
DB2 Server for VSE & VM

Database Administration
Version 7 Release 2

SC09-2888-01

���

DB2 Server for VSE & VM

Database Administration
Version 7 Release 2

SC09-2888-01

���

Before using this information and the product it supports, be sure to read the general information under “Notices” on page 277.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

Order publications through your IBM representative or the IBM branch office serving your locality or by calling
1-800-879-2755 in the United States or 1-800-IBM-4YOU in Canada.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1987, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

|

|
|
|

|
|

|
|

Contents

About This Manual vii
Some Terminology vii

Components of the Relational Database
Management System vii

Organization x
Prerequisite IBM Publications xi
Highlighting Conventions. xi

Syntax Notation Conventions. xiii

SQL Reserved Words xvii

Summary of Changes xix
Summary of Changes for DB2 Version 7 Release 2 xix

Enhancements, New Functions, and New
Capabilities xix
Reliability, Availability, and Serviceability
Improvements xx

Chapter 1. Designing a Database 1
Sample Tables 1

Entities, Properties, and Occurrences 1
Step 1: Select the Data to Record in the Database . . 1
Step 2: Define Tables for Each Type of Relationship . 2

One-to-One Relationships 2
One-to-Many and Many-to-One Relationships . . 3
Many-to-Many Relationships 3

Step 3: Provide Column Definitions for Tables . . . 4
Step 4: Identify One or More Columns as a Primary
Key 4
Step 5: Ensure that Equal Values Represent the Same
Entity. 5
Step 6: Plan for Referential Integrity 6

Elements of Referential Integrity 6
DELETE, INSERT, and UPDATE Considerations . 7

Step 7: Normalize Your Tables 9
First Normal Form 9
Second Normal Form 9
Third Normal Form 10
Fourth Normal Form 11

Step 8: Considerations for Distributed Data 11
Definitions. 13
Application Programming 14
System Operations 15
Distributing Existing Data 16

Chapter 2. Implementing Your Design 17
Storage Concepts 17

How Information is Stored in Dbspaces 19
Database Generation 20
Defining Dbspaces 20

Identifying Dbspace Requirements. 21
Adding Dbspaces to the Database 21
Acquiring Dbspaces 22

Retrieving Information about Dbspace
Parameters 26
Restrictions on the ACQUIRE DBSPACE
Statement 27

Creating Tables 27
Controlling Who Creates Tables 27
How to Create Tables 28
Naming Tables 28
Choosing Columns 29
Specifying Columns 30
Specifying Data Types 32
Specifying a PRIMARY KEY 38
Specifying a UNIQUE Constraint 38
Considerations for Referential Integrity when
Creating Tables 39
Placing Tables in Dbspaces 41

Creating Views 42
Reasons for Using Views 42
Creating a View on a Table 43
Creating a View from Several Tables 43
Things You Cannot Do with a View 44
Materializing a View 46

Creating Indexes. 47
Index Key 47
UNIQUE Indexes 48
The PCTFREE Clause 48
Clustering Rows of a Table on an Index 48
Some Things to Remember When Defining Keys 50
General Performance Considerations on the Use
of Indexes 51
Migration Considerations for Indexes. 52

Using the Catalog in Database Design 52
Retrieving Catalog Information about a Table . . 52
Retrieving Catalog Information about Columns 53
Retrieving Catalog Information about Indexes . . 53
Retrieving Catalog Information about Views . . 54
Retrieving Catalog Information about
Authorization 54
The COMMENT ON Statement. 54

Chapter 3. Maintaining Your Database 57
Maintaining Tables 59

Loading Data into Tables 59
Copying Tables 62
Moving Tables from One Dbspace to Another . . 62
Merging Data from Multiple Tables 63
Altering the Design of a Table 64
Altering Referential and Unique Constraints . . 65
Enforcing Referential Constraints 68
Moving Data from One Application Server to
Another 71
Removing Tables 72

Maintaining Dbspaces 73
Altering the Design of a Dbspace 73

© Copyright IBM Corp. 1987, 2001 iii

||
|
||
|
||

Reorganizing a Dbspace to Free Storage Pool
Pages 74
Removing Dbspaces 75
VSAM Restrictions 76

Reorganizing Indexes on the Catalog Tables . . . 76
Moving Your Database 77

Chapter 4. Supporting Your Users . . . 79
Adding a New User 79

Setting Up New ISQL Users 80
Authorizing Access 82
Specifying a Default Application Server in VM 82
Loading Initial Tables 83
Training New Users 83

Removing Users from an Application Server . . . 83
Example 83

Chapter 5. Providing Security 87
Authorities 87

Types of Authorities 87
Granting Authorities 90
Revoking Authorities 92

Privileges 92
Privileges of Ownership 93
Granting Privileges to Other Users 93
Revoking Privileges 94
Monitoring Privileges 94
Privileges on Application Programs 94

Connecting to an Application Server in VM . . . 95
Establishing a Default Application Server . . . 95
Connecting to the Application Server Implicitly 95
Connecting to the Application Server Explicitly 97

Connecting to an Application Server in VSE . . . 98
Establishing a Default Application Server . . . 99
Connecting to the Application Server in Different
VSE Environments 99
User IDs for Remote CICS/VSE Transactions 102
Connecting to an Application Server in Special
Circumstances 103

Resolving Remote Server Name to Target Database
(CICS) 104
Resolving Remote Server Name to Target Database
(VSE Batch) 105
Restricting Access Using Views 106

Example 106
Changing User Passwords 107

Example 107
Securing the Database Catalog Tables 107

Example 1 108
Example 2 108
Example 3 108

Security Auditing 108
Auditing Security Using the Catalog Tables . . 109
Auditing Security Using Tracing 109

Chapter 6. Recovering from Failures 119
Overview of Recovery Concepts 119

Logical Units of Work 119
CMS Work Units 120
Atomic Operations 120

Dynamic Application Backout 120
Restart Processing 121

Recovery from Application Failures 121
Application Program Recovery in VM 124
Dropping the DB2 Server for VM Resource
Adapter Code 124
Batch and VSE/ICCF Application Recovery . . 124
Online Application Recovery 125
ISQL Sessions 126
DBS Utility Processing 126
Preprocessor. 127

Recovery from User Logic Errors 127
Dynamic Recovery from User Errors 128
Selective Recovery from User Data Errors . . . 131
Database Recovery from User Logic Errors . . 133

Chapter 7. Customizing the HELP Text
and Messages Text 137
The SYSLANGUAGE Table 137
The SYSTEXT1 and SYSTEXT2 Tables 139
Adding Topics to HELP Text Tables 141

Adding a HELP Topic to the HELP Text
Supplied by IBM 141
Creating Your Own HELP Text Tables 142

Making the HELPTEXT Dbspace Larger 143
Moving the HELP Text to Another Dbspace . . . 145
Printing the HELP Text Using the DBS Utility . . 145
Printing the HELP Text Using ISQL 146

Chapter 8. Application Design
Considerations. 147
Application Implementation Capabilities 147

Batch/Interactive Capabilities 147
Online (CICS) Transaction Processing
Capabilities 148
Query Capabilities. 149
Report Writing Capabilities 154
Programmed Application Capabilities 156
EXECs that Use DB2 Server for VM Facilities 156
Application Development Capabilities 160

Application Database Considerations 163
Database Support for Application Development 163
Database Support for Query/Report Writing 164

Application Implementation Considerations . . . 166
VSE Batch/Interactive Application
Considerations 166
Online CICS/VSE Transaction Considerations 168

Application Development Considerations 169
Loading Data into Test Dbspaces 169
Use of Synonyms in Application Development 170
Testing SQL Statements 171
Checking Application Code 171

Query/Report Writing Considerations 172
User Identifiers (Userids) for Query Users . . . 172

Application Independence with CMS Work Units 172
Application Maintenance Considerations 173

Data Administration Support 173
Data Independence Support 174
Arithmetic Operations 176
Data Access Changes 185

iv Database Administration

||

Hypothetical Change Support 188

Chapter 9. DB2 Server for VM
Database Configurations 189
DB2 Server for VM Concepts 189

Operating Modes for the Database Machine . . 190
Example Configurations 190

One Database Machine with One Database . . 190
One Database Machine with Two Databases . . 191
Several Database Machines with Many
Databases 192
Multiple Database Machines on Different
Processors 193
Accessing a Database from a Processor that
Does Not Have One 195

Performance Considerations with Multiple
Databases 196
VSE Guest Sharing (On VM/ESA Systems Only) 197

Chapter 10. Usage Environments in
VSE 199
Batch/Interactive Application Processing 199
Online (CICS) Transaction Processing 200
Application Development 202
Query/Report Writing 203

Chapter 11. Stored Procedures 205
Stored Procedure Concepts 205
Stored Procedure Servers 205

The Stored Procedure Server 205
The Stored Procedure Handler. 206
Stored Procedure Server Groups 206
Setting up a Stored Procedure Server 206

Managing Stored Procedure Servers 209
Stored Procedure Server Allocation 209
States of a Stored Procedure Server 212
Altering or Dropping a Stored Procedure Server
Definition 213

Stored Procedures 213
Preparing a Stored Procedure to Run 213
Dropping or Altering a Stored Procedure . . . 214

Initialization Parameters Affecting Stored
Procedure Execution 214

PTIMEOUT Parameter 214
PROCMXAB Parameter 214

Summary of Environment Interactions 215

Appendix A. Estimating Your Dbspace
Requirements 217
Estimating Dbspace Size. 217

General Guidelines 217
Estimating Storage for a Table 218
Estimating the Number of Header Pages . . . 220
Estimating the Number of Data Pages 221

Estimating the Number of Index Pages 229
Estimating Internal Dbspace Size and DASD Needs
for Sort Operations 232

When Do We Sort? 233
Internal Dbspace Characteristics 233
Calculating Internal Dbspace Size Requirements 234
Calculating Total Internal Dbspace and DASD
Needs 236

Appendix B. CMS EXECs 237
SQLINIT EXEC. 237

Initializing a User Machine 237
SQLGLOB EXEC 246
SQLCIREO EXEC 251
SQLDBID EXEC 253
SQLRMEND EXEC 253

Example 255
ARISDBHD EXEC 256
ARISDBLD EXEC 257
SQLLEVEL EXEC 258

Appendix C. Querying the Status of
an Application (VM Only) 261
Example 262

Appendix D. Maximums 265
ISQL Maximums 265

Appendix E. SQLGLOB Parameters
(VSE Only) 267
Transactions for Updating SQLGLOB Parameters 269

DSQG - Update global SQLGLOB Parm
Transaction 269
DSQU - Update user SQLGLOB Parm
Transaction 270
DSQQ - Query SQLGLOB Parm Transaction . . 271
DSQD - Delete user SQLGLOB Parm
Transaction 272

Batch Program to Update/Query the SQLGLOB
File 272
Using Online and Batch Resource Adapter Tracing 274

Online Trace File JCL 274
Batch Trace File JCL 274
Formatting the Online or Batch Trace File . . . 274

Notices 277
Trademarks 279

Bibliography. 281

Index 285

Contacting IBM 295
Product information 295

Contents v

||
||

vi Database Administration

About This Manual

This book describes the tasks for planning and administering an application server
in the following environments:
1. Virtual Storage Extended (VSE/ESA), 2.3.1 or above.
2. Virtual Machine/Enterprise Systems Architecture (VM/ESA), 2.3.0 or above
3. VM/ESA with Virtual Storage Extended (VSE) running as a guest under VM

and accessing a VM application server.

The planning and administration of a DB2 Server for VSE & VM application server
consists of designing, implementing, securing, and maintaining a database. To
accomplish these tasks, you must know about:
v Database design
v Table design
v Index creation
v Structured Query Language (SQL)
v Relational concepts.

The first three areas are described in this book. For a description of the other
topics, refer to the DB2 Server for VSE & VM SQL Reference manual, SC09-2989, and
the DB2 Server for VSE & VM Database Services Utility manual, SC09-2983.

Note: The DB2 Server for VSE & VM Performance Tuning Handbook, GC09-2987,
contains information on database design techniques that you must know
before you start to design your database. This information was previously in
this manual under the chapter describing advanced database design and
performance techniques.

Some Terminology
Throughout this book, the Customer Information Control System (CICS) refers to
CICS/VSE Version 2 Release 3 or CICS Transaction Server Version 1 Release 1 or
later for online support and for ISQL. DB2 Server for VSE & VM refers to
DATABASE 2 Server for IBM VSE & VM Systems Version 7 Release 2, unless
otherwise noted.

Components of the Relational Database Management System
Figure 1 on page viii depicts a typical configuration with one database and two
users.

Figure 2 on page ix depicts a typical configuration with one database, one batch
partition user, and a CICS

®

partition with several interactive users.

© Copyright IBM Corp. 1987, 2001 vii

Storage
Pool

Database

Application Server

Communication Link (IUCV, APPC/VM or TCP/IP)

MDISK LINK

Database Manager

Database
Machine

User
Machine

Applications

Application Requester

Interactive SQL

Resource AdapterData System Control

Relational Data System

Database Storage
Subsystem

Preprocessors

DBS Utility

User
Machine

Applications

Application Requester

Interactive SQL

Preprocessors

DBS Utility

Resource Adapter

Figure 1. Basic Components of the RDBMS in VM/ESA

viii Database Administration

The database is composed of :
v A collection of data contained in one or more storage pools, each of which in turn

is composed of one or more database extents (dbextents). A dbextent is a VM
minidisk or a VSE VSAM cluster.

v A directory that identifies data locations in the storage pools. There is only one
directory per database.

v A log that contains a record of operations performed on the database. A database
can have either one or two logs.

The database manager is the program that provides access to the data in the
database. In VM it is loaded into the database virtual machine from the production
disk. In VSE it is loaded into the database partition from the DB2 Server for VSE
library.

The application server is the facility that responds to requests for information from
and updates to the database. It is composed of the database and the database
manager.

The application requester is the facility that transforms a request from an
application into a form suitable for communication with an application server.

Note: General references to the database management system are assumed to
apply to the database under discussion, any unique or specific references to
other database systems will be explicitly made.

Storage
Pool

Database

Database Manager

Applications

Application Requester

Application Requester

Data System Control

Interactive SQL

Relational Data System

CICS Application

Database Storage
Subsystem

Online Resource Adapter

Batch Resource Adapter

Dbextent

ent

ent

Log
Directory

VSE Batch
Partition

Application
Program

Application Server

Database
Partition

VSE

CICS Partition

DB2
for VSE
Library

VSAM

Figure 2. Basic Components of the RDBMS in VSE/ESA

About This Manual ix

Organization
Summary of Changes.

This section summarizes the technical and library changes made to the DB2 Server
for VSE & VM product for Version 7 Release 2.

Chapter 1. Designing a Database.

To store information in a database, you must first convert it into tables while
maintaining any relationships that exist within it. This chapter outlines the steps
for effective design of a database.

Chapter 2. Implementing Your Design.

This chapter describes how to estimate your storage requirements, use SQL
commands to create objects (dbspaces, tables, views, and indexes) that support
your design, and query the catalog tables.

Chapter 3. Maintaining Your Database.

After a database is implemented, it must be maintained. This chapter describes
how to load data into tables, alter tables, and alter the design of dbspaces.

Chapter 4. Supporting Your Users.

This chapter describes activities that database administrators must consider to
support users. The tasks described include adding, deleting, authorizing, and
training users.

Chapter 5. Providing Security.

This chapter describes several security mechanisms that can help you protect your
data from unauthorized access.

Chapter 6. Recovering from Failures.

This chapter describes facilities you can use to recover from failures and maintain
the integrity of your data.

Chapter 7. Customizing the HELP Text and Messages Text.

This chapter discusses national languages used with the database manager.

Chapter 8. Application Design Considerations.

This chapter provides an overview of the ways that your data can be accessed, and
discusses topics that you should consider when developing your applications.

Chapter 9. DB2 Server for VM Database Configurations.

Information can be stored in one or more DB2 Server for VM application server,
and these application servers may be on one CPU or distributed among many.
Furthermore, users can access an application server on the VM/ESA system from a
VSE guest (this is called VSE Guest Sharing). This chapter describes these various
types of configurations.

x Database Administration

Chapter 10. Usage Environments in VSE.

This chapter provides an overview of five possible usage environments for which
you can set up your DB2 Server for VSE system.

Chapter 11. Stored Procedures.

This chapter provides an overview of what stored procedures are, and how to use
them.

Appendix A. Estimating Your Dbspace Requirements.

Dbspaces, which hold tables, must have sufficient storage capacities to meet the
storage requirements of their tables. This appendix describes how to estimate the
amount of storage the tables require, so that you acquire dbspaces with sufficient
capacity.

Appendix B. CMS EXECs.

This appendix describes the EXECs provided for use in user VM/ESA virtual
machines.

Appendix C. Querying the Status of an Application (VM Only).

This appendix describes the CMS SQLQRY command available in your VM/ESA
system.

Appendix D. Maximums.

This appendix describes the logical data and ISQL maximums.

Appendix E. SQLGLOB Parameters (VSE Only).

This appendix describes the SQLGLOB VSAM file available in your VSE/ESA
system.

Prerequisite IBM Publications
All readers of this book should be familiar with the content of the following
manuals:
v DB2 Server for VSE & VM Overview, GC09-2995
v DB2 Server for VSE & VM SQL Reference, SC09-2989
v DB2 Server for VSE & VM Performance Tuning Handbook, GC09-2987.

Highlighting Conventions
This manual uses the following text highlighting conventions:

Italics Italic type is used for command variables, parameter values and their
symbolic equivalents, titles of standalone manuals, strings of characters to
be used exactly as they appear, and important terms that are being
defined.

Boldface
Bold type is used for emphasis.

About This Manual xi

Monospace
Monospace type indicates material that is entered at a display station, or
displayed, coded, or printed on a computer printing device.

xii Database Administration

Syntax Notation Conventions

Throughout this manual, syntax is described using the structure defined below.
v Read the syntax diagrams from left to right and from top to bottom, following

the path of the line.
The ��─── symbol indicates the beginning of a statement or command.
The ───� symbol indicates that the statement syntax is continued on the next
line.
The �─── symbol indicates that a statement is continued from the previous line.
The ───�� symbol indicates the end of a statement.
Diagrams of syntactical units that are not complete statements start with the
�─── symbol and end with the ───� symbol.

v Some SQL statements, Interactive SQL (ISQL) commands, or database services
utility (DBS Utility) commands can stand alone. For example:

Others must be followed by one or more keywords or variables. For example:

v Keywords may have parameters associated with them which represent
user-supplied names or values. These names or values can be specified as either
constants or as user-defined variables called host_variables (host_variables can only
be used in programs).

v Keywords appear in either uppercase (for example, SAVE) or mixed case (for
example, CHARacter). All uppercase characters in keywords must be present;
you can omit those in lowercase.

v Parameters appear in lowercase and in italics (for example, synonym).
v If such symbols as punctuation marks, parentheses, or arithmetic operators are

shown, you must use them as indicated by the syntax diagram.
v All items (parameters and keywords) must be separated by one or more blanks.
v Required items appear on the same horizontal line (the main path). For example,

the parameter integer is a required item in the following command:

�� SAVE ��

�� SET AUTOCOMMIT OFF ��

�� DROP SYNONYM synonym ��

© Copyright IBM Corp. 1987, 2001 xiii

This command might appear as:
SHOW DBSPACE 1

v Optional items appear below the main path. For example:

This statement could appear as either:
CREATE INDEX

or
CREATE UNIQUE INDEX

v If you can choose from two or more items, they appear vertically in a stack.
If you must choose one of the items, one item appears on the main path. For
example:

Here, the command could be either:
SHOW LOCK DBSPACE ALL

or
SHOW LOCK DBSPACE 1

If choosing one of the items is optional, the entire stack appears below the main
path. For example:

Here, the command could be:
BACKWARD

or
BACKWARD 2

or
BACKWARD MAX

�� SHOW DBSPACE integer ��

�� CREATE INDEX
UNIQUE

��

�� SHOW LOCK DBSPACE ALL
integer

��

�� BACKWARD
integer
MAX

��

xiv Database Administration

v The repeat symbol indicates that an item can be repeated. For example:

This statement could appear as:
ERASE NAME1

or
ERASE NAME1 NAME2

A repeat symbol above a stack indicates that you can make more than one
choice from the stacked items, or repeat a choice. For example:

v If an item is above the main line, it represents a default, which means that it will
be used if no other item is specified. In the following example, the ASC keyword
appears above the line in a stack with DESC. If neither of these values is
specified, the command would be processed with option ASC.

v When an optional keyword is followed on the same path by an optional default
parameter, the default parameter is assumed if the keyword is not entered.
However, if this keyword is entered, one of its associated optional parameters
must also be specified.
In the following example, if you enter the optional keyword PCTFREE =, you
also have to specify one of its associated optional parameters. If you do not
enter PCTFREE =, the database manager will set it to the default value of 10.

�� $ERASE name ��

�� VALUES ($

,

constant)
host_variable_list
NULL
special_register

��

��
ASC

DESC
��

��
PCTFREE = 10

PCTFREE = integer
��

Syntax Notation Conventions xv

v Words that are only used for readability and have no effect on the execution of
the statement are shown as a single uppercase default. For example:

Here, specifying either REVOKE ALL or REVOKE ALL PRIVILEGES means the
same thing.

v Sometimes a single parameter represents a fragment of syntax that is expanded
below. In the following example, fieldproc_block is such a fragment and it is
expanded following the syntax diagram containing it.

�� REVOKE ALL
PRIVILEGES

��

�� fieldproc_block
NOT NULL

UNIQUE
PRIMARY KEY

��

fieldproc_block:

FIELDPROC program_name

$

,

(constant)

xvi Database Administration

SQL Reserved Words

The following words are reserved in the SQL language. They cannot be used in
SQL statements except for their defined meaning in the SQL syntax or as host
variables, preceded by a colon.

In particular, they cannot be used as names for tables, indexes, columns, views, or
dbspaces unless they are enclosed in double quotation marks (").

ACQUIRE
ADD
ALL
ALTER
AND
ANY
AS
ASC
AVG

BETWEEN
BY

CALL
CHAR
CHARACTER
COLUMN
COMMENT
COMMIT
CONCAT
CONNECT
COUNT
CREATE
CURRENT

DBA
DBSPACE
DELETE
DESC
DISTINCT
DOUBLE
DROP

EXCLUSIVE
EXECUTE
EXISTS
EXPLAIN

FIELDPROC
FOR
FROM

GRANT
GRAPHIC
GROUP

HAVING

IDENTIFIED
IN
INDEX
INSERT
INTO
IS

LIKE
LOCK
LONG

MAX
MIN
MODE

NAMED
NHEADER
NOT
NULL

OF
ON
OPTION
OR
ORDER

PACKAGE
PAGE
PAGES
PCTFREE
PCTINDEX
PRIVATE
PRIVILEGES
PROGRAM
PUBLIC

RESOURCE
REVOKE
ROLLBACK
ROW
RUN

SCHEDULE
SELECT
SET
SHARE
SOME
STATISTICS
STORPOOL
SUM
SYNONYM

TABLE
TO

UNION
UNIQUE
UPDATE
USER

VALUES
VIEW

WHERE
WITH
WORK

© Copyright IBM Corp. 1987, 2001 xvii

xviii Database Administration

Summary of Changes

This is a summary of the technical changes to the DB2 Server for VSE & VM
database management system for this edition of the book. Several manuals are
affected by some or all of the changes discussed here. For your convenience, the
changes made in this edition are identified in the text by a vertical bar (|) in the
left margin. This edition may also include minor corrections and editorial changes
that are not identified.

This summary does not list incompatibilities between releases of the DB2 Server
for VSE & VM product; see either the DB2 Server for VSE & VM SQL Reference, DB2
Server for VM System Administration, or the DB2 Server for VSE System
Administration manuals for a discussion of incompatibilities.

Summary of Changes for DB2 Version 7 Release 2
Version 7 Release 2 of the DB2 Server for VSE & VM database management
system is intended to run on the Virtual Machine/Enterprise Systems Architecture
(VM/ESA®) Version 2 Release 3 or later environment and on the Virtual Storage
Extended/Enterprise Systems Architecture (VSE/ESA™) Version 2 Release 3
Modification 1 or later environment.

Enhancements, New Functions, and New Capabilities
The following have been added to DB2 Version 7 Release 2:

Security Enhancements
The following enhancements have been made to the CONNECT statement in
DRDA:
v Server and client support for password encryption over TCP/IP and SNA
v CONNECT IDENTIFIED BY enablement for the VM requestor

For more information, see the following DB2 Server for VSE & VM documentation:
v DB2 Server for VM System Administration

v DB2 Server for VSE System Administration

v DB2 Server for VSE & VM Application Programming

v DB2 Server for VSE & VM SQL Reference

v DB2 Server for VM Program Directory

v DB2 Server for VSE Program Directory

Archive Tape Handling Enhancements
Two initialization parameters have been added:
v For VSE & VM, the TAPEMGR parameter allows you to specify that tape

manager functionality is available and will be used.
v For VSE only, the ARCHTAPE parameter allows you to specify that the archive

tape be automatically unloaded from the tape drive at the end of writing each
tape of a log or database archive.

For more information, see the following DB2 Server for VSE & VM documentation:
v DB2 Server for VM System Administration

v DB2 Server for VSE System Administration

© Copyright IBM Corp. 1987, 2001 xix

|

|

|
|
|
|
|

|

|

|
|
|

|

|

|

|

|

|

|

|

|

|
|

|
|

|
|
|

|

|

|

v DB2 Server for VSE & VM Operation

v DB2 Server for VM Program Directory

v DB2 Server for VSE Program Directory

New Database Replication Utility
A new utility has been added in support of database replication:

Redefine Database
Extracts the definition of database objects from a DB2 Server for VSE &
VM database and generates a DBSU job to create the same objects on
another DB2 database.

For more information, see the following DB2 Server for VSE & VM documentation:
v DB2 Server for VM System Administration

v DB2 Server for VSE System Administration

v DB2 Server for VSE & VM Database Administration

v DB2 Server for VM Program Directory

v DB2 Server for VSE Program Directory

SHOW Command Enhancements
The SHOW DBCONFIG command has been changed to show the current version,
release, and modification level of the database, in addition to the version, release,
and modification level at which the database was originally generated.

The SHOW INITPARM command has been changed to show the current version,
release, and modification level of the database.

The SHOW SQLDBGEN command has been added to show the current database
information. The output can be used to create a new SQLDBGEN file (for VM) or
ARISDBG.A source member (for VSE) in order to generate a copy of the database
with the current configuration. This copy can be used, for example, to create a new
test system.

For more information, see the following DB2 Server for VSE & VM documentation:
v DB2 Server for VM System Administration

v DB2 Server for VSE System Administration

v DB2 Server for VSE & VM Database Administration

v DB2 Server for VSE & VM Operation

v DB2 Server for VM Messages and Codes

v DB2 Server for VSE Messages and Codes

Reliability, Availability, and Serviceability Improvements

TCP/IP Auto-Restart
The database is now able to detect when TCP/IP has gone down, and
automatically restart it. New initialization parameters control enablement of
auto-restart and the maximum number of retry attempts.

For more information, see the following DB2 Server for VSE & VM documentation:
v DB2 Server for VM System Administration

v DB2 Server for VSE System Administration

v DB2 Server for VSE & VM Operation

v DB2 Server for VM Program Directory

xx Database Administration

|

|

|

|
|

|
|
|
|

|

|

|

|

|

|

|
|
|
|

|
|

|
|
|
|
|

|

|

|

|

|

|

|

|

|
|
|
|

|

|

|

|

|

v DB2 Server for VSE Program Directory

Support for STGPROT=YES Parameter in CICS (VSE only)
Changes have been made to the instructions used in DB2 Server for VSE to allow
the use of STGPROT=YES when starting CICS/TS for VSE/ESA.

See the DB2 Server for VSE Program Directory for additional information.

Migration Considerations
Migration is supported from SQL/DS™ Version 3 and DB2 Server for VSE & VM
Versions 5 and above. Migration from SQL/DS Version 2 Release 2 or earlier
releases is not supported. Refer to the DB2 Server for VM System Administration or
DB2 Server for VSE System Administration manual for migration considerations.

Summary of Changes xxi

|

|
|
|

|

|
|
|
|
|

xxii Database Administration

Chapter 1. Designing a Database

This chapter describes the conceptual process of database design. The
implementation of the design, that is, the actual creation of a set of objects, is
discussed in “Chapter 2. Implementing Your Design” on page 17.

Sample Tables
The DB2 Server for VSE & VM database contains sample tables that are referenced
throughout this book and are used to demonstrate various concepts and
procedures.

Entities, Properties, and Occurrences
Some basic terms for database design are defined below. There is no universally
accepted terminology for database design; these terms may be used differently
elsewhere.
v An entity is anything about which information can be stored. In the sample

database, some of the entities are employees, departments, and projects.
v Properties are types of information categories associated with an entity. In the

sample table EMPLOYEE, the entity employee has properties, such as, employee
number, job held, birth date, and salary amount, which appear as columns
EMPNO, JOB, BIRTHDATE, and SALARY.

v The occurrence of an entity consists of the values in all the columns for that
entity. In the sample table EMPLOYEE, each employee has a unique employee
number; therefore, each value in the EMPNO column is unique and can be used
to identify a particular occurrence.

Entities and properties are represented as columns, and occurrences are
represented as values in the columns, as shown in Table 1.

Table 1. Occurrences and Properties of an Entity

ENTITY PROPERTIES

Employee EMPNO JOB BIRTHDATE SALARY

Sally Kwan 000030 Manager 1941-05-11 38250

William Jones 000210 Designer 1953-02-23 18270

Step 1: Select the Data to Record in the Database
To be effective, your database must be designed specifically to meet the data
storage and retrieval needs of your organization.

The first step in designing an effective database is to identify the collection of
information that it will contain. You must then organize this information into
tables, with each column of a row related in some way to all other columns of that
row. This approach will enable you to identify the relationships that exist between
the different entities.

For example, the following data relationships are expressed in the sample tables:
v Employees are assigned to departments, for example:

© Copyright IBM Corp. 1987, 2001 1

Dolores Quintana is assigned to Department C01.
Heather Nicholls is assigned to Department C01.

v Employees earn money, for example:
Dolores earns $23,800 per year.
Heather earns $28,420 per year.

v Departments report to other departments, for example:
Department C01 reports to Department A00.
Department D01 reports to Department A00.

v Employees work on projects, for example:
Dolores works on project IF1000.
Heather works on projects IF1000 and IF2000.

v Employees manage departments, for example:
Sally Kwan manages Department C01.

Before you design your tables, you must understand entities and their
relationships. Table 2 shows an example.

Table 2. Relationships in the Sample Database
ENTITY RELATIONSHIP ENTITY
Employees are assigned to departments
Employees earn money
Departments report to departments
Employees work on projects
Employees manage departments

The relationship between the columns in a table is the same in each row of the
table. For example, in Table 1 on page 1, the relationship between each entry in the
Employee column and its corresponding entry in the Salary column is the same,
because the Salary column describes the amount the employee earns.

Step 2: Define Tables for Each Type of Relationship
In a relational database, you can express several types of entity relationships.
Consider the relationship between employees and departments. A given employee
can work in only one department, so this relationship is single-valued for
employees. On the other hand, one department can have many employees, so this
relationship is multivalued for departments. Accordingly, this constitutes a
one-to-many relationship. Relationships can be:
v One-to-one
v One-to-many
v Many-to-one
v Many-to-many.

If each employee can belong to several departments, the employees/departments
relationship would be many-to-many.

You must define separate tables for different types of relationships.

One-to-One Relationships
One-to-one relationships are single-valued in both directions. A manager manages
one department; a department has only one manager. The questions “Who is the
manager of Department C01?” and “What department does Sally Kwan manage?”
both have single answers. The relationship could be assigned to either the

2 Database Administration

department table or the employee table. Because all departments have managers,
but not all employees are managers, it would be logical to add the manager to the
department table, as shown in Figure 3.

One-to-Many and Many-to-One Relationships
To define tables for each one-to-many and many-to-one relationship, you must:
v Group all the relationships for which the “many” side of the relationship is the

same entity.
v Define a separate table for each group.

In Table 3, the “many” side of the first and second relationships is “employees”, so
we defined an employee table (EMPLOYEE). In Figure 4, “departments” is the
“many” side, so we defined a department table (DEPARTMENT).

Table 3. Many-to-One Relationships

ENTITY RELATIONSHIP ENTITY

1. Employees are assigned to departments

2. Employees earn money

3. Departments report to (administrative) departments

Many-to-Many Relationships
A relationship that is multivalued in both directions is many-to-many. An
employee might work on more than one project, and a project might have more
than one employee assigned to it. The questions “What does Dolores Quintana
work on?” and “Who works on project IF1000?” both yield multiple answers. A
many-to-many relationship can be expressed in a table with a column for each
entity (“employees” and “projects”), as shown in Figure 5 on page 4.

Employee
one

manages
to

department
one

DEPARTMENT Table

DEPTNO ADMRDEPT MGRNO

Figure 3. Assigning One-to-One Facts to a Table

Employees
many

assigned to
to

departments
one

Employees
many

earn
to

money
one

EMPNO WORKDEPT SALARY

DEPARTMENT Table

Departments
many

report
to

departments
one

DEPARTMENT Table

DEPTNO ADMRDEPT

Figure 4. Assigning Many-to-One Facts to Tables

Chapter 1. Designing a Database 3

Step 3: Provide Column Definitions for Tables
Defining a column in a table consists of:
v Choosing a name for the column

Each column in a table must have a name that is unique within the table. For
detailed information, see “Column Names” on page 31.

v Specifying the data type that is valid for the column
The data type of a column indicates the length of the values in the column
and the kind of data that is valid for it. For detailed information, see
“Specifying Data Types” on page 32.

v Specifying the columns that can contain null values
Some columns cannot contain meaningful values in all rows because some
values may not be known at a particular time. For example, you may know a
new employee’s name but not his or her birth date. For detailed information,
see “Specifying Data Types” on page 32.

Step 4: Identify One or More Columns as a Primary Key
If every row in a table represents relationships for a unique entity, the table should
have a primary key: one column (or a set of columns) that provides a unique
identifier for the rows of the table. A unique index of the columns of the primary
key is created when the primary key is created. You can create the primary key
when you create the table using the CREATE TABLE statement (see “Creating
Tables” on page 27) or, if the table already exists, by using the ALTER TABLE
statement (see “Altering the Design of a Table” on page 64). A primary key must
not contain a nullable column or a long field.

Note: Long fields include the following data types: VARCHAR(n) with n>254,
VARGRAPHIC(n) with n>127, LONG VARCHAR, or LONG VARGRAPHIC.

The primary keys of some of the sample tables are:

Table Key Column
EMPLOYEE table EMPNO
DEPARTMENT table DEPTNO
PROJECT table PROJNO

Figure 6 shows part of the PROJECT table with the primary key column indicated.

Employees
many

work on
to

projects
many EMPNO PROJNO

EMP_ACT Table

Figure 5. Assigning Many-to-Many Facts to a Table

4 Database Administration

Figure 7 shows a primary key consisting of more than one column; it is a
multicolumn key.

If you have more than one candidate for a primary key, you can define a UNIQUE
constraint on the column (or set of columns) that you do not select as the primary
key. A column with a UNIQUE constraint is similar to a primary key in that a
unique index on the column is created. It differs in that you can create more than
one UNIQUE constraint on a table, and no foreign keys can reference a UNIQUE
constraint (see “Foreign Key” on page 7).

Step 5: Ensure that Equal Values Represent the Same Entity
You can have more than one table describing properties of the same set of entities.
For example, one table could give employees’ job and salary information, as in the
EMPLOYEE table, and another each employee’s home address. To retrieve both
sets of properties at once, you can join the tables on any set of matching columns,
as shown in Figure 8 on page 6. If there are two employees named Sally Kwan, a
join on employee name may not match the correct rows. Similarly, if one person has
more than one authorization ID, a join on ID may not produce the correct match.
Thus, for the purpose of retrieving information about an entity from more than one
table, an equal value in each of those tables should represent that entity. This type
of join is an equijoin.

Figure 8 shows a join between the DEPARTMENT and EMPLOYEE tables on
columns of department numbers.

PRIMARY KEY COLUMN

PROJECT Table

MA2100 WELD LINE AUTOMATION D01

MA2110 W L PROGRAMMING D11

PROJNO PROJNAME DEPTNO

Figure 6. A Primary Key on a Table

PRIMARY KEY COLUMNS
PROJ_ACT Table

PROJNO

MA2100

MA2100

MA2110

ACTNO

10

20

10

ACSTAFF

0.5

1.0

1.0

ACSTDATE

82-01-01

82-01-01

82-01-01

Figure 7. A Multicolumn Primary Key. The three columns PROJNO, ACTNO, and ACSTDATE are all parts of the
primary key.

Chapter 1. Designing a Database 5

The connecting columns must be of the same data type. They can have different
names (such as WORKDEPT and DEPTNO in Figure 8), or the same name (such as
the two columns called DEPTNO in the DEPARTMENT and PROJECT tables). The
latter case is illustrated in Figure 9.

Step 6: Plan for Referential Integrity
A table can serve as a complete list of all occurrences of a single entity. In the
sample database, the EMPLOYEE table serves that purpose for employees: only the
numbers that appear in this table are valid employee numbers. Similarly, the
DEPARTMENT table provides a master list of all valid department numbers, and
the PROJECT table provides a master list of valid projects. When a table refers to
an entity for which there is a master list, it should identify an occurrence of the
entity that appears in the master list; otherwise, either the reference is incorrect or
the master list is incomplete.

When all references from one table to another are valid, this condition is called
referential integrity. Having referential integrity does not necessarily mean the data
is correct. That the EMPLOYEE table shows every employee assigned to a valid
department number is one thing; whether it shows every employee in the correct
department is quite another.

Elements of Referential Integrity
You must consider many different elements to ensure referential integrity. The
concepts of a primary key and a unique constraint were described in “Step 4: Identify
One or More Columns as a Primary Key” on page 4. Other elements to consider
when dealing with referential integrity are described in the following sections.

DEPARTMENT Table

DEPTNO DEPTNAME MGRNO ADMRDEPT

EMPNO FIRSTNME LASTNAME WORKDEPT SALARY

E21 SOFTWARE SUPPORT 000100 E01

(join path)

000090 EILEEN HENDERSON E11 29750.00

EMPLOYEE Table

Figure 8. A Join Path between Two Tables

PROJECT Table

MA2100 WELD LINE AUTOMATION D01

MA2110 W L PROGRAMMING D11

MA2111 W L PROGRAM DESIGN D11

PROJNO PROJNAME DEPTNO

DEPARTMENT Table

D11 MANUFACTURING SYSTEMS

D21 ADMINISTRATION SYSTEMS

E21 SOFTWARE SUPPORT

DEPTNO DEPTNAME

(join path)

Figure 9. A Join Path on Columns with the Same Name

6 Database Administration

Foreign Key
A column or set of columns that refers to the primary key of another table is a
foreign key. For example, the column Work Department (WORKDEPT) of the
EMPLOYEE table is a foreign key; it refers to DEPTNO, the primary key of the
DEPARTMENT table. The combination of the project number (PROJNO), activity
number (ACTNO), and activity starting date (EMSTDATE) columns in the
EMP_ACT table is a foreign key; it refers to the primary key of the PROJ_ACT
table.

Referential Constraint
A referential constraint is a relationship between a primary key and a foreign key
with certain deletion and update rules that define how the relationship is
maintained. Refer to “DELETE, INSERT, and UPDATE Considerations” for
information on deletion and update rules.

Parent and Dependent Tables
Establishing a referential constraint defines a relationship between two tables. The
table containing the primary key is the parent table, and the one containing the
foreign key is the dependent table. In a multilevel, hierarchical chain of dependent
tables, a descendent table is any table below the top level. Such a table is a
descendent of all the tables above it in the hierarchy.

A referential cycle is a set of referential constraints in which each table in the set is a
descendent of itself. A table can be a parent of many tables, and it can also be a
dependent or descendent of many parents.

Self-Referencing Table
A self-referencing table is one that contains both the primary key and the foreign
key of a referential constraint. Conceptually, a self-referencing table is both the
parent and the dependent table in a relationship. DB2 Server for VSE & VM does
not support self-referencing.

DELETE, INSERT, and UPDATE Considerations

DELETE Rules

For Parent Tables: When an employee retires, you remove that person’s
EMPLOYEE record. The deletion affects the information in the PROJECT,
DEPARTMENT, and EMP_ACT tables. For any particular relationship, one of the
following deletion rules is enforced:
v RESTRICT

You cannot delete any rows of the parent table that have dependent rows. In the
DEPARTMENT-PROJECT relationship, using RESTRICT means that you cannot
remove a department if any of its employees are assigned to a project.

v SET NULL
When you delete a row of the parent table, the corresponding values of the
foreign key in any dependent rows are set to NULL. This rule is used in the
DEPARTMENT-EMPLOYEE relationship: when you delete a department record,
the WORKDEPT column of dependent rows in the employee table is set to
NULL, indicating that the employee is not assigned to a department.

v CASCADE
When you delete a row of the parent table, any dependent rows in the
dependent table are also deleted. This rule is useful when a row in the

Chapter 1. Designing a Database 7

dependent table is useless without a row in the parent table. For example, if you
delete an employee there is no reason to maintain the associated EMP_ACT
record.
Multiple levels of CASCADE are supported; that is, a delete operation on a
parent table deletes all dependent rows in its dependent tables if the dependent
tables are enforced by the CASCADE delete rule of referential constraint. If any
of these dependent tables are also parent tables, the delete rule of referential
constraint in turn applies between them and their dependent tables. All
applicable delete rules are used to determine the result of a delete operation. A
delete operation is subject to rollback, if the parent row has a dependent row in a
referential constraint with a delete rule of RESTRICT, or if the deletion cascades
to any descendent that has a dependent row in a referential constraint with a
delete rule of RESTRICT.

For Dependent Tables: You may, at any time, delete rows from a dependent table
without taking any action on the parent table. For example, you may no longer
need EMP_ACT records after the project is completed. You can delete the record
without affecting the EMPLOYEE or PROJ_ACT tables.

Restrictions When Using the DELETE Statement: To ensure referential integrity,
the table specified in the subquery must not be affected by the delete on the object
table of the DELETE statement.

For example, if B is the object table of a DELETE statement, and A is a table that is
referenced in the FROM clause of a subquery of that statement, then the following
rules apply:
v Table A cannot also be an object table of the deletion.
v Table A cannot be a dependent of table B in a relationship with a delete rule of

CASCADE or SET NULL.
v Table A cannot be a dependent of any other table (for example, table C) in a

relationship with a delete rule of CASCADE or SET NULL, if deletions from
table B cascade to table C.

For more information on delete-connected tables, refer to “Restrictions on Keys and
Referential Constraints:” on page 40.

INSERT Rules

For Parent Tables: You can insert a row at any time into a parent table without
taking any action in the dependent table. For example, you can create a new
department in the DEPARTMENT table without making any change to the
EMPLOYEE table. For the insertion to be successful, the new primary key or
unique key values must be unique.

For Dependent Tables: You cannot insert a row into a dependent table unless a
row in the parent table contains a primary key value equal to the foreign key value
you want to insert. If a foreign key has a null value, it can be inserted into a
dependent table, but no logical connection exists.

UPDATE Rules

For Parent Tables: You cannot change a value in a primary key column if the
associated row has a dependent row. For example, if a department number
changes, the DEPTNO value in the DEPARTMENT table cannot be changed if
there are employees in the EMPLOYEE table who are members of that department.

8 Database Administration

For Dependent Tables: You cannot change a value in a foreign key column of a
dependent table unless the new foreign key value already exists in the primary key
of the parent table. For example, when an employee transfers from one department
to another, the department number must change. The new value must be the
number of an existing department, or null.

Step 7: Normalize Your Tables
Normalization is the method of reducing data stored in tables so that the tables
contain unique keys, each identifying a single entity. Each of these keys has an
associated row of values that describes each entity. Complete normalization is not
required for using the database manager.

The topic of normalizing tables draws much attention in database design. This
section briefly reviews the rules for first, second, third, and fourth normal forms of
tables, and describes some reasons why they should or should not be followed.

First Normal Form
Any relational table satisfies the requirement of first normal form: at each
row-and-column position in the table, there exists only one value, never a set of
values.

Second Normal Form
A table is in second normal form if each column not in the key provides a fact that
depends on the entire key.

Second normal form is violated when a non-key column is a fact about a subset of
a composite key, as in Figure 10. An inventory table records quantities of specific
parts stored at particular warehouses; its columns are shown below.

The key here consists of the PART and the WAREHOUSE columns together.
Because the column WAREHOUSE-ADDRESS depends only on the value of
WAREHOUSE, the table violates the rule for second normal form. The problems
with this design are:
v The warehouse address is repeated in every record for a part stored in that

warehouse.
v If the address of the warehouse changes, every row referring to a part stored in

that warehouse must be updated.
v Because of the redundancy, the data could become inconsistent, with different

records showing different addresses for the same warehouse.
v If at some time there are no parts stored in the warehouse, there may be no row

in which to record the warehouse address.

KEY

PART WAREHOUSE QUANTITY WAREHOUSE-ADDRESS

Figure 10. Key Violates Second Normal Form

Chapter 1. Designing a Database 9

To satisfy second normal form, the information shown in Figure 10 on page 9 must
be in two tables, as in Figure 11.

There is a performance disadvantage in having the two tables in second normal
form, because programs that produce reports on the location of parts have to join
both tables to retrieve the relevant information.

For further information on performance considerations, refer to “Considerations for
Normalization” on page 29.

Third Normal Form
A table is in third normal form if each non-key column provides a fact that
depends only on the key.

Third normal form is violated when a non-key column is a fact about another
non-key column. For example, the first table in Figure 12 contains the columns
EMPNO and WORKDEPT. Suppose a column DEPTNAME is added. The new
column depends on WORKDEPT, whereas the primary key is the column EMPNO;
thus, the table now violates third normal form.

Changing DEPTNAME for a single employee, John Parker, does not change the
department name for other employees in that department. The inconsistency that
results is shown in the updated version of the table in Figure 12.

KEY

PART WAREHOUSE QUANTITY

KEY

WAREHOUSE WAREHOUSE-ADDRESS

Figure 11. Two Tables Satisfy Second Normal Form

EMPLOYEE-DEPARTMENT Table (EMPDEPT) Before Update

EMPNO

000290

000320

000310

FIRSTNME

JOHN

RAMLAL

MAUDE

LASTNAME

PARKER

MEHTA

SETRIGHT

WORKDEPT

E11

E21

E11

DEPTNAME

OPERATIONS

SOFTWARE SERVICES

OPERATIONS

EMPLOYEE-DEPARTMENT Table (EMPDEPT) Before Update

EMPNO

000290

000320

000310

FIRSTNME

JOHN

RAMLAL

MAUDE

LASTNAME

PARKER

MEHTA

SETRIGHT

WORKDEPT

E11

E21

E11

DEPTNAME

OPERATIONS

SOFTWARE SERVICES

OPERATIONS

EMPLOYEE-DEPARTMENT Table (EMPDEPT) After Update

EMPNO

000290

000320

000310

FIRSTNME

JOHN

RAMLAL

MAUDE

LASTNAME

PARKER

MEHTA

SETRIGHT

WORKDEPT

E11

E21

E11

DEPTNAME

INSTALLATION MGMT

SOFTWARE SERVICES

OPERATIONS

Figure 12. Update of an Unnormalized Table. Information in the table has become inconsistent.

10 Database Administration

The table can be normalized by providing a new table, with columns for
WORKDEPT and DEPTNAME. In that situation, updating a department name is
much easier as it only has to be made to the new table. But an SQL query that
shows the department name with the employee name is more complex to write: it
requires joining the two tables. It also takes longer to run than the query of a
single table. As well, the entire arrangement takes more storage space, because the
WORKDEPT column must appear in both tables.

Fourth Normal Form
A table is in fourth normal form if no row contains two or more independent
multivalued facts about an entity.

Consider facts about employees, skills, and languages, where an employee may
have several skills and know several languages. There are two relationships, one
between employees and skills, and one between employees and languages. A table
is not in fourth normal form if it represents both relationships, as in Figure 13.

Instead, the relationships should be represented in two tables, as in Figure 14.

If, however, the facts are interdependent (that is, the employee applies certain
languages only to certain skills), then the table should not be split.

Any data can be put into fourth normal form. A good rule when designing a
database is to arrange all data in tables in fourth normal form, and then decide
whether the result will give you an acceptable level of performance. If it will not,
you are at liberty to undo the normalization of your design.

Step 8: Considerations for Distributed Data
Two types of access to DB2 Server for VSE & VM data are available. They are
remote unit of work and distributed unit of work.

Remote unit of work, implemented in SQL/DS V3.3, for VM, and SQL/DS V3.4,
for VSE, lets a user or application program on a Distributed Relational Database
Architecture (DRDA) application requester to read or update data stored in a DB2
Server for VSE & VM DRDA application server. With remote unit of work, a user

KEY

EMPLOYEE SKILL LANGUAGE

Figure 13. A Table That Violates Fourth Normal Form

EMPLOYEE SKILL EMPLOYEE LANGUAGE

KEYKEY

Figure 14. Tables in Fourth Normal Form

Chapter 1. Designing a Database 11

or application program can have many SQL statements within a unit of work;
accessing one database management system with each SQL statement; and
accessing one database management system within a unit of work.

Distributed unit of work, implemented in DB2 Server for VSE & VM Version 5
Release 1 lets a user or application program on a Distributed Relational Database
Architecture (DRDA) application requester to read or update data stored in
multiple locations, where the DB2 Server for VSE & VM DRDA application server
is one of the multiple sites where data is read or updated within a single unit of
work. With distributed unit of work, a user or application program can have many
SQL statements within a unit of work; accessing one database management system
with each SQL statement; and accessing many database management systems
within a unit of work. Commit and rollback are coordinated at all locations so that
if a failure occurs anywhere in the system, data integrity is preserved. This type of
coordinated approach is called two phase commit processing and is done by a
Sync Point Manager. In phase one, the coordinating RDBMS (generally the
requesting RDBMS) polls each participating RDBMS to vote to commit or rollback
the transaction. In phase two, the coordinator directs the RDBMSs to commit or
rollback based on the preceding vote.

Access to DB2 Server for VSE & VM DRDA application servers by DRDA
application requesters is possible only if the DRDA facility is installed on the DB2
Server for VSE & VM application server.

DB2 Server for VM implements the application server and application requester
support for DRDA remote unit of work, and the application server support for
DRDA distributed unit of work. VM application requesters can participate in
remote unit of work activity but cannot participate in distributed unit of work
activity.

Access to non-DB2 Server for VM application servers by DB2 Server for VM
application requester is possible only if the DRDA facility has been installed on the
DB2 Server for VM application requester and if the non-DB2 Server for VM
application servers support IBM’s implementation of the DRDA protocol.

DB2 Server for VSE implements the application requester support for DRDA
remote and distributed unit of work for CICS/VSE online applications. VSE online
application requesters can participate in remote and distributed unit of work
activity. With distributed unit of work, a CICS/VSE online application is limited to
accessing a single DRDA application server within one LUW. However, it can
update another CICS resource, in addition to the remote DRDA application server
it is accessing, within one LUW, provided both the DRDA application server and
the CICS resource participates in two-phase commits.

DB2 Server for VSE implements the application requester support for DRDA
remote unit of work for Batch applications. VSE batch application requesters can
participate in remote unit of work activity, but cannot participate in distributed
unit of work activity.

Access to remote application servers by a DB2 Server for VSE application requester
is possible only if the DRDA facility has been installed on the DB2 Server for VSE
application requester and if the remote application server supports IBM’s
implementation of the DRDA protocol.

