG VARCHAR.

1. Create a table for old search arguments.

Create a table PREVIOUS_SEARCHES to hold the search arguments of searches
that have already been made.

CREATE TABLE PREVIOUS_SEARCHES (step INT,
searchargument LONG VARCHAR)

2. Search for the first search argument.

Search for the word “compress” in the sample table.

SELECT COMMENT
FROM DB2TX.SAMPLE
WHERE DB2TX.CONTAINS (COMMENTHANDLE, '"compress"') = 1

Insert the search argument into the PREVIOUS_SEARCHES table for use by further
steps.

INSERT INTO PREVIOUS_SEARCHES
VALUES (1, '"compress"')

3. Refine the search.

STEP

PREVIOUS_SEARCHES

SEARCHARGUMENT

STEP

1

PREVIOUS_SEARCHES

SEARCHARGUMENT

"compress"

Chapter 5. Searching with Text Extender’s UDFs 93

Assuming that the search returns too many text documents, refine the search by
combining the previous search term with the word “compiler” using the REFINE
function.

WITH LAST_STEP(STEP_MAX)
AS (SELECT MAX(STEP)

FROM PREVIOUS_SEARCHES),
LAST_SEARCH(LAST_SEARCH)
AS (SELECT SEARCHARGUMENT

FROM PREVIOUS_SEARCHES,LAST_STEP
WHERE STEP = STEP_MAX)

SELECT COMMENT
FROM DB2TX.SAMPLE, LAST_SEARCH
WHERE DB2TX.CONTAINS(COMMENTHANDLE,

DB2TX.REFINE(LAST_SEARCH, '"compiler"')) = 1

Insert the refined search argument into the PREVIOUS_SEARCHES table for use
by further steps.

INSERT INTO PREVIOUS_SEARCHES
WITH LAST_STEP(STEP_MAX)

AS (SELECT MAX(STEP)
FROM PREVIOUS_SEARCHES)

SELECT STEP_MAX+1, DB2TX.REFINE(SEARCHARGUMENT, '"compiler"')
FROM PREVIOUS_SEARCHES, LAST_STEP

You can repeat this step until the number of text documents found is small enough.

Setting and extracting information in handles

Handles contain the CCSID, format, and language of their text documents. Handles for
external files contain additionally a pointer to the external file. These handles are
created when you enable a text column or external files.

The UDFs described here let you set or change the text information in the handles.

Setting text information when inserting new text

ÊÊ INIT_TEXT_HANDLE (format , language)
(CCSID , format , language , filename)

ÊÍ

STEP

1

2

PREVIOUS_SEARCHES

SEARCHARGUMENT

"compress"

"compress" & "compiler"

94 Text Extender: Administration and Programming

When you run the ENABLE TEXT COLUMN command to enable a text column that
already contains text, you can implicitly set the format and language of the text to the
values specified in the text configuration settings. These format and language settings
are then stored in the handle. If you want different format and language values, you can
specify them explicitly in the ENABLE TEXT COLUMN command.

When you run the ENABLE TEXT FILES command, you can also set the document’s
CCSID and location.

When you later insert a row containing text, an insert trigger creates a handle and sets
the text format and language to the values that were used when the text column was
enabled.

To set the format and language to values that are different from these values, use the
INIT_TEXT_HANDLE function in the INSERT command. While the row is being
inserted, the INIT_TEXT_HANDLE function creates a partially initialized handle that
contains the language and format values you specify. The insert trigger then fills in the
other values in the handle.

In the following example, INIT_TEXT_HANDLE presets the language and format in an
initialized handle. The INSERT command places this handle in the COMMENTHANDLE
column.

INSERT INTO DB2TX.SAMPLE (DOCID, COMMENT, COMMENTHANDLE)
VALUES ('doc 101',

'I have installed...',
DB2TX.INIT_TEXT_HANDLE('AMI', 'GERMAN'))

The value returned by INIT_TEXT_HANDLE is type DB2TEXTH, or DB2TEXTFH.

Extracting information from handles

ÊÊ CCSID
FORMAT
LANGUAGE
FILE

(handle) ÊÍ

Here is an example of extracting a CCSID from a handle:

SELECT DISTINCT DB2TX.CCSID(COMMENTHANDLE)
FROM DB2TX.SAMPLE

In the same way, you can extract the format or the language of a text document, or the
location of external files. Here is an example that illustrates the use of the FORMAT
function. It returns the number of ASCII (TDS) documents in the sample table.

SELECT COUNT(*)
FROM DB2TX.SAMPLE
WHERE DB2TX.FORMAT(COMMENTHANDLE) = 'TDS'

Chapter 5. Searching with Text Extender’s UDFs 95

Changing information in handles

ÊÊ FORMAT (handle , format)
LANGUAGE (handle , language)
FILE (handle , file-path-and-name)

ÊÍ

The FORMAT and LANGUAGE functions can also change the corresponding
specification in a handle. These functions return the changed handle as a value of type
DB2TEXTH, or DB2TEXTFH.

The following example shows how to change the language setting of a text document.

UPDATE DB2TX.SAMPLE
SET COMMENTHANDLE = DB2TX.LANGUAGE(COMMENTHANDLE, 'FRENCH')
WHERE ...

Using the LANGUAGE UDF again, you can see that the change has occurred:

SELECT DISTINCT DB2TX.LANGUAGE(COMMENTHANDLE)
FROM DB2TX.SAMPLE

Improving search performance

This section describes UDFs that can improve the performance of your text searches.
They are SEARCH_RESULT and HANDLE_LIST.

Using the SEARCH_RESULT UDF

The SEARCH_RESULT UDF exploits the DB2 concept of table-valued functions. The
UDF is used in the FROM clause of an SQL statement, and returns an intermediate
table with the search result of the specified search string. The syntax of the search
string is the same as described in “Chapter 10. Syntax of search arguments” on
page 183 . The advantage of this UDF compared with CONTAINS or RANK is a
significant performance improvement when large tables are involved.

The returned table has the following structure:

Column Name Datatype

HANDLE DB2TX.DB2TEXTH or DB2TX.DB2TEXTFH
NUMBER_OF_MATCHES INTEGER
RANK DOUBLE

Example:

SET CURRENT FUNCTION PATH = db2tx
WITH REPHANDLE (MYDOCHANDLE) AS
(SELECT DB2TX.DB2TEXTH(PROTOTYPEHANDLE)
FROM db2tx.textcolumns
WHERE TABLESCHEMA = 'DB2TX' AND

TABLENAME = 'SAMPLE' AND

96 Text Extender: Administration and Programming

|

|

COLUMNNAME = 'COMMENT'
)

SELECT NUMBER_OF_MATCHES,RANK,HANDLE
FROM REPHANDLE,
TABLE(DB2TX.SEARCH_RESULT(MYDOCHANDLE,'"compress"')) T1

Using the HANDLE_LIST UDF

HANDLE_LIST is a feature from an earlier release of Text Extender. For compatibility
reasons it continues to be supported. It has been superceded by SEARCH_RESULT.

HANDLE_LIST returns a pointer to a list of handles of found documents, and the UDFs
that can work with the list, that is, HANDLE, NO_OF_MATCHES, and RANK.

These UDFs make searching more efficient when you need to search through a table
containing a large number of entries, and where the number of documents found is
expected to be relatively low.

Tip
The UDFs described here involve the use of complex SQL statements. They are
intended for experienced application programmers who want to make an
application program run more efficiently.

A scenario without using a list of handles

First, consider the following scenario that does not use the HANDLE_LIST UDF.
Assume that the sample table DB2TX.SAMPLE contains one million entries, 100 000 of
which are dated 1995. To search in the table for entries that are dated 1995, and that
include the word “compress”, you could make this query:

SELECT COMMENT
FROM DB2TX.SAMPLE
WHERE YEAR(DATE) = 1995 AND
DB2TX.CONTAINS (COMMENTHANDLE, '"compress"') = 1

The DB2 server calls the CONTAINS query 100 000 times, once for each row having
the date 1995. If only, say, 100 text documents are found, this is an inefficient method
of searching.

A scenario using a list of handles

A more efficient method is to look for the search argument directly in the index to get a
list of the handles of the found documents, and then to intersect this result set with the
result of the search for documents that are dated 1995.

By using indexes, the time it takes DB2 to complete the search is related to the size of
the result list, regardless of the size of the original table.

Chapter 5. Searching with Text Extender’s UDFs 97

To look directly in the index, HANDLE_LIST needs the name of the index. The index
name is stored not only in each handle in the corresponding handle column, but also in
the prototype handle in the Text Extender catalog view DB2TX.TEXTCOLUMNS. It can
be inefficient to extract an individual handle using:

SELECT MAX(VARCHAR(COMMENTHANDLE)) FROM DB2TX.SAMPLE

In the following SQL example, the prototype handle is used. These are the steps:

1. Extract the prototype handle for sample table DB2TX.SAMPLE.

2. Use the handle and a search argument in HANDLE_LIST to get a pointer to a list of
the handles of the found documents.

3. Extract the handles of the list into a table.

4. Join this table to the original table DB2TX.SAMPLE and search for the year 1995.

1 Extract the prototype handle for the COMMENT column.

This step creates a temporary table REPHANDLE having a single column
MYDOCHANDLE and a single row that contains the prototype handle extracted from
PROTOTYPEHANDLE in DB2TX.TEXTCOLUMNS.

4

3

2

1

Figure 15. Using UDFs to improve performance

98 Text Extender: Administration and Programming

2 Get a pointer to a list of handles of the found documents.

This step passes the handle and the search argument to the HANDLE_LIST UDF which
returns the pointer to the list into table ROWRESULTLIST as a value of type
DB2TEXTHLISTP.

3 Extract the handles of the list into a table.

This step recursively extracts handles from the list into the table MATCHTABLE. It uses
the NO_OF_DOCUMENTS UDF to determine how many handles to extract.

4 Join this table to the original table and search for 1995.

This step produces a subset of the original table that contains only those entries from
the year 1995 that include the search term “compress”.

The projection to the COMMENT column produces the final result:

MYDOCHANDLE

REPHANDLE

prototypehandle

RESULTDOCLIST

ROWRESULTLIST

pointer to list

handle1
handle2
handle3
handle4

HANDLE RESULTDOCLIST CARDINALITY NUMBER
1
2
3
4

4
4
4
4

pointer to list
pointer to list
pointer to list
pointer to list

doc 2

doc 3

doc 4

doc 1

DOCID

compress............

.........compress...

......compress......

...compress......... handle1

handle2

handle3

handle4

COMMENT COMMENTHANDLE

Chapter 5. Searching with Text Extender’s UDFs 99

Tip
For performance reasons, the HANDLE_LIST UDF does not pass the list of
handles to DB2; it passes only a pointer to it. This pointer, data type
DB2TEXTHLISTP, is accessible only within the scope of the SQL statement using
this function. For this reason, the example uses the method of first setting up a
common subexpression for MATCHTABLE, which is then used later in the final
SELECT statement.

...compress.........

compress............

.........compress...

......compress......

COMMENT

100 Text Extender: Administration and Programming

Chapter 6. Using the API functions for searching and browsing

This chapter describes how to use the search and browse functions of the Text
Extender API. For a detailed description of these functions, refer to “Chapter 11. API
functions for searching and browsing” on page 193. Examples of programs that use the
API functions are given in “Chapter 15. Sample API programs” on page 243. The same
chapter describes a sample browse function DesBrowseDocument.

Tip
Before searching, you should read “Types of index” on page 13. A search can
produce different results depending on which index type is used. Use GET INDEX
SETTINGS to find out which text index type is associated with the text you are
searching in.

You should also read “The sample table DB2TX.SAMPLE” on page 78.

Setting up your application

An application program that uses the Text Extender API is a DB2 CLI application,
because some of the API functions require a database connection handle as input. This
means that the rules that have to be considered for DB2 CLI applications apply also to
applications that use the Text Extender API.

In your application, include des_ext.h which is provided in the include subdirectory of
the Text Extender installation directory.

To use your application program with the Text Extender API, link your program to the
API.

Linking a UNIX application

You must link the library libdescl.a to your application. This library is in the lib
subdirectory of the Text Extender installation directory.

Linking an OS/2 or a Windows application

All Text Extender API functions are contained in the dynamic link library desclapi.dll.
The external API function calls are resolved in the import library desclapi.lib. These
are provided in the dll and lib subdirectories, respectively, of the Text Extender
installation directory.

To link your application with the API dynamic link library desclapi.dll, use
desclapi.lib as library file.

© Copyright IBM Corp. 1995, 1998 101

Overview of the API functions

These are the search and browse functions; the first is a search function, the remainder
are browse functions:

DesGetSearchResultTable

DesGetBrowseInfo

DesStartBrowseSession

DesOpenDocument

DesGetMatches

DesCloseDocument

DesEndBrowseSession

DesFreeBrowseInfo.

Tip
Many of the API functions need a connection handle (hdbc). You must provide
this handle using the SQLConnect function, but this does not prevent you from
calling Text Extender from embedded SQL programs. The DB2 Call Level
Interface Guide and Reference describes how to mix CLI statements with
embedded SQL statements.

You can use the search and browse functions for:

Searching for text

Browsing text.

Searching for text

In this scenario, only the search function DesGetSearchResultTable is needed. It takes
as input a search argument and a handle column name. It searches for text and puts
information about the documents found into a result table that you have prepared
previously.

This function is described in more detail in “Searching for text” on page 103. See also
“Chapter 15. Sample API programs” on page 243.

Browsing text

Use the following functions in the sequence shown:

102 Text Extender: Administration and Programming

These functions get highlighting information, then start a browse session to display a
text document and highlight the found terms.

In a browse session, you can open and display further documents using the same
highlighting information. These functions are described in more detail in “Browsing text”
on page 104.

Searching for text

There is one API function for searching for text: the DesGetSearchResultTable function.

Get a search result table (DesGetSearchResultTable)

The DesGetSearchResultTable function receives a search argument for searching
through text documents in a particular text column, and stores the result in a table. The
result table contains the handle of each document found. It can also contain rank
information and the number of matches, depending on the search option specified.

You can also obtain this information using the RANK and NO_OF_MATCHES UDFs.
Here is an example:

1A. Get Browse Information 1B. Get Search Result Table

2. Start Browse Session

3. Open Document

4. Get Matches

5. Close Document

6. End Browse Session

7. Free Browse Information

Figure 16. Sequence for using the API functions

Chapter 6. Using the API functions for searching and browsing 103

INSERT INTO RESULT
SELECT COMMENTHANDLE,

RANK(COMMENTHANDLE, '"stored procedures"'),
NO_OF_MATCHES(COMMENTHANDLE, '"stored procedures"')

FROM DB2TX.SAMPLE
WHERE CONTAINS(COMMENTHANDLE, '"stored procedures"') = 1

DesGetSearchResultTable can be used only on base tables, but it can be faster than
using UDFs if the query is a text-only query; it goes directly to the Text Extender server
to get the rank and the number of matches, and it loops only for the number of
matching documents found. In the UDF example, on the other hand, the CONTAINS
function is called once for each row in the table; then, for each qualifying row, the
RANK and NO_OF_MATCHES functions are called. For each found document, three
separate searches are made.

Input

The input parameters are:

v The handle for the database connection

v The table to be searched

v The name of the handle column that is associated with the text column to be
searched

v A search argument

v Search options

v A browse option (to return browse information)

v The name of the table where the result is to be stored.

Output

If a browse option is specified, this function returns a pointer to browse information.

Browsing text

This group of functions in Figure 16 on page 103 finds out which terms are to be
highlighted. It then starts a browse session, opens a document, and gets match
information in the form of a data stream that can be parsed by an application program
that calls your browser.

Get browse information (DesGetBrowseInfo)

The DesGetBrowseInfo function receives a search argument and a handle. It returns a
pointer to the browse information needed by DesStartBrowseSession. Browse
information includes a list of all the terms to be highlighted.

Another method of getting browse information is to specify the Browse option in the
function DesGetSearchResultTable.

104 Text Extender: Administration and Programming

Input

The input parameters are:

The handle for database connection

A handle

A search argument.

Output

This function returns a pointer to browse information.

Start a browse session (DesStartBrowseSession)

The DesStartBrowseSession function starts a browse session, establishing the
environment needed for browsing a text document and highlighting its matches. It
receives a pointer to browse information, either from DesGetBrowseInfo or from
DesGetSearchResultTable, and returns a browse session handle for use by the other
browse functions.

Input

The input parameter is:

A pointer to browse information from DesGetBrowseInfo or
DesGetSearchResultTable

A user ID

A password.

Output

This function returns a pointer to the browse session handle.

Open a document (DesOpenDocument)

The DesOpenDocument function receives a browse session pointer, a handle, and an
option DES_FAST or DES_EXTENDED indicating the type of linguistic processing to be
used for highlighting found terms. See “Stage 2: Extended matching” on page 27.
DES_FAST uses basic text analysis, without the use of a dictionary, to determine which
terms are to be highlighted. DES_EXTENDED uses extended matching.

DesOpenDocument prepares the text document that corresponds to the handle to get
the document text and highlighting information, and it returns a document handle that is
used for iteratively calling DesGetMatches.

Chapter 6. Using the API functions for searching and browsing 105

Input

The input parameters are:

A pointer to the browse session handle from DesStartBrowseSession

A text handle

A match option: DES_FAST or DES_EXTENDED.

Output

This function returns a document handle which is used by DesGetMatches and
DesCloseDocument.

Get matches (DesGetMatches)

The DesGetMatches function returns a pointer to highlighting information for the text
document described by a document handle. The highlighting information is a data
stream. It comprises the text context (at least one paragraph) and information for
highlighting text in that context. The data stream is described in “Data stream syntax”
on page 201. An application program can parse the data stream and process it using
the user‘s own browser.

DesGetMatches returns only a portion of the data stream, indicating the length of the
portion in the output structure.

A sequence of calls to DesGetMatches gets the entire text document content. When the
end of the text document is reached, an indicator is returned.

Input

The input parameters are:

A pointer to the browse session handle

A document handle from DesOpenDocument.

Output

This function returns a pointer to a structure containing the data stream portion and its
length.

Close a document (DesCloseDocument)

The DesCloseDocument function closes a text document opened by
DesOpenDocument, and releases the storage allocated during the return of document
text and highlighting information.

106 Text Extender: Administration and Programming

Input

The input parameters are:

A pointer to the browse session handle

A document handle from DesOpenDocument.

Output

This function returns a null value.

End a browse session (DesEndBrowseSession)

The DesEndBrowseSession function ends a browse session started by
DesStartBrowseSession, and releases the storage allocated for the browse session.

Input

The input parameter is:

A pointer to the browse session handle

A pointer to the browse information.

Output

This function returns a null value.

Free the browse information (DesFreeBrowseInfo)

The DesFreeBrowseInfo function frees storage allocated for the browse information by
DesGetBrowseInfo.

Input

The input parameter is:

A pointer to the browse information.

Output

This function returns a null value.

Chapter 6. Using the API functions for searching and browsing 107

108 Text Extender: Administration and Programming

Part 2. Reference

© Copyright IBM Corp. 1995, 1998 109

110 Text Extender: Administration and Programming

Chapter 7. Administration commands for the client

Command Purpose Page

? Command line processor help 112

CHANGE INDEX SETTINGS Changes the characteristics of an index 113

CHANGE TEXT

CONFIGURATION

Changes the text configuration settings 115

CONNECT Connects you to a database 118

DELETE INDEX EVENTS Deletes index events from a log table 120

DISABLE DATABASE Disables a database from use by Text Extender 121

DISABLE TEXT COLUMN Disables a text column from use by Text Extender, and deletes its

associated index

122

DISABLE TEXT FILES Disables text files from use by Text Extender, and deletes their

associated index

123

DISABLE TEXT TABLE Disables a table from use by Text Extender and deletes the

indexes associated with the table

124

ENABLE DATABASE Prepares a database for use by Text Extender 125

ENABLE TEXT COLUMN Prepares a text column for use by Text Extender and creates an

individual text index for the column

126

ENABLE TEXT FILES Prepares text files for use by Text Extender and creates an

individual text index for the files

132

ENABLE TEXT TABLE Creates a common text index for a table 135

GET ENVIRONMENT Displays the current settings of the environment variables 139

GET INDEX SETTINGS Displays the characteristics of an index 140

GET INDEX STATUS Displays status information for an index 141

GET STATUS Displays the enabled status of databases, tables, and columns 142

GET TEXT CONFIGURATION Displays the text configuration settings 143

GET TEXT INFO Displays the text information for a text column 144

QUIT Exits from the administration command line processor mode 145

RESET INDEX STATUS Resets the status of an index to allow it to be used again 146

UPDATE INDEX Updates a text index 147

This chapter describes the syntax of the administration commands for the client. Client
administration consists of tasks you must do before you can begin searching in text
documents, and maintenance tasks. “Chapter 4. Administration” on page 39 describes
how to use these commands.

© Copyright IBM Corp. 1995, 1998 111

Before you use these commands, start the Text Extender command line processor by
entering the command db2tx. This is similar to the command DB2. It puts you into an
interactive input mode in which all subsequent commands are interpreted as Text
Extender commands. Normally, you would start the command processor at the same
time as you start DB2.

To leave this mode, enter QUIT.

As in DB2, you can issue commands directly from the operating system prompt by
prefixing them with db2tx, and you can include command line processor requests in a
shell script command file.

Tip
A command prefixed with db2tx causes a connection to be made to the default
database specified in the environment variable DB2DBDFT. The following
sequence of commands does not enable the database MYDATABASE, but
instead enable the default database.

db2tx "CONNECT TO MYDATABASE"
db2tx "ENABLE DATABASE"

Command line processor help

To display a list of administration commands, enter:

db2tx "?"

To display the syntax of an individual command, enter:

db2tx "? command"

For example:

db2tx "? CHANGE INDEX SETTINGS"

For Windows 3.1:

To display a list of administration commands, at the db2tx command prompt, enter:

?

To display the syntax of an individual command, at the db2tx command prompt,
enter:

? command

For example:

? CHANGE INDEX SETTINGS

112 Text Extender: Administration and Programming

CHANGE INDEX SETTINGS

This command changes the characteristics of an index after the database has been
enabled.

To changes the default settings that are used when a database is first enabled, use
“CHANGE TEXT CONFIGURATION” on page 115.

Authorization

You must have at least one of the following for the table:

ALTER privilege

SELECT privilege

UPDATE privilege.

Command syntax

ÊÊ CHANGE INDEX SETTINGS table-name
HANDLE handle-column-name

Ê

Ê
UPDATEFREQ NONE

update-frequency

ÊÍ

update-frequency

MIN (mindocs) D

»

(*)
,

0...6

H

»

(*)
,

0...23

M Ê

Ê »

,

(0...59)

Command parameters
table-name

The name of the text table in the connected database that contains the text
column whose index update frequency is to be changed. The name must
include an explicit schema name (qualifier) unless the schema name is the
same as your user ID.

HANDLE handle-column-name
The name of the handle column whose index update frequency is to be

CHANGE INDEX SETTINGS command

Chapter 7. Administration commands for the client 113

changed. This is required if the text column has its own index, that is, if the
index was created using the command ENABLE TEXT COLUMN.

If, however, the index was created using the command ENABLE TEXT TABLE,
that is, the table has one text index for all text columns, then this keyword is
ignored.

UPDATEFREQ update-frequency
The index update frequency in terms of when the update is to be made, and
the minimum number of text documents that must be queued in the log table.
If there are not enough text documents in the log table at the day and time
given, the index is not updated.

The syntax is described in “Setting the frequency of index updates” on
page 241 .

NONE No further index updates are made. This is intended for a text column
in which there will be no further changes.

If you do not specify the UPDATEFREQ keyword, the frequency settings are
left unchanged.

CHANGE INDEX SETTINGS command

114 Text Extender: Administration and Programming

CHANGE TEXT CONFIGURATION

This command changes the default settings of the text configuration that is used when
a database is enabled. These are the text configuration settings. The initial text
configuration settings when Text Extender is installed are described in “Text
configuration settings” on page 236.

To change these settings for a particular database after the database has been
enabled, use “CHANGE INDEX SETTINGS” on page 113.

Authorization

You must have:

SYSADM authority

DBADM authority.

Command syntax

ÊÊ CHANGE TEXT CONFIGURATION USING
CFG text-information

Ê

Ê
INDEXTYPE PRECISE

LINGUISTIC TABLESPACE tablespace–name
DUAL
NGRAM

Ê

Ê
UPDATEFREQ NONE

update-frequency
DIRECTORY directory

Ê

Ê
UPDATEINDEX UPDATE

NOUPDATE
COMMITCOUNT count

ÊÍ

text-information

CCSID ccsid LANGUAGE language FORMAT format

update-frequency

MIN (mindocs) D

»

(*)
,

0...6

H

»

(*)
,

0...23

M Ê

CHANGE TEXT CONFIGURATION command

Chapter 7. Administration commands for the client 115

|

|

|

Ê »

,

(0...59)

Command parameters
INDEXTYPE

To change the default index type, choose one of the following. For more
information, see “Types of index” on page 13.

PRECISE
Terms are indexed and searched for exactly as they occur in the text
documents.

LINGUISTIC
Terms are processed linguistically before being indexed. Search terms
are also processed linguistically before the search begins.

DUAL Terms are indexed exactly as they occur in the text documents, and
they are also indexed after being processed linguistically. When
searching, you can decide for each term whether to search for the
precise term or for the linguistically processed term.

NGRAM
Terms are indexed by parsing sets of characters rather than by using
a dictionary. This dictionary type is mandatory if the documents you
are indexing contain DBCS characters, although an ngram index can
also be used for SBCS documents.

TABLESPACE tablespace–name
Specify the name of an existing tablespace. The tablespace is used to hold the
index-specific administration tables created by Text Extender (like the log
tables). For large tables, use a separate tablespace. If you do not specify a
tablespace, the tables are created in the DB2 default tablespace.

UPDATEFREQ update-frequency
The index update frequency in terms of when the update is to be made, and
the minimum number of text documents that must be queued in the log table.
If there are not enough text documents in the log table at the day and time
given, the index is not updated.

The syntax is described in “Setting the frequency of index updates” on
page 241 .

NONE No further index updates are made. This is intended for a text column
in which there will be no further changes.

DIRECTORY directory
The directory in which the text index is to be stored.

UPDATEINDEX
A keyword that determines whether the text documents are indexed
immediately after the command using this option has completed, without
waiting for the next periodic indexing set by UPDATEFREQ. These commands

CHANGE TEXT CONFIGURATION command

116 Text Extender: Administration and Programming

|

are ENABLE TEXT COLUMN, and ENABLE TEXT FILES.

UPDATE
Indexing of the text documents occurs immediately after the command
has completed.

NOUPDATE
Indexing occurs at a time set by the update frequency settings
specified either in this command by UPDATEFREQ, or by the text
configuration setting.

COMMITCOUNT count
A value from 500 to 1000000 indicating the number of inserts or updates after
which an intermediate commit statement is issued. This can avoid a situation
in which there is insufficient log space when enabling large tables, or columns,
or a large number of external files.

CCSID ccsid
The Coded Character Set Identifier to be used when indexing text documents.

For information about CCSIDs that can be supported, see “CCSIDs” on
page 240 .

LANGUAGE language
The language in which the text is written. This determines which dictionary is
to be used when indexing text documents and when searching in text
documents. “Chapter 3. Linguistic processing” on page 19 describes how
dictionaries are used.

The supported languages are listed in “Languages” on page 238.

FORMAT format
The type of text document stored, such as WordPerfect, or ASCII. Text
Extender needs this information when indexing documents. The document
formats supported are listed in “Formats” on page 237.