12 Database Administration

Designing a distributed database management system involves making decisions
about where to put the data, how to manage security and accounting, and how to
handle problems, backup, recovery, and change control.

For general guidance on making these decisions, refer to the following manuals:
v Planning for Distributed Relational Database,
v DB2 Connectivity Supplement,
v Connect Enterprise Edition Quick Beginnings,
v DB2 UDB Quick Beginnings, and
v DB2 Server for VM System Administration or DB2 Server for VSE System

Administration.

The decision to access distributed data has implications for many activities:
application programming, data recovery, and authorization. This section introduces
some of these considerations. Refer to the appropriate manual for information on
particular tasks.

Definitions
The application requester is the component that accepts a request from an application
and passes it to an application server. The application server is the component that
receives and processes requests issued by the application requester.

In VSE an application server is local if it resides in the same VSE machine as the
DB2 Server for VSE application requester. This can also be a DB2 Server for VM
application server accessed through VSE guest sharing. This DB2 Server for VM
server can be either on the same VM machine as the VSE guest, or on another VM
machine accessed remotely through AVS or TSAF. A remote application server can
be a DB2 Server for VSE application server not residing in the same VSE machine
as the application program connecting to it, or a non-DB2 Server for VSE
application server.

In VM, a system is local if the application requester and the application server
reside on the same processor, and is remote if they reside on different processors.
Remote does not necessarily mean at a distance; the application server and
application requester may be at the same user site.

Two relational database systems are like if both the application requester and the
application server are the same product (for example, both are DB2 Server for VSE
or both are DB2 Server for VM). They are unlike if different products are involved
(for example, a DB2 Server for VM application requester and a DB2 Server for VSE
application server).

A DB2 Server for VM application requester can communicate with a like system,
either local or remote, through the SQLDS protocol or the DRDA protocol. It can
communicate with an unlike system through the DRDA protocol, if the Relational
Database Management System (RDBMS) of the unlike system supports the
protocol.

A DB2 Server for VSE application requester can communicate with a local DB2
Server for VSE application server through the SQLDS protocol or a DB2 Server for
VM application server which is accessed using Guest Sharing through the SQLDS
protocol. A DB2 Server for VSE application requester can communicate with a

Chapter 1. Designing a Database 13

remote application server through the DRDA protocol, if the Relational Database
Management System (RDMS) of the remote application server supports the
protocol.

Application Programming
Several categories of application programming considerations are:
v Character conversion

Data and statements are converted if the connected systems are using different
coded character set identifiers (CCSIDs). For example, an SQL statement
originating in an ASCII environment that is sent to an EBCDIC environment
must be converted for the DB2 Server for VSE & VM application server to
process it. This conversion ensures that the application server correctly interprets
the statement and the data, and displays the results using the appropriate
character sets. For more information on character conversion, refer to either the
DB2 Server for VM System Administration or the DB2 Server for VSE System
Administration manual.
It is important that the application server and application requester have the
same CCSID value, unless there is a specific reason for them to be different.
When the application server and application requester have different CCSID
values, character conversion cannot be avoided. This conversion has an
associated performance overhead, and causes performance degradation. For
more information on performance, see the DB2 Server for VSE & VM Performance
Tuning Handbook manual.

v Access limitations
The limitations that exist for local multiple database applications apply to
remote database applications with remote unit of work support. You cannot:
– Access more than one application server in a single logical unit of work

(LUW).
– Join tables from multiple application servers.
– Define referential constraints across application servers.

These limitations also apply to remote database applications with distributed
unit of work support. One exception though, is that with DUOW you can access
more than one application server in a single logical unit of work (LUW).

For the DRDA protocol restrictions, see the DB2 Server for VSE & VM SQL
Reference manual.

v Performance considerations
An obvious consideration for an SQL query that is transmitted to a remote
application server is that the query and its reply must both be transmitted over
an SNA or TCP/IP network, in VSE, or in VM, over a TSAF collection, VTAM
network or TCP/IP network, conceivably as far as halfway around the world.
This can increase the amount of processing and degrade the performance of the
application in comparison with the same query run on your local application
server. If the DRDA protocol is used, the DB2 Server for VSE & VM application
requester has the option of increasing the block size used to return data. This
can improve the performance of some applications. For more information in VM,
see “SQLINIT EXEC” on page 237, in VSE, see “Appendix E. SQLGLOB
Parameters (VSE Only)” on page 267.
If the connected systems use different CCSIDs, performance can also be
adversely affected, because additional processing is required to convert the data
and statements.

14 Database Administration

v Cross-system differences.
Different relational database management systems use the SQL language, and
strive to provide a consistent interface for applications. There are, however, some
inconsistencies between systems. For example, the database manager does not
support self-referencing constraints (a referential constraint in which both the
primary key and the foreign key of the constraint are in the same table). On the
other hand, it provides an EXPLAIN function, useful in tuning SQL statement
performance, which is not provided by some RDBMS. These differences affect
the portability of database designs and applications from system to system.

System Operations
Several commands for monitoring the operations of the DB2 Server for VSE & VM
application server provide detailed information to the database administrator about
users and their systems. For more information on these commands, see the DB2
Server for VSE & VM Operation manual.

You cannot effectively administer a remote application server from your local
system, and sometimes must coordinate operations by means external to your local
system. Both the application requester and application server must be defined in
an SNA or TCP/IP network.

In VSE using SNA networks, Transaction Program Names (TPNs) can be used by
remote application requesters to identify local DB2 Server for VSE application
servers to which they want to connect on the local VSE system. These TPNs must
be identified in the local DBNAME Directory and mapped to the appropriate
server APPLID. Likewise, Remote Transaction Program Names (REMTPNs) can be
used by the local system to identify the remote DRDA application server to which
the local DB2 Server for VSE online (CICS) application requester wants to connect
(Batch applications must use TCP/IP). These REMTPNs must be identified in the
local VSE DBNAME Directory and mapped to the appropriate remote server SNA
System ID (SYSID).

In VSE using TCP/IP networks, remote DRDA application requesters must know
the local VSE TCP/IP Server’s IP Address (or Host Name) and the local DB2
application server’s Listener Port Number to access the local DB2 Server for VSE
DRDA application server. Likewise, local VSE DRDA application requesters must
know the remote DRDA application server’s IP address (or Host Name) and
Listener Port Number, which are identified in the local VSE DBNAME Directory.

For additional information on the VSE DBNAME Directory, refer to the DB2 Server
for VSE System Administration manual.

In VM, all access to remote application servers through VTAM or TCP/IP require a
CMS Communication Directory for the application requester. You must plan for
creating and maintaining this directory on each VM system where the application
requester resides. See the VM/ESA: Connectivity Planning, Administration, and
Operation manual.

Similar considerations apply to users accessing other (non-DB2 Server for VSE &
VM) application servers. Because each application server controls access to its own
data, you must arrange to have valid user IDs on the other systems. As well, you
must arrange for users to have proper authority and privileges on those
application servers. Traces (used for problem determination) must also be
coordinated with administrators at other sites, because traces must come from the
system on which the data resides.

Chapter 1. Designing a Database 15

Distributing Existing Data
Although you can use the approaches previously described to distribute existing
data, it is not a task to be undertaken lightly. Existing applications should only be
distributed as part of an application redesign.

The best way to distribute data is the way used when the database was designed.
However, the extent to which the preferred distribution method will affect existing
applications must be considered in determining whether the preferred distribution
should be implemented fully, partially, or at all.

16 Database Administration

Chapter 2. Implementing Your Design

After determining the design of your database, you can create objects to implement
your design. These objects include dbspaces, tables, views, and indexes.

This chapter discusses the following topics:
1. Database Storage Concepts

This section provides an overview of the physical database and explains the
relationships between objects, dbspaces, and storage pools.

2. Database Generation
When you create a database, its potential storage capacity is defined. You must
do some planning to ensure that the database satisfies your data storage
requirements.

3. Defining Dbspaces
The task of defining dbspaces, which contain tables, views, and indexes,
involves reserving logical space in the database, assigning the dbspace to a
storage pool, and setting usage parameters. You must understand what these
parameters are and how to select them so that the dbspace will best
accommodate the data to be stored in it.

4. Creating Tables
Information is stored in a database by placing it in tables. You must know how
to create tables and how to define referential constraints.

5. Creating Views
After you create tables, you can create views. A view is a logical, or virtual,
table that is derived from one or more tables or other views. Using views can
be advantageous in applications that have specific requirements for data tables.

6. Creating Indexes
Indexes are optional: they improve the speed with which table rows are
accessed.

7. Using the Catalog in Database Design
The catalog tables contain information about the existing structure of the
database, which can be helpful in database design.

Storage Concepts
A DB2 Server for VSE & VM database is a collection of user data objects (tables
and indexes) and supporting information maintained by the database manager for
that data. The supporting information includes control information (such as how
each data table is formatted and where each is located), and data recovery
information (restoring data to an earlier state). The database is composed of:
v A Directory: In VM this is a minidisk that contains database control information.

In VSE it is a VSAM data set. It includes mappings of the dbspaces to their
addresses on the DASD (that is, it relates the logical database image to the
physical storage used).

v One or two Logs: In VM, these are minidisks and in VSE, these are VSAM data
sets. These contain information about the changes made to the data. If any
changes must be “undone” or “redone”, logs can be used to restore the data to
its proper state.

© Copyright IBM Corp. 1987, 2001 17

v One or more Storage Pools: In VSE these are collections of VSAM data sets, and
in VM these are collections of minidisks. Each is called a database extent or
dbextent.

A dbextent is an allocation of actual DASD space. Storage pools are composed of
one or more dbextents. The size of the storage pool can be increased or reduced
by:
v adding more dbextents
v deleting existing dbextents
v In VM/ESA, moving dbextents to other devices.

Note: In VSE, each dbextent is the primary allocation of a VSAM data set
(CLUSTER).

Storage pools can be defined to be either recoverable or nonrecoverable. The default is
for them to be recoverable, whereby every change made to the pool is logged. For
nonrecoverable storage pools, there is limited recovery; the database manager does
not log updates, but takes a checkpoint for each logical unit of work (LUW) to
ensure that the LUW’s changes are written to DASD.

To maintain referential integrity, both tables in any referential constraint must be in
either recoverable or in nonrecoverable storage pools: they cannot be spread across
both types. This restriction is necessary because the portion of the relationship in
the nonrecoverable pool might be lost, possibly invalidating the information
remaining in the recoverable one. For more information about storage pools, refer
to either the DB2 Server for VM System Administration or DB2 Server for VSE System
Administration manual.

When a table is created, it must be assigned to a logical allocation of storage called
a dbspace. The table creator can either do this assignment explicitly, or let the
database manager use a default assignment. Any indexes created on that table will
be stored in the same dbspace.

Figure 15 on page 19 shows how tables are stored in the database. It includes two
tables and their indexes in dbspace A, two tables and their indexes in dbspace B,
and one table with three indexes in dbspace C.

18 Database Administration

How Information is Stored in Dbspaces
A dbspace is not a real allocation of DASD space: it is a logical allocation of page
map tables in the directory that relates logical dbspace pages to DASD locations. It
holds data in 4096-byte blocks called pages, and can hold up to 255 tables, and
their indexes. As dbspaces are assigned to the storage pool and their pages are
filled, the physical DASD pages used are taken from the dbextents of the storage
pool.

The database manager dynamically allocates real DASD storage space to support
dbspace pages on a demand basis. Unused pages of a dbspace do not occupy
DASD space. The potential capacity of a dbspace is fixed when it is defined.

The dbspace used to hold a table is determined when the table is created. A table
cannot span (reside in) multiple dbspaces. However, two or more tables in a
referential relationship may reside in separate dbspaces.

Figure 16 shows how information is stored in a dbspace.

I1 I4 I7

TAB 1 I2 TAB 4 I5 I8

TAB 2 I3 TAB 5 I6 TAB 6 I9

Tables (TAB) and
Idexes (I) are

stored in
DBSPACEs

DBSPACE A DBSPACE B DBSPACE C

Each DBSPACE is
assigned to a
STORAGE Pool

STORAGE POOL 5 . . . STORAGE POOL 7 . . .

STORAGE pools are
comprised of one
or more DBEXTENTs

DBEXTENT 5 DBEXTENT 9 DBEXTENT 7

Figure 15. Table Storage in a Database

Chapter 2. Implementing Your Design 19

At the front of every dbspace are one to eight header pages, which contain control
information about the tables and indexes stored in it. After the header pages are
the data pages, which is where the rows of a table are stored. Index entries are
stored in index pages at the back.

When you store multiple tables in the same dbspace, the database manager might
store rows from different tables on the same data pages; however, it never puts
index entries from different indexes on the same page.

Database Generation
This book does not describe how to create a database. That is the task of the
system administrator, and is discussed in the DB2 Server for VM System
Administration and DB2 Server for VSE System Administration manuals. Because
initial DASD allocations are assigned and the potential capacity for the database is
established during that process, it is important that you analyze your storage
requirements and inform the person responsible for generating the database. The
information you provide should include the:
v Number of tables and views (objects) you intend to create
v Structure of those objects (such as number of columns, data type)
v Storage required for your objects.

Note: If you are creating a copy of a database, the SHOW SQLDBGEN command
will help you determine your storage requirements. For more information
about the SHOW SQLDBGEN command, refer to the DB2 Server for VSE &
VM Operation. For more information about estimating database storage, refer
to the DB2 Server for VM System Administration, Appendix B, or the DB2
Server for VSE System Administration, Appendix B.

Defining Dbspaces
Before defining a new dbspace, check to see if there are any already available
having the properties that you require; if there are, you do not need to define a
new one.

If you need to define one or more dbspaces, do the following:
1. Identify your requirements.

Identify the data that the dbspace will contain and the way that it will be used.
2. Add the dbspace to the database.

Add the dbspace to the database directory (if this has not already been done),
using either the SQLADBSP EXEC in VM, or the ADD DBSPACE statement in
VSE.

3. Acquire the dbspace.
After a dbspace is established, enter the ACQUIRE DBSPACE statement to
acquire it for your use.

Header Data Index
Pages Pages (tables) Pages

Figure 16. Table and Index Storage in a Dbspace

20 Database Administration

|
|
|
|
|
|

Identifying Dbspace Requirements
To identify dbspace requirements, consider the tables that are to be stored and the
way they will be used. If performance is a requirement, you can define a dbspace
to support only one table and its indexes; often, however, dbspaces are defined to
support several tables. Tables that have common requirements can be stored in the
same dbspace.

Mapping Tables to Dbspaces
Table 4 shows the approach you should use for determining the way to map tables
to dbspaces.

Table 4. General Approach to Mapping Tables to Dbspaces

Table Access Type of Dbspace Type of Data

Private tables PRIVATE dbspaces (one per user,
or user-application area)

End user data
Application development data
Data prototyping tables

Shared tables PUBLIC dbspaces (one per user
group, or table group)

Common end user data
Application testing data
Production application data

Dbspaces come in two types: PRIVATE and PUBLIC.

For private data, reserve one PRIVATE dbspace for each user. Private data is
always locked at the dbspace level to eliminate unnecessary locking overhead
when users are accessing their own private data.

Data kept in a PRIVATE dbspace can be shared, and concurrent read-only access to
the data is possible.

For most users, one PRIVATE dbspace is sufficient; however, people doing
application or data design for different application areas might want one for each
area. Others might request additional storage as their data requirements grow. For
these users, you can reserve additional PRIVATE dbspaces as needed.

For data that is to be shared, use PUBLIC dbspaces. These can be locked either at
the row, page, or dbspace level. Thus, several users can access data at the same
time. (See “Determining the Lock Size (LOCK)” on page 26.)

PUBLIC dbspaces support tables shared by a group of users. For example, a group
of query users may have to share data. Rather than having each user keep a copy
of the data, the extracted data could be directed to tables in a PUBLIC dbspace,
where it could be accessed by all users.

For production application data, you should define one or more PUBLIC dbspaces,
depending on logical groupings of tables. For further information on placing tables
into dbspaces, refer to the DB2 Server for VSE & VM Performance Tuning Handbook
manual.

Adding Dbspaces to the Database
To add a dbspace to a database you must reserve page tables in the directory,
assign the dbspace to a storage pool, and specify the dbspace’s type. These
functions are described in the DB2 Server for VSE System Administration and DB2
Server for VM System Administration manuals.

Chapter 2. Implementing Your Design 21

Do not use SYS as the first three characters of a dbspace name; SYS denotes a
dbspace reserved for database manager use.

Note: When you add dbspaces, you must be in single user mode.

Acquiring Dbspaces

After you have identified the mapping of tables to dbspaces, and the dbspaces
have been added to the database, you can acquire them for use. Begin this process
by identifying the parameters to be established for each dbspace. Table 5
summarizes these parameters; they are discussed in detail below.

Table 5. Derivation of Dbspace Parameters

Parameter Derivation

Type PUBLIC or PRIVATE, based on expected usage of tables.

SIZE (PAGES) Sum of the potential sizes of each of the tables, plus the sum of the index
size requirements, plus free space considerations.

STORPOOL Consider device utilization of other dbspaces in the same pool and the
availability of space in the pool. Also consider using nonrecoverable
storage pools for read-only data.

NHEADER Set based on the number of tables and indexes to be put in the dbspace.

PCTFREE Set based on growth potential of the tables to be put in the dbspace.

PCTINDEX Set based on the potential indexes to be created and their estimated sizes.

LOCK Set based on the size of tables and the extent of their use.

Use the ACQUIRE DBSPACE statement to specify the parameters in Table 5. When
acquiring a dbspace, you must specify whether it is to be PUBLIC or PRIVATE,
and you can optionally set the number of pages in it, the level of recovery, the
percentage of space to be reserved for updates and indexes, and the amount to be
locked when accessed by users. See the DB2 Server for VSE & VM SQL Reference
manual for more information on the ACQUIRE DBSPACE statement.

Determining Dbspace Type (PUBLIC or PRIVATE)
If any table is to be accessed by multiple users at the same time, and any one of
the users will be doing UPDATEs, INSERTs, or DELETEs, then it should be placed
in a PUBLIC dbspace. You need Database Administrator (DBA) authority to
acquire a PUBLIC dbspace.

Only users with DBA or RESOURCE authority can create objects in PUBLIC
dbspaces.

To acquire a PUBLIC dbspace, enter the ACQUIRE DBSPACE statement specifying
your requirements. For example, to acquire a PUBLIC dbspace named payroll and
using the defaults, enter:

ACQUIRE PUBLIC DBSPACE NAMED PAYROLL

You need DBA or RESOURCE authority to acquire a PRIVATE dbspace.

Only the owner of the PRIVATE dbspace, or a user with DBA authority, can create
objects in the dbspace.

Every PRIVATE dbspace has an owner. To acquire the PRIVATE dbspace
PERSONAL for user JOHN, enter the following:

22 Database Administration

ACQUIRE PRIVATE DBSPACE NAMED JOHN.PERSONAL

You cannot use the ALTER DBSPACE statement to change the type of a dbspace
after you acquire it.

Determining the Size of the Dbspace (PAGES)
You need to ensure that the dbspace contains enough pages to hold the tables and
associated indexes to be stored there.

The size of the dbspace should be based on the estimated current size of the tables
and their indexes, plus an allowance for their expected growth. A dbspace cannot
contain less than 128 pages. You must allocate pages in multiples of 128, otherwise
the number is rounded up to the next highest multiple of 128. Algorithms for
determining the number of pages needed are described in “Appendix A.
Estimating Your Dbspace Requirements” on page 217.

Because you cannot extend a dbspace after it is defined, you should overestimate
the required number of pages. Unused pages are not stored, so the cost of
overestimating is nominal. In contrast, the cost of underestimating pages can be
quite expensive because of the reorganization activities required to re-establish the
data in a larger dbspace later.

Note: Two directory blocks of 512 bytes each are used for every 128 data pages
defined.

Determining the Storage Pool (STORPOOL)
Storage pools come in two types: recoverable and nonrecoverable.

Consider assigning a dbspace to a nonrecoverable storage pool if the data in it will
be read-only. Changes made to data in a nonrecoverable storage pool are not
logged, which offers the advantages of requiring less log space, elapsed time, and
CPU time. (There should be an alternative method of recovery available, such as
reloading the storage pool.) The disadvantage is that data cannot be recovered
when media failures occur (which may be acceptable for read-only data).

If you are using referential integrity, you must use recoverable storage pools. For
nonrecoverable storage pools, ROLLBACK is not performed and no logging is in
effect, so that some operations can be neither completed successfully nor rolled
back. Each operation containing a referential constraint is verified when it occurs.
If a row of a multi-row operation violates the referential constraint, the operation
terminates. The rows that were affected prior to the termination cannot be rolled
back.

For example, in a multi-row delete of a parent table, if 15 rows are candidates for
deletion and the ninth row violates the DELETE RESTRICT rule, then the first
eight rows would be deleted and the operation would cease with the ninth row.
The integrity of the table would be maintained but the operation would be only
partially completed.

Because a unit of work modifying both recoverable and nonrecoverable pools can
only ROLLBACK the recoverable pool, referential constraints cannot be created
between the two types of pools.

You cannot use the ALTER DBSPACE statement to change the storage pool of a
dbspace after you acquire it.

Chapter 2. Implementing Your Design 23

If you do not specify the STORPOOL parameter, a dbspace of the correct size and
type will be acquired from any recoverable storage pool.

Storage Device Considerations: The storage pool you select should be chosen to:
v Balance device utilization
v Exploit device characteristics for data in the dbspace.

A table resides on the devices used to support the storage pool to which the table’s
dbspace is assigned. Consider storing different tables on different devices based on
device characteristics and table usage. To do this, you need multiple storage pools
and multiple dbspaces.

For example, if you have two tables that are highly active, you can reduce
potential device contention by storing them in different dbspaces that are assigned
to different storage pools. The dbextents defined for the two storage pools would
be on different devices.

You could use a similar technique for storing selected tables on higher or lower
speed devices as appropriate.

For more information about storage pools, refer to either the DB2 Server for VM
System Administration or the DB2 Server for VSE System Administration manual.

Determining the Number of Header Pages (NHEADER)
Header pages contain control information on the tables and indexes stored in the
dbspace.

The number of header pages required depends on the number of objects to be
stored in the dbspace. Generally, taking the default (8 pages) is recommended, as
this gives you the most flexibility at nominal cost. However, if you plan to have
few tables or indexes in the dbspace, you may allocate fewer. You must allocate at
least one.

To estimate your needs, see “Appendix A. Estimating Your Dbspace Requirements”
on page 217.

You cannot change the NHEADER parameter with the ALTER DBSPACE
statement; after you set it, the only way to change it is to move all the data in the
current dbspace to another dbspace having the required NHEADER value (see
“Altering the Design of a Dbspace” on page 73).

Determining the Percent Free Space Desired (PCTFREE)
The PCTFREE parameter refers to the percentage of each page that is to be
reserved for updates that make the changed row longer than it was before. This
free space is not used for inserts. You can reclaim the free space by reducing the
PCTFREE value through an ALTER DBSPACE statement.

The PCTFREE value you choose will depend on the type of activity being carried
out on the data in the dbspace:
v High Insert/Low Update Activity

This is the situation where there will be few updates, or all columns are fixed
and non-nullable in the tables. Here, you would set PCTFREE to a high value
before loading the data; then lower it to a low value. The difference between the
original value and the final value can then be used by insert activity.

v Low Insert/High Update Activity

24 Database Administration

In this situation, PCTFREE should be set to a high value. The space saved by
PCTFREE will be used by the update activity only if the update increases the
size of the row and the free space will accommodate the new row.

v Low Insert/Low Update Activity Or Read-Only Data
Read-only data is data that is loaded into a dbspace and then never modified or
updated, only retrieved using query statements. In this situation, set PCTFREE
to a low value or zero.

v High Insert/High Update Activity
In this situation, set PCTFREE to a high value and then lower it. This would
allow space for use by both update and insert activities.

Note: Updating refers to the replacement of a row of data into the same location
in a page of a dbspace, unless the row can no longer fit because of an
increase in the size of one or more columns. The replacement row is placed
on the same page of the dbspace if there is still sufficient space available in
the area set aside using PCTFREE.

In situations where there is high insert activity, consider using a clustering index.
The first index created on a table is always considered the clustering index. A
clustering index determines the placement of rows in pages of a dbspace to
minimize DASD I/Os when the table rows are accessed in the index sequence. For
more information, see “Clustering Rows of a Table on an Index” on page 48.

Note: Clustering refers to the grouping or gathering of items; in the above case,
the grouping of table rows is done according to the indexes.

If an updated row no longer fits on its original page, its contents are moved to the
next available page with enough room to accommodate it. Continual movement of
row contents to new pages as a result of this overflow may lead to a decrease in
performance as the database manager must make one additional page reference
before locating a row’s contents.

The database manager typically reserves more space than you specify. For an
explanation of free space management design, see the DB2 Server for VSE & VM
Diagnosis Guide and Reference manual. Calculate PCTFREE using the following
formula:

PCTFREE = (FREEBYTES - AVGROWLEN) / 40

where FREEBYTES is the number of bytes you want reserved on each page, and
AVGROWLEN is the average row length for tables in the dbspace. If you have
modeled the tables to be stored in the dbspace, you can obtain a value for
AVGROWLEN for each of the tables from SYSTEM.SYSCATALOG.

For normal processing, set PCTFREE somewhere between:
[AVGROWLEN / 40] and [50 - (AVGROWLEN / 40)].

Setting it below the lower limit would mean the unused bytes could not be used
(the average row would not fit) and the space set aside for updates would be
wasted, while setting it greater than the upper limit may restrict you unnecessarily
to one row per page.

For more information on how the PCTFREE parameter determines actual reserved
bytes, see “Appendix A. Estimating Your Dbspace Requirements” on page 217.

Chapter 2. Implementing Your Design 25

Determining the Percentage for Index Pages (PCTINDEX)
When you acquire a dbspace, you must reserve some portion of it for holding
indexes on the tables in the dbspace. PCTINDEX reserves the amount of space in
the directory to be formatted for this purpose. Under most circumstances, you
should let this value default to 33 percent. With this default, there are
approximately twice as many data pages for holding table rows as there are index
pages for holding indexes on the tables. You can create or drop indexes at any time
(these functions can be performed online); so do not constrain the potential
indexing you might want to do by specifying a lower value for PCTINDEX. There
are two cases when you might want to consider overriding the default:
v Read-only data

Some data is used exclusively, or primarily, for read-only (SELECT) access. You
can create a more than one index on such data to improve the performance of a
wide variety of user queries. The indexes are created after the data is loaded and
are referenced as required by a query. Because the data is not subject to update
operations, you do not have to worry about the performance implications of
index maintenance. Thus, you should consider specifying a high value for
PCTINDEX. To do this, estimate the number of index pages that would be
required for various indexes that might be created on these tables in the
dbspace. See “Estimating the Number of Index Pages” on page 229.

v Highly tuned operational data
This is data that is subject to frequent updates, and the performance
requirements limit the amount of indexing you want to do on the tables.
Determine the set of indexes you require for the data and set the PCTINDEX
parameter accordingly.

You establish the PCTINDEX parameter with the ACQUIRE DBSPACE statement.
You cannot change the PCTINDEX parameter with the ALTER DBSPACE
statement; after you set it, the only way to change it is to move all the data in the
current dbspace to another dbspace having the required PCTINDEX value (see
“Altering the Design of a Dbspace” on page 73).

Determining the Lock Size (LOCK)
When you acquire a PUBLIC dbspace you can specify three levels of locking:
DBSPACE, PAGE, or ROW. You can change the lock size later with the ALTER
DBSPACE statement.

The lock size can be set for PUBLIC dbspaces only. (PRIVATE dbspaces are always
locked at the DBSPACE level.)

The default lock size is PAGE. Select ROW if the dbspace is to contain a small
table that will fit on a small number of pages, and it is expected that this table will
be frequently updated by multiple users.

Locking the dbspace at the row level also causes indexes in it to be locked at the
key level. (Usually indexes are locked at the page level.) Key-level locking for
indexes, like row-level locking for tables, reduces contention but adds overhead.

Retrieving Information about Dbspace Parameters
Information about the dbspace parameters is maintained in the
SYSTEM.SYSDBSPACES catalog table.

Example
Use the following query to retrieve information about dbspace MYDB:

26 Database Administration

SELECT DBSPACENO, DBSPACETYPE, POOL, NPAGES,
NRHEADER, PCTINDX, FREEPCT, LOCKMODE

FROM SYSTEM.SYSDBSPACES
WHERE DBSPACENAME = 'MYDB'

To see how many header, data, and index pages are being used in a given dbspace,
issue the SHOW DBSPACE operator statement from either the database console or
from ISQL. (Its format is described in the DB2 Server for VSE & VM Operation
manual.) This information may be helpful, especially before attempting to load
large amounts of data into a dbspace.

Restrictions on the ACQUIRE DBSPACE Statement
To acquire a dbspace, it must have already been added to the database. When you
issue the ACQUIRE DBSPACE statement, the database manager searches for a
dbspace with the appropriate size (number of PAGES), storage pool assignment,
and type (PUBLIC or PRIVATE). If one of the requested size cannot be found, the
next largest suitable one will be used. (This could result in a very large dbspace
being used to contain a small amount of data.) If no existing dbspace satisfies the
requirements, then the ACQUIRE DBSPACE statement will fail, and you will have
to add additional dbspaces to the database.

The SYSDBSPACES system catalog table contains information about dbspaces. You
can issue an ISQL query to retrieve this information.

The following query yields information on the type and size of all available
dbspaces (those that have been added but not yet acquired):

SELECT DBSPACETYPE, NPAGES
FROM SYSTEM.SYSDBSPACES
WHERE DBSPACENAME=''

The value of DBSPACETYPE is 1 for PUBLIC dbspaces and 2 for PRIVATE ones.

Creating Tables
Relational databases use tables to store information. This section explains how to
create tables and how to define referential and unique constraints in the DB2
Server for VSE & VM environment.

Controlling Who Creates Tables
Designing tables to be used by many applications is a critical task. Although you
can add columns and use views to mask certain changes, generally you cannot
change the design of a table after it has been implemented without disrupting
applications. Table design is difficult because there are many ways to represent the
same information, and often you have to decide between the conflicting objectives
of logical design and physical design. (One example of such a conflict is
normalization, discussed in “Step 7: Normalize Your Tables” on page 9.)

If you have DBA authority, you will probably want to keep the responsibility for
creating tables, and then pass the authorization for their use on to the application
developers. However, you can grant authority for creating tables to others; or, if
some users want to use the application server with minimum assistance or control,
you can acquire PRIVATE dbspaces for them and authorize them to create
whatever data objects they need, including tables.

Chapter 2. Implementing Your Design 27

How to Create Tables
After designing a table, issue the CREATE TABLE statement. Creating a table
involves:
v Naming it
v Naming the columns within it
v Defining the appropriate data type for each column
v Defining primary keys
v Defining the relationships between tables
v Defining unique constraints.

To create a table, the connected user must have the proper authority (see
“Chapter 5. Providing Security” on page 87). Whoever issues the CREATE TABLE
statement has complete authority over the table.

When you create a table, a definition of it is recorded in the catalog; no application
data is stored. (For a description of how to put data into the table, see “Loading
Data into Tables” on page 59.)

Figure 17 shows the statement used to create the sample EMPLOYEE table.

This example creates a table called EMPLOYEE, which has 14 columns, by a
creator with the ID JOHN. The table uses the column EMPNO as the primary key,
and the column WORKDEPT as a foreign key called EMPFKEY, which references
WORKDEPT in the DEPARTMENT table. The delete rule is SET NULL, and the
table resides in the “PUBLIC”.SAMPLE dbspace.

Naming Tables
A table name can be up to 18 characters long (18 bytes). Table names that are not
explicitly qualified by the creator name in the CREATE TABLE statement are
qualified by the database manager. For example, assume that a user with an ID of
SMITH is entering SQL statements interactively. If SMITH creates a table named
ABC, with no qualifier, the table name becomes SMITH.ABC. SMITH can own only
one table, view, or synonym called ABC. A different user ID, JONES, can create
another table, view, or synonym called ABC, which will become JONES.ABC.

CREATE TABLE JOHN.EMPLOYEE
(EMPNO CHAR(6) NOT NULL,
FIRSTNME VARCHAR(12) NOT NULL,
MIDINIT CHAR(1) NOT NULL
LASTNAME VARCHAR(15) NOT NULL,
WORKDEPT CHAR(3),
PHONENO CHAR(4),
HIREDATE DATE,
JOB CHAR(8),
EDLEVEL SMALLINT NOT NULL,
SEX CHAR(2),
BIRTHDATE DATE,
SALARY DECIMAL(9,2),
BONUS DECIMAL(9,2),
COMM DECIMAL(9,2),
PRIMARY KEY (EMPNO),
FOREIGN KEY EMPFKEY (WORKDEPT)

REFERENCES DEPARTMENT ON DELETE SET NULL)
IN PUBLIC.SAMPLE

Figure 17. Example of CREATE TABLE. A foreign key cannot be defined unless the
corresponding primary key already exists.

28 Database Administration

If the DBCS option is enabled, you can use DBCS characters in table names (the
18-byte length restriction still applies). Enabling the DBCS option is discussed in
the DB2 Server for VM System Administration and DB2 Server for VSE System
Administration manuals.

Choosing Columns
You implement your database design primarily by choosing the columns that make
up each table. Almost inevitably, there is some conflict between the theoretical
design and the most practical implementation, as described in the following
sections.

Considerations for Normalization
In “Step 7: Normalize Your Tables” on page 9 normalization was discussed only
from the viewpoint of logical database design, without considering performance.
Consider the example there of the column that contains the addresses of
warehouses. The column is first shown as part of a table that contains information
about parts and warehouses; then, to further normalize the design, it is removed
from that table and defined as part of a table that contains information only about
warehouses. The other possible design (in which the column is part of both tables)
was not considered.

Some applications might require information about both parts and warehouses,
including the addresses of warehouses. With normalization, information can be
retrieved by joining tables. The problem is that a join operation can be very
time-consuming, even for only two tables, and as the number of tables increases
the access costs can increase enormously, depending on the size of the tables and
the available indexes. If indexes are not available, the join of many large tables can
take hours. Furthermore, the number of tables that can be joined is at most 15 and,
depending on the complexity of the statement, can be significantly less. Thus, an
unnormalized design may be absolutely necessary.

Consider making both tables have a column that contains the addresses of
warehouses. If this design makes join operations unnecessary, it could be a
worthwhile redundancy. Warehouse addresses do not change often, and if one does
change, DB2 Server for VSE & VM makes it easy to update all occurrences.

Considerations for Row Size
Rows are stored within pages. A single row cannot occupy more than one page,
and you cannot create a table with a maximum row size that is greater than the
page size. One exception is that columns of type LONG VARCHAR or LONG
VARGRAPHIC can be longer than one page; therefore, the rows that contain them
can occupy more than one page. There is no other absolute limit, but if you ignore
row size in favor of implementing a good theoretical design, you may waste
storage.

Row Length—Fixed or Varying: Table rows may be of fixed or varying lengths.
Two considerations apply:
v The presence of any columns with varying-length data types will result in a

varying-length row.
v If the rightmost columns of the row are defined as allowing nulls, and if no

values for those columns are supplied when a row is inserted, storage is not
allocated for those columns. If those columns in the inserted row are
subsequently updated, the row length will be increased to accommodate the
non-null column values.

Chapter 2. Implementing Your Design 29

The disadvantage of varying-length rows is that if the row length is increased, the
row may have to be repositioned. If the row is repositioned and there is not
enough free space on the current page to accommodate the row, then the row will
be moved to another page. In this case, whenever that moved row is accessed, an
additional page reference is required.

Row Lengths and Pages: Along with the bytes of actual data, each row has:
v A 6-byte prefix
v A 2-byte slot for each row stored in the page
v 1 additional byte for each column that may contain null values
v 1 additional byte for each varying-length column.

In addition, every data page has a 16-byte header.

This overhead affects the amount of data that can be stored on each page in your
dbspace. In designing your table, consider your design needs while looking for
ways to store your data as efficiently as possible.

Some Space-Wasting Designs: Space is wasted in a dbspace if all its rows are
slightly longer than half a page, because then only one row can fit in each page. If
you can reduce the row lengths to just under half a page, you will need only half
as many pages. Similar considerations apply to rows that are just over a third of a
page, a quarter of a page, and so on.

It is particularly important to minimize the number of pages in a dbspace because
if an index is not used, the database manager will read every active page of the
dbspace.

For example, suppose you design a table to hold a large array of floating-point
numbers. If you define each column as FLOAT and use the maximum number of
columns (255), the row length is 2048 and only one row fits on each page. If you
use 240 columns, two rows could fit on each page, and a page would contain 480
floating-point numbers, rather than only 255.

Specifying Columns
A column contains all occurrences of one of the entities in a table. (You can think
of it as a field in a row.) In Figure 17 on page 28, the lines immediately following
the table name contain the names of the columns within the table. In the sample
EMPLOYEE table, the HIREDATE column contains all the hire dates for all
employees represented by EMPNO. You cannot redefine or overlap columns and,
after you have implemented the design of your database, you usually cannot
change a column definition without disrupting applications. Therefore, consider
carefully the decisions you make about column definitions. (However, you can add
columns to an existing table. See “Altering the Design of a Table” on page 64.)

For each column, you must specify a name and a data type.

For each column, you may specify:
v A length (of values in the column, not the number of values) and whether null

values are permitted. For a column containing character data, you can also
specify the subtype. For further information, refer to “Specifying SBCS, Mixed,
or Bit Subtypes” on page 34.

v A CCSID for a column with character or graphic data, if you want to override
the default CCSID. For further information, refer to “Specifying a CCSID” on
page 34.

30 Database Administration

v Whether you plan to run a user-written exit routine whenever a program enters
or retrieves data in the column. This type of routine, called a field procedure, can
be used, for example, to alter the sorting sequence of values entered in the
column. Field procedures are assigned to specific columns when the table is
created or altered. For further information on field procedures, see “Specifying a
FIELDPROC” on page 35.

Column Names
Column names must be unique within a table, but you can use the same name in
different tables. The maximum length is 18 bytes.

If the DBCS option is enabled, you can use DBCS characters in the column names.
See the DB2 Server for VM System Administration or DB2 Server for VSE System
Administration manual.

Nulls
As mentioned under “Step 3: Provide Column Definitions for Tables” on page 4,
some columns cannot have a meaningful value in every row.

A special value indicator, called the null value, represents an unknown or missing
value. It should not be confused with a zero value, a blank, or an empty string: it
is a special value interpreted by the database manager to mean that no data has
been supplied.

Unless you specify otherwise, any column you define can contain null values, and
rows can be created in the table without providing a value for the column. Avoid
using nulls for columns that will be used as indexes. To disallow null values, use
the NOT NULL clause, and provide a non-null value for that column whenever
you store data. Columns that will be referenced in a primary key or unique
constraint must be defined as NOT NULL.

If you add a column to an existing table, it contains no data and so cannot be
defined as NOT NULL.

In the example in Figure 17 on page 28, nulls are acceptable for certain columns
and prohibited for others.

Before you decide whether to allow nulls for unknown values in a column, be
aware of how nulls can affect the result of a query.
v Nulls in predicates

Nulls do not satisfy any condition in an SQL statement other than the special
NULL predicate. Null values do not act like other values. For instance, if you try
to determine whether a null value is larger or smaller than a given known value,
you get an answer of UNKNOWN.

v Nulls in quantified predicates
If either the left side or the subselect list of a quantified predicate is null, the
quantified predicate is residual. Residual predicates require more processing
because of the communication between the Relational Data System (RDS) and
the Database Storage Subsystem (DBSS). Predicate processing is described in the
DB2 Server for VSE & VM Performance Tuning Handbook manual.

v Nulls with Field Procedures
If you allow nulls in a column with a field procedure, that field procedure is not
invoked when you access a null value: the database manager returns the null
value.

Chapter 2. Implementing Your Design 31

Specifying Data Types
You must give a data type for each column of a table, to specify the type of data
the column will contain and the length of the data field.

The first thing you must decide when defining a column is what kind of data the
column will contain—string, numeric, or date/time. The decision is often obvious
because only a string column can contain letters or special characters. If the data
consists solely of digits, however, you have to decide whether to specify it as string
or numeric data. And if the values represent dates, times, or timestamps, you will
want to consider the data types DATE, TIME, and TIMESTAMP.

Numeric Data Types
The data types for numbers are shown in Table 6.

Table 6. Numeric Data Types

Data Type Denotes a column of...

SMALLINT Small integers. A small integer is an IBM
System/370* halfword signed binary
integer of 16 bits; the range is -32,768 to
+32,767.

INTEGER or INT Large integers. A large integer is an IBM
System/370 fullword signed binary
integer of 32 bits; the range is
-2,147,483,648 to +2,147,483,647.

REAL or FLOAT(n) Single precision floating-point numbers.
n must be in the range 1 through 21.
There is no default; if you omit n when
declaring a data type of FLOAT, the
column has double precision. A single
precision floating-point number is an
IBM System/370 short floating-point
number of 32 bits.

FLOAT, FLOAT(n), or DOUBLE PRECISION Double precision floating-point
numbers. n must be in the range 22
through 53; its default is 53. A double
precision floating-point number is an
IBM System/370 long floating-point
number of 64 bits. The range of
magnitudes for floating-point numbers
of either type is approximately ±5.4E-79
to ±7.2E+75.

DECIMAL(p,s), DEC(p,s) or NUMERIC (p,s) IBM System/370 packed decimal
numbers with precision p and scale s.
The precision p, which is the total
number of digits, must be greater than 0
and less than 32. The scale s, which is
the number of digits in the fractional
part of the number, must be greater than
or equal to 0 and less than or equal to
the precision. s may be omitted; its
default is 0. And if s is omitted, p may
also be omitted; its default is 5. The
range of decimal values is 31 digits, and
these values can be positive or negative.
NUMERIC and DEC are synonymous
with DECIMAL.

32 Database Administration

For integer values, SMALLINT or INTEGER (depending on the range of the
values) are preferable to DECIMAL or FLOAT.

For real numbers with a small precision and scale, DECIMAL is preferable to
FLOAT.

For numeric data, use numeric rather than string columns for the following
reasons:
v They require less space.
v They permit arithmetic operations.
v They are accessed more efficiently. For example, if numbers are represented as

strings, when the database manager calculates a range, the optimizer takes into
consideration all possible bit patterns and cannot calculate an appropriate filter
factor. Because of this, a much higher number of rows is returned. For further
information on filter factors, refer to the DB2 Server for VSE & VM Performance
Tuning Handbook manual.

String Data Types
The data types for strings are shown in Table 7.

Table 7. String Data Types

Data Type Denotes a column of...

CHAR(n) or CHARACTER(n) Fixed-length character strings with a
length of n bytes. n must be greater than
0 and less than 255.

VARCHAR(n) Varying-length character strings with a
maximum length of n bytes. n must be
greater than 0. If n is greater than 254,
certain restrictions apply to the use of
the columns in SQL statements. The
upper limit on the value of n is 16,383.

LONG VARCHAR Varying-length character strings with a
maximum length of 32,767 bytes. The
restrictions that apply to VARCHAR
columns where n>254 also apply to
LONG VARCHAR columns.

GRAPHIC(n) Fixed-length graphic strings containing
n double-byte characters. n must be
greater than 0 and less than 128.

VARGRAPHIC(n) Varying-length graphic strings. The
maximum length, n, must be greater
than 0. If n is greater than 127, certain
restrictions apply to the use of the
column in SQL statements. The upper
limit on the value of n is 16,383.

LONG VARGRAPHIC Varying length graphic strings with a
maximum length of 16,383 bytes. The
restrictions that apply to the use of a
VARGRAPHIC column where n>127
also apply to a LONG VARGRAPHIC
column.

If you want to use a field procedure with a column, the column must have a short
string data type. You can also use string columns to specify binary (bit) data or
character data for exchange with other application servers.

Chapter 2. Implementing Your Design 33

Choosing Fixed-Length or Varying-Length Data Types: VARCHAR saves DASD
space. The saving is at the cost of a 1-byte overhead for each value and the
additional processing required for varying-length rows. Thus, CHAR is preferable
to VARCHAR, unless the space saved by the use of VARCHAR is significant. The
saving is not significant if the maximum length is small or the lengths of the
values do not have a significant variation.

If you use VARCHAR, do not specify a maximum length greater than necessary. In
particular, note the restrictions on columns of strings longer than 254 bytes; for
example, they cannot be indexed.

The database manager will not use index-only access to retrieve the data if the
index is created on a VARCHAR column. For information on index-only access,
refer to the DB2 Server for VSE & VM Performance Tuning Handbook manual.

Do not use LONG VARCHAR unless you really want the maximum row length to
be as large as possible, because there is a higher cost associated with accessing
long fields.

In most cases, the content of the data intended for a column dictates the data type
you choose. For example, the data type selected for the department name
(DEPTNAME) of the DEPARTMENT table is VARCHAR(36). Because department
names normally vary considerably in length, the choice of a varying-length data
type seems appropriate. Choosing a data type of CHAR(36), for example, would
result in much wasted space, because all department names, regardless of their
length, would be assigned the same amount of space (36 bytes).

The foregoing considerations about CHAR, VARCHAR, and LONG VARCHAR
columns apply in the same way to GRAPHIC, VARGRAPHIC, and LONG
VARGRAPHIC columns. The one exception is that the length (n) of a GRAPHIC or
VARGRAPHIC column is given as a number of double-byte characters; hence, the
length in bytes is twice n.

Specifying SBCS, Mixed, or Bit Subtypes: The use of subtypes applies only to
character data such as CHAR, VARCHAR, and LONG VARCHAR. A default
subtype for character columns is set at installation time. You can override this
default for any column in a table when the table is created (or when a column is
added to an existing table).

Choose the SBCS subtype when the data in the column is single-byte character
data and the default is not.

Choosing FOR MIXED DATA lets you store (and to have the column flagged as
storing) both single- and double-byte characters. The database manager ensures the
integrity of valid mixed data during truncation.

For columns that contain binary data that should not be modified when moved
between different environments (such as from ASCII to EBCDIC), specify FOR BIT
DATA.

Note: When specifying a subtype, you are also implicitly specifying the CCSID for
the subtype.

Specifying a CCSID: Default CCSID values for character and graphic data are
specified during installation. To override the CCSID used for a column containing
any of these data types, specify one of your own.

34 Database Administration

Each CCSID is associated with either graphic data or a specific subtype of
character data. Query the SYSTEM.SYSCCSIDS system catalog table to determine
the CCSID values for each of these.

If you compare data from two columns or move data between two columns having
different CCSIDs, and if a conversion selection table exists, the data in one of the
columns is converted to ensure a consistent comparison. Query the
SYSTEM.SYSSTRINGS catalog table for a list of valid conversion selection tables.
(In VM you can also look at the ARISSTR MACRO on the production minidisk for
a list of valid conversion selection tables.) Consider your users’ environments and
needs when specifying a CCSID for a particular column. When you override the
default CCSID for a column of data, you can minimize the amount of converting
done on tables that are accessed primarily by users requiring different CCSIDs.

Note: Converting from one CCSID to another, then another, and then returning to
the original CCSID, can result in the misinterpretation of data if there is not
a one-to-one correspondence between the two sets of characters.

See the DB2 Server for VM System Administration or DB2 Server for VSE System
Administration manual for more information about specifying CCSIDs.

Specifying a FIELDPROC: A field procedure (FIELDPROC) is a user-written exit
routine used to encode and decode values in a character string. Field procedures
can only be used on short character strings (CHAR, VARCHAR, GRAPHIC, and
VARGRAPHIC).

A field procedure can be used to alter the sorting sequences of a short character
string column. It is assigned to a column during execution of the CREATE TABLE
or ALTER TABLE statement, and is called whenever values in the column are
changed, inserted, or retrieved. To specify that a column use a field procedure, use
the FIELDPROC option followed by the program name of the procedure and,
optionally, a list of parameters.

For example, to specify a field procedure for the column LASTNAME of the
EMPLOYEE sample table, change one line of Figure 17 on page 28 to look like this:

LASTNAME VARCHAR(15) NOT NULL FIELDPROC MYPROG (4, 3, 7),

In the example, the name of the field procedure is chosen as MYPROG. The
parameters 4, 3, and 7 are passed to the procedure when it is invoked by the
CREATE TABLE or ALTER TABLE statement.

For more information about field procedures, see the DB2 Server for VM System
Administration or DB2 Server for VSE System Administration manual.

Data Types for Dates, Times, and Timestamps
The data types for dates, times, and timestamps are shown in Table 8.

Table 8. Date, Time, and Timestamp Data Types

Data Type Denotes a column of...

DATE Dates. A date is a three-part value representing a year, month, and
day in the range 0001-01-01 to 9999-12-31.

TIME Times. A time is a three-part value representing a time of day in
hours, minutes, and seconds, in the range 00.00.00 to 24.00.00.

Chapter 2. Implementing Your Design 35

Table 8. Date, Time, and Timestamp Data Types (continued)

Data Type Denotes a column of...

TIMESTAMP Timestamps. A timestamp is a seven-part value representing a date
and time by year, month, day, hour, minute, second, and
microsecond, in the range 0001-01-01-00.00.00.000000 to
9999-12-31-24.00.00.000000.

For a detailed description of Date/Time characteristics, see the DB2 Server for VSE
& VM SQL Reference manual.

Advantages of Date/Time Data Types
Numbers representing dates and times can, of course, be stored in columns with
numeric data types; if they include special characters as separators, they can be
stored in string columns. But neither of these options provides the advantages of
the DATE, TIME, and TIMESTAMP data types, as described below.

Variable Input and Output Format: Date/time values are stored in a special
internal format, which is freely convertible on output or input to or from any of
the formats in Table 9.

Table 9. Date Formats

Format Name Abbreviation Typical Date Typical Time

International Standards Organization ISO 1992-12-25 13.30.05

IBM USA standard USA 12/25/1992 1:30 PM

IBM European standard EUR 25.12.1992 13.30.05

Japanese Industrial Standard (Christian
Era)

JIS 1992-12-25 13:30:05

You also have the option of supplying an exit routine to make conversions to and
from any local standard. For instructions about writing and using a date or time
exit routine, see the DB2 Server for VM System Administration or DB2 Server for VSE
System Administration manual.

When loading date or time values from an outside source, the database manager
accepts any of these formats, and convert valid input values to the internal format.
For retrieval, there is a default format that you select at the time of installation.
You can change the default at any time by updating the SYSOPTIONS catalog; you
can override it for every statement in a program by a precompiler option, or for
particular instances by the CHAR scalar function. For example, whatever your
local default, the following statement displays employees’ birth dates in IBM USA
standard form:

SELECT EMPNO, CHAR(BIRTHDATE, USA) FROM EMPLOYEE

Date/Time Arithmetic and Durations
Date/time arithmetic involves intervals of time that are represented by numbers
called durations. A duration is an interpretation of a number, not a data type.

A labeled duration is any number of years, months, days, hours, minutes, seconds,
or microseconds. A date duration is a number of years, months, and days. A time
duration is a number of hours, minutes, or seconds. A timestamp duration is a
number of years, months, days, hours, minutes, seconds, and microseconds. For a
further discussion of durations, see “Date/Time Arithmetic” on page 177, or the
DB2 Server for VSE & VM SQL Reference manual.

36 Database Administration

The only arithmetic operators that can be applied to date/time values are addition
and subtraction. If a date/time value is the operand of addition, the other operand
must be a duration.

For example, the following statement lists employees who have been hired after
the age of 40:

SELECT * FROM EMPLOYEE
WHERE HIREDATE > BIRTHDATE + 40 YEARS

This statement lists employees who have been hired in the last 3 months:
SELECT * FROM EMPLOYEE

WHERE HIREDATE > CURRENT DATE - 3 MONTHS

Date/Time Functions: There are functions to extract the years, months, days,
hours, minutes, seconds, and microseconds of dates, times, and timestamps. For
example, this statement lists all employees who have a service anniversary on June
21:

SELECT * FROM EMPLOYEE
WHERE MONTH(HIREDATE) = 6 AND DAY(HIREDATE) = 21

There are also functions to convert dates, times, and timestamps to character or
integer representations.

String Representations of Date/Time Values: In the following example,
07/28/1971 is interpreted as a date because it is compared to a date; in other
contexts (a SELECT list, for example) 07/28/1971 is merely a character string.

SELECT * FROM EMPLOYEE
WHERE HIREDATE = '07/28/1971'

Date/Time Comparisons: All comparison operators are allowed. The statement
below lists all employees hired after October 31, 1979. To show another of the
recognized date formats, we have arbitrarily chosen to write the date in the IBM
European standard.

SELECT * FROM EMPLOYEE
WHERE HIREDATE > '31.10.1979'

Comparing Data Types
You can compare values of different types and lengths provided that both values
are numeric, both are character strings, or both are graphic strings.

Date and time comparisons cannot be made with values of different types: a date
can be compared only with a date, a time with a time, and a timestamp with a
timestamp (or, in each case, with a valid string representation of a date, time, or
timestamp).

If a column uses a field procedure, values to be compared to it are first encoded by
the field procedure. If a column with a field procedure is compared to another
column, both columns must have the same field procedure and data type.

Columns do not have to have the same CCSID to be compared. When two
columns with differing CCSIDs are compared, and a conversion selection table
exists, the data in one of the columns is converted to ensure a consistent
comparison. For further information, refer to the DB2 Server for VSE & VM SQL
Reference manual.

Chapter 2. Implementing Your Design 37

Specifying a PRIMARY KEY
The primary key of a table, if one has been created, consists of one or more
columns that uniquely identify each row in the table. In the example in Figure 17
on page 28, the employee number is the primary key of the employee table, and

the PRIMARY KEY clause identifies the column of employee numbers (EMPNO).

A table that is to be a parent of dependent tables must have a primary key—the
foreign keys of the dependent tables refer to it. Otherwise, a primary key is
optional. If you are defining referential constraints, read “Considerations for
Referential Integrity when Creating Tables” on page 39 before creating or altering
any of the tables involved.

If you specify a primary key, a unique index is automatically defined on the same
set of columns, in the same order as those columns. The primary key values must
then be unique and cannot be null. Their uniqueness cannot depend upon trailing
blanks in columns containing VARCHAR or VARGRAPHIC data. Automatic
enforcement of these restrictions can be useful even if the table is not involved in
referential constraints. If each row of your table does relate to a unique occurrence
of some entity, then consider creating a primary key.

If the primary key is created on a VARCHAR or VARGRAPHIC column,
index-only access is not used to retrieve the data. For information on index-only
access, refer to the DB2 Server for VSE & VM Performance Tuning Handbook manual.

Specifying a UNIQUE Constraint
The unique constraints on a table ensure the uniqueness of values in columns
making up each constraint. Although functionally similar to a unique index, a
unique constraint can be defined when the table is created, deactivated, and then
reactivated to enforce the uniqueness of values in its key. This simplifies
administration when you load data or perform operations that could temporarily
violate the unique constraint. For this reason, unique constraints are preferable to
unique indexes, which must be individually and explicitly dropped and recreated
to suspend or enforce uniqueness.

A unique constraint is also similar to a primary key in that:
v It consists of one or more columns
v The columns are not nullable
v The database manager enforces uniqueness by creating a unique index.

It differs from a primary key in that:
v It cannot be referenced by a foreign key
v You can define more than one on any table
v It can be given a name.

Considerations in Defining Unique Constraints
v The columns in a unique constraint cannot allow null values.
v You cannot duplicate a unique constraint on a table.
v The columns of a unique constraint should not be the same as columns in a

primary key. The converse is also true.
v A unique constraint can be added after the table is created through the ALTER

TABLE statement.
v Like primary keys and unique indexes, the uniqueness of values in a unique

constraint cannot depend upon trailing blanks in columns with VARCHAR or
VARGRAPHIC data.

38 Database Administration

Considerations for Referential Integrity when Creating Tables
For any table, you can define one primary key using the primary key clause, and
any number of foreign keys using the referential constraint clauses. In a referential
constraint, the table that has the foreign key definition is the dependent table and
the table that is referenced by the foreign key is the parent.

The constraint-name identifies the key being specified. It is optional. The database
manager generates a constraint-name if one is not provided; however, you should
create your own for foreign keys. Constraint-names should be symbolic and
indicate the parent and foreign key names, which will make working with the keys
much easier. Working with keys is discussed in “Altering Referential and Unique
Constraints” on page 65.

A referential constraint is defined by creating or altering tables to have a
parent/dependent relationship between them. A referential constraint can span
dbspaces. A referential structure is a set of tables that are related to each other by
referential constraints. A dbspace may have more than one referential structure but
that is generally not desirable.

Primary Key Index
When a primary key is defined, a unique index is created automatically to enforce
its uniqueness. If you have not specified information such as index order and
percent free space on the key definition, the index is created using default values.

When a primary key is defined by the CREATE TABLE statement, the
CLUSTERING index is the one associated with the primary key. If you want to
have this index on columns other than those comprising the primary key, create
the table without a primary key, then create an index on the desired columns, and
then use the ALTER TABLE statement to add the primary key.

If the primary key is dropped, either implicitly (when the table or dbspace is
dropped) or explicitly (with the ALTER TABLE statement), the system-generated
index is automatically dropped. You cannot use the DROP INDEX statement to
explicitly drop an index that was created to support a primary key.

Use the ALTER TABLE ACTIVATE PRIMARY KEY statement to reorganize the
primary key index if the primary key is active, or to recreate the index if the
primary key is inactive. For more information about this statement, see “Altering
the Design of a Table” on page 64.

Usage Notes:

v The primary key columns must not allow null values, and the primary key
clause must not be used more than once.

v Corresponding columns in primary and foreign keys of the same referential
constraint must have the same data type.

v The columns in a key must exist in the table, and may not be used more than
once.

v If the same referential constraint is defined more than once, a warning is issued,
and a new foreign key is added.

v The parent table referenced by a foreign key must already exist. It must not be a
view, and it must have an active primary key.

v The delete rule, if specified, must be one of RESTRICT, SET NULL, or
CASCADE.

v IF SET NULL is used, at least one foreign key column must be nullable.

Chapter 2. Implementing Your Design 39

v When defining foreign keys, you must have REFERENCES privilege on the
parent table and ALTER privilege on the dependent table.

v When defining referential constraints, if a primary key has a field procedure,
then the foreign key must have the same field procedure.

Restrictions on Keys and Referential Constraints::

v Keys cannot be added to or dropped from the system catalog tables, and a
system catalog cannot be referenced in any referential constraint.

v No table in a referential cycle with two or more tables may be delete-connected
to itself. This ensures that the result of a delete from a table does not depend
upon the sequence when the database manager accesses the table. In a
referential cycle of two tables, neither delete rule can be CASCADE. For a
referential cycle of more than two tables, two or more delete rules must not be
CASCADE.
A table is delete-connected to another table if deletion of rows from one table
affects the other table. The implications are:
– A dependent table is always delete-connected to its parents, whatever the

delete rule is.
– A descendent table is delete-connected to a table higher than it in the

hierarchy if a delete of rows in the higher-level table can cause a delete of
rows in the descendent’s parent table.

v For a descendent table to be delete-connected to the same higher-level table
through more than one path, all delete rules on each path must be CASCADE,
except possibly the delete rule between the descendent and its immediate parent
on each path. The delete rules of the descendent with its parent table on each
path must be the same and must not be SET NULL. This ensures that the order
in which the delete rules are applied has no effect on the result of an operation.
For further information on tables that are delete-connected through multiple
paths, refer to the DB2 Server for VSE & VM SQL Reference manual.

v Self-referencing tables are not supported.

For further information on referential integrity, refer to “Elements of Referential
Integrity” on page 6.

Integrity Rules for DELETE: There are no rules for the deletion of rows from
dependent tables. The deletion rule specified in the referential constraint clause
defines what action should be taken by the database manager when a row in the
parent table is to be deleted. See “DELETE Rules” on page 7.

Integrity Rules for INSERT: Insert rules always apply when primary and foreign
keys are defined. See “INSERT Rules” on page 8.

Integrity Rules for UPDATE: Update rules always apply when primary and
foreign keys are defined. See “UPDATE Rules” on page 8.

Note: If a table is a parent in one relationship and a dependent in another,
integrity rules for DELETE, INSERT, or UPDATE must be satisfied for both
relationships.

To determine the delete rule of an existing foreign key, access the SYSKEYS catalog
table as follows:

SELECT KEYTYPE, KEYNAME, DELETERULE FROM SYSTEM.SYSKEYS
WHERE TNAME='table-name'

40 Database Administration

Placing Tables in Dbspaces
When creating a table, you can specify the dbspace in which it is to reside. If you
do not, it is put in the creator’s PRIVATE dbspace. If the creator does not have a
PRIVATE dbspace, then the CREATE TABLE statement fails.

If you specify the name of the dbspace but not the name of the owner, the
database manager searches for a PRIVATE dbspace of the specified name that is
owned by the creator of the table. If this does not exist, the database manager then
looks for a PUBLIC dbspace with the specified name. If that does not exist, then
the CREATE TABLE statement fails. Refer to the DB2 Server for VSE & VM SQL
Reference manual for more information about the CREATE TABLE statement.

Table placement under the various possible default conditions is illustrated in
Figure 18.

Notes for Figure 18:
v A user with DBA authority can create tables for any user in any dbspace.
v Users with RESOURCE authority can create tables for themselves only, and then

only in their own dbspaces or in any PUBLIC dbspaces.
v If the dbspace name is specified but not qualified (just XX), the database

manager first looks for a PRIVATE dbspace owned by the creator. If this is not
found, then the database manager looks for PUBLIC.XX.

v If the dbspace is defaulted, the required default PRIVATE DBSPACE (CC.ZZ,
DD.YY, or RR.SS) must exist.

v If you omit the dbspace name, the database manager will not select a dbspace
that resides in a nonrecoverable storage pool. If you want to create a table in a
nonrecoverable dbspace, you must specify the dbspace name.

Connected Table Dbspace Result of the

User Is Specified Specified Create Table

DBA named DD CC.TT BB.XX CC.TT in BB.XX

CC.TT PUBLIC.XX CC.TT in PUBLIC.XX

CC.TT XX CC.TT in CC.XX

or PUBLIC.XX

CC.TT none CC.TT in CC.ZZ

TT BB.XX DD.TT in BB.XX

TT PUBLIC.XX DD.TT in PUBLIC.XX

TT XX DD.TT in DD.XX

or PUBLIC.XX

TT none DD.TT in DD.YY

RR with RESOURCE CC.TT BB.XX ERROR

AUTHORITY CC.TT PUBLIC.XX ERROR

CC.TT XX ERROR

CC.TT none ERROR

TT BB.XX ERROR

TT PUBLIC.XX RR.TT in PUBLIC.XX

TT XX RR.TT in RR.XX

or PUBLIC.XX

TT none RR.TT in RR.SS

Figure 18. Default Placement of Tables in Dbspaces

Chapter 2. Implementing Your Design 41

You can easily avoid confusion by fully qualifying both the table name and the
dbspace name.

Creating Views
Some of your users may find that no single table contains all the data they need;
rather, the data might be scattered among several tables. Or one table might
contain more data than they want to see or are authorized to see. For those
situations, you can create views. A view is an alternative way of describing data
that exists in one or more tables.

You can create a view any time after creating the underlying tables. The owner of a
set of tables implicitly has the authority to create a view on them, and someone
with DBA authority can create a view for any owner on any set of tables.

Use the CREATE VIEW statement to define a view and give it a name. Unless you
specifically list different column names after the view name, the column names of
the view will be the same as those of the underlying table. (Table 11 on page 43
shows an example of this.) When creating different column names for your view,
remember the naming conventions you established when designing the database.

As Table 11 on page 43 illustrates, the information in the view is described by a
SELECT statement. This statement can name other views as well as tables, and can
use WHERE, WITH CHECK OPTION, GROUP BY, and HAVING clauses. It cannot
use ORDER BY, name a host variable, or contain the UNION operator.

By specifying a WHERE clause in the subquery of a view definition, you can limit
the rows addressed through a view. If an application (or user) deals with a specific
set of rows in a table, you can create a view to limit the rows addressed to only
those required. If a view is created using the WHERE and WITH CHECK OPTION
clauses, all subsequent UPDATEs and INSERTs will prevent changes to rows that
fall outside the set of rows defined by the view. Refer to the DB2 Server for VSE &
VM SQL Reference manual for more information about creating views.

Reasons for Using Views
Some reasons you might want to use views are:
v To provide a customized table for a specific user

Some tables may have a large number of columns, not all of which are of
interest to all users or are named or ordered appropriately. You can, in effect,
create a smaller table for certain users by defining a view that contains only the
columns of interest. You can rename columns and reorder the column sequence
to tailor the view to the user’s needs.

v To limit access to certain kinds of data
You can create a view containing only selected columns and rows from a table
or tables. Users with the SELECT privilege on the view see only the information
you describe. For example, a view could be defined that showed only the
FIRSTNME, LASTNAME, WORKDEPT, and EDLEVEL columns for employees
in Department D11.

v To alter tables without affecting application programs
For example, a program that uses an INSERT into T1 without a specified list of
column names will cause an error after you add a column to table T1. The error
is generated because the number of values being inserted into the table is
different than the number of columns in the table. If T1 is a view, you will be

42 Database Administration

protected from that error because adding a column to the table does not affect
the view definition and, therefore, does not affect the program.

Creating a View on a Table
The example below illustrates creating a view on a single table, the DEPARTMENT
table. Of the four columns in the table, only three are required for the view:
DEPTNO, DEPTNAME, and MGRNO. The order of the columns in the SELECT
clause is the order in which they appear in the view.

CREATE VIEW VDEPT3 AS
SELECT DEPTNO,DEPTNAME,MGRNO
FROM DEPARTMENT

In this example, no column list follows the view name, VDEPT3. Hence, the
columns of the view have the same names as those of the table on which it is
based (DEPTNO, DEPTNAME, MGRNO). Table 10 shows the result of executing
the following SQL statement:

SELECT * FROM VDEPT3

Table 10. View of a Table

DEPTNO DEPTNAME MGRNO

A00 SPIFFY COMPUTER SERVICE DIV. 000010

B01 PLANNING 000020

C01 INFORMATION CENTER 000030

D01 DEVELOPMENT CENTER ?

D11 MANUFACTURING SYSTEMS 000060

D21 ADMINISTRATION SYSTEMS 000070

E01 SUPPORT SERVICES 000050

E11 OPERATIONS 000090

E21 SOFTWARE SUPPORT 000100

Creating a View from Several Tables
Name more than one table in the FROM clause to create a view that combines
information from two or more tables. This operation is called a join, and is shown
in the following example, which includes the manager’s name (from the
EMPLOYEE table) and information from the DEPARTMENT table.

CREATE VIEW SMITH.VDEPTM AS
SELECT DEPTNO, MGRNO, LASTNAME, ADMRDEPT
FROM DEPARTMENT, EMPLOYEE
WHERE EMPLOYEE.EMPNO = DEPARTMENT.MGRNO

Table 11 shows the result of executing the following SQL statement:
SELECT * FROM SMITH.VDEPTM

Table 11. View of Two Tables

DEPTNO MGRNO LASTNAME ADMRDEPT

A00 000010 HAAS A00

B01 000020 THOMPSON A00

C01 000030 KWAN A00

D11 000060 STERN D01

Chapter 2. Implementing Your Design 43

Table 11. View of Two Tables (continued)

DEPTNO MGRNO LASTNAME ADMRDEPT

D21 000070 PULASKI D01

E01 000050 GEYER A00

E11 000090 HENDERSON E01

E21 000100 SPENSER E01

Now, suppose you want to create a similar view that includes only the
departments that report administratively to Department A00. Suppose also that
you want a different set of column names. The appropriate CREATE statement is
as follows:

CREATE VIEW SMITH.VDEPTMA00
(DEPT, MGR, NAME, REPORTTO)
AS
SELECT DEPTNO, MGRNO, LASTNAME, ADMRDEPT
FROM EMPLOYEE, DEPARTMENT
WHERE EMPLOYEE.EMPNO = DEPARTMENT.MGRNO
AND ADMRDEPT = 'A00'

Table 12 shows the result of executing the following SQL statement:
SELECT * FROM SMITH.VDEPTMA00

Table 12. View Created with New Column Names

DEPT MGR NAME REPORTTO

A00 000010 HAAS A00

B01 000020 THOMPSON A00

C01 000030 KWAN A00

E01 000050 GEYER A00

Things You Cannot Do with a View
When designing views, consider the following restrictions:
v You cannot update, insert, or delete through a view if it involves any of the

following:
– SQL column functions (SUM, MAX, MIN, AVG, COUNT)
– Elimination of duplicate rows (DISTINCT)
– Grouping (GROUP BY), or HAVING clause
– A FROM clause that uses more than one table (that is, a join).

In the above cases, you can retrieve data from the views by means of the SQL
SELECT statement, but you cannot use INSERT, UPDATE, or DELETE
statements.

v You cannot insert a row through a view if the view has a column derived from
an arithmetic or string expression, a scalar function, or a constant.

v You cannot update a column of a view that is derived from an arithmetic or
string expression, a scalar function, or a constant (for example, a column that is
defined as 1.6 x SALARY).

For more detailed information about view restrictions, see the DB2 Server for VSE
& VM SQL Reference manual.

44 Database Administration

You can make changes to a table through a view when the view does not contain
the same number of columns or the same number of rows as the table on which it
is based. Table 13 summarizes the restrictions on accessing views.

Table 13. Restrictions on View Access

STATEMENT RESTRICTIONS

UPDATE You cannot update a view defined as the join of multiple
tables. This includes views defined on views defined as
the join of multiple tables.

You cannot update a view that is defined using
DISTINCT, GROUP BY, or column functions.

You cannot update rows of a view that is defined using
WITH CHECK OPTION, if the updated rows fall outside
the set of rows defined by the view.

You cannot update virtual columns. (A virtual column is
a column on a view that is not derived directly from a
column of a stored table. For example, view columns
defined by expressions such as MAX(SALARY),
SALARY+BONUS, or AVG(PRSTAFF) are all virtual
columns).

INSERT You cannot insert into a view defined as the join of
multiple tables. This includes views defined on views
defined as the join of multiple tables.

You cannot insert into a view that contains a column of
the underlying table which allows nulls.

You cannot insert into a view that is defined using
DISTINCT, GROUP BY, or column functions.

You cannot insert into a view that is defined using WITH
CHECK OPTION, if the inserted rows fall outside the set
of rows defined by the view.

You cannot insert into the virtual columns of a view.

DELETE You cannot delete from a view defined as the join of
multiple tables. This includes views defined on views
defined as the join of multiple tables.

You cannot delete from a view that is defined using
DISTINCT, GROUP BY, column functions.

INDEX You cannot create an index on a view.

ALTER You cannot alter a view (for example, add columns, or
keys).

DBS UNLOAD Unloading a view will sequence the unloaded rows in an
arbitrary order chosen by the database manager. Rows
may not be in sequence of any index on an underlying
table.

DBS RELOAD RELOADing through a view will not drop and recreate
indexes on the underlying table. You must do this
yourself using SQL statements that precede and follow
the RELOAD statement.

The INSERT restrictions shown above also apply.

DBS DATALOAD, ISQL INPUT, SQL PUT The INSERT restrictions shown above also apply.

Chapter 2. Implementing Your Design 45

Materializing a View
When designing views, you should be aware of the view-processing techniques
used by the database manager and the circumstances in which each is used. Two
view-processing techniques are used: view merge and view materialization. This
section describes the circumstances in which a view is materialized.

When a view is referenced in an SQL statement, the view definition is merged with
the SQL statement and a new statement is created that references only base tables
and columns and that contains only added or modified WHERE predicates, and an
added or modified GROUP BY clause. The new statement is then processed. This
process is view merge. Some view-referencing statements cannot be processed using
the view merge technique. The database manager uses the view materialization
technique to process these statements.

With view materialization, a temporary table is created internally and a view (that
could not otherwise be accessed) is materialized into the table at run time. The
database manager then performs the statement on the materialized view. A
materialized view is read-only, because queries on the view are on a temporary
table. Each view that is materialized in an SQL statement is materialized in a
temporary dbspace.

Because view merge is more efficient than view materialization, view
materialization is used only if view merge cannot be used.

A view is materialized if it is created with:
v A GROUP BY or HAVING clause, and is accessed by a statement that requires

the view to be joined or that specifies column functions on the view
v Column functions, and is accessed by a statement that requires the view to be

joined
v One or more DISTINCT columns, and is accessed by a statement that requires

the view to be joined
v Multiple DISTINCT columns, and is accessed by a statement that specifies

column functions on the view
v One DISTINCT column, and is accessed by a statement that specifies multiple

column functions on the view
v A column defined with column functions, and that column is accessed by a

statement that specifies column functions
v One or more DISTINCT columns, and a DISTINCT column is accessed by a

statement that includes arithmetic expressions with column functions
v Multiple DISTINCT columns, and is accessed by a statement that does not

specify all columns in the select-list of the SELECT statement
v A column defined with built-in functions, expressions, or literals, and that

column is referenced in the GROUP BY or HAVING clause of a SELECT
statement accessing the view

v A column function with a DISTINCT specification, and is accessed by a SELECT
statement with a DISTINCT specification

v A column defined with a column function, and that column is referenced in the
WHERE clause of a statement accessing the view

v A column derived from an expression, function or constant, and that column is
accessed by a statement containing a WHERE clause with a LIKE predicate

v A virtual column, and that column is referenced in a DISTINCT column function
of statement accessing the view.

46 Database Administration

Note: If the SELECT list of the view definition statement contains a long field, the
view cannot be materialized because of long-field restrictions.

For information on determining if view materialization occurs, refer to the DB2
Server for VSE & VM Performance Tuning Handbook manual.

Creating Indexes
The purpose of nonunique indexes is to provide efficient access to data. Unique
indexes have the additional purpose of ensuring that key values are unique.

Even when present, the index is not always used: the database manager selects an
access path to the data based on a combination of factors. To see whether an index
is used in processing a particular SQL statement, use the EXPLAIN statement. For
information on using the EXPLAIN statement and on explanation tables, refer to
the DB2 Server for VSE & VM Performance Tuning Handbook manual.

Indexes can improve performance of table access; however, this is at the expense of
the DASD storage required for them, and the performance of INSERT, UPDATE,
and DELETE operations. Thus, while you will want to create indexes on your
tables, some judgement is advised. For information about the storage required by
an index, see “Estimating the Number of Index Pages” on page 229.

To create an index on a table, use the SQL CREATE INDEX statement. You must
have DBA authority or the INDEX privilege on the table. An index may be defined
on 1 to 16 columns.

Index Key
The columns identified in the CREATE INDEX statement build a key. An index key
is a column or an ordered collection of columns on which an index is defined. A
multicolumn key is a key built on two or more columns.

The usefulness of an index depends on its key. Columns that you use frequently in
performing selection, join, projection, grouping, and ordering operations are good
candidates for use as keys. See “Estimating the Number of Index Pages” on
page 229 for information on calculating the size of index keys. For columns with a
field procedure, use the number of bytes in the encoded field, not the number in
the decoded column.

For information about restrictions on key length, see the description of the
CREATE INDEX statement in the DB2 Server for VSE & VM SQL Reference manual.

The ordering of the columns specified in the CREATE INDEX statement is
important to the definition of the key sequence. The major order determinant
columns must be specified first. For example, an index on the PROJ_ACT table,
defined over the PROJNO, ACTNO, and ACSTDATE columns sequences activity
numbers within project numbers, and estimated activity start date within activity
numbers, if the columns are specified in this order for the index.

For each column participating in the key, you can specify whether its order in the
key sequence is ascending or descending. The default is ascending. When creating
a unique index, the uniqueness of each value in the index key cannot depend upon
trailing blanks. The database manager also ignores trailing blanks when
sequencing indexes made up of VARCHAR or VARGRAPHIC values.

Chapter 2. Implementing Your Design 47

UNIQUE Indexes
You can enter duplicate values in a key. If you do not want duplicate values, use
CREATE UNIQUE INDEX.

For example, in the sample database, it is important that there be no duplicate
activity keywords in the ACTIVITY table. Creating a unique index, as in the
following example, prevents duplicates.

CREATE UNIQUE INDEX XACT1
ON ACTIVITY (ACTKWD)

The index name is XACT1 and the indexed column is ACTKWD.

If you are planning to use referential integrity or unique constraints, described in
“Creating Tables” on page 27, it may be unnecessary to explicitly create unique
indexes. When using the primary key or unique constraint clause, the database
manager automatically creates a unique index on the table. However, you may
want additional indexes for other columns and foreign keys.

The PCTFREE Clause
The PCTFREE clause specifies how much space is to be reserved for future index
entries, which allows index maintenance to take place without splitting of index
pages. Its default is 10 percent, which is a good value for most purposes. If you
expect much insert or update activity after the creation of the index, you might
want to override the default by setting PCTFREE to a higher value. If you expect
no insert or update activity after the creation of the index, you might want to
override the default by setting PCTFREE to zero.

Usually, a low PCTFREE value, 5–10 percent, is a good choice when creating an
index, as it provides enough room to accommodate a low level of maintenance. It
also provides extra room at localized key ranges where high update activity is
taking place by splitting a full index page into two half-empty pages when an
insertion or update must go into that page.

Clustering Rows of a Table on an Index
A CLUSTERING index is used by the database manager to determine placement of
rows in pages of a dbspace. The first index created on a table is, by default, the
CLUSTERING index. The database manager tries to place rows with the same or
similar keys on the same dbspace page.

A CLUSTERED index is an index whose sequence of key values corresponds closely
to the sequence in which the table rows are actually stored in the database. It can
be effectively used to minimize DASD input/output whenever the table rows are
accessed in the index sequence of a CLUSTERED index. A CLUSTERING index
should always be made a CLUSTERED index. This is done by loading the table
rows in the key sequence of the CLUSTERING index.

To establish a CLUSTERING index that also has the property of being a
CLUSTERED index, do the following:
1. Load the table in the index sequence (key sequence) of the CLUSTERING

index.
This establishes the initial clustering of rows with similar keys. For the load
operation, set PCTFREE for the dbspace to a high enough value to allow space
on pages for future clustered insertion of rows.

2. Create the indexes on the table.

48 Database Administration

After loading the table, create the indexes on the table. The first index you
create will be the CLUSTERING index. Any index having an order that matches
the load sequence of the rows will be marked as a CLUSTERED index.
The CLUSTERING index will be a CLUSTERED index because you have
loaded the table rows in the sequence of this index. In the SYSINDEXES catalog
table, the CLUSTER column value for this index is F, indicating that it is the
first index created by the table, and that it is currently a CLUSTERED index. If,
after many INSERTs of new rows into the table, the order in which the rows
are stored in the database no longer closely match the index key sequence, the
CLUSTER column value is changed to W (the next time UPDATE STATISTICS
is performed). This indicates that the index is the first index created on the
table, and it is currently not a CLUSTERED index. You can reorganize the table.
Refer to the DB2 Server for VSE & VM Performance Tuning Handbook manual for
information on reorganizing tables. The database manager will continue to use
this index to decide where new rows should be stored, because it is still the
CLUSTERING index for the table.
One or more of the other indexes created on the table may also happen to have
an index sequence that closely matches the sequence in which the table rows
are stored. Although this is fortuitous and cannot be directly controlled by the
user, the database manager will record these indexes as CLUSTERED by setting
their CLUSTER column in SYSINDEXES to C. Such indexes can be exploited as
efficient access paths by the database manager. When one of these indexes is no
longer CLUSTERED, its CLUSTER column is changed to N the next time
UPDATE STATISTICS is performed.

3. Reduce the PCTFREE value for the dbspace.
This is necessary to make the free space reserved during the load operation
available for use on normal INSERT activity. On an INSERT or ISQL INPUT,
the database manager attempts to place the inserted row on the same page as a
row with the same or similar key.

You can define the key ordering of the CLUSTERING index to be any you wish.
However, the primary considerations would be frequently used table orderings
(that is, frequently used ORDER BYs) and joins.

If you cluster a table on an index that has a key ordering that matches the most
common ORDER BY clauses for queries against the table, you can avoid internal
sorting of the query results. A related consideration is the size of an ordered query
result. Internal sorting of a small query result is not expensive. However, if you
have a large, ordered query result (for a batch job or a comprehensive report), the
internal sort could be quite time-consuming. You should consider clustering a table
to support your most frequent, large sequential access orderings.

If you have a table that is frequently referenced by a join on a particular column
(or set of columns), you may want to consider clustering it on an index on the join
column(s). For example, between the DEPARTMENT and EMPLOYEE tables there
are two likely join candidates (referential constraints are defined): one between the
EMPNO column in EMPLOYEE and the MGRNO column in DEPARTMENT, and
the other between the DEPTNO column in DEPARTMENT and the WORKDEPT
column in EMPLOYEE. In this case you could choose to cluster both tables on
either employee numbers or department numbers, depending on which join is
expected more frequently.

Note: You can change the clustering that you initially define for a table. Refer to
the DB2 Server for VSE & VM Performance Tuning Handbook manual for
information on reorganizing tables.

Chapter 2. Implementing Your Design 49

Figure 19 illustrates both clustered and nonclustered indexes.

Some Things to Remember When Defining Keys
Column updates require index updates. Define as few indexes as possible on a
column that is updated frequently, because every change must be reflected in each

25 61

86754533138

Data
Pages

Leaf
Pages

Inter-
mediate
Pages

Root
Pages

CLUSTERED
INDEX

25 61

8 13 33 45 75 86

Leaf
Pages

Data
Pages

Root
Pages

NON-CLUSTERED
INDEX

Inter-
mediate
Pages

Figure 19. Clustered and Nonclustered Indexes

50 Database Administration

index. For more information about potential problems with indexes and
performance, refer to the DB2 Server for VSE & VM Performance Tuning Handbook
manual.

A multicolumn key may be more useful than a key on a single column when the
comparison is for equality. A single multicolumn index is more efficient when the
comparison is for equality and the initial columns are provided. For example, if an
index is composed of columns A, B, and C, a SELECT statement with a WHERE
clause of the form WHERE A = value AND B = value may be processed more
efficiently than if there are separate indexes on A and on B. Additional columns
may also improve performance by allowing index-only access scanning. Refer to
the DB2 Server for VSE & VM Performance Tuning Handbook manual for information
on index-only access scanning.

Indexes are important tools for improving performance. Suggestions for using
indexes effectively are in the DB2 Server for VSE & VM Performance Tuning
Handbook manual.

An index cannot be defined over multiple tables. Furthermore, an index key
cannot include any columns defined as long fields. Avoid using VARCHAR or
VARGRAPHIC columns in an index. Fixed-length indexes perform better than
variable-length indexes. Data pages as well as index pages must be read when
VARCHAR or VARGRAPHIC columns are included in an index. The
variable-length fields have trailing blanks removed before being put into the index.
This may result in the data page values differing from the index page values, and
necessitates that both index and data pages be read when using the index as an
access path for data retrieved.

Note: Long fields include the following data types: VARCHAR(n) with n>254,
VARGRAPHIC(n) with n>127, LONG VARCHAR, or LONG VARGRAPHIC.

General Performance Considerations on the Use of Indexes
It is good practice to create a unique index on the column or set of columns that
uniquely define each record in the table (its key). A unique index can easily be
created by specifying a primary key or a unique constraint when you create the
table. A primary key can be used as an index even if automatic referential integrity
is not being used. Using a unique constraint or primary key helps data integrity
because the database manager enforces this uniqueness.

Consider creating additional indexes on other columns based on how often you
expect the column to be used in search criteria. Once you have identified all the
desired indexes, decide which column is apt to be used most often in search
criteria. Then load the table in that column’s sequence, thus making the column’s
corresponding index a CLUSTERED index.

If the table is to have a CLUSTERING index, be sure to create that index first after
initial table loading. You should do this because the database manager tries to
place inserted records so that the physical sequence of the table’s records is the
same as the sequence defined by the first index created on that table.

It is more efficient to first load a table and then create the indexes on it, rather than
the other way around.

Usually, each table should have at least one index. Part of the decision of whether
to create an index on a specific column should be based on the trade-off between

Chapter 2. Implementing Your Design 51

the faster access achieved, versus the index maintenance processing that the
database manager must do whenever that column is modified. A column is an
ideal candidate for being indexed if it is likely to be a frequent search argument on
SQL statements, but not likely to be changed. Avoid creating indexes on frequently
updated columns.

Indexes can be created and dropped. If high query activity is anticipated,
temporarily create indexes on the columns that are likely access paths for those
queries.

Migration Considerations for Indexes
The SQL/DS Version 2 Release 2 product introduced a new index structure for
nonunique indexes. This format requires more space than in earlier releases, but it
allows nonunique indexes to perform almost as well as unique ones.

The new format requires more space. The number of additional bytes required for
each nonunique index in the new format is:

4 x (number of index pages) - 4

If you are migrating from Version 2 Release 1 or earlier, some of your dbspaces
may not have room for indexes in the new format. Before deleting the old indexes,
determine if there are sufficient index pages available to create the index in the
new format. Nonunique indexes created before Version 2 Release 2 can coexist with
the new type of nonunique index, so you do not have to drop and re-create
indexes.

Note: You cannot migrate from Version 2 directly to Version 7. You must migrate
to Version 3 first and then migrate from Version 3 to Version 7.

Using the Catalog in Database Design
The catalog tables contain information that can be helpful in designing your
database. The DB2 Server for VSE & VM SQL Reference manual lists these tables and
what is stored in them.

You can also use the catalog to verify the accuracy of your database definition
process. After you have created the objects in your database, display selected
information from the catalog to check that there were no errors in your CREATE
statements, and to verify that you have the correct tables in each dbspace.

The information in the catalog is vital to normal database system operation. As the
following examples show, you can retrieve catalog information, but changing it
could have serious consequences. Thus, you cannot process INSERT or DELETE
statements against the catalog, and you can update only a few of the columns in
selected catalog tables.

To run the following examples, you need at least the SELECT privilege on the
appropriate catalog tables. Be careful with your own examples: querying the
catalog can result in a long dbspace scan.

Retrieving Catalog Information about a Table
The SYSTEM.SYSCATALOG table contains a row for each table and view in your
database. For each, it tells you whether the object is a table or view, its name, who
created it, what dbspace contains it, and other information. It also has a REMARKS

52 Database Administration

column in which you can store your own information about the table in question.
See “The COMMENT ON Statement” on page 54 for information about how to do
this.

Enter the following statement to display all the information for the project activity
sample table:

SELECT *
FROM SYSTEM.SYSCATALOG
WHERE TNAME = 'PROJ_ACT'
AND CREATOR = 'SQLDBA'

Retrieving Catalog Information about Columns
The SYSTEM.SYSCOLUMNS table has one row for each column of each table and
view. You can query it, for example, if you cannot remember a particular column
name.

The following statement retrieves information about columns in the sample
department table:

SELECT CNAME, TNAME, COLTYPE, LENGTH, NULLS
FROM SYSTEM.SYSCOLUMNS
WHERE TNAME='DEPARTMENT'
AND CREATOR = 'SQLDBA'

As shown in Table 14, for each column it displays:
v The column name
v The name of the table that contains it
v Its data type
v Its length attribute
v Whether or not it allows nulls.

Table 14. Retrieving Information about Columns from SYSCOLUMNS

CNAME TNAME COLTYPE LENGTH NULLS

DEPTNO DEPARTMENT CHAR 3 N

DEPTNAME DEPARTMENT VARCHAR 36 N

MGRNO DEPARTMENT CHAR 6 Y

ADMRDEPT DEPARTMENT CHAR 3 N

Retrieving Catalog Information about Indexes
The SYSTEM.SYSINDEXES table contains a row for each index, including indexes
on catalog tables.

The following query retrieves information about the index XEMPL2:
SELECT *

FROM SYSTEM.SYSINDEXES
WHERE INAME = 'XEMPL2'
AND ICREATOR = 'SQLDBA'

A table can have more than one index. The following query retrieves information
about all the indexes of a table:

SELECT *
FROM SYSTEM.SYSINDEXES
WHERE TNAME = 'EMPLOYEE'
AND CREATOR = 'SQLDBA'

Chapter 2. Implementing Your Design 53

Retrieving Catalog Information about Views
The SYSTEM.SYSVIEWS table contains a row for each view.

The following query retrieves information about the view SYSUSERLIST:
SELECT *

FROM SYSTEM.SYSVIEWS
WHERE VIEWNAME = 'SYSUSERLIST'
AND VCREATOR = 'SQLDBA'

Retrieving Catalog Information about Authorization
The following 4 tables contain information about the privileges held over tables
and views:
v SYSCOLAUTH

Contains information regarding grants of the UPDATE privilege on columns of
tables or views.

v SYSPROGAUTH
Details privileges regarding who can run packages.

v SYSTABAUTH
Contains information about the privileges held by authorization IDs and
packages on tables and views.

v SYSUSERAUTH
Records special privileges held by authorization IDs (for example, DBA,
CONNECT authority).

Only users with DBA authority can access SYSUSERAUTH. Other users can access
this information using a view called SYSUSERLIST, which contains all the columns
of SYSUSERAUTH except the PASSWORD column.

Query these tables to learn who can access data in your application server. For
example, the following query retrieves the names of all users who have been
granted access to the SQLDBA.DEPARTMENT table, as well as any views on that
table:

SELECT GRANTEE
FROM SYSTEM.SYSTABAUTH
WHERE TTNAME = 'DEPARTMENT' AND GRANTEETYPE = ' '
AND TCREATOR = 'SQLDBA'

GRANTEE is the name of the column that contains authorization IDs and package
names for users of tables. TTNAME and TCREATOR specify the
SQLDBA.DEPARTMENT table. The clause GRANTEETYPE = ’ ’ ensures that you
retrieve the names only of users (not packages) that have authority to access the
table.

The COMMENT ON Statement
After you create a table or view, you can provide explanatory information about it
for future reference—for example, the purpose of the table, who uses it, and
anything unusual about it. To do this, use the COMMENT ON statement. You can
both store comments about the table or view as a whole, and include one for each
column. A comment must not exceed 254 bytes.

Comments are especially useful if your names do not clearly indicate the contents
of columns or tables.

54 Database Administration

Below are two examples of COMMENT ON:
COMMENT ON TABLE SQLDBA.EMPLOYEE IS

'Employee table. Each row in this table represents one
employee of the company.'

COMMENT ON COLUMN SQLDBA.PROJECT.PRSTDATE IS
'Estimated project start date. The format is DATE.'

Retrieving Comments
When you process a COMMENT ON statement, your comments are stored in the
REMARKS column of SYSTEM.SYSCATALOG or SYSTEM.SYSCOLUMNS. Any
comment already present in the row is replaced by the new one. The following
queries retrieve the comments added by the two COMMENT ON statements
above:

SELECT REMARKS
FROM SYSTEM.SYSCATALOG
WHERE TNAME = 'EMPLOYEE'
AND CREATOR = 'SQLDBA'

SELECT REMARKS
FROM SYSTEM.SYSCOLUMNS
WHERE CNAME = 'PRSTDATE' AND TNAME = 'PROJECT'
AND CREATOR = 'SQLDBA'

Chapter 2. Implementing Your Design 55

56 Database Administration

Chapter 3. Maintaining Your Database

The previous chapter described how to implement your database design. This
chapter deals with the various maintenance tasks you may need to perform to
maintain tables and dbspaces. The following tasks are discussed:

Maintaining Tables

v Loading information into tables
There is considerable flexibility in how data can be entered.

v Copying a table
When information is being shared, the owner of a table may choose to have
other users copy it, so that they can make changes to their own copy of the table
without affecting the original.

v Moving tables from one dbspace to another
You may want to move tables to another dbspace to:
– Improve concurrent access to tables

If a table resides in a PRIVATE dbspace and many users need to update that
table at the same time, you should move it into a PUBLIC dbspace, which
allows concurrent access.

– Recover dbspaces
You may want to move a table from a nonrecoverable dbspace to a
recoverable one, or a recoverable dbspace to a nonrecoverable one.

– Get more space for a table
The amount of information that you can store in a table depends on the size
of the dbspace it is in, and the storage requirements of the other tables there.
If a table requires more space for data or indexes, you should consider
moving it to a larger dbspace.

v Merging data from multiple tables
It may be necessary to combine all the columns or a subset of the columns from
different tables into a new table.

v Altering the design of a table
You may want to change the design of a table after it has been created: for
example, add or delete columns, change the data type of a column, or change
the name of the table.

v Altering referential constraints on a table
You may wish to add referential integrity to tables that do not have it.

v Enforcing referential constraints
You may want to enforce the referential constraints when your tables are
created, or defer enforcement until you have performed other activities.

v Moving data from one application server to another
The second application server can be a DB2 Server for VSE & VM application
server, or another application server supporting IBM’s implementation of the
Distributed Relational Database Architecture (DRDA) protocol.

v Removing tables
If tables are no longer required, you can remove them.

© Copyright IBM Corp. 1987, 2001 57

Maintaining Dbspaces

v Altering the design of a dbspace
When you created a dbspace, you specified the following parameters for it: its
potential size (in pages), its type (PUBLIC or PRIVATE), its storage pool
assignment (STORPOOL), the number of pages for its header (NHEADER), the
percentage of each page reserved for updates that cannot be placed in the
original location (PCTFREE), the number of pages reserved for indexes
(PCTINDEX), and the size of the locks (LOCK).
As requirements change, you may need to change some of these settings. You
can change the PCTFREE and LOCK parameters with the ALTER DBSPACE
statement. If any of the other parameters need to be changed, you will have to
acquire a new dbspace (which satisfies your new requirements), and move all
the tables from the old dbspace to the new one.

v Reorganizing a dbspace to free storage pool pages
As part of maintaining your dbspaces, you may have to reorganize it to release
pages back to a storage pool.

v Removing dbspaces
If a dbspace is no longer required, you can remove it and its contents by using
the DROP DBSPACE statement.

v Using VSAM (VSE only)
There are VSAM restrictions when managing storage.

Reorganizing Catalog Table Indexes

The catalog tables have indexes to improve the speed of access. Occasionally, you
should reorganize these indexes. See “Reorganizing Indexes on the Catalog Tables”
on page 76.

58 Database Administration

Maintaining Tables
After designing and creating a table, you may have to load data into it, copy it,
move it from one dbspace to another, move data in it from one application server
to another, change an aspect of its design, or remove it from the database.

Loading Data into Tables
This section reviews the possible ways to load data into tables. Many of these
methods use the Database Services Utility commands: for more information on
these commands, refer to the DB2 Server for VSE & VM Database Services Utility
manual.

Loading Data in VM Using the DBS Utility

Interactively: You can load data into tables interactively through the DBS Utility.
To do this, invoke the utility so the terminal controls file input (SYSIN). You can
then either enter multiple INSERT statements, or execute the DBS Utility
DATALOAD TABLE command using the INFILE (*) subcommand.

From a CMS File: The DBS Utility DATALOAD TABLE command will accept
input data records in a user-created CMS file. One or more tables can be loaded
during a single pass of the data records. The existing data in the tables loaded with
this method are not affected. Rows are added to a table through the PREPARE,
OPEN, PUT, and CLOSE facilities of SQL.

From a Virtual Reader File: The DBS Utility DATALOAD TABLE command will
also accept input data records in a CMS virtual reader file with no header. One or
more tables can be loaded during a single pass of the data records. The existing
data in the tables loaded with this method are not affected. Rows are added to a
table through INSERT statements executed using the PREPARE and EXECUTE
facilities of SQL.

Refer to the DB2 Server for VSE & VM Database Services Utility manual for more
information.

Loading Data Using the DBS Utility in VSE/ICCF
To load data into a table from data records entered from a terminal, as an
alternative to entering multiple INSERT statements, users can use the DBS Utility
under VSE/ICCF in conversational mode. To initiate this, enter the following
VSE/ICCF control statements:

/LOAD ARIDBS
/OPTION GETVIS=AUTO
/DATA INCON

In response to the prompt to ENTER DATA, the appropriate series of SQL
statements or DBS Utility DATALOAD TABLE commands must be entered. After a
DATALOAD TABLE command the user must enter the INFILE (*) subcommand to
initiate input data record processing and the ENDDATA subcommand to end it. An
outline of the interactive terminal input is:

CONNECT userid IDENTIFIED BY password;
DATALOAD TABLE (table-name)

column-name1 1-5
column-name2 6-7

...

INFILE (*)

Chapter 3. Maintaining Your Database 59

data record
data record

...

ENDDATA

These commands are described in the DB2 Server for VSE & VM Database Services
Utility manual.

Each record (row) is entered in a fixed format as defined by the column
specifications in your DATALOAD command. In this example, the user enters
column 1 data into typing positions 1–5 of the command line, column 2 data into
positions 6–7, and so on.

Do not put quotation marks around character data, and do not use commas to
separate data values. Such punctuation can be used outside the data positions of
the command line defined by the column specifications of the DATALOAD
command.

As an alternative to entering each input data record interactively, the user can
embed DBS Utility commands and data records in the VSE/ICCF control
statements. An outline of loading a table under VSE/ICCF in a nonconversational
manner is:

/LOAD ARIDBS
/OPTION GETVIS=AUTO
/DATA
CONNECT userid IDENTIFIED BY password;
DATALOAD TABLE (table-name)

column-name1 1-5
column-name2 6-7

...

INFILE (*)
data record

...

ENDDATA

Loading Data from a Terminal Using ISQL INPUT
The ISQL INPUT statement enables a user to enter multiple rows of data into a
table. The table name and (optionally) the column names need to be entered only
once. The column names, along with their data types, are then displayed in the
order that the data must be entered, and the user can then enter data one row at a
time.

For data that is similar, the user can use the PF12 RETRIEVE function. That is, the
user can retrieve the previous data row entered, and then type over the fields that
are different. This can save keystrokes.

Data entered with an INPUT statement is not stored in the table until the INPUT
statement is ended by an END statement. ISQL will issue an INSERT statement for
every row entered, using the PREPARE and EXECUTE facilities of SQL. However,
before the INPUT statement is ended, the data can be committed or backed out by
the statement:

60 Database Administration

SAVE — Stores all data entered since the last SAVE statement. If no SAVE
statement has been issued, it commits all the data since the start of the INPUT
statement.
BACKOUT — Deletes all data entered since the last SAVE statement. If no
SAVE statement has been issued, it deletes all the data since the start of the
INPUT statement.
CANCEL — Performs a BACKOUT and also ends the INPUT statement.

Remember that the AUTOCOMMIT mode affects the processing of the SAVE,
BACKOUT, and CANCEL statements. For additional information on the ISQL
INPUT, SAVE, and BACKOUT statements, refer to the DB2 Server for VSE & VM
Interactive SQL Guide and Reference manual.

Loading Data from Sequential Files in VSE
The DBS Utility DATALOAD TABLE command accepts SYSIPT data records or
data records contained in a user-created sequential file. One or more tables can be
loaded during a single pass of the data records. The existing data in the tables
loaded with this method is not affected. The DATALOAD TABLE processing adds
rows to a table through the PREPARE, OPEN, PUT, and CLOSE facilities of SQL.

Loading Data from VSAM Files
A VSAM file can be converted to either of the following:
v a sequential (SAM) file using the VSE/VSAM Access Methods Services REPRO

command
v a CMS or tape file through the VM VSE/VSAM Access Methods Services

(AMSERV command) using the REPRO control statement.

This sequential file can then be identified as the input data file to DBS Utility
DATALOAD TABLE processing.

Note: The VSAM REPRO command should never be used to copy the DB2
database itself.

Loading Data from Other Tables
Data can be copied into a table from other tables by using the following methods:
v An INSERT with Subselect statement executed through ISQL, the DBS Utility, or

a user program. An INSERT with Subselect copies one or more rows which are
selected or computed from other tables into a table.

v The execution of a DBS UNLOAD and RELOAD command series. This
technique allows data to be copied from tables in the same or different databases
but only a complete replacement of the data in the target table is possible.

v The execution of a DBS DATAUNLOAD and DATALOAD command series. This
technique allows data to be copied from tables in the same or different
application servers, and allows more selectivity than the UNLOAD/RELOAD
sequence. This is useful when you want to copy only parts of tables.

All of these techniques allow the source of the data to be copied to be identified by
a view that is defined on one or more tables. A view can be used to identify the
target table if the view definition meets the requirements defined for inserting
rows into a view.

If referential constraints are in place on tables in which you wish to load data, you
should consider whether you would like to enforce constraints while the data is
loading or after it is loaded. See “Enforcing Referential Constraints” on page 68 for
more information.

Chapter 3. Maintaining Your Database 61

Copying Tables
To make a copy of an existing table, use the DBS Utility UNLOAD and RELOAD
commands.

Example
A user with the user ID SMITH has the SELECT privilege on the
SQLDBA.EMPLOYEE table. To make a copy of this table, to be called
SMITH.EMPLOYEE, in the PRIVATE dbspace SMITHDB, enter the following
commands either in a CMS file called CONTROL DBSINPUT A or in the
appropriate job control:

CONNECT SMITH IDENTIFIED BY SMITHPW;
UNLOAD TABLE (SQLDBA.EMPLOYEE) OUTFILE(TEMPFIL);
RELOAD TABLE (EMPLOYEE) NEW (SMITHDB)
INTABLE (SQLDBA.EMPLOYEE) INFILE(TEMPFIL);

To execute these commands in VM, invoke the DBS Utility, as follows:
FILEDEF TEMPFIL DISK MYDATA MYFILE A4 (RECFM VBS BLOCK 800
SQLDBSU SYSIN(CONTROL DBSINPUT A) SYSPRINT(LIST DBSLIST A)

The RELOAD statement creates tables without constraints, losing all referential
constraints on the table you are copying. You must reinstate referential constraints
later with the ALTER TABLE statement. See “Altering Referential and Unique
Constraints” on page 65.

The RELOAD statement with the ’NEW’ parameter recreates the table without field
procedures. Instead of reloading the table using the ’NEW’ parameter, recreate the
table to include field procedures and reload the table using the ’PURGE’
parameter.

Moving Tables from One Dbspace to Another
To move a table from one dbspace to another, you must first unload it using the
DBS UNLOAD command, drop it from the database, then reload it into the new
dbspace. When a table is dropped, all indexes, privileges, views, primary and
foreign keys, and unique constraints for it are removed, and must be
re-established.

As well, if a table has field procedures associated with it, the table should be
dropped and recreated to include the field procedures and reloaded using the
’PURGE’ parameter.

Example
User SMITH has a table (called SMITH.MYTABLE) that he wishes to move from
the SMITH.PERSONAL dbspace to the SMITH.SECRET dbspace.

Enter the following commands in either a CMS file called CONTROL DBSINPUT
A, or inside the appropriate job control:

CONNECT SMITH IDENTIFIED BY SMITHPW;
UNLOAD TABLE (SMITH.MYTABLE) OUTFILE(TEMPFIL);
DROP TABLE SMITH.MYTABLE;
RELOAD TABLE (SMITH.MYTABLE)

NEW (SMITH.SECRET) INFILE(TEMPFIL);

In VM you run these commands by invoking the DBS Utility, as follows:
FILEDEF TEMPFIL DISK MYDATA MYFILE A4 (RECFM VBS BLOCK 800
SQLDBSU SYSIN(CONTROL DBSINPUT A) SYSPRINT(LIST DBSLIST A)

62 Database Administration

Merging Data from Multiple Tables
It may be necessary to combine all columns or a subset of the columns from
different tables into a new table. You can do this through ISQL or the DBS Utility
using the following procedure:
1. Create the new table with a CREATE TABLE statement.
2. Insert rows into the new table by selecting columns from the source tables with

an INSERT with Subselect statement.
3. Execute an UPDATE STATISTICS statement against the new table.
4. Create the required indexes for the new table with CREATE INDEX statements.
5. Create the required views on the new table.
6. Grant the required authorizations on the new table and views.
7. If necessary, redefine the views on the old tables to eliminate access to the

columns merged into the new table.