CHANGE TEXT CONFIGURATION command

Chapter 7. Administration commands for the client 117

|

CONNECT

This command connects Text Extender to a database.

Authorization

CONNECT authorization to the database.

Command syntax

ÊÊ CONNECT
TO db-alias

USER user-name USING password

ÊÍ

Command parameters
TO db-alias

The database to connect to. The name must be a database alias name, not a
database name.

USER user-name
If no user name is specified, it is retrieved from the operating system.

USING password
A password is required only if a user name is specified.

CONNECT no operand
If you do not specify an operand and there is no connected database,
CONNECT makes an implicit connection to the database specified in the
environment variable DB2DBDFT. If you do not specify an operand and there
is a connected database, CONNECT displays information about the current
database.

Usage notes

When you issue a DB2TX command without already being connected to a database,
Text Extender connects to the database specified in the environment variable
DB2DBDFT.

To explicitly connect to a particular database, issue the CONNECT TO command.

You can be connected to only one database at a time; this is called the current
database. In interactive mode, a connection lasts until another CONNECT TO statement
changes the database, or until a QUIT command is issued. In command line mode, a
CONNECT command has no effect.

If you are using an OS/2 client, and this is the first time that you are connecting to a
database after you have started the system, you are prompted for a user ID and a
password by User Profile Management (UPM). If you are already logged on, UPM takes

CONNECT command

118 Text Extender: Administration and Programming

the user ID and password from this session and tries to connect to the remote database
on the UNIX server. See “Starting the Text Extender command line processor (optional)”
on page 43.

CONNECT command

Chapter 7. Administration commands for the client 119

DELETE INDEX EVENTS

This command deletes indexing events from an index’s log table for a given handle
column or table.

Authorization

None.

Command syntax

ÊÊ DELETE INDEX EVENTS table-name
HANDLE handle-column-name

ÊÍ

Command parameters
table-name

The name of the text table in the connected database whose error events are
to be deleted from the log table. The name must include an explicit schema
name (qualifier) unless the schema name is the same as your user ID.

HANDLE handle-column-name
The name of the handle column whose messages are to be deleted from the
log table.

Usage notes

If a handle column name is given, the indexing events for only this column are deleted.

DELETE INDEX EVENTS command

120 Text Extender: Administration and Programming

DISABLE DATABASE

This command resets any preparation work done by Text Extender for a database and
disables all text tables for use by Text Extender.

Authorization

You must have:

SYSADM authority

DBADM authority.

Command syntax

ÊÊ DISABLE DATABASE ÊÍ

Command parameters

None.

Usage notes

This command resets the connected database so that it can no longer be searched by
Text Extender; that is, it disables all Text Extender text tables and text columns in the
database. All modifications that were made in the database to enable Text Extender text
tables, text columns, and external files are reset: all related text indexes are deleted,
the Text Extender catalog view TEXTCOLUMNS in the database is deleted, and all Text
Extender triggers are deleted.

DISABLE DATABASE command

Chapter 7. Administration commands for the client 121

|

|

|

DISABLE TEXT COLUMN

This command disables a text column for use by Text Extender.

Authorization

You must have at least one of the following for the table:

ALTER privilege

SELECT privilege

UPDATE privilege.

Command syntax

ÊÊ DISABLE TEXT COLUMN table-name HANDLE handle-column-name ÊÍ

Command parameters
table-name

The name of the text table in the connected database that contains the column
to be disabled. The name must include an explicit schema name (qualifier)
unless the schema name is the same as your user ID.

HANDLE handle-column-name
The name of the handle column to be disabled for use by Text Extender.

Usage notes

The index is deleted.

The log table used to record changes in the handle column (inserts, updates, and
deletions) is deleted.

The triggers that write entries to the log table are deleted.

The handle column is not changed.

DISABLE TEXT COLUMN command

122 Text Extender: Administration and Programming

DISABLE TEXT FILES

This command disables a set of external text files for use by Text Extender.

Authorization

You must have at least one of the following for the table:

ALTER privilege

SELECT privilege

UPDATE privilege.

Command syntax

ÊÊ DISABLE TEXT FILES table-name HANDLE handle-column-name ÊÍ

Command parameters
table-name

The name of the text table in the connected database that contains the handle
column for the external text files to be disabled. The name must include an
explicit schema name (qualifier) unless the schema name is the same as your
user ID.

HANDLE handle-column-name
The name of the handle column to be disabled for use by Text Extender.

Usage notes

The index is deleted.

The log table used to record changes in the handle column (inserts, updates, and
deletions) is deleted. The triggers that write entries to the log table are also deleted.

DISABLE TEXT FILES command

Chapter 7. Administration commands for the client 123

DISABLE TEXT TABLE

This command disables all the text columns in a table for use by Text Extender.

Authorization

You must have at least one of the following for the table:

ALTER privilege

SELECT privilege

UPDATE privilege.

Command syntax

ÊÊ DISABLE TEXT TABLE table-name ÊÍ

Command parameters
table-name

The name of the text table in the connected database that contains the column
to be disabled. The name must include an explicit schema name (qualifier)
unless the schema name is the same as your user ID.

Usage notes

This command makes all the text columns in the table unusable by Text Extender.

If the text columns in this table were enabled individually by ENABLE TEXT COLUMN,
it deletes all their associated text indexes. (To disable text columns and delete their
associated text indexes individually, use the DISABLE TEXT COLUMN command.) If
the text columns in this table were enabled together by ENABLE TEXT TABLE, there is
one common index for all the text columns. This command deletes the common index.

The log tables used to record changes in the text columns (inserts, updates, and
deletions) are deleted. The triggers that write entries to the log table are deleted.

DISABLE TEXT TABLE command

124 Text Extender: Administration and Programming

ENABLE DATABASE

This command prepares the connected database for use by Text Extender, and displays
information about the tables, the UDTs, and the UDFs created.

Authorization

You must have:

SYSADM authority

DBADM authority.

Command syntax

ÊÊ ENABLE DATABASE ÊÍ

Command parameters

None.

Usage notes

You must be connected to a database, either implicitly or explicitly, before issuing this
command (see “CONNECT” on page 118). This command prepares the connected
database for use by Text Extender. It is a mandatory step before a Text Extender text
table or text column can be enabled in the database.

ENABLE DATABASE creates a Text Extender catalog view called
DB2TX.TEXTINDEXES, described in “Working with the Text Extender catalog view” on
page 72 , and a catalog view called DB2TX.TEXTCOLUMNS used for “performance”
queries.

It also creates text configuration settings, described in “Text configuration settings” on
page 236 .

Some other administration work is also done, such as the declaration of UDTs and
UDFs.

ENABLE DATABASE command

Chapter 7. Administration commands for the client 125

|

|

|

|
|
|
|

ENABLE TEXT COLUMN

This command enables a text column for use by Text Extender.

Authorization

You must have at least one of the following for the table: ALTER privilege, SELECT
privilege, or UPDATE privilege.

Command syntax

ÊÊ ENABLE TEXT COLUMN table-name text-column-name
FUNCTION function-name

Ê

Ê HANDLE handle-column-name
text-information

Ê

Ê
index-characteristics UPDATEINDEX UPDATE

NOUPDATE

Ê

Ê
COMMITCOUNT count

ÊÍ

text-information

CCSID ccsid LANGUAGE language FORMAT format

index-characteristics

INDEXTYPE PRECISE
LINGUISTIC INDEXOPTION FEATURE_EXTRACTION
DUAL CASE_ENABLED
NGRAM

Ê

Ê
UPDATEFREQ NONE

update-frequency

Ê

Ê

» »

DIRECTORY directory

,

DIRECTORY directory ON NODE (nodenumber)
NODES TO nodenumber

ENABLE TEXT COLUMN command

126 Text Extender: Administration and Programming

update-frequency

»

» »

,

MIN (mindocs) D (*) H (*) M (0...59)
, ,

0...6 0...23

Command parameters
table-name

The name of the text table in the connected database that contains the column
to be enabled. The name must include an explicit schema name (qualifier)
unless the schema name is the same as your user ID.

text-column-name
The name of the column to be enabled for use by Text Extender. This column
must be of the type CHAR, VARCHAR, LONG VARCHAR, CLOB, DBCLOB,
GRAPHIC, VARGRAPHIC, or LONG VARGRAPHIC. If the document type is
not one of these, use FUNCTION to convert the document type.

FUNCTION function-name
The name of a user-defined function to be used by the Text Extender library
services to access text documents that are in a column that is not of type
CHAR, VARCHAR, LONG VARCHAR, CLOB, DBCLOB, GRAPHIC,
VARGRAPHIC, or LONG VARGRAPHIC. See “Enabling text columns of a
nonsupported data type” on page 57 for more information.

HANDLE handle-column-name
The name of the handle column to be added to the table for use by Text
Extender’s UDFs.

CCSID ccsid
The Coded Character Set Identifier to be used when indexing text documents.

If this keyword is not specified, the CCSID specified in the text configuration
settings is used. Subsequent changes to the text configuration settings are
ignored; the value used is the one that existed at the time the column was
enabled, not the one that exists when indexing text documents.

For information about other CCSIDs that can be supported, see “CCSIDs” on
page 240 .

LANGUAGE language
The language in which the text is written. This determines which dictionary is
to be used when indexing text documents and when searching in text
documents. “Chapter 3. Linguistic processing” on page 19 describes how
dictionaries are used.

This keyword specifies the language once for the whole column. You can
override this value for individually inserted text documents using the
INIT_TEXT_HANDLE function in an INSERT statement.

ENABLE TEXT COLUMN command

Chapter 7. Administration commands for the client 127

If this keyword is not specified, the language specified in the text configuration
settings is used. Subsequent changes to the text configuration settings are
ignored; the value used is the one that existed at the time the column was
enabled, not the one that exists when indexing text documents.

The supported languages are listed in “Languages” on page 238.

FORMAT format
The type of text document stored, such as WordPerfect, or ASCII. Text
Extender needs this information when indexing documents. The document
formats supported are listed in “Formats” on page 237.

This keyword specifies the format once for the whole column. You can override
this value for individually inserted text documents using the
INIT_TEXT_HANDLE function in an INSERT statement.

If this keyword is not specified, the format specified in the text configuration
settings is used. Subsequent changes to the text configuration settings are
ignored; the value used is the one that existed at the time the column was
enabled, not the one that exists when indexing text documents.

INDEXTYPE
The type of index to be created. For more information, see “Types of index” on
page 13 .

PRECISE
Terms are indexed and searched for exactly as they occur in the text
documents.

LINGUISTIC
Terms are processed linguistically before being indexed. Search terms
are also processed linguistically before the search begins.

DUAL Terms are indexed exactly as they occur in the text documents, and
they are also indexed after being processed linguistically. When
searching, you can decide for each term whether to search for the
precise term or for the linguistically processed term.

NGRAM
Terms are indexed by parsing sets of characters rather than by using
a dictionary. This index type is mandatory if the documents you are
indexing contain DBCS characters, although an ngram index can also
be used for SBCS documents.

If you do not specify the INDEXTYPE keyword, the value in the text
configuration settings is used.

INDEXOPTION
Options to be used when creating the index.

FEATURE_EXTRACTION
Special terms such as names and abbreviations are extracted for use
in the created index. The documents to be indexed must be written in
English in CCSID 850. This option is available only for linguistic

ENABLE TEXT COLUMN command

128 Text Extender: Administration and Programming

indexes . If FEATURE_EXTRACTION is specified without specifying
INDEXTYPE, then a linguistic index is assumed; the default index
type specified in the text configuration settings is ignored. For more
information see “Feature extraction” on page 23.

CASE_ENABLED
This option is available only for ngram indexes . Normally, ngram
indexes do not allow a case-sensitive search. By specifying
CASE_ENABLED, you ensure that documents are indexed such that
a case-sensitive search is possible. For more information see “Ngram
index” on page 15.

UPDATEFREQ update-frequency
The index update frequency in terms of when the update is to be made, and
the minimum number of text documents that must be queued in the log table.
If there are not enough text documents in the log table at the day and time
given, the index is not updated.

The syntax is described in “Setting the frequency of index updates” on
page 241 .

If you do not specify UPDATEFREQ, the default frequency specified in the text
configuration settings is used.

Tip
If you have many tables, consider avoiding the use of the default values.
By making individual update frequency settings for tables you can avoid
indexing all the tables simultaneously and causing an unnecessarily
prolonged load on your system resources.

NONE No further index updates are made. This is intended for a text column
in which there will be no further changes.

These update frequency settings are ignored if they have already been set for
the whole table by ENABLE TEXT TABLE.

DIRECTORY directory
The directory path in which the text index is to be stored. The specified path is
concatenated with “″txinsnnn” where nnn is the node number.

This is an existing directory on the system where the Text Extender server is
running.

If you do not specify the DIRECTORY keyword, the value of the DIRECTORY
setting in the text configuration settings is used.

This setting is ignored if it has already been set for the whole table by
ENABLE TEXT TABLE.

If you are using partitioned databases, you can specify one common index
path name for all nodes, or for a range of nodes. or different index directory
paths for each node.

ENABLE TEXT COLUMN command

Chapter 7. Administration commands for the client 129

|
|

|
|

|
|

|
|

|
|
|||

ON NODE nodenumber [TO nodenumber]
The number of the node or the range of nodes to which a directory path name
is being assigned.

UPDATEINDEX
A keyword that determines whether the text documents associated with this
handle column are indexed immediately after this command has completed,
without waiting for the next periodic indexing set by UPDATEFREQ.

UPDATE
Indexing of the text documents occurs immediately after this
command has completed.

NOUPDATE
Indexing occurs at a time set by the update frequency settings
specified either in this command by UPDATEFREQ, or by the text
configuration setting.

If you do not specify this keyword, the value in the text configuration settings is
taken.

COMMITCOUNT count
A value from 500 to 1000000 indicating the number of inserts or updates after
which an intermediate commit statement is issued. This can avoid a situation
in which there is insufficient log space when enabling large tables, or columns,
or a large number of external files.

Usage notes

This command adds a handle column to the specified DB2 table. Each handle column
is associated with a text column, and is used by Text Extender’s UDFs.

If this table has not already been enabled to create a common index, an index is
created that is associated with this text column.

Also, a log table is created in the database. The log table is used to record changes to
the text column, that is inserts, updates, and deletions. Insert, update, and delete
triggers are defined for the text column to keep the log table up to date automatically.

If the text column that you are enabling belongs to a table that is part of a multiple-node
nodegroup, the index directory that you specify must be available on all physical nodes.
If you use the default directory specified in the text configuration, make sure that the
path is available on all nodes of the nodegroup. If this is not convenient, you can
specify a specific path for each node in the ENABLE TEXT COLUMN command.

If you change the node configuration of a nodegroup that contains a table that is
enabled for Text Extender, you must reindex the table.

ENABLE TEXT COLUMN command

130 Text Extender: Administration and Programming

|
|
|

|
|
|
|
|

|
|

Tip
If you run out of log space in this step, see “Enabling a text column in a large
table” on page 56 for possible solutions.

ENABLE TEXT COLUMN command

Chapter 7. Administration commands for the client 131

ENABLE TEXT FILES

This command enables Text Extender to search in text files that are not in a DB2 V5.2
database.

This command cannot be used if the text columns in the table share a common index,
as described in “Enabling a text table” on page 50.

Authorization

You must have at least one of the following for the table: ALTER privilege, SELECT
privilege, or UPDATE privilege.

Command syntax

ÊÊ ENABLE TEXT FILES table-name HANDLE handle-column-name Ê

Ê
text-information index-characteristics

Ê

Ê
UPDATEINDEX UPDATE

NOUPDATE
COMMITCOUNT count

ÊÍ

text-information

CCSID ccsid LANGUAGE language FORMAT format

index-characteristics

INDEXTYPE PRECISE
LINGUISTIC INDEXOPTION FEATURE_EXTRACTION
DUAL CASE_ENABLED
NGRAM

Ê

Ê
UPDATEFREQ NONE

update-frequency

Ê

Ê

» »

DIRECTORY directory

,

DIRECTORY directory ON NODE (nodenumber)
NODES TO nodenumber

ENABLE TEXT FILES command

132 Text Extender: Administration and Programming

update-frequency

MIN (mindocs) D

»

(*)
,

0...6

H

»

(*)
,

0...23

M Ê

Ê »

,

(0...59)

Command parameters
table-name

The name of the text table in the connected database that is to be associated
with the external text files to be indexed. The name must include an explicit
schema name (qualifier) unless the schema name is the same as your user ID.

COMMITCOUNT count
A value from 500 to 1000000 indicating the number of inserts or updates after
which DB2 V5.2 must issue an intermediate commit statement. This can avoid
a situation in which there is insufficient log space when enabling large tables,
or columns, or a large number of external files.

For a description of the other command parameters, see “ENABLE TEXT COLUMN” on
page 126 .

Usage notes

This command adds a handle column to the specified DB2 table. Each handle column
is associated with a collection of external text files, and is used by Text Extender’s
UDFs. An index is created that is associated with these files.

After you have enabled the text files, initialize handles in the handle column using
INIT_TEXT_HANDLE. Then fill the index using UPDATE INDEX.

You cannot reuse a handle column name if that name has been used before in
ENABLE TEXT FILES to identify a handle column of a text column.

A log table is created for recording changes to the files, but you must activate the
triggers manually to record these changes because DB2 V5.2 does not have the files
under its control and is therefore not aware of such changes. See “Updating an index
for external files” on page 64 for a description of how to do this.

If you run out of log space in this step, see “Enabling a text column in a large table” on
page 56 for possible solutions.

ENABLE TEXT FILES command

Chapter 7. Administration commands for the client 133

Tip
This command cannot be used if the text columns in the table share a common
index, as described in “Enabling a text table” on page 50.

ENABLE TEXT FILES command

134 Text Extender: Administration and Programming

ENABLE TEXT TABLE

Creates a common index for use by any of the table’s text columns that are later
enabled. The table is then a common-index table. A table that does not get enabled in
this way, where the text columns that are later enabled create their own individual
indexes, is a multi-index table.

Authorization

You must have at least one of the following for the table:

ALTER privilege

SELECT privilege

UPDATE privilege.

Command syntax

ÊÊ ENABLE TEXT TABLE table-name
index-characteristics

ÊÍ

index-characteristics

INDEXTYPE PRECISE
LINGUISTIC INDEXOPTION FEATURE_EXTRACTION
DUAL CASE_ENABLED
NGRAM

Ê

Ê
UPDATEFREQ NONE

update-frequency

Ê

Ê

» »

DIRECTORY directory

,

DIRECTORY directory ON NODE (nodenumber)
NODES TO nodenumber

update-frequency

MIN (mindocs) D

»

(*)
,

0...6

H

»

(*)
,

0...23

M Ê

ENABLE TEXT TABLE command

Chapter 7. Administration commands for the client 135

Ê »

,

(0...59)

Command parameters
table-name

The name of the text table to be enabled in the connected database. The
name must include an explicit schema name (qualifier) unless the schema
name is the same as your user ID.

INDEXTYPE
The type of index to be created. For more information, see “Types of index” on
page 13 .

PRECISE
Terms are indexed and searched for exactly as they occur in the text
documents.

LINGUISTIC
Terms are processed linguistically before being indexed. Search terms
are also processed linguistically before the search begins.

DUAL Terms are indexed exactly as they occur in the text documents, and
they are also indexed after being processed linguistically. When
searching, you can decide for each term whether to search for the
precise term or for the linguistically processed term.

NGRAM
Terms are indexed by parsing sets of characters rather than by using
a dictionary. This dictionary type is mandatory if the documents you
are indexing contain DBCS characters, although an ngram index can
also be used for SBCS documents.

If you do not specify the INDEXTYPE keyword, the text configuration is used.

INDEXOPTION
Options to be used when creating the index.

FEATURE_EXTRACTION
Special terms such as names and abbreviations are extracted for use
in the created index. The documents to be indexed must be written in
English in CCSID 850. This option is available only for linguistic
indexes . If FEATURE_EXTRACTION is specified without specifying
INDEXTYPE, then a linguistic index is assumed; the default index
type specified in the text configuration settings is ignored. For more
information see “Feature extraction” on page 23.

CASE_ENABLED
This option is available only for ngram indexes . Normally, ngram
indexes do not allow a case-sensitive search. By specifying

ENABLE TEXT TABLE command

136 Text Extender: Administration and Programming

CASE_ENABLED, you ensure that documents are indexed such that
a case-sensitive search is possible. For more information see “Ngram
index” on page 15.

UPDATEFREQ update-frequency
The index update frequency in terms of when the update is to be made, and
how many text documents must be queued in the log table. If there are not
enough text documents in the log table at the day and time given, the index is
not updated.

The syntax is described in “Setting the frequency of index updates” on
page 241 .

If you do not specify UPDATEFREQ, the default frequency specified in the text
configuration settings is used.

NONE No further index updates are made. This is intended for a text column
in which there will be no further changes.

Tip
If you have many tables, consider avoiding the use of the default values.
By making individual update frequency settings for tables you can avoid
indexing all the tables simultaneously and causing an unnecessarily
prolonged load on your system resources.

DIRECTORY directory
The directory path in which the text index is to be stored. The specified path is
concatenated with “″txinsnnn” where nnn is the node number.

This is an existing directory on the system where the Text Extender server is
running.

If you do not specify the DIRECTORY keyword, the value of the DIRECTORY
setting in the text configuration settings is used.

If you are using partitioned databases, you can specify one common index
path name for all nodes, or for a range of nodes. or different index directory
paths for each node.

ON NODE nodenumber [TO nodenumber]
The number of the node or the range of nodes to which a directory path name
is being assigned.

Usage notes

A new text index is created that is associated with all the text columns in this table. You
do this when you want to have one common index for all the text columns of a table,
rather than a separate index for each text column.

When you have enabled a table, you must then run ENABLE TEXT COLUMN for each
of the text columns in which you want to search.

ENABLE TEXT TABLE command

Chapter 7. Administration commands for the client 137

|
|

|
|

|
|

|
|
|||

|
|
|

A log table is created in the database. The table is used to record changes, that is ,
inserts, updates, and deletions, in the text columns that are later enabled.

When a text column is enabled, triggers are created that monitor changes to the text
and automatically keep a record in the log table of which documents need to be
indexed.

Text Extender indexes the text documents listed in the log table periodically as specified
by the UPDATEFREQ keyword.

ENABLE TEXT TABLE command

138 Text Extender: Administration and Programming

GET ENVIRONMENT

This command displays the settings of the environment variables.

Authorization

None.

Command syntax

ÊÊ GET ENVIRONMENT ÊÍ

Command parameters

None.

Usage notes

These are the environment variables displayed:

DB2INSTANCE
DB2 V5.2 instance name.

DB2DBDFT
Default database name.

DB2TX_INSTOWNER (UNIX only)
Text Extender instance name.

DB2TX_INSTOWNERHOMEDIR (UNIX only)
Instance owner’s home directory.

GET ENVIRONMENT command

Chapter 7. Administration commands for the client 139

GET INDEX SETTINGS

This command displays the settings of an index, showing the following:

v Index type

v Index option [optional]

v Update index option

v Index directory

v Update frequency.

Authorization

None.

Command syntax

ÊÊ GET INDEX SETTINGS table-name
HANDLE handle-column-name

ÊÍ

Command parameters
table-name

The name of the text table in the connected database whose index settings
are to be displayed. The name must include an explicit schema name
(qualifier) unless the schema name is the same as your user ID.

HANDLE handle-column-name
The name of the handle column whose index settings are to be displayed.

Usage notes

If the table is enabled as a multi-index table, this command displays the index settings
of all enabled text columns in the table. If a handle-column-name is provided, this
command displays the index settings of the specified column.

If the table is a common-index table, the settings of the common index are displayed. If
a handle-column-name is provided, it is ignored.

GET INDEX SETTINGS command

140 Text Extender: Administration and Programming

GET INDEX STATUS

This command displays the following index status information for a given handle column
or table:

v Search status

v Index status

v Indexed documents

v Scheduled documents

v Error events.

Authorization

None.

Command syntax

ÊÊ GET INDEX STATUS table-name
HANDLE handle-column-name

ÊÍ

Command parameters
table-name

The name of the text table in the connected database that contains the text
columns whose status is to be displayed. The name must include an explicit
schema name (qualifier) unless the schema name is the same as your user ID.

HANDLE handle-column-name
The name of the handle column whose status is to be displayed.

Usage notes

For a multi-index table, you must specify the name of the handle column.

GET INDEX STATUS command

Chapter 7. Administration commands for the client 141

GET STATUS

This command displays information about the enabled status of databases, tables, or
text columns.

Authorization

None.

Command syntax

ÊÊ GET STATUS ÊÍ

Command parameters

None.

Usage notes

This command displays whether the database is enabled, the names of the enabled
text tables in the database, the names of the enabled text columns and their associated
handle columns, and the names of external-file handle columns.

GET STATUS command

142 Text Extender: Administration and Programming

GET TEXT CONFIGURATION

This command displays the default settings for the text configuration for the connected
database.

To change these default settings, use “CHANGE TEXT CONFIGURATION” on page 115
.

Authorization

You must have at least one of the following for the table:

SELECT privilege

Command syntax

ÊÊ GET TEXT CONFIGURATION
CFG

ÊÍ

Command parameters

None.

Usage notes

For an example of the text configuration information, see “Displaying the text
configuration settings” on page 68.

GET TEXT CONFIGURATION command

Chapter 7. Administration commands for the client 143

GET TEXT INFO

This command displays the text information settings for text columns:

v CCSID

v Language

v Format.

Authorization

None.

Command syntax

ÊÊ GET TEXT INFO table-name
HANDLE handle-column-name

ÊÍ

Command parameters
table-name

The name of the text table in the connected database that contains the text
columns whose text information settings are to be displayed. The name must
include an explicit schema name (qualifier) unless the schema name is the
same as your user ID.

HANDLE handle-column-name
The name of the handle column whose text information settings are to be
displayed.

Usage notes

If a handle column name is given, the text information for only this column is displayed.

If a handle column name is not given, the text information for each enabled column in
this table is displayed.

GET TEXT INFO command

144 Text Extender: Administration and Programming

QUIT

This command stops the Text Extender command line processor and returns control to
the operating system.

Authorization

None.

Command syntax

ÊÊ QUIT ÊÍ

Command parameters

None.

QUIT command

Chapter 7. Administration commands for the client 145

RESET INDEX STATUS

When the index status of a table or column shows Search not available or Update not
available, an error has occurred during indexing that prevents you working with the
index.

This command resets the index status so that you can continue to work with it. Before
resetting the index status, check for any errors that may be logged in the index’s log
table (see “Displaying error events” on page 70).

Authorization

None.

Command syntax

ÊÊ RESET INDEX STATUS table-name
HANDLE handle-column-name

ÊÍ

Command parameters
table-name

The name of the text table in the connected database that contains the text
columns whose status is to be reset. The name must include an explicit
schema name (qualifier) unless the schema name is the same as your user ID.

HANDLE handle-column-name
The name of the handle column whose status is to be reset.

Usage notes

For a multi-index table, you must specify a handle column name.

For a common-index table, each enabled column in this table is reset.

RESET INDEX STATUS command

146 Text Extender: Administration and Programming

UPDATE INDEX

This command starts indexing immediately. It brings the index up to date to reflect the
current contents of the text column(s) with which the index is associated.

To have updates on external files reflected in the index, you must force a “change”
entry to be placed in the log table by issuing an update statement on the corresponding
handle column. See “Updating an index for external files” on page 64 for an example.

Authorization

You must have at least one of the following for the table:

ALTER privilege

SELECT privilege

UPDATE privilege.