To identify authorizations and views on the old tables, you can query the system
catalog with a SELECT statement entered through ISQL or the DBS Utility. The
following tables contain information pertinent to this task:
v SYSTEM.SYSUSAGE identifies the base table on which a view is defined
v SYSTEM.SYSVIEWS identifies the view definitions
v SYSTEM.SYSTABAUTH identifies the users who have privileges to access tables

and views.

Example
To identify the base tables for the view ORGANIZATION, enter the following
query:

SELECT BNAME FROM SYSTEM.SYSUSAGE
WHERE DNAME = 'ORGANIZATION'

To identify the view definitions, enter the following query:
SELECT VIEWTEXT FROM SYSTEM.SYSVIEWS

WHERE VIEWNAME = 'ORGANIZATION'

To identify the users who have privileges to access the view or its base tables,
enter the following query:

SELECT GRANTEE, STNAME FROM SYSTEM.SYSTABAUTH
WHERE TTNAME = 'ORGANIZATION'

If a view is defined for all the columns required in the new table, steps 1, 2, and 3
(needed to merge data from multiple tables) can be replaced by the following:
1. Enter the DBS Utility UNLOAD command to unload the view.
2. Enter the DBS Utility RELOAD command to create and load the new table.
3. Process an UPDATE STATISTICS statement for the new table, if necessary. By

default, this statement is performed for each table loaded during RELOAD
TABLE command processing. For more information, see the DB2 Server for VSE
& VM Database Services Utility manual.

Examples
In VM: Include the following SQL statements and DBS Utility commands within
your DBS Utility control file to perform the above task:

CONNECT userid IDENTIFIED BY userpw;
UNLOAD TABLE creator.viewname OUTFILE(DUMPFIL);
RELOAD TABLE creator.newtablename NEW INFILE(DUMPFIL);

Chapter 3. Maintaining Your Database 63

Invoke the DBS Utility, as usual, to process the above statements and commands.

In VSE: Use the following job control commands, SQL statements, and DBS Utility
commands to perform the above task:

// JOB MERGE DATA
// EXEC PROC=DBNAME01
// ASSGN SYS005,...
// ASSGN SYS004,...
// TLBL DUMPFIL,...

...

CONNECT userid IDENTIFIED BY userpw;
UNLOAD TABLE creator.viewname OUTFILE(DUMPFIL)
RELOAD TABLE creator.newtablename NEW INFILE(DUMPFIL)
/&

See the DB2 Server for VSE & VM Database Services Utility manual for details.

Altering the Design of a Table
If you want to change the design of a table after it has been created, use the SQL
ALTER TABLE statement. This will not change the data in the table; only its
specifications. You can:
v Add a column to a table
v Add or drop a primary key, a foreign key, or a unique constraint.

When you alter a table, information in the system catalog about it is also changed.
For example, when you add a new column to a table, SYSTEM.SYSCOLUMNS is
changed to record it, and the field in there that records the number of columns is
increased by one.

Authorization
To alter a table, you must have the ALTER privilege on it, and if the operation
involves a primary key you must have the ALTER privilege on all dependent
tables as well. If the operation involves a foreign key, you must have the
REFERENCES privilege on the parent table.

You can alter any table if you have DBA authority.

You cannot delete a column, change the name of a column, change the data type of
a column, or add or change a field procedure for a column for existing tables using
the ALTER TABLE statement. To do these operations, you must drop the existing
table and re-create it.

Example
There are two ways to change the data type of the DEPTNAME column of the
DEPARTMENT table from VARCHAR(36) to VARCHAR(40):
v Create a new table (DEPT) with the required column definitions, and copy data

to it.
CREATE TABLE DEPT

(DEPTNO CHAR(3) NOT NULL,
DEPTNAME VARCHAR(40) NOT NULL,
MGRNO CHAR(6) ,
ADMRDEPT CHAR(3) NOT NULL,
PRIMARY KEY (DEPTNO))

INSERT INTO DEPT SELECT * FROM DEPARTMENT

64 Database Administration

Indexes, views, and privileges have to be reestablished for the new table DEPT;
only the data is copied from the DEPARTMENT table. Also, all applications that
used the original table must be changed to reflect the new table name, then
re-preprocessed.

v DATAUNLOAD the contents of the DEPARTMENT table to a flat file, drop the
table, re-create it with the new data type definition of the DEPTNAME column,
then DATALOAD the contents of the flat file back into the DEPARTMENT table.
For details on DATAUNLOAD and DATALOAD, see the DB2 Server for VSE &
VM Database Services Utility manual.

Adding a New Column
When you add a column to an existing table, it is placed on the far right.

The physical records are not actually changed until users insert values in the new
column, so access time to the table is not affected immediately. After values are
inserted, however, this could impact performance by forcing rows onto another
physical page. To avoid that situation, define enough free space on each page
ahead of time.

You cannot define the new column as NOT NULL; it must allow NULL values.

Example
Add a new column to the table DEPARTMENT, containing a location code for the
department. The column name is LOCNCODE, and its data type is CHAR (4).

ALTER TABLE DEPARTMENT
ADD LOCNCODE CHAR (4)

Table 15 shows part of the original table.

Table 15. Before Adding a New Column to a Table

DEPTNO DEPTNAME MGRNO ADMRDEPT

A00 SPIFFY COMPUTER SERVICE DIV. 000010 A00

B01 PLANNING 000020 A00

C01 INFORMATION CENTER 000030 A00

Table 16 shows the table after adding the new column and updating a location
code in the third row.

Table 16. After Adding a New Column to a Table and Updating a Row

DEPTNO DEPTNAME MGRNO ADMRDEPT LOCNCODE

A00 SPIFFY COMPUTER SERVICE
DIV.

000010 A00 ?

B01 PLANNING 000020 A00 ?

C01 INFORMATION CENTER 000030 A00 B126

Altering Referential and Unique Constraints
If you plan to let the database manager enforce referential integrity in a set of
tables, see “Considerations for Referential Integrity when Creating Tables” on
page 39 and “Specifying a UNIQUE Constraint” on page 38.

The following terms are used in the discussion of the ALTER TABLE statement:

Inactive Key or Constraint A primary key, a foreign key, or a unique

Chapter 3. Maintaining Your Database 65

constraint that has been made inoperable by the
ALTER TABLE ... DEACTIVATE statement. Neither
referential nor unique constraints are enforced until
the related keys are activated.

Implicitly Inactive Key A foreign key that is not explicitly inactive, but
references a table with an inactive primary key. A
referential constraint is not enforced until the
related primary key is activated.

Inactive Table A table that contains an inactive or implicitly
inactive key, or contains an active primary key
referenced by an inactive foreign key. This limits
access to the table to the creator or a DBA, and
allows deferred constraint enforcement.

Dependently Inactive Table A dependent table or foreign key that has been
flagged as inactive because the primary key of its
parent table has been deactivated.

Table 17 is a summary of the authorization required to alter referential constraints.

Table 17. Authorization Required when Altering Referential Constraints

Statement Parent Table Dependent Table

ADD
Primary Key
Foreign Key

A
R A

DROP
Primary Key
Foreign Key

A, R(1)
R

A
A

ACTIVATE
Primary Key
Foreign Key
All

A, R(1)
R
A, R(1)

A
A
A

DEACTIVATE
Primary Key
Foreign Key
All

A, R(1)
R
A, R(1)

A
A
A

Note: ALTER privilege is required when A appears. REFERENCES privilege is required
when R appears, and (1) applies when a dependent table exists.

Considerations When Adding Keys or Constraints
The following restrictions apply when you add a primary key, a foreign key, or a
unique constraint to an existing table:
v The columns named for the key being added must exist.
v If adding a primary key, there should be no existing primary key on the table.
v If adding a primary key or a unique constraint there must not be duplicate

values in the specified columns.
v When adding a foreign key:

– The constraint name must not already exist.
– If the key columns are identical to those of another foreign key that references

the same parent table, a warning is issued and the foreign key is created.
v You can use only one FOREIGN KEY clause in each ALTER TABLE statement; if

you want to add two foreign keys to a table, you must execute two statements.

66 Database Administration

v If you add a foreign key, the primary key of the parent table must already exist.
v To add a foreign key, you must have REFERENCES privilege on the parent table

and ALTER privilege on the dependent table.
v If adding a foreign key, the foreign key must not cause a table to be

delete-connected to another table through multiple paths with different delete
rules or with a delete rule of SET NULL.

v A referential cycle with two or more tables must not cause a table to be
delete-connected to itself. For further information on delete-connected tables,
refer to “Restrictions on Keys and Referential Constraints:” on page 40.

For further information on referential integrity, refer to “Elements of Referential
Integrity” on page 6.

Considerations When Dropping a Primary or Foreign Key
The following restrictions apply when you drop a primary key or a foreign key
from an existing table:
v When you drop a foreign key, the corresponding referential relationship is also

dropped.
v To drop a foreign key, you must have REFERENCES privilege on the parent

table and ALTER privilege on the dependent table.
v When you drop a primary key, all the referential relationships in which the table

is a parent are also dropped.
v You must have ALTER privilege on any dependent tables.
v The dependent tables no longer have foreign keys.
v The unique index (created to enforce uniqueness in the primary key) is dropped.

In both situations, you should consider carefully the effects on your application
programs of dropping keys. The primary key of a table is intended to serve as a
permanent, unique identifier of the occurrences of the entities it describes, and
quite likely some of your programs depend on that. The foreign key defines a
referential relationship and a delete rule, and without it your programs must
enforce the constraints.

Considerations When Activating Keys and Constraints

Primary Key: To activate a primary key you must have ALTER privilege on the
parent and dependent tables and REFERENCES privilege on all dependent tables.

If any dependent foreign keys were deactivated implicitly when the primary key
was made inactive, they will be verified against the primary key. If the primary
key index can be created successfully and the dependent foreign key values are
found in the parent table’s primary key, then the primary key and the dependent
foreign keys will be activated. If any of these processes fail, none of the keys will
be activated.

Activating the primary key will neither verify nor affect the status of any
dependent foreign keys that were deactivated explicitly with the ALTER TABLE
table-name DEACTIVATE FOREIGN KEY statement.

Foreign Key: To activate a foreign key you must have ALTER privilege on the
dependent table and REFERENCES privilege on the parent table.

If a foreign key is already active, attempts to activate it are ignored. If the primary
key of the parent table referenced by this foreign key is inactive, the foreign key

Chapter 3. Maintaining Your Database 67

cannot be activated. Otherwise, the inactive foreign key will have its values
verified against its parent table. If all values can be found in the parent’s primary
key, the foreign key will be activated.

Unique Constraint: To activate a unique constraint you must have ALTER
privilege on the table. The unique constraint will be activated only if all values in
its key are unique. If there are duplicate values you must change them to be
unique before the constraint can be activated.

All: To activate the primary key, each unique constraint, and each explicitly
inactive foreign key in a table, use the ACTIVATE ALL option. You must have the
required ALTER and REFERENCES privileges.

Implications of Activating a Primary Key or Unique Constraint: Activating a
primary key or unique constraint that is already active causes the unique index
associated with the key or constraint to be reorganized. This is more efficient than
deactivating the key or constraint (which would drop the underlying index), and
then activating the key or constraint (which would re-create the underlying index).
For more information on the benefits of reorganizing an index, see the DB2 Server
for VSE & VM Diagnosis Guide and Reference manual.

Considerations When Deactivating Keys and Constraints

Primary Key: Deactivating a primary key drops the primary key index from the
parent table and implicitly deactivates all active dependent foreign keys. This
limits the access to all inactive dependent tables to the creator or a DBA, and allow
deferred constraint enforcement. For information on deferred constraint
enforcement see “Enforcing Referential Constraints”.

To deactivate a primary key you must have ALTER and REFERENCES privileges
on the parent table, and ALTER privilege on all dependent tables.

Foreign Key: To deactivate a referential constraint that is active, you must have
ALTER privilege on the dependent table and REFERENCES privilege on the parent
table.

If a foreign key has been explicitly deactivated already, attempts to deactivate it
again are ignored.

Deactivating a foreign key will make the two tables in the relationship inactive.
Access to the inactive table is limited to the creator or a DBA. For information on
the effects of deactivating a foreign key, see “Advantages and Disadvantages of
Deferred Constraint Enforcement” on page 69.

Unique Constraints: Deactivating a unique constraint drops the unique index
associated with the constraint, causing the table to become inactive. This will limit
access to the table to its creator or a DBA.

Enforcing Referential Constraints
Two forms of enforcement are possible:
v Immediate Constraint Enforcement.

After the referential constraints have been defined, the enforcement of the
referential constraint is immediate. That is, the insert, update, and delete rules
are enforced when the INSERT, UPDATE, and DELETE statements are issued.
During immediate constraint enforcement, keys and tables are in the active state.

68 Database Administration

v Deferred Constraint Enforcement.
A table can be made inactive by deactivating its primary key, any of its foreign
keys, any of its unique constraints, or a dependent foreign key, by using the
ALTER TABLE statement. A referential relationship is between two keys in
different tables. If either a primary or foreign key is deactivated, both tables
become inactive.
When a table is in an inactive state, only the owner or someone with DBA
authority can issue Data Manipulation Language (DML) statements against it.
No one can issue DML statements (for example, SELECT or UPDATE
statements) against any table that would result in implicit access of an inactive
table to enforce referential constraints.
When the keys are activated, the constraints will be verified automatically and
the tables become active again.

Advantages and Disadvantages of Deferred Constraint
Enforcement
You may want to deactivate the enforcement of referential integrity among tables
to improve performance when you are loading data into a table.

When referential integrity is active between two tables, each INSERT statement on
a dependent table causes a check to be issued against the parent table. This check
verifies that the foreign key value being inserted has a matching primary key value
in the parent table. When data is being loaded into a dependent table, each
inserted row causes a check of the parent table; if many rows are being loaded, the
overhead of this checking becomes significant. In this case, you may improve your
overall performance of the load by deactivating any referential constraints. When
the load completes, you then reactivate them to validate the data.

If referential integrity is in effect at the beginning of an LUW, and the constraints
are deactivated, the data loaded and the constraints re-activated all within the
same LUW, then referential integrity exists at the end of the LUW as well.
However, within that LUW, referential constraints are not enforced. You could load
rows into the dependent table that had no parents when loaded. Since the database
can be in an inconsistent state during an LUW, but not at its completion, you can
use a more flexible sequence of statements within an LUW. At some point you
must load parent rows for the dependent rows into the parent table. Otherwise,
you would be unable to reactivate the referential constraint. There are some
disadvantages to deactivating a referential constraint between tables:
v Only users with DBA authority and the owner of a table can use DML

statements on that table, or tables referenced by it through an inactive referential
constraint. This is to prevent people from inserting, deleting, or updating data in
a table that they may believe to have an active referential constraint.

v When referential constraints are deactivated, any indexes created to enforce the
constraints are dropped. Dropping these indexes will invalidate any packages
that require the use of the indexes. Three major costs will be incurred on
reactivating the referential constraints:
– The underlying indexes are re-created
– Any dependent rows are checked against the referential constraints
– All invalidated packages are automatically re-preprocessed when they are first

used.

If a relatively small number of rows are added to the table by the load process,
then the costs of reactivating the referential constraints may exceed the savings
realized by deferring referential constraint enforcement on each row loaded.

Chapter 3. Maintaining Your Database 69

You should deactivate the referential constraints between tables only when large
amounts of data are to be loaded, or when a significant amount of data is to be
loaded in an order that violates the referential constraint at some point during
the data-loading operation. For example, you can load new rows into a
dependent table before loading matching rows into the parent table only while
the referential constraint is inactive.

Repairing Rows that Violate Referential Constraints
If you deactivate a referential constraint in order to load data, then receive an error
when you try to reactivate it, it could be for one of the following reasons:
v You activated a foreign key that references an inactive primary key. You must

first activate the inactive primary key.
v One or more rows in one of the tables violates the referential constraint, and you

must fix these rows. This error condition may also arise when you are creating a
referential constraint.

Note: When the above error occurs, SQLCODE -667 (SQLSTATE 22519) and the
name of the constraint in error are returned as a message token in SQLCA.

Isolating Duplicate Primary Key Values: To find duplicate primary key values,
use the statement shown below. In the example, the name of the table is P1, and
the primary key is represented by the columns PKCOL1, PKCOL2, and so on, for
all columns that form the primary key:

SELECT PKCOL1, PKCOL2, ... FROM P1
GROUP BY PKCOL1, PKCOL2, ...
HAVING COUNT(*) > 1

You could then eliminate the duplicate values with UPDATE and DELETE
statements, or move them to a special table if you do not want to eliminate them
immediately.

To move the rows to a special table (called an EXCEPTION table in this
explanation), create a table with the same column definitions as the original table
(but with no key definitions). If there are many duplicate values, you may want to
create a nonunique index for the duplicate primary key columns in the
EXCEPTION table to improve performance.

Use the statements shown below to copy the rows with duplicate primary key
values into the EXCEPTION table (called E1 in this example):

INSERT INTO E1
SELECT * FROM P1 A WHERE EXISTS

(SELECT PKCOL1, PKCOL2, ... FROM P1 B
GROUP BY PKCOL1, PKCOL2, ...
HAVING COUNT(*) > 1

AND B.PKCOL1 = A.PKCOL1
AND B.PKCOL2 = A.PKCOL2
...)

To remove these rows from P1, use this statement:
DELETE FROM P1 A WHERE EXISTS

(SELECT 1 FROM E1
WHERE E1.PKCOL1 = A.PKCOL1

AND E1.PKCOL2 = A.PKCOL2
...)

Isolating Nonmatching Foreign Key Values: Foreign key values may not match
primary key values because either of them may be wrong. This example shows
you how to move the nonmatching foreign keys to a separate table. Then, you can

70 Database Administration

determine whether the foreign or the primary keys are wrong, and fix them with
INSERT, UPDATE, or DELETE statements.

This statement retrieves nonmatching foreign key values. In the example, P1 is the
parent table; C1 is the dependent table; PKCOL1, PKCOL2, and so on form the
primary key; and FKCOL1, FKCOL2, and so on form the foreign key.

SELECT FKCOL1, FKCOL2, ... FROM C1 A
WHERE (FKCOL1 IS NOT NULL AND

FKCOL2 IS NOT NULL AND
...)

AND NOT EXISTS
(SELECT 1 FROM P1 B

WHERE B.PKCOL1 = A.FKCOL1 AND
B.PKCOL2 = A.FKCOL2 AND
...)

To move the rows to a special table (called an EXCEPTION table in this
explanation), create a table with the same column definitions as the dependent
table (but with no key definitions). If there are many duplicate values, you may
want to create a nonunique index for the foreign key columns in the EXCEPTION
table to improve performance. To copy the rows with nonmatching foreign keys to
the EXCEPTION table (E1 in this example), use the following statement:

INSERT INTO E1
SELECT * FROM C1 A

WHERE (FKCOL1 IS NOT NULL AND
FKCOL2 IS NOT NULL AND
...)

AND NOT EXISTS
(SELECT 1 FROM P1 B

WHERE B.PKCOL1 = A.FKCOL1 AND
B.PKCOL2 = A.FKCOL2 AND
...)

To remove the rows from C1, use the following statement:
DELETE FROM C1 A WHERE EXISTS

(SELECT 1 FROM E1
WHERE E1.FKCOL1 = A.FKCOL1

AND E1.FKCOL2 = A.FKCOL2
...)

Moving Data from One Application Server to Another
You can use the DBS Utility to move data from one application server to another.

Moving data from a DB2 Server for VSE & VM application server to a remote
DRDA application server requires unloading the data from the DB2 Server for VSE
& VM application server using the DBS Utility DATAUNLOAD command and
reloading the data into the other application server using the DBS Utility
DATALOAD command. Moving data from one DB2 Server for VSE & VM
application server to another local DB2 Server for VSE & VM application server
can be done as above, or by using the DBS Utility UNLOAD and RELOAD
commands.

For more information about DBS Utility commands, refer to the DB2 Server for VSE
& VM Database Services Utility manual.

Notes:

1. When moving data between two application servers, ensure that the
appropriate coded character set identifier (CCSID) conversion is done to
maintain the correct interpretation of the data.

Chapter 3. Maintaining Your Database 71

For example, an application server uses a CHARNAME value of ENGLISH (or
the CCSID equivalent), and another application server uses a CHARNAME
value of GERMAN (or the CCSID equivalent). Issue the SQLINIT EXEC (in
VM), the transaction DSQU (in CICS), or the VSE batch program ARIRBGUD
(JCL: ARISBGUD.Z) and specify a CHARNAME for the application requester
corresponding to the CHARNAME of one of the application servers (either
ENGLISH or GERMAN). Then, to ensure the integrity of the data when
moving it between these two application servers, specify the same
CHARNAME value for the application requester for both the DATAUNLOAD
(or UNLOAD) and DATALOAD (or RELOAD) operations. If ENGLISH is the
CHARNAME value specified for the application requester for the data unload
operation, then it must also be set to ENGLISH for the data load operation. You
can then perform the data unloading and reloading operations.
For more information on CCSID conversion, see the DB2 Server for VSE System
Administration manual.

2. If you want to move data from one DB2 Server for VSE application server to a
DB2 Server for VM application server (not using Guest Sharing), or vice versa,
using the DBS Utility UNLOAD command, you can only do so when using a
tape.

Removing Tables
To remove tables from the database, use the DROP TABLE statement. For example,
to remove a table called PROJECT, enter:

DROP TABLE PROJECT

Only the table’s creator or a user with DBA authority can remove the table. If you
have DBA authority, include the user ID of the owner to remove a table. For
example, to remove SMITH’s table called PROJECT, enter:

DROP TABLE SMITH.PROJECT

When a table is dropped, the row in the SYSTEM.SYSCATALOG catalog table that
contains information about it is deleted. Any other objects that depend on that
table are also dropped. As a result:
v The column names of the table are dropped from SYSTEM.SYSCOLUMNS.
v Any views based on the table are dropped.
v Application plans using the table are invalidated.
v Synonyms for the table are dropped from SYSTEM.SYSSYNONYMS.
v Indexes created on any columns of the table are dropped.
v Unique constraints on any columns of the table are dropped.
v Referential constraints that involve the table are dropped. In the case of the

PROJECT table, it is no longer a dependent of the DEPARTMENT and
EMPLOYEE tables, nor a parent of the PROJ_ACT table.

v Authorization information kept in the authorization tables is updated to reflect
the dropping of the table. Users who were previously authorized to use the
table, or views on it, no longer have those privileges.

You must commit the DROP statement on a table before you can re-create a table
of the same name, or before you can create any new indexes with the same name
as an index on the table being dropped.

72 Database Administration

Maintaining Dbspaces

Altering the Design of a Dbspace
You may need to change the parameters of a dbspace for any of the following
reasons:
v Storage capacity (PAGES).

You may have underestimated the storage required by the tables in the dbspace,
and need to increase its potential size (in pages).

v Storage pool assignment (STORPOOL).
You may want to change the storage pool assignment, which determines
whether a dbspace is recoverable or nonrecoverable.

v Type (PUBLIC or PRIVATE).
If the tables in a PRIVATE dbspace are to be shared by many users, then you
should consider making it PUBLIC.

v Header Space (NHEADER).
At the front of every dbspace are one to eight header pages, which contain
control information on the tables and indexes stored there. You may need to
increase the number of these pages.

v Index Space (PCTINDEX).
If your dbspace contains more indexes than expected, you may need to increase
the index space to accommodate them.

v Free Space (PCTFREE).
You may want to change the percentage of each data page reserved for updates
of rows resulting in larger rows that cannot be placed in the original locations in
the page.

v Lock Size (LOCK).
For PUBLIC dbspaces, you may change the locking level. A lower lock level
allows more users to access the same table at the same time; however, there is a
cost because of lock acquisitions, an increased possibility of lock escalations. If
lock escalation occurs frequently, you may want to increase the locking level.
Refer to the DB2 Server for VSE & VM Diagnosis Guide and Reference manual. for
more information about lock escalations.

For a review of these parameters, see “Acquiring Dbspaces” on page 22.

Changing the PAGES, STORPOOL, DBSPACE Type, NHEADER,
or PCTINDEX
There is no statement to change these five parameters of a dbspace. If you need to
change any of them, you must move all the data in the current dbspace to another
dbspace that has the required characteristics. To do this:
1. UNLOAD the current dbspace.
2. DROP the current dbspace.
3. ACQUIRE a new dbspace with the required characteristics.
4. RELOAD the new dbspace.
5. Drop the table with field procedures, recreate it to include the field procedures,

and reload the table using the ’PURGE’ parameter.
6. CREATE all indexes for the tables involved.
7. Recreate all referential constraints.
8. GRANT all authorizations for the tables involved.
9. CREATE all views relating to the tables involved.

Chapter 3. Maintaining Your Database 73

To identify the tables, views, authorizations, and referential constraints related to
the dbspace, query the system catalog.

To identify the tables with field procedures, query the SYSFIELDS and
SYSFPARMS tables.

Example: To increase the storage capacity of a PRIVATE dbspace called
SMITH.SAMPLE to 2 048 pages with defaults for the other dbspace parameters,
use the following SQL statements and DBS Utility commands:

CONNECT SQLDBA IDENTIFIED BY SQLDBAPW;
UNLOAD DBSPACE (SMITH.SAMPLE) OUTFILE (TEMPFIL);
DROP DBSPACE SMITH.SAMPLE;
ACQUIRE PRIVATE DBSPACE NAMED (SMITH.SAMPLE) (PAGES=2048);
RELOAD DBSPACE (SMITH.SAMPLE) NEW INFILE(TEMPFIL);

Invoke the DBS Utility, as usual, to process the above statements and commands
(see the DB2 Server for VSE & VM Database Services Utility manual for details).

Indexes, views, authorizations, and referential constraints must be recreated for all
the tables in the dbspace.

Changing the PCTFREE and LOCK Parameters
To change these parameters, use the ALTER DBSPACE statement. You must have
DBA authority or (in the case of a PRIVATE dbspace) be the owner of the dbspace.

Example: Change the PCTFREE parameter to 10 for the dbspace called
MYDBSPACE. type:

ALTER DBSPACE MYDBSPACE (PCTFREE = 10)

To change both the PCTFREE and the LOCK parameters at the same time, type:
ALTER DBSPACE MYDBSPACE (PCTFREE = 10, LOCK = PAGE)

Reorganizing a Dbspace to Free Storage Pool Pages
Reorganizing a dbspace releases pages in it back to its storage pool. There are two
reasons why you might want to do this:
v You are unable to drop a table in a dbspace when you issue a DROP TABLE

statement and you receive a message that the storage pool is full. This occurs
because there are not enough shadow pages in the storage pool to allow the
database manager to remove all the rows for that table from the dbspace. For
information on shadow pages, see the DB2 Server for VSE & VM Diagnosis Guide
and Reference manual.
After the database has been restarted (with STARTUP=W), there will be a row in
the catalog table SYSDROP for the dropped table. Any subsequent DROP TABLE
statements will cause SYSDROP to be processed. When the database manager
processes the row for the dropped table, it will end and issue a message
indicating that the storage pool is full unless you take other steps to provide
sufficient pages in the storage pool for shadow pages. You can provide sufficient
pages in the storage pool by adding dbextents to the storage pool, or by
reorganizing the dbspace where the table resides.
If reorganizing the dbspace does not provide sufficient shadow pages to allow
you to drop the table, then you must add dbextents to the storage pool. For
information on adding dbextents, see the DB2 Server for VM System
Administration or DB2 Server for VSE System Administration manual.

v You want to release unused pages back to the storage pool.

74 Database Administration

Once a page is allocated to a dbspace, it remains allocated until you drop the
dbspace. This can cause the storage pool that contains the dbspace to become
short on storage. For example, if a large table occupied a dbspace, and has been
dropped, all pages used to store the rows for that table are still allocated to the
dbspace. To determine whether many empty pages are allocated to a dbspace,
enter the SHOW DBSPACE operator command.

To reorganize a dbspace, follow these steps:
1. Unload all tables in the dbspace, except those that should be dropped.
2. Drop the dbspace (see note 1 below).
3. Reacquire the dbspace.
4. Reload the tables (see note 2 and 4 below).
5. Re-create all indexes and unique constraints for all tables.
6. Grant all authorizations for the tables again.
7. Re-create all referential constraints for tables (see note 3 below).
8. Re-create all views that reference the tables.

Notes:

1. Before dropping the dbspace, obtain the information necessary to perform steps
5, 6, 7, 8, and note 4 below from the catalog tables.

2. The RELOAD TABLE commands create all tables by default with the user ID of
the person who enters the commands, usually the DBA. If you want a table to
retain the user ID of its original owner, specify this user ID in the table
parameter of the RELOAD TABLE command. When performing this procedure,
use the NEW option on the RELOAD TABLE and RELOAD DBSPACE
commands. See the DB2 Server for VSE & VM Database Services Utility manual
for more details.

3. If a table has referential constraints, these will be lost when the table is
unloaded and reloaded. To re-create any foreign keys, primary keys, unique
constraints, or primary keys that have dependent foreign keys in tables that
reside in other dbspaces, use the ALTER TABLE statement.

4. If a table has field procedures, they will be lost when the table is reloaded
using the ’NEW’ option. To include the field procedures, drop the table,
recreate it, and reload the table using the ’PURGE’ option.

Removing Dbspaces
To drop the contents of a dbspace and return it to the available state, issue the
DROP DBSPACE statement. Dbspaces that are available can then be reacquired,
using the ACQUIRE DBSPACE statement.

When a dbspace is dropped, all tables in it are also dropped. When a table is
dropped, all authorizations, views, referential constraints, unique constraints, and
field procedures relating to it are dropped.

If a dbspace contains only one table, it is more efficient to drop and then reacquire
the entire dbspace later, than to drop the table.

The DROP DBSPACE statement may be carried out on both PUBLIC and PRIVATE
dbspaces. You must have DBA authority to delete a dbspace or (in the case of a
PRIVATE dbspace) be the owner. No user, not even one with DBA authority, can
delete the dbspace that contains the system catalog.

Example
To remove your own PRIVATE dbspace named MYDBSPACE, type:

DROP DBSPACE MYDBSPACE

Chapter 3. Maintaining Your Database 75

VSAM Restrictions
VSAM defines storage for DB2 Server for VSE databases but it does not manage
this storage. VSAM commands such as EXPORT, IMPORT, REPRO, and VERIFY
should never be used on the DB2 Server for VSE database. If you receive an error
message indicating an OPEN error (RC=74), ignore it and do not run VERIFY.

Reorganizing Indexes on the Catalog Tables
The catalog indexes need to be reorganized when indexes on the catalog tables
become fragmented, and the database manager can no longer insert entries into the
catalog dbspace.

Index fragmentation often happens in an application development environment.
Application development requires frequent preprocessing; and each time a
program is preprocessed, many entries are added to the catalog tables. It may not
be possible to plan properly for the range of index keys that might be created.

Index fragmentation can lead to the inefficient use of the index pages of the catalog
dbspace (SYS0001). If most of the index pages in your catalog dbspace are
occupied, fragmentation is a likely cause. To determine the number of index pages
occupied in the catalog dbspace, enter the SHOW DBSPACE command. (The
number of this catalog dbspace is 1; so you type SHOW DBSPACE 1.) If there is a
high percentage of occupied pages, consider running the catalog index
reorganization utility, which optimizes the indexes as they exist on the catalog
tables.

To run the catalog index reorganization utility in a VSE environment, start the
database in single user mode with STARTUP=I specified. Figure 20 shows an
example of the job control statements.

Notes:

1. For ARIS71SL, substitute your procedure or job control that identifies the DB2
Server for VSE service libraries. The catalog index reorganization utility uses
the ARISCAT source member.

2. For DBNAME01, substitute your procedure or job control that identifies the
database whose catalog indexes you wish to reorganize.

3. The initialization parameters SYSMODE=S and STARTUP=I are required. You
can also supply any of the following initialization parameters (PARMID is
included in the example in Figure 20.):
PARMID=name
DBPSWD=password
NPAGBUF=n
NDIRBUF=n
NCSCANS=n
LOGMODE=Y|A|L|N
CHKINTVL=n

// JOB REORG
// EXEC PROC=ARIS71SL
// EXEC PROC=DBNAME01
// EXEC PGM=ARISQLDS,SIZE=AUTO,PARM='SYSMODE=S,STARTUP=I,PARMID=name'
/*
/&

Figure 20. Example Job Control to Reorganize the Catalog Indexes

76 Database Administration

SLOGCUSH=n
ARCHPCT=n
SOSLEVEL=n
CHARNAME=name
DSPLYDEV=L|C|B
DUMPTYPE=P|F|N
TRACDBSS=nnnnnnnnnnn
TRACRDS=nnnnnn
TRACCONV=n
TRACDSC=nn
TRACBUF=n
TRACSTG=n
LTIMEOUT=n
SYNCPNT=Y|N

See the DB2 Server for VSE System Administration manual for a description of
initialization parameters.

To avoid the processing involved in switching log modes, use the same
LOGMODE that you normally use.

To run the catalog index reorganization utility in a VM environment:
1. Log on to the virtual machine that owns the database.
2. Get read access to the service minidisk (ACCESS 193 V).
3. Invoke the SQLCIREO EXEC. This EXEC resides on the service minidisk. It

invokes the DB2 Server for VM application server in single-user mode with
STARTUP=I. See “SQLCIREO EXEC” on page 251 for its syntax.

Because the catalog index reorganization utility runs in single user mode, the only
way to trace it is with the TRACRDS, TRACDBSS, TRACDSC, and TRACCONV
initialization parameters. The TRACE operator command cannot be used in single
user mode.

Moving Your Database
If you are moving your database, use the SQLDBDEF utility to extract the
definition of database objects from a DB2 Server for VSE & VM database, and
generate a DBSU job. This job can be used to create the same objects on another
DB2 database. The target database can be any DB2 database, such as DB2 Server
for VSE & VM, DB2 UDB for OS/390, or DB2 UDB for Linux. The SQL statements
in the DBSU job can be grouped by dbspace or by object type. Once the objects
have been created on the target platform, the load utilities of the target database
can be used to load the data. Packages can be unloaded from the source database
and reloaded to the target database so that existing client applications can continue
to be used.

For more information about the SQLDBDEF utility, refer to the DB2 Server for VM
System Administration manual, Appendix G, Service and Maintenance Utilities or the
DB2 Server for VSE System Administration manual, Appendix G, Service and
Maintenance Utilities.

Chapter 3. Maintaining Your Database 77

|

|
|
|
|
|
|
|
|
|
|

|
|
|
|

78 Database Administration

Chapter 4. Supporting Your Users

As the database administrator, you provide the support that users need to gain
access to your DB2 Server for VSE & VM application server and the data it
manages.

This chapter describes the tasks involved in supporting new users, and removing
the data and access of those who have left.

Adding a New User
To a DB2 Server for VSE & VM Application Server:

The following are the steps involved in adding new users to DB2 Server for VSE &
VM application servers.

New users need CONNECT authority on the application server (alternatively, this
may be granted to ALLUSERS). To add a new user to the system, perform the
following tasks:
1. In VM, define the user’s virtual machine as a DB2 Server for VM user machine.

This involves making VM directory changes and is discussed in the DB2 Server
for VM System Administration manual.

2. Setup the user as a new ISQL user.
3. Grant the user an appropriate level of authority to access data and use

resources.
4. Specify the default application server.
5. If required, load initial tables.
6. Ensure that the new user obtains adequate system training.

To a Non-DB2 Server for VSE & VM Application Server:

To enable a user to access a non-DB2 Server for VSE & VM application server
perform the following tasks:

Notes:

1. In VM, if the user is not already a DB2 Server for VM user, define the user’s
virtual machine as a DB2 Server for VM user machine. This involves making
VM directory changes and is discussed in the DB2 Server for VM System
Administration manual.

2. Arrange system-level sign-on authority with the system administrator of each
remote application server.
Note: A new user ID and password may be required at some of the remote
application servers, depending on the LU 6.2 security level that is required for
the connection. See the Distributed Relational Database Connectivity Guide manual.

3. In VM, setup a new entry in the CMS Communication Directory (COMDIR) for
the remote application server (if it has not already been done), and make the
COMDIR accessible to the user.
In VSE, set up a new entry in the DBNAME Directory for the remote
application server (if it has not already been done).

© Copyright IBM Corp. 1987, 2001 79

4. If the user will be accessing an application server through ISQL, then setup the
user as a new ISQL user. Make sure that ISQL has been installed on the remote
application server.

5. Grant the user (or arrange to have granted) the appropriate level of authority
to access data and use resources at each of the remote application servers.

6. Specify the default application server.
7. If required, load initial tables.
8. Ensure that the new user obtains adequate training on the remote application

server and on how to access it from the local DB2 Server for VSE & VM
application requester.

Setting Up New ISQL Users
To set up a new ISQL user to access the resources of an application server, run the
SQLDBA.ARINEWUS routine supplied by IBM and previously loaded into the
SQLDBA.ROUTINE table during database generation.

Note: The ARINEWUS routine is intended for DB2 Server for VSE & VM
application servers only. If you need to add a new ISQL user to a non-DB2
Server for VSE & VM application server create your own routine using
ARINEWUS as a sample. This routine uses a CONNECT statement
containing an IDENTIFIED BY clause, as well as a GRANT CONNECT
statement. These statements are unique to DB2 Server for VSE & VM
application servers and may not be supported by non-DB2 Server for VSE &
VM application servers.

Start ISQL and connect as SQLDBA (or some other user ID with DBA authority),
then type:

RUN SQLDBA.ARINEWUS (newuser newuserpw)

For newuser, specify:
v In VM, the CP LOGON user ID (the name of the user’s virtual machine) or,
v In VSE, the user’s CICS sign-on ID.

For newuserpw, specify a password for the new user.

The ARINEWUS routine does the following:
v Issues an ISQL SET RUNMODE CANCEL command.
v Issues an ISQL SET AUTOCOMMIT OFF command.
v Grants CONNECT authority to the new user. The routine parameters newuser

and newuserpw are used on the CONNECT statement.
v Creates a copy of a set of sample tables for the user, and grants him or her full

authority on them. These tables are named:
newuser.DEPARTMENT
newuser.EMPLOYEE
newuser.PROJECT
newuser.ACTIVITY
newuser.PROJ_ACT
newuser.EMP_ACT
newuser.CL_SCHED
newuser.IN_TRAY

80 Database Administration

v Copies data from the sample tables owned by user ID SQLDBA into the new
user’s sample tables. (Only the rows needed to duplicate the examples shown in
the DB2 Server for VSE & VM Interactive SQL Guide and Reference manual are
copied.)

v Creates indexes on the sample tables.
v Creates and loads an ISQL routine table (newuser.ROUTINE), which includes an

ISQL PROFILE routine, as follows:
NAME SEQNO COMMAND REMARKS
------- ----- -------------- -------
PROFILE 10 SET VARCHAR 35 NULL
PROFILE 20 SET CASE UPPER NULL

v Creates an index on the routine table.
v Issues an ISQL SET AUTOCOMMIT ON command.

When you run ARINEWUS, you will be prompted to enter either COMMIT or
ROLLBACK. If no errors occurred, enter COMMIT; otherwise, enter ROLLBACK.

The ARINEWUS routine sets up the new user only in the application server that
you are connected to when you invoke the routine. If a user is to have access to
more than one application server, connect to these other application servers and
run ARINEWUS again for each one.

Example
A new user with a user ID of ALEX and a password of ALEXPW is defined. Alex
does application development work and needs access to two application servers:
PROD and TEST.

Do the following in a VM system:
1. Log on to your own user machine, and IPL CMS.
2. Issue SQLINIT DBNAME(PROD). (Assume that the PROD application server is

currently being accessed by some database machine in multiple user mode.)
3. Start the ISQL program.
4. Connect to the PROD application server under a user ID with DBA authority.

In the example below, the user ID is SQLDBA. The step is optional if you
already have DBA authority. Enter:
CONNECT SQLDBA IDENTIFIED BY sqldbapw

Assume you know the password of the SQLDBA user ID for both application
servers

5. Start the ARINEWUS routine:
RUN SQLDBA.ARINEWUS (ALEX ALEXPW)

6. Connect to the TEST application server under a user ID with DBA authority:
CONNECT SQLDBA IDENTIFIED BY sqldbapw TO TEST

7. Start the ARINEWUS routine:
RUN SQLDBA.ARINEWUS (ALEX ALEXPW)

8. Exit from the ISQL program.

Do the following in a VSE system:
1. Ensure that the application servers PROD and TEST have been started with the

DLBL and LIBDEF statements required for accessing the application servers.
Also ensure that the CICS system has been started and initialized for DB2
Server for VSE on-line access to both PROD and TEST.

Chapter 4. Supporting Your Users 81

2. Start the ISQL program.
3. Connect to the PROD application server under a user ID with DBA authority.

In the example below, the user ID is SQLDBA. The step is optional if you
already have DBA authority. Enter:
CONNECT SQLDBA IDENTIFIED BY sqldbapw TO PROD

Assume you know the password of the SQLDBA user ID for both application
servers

4. Start the ARINEWUS routine:
RUN SQLDBA.ARINEWUS (ALEX ALEXPW)

5. Connect to the TEST application server as SQLDBA (or with any ID that has
DBA authority).
CONNECT SQLDBA IDENTIFIED BY sqldbapw TO TEST

6. Start the ARINEWUS routine:
RUN SQLDBA.ARINEWUS (ALEX ALEXPW)

7. Exit from the ISQL program.

Alex is now set up to use both application servers.

If you want to review the contents of the ARINEWUS routine before you invoke it,
issue the following SELECT statement on either application server:

SELECT COMMAND FROM SQLDBA.ROUTINE WHERE NAME = 'ARINEWUS'

Authorizing Access
Once you have run ARINEWUS, your new user has CONNECT authority to the
application server. This is the lowest level of authority. To decide if this is the
appropriate level for this user, and to change it if not, see “Chapter 5. Providing
Security” on page 87.

After providing new users with CONNECT authority, you can do any of the
following:
v Acquire PRIVATE dbspaces for them so that they can create their own tables
v Grant them RESOURCE authority
v Grant them DBA authority
v Ensure that they are granted privileges on other users’ tables and views
v Create new views on tables to restrict their access to data that is appropriate for

them to see.

Specifying a Default Application Server in VM
Before VM users can access an application server, a default application server
needs to be established. Users must process the SQLINIT EXEC to specify the
application server they intend to access. For example, if the user intends to access
the TEST application server, he or she must enter:

SQLINIT DBNAME(TEST)

Users only need to re-process the SQLINIT EXEC if they want to explicitly change
the current SQLINIT options. The most current SQLINIT information is stored on
each user’s A-disk. For more information, see “SQLINIT EXEC” on page 237.

82 Database Administration

Loading Initial Tables
New users likely have existing files of data that they want to store in the database.
If the files are short, the data they contain can be typed in at the terminal using
ISQL statements. This method, however, is not suitable for large files. Here, you
can use the DBS Utility to transfer data into a database. For information on how to
use the DBS Utility, see “Loading Data into Tables” on page 59.

Training New Users
It is your responsibility to assist new users with the DB2 Server for VSE & VM
database manager, and to deal with their questions and problems. Ensuring new
users are adequately trained will reduce your problem-solving duties.

Removing Users from an Application Server
When users leave your area, both their access to the application server and any
unwanted data should be removed. You should try to get people to remove their
own data before they leave; however, you will often have to do so yourself.

The following steps describe how to remove a user’s access to an application
server. If a user was using multiple application servers, you must perform this
process for each server. You must have DBA authority to perform these steps.

If you have DBA authority, you can revoke a user’s authority to access the
application server at any time by issuing the REVOKE CONNECT statement listing
the user(s) affected. For example:

REVOKE CONNECT FROM JOHN,KAREN,ALICE

Revoking a user’s CONNECT authority prevents that user ID from accessing the
application server. This action only removes the user IDs from the
SYSTEM.SYSUSERAUTH catalog table; it does not affect any objects (for example,
tables) in the database which those users may have created, nor does it affect any
privileges that may have been granted to them.

Example
An employee whose user ID was SMITH has left the company. To remove
SMITH’s database objects, do the following:
1. Determine the names of PRIVATE dbspaces owned by SMITH. Type:

SELECT DBSPACENAME FROM SYSTEM.SYSDBSPACES
WHERE OWNER='SMITH'

2. Determine the names of tables owned by SMITH. Type:
SELECT TNAME,DBSPACENAME FROM SYSTEM.SYSCATALOG

WHERE CREATOR='SMITH'
AND TABLETYPE='R'

This command displays the names of the tables that SMITH created, and the
dbspaces where they were created. The TABLETYPE=‘R’ (R stands for real
table) indicates that you want to see only the tables at this point; you do not
yet want to see any views that SMITH defined. Record those tables that are in
PUBLIC dbspaces for later use in step 8.

3. Determine whether any of SMITH’s tables participate in a referential structure
that is not wholly owned by SMITH.

SELECT TNAME, TCREATOR, REFTNAME, REFTCREATOR FROM SYSTEM.SYSKEYS
WHERE (TCREATOR ¬= 'SMITH' AND REFTCREATOR = 'SMITH')
OR (TCREATOR = 'SMITH' AND REFTCREATOR ¬= 'SMITH')

Chapter 4. Supporting Your Users 83

This command displays tables created by others that reference tables created
by SMITH, as well as tables created by SMITH that reference tables created by
others. Make note of the tables you want to save.

4. Determine if the PRIVATE dbspace owned by SMITH contains any tables that
were created by other users. Remember that when you drop a dbspace, you
drop all tables that exist in it, whether they were created by the owner or by
other users.
For each PRIVATE dbspace owned by SMITH, type:

SELECT TNAME,CREATOR FROM SYSTEM.SYSCATALOG
WHERE CREATOR¬='SMITH'
AND DBSPACENAME='dbspacename'
AND TABLETYPE='R'

This command lists the names of all tables in dbspacename that SMITH did not
create, along with the names of who created them. The TABLETYPE=‘R’ (R
stands for real table) indicates that you want to see only the tables at this
point, not views.

5. Based on the information you acquired in the last three steps, transfer any
tables that you want to save. If any of these tables participate in referential
structures, the referential constraints must be rebuilt to reflect the changed
ownership of the tables.
There are many ways to transfer (copy) tables to another dbspace. One way is
to first create a new table with the same format in a different dbspace; then
use an INSERT with Subselect statement to retrieve data from the original
table and insert it into the new table.
There are more sophisticated techniques available using the DBS Utility. For
information, refer to “Maintaining Tables” on page 59 or to the DB2 Server for
VSE & VM Database Services Utility manual.

6. Copy any programs that you want to save that currently reside in SMITH’s
PRIVATE dbspaces into another dbspace.

7. Drop the PRIVATE dbspaces owned by SMITH, which you determined in step
1, by issuing the DROP statement:

DROP DBSPACE SMITH.dbspacename

8. Drop any of SMITH’s tables you no longer need, as determined in step 2. All
associated indexes and views are also dropped.

DROP TABLE SMITH.tablename

9. Drop any of SMITH’s views that were defined on other users’ objects in
PUBLIC dbspaces or in other users’ PRIVATE dbspaces. To get the names of
those views from the catalog tables, type:

SELECT VIEWNAME FROM SYSTEM.SYSVIEWS
WHERE VCREATOR='SMITH'

DROP VIEW SMITH.viewname

10. Drop any of SMITH’s indexes that were defined on other users’ objects in
PUBLIC dbspaces or in other users’ PRIVATE dbspaces. To get the names of
those indexes from the catalog tables, type:

SELECT INAME FROM SYSTEM.SYSINDEXES
WHERE ICREATOR='SMITH'

DROP INDEX SMITH.indexname

11. Drop any of the packages created by SMITH. To display the names of those
packages from the catalog tables, type:

84 Database Administration

SELECT TNAME FROM SYSTEM.SYSACCESS
WHERE CREATOR='SMITH'

DROP PACKAGE SMITH.packagename

12. Delete any synonyms created by SMITH:
DELETE FROM SYSTEM.SYSSYNONYMS

WHERE USERID='SMITH'

13. Delete any ISQL stored queries created by SMITH.
To determine these queries, type:

SELECT STMTNAME FROM SQLDBA."STORED QUERIES"
WHERE CREATOR='SMITH'

Then issue a single DELETE statement:
DELETE FROM SQLDBA."STORED QUERIES"

WHERE CREATOR='SMITH'

It is helpful if departing employees remove their own data from the database.
Only someone with DBA authority can delete stored queries in the above
manner; others use the ISQL ERASE command. For example, to delete a
stored query called MYQUERY, SMITH would start ISQL and type:

ERASE MYQUERY

14. Revoke any privileges granted to SMITH. To get the names of all users who
granted privileges to SMITH, type:

SELECT * FROM SYSTEM.SYSTABAUTH
WHERE GRANTEE='SMITH'

SELECT * FROM SYSTEM.SYSPROGAUTH
WHERE GRANTEE='SMITH'

Contact these users and have them revoke all of SMITH’s privileges. Or, if a
user is not available, you can explicitly connect with his or her password to
revoke them yourself.

15. In VM, remove any IUCV links.
If SMITH’s VM directory contains IUCV entries or the MAXCONN OPTION
for the database resources, these entries should be removed, as well as access
to the 195 production disk.

16. Remove Access from VSE guests.
If SMITH accessed a DB2 Server for VM application server from a VSE guest,
and used the CICS system, you should remove the transaction IDs used by
SMITH in the CICS system. For more information on transaction IDs, see the
DB2 Server for VM System Administration manual.

Chapter 4. Supporting Your Users 85

86 Database Administration

Chapter 5. Providing Security

The database manager controls security with authorities and privileges granted to
users (identified by their user IDs). Authorities limit people’s use of DB2 resources
(for example, whether they can create tables in PUBLIC dbspaces or acquire
PRIVATE dbspaces), while privileges provide security for existing objects in the
database (tables, views, indexes, and packages).

All privileges and authorities held within an application server are recorded in the
catalog tables.

To access and perform SQL requests for an application server, users (ISQL users,
DBS Utility users, and application programs) must be allowed to CONNECT to the
application server implicitly (without a user ID or password), or explicitly (with a
user ID and its password). With either type of connecting, the user can work with
utilities, programs, and the data in the database based on pre-established
authorities. Connecting is much the same as logging on to the VM or VSE system.

This chapter discusses the following topics:
1. Authorities.

This section discusses the four types of authorities and how they can be given
(granted) to or taken away (revoked) from users.

2. User Privileges.
This section describes how privileges can be used to share or restrict access to
the data in tables or views.

3. Connecting to an Application Server
This section discusses how a user can connect to an application server. Users
must connect to an application server before they can use it.

4. Restricting Access Using Views.
This section discusses the use of views to restrict access to tables.

5. Changing User Passwords.
This section describes how you can change the password of your DB2 Server
for VSE & VM users.

6. Securing the Database Catalog Tables.
This section discusses how you can limit access to the catalog tables.

7. Security Audit Trace.
This section describes the two ways that you can audit security: by querying
the catalog tables or by having the database manager do a security audit trace.

Authorities
When a database is initially generated, there is only one user ID defined for it:
SQLDBA. This user ID belongs to the database administrator (DBA). Only a DBA
can grant or revoke authorities to other users.

Types of Authorities
There are four types of authority: CONNECT, RESOURCE, SCHEDULE, and DBA.

© Copyright IBM Corp. 1987, 2001 87

Authorities are hierarchical, with DBA the highest, RESOURCE and SCHEDULE
the next, and finally CONNECT. If you have a higher authority, then you also have
the authority below it. For example, if you are given DBA authority, you have
RESOURCE, SCHEDULE, and CONNECT authority as well. If you are given
RESOURCE authority, you also have CONNECT authority but not SCHEDULE or
DBA authority.

CONNECT Authority
This authority enables a user to access a particular application server, and to
exercise all privileges that have been granted to PUBLIC. These privileges are
discussed in detail in “Privileges” on page 92.

A user with CONNECT authority can access data in one of two ways:
v By owning a PRIVATE dbspace, in which he or she can create tables and load

and access them. A user with DBA authority must acquire the dbspace for this
user.

v By receiving access privileges (such as SELECT, INSERT, and UPDATE) for
tables created by other users. See “Privileges” on page 92.

RESOURCE Authority
Users with this authority can acquire PRIVATE dbspaces for themselves, and create
tables both there and in PUBLIC dbspaces.

A DBA automatically possesses RESOURCE authority and the ability to grant it to
users. You can give it to just a few users to exercise tight control, or you can
extend it to any number. If you want to allow someone to create tables and you
must also control how much resources are used, acquire a PRIVATE dbspace for
that user rather than granting him or her RESOURCE authority. Because you
acquire this dbspace yourself, you control its size and the amount of resources
used. This technique is sometimes called “CREATE TABLE authority”, but this
term is misleading because there is no GRANT CREATE TABLE statement.

SCHEDULE Authority
The function associated with SCHEDULE authority is not available in the SQL
statement set. Therefore, DB2 Server for VSE & VM users cannot use it and
SCHEDULE authority is of no direct benefit to DB2 Server for VSE & VM users.

SCHEDULE authority is useful only to online resource managers that manage
subsystems of multiple second-level users. The only current example is the DB2
Server for VSE online resource adapter that manages secondary users through the
CICS subsystem. The CICS subsystem is a first-level user of the database manager.
The use of SCHEDULE authority in a CICS subsystem is discussed here.

The online resource adapter resides in each CICS partition. It initializes the
communication links between the CICS partition and the local DB2 Server for VSE
database manager, or the DB2 Server for VM database manager accessed through
guest sharing, when the operator executes the CICS CIRB transaction or the CICS
CIRA transaction. It also does a CONNECT on each link, specifying DBDCCICS as
the user ID and SQLDBAPW as the password. This user ID and password can be
overridden. Refer to “CICS Transaction Environment” on page 101 for details.

The online resource adapter in each CICS partition can connect to many
application servers. The DBNAME parameter of the CIRB or CIRA transaction
specifies the application server to which you want to connect. If DBNAME is not
specified on the CIRB transaction, the default application server is used. Refer to
“Establishing a Default Application Server” on page 99 for information on

88 Database Administration

DBNAME default rules. All online applications in a CICS partition can access the
application servers connected with the online resource adapter.

The schedule function comes into play when a CICS transaction uses SQL
statements without preceding them with a CONNECT statement1 on a local
application server or on a VM application server accessed through guest sharing.
When this occurs, the resource adapter sends a schedule request to the database
manager. This request travels on the link being used by the transaction. A schedule
request is similar to a CONNECT, but it has no password. The resource adapter
determines the user ID as described in “CICS Transaction Environment” on
page 101.

The schedule function allows dynamic changing of the current user ID on a link to
the database manager without requiring a password. For this to occur, the initial
user of the link must have SCHEDULE authority. For a CICS session, the initial
user of the link is the unique application name (APPLID) assigned to the CICS
partition in the DFHSIT table. The default APPLID name is DBDCCICS. This user
ID represents the entire CICS subsystem. The database administrator must grant
each APPLID SCHEDULE authority on the application server so that the links to
the database manager can be shared implicitly by multiple transactions. If a CICS
partition is to connect to more than one local application server, the APPLID for
the partition must be granted SCHEDULE authority on each application server.

Transactions that do not issue CONNECT statements1 receive their connection to
the database manager implicitly through the CICS subsystem. The assumption is
made that the CICS subsystem checked the user’s identification and password
when the user began the CICS session, so the database manager does not need to
do further checking. On the other hand, each transaction is subject to all the other
security controls. The user ID received by the database manager with the schedule
request is the basis for this transaction user’s authorization.

Because CONNECT authority is not needed for CICS transactions, the user IDs
that they use need not appear in the SYSTEM.SYSUSERAUTH catalog table. This
catalog table does not necessarily have an entry for every user. Second-level users
can access all PUBLIC data and may be granted access to PRIVATE data as well.
Although a user may not be given CONNECT authority explicitly, that user can be
granted RESOURCE authority or SCHEDULE authority and will receive
CONNECT authority as a result.

Note: This discussion applies only to transactions that do not issue a CONNECT
statement. When a transaction does issue a CONNECT statement1, it
appears as an ordinary user, and the schedule function is not used.

A user possessing DBA authority possesses SCHEDULE authority and the ability
to grant SCHEDULE authority to other users.

To grant SCHEDULE authority, use a statement such as:
GRANT SCHEDULE TO dbdccics IDENTIFIED BY password

If the user’s password has been entered previously and is not to be changed, you
can omit the “IDENTIFIED BY password” portion of the GRANT statement. Refer
to “CICS Transaction Environment” on page 101 for details.

1. The CONNECT statement with the following format: CONNECT userid IDENTIFIED BY password.

Chapter 5. Providing Security 89

DBA Authority
Authorization mechanisms do not apply to users with this authority. They can
perform all operations on all tables, can run all programs, and are the only ones
who have the following privileges:
v Grant and revoke SCHEDULE, CONNECT, RESOURCE, and DBA authority

to/from other users. All DBAs at a site have equal authority, and can grant and
revoke DBA authorities to each other. Because no user may revoke his or her
own authority, there will always be at least one DBA (not necessarily the original
one).

v Acquire a PUBLIC dbspace.
v Alter or drop any PUBLIC dbspace except for system dbspaces (those whose

names begin with “SYS”).
v Acquire, alter, or drop a PRIVATE dbspace or create, alter, or drop a table, index,

synonym or view, in the name of another user.
v Drop a package belonging to another user.
v Lock another user’s PRIVATE dbspace or any PUBLIC dbspace (except system

dbspaces).
v Lock another user’s table (except the catalog tables).
v Issue a COMMENT statement on a table or field owned by another user.
v Create a table in a system dbspace.
v Issue Data Manipulation Language statements directly against an inactive table.

See “Altering Referential and Unique Constraints” on page 65.
v Modify the contents of a catalog table with a regular UPDATE statement. Rows

cannot be INSERTed or DELETEd. Because all access to the data in the database
depends on the correctness of the catalog tables, manual updating of catalog
tables should be done only under extraordinary circumstances. Only a small set
of catalog table columns can be updated. These are listed in the DB2 Server for
VSE & VM SQL Reference manual.

v For Extended Dynamic Statements:
– Drop another user’s program (package) or drop a statement from that

package.
– Use PREPARE, DESCRIBE, EXECUTE, or DECLARE CURSOR for a statement

residing in another user’s package.

No user, including those with DBA authority, can drop a catalog table.

As DBA, you may perform certain operations that are otherwise unauthorized, but
may not grant or revoke these operations. For example, you may update a
particular table that you do not own explicitly, but you may not grant or revoke
this privilege to others.

The functions enabled by DBA authority are potentially quite dangerous to the
integrity of the database if applied by an untrained user. Therefore, you should
carefully control who receives this authority, as well as being very cautious in the
use of this special authority yourself.

Granting Authorities
To grant any authority (SCHEDULE, CONNECT, RESOURCE, or DBA) to other
users of an application server, issue the GRANT statement. You must have DBA
authority on that application server. For information on the syntax of this
statement, see the DB2 Server for VSE & VM SQL Reference manual.

90 Database Administration

Granting someone a higher authority automatically gives them the lower authority
as well, regardless of whether these are specified on the GRANT statement. Thus, a
user who is granted RESOURCE authority will also have CONNECT authority;
one who has DBA authority also has CONNECT, RESOURCE, and SCHEDULE
authority.

If you are granting authority to a user at a remote system, the authorization-name
specified in the GRANT statement must be the authorized user ID of the user on
the system where the authority is being granted, not that on the system where the
request originates.

Examples

Granting authority to a single user: To give the user ID MIKE CONNECT
authority to the application server, enter:

GRANT CONNECT TO MIKE IDENTIFIED BY mikespwd

If the user MIKE intends to connect to the application server implicitly, you can
omit his password:

GRANT CONNECT TO MIKE

Granting authority to many users: To give the user IDs MIKE and JOHN
RESOURCE authority to the application server, enter:

GRANT RESOURCE TO MIKE,JOHN IDENTIFIED BY mikespwd,johnspwd

If MIKE intends to connect to the application server implicitly, you may omit his
password and just enter:

GRANT RESOURCE TO JOHN IDENTIFIED BY johnspwd
GRANT RESOURCE TO MIKE

Granting CONNECT authority to all users: The following statement enables all
users to connect to the application server implicitly:

GRANT CONNECT TO ALLUSERS

Users who wish to connect explicitly to the application server must be given
CONNECT authority with a password. In VM, the ability to communicate with a
DB2 Server for VM database manager depends on VM directory statements and is
discussed in the DB2 Server for VM System Administration manual.

Granting Access to VSE Guests
When VSE/AF runs as a guest operating system under the VM/ESA operating
systems, VSE users and programs can optionally access a DB2 Server for VM
application server. A VSE guest who wishes to do this must obtain authorization.
On the GRANT statement, specify a VM user ID that is authorized to run the VSE
subsystem.

The subsystemid follows the same general rules for naming data objects as the user
ID, and cannot contain lowercase characters, special characters, or DBCS
characters.

Example: To give the CICS subsystem MYCICS SCHEDULE authority, enter:
GRANT SCHEDULE TO MYCICS IDENTIFIED BY cicspw

where cicspw is the current password set for the subsystem.

Chapter 5. Providing Security 91

Revoking Authorities
To revoke authorities previously granted to users, issue the REVOKE statement.
You must have DBA authority. For information on the syntax of this statement, see
the DB2 Server for VSE & VM SQL Reference manual.

Revoking a user’s CONNECT authority does not automatically cause any objects
owned by that user to be dropped, nor does it revoke any privileges the user has
on those objects. For information on how to drop objects, see “Removing Users
from an Application Server” on page 83.

If a user’s CONNECT authority is revoked, all other authorities are lost. For
example, if you are a DBA and another DBA revokes your CONNECT authority,
then you will lose your RESOURCE, SCHEDULE, and DBA authorities as well.

A user who loses RESOURCE authority will still have CONNECT authority. You
cannot revoke RESOURCE authority from a user with DBA authority.

A user who loses SCHEDULE authority will still have CONNECT authority. You
cannot revoke SCHEDULE authority from a user with DBA authority.

A user who loses DBA authority will also lose RESOURCE and SCHEDULE
authority, but will retain CONNECT authority.

When revoking remote users, the authorization-name specified in the REVOKE
statement must be the authorized user ID of the user on the remote system where
the authority is being revoked, not that on the system where the request originates.

Examples
To revoke JOHN’s CONNECT authority, enter:

REVOKE CONNECT FROM JOHN

To revoke JOHN and ALICE’s DBA authority, enter:
REVOKE DBA FROM JOHN,ALICE

To revoke JOHN and ALICE’s SCHEDULE authority, enter:
REVOKE SCHEDULE FROM JOHN,ALICE

Revoking Access from VSE Guests
Use the REVOKE SCHEDULE statement to revoke remote access by a VSE
subsystem.

To revoke the SCHEDULE authority of the CICS subsystem called MYCICS, enter:
REVOKE SCHEDULE FROM MYCICS

Privileges
The DBA grants authorities to the users of the application server. Within the
framework set up by the DBA, individual users can grant to each other the
privileges they need to access specific data. To grant or revoke privileges on an
object, a user must hold GRANT authority on those privileges, and be connected to
the application server where the object resides.

The following are the privileges that can be held on a table (or view) in the
database:
SELECT To read from a table

92 Database Administration

INSERT To add rows to a table
DELETE To delete rows from a table
UPDATE Can apply to individual columns
ALTER To add new columns, primary keys or foreign keys to a table, or to

activate or deactivate existing keys
INDEX To create or manipulate indexes on a table
REFERENCES To add, drop, activate, or deactivate a foreign key relationship

The first four privileges in this list apply to views as well as to tables.

The holder of a privilege may exercise it directly through a user mechanism such
as ISQL, or by compiling and running programs that entail using it.

Privileges of Ownership
When an object is created, its ownership is established. If the object name is not
qualified (for example, EMPLOYEE), the owner is the connected user. If the object
is qualified (for example, JESSICA.EMPLOYEE), the owner is the individual whose
user ID is specified. The owner of an object automatically has full privileges on it.

Once the ownership of a table or view is established, there is no way to change it
or to revoke the privileges that accompany ownership. If either of these is
necessary, you must drop the object, which deletes all privileges on it, and then
re-create it with a new owner.

Granting Privileges to Other Users
The owner of an object possesses the GRANT option on each privilege, meaning
the ability to grant individual privileges, or any combination of them, to other
users. When a privilege is granted, the GRANT option (the ability for the recipient
to in turn make further grants) may or may not be included.

Privileges can be granted to other users using the GRANT statement described in
the DB2 Server for VSE & VM SQL Reference manual.
v Issuing GRANT ALL or GRANT ALL PRIVILEGES grants the recipient all the

privileges possessed by the grantor on that object (which may of course not
include all possible ones). If GRANT ALL is issued on a view, only the
privileges on the view, not those on the base tables, are granted.

v Issuing GRANT REFERENCES enables the recipient to reference the parent table
when a foreign key is added, dropped, activated, or deactivated through the
CREATE TABLE or ALTER TABLE statements.

v Issuing GRANT ALTER enables the recipient to add a new column or to add,
drop, activate, or deactivate a primary or foreign key. To alter a primary key, the
ALTER privilege is required on the parent table and all dependent tables. To
alter a foreign key, the ALTER privilege is required on the dependent table, and
the REFERENCES privilege is required on the parent.
Withholding these privileges restricts the ability of the recipient to change the
state of referential constraints. If the owner of a parent table grants the
REFERENCES privilege on it to another user, and the recipient then creates a
foreign key relationship with the parent’s primary key but does not grant
ALTER privilege on the dependent table back to the owner of the parent table,
the owner cannot drop the primary key. (He or she may, of course, drop the
entire table.)

v The UPDATE privilege can apply to specific columns. For example, the
following statement will allow CINDY to update the address (ADDR) and phone
number columns (PHONE) of the EMPDATA table:

Chapter 5. Providing Security 93

GRANT UPDATE (ADDR,PHONE) ON EMPDATA TO CINDY

If you are granting a user privileges at a remote system, the authorization-name
specified in the GRANT statement must be the same as the name that the grantee
uses to access the database manager system on the remote system.

Revoking Privileges
A user who grants another user a privilege may later revoke it, by issuing the
REVOKE statement described in the DB2 Server for VSE & VM SQL Reference
manual. If a user loses a privilege, all other users to whom that user granted it
automatically lose it too by the cascading effect, unless they have another
independent source for it. Issuing REVOKE ALL or REVOKE ALL PRIVILEGES
takes away all privileges that were granted.

If you are revoking a user’s privileges at a remote system, the authorization-name
specified in the REVOKE statement must be the name that the user specifies to
access the database manager system on the remote system.

Monitoring Privileges
All the privileges held by users on tables and views are listed in the catalog tables
SYSTEM.SYSTABAUTH and SYSTEM.SYSCOLAUTH. Users can check which
privileges they hold and which they have granted to others, by querying these
tables.

Examples
To determine the privileges that you hold, enter:

SELECT * FROM SYSTEM.SYSTABAUTH
WHERE GRANTEE = user

To determine the privileges that you have granted to other users, enter:
SELECT * FROM SYSTEM.SYSTABAUTH

WHERE GRANTOR = user
AND GRANTEE <> user
AND GRANTEETYPE = ' '

For descriptions of the catalog tables, see the DB2 Server for VSE & VM SQL
Reference manual.

Privileges on Application Programs
DB2 Server for VSE & VM application programs must be preprocessed before they
are compiled or assembled. In VM and VSE batch environments, successful
preprocessing of an application program results in the creation or replacement of a
package in the database. In VSE, successful preprocessing and/or CBNDing of an
application program results in the creation or replacement of a package in the
database. The contents of the package are instructions used to satisfy database
requests at run time.

When a package is created, a level of EXECUTE privilege is granted to its creator.
This level is dependent on several factors, such as the preprocessed SQL
statements, the existence and ownership of the referenced objects (tables, indexes,
and dbspaces), and the creator’s authorization level (DBA, RESOURCE, or
CONNECT). The creator’s EXECUTE privilege follows rules and conditions that
are discussed in the DB2 Server for VSE & VM Application Programming manual.

94 Database Administration

Connecting to an Application Server in VM
A VM user must have CONNECT authority and be connected to an application
server in order to perform SQL requests on it.

All VM users must connect to an application server explicitly or implicitly
regardless of whether they are accessing it in multiple user mode or single user
mode. If a user does not have a DB2 Server for VM authorization ID and
password, the user must connect implicitly. A user with a DB2 Server for VM
authorization ID and password can connect either implicitly or explicitly.

Establishing a Default Application Server
In order to run a preprocessor, the DBS Utility, any application program, or ISQL,
VM users must establish a default application server. This is done by invoking the
SQLINIT EXEC, and needs to be done only once.

Example
To establish the SQLDBA application server as the default, enter:

SQLINIT DBNAME(SQLDBA)

Information about the default application server chosen is stored on the VM user’s
minidisk (A-disk) in the ARISRMBT module and the LASTING GLOBALV file. If
the VM user wants to establish another application server as the default or to
change any of the options, he or she would have to re-run the SQLINIT EXEC. For
more information see “SQLINIT EXEC” on page 237.

Connecting to the Application Server Implicitly
Connecting to the application server implicitly means to connect to it without
providing an authorization ID and password explicitly. If a VM user does not
provide a CONNECT statement, then the first time that he or she tries to run an
SQL statement, the VM application requester connects to the application server
implicitly. The database manager checks its catalog tables to see whether that
user’s ID, the VM logon ID (established in the CP LOGON procedure), has been
granted CONNECT authority. (It does not compare the user’s CP LOGON
password with the DB2 Server for VM application server password, as it can be
assumed that a password that has been verified by the CP LOGON procedure is
valid.)

Most VM users will want to connect to the application server implicitly, so when
you grant them CONNECT authority, use their CP LOGON user IDs.

The implicit connect support works the same for VM application programs, for
ISQL, for the DBS Utility, and for remote application servers; however, each has its
own considerations, as discussed below.

Note: When working in an environment that includes several application servers
that can be accessed from several different application requesters, there is
the need for unique authorization IDs. The database manager does not
recognize the same authorization ID from two (or more) different
application requesters as being different. It is the administrator’s
responsibility to ensure that the authorization IDs in this situation are
unique.

Chapter 5. Providing Security 95

How Implicit CONNECT Applies to VM Programs
For application programs that contain SQL statements, a distinction is made
between the creator and the runner of the program.
v The creator is the VM user who submits the program to one of the language

preprocessors. This individual’s authorization ID, which is specified in the
USERID parameter passed to the preprocessor, is used to perform all
authorization checking for the functions performed against data managed by
DB2 Server for VSE & VM, and is the default owner of all objects (tables or
views) created by the program. This authorization ID automatically has the
EXECUTE privilege for the program.
When not coded explicitly, the authorization ID is derived from the CP LOGON.

v The runner is the VM user who runs (executes) the program. This individual’s
authorization ID is either that specified in the CONNECT statement run by the
program, or is the authorization ID that is connected implicitly. The runner may
be the creator, or may be someone to whom the creator has granted the
EXECUTE privilege.
When coded explicitly, the authorization ID and password for the CONNECT
statement are derived from host variables in the program. The values for these
variables should be acquired at run time from control cards by the executing
program. If they are constants fixed in the program, anyone can run the
program.
When not coded explicitly, the authorization ID is derived from the CP LOGON.

Refer to the DB2 Server for VSE & VM Application Programming manual for more
information about how implicit CONNECT applies to application programs.

How Implicit CONNECT Applies to ISQL (VM)
To start ISQL, a VM user invokes the ISQL EXEC. The database manager always
initially does an implicit connect for ISQL users, so this EXEC does not accept an
authorization ID. The authorization ID is derived from the ID of the user’s virtual
machine, as described on page 95.

The user can issue explicit CONNECT statements to override any previous explicit
or implicit connection established for the ISQL session.

Refer to the DB2 Server for VSE & VM Interactive SQL Guide and Reference manual
for more information.

How Implicit CONNECT Applies to the DBS Utility (VM)
When the DBS Utility begins processing an input control file, it expects a
CONNECT statement before any other DBS Utility or SQL statements. If none is
supplied, the database manager will use the ID of the user’s virtual machine.

If the utility is invoked from an application that has already issued a CONNECT
statement (implicitly or explicitly), then another one is not expected. Here, the
authorization ID that was in effect when the program first invoked the utility is
used.

The user can issue explicit CONNECT statements to override any previous explicit
or implicit connection.

Refer to the DB2 Server for VSE & VM Database Services Utility manual for more
information.

96 Database Administration

How Implicit CONNECT Applies to Remote Application Servers
When a VM user implicitly connects to a remote application server, the
authorization ID passed by the requester or received by the server may be different
than the VM logon user ID. It will depend on how the CMS Communication
Directory has been set up for the requester, and whether the server performs user
ID translation. Refer to the Distributed Relational Database Connectivity Guide manual
for more information about security levels specified in the CMS Communication
Directory when implicitly connecting to a remote application server.

How Implicit CONNECT Applies to TCP/IP
When a VM user implicitly connects to an application server using TCP/IP as the
communications protocol, an explicit connect is performed by the resource adapter
using the authorization ID and password found in the CMS Communications
Directory. There is no implicit connect when TCP/IP is being used.

Connecting to the Application Server Explicitly
VM users may want to connect to an application server other than the default one,
switch to another application server, or connect to an application server as a
different authorization ID. These situations entail making an explicit connection.

Switching to Another Application Server
After connecting to an application server, a VM user may want to switch to a
different one. The user issues an SQL CONNECT statement to switch to this
second application server.

Example - Without Specifying an Authorization ID and Password: To switch to
the DB01 application server, enter:

CONNECT TO DB01

Since the authorization ID and password are not specified on the CONNECT
statement, they will be taken from the VM communications directory file if it is
used and if it contains an entry for the DB01 application server. If the file is not
used, if it does not exist, or if it does not contain an entry for the DB01 application
server, the VM logon user ID will be used in an implicit connect.

If this statement fails, the VM user will not remain connected to the original
application server and no other SQL statements will be accepted. The VM user will
have to issue a new CONNECT statement.

When the VM user issues the first SQL statement to be processed on the second
application server, the database manager will try to implicitly connect him or her
to that application server, using the VM logon user ID as the authorization ID. VM
users can avoid the implicit connect by connecting as another user (discussed next)
while switching application servers.

Example - Specifying an Authorization ID and Password: To switch to the DB01
application server under an authorization ID JOHN with a password of johnpw,
enter:

CONNECT JOHN IDENTIFIED BY johnpw TO DB01

If this statement fails, the VM user will not remain connected to the original
application server and no other SQL statements will be accepted. The user will
have to issue a new CONNECT statement.

Chapter 5. Providing Security 97

Connecting under Another Authorization ID
A VM user connects under another authorization ID to the currently established
application server by issuing an SQL CONNECT statement. If the user is not
currently connected to an application server, if the previous connection has been
released, or if the user switched to a new CMS Work Unit in VM/ESA, then the
default application server, established by the SQLINIT EXEC, will be used.

Example: To connect to the currently established application server under the
authorization ID JOHN with a password of johnpw, enter:

CONNECT JOHN IDENTIFIED BY johnpw

If this statement fails, the VM user will remain connected to the application server
as the original authorization ID.

A previous connection could be released for the following reasons:
v A COMMIT RELEASE or ROLLBACK RELEASE statement was issued.
v The previous logical unit of work (LUW) was canceled by the user (using

SQLHX or ISQL CANCEL) or by the operator (using the FORCE statement). The
cancellation releases the connection.

v The previous connection was disabled by the operator (using FORCE DISABLE)
or by other errors such as the database machine not being ready or
communications problems.

v In the VM environment, the previous connection was disabled by the operator
using a FORCE without the DISABLE option.

Determining the Currently Established Application Server
If a user issues an SQL CONNECT statement without any parameters, the database
manager will return the following information:
v The currently connected user ID
v The application server name
v The product ID which can be ’ARI ’ or ’ARI7010’ depending on when the

CONNECT was issued.

Refer to the DB2 Server for VSE & VM SQL Reference manual for more information
about the CONNECT statement.

Connecting to an Application Server in VSE
To control access to the data managed by the database manager, it is necessary to:
v Tell the database manager the users that are authorized to use the DB2 Server

for VSE database and protect their access by means of passwords.
v Inform the database manager when a particular user wants to begin accessing

the DB2 Server for VSE database.

The authority to use a DB2 Server for VSE database is established by granting a
user CONNECT authority. The CONNECT authority carries with it a DB2 Server
for VSE password, which is that user’s key to the application server. After a user
has received CONNECT authority (been assigned an authorization ID and
password), the user can begin to use an application server through the CONNECT
function. After users have received their authorization IDs and passwords, they
can change their own passwords at any time.

All VSE users must connect to an application server explicitly or implicitly:

98 Database Administration

v Batch users must have a DB2 Server for VSE authorization ID and password,
and must connect explicitly.

v Online users who do not have a DB2 Server for VSE authorization ID and
password must connect implicitly. Other online users can use either method.

The CONNECT function can also be used either directly (through the CONNECT
statement with the “userid IDENTIFIED BY password” clause) or indirectly (through
a subsystem logon procedure). The procedure for connecting to an application
server is slightly different for each user environment. The following sections
describe these situations.

Establishing a Default Application Server
You may identify the desired application server by specifying the DBNAME
parameter at system startup, on the CICS CIRB or CICS CIRC transaction, on the
CONNECT statement, when preprocessing, or when CBNDing. If you do not
specify a server name, these DBNAME default rules apply:
v The partition default DBNAME is used if it is specified in the PARTDEF field of

the DBNAME Directory.
v If a partition default is not specified, the system default DBNAME is used if it is

specified in the SYSDEF field of the DBNAME Directory.
v If neither a partition nor a system default is specified, the default DBNAME is

SQLDS and the default APPLID is SYSARI00.

Note: SQLDS must still be identified in the DBNAME Directory.

For further information on the DBNAME Directory, refer to the DB2 Server for VSE
System Administration manual.

Connecting to the Application Server in Different VSE
Environments

DB2 Server for VSE users can connect to the application server in the following
environments:

CICS/VSE Online Environment
In a CICS/VSE online environment, online users can connect to the application
server implicitly and explicitly. If online users do not explicitly issue a CONNECT
statement specifying the authorization ID and the password, then the first time
they try to process an SQL statement, the CICS/VSE user is connected to the
application server implicitly.

A CONNECT...TO statement is supported in this environment and can be used to
switch to a different application server between logical units of work. For further
information on switching, refer to “Switching to Another Application Server” on
page 103.

If the first SQL statement in a CICS/VSE application is not a CONNECT statement
with the TO clause, the default application server is connected. On subsequent
CONNECTs performed by that application, if the TO parameter is not specified,
then the connection to the previously connected server will be maintained. For
further information on default application servers, refer to “Establishing a Default
Application Server”.

Batch/Interactive Environment
In a VSE batch or VSE/ICCF environment, an explicit CONNECT must be the first
statement entered by the batch user to access the application server. This statement

Chapter 5. Providing Security 99

is described in the DB2 Server for VSE & VM Application Programming manual.
Explicit connection is required for all user programs. This connection identifies the
authorization ID, and optionally the name of the application server on which the
program will run.

A CONNECT..TO statement is supported in this environment and can be used to
switch to a different application server between logical units of work. For further
information on switching, refer to “Switching to Another Application Server” on
page 103.

If the first SQL statement in an application is a CONNECT statement in which the
TO server_name clause is not specified, or if this clause is not specified as part of
the CONNECT statement following a COMMIT RELEASE or ROLLBACK
RELEASE statement, the default application server is connected. If the TO
server_name clause is not specified as part of the CONNECT statement following a
COMMIT or ROLLBACK statement, the connection to the previously connected
server will be maintained. For further information on default application servers,
refer to “Establishing a Default Application Server” on page 99.

In this environment, there is a distinction between the user who preprocesses a
program that contains SQL statements, and the user who later runs that program.
v The creator of a program is the VSE user who submits the program to one of the

language preprocessors. The user ID specified in the USERID= parameter passed
to the preprocessor is the basis for all authorization checking for the functions
performed against data managed by the system as well as the default owner of
all objects (tables or views) created by the program. This user ID receives RUN
authority when the program is successfully preprocessed.

v The runner of a program is the VSE user who runs (executes) a program that
contains SQL statements. The user ID specified in the CONNECT statement run
by the program must be either the creator or a user ID to whom the creator has
granted the RUN privilege for this program.
The user ID and password for the CONNECT statement are derived from host
variables in the program. Their values should be acquired at run time from
control cards by the executing program. If they are constants fixed in the
program, anyone can run the program.
The runner of a program gets the privilege of accessing the application server
from the creator of the program.

ISQL Environment
When CICS users start ISQL, they are prompted for a user ID, password, and
target database. If the user enters the user ID and password only, ISQL does an
explicit CONNECT to the default target database for the user. If the user does not
enter a user ID, password or target database, ISQL does a CONNECT to the
default target database as a default user ID for the user; this defaulting is called an
implicit CONNECT. If the ISQL user enters a target database only, a CONNECT
would be made to that target database using a default user ID. If the user enters
the user ID, password and target database, ISQL does an explicit CONNECT to the
target database.

In the ISQL environment, you can access any of the application servers connected
with the online resource adapter. If the online resource adapter is not connected to
an application server, you cannot access the ISQL environment.

Note: The ISQL environment is a specific case of the CICS transaction
environment, which is discussed in the next section. An ISQL user can enter

100 Database Administration

explicit CONNECT statements to change the connection and override any
previous explicit or implicit connection established for the ISQL terminal
session.

Refer to the DB2 Server for VSE & VM Interactive SQL Guide and Reference or the
DB2 Server for VSE & VM SQL Reference manual for additional details.

CICS Transaction Environment
Online transactions need not enter a CONNECT command to establish the user ID
within the database manager. If a CONNECT command2 is not entered, the online
support establishes the authorization ID for the transaction. The implicit
CONNECT is carried out by a SCHEDULE call in the case where the online
transaction is connecting to a local application server.

This implicit CONNECT capability is useful if your installation requires terminal
users to sign on CICS. For many transactions, your installation might consider the
sign-on verification sufficient. It may also be useful if your installation has just
installed the database manager, and finds it convenient to have all users identified
by one name (for example, TESTUSER).

The online support establishes a user ID for CICS transactions connecting to a local
DB2 Server for VSE application server as follows:
1. If the local transaction issues a CONNECT command2 the user ID is established

explicitly for the application.
2. If the transaction does not issue a CONNECT command,2 the online support

establishes the user ID as follows:
a. If the transaction had a user ID established from a previous local logical

unit of work (LUW) and that LUW did not specify the RELEASE option for
COMMIT WORK or ROLLBACK WORK, that user ID is used. The CICS
communication link to the application server is freed every time an LUW
ends, and a new link is established for each LUW in the transaction.

b. If the transaction has a valid CICS sign on userid and is associated with a
terminal, the CICS signon userid is used for the user ID.

c. If a user ID was specified as an input parameter to the CIRB or CIRA
transaction that established connections to the application server, that user
ID is used. The person who invoked CIRB or CIRA will know what the user
ID is.

d. If a user ID was not specified in the CIRB or CIRA transaction that
established connections to the application server, the default user ID
CICSUSER is established for your transaction.

After the user ID is determined as described above for cases b, c, and d, one more
requirement must be met to successfully complete the connection to the application
server: CONNECT authority must be granted to either the specific authorization ID
or “ALLUSERS”. ALLUSERS is a special authorization ID that permits any user ID
to be implicitly connected without having been specifically granted CONNECT
authority, and can be used by the database administrator to turn on or turn off the
implicit CONNECT capability. During database generation, ALLUSERS is granted
CONNECT authority by default.

2. The CONNECT statement with the following format: CONNECT userid IDENTIFIED BY password.

Chapter 5. Providing Security 101

At many installations, the CICS user need not be aware of DB2 Server for VSE
authorization ID or authorization capabilities. Here, the CICS implicit connect
support can be very useful.

Suppose you code a transaction called STAT that displays the inventory status of a
given part. Banes and Smith are to be the users of the application.

You define Banes and Smith to the CICS signon process.

You must then authorize BANES and SMITH to run your program. Of course, you
must have the RUN privilege with the GRANT option on your program. For this
example, assume that the program was preprocessed with the name INVSTAT:

GRANT RUN ON INVSTAT TO BANES, SMITH

Note: BANES and SMITH do not need CONNECT authority. It is connected
through internal mechanisms of the DB2 Server for VSE online support.

You must also establish the security key when you define the inventory program
to CICS.

To use the STAT transaction, Banes and Smith merely sign on to the CICS
subsystem by entering, for example:

CESN BANES, XXXX

After signed on, they need only enter the transaction identifier STAT, which causes
the INVSTAT program to be loaded and invoked. Since there is no CONNECT
statement in the program, the user ID established is the signed-on user ID
(BANES). Because BANES was granted RUN authority on INVSTAT, the database
manager allows the program to process.

Online applications can access any of the application servers connected with the
online resource adapter. The online resource adapter can connect to many
application servers using the CIRA or CIRB transactions.

Refer to the DB2 Server for VSE & VM Application Programming manual for
additional information on this environment.

User IDs for Remote CICS/VSE Transactions
For online DB2 Server for VSE transactions which are accessing a remote server
and which issued an SQL CONNECT statement with the “userid IDENTIFIED BY
password” clause to establish the user ID within the database manager, the user ID
is established explicitly for the transaction.

For online DB2 Server for VSE transactions which are accessing a remote server
and which did not issue an SQL CONNECT statement with the “userid
IDENTIFIED BY password” clause to establish the user ID within the database
manager, the Online Resource Adapter will attempt to establish the user ID for the
transaction implicitly as follows:
1. If the transaction had a user ID established for a previous remote logical unit of

work, and the previous logical unit of work did not specify the RELEASE
option for COMMIT WORK or ROLLBACK WORK, and the transaction did not
switch to another application server, that user ID and its corresponding
password are used. (Remember that every time a logical unit of work ends
with RELEASE or the transaction switched to another application server, and
you enter another SQL statement, you are implicitly connected as the CICS

102 Database Administration

signon userid. Therefore, the user ID has to be re-established if the transaction
has more than one logical unit of work ending with RELEASE or if the
transaction is switching application servers.)

2. The user ID returned by the CICS ASSIGN command is used for the user ID.

Connecting to an Application Server in Special Circumstances
VSE users can connect to an application server other than the default one, or
connect to an application server as a different authorization ID. VSE batch users
can switch from an application server to another. These situations require making
an explicit connection. VSE online users can also switch from an application server
to another, by issuing an SQL CONNECT statement with the TO parameter,
provided that the online resource adapter has established connections to the
application server.

Switching to Another Application Server
After connecting to an application server, a VSE user can switch to another one by
issuing an SQL CONNECT statement. The switch occurs between logical units of
work.

Example - Without Specifying an Authorization ID and Password
To switch to the DB01 application server, enter:

CONNECT TO DB01

Because the user ID and password are not specified on the CONNECT statement,
the user ID and password used is determined according to the rules described in
“CICS Transaction Environment” on page 101 and “User IDs for Remote CICS/VSE
Transactions” on page 102. For VSE batch users, the user ID and password used in
the previous LUW are used if the LUW ends with a COMMIT WORK or
ROLLBACK WORK statement. However, if the LUW ends with a COMMIT
RELEASE or ROLLBACK RELEASE statement, the next SQL statement after the
CONNECT statement is unsuccessful.

If the CONNECT statement is not successful, the VSE batch user does not remain
connected to the original application server, and no other SQL statements are
accepted. The batch user has to enter a new CONNECT statement.

When the VSE user enters the first SQL statement to be processed on the second
application server, the batch resource adapter or the online resource adapter
connects the user to that application server using user ID and password previously
established. A VSE user can switch to another application server as different ID by
connecting as another user, as discussed in the next section.

Example - Specifying an Authorization ID and Password
To switch to the DB01 application server under an authorization ID JOHN with a
password of johnpw, enter:

CONNECT JOHN IDENTIFIED BY johnpw TO DB01

If this statement is not successful, the VSE batch user does not remain connected to
the original application server and no other SQL statements are accepted. The
batch user will have to enter a new CONNECT statement.

Connecting under Another Authorization ID
A VSE user connects under another authorization ID to the established application
server by issuing an SQL CONNECT statement. If the user is not connected to an
application server, the default application server is accessed. For batch users, if the
previous connection has been released, the default application server is accessed.

Chapter 5. Providing Security 103

Example
To connect to the currently established application server under the authorization
ID JOHN with a password of johnpw, enter:

CONNECT JOHN IDENTIFIED BY johnpw

If this statement fails, the VSE user will remain connected to the application server
as the original authorization ID.

A previous connection could be released for the following reasons:
v A COMMIT RELEASE or ROLLBACK RELEASE statement is entered.
v The previous LUW is canceled by a local user entering the FORCE DISABLE

statement, or a remote user entering the FORCE statement. Canceling an LUW
in this manner releases the connection.

v The previous connection is ended by the operator (using FORCE DISABLE) or
by other errors, for example, communications problems.

v The CICS transaction switched from a local to a remote server, from a remote to
a local server, from one remote server to another remote server.

Determining the Current User ID and Application Server
If a user enters an SQL CONNECT statement without any parameters, or after the
successful execution of a CONNECT statement, the database manager returns the
following information in the SQLCA:
v Currently connected user ID
v Application server name
v Product ID, which can be ‘ARI ’ or ‘ARI7010’ depending on when the

CONNECT was issued.

Refer to the DB2 Server for VSE & VM SQL Reference manual for more information
about the CONNECT statement.

Resolving Remote Server Name to Target Database (CICS)
1. If the CICS/VSE transaction issues an SQL CONNECT statement with the “TO

server name” clause, the server name is established explicitly for the transaction
and the Online Resource Adapter will use the DBNAME Directory to resolve
the server name to the target database.
If the specified application server is remote and the Communication Protocol
specified by the connected user is not TCP/IP, the AR will issue a GDS
ALLOCATE command to acquire a session to the remote system where the
server runs. The SYSID used in this ALLOCATE command will be the SYSID
value from the matching DBNAME Directory entry (and must match a CEDA
DEF CONNECTION definition). The AR will then issue a GDS CONNECT
PROCESS command to initiate an APPC basic conversation with the remote
server. The PROCNAME used in this CONNECT PROCESS command will be
the REMTPN value from the matching DBNAME Directory entry.
If the specified application server is remote and the Communication Protocol
specified by the user is TCP/IP, the AR will acquire a TCP/IP socket. Then the
AR will use this socket to originate a connection request to initiate a TCP/IP
communication with the remote server. In this case, the TCPPORT and the
TCPHOST or the IPADDR from the matching DBNAME Directory entry are
required for issuing the connect request.

2. If the CICS/VSE transaction did not issue an SQL CONNECT statement with
the “TO server name” clause, the Online Resource Adapter will attempt to
connect to the default application server.

104 Database Administration

If the default application server is remote and the Communication Protocol
specified by the connected user is not TCP/IP, the AR will issue a GDS
ALLOCATE command to acquire a session to the remote system where the
default application server runs. The SYSID used in this ALLOCATE command
will be the SYSID value of the default server (and must match a CEDA DEF
CONNECTION definition). The AR will then issue a GDS CONNECT
PROCESS command to initiate an APPC basic conversation with the remote
server. The PROCNAME used in this CONNECT PROCESS command will be
the REMTPN value of the default server.
If the default application server is a remote server and the Communication
Protocol specified by the user is TCP/IP, the AR will acquire a TCP/IP socket.
Then the AR will use this socket to originate a connection request to initiate a
TCP/IP communication with the remote server. In this case, the TCPPORT and
the TCPHOST or the IPADDR from the default server’s DBNAME Directory
entry are required for issuing the connect request.
The default application server is determined when the CIRB transaction was
invoked and can be changed subsequently by a CIRC transaction. For more
information on establishing a default application server, see Establishing a
Default Application Server.

Resolving Remote Server Name to Target Database (VSE Batch)
If the Batch application issues an SQL CONNECT statement with the ″TO server
name″ clause, the server name is established explicitly for the transaction and the
Batch Resource Adapter uses the DBNAME Directory to resolve the server name to
the target database.

If the specified application server is a local or host VM (Guest Sharing) server,
communications is done using XPCC as it is currently done. If the application
server is remote and TCP/IP information is present in the matching DBNAME
Directory entry, communications is done using TCP/IP. If TCP/IP information is
not present, an error is returned in the SQLCA: SQLCODE -841, SQLSTATE 57040,
with a reason code in SQLERRD2.

If the Batch Application issues an SQL CONNECT statement without the ″TO
server name″ clause, the actions taken by the Batch Resource Adapter depend on
the previous connection state. If the previous state was established with a
COMMIT or ROLLBACK, then the Batch Resource Adapter connects back to the
previous Server name. If the previous state was established with a COMMIT or
ROLLBACK with the RELEASE option, then the Batch Resource Adapter attempts
to connect to the default application server.

If the default application server is a local or host VM (Guest Sharing) server,
communications is done using XPCC as it is currently done. If the application
server is remote and TCP/IP information is present in the matching DBNAME
Directory entry, communications is done using TCP/IP. If TCP/IP information is
not present, an error is returned in the SQLCA: SQLCODE -841, SQLSTATE 57040,
with a reason code in SQLERRD2.

The default application server is determined from the DBNAME Directory as is
currently done. For more information on establishing a default application server,
see “Establishing a Default Application Server” on page 99. Note that Batch
applications cannot access a Remote server via SNA, only via TCP/IP.

Chapter 5. Providing Security 105

Restricting Access Using Views
Views control who has access to what data. They can be set up to allow access to a
subset of the columns or the rows of a table.

Example
To show how a view can be used to restrict access to information, consider the
information presented in Table 18.

Table 18. Employee Information (EMP_INFO) Table

NAME DEPT SALARY PHONENO

SMITH 100 25750 3978

BANES 200 15051 3476

ADAMSON 105 33075 4738

PARKER 200 26250 6789

KWAN 100 22260 7831

WALKER 105 23840 5498

Many different people may require access to information in this table for different
reasons.

Examples
1. The personnel department needs to be able to update and look at the entire

table.
This requirement is met by granting users in the personnel department SELECT
and UPDATE privileges on this table, as follows:

GRANT SELECT,UPDATE ON EMP_INFO TO PERSONNL

2. Individual department managers need to look at the salary information for
their employees.
This requirement is met by creating a view for each manager. For example, the
following view (called EMP100) can be created for JANE, the manager of
department 100:

CREATE VIEW EMP100
AS SELECT NAME,SALARY,PHONENO
FROM EMP_INFO
WHERE DEPT=100

GRANT SELECT ON EMP100 TO JANE

JANE (and any others who have SELECT privilege on this view) would query
it as they would an ordinary table. It would appear as the following:

Table 19. EMP100 View

NAME SALARY PHONENO

SMITH 25750 3978

KWAN 22260 7831

3. All users require access to telephone number information.
This requirement is met by creating a view (called PHONE) on the NAME and
PHONENO columns:

106 Database Administration

CREATE VIEW PHONE
AS SELECT NAME,PHONENO
FROM EMP_INFO

GRANT SELECT ON PHONE TO PUBLIC

The keyword PUBLIC grants the privileges on the PHONE view to all users.
Users who access it will see the following table:

Table 20. PHONE View

NAME PHONENO

SMITH 3978

BANES 3476

ADAMSON 4738

PARKER 6789

KWAN 7831

WALKER 5498

Changing User Passwords
All users’ passwords are recorded in the SYSTEM.SYSUSERAUTH catalog table. As
a DBA, you can change any user’s password at any time. To do this, use a GRANT
CONNECT statement.

Example
GRANT CONNECT TO JOHN IDENTIFIED BY xyzabc

Users can also change their own passwords at any time, by issuing a GRANT
CONNECT statement to themselves. To change a user’s password verified by the
CICS subsystem, or some other subsystem, follow the procedure for that
subsystem.

You should change all passwords on a periodic basis; for example, every four
months.

Securing the Database Catalog Tables
During database generation, the SELECT privilege is granted to PUBLIC on the
catalog tables. In most cases this presents no security problem, but for very
sensitive data it may be undesirable. These tables describe every object in the
database, thus, while users would not know what specific items of data are stored,
they would be able to tell what kind of data existed. Conceivably, a malicious
individual could make destructive use of this knowledge.

Before revoking general access to the tables, however, you must weigh the
advantages of securing the information in them against the disadvantages of users
being unable to retrieve the information they require. The catalog tables are an
active dictionary facility, and help to maintain definitions, control information, and
general information on data. For example, users can query them to find out what
tables they have created, the names and data types of the columns in each of those
tables, and any synonyms they have defined.

Chapter 5. Providing Security 107

You might consider revoking PUBLIC access to only the SYSCOLSTATS table,
which records the first- and second-most frequent values in the first column used
by every index on every table in the database.

If you do decide to secure all the catalog tables, the easiest way to do this is to
revoke the SELECT privilege from PUBLIC on them. You must be connected as
user ID SQLDBA and have DBA authority. You can then grant authority on specific
tables to specific users.

Example 1
To revoke the SELECT privilege from PUBLIC on SYSTEM.SYSCATALOG, enter:

REVOKE SELECT ON SYSTEM.SYSCATALOG FROM PUBLIC

Before you revoke SELECT privileges from PUBLIC, you should also consider
what impact there might be on existing applications. In particular, some
applications may need to read a catalog table, so will fail if this authority is
revoked. Naturally, in these cases you must grant the SELECT privilege to the
creator of the program.

Note also that if the creator (the person who preprocessed the program) is not its
sole runner, you must also specify the WITH GRANT OPTION clause for this
person, in order to enable him or her to grant authority to other users to run the
program.

Example 2
User JULIE has created a program that accesses SYSTEM.SYSCATALOG, and she
grants RUN authority to KATHY and BILL. If you revoke the SELECT privilege
from PUBLIC, you can preserve KATHY’s and BILL’s authority to run JULIE’s
program by issuing:

GRANT SELECT ON SYSTEM.SYSCATALOG TO JULIE WITH GRANT OPTION

If you revoke the SELECT privilege from PUBLIC on a catalog table, and later
wish to completely restore it, you should also specify the WITH GRANT OPTION
clause.

Example 3
To restore authority to PUBLIC on SYSTEM.SYSACCESS, enter:

GRANT SELECT ON SYSTEM.SYSACCESS TO PUBLIC WITH GRANT OPTION

Refer to the DB2 Server for VSE & VM SQL Reference manual for a description of
the catalog tables.

Security Auditing
There are two ways to audit security: by querying the catalog tables, or by having
the database manager do a security audit trace.

If you simply want to know what security structures exist, the first method is
sufficient. The catalog tables maintain a record of authorization privileges: who has
what authority and from whom they received it. But they do not record
information about the use of these privileges: for example, the number of
unsuccessful attempts to access a resource, the number of accesses based strictly on
DBA authority, or similar authorization use information. For this type of
information, you must use a security audit trace.

108 Database Administration

Both ways of auditing security are discussed below.

Auditing Security Using the Catalog Tables
The following are examples of queries you might enter against the catalog tables in
security auditing:
1. What users are permitted to connect directly to the DB2 Server for VSE & VM

application server? (DBA authority is required for this query.)
SELECT NAME FROM SYSTEM.SYSUSERAUTH

WHERE AUTHOR=' '

The WHERE clause serves to eliminate any entries in SYSTEM.SYSUSERAUTH
for program dependencies from the query result.

2. How many users have been granted RUN authority on WALTERS.PAYROLL by
user BENNETT? (User WALTERS is the creator of the program; the creator is
determined by the USERID parameter when the program is preprocessed.)

SELECT COUNT(*) FROM SYSTEM.SYSPROGAUTH
WHERE CREATOR = 'WALTERS'

AND PROGNAME = 'PAYROLL'
AND GRANTOR = 'BENNETT'

This query only counts user BENNETT’s first-level grantees (those who
received their authority directly from user BENNETT).

3. Who are all the users who have received RUN authority on PAYROLL from
someone other than WALTERS?

SELECT COUNT(*) FROM SYSTEM.SYSPROGAUTH
WHERE CREATOR = 'WALTERS'

AND PROGNAME = 'PAYROLL'
AND GRANTOR <> 'WALTERS'

4. How many users have RESOURCE authority but not DBA authority?
SELECT COUNT(*) FROM SQLDBA.SYSUSERLIST

WHERE RESOURCEAUTH = 'Y'
AND DBAAUTH <> 'Y'
AND AUTHOR = ' '

5. How many secondary authorizations (those that originated from other than the
creator) exist for the JOHNSON.EMPLOYEE table created by user JOHNSON?

SELECT COUNT(*) FROM SYSTEM.SYSTABAUTH
WHERE TCREATOR = 'JOHNSON'

AND TTNAME = 'EMPLOYEE'
AND GRANTOR <> 'JONES'
AND GRANTEETYPE = ' '

Here, the GRANTEETYPE = ' ' portion of the WHERE clause eliminates
entries for programs.

6. Which users have been granted SELECT authority on the
PERSONNL.EMPLOYEE table by user LAPIS?

SELECT * FROM SYSTEM.SYSTABAUTH
WHERE TCREATOR = 'PERSONNL'

AND TTNAME = 'EMPLOYEE'
AND SELECTAUTH = 'Y'
AND GRANTEETYPE = ' '
AND GRANTOR = 'LAPIS'

ORDER BY TIMESTAMP

Auditing Security Using Tracing
Security audit tracing is one of the functions that can be performed using the trace
facility. A security audit trace is unique in that it is not necessarily done for

Chapter 5. Providing Security 109

problem determination. Start a trace of the security audit function of the RDS
component by using the TRACRDS initialization parameter. Alternatively, you can
start it by issuing the TRACE command from the operator’s console after the
application server has been started.

For descriptions of the TRACRDS parameter, the TRACE operator command, the
trace output records, and the utility that formats these records into readable
output, see the DB2 Server for VSE & VM Operation manual.

In VM, you can direct the trace output to tape, to a CMS file, or to a memory area
known as a trace buffer. However, if your installation uses the security audit trace
frequently, you may want to direct the output to a CMS file. To do this, you must
enter a CMS FILEDEF command before starting the application server, and supply
particular responses to the prompts that come up when tracing is started. For
descriptions of the FILEDEF command and the appropriate message responses, see
the DB2 Server for VSE & VM Operation manual.

As with other traces, you can get two levels of information. Level 1 traces and
records the following information:
v All unsuccessful attempts to obtain access to a resource
v Access that is based strictly on DBA authority
v All CONNECTs to the application server
v All grants of special privileges (DBA, CONNECT, SCHEDULE, or RESOURCE

authorities)
v All grants of RUN authority.

Level 2 keeps track of all DB2 Server for VSE & VM authorization checks.

Table 21 shows each type of authorization verification that the database manager
does, and which results are traced.