Command syntax

ÊÊ UPDATE INDEX table-name
HANDLE handle-column-name

Ê

Ê
COMMITCOUNT count

ÊÍ

Command parameters
table-name

The name of the text table in the connected database that contains the text
column whose index is to be updated. This can also be the name of a
common-index table. The name must include an explicit schema name
(qualifier) unless the schema name is the same as your user ID.

HANDLE handle-column-name
If this is a common-index table, the handle-column-name is not required and is
ignored. The index to be updated is associated with the whole table and not
with an individual text column.

If this is a multi-index table, then handle-column-name is the name of the
handle column whose index is to be updated.

COMMITCOUNT count
A value from 500 to 1000000 indicating the number of inserts or updates after
which an intermediate commit statement is issued. This can avoid a situation
in which there is insufficient log space when enabling large tables, or columns,
or a large number of external files.

UPDATE INDEX command

Chapter 7. Administration commands for the client 147

UPDATE INDEX command

148 Text Extender: Administration and Programming

Chapter 8. Administration commands for the server

This chapter describes the syntax of the administration commands for the server.
Server administration consists of tasks you can do to start, stop, and check the status
of the Text Extender server, and to create a sample database and sample tables.
“Chapter 4. Administration” on page 39 describes how to use these commands.

Command Purpose Page

TXICRT Creates a Text Extender instance 150

TXIDROP Drops a Text Extender instance 152

TXNADD Adds Text Extender servers 153

TXNCHECK Checks Text Extender database integrity 154

TXNDROP Drops Text Extender servers 155

TXSAMPLE Creates and enables sample tables 156

TXSTART Starts the Text Extender services 157

TXSTATUS Displays the status of the search service 158

TXSTOP Stops the Text Extender services 159

TXTRACE Produces trace information 160

TXVERIFY Creates and enables a sample database 165

© Copyright IBM Corp. 1995, 1998 149

||||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

TXICRT

This command creates a Text Extender instance.

UNIX authorization

Root

Command syntax

For UNIX:

ÊÊ txicrt instance-name db2-instance-name
port-start

port-end

Ê

Ê
-nodes identifiers -client

ÊÍ

For Windows NT:

ÊÊ txicrt db2-instance-name
port-start

port-end

Ê

Ê
-nodes identifiers -client

ÊÍ

Command parameters
instance-name

(UNIX only) The user ID of the instance owner.

db2-instance-name
The name of the DB2 instance to be associated with the instance being
created.

port-start/port-end
The TCP/IP port range to be used if you are working with more than one
physical node. Not required if you are using only logical nodes.

The port range must be equal to the number of nodes you want to work on. If
you are working with one node, specify only a port-start parameter. To
support a subset of nodes, use the port-last parameter.

Do not specify a port range if the instance is created on a single-partition
database.

Use only port numbers that are not already listed in the TCP/IP etc/services
file. Do not specify port numbers for client-only installations.

TXICRT command

150 Text Extender: Administration and Programming

|
|

|

|

|

|

|

|||||||||||||||||||||
|

|
|||||||||||||||||||||

|
|

|||||||||||||||||||
|

|
|||||||||||||||||||||

|

|

|
|

|
|
|

|
|
|

|
|
|

|
|

|
|

-nodes identifiers
A list of node identifiers. Example: -nodes 0 1 2.

Use this parameter if your table belongs to specific nodes in a nodegroup.

If this parameter is not specified, all nodes are used, that is, all the nodes
defined in db2nodes.cfg.

Do not specify node identifiers for client-only installations.

-client

Specify this parameter if you have a Text Extender client-only installation. If
you do not specify this parameter, TXICRT configures a client/server instance
of Text Extender.

Usage notes

Enabling text tables or columns is possible only on nodes where you have created a
Text Extender instance.

A DB2 instance must already have been created for the user ID.

In UNIX installations, this instance-specific command is in the
/usr/lpp/db2tx_05_02/instance directory.

TXICRT command

Chapter 8. Administration commands for the server 151

|
|

|

|
|

|

|

|
|
|

|

|
|

|

|
|

TXIDROP

This command drops a Text Extender instance together with all its indexes.

UNIX authorization

Root

Command syntax

For UNIX:

ÊÊ txidrop instance-name db2-instance-name ÊÍ

For Windows NT:

ÊÊ txidrop instance-name ÊÍ

Command parameters
instance-name

The name of the instance to be dropped.

db2-instance-name
The name of the DB2 instance associated with the instance to be dropped.

Usage notes

Before dropping an instance, disable any databases that are enabled for it.

In UNIX installations, this instance-specific command is in the
/usr/lpp/db2tx_05_02/instance directory.

TXIDROP command

152 Text Extender: Administration and Programming

|
|

|

|

|

|

|

|||||||||||
|
|

|||||||||
|

|

|
|

|
|

|

|

|
|

TXNADD

This command creates an additional Text Extender server on the specified node. The
TXSTART command subsequently starts the server.

UNIX authorization

SYSADM, DBADM

Command syntax

ÊÊ txnadd node-number
port

ÊÍ

Command parameters
node-number

The number of the node to be added. Specify the node number exactly as it is
specified in the db2nodes.cfg file.

port The port number to be used for the added node. You must specify a port
number if you are adding a physical node, or if your node configuration
contains physical nodes.

Usage notes

Use TXNCHECK to check which indexes you must recreate to remain synchronous with
your database.

Tip
If you add a physical node to a node configuration that has logical nodes, you
must first drop the instance and then recreate the instance, specifying port
numbers for all the nodes.

TXNADD command

Chapter 8. Administration commands for the server 153

|
|

|
|

|

|

|

|||||||||||||||

|

|

|
|
|

||
|
|

|

|
|
|

|
|
|
|||

TXNCHECK

This command checks the Text Extender integrity for a given database.

UNIX authorization

SYSADM, DBADM

Command syntax

ÊÊ txncheck
database-name

ÊÍ

Command parameters
database-name

The name of the database to be checked. If a database name is not specified,
the name of the DB2 default database is used.

Usage notes

A Text Extender-enabled table must be reindexed if the nodegroup it is in is changed.
Use TXNCHECK to display which Text Extender-enabled tables need to be reindexed
due to a redistributed nodegroup.

TXNCHECK command

154 Text Extender: Administration and Programming

|
|

|

|

|

|

|||||||||||||

|

|

|
|
|

|

|
|
|

TXNDROP

This command removes a Text Extender server for a given node.

UNIX authorization

SYSADM, DBADM

Command syntax

ÊÊ txndrop node-number ÊÍ

Command parameters
node-number

The number of the node to be dropped. Specify the node number exactly as it
is specified in the db2nodes.cfg file.

Usage notes

Use TXNCHECK to check which indexes you must recreate to remain synchronous with
your database.

TXNDROP command

Chapter 8. Administration commands for the server 155

|
|

|

|

|

|

|||||||||
|

|

|
|
|

|

|
|

TXSAMPLE

This command creates sample tables, loads sample English documents into column
COMMENT, and enables the text column. See “Creating a sample table” on page 47.

UNIX authorization

SYSADM, DBADM.

Command syntax

ÊÊ txsample database-name
user-id password

ÊÍ

Command parameters
database-name

The name of the database in which the sample table is to be created.

user-id This is required only if you are working from a client workstation.

password
This is required only if you are working from a client workstation.

Usage notes

This command can also be used on a client workstation.

TXSAMPLE command

156 Text Extender: Administration and Programming

TXSTART

This command starts the Text Extender services.

UNIX authorization

SYSADM, DBADM.

Command syntax

ÊÊ txstart
NODENUM nodenum

ÊÍ

Command parameters
NODENUM nodenum

The node number of the server to be started. If a node number is not
specified, all servers are started.

Usage notes

Run this command:

v While logged on with a user ID in the SM administration group

v Whenever you stop and restart your server system

v After starting DB2.

TXSTART command

Chapter 8. Administration commands for the server 157

|
|
|

TXSTATUS

This command displays if Text Extender is up and running.

UNIX authorization

SYSADM, DBADM.

Command syntax

ÊÊ txstatus
NODENUM nodenum

ÊÍ

Command parameters
NODENUM nodenum

The node number of the server whose status is to be checked. If a node
number is not specified, the status of all servers is displayed.

TXSTATUS command

158 Text Extender: Administration and Programming

|
|

TXSTOP

This command stops the Text Extender services.

UNIX authorization

SYSADM, DBADM.

Command syntax

ÊÊ txstop
NODENUM nodenum

ÊÍ

Command parameters
NODENUM nodenum

The node number of the server whose status is to be checked. If a node
number is not specified, the all servers are stopped.

Usage notes

This command does not stop DB2.

TXSTOP command

Chapter 8. Administration commands for the server 159

|
|

TXTRACE

This command writes processing information to a trace buffer in shared memory. This
information can be used for tracing faults. It can be written in binary from the trace
buffer to a file for later formatting when tracing has been switched off, or can be
formatted and written to a file while tracing is still on.

UNIX authorization

SYSADM, DBADM.

Command syntax

ÊÊ txtrace on
options

dump dump-file
off
format > format-file

options dump-file
change
clear
flow
information

ÊÍ

options

» -m products . events . components . functions
-rc return-code
-e max-system-errors
-r max-record-size
-i initial-buffer-size | -l last-buffer-size

dump-file

dump-filename
path

format-file

format-filename
path

Command parameters

Note:

TXTRACE command

160 Text Extender: Administration and Programming

A -u option is also available with all of the TXTRACE parameters to display
information about the parameter.

on To start the trace facility.

dump | dmp
To write the trace information in binary to a file.

off To stop the trace facility.

format | fmt
To format the binary trace information. You can format the dump file, when
tracing is switched off, by specifying the name of the dump file and the name
of the file to hold the formatted trace information. To format the trace
information directly from the trace buffer while tracing is still switched on, enter:
destrc format > filename.tmp.

change | chg
To change the trace mask, maxSysErrors, or maxRecordSize.

clear | clr
To clear the trace.

flow | flw
To show control flow of the trace.

information | info | inf
To get information about the trace.

options
To filter the trace information either when turning tracing on (this reduces the
shared memory usage), or when formatting the trace information. Unless the
trace is very large, it is usually easier to write the full trace information and
then filter it during formatting.

-m To add a “mask” to specify which events, components, and functions
are to be included in the trace. The default is to trace everything. The
mask is in four parts, separated by periods; for example: 2.2-6.1,3.*
You can specify a range using “-” as a separator character, or a list
using “,” as a separator character. For example: 2-6 includes only the
events whose IDs are in the range from 2 to 6. To include only
components 2 and 6, specify 2,6

products
Product ID. The product ID for Text Extender is “2”. The
product ID for TextMiner is “3”.

events The set of event types that you want to be included in the
trace. The event types are:

0 system_error

1 system_error

2 system_error

TXTRACE command

Chapter 8. Administration commands for the server 161

|
|

3 non-fatal_error

4 non-fatal_error

5 api_errcode

7 fnc_errcode

8 trap error

10 api_entry

11 api_exit

13 api_retcode

15 api_data

30 fnc_entry

31 fnc_exit

33 fnc_retcode

35 fnc_data

components
The components to trace.

The component IDs for Text Extender are:

1 COMMAND_LINE_INTERFACE

2 UDF

3 STORED_PROCEDURES

4 ADMINISTRATION

5 INDEX_CONTROL

6 LIBRARY_SERVICES

7 DES_PARSER

8 DES_DEMON

9 DES_API

10 SERVICES

The component IDs for TextMiner are:

1 automachine

2 bgproc (background processing)

3 cluster

4 common

TXTRACE command

162 Text Extender: Administration and Programming

|

||

||

||

||

||

||

||

||

||

||

5 commsrvc (common services)

6 communic (communication)

7 daemon

8 dsclient

9 environ (environment)

10 glue

11 idxcomm (index build, common part)

12 libsrv (library services)

13 search

14 trace

15 guru

16 indexbld (index build, tm only)

17 indexeng (index engine, tm only)

18 smsearch

19 search engine, tm only)

20 tmsearch

21 gtrcm (gtr, common part)

22 gtrsrch (search, gtr only)

23 gtridx (index build, gtr only)

functions
Asterisk (*). The set of functions to trace. Use an asterisk (*)
to trace all functions unless directed to do otherwise by the
IBM Support Center.

-rc return-code
Treat return-code as a system error.

-e max-system-errors
Integer. To stop the trace after this number of errors. The default is 1
which specifies that when the first system error occurs, all subsequent
tracing of lower severity events is suppressed. This is acceptable if
you are interested only in the first major error, but you should specify
a higher number (such as -e 50) if you want to see the full trace after
the initial system error. The trace destination is shared memory.

-r max-record-size
Integer. To stop the trace after this number of records have been
written to the trace file. The default is 16 KB.

TXTRACE command

Chapter 8. Administration commands for the server 163

-i initial-buffer-size
Integer. To keep this number of records from the beginning of the
trace. If -i is specified, the default is 16 KB. On a UNIX system, a
recommended buffer size is 2 MB.

If neither -i nor -l are specified, -l is the default.

If you specify -i, no wrapping occurs; no further trace entries are
written if the volume of records exceeds max-record-size, even if you
clear all trace entries. To get new trace entries written, increase the
buffer size, turn the trace off and then on again.

-l last-buffer-size
Integer. To keep this number of records from the end of the trace. The
default is 16 KB. On a UNIX system, a recommended buffer size is 2
MB.

path The directory where the corresponding file is stored.

dump-filename
The name of the file that contains the binary trace information.

formatted-filename
The name of the file that contains the formatted trace information.

Examples

See “Tracing faults” on page 74.

TXTRACE command

164 Text Extender: Administration and Programming

TXVERIFY

This command creates a sample database and enables it.

UNIX authorization

SYSADM, DBADM.

Command syntax

ÊÊ txverify database-name
user-id password

ÊÍ

Command parameters
database-name

The name of the database in which the sample tables are to be created.

user-id This is required only if you are working from a client workstation.

password
This is required only if you are working from a client workstation.

Usage notes

This command can also be used on a client workstation.

TXVERIFY command

Chapter 8. Administration commands for the server 165

TXVERIFY command

166 Text Extender: Administration and Programming

Chapter 9. UDTs and UDFs

Text Extender provides user-defined functions (UDFs) to search in text documents
stored in DB2 V5.2, and to work with the results of a search. Some of the UDFs’
parameters are data types known as user-defined distinct types (UDTs) that are
provided with Text Extender.

This chapter describes the UDTs and the UDFs.

Text Extender provides a DB2 V5.2 command line processor input file called
txsample.udf. It contains examples of Text Extender UDFs that run against the sample
tables described in “The sample table DB2TX.SAMPLE” on page 78. Use this file to see
examples of the syntax of the administration and search UDFs.

UDTs provided by Text Extender

UDT Source data type Comments

DB2TEXTH VARCHAR(60) FOR

BIT DATA

Text handle. A variable-length string containing

information needed for indexing a text document

stored in a text column. The information in a

handle includes a document ID, the name of the

server where the text is to be indexed, the name

of the index, and information about the text

document.

Handles are stored in columns that Text Extender

creates and associates with each text column.

The functions HANDLE and INIT_TEXT_HANDLE

return this data type.

© Copyright IBM Corp. 1995, 1998 167

|

UDT Source data type Comments

DB2TEXTFH VARCHAR(210)

FOR BIT DATA

File handle. A variable-length string containing

information needed for indexing an external text

file – a file stored outside of the control of DB2

V5.2. The information in a text handle includes a

document ID, the name of the server where the

text is to be indexed, the name of the index,

information about the text file, and information

about the location of the file.

File handles are stored in columns that Text

Extender creates and associates with each group

of external files.

The functions FILE and INIT_TEXT_HANDLE

return this data type.

DB2TEXTHLISTP VARCHAR(16) FOR

BIT DATA

Handle list pointer. A pointer to a list of handles

associated with text documents found by a

search.

The function HANDLE_LIST returns this data

type.

DB2TEXTFHLISTP VARCHAR(16) FOR

BIT DATA

Handle list pointer. A pointer to a list of handles

associated with external files found by a search.

The function HANDLE_LIST returns this data

type.

UDFs provided by Text Extender

Search function (UDF) Purpose Page

CCSID Returns the CCSID from a handle 170

CONTAINS Makes a search for text in a particular document 171

FILE Returns or changes the path and name of a file in an

existing handle

172

FORMAT Returns or changes the document format setting in a

handle

173

HANDLE Returns a handle from a list of handles 174

HANDLE_LIST Searches and returns a list of handles 175

INIT_TEXT_HANDLE Returns a partially initialized handle containing

information such as format and language settings

176

168 Text Extender: Administration and Programming

|
||
|
|
|
|
|
|
|
|

|
|
|

|
|

Search function (UDF) Purpose Page

LANGUAGE Returns or changes the language setting in a handle 177

NO_OF_DOCUMENTS Returns the number of documents listed in a handle list 178

NO_OF_MATCHES Searches and returns the number of matches found 179

RANK Searches and returns the rank value of a found text

document

180

REFINE Takes a search argument and a refining search

argument and returns a combined search argument

181

SEARCH_RESULT Returns an intermediate table with the search result of

the specified search string

182

Examples of the use of UDFs are given in “Chapter 5. Searching with Text Extender’s
UDFs” on page 77.

UDF overview

Chapter 9. UDTs and UDFs 169

CCSID

The CCSID function returns the CCSID (data type SMALLINT) from a handle. This is
the CCSID parameter used for indexing the corresponding text document. This is
described in “CCSIDs” on page 240. It is set for each text column by the ENABLE
TEXT COLUMN command.

Function syntax

ÊÊ CCSID (handle) ÊÍ

Function parameters
handle An expression whose result is a value of type DB2TEXTH or DB2TEXTFH. It

is usually the name of a handle column from which the CCSID setting is to be
returned.

CCSID UDF

170 Text Extender: Administration and Programming

CONTAINS

The CONTAINS function searches for text in a particular text document. It returns the
INTEGER value 1 if the document contains the text. Otherwise, it returns 0.

Function syntax

ÊÊ CONTAINS (handle , search-argument) ÊÍ

Function parameters
handle An expression whose result is a value of type DB2TEXTH or DB2TEXTFH. It

is usually the name of a handle column containing the handles of the text
documents to be searched.

search-argument
A string of type LONG VARCHAR containing the terms to be searched for. See
“Chapter 10. Syntax of search arguments” on page 183.

CONTAINS UDF

Chapter 9. UDTs and UDFs 171

FILE

The FILE function does one of the following:

v Returns the path and file name in a handle

v Changes the path and file name in a handle, and returns the path and file name.

The returned handle is a value of type DB2TEXTFH.

Function syntax

ÊÊ FILE (handle) ÊÍ

ÊÊ FILE (handle , filename) ÊÍ

Function parameters
handle An expression whose result is a value of type DB2TEXTFH. It is usually the

name of a handle column from which the file name is to be returned.

filename
A string of type VARCHAR(150) specifying the new absolute path and file
name of the external file that is to be associated with the handle. The path
could be, for example, a LAN drive or an NFS-mounted drive. The file access
permissions must permit access to the file by the DB2 V5.2 instance owner.

FILE UDF

172 Text Extender: Administration and Programming

FORMAT

The FORMAT function does one of the following:

v Returns the document format specified in a handle

v Changes the format specification in a document’s handle, and returns the changed
handle.

The returned document format is a string of type VARCHAR(30). The returned handle is
of type DB2TEXTH or DB2TEXTFH.

This is the format parameter used for indexing the corresponding text document. The
document formats supported are listed in “Formats” on page 237.

Function syntax

ÊÊ
(1)

FORMAT (handle) ÊÍ

Notes:

1. Returns a format value, type VARCHAR(30).

ÊÊ
(1)

FORMAT (handle , format) ÊÍ

Notes:

1. Returns a handle, type DB2TEXTH or DB2TEXTFH.

Function parameters
handle An expression whose result is a value of type DB2TEXTH or DB2TEXTFH. It

is usually the name of a handle column from which the format setting is to be
returned or set.

format The new document format setting of data type VARCHAR(30).

If format is specified, this document format is set in the handle; in this case,
the handle is returned instead of the format setting.

FORMAT UDF

Chapter 9. UDTs and UDFs 173

HANDLE

The HANDLE function returns a handle of type DB2TEXTH or DB2TEXTFH, selected
by sequence number from a list of handles.

Use the HANDLE function only in an INSERT statement.

Function syntax

ÊÊ HANDLE (handle-list , integer) ÊÍ

Function parameters
handle-list

An expression whose result is a value of type DB2TEXTHLISTP or
DB2TEXTFHLISTP. It is returned by the function HANDLE_LIST.

This is a pointer to a list of handles of documents found by a search.

integer An INTEGER value indicating which handle in the list is to be returned.

HANDLE UDF

174 Text Extender: Administration and Programming

HANDLE_LIST

The HANDLE_LIST function searches for text documents using a search argument and
returns a value of type DB2TEXTHLISTP or DB2TEXTFHLISTP that points to a list of
handles for the found documents.

Note: The pointer to this list is accessible only within the scope of the SQL statement
using this function.

If no text documents are found containing the search term(s), the list of handles is
empty. Use the NO_OF_DOCUMENTS function to find whether the list is empty.

If you are searching for text stored in a column of a base table, use this function only
once per statement. If you are searching for text stored in a column of a view, and the
view is made from more than one base table (that is, it is a union view), use one handle
for each handle column as the handle input argument to the HANDLE_LIST function.

Function syntax

ÊÊ HANDLE_LIST (handle , search-argument) ÊÍ

Function parameters
handle An expression whose result is a value of type DB2TEXTH or DB2TEXTFH. It

is usually the handle column containing the handles of the text documents to
be searched. It can also be a prototype handle extracted from the
TEXTCOLUMNS catalog view.

search-argument
A string of type LONG VARCHAR containing the terms to be searched for. See
“Chapter 10. Syntax of search arguments” on page 183.

HANDLE_LIST UDF

Chapter 9. UDTs and UDFs 175

INIT_TEXT_HANDLE

The INIT_TEXT_HANDLE function returns a partially initialized handle that contains
preset values for the text’s format or language. It can be inserted into a handle column.
This is useful when you add a row containing text whose format and language are not
the same as those specified in the text configuration settings.

The returned handle is a value of type DB2TEXTH.

If you intend to search in text that is stored in external files rather than in a DB2 V5.2
table, you can use the INIT_TEXT_HANDLE function to return a completely initialized
handle that contains preset values for the text’s CCSID, format, language, and the
location of the file.

The returned handle is a value of type DB2TEXTFH.

Use the INIT_TEXT_HANDLE function to insert or update handle values.

Function syntax

ÊÊ INIT_TEXT_HANDLE (format , language) ÊÍ

ÊÊ INIT_TEXT_HANDLE (CCSID , format , language , filename) ÊÍ

Function parameters
format A string of type VARCHAR(30) specifying the new document format setting.

The formats supported are listed in “Formats” on page 237.

language
A string of type VARCHAR(30) specifying the new document language setting.
The supported languages are listed in “Languages” on page 238.

filename
A string of type VARCHAR(150) specifying the absolute path and file name of
the external file that is to be associated with the handle. To have access to the
file in UNIX, the DB2 V5.2 instance owner must be included in the file access
permissions. For OS/2 and Windows users, the file access permissions must
include the logon user IDs.

INIT_TEXT_HANDLE UDF

176 Text Extender: Administration and Programming

LANGUAGE

The LANGUAGE function does one of the following:

v Returns the document language specified in a handle

v Changes the language specification in a document’s handle, and returns the changed
handle.

The returned document language is a string of type VARCHAR(30). The returned
handle is of type DB2TEXTH or DB2TEXTFH.

This is the language parameter used for indexing the corresponding text document. The
supported languages are listed in “Languages” on page 238.

Function syntax

ÊÊ
(1)

LANGUAGE (handle) ÊÍ

Notes:

1. Returns a language value, type VARCHAR(30).

ÊÊ
(1)

LANGUAGE (handle , language) ÊÍ

Notes:

1. Returns a handle, type DB2TEXTH or DB2TEXTFH.

Function parameters
handle An expression whose result is a value of type DB2TEXTH or DB2TEXTFH. It

is usually the name of a handle column from which the language setting is to
be returned or set.

language
The new document language setting of data type VARCHAR(30).

If language is specified, this document language is set in the handle; the
handle is returned instead of the language setting.

LANGUAGE UDF

Chapter 9. UDTs and UDFs 177

NO_OF_DOCUMENTS

The NO_OF_DOCUMENTS function returns an INTEGER value indicating the number
of items in a list of text documents found by a search. The returned value is the number
of entries found in a list of handles.

Function syntax

ÊÊ NO_OF_DOCUMENTS (handle-list) ÊÍ

Function parameters
handle-list

An expression whose result is a value of type DB2TEXTHLISTP or
DB2TEXTFHLISTP. It is returned by the function HANDLE_LIST.

This is a pointer to a list of handles of documents found by a search.

The HANDLE_LIST and NO_OF_DOCUMENTS UDFs must be in the same
SQL statement because the list exists only within the scope of the statement.

NO_OF_DOCUMENTS UDF

178 Text Extender: Administration and Programming

NO_OF_MATCHES

NO_OF_MATCHES can search in text documents and return an INTEGER value
indicating how many matches resulted per document.

Function syntax

ÊÊ NO_OF_MATCHES (handle , search-argument) ÊÍ

Function parameters
handle An expression whose result is a value of type DB2TEXTH or DB2TEXTFH. It

is usually the name of a handle column containing the handles of the text
documents to be searched.

search-argument
A string of type LONG VARCHAR containing the terms to be searched for. See
“Chapter 10. Syntax of search arguments” on page 183.

NO_OF_MATCHES UDF

Chapter 9. UDTs and UDFs 179

|
|

RANK

RANK can search in text documents and return a rank value for each document found,
indicating how well the found document is described by the search argument.

RANK returns an DOUBLE value between 0 and 1. The rank value is absolute,
indicating how well the found document satisfies the search criteria in relation to other
found documents. The value indicates the number of matches found in the document in
relation to the document’s size.

Function syntax

ÊÊ RANK (handle , search-argument) ÊÍ

Function parameters
handle An expression whose result is a value of type DB2TEXTH or DB2TEXTFH. It

is usually the name of a handle column containing the handles of the text
documents to be searched.

search-argument
A string of type LONG VARCHAR containing the terms to be searched for. See
“Chapter 10. Syntax of search arguments” on page 183.

RANK UDF

180 Text Extender: Administration and Programming

|
|

REFINE

The REFINE function takes two search arguments and returns a combined search
argument of type LONG VARCHAR, consisting of the two original search arguments
connected by the Boolean operator AND.

Function syntax

ÊÊ REFINE (search-argument , search-argument) ÊÍ

Function parameters
search-argument

A string of type LONG VARCHAR containing the terms to be searched for. See
“Chapter 10. Syntax of search arguments” on page 183.

REFINE UDF

Chapter 9. UDTs and UDFs 181

SEARCH_RESULT

The SEARCH_RESULT function returns the result of a search in an intermediate table.
This UDF can be used in a FROM clause of an SQL statement.

The returned table has the following structure:

Column Name Datatype

HANDLE DB2TX.DB2TEXTH or DB2TX.DB2TEXTFH
NUMBER_OF_MATCHES INTEGER
RANK DOUBLE

This UDF is faster than CONTAINS or RANK when processing large tables.

Function syntax

ÊÊ SEARCH_RESULT (handle , search-argument) ÊÍ

Function parameters
handle An expression whose result is a value of type DB2TEXTH or DB2TEXTFH. It

is usually the name of a handle column containing the handles of the text
documents to be searched.

search-argument
A string of type LONG VARCHAR containing the terms to be searched for. See
“Chapter 10. Syntax of search arguments” on page 183.