Table 21. Information Recorded by a Security Audit Trace

Type of Authorization Check Result Traced at
Level 2

Result Traced at
Level 1

CONNECT Y,I,N Y,I,N

RUN G,Y,D,N,P D,N

SELECT, INSERT, UPDATE,
DELETE, ALTER, and INDEX

G,Y,D,N,P D,N

RESOURCE Y,N N

REFERENCES Y,N D,N

DBA D,N D,N

Grants of Special Privileges
(DBA, CONNECT,
RESOURCE, and SCHEDULE)

D,N G,N

Grants of RUN Authority G,N

Y Yes, the user is authorized.
N No, the user is not authorized.
G Yes, the user is authorized to use and grant this privilege.
P The resource is PUBLIC, and thus all users are authorized.
D The user is authorized based only on DBA authority (that is, does not have

specific privileges).
I CONNECT on special link without password verification (scheduled).

110 Database Administration

For each result of an authorization check that is traced, the database manager
creates a trace record in the same format as other kinds of trace records. These
records are identical in format for all levels and types of authorization, and are
written to the same (VSE) trace output file, or (VM) trace tape (or CMS file).

If a value does not apply for a specific occurrence, the database manager sets it to
blanks. For example, a trace record for CONNECT does not contain the name of a
resource (that is, a table name).

Each trace record contains (where applicable):
v Date and time of verification.
v The user ID for which the verification is being done.
v Resource 1 (for example, the name of a table to be accessed or the name of a

program to be run).
v Resource 2 (for example, the name of a particular column to be updated).
v The creator of the resource.
v The type of authorization requested (as listed in Table 21 on page 110).
v The result of the authorization check (Y, N, G, P, D, I).
v The external logical unit of work identifier (EXTLUWID) of the connection,

which uniquely identifies an LU6.2 conversation. Its value is
netid.luname.instance_number.sequence_number, where netid and luname are up to 8
characters long, instance_number is 12 characters long, and sequence_number is 4
characters long. The EXTLUWID is only used for conversations that use the
DRDA protocol.

The Resource 2 field shows the column (where applicable) on checks of UPDATE
authority. It can also contain a description of the reason that the database manager
is checking a certain authority. For example, it might contain “ALTER PUB
DBSPACE” on a check for the DBA authority needed to alter a PUBLIC dbspace. In
this case, DBA would be the type of authorization being checked, while the
Resource 2 field provides more information about why this authority is required.

When analyzing trace records, remember that many operations on views are
restricted. These restrictions are reflected in the trace records generated during
CREATE VIEW processing. When the database manager creates a view, it checks
the user’s authority on the base tables to determine what authority to give that
user on the view. It also checks the view itself to see what operations cannot be
performed on it. For example, because deletions are not allowed in views that
involve a join, the authorization check for DELETE would return an N. The N
shows that deletions are not allowed against the view; it does not necessarily
imply that the creator is not authorized to delete from the base table.

Authorization checks during CREATE VIEW processing are traced, but only at
level 2. The result field of the trace record indicates whether an authorization check
is a result of CREATE VIEW processing. The CREATE VIEW indicator is the letter
V following the usual result indicator. For example, a successful verification of
SELECT authority on a base table produces a result value of YV — yes during
view creation. You can use this indicator to distinguish between normal
authorization checks and those done during view creation.

Note: Tracing occurs during preprocessing and execution of programs, and during
the dynamic execution of statements in ISQL or DBS Utility.

Chapter 5. Providing Security 111

Authorization traces for data manipulation operations in programs occur
during preprocessing, not during execution.

Loading Security Audit Information into Tables
You can use the DBS Utility to load security audit trace records into a table. When
the trace information is in a table, you can use SQL statements to answer questions
such as:
v Who was denied access to a resource?
v Who used DBA authority to access a resource?
v When was RUN authority on a particular program granted to additional users?

Figure 21 on page 113 shows a DB2 Server for VSE example DBS Utility job to
create a security table and load trace records into it. In the example, the trace
output file is on tape.

112 Database Administration

Figure 22 on page 114 shows a DB2 Server for VM example of running the DBS
Utility. The utility reads a CMS file (SECTAB DATA A), which contains statements
to create a security audit table and load trace records into it. Before invoking the
utility, ensure that the appropriate trace tape is mounted on virtual device 182.

// JOB DATALOAD SECURITY AUDIT TRACE
// EXEC=PROC=DBNAME01
// EXEC=PROC=ARIS71PL
// TLBL ARITRAC
// EXEC ARISQLDS,SIZE=AUTO,PARM='SYSMODE=S,LOGMODE=Y,PROGNAME=ARIDBS'

COMMENT ' '
COMMENT ' ********************************* '
COMMENT ' * DATALOAD SECURITY AUDIT TRACE * '
COMMENT ' ********************************* '
COMMENT ' '
COMMENT ' ACQUIRE A DBSPACE(PRIVATE) '
COMMENT ' NAMED SECURITY '
COMMENT ' '
ACQUIRE PRIVATE DBSPACE NAMED SECURITY;

COMMENT ' '
COMMENT ' CREATE A TABLE IN THE PRIVATE DBSPACE '
COMMENT ' '

CREATE TABLE AUDIT_TAB(TRPOINT SMALLINT,
YEAR CHAR(2),
MONTH CHAR(2),
DAY CHAR(2),
TIME CHAR(8),
USERID CHAR(8),
GRANTEE CHAR(8),
RESOURCE1 CHAR(18),
RESOURCE2 CHAR(18),
OWNER CHAR(8),
AUTHTYPE CHAR(8),
RESULT CHAR(2),
EXTLUWID CHAR(35))

IN SECURITY;

COMMENT ' '
COMMENT ' LOAD DATA - (NOTE _ YOU MAY '
COMMENT ' WISH TO INTERCHANGE DAY/MONTH) '
COMMENT ' '

DATALOAD TABLE (AUDIT_TAB) IF POS (11-14)=-220659706
TRPOINT 7-8 FIXED
EXTLUWID 41-75 CHAR
YEAR 124-125 CHAR
MONTH 118-119 CHAR
DAY 121-122 CHAR
TIME 143-150 CHAR
USERID 168-175 CHAR
GRANTEE 193-200 CHAR
RESOURCE1 218-235 CHAR
RESOURCE2 253-270 CHAR
OWNER 288-295 CHAR
AUTHTYPE 313-320 CHAR
RESULT 338-339 CHAR

INFILE(ARITRAC PDEV(TAPE) BLKSZ(4096) RECFM(VB) RECSZ(384))

Figure 21. Loading Security Audit Records into a Table - DB2 Server for VSE

Chapter 5. Providing Security 113

Note: The external logical unit of work identifier (EXTLUWID) is only used for
conversations that use the DRDA protocol.

If you have other trace functions active while you are tracing a security audit,
include an input-record-id clause (IF POS (11-14) = -220659706) on the
DATALOAD command to identify that only security audit trace records are to be
loaded. This is necessary because the trace records from other functions are
interspersed with those of the security audit trace.

Command to Invoke the DBS Utility:

FILEDEF TRACE1 TAP2 SL (RECFM VB BLOCK 4096 LRECL 384
EXEC SQLDBSU ID(SQLDBA) IN(SECTAB DATA A) PR(TERMINAL)

SECTAB DATA A Contains:

CONNECT user IDENTIFIED BY password;
COMMENT ' '
COMMENT ' ********************************* '
COMMENT ' * DATALOAD SECURITY AUDIT TRACE * '
COMMENT ' ********************************* '
COMMENT ' '
COMMENT ' ACQUIRE A DBSPACE(PRIVATE) '
COMMENT ' NAMED SECURITY '
COMMENT ' '
ACQUIRE PRIVATE DBSPACE NAMED SECURITY;
COMMENT ' '
COMMENT ' CREATE A TABLE IN THE PRIVATE DBSPACE '
COMMENT ' '
CREATE TABLE AUDIT_TAB(TRPOINT SMALLINT,

YEAR CHAR(2),
MONTH CHAR(2),
DAY CHAR(2),
TIME CHAR(8),
USERID CHAR(8),
GRANTEE CHAR(8),
RESOURCE1 CHAR(18),
RESOURCE2 CHAR(18),
OWNER CHAR(8),
AUTHTYPE CHAR(8),
RESULT CHAR(2),
EXTLUWID CHAR(35))

IN SECURITY;
COMMENT ' '
COMMENT ' LOAD DATA - (NOTE _ YOU MAY '
COMMENT ' WISH TO INTERCHANGE DAY/MONTH) '
COMMENT ' '
DATALOAD TABLE (AUDIT_TAB) IF POS (11-14) = -220659706

TRPOINT 7-8 FIXED
EXTLUWID 41-75 CHAR
YEAR 124-125 CHAR
MONTH 118-119 CHAR
DAY 121-122 CHAR
TIME 143-150 CHAR
USERID 168-175 CHAR
GRANTEE 193-200 CHAR
RESOURCE1 218-235 CHAR
RESOURCE2 253-270 CHAR
OWNER 288-295 CHAR
AUTHTYPE 313-320 CHAR
RESULT 338-339 CHAR

INFILE(TRACE1)

Figure 22. Loading Security Audit Records into a Table - DB2 Server for VM

114 Database Administration

When doing a security audit trace, it is usually to your advantage to trace the
parser component at the same time. When you trace this component at level 1, the
resultant trace records describe the SQL statement entered into the database
manager. By using the timestamp in the trace records, you can correlate the input
to the security audit trace records produced.

If you plan to load the security audit trace records into a table, you may want to
print the parser trace records by using the trace formatter. If you are printing the
security audit records, you may want to also print the parser records by specifying
both the parser and security audit components for the trace formatter. An example
producing such a listing is shown in Table 22 on page 117 and Table 23 on page 117.

In VM, if you directed the trace output to a CMS file (by issuing a CMS FILEDEF
command), you can still use the DBS Utility to load the trace data into tables. To
do this, enter the following CMS FILEDEF command before invoking the
SQLDBSU EXEC:

FILEDEF ddname DISK filename filetype filemode (RECFM VB LRECL 384 BLOCK 4096

Notes:

1. The ddname on the FILEDEF command must match that used in the DBS
Utility INFILE parameter of the DATALOAD command.

2. You must enter the RECFM, LRECL, and BLOCK values shown.

In VSE, if, when starting the application server, you directed the trace output to
disk, you must change the INFILE statement to:

INFILE(ARITRAC PDEV(DASD) BLKSZ(4088) RECFM(VB) RECSZ(384))

In addition, you must change the job control to identify the DASD SAM trace
output file. For example:
v For a DASD file that is not managed by the VSE/VSAM Space Management for

SAM Feature, you might specify:
// DLBL ARITRAC,'TRACE.FILE1'
// EXTENT ,VSER01,1,0,301,120
// ASSGN SYS006,195

v For one that is, you might specify:
// DLBL ARITRAC,'TRACE.FILE1',0,VSAM,DISP=(,DELETE)

When DISP=(,DELETE), the VSAM file is deleted after it is read. If you do not
want the file to be deleted, specify DISP=(,KEEP) or omit the DISP parameter.

The above examples would replace the TLBL statement in Figure 21 on page 113.

Once you have loaded the security audit trace records into a table, you can enter
SQL statements against them. This method may make viewing the records easier,
but has a disadvantage in that any user who has DBA authority can change the
table, and any tampering may make the data incorrect. You should always print
the trace records and protect the trace tape to ensure that there is always a valid
copy.

Figure 23 on page 116 shows examples of typical security audit queries. Some of
the records traced appear only at level 2; level 2 can generate a significant number
of trace records. These queries are shown as they might appear as input to the DBS
Utility.

Chapter 5. Providing Security 115

Printing Security Audit Information from the Trace File
A security audit trace, especially a level 2 one, can generate a large amount of
information, and even more information is generated if you are tracing other
components or functions at the same time. All of these records are placed in a
single trace file. To print them selectively, you need to use the trace formatting
utility.

COMMENT '**'
COMMENT ' SELECT ALL RECORDS FROM AUDIT TABLE '
COMMENT ' WHERE AUTHORIZATION WAS DENIED '
COMMENT '**'
SELECT * FROM AUDIT_TAB WHERE RESULT='N';
COMMENT '**'
COMMENT ' SELECT RECORDS FROM AUDIT TABLE '
COMMENT ' RECORDED BETWEEN 8 A.M. AND 12:30 P.M. '
COMMENT ' ON JUNE 29 '
COMMENT '**'
SELECT * FROM AUDIT_TAB WHERE MONTH = '06'

AND DAY = '29' AND TIME BETWEEN '08:00:00' AND '12:30:00';
COMMENT '**'
COMMENT ' SELECT RECORDS FROM AUDIT TABLE '
COMMENT ' RECORDED BETWEEN 12:30 P.M. AND 4:00 P.M.'
COMMENT ' ON JUNE 29 AND AUTHORIZED DUE TO DBAAUTH.'
COMMENT '**'
SELECT * FROM AUDIT_TAB WHERE MONTH = '06'

AND DAY = '29' AND TIME BETWEEN '12:30:00'
AND '16:00:00' AND RESULT = 'D';

COMMENT '**'
COMMENT ' SELECT CHECKS OF UPDATE AUTHORITY '
COMMENT ' AGAINST TABLE USER1.TAB1 '
COMMENT ' RECORDED BETWEEN 08:00 P.M. AND 4:00 P.M.'
COMMENT ' ON JUNE 29 NOT DUE TO VIEW CREATION. '
COMMENT ' (update checks traced at level 2) '
COMMENT '**'
SELECT * FROM AUDIT_TAB WHERE MONTH = '06'

AND DAY = '29' AND TIME BETWEEN '08:00:00'
AND '16:00:00' AND OWNER = 'USER1'
AND RESOURCE1 = 'TAB1' AND AUTHTYPE = 'UPDATE'
AND RESULT NOT LIKE '%V';

COMMENT '**'
COMMENT ' SELECT CHECKS OF UPDATE AUTHORITY '
COMMENT ' AGAINST TABLE USER1.TAB1 '
COMMENT ' RECORDED BETWEEN 08:00 P.M. AND 4:00 P.M.'
COMMENT ' ON JUNE 29 DUE TO DBAAUTH '
COMMENT ' (DBA activity traced at level 1 or 2) '
COMMENT '**'
SELECT * FROM AUDIT_TAB WHERE MONTH = '06' AND

DAY = '29' AND TIME BETWEEN '08:00:00'
AND '16:00:00' AND OWNER = 'USER1'
AND RESOURCE1 = 'TAB1' AND AUTHTYPE = 'UPDATE'
AND RESULT = 'D';

COMMENT '**'
COMMENT ' SELECT ALL GRANTS OF RUN AUTH ON '
COMMENT ' PROGRAMS USER1.DBD1 AND USER1.DBD3. '
COMMENT '**'
SELECT * FROM AUDIT_TAB WHERE AUTHTYPE = 'RUN' AND

OWNER = 'USER1' AND RESOURCE1 = 'DBD1' OR
RESOURCE1 = 'DBD3';

Figure 23. Example Security Audit Queries

116 Database Administration

This utility accepts control statements, which in VM, it reads from a CMS file. As it
does not access the database manager, the latter does not have to be running for
the trace formatter to work.

Table 22 shows an example of invoking the DB2 Server for VSE trace formatter.
The control statements print out all security audit trace records and all parser trace
records. The example also restricts the output by date and time and is only for
USER1.

Table 22. Printing Security Audit Records from the Trace File

// JOB RUN TRACE FORMATTER
// TLBL ARITRAC,file-id <-- File-id of trace tape (optional)
// ASSGN SYS004,cuu <-- Address of tape unit
// EXEC ARIMTRA,SIZE=AUTO
SUBCOMP AU PA
USERID USER1
DATE 06/29/85
TIME 12:00:00 23:00:00
/*
/&

Notes:

1. The tape should be mounted on the physical device specified by cuu before
running the job.

2. The tape file-id must be the same file-id as was specified on the TLBL
statement when the tape was created.

3. The DB2 Server for VSE & VM Operation manual contains examples of running
the trace formatter to process a trace file that resides on DASD.

Table 23 shows an example of invoking the DB2 Server for VM trace formatter. The
interactive SQLTRFMT EXEC supplied by IBM resides on the production minidisk
(Q-disk) and invokes XEDIT to edit a CMS file called SQLTRFMT TRACE A. Use
this exec to type in the control statements. When you file SQLTRFMT SQLTRACE
A, the SQLTRFMT EXEC then asks where you want its output directed.

The control statements shown in Table 23 print all security audit (AU) trace records
and all parser (PA) trace records. They also restrict the output to those records
generated for a specific date (06/29/85), time (12:00:00 to 23:00:00), and user
(USER1).

Table 23. Printing Security Audit Records from the Trace File

Invoking the Trace Formatter:

SQLTRFMT

Example Control Statements

SUBCOMP AU PA
USERID USER1
DATE 06/29/85
TIME 12:00:00 23:00:00

If you are directing your trace output to tape, then before invoking the trace
formatter, ensure that the appropriate tape is mounted on virtual device 182. If you
are directing it to a CMS file, you must enter a CMS FILEDEF command for the
file before invoking SQLTRFMT. Use the same FILEDEF that you issued before you

Chapter 5. Providing Security 117

invoked SQLSTART (and initiated the trace). See the DB2 Server for VSE & VM
Operation manual for the command format.

Complete instructions for using the utility are in the DB2 Server for VSE & VM
Operation manual.

118 Database Administration

Chapter 6. Recovering from Failures

A variety of problems can occur in a relational database management system,
leading to inaccuracies or loss of data. A power failure can bring the computer to a
halt; the disk used to store information could become damaged; users can make
errors such as dropping the wrong table or dbspace. Database recovery refers to
the processing needed to correct the data when something goes wrong.

The problems that can occur fall into the following categories. This chapter
explains how to recover from those that fall into the first two categories. For
information on how to recover from the other types, see the DB2 Server for VM
System Administration or DB2 Server for VSE System Administration manual.
v Application Failure

A single application (for example, an ISQL command or routine, or a DBS Utility
command) fails to complete successfully.

v User Logic Errors
The system or application does the requested function, but the request itself was
in error: that is, the user (or application program) did not specify the correct
function.

v System Failure
The operating system, CICS subsystem, or the database manager can end
abnormally because of error conditions or a power failure.

v DASD Failure
The system may be unable to read data from or write it to the DASD device on
which it is stored because the storage medium is unreadable or damaged. Such
an error could occur on the log or the storage pool.

v Subsystem Failures (VM Only)
With VSE Guest Sharing, whereby users on VSE are accessing a DB2 Server for
VM application server, any of the subsystems involved (the database manager,
VM/ESA operating system, VSE, or the CICS subsystem) may end abnormally.

Overview of Recovery Concepts

Logical Units of Work
When a user or an application program has made a change or a group of related
changes to the database, and if the application in question completed successfully,
the user or program issues an SQL COMMIT WORK statement to the application
server, to commit these changes to the database. If the application did not complete
successfully, the user instead issues an SQL ROLLBACK WORK statement, which
undoes all the changes made up to the point of the error since the last COMMIT
WORK statement, or since the start of the program or session.

A group of SQL statements is called a logical unit of work (LUW). An LUW can be
as small as one statement, or as large as an entire application execution (or ISQL
session). All SQL statements are processed within an LUW. If no LUW exists when
a statement is issued, then the database manager creates one.

© Copyright IBM Corp. 1987, 2001 119

CMS Work Units
VM users can take advantage of CMS work units which allow them to maintain
more than one logical unit of work (LUW) at a time. With separate CMS work
units, application programs can be independent of one another. For example, a
user can run a program, and in the middle of an LUW, have that program call a
second program which runs in a separate CMS work unit. When work is
committed in the second program, it does not affect the active LUW in the first
program.

Note: CMS work units require extra processing overhead, so should only be used
when necessary. If an application does not need this support, set the
WORKUNIT option of the SQLINIT command to NO.

Atomic Operations
An operation is atomic if within a logical unit of work (LUW), it can succeed or
fail on its own; that is, it does not affect other operations as long as they do not
depend on it. The DB2 Server for VSE & VM database manager considers all
operations are atomic except those that occur in dbspaces residing in
nonrecoverable storage pools, and those that occur when LOGMODE=N (running
with the no-log option).

Example:
Suppose you have an application program that performs the following operations
within one LUW: a DELETE, an UPDATE, and an INSERT statement. Assume the
DELETE statement will process successfully; then, the UPDATE statement will
change the values in the table as specified. If, at the end of statement processing,
any duplicates exist in the primary key, the UPDATE operation is rolled back.
Because the failure of the UPDATE statement does not affect the DELETE
statement (both operations are atomic), you can let the program proceed and
perform the INSERT. Alternatively, you could COMMIT the successful DELETE or
ROLLBACK the LUW.

For a further discussion of atomic operations, see “Backouts Initiated by
Application Programs” on page 129.

Dynamic Application Backout
This process reverses the changes made by a logical unit of work (LUW) that ends
abnormally. It is performed while the system is online and processing other
applications. It is supported for the following:
v DB2 Server for VM
v DB2 Server for VSE
v ISQL
v DBS Utility
v preprocessor operations
v Batch
v VSE/ICCF, and
v the CICS subsystem

The DB2 Server for VSE dynamic application backout facilities are also coordinated
with the Dynamic Transaction Backout facilities of the CICS subsystem. A backout
initiated by the DB2 Server for VSE database manager initiates a CICS transaction

120 Database Administration

backout for the affected transaction. Similarly, a transaction backout initiated by the
CICS subsystem initiates a DB2 Server for VSE backout, if the transaction was
doing any SQL processing.

Restart Processing
If the system or the database manager ends abnormally, this process reverses any
database changes made by applications that were in progress within an LUW at
the time of the failure. It also ensures commitment of all changes made by those
applications that completed successfully.

Recovery from Application Failures
To take advantage of the DB2 Server for VSE & VM recovery support, applications
should be designed so that all SQL requests that constitute one logical change to
the database are properly grouped into logical units of work (LUWs). For example,
if an application transfers funds from one account to another, which entails an
update to two different rows in the database, the updates should be done in the
same LUW. Thus, if the application should fail, the database would be left in one
of two consistent states: either the transfer was done completely (both rows
updated), or it was not done at all (neither row updated). If the updates were in
different LUWs, an application failure could result in only half of the transfer
being performed (only one row updated).

Designing an application properly requires an understanding of when an LUW
begins and ends. When it ends, the changes made within the LUW are either
committed to the database, or backed out. Figure 24 on page 122 shows the general
rules for DB2 Server for VSE LUWs. Table 24 shows the general rules for VM users
and Table 25 on page 123 shows the general rules for VSE guest users accessing an
application server on a VM/ESA system. There are, however, variations and
special considerations that depend on the application environment and application
implementation techniques. These variations are discussed in the following
sections.

Chapter 6. Recovering from Failures 121

Notes to Figure 24:

v Note that DBS ERRORMODE processing may change the DBS AUTOCOMMIT
mode. Refer to the DB2 Server for VSE & VM Database Services Utility manual for
details.

v When AUTOCOMMIT is on, ISQL issues a COMMIT WORK when the statement
completes successfully. The exception is for UPDATE, DELETE, and INSERT
statements that affect more than one row. For that case, you are prompted before
ISQL issues a COMMIT WORK.

Table 24. General Rules for DB2 Server for VM Logical Units of Work

LOGICAL
UNIT OF
WORK

All
Programs
Under CMS

ISQL Sessions DBS Utility Pre-
processorsAUTOCOMMIT

ON
AUTOCOMMIT
OFF

AUTOCOMMIT
ON

AUTOCOMMIT
OFF

BEGINS First SQL
statement

Each SQL
statement entry

First SQL
statement

Command
entry

First command Start of CMS
command

ENDS
COMMITTED

COMMIT
WORK

Normal end
of CMS
command

After successful
SQL statement
processing,
COMMIT
WORK for
multi-row
updates

COMMIT
WORK

After successful
command
processing

COMMIT
WORK

Normal end
of CMS
command

Normal end
of CMS
command

Implicit
rollback

SQLHX

WHEN A LOGICAL
UNIT OF WORK
BEGINS

First SQL
statement

First SQL
statement

Command
entry

First Command

Command entry

First Command

Start of job
setp

COMMITTED

-COMMIT WORK

-Normal end

-COMMIT WORK
-SYNCPOINT

-Normal end

-After successful
command process-
ing
-COMMIT WORK for
multiple row
update
-COMMIT WORK

-After successful
command process-
ing

-COMMIT WORK
-Normal end of
program

-Normal end of
job step

BACKED OUT

-ROLLBACK WORK

-Abnormal end
-Implicit rollback
-Statement error

-ROLLBACK WORK
-SYNCPOINT ROLLBACK

-Abnormal end
-Implicit rollback

-CANCEL
-Command Error
-ROLLBACK WORK
-Implicit rollback

-ROLLBACK WORK
-Abnormal end
-CANCEL
-Command Error
-Implicit rollback

-Command error
-Abnormal end

-Command error
-ROLLBACK WORK
-Abnormal end
of program

-Abnormal end of
job step

Programs

-Batch/ICCF

-CICS

ISQL Sessions

-AUTOCOMMIT ON

-AUTOCOMMIT
OFF

DBS Jobs

-AUTOCOMMIT ON

-AUTOCOMMIT
OFF

Preprocessor
Jobs

WHEN A LOGICAL UNIT OF WORK ENDS

Figure 24. General Rules for DB2 Server for VSE Logical Units of Work

122 Database Administration

Table 24. General Rules for DB2 Server for VM Logical Units of Work (continued)

LOGICAL
UNIT OF
WORK

All
Programs
Under CMS

ISQL Sessions DBS Utility Pre-
processorsAUTOCOMMIT

ON
AUTOCOMMIT
OFF

AUTOCOMMIT
ON

AUTOCOMMIT
OFF

ENDS
BACKED OUT

ROLLBACK
WORK

Abnormal
end of CMS
command

Implicit
rollback

SQLHX

Statement
error

CANCEL

Statement
error

ROLLBACK
WORK

Implicit
rollback

ROLLBACK
WORK

Abnormal
end

CANCEL

Implicit
rollback

Abnormal
end

Command
error

SQLHX

Implicit
rollback

Command
error

ROLLBACK
WORK

Abnormal
end of CMS
command

Implicit
rollback

SQLHX

Abnormal end
of CMS
command

Notes to Table 24 on page 122:

1. If a DB2 application program (including preprocessors and utilities) is not
invoked from an EXEC, it is considered to be a command, and the COMMIT
and ROLLBACK rules apply. If the program is issued from an EXEC (as is
almost always the case), then it is considered to be a subcommand. For EXECs,
end-of-command COMMIT and ROLLBACK processing does not occur until
the EXEC completes.

2. DBS ERRORMODE processing may change the DBS AUTOCOMMIT mode.
Refer to the DB2 Server for VSE & VM Database Services Utility manual for
details.

3. When AUTOCOMMIT is on, ISQL issues a COMMIT WORK when the
statement completes successfully (as shown in Table 24 on page 122). The
exception is for UPDATE, DELETE, and INSERT statements that affect more
than one row. For that case, you are prompted before ISQL issues a COMMIT
WORK.

4. For the normal end situation, the database manager will attempt to commit
LUWs. The commit may fail if a deadlock occurs, a log full condition is
encountered, or some other system condition occurs that causes the program to
end.

Table 25. General Rules for DB2 Server for VM Logical Units of Work from VSE Guests

LOGICAL UNIT OF
WORK

PROGRAMS Preprocessor Jobs

CICS Batch/ICCF

BEGINS First SQL Statement First SQL Statement Start of job step

ENDS COMMITTED COMMIT WORK

Normal end

COMMIT WORK

SYNCPOINT

Normal end

Normal end of job step

Chapter 6. Recovering from Failures 123

Table 25. General Rules for DB2 Server for VM Logical Units of Work from VSE Guests (continued)

LOGICAL UNIT OF
WORK

PROGRAMS Preprocessor Jobs

CICS Batch/ICCF

ENDS BACKED OUT ROLLBACK WORK

Abnormal end

Implicit rollback

Statement error

ROLLBACK WORK

SYNCPOINT ROLLBACK

Abnormal end

Implicit rollback

Abnormal end of job
step

Application Program Recovery in VM
An application is considered to have ended normally when it returns to CMS. In
single user mode, an application ends normally when it returns to the DB2 Server
for VM calling routine. All other types of termination (such as HX, CMS abend,
program check, or any user machine termination) are considered abnormal.

Note: In single user mode, an application’s Register 15 return code protocol is not
part of the definition of termination, and is not used by the application
server to determine whether it should proceed with normal or abnormal
termination processing. The application server establishes a CMS ABNEXIT
exit in the database machine. The exit attempts recovery and dumps
important diagnostic information when the recovery attempt is not
successful. If a single user mode application establishes an abnormal end
exit (for example, by way of ABNEXIT, STAE, SPIE, STXIT), the DB2 Server
for VM abend exit is overridden.

Some compilers provide a mechanism that handles program interrupts during the
execution of a program and before control returns to CMS. Consequently, the
application server may not be aware that the program termination is abnormal,
and will perform an implicit COMMIT rather than an implicit ROLLBACK. See the
DB2 Server for VSE & VM Application Programming manual for more information
about program interrupts.

Users should be aware of how CMS handles multiple abnormal end exits, and
should clear any that have been set by the application program before returning to
the DB2 Server for VM application server, or else unpredictable results may occur
when later CMS commands are issued. Also, the user should reset the abnormal
exit before returning to the CMS abnormal termination routine after handling an
abnormal end condition.

Dropping the DB2 Server for VM Resource Adapter Code
When users switch from one program to another, the SQLRMEND EXEC enables
application programs to free the storage used by the resource adapter code. This
EXEC can also be used to perform COMMIT/ROLLBACK processing on
outstanding work before running the next program.

For more information, see “SQLRMEND EXEC” on page 253.

Batch and VSE/ICCF Application Recovery
If a batch application executing in multiple user mode ends without freeing its link
to the DB2 Server for VSE & VM application server, the operating system informs
the application server whether the application ended normally or abnormally. The

124 Database Administration

indication is normal if the application ends with the EOJ macro and the high-order
bit of general purpose register 15 is set to 0. Other conditions indicate an abnormal
end. The database manager automatically commits updates if the termination is
normal, or does a rollback if it is abnormal.

The DB2 Server for VSE application server establishes an STXIT AB exit in the
database partition. The exit attempts recovery and dumps important diagnostic
information if the recovery attempt is not successful. If an application is running
with the TRAP(ON) run-time option of LE/VSE and it did not issue an STXIT AB
MACRO, LE/VSE and DB2 Server for VSE will keep track of calls to and returns
from DB2 Server for VSE. If an abend occurs while the application is running, the
LE/VSE condition manager is informed whether the problem occurred in the
application or in DB2 Server for VSE. If the abend occurs in DB2 Server for VSE,
the LE/VSE condition handler passes the condition back to DB2 Server for VSE.
For information on condition handling with LE/VSE see the DB2 Server for VSE &
VM Application Programming manual. Furthermore, if a single user mode
application issues an STXIT AB macro, the DB2 Server for VSE abend exit is
overridden. Similarly, if the application issues an STXIT PC, then the DB2 Server
for VSE abend exit is overridden for program check conditions. Other abend
conditions are still processed by the application server.

Online Application Recovery
DB2 Server for VSE & VM recovery from failures of online (CICS) transaction is
coordinated with CICS recovery processing.

Consistency among multiple application servers is ensured at CICS synchronization
points, when related data across multiple application servers is kept in a consistent
state. Synchronization points (syncpoints) are points, during the processing of a
transaction, at which updates or modifications to the transaction’s resources are
logically complete and error-free. To take advantage of the CICS syncpoints, the
database manager online support runs as a CICS resource adapter, using the CICS
Application Program interface and User Exit interface. For more information, refer
to the CICS/VSE Customization Guide.

Syncpoints occur during the execution of an application under any of the following
circumstances:
v An application explicitly issues a request for a syncpoint: either the statement

EXEC CICS SYNCPOINT to request a COMMIT of all updates, or EXEC CICS
SYNCPOINT ROLLBACK to request a ROLLBACK. For further information,
refer to the CICS/VSE Application Programming Reference.

v Any termination of a CICS transaction calls the CICS syncpoint manager.
Normal termination results in COMMIT. Abnormal termination results in
ROLLBACK.

v The SQL COMMIT WORK statement causes the DB2 Server for VSE online
support to issue a CICS SYNCPOINT (COMMIT). The SQL ROLLBACK WORK
statement causes a CICS SYNCPOINT (ROLLBACK).
Additionally, when the DB2 Server for VSE online support detects an internal
ROLLBACK of a unit of work, it issues CICS SYNCPOINT (ROLLBACK). (Such
an internal rollback could happen, for example, if the system operator entered
the FORCE command to ROLLBACK an LUW).

As a performance note, it is more efficient for applications to use a CICS syncpoint.
The SQL COMMIT or ROLLBACK calls are less efficient, because they result in a

Chapter 6. Recovering from Failures 125

longer path. A CICS syncpoint is also easier to understand : when it is time to
commit, the application program calls the global synchronization function (CICS
SYNCPOINT [ROLLBACK]).

The assumptions are that individual application programs do not plan to do their
own recovery, and that updates are not to be committed unless normal termination
occurs or the application program explicitly requests a commit.

Notes:

An installation must explicitly request the CICS subsystem to start the syncpoint
protocol by:
1. Generating CICS System Initialization Table (DFHSIT) with DBP=YES. If this is

not done, the CICS process at synchronization points attempts to commit all
updates. Alternatively, DBP=xx may be specified if a suffixed version of the
CICS Dynamic Transaction Backout Program is being used.

2. Ensuring that each online application program that accesses an application
server has Dynamic Transaction Backout set to YES. Do this by specifying
INDOUBT=BACKOUT when defining the transaction.

ISQL Sessions
If an ISQL session ends abnormally, the database manager attempts to notify the
user about the abnormal condition, and leaves the database in a consistent state. In
VM, the database manager issues a ROLLBACK WORK and the session ends.
Control returns to CMS. In VSE or in a VSE Guest Sharing environment, the CICS
syncpoint manager issues a ROLLBACK WORK. All CICS temporary storage for
routines is deleted, and both the ISQL transaction and the CISQ transaction are
terminated, if possible. If the CICS syncpoint manager is in control when the CISQ
transaction abnormal termination occurs, the ISQL transaction abends with the
abend code GCBE. For more information on GCBE, see the DB2 Server for VSE
Messages and Codes manual.

DBS Utility Processing
If the DBS Utility fails to complete the processing of all commands supplied in the
command input, or if it terminates with a return code equal to or greater than 8,
then before the Utility can be restarted the DBS message file listing must be
analyzed to determine the commands that were processed and the error that
occurred. If there are no error messages here that describe the reason for the
failure, then the database machine console messages must be analyzed. After the
error has been corrected, restart the Utility as described below:
v If the DBS command input that failed was processing without any of the

following commands:
SET AUTOCOMMIT ON
SET ERRORMODE OFF
SET ERRORMODE CONTINUE
COMMITCOUNT parameter on an INFILE subcommand
COMMITCOUNT parameter on an INMOD subcommand (VSE Only)
SQL COMMIT WORK statements,

just restart the Utility.
v If it was processing with any of the above commands:

1. Correct any command syntax errors.
2. Remove all commands that were successfully processed and committed.
3. Restart the Utility.

126 Database Administration

If the Utility ends with a return code of 4, this means that all the commands
supplied in the command input were processed successfully but a DBS program
termination error occurred. The Utility does not need to be rerun.

For full descriptions of DBS Utility return codes and error processing, see the DB2
Server for VSE & VM Database Services Utility manual.

Preprocessor
If the preprocessor fails to complete the processing of all source statements
supplied as input, or if it terminates with a return code equal to or greater than 8,
then before running it again you must analyze the source statement listing
produced to determine the errors that occurred. If there are no error messages
there that describe the error condition(s), look at the console messages. After all
source statements and any other errors are corrected, rerun the preprocessor from
the beginning.

If the preprocessor ends with a return code of 1 while the program is being
preprocessed with the BLOCK option, this means that one or more SQL statements
are disqualified for blocking. For further information on blocking, refer to the DB2
Server for VSE & VM Performance Tuning Handbook manual.

If it ends with a return code of 4, then one or more preprocessor warning messages
are contained in the source statement listing. The preprocessor does not have to be
rerun; however, the source statement listing should be checked to insure that the
warning conditions involve objects known to be nonexistent at the time the
preprocessor was run.

If it ends with a return code of 0 and no package was created, then the source
statements read by the preprocessor contained no SQL statements. Here, the
preprocessor must be rerun if the incorrect input source statements were supplied
as input.

Recovery from User Logic Errors
User logic errors are those where the application server carries out the functions as
requested, but the user (or program) determines that the change(s) requested
should not have been made — for example, the wrong table or dbspace may have
been dropped.

Recovery from a user logic error depends on when the error is detected. If it is
detected before the changes have been committed, the application server supports
user (or program) invoked dynamic application backout. A user or program can
take certain actions to back out these changes, depending on the way in which the
application server is being used. ISQL users accomplish this by issuing either the
SQL ROLLBACK WORK statement or the ISQL CANCEL command, or by
responding to ISQL prompts for CANCEL or ROLLBACK. The error handling logic
in application programs can accomplish this by issuing a ROLLBACK WORK
statement. In addition, in VM the invoker of the program can enter either the HX
or SQLHX immediate command (HX causes a rollback and ends the CMS
command; SQLHX causes a rollback, but does not end the CMS command.) If you
have coded your own interactive program to process SQL statements dynamically,
you can also code a cancel exit. This would allow a user of your program to
perform a function similar to the ISQL CANCEL command.

Chapter 6. Recovering from Failures 127

For more information on cancel exits, refer to the DB2 Server for VM System
Administration or DB2 Server for VSE System Administration manual. For user errors
that are detected after changes have been committed, the user has three choices:
1. Manually reverse the effects of the changes.

This involves issuing the INSERTs, PUTs, UPDATEs, and DELETEs necessary to
cancel all changes. If the committed changes involved definitional change
statements (CREATE, DROP, or ALTER), these too must be manually backed
out, which can be quite a chore since definitional statements do not always
have straightforward cancellation operations. For example, a DROP TABLE
statement would have dropped views and authorizations along with the table;
thus, to reverse its effects would include re-creating the views and regranting
the authorizations.

2. Reset the data and reenter valid changes.
If a back-up copy of the data exists, it may be simplest to just revert to this
version and then reenter any valid changes made to the data since the copy
was made. Reentering the valid changes can, of course, be as involved as the
effort to back out invalid ones; however, it has the advantage in that it can be
done by reexecuting applications.
The DBS Utility UNLOAD facilities can be used to create back-up copies of
data, and the RELOAD facilities can be used to reset data to a previous state.
The DB2 Server for VSE & VM database archiving support can also be used to
create back-up copies of the entire database and reset it.

3. Use filtered log recovery to bypass the changes.
Filtered log recovery lets you rollback a committed logical unit of work (LUW).
It sounds like an easy solution, but it must be exercised with extreme care.
When you undo past errors, other database changes may be altered as well:
rows that users thought they had deleted may unexpectedly reappear; the
values in updated rows may change.
If you are using referential integrity, then on completion of the filtered log
recovery you should deactivate and activate your primary and foreign keys to
have the database manager automatically recheck the referential constraints. See
“Altering Referential and Unique Constraints” on page 65.
Filtered log recovery can be used to bypass the operations recorded in the log.
The smallest set of operations you can bypass is all the work done in a single
LUW. You tell the application server which logical units of work to bypass by
supplying EXTEND input file commands. Because you want to bypass work
that has already been committed, you would use the ROLLBACK
COMMITTED WORK command. All the EXTEND input file commands are
described in the DB2 Server for VSE & VM Diagnosis Guide and Reference
manual.

Dynamic Recovery from User Errors
To dynamically recover from user errors, users should take advantage of the
facilities that are provided for detecting error situations and for backing out
changes that should not have been committed.

Backing Out Data During an ISQL Session
When using ISQL, there will be times when you will want to backout an invalid
action: for example, if AUTOCOMMIT is OFF and you entered an SQL statement
that resulted in a negative SQLCODE, or changes to a table that proved to be
incorrect.

Note: You cannot backout changes in a nonrecoverable storage pool.

128 Database Administration

If you detect an error before a change is committed, you can backout the change.
How many changes you can backout depends on whether AUTOCOMMIT is ON
or OFF.

If it is ON, every statement is its own logical unit of work (LUW), and ISQL will
immediately issue a COMMIT WORK after processing the statement. The only
exception is for INSERT, UPDATE, and DELETE statements that affect more than
one row: in that case, ISQL displays a message that gives you the option of
backing out. For all other statements, you can backout the changes before the
statement completes its processing, by:
v Answering CANCEL, ROLLBACK, or NO (based on the reply prompt) to an

ISQL message requesting a reply
v Entering the ISQL CANCEL command when you are informed that the terminal

is free (VSE Only)
v Entering CANCEL if you are prompted to clear the screen or enter CANCEL.

(VSE Only)
v Entering CANCEL or SQLHX if you are prompted to clear the screen (clear the

screen after entering CANCEL). (VM Only)

When using the INPUT command, you can enter the BACKOUT command after an
invalid data row is entered. This deletes all data rows entered since INPUT was
issued, or since the last SAVE command was entered.

If AUTOCOMMIT is OFF, you have control over what is an LUW and when
changes are to be made. When you backout a change, this undoes all changes
made since the beginning of the LUW. You can backout a change by any of these
methods:
v Entering a CANCEL or an SQL ROLLBACK WORK statement
v Answering CANCEL to any ISQL message requesting a reply (and then

answering YES to message ARI7041D)
v Entering the ISQL CANCEL command when you are informed that the terminal

is free (VSE Only)
v Entering CANCEL if you are prompted to clear the screen or enter CANCEL.

(VSE Only)
v Entering CANCEL or SQLHX if you are prompted to clear the screen (clear the

screen after entering CANCEL). (VM Only)

Note: In VM, when you enter a CANCEL command, ISQL does ROLLBACK
WORK RELEASE processing. Any explicit connection you have made will
be released. You should reissue the CONNECT statement if you want to
explicitly connect to ISQL again.

Backouts Initiated by Application Programs
An application program may begin a backout if the application server shows that
there is an error, or if the program detects something wrong internally. To detect
and handle errors, the program should have the WHENEVER statement coded into
it. It can then determine whether to continue or to stop execution when an error
occurs.

All operations against recoverable storage pools are atomic, except in SUM
NOLOG mode. That is, either the operation will be completed successfully, or any
changes made by the operation will be reversed automatically. Changes made by
previous operations in the same LUW are not affected. The application is free to
either continue working within the same LUW, to COMMIT the changes made so

Chapter 6. Recovering from Failures 129

far, or to ROLLBACK the LUW. Some errors, such as deadlock, still require the
entire LUW to be rolled back. The status of the LUW is indicated in SQLWARN6 in
the SQLCA.

When running with LOGMODE=N, atomicity of operations is enforced by rolling
back the current LUW to avoid partial completion of an operation. For operations
on data in nonrecoverable storage pools, there is no support for atomicity of
operations.

Note: When blocking, the database manager does not insert rows into the database
until the block is full and it does not notify your program of an insert error
until the PUT that fills a block is run. To determine when (or if) rows are
actually inserted into the database, your program should examine
SQLERRD(3) in the SQLCA when doing PUTs.

To rollback work when an SQL error is encountered, code a ROLLBACK WORK
statement in the program, and use a WHENEVER SQLERROR GO TO statement to
cause a branch to the ROLLBACK statement when there is an SQL error. After the
program issues a ROLLBACK WORK, it may continue processing more SQL
statements without the previous error affecting their outcome.

If the application programmers do not wish to worry about setting up
error-recovery logic in their programs, they can enable them to stop executing
when an SQL error is detected. This is done by coding WHENEVER SQLERROR
STOP (COBOL, COBOL II, PL/I) or WHENEVER SQLERROR GOTO. When this is
coded, the database manager will issue either a CANCEL (in VSE) or a CMS
DMSABN macro (in VM) for the application when any command results in a
negative SQLCODE, which results in a ROLLBACK WORK for any outstanding
LUW within the application program. Alternatively, the application programmer
could code a WHENEVER SQLERROR GOTO and branch to a label or routine to
perform the ROLLBACK WORK and end the program.

If the program detects an internal error and wishes to discontinue processing, it is
probably best to issue a ROLLBACK WORK (if possible) before terminating it. This
can be done by coding a ROLLBACK WORK statement in the application and
branching to it when an internal program error is detected. After the ROLLBACK
WORK statement is run, the program can stop, or continue if desired.

In VM, once a program is running, you can stop it by using the immediate
commands HX or SQLHX, both of which cause a ROLLBACK WORK for the
current LUW. You might want to do this if, for example, you start the program and
then realize you have provided the wrong inputs. The difference between the two
commands is that HX causes an end to the CMS command, while SQLHX does
not. Thus, the choice of command is a matter of convenience. For example, issuing
HX from ISQL both rolls back the current LUW and ends the ISQL session, so the
user must reinitialize ISQL to continue processing; issuing SQLHX causes the LUW
to be rolled back but the ISQL session continues.

Note: The ISQL CANCEL command and the more general SQLHX command have
equivalent functions. The CANCEL command, however, does not work for
user programs. In addition, CANCEL, SQLHX, and HX do not work if you
have processed the SQLINIT command with the SYNCHRONOUS(YES)
option.

130 Database Administration

Selective Recovery from User Data Errors
It is a good idea to maintain backup copies of specific tables or dbspaces, so that
they can be reset in case of major errors.

Periodic Backup of Critical Data
Individual tables or entire dbspaces should be periodically unloaded to either a
SAM tape or DASD file (in VSE), or to a tape or CMS minidisk file (in VM) with
the DBS Utility UNLOAD command.

Multiple UNLOAD commands can be put in a single DBS SYSIPT (VSE), or SYSIN
(VM), input file. You might establish one such job stream for periodic back-up of
users’ PRIVATE dbspaces, and others for periodic back-up of selected application
production data. Different types of data would typically have different back-up
schedules. For example, production data would probably be backed up more
frequently than query user data. Some DB2 Server for VSE data, such as certain
data extracted from DL/I, would not require back-up; that is, the DL/I copy of the
data is sufficient back-up.

Note: You cannot use the DBS Utility UNLOAD facilities to back up data in the
system dbspaces (SYS000n). The catalog tables and packages cannot be reset
by DBS RELOAD processing.

Resetting Data Using DBS RELOAD Processing
When data is backed up, you can recall the backup copy if necessary. Data that
was backed up with the UNLOAD TABLE command is recalled with the RELOAD
TABLE command; data that was backed up with the UNLOAD DBSPACE
command can be recalled with either RELOAD DBSPACE (to reset the entire
dbspace) or with RELOAD TABLE (to recall selected tables in the dbspace). Often,
user data errors that have been introduced into the database are isolated to just a
few tables; thus, even if the data had been unloaded with an UNLOAD DBSPACE
command, you would use RELOAD TABLE to reset it.

When a table is RELOADed with the NEW option, a new table is created and data
reloaded. None of the primary keys, indexes, unique constraints, referential
constraints or field procedures are reproduced in the new table.

When you use the RELOAD command with the PURGE option to replace the
contents of a table, the DBS Utility does the following to the table being replaced:
1. Drops the CLUSTERING index (if one exists).
2. Deactivates the active primary key (if one exists).
3. Deactivates all active foreign keys.
4. Deactivates all unique constraints.
5. Drops all other indexes.
6. Deletes all rows from the table.
7. Reloads data.
8. Recreates the CLUSTERING index previously dropped.
9. Activates the primary key previously deactivated.

10. Activates the unique constraints previously deactivated.
11. Recreates any remaining indexes previously dropped.

As a result, the CLUSTERING index will be preserved, as well as the primary key,
foreign keys, unique constraints, and indexes existing on the table at the time of
the RELOAD/PURGE command. If no CLUSTERING index exists, then the
primary key becomes the CLUSTERING index. There is no requirement to order
the reloading of tables, because all referential constraints are inactive while the
data is inserted.

Chapter 6. Recovering from Failures 131

Consider running the DBS Utility in single user mode with LOGMODE=N when
resetting data through RELOAD DBSPACE or RELOAD TABLE processing. This
will eliminate any log overflow conditions that result from the table row deletes
and inserts performed by RELOAD processing with the PURGE option. If you use
log archiving, however, remember that switching the log mode disrupts the
continuity of the log.

Running the DBS Utility with LOGMODE=N is shown in Figure 25 and Figure 26.
If the data resides in a nonrecoverable storage pool, there is no need to use
LOGMODE=N, because logging is automatically suppressed for nonrecoverable
data.

Notes:

1. The job control here assumes that the DB2 Server for VSE database was last
shut down with the ARCHIVE, UARCHIVE, or LARCHIVE option (depending
on whether you use LOGMODE=A or LOGMODE=L).

2. The first execution of the ARISQLDS exec starts the DB2 Server for VSE system
in single user mode (SYSMODE=S), and does a COLDLOG (STARTUP=L) to
redefine the log data sets. This step switches from LOGMODE=A or
LOGMODE=L to LOGMODE=N, and is not needed unless you run with
LOGMODE A or L. Omit the parameter DUALLOG=Y if you are not using
dual logging.

3. The second execution of the ARISQLDS exec runs the DBS Utility with the
input shown. This step RELOADs all the table data into the DBSPACE named
SQLDBA.EXAMPLE from a tape file (filename=DUMPTAP) created by the DBS
Utility UNLOAD DBSPACE command.
For further information about switching log modes, see the DB2 Server for VSE
System Administration manual.

Notes:

1. The CMS commands here assume that the application server was last shut
down with the ARCHIVE, UARCHIVE, or LARCHIVE option (depending on

// JOB RESTORE DBSPACE
// EXEC PROC=DBNAME01
// EXEC PROC=ARIS71PL
// TLBL DUMPTAP,.........
// ASSGN SYS004,.........
// EXEC ARISQLDS,SIZE=AUTO,PARM='STARTUP=L,SYSMODE=S,LOGMODE=N,DUALLOG=Y'
// EXEC ARISQLDS,SIZE=AUTO,PARM='SYSMODE=S,LOGMODE=N,PROGNAME=ARIDBS'
CONNECT SQLDBA IDENTIFIED BY SQLDBAPW;
RELOAD DBSPACE (SQLDBA.EXAMPLE) PURGE INFILE(DUMPTAP PDEV(TAPE)
/&

Figure 25. Resetting a DB2 Server for VSE DBSPACE from a Back-up Copy

EXEC SQLLOG DB(dbname)
FILEDEF DUMPTAP TAPn (RECFM VBS BLOCK 800
EXEC SQLDBSU DB(dbname) IN(TERM) LOGMODE(N)
CONNECT SQLDBA IDENTIFIED BY SQLDBAPW;
RELOAD DBSPACE (SQLDBA.EXAMPLE) PURGE INFILE(DUMPTAP)
COMMIT WORK RELEASE;

Figure 26. Resetting a DB2 Server for VM Dbspace from a Back-up Copy

132 Database Administration

whether you use LOGMODE=A or LOGMODE=L). This ensures that you will
be able to restore the database if a DASD fails.

2. The first run of the DB2 Server for VM program (by way of the SQLLOG
EXEC) does a COLDLOG, which is necessary to switch from LOGMODE=A or
L to LOGMODE=N. If you do not run with LOGMODE=A or L, you do not
need to run SQLLOG to do a COLDLOG.

3. Respond N for NO to message ARI0688D, which asks whether you want to
FORMAT and RESERVE the log minidisk(s).

4. The second run processes the DBS Utility with the input shown, to RELOAD
all the table data in the dbspace named SQLDBA.EXAMPLE from a tape file
(ddname=DUMPTAP) created by DBS Utility UNLOAD DBSPACE command
processing. CMS FILEDEF commands direct the DBS input to the terminal and
DUMPTAP to the tape.

5. After reloading the table, switch back to LOGMODE=A or L and create another
database archive.

Database Recovery from User Logic Errors
To protect the entire database from user logic errors, use the archiving and
COLDLOG facilities of the database manager. These facilities are required to
protect the system catalog tables and the package dbspaces. Backup copies of the
system dbspaces (SYS000n) made by DBS Utility UNLOAD command cannot be
used to reset catalog tables or packages to a previous state.