Examples

For an example, refer to “Using the SEARCH_RESULT UDF” on page 96, or look at the
sample UDFs provided in the file described in “The sample UDFs” on page 77.

SEARCH_RESULT UDF

182 Text Extender: Administration and Programming

Chapter 10. Syntax of search arguments

A search argument is the condition that you specify when searching for terms in text
documents. It consists of one or several search terms and search parameters.

Examples of search arguments are given in “Specifying search arguments” on page 84,
and in a file called txsample.udf. It contains examples of Text Extender UDFs that run
against the sample tables described in “The sample table DB2TX.SAMPLE” on page 78.

The UDFs that use search arguments are:

v CONTAINS. This function uses a search argument to search for text in a particular
text document. It returns the INTEGER value 1 if the document contains the text.
Otherwise, it returns 0.

v NO_OF_MATCHES. This function uses a search argument to search in text
documents. It returns an INTEGER value indicating how many matches resulted per
document.

v RANK. This function uses a search argument to search in text documents. It returns
a value for each document found, indicating how well the found document is
described by the search argument.

v REFINE. This function takes two search arguments and returns a combined search
argument of type LONG VARCHAR, consisting of the two original search arguments
connected by the Boolean operator AND.

v HANDLE_LIST. This function uses a search argument to search in text documents. It
returns a value of type DB2TEXTHLISTP or DB2TEXTFHLISTP that points to a list of
handles for the found documents.

v SEARCH_RESULT. This function returns a table containing the requested
information, that is, the rank, number of matches, and the handle.

The API functions that use search arguments are:

v DesGetBrowseInfo. This function uses a search argument for searching through text
identified by a handle. It returns a pointer to browse information needed by
DesStartBrowseSession for highlighting terms.

v DesGetSearchResultTable. This function uses a search argument for searching
through text documents identified by a text column. The handle data of the found text
items is written to a result table. Browse information about rank and the number of
matches can also be written to the result table.

© Copyright IBM Corp. 1995, 1998 183

Search argument

Search argument syntax

ÊÊ
THESAURUS "thesaurus-name"

COUNT "depth"

Ê

Ê
RESULT LIMIT number

Ê

Ê boolean-argument
& freetext-argument

freetext-argument
boolean-argument &

ÊÍ

boolean-argument

»

»

& or |

search-factor

(search-factor & search-factor)
|

freetext-argument

IS ABOUT
SYNONYM FORM OF
feature
thesaurus

language
"phrase-or-sentence" Ê

Ê
ESCAPE "escape-char"

search-factor

»

search-primary
NOT

AND

s.-primary IN SAME PARAGRAPH AS s.-primary
IN SAME SENTENCE AS

search-primary

Search argument

184 Text Extender: Administration and Programming

»

search-atom
,

(search-atom)

search-atom

PRECISE FORM OF
STEMMED FORM OF
FUZZY FORM OF match-level
SYNONYM FORM OF
BOUND
SOUNDS LIKE
feature
thesaurus

language
"word-or-phrase" Ê

Ê
ESCAPE "escape-character"

thesaurus (if THESAURUS is specified)

EXPAND "relation"
TERM OF

Examples

Examples are given in “Specifying search arguments” on page 84.

Search parameters
IS ABOUT

An option that lets you specify a free-text search argument, that is, a
natural-language phrase or sentence that describes the concept to be found.
See “Free-text and hybrid search” on page 92.

feature An option that requests expansion of the current search term with the help of
equivalent terms previously extracted from documents. This option is for use
with a linguistic index that uses feature extraction (see “Feature extraction” on
page 23). It can be used only with English language documents.

PERSON
Requests that the search be expanded to include person names. A
search term containing George Washington can be expanded to
search also for President Washington.

Search argument

Chapter 10. Syntax of search arguments 185

ORGANISATION
Requests that the search be expanded to include the names of
organizations. A search term containing ETSI can also look for Energy
Transportation Systems.

PLACE Requests that the search be expanded to include the names of
places. A search term containing United States, for example, can
search also for U.S. of America, US, USA.

DOMAIN
Requests expansion of the search term with respect to terms
commonly used in context, such as national education.

ANY Requests all the feature expansions.

THESAURUS thesaurus-name

A keyword used to specify the name of the thesaurus to be used to expand
the search term. The thesaurus name is the file name (without its extension) of
a thesaurus that has been compiled using the thesaurus compiler DESTHESC.
There is a default thesaurus desthes stored in the sample directory. You can
also specify the file’s path name. The default path name is the dictionary path.

COUNT depth

A keyword used to specify the number of levels (the depth) of terms in the
thesaurus that are to be used to expand the search term for the given relation.
If you do not specify this keyword, a count of 1 is assumed.

RESULT LIMIT number

A keyword used to specify the maximum number of entries to be returned in
the result list. number is a value from 1 to 32767. If a free-text search is used,
the search result list is ranked only with respect to the complete search result
list. Otherwise, the limited search result is ranked only from the entries of the
list.

EXPAND relation

A keyword used to specify the relation, such as INSTANCE, between the
search term specified in TERM OF and the thesaurus terms to be used to
expand the search term. The relation name must correspond to a relation used
in the thesaurus. See “Thesaurus concepts” on page 31.

TERM OF ″word-or-phrase″

The search term, or multi-word search term, to which other search terms are to
be added from the thesaurus.

search-factor
An operand that can be combined with other operands to form a search
argument. The evaluation order is from left to right. The logical AND (&)
operator binds stronger than the logical OR (|) operator. Example:

"passenger" & "vehicle" | "transport" & "public"

Search argument

186 Text Extender: Administration and Programming

|

|

|
|
|
|
|

is evaluated as:

("passenger" & "vehicle") | ("transport" & "public")

To search for:

"passenger" & ("vehicle" | "transport") & "public"

you must include the parentheses as shown.

NOT search-primary
An operator that lets you exclude text documents from your search that contain
a particular term.

When NOT is used in a search factor, you cannot use the SYNONYM FORM
OF keyword.

search-primary IN SAME PARAGRAPH AS search-primary
A keyword that lets you search for a combination of terms occurring in the
same paragraph.

The following search argument finds text documents containing the term
“traffic” only if the term “air” is in the same paragraph.

"traffic" IN SAME PARAGRAPH AS "air"

You cannot use the IN SAME PARAGRAPH AS keyword when NOT is used in
a search factor.

search-primary IN SAME SENTENCE AS search-primary
A keyword that lets you search for a combination of terms occurring in the
same sentence. Similar to IN SAME PARAGRAPH AS.

AND search-primary
A keyword that lets you combine several search-primaries to be searched for
in the same sentence or the same paragraph.

The following search argument searches for “forest”, “rain”, “erosion”, and
“land” in the same sentence.

"forest" IN SAME SENTENCE AS "rain" AND "erosion" AND "land"

search-atom
If you connect a series of search atoms by commas, then a search is
successful if a term in any one of the search atoms is found. Each search
atom must contain at least a word or a phrase.

The following statement is true if one or more of the search arguments is
found.

CONTAINS (mytexthandle, '("text",
"graphic",
"audio",
"video")') = 1

Search argument

Chapter 10. Syntax of search arguments 187

PRECISE FORM OF, STEMMED FORM OF, FUZZY FORM OF, SYNONYM FORM OF,
BOUND

Table 7 shows the options that correspond to the various types of index. For
example, for a linguistic index, any of the options are suitable except for
PRECISE FORM OF. If you specify PRECISE FORM OF, it is ignored and the
default value is taken.

The search term processing is described in more detail in Table 8.

Table 7. Linguistic options

Search atom keyword

Index type

Linguistic Precise Dual Ngram

— FEATURE_

EXTRACTION

— CASE_

ENABLED

PRECISE FORM OF X O O

STEMMED FORM OF X X X O O

FUZZY FORM OF O O

IS ABOUT O O O O

SYNONYM FORM OF O O O O

EXPAND O O O O

feature O O

SOUNDS LIKE O O O O

IN SAME SENTENCE AS O O O O O O

IN SAME PARAGRAPH

AS
O O O O O O

BOUND O O

Legend: X=default setting O=function available

Table 8. Search term options for ngram indexes

Search atom keyword

Search term processing

Case Stemming Match

Sensitive Insensitive Exact Fuzzy

PRECISE FORM OF only if

case-enabled
X X

STEMMED FORM OF X X

FUZZY FORM OF X X

Legend: X=default setting

If you use a keyword that is not available for that index type, it is ignored and
either the default keyword is used instead, or a message is returned.

Search argument

188 Text Extender: Administration and Programming

PRECISE FORM OF
A keyword that causes the word (or each word in the phrase)
following PRECISE FORM OF to be searched for exactly as typed,
rather than being first reduced to its stem form. This form of search is
case-sensitive; that is, the use of upper- and lowercase letters is
significant. For example, if you search for mouse you do not find
“Mouse”.

This is the default option for precise and dual indexes. If you specify
this keyword for a linguistic index, it is ignored and STEMMED FORM
OF is assumed.

STEMMED FORM OF
A keyword that causes the word (or each word in the phrase)
following STEMMED FORM OF to be reduced to its word stem before
the search is carried out. This form of search is not case-sensitive.
For example, if you search for mouse you find “Mouse”.

The way in which words are reduced to their stem form is
language-dependent.

Example: programming computer systems is replaced by program
compute system when you use the US-English dictionary, and by
programme compute system when you use the UK-English dictionary.

This search phrase can find “programmer computes system”,
“program computing systems”, “programming computer system”, and
so on.

This is the default option for linguistic indexes. If you specify this
keyword for a precise index, it is ignored and PRECISE FORM OF is
assumed instead.

FUZZY FORM OF
A keyword for making a “fuzzy” search, which is a search for terms
that have a similar spelling to the search term. This is particularly
useful when searching in documents that were created by an Optical
Character Recognition (OCR) program. Such documents often include
misspelled words. For example, the word economy could be
recognized by an OCR program as econony.

match-level: An integer from 1 to 5 specifying the degree of similarity,
where 5 is more similar than 1.

SYNONYM FORM OF
A keyword that causes the word or phrase following SYNONYM
FORM OF to be searched for together with its synonyms. The
synonyms are provided by the dictionary specified by language or
else by the default dictionary.

Synonyms for a phrase are alternative phrases containing all the
possible combinations of synonyms that can be obtained by replacing
each word of the original phrase by one of its synonyms. The word
sequence remains as in the original phrase.

Search argument

Chapter 10. Syntax of search arguments 189

If you specify this keyword for a precise index, it is ignored and
PRECISE FORM OF is assumed instead.

If you specify this keyword for a dual index, the search is made using
the linguistic part of the dual index rather than the precise part.

You cannot specify this keyword when NOT is used in the search
factor, or when the word or phrase to be searched for contains
masking characters.

BOUND
A keyword for searching in documents that use the Korean CCSID. It
causes the search to respect word phrase boundaries. If language is
specified, it is ignored; Korean is assumed.

language
A variable that determines which dictionary is used in linguistic processing of
text documents during indexing and retrieval. This applies not only to linguistic
and dual indexes, but also to precise indexes because these use a dictionary
to process stop words.

Linguistic processing includes synonym processing and word-stem processing.
See “Linguistic functions for the supported languages” on page 29 for more
information.

The supported languages are listed in “Languages” on page 238.

Note: When searching in documents that are not in U.S. English, you must
specify the language in the search argument regardless of the default
language.

"word-or-phrase"
A word or phrase to be searched for. The characters that can be used within a
word are language-dependent. It is also language-dependent whether words
need to be separated by separator characters. For English and most other
languages, each word in a phrase must be separated by a blank character.

Precise or linguistic search. Text Extender can search using either the precise
form of the word or phrase, or a variation of it. If you do not specify one of the
options in Table 7 on page 188, the default linguistic options are used
according to which type of index is being used.

Masking characters. A word can contain the following masking characters:

_ (underscore)
Represents any single character.

% (percent)
Represents any number of arbitrary characters. If a word consists of a
single %, then it represents an optional word of any length.

A word cannot be composed exclusively of masking characters, except when a
single % is used to represent an optional word.

Search argument

190 Text Extender: Administration and Programming

If you use a masking character, you cannot use SYNONYM FORM OF,
feature, or THESAURUS.

ESCAPE escape-character
A character that identifies the next character as one to be searched for and not
as one to be used as a masking character.

Example: If escape-character is $, then $%, $_, and $$ represent %, _, and $
respectively. Any % and _ characters not preceded by $ represent masking
characters.

Summary of rules and restrictions:

Boolean operations
NOT is not allowed after OR.

Dual index
Takes as default STEMMED FORM OF. If masking characters are used,
searches are case-sensitive.

FUZZY FORM OF
The first 3 characters must match. Cannot be used if a word in the search
atom contains a masking character. Cannot be used in combination with NOT.
Can be used only with an ngram index.

IN SAME PARAGRAPH AS
Cannot be used if NOT is used in a search factor.

IN SAME SENTENCE AS
Cannot be used if NOT is used in a search factor.

Linguistic index
Prevents the use of PRECISE FORM OF. Takes as default STEMMED FORM
OF. Masking characters can be used. Searches are case-insensitive.

Masking character
Prevents the use of SYNONYM FORM OF, feature, and THESAURUS.

Ngram index
Masking characters can be used, although not following a non-alphanumeric
character. Searches are case-insensitive unless the index is case-enabled and
PRECISE FORM OF is used.

NOT Prevents the use of SYNONYM FORM OF, IN SAME PARAGRAPH AS, and
IN SAME SENTENCE AS.

PRECISE FORM OF
Ignored for a linguistic index.

Precise index
Prevents the use of STEMMED FORM OF, and SYNONYM FORM OF. Takes
as default PRECISE FORM OF. Masking characters can be used. Searches
are case-sensitive.

Search argument

Chapter 10. Syntax of search arguments 191

|
|
|

STEMMED FORM OF
Ignored for a precise index.

SYNONYM FORM OF
Cannot be used if a word in the search atom contains a masking character.
Cannot be used in combination with NOT. Cannot be used with a precise
index.

Search argument

192 Text Extender: Administration and Programming

Chapter 11. API functions for searching and browsing

Text Extender provides C functions for searching for text documents, and for browsing
(displaying) the found documents. These functions constitute the Text Extender
application programming interface (API). This chapter describes the API functions in
alphabetical order.

“Chapter 6. Using the API functions for searching and browsing” on page 101 provides
an introduction to the functions, and describes how they can be used together.

Function Purpose Page

DesCloseDocument Releases the storage allocated by DesOpenDocument. 194

DesEndBrowseSession Closes a browse session and releases the storage allocated by

DesStartBrowseSession.

195

DesFreeBrowseInfo Releases the storage allocated by DesGetBrowseInfo. 196

DesGetBrowseInfo Searches in the document for text using a search argument, and

creates browse information.

197

DesGetMatches Returns a pointer to highlighting information for the text document

described by a document handle. The highlighting information is a

data stream. It comprises the text context (at least one paragraph) and

information for highlighting text in that context.

200

DesGetSearchResultTable Takes a search argument to search for text documents in a given text

column, and stores the result in a user-provided table. It can also

return browse information.

205

DesOpenDocument Receives a browse session pointer, a handle, and an option

DES_FAST or DES_EXTENDED indicating the type of linguistic

processing to be used for highlighting found terms. Prepares the text

document that corresponds to the handle to get the document text and

highlighting information, and returns a document handle that is used

for iteratively calling DesGetMatches.

210

DesStartBrowseSession Opens a browse session using the browse information from

DesGetBrowseInfo, and returns a browse session handle for use by

the other browse functions.

213

Tip
Many of the API functions need a connection handle (hdbc). You must provide
this handle using the SQLConnect function, but this does not prevent you from
calling Text Extender from embedded SQL programs. The DB2 Call Level
Interface Guide and Reference describes how to mix CLI statements with
embedded SQL statements.

© Copyright IBM Corp. 1995, 1998 193

DesCloseDocument

Purpose

Closes a text document opened by DesOpenDocument, and releases the storage
allocated during the return of document text and highlighting information.

Syntax
DESRETURN
DesCloseDocument

(DESBROWSESESSION BrowseSession,
DESHANDLE DocumentHandle);

Function arguments

Table 9. DesCloseDocument arguments

Data Type Argument Use Description

DESBROWSESESSION BrowseSession input Browse session handle.

DESHANDLE DocumentHandle input Handle returned by DesOpenDocument

identifying an opened text document.

Return codes
RC_SUCCESS

RC_INVALID_PARAMETER

RC_INVALID_SESSION

RC_SE_INCORRECT_HANDLE

RC_SE_IO_PROBLEM

RC_SE_LS_FUNCTION_FAILED

RC_SE_NOT_ENOUGH_MEMORY

RC_SE_REQUEST_IN_PROGRESS

RC_SE_WRITE_TO_DISK_ERROR

Restrictions

This function can be called only after you have opened a text document by calling
DesOpenDocument.

DesCloseDocument API function

194 Text Extender: Administration and Programming

DesEndBrowseSession

Purpose

Ends a browse session started by DesStartBrowseSession and releases the storage
allocated for the browse session.

Syntax
DESRETURN
DesEndBrowseSession

(DESBROWSESESSION BrowseSession);

Function arguments

Table 10. DesEndBrowseSession arguments

Data Type Argument Use Description

DESBROWSESESSION BrowseSession input Browse session handle.

Usage

This function does not release the storage allocated for the browse session by
DesGetBrowseInfo. This storage contains browse information that can still be used for
another browse session. To release this storage, call DesFreeBrowseInfo.

Return codes
RC_SUCCESS

RC_INVALID_SESSION

RC_INVALID_PARAMETER

RC_SE_UNEXPECTED_ERROR

Restrictions

This function can be called only after you have started a browse session by calling
DesStartBrowseSession.

DesEndBrowseSession API function

Chapter 11. API functions for searching and browsing 195

DesFreeBrowseInfo

Purpose

Frees the storage allocated for the browse information by DesGetBrowseInfo.

Syntax
DESRETURN
DesFreeBrowseInfo

(DESBROWSEINFO BrowseInfo);

Function arguments

Table 11. DesFreeBrowseInfo arguments

Data Type Argument Use Description

DESBROWSEINFO BrowseInfo input Browse information

Return codes
RC_SUCCESS

RC_INVALID_PARAMETER

Restrictions

This function can be called only after you have allocated storage for browsing
information by calling DesGetBrowseInfo.

DesFreeBrowseInfo API function

196 Text Extender: Administration and Programming

DesGetBrowseInfo

Purpose

Receives a search argument for searching through text identified by a handle. It returns
a pointer to browse information needed by DesStartBrowseSession for highlighting the
found terms.

Syntax
DESRETURN
DesGetBrowseInfo
(SQLHDBC hdbc,
SQLCHAR *pHandle,
DESUSHORT HandleLength,
char *pSearchArgument,
DESSMALLINT ArgumentLength,
DESBROWSEINFO *pBrowseInfo,
DESMESSAGE *pErrorMessage);

Function arguments

Table 12. DesGetBrowseInfo arguments

Data Type Argument Use Description

SQLHDBC hdbc input A database connection handle.

SQLCHAR * pHandle input Pointer to a handle that has been extracted

from the database.

DESUSHORT HandleLength input Length of pHandle. DES_NTS cannot be

used here.

char * pSearchArgument input Pointer to the text search argument that

specifies the information that you want to find.

DESSMALLINT ArgumentLength input Either the length of pSearchArgument (not

including a null byte terminator), or

DES_NTS.

DESBROWSEINFO * pBrowseInfo output Pointer to browse information containing the

data needed to browse a text document. This

pointer is passed to DesStartBrowseSession.

DesGetBrowseInfo API function

Chapter 11. API functions for searching and browsing 197

Table 12. DesGetBrowseInfo arguments (continued)

Data Type Argument Use Description

DESMESSAGE * pErrorMessage output Pointer to a message buffer of size

DES_MAX_MESSAGE_LENGTH to contain

the implementation-defined message text. If

an error occurs, Text Extender returns an

error code and an error message. The

application program allocates the buffer. If

pErrorMessage is the null pointer, no error

message is returned.

Usage

Your application program must establish a connection to the database before it calls
DesGetBrowseInfo.

For the pointer to the search argument, char* is used rather than SQLCHAR*. This is
because it is possible that the parameter value may not come from the database.

For the mapping between the SQL data types and C data types, you must use the SQL
symbolic name SQL_VARBINARY for a handle. The type of host variables pointing to
the C representation of Handle values is SQLCHAR*.

Text Extender allocates storage for the browse information. The application program
must free the storage and related resources by calling DesFreeBrowseInfo.

Because Handle values are bit data and contain several ’\0’ characters, you must
specify the length of pHandle.

The search argument in pSearchArgument is described in “Chapter 10. Syntax of
search arguments” on page 183.

Return codes
RC_SUCCESS

RC_NO_BROWSE_INFO

RC_ALLOCATION_ERROR

RC_FILE_IO_PROBLEM

RC_INTERNAL_ERROR

RC_INVALID_PARAMETER

RC_PARSER_INVALID_ESCAPE_CHARACTER

RC_PARSER_INVALID_USE_OF_ESCAPE_CHAR

RC_PARSER_SYNTAX_ERROR

DesGetBrowseInfo API function

198 Text Extender: Administration and Programming

RC_SE_COMMUNICATION_PROBLEM

RC_SE_EMPTY_INDEX

RC_SE_EMPTY_QUERY

RC_SE_FUNCTION_DISABLED

RC_SE_FUNCTION_IN_ERROR

RC_SE_INCORRECT_HANDLE

RC_SE_INDEX_DELETED

RC_SE_INDEX_NOT_ACCESSIBLE

RC_SE_INDEX_SUSPENDED

RC_SE_INSTALLATION_PROBLEM

RC_SE_IO_PROBLEM

RC_SE_MAX_NUMBER_OF_BUSY_INDEXES

RC_SE_MAX_OUTPUT_SIZE_EXCEEDED

RC_SE_NOT_ENOUGH_MEMORY

RC_SE_PROCESSING_LIMIT_EXCEEDED

RC_SE_QUERY_TOO_COMPLEX

RC_SE_SERVER_BUSY

RC_SE_SERVER_CONNECTION_LOST

RC_SE_SERVER_NOT_AVAILABLE

RC_SE_UNEXPECTED_ERROR

RC_SE_UNKNOWN_INDEX_NAME

RC_SE_UNKNOWN_SERVER_NAME

RC_SE_WRITE_TO_DISK_ERROR

Warnings: The following return codes indicate that the function has returned a result,
but it may not be as expected.

RC_SE_CONFLICT_WITH_INDEX_TYPE

RC_SE_DICTIONARY_NOT_FOUND

RC_SE_STOPWORD_IGNORED

Restrictions

This function can be called only after you have made a connection to a database and
used a Text Extender UDF to extract a handle from the database.

DesGetBrowseInfo API function

Chapter 11. API functions for searching and browsing 199

DesGetMatches

Purpose

Returns a data stream containing highlighting information for the text document
described by a document handle. See “Data stream syntax” on page 201. The highlight
information comprises the text context (at least one paragraph) and information for
highlighting text in that context.

DesGetMatches returns only a portion of the data stream, indicating the length of the
portion in the output structure.

A sequence of calls to DesGetMatches gets the entire text document content. When the
end of the text document is reached, RC_SE_END_OF_INFORMATION is returned.

Syntax
DESRETURN
DesGetMatches

(DESBROWSESESSION BrowseSession,
DESHANDLE DocumentHandle,
DESMATCHINFO *pMatchInfo,
DESULONG *pMatchInfoLength,
DESMESSAGE *pErrorMessage);

Function arguments

Table 13. DesGetMatches arguments

Data Type Argument Use Description

DESBROWSESESSION BrowseSession input Browse session handle.

DESHANDLE DocumentHandle input Document handle returned by

DesOpenDocument.

DESMATCHINFO * pMatchInfo output Pointer to a buffer containing the data stream

portion received. DesGetMatches allocates

that buffer.

DESULONG * pMatchInfoLength output Pointer to the length of the data stream

portion pointed to by pMatchInfo.

DESMESSAGE * pErrorMessage output Pointer to a message buffer of size

DES_MAX_MESSAGE_LENGTH to contain

the implementation-defined message text. If

an error occurs, Text Extender returns an

error code and an error message. The

application program allocates the buffer. If

pErrorMessage is the null pointer, no error

message is returned.

DesGetMatches API function

200 Text Extender: Administration and Programming

Data stream syntax

ÊÊ 05 DB2TX_DOC DB2TX_START Ê

Ê
ll DB2TX_DNAM DB2TX_ATOMIC document_name

Ê

Ê » Section 05 DB2TX_DOC DB2TX_END ÊÍ

Section

05 DB2TX_DEL DB2TX_START Ê

Ê
ll DB2TX_SNAM DB2TX_ATOMIC section_name

Ê

Ê » »Text encoding Paragraph Ê

Ê 05 DB2TX_DEL DB2TX_END

Text encoding

07 DB2TX_CCSID DB2TX_ATOMIC coded_character_set_identifier Ê

Ê 07 DB2TX_LANG DB2TX_ATOMIC language_identifier

Paragraph

05 DB2TX_PAR DB2TX_START » Paragraph text Ê

DesGetMatches API function

Chapter 11. API functions for searching and browsing 201

Ê 05 DB2TX_PAR DB2TX_END

Paragraph text

ll DB2TX_TEXT DB2TX_ATOMIC text_unit
ll DB2TX_LINK DB2TX_ATOMIC media_ref

Ê

Ê »

05 DB2TX_NL DB2TX_ATOMIC
Ê

Ê »

ll DB2TX_MATCH DB2TX_ATOMIC match_information

Each segment in the syntax diagram, such as 05 DB2TX_DOC DB2TX_START begins with a
length field of type integer, which in the diagram is either an explicit number, such as
05, or a variable ll. The length of the segment includes the 2-byte length field.

Note: The length is in big-endian format.

Each segment includes one of the following 1-byte type identifiers:

DB2TX_START
Indicates the start of a segment, such as a document or a paragraph.

DB2TX_END
Indicates the end of a segment.

DB2TX_ATOMIC
Indicates that the item that follows is atomic, such as a document name or a
language identifier.

The data stream items are each two bytes long. They are:

DB2TX_DOC
Indicates the start and end of a document.

DB2TX_DNAM
A document name. If no name is specified, the identifier of the document is used.

DB2TX_DEL
Indicates the start and end of a document element. The only type of document
element currently supported is a text section.

DesGetMatches API function

202 Text Extender: Administration and Programming

DB2TX_SNAM
Specifies the name of a text section. Currently Text Extender supports only one text
section and automatically supplies a default name. If you specify a section name, it
is ignored.

DB2TX_PAR
Indicates the start and end of a text paragraph within the current section.

DB2TX_TEXT
Specifies one text portion within the current paragraph. Usually, text unit contains
one line of text, and the TEXT item is followed by a DB2TX_NL item; but text lines
may also be split into several parts, each part specified in its own DB2TX_TEXT
item.

The text uses the CCSID and language associated with the current paragraph.

DB2TX_LINK
Specifies a Text Extender hypermedia reference. It uses the CCSID of the current
paragraph.

DB2TX_NL
Indicates the start of a new line in the current paragraph.

DB2TX_MATCH
Contains occurrence information for matches in the current text portion. The
information is supplied as a sequence of binary number pairs. The first number in
each pair is the offset of a match within the current text portion, the second number
is the length, in characters, of that match. The given length could exceed the given
text portion. Both offset and length are two-byte values specified in big-endian
format.

DB2TX_CCSID
The CCSID for text in subsequent paragraphs until a paragraph is preceded by a
new DB2TX_CCSID item. The following CCSIDs are returned:

DB2TX_CCSID_00500
for text in the Latin-1 EBCDIC codepage 500.

DB2TX_CCSID_04946
for text in the Latin-1 ASCII codepage 850.

DB2TX_CCSID_00819
for text in the ASCII codepage 819.

These symbolic names for CCSIDs are defined in the file DES_EXT.H provided
with the Text Extender. The two-byte binary values are specified in big-endian
format.

DB2TX_LANG
The language identifier for text in subsequent paragraphs until a paragraph is
preceded by a new DB2TX_LANG item. File DES_EXT.H provided with Text
Extender defines symbolic names for all language identifiers supported by Text
Extender. The two-byte binary values are specified in big-endian format.

DesGetMatches API function

Chapter 11. API functions for searching and browsing 203

Usage

DesGetMatches returns RC_SE_END_OF_INFORMATION when the end of the text
document is reached.

Return codes
RC_SUCCESS

RC_SE_END_OF_INFORMATION

RC_INVALID_PARAMETER

RC_INVALID_SESSION

RC_SE_CAPACITY_LIMIT_EXCEEDED

RC_SE_INCORRECT_HANDLE

RC_SE_IO_PROBLEM

RC_SE_NOT_ENOUGH_MEMORY

RC_SE_REQUEST_IN_PROGRESS

RC_SE_LS_FUNCTION_FAILED

RC_SE_UNEXPECTED_ERROR

Warnings: The following return codes indicate that the function has returned a result,
but it may not be as expected.

RC_SE_DICTIONARY_NOT_FOUND

Restrictions

This function can be called only after you have opened a text document by calling
DesOpenDocument.

DesGetMatches API function

204 Text Extender: Administration and Programming

DesGetSearchResultTable

Purpose

Uses a search argument for searching through text documents identified by a text
column. The handle data of the found text items is written to a result table. Browse
information about rank and the number of matches can also be written to the result
table.

Syntax
DESRETURN
DesGetSearchResultTable
(SQLHDBC hdbc,
char *pTableSchema,
DESSMALLINT TableSchemaLength,
char *pTableName,
DESSMALLINT TableNameLength,
char *pColumnName,
DESSMALLINT ColumnNameLength,
char *pSearchArgument,
DESSMALLINT ArgumentLength,
char *pResultSchema,
DESSMALLINT ResultSchemaLength,
char *pResultTableName,
DESSMALLINT ResultTableNameLength,
DESSEARCHOPTION SearchOption,
DESBROWSEOPTION BrowseOption,
DESBROWSEINFO *pBrowseInfo,
DESMESSAGE *pErrorMessage);

Function arguments

Table 14. DesGetSearchResultTable arguments

Data Type Argument Use Description

SQLHDBC hdbc input A database connection handle.

char * pTableSchema input Pointer to the schema containing the base

table to be searched.

DESSMALLINT TableSchemaLength input Either the length of pTableSchema (not

including a null byte terminator) or DES_NTS.

char * pTableName input Pointer to the name of the base table to be

searched.

DESSMALLINT TableNameLength input Either the length of pTableName (not

including a null byte terminator) or DES_NTS.

DesGetSearchResultTable API function

Chapter 11. API functions for searching and browsing 205

Table 14. DesGetSearchResultTable arguments (continued)

Data Type Argument Use Description

char * pColumnName input Pointer to the name of the column to be

addressed by the intended text search. The

column must be of type DESTEXTH.

DESSMALLINT ColumnNameLength input Either the length of pColumnName (not

including a null byte terminator) or DES_NTS.

char * pSearchArgument input Pointer to the text search argument.

DESSMALLINT ArgumentLength input Either the length of pSearchArgument (not

including a null byte terminator) or DES_NTS.

char * pResultSchema input Pointer to the schema containing the result

table.

DESSMALLINT ResultSchemaLength input Either the length of pSchemaName (not

including a null byte terminator) or DES_NTS.

char * pResultTableName input Pointer to the name of the result table that

you have previously created in which the

result of the search is to be stored. See

Figure 17 on page 207 for the structure of this

table.

DESSMALLINT ResultTableNameLength input Either the length of pResultTableName (not

including a null byte terminator) or DES_NTS.

DESSEARCHOPTION SearchOption input An option that determines whether you are

asking for ranking information, for the number

of matches, or only for the handles of the

matching text documents.

DES_RANK

DES_MATCH

DES_RANKANDMATCH

DES_TEXTHANDLEONLY

This option determines the content of result
table as described in “Usage” on page 207.

DESBROWSEOPTION BrowseOption input Reserved.

DESBROWSEINFO * pBrowseInfo output Pointer to browse information or a pointer to

null, depending on the value of

BrowseOption.

DesGetSearchResultTable API function

206 Text Extender: Administration and Programming

|

||||

Table 14. DesGetSearchResultTable arguments (continued)

Data Type Argument Use Description

DESMESSAGE * pErrorMessage output Pointer to a message buffer of size

DES_MAX_MESSAGE_LENGTH to contain

the implementation-defined message text. If

an error occurs, Text Extender returns an

error code and an error message. The

application program allocates the buffer. If

pErrorMessage is the null pointer, no error

message is returned.

Usage

The connection to the database must be established by the application program calling
DesGetSearchResultTable.

The name pResultTableName refers to a result table that you have created in advance.
The utility DESRESTB in the sample directory creates a result table for text handles.
After the call of this function, the result table contains information identifying text values
matching the search argument. This is the structure of the result table:

The data type of TEXTHANDLE is DB2TEXTH or DB2TEXTFH. The data type of RANK
is DOUBLE. The data type of MATCHES is INTEGER.

The search argument at pSearchArgument is described in “Chapter 10. Syntax of
search arguments” on page 183.

If the value of BrowseOption is BROWSE, Text Extender returns browse information
from the Text Extender search engine located on the server. pBrowseInfo points to the
browse information which is the input to DesStartBrowseSession. If the value of
BrowseOption is NO_BROWSE pBrowseInfo points to null.

Return codes
RC_SUCCESS

RC_NO_BROWSE_INFO

RC_SE_NO_DATA

TEXTHANDLE

RESULT TABLE

RANK MATCHES

Figure 17. Structure of the result table

DesGetSearchResultTable API function

Chapter 11. API functions for searching and browsing 207

RC_ALLOCATION_ERROR

RC_FILE_IO_PROBLEM

RC_INTERNAL_ERROR

RC_INVALID_BROWSE_OPTION

RC_INVALID_PARAMETER

RC_INVALID_SEARCH_OPTION

RC_INVALID_SESSION

RC_PARSER_INVALID_ESCAPE_CHARACTER

RC_PARSER_SYNTAX_ERROR

RC_RESULT_TABLE_NOT_EXIST

RC_SE_COMMUNICATION_PROBLEM

RC_SE_EMPTY_INDEX

RC_SE_EMPTY_QUERY

RC_SE_FUNCTION_DISABLED

RC_SE_FUNCTION_IN_ERROR

RC_SE_INCORRECT_HANDLE

RC_SE_INDEX_DELETED

RC_SE_INDEX_NOT_ACCESSIBLE

RC_SE_INDEX_SUSPENDED

RC_SE_INSTALLATION_PROBLEM

RC_SE_IO_PROBLEM

RC_SE_MAX_NUMBER_OF_BUSY_INDEXES

RC_SE_NOT_ENOUGH_MEMORY

RC_SE_PROCESSING_LIMIT_EXCEEDED

RC_SE_QUERY_TOO_COMPLEX

RC_SE_SERVER_BUSY

RC_SE_SERVER_CONNECTION_LOST

RC_SE_SERVER_NOT_AVAILABLE

RC_SE_UNEXPECTED_ERROR

RC_SE_UNKNOWN_INDEX_NAME

RC_SE_UNKNOWN_SERVER_NAME

RC_SE_WRITE_TO_DISK_ERROR

RC_SQL_ERROR_NO_INFO

RC_SQL_ERROR_WITH_INFO

RC_TEXT_COLUMN_NOT_ENABLED

Warnings: The following return codes indicate that the function has returned a result,
but it may not be as expected.

DesGetSearchResultTable API function

208 Text Extender: Administration and Programming

RC_SE_CONFLICT_WITH_INDEX_TYPE

RC_SE_DICTIONARY_NOT_FOUND

RC_SE_STOPWORD_IGNORED

DesGetSearchResultTable API function

Chapter 11. API functions for searching and browsing 209

DesOpenDocument

Purpose

Receives a browse session pointer, a handle, and an option (DES_EXTENDED or
DES_FAST) indicating whether the text document should be analyzed with or without
the use of a dictionary. It prepares the text document that corresponds to the handle to
get the document text and highlighting information, and it returns a document handle
that is used for iteratively calling DesGetMatches.

Syntax
DESRETURN
DesOpenDocument
(DESBROWSESESSION BrowseSession,
SQLCHAR *pHandle,
DESUSHORT HandleLength,
DESMATCHMODE MatchMode,
DESHANDLE *pDocumentHandle,
DESMESSAGE *pErrorMessage);

Function arguments

Table 15. DesOpenDocument arguments

Data Type Argument Use Description

DESBROWSESESSION BrowseSession input Browse session handle.

SQLCHAR * pHandle input Pointer to a handle extracted from the

database.

DESUSHORT HandleLength input Length of pHandle (DES_NTS cannot be

used).

DESMATCHMODE MatchMode input Mode to determine whether a dictionary is

used for finding the highlighting information.

DES_FAST
Do not use a dictionary

DES_EXTENDED
Use a dictionary

DESHANDLE * pDocumentHandle output Pointer to a document handle for iteratively

calling DesGetMatches.

DesOpenDocument API function

210 Text Extender: Administration and Programming

Table 15. DesOpenDocument arguments (continued)

Data Type Argument Use Description

DESMESSAGE * pErrorMessage output Pointer to a message buffer of size

DES_MAX_MESSAGE_LENGTH to contain

the implementation-defined message text. If

an error occurs, Text Extender returns an

error code and an error message. The

application program allocates the buffer. If

pErrorMessage is the null pointer, no error

message is returned.

Usage

DES_FAST and DES_EXTENDED refer to the use of linguistic processing for finding
which terms to highlight in the browsed text. See “Linguistic processing for browsing” on
page 27 for more information. Specify DES_FAST to use basic text analysis, and
DES_EXTENDED to use extended matching.

For the mapping between the SQL data types and C data types, you must use the SQL
symbolic name SQL_VARBINARY for a handle. The type of host variables pointing to
the C representation of TextHandle values is SQLCHAR*.

Text Extender allocates storage for the browse information. The application program
must free this storage and related resources by calling DesFreeBrowseInfo.

Because TextHandle values are bit data and contain several ’\0’ characters, you must
specify the length of pHandle.

The caller must have read access to the table containing the text document referred to
by pHandle.

Return codes
RC_SUCCESS

RC_ALLOCATION_ERROR

RC_INTERNAL_ERROR

RC_INVALID_MATCH_OPTION

RC_INVALID_PARAMETER

RC_INVALID_SESSION

RC_SE_DOCUMENT_NOT_ACCESSIBLE

RC_SE_DOCUMENT_NOT_FOUND

RC_SE_INCORRECT_HANDLE

RC_SE_IO_PROBLEM

DesOpenDocument API function

Chapter 11. API functions for searching and browsing 211

RC_SE_LS_FUNCTION_FAILED

RC_SE_LS_NOT_EXECUTABLE

RC_SE_MAX_NUMBER_OF_BUSY_INDEXES

RC_SE_NOT_ENOUGH_MEMORY

RC_SE_REQUEST_IN_PROGRESS

RC_SE_UNKNOWN_INDEX_NAME

RC_SE_UNEXPECTED_ERROR

Restrictions

This function can be called only after you have started a browse session by calling
DesStartBrowseSession.

DesOpenDocument API function

212 Text Extender: Administration and Programming

DesStartBrowseSession

Purpose

Starts a browse session, establishing the environment needed for browsing a text
document and highlighting its matches. It receives a pointer to browse information,
either from DesGetBrowseInfo or from DesGetSearchResultTable, and returns a browse
session handle for use by the other browse functions.

Syntax
DESRETURN
DesStartBrowseSession

(DESBROWSEINFO BrowseInfo,
char *userId,
DESSMALLINT userIdLength,
char *password,
DESSMALLINT passwordLength,
DESBROWSESESSION *pBrowseSession,
DESMESSAGE *pErrorMessage);

Function arguments

Table 16. DesStartBrowseSession arguments

Data Type Argument Use Description

DESBROWSEINFO BrowseInfo input Pointer to information needed for browsing

and highlighting matches in a text document.

The pointer is returned by

DesGetSearchResultTable or

DesGetBrowseInfo.

char * userId input User ID for the database

DESSMALLINT userIdLength input Length of the user ID for the database

char * password input Password for the database

DESSMALLINT passwordLength input Length of the password for the database

DESBROWSESESSION * pBrowseSession output Pointer to a handle for a browse session for

use by other browse functions.

DESMESSAGE * pErrorMessage output Pointer to a message buffer of size

DES_MAX_MESSAGE_LENGTH to contain

the implementation-defined message text. If

an error occurs, Text Extender returns an

error code and an error message. The

application program allocates the buffer. If

pErrorMessage is the null pointer, no error

message is returned.

DesStartBrowseSession API function

Chapter 11. API functions for searching and browsing 213

Usage

This function opens a browse session for browsing text documents. You are prompted
for your user ID and password to check your authorization to access the database.

You close the browse session by calling DesEndBrowseSession.

BrowseInfo depends on the search argument and on the base text column used for
building the browse information.

Return codes
RC_SUCCESS

RC_ALLOCATION_ERROR

RC_INVALID_BROWSE_INFO

RC_INVALID_PARAMETER

RC_INTERNAL_ERROR

RC_SE_NOT_ENOUGH_MEMORY

RC_SE_UNEXPECTED_ERROR

RC_SQL_ERROR_NO_INFO

RC_SQL_ERROR_WITH_INFO

Restrictions

You must call DesGetBrowseInfo or DesGetSearchResultTable with the appropriate
Browse Option before calling this function.

DesStartBrowseSession API function

214 Text Extender: Administration and Programming

Chapter 12. Return codes

This chapter lists the codes that are returned by the Text Extender API in response to a
function call. They are listed in alphabetic order.

All Text Extender API calls return a numeric return code as the C function value. The
return codes are defined in the include file DES_EXT.H provided with Text Extender.

The Text Extender API intercepts error situations and reports error conditions with a
return code.

Applications that call Text Extender API functions should always check the return code
before trying to process any other output parameters. The return codes possible with
each call are listed with their parameters in “Chapter 11. API functions for searching and
browsing” on page 193.

In some cases, incorrect input such as an obsolete session pointer can cause an
abnormal end condition in the API services that cannot be intercepted by Text Extender.

RC_ALLOCATION_ERROR

Explanation: Cannot allocate storage for internal
use.

What to do: Ensure that there is sufficient
memory available.

RC_FILE_IO_PROBLEM

Explanation: Text Extender could not read or
write a file.

What to do: Check that there is sufficient disk
space and memory available at the server. Check
that the environment variables and the text
configuration settings are set correct.

RC_INVALID_BROWSE_INFO

Explanation: The browse information returned
by DesGetSearchResultTable or by
DesGetBrowseInfo and used as input for
DesStartBrowseSession is not valid.

What to do: Check whether a programming error
overrides the browse information.

RC_INVALID_BROWSE_OPTION

Explanation: The browse option in
DesGetSearchResultTable is not valid.

What to do: Ensure that the option is BROWSE
or NO_BROWSE.

RC_INVALID_MATCH_OPTION

Explanation: The match options used in
DesOpenDocument is not valid.

What to do: Check that the option is FAST or
EXTENDED.

RC_INVALID_PARAMETER

Explanation: One of the input parameters is
incorrect.

What to do: Read the error message returned
by Text Extender to determine the cause.

RC_INVALID_SEARCH_OPTION

Explanation: The search option in
DesGetSearchResultTable is not valid.

© Copyright IBM Corp. 1995, 1998 215

What to do: Ensure that the option is
DES_TEXTHANDLEONLY, DES_RANK,
DES_MATCH, or DES_RANKANDMATCH.

RC_INVALID_SESSION

Explanation: The session pointer specified in
the current service call is incorrect or obsolete.

What to do: Save any information that can help
to find the cause of the error, then end the
application.

RC_NO_BROWSE_INFO

Explanation: No browse information is returned
by Text Extender. This is because the search
argument resulted in an empty search result. This
is not an error.

What to do: No action necessary.

RC_PARSER_INVALID_ESCAPE_CHARACTER

Explanation: The search criteria contains an
incorrect escape character. This error is reported if
a blank is used as an escape character or if, for
one word or phrase, more than one escape
character is specified in the search criteria.
Example: ESCAPE " " or ESCAPE "#$".

What to do: Check the syntax of the search
argument, and try again.

RC_PARSER_INVALID_USE_OF_ESCAPE_CHAR

Explanation: The escape character syntax in the
search criteria cannot be interpreted.

What to do: Check the escape character syntax.
For example, if $ is the specified escape
character, the word or phrase can contain only $$,
$_ or $%, where _ and % are the two masking
symbols.

RC_PARSER_SYNTAX_ERROR

Explanation: The search criteria syntax cannot
be interpreted.

What to do: Check the syntax of the search
argument, by referring to “Chapter 10. Syntax of
search arguments” on page 183.

RC_RESULT_TABLE_NOT_EXIST

Explanation: You are trying to store the result of
a search in a table that does not exist.

What to do: Create a result table as shown in
Figure 17 on page 207.

RC_SE_BROWSER_TIME_OUT

Explanation: The browse process was started
but did not respond in an acceptable time. Text
Extender then canceled the pending process.

This error can occur when your system does not
have enough storage space or is overloaded.

What to do: Terminate the browse session by
calling DesEndBrowseSession, free allocated
storage by calling DesFreeBrowseInfo, and try
again.

RC_SE_CAPACITY_LIMIT_EXCEEDED

Explanation: The requested function cannot be
processed. There is insufficient memory or disk
space.

What to do: End the program and check your
system’s resources.

RC_SE_COMMUNICATION_PROBLEM

Explanation: Communication with the Text
Extender server failed. The error could be caused
by a lack of storage space or by an incorrect
installation of Text Extender.

What to do: Save any information that can help
to find the error, then end the application.

RC_SE_CONFLICT_WITH_INDEX_TYPE

Explanation: The linguistic specification of the
search term of the query does not correspond to
the type of index. For example, PRECISE FORM

Return codes

216 Text Extender: Administration and Programming

OF cannot be used with a linguistic index. The
default linguistic specification is used as shown in
Table 7 on page 188.

What to do: Adapt your application to prevent
the specification of query options that conflict with
the index type.

RC_SE_DICTIONARY_NOT_FOUND

Explanation: Text Extender linguistic services
cannot find the dictionary files. The query is
processed without linguistic support. The
dictionary files corresponding to the specified
language code(s) are not in the expected path.

What to do: You can continue to make API calls.
For UNIX, check that the required dictionary is in
the path {DB2TX_INSTOWNERHOMEDIR}/db2tx/dicts.
For OS/2, check that the required dictionary is in
the path specified in the text configuration setting
DB2TX_DATA. If necessary, install the required
dictionary.

RC_SE_DOCUMENT_NOT_ACCESSIBLE

Explanation: The requested text document is
found, but is currently not accessible.

What to do: Check whether the document is
accessed exclusively by another task or user.

RC_SE_DOCUMENT_NOT_FOUND

Explanation: The requested text document was
not found. The most likely cause is that a text
document has been deleted from storage, but has
not yet been removed from the Text Extender
index. This can also occur if you are trying to
browse a document identified by a damaged
handle.

What to do: In most cases, you can ignore this
return code. It will no longer be displayed after the
next index update.

If it is persistent, check that your application
program is passing the found handle correctly for
browsing.

RC_SE_EMPTY_INDEX

Explanation: The Text Extender index
corresponding to the handle column addressed by
the search request is empty. Either no text
documents have been added to this index or all
text documents have been removed from it.

This can occur when a text column has been
enabled, but the documents in the column have
not yet been indexed. That is, you specified in the
ENABLE TEXT COLUMN command to create the
index later, at a time determined by the periodic
indexing settings.

This can also occur when a text table has been
enabled to create an empty common index for all
text columns, but none of the text columns has
been enabled.

What to do: If ENABLE TEXT TABLE has been
used to create an empty common index for all text
columns, run ENABLE TEXT COLUMN for at least
one of the text columns that contain text to be
searched. In this command, you can determine
whether the index is created immediately, or at a
time determined by the periodic indexing settings.

Run GET INDEX STATUS to check that the index
was built successfully.

RC_SE_EMPTY_QUERY

Explanation: The specified search criteria was
analyzed and processed linguistically by Text
Extender. Either a programming error caused a
query to be made containing no search terms, or
all search terms were stop words (words not
indexed by Text Extender) that are removed from
a query. The result was no search terms.

What to do: Reword the query. If the problem
persists, check for a programming error.

RC_SE_END_OF_INFORMATION

Explanation: This is not an error. The end of the
document has been reached. No further
information is available for DesGetMatches.

Return codes

Chapter 12. Return codes 217

What to do: Use this return code to end the
iterative processing of the document with
DesGetMatches.

RC_SE_FUNCTION_DISABLED

Explanation: The requested function called a
Text Extender function that has been prevented by
the administrator.

What to do: Ask your administrator for
assistance. It may be necessary to stop and
restart Text Extender (txstop/txstart).

RC_SE_FUNCTION_IN_ERROR

Explanation: The requested function has been
locked due to an error situation on the Text
Extender server. The API call cannot be
processed.

What to do: Check the index status. Check the
available space in the index directory. Reset the
index status and retry the command.

RC_SE_INCORRECT_HANDLE

Explanation: A handle specified in an input
parameter such as browse session handle is not
valid. It must be a handle that was returned by a
previous call and that is not obsolete.

What to do: Save any information that can help
to find the cause of the error, then terminate the
session by calling DesEndBrowseSession.

Check whether a programming error produced an
incorrect handle.

RC_SE_INDEX_DELETED

Explanation: The Text Extender index being
accessed is deleted.

What to do: Contact the Text Extender
administrator to recreate the index.

RC_SE_INDEX_NOT_ACCESSIBLE

Explanation: The Text Extender index cannot be
accessed and the current call cannot be
processed.

What to do: Ask the Text Extender administrator
to check the accessibility of the index.

RC_SE_INDEX_SUSPENDED

Explanation: Text Extender received a request
relating to a Text Extender index that was
suspended from another session or from the
current session.

What to do: Ask the Text Extender administrator
to check the status of the index.

RC_SE_INSTALLATION_PROBLEM

Explanation: Text Extender has encountered an
installation problem.

What to do: Check the current setting of the
environment variables DB2INSTANCE,
DB2TX_INSTOWNER,
DB2TXINSTOWNERHOMEDIR. Use descfgcl -d
and descfgsv -d -i txinsnnn to check your
search service configuration.

RC_SE_IO_PROBLEM

Explanation: An error occurred when the server
attempted to open or read one of its index files.
This can be due to one of the following:

An unintentional action by the administrator,
such as the deletion of a Text Extender index
file

Incorrect setting in the text configuration.

What to do: Terminate the application. Check
with the administrator that:

All files of the current Text Extender index exist

The text configuration settings are correct.

Return codes

218 Text Extender: Administration and Programming

RC_SE_LS_FUNCTION_FAILED

Explanation: A function that accessed the
database to retrieve text documents for browsing
failed. Either the database is no longer accessible
to the user, or the user is not authorized for the
text table.

What to do: Check that the input to the function,
such as the user ID, is correct. Check that the
database is accessible and that the user is
authorized for the task.

RC_SE_LS_NOT_EXECUTABLE

Explanation: A function that is trying to access
the database to retrieve text documents for
browsing cannot be executed.

What to do: Check that Text Extender is
installed correctly. If the problem persists, contact
your IBM representative.

RC_SE_MAX_OUTPUT_SIZE_EXCEEDED

Explanation: An unusually large number of
matches have been found. the size of the browse
information has exceeded the maximum that can
be handled. The request cannot be processed.

What to do: Either make the query more specific
or ensure that more system memory is available.

RC_SE_MAX_NUMBER_OF_BUSY_INDEXES

Explanation: The requested function has been
prevented by the search service, because the
maximum number of indexes is currently active.

What to do: Reissue the function call after a
short period of time. In general, the problem is
only temporary.

RC_SE_NO_DATA

Explanation: This is not an error. No text
document matches the search criteria. If you
request browse information, no browse information
is returned. No storage is allocated for the browse
information.

What to do: No action is necessary.

RC_SE_NOT_ENOUGH_MEMORY

Explanation: There is not enough storage space
on the client or on the server system. The current
request cannot be processed.

What to do: Release storage space and end the
application.

RC_SE_PROCESSING_LIMIT_EXCEEDED

Explanation: The current search request
exceeded the maximum result size or the
maximum processing time specified for your
client/server environment. The request was
canceled.

What to do: Make the search request more
specific. Consider increasing the maximum
processing time.

RC_SE_QUERY_TOO_COMPLEX

Explanation: The specified query is too
complex.

What to do: Adapt your application to prevent
excessive use of masking characters and
synonyms.

Excessive use of masking symbols or excessive
use of the SYNONYM option can expand a query
to a size that cannot be managed by Text
Extender.

RC_SE_REQUEST_IN_PROGRESS

Explanation: A Text Extender browse API
service was called while another browse API
request was active for the same session.

What to do: End the session by calling
DesEndBrowseSession and free storage by calling
DesFreeBrowseInfo.

The Text Extender browse API does not support
concurrent access to the same browse session.

All applications running concurrently in the same
process should handle their own browse sessions.

Return codes

Chapter 12. Return codes 219

RC_SE_SERVER_BUSY

Explanation: The Text Extender client cannot
currently establish a session with the requested
Text Extender server, or the Text Extender server
communication link was interrupted and cannot be
re-established.

The Text Extender server has been started
correctly, but the maximum number of parallel
server processes was reached.

What to do: If this is not a temporary problem,
change the communication configuration on the
Text Extender server.

RC_SE_SERVER_CONNECTION_LOST

Explanation: The communication between client
and server was interrupted and cannot be
re-established.

The Text Extender server task may have been
stopped by an administrator or the server
workstation may have been shut down.

What to do: Check whether either of these
conditions have occurred, and have them
corrected.

RC_SE_SERVER_NOT_AVAILABLE

Explanation: The Text Extender API services
could not establish a session with the requested
Text Extender server.

The Text Extender server may not have been
started.

What to do: Check that the Text Extender server
has been started correctly. If the error persists,
there is an installation problem.

RC_SE_STOPWORD_IGNORED

Explanation: This informational code is returned
when the specified query contained at least one
search term consisting only of stop words. The
search term was ignored when processing the
query.

What to do: You can continue to issue API calls.
Avoid using stop words in Text Extender queries.

RC_SE_UNEXPECTED_ERROR

Explanation: An error occurred that could be
caused by incorrect installation of Text Extender.

What to do: End the application, saving any
information that may help to find the cause of the
error.

RC_SE_UNKNOWN_INDEX_NAME

Explanation: The name of the text index
associated with a text column is part of the
handle.

What to do: Ensure that the handle you use as
input to DesGetBrowseInfo is correct.

RC_SE_UNKNOWN_SERVER_NAME

Explanation: The name of Text Extender server
is part of the handle.

What to do: Ensure that the handle you use as
input to DesGetBrowseInfo is correct.