Creating a Proper Back-up Copy of the Database
The back-up copy of the database can be either a database archive or a database
archive and subsequent log archives.

You can create the database archive by using a variety of facilities. You must,
however, create the archive when no user is accessing the database. Create the
archive by using either the SQLEND ARCHIVE or SQLEND UARCHIVE
command. Because no user is accessing the database when the database archive is
taken, no incomplete changes are recorded in the database archive.

If you use log archiving, you can think of the last back-up copy as being the last
database archive plus all subsequent log archives. Log archives do not record
changes by incomplete logical units of work.

Note: If you are using the CICS subsystem and it ends abnormally, or the
connections from the online resource adapter to the application server are
ended by a CIRR QUICK, or the online adapter is ended by a CIRT QUICK
or CIRR QUICK command, an exception can occur: that is, incomplete
changes can be in the archive copy of the database if there are CICS
transactions that are left in-doubt when the SQLEND archive is taken. To
avoid this condition, enter a SHOW ACTIVE command to see if there are
any LUWs that are marked as being in-doubt. If there are, enter the
necessary FORCE commands to complete them before you enter the
SQLEND ARCHIVE command.

You can create a proper back-up copy even if you have been running the database
manager with LOGMODE=Y. However, if you create a database archive by using
SQLEND parameters when LOGMODE=Y, you must follow the steps outlined in
the DB2 Server for VM System Administration or DB2 Server for VSE System
Administration manual to restart the database manager with LOGMODE=Y, because
the log mode will automatically change to A when taking the database archive.

Chapter 6. Recovering from Failures 133

Resetting the Database to a Previous Copy
If you are restoring from a database archive without using subsequent log archives,
you can reset the database to any previous database archive copy, not just the
latest one.

To reset a DB2 Server for VSE database to a previous copy generated by an
SQLEND command, run COLDLOG before restoring the database from the archive
copy. This reformats the log so that changes since the archive was taken are not
applied again.

To reset a DB2 Server for VM database, run the SQLLOG EXEC (omitting the
LOG1 and LOG2 parameters) to reformat the log with a COLDLOG. Respond
“NO” to message ARI0688D (for single logging) or ARI6129D (for dual logging).
When you respond NO, the database manager reformats the log such that changes
since the archive was taken are not applied again.

If you are restoring from a database archive and subsequent log archives, no
COLDLOG is required. When the database is restored, the logs are restored in
sequence. You are prompted to continue the log restore before processing each log
archive. You can end the restore process at any log archive by responding “END
RESTORE” to the appropriate prompt.

When resetting the database to a back-level copy, even if you are using subsequent
log archives, you should be aware of the following:
v The database archive copy includes a copy of the database directory, but the

database manager does not recognize any ADD DBSPACE and ADD DBEXTENT
operations which were done after the database archive. To reestablish these
dbspaces and dbextents in a VSE system, you must rerun the appropriate ADD
DBSPACE and ADD DBEXTENT operations. You can determine how many
dbextents exist in the restored back-level database by using the SHOW
DBEXTENT operator command. (Add the values in the NO._OF_EXTENTS
column.) You can determine the numbers of public and private dbspaces in the
restored database by querying the SYSTEM.SYSDBSPACES catalog table. For
more information on the catalog tables, see the DB2 Server for VSE System
Administration manual or the DB2 Server for VM System Administration manual. In
VM, if you want to reestablish the dbspaces added after the database archive
was created, you must rerun the SQLADBSP EXEC. For more information, see
the DB2 Server for VM System Administration manual.
Any dbextents added to the database (by an ADD DBEXTENT operation) after
the database archive was created do not exist in the archive copy of the
database. In VM, the CP LINK and CMS FILEDEF commands for these
dbextents are present in the resid SQLFDEF file (on the DB2 Server for VM
production minidisk) for the database. To redefine these dbextents in the DB2
Server for VM database, perform the following procedure:
1. Create an ADD DBEXTENT card image input CMS file with a line entry for

each added dbextent. Each entry should contain the dbextent number and
the storage pool number for the dbextent.

Note: The SHOW DBEXTENT operator command tells you how many
dbextents are defined in the database.

2. Enter a CMS FILEDEF command with ddname SYSIN for the CMS input file:
FILEDEF SYSIN DISK fn ft fm

3. Run the SQLSTART EXEC with PARM(SYSMODE=S,STARTUP=E...) to
redefine the dbextents in the database.

134 Database Administration

v The database archive of the directory shows the DUALLOG value in effect when
the database archive was created. The database archive also shows the size of
the logs when the archive was taken. You can reset the DUALLOG value and
the size of the logs by doing a COLDLOG operation to reformat the logs after
the database is restored.
In VSE, do a COLDLOG by specifying STARTUP=L and the DUALLOG value
that you want. For more information about DUALLOG, see the DB2 Server for
VSE System Administration manual.
In VM, do a COLDLOG by running the SQLLOG EXEC without the LOG1 and
LOG2 parameters. In this situation, the log minidisk is already reserved and
formatted; only the directory needs to be updated. Respond “NO” to message
ARI0688D (for single logging) or ARI6129D (for dual logging), which prompts
you to FORMAT and RESERVE the log minidisk (or minidisks).

This final consideration applies when you restore a database archive without
applying subsequent log archives:
v All data (including the catalog table information) is reset to the database archive

copy. Any preprocessing, data definitions, grants, revokes, and stored queries or
routines established after the database archive was created are lost. The database
may not be consistent with other facilities on your system. In particular, it may
not be consistent with your CICS or DL/I data, and the packages may not reflect
the SQL application programs you installed on your system after the database
archive was created.

Resetting the Database without Reformatting the DB2 Server for
VSE Data Sets
A database restore (STARTUP=R) reformats the VSAM database data sets before
the data is reloaded. Reformatting the data sets is necessary after a data set is
replaced (for example, when restoring because of a media failure or database
reconfiguration). Reformatting the data sets is not necessary when none of the
database data sets is being replaced.

When restoring the database to a previous level to recover from a user logic error,
you usually do not change the data sets. To save processing time, use STARTUP=F
(fast restore) when you have not replaced any of the database data sets. The
STARTUP=F processing does not format the VSAM data sets: it loads the data.
Eliminating the formatting of the data sets significantly reduces the restore time.

Chapter 6. Recovering from Failures 135

136 Database Administration

Chapter 7. Customizing the HELP Text and Messages Text

The DB2 Server for VSE & VM messages and HELP texts are stored in tables,
meaning that they can be retrieved and manipulated just like any other data. You
can modify the information to suit local needs in the following ways:
v Adding or deleting topics
v Changing the information in existing topics
v Adding HELP text supplied by IBM in supported languages
v Adding your own HELP text in supported languages.

Note: A HELP command causes ISQL to issue a SELECT statement on the tables.

Figure 27 shows the relationships between the tables used by the application server
for HELP text support.

The relationships between the tables are maintained through the following sets of
matching columns:
v LANGKEY in both SYSLANGUAGE and SYSTEXT2
v ITEM in both SYSTEXT1 and SYSTEXT2.

These tables are explained in more detail below.

The SYSLANGUAGE Table
HELP and messages texts are provided in several national languages. During
installation, one language is established as the default; it can be changed after
installation. In addition, you can make more than one language available to ISQL
users.

The SYSLANGUAGE table is created as part of the installation process. It lists all
national languages that are currently supported on the application server, meaning
that both HELP text and messages text are available in these languages. Its primary
purpose is for use with the message repository, which is a mandatory part of the
product installation. Installing the HELP text is optional.

Each entry in this table has the following fields:
1. LANGUAGE — the name of the language. There can be more than one entry to

describe the same language: for example, FRANCAIS, FRENCH, and FR can all
be LANGUAGE field values for French.

SYSTEXT1 SYSLANGUAGE

ITEM TOPIC LANGUAGE LANGKEY REMARKS LANGID

ITEM SEQNO SQL/DS HELP LANGKEY

SYSTEXT 2

Figure 27. Relationships between SYSLANGUAGE, SYSTEXT1, and SYSTEXT2

© Copyright IBM Corp. 1987, 2001 137

2. LANGKEY — the language key. This is a four-character code that uniquely
identifies each language, regardless of what name labels it in the LANGUAGE
field.

3. REMARKS — a description of the entry.
4. LANGID — the language identifier.

To view all the columns of the SYSLANGUAGE table, enter the following query:
SELECT * FROM SQLDBA.SYSLANGUAGE

Figure 28 shows a sample SYSLANGUAGE table.

The language key (LANGKEY) can be one of those listed in Table 26.

Table 26. Language Keys

Language Key Description Language ID

S001 American mixed case AMENG

S002 English upper case UCENG

S003 French FRANC

S004 German GER

D001 Japanese KANJI

D003 Simplified Chinese HANZI

Note: IBM has reserved the following language key ranges for use by future
languages supplied by IBM:

v S000 to S500 for single-byte character set (SBCS) or EBCDIC languages
v D000 to D500 for double-byte character set (DBCS) languages.

In VM, the default language is established by the language currently set in CMS. If
this language is not supported by the application server, then the default language
defined during installation is used.

In VSE, the default language is established by the following:
v ISQL — from either a parameter in the CIRB transaction (LANGID), or a

language supplied by IBM.
v DBSU — link-edited with the default language (messages only)
v PREP — link-edited with the default language (messages only).
v DSQG, DSQU, DSQQ and DSQD — from a parameter in the CIRB transaction

(LANGID).
v CBND — from a parameter in the CIRB transaction (LANGID).
v SQLGLOB File Batch Update/Query Program — link-edited with the default

language (messages only).

LANGUAGE LANGKEY REMARKS LANGID
-------------- ------- --------------------------------------- --------
ENGLISH S001 AMERICAN ENGLISH VERSION OF HELP TEXT AMENG
ENGLISH S002 ENGLISH UPPER CASE VERSION OF HELP TEXT UCENG
FRENCH S003 FRENCH VERSION OF HELP TEXT FRANC
FRANCAIS S003 TEXTE D'AIDE FRANCAIS FRANC

Figure 28. Sample SQLDBA.SYSLANGUAGE Table

138 Database Administration

The SYSTEXT1 and SYSTEXT2 Tables
The HELP text tables are normally loaded during the installation process. The DBS
Utility accomplishes this task by creating the HELP text tables SYSTEXT1 and
SYSTEXT2 for the user SQLDBA, loading data into both tables (through
DATALOAD), and creating an index on each.

Figure 29 shows the formats of these tables, but not the actual tables.

The following SQL statements are used during the loading process to create
SYSTEXT1 and SYSTEXT2:

CREATE TABLE SQLDBA.SYSTEXT1 (TOPIC CHAR(20) FOR BIT DATA NOT NULL,
ITEM SMALLINT NOT NULL)
IN "PUBLIC"."HELPTEXT"

CREATE TABLE SQLDBA.SYSTEXT2 (ITEM SMALLINT NOT NULL,
SEQNO SMALLINT NOT NULL,
"SQL/DS HELP" CHAR(60) FOR BIT DATA NOT NULL,
LANGKEY CHAR(4) NOT NULL)
IN "PUBLIC"."HELPTEXT"

When a user enters a HELP command, a query like this is processed:
SELECT "SQL/DS HELP"

FROM SQLDBA.SYSTEXT1, SQLDBA.SYSTEXT2

WHERE TOPIC = 'topicname'

AND SQLDBA.SYSTEXT1.ITEM = SQLDBA.SYSTEXT2.ITEM
AND LANGKEY = 'XXXX'

SYSTEXT1 SYSTEXT2

TOPIC ITEM ITEM SEQNO "SQL/DS HELP" LANGKEY
----------- ---- ---- ----- ----------------------- -------
VIEW 5260 5260 10 TOPIC NAME: CREATE VIEW S001
VIEW 5330 • • • •
VIEW 5920 5260 110 CREATE VIEW is an SQL ... S001
VIEWS 5260 5260 120 more tables. You can ... S001
VIEWS 5330 • • • •
VIEWS 5920 • • • •

• • 5260 1070 DELIVERY_TIME was less ... S001
CREATE VIEW 5260 5260 1080 S001

• 5260 10 RUBRIQUE : CREATE VIEW S003
DROP VIEW 5330 • • • •

• • • • • •
• • 5260 100 CREATE VIEW est une ... S003
• • 5260 110 d'une ou plusieurs ... S003

• • • •
• • • •
5260 1110 FAB, ART et JOURS) ... S003
5260 1120 S003
5330 10 TOPIC NAME: DROP VIEW S001
• • • •
• • • •
5330 90 DROP VIEW is an SQL ... S001
5330 100 SQL/DS also automatically ... S001
• • • •
• • • •

Figure 29. Formats of the Tables SYSTEXT1 and SYSTEXT2

Chapter 7. Customizing the HELP Text and Messages Text 139

where XXXX is the four-character language key that indicates a specific HELP text
language from among those currently installed on the DB2 Server for VSE & VM
application server.

When the support for languages is installed, HELP text may or may not be
available depending on your site’s requirements. Each ISQL user can select from
among the languages currently installed on the application server. To view which
languages are currently installed, a user enters the following query:

SELECT LANGUAGE FROM SQLDBA.SYSLANGUAGE

The user can then change the default language with the ISQL SET LANGUAGE
command.

The topic that the user supplies is substituted in topicname. An ORDER BY clause is
not used in the query because these indexes are defined on the tables:

CREATE INDEX SQLDBA.SYSTEXT1INDEX
ON SQLDBA.SYSTEXT1(TOPIC,ITEM)

CREATE INDEX SQLDBA.SYSTEXT2INDEX
ON SQLDBA.SYSTEXT2(ITEM,SEQNO,LANGKEY)

CREATE INDEX SQLDBA.SYSLANGINDEX
ON SQLDBA.SYSLANGUAGE(LANGUAGE)

CREATE INDEX SQLDBA.SYSLANGINDEX
ON SQLDBA.SYSLANGUAGE(LANGID)

A HELP command uses SYSTEXT1 as a pointer to SYSTEXT2. Suppose an ISQL
user enters:

help 'view'

The parameter ‘view’ is converted to uppercase. The database manager finds all
occurrences of the character string ‘VIEW’ in the TOPIC column of SYSTEXT1 for
the HELP text of the current language. See Figure 30.

Figure 30 shows three occurrences of the string VIEW. Each has an item number
associated with it (5260, 5330, 5920). These numbers and the language key are used
as pointers (through the query join) to the ITEM numbers and language key in
table SYSTEXT2. The rows in SYSTEXT2 having those ITEM numbers and

SYSTEXT1

TOPIC ITEM
----------- ----

-------> VIEW 5260
-------> VIEW 5330
-------> VIEW 5920

CREATE VIEW 5260
CREATE V 5260
DROP VIEW 5330
VIEW QUERY 5030
VIEW MODS 5040

• •
• •
• •

Figure 30. Use of the SYSTEXT1 Table

140 Database Administration

language key are retrieved in order, primarily by ITEM number and the language
key, and secondarily by sequence number (SEQNO). Thus, three unique topics are
returned when HELP ‘VIEW’ is entered.

Note that other rows in SYSTEXT1 have identical ITEM numbers but different
names (TOPIC). These rows enable retrieval of each of the four topics separately.
For example, the command HELP ‘CREATE VIEW’ retrieves only the topic having
ITEM number 5260. Similarly, the ‘CREATE V’ entry in table SYSTEXT1 is an alias
for ‘CREATE VIEW’; it also points to ITEM 5260.

This cross-referencing scheme has three forms:
v Duplicate topic names pointing to more than one actual topic (for example,

HELP ‘VIEW’).
v Multiple topic names pointing to the same topic (for example, HELP ‘CREATE

VIEW’ and HELP ‘CREATE V’).
v A unique topic name pointing to one topic (for example, HELP ‘VIEW MODS’).

Adding Topics to HELP Text Tables
You can add new topics to the HELP text tables supplied by IBM, or create your
own HELP text table. As modifying the HELP text supplied by IBM greatly
increases the amount of administrative work required if you must later reinstall the
HELP text, a much better method is to set up your own independent HELP text
tables in some other PUBLIC dbspace. This method is described in “Creating Your
Own HELP Text Tables” on page 142.

Adding a HELP Topic to the HELP Text Supplied by IBM
Parts of this task require DBA authority (or at least INSERT authority on the
SYSTEXT1 and SYSTEXT2 tables). If you plan to add much new material to the
HELP text, see “Making the HELPTEXT Dbspace Larger” on page 143 and
“Moving the HELP Text to Another Dbspace” on page 145.

To add your own topic to the tables, follow these steps:
1. Pick a TOPIC name, up to a maximum of 20 characters. This name must be

unique among all TOPIC names in table SYSTEXT1. An easy way to check this
is to enter the query:

SELECT * FROM SQLDBA.SYSTEXT1 WHERE TOPIC = 'candidate name'

If rows are returned, that TOPIC name already exists, and you must choose and
test another.

2. Choose an ITEM number less than 5 000 for the new topic. Numbers of 5 000
and above are reserved for topics supplied by IBM.

3. Insert a row into SYSTEXT1 for the new TOPIC name and its ITEM number.
For example:

INSERT INTO SQLDBA.SYSTEXT1 VALUES ('HOURS',1000)

4. Insert rows into SYSTEXT2 for the information to be displayed when a user
requests HELP on this new topic. This information must include the values to
be used in the four columns of table SYSTEXT2. For example:

INSERT INTO SQLDBA.SYSTEXT2
VALUES(1000,10,'HOURS OF USE:','S001')

INSERT INTO SQLDBA.SYSTEXT2
VALUES(1000,20,'8 AM TO 6 PM','S001')

Chapter 7. Customizing the HELP Text and Messages Text 141

where “S001” is the English language key. You can repeat this type of INSERT
for every other language.

Note: The “SQL/DS HELP” column has a length of 60 characters.

When adding HELP text to the SYSTEXT2 table, a language key must be specified.
A list of valid language keys is found in Table 26 on page 138. You should use
installation procedures supplied by IBM.

Creating Your Own HELP Text Tables
You should consider using the SYSTEXT1 and SYSTEXT2 tables as the basis for
creating your own HELP text tables. SYSLANGUAGE must still exist for the HELP
command to work, unless you establish HELP text tables and query those tables as
shown in Figure 31.

Figure 31 shows example SQL commands to set up your own local HELP text.

XXXX in the LANGKEY column represents the language key.

In this example, two tables, SQLDBA.LTEXT1 and SQLDBA.LTEXT2, are created in
a PUBLIC dbspace called LOCAL. Appropriate indexes are also defined. Once the
tables are created, you can add topics in a way similar to that described previously
for the tables of HELP text supplied by IBM. Replace the names supplied by IBM
for the HELP text tables, dbspace, and column names with your own names.

Users can then access the new HELP text with an ISQL routine that contains a
SELECT statement (see the example in Figure 31). The ISQL stored routines
supplied by IBM for accessing the original HELP text may not work for the new
tables, so it may be necessary to set up new ones. The SELECT authority must be
granted to all users on the table containing the routine and on the HELP text
tables.

CREATE TABLE SQLDBA.LTEXT1 (TOPIC CHAR(20) FOR BIT DATA NOT NULL,
ITEM SMALLINT NOT NULL)
IN "PUBLIC".LOCAL

CREATE TABLE SQLDBA.LTEXT2 (ITEM SMALLINT NOT NULL,
SEQNO SMALLINT NOT NULL,
"LOCAL HELP" CHAR(60) FOR BIT DATA NOT NULL,
LANGKEY CHAR(4) NOT NULL)
IN "PUBLIC".LOCAL

CREATE INDEX SQLDBA.LTEXT1INDEX
ON SQLDBA.LTEXT1(TOPIC,ITEM)

CREATE INDEX SQLDBA.LTEXT2INDEX
ON SQLDBA.LTEXT2(ITEM,SEQNO,LANGKEY)

...
SELECT "LOCAL HELP"

FROM SQLDBA.LTEXT1, SQLDBA.LTEXT2

WHERE TOPIC = 'topicname'

AND SQLDBA.LTEXT1.ITEM = SQLDBA.LTEXT2.ITEM
AND LANGKEY='XXXX'

Figure 31. Implementing Your Own HELP Text Tables

142 Database Administration

Making the HELPTEXT Dbspace Larger
The size of the original HELPTEXT dbspace is 8192 pages, which is sufficient to
hold the HELP text supplied by IBM and four or five languages. If you plan to add
extensively to the text or to add more than five languages, it may be necessary to
increase the size of this dbspace.

To see how many pages are currently active in the HELPTEXT dbspace, issue the
following query through ISQL or the DBS Utility:

SELECT DBSPACENAME,NACTIVE
FROM SYSTEM.SYSDBSPACES
WHERE DBSPACENAME='HELPTEXT'

If the NACTIVE (number of active data pages) value is close to 4646 (8192 minus
the index pages allowance), consider making the HELPTEXT dbspace larger. To
estimate how many pages are needed in the dbspace for the modified HELP text,
see “Appendix A. Estimating Your Dbspace Requirements” on page 217.

If the estimated number of pages (for both current and future estimated usage) is
greater than or close to 8192, increase the size of the dbspace. To do this, you must
drop and re-create the dbspace, as follows:
1. UNLOAD the “PUBLIC”.“HELPTEXT” dbspace using the DBS Utility.
2. DROP the “PUBLIC”.“HELPTEXT” dbspace.
3. ACQUIRE a new “PUBLIC”.“HELPTEXT” dbspace with the new required

number of pages.
4. RELOAD the dbspace using the DBS Utility.
5. Reinstate the required indexes and authorities.
6. Reinstate any user-defined indexes, views, or authorities.
7. Proceed with the updates to the HELP text.

Figure 32 and Figure 33 show examples of increasing the size of the
“PUBLIC”.“HELPTEXT” dbspace to 8448 pages. A tape is used in this example to
temporarily hold the HELP information that is on your database.

Chapter 7. Customizing the HELP Text and Messages Text 143

// JOB UNLOAD HELP TEXT
// EXEC PROC=DBNAME01
// EXEC PROC=ARIS71PL
// TLBL HELPTAP,.......
// ASSGN SYS005,.......
// EXEC ARISQLDS,SIZE=AUTO,PARM='SYSMODE=S,LOGMODE=N,PROGNAME=ARIDBS'

CONNECT SQLDBA IDENTIFIED BY SQLDBAPW;
UNLOAD DBSPACE ("PUBLIC"."HELPTEXT") OUTFILE(HELPTAP);
DROP DBSPACE "PUBLIC"."HELPTEXT";
ACQUIRE PUBLIC DBSPACE NAMED "HELPTEXT" (PAGES=8448);
RELOAD DBSPACE ("PUBLIC"."HELPTEXT") NEW INFILE(HELPTAP);
CREATE INDEX SQLDBA.SYSTEXT1INDEX ON SQLDBA.SYSTEXT1 (TOPIC,ITEM);
CREATE INDEX SQLDBA.SYSTEXT2INDEX ON SQLDBA.SYSTEXT2 (ITEM,SEQNO,LANGKEY);
GRANT SELECT ON SQLDBA.SYSTEXT1 TO PUBLIC;
GRANT SELECT ON SQLDBA.SYSTEXT2 TO PUBLIC;

COMMENT ' ** OPTIONALLY ADD SQL STATEMENTS TO GRANT AUTHORIZATIONS **

** OR CREATE ANY VIEWS REQUIRED FOR THE NEW DATA BASE. **';
CREATE VIEW;

...

GRANT;

...

/&

Figure 32. Unloading and Reloading the HELP Text in VSE

FILEDEF HELPTAP TAPn...
SQLDBSU DB(DBNAME01) IN(TERM)
CONNECT SQLDBA IDENTIFIED BY SQLDBAPW;
UNLOAD DBSPACE ("PUBLIC"."HELPTEXT") OUTFILE(HELPTAP);
DROP DBSPACE "PUBLIC"."HELPTEXT";
ACQUIRE PUBLIC DBSPACE NAMED "HELPTEXT" (PAGES=8448);
RELOAD DBSPACE ("PUBLIC"."HELPTEXT") NEW INFILE(HELPTAP);
CREATE INDEX SQLDBA.SYSTEXT1INDEX ON SQLDBA.SYSTEXT1 (TOPIC,ITEM);
CREATE INDEX SQLDBA.SYSTEXT2INDEX ON SQLDBA.SYSTEXT2 (ITEM,SEQNO,LANGKEY);
GRANT SELECT ON SQLDBA.SYSTEXT1 TO PUBLIC;
GRANT SELECT ON SQLDBA.SYSTEXT2 TO PUBLIC;

COMMENT ' ** OPTIONALLY ADD SQL STATEMENTS TO GRANT AUTHORIZATIONS **

** OR CREATE ANY VIEWS REQUIRED FOR THE NEW DATA BASE. **';
CREATE VIEW;

...

GRANT;

...

COMMIT WORK RELEASE;

Figure 33. Unloading and Reloading the HELP Text in VM

144 Database Administration

Moving the HELP Text to Another Dbspace
The HELP text can also be moved to another dbspace if more space is needed for
additional user documentation or if it needs to be moved for other administrative
reasons. The current size of the HELPTEXT dbspace is 8192 pages. The dbspace to
which the HELP text is being moved must be at least that size. To accomplish the
move:
1. UNLOAD the “PUBLIC”.“ HELPTEXT” dbspace using the DBS Utility.
2. DROP the “PUBLIC”.“HELPTEXT” dbspace.
3. ACQUIRE a new dbspace with the desired number of pages.
4. RELOAD the new dbspace using the DBS Utility.
5. Reinstate any user-defined indexes, views, or authorities.
6. Proceed with updates to the HELP text (if updates are being done).

Note: The names of the tables, columns, and indexes cannot be changed. In
addition, the owner name cannot change. Future reinstallations of the HELP
text will assume that the original names exist in the database.

Printing the HELP Text Using the DBS Utility
Use the DBS Utility to produce hardcopy output of the HELP topics. Because the
softcopy is stored in tables, you need only code a SELECT statement that retrieves
the desired topics, and execute this statement through the DBS Utility control file
input. The DBS Utility formats the output of the SELECT statement for you.

The broad categories of HELP topics and their ranges of ITEM numbers are as
follows:

Text for Appears in ITEMs
Commands (SQL and ISQL) 5000 - 9999
Messages 10000 - 19999
SQLCODES 20000 - 29999
Copyright Notice 30000

By using these ranges, you can code queries to retrieve various subsets of the
HELP topics. For example, the following query retrieves all the SQL statements
and ISQL commands (which were extracted from the DB2 Server for VSE & VM
Interactive SQL Guide and Reference manual):

SELECT * FROM SQLDBA.SYSTEXT2
WHERE ITEM BETWEEN 5000 AND 9999 OR ITEM = 30000
AND LANGKEY='S001'
ORDER BY 1, 2;

Item 30,000 (the copyright notice) must be retrieved and printed whenever you
print IBM machine-readable information.

To print a copy of all messages and codes for a language, you can use a query like:
SELECT * FROM SQLDBA.SYSTEXT2

WHERE ITEM BETWEEN 10000 AND 30000
AND LANGKEY='XXXX'

ORDER BY 1, 2;

where “XXXX” represents a selected language key.

Chapter 7. Customizing the HELP Text and Messages Text 145

Printing the HELP Text Using ISQL
You can also enter the SQL statement described above through an ISQL terminal.
When the desired HELP topics are displayed on the screen, enter a PRINT
command to obtain a hardcopy. Perform the desired formatting before entering the
PRINT command.

The class and number of copies desired can be specified on the PRINT command;
otherwise, the defaults are used. See the DB2 Server for VSE & VM Interactive SQL
Guide and Reference manual for detailed information.

Because the HELP topics contain both upper- and lowercase characters, a print
class that prints both characters should be specified. This depends on which HELP
text language you select: in the case of English, for example, the HELP text
contains both upper- and lowercase characters, so you should specify an
appropriate print class.

146 Database Administration

Chapter 8. Application Design Considerations

This chapter describes the facilities that are available for designing and
implementing applications, and discusses some considerations that application
developers and the database administrator (DBA) should take into account.

Application Implementation Capabilities
This section discusses the application implementation alternatives that developers
can consider. For each environment, several different ways of implementing
application functions are identified and discussed.

The following broad categories of applications are also discussed:
v Query Capabilities
v Report Writing Capabilities
v Programmed Application Capabilities
v Execs that use DB2 Server for VM Facilities

Batch/Interactive Capabilities
For batch/interactive DB2 Server for VSE usage environments, there are two
alternatives for application implementations:
v Assembler and High-Level-Language Programs

These are programs written in Fortran, PL/I, COBOL, or assembler that would
run as VSE batch jobs or interactive (VSE/ICCF) applications.
In addition, you can use SQL Extended Dynamic Statements to code your own
preprocessor in assembler language. Although the data requests must be made
in SQL, you can code your preprocessor to translate some other data
manipulation language to SQL statements. General concepts for coding a
preprocessor are in the DB2 Server for VSE & VM Application Programming
manual.

v DBS File Maintenance and Reporting
These are executions of the Database Services (DBS) Utility, which supports
execution of SQL statements and DBS commands.

High-Level-Language Programs
The primary vehicle for implementing application functions would be
high-level-language programs written for execution as batch jobs in either VSE
partitions or interactive partitions.

VSE Batch Partitions: VSE batch jobs support unit record devices or
VSE/POWER spool files and VSE files for input and output processing. The DB2
Server for VSE system can be used to support data sharing, data recovery, and
data function requirements of the applications.

VSE/ICCF Applications: Application programs written for execution under
VSE/ICCF can support some level of interaction with a terminal user. The
VSE/ICCF environment supports invocation of an application from a user
terminal, and can be effectively used to manage user input (SYSIPT) and output
(SYSLST) files as VSE/ICCF files.

© Copyright IBM Corp. 1987, 2001 147

DBS File Maintenance and Reporting
On batch/interactive systems with sufficient real storage available for dynamic
SQL processing, the DBS Utility can be effectively used for file maintenance and
reporting operations. For detailed information on maintenance, see “Chapter 3.
Maintaining Your Database” on page 57.

Briefly, the DBS Utility can be used to:
v Load DB2 Server for VSE database tables from sequential files on DASD,

magnetic tape, or SYSIPT
v Unload DB2 Server for VSE database tables to sequential files on DASD,

magnetic tape, or SYSIPT
v Load DB2 Server for VSE tables from terminal users from bulk input files

developed using the VSE/ICCF editor
v Unload data from DB2 Server for VSE tables to VSE/ICCF Files
v Implement SQL procedures

Application functions that do not require procedural logic or variable
information can be carried out as a sequence of DBS SQL statements in a SYSIPT
(or VSE/ICCF) input file.

v Produce DBS reports, which may contain formatted listings of the selected data
from an SQL SELECT statement

v Reorganize data in the database
You can unload the data from the database using a DBS UNLOAD command,
and reload it with a different structure using the DBS RELOAD command.

v Convert data for interchange with non-DB2 Server for VSE products
For example, the utility can be used to load and unload data in a zoned-decimal
format. Zoned-decimal is not a DB2 Server for VSE data type, so the DBS Utility
converts the data as needed.

v Support interactive DBS processing from a VSE/ICCF terminal.
If you include the VSE/ICCF /DATA INCON job control statement in the DBS job
control, the utility takes its input (SYSIPT records) from the terminal input, and
displays its output (SYSLST) at the terminal. You can tailor the DBS output to
your terminal, by using the DBS SET LINEWIDTH command to specify the number
of characters to be displayed on an output line.

Online (CICS) Transaction Processing Capabilities
The basic capabilities available in the batch/interactive environment are extended
with the addition of the CICS subsystem and the online support. The following
sections describe these additional capabilities.

The main method for implementing online transactions is through CICS
high-level-language transaction processing programs. These programs can access
the DB2 Server for VSE system and exploit the unique facilities of the CICS
subsystem. Your transactions must be coded in COBOL, assembler, PL/I, or some
other language that the CICS subsystem supports and for which you have coded a
preprocessor. The CICS subsystem does not support Fortran.

The CICS transaction processing environment supports terminal-driven,
fast-response-time application processing. It also provides facilities for
interconnecting systems and distributing application processing in a network of
systems.

148 Database Administration

In addition to supporting CICS transaction access to the DB2 Server for VSE
system, data stored by the DB2 Server for VSE system can be shared with batch
and VSE/ICCF application programs.

Query Capabilities
Data can be queried through either application programs, the DBS Utility, or ISQL.
Which facility should be used depends on the complexity of the query and
whether it will be used repeatedly.

One-Time Queries
Query functions can be coded as application programs or processed through ISQL.
ISQL enables end users to formulate SQL queries on data and view and format the
results.

You can satisfy many of your end users’ data retrieval requirements by making the
ISQL facilities available to them.

Periodic Queries
There are several ways to design queries that will be used repeatedly:

Stored Queries: Queries can be developed under ISQL and stored for future,
repetitive use. End users can develop and store their own, or as DBA, you may
choose to create a specific set for distribution. When you develop a stored query
you can also save information about how its display should be formatted, so that
when users invoke the query, the display will be automatically formatted for them.
In addition, if you must later change a stored query, you can also change the
formatting information. When possible, ISQL saves existing formatting information
so that you do not have to re-enter it when there is a minor change to a stored
query.

Stored queries cannot be shared among users, so a separate copy must be stored
for each of them. The developer of a set of queries could use an ISQL routine (see
“ISQL Routines”) to enter and store them; then, any user who needed access to
those queries would simply run the routine to obtain a copy of them. The user
must have SELECT authority on the developer’s ROUTINE table.

One of the advantages of stored queries is that users simply START them; they
need not be familiar with SQL. With parameters, stored queries can be developed
that are general in nature—that is, they can support variable input for the same
basic function.

Note: If you develop stored queries and routines for use by multiple users, you
may want to consider devising your own HELP tables to provide
information on them. See “Creating Your Own HELP Text Tables” on
page 142.

ISQL Routines: For more complex application functions that involve multiple
SQL functions, consider using ISQL routines. Routines have the following
advantages over stored queries:
v They can hold multiple SQL statements
v They support ISQL statements
v They can be shared.

Like stored queries, routines can be parameterized to provide variability in the
function provided, and users need not understand the details of the underlying
statements.

Chapter 8. Application Design Considerations 149

Because stored routines may support complex functions, you may want to account
for possible error conditions, by using the ISQL SET RUNMODE and SET
AUTOCOMMIT commands to provide for error handling in routines.

Figure 34 illustrates a routine that updates the SALARY value in the sample
EMPLOYEE table. It also displays a report showing the old and new values, and
prints the report of the transaction.

To execute the ISQL routine in Figure 34, a user would enter (during an ISQL
session):

RUN SALUPD (empno job change)

The routine is designed to update one row of the EMPLOYEE table based on
parameter input specified on the RUN command, and run a query that displays
the results of the update. All salaries for the job are displayed, not just the updated
salary. After reviewing the display, the user enters an END command to have three
copies of the display printed; then, the routine commits the transaction to the
database. If the displayed results are not correct, the user can cancel the update by
issuing the CANCEL command in place of the END command.

ISQL EXECs: In VM, ISQL and SQL statements can be stacked by an EXEC for
execution by ISQL. Such EXECs can be created using either EXEC 2 or the System
Product Interpreter, and can be written for execution either during or outside of an
ISQL session. (You cannot write one that will run both ways.)

To process an ISQL EXEC that is designed to run during an ISQL session, the user
enters “CMS” to get into Subset mode, and then types in the name of the EXEC.

The EXEC must place a RETURN CMS command as the first entry on the stack, in
order to cause control to be returned to ISQL for processing of the rest of the
statements on the stack.

CAUTION: EXECs that are processed from CMS Subset should not run ISQL, the
DBS Utility, or SQL applications, as the results will be unpredictable.

SALUPD 0010 COMMIT WORK
SALUPD 0020 SET AUTOCOMMIT OFF
SALUPD 0030 SET RUNMODE CANCEL
SALUPD 0040 UPDATE SQLDBA.EMPLOYEE -
SALUPD 0050 SET SALARY = SALARY + &3 -
SALUPD 0060 WHERE EMPNO = &1 AND JOB = &2;
SALUPD 0070 SELECT EMPNO,JOB,SALARY-&3,SALARY -
SALUPD 0080 FROM SQLDBA.EMPLOYEE -
SALUPD 0090 WHERE EMPNO = &1 AND JOB = &2 -
SALUPD 0100 UNION -
SALUPD 0110 SELECT EMPNO,JOB,SALARY -
SALUPD 0120 FROM SQLDBA.EMPLOYEE -
SALUPD 0130 WHERE EMPNO ¬= &1 AND JOB = &2 -
SALUPD 0140 ORDER BY 1
SALUPD 0150 FORMAT COL 3 NAME 'OLD SALARY'
SALUPD 0160 FORMAT COL 4 NAME 'NEW SALARY'
SALUPD 0170 FORMAT TOTAL (3 4)
SALUPD 0180 FORMAT TTITLE 'UPDATED THE SALARY OF EMPLOYEE &1 BY $ &3'
SALUPD 0190 DISPLAY
SALUPD 0200 PRINT COPIES 3
SALUPD 0210 END
SALUPD 0220 COMMIT WORK

Figure 34. Example ISQL Routine for the EMPLOYEE Table Update

150 Database Administration

Figure 35 shows an example of an EXEC called UPDSAL.

Here, an ISQL EXEC stacks SQL UPDATE statements that are defined based on the
user’s responses to prompts for information. The prompts and stacking of updates
are done in a loop, so that multiple EMPLOYEE rows can be updated with one
execution of the EXEC.

After the user has entered all the updates, the EXEC stacks a query that will
display and print the results of the updates.

/* UPDSAL EXEC 6/10/90 */

/* THIS EXEC PROGRAM ALLOWS A USER TO PERFORM UPDATES ON */
/* THE SALARY COLUMN OF THE EMPLOYEE TABLE. IT IS DESIGNED */
/* TO BE STARTED WHILE IN A CMS SUBSET, AND IT AUTOMATICALLY */
/* RETURNS TO ISQL TO EXECUTE THE UPDATE COMMANDS WHICH HAVE BEEN */
/* PLACED ON THE PROGRAM STACK; THEN THE TABLE IS DISPLAYED AND */
/* PRINTED TO SHOW THE CHANGES MADE. */

PARTLIST = "" /* WILL CONTAIN LIST OF EMPNO'S WHOSE */
/* TOTAL SALARY HAS CHANGED */

DO COUNT = 1
DO FOREVER

SAY "ENTER EMPNO (ENTER 'END' WHEN DONE)"
PULL E
IF E = 'END' THEN LEAVE COUNT
SAY ENTER JOB /* USER ENTERS UPDATE INFORMATION */
PULL J /* (DATA IS CHECKED FOR VALID */
SAY ENTER CHANGE TO SALARY /* TYPES) */
PULL CTS
IF DATATYPE(E,W) & DATATYPE(J,A) & DATATYPE(CTS,N) THEN LEAVE
ELSE SAY "DATA ENTERED INCORRECTLY--TRY AGAIN"

END
UPD.COUNT = "UPDATE EMPLOYEE SET SALARY = SALARY + "CTS,

" WHERE EMPNO = "E" AND JOB = "J /* UPDATE COMMANDS ARE */
EMPLIST = EMPLIST", "E /* HELD IN AN ARRAY */

END

QUEUE RETURN /* TO ISQL */
IF COUNT = 1 THEN EXIT /* NO UPDATES? */
ELSE EMPLIST = SUBSTR(EMPLIST,3) /* REMOVE FIRST COMMA */
QUEUE COMMIT WORK
QUEUE SET AUTOCOMMIT OFF
DO N = 1 TO COUNT-1 /* PLACE UPDATE COMMANDS */

QUEUE UPD.N /* ON PROGRAM STACK */
END
QUEUE "SELECT JOB, EMPNO, SALARY FROM EMPLOYEE -"
IF COUNT > 2
THEN QUEUE "WHERE EMPNO IN ("EMPLIST") -"
ELSE QUEUE "WHERE EMPNO = "EMPLIST" -" /* QUERY, FORMATTING, */
QUEUE "ORDER BY JOB, EMPNO" /* AND PRINT COMMANDS */
QUEUE FORMAT GROUP JOB
QUEUE FORMAT SUBTOTAL SALARY
QUEUE "FORMAT TTITLE 'SUMMARY OF CHANGES IN SALARY TOTALS'"
QUEUE DISPLAY
QUEUE PRINT COPIES 3
QUEUE END
QUEUE COMMIT WORK

Figure 35. ISQL EXEC for Updating the EMPLOYEE Table During an ISQL Session

Chapter 8. Application Design Considerations 151

To process an ISQL EXEC that is designed to run outside of an ISQL session, the
user simply enters the name of the EXEC—that is, the user initiates the EXEC
while using CMS, without having to start or even know about ISQL.

This type of EXEC would not include a RETURN command, because there is no
ISQL session to return to. Instead, it must include an ISQL EXIT command as the
last entry on the stack, and must start ISQL (EXEC ISQL) after the stack entries
have been completed.

Figure 36 on page 153 illustrates an ISQL EXEC designed to be run outside of an
ISQL session, which carries out the same function as the one shown in Figure 35 on
page 151.

152 Database Administration

Avoid using commands that would result in ISQL issuing a message that requires
a response. For example, SET AUTOCOMMIT OFF will cause message ARI7602D
to be issued when the EXIT command is entered, and this message requires a
response of either COMMIT or ROLLBACK. Because of the interactive design of
ISQL, the response must be entered by the user, and will not be accepted from the
command stack.

Programmed Query Functions: If neither stored queries nor ISQL routines are
appropriate, you can program query functions. Their primary advantage is
application tailoring of the end user interface—that is, the application controls the

/* XUPDSAL EXEC */

/* THIS EXEC PROGRAM ALLOWS A USER TO PERFORM UPDATES ON */
/* THE SALARY COLUMN OF THE EMPLOYEE TABLE. IT IS DESIGNED */
/* TO BE STARTED WHILE IN CMS (WITHOUT AN ISQL SESSION). IT */
/* AUTOMATICALLY EXECUTES ISQL AFTER QUEUING UPDATE COMMANDS AND */
/* AN ISQL EXIT COMMAND ON THE PROGRAM STACK. COMMANDS ARE ALSO */
/* STACKED TO DISPLAY AND PRINT THE CHANGES MADE. */

EMPLIST = "" /* WILL CONTAIN LIST OF EMPNO'S WHOSE */
/* TOTAL SALARY HAS CHANGED */

DO COUNT = 1
DO FOREVER

SAY "ENTER EMPNO (ENTER 'END' WHEN DONE)"
PULL E
IF E = 'END' THEN LEAVE COUNT
SAY ENTER JOB /* USER ENTERS UPDATE INFORMATION*/
PULL J /* (DATA IS CHECKED FOR VALID */
SAY ENTER CHANGE TO SALARY /* NUMBERS) */
PULL CTS
IF DATATYPE(E,W) & DATATYPE(J,A) & DATATYPE(CTS,N) THEN LEAVE
ELSE SAY "DATA ENTERED INCORRECTLY--TRY AGAIN"

END
UPD.COUNT = "UPDATE EMPLOYEE SET SALARY = SALARY + "CTS,

" WHERE EMPNO = "E" AND JOB = "J /* UPDATE COMMANDS ARE */
EMPLIST = EMPLIST", "E /* HELD IN AN ARRAY */

END
IF COUNT = 1 THEN EXIT /* NO UPDATES? */
ELSE EMPLIST = SUBSTR(EMPLIST,3) /* REMOVE FIRST COMMA */
QUEUE COMMIT WORK
QUEUE SET AUTOCOMMIT OFF
DO N = 1 TO COUNT-1 /* PLACE UPDATE COMMANDS */

QUEUE UPD.N /* ON PROGRAM STACK */
END
QUEUE "SELECT EMPNO, JOB, SALARY FROM EMPLOYEE -"
IF COUNT > 2
THEN QUEUE "WHERE EMPNO IN ("EMPLIST") -"
ELSE QUEUE "WHERE EMPNO = "EMPLIST" -" /* QUERY, FORMATTING, */
QUEUE "ORDER BY JOB, EMPNO" /* AND PRINT COMMANDS */
QUEUE FORMAT GROUP JOB
QUEUE FORMAT SUBTOTAL SALARY
QUEUE "FORMAT TTITLE 'SUMMARY OF CHANGES IN SALARY TOTALS'"
QUEUE DISPLAY
QUEUE PRINT COPIES 3
QUEUE END
QUEUE COMMIT WORK
QUEUE EXIT /* THE ISQL EXECUTION */
EXEC ISQL /* TO EXECUTE THE COMMANDS THAT WERE STACKED */

Figure 36. ISQL EXEC for Updating the EMPLOYEE Table Outside of an ISQL Session

Chapter 8. Application Design Considerations 153

user syntax for requesting data and the output format for displaying results.
Program a query function if an application-specific interface must be provided to
end users.

Another advantage is their ability to apply procedural logic. Unlike stored queries
which support only a single SQL statement, or ISQL routines which support a
fixed sequence of statements, programmed query functions can run different
statements or statement sequences based on the results of previous statements or
function input.

When designing a programmed query function, you may want to consider using
the SQL Dynamic Statement support. With this, the program can translate queries
in an application-specific syntax to SQL statements, which are then dynamically
compiled and processed. Such a program can provide many query functions with
minimal coding.

For even more sophisticated applications, you can use extended dynamic
statements to code preprocessors for programming languages that are not
supported by the application server. See the DB2 Server for VSE & VM Application
Programming manual for information.

Report Writing Capabilities
Reports can be produced through ISQL, the DBS Utility, or an application program.

Report Writing Using ISQL
When ISQL terminal users obtain query results through a SELECT statement, they
can create reports from them using the FORMAT command. This command
provides the following:
v Titles

Both top and bottom titles can be created. If no top title is specified, a default is
provided that consists of the first 100 characters of the SELECT statement that
provided the query results. The bottom title defaults to blanks.

v Totals
Both subtotals and totals can be provided for desired columns.

v Column Separation
The characters to be used to separate columns can be specified.

v Outlining
If outlining is specified, successive duplicate values for a desired column are not
repeated unless they start a new screen (or a new page for printed reports).

v Column Characteristics
Users can control such things as:
– The number of decimal places for numeric columns
– The width of a column
– Whether leading zeros are displayed
– The column heading
– The inclusion and exclusion of columns.

For more information on formatting reports, see the DB2 Server for VSE & VM
Interactive SQL Guide and Reference manual.

To obtain copies of a report, a user enters an ISQL PRINT command. This
command allows you to specify the number of copies desired and the output
printer class to be used. The printed reports are dated and the pages numbered.

154 Database Administration

In VSE, if you enter a PRINT command, but the printer is busy, ISQL will send
you a message. Along with this message, ISQL will give you the option of:
v Retrying
v Ending the attempt to print
v Queueing your request until the printer is available.

When the printer is free, ISQL displays the message “THE PRINT IS IN
PROGRESS”.

Note: Some terminals support a copy key that, when pressed, causes a screen
image to be printed on the CICS local printer. Such support does not follow
any queue protocol and, if you use it while ISQL PRINT is in progress, the
screen image may be interspersed with the ISQL PRINT output.

In VM, the results of an ISQL PRINT command are sent to the user’s virtual
printer. The default print location will be wherever the user normally has his or
her output printed. However, the user can change the destination of the files by
going into CMS Subset mode, entering the SPOOL and TAG commands to route
the output elsewhere, then returning to ISQL (by entering the RETURN command)
and entering the PRINT command.

Example: The following command, entered in CMS, will cause the printer output
to be sent to the user’s virtual reader:

CP SP PRT TO *

A reader file can read into a CMS file for inclusion in the text report.

Routines can be used to generate reports automatically. This is especially helpful
for daily or weekly reports. A routine could issue a SELECT statement, format the
output into the desired report, and print the report.

For more information on ISQL report writing, see the DB2 Server for VSE & VM
Interactive SQL Guide and Reference manual.

Report Writing Using the DBS Utility
The DBS Utility provides a limited report-writing capability through its support for
SQL SELECT statement processing. The DBS SELECT processing writes the results
of a query to the DBS Utility message file (SYSLST print file), with a default of 120
print positions per print line and 60 print lines per print page. These defaults can
be changed through the DBS SET command. Refer to the DB2 Server for VSE & VM
Database Services Utility manual for more information.

Programmed Reports
If an application requires special handling that is not supported by ISQL or the
DBS Utility, it may be necessary to write a program to generate a report. For
example, an application may need to generate output on special forms in a special
format.

You can vary the contents of a programmed report with program variables. Using
the Dynamic Statement support in SQL, you could even vary the tables being
reported. When using the Dynamic Statement support, you would use the SQL
DESCRIBE statement to obtain information on the data being accessed (for
example, column names and column data types).

Chapter 8. Application Design Considerations 155

Programmed Application Capabilities
For complex application requirements that cannot be met by ISQL or DBS Utility
facilities, you must code a program using DB2 Server for VSE & VM facilities.

In addition, you can use DB2 Server for VSE & VM extended dynamic statements
to code your own preprocessor in assembler language to support other languages
that can be mapped to SQL. Extended dynamic statements are explained in the
DB2 Server for VSE & VM Application Programming manual.

EXECs that Use DB2 Server for VM Facilities
Some application functions can be implemented using a combination of VM EXEC
and DB2 Server for VM EXEC facilities. Several useful examples are discussed in
the following sections.

Note: If you are using EXECs to invoke applications or to invoke other EXECs that
access the application server, refer to “SQLRMEND EXEC” on page 253.

Editing Private Tables
The DBS Utility provides facilities for unloading tables to and loading them from
CMS files. While in a CMS file, data can be manipulated by an editor (for example,
XEDIT). Users can take advantage of the combination of these capabilities for
editing data in their tables.

CAUTION: The following technique is not recommended for tables for which
multiple users have UPDATE, INSERT, or DELETE privileges. It
assumes that only the user doing the editing has update capabilities.

Figure 37 on page 157 shows an EXEC that can be used to edit private tables.

156 Database Administration

Here, the EDITTAB EXEC prompts the user for the name of the table to be edited
(only simple names are accepted), then uses that name to verify the existence of
DBS command files needed to support editing of the table. The work file used for
the CMS file version of the table is then defined (in the FILEDEF WORKFILE
command). The DBS Utility (SQLDBSU) is then initiated to unload the table to the
work file. Once the table has been unloaded, XEDIT is initiated to edit the work
file.

On completion of the XEDIT session, the user is asked if the table is to be replaced
in the database by its edited version. If the answer is yes, the DBS Utility is
initiated to perform the REPLACE operation.

Finally, the EXEC asks the user if the new version of the table should be displayed.
If the answer is yes, the table is displayed using ISQL.