RC_SE_WRITE_TO_DISK_ERROR

Explanation: A write error occurred that could be
caused by a full disk on the Text Extender server
workstation, or by incorrect installation of Text
Extender.

What to do: End the application, saving any
information that may help to find the cause of the
error. Check that there is enough disk space
available at the server.

RC_SQL_ERROR_WITH_INFO

Explanation: An SQL error occurred. An error
message is returned.

What to do: Check the error message returned
by Text Extender for more information, such as the
SQL error message, SQLState and native SQL
error code.

Return codes

220 Text Extender: Administration and Programming

RC_SQL_ERROR_NO_INFO

Explanation: An SQL error occurred. No error
message is returned.

RC_TEXT_COLUMN_NOT_ENABLED

Explanation: The specified handle column is not
a column in the table you specified.

What to do: Check whether the handle column
name you specified is correct. Ensure that the text
column in that table has been enabled.

Return codes

Chapter 12. Return codes 221

Return codes

222 Text Extender: Administration and Programming

Chapter 13. Messages

This chapter describes the following:

v SQL states returned by UDFs: These messages can be displayed when you use
UDFs.

v Messages from the DB2TX command line processor: These messages can be
displayed when you enter administration commands using the command line
processor DB2TX. Each message number is prefixed by DES.

SQL states returned by UDFs

The user-defined functions provided by Text Extender can return error states. Example:

SQL0443N User-defined function
"DB2TX.CONTAINS" (specific name "DES5A")
has returned an error SQLSTATE with
diagnostic text "Cannot open message file".
SQLSTATE=38702

The messages in this section are arranged by SQLSTATE number.

01H10 The file file-name cannot be
opened.

Explanation:

What to do: Ensure that the file exists, and that
the DB2 instance name has the necessary
permissions to open it.

01H11 The text handle is incomplete

Explanation: An attempt was made to use a
handle that has been initialized, but not
completed. A partial handle was created using
INIT_TEXT_HANDLE containing preset values for
the document language and format. However, the
handle has not been completed by a trigger.

What to do: Use only handles that have been
completed. If the handle concerned is stored in a
handle column, enable or reenable its
corresponding text column.

01H12 Search arguments too long. The
second argument was ignored.

Explanation: The REFINE UDF was used to
combine two search arguments, but the combined
length of the search arguments is greater than the
maximum allowed for a LONG VARCHAR. The
REFINE UDF returns the first search argument
instead of a combined one.

What to do: Reduce the length of one or both
search arguments, then repeat the query.

01H13 A search argument contains a
stopword.

Explanation: The specified query contains at
least one search term consisting only of stop
words. The search term was ignored when
processing the query.

What to do: Avoid using stop words in Text
Extender queries.

© Copyright IBM Corp. 1995, 1998 223

||
|

|

|
|
|

01H14 A language dictionary for
linguistic processing is missing.

Explanation: Text Extender linguistic services
cannot find the dictionary files. The query is
processed without linguistic support. The
dictionary files corresponding to the specified
language code(s) are not in the expected path.

What to do: For UNIX, check that the required
dictionary is in the path
{DB2TX_INSTOWNERHOMEDIR}/db2tx/dicts. For
OS/2, check that the required dictionary is in the
path specified in the text configuration settings. If
necessary, install the required dictionary.

01H15 A linguistic search term
specification does not match the
index type.

Explanation: The linguistic specification of the
search term of the query does not correspond to
the type of index. For example, PRECISE FORM
OF should not be used with a linguistic index. The
default linguistic specification is used as shown in
Table 7 on page 188.

What to do: Adapt your application to prevent
the specification of query options that conflict with
the index type.

38700 The Text Extender library is not
current.

Explanation: An attempt was made to use a
handle that can be interpreted only by a later
version of the Text Extender library.

What to do: Ensure that the path to the current
library version is set correctly, and that you have
the necessary permissions to access it.

Look in the DB2 catalog view
SYSCAT.FUNCTIONS, in the IMPLEMENTATION
column, for the UDF that caused the problem.

38701 tracefile Cannot open this trace
file.

Explanation: An attempt was made to use a
trace function that writes to the file

DB2TX_TRACEFILE in the directory
DB2TX_TRACEDIR. Either the file does not exist,
cannot be found, or the necessary permissions for
the file are not available.

What to do:

38702 Cannot open message file
message-file.

Explanation: A situation occurred that caused
Text Extender to attempt to return a message. The
file containing the messages either does not exist
or cannot be found, or the necessary permissions
for the file are not available.

What to do: Ensure that the file exists, that the
path is set correctly, and that you have the
necessary permissions to open the file.

38704 The format of the text handle is
incorrect.

Explanation: A handle having an incorrect
format was used as an argument for a Text
Extender UDF.

What to do: Ensure that the handle was not
produced by INIT_TEXT_HANDLE.

38705 udfname Incorrect UDF
declaration.

Explanation: The specific name of a UDF has
been changed in the script where the UDFs are
declared. UDF names can be changed, but not
their specific names.

What to do: Check the script DESCVDF.DDL
that contains the UDF declarations, to ensure that
the correct names are still being used. Check the
names against those in the original distribution
media.

38706 attribute Cannot recognize this
attribute value.

Explanation: An attempt was made to set a
CCSID, format, or language to an unknown value.

Messages

224 Text Extender: Administration and Programming

What to do: Refer to “Information about text
documents” on page 237 for the correct values.

38708 return code

Explanation: An error occurred while processing
the search request.

What to do: Refer to the description of the
return code in “Chapter 12. Return codes” on
page 215 .

38709 Not enough memory available.

Explanation: Not enough memory is available to
run the UDF.

What to do: Close any unnecessary applications
to free memory, then try again.

38710 errornumber Cannot access the
search results.

Explanation: An error occurred while attempting
to read the list of found documents (result list)
returned by the search service.

What to do: Try repeating the search. If this is
not successful, restart the search service. If the

problem persists, report it to your local IBM
representative, stating the error number.

38711 Severe internal error.

Explanation: A severe error occurred.

What to do: Report the error to your local IBM
representative, stating the circumstances under
which it occurred.

38712 indexname Incorrect handle in this
text index.

Explanation: A handle has been damaged.

What to do: Use UPDATE INDEX to rebuild the
index.

38714 Shorten
DB2TX_INSTOWNERHOMEDIR
environment variable.

Explanation: The name of the home directory of
the instance owner must be no longer than 256
characters.

What to do: Use links to reduce the length of
the directory name.

Messages from Text Extender

Each message has a message identifier that consists of a prefix (DES), the message
number, and a suffix letter. The suffix letter indicates how serious the occurrence is that
produced the message:

I Information message

W Warning message

N Error (or “negative”) message

C Critical error message.

DES0001N Incorrect number of arguments
for the db2txinstance command.

Explanation: The db2txinstance command
needs two arguments.

What to do: Enter the command again with
these arguments:

db2txinstance instanceName db2InstanceName

where instanceName is the login name of an
existing UNIX user that is being assigned as the
owner of this instance, and db2InstanceName is
the login name of the owner of the corresponding
DB2 instance.

Messages

Chapter 13. Messages 225

DES0002N Invalid instanceName.

Explanation: The specified instance name must
be the login name of an existing UNIX user.

What to do: Correct the instance name, or
select an existing UNIX user, or create a UNIX
user to be the instance owner.

Enter the db2txinstance command again as
follows:

db2txinstance instanceName

where instanceName is the login name of the
selected UNIX user.

DES0004N The specified instance already
exists. The command cannot be
processed.

Explanation: The instanceName specifies the
login name of a UNIX user that is the owner of the
instance. This instance owner already has a db2tx
directory in the home directory.

What to do: To create the instance, remove the
existing instance and then try the command again.

DES0005N The installation message catalog
cannot be found.

Explanation: The message catalog required by
the installation scripts is missing from the system;
it may have been deleted or the database
products may have been loaded incorrectly.

What to do: Verify that the
db2tx_01_01_0000.client product option is
installed correctly. If there are verification errors,
reinstall the option.

DES0015W A linguistic search term
specification does not match the
index type.

Explanation: The linguistic specification of the
search term of the query does not correspond to
the type of index. For example, PRECISE FORM

OF should not be used with a linguistic index. The
default linguistic specification is used as shown in
Table 7 on page 188.

What to do: Adapt your application to prevent
the specification of query options that conflict with
the index type.

DES0016W A language specification is not
supported for the current index
type.

Explanation: The language you have specified
is not supported for the specified index type.

What to do: See the documentation for a list of
supported languages for the index type.

DES0017W Feature extraction has not been
enabled.

Explanation: You used a feature search
argument in your query but the index was not
build with index option FEATURE_EXTRACTION.

What to do: Change the index option to
FEATURE_EXTRACTION.

DES0018W option is not supported for the
current index type.

Explanation: You requested a search option that
is not supported for the current index type and
index option.

What to do: Check which index type or index
option supports the requested search option. See
Table 7 on page 188.

DES0121N Memory could not be allocated
(malloc failed).

Explanation: No storage could be reserved for
the application.

What to do: Increase the paging space.

Messages

226 Text Extender: Administration and Programming

DES0333N A text index file I/O problem
occurred.

Explanation: The Text Extender client cannot
establish a session with the requested server.

What to do: Check that the Text Extender server
has been started. If not, run TXSTART.

DES0709W The dictionary for the specified
language is not installed.

Explanation: Text Extender cannot find the
dictionary files.

What to do: Install, or reinstall the dictionary for
the specified language.

DES0377N A text index file I/O problem
occurred.

Explanation: Text Extender cannot access the
text index. This can happen if the DIRECTORY
setting in the text configuration points to an invalid
directory.

What to do: Check the text configuration
settings.

DES0714N Specify parameter parameter
either directly or in the
configuration table.

Explanation: CCSID, format, or language was
not specified, and there is no text configuration
setting for this value.

What to do: Either specify the missing
parameter directly in the ENABLE TEXT COLUMN
command, or set a value in the text configuration
settings.

DES0715N Data type schema.type is not
supported for text data.

Explanation: schema.type is the schema name
and type name of the text column or the result of
an access function. The data type for a text
column is not supported by Text Extender. It must
be CHAR, GRAPHIC, VARGRAPHIC, LONG
VARGRAPHIC, DBCLOB, VARCHAR, LONG

VARCHAR, or CLOB. If this is not the case, you
must provide an access function whose input is
the data type of the text column and whose output
is VARCHAR, LONG VARCHAR, or LOB.

What to do: If schema.type is a text column
type, you must register an access function with a
result of type VARCHAR, LONG VARCHAR, or
LOB. If schema.type is the result of an access
function, it cannot be used. Provide an access
function with a result of the required type.

DES0716N Format format is not supported.

Explanation: format is a format that is not
supported by Text Extender.

What to do: Check the list of supported formats
in “Formats” on page 237.

DES0717N Language language is not
supported.

Explanation: language is a language that is not
supported by Text Extender.

What to do: Check the list of supported
languages in “Languages” on page 238.

DES0718N CCSID ccsid_value is not
supported.

Explanation: You specified an invalid CCSID
value.

What to do: See the documentation for a list of
supported CCSIDs.

DES0719N A call to the Text Extender
program program failed with
return code rc.

Explanation: An error may have occurred during
installation. The return codes are listed in file
DES_EXT.H.

What to do: Check if the installation was
successful. Check that the environment variables
such as DB2TX_INSTOWNER and
DB2TX_INSTOWNERHOMEDIR are set correctly.

Messages

Chapter 13. Messages 227

DES0720N The access function
schema.function is not registered
in the database.

Explanation: The name of the function is either
incorrect or has not been registered with the
database.

What to do: Check the name of the access
function. If it is correct, check that the function is
known to the database system. Use the CREATE
FUNCTION to register the access function with
the database.

DES0721N The database is inconsistent; a
Text Extender catalog view is
missing.

Explanation: One of the Text Extender catalog
views is not in the database.

What to do: Use the DISABLE DATABASE
command to remove the remaining catalog views,
then enter ENABLE DATABASE again. The index
data is lost; reindex the text documents.

DES0722N Table schema.table is not a base
table in the database.

Explanation: Either the table does not exist in
the database or it is a result table or a view. A text
column must be in a base table before it can be
enabled for Text Extender.

What to do: Ensure that the table name is
correct, and that it is a base table.

DES0723N The creation of an index for the
handle column handlecolumnname
in table schema.table failed.

Explanation: A text index could not be created
for the handle column.

What to do: Use txstatus to check the status of
the server. If the services on the server are
running correctly, use DISABLE TEXT COLUMN
or DISABLE TEXT TABLE to get a consistent
state again. Then enable the text column again
using ENABLE TEXT COLUMN or ENABLE TEXT
TABLE.

DES0724N An entry in the TextIndices
catalog view for the handle
column handlecolumn in table
schema.table is missing.

Explanation: The TextIndices catalog view is
damaged.

What to do: Use DISABLE TEXT COLUMN or
DISABLE TEXT TABLE to get a consistent state
again. Then enable the text column using
ENABLE TEXT COLUMN or ENABLE TEXT
TABLE.

DES0727N Column column in table
schema.table is already enabled.

Explanation: This message can occur if the
table has been dropped and then recreated using
the same text column, without first disabling the
column.

What to do: Disable the column, then try again.

DES0728N Column column does not exist in
table schema.table.

Explanation: You are trying to enable a text
column that does not exist.

What to do: Change the table name or the
column name, then try again.

DES0729N Handle column handlecolumn does
not exist in table schema.table.

Explanation: You are trying to use a handle
column that does not exist.

What to do: Use the GET STATUS command to
check if the handle column exists, and that its
name has been specified correctly.

DES0730N Table schema.table is already
enabled as a common-index
table.

Explanation: You are trying to enable a table
that has already been enabled as a
common-index table.

Messages

228 Text Extender: Administration and Programming

What to do: Either continue without enabling the
table, or run the DISABLE TEXT TABLE command
to disable the table before enabling it again.

DES0731N Table schema.table is not enabled
for Text Extender; it cannot be
disabled.

Explanation: You are trying to disable a table
that has not been enabled.

What to do: Check the table name.

DES0732N The update frequency is incorrect
near location location; expected
was parameter.

Explanation: The parameter specification for the
Update Frequency was not correct.

What to do: Check the update frequency
parameter and reenter the command.

DES0733N Table schema.table contains an
enabled column; it cannot be
enabled as a common-index
table.

Explanation: This table contains a text column
that already has its own index. You cannot create
a common index for all the text columns while this
individual index exists.

What to do: Use DISABLE TEXT COLUMN to
disable the enabled columns, then enter the
ENABLE TEXT TABLE command again.

DES0734N Handle column handlecolumn
belongs to the partial-text table
schema.table; it cannot be
disabled separately.

Explanation: You cannot disable a single text
column in a table that was enabled as a
partial-text table.

What to do: Disable the complete partial-text
table.

DES0736N handlecolumn is already a handle
column in table schema.table.

Explanation: You are trying to use an existing
handle column name.

What to do: Reenter the command, using a
different name for the handle column.

DES0737N Table schema.tablename is
enabled as a common-index table
with STORAGE option
storage_option.

Explanation: It is not possible to enable a
common index table for external files.

What to do: If you want to enable a table for
external files, use a multi-index table.

DES0738N Access function schema.function
has incorrect parameters.

Explanation: The input or output parameters of
schema.function are incorrect.

v There can be only one input parameter, and it
must be of the data type of the text column to
be enabled.

v The output parameter must be of type CHAR,
GRAPHIC, VARGRAPHIC, LONG
VARGRAPHIC, DBCLOB, VARCHAR, LONG
VARCHAR, or CLOB.

DES0739W The index update program for
table schema.table, handle column
name handlecolumn, could not be
started.

Explanation: The program that updates indexes
could not be started. An error may have occurred
during installation.

What to do: Check if the installation was
successful. Check that the environment variables
such as DB2TX_INSTOWNER and
DB2TX_INSTOWNERHOMEDIR are set correctly.

Messages

Chapter 13. Messages 229

DES0741N The program or file parameter was
not found or could not be started.

Explanation: The ENABLE DATABASE or
DISABLE DATABASE command could not open
the file parameter. An error may have occurred
during installation.

What to do: Check if the installation was
successful.

DES0745N The DB2TX instance owner
instance-owner is not a valid user
ID.

Explanation: The environment variable
DB2TX_INSTOWNER does not contain a valid
user ID.

What to do: Correct the environment variable.

DES0747N The current CCSID is not
supported for index type
index_type.

Explanation: You specified a CCSID that is not
supported for the requested index type.

What to do: See the documentation for a list of
supported CCSIDs.

DES0751N You do not have the authorization
to perform the specified
operation.

Explanation: You do not have the required
database administrator authorization to do this
operation.

What to do: Have this operation done by a
database administrator.

DES0756N The database is not enabled for
Text Extender.

Explanation: The database must be enabled
before this command can be run.

What to do: Run ENABLE DATABASE, then
resubmit the command.

DES0765N The database is already enabled
for Text Extender.

Explanation: You are trying to enable a
database that is already enabled.

What to do: Either continue without enabling the
database, or use DISABLE DATABASE to disable
the database before enabling it again.

DES0766N An action has caused the
maximum row size of the table or
a temporary table to be exceeded.

Explanation: The ENABLE TEXT COLUMN
command adds a handle column to the table. If
the table is already large, this can cause the row
size of the table to exceed the maximum value of
4005.

The ENABLE TEXT COLUMN command also
creates a temporary table whose size is
proportional to the number of text columns that
are already enabled. If many text columns are
already enabled, the size of the temporary table
may exceed the maximum value.

What to do: Use the ENABLE TEXT COLUMN
only on tables that do not cause this limit to be
exceeded.

DES0770N The environment variable
env-variable is not defined.

Explanation: A parameter for a command was
not specified and the system tried to read the
default value from the environment variable
env-variable, but this environment variable is not
defined.

What to do: Define the required environment
variable.

DES0810N Closing quotation mark is
missing.

Explanation: A quotation mark has been found,
but the second quotation mark is missing.

What to do: Check the syntax of the command
and try again.

Messages

230 Text Extender: Administration and Programming

DES0811N ″token″ is unexpected. Check the
index characteristics or the text
information.

Explanation: The index characteristics or the
text information is incorrect.

What to do: Check the syntax and try again.

DES0812N Table schema.table does not exist
or is not enabled for DB2 Text
Extender.

Explanation: While running the GET command,
either the name of a database table is incorrect, or
the table does not exist, or it has not yet been
enabled.

What to do: If the table name is correct, use
GET STATUS to check that it has been enabled.
Enable the table and try again.

DES0813N Table schema.table does not exist
or is not enabled for DB2 Text
Extender or does not contain a
handle column column.

Explanation: While running the GET command,
no entries for the handle column are found in the
table. If the table exists, it is not enabled or it does
not contain a handle column.

What to do: If the table name is correct, use
GET STATUS to check that it has been enabled.
Enable the table and try again.

DES0815N Empty quotes ″″ found. A name is
expected inside the quotes.

Explanation: Two consecutive quotation marks
were found with no text between them.

What to do: Check the syntax and try again.

DES0816N The word ″token″ is unexpected.
Use one of the keywords keyword
or keyword.

Explanation: An unexpected token was found.

What to do: In the command, use one of the
keywords given in the message.

DES0817N ″token″ is unexpected. Use the
keyword keyword.

Explanation: An unexpected token was found.

What to do: In the command, use the keyword
given in the message.

DES0818N Unexpected end of command.
The keyword keyword is expected.

Explanation: A keyword is missing.

What to do: In the command, use the keyword
given in the message.

DES0819N Unexpected end of command.
One of the following keywords is
expected: keyword or keyword.

Explanation: A keyword is missing.

What to do: In the command, use one of the
keywords given in the message.

DES0820N Index option index_option is not
supported for index type
index_type.

Explanation: You specified an index option that
is not supported for the given index type.

What to do: See the documentation for
supported index options for the given index type.

DES0821N The name ″token″ is too long.
Only nn characters are allowed
for variable names.

Explanation: A name is too long.

What to do: Specify a name having an
acceptable length.

Messages

Chapter 13. Messages 231

DES0822N The command contains an
unrecognized token ″token″. End
of command is expected.

Explanation: End of command found, but a
keyword is expected.

What to do: Check the syntax of the command
and try again.

DES0823N A table name is expected
following ″schema.″.

Explanation: A table name or a function name is
missing after the “.”.

What to do: Check the syntax of the command
and try again.

DES0824N Unexpected end of command; a
keyword is required.

Explanation: The keyword in the message is
missing from the syntax.

What to do: Check the syntax of the command
and try again.

DES0826N Database alias alias must not be
in quotation marks.

Explanation: The name in the message has
been interpreted as a database alias. It must not
be in quotation marks.

What to do: Check the syntax of the command
and try again.

DES0827N The CCSID ″ccsid″ is not
supported.

Explanation: The CCSID is not one of those
supported by Text Extender.

What to do: Refer to the documentation for a list
of the supported CCSIDs.

DES0829N The user name userid must not be
in quotation marks.

Explanation: You entered a user name in
quotation marks.

What to do: Remove the quotation marks.

DES0830N Parameter ″parameter″ in the
enable/disable DATABASE
command not recognized. End of
command expected.

Explanation: The commands ENABLE
DATABASE and DISABLE DATABASE do not take
parameters.

What to do: Enter the command again without
parameters.

DES0831N Unexpected end of command.
The table name is missing.

Explanation: The administration command
requires a table name.

What to do: Enter the appropriate table name.

DES0832N Unexpected end of command.
The database name is missing.

Explanation: The administration command
requires a database name.

What to do: Enter the appropriate database
name.

DES0833N Unexpected end of command.
The column name is missing.

Explanation: The administration command
requires a column name.

What to do: Enter the appropriate column name.

DES0899N Unknown DB2TX command:
command.

Explanation: The token found is not a valid
DB2TX command.

Messages

232 Text Extender: Administration and Programming

What to do: Type db2tx ? to get a list of the
commands.

DES9996N An internal Text Extender error
occurred. Reason code:
reason_code

Explanation: An internal processing error
occurred.

What to do: Check that the Text Extender
installation has been completed successfully. If
yes, note the reason code and call your IBM
service representative.

DES9997N An SQL error occurred. SqlState:
state QL Error code: rc;
SqlErrorMessage: message

Explanation: An SQL error occurred.

What to do: Take action on the SQL error
message that is displayed with the message.

DES9998N An SQL error occurred. No
further information is available.

Messages

Chapter 13. Messages 233

Messages

234 Text Extender: Administration and Programming

Chapter 14. Configuring Text Extender

This chapter describes the Text Extender environment variables and configuration
information. Both of these let you specify default values for many parameters needed
by Text Extender.

Environment variables

The environment variables set the default values of environment parameters.

DB2INSTANCE
DB2 V5.2 instance name.

DB2DBDFT
Default database name. The name of the DB2 V5.2 database that is assumed
if no database name is specified.

DB2TX_INSTOWNER
(UNIX only.) Text Extender instance name. This is the login name of the user
that owns the instance.

DB2TX_INSTOWNERHOMEDIR
(UNIX only.) Instance owner’s home directory.

In a UNIX environment , the Text Extender environment variables are specified in the
following profile shell scripts:

DB2TXCSHRC for the C shell

DB2TXPROFILE for the Korn shell and the Bourne shell.

Copy one of these files from $DB2TXINSTOWNERHOMEDIR/DB2TX to your home
directory, and then customize it to suit your requirements.

You can run the appropriate shell script directly, but it is more efficient to add it to your
own profile so that the database environment is established automatically during login.

In an OS/2 environment , the environment variables are added to your config.sys file
during installation.

In a Windows environment , the environment variables are added to your system
settings file during installation.

To display the current setting of environment variables, use the GET ENVIRONMENT
command described in “Displaying the settings of the environment variables” on
page 68 .

© Copyright IBM Corp. 1995, 1998 235

Text configuration settings

Text configuration settings are created when you enable a database. These are default
settings for text, index, and processing characteristics. You can display and change
these default settings; see “Displaying the text configuration settings” on page 68 and
“Changing the text configuration” on page 45.

Text characteristics

“Information about text documents” on page 237 describes the document formats,
languages, and CCSIDs supported by Text Extender. Default values for these are
required by various administration commands.

When Text Extender is installed, the default text configuration settings are:

FORMAT
TDS

LANGUAGE
The LANGUAGE that was set for the database

CCSID The CCSID that was set for the database

Index characteristics
DIRECTORY

Directory to be used to store the index.

Initial setting for UNIX systems: DB2TX_INSTOWNER/db2tx/indexes

Initial setting for OS/2 and Windows NT: DMBMMPATH\instance\instance-name
\db2tx\indexes where DMBMMPATH is the path in which Text Extender is
installed. For Windows clients, DIRECTORY must be set to the name of a
directory on the server machine.

INDEXTYPE
Index type to be used. See “Types of index” on page 13 for a description.

Initial setting: LINGUISTIC

UPDATEFREQ
Frequency for periodic index update. See “Setting the frequency of index
updates” on page 241 for a description.

Initial setting: NONE

Processing characteristics
UPDATEINDEX

Setting to determine when the first index update occurs: either immediately
after the index is created (UPDATE), or later according to the update
frequency settings (NOUPDATE).

Configuring Text Extender

236 Text Extender: Administration and Programming

Initial setting: UPDATE

COMMITCOUNT
Setting to determine after how many insert or update statements Text Extender
issues a DB2 V5.2 commit statement. See “Enabling a text column in a large
table” on page 56.

Initial setting: 10000

Information about text documents

Each text document that you intend to search has three characteristics that are
significant to Text Extender:

Format

Language

Coded Character Set Identifier (CCSID).

Formats

Text Extender needs to know the format (or type) of text documents, such as
WordPerfect or ASCII, that you intend to search. This information is needed when
indexing text documents.

The text document types supported are:

HTML Hypertext Markup Language

TDS Flat ASCII

AMI AmiPro Architecture Version 4

FFT IBM Final Form Text: Document Content Architecture

MSWORD
Microsoft Word, Versions 5.0 and 5.5

RFT IBM Revisable Form Text: Document Content Architecture

RTF Microsoft Rich Text Format (RTF), Version 1

WP5 WordPerfect (OS/2 and Windows), Versions 5.0, 5.1, and 5.2

For nonsupported document types, specify a numeric ID. Valid values are 1 to 100. This
value is passed as the source format to the user exit that converts the original format to
TDS.

If, during indexing, there is a document that is not one of the supported types, Text
Extender provides an exit that writes the document to a disk and calls a program that
you provide to extract the text into one of the supported formats.

Configuring Text Extender

Chapter 14. Configuring Text Extender 237

|

||

|
|
|

To enable the user exit, edit the following ASCII files:

Windows NT:
%DMBMMPATH%\instance\%DB2INSTANCE%\db2tx\descl.ini
%DMBMMPATH%\instance\%DB2INSTANCE%\db2tx\txinsnnn\dessrv.ini

UNIX:
$DB2TX_INSTOWNERHOMEDIR/db2tx/descl.ini
$DB2TX_INSTOWNERHOMEDIR/db2tx/txinsnnn\dessrv.ini

by adding the following statements:

[DOCUMENTFORMAT]
USEREXIT=name_of_executable

where <name_of_executable> is the name of the user exit. You can specify a fully
qualified file name, or, if the user exit is stored in a directory that is in the PATH
statement, you can specify only the file name.

The parameters of the user exit must be as follows:

<name_of_user_exit> -sourcefile <sourcefilename>
-targetfile <targetfilename>
-sourceccsid <sourceccsid>
-targetccsid <targetccsid>
-sourceformat <sourceformat>
-targetformat <targetformat>

The user exit must read the document from the <sourcefilename> and write the
converted document to the <targetfilename>. The file names must be fully qualified. The
target file must match the <targetccsid> and <targetformat>. The target format must be
TDS. The target CCSID must be 850.

During enabling, a format other than TDS (flat ASCII) must be specified as format to
force the user exit to be called.

Languages

Text Extender also needs to know in which language a document is written so that the
correct dictionary can be used for the linguistic processing that occurs. Here is a list of
the language parameters that you can specify when you enable a text column or
external documents:

Brazilian Portuguese
BRAZILIAN

Canadian French
CAN_FRENCH

Catalan
CATALAN

Configuring Text Extender

238 Text Extender: Administration and Programming

|

|
|
|
|
|
|
|

|

|
|

|
|
|

|

|
|
|
|
|
|

|
|
|
|

Chinese, simplified
S_CHINESE

Chinese, traditional
T_CHINESE

Danish DANISH

Dutch DUTCH

Finnish
FINNISH

French FRENCH

German
GERMAN

Icelandic
ICELANDIC

Italian ITALIAN

Japanese
JAPANESE

Korean
KOREAN

Norwegian, Bokmal
BM_NORWEGIAN

Norwegian, Nynorsk
NN_NORWEGIAN

Norwegian, Bokmal and Nynorsk
BMNN_NORWEGIAN

Portuguese
PORTUGUESE

Spanish
SPANISH

Swedish
SWEDISH

Swiss German
SWISS_GERMAN

UK English
UK_ENGLISH

US English
US_ENGLISH

Configuring Text Extender

Chapter 14. Configuring Text Extender 239

CCSIDs

Each DB2 database uses a particular code page for storing character data. Text
Extender, as an application working with DB2, runs using the same code page as the
database.

Documents can be stored if they are in one of the following code pages:

37 USA, Canada

273 Austria, Germany

277 Denmark, Norway

278 Finland, Sweden

280 Italy

284 Spain, Latin America

285 United Kingdom

297 France

437 USA

500 International Latin-1

819 Latin-1

850 Latin-1

860 Portugal

861 Iceland

863 Canada

865 Denmark, Norway

871 Iceland

932, 942, 943, 5039
Japanese, combined SBCS/DBCS

949, 970, 1363
Korean

948, 950
Chinese (traditional), combined SBCS/DBCS

1381, 1383
Chinese (simplified), combined SBCS/DBCS

4946 Latin-1 (CP850)

Configuring Text Extender

240 Text Extender: Administration and Programming

|

|
|

Setting the frequency of index updates

When a text document is added to a database, or when an existing document in a
database is changed, the document must be indexed to keep the content of the index
synchronized with the content of the database. When a text document is deleted from a
database, its terms must be removed from the index.

Information about which documents are new, changed, and deleted is automatically
stored by triggers in a log table. The documents listed in the log table are indexed the
next time an index update takes place.

The UPDATE INDEX command lets you update an index immediately on request, but,
typically, you automatically update an index at intervals specified in the environment
variable DB2TXUPDATEFREQ. The environment variable determines the default
settings. The default settings can be overridden when creating an index using the
ENABLE TEXT COLUMN or ENABLE TEXT TABLE commands. The update frequency
can be changed for an existing index using the CHANGE INDEX SETTINGS command.

You specify the index update frequency in terms of when the update is to be made, and
the minimum number of text documents that must be queued. If there are not enough
documents in the log table at the day and time given, the index is not updated.

You should plan periodic indexing carefully; indexing text documents is a time- and
resource-consuming task. The time taken is dependent on many factors, such as how
many text documents have been added or changed since the previous index update,
the size of the documents, and how powerful the processor is.

Syntax

ÊÊ MIN (mindocs) D

»

(*)
,

0...6

H

»

(*)
,

0...23

M Ê

Ê »

,

(0...59) ÊÍ

MIN mindocs
The minimum number of text documents that must be queued before the index
can be updated.

D The day(s) of the week when the index is updated:

* Every day

0 Sunday

Configuring Text Extender

Chapter 14. Configuring Text Extender 241

1 Monday

2 Tuesday

3 Wednesday

4 Thursday

5 Friday

6 Saturday

H The hour(s) of the specified day(s) when the index is updated:

* Every hour

0...23 At the specified hour

M The minute(s) of the specified hour(s) when the index is updated:

0...59 At the specified minute

Example: min(100) d(1,2,3,4,5) h(12,15) m(0)

If, at 12:00 or 15:00, on Monday to Friday, there are at least 100 text documents
queued, the index is updated.

You can combine several frequency specifications:

Example: min(1) d(*) h(22) m(0) ; min(100) d(1,2,3,4,5) h(12,15) m(0)

Index updating is scheduled on Monday to Friday at 12:00 and 15:00 as before, but, in
addition, each day at 22:00 the index is updated even if there is only one text document
in the log table.

Configuring Text Extender

242 Text Extender: Administration and Programming

Chapter 15. Sample API programs

Text Extender provides two sample programs, located in the SAMPLES directory.

v DESSAMP1.C: a program that uses your browser

v DESSAMP2.C: a program that uses the sample browser provided with Text Extender.
This is for UNIX systems only.

You need access to an enabled database and an enabled text column. To run these
programs, do the following:

1. Optional. Copy the source files DESSAMP1.C and DESSAMP2.C to a local
directory on your client machine.

2. Use the supplied makefile (DESSAMP.MAK for OS/2 and Windows NT, dessamp for
UNIX systems) to compile and link the sample files.

3. Run the utility DESRESTB to create a result table in the database that you intend to
use with the sample code:

DESRESTB database-name

This table is used to store information such as the search results; it has the
following structure:

Column Data type

HANDLE DB2TX.DB2TEXTH or DB2TX.DB2TEXTFH

RANK DOUBLE

MATCHES INTEGER

A program that uses your browser

DESSAMP1.C is an example of a program that uses the DesGetSearchResultTable
function and your own browser program. It follows the sequence of API function calls
shown in Figure 16 on page 103.

A program that uses the sample browser provided with Text Extender

DESSAMP2.C is for UNIX systems only. It is an example of a program that uses the
DesGetSearchResultTable function and the browse functions.

This scenario is similar to the one shown in Figure 16 on page 103, except that the
sample API function Browse Document is used instead of Open Document, Get
Matches, and Close Document.

Note: The sample Browse Document function is available only for UNIX systems.

© Copyright IBM Corp. 1995, 1998 243

After Start Browse Session, you can open and display further documents using the
same highlighting information.

Browsing text using the sample browser

This group of functions, shown in Figure 18, is similar to that described in “Browsing
text” on page 104. It carries out a search to get information for highlighting the found
terms. It then starts a browse session. But then, instead of opening a document for a
user-defined browser, it uses the sample API function DesBrowseDocument to call the
Text Extender browser.

The sample API function DesBrowseDocument

The DesBrowseDocument function is described in detail in “DesBrowseDocument” on
page 246 . It calls the Text Extender browser to display a text document specified by
the handle. It opens a window and displays the text. The search terms that were used
to build the corresponding browse information are highlighted.

Input

The input parameters are:

A pointer to a browse session handle

A browser window handle

A document handle.

A window handle is required as input the first time DesBrowseDocument is called within
a browse session. For subsequent calls within a browse session, you can use the
window handle returned by the previous call.

2. Start Browse Session

1. Get Search Result Table

3. Browse Document

4. End Browse Session

5. Free Browse Information

Figure 18. Sequence of API functions—using the Text Extender sample browser

Sample API programs

244 Text Extender: Administration and Programming

Output

This function returns a browser window handle, that can be reused by subsequent calls
of DesBrowseDocument.

Sample API programs

Chapter 15. Sample API programs 245

DesBrowseDocument

Purpose: Starts the Text Extender browser to display a text document specified by the
document handle. The search terms that were used to build the browse information are
highlighted.

A browser window handle is returned.

Syntax:

DESRETURN
DesBrowseDocument
(DESBROWSESESSION BrowseSession,
SQLCHAR *pHandle,
DESUSHORT HandleLength,
DESWINDOWHANDLE *pWindowHandle,
DESMESSAGE *pErrorMessage);

Function arguments:

Table 17. DesBrowseDocument arguments

Data Type Argument Use Description

DESBROWSESESSION BrowseSession Input Browse session handle.

SQLCHAR * pHandle Input Pointer to the handle of the text document to

be browsed.

DESUSHORT HandleLength Input Length of pHandle. DES_NTS cannot be

used here.

DESWINDOWHANDLE * pWindowHandle Output Pointer to the handle for the browser window

showing the text document.

DESMESSAGE * pErrorMessage Output Pointer to a message buffer of size

DES_MAX_MESSAGE_LENGTH to contain

the implementation-defined message text. If

an error occurs, Text Extender returns an

error code and an error message. The

application program allocates the buffer. If

pErrorMessage is the null pointer, no error

message is returned.

Usage: This function can be called several times for different text documents within
one browse session.

For the mapping between the SQL data types and C data types, you must use the SQL
symbolic name SQL_VARBINARY for a document handle.

Because the handle values are bit data and contain several '\0' characters, you must
specify the length of pHandle.

Sample API programs

246 Text Extender: Administration and Programming

The variable pWindowHandle should either point to null to start a new browser window
or point to a window handle returned by a previous call of DesBrowseDocument to
reuse an active browser window.

The caller needs to have read access to the table containing the text document referred
to by pHandle.

Return codes:

RC_SUCCESS

RC_ALLOCATION_ERROR

RC_INTERNAL_ERROR

RC_INVALID_PARAMETER

RC_INVALID_SESSION

RC_SE_BROWSER_TIME_OUT

RC_SE_INDEX_DELETED

RC_SE_INDEX_NOT_ACCESSIBLE

RC_SE_INDEX_SUSPENDED

RC_SE_SERVER_BUSY

RC_SE_SERVER_CONNECTION_LOST

RC_SE_SERVER_NOT_AVAILABLE

RC_SE_INCORRECT_HANDLE

RC_SE_COMMUNICATION_PROBLEM

RC_SE_IO_PROBLEM

RC_SE_NOT_ENOUGH_MEMORY

RC_SE_REQUEST_IN_PROGRESS

RC_SE_UNEXPECTED_ERROR

RC_SE_UNKNOWN_INDEX_NAME

RC_SE_WRITE_TO_DISK_ERROR

Restrictions: This function can be called only within a browse session started by
DesStartBrowseSession.

Sample API programs

Chapter 15. Sample API programs 247

Sample API programs

248 Text Extender: Administration and Programming

Chapter 16. Error event reason codes

This chapter lists the error events that can occur when Text Extender indexes
documents. This can occur, for example, when:

v Documents cannot be found

v Documents cannot be indexed

v Documents are indexed, but a problem occurs

v A language dictionary cannot be found.

Tip
If a reason code is not documented:

1. Check that there is enough disk space.

2. Collect all the error information that is available:

v desdiag.log file

v Event message

3. Call your IBM service representative.

1 Out of storage. The server ran out of memory: reduce workload.

116
Datastream syntax error

280
The document has not been indexed. One of the index files could not be opened.

281
The document has not been indexed. One of the index files could not be read.

500
The document has not been indexed. The Library Services could not be loaded.
Maybe the DLL is not available or the resource path is invalid.

501
The document has not been indexed. Lib_Init in Library Services failed On Flat File
systems: DIT file not found or not on a valid directory, or DIT contents not correct.

502
The document has not been indexed. An error has occurred while reading the
document content in library service LIB_read_doc_content.

503
The document has not been indexed. An error occurred in library service
LIB_access_doc.

504
The document has not been indexed. The library service LIB_doc_index_status
returned an error.

© Copyright IBM Corp. 1995, 1998 249

|

|

|

|

|

|

||

|
|

|
|

|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

505
Close document failed. The library service LIB_close_doc returned an error.

506
End Library Services failed The library service LIB_end returned an error.

551, 553, 555, 556, 567, 569, 570, 571, 573, 574, 575, 576, 606, 608, 610, 619
The document has not been indexed. One of the index files could not be opened.

624
Out of storage (alloc failed). The server ran out of memory: reduce workload.

659
One of the temporary files created during indexing could not be opened.

660
One of the temporary files created during indexing could not be written.

662
One of the temporary files created during indexing could not be opened.

663
One of the temporary files created during indexing could not be written.

665
One of the temporary files created during indexing could not be opened.

667
One of the temporary files created during indexing could not be written.

831
The document has not been indexed. No text has been found. The document
length is 0 bytes.

860
File open error (dictionary or thesaurus not found)

1000
An error occurred during file open. Please check access rights.

1001
An error occurred during file append. Please check access rights.

1002
An error occurred during file read. Maybe the file is corrupted.

1003
An error occurred during file write. Please check disc space and access rights.

1007
An error occurred during file create. Please check access rights.

1010
The specified index name is already in use. Use another index name.

1011
The specified path is already in use. Use another location.

Error event reason codes

250 Text Extender: Administration and Programming

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

1012
The same path is used for data and working directory. Use another location.

1013
The specified index name is invalid. Index names must be uppercase or digits and
not longer than 8 characters.

1017
The index name is unknown. Please check correct spelling.

1020
General file error. Please check access rights.

1072
The document has not been indexed. The specified codepage is invalid.

1073
The document has not been indexed. The specified codepage is invalid for this
index type.

1085
The document has not been indexed. An error occurred when reading the index
queue.

1086
The document has not been indexed. The index queue is empty.

1129
No document has been indexed. Starting the background processing failed.

2000
The document has not been indexed. The document type is not supported. Library
service Lib_access_doc returned an invalid document type.

2001
The document has not been indexed. An incorrect sequence of fields has been
detected in the document’s data stream.

2002
The document has not been indexed. An incorrectly structured field has been
detected in the document’s data stream.

2003
The document has not been indexed. Only one text section is allowed for a
document in Text Extender text format.

2004
The document has not been indexed. A hypermedia reference that is longer than
512 bytes has been detected in a document in Text Extender text format.

2005
The document has not been indexed. A language specified in the document’s data
stream is not supported.

Error event reason codes

Chapter 16. Error event reason codes 251

|
|

|
|
|

|
|

|
|

|
|

|
|
|

|
|
|

|
|

|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

2006
The document has not been indexed. A CCSID specified in the document’s data
stream is not supported.

2007
The expected document format given by the library or by the default rule is not
correct. The document header is incorrect for the format. Check if the default rule is
a document with a special document header, and change if the rule is not correct.

2008
The document was not indexed because it could not be accessed.

2009
The document was not indexed because it was in use and could not be accessed.

2010
The document has not been indexed. The specified CCSID is not correct.

2011
The document has not been indexed because it is not a valid IBM DCA RFT or
FFT document. End-of-page must be the last control in the body text of the
document.

2012
The document has not been indexed because it is not a valid IBM DCA RFT or
FFT document. A structured field contains an incorrect length specification.

2013
The document has not been indexed because it is not a valid IBM DCA RFT or
FFT document. An incorrect control has been detected in the document.

2014
The document has not been indexed because it is not a valid IBM DCA RFT or
FFT document. An incorrect multi-byte control or structured field has been detected
in the document.

2015
The document has not been indexed because it is not a valid IBM DCA RFT or
FFT document. Duplicate document parameters have been found.

2016
The document has not been indexed because it is not a valid IBM DCA RFT or
FFT document. An empty text unit has been found.

2018
Either the document is in a format that is not supported, or there is an “exclude”
entry in the DIT for the document’s extension. Check that the document has a
extension that allows it to be indexed.

2020
The document has not been indexed. It is neither a WordPerfect document nor a
WordPerfect file.

Error event reason codes

252 Text Extender: Administration and Programming

|
|
|

|
|
|
|

|
|

|
|

|
|

|
|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|

2021
The document has not been indexed. It is a WordPerfect file but not a WordPerfect
document.

2022
The document has not been indexed. This version of WordPerfect is not supported.

2023
The document has not been indexed. It is an encrypted WordPerfect file. Store the
document without encryption.

2026
An END_TXT occurred in a footnote or an endnote. Check the WordPerfect file, it
may be damaged.

2030
The document has not been indexed. Either it is not a Microsoft Word file or it is a
version of Word that is not supported.

2031
The document has not been indexed. Unexpected end-of-file has been detected in
a Microsoft Word document.

2032
The document has not been indexed. An incorrect control has been detected in a
Microsoft Word document.

2033
The document has not been indexed. It was saved in complex format with the
fastsave option. Save it with the fastsave option off.

2034
The document has not been indexed. A required field-end mark is missing in a
Microsoft Word document.

2035
The document is encrypted. Store the document in Microsoft Word without
encryption.

2036
This is a Word for Macintosh document; it cannot be processed. Store the
document in Word for Windows format.

2037
This Word document contains embedded OLE objects.

2040
The document has not been indexed because it is not a valid ECTF file.

2041
The document has not been indexed. It contains an .SO LEN control that is not
followed by a number.

Error event reason codes

Chapter 16. Error event reason codes 253

|
|
|

|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|

|
|

|
|
|

2042
The document has not been indexed. It contains an .SO LEN control that is
followed by an incorrect number. The number must be between 1 and 79.

2043
The document has not been indexed. Only one .SO DOC control is allowed. Save
each ECTF document in a separate file.

2044
The document has not been indexed. An .SO HDE control must be followed by
begin and end tags.

2045
The document has not been indexed. The hypermedia reference begin or end tag
is too long.

2046
The document has not been indexed. The document contains text before the .SO
DOC control.

2047
The document has not been indexed. The document contains text before an .SO
PID control.

2048
The document has not been indexed. An end tag is missing after a begin tag.

2049
The document has not been indexed. A hypermedia reference has been detected
that is longer than 80 bytes.

2050
The document has not been indexed. Incorrect tags have been detected following
an .SO HDE control.

2051
The document has not been indexed. End-of-line has been detected after an .SO
control.

2052
The document has not been indexed. Unexpected end-of-text has been detected.

2060
The document has not been indexed. Either it is not an AmiPro document or it is a
version of AmiPro that is not supported.

2061
The document has not been indexed. The length of a control in an AmiPro
document is too long.

2062
The document has not been indexed. This version of AmiPro is not supported. Only
AmiPro Architecture Version 4 is supported.

Error event reason codes

254 Text Extender: Administration and Programming

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|

|
|
|

|
|
|

|
|
|

|
|

|
|
|

|
|
|

|
|
|

2063
AmiPro Style Sheets have not been indexed.

2064
The document has not been indexed. An incorrect character set has been
detected. Only Lotus Character Set 82 (Windows ANSI) is supported.

2065
The document has not been indexed. Unexpected end-of-file has been detected in
an AmiPro document.

2072
The document cannot be scanned because it is encrypted.

2073
The document format is inconsistent.

2074
The document has the “bad file” flag bit set.

2080
The document has not been indexed. Either it is not an RTF document or it is a
version of RTF that is not supported.

2081
The document has not been indexed. An RTF control word has been detected that
is too long.

2083
The document has not been indexed. Macintosh code page is not supported.

2084
The document has not been indexed. It is an RTF document, but this RTF version
is not supported. Only RTF Version 1 is supported.

2100
The document is damaged or unreadable for some other reason. A new common
parser could correct the problem.

2101
The document cannot be indexed because it is empty or it contains no text. Check
whether the document contains only graphics.

2102
The document cannot be indexed because it is either password-protected or
encrypted.

2105
The document type is known, but the filter is not available.

2106
The document cannot be indexed because it is empty.

2107
The document cannot be indexed because it cannot be opened. Check document
access.

Error event reason codes

Chapter 16. Error event reason codes 255

|
|

|
|
|

|
|
|

|
|

|
|

|
|

|
|
|

|
|
|

|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|

|
|

|
|
|

2112
The document cannot be indexed because it is an executable file.

2113
The document cannot be indexed because it is compressed.

2114
The document cannot be indexed because it is a graphic. If the graphic document
format returns an acceptable piece of text, then request to include this document
format in the indexing process.

2120
The output file of the user exit does not exist or is not accessible. A new common
parser version could correct the problem.

2121
The output file cannot be opened for read or it is empty. A new common parser
version could correct the problem.

2122
Attempting to use a user-exit output file, but no file name has been given or set in
the object.

2130
The user exit program could not be run. Check if the executable can be found in
the path set by the PATH environment variable. Create a trace and dump to get
additional information about the environment (errno) return codes.

2131
The user exit program failed with a bad return code. Create a trace and dump to
get additional information about the environment (errno) return codes.

Error event reason codes

256 Text Extender: Administration and Programming

|
|

|
|

|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|

Notices

References in this publication to IBM products, programs, or services do not imply that
IBM intends to make these available in all countries in which IBM operates. Any
reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Subject to IBM’s valid
intellectual property or other legally protectable rights, any functionally equivalent
product, program, or service may be used instead of the IBM product, program, or
service. The evaluation and verification of operation in conjunction with other products,
except those expressly designated by IBM, are the responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to the IBM Director of Licensing, IBM
Corporation, 500 Columbus Avenue, Thornwood NY 10594, U.S.A.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs and
other programs (including this one) and (ii) the mutual use of the information which has
been exchanged, should contact IBM Deutschland Informationssysteme GmbH,
Department 3982, Pascalstrasse 100, 70569 Stuttgart, Germany. Such information may
be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

Programming interface information

This book is intended to help the application programmer to use the Text Extender
programming interfaces. This book documents general-use programming interface and
associated guidance information for Text Extender.

General-use programming interfaces allow you to write programs that obtain the
services of Text Extender. You may copy the Text Extender runtime feature needed for
the application you develop onto client and server machines. To install the run-time
feature, see the installation instructions provided in the README.TXT file for your
operating system on the DB2 Extenders CD-ROM.

Trademarks and service marks

The following terms are trademarks of the IBM Corporation in the United States or other
countries or both:

AIX

DB2

DB2 Universal Database

DB2/2

© Copyright IBM Corp. 1995, 1998 257

DB2/6000

IBM

OS/2

RISC System/6000

Microsoft, Windows, Windows NT, and the Windows 95 flag logo are trademarks or
registered trademarks of the Microsoft Corporation.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

Other company, product, and service names, which may be denoted by a double
asterisk (**), may be trademarks or service marks of others.

258 Text Extender: Administration and Programming

Glossary

This glossary defines many of the terms and
abbreviations used in this manual. If you do not
find the term you are looking for, refer to the index
or to the Dictionary of Computing, New York:
McGraw-Hill, 1994.

A

access function. A user-provided function that
converts the data type of text stored in a column
to a type that can be processed by Text Extender.

administration. The task of preparing text
documents for searching, maintaining indexes,
and getting status information.

API. Application programming interface.

application programming interface (API). A
general-purpose interface between application
programs and the Text Extender information
retrieval services.

B

Boolean search. A search in which one or more
search terms are combined using Boolean
operators.

bound search. A search in Korean documents
that respects word boundaries.

browse. To view text displayed on a computer
monitor.

browser. A Text Extender function that enables
you to display text on a computer monitor.

C

catalog view. A view of a system table created
by Text Extender for administration purposes. A
catalog view contains information about the tables
and columns that have been enabled for use by
Text Extender.

CCSID. Coded Character Set Identifier.

code page. An assignment of graphic characters
and control function meanings to all code points.
For example, assignment of characters and
meanings to 256 code points for an 8-bit code.

command line processor. A program called
DB2TX that:

Allows you to enter Text Extender commands

Processes the commands

Displays the result.

common-index table. A DB2 table whose text
columns share a common text index. See also
multi-index table.

count. A keyword used to specify the number of
levels (the depth) of terms in the thesaurus that
are to be used to expand the search term for the
given relation.

D

data stream. Information returned by an API
function, comprising text (at least one paragraph)
containing the term searched for, and information
for highlighting the found term in that text.

DB2 Extender. One of a group of programs that
let you store and retrieve data types beyond the
traditional numeric and character data, such as
image, audio, and video data, and complex
documents.

DBCS. Double-byte character support.

dictionary. A collection of language-related
linguistic information that Text Extender uses
during text analysis, indexing, retrieval, and
highlighting of documents in a particular language.

disable. To restore a database, a text table, or a
text column, to its condition before it was enabled
for Text Extender by removing the items created
during the enabling process.

© Copyright IBM Corp. 1995, 1998 259

distinct type. See user-defined distinct type.

document. See text document.

document handle. See handle.

dual index. A text index having the
characteristics of a precise index and a linguistic
index. See also ngram index.

E

enable. To prepare a database, a text table, or a
text column, for use by Text Extender.

environment variable. A variable used to
provide defaults for values for the Text Extender
environment.

environment profile. A script provided with Text
Extender containing settings for environment
variables.

escape character. A character indicating that the
subsequent character is not to be interpreted as a
masking character.

expand. The action of adding to a search term
additional terms derived from a thesaurus.

extended matching. A process involving the use
of a dictionary to highlight terms that are not
obvious matches of the search term.

extender. See DB2 Extender.

external file. A text document in the form of a
file stored in the operating system’s file system,
rather than in the form of a cell in a table under
the control of DB2.

F

feature search. A search for terms such as
names of people, places, or organizations, made
in a linguistic index created using the
FEATURE_EXTRACTION indexing option.

file handle. See handle.

format. The type of a document, such as ASCII,
or WordPerfect.

free-text search. A search in which the search
term is expressed as free-form text – a phrase or
a sentence describing in natural language the
subject to be searched for.

function. See access function.

fuzzy search. A search that can find words
whose spelling is similar to that of the search
term.

H

handle. A binary value that identifies a text
document. It includes:

A document ID

The name and location of the associated index

The document’s text information

If the document is located in an external file
not under the control of DB2, the path and
name of the file.

A handle is created for each text document in a
text column when that column is enabled for use
by Text Extender.

highlighting information. See data stream.

hybrid search. A combined Boolean search and
free-text search.

I

index. To extract significant terms from text, and
store them in a text index.

index characteristics. Properties of a text index
determining:

The directory where the index is stored

The index type

The frequency with which the index is updated

When the first index update is to occur.

260 Text Extender: Administration and Programming

index type. A characteristic of a text index
determining whether it contains exact or linguistic
forms of document terms, or both. See precise
index, linguistic index, dual index, and ngram
index.

initialized handle. A handle, prepared in
advance, containing only the text format, or the
text language, or both.

instance. A logical Text Extender environment.
You can have several instances of Text Extender
on the same workstation, but only one instance for
each DB2 instance. You can use these instances
to:

Separate the development environment from
the production environment

Restrict sensitive information to a particular
group of people.

instance variable. A variable used to provide a
default value for the name of the instance owner,
or the name of the instance owner’s home
directory.

L

language. The name of a dictionary to be used
when indexing, searching and browsing.

linguistic index. A text index containing terms
that have been reduced to their base form by
linguistic processing. “Mice”, for example, would
be indexed as “mouse”. See also precise index,
ngram index, and dual index.

logical node. A node assigned with other nodes
to the same physical machine. See also physical
node.

log table. A table created by Text Extender
containing information about which text documents
are to be indexed. Triggers are used to store this
information in a log table whenever a document in
an enabled text column is added, changed, or
deleted.

M

masking character. A character used to
represent optional characters at the front, middle,
and end of a search term. Masking characters are
normally used for finding variations of a term in a
precise index.

match. The occurrence of a search term in a text
document.

multi-index table. A DB2 table whose text
columns have individual text indexes. See also
common-index table.

N

ngram index. A text index that supports DBCS
documents and fuzzy search of SBCS documents.
See also linguistic index precise index and dual
index.

node. A server in a partitioned database
environment. See also logical node, physical
node, and nodegroup.

nodegroup. A named subset of one or more
database partition servers. node assigned to a
physically separate machine. See also logical
node.

O

occurrence. Synonym for match.

P

partitioned database. A database consisting of
several parts, each of which is maintained by a
separate database partition server.

periodic indexing. Indexing at predetermined
time intervals, expressed in terms of the day, hour,
and minute, and the minimum number of
documents names that must be listed in the log
table for indexing, before indexing can take place.

physical node. A node assigned to a physically
separate machine. See also logical node.

Glossary 261

|

|
|
|

precise index. A text index containing terms
exactly as they occur in the text document from
which they were extracted. See also linguistic
index ngram index and dual index.

profile. See environment profile.

R

rank. An absolute value of type DOUBLE
between 0 and 1 that indicates how well a
document meets the search criteria relative to the
other found documents. The value indicates the
number of matches found in the document in
relation to the document’s size.

refine. To add the search criteria from a previous
search to other search criteria to reduce the
number of matches.

retrieve. To find a text document using a search
argument in one of Text Extender’s search
functions.

S

SBCS. Single-byte character support.

search argument. The conditions specified
when making a search, consisting of one or
several search terms, and search parameters.

shell profile. See environment profile.

stop word. A common word, such as “before”, in
a text document that is to be excluded from the
text index, and ignored if included in a search
argument.

T

text column. A column containing text
documents.

text configuration. Default settings for index,
text, and processing values.

text document. Text of type CHAR, GRAPHIC,
VARGRAPHIC, LONG VARGRAPHIC, DBCLOB,
VARCHAR, LONG VARCHAR, or CLOB, stored in
a DB2 table.

text index. A collection of significant terms
extracted from text documents. Each term is
associated with the document from which it was
extracted. A significant improvement in search
time is achieved by searching in the index rather
than in the documents themselves. See also
precise index, linguistic index, and dual index.

text information. Properties of a text document
describing:

The CCSID

The format

The language.

text table. A DB2 table containing text columns.

tracing. The action of storing information in a file
that can later be used in finding the cause of an
error.

trigger. A mechanism that automatically adds
information about documents that need to be
indexed to a log table whenever a document is
added, changed, or deleted from a text column.

U

UDF. User-defined function.

UDT. User-defined distinct type.

update frequency. The frequency with which a
text index is updated, expressed in terms of the
day, hour, and minute, and the minimum number
of document names that must be listed in the log
table for indexing, before indexing can take place.

user-defined distinct type (UDT). A data type
created by a user of DB2, in contrast to a data
type provided by DB2 such as LONG VARCHAR.

user-defined function (UDF). An SQL function
created by a user of DB2, in contrast to an SQL

262 Text Extender: Administration and Programming

function provided by DB2. Text Extender provides
search functions, such as CONTAINS, in the form
of UDFs.

W

wildcard character. See masking character.

Glossary 263

264 Text Extender: Administration and Programming

Index

Special Characters
& (AND) operator in search argument

how to use 84
search argument syntax 186

| (OR) operator in search argument
how to use 84
search argument syntax 186

A
abbreviations 26

abbreviation extraction 24
editing an abbreviation file 46
example of searching 91
lists of 30

access function
description 57
in ENABLE TEXT COLUMN 127

administration
abbreviation file, editing 46
backup and restore 75
CHANGE INDEX SETTINGS command 113
CHANGE TEXT CONFIGURATION command 115
changing index settings 65
changing the text configuration 45
command line processor 111
command summary, client 111
command summary, server 149
CONNECT command 118
connecting to a database 44
creating a sample database 165
creating an instance 39
creating sample tables 47
DB2TX command 111
DELETE INDEX EVENTS 120
DELETE INDEX EVENTS command 120
deleting index events 66
DISABLE DATABASE command 121
DISABLE TEXT COLUMN command 122
DISABLE TEXT FILES command 123
DISABLE TEXT TABLE command 124
disabling a database 63
disabling a text column 61
disabling a text table 62
disabling text files 62
displaying the index settings 71
displaying the index status 69
displaying the server status 40
displaying the status of database, table, and column

67
displaying the text information settings 72

administration (continued)
dropping an instance 39
ENABLE DATABASE command 125
ENABLE TEXT COLUMN command 126
ENABLE TEXT FILES command 132
ENABLE TEXT TABLE command 135
enabling a database 49
enabling a text column 53
enabling a text table 50
enabling external files 59
ending an administration session 60
environment variables 235
GET ENVIRONMENT command 139
GET INDEX SETTINGS command 140
GET INDEX STATUS command 141
GET STATUS command 142
GET TEXT CONFIGURATION command 143
GET TEXT INFO command 144
maintaining text indexes 63
modifying stop-word and abbreviation files 46
overview of administration 41
preparing a database for searching 45
QUIT command 145
RESET INDEX STATUS command 146
resetting the index status 66
sample database, utility to create 48
sample tables, creating 47
starting an administration session 43
starting the command line processor 43
starting the Text Extender server 157
status information, getting 67
stop-word file, modifying 46
stopping the Text Extender server 159
summary of commands, client 111
summary of commands, server 149
tracing faults 74
TXICRT command 150
TXIDROP command 152
TXNADD command 153
TXNCHECK command 154
TXNDROP command 155
TXSAMPLE command 156
TXSTART command 157
TXSTATUS command 158
TXSTOP command 159
TXTRACE command 160
TXVERIFY command 165
UPDATE INDEX command 147
updating an index for external files 64
updating an index immediately 64

AmiPro, document type 237

© Copyright IBM Corp. 1995, 1998 265

analysis of text
for browsing 27
for indexing 20

AND
Boolean operator 84
keyword in search argument 187

ANY_TERM keyword in feature search 186
application programming interface (API)

browse functions 101
browsing a document 244
closing a document 106
DesBrowseDocument function 246
DesCloseDocument function 194
DesEndBrowseSession function 195
DesFreeBrowseInfo function 196
DesGetBrowseInfo function 197
DesGetMatches function 200
DesGetSearchResultTable function 205
DesOpenDocument function 210
DesStartBrowseSession function 213
ending a browse session 107
freeing the browse information storage 107
get pointer to highlighting information 200
getting a search result table 103
getting browse information 104
getting matches 106
highlighting information 200
messages 223
opening a document for browsing 105
overview 102
program examples 243
reference 193
return codes 215
search functions 101
searching for text 103
starting a browse session 105
summary 193

ASCII, document type 237
Audio Extender 5

B
backup and restore 75
base form, reducing terms to 22
basic text analysis

for highlighting 27
for indexing terms 20
normalization 21
of terms containing nonalphanumeric characters 20
sentence recognition 21

Boolean operators
& (AND) and | (OR) 84
NOT 89

Boolean search argument 186
BOUND keyword 188
bound search, example 90

browse document, API function
description 246
using 244

browse functions 101
browsing

linguistic processing for 27
program examples 243
using own browser 104
using the sample browser 244

C
CASE_ENABLED keyword

in ENABLE TEXT COLUMN 129
in ENABLE TEXT TABLE 136

catalog view
content 72
creating 49
deleting 63

CCSID
default in text configuration 236
description 240
extracting from a handle 95
function 170
GET TEXT INFO command 144
initializing in handles 176
keyword 117, 127
list of 240

CHANGE INDEX SETTINGS command
syntax 113
using 65

CHANGE TEXT CONFIGURATION command
syntax 115
using 45

character masking 26
client/server environment 5
close document, API function

description 194
using 106

column
DISABLE TEXT COLUMN command 122
disabling 61
ENABLE TEXT COLUMN command 126
enabling 53

command line processor
DB2TX command 111
help for 112
QUIT command 145
starting 43

commands
CHANGE INDEX SETTINGS 113
CHANGE TEXT CONFIGURATION 115
CONNECT 118
DB2TX 111
DELETE INDEX EVENTS 120

266 Text Extender: Administration and Programming

commands (continued)
DISABLE DATABASE 121
DISABLE TEXT COLUMN 122
DISABLE TEXT FILES 123
DISABLE TEXT TABLE 124
ENABLE DATABASE 125
ENABLE TEXT COLUMN 126
ENABLE TEXT FILES 132
ENABLE TEXT TABLE 135
GET ENVIRONMENT 139
GET INDEX SETTINGS 140
GET INDEX STATUS 141
GET STATUS 142
GET TEXT CONFIGURATION 143
GET TEXT INFO 144
QUIT 145
RESET INDEX STATUS 146
summary, client commands 111
summary, server commands 149
TXICRT 150
TXIDROP 152
TXNADD 153
TXNCHECK 154
TXNDROP 155
TXSAMPLE 156
TXSTART 157
TXSTATUS 158
TXSTOP 159
TXTHESC 34
TXTRACE 160
TXVERIFY 165
UPDATE INDEX 147

COMMITCOUNT configuration parameter
default in text configuration settings 237
description 56
in CHANGE TEXT CONFIGURATION 117
in ENABLE TEXT COLUMN 130
in ENABLE TEXT FILES 133
in ENABLE TEXT TABLE 147
preserving log space 56

common-index table
creating 50
description 16, 17
ENABLE TEXT TABLE command 135

compound terms, splitting 22
configuration table

CHANGE TEXT CONFIGURATION command 115
creating 49
displaying 68
GET TEXT CONFIGURATION command 143

configuring Text Extender 235
CONNECT command

syntax 118
using 44

connecting to a database
CONNECT command 118
how to 44

CONTAINS function
example 83
syntax 171

COUNT keyword 186
creating a sample database 165
creating a Text Extender instance

TXICRT command 150
creating sample tables

manually 47
TXSAMPLE command 156

D
data stream syntax 201
data types of text documents

function for converting 57
supported 127

database
backup and restore 75
CONNECT command 118
connecting to 44
DISABLE DATABASE command 121
disabling 63
ENABLE DATABASE command 125
enabling 49
GET STATUS command 142
preparing for searching 45
status information, displaying 67

DB2 extenders
Audio Extender 5
example of use 4
family 4
Image Extender 4
Video Extender 5

DB2DBDFT, environment variable 235
DB2INSTANCE, environment variable 235
DB2TEXTFH distinct type 167
DB2TEXTH distinct type 167
DB2TEXTHLISTP distinct type 167
DB2TX, command line processor

syntax 111
using 43

DB2TX_ environment variables
description 235
displaying 68

DB2TX_INSTOWNER, environment variable 235

DB2TX_INSTOWNERHOMEDIR, environment variable
235

DB2TX.SAMPLE table
creating 47
deleting 63
description 78

Index 267

DB2TX.SAMPLE table (continued)
utility for creating 48

decomposition of compound terms 22
DELETE INDEX EVENTS command

example 66
syntax 120

depth of terms in a thesaurus, specifying 186
DES_BROWSE, option in DesGetSearchResultTable

206
DES_EXT.H header file 101
DES_EXTENDED, option in DesOpenDocument 210
DES_FAST, option in DesOpenDocument 210
DES_MATCH, option in DesGetSearchResultTable 206
DES_NOBROWSE, option in DesGetSearchResultTable

206
DES_RANK, option in DesGetSearchResultTable 206
DES_RANKANDMATCH, option in

DesGetSearchResultTable 206
DES_TEXTHANDLEONLY, option in

DesGetSearchResultTable 206
DesBrowseDocument function

description 246
using 244

DesCloseDocument function
description 194
using 106

DesEndBrowseSession function
description 195
using 107

DesFreeBrowseInfo function
description 196
using 107

DesGetBrowseInfo function
description 197
using 104

DesGetMatches function
description 200
using 106

DesGetSearchResultTable function
description 205
using 103

DesOpenDocument function
description 210
using 105

DESRESTB, for creating a result table 207
DESSAMP1, sample program 243
DesStartBrowseSession function

description 213
using 105

dictionary file names 30
directory for index

GET INDEX SETTINGS command 140
DIRECTORY keyword

default in text configuration settings 236

DIRECTORY keyword (continued)
displaying the current setting 71
in CHANGE TEXT CONFIGURATION 116
in ENABLE TEXT COLUMN 129
in ENABLE TEXT TABLE 137

DISABLE DATABASE command
syntax 121
using 63

DISABLE TEXT COLUMN command
syntax 122
using 61

DISABLE TEXT FILES command
syntax 123
using 62

DISABLE TEXT TABLE command
syntax 124
using 62

disk space for indexes 17
distinct types 167
document

CCSID 240
converting data types 57
description 237
displaying the settings 72
format, description 237
format in CHANGE TEXT CONFIGURATION 117
format in ENABLE TEXT COLUMN 128
GET TEXT INFO command 144
indexing 11
information about 72
language 238
preparing for searching 45
supported data types 127

domain-term extraction 24
DOMAIN_TERM keyword in feature search 186
domain terms 26
dropping an instance

how to 40
TXIDROP command 152

dual index
description 15
search option defaults 188

E
ENABLE DATABASE command

syntax 125
using 49

ENABLE TEXT COLUMN command
syntax 126
using 53

ENABLE TEXT FILES command
syntax 132

ENABLE TEXT TABLE command
syntax 135

268 Text Extender: Administration and Programming

ENABLE TEXT TABLE command (continued)
using 50, 59

end browse session, API function
description 195
using 107

environment, client/server 5
environment variables 235

description 235
displaying 68
GET ENVIRONMENT command 139

error events
DELETE INDEX EVENTS 120
deleting 66
displaying 70
GET INDEX STATUS command 141
reason codes 249
recording 55

escape character
syntax 191
using 87

event reason codes 249
EXPAND keyword 186
expansion of terms for highlighting 27
extended matching 27
extenders

Audio Extender 5
example of use 4
family 4
Image Extender 4
Video Extender 5

external files
changing path/name in handle 96
DISABLE TEXT FILES command 123
disabling 62
ENABLE TEXT FILES command 132
enabling 59
extracting path/name from a handle 95
FILE function 172
getting or changing a file name in a handle 172
handles for 81
index update considerations 64
initializing handles 176

F
fault finding 74
feature extraction

description 23
example 91

FEATURE_EXTRACTION keyword
in ENABLE TEXT COLUMN 128
in ENABLE TEXT TABLE 136

feature search keywords 185
FFT, document type 237

FILE function
example 95
syntax 172

flat ASCII, document type 237
FORMAT function

example 95
syntax 173

format of text documents
changing in handle 96
default in text configuration 236
description 237
extracting from a handle 95
FORMAT function 173
FORMAT keyword 117, 128
GET TEXT INFO command 144
in CHANGE TEXT CONFIGURATION 117
in ENABLE TEXT COLUMN 128
initializing in handles 176

free storage for browse information, API function
description 196
using 107

free-text search
example 92

function
API functions 101
for converting data types 57
SET CURRENT FUNCTION PATH statement 81
setting the path for UDFs 81
user-defined functions (UDFs) 77

FUNCTION keyword
description 57
in ENABLE TEXT COLUMN 127

FUZZY FORM OF keyword 188
fuzzy search, example 90

G
get browse information, API function

description 197
using 104

GET ENVIRONMENT command
example and output 68
syntax 139

GET INDEX SETTINGS command
example and output 71
syntax 140

GET INDEX STATUS command
example and output 69
syntax 141

get matches, API function
description 200
using 106

get search result table, API function
description 205
using 103

Index 269

GET STATUS command
example and output 67
syntax 142

GET TEXT CONFIGURATION command
example and output 68
syntax 143

GET TEXT INFO command
example and output 72
syntax 144

H
handle

CCSID function 170
changing format and language 96
description 80
distinct type DB2TEXTFH 167
distinct type DB2TEXTH 167
extracting CCSID, format, and language 95
for external files 81
FORMAT function 173
getting from a list of handles 174
initializing 94
LANGUAGE function 177
setting and extracting information in 94
using lists to improve performance 96

HANDLE function
syntax 174
using 96

HANDLE_LIST function
syntax 175
using 96

handle list pointer (distinct type DB2TEXTHLISTP) 167
header file des_ext.h 101
help for commands 112
highlighting information

data stream 106
data stream syntax 200

HTML, document type 237
hybrid search, example 92

I
Image Extender 4
IN SAME PARAGRAPH AS keyword 187
IN SAME SENTENCE AS keyword 187
include file des_ext.h 101
index

backup and restore 75
CASE_ENABLED option 15
CHANGE INDEX SETTINGS command 113
CHANGE TEXT CONFIGURATION command 115
changing the current settings 65
changing the index type 16
changing the text configuration 45
changing the update frequency 65
common-index table 16

index (continued)
default type in text configuration settings 236
displaying the current settings 71
dual 15
FEATURE_EXTRACTION option 23
GET INDEX SETTINGS command 140
GET INDEX STATUS command 141
GET TEXT CONFIGURATION command 143
immediate index update 64
INDEXOPTION in ENABLE TEXT COLUMN 128
INDEXOPTION in ENABLE TEXT TABLE 136
INDEXTYPE in CHANGE TEXT CONFIGURATION

116
INDEXTYPE in ENABLE TEXT COLUMN 128
INDEXTYPE in ENABLE TEXT TABLE 136
linguistic 13
maintaining 63
ngram 15
overview 11
periodic index update 241
planning 11
precise 14
size calculation 17
TABLESPACE in CHANGE TEXT CONFIGURATION

116
types of 13
update frequency 241
UPDATE INDEX command 147
updating for external files 64

index characteristics
defaults in text configuration settings 236
displaying 71
in ENABLE TEXT COLUMN 126
in ENABLE TEXT FILES 132
in ENABLE TEXT TABLE 135

index status, displaying
example and output 69
syntax 141

index status, resetting
example 66
syntax 146

index type, changing 16
indexing, linguistic processing for 19
indexing events

reason codes 249
indexing events, deleting

example 66
syntax 120

INDEXOPTION keyword
in CHANGE TEXT CONFIGURATION 116
in ENABLE TEXT COLUMN 128
in ENABLE TEXT TABLE 136

INDEXTYPE keyword
in CHANGE TEXT CONFIGURATION 116

270 Text Extender: Administration and Programming

INDEXTYPE keyword (continued)
in ENABLE TEXT COLUMN 128
in ENABLE TEXT TABLE 136

information about text documents
CCSID 240
displaying the current setting 72
format 237
GET TEXT INFO command 144
language 238
types of 237

INIT_TEXT_HANDLE function
example 94
syntax 176

initializing a handle
how to 94
INIT_TEXT_HANDLE function 176

instances
creating 39
dropping 39
environment variables 235

L
LANGUAGE function

example 95
syntax 177

LANGUAGE keyword 117, 127
language of text documents

changing in handle 96
default in text configuration 236
description 238
extracting from a handle 95
GET TEXT INFO command 144
in a search argument 88
initializing in handles 176
LANGUAGE function 177
LANGUAGE keyword 117, 127
linguistic functions for 29
list of 238

large tables, enabling 56
linguistic index

description 13
search option defaults 188

linguistic processing
abbreviation extraction 24
abbreviations 26
basic text analysis 20
character masking 26
description 19
domain-term extraction 24
domain terms 26
extended matching 27
feature extraction 23
for browsing 27
for indexing 19

linguistic processing (continued)
for retrieval 24
for the supported languages 29
masking 26
names expansion 26
proper-name extraction 23
reducing terms to base form 22
sound expansion 26
splitting compound terms 22
stop-word filtering 22
synonyms 25
term expansion 27
word masking 26

log space, running out of 56
log table

assigning to a tablespace 55
creating 55
description 12
extracting error events 70

logical node, assigning 8
LOGPRIMARY, LOGSECOND, and LOGFILSIZ

parameters in DB2 V5.2 56

M
masking

in a search term 86
linguistic processing 26

match
DesGetMatches function 200
from DesGetSearchResultTable 103
in a search result 83
NUMBER_OF_MATCHES function 179

matching, extended 27
messages 223
Microsoft, document type 237
multipartition nodegroup 8

N
names expansion

description 26
example 91

ngram index
CASE_ENABLED option 15
description 15
search option defaults 188

NO_OF_DOCUMENTS function
example 97
syntax 178

node
add node command TXNADD 153
check node command TXNCHECK 154
drop node command TXNDROP 155

NODE keyword
in ENABLE TEXT COLUMN 130
in ENABLE TEXT TABLE 137

Index 271

nodegroups and tablespaces 55
nodes, assigning 8
normalization of terms 21
NOT

Boolean operator 89
keyword in search argument 187

NUMBER_OF_MATCHES function, syntax 179

O
occurrences of a search term 179
ON NODE keyword

in ENABLE TEXT COLUMN 130
in ENABLE TEXT TABLE 137

open document, API function
description 210
using 105

OR Boolean operator 84
ORGANISATION keyword in feature search 186
overview of DB2 extenders 3

P
parallelism concepts 8
partitioned database support 8
performance, improving 96
PERSON keyword in feature search 185
physical node, assigning 8
PLACE keyword in feature search 186
planning a text index 11
PRECISE FORM OF keyword 188
precise index

description 14
search option defaults 188

processing characteristics
defaults in text configuration settings 236

proper-name extraction 23

Q
QUIT command

syntax 145
using 60

R
rank

from DesGetSearchResultTable 103
in a search result 84

RANK function
example 84
syntax 180

recognizing sentences 21
reducing terms to base form 22
REFINE function

example 93
syntax 181

refining a previous search 93
RESET INDEX STATUS command

example 66

RESET INDEX STATUS command (continued)
syntax 146

restrictions for search arguments 191
RESULT LIMIT keyword 186
result table 207
retrieval, linguistic processing for 24
return codes, from the API 215
rules for search arguments 191

S
sample API programs 243
sample tables

creating automatically (TXSAMPLE) 48
creating manually 47
deleting 63
description 78
TXSAMPLE command 156

sample UDFs
running 77

search argument
& (AND) operator 186
| (OR) operator 186
AND keyword 187
BOUND keyword 188
bound search 90
COUNT keyword 186
description 183
EXPAND keyword 186
feature search 185
free-text search 92
FUZZY FORM OF keyword 188
fuzzy search 90, 188
hybrid search 92
IN SAME PARAGRAPH AS 187
IN SAME SENTENCE AS 187
names and abbreviations 91
NOT keyword 187
PRECISE FORM OF keyword 188
RESULT LIMIT keyword 186
searching for parts of a term 86
searching for several terms 84
searching for similar-sounding words 90
searching for synonyms 88
searching for terms in any sequence 87
searching for terms in the same paragraph 87
searching for terms in the same sentence 87
searching for terms in various languages 88
searching for variations of a term 85
searching with & and | 84
searching with NOT 89
specifying 84
STEMMED FORM OF keyword 188
summary of rules and restrictions 191
SYNONYM FORM OF keyword 188
syntax 184

272 Text Extender: Administration and Programming

search argument (continued)
TERM OF keyword 186
THESAURUS keyword 186
thesaurus search 91
using masking characters 86

search functions 101
SEARCH_RESULT function

example 96
syntax 182

search status, displaying
example and output 69
syntax 141

search status, resetting
example 66
syntax 146

searching for text
creating a list of found documents 175
getting the number of matches found 83
getting the rank of a found document 84
improving performance 96
making a query 83
overview 82
program examples 243
REFINE function 181
refining a previous search 93
SEARCH_RESULT function 182
syntax 184
using the API 103

sentence recognition 21
sentence separation 14
server

displaying the status 158
starting 157
stopping 159
TXICRT command 150
TXIDROP command 152
TXNADD command 153
TXNCHECK command 154
TXNDROP command 155
TXSAMPLE command 156
TXSTART command 157
TXSTATUS command 158
TXSTOP command 159
TXTRACE command 160
TXVERIFY command 165

SET CURRENT FUNCTION PATH statement 81
shell profiles 235
sounds expansion

description 26
example 90

space requirements for indexes 17
SQL states returned by UDFs 223
start browse session, API function

description 213

start browse session, API function (continued)
using 105

starting the Text Extender server 157
status of an index

displaying 69
displaying the current status 141
resetting 66
resetting after an error 66

status of the Text Extender server 158
STEMMED FORM OF keyword 188
stop words

as a part of basic text analysis 22
description 11
editing a stop-word file 46
lists of 30

stopping the Text Extender server 159
synonyms

description 25
in a search argument 88
SYNONYM FORM OF keyword 188

T
tablespace 55
tablespaces and nodegroups 55
term expansion for highlighting 27
TERM OF keyword 186
text characteristics

CCSID 240
defaults in text configuration 236
description 237
format 237
in ENABLE TEXT COLUMN 126
in ENABLE TEXT FILES 132
language 238

text configuration settings
changing 45
displaying 68
installation defaults 236

text table
backup and restore 75
DISABLE TEXT TABLE command 124
ENABLE TEXT TABLE command 135
enabling a large table 56

TEXTCOLUMNS catalog view 98
TEXTINDEXES catalog view

content 72
creating 49
deleting 63

thesaurus search
concepts 31
creating a thesaurus 34
example 91
syntax 186
THESAURUS keyword 186

Index 273

thesaurus search (continued)
TXTHESC command 34

tracing faults
setting up 74
TXTRACE command 160

triggers
creating 55
description 12

TXICRT command
creating a Text Extender instance 39
syntax 150

TXIDROP command
syntax 152

TXNADD command
syntax 153

TXNCHECK command
syntax 154

TXNDROP command
syntax 155

TXSAMPLE command
syntax 156
using 48

TXSAMPLE.UDF
running 77

TXSTART command
syntax 157
using 40

TXSTATUS command
syntax 158
using 40

TXSTOP command
syntax 159
using 40

TXTHESC command 34
TXTRACE command

syntax 160
using 74

TXVERIFY
creating a sample database 48

TXVERIFY command
syntax 165

types of text documents 237
types of text index

CASE_ENABLED option 15
CHANGE TEXT CONFIGURATION command 116
default in text configuration settings 236
dual 15
FEATURE_EXTRACTION option 23
GET INDEX SETTINGS command 140
INDEXTYPE in CHANGE TEXT CONFIGURATION

116
INDEXTYPE in ENABLE TEXT COLUMN 128
INDEXTYPE in ENABLE TEXT TABLE 136
linguistic 13

types of text index (continued)
ngram 15
precise 14
search option defaults 188

U
UDFs

CCSID 170
CONTAINS 171
description 77
FILE 172
FORMAT 173
function path 81
HANDLE 174
HANDLE_LIST 175
improving search performance 96
INIT_TEXT_HANDLE 176
LANGUAGE 177
NO_OF_DOCUMENTS 178
NUMBER_OF_MATCHES 179
overview 168
RANK 180
reference 167
REFINE 181
refining a previous search 93
SEARCH_RESULT 182
searching for text 82
setting and extracting information in handles 94
specifying search arguments 84
SQL states returned by 223

UDTs 167
update frequency

changing 65
default in text configuration settings 236
description 241
GET INDEX SETTINGS command 140
syntax 241
UPDATEFREQ in CHANGE INDEX SETTINGS 114
UPDATEFREQ in CHANGE TEXT CONFIGURATION

116
UPDATE INDEX command

example 64
syntax 147

update status, displaying
example and output 69
syntax 141

update status, resetting
example 66
syntax 146

UPDATEFREQ keyword
in CHANGE INDEX SETTINGS 114
in CHANGE TEXT CONFIGURATION 116
in ENABLE TEXT COLUMN 129
in ENABLE TEXT TABLE 137

274 Text Extender: Administration and Programming

UPDATEINDEX keyword
default in text configuration settings 236
displaying the current setting 71
GET INDEX SETTINGS command 140
in CHANGE TEXT CONFIGURATION 116
in ENABLE TEXT COLUMN 130

updating a text index
changing the frequency 65
periodically 241
UPDATEFREQ in CHANGE INDEX SETTINGS 114
UPDATEFREQ in CHANGE TEXT CONFIGURATION

116

V
variables

description of environment variables 235
displaying environment variables 68
GET ENVIRONMENT command 139

Video Extender 5

W
wild-card characters

in a search term 86
word masking 26

word separation 14
WordPerfect, document type 237

Index 275

276 Text Extender: Administration and Programming

IBM

Printed in U.S.A.

SC26-9108-01