/* EDITTAB EXEC */

/* THIS EXEC PROGRAM USES THE SQLDBSU EXEC TO UNLOAD A USER'S TABLE*/
/* INTO A CMS FILE FOR EDITING WITH XEDIT. AFTER EDITING, THE USER*/
/* HAS THE OPTION OF REPLACING THE TABLE WITH THE EDITED CMS FILE, */
/* AND THEN MAY HAVE THE TABLE DISPLAYED BY ISQL. TWO CMS FILES */
/* MUST PREVIOUSLY HAVE BEEN CREATED WHICH CONTAIN COMMANDS TO */
/* SQLDBSU; THEIR FILENAMES MUST BE THE SAME AS THE NAME OF THE */
/* TABLE, TRUNCATED TO 8 CHARACTERS, AND THE FILETYPES MUST BE */
/* 'UNLD' AND 'REPL' (EXAMINE CLOSELY THE EXAMPLE GIVEN FOR THE */
/* EMPLOYEE TABLE.) */

SIGNAL ON ERROR
SAY WHICH TABLE WOULD YOU LIKE TO EDIT?
PULL TNAME
FN = STRIP(LEFT(TNAME,8))
"STATE" FN "UNLD" /* VERIFIES EXISTENCE OF */
"STATE" FN "REPL" /* DBSU CONTROL FILES */

"FILEDEF WORKFILE DISK" FN "TABLE (LRECL 80 RECFM FBA"
"EXEC SQLDBSU IN("FN "UNLD) PR(PRINTER)" /* UNLOAD TABLE */
"XEDIT" FN "TABLE" /* FOR EDITING */

SAY "DO YOU WANT TO REPLACE THE" TNAME "TABLE? (Y OR N)"
PULL ANSWER1
IF ABBREV(NO,ANSWER1,1) THEN EXIT
"EXEC SQLDBSU IN("FN "REPL) PR(PRINTER)" /* TABLE IS REPLACED */

SAY WOULD YOU LIKE TO DISPLAY THE NEW TABLE? (Y OR N)
PULL ANSWER2
IF ABBREV(NO,ANSWER2,1) THEN EXIT

QUEUE "SELECT * FROM" TNAME /* MOVE ISQL COMMANDS INTO THE */
QUEUE DISPLAY /* PROGRAM STACK */
QUEUE END
QUEUE EXIT
EXEC ISQL
EXIT /* END OF PROGRAM */

ERROR: /* ERROR HANDLING */
SAY "UNEXPECTED EDITTAB TERMINATION RETURN CODE:" RC,

" LINE:" SIGL

Figure 37. Example EXEC for Editing a Private Table

Chapter 8. Application Design Considerations 157

For the EDITTAB EXEC to work, two DBS command files must be established for
each table that is to be supported. Figure 38 and Figure 39 show the DBS command
files needed to edit a user’s version of the EMPLOYEE sample table.

Note: These examples assume that the user’s version of the EMPLOYEE table,
userid.EMPLOYEE, has already been created.

The command file in Figure 38 unloads the EMPLOYEE table to a file that has been
defined as WORKFILE. (This is the file defined in EDITTAB as a CMS file with a
file name using the first eight characters of the table name, and a file mode of
TABLE.) The information following the SELECT statement identifies the location in
the output file (WORKFILE) where the data for the columns in the select-list
should be placed.

COMMENT 'EMPLYEE UNLD A'
COMMENT 'DATAUNLOAD JOB FOR EDITING A USERS EMPLOYEE TABLE'
DATAUNLOAD

SELECT * FROM EMPLOYEE ORDER BY EMPNO;
EMPNO 5-10 CHAR
FIRSTNME 12-23 CHAR
MIDINIT 25 CHAR
LASTNAME 27-41 CHAR
WORKDEPT 43-45 CHAR
PHONENO 47-50 CHAR
HIREDATE 52-61 CHAR
JOB 63-70 CHAR
EDLEVEL 72-73 CHAR
SEX 75 CHAR
BIRTHDATE 77-86 CHAR
SALARY 88-96 CHAR
BONUS 98-106 CHAR
COMM 108-116 CHAR

OUTFILE (WORKFILE)

Figure 38. DBS Unload Command File for Editing EMPLOYEE Table

COMMENT 'EMPLYEE REPL A'
COMMENT 'DATALOAD JOB FOR REPLACING AN EDITED EMPLOYEE TABLE'
DELETE FROM EMPLOYEE;
DATALOAD TABLE (EMPLOYEE)

EMPNO 5-10 CHAR
FIRSTNME 12-23 CHAR
MIDINIT 25 CHAR
LASTNAME 27-41 CHAR
WORKDEPT 43-45 CHAR
PHONENO 47-50 CHAR
HIREDATE 52-61 CHAR
JOB 63-70 CHAR
EDLEVEL 72-73 CHAR
SEX 75 CHAR
BIRTHDATE 77-86 CHAR
SALARY 88-96 CHAR
BONUS 98-106 CHAR
COMM 108-116 CHAR

INFILE (WORKFILE)
COMMIT WORK;

Figure 39. DBS Command File for Replacing Edited EMPLOYEE Table

158 Database Administration

The command file in Figure 39 deletes the existing rows of the user’s EMPLOYEE
table, and loads the edited WORKFILE version of the table into it. The information
between the DATALOAD table statement and the INFILE statement identifies the
columns in the table to be loaded with the data from the input file at the specified
locations. All the EMPLOYEE table columns here will be loaded with data from the
WORKFILE input file. For example, data in positions 5 to 10 of the file will be
loaded into the EMPNO column.

Editing Routines
Another variation of the EDITTAB EXEC would be an EXEC that edited only a
portion of the user’s table. To do this, the DATAUNLOAD and DATALOAD
command files must be selective about which rows are unloaded and replaced.
This can be done using a subquery on the DATAUNLOAD, and a WHERE clause
on the DELETE statement.

Figure 40 shows an example where the EXEC unloads an ISQL routine from the
user’s ROUTINE table, invokes XEDIT on the unloaded rows, and gives the user
the option of reloading the edited routine back into the ROUTINE table.

/* EDITROUT EXEC */
SIGNAL ON ERROR
SAY WHICH ROUTINE WOULD YOU LIKE TO EDIT?
PULL RNAME
"STATE" RNAME "UNLD"
"STATE" RNAME "REPL"
"FILEDEF WORKFILE DISK" RNAME "TABLE (LRECL 100 RECFM FBA"
"EXEC SQLDBSU IN("RNAME "UNLD) PR(PRINTER)
"XEDIT" RNAME "TABLE"
SAY "DO YOU WANT TO REPLACE THE" RNAME "ROUTINE? (Y OR N)"
PULL ANSWER1
IF ABBREV(NO,ANSWER1,1) THEN EXIT
"EXEC SQLDBSU IN("RNAME "REPL) PR(PRINTER)"
SAY WOULD YOU LIKE TO DISPLAY THE ROUTINE? (Y OR N)
PULL ANSWER2
IF ABBREV(NO,ANSWER2,1) THEN EXIT
QUEUE "SELECT * FROM ROUTINES WHERE NAME='"RNAME"' -"
QUEUE "ORDER BY SEQNO"
QUEUE DISPLAY
QUEUE END
QUEUE EXIT
EXEC ISQL
EXIT
ERROR:
SAY "UNEXPECTED TERMINATION OF ROUTINE EDIT RETURN CODE:" RC,

" LINE:" SIGL

Figure 40. Example EXEC for Editing Routines

COMMENT 'XMPLROUT UNLD A'
DATAUNLOAD

SELECT NAME, SEQNO, COMMAND FROM ROUTINE
WHERE NAME = 'XMPLROUT';
NAME 1-8 CHAR
SEQNO 10-15 CHAR
COMMAND 17-95 CHAR

OUTFILE (WORKFILE)

Figure 41. Example DBS DATAUNLOAD Command File for Editing Routine XMPLROUT

Chapter 8. Application Design Considerations 159

Application Development Capabilities
Complex applications that are coded as programs (as opposed to DBS Utility input
files or ISQL sessions) could involve many programs that operate on many tables.
This section discusses how to make large-scale application development easier.

Data Prototyping
The DB2 Server for VSE & VM system can be used by application developers to
prototype data designs and implement them during the application development
process. In particular, in DB2 Server for VSE, the ability to dynamically CREATE,
ALTER, and DROP tables from an online, interactive environment allows a
developer to experiment with different design alternatives. A developer can then
exploit the DB2 Server for VSE & VM catalog tables and explanation tables for
documentation and analysis of data designs.

The DB2 Server for VSE & VM facilities that should be considered for data
prototyping activities are identified in the following sections.

Modeling Data Designs: ISQL or the DBS Utility can be used to enter table, view
and index definitions for validating and testing data design. The interactive
definition through ISQL gives the developer direct feedback on definitional errors.
This feedback not only addresses syntax errors, but also addresses data mapping
errors in view definitions.

Furthermore, if SQL definitional commands are entered through ISQL, these
commands may be saved as stored queries. By saving the definitional commands,
they can be recalled, modified and rerun as needed.

If you are developing your system under VSE/ICCF, you can save definitional
statements by storing them in VSE/ICCF files that are used as input (SYSIPT) to
the DBS Utility.

If you are developing your system under CMS, you can save definitional
statements by storing them in CMS files that are used as input (SYSIN) to the DBS
Utility.

Generation/Loading of Test Data: Tables created for data design purposes can be
loaded with test data using any one of several facilities, depending on the source
of test data and the availability of machine readable versions of the data.

If data exists on a sequential file, or can be put into a sequential file, test data can
be loaded using the DBS DATALOAD command.

If the data does not exist in machine readable form, or cannot be readily converted
to a sequential format, it may be necessary to enter the data by hand. This could
be done using the ISQL INPUT command or by building a file for input to the

COMMENT 'XMPLROUT REPL A'
DELETE FROM ROUTINE

WHERE NAME = 'XMPLROUT';
DATALOAD TABLE (ROUTINE)

NAME 1-8 CHAR
SEQNO 10-15 CHAR
COMMAND 17-95 CHAR

INFILE (WORKFILE)
COMMIT WORK;

Figure 42. Example DBS Command File for Replacing Routine XMPLROUT

160 Database Administration

DBS Utility. In DB2 Server for VM the input file to the DBS Utility is a CMS file. In
DB2 Server for VSE the input file to the DBS Utility is a VSE/ICCF file.

If the data can be found in existing DB2 Server for VSE & VM tables in the
application development database, then data can be copied using the SQL INSERT
statement.

If the data can be found in existing tables in another database, the data can be
moved using either DBS UNLOAD and RELOAD or DBS DATAUNLOAD and
DATALOAD commands. The UNLOAD/RELOAD commands allow easy
movement of data on a table or dbspace level. DATAUNLOAD/DATALOAD lets
you be more selective in what you want to unload, and where you want to load it.
That is, rather than move an entire table, you can use
DATAUNLOAD/DATALOAD to move only certain columns of certain rows of a
table.

Design Documentation and Analysis: The catalog tables form a base for design
documentation in as much as the catalog tables can be queried and used to
generate reports. In addition to containing the base information from the SQL
definitional commands, the catalog tables contain useful statistical information and
dependency information.

You can analyze how a given design will perform by using the explanation tables
and the SQL EXPLAIN statement. The EXPLAIN statement can be issued in a
program, from an ISQL terminal, by way of the DBS Utility, or through an
application program. It lets you get information about the structure and execution
performance of other SQL statements (especially the SELECT statement). Naturally,
execution performance is affected by the data design.

In addition to the EXPLAIN statement, you can get an idea of how well a given
SELECT statement performs by using the ISQL query cost estimate. The query cost
estimate is displayed before the result of a SELECT statement is displayed. It is
also displayed at the end of every SELECT result in ISQL.

The query cost estimate is a relative number (not expressed in real units) that
represents an estimate of the resources used to process the statement. The query
cost estimate displayed in ISQL is not the same number that can be obtained by
using EXPLAIN. The cost estimate displayed by EXPLAIN is the number that is
used internally, while the number displayed by ISQL is the internal number
divided by 1000. This makes the query cost estimate more significant to a terminal
user.

Prototyping Application Function
Application function can be prototyped using ISQL or DBS facilities for testing and
debugging SQL statements to be used by the application.

Using Stored Queries to Test SQL Statements: The stored queries support can be
effectively used to develop SQL statements to be used in an application. The stored
queries could be developed for a test database. By using parameterized stored
queries, you can simulate the use of program variables and test the results of your
SQL statement against various input cases.

Using ISQL Routines to Test SQL Functions: You can develop logical sequences
of SQL statements by using the ISQL routine support. Different routines would be
developed for different paths through the application logic. Again, parameterized

Chapter 8. Application Design Considerations 161

stored routines can be effectively used to simulate program variables and test the
functional results of the application path against various input cases.

You can use the ISQL SET RUNMODE command to aid in testing (and, perhaps,
correcting) the application logic in routines. SET RUNMODE can be coded in the
routine or issued from the terminal. It lets you stop or continue the processing of
an ISQL routine when an error is encountered.

Using the DBS Utility to Test SQL Functions: You can use the DBS Utility to try
out SQL statements or sequences of SQL statements. Note however, you cannot use
it to process parameterized SQL statements or SQL statements having host
variables.

Using the DBS Utility to test SQL statements in VSE has the advantage of keeping
the SQL statements in a VSE/ICCF file that can be modified. When testing is
complete, you can include the VSE/ICCF file in a source code file. If you are using
the DBS Utility under VSE/ICCF, use the VSE/ICCF editor to modify the
command sequence for each test run.

Using the DBS Utility to test SQL statements in VM has the advantage of keeping
the SQL statements in a CMS file that can be modified. When testing is complete,
the CMS file can be included in a source code file. Using the DBS Utility under
CMS, you would have to modify the command sequence using a CMS editor
(XEDIT, for example) for each test run.

As in ISQL, the DBS Utility also provides error handling. Issue the command SET
ERRORMODE to tell the utility how (or if) it is to process SQL and DBS
commands after an error has occurred.

Code Development
For development of application code, VSE/ICCF and CMS provides an interactive
environment in which to build source code files, to run the DB2 Server for VSE &
VM preprocessors, to run the high-level-language compilers, and to test batch (or
VSE/ICCF) applications. In VSE, tests of CICS transactions must be run under the
CICS subsystem.

Building Source Code Files: Using either the VSE/ICCF editor or a CMS editor,
developers can interactively build and edit source statements for their programs.
Developers can use the DBS Utility to test SQL statements. They can copy tested
statements into the source file, and modify them for the appropriate programming
language syntax.

If many applications are to use the same host variables or the same SQL
statements, the developers should consider using the SQL INCLUDE statement,
which causes the preprocessors to include source lines from other source members
(VSE) or CMS files (VM). For example, a developer can place a lengthy SELECT
statement here and use that query in many programs by coding SQL INCLUDE
statements.

Preprocessing Programs under Development: The DB2 Server for VSE
preprocessors can be run under VSE/ICCF, using VSE/ICCF files for source code
input, or under CMS, using CMS files for source code input. The printed output
from the preprocessors, SYSLST for VSE and SYSPRINT for VM, can be directed
under VSE/ICCF to VSE/ICCF files, or under CMS, to CMS files for developer
review from the terminal. Similarly, the punch output, SYSPCH for VSE and
SYSPUNCH for VM, from the preprocessors can be directed under VSE/ICCF to

162 Database Administration

VSE/ICCF files or under CMS, to CMS files, for input to the appropriate compiler.
The preprocessors integrate any external source lines from INCLUDE statements.
Use of the INCLUDE statement does not cause more compilation steps.

When developing a program with embedded SQL statements, run the
preprocessors with a CHECK option. Under this option the preprocessor produces
diagnostics on the SQL in the program, but does not create a package or compiler
input. Therefore initial code development and debugging can be done on just a
skeleton of the final program.

When preprocessing programs under development, application developers can
back up packages that they create with the DBS Utility UNLOAD PROGRAM
command. For information on this command, see the DB2 Server for VSE & VM
Database Services Utility manual.

Testing Application Code under VSE/ICCF: To test user SQL programs the
developer must preprocess, compile, and link-edit the program as a multiple user
mode batch application program. This can either be done under VSE/ICCF, or as a
normal VSE batch job.

Once an application has been preprocessed, compiled, and link-edited, normal
VSE/ICCF procedures for application execution can be used. The only DB2 Server
for VSE requirement for program execution is that the VSE/ICCF control statement
“/OPTION GETVIS=AUTO” must follow the “/LOAD” statement. The program
only needs to be re-preprocessed if the SQL statements that the program runs are
modified.

Testing Application Code Under CMS: To test user SQL programs under CMS,
the application developer would preprocess, compile, and link-edit the program as
a multiple user mode application program, using the usual CMS commands.

Following this, CMS commands for application execution can be entered (for
example, START and RUN).

CMS Subset Considerations
If you develop a DB2 Server for VM application that invokes CMS Subset, be sure
to tell users not to invoke any commands, programs, or EXECs that access the
application server while in CMS Subset mode. (The results would be unpredictable
and error conditions could be generated.) This also applies if they invoke CMS
Subset from ISQL.

Application Database Considerations
The following sections discuss the implications that the various types of
application implementations have on database design.

Database Support for Application Development
When applications are being developed, not all of the data is already predefined.
You will therefore need to set up your database to support both data that exists in
a predefined state, and data that is still under development. For the latter, you
should consider establishing both PUBLIC and PRIVATE dbspaces specifically
defined for application development purposes.

PRIVATE Dbspaces in Application Development
Application developers and database designers will need their own PRIVATE
dbspaces for prototyping data designs and functions on various data designs.

Chapter 8. Application Design Considerations 163

These are better than PUBLIC dbspaces for this activity, because they provide an
environment of less concurrency and no deadlocks. They also have the advantage
of being user-controlled, so application developers need not worry about others
altering the data in their test tables.

Such dbspaces must only be large enough to support sample data in the tables.
Because they are used primarily for functional feasibility testing, they do not have
to support large versions of the tables.

PUBLIC Dbspaces in Application Development
PUBLIC dbspaces are required to model the final database implementation: the
final testing stages and performance testing of applications and data organizations.
They would probably represent the actual production environment, as they allow a
greater concurrency and are DBA-controlled. Tables stored here would hold a
larger, more representative sampling of the data.

Database Support for Query/Report Writing
Queries and report writing also have unique database design requirements. In
particular, the needs of query users for private storage of their data, queries, and
routines must be considered.

Private Query User Data
Many query users will want to be able to store their own private data. To support
this, you need to set up space in the database: how you do so will depend on how
you want to control space usage and table creation. Some variations on this are
described below.

User Control of Own Data: You can enable query users to define and control
their own data by giving them RESOURCE authority, which lets them create tables
in the database. For more information see “Granting Authorities” on page 90. They
will also need PRIVATE dbspaces to hold their tables. Users with RESOURCE
authority can issue their own ACQUIRE DBSPACE statements; however, you will
probably prefer to do this for them. (See “Identifying Dbspace Requirements” on
page 21.)

Having One User Control Data for a Group: If you do not want to give all query
users RESOURCE authority, you could set up a PUBLIC dbspace that would
support the data requirements of a whole group, and give just one user
RESOURCE authority to handle the data requirements of the group.

Having the DBA Control All Data: If you need to tightly control or centralize
control of database usage, you (or someone with DBA authority) can establish
PRIVATE dbspaces for individual users and PUBLIC dbspaces for common data
requirements, but create all tables yourself and restrict access to those tables to
certain users only.

Giving Users Their Own Dbspaces: Users who do not have RESOURCE
authority can still create tables in PRIVATE dbspaces that the DBA has acquired for
them. This still allows the DBA to control how much space each user has in the
database, but gives users the freedom to create whatever tables they choose within
that space. This technique is sometimes called “create table authority.”

Storage of ISQL Routines
Query users who want to develop their own ISQL routines will need to have a
ROUTINE table somewhere in the database. Creating this table is typically done by
the DBA when enrolling a new query user on the system. (See “Adding a New
User” on page 79.)

164 Database Administration

Users who have their own PRIVATE dbspaces can create their own ROUTINE
tables there. If a user’s routines are to be shared by others, then this table should
be created in a PUBLIC dbspace instead, and access to it established through views
(rather than duplicating the table or having the other users qualify the name of the
routine by a user ID).

If users are invoking ISQL to access a non-DB2 Server for VSE & VM application
server and you require a master ISQL profile routine, then you must create a table
called SQLDBA.ROUTINE and store the master routine in this table. See the DB2
Server for VM System Administration and DB2 Server for VSE System Administration
manuals for details on setting up a routine table.

Note: Access to an application server using the DRDA protocol is only possible if
the Distributed Relational Database Architecture (DRDA) facility has been
installed on the application requester and if the application server supports
IBM’s implementation of the DRDA protocol.

System Dbspace Considerations
A final requirement for supporting a query/report writing environment is to define
data for three dbspaces: “PUBLIC”.ISQL, “PUBLIC”.HELPTEXT, and
“PUBLIC”.SAMPLE.

“PUBLIC”.ISQL Dbspace: This dbspace contains the SQLDBA.“STORED
QUERIES” table, which holds the queries stored by ISQL users. Because stored
queries cannot be shared, users must have their own copy of any stored query
they need to run. One or more standard stored queries may be established for each
new user; in addition, some users may also have application programmer-
developed stored queries established for them. Thus, this table may contain
redundancy.

If an installation has many stored queries, the “PUBLIC”.ISQL dbspace may run
out of space. If this happens:
1. Unload the dbspace using the DBS Utility, thus saving its stored queries and

routines in an external file.
2. Drop the dbspace and acquire a bigger one with the same name.
3. Reload the new dbspace with the data that was unloaded from the previous

version.

“PUBLIC”.“HELPTEXT” Dbspace: If the HELP text has been installed, this
dbspace contains the SQLDBA.SYSTEXT1, SQLDBA.SYSTEXT2, and
SQLDBA.SYSLANGUAGE tables, which hold the information displayed in
response to an ISQL HELP command. If you plan to expand the text or topics
covered in the HELP tables, you will need to increase the size of this dbspace. See
“Making the HELPTEXT Dbspace Larger” on page 143.

“PUBLIC”.“SAMPLE” Dbspace: This dbspace contains the sample tables
provided with the DB2 Server for VSE & VM product: SQLDBA.EMPLOYEE,
SQLDBA.DEPARTMENT, SQLDBA.PROJECT, SQLDBA.ACTIVITY,
SQLDBA.EMP_ACT, SQLDBA.PROJ_ACT, SQLDBA.CL_SCHED and
SQLDBA.IN_TRAY.

Chapter 8. Application Design Considerations 165

Application Implementation Considerations
The considerations regarding the implementation of applications are discussed
here.

VSE Batch/Interactive Application Considerations
The considerations pertinent to user-written application programs for the
batch/ICCF environment and to DBS Utility applications are security, recovery and
error handling.

Batch/ICCF Application Security
DB2 Server for VSE data protection applies to programs written for batch and
VSE/ICCF execution (and to the data itself). In particular, when a user
preprocesses a program, the database manager checks the authority and privilege
of that user on tables and views used in the program. When a user runs a
preprocessed program, the database manager checks only for RUN privilege of that
user on the program.

When a program is preprocessed, users with the appropriate data authority for the
program functions must supply a user ID and password. Users are verified by the
supplied password, and their authority is checked for each SQL request embedded
in the program. On successful completion of the preprocessor job, a user becomes
the owner of the application program, and can control who else can run it by
issuing a GRANT RUN statement.

Note: In a batch/interactive environment, a GRANT statement is typically entered
through a DBS Utility execution. For program execution, the batch and
VSE/ICCF applications must be written to establish a user connection to the
DB2 Server for VSE application server through the SQL CONNECT
statement. This statement establishes the user of the program and checks
that user’s authority to run the program and to perform any interpretive
SQL functions in the program.

For example, security-sensitive applications can be written to require that the user
ID and password of the program runner be supplied through control statements or
terminal input at execution time. The programs should be written to read this
information into the host program variables referenced in a DB2 Server for VSE
CONNECT statement.

You can bypass this security facility by writing the application so that it supplies
the user ID and password independent of the actual user of the application. If you
do so, you must code the CONNECT statement in the application and grant RUN
authority to the user IDs to be generated.

In general, you can use program authorization as a means of controlling access to
data. If the end user of the application has access to the data only through specific
application programs, the user can do only what the application is programmed to
do.

Batch/ICCF Recovery
All batch/ICCF programs should explicitly issue COMMIT WORK and
ROLLBACK WORK statements as required, rather than relying on the implicit
COMMIT and ROLLBACK functions of the database manager. The rules
determining whether to do an implicit COMMIT WORK or an implicit ROLLBACK

166 Database Administration

WORK are rather complex. By coding explicit COMMIT WORK and ROLLBACK
WORK statements, you can determine what work is done by a batch application
from the last statement completed.

Batch/ICCF Error Handling
In general, if a batch/ICCF application is terminated abnormally, the database
manager backs out all uncommitted changes. If it terminates normally, the
database manager commits changes not explicitly committed by the application.
An application program can be coded to handle negative SQLCODEs by using
SQL WHENEVER statements, as described in the DB2 Server for VSE & VM
Application Programming manual.

DBS Utility Application Security
The DBS Utility input must include an SQL CONNECT statement before any other
SQL statement or UNLOAD, RELOAD or DATALOAD commands are issued. The
only exception to this rule is when the DBS Utility is called by a user application
that has already issued an SQL CONNECT statement.

A DBS input (SYSIPT) file can contain multiple SQL CONNECT statements. This
capability can be used to write one DBS input file that performs operations for
multiple users. The operations to be performed for any one user are preceded by
an SQL CONNECT statement.

DBS Utility Application Recovery
The DBS Utility applications can control commit processing through the
appropriate use of the DBS SET AUTOCOMMIT command and SQL COMMIT
WORK and ROLLBACK WORK statements. By setting AUTOCOMMIT ON, DBS
will automatically issue an SQL COMMIT WORK after each SQL or DBS command
(except for certain statements that imply commit processing is not appropriate, like
ROLLBACK WORK). By setting AUTOCOMMIT OFF, no commit processing will
be done unless explicitly requested by an SQL COMMIT WORK statement or
when the input command file is exhausted.

For batch processing, you typically run with AUTOCOMMIT set OFF, so commit
points are explicitly identified by SQL COMMIT WORK statements. This is the
default for DBS processing.

When running DBS in an interactive fashion (under VSE/ICCF with /DATA
INCON specified), you should run with AUTOCOMMIT set ON. If you run with
AUTOCOMMIT set OFF, shared data is not available to other users while you are
thinking about command responses or entering commands, unless the other users
are using isolation level UR.

DBS Utility Application Error Handling
DBS terminates execution of commands in the input (SYSIPT) file and performs a
ROLLBACK WORK if it encounters an error on any of the commands. However,
DBS will read all the input records and provide diagnostics for the remaining
commands. In addition, you can include SET ERRORMODE OFF commands to
cause DBS to stop processing the input in error mode (that is, resume execution of
commands in the input file).

The SET ERRORMODE OFF capability is useful for execution of independent
command sequences in the same input file. Each independent sequence of
commands would be preceded by a SET ERRORMODE OFF command.

Another use of the SET ERRORMODE command is when running DBS under
VSE/ICCF in conversational mode (/DATA INCON). In this case, you should use

Chapter 8. Application Design Considerations 167

the SET ERRORMODE CONTINUE command. If a normal SQL error is
encountered on any command entered, the DBS utility processes subsequent
commands from the terminal user. It goes into error mode processing only if the
error is fatal. This saves the terminal user from having to enter SET ERRORMODE
OFF every time a minor mistake is made.

Online CICS/VSE Transaction Considerations

Online Application Security
Security design in an online (CICS) transaction processing environment should
consider the facilities of the CICS subsystem as well as those offered by the DB2
Server for VSE application server. In particular, the CICS subsystem provides
facilities for performing user verification (signon), and for controlling user
authority to run CICS transactions. SQL programs written for execution in the
CICS programming environment can be designed to take advantage of these
facilities.

User Identification and Verification: User identification and verification for CICS
SQL transactions can be handled in one of the following ways:
v CICS Signon

The CICS SQL transactions do not have to contain SQL CONNECT statements. If
a CONNECT statement is not present in the transaction, the DB2 Server for VSE
online support attempts to obtain the CICS signon userid using the EXEC CICS
ASSIGN command. The user ID of the program user is assumed to be this
signon ID.

v DB2 Server for VSE CONNECT
If your CICS users do not go through a signon process for access to CICS
transactions, user identification and verification can still be accomplished
through the SQL CONNECT statement in the individual transaction programs.
However, the transaction would have to obtain a user ID and password in order
to issue a CONNECT statement.

Note: This does not apply in a DRDA environment.
v No user identification/verification

For the online (CICS) environment, you can choose to run without requiring any
user identification or verification, by treating all CICS users as though they had
the same user ID and authority. To do this, you would identify the default CICS
user ID when starting the DB2 online support (see “CICS Transaction
Environment” on page 101).

Note: This does not apply in a DRDA environment.

You can design each CICS transaction to handle user verification and identification
differently. Some may require the user to sign on to the CICS subsystem, others
may issue SQL CONNECT statement, and yet others may assume the default user
ID for CICS users.

Note: In cases where the CICS subsystem does user verification or the user runs
under the default user ID, it is not necessary to have the user defined to the
DB2 Server for VSE application server through the GRANT statement
(CONNECT authority).

Online Application Recovery
Application recovery processing for CICS SQL transactions is coordinated between
the CICS subsystem and the DB2 Server for VSE database manager. In particular, a

168 Database Administration

CICS SYNCPOINT request causes an SQL COMMIT WORK to be issued to commit
table information as well as CICS information. Similarly, a CICS SYNCPOINT
ROLLBACK request causes an SQL ROLLBACK WORK to be issued. The reverse
is also true: a COMMIT WORK causes a CICS SYNCPOINT to be issued and an
SQL ROLLBACK WORK causes a CICS SYNCPOINT ROLLBACK to be issued.

In addition, CICS end-of-task processing is coordinated with the DB2 Server for
VSE database manager to assure that transaction processing is properly committed
or rolled back, depending on the conditions under which the transaction ended.

For supporting recovery processing for CICS SQL transactions, the CICS subsystem
must be generated with the Dynamic Transaction Backout Program (DBP
parameter), and individual transactions must be installed with the CICS DTB=YES
option.

Pseudoconversational Transactions
Pseudoconversational transactions must not be run on the same terminal with
ISQL while ISQL has “timed out”.

Application Development Considerations

Loading Data into Test Dbspaces
You can load test data in any of these ways:
v DBS Utility UNLOAD/RELOAD

Live data can be unloaded and then reloaded back into the system, but directed
at the test dbspace. The tables can be created new (using the NEW option of the
RELOAD command); or, if the tables already exist, then all rows can be deleted
and the unloaded data inserted using the PURGE option of the RELOAD
command. If an application development environment exists where the test data
is on a separate test database, then DBS UNLOAD/RELOAD can be used to
load data from one database to another.

v INSERT with subselect
Live data can also be loaded into a table by using the INSERT with subselect:

INSERT INTO TESTTABLE
SELECT * FROM USERID.LIVETABLE
WHERE ...

This approach to loading test data has the advantage of using a WHERE clause
for defining a sample from the live data rather than the entire table. An INSERT
with subselect can be entered through ISQL, the DBS Utility, or an application
program. An INSERT with subselect can be used to convert data from one data
type to another; the specific limits on data type conversion depend on the
number of conversions and the data types involved. Refer to the DB2 Server for
VSE & VM Application Programming manual for the general restrictions on data
type conversions.

v DBS Utility DATAUNLOAD/DATALOAD
The DBS Utility DATALOAD command may be used to input test data for new
tables. The input to the DATALOAD command is from SYSIPT or sequential
(SAM) files in VSE, from SYSIN or sequential (CMS) files in VM. A subset of all
the data on the input sequential file can be loaded by using the “IF POS” clause
of the DATALOAD command. For example, suppose that on an input sequential
file containing customer information, the telephone number data is in positions

Chapter 8. Application Design Considerations 169

28-39 and positions 28-30 contain the area code. You could then load just the 555
area codes into the table TESTCUST by specifying the following DATALOAD
command format:

DATALOAD TABLE (TESTCUST) IF POS (28-30)='555'

...

The test table would contain a subset of the actual data that the application will
use.

You can get even more selectivity by using the DATAUNLOAD command to
create the sequential file. This is especially useful if the data exists in tables, but
not input files.

As the DATAUNLOAD command incorporates an SQL SELECT statement, you
can be highly selective about what data you wish to unload. Furthermore,
because the DATALOAD command can be used to reload the data, you can
significantly restructure the data when you load it. That is,
DATAUNLOAD/DATALOAD is not restricted to a table-to-table or
dbspace-to-dbspace data movement. For example, you can unload data
generated from a subquery, and then load only a portion of the result into a
completely different table. This facility is useful for rapidly getting data into a
new design prototype.

Use of Synonyms in Application Development
To simplify coding and testing of SQL statements that will eventually reference the
live data, a developer may use the SYNONYM capability. Under the user ID
established for a developer, synonyms would be defined so table references would
translate to test tables when preprocessed under the developer’s user ID.

For example, an application needs to be written that will access the PAYROLL
table. The fully qualified table name is LOCALDBA.PAYROLL, having been
created for the user ID LOCALDBA. A developer, with userid = DEV, has a
temporary version of the payroll table called DEV.TESTPAY. Because the SQL
statements refer to the table name PAYROLL, the developer creates the name
PAYROLL as the synonym for TESTPAY:

CREATE SYNONYM PAYROLL FOR TESTPAY

Now all references to PAYROLL made from userid DEV translate to TESTPAY.
When it comes time to switch to the live data, the program will be preprocessed
under the userid of the creator of the PAYROLL table (LOCALDBA in this case), so
that the program will access the PAYROLL table no matter who runs it.

Note: An exception to the above commands are applications that require Dynamic
Statement Support (including Extended Dynamic Statements). For those
dynamic statements, table references are translated based on the userid of
the user that runs the program (the userid specified in the CONNECT
statement). Execution of any test program against live data can be prevented
by not granting run authority to anyone who does not have the appropriate
synonyms defined.

170 Database Administration

Testing SQL Statements

Using ISQL and Stored Queries
Before actually coding an application, the programmer may test/develop SQL
statements to be embedded in the program by using ISQL against test data. The
programmer would develop a set of SQL statements using the stored query
facilities of ISQL. As each statement is formed, it would be run against the test
data to verify expected results. Syntax and execution errors will be caught and
error messages returned. The HELP facility of ISQL could be used to obtain
detailed error descriptions and SQL statement descriptive information. For user
logic errors on non-query statements (such as INSERT or UPDATE), the
programmer can issue SELECT statements to inspect the effects of the tested
statements.

Maintaining Database Consistency Under ISQL
To maintain a consistent state of the test database when using non-query
statements, the programmer will want to issue SET AUTOCOMMIT OFF from the
ISQL terminal, so that any changes that the test statements may make to the test
database can be undone with a ROLLBACK WORK.

Using ISQL Stored Queries for Testing SQL Statements
To place an SQL command in the stored queries table without executing it first, the
programmer should use the ISQL HOLD and STORE commands under
AUTOCOMMIT ON mode. For example:

HOLD DELETE FROM PAYROLL WHERE NAME = 'SMITH'
STORE DELETE1

The HOLD command will place the command in the SQL command buffer of
ISQL, but will not run it. Then the STORE command will place the contents of the
SQL command buffer into the “STORED QUERIES” table. Once the command is in
the “STORED QUERIES” table, the programmer can run it while controlling his
own logical unit of work (under SET AUTOCOMMIT OFF), so that the changes
done by the command can be rolled back.

Using ISQL Routines to Test SQL Statements
As each command is corrected and verified, it can be stored away as
parameterized stored SQL command in a ROUTINE table. The programmer would
use stored command parameters where the program will have program variables.
The commands can be placed in the ROUTINE table in the same logical order that
they will be run in the application program. In this manner a prototype will be
created that will demonstrate sample application usage. End users can then see the
proposed system in operation before it is coded. Design flaws can be more easily
corrected at this early phase.

Note: Stored queries and synonyms cannot be shared, but routines can be shared.
You can run another user’s routine if you have obtained the SELECT
privilege (through a GRANT command) on that user’s ROUTINE table. Care
must be taken in running another user’s routines however, because any
stored SQL commands or synonyms used in a routine will not be recognized
unless you have also defined them yourself.

Checking Application Code

Using the Preprocessor CHECK Option
After debugging and testing the SQL commands on ISQL, the application
programmer would then code the application. Having developed the source
program with embedded SQL commands, the next step is to run the program

Chapter 8. Application Design Considerations 171

through the appropriate DB2 Server for VSE & VM preprocessor. If the
programmer is unsure of the SQL commands embedded in the program, he can
run the preprocessor with the CHECK option. The SQL commands will be
preprocessed and error messages will be output to SYSLST in VSE and SYSPRINT
in VM, but a package is not created and no modified source will be produced.
Running the preprocessor without the CHECK option will generate a package and
the modified source to be used as input to the desired compiler.

Use of ROLLBACK WORK During Application Execution
After the program has been preprocessed and compiled, the final step in the
testing cycle would be execution against the test data. To ensure a consistent test
database the application programmer should place a ROLLBACK WORK statement
in his application that will undo any changes that the program may make during
execution before the program terminates. This ROLLBACK WORK statement may
be left in the application for the first few runs on the live data. Once the program
is operating correctly on the live data, the ROLLBACK WORK statement can be
removed (or replaced with a COMMIT WORK statement).

Query/Report Writing Considerations

User Identifiers (Userids) for Query Users
Each query user should be given a unique user identifier and CONNECT authority
on the DB2 Server for VSE & VM application server using GRANT statements, as
described under “Adding a New User” on page 79. Multiple users can use the
same DB2 Server for VSE & VM userid, but this can result in conflicts between the
users’ access to the system and to data.

ISQL users should be careful if there is more than one user using the same userid.
In particular:
v Stored queries should be stored with names that identify the owner. This can be

done by using the owner’s initials as a prefix to the name.
v Multiple users with the same userid will experience severe contention if they try

to update (insert or delete) data in a PRIVATE dbspace owned by their common
userid. In such cases, PRIVATE dbspaces should not be used unless the access to
the data is read only.

v When multiple users use the same userid, the DB2 Server for VSE & VM
security facilities cannot distinguish the individual users. All users using a
common userid will share the same access privileges to the database.

v Only one PROFILE ROUTINE can exist for each unique userid. If multiple users
(using the same userid) require different profile routines, they can create unique
routines (again, perhaps appending their initials to the routine name). This
unique routine can then be run either as part of ISQL signon or at any time after
signon.

Application Independence with CMS Work Units
Applications that use multiple CMS Work Units can:
v Start a logical unit of work.
v Invoke other application programs in new CMS Work Units.
v Run these application programs independently of one another. When one

program commits or rolls back work, it does not affect the work in other CMS
Work Units.

172 Database Administration

v Access a different application server in each CMS work unit. The logical unit of
work can be on the same application server or on different application servers.
The application server can be a DB2 Server for VM or non-DB2 Server for VM.

For more information on CMS Work Units, see the DB2 Server for VSE & VM
Application Programming manual.

Note: Access to an application server that is not DB2 Server for VM is only
possible if the Distributed Relational Database Architecture (DRDA) facility
has been installed on the application requester and if the non-DB2 Server for
VM application server supports IBM’s implementation of the DRDA
protocol.

Application Maintenance Considerations
DB2 Server for VSE & VM users and programs are independent of the physical
storage of data. This means that procedures and programs need not be changed
when their information is updated or reorganized, and logical changes can be
made to the data without requiring expensive rewrites, retraining, or
reorganization of the supporting application system.

This data independence improves productivity, by enabling users and programs to
concentrate on the application instead of on details such as how data is stored,
which users share it, or what changes have been made to it. It also means that new
applications may be written with little initial regard for performance
considerations: much of the optimization is handled automatically, and
user-directed optimization can be done later without significant effect on the
applications using the data. In addition, one user may change the format or
organization of some data with minimal effect on other users who share it.

Data Administration Support
The DB2 Server for VSE & VM product supports a powerful query capability, as
well as an easy-to-learn interactive support system (ISQL). The DBA can use these
functions to scan stored data to determine when reorganization of data is
appropriate, decide how to logically organize the data, audit its consistency and
accuracy, and assess the impact of changes.

Another way to examine data is through the catalog tables, which are internally
updated as a result of many SQL statements. For example, a CREATE TABLE
statement causes a new entry in the SYSTEM.SYSCATALOG table; each column in
the new table results in an entry in SYSTEM.SYSCOLUMNS. Because the catalog
tables are regular tables (with appropriate security protection), the SQL language
examines them. DBAs can look at these tables to determine table sizes and
statistics, what programs use particular tables or columns, the current data types of
columns in a particular table, various security information, and many other things
required for understanding the status and dependencies of the database.

Refer to the DB2 Server for VSE & VM SQL Reference manual for more information
about the catalog tables along with examples of their use.

To see if a data design is meeting performance requirements, the DBA can use the
EXPLAIN statement to analyze the structure and performance of frequently used
SQL statements, and to determine whether any statements or the data they access
should be redesigned. See the DB2 Server for VSE & VM Application Programming
manual for a description of the EXPLAIN statement.

Chapter 8. Application Design Considerations 173

Data Independence Support

Data Type Changes
A wide range of conversions from one data type to another is supported. This
means that, within reason, the data type or the size of a column may be changed
without requiring changes to the accessing programs. Data is converted on input
and output if the data types used in program variables do not match those defined
for the stored data. Data conversions and their restrictions are shown below;
explanatory notes follow.

Source Data Type Target Data Type

CHAR DATE DECIMAL FLOAT-
DOUBLE

FLOAT-
SINGLE

GRAPHIC INTEGER

CHAR YES3 YES6 NO NO NO NO NO

DATE YES7 YES NO NO NO NO NO

DECIMAL NO NO YES1,4 YES13 YES12,13 NO YES1,2

FLOAT-DOUBLE NO NO YES1,4,5 YES YES11 NO YES1,2

FLOAT-SINGLE NO NO YES1,4,5 YES10 YES NO YES1,2

GRAPHIC NO NO NO NO NO YES3 NO

INTEGER NO NO YES1 YES YES12 NO YES

LONG VARCHAR YES3 NO NO NO NO NO NO

LONG VARGRAPHIC NO NO NO NO NO YES3 NO

SMALLINT NO NO YES1 YES YES12 NO YES

TIME YES7 NO NO NO NO NO NO

TIMESTAMP YES7 NO NO NO NO NO NO

VARCHAR8 YES3 YES6 NO NO NO NO NO

VARGRAPHIC9 NO NO NO NO NO YES3 NO

Figure 43. Data Conversion Chart (Part 1 of 2)

174 Database Administration

Notes to Figure 43:

1. An overflow error may result.
2. The fractional part of the value is dropped.
3. On output, if the length of the target is smaller than the length of the source,

truncation occurs. On input, an error occurs.
4. The database manager automatically aligns the decimal point. Overflow of the

integer part may result. The fractional part may be truncated.
5. The database manager attempts to create the best possible result in converting

from System/370 floating point to scaled fixed point decimal.
6. The character string must contain a valid representation of a date, time, or

timestamp value. However, you cannot transfer data from a CHAR or
VARCHAR column into a host variable defined as a date, time, or timestamp
type.

7. On output, when the source is a datetime data type and the corresponding
target is a character data type, certain truncation occurs for time and
timestamp. On input, an error occurs.

8. This applies to VARCHAR fields less than or equal to 254. VARCHAR fields
greater than 254 are treated like LONG VARCHAR in data conversion.

9. This applies to VARGRAPHIC fields less than or equal to 127. VARGRAPHIC
fields greater than 127 are treated like LONG VARGRAPHIC in data
conversion.

10. The single-precision data is padded with eight hex zeros.
11. The double-precision data is converted and rounded up on the seventh hex

digit.
12. Conversion is first done in double precision and then rounded to single

precision.

Source Data Type Target Data Type

LONG
VARCHAR

LONG
VAR-
GRAPHIC

SMALL-
INT

TIME TIME-
STAMP

VAR-
CHAR8

VAR-
GRAPHIC9

CHAR YES NO NO YES6 YES6 YES3 NO

DATE NO NO NO NO NO YES NO

DECIMAL NO NO YES1,2 NO NO NO NO

FLOAT-DOUBLE NO NO YES1,2 NO NO NO NO

FLOAT-SINGLE NO NO YES1,2 NO NO NO NO

GRAPHIC NO YES NO NO NO NO YES3

INTEGER NO NO YES1 NO NO NO NO

LONG VARCHAR YES NO NO NO NO YES3 NO

LONG VARGRAPHIC NO YES NO NO NO NO YES3

SMALLINT NO NO YES NO NO NO NO

TIME NO NO NO YES NO YES7 NO

TIMESTAMP NO NO NO NO YES YES7 NO

VARCHAR8 YES NO NO YES6 YES6 YES3 NO

VARGRAPHIC9 NO YES NO NO NO NO YES3

Figure 43. Data Conversion Chart (Part 2 of 2)

Chapter 8. Application Design Considerations 175

13. Some accuracy may be lost when converting DECIMAL data type numbers to
single- or double-precision floating point numbers.

Arithmetic Operations
The following sections define the rules for arithmetic operations with the data
types that are supported. Note the conditions under which overflow errors can
occur.

Decimal Arithmetic Operations
A decimal number has a fixed number of places in total, and a fixed number of
places in its fractional part (to the right of the decimal point). The total number of
places is often called the precision, and the number of places in the fractional part
scale. A decimal column is defined in a CREATE TABLE or ALTER TABLE
statement as: DECIMAL (precision,scale).

The precision and scale of the decimal number resulting from an arithmetic
operation on two numbers (operands) are determined by the following rules:
v If one operand is a binary integer and the other is a decimal number, the

operation is performed in decimal. A temporary copy of the binary integer that
has been converted to decimal is used. Binary integers defined as SMALLINT
will be converted to DECIMAL(5,0), while those defined as INTEGER will be
converted to DECIMAL(11,0). Integer constants will always be converted to
DECIMAL (11,0). The result is a decimal number as specified below.

v If both operands are decimal numbers, the result is a decimal number.
v The precision and scale of the result depend on the arithmetic operation, and on

the precision and scale of the operands.
v Precision and scale can be influenced by decimal constants with leading or

trailing zeros. See the DB2 Server for VSE & VM Application Programming manual
for more information.

v If the operation is addition or subtraction, and the operands do not have the
same scale, the operation is performed with a temporary copy of one of the
operands. The copy is extended with trailing zeros so that its fractional part has
the same number of places as the fractional part of the other operand.

v The result of an addition, subtraction, or multiplication operation is derived
from a temporary result that has a maximum precision of 31. If the precision of
the temporary result is not greater than 31, the final result is the same as the
temporary result.

v When the scale of the temporary result is greater than that of the result (see
Table 27), then the fractional part of the temporary result will be truncated so
that the scales are the same.

v For an integer literal, the precision will be the number of digits, and the scale
will be 0. For example, 100 will be set to precision 3 and scale 0.

v The precision and scale of a result are determined as shown in Table 27.

Table 27. Precision and Scale of Decimal Results

Assume the following notation:
PA = Precision of the first operand.
SA = Scale of the first operand.
PB = Precision of the second operand.
SB = Scale of the second operand.

Operation Characteristics of the Result

176 Database Administration

Table 27. Precision and Scale of Decimal Results (continued)

Addition and
Subtraction

Precision: MIN(31,MAX(PA-SA,PB-SB)+MAX(SA,SB))

Scale: MAX(SA,SB)

Multiplication Precision: MIN(31,PA+PB)

Scale: MIN(31,SA+SB)

Division Precision: 31

Scale: 31-PA+SA-SB (Scale must not be negative)

Binary Arithmetic Operations
If both operands are binary integers, the operation is performed in fixed binary.
The result is in the INTEGER data type.

The result of a division operation is truncated. The result of a fixed binary
operation must be within the range of the INTEGER data type. See “Specifying
Columns” on page 30 for the ranges of data types.

Floating Point Arithmetic Operations
If either operand is a floating point number, both operands are converted to
double-precision floating point numbers. The result depends on the data type of
the target column or host variable. In the case of decimals, some accuracy may be
lost.

If the target data type or host variable is single-precision floating point, the result
is converted to single-precision floating point; otherwise, it is converted to
double-precision floating point.

The result of a floating point operation must be within the range of the FLOAT
data type. See “Specifying Columns” on page 30 for the ranges of data types.

Date/Time Arithmetic

Durations: Date/time arithmetic involves intervals of time that are represented by
numbers called durations. A duration is an interpretation of a number, not a new
data type. The number may be a constant, a column name, a host variable, a
function, or an expression. Numbers are interpreted as durations, only in certain
contexts as defined below.

The duration types are:
1. Labeled Durations

A labeled duration is any number of years, months, days, hours, minutes,
seconds, or microseconds. It is used in an expression that involves a date/time
value, and consists of a numeric expression followed by one of YEAR(S),
MONTH(S), DAY(S), HOUR(S), MINUTE(S), SECOND(S), or
MICROSECOND(S). For example, in the expression START_DATE + 120 DAYS,
the labeled duration is 120 DAYS. Fractional durations will be truncated to
whole numbers (for example, 2.9 DAYS = 2 DAYS).

2. Date Durations
A date duration represents a number of years, months, and days, expressed as
a DEC(8,0) number. It has the format yyyymmdd, where yyyy is the number of
years, mm the number of months, and dd the number of days. An example of a
date duration is the result of D1-D2, where D1 and D2 are dates.

Chapter 8. Application Design Considerations 177

3. Time Durations
A time duration represents a number of hours, minutes, and seconds, expressed
as a DEC(6,0) number. It has the format hhmmss, where hh is the number of
hours, mm the number of minutes, and ss the number of seconds. An example
of a time duration is the result of T1-T2, where T1 and T2 are times.

4. Timestamp Durations
A timestamp duration represents a number of years, months, days, hours,
minutes, seconds, and microseconds, expressed as a DEC(20,6) number. It has
the format yyyy-xx-dd-hh.mm.ss.zzzzzz, where yyyy, xx, dd, hh, mm, ss, and
zzzzzz represent, respectively, the number of years, months, days, hours,
minutes, seconds, and microseconds. An example of a timestamp duration is
the result of TS1-TS2, where TS1 and TS2 are timestamps.

Rules for Date/Time Arithmetic: The only arithmetic operators that can be
applied to date/time values are addition and subtraction. If a date/time value is
the operand of addition, the other operand must be a duration.

A labeled duration can only be used as the operand of an arithmetic operator such
that the other operand is a date/time value. For example, if D is a date and N and
M are numbers, D + N DAYS + M MONTHS is a valid expression, but D + (N
DAYS + M MONTHS) is not.

No automatic data conversion is provided among date/time data types. If an
arithmetic operation is to be performed among different date/time values, the
scalar functions should be used to convert them into the same data type. For
example, if A is a TIMESTAMP column and B is a DATE column, the difference
between the two in date duration can be obtained by DATE(A) - B. If you specify
just A - B, an error will occur indicating incompatible types.

The specific rules for the use of the addition operator on date/time values are as
follows:
1. If one operand is a date, the other must be a date duration or a labeled

duration of years, months, or days.
2. If one operand is a time, the other must be a time duration or a labeled

duration of hours, minutes, or seconds.
3. If one operand is a timestamp, the other may be any kind of duration.
4. Neither operand can be a parameter marker “?”.

The rules for the use of the subtraction operator on date/time values are not the
same as for addition: first, because a date/time value cannot be subtracted from a
duration, and second, because the operation of subtracting two date/time values is
not the same as that of subtracting a duration from a date/time value. The rules
are as follows:
1. If the first operand is a date, the second one must be either a DATE, date

duration, string representation of a date, or labeled duration of years, months,
or days.

2. If the second operand is a date, the first one must be a date or string
representation of a date.

3. If the first operand is a time, the second one must be either a time, time
duration, string representation of a time, or labeled duration of hours, minutes,
or seconds.

4. If the second operand is a time, the first one must be a time or string
representation of a time.

178 Database Administration

5. If the first operand is a timestamp, the second one must be either a timestamp,
a string representation of a timestamp, or a duration.

6. If the second operand is a timestamp, the first one must be a timestamp or a
string representation of a timestamp.

7. Neither operand can be a parameter marker “?”.

The semantic rules for date, time, and timestamp arithmetic are discussed below.
Since there is no established standard for date/time arithmetic, some of the
operations are defined procedurally. These procedural definitions use some of the
scalar functions.

Date Arithmetic: Dates can be incremented, decremented, and subtracted. The
operation of incrementing or decrementing a date by some number of days is well
defined and can be verified by a calendar. The other operations are subject to
peculiarities because not all months have the same number of days.

Subtracting Dates: When two dates are subtracted, the result is a date duration
that gives the number of years, months, and days between those dates. The data
type of the result is DECIMAL(8,0).

In the following procedural description of the operation, the term “subtrahend”
refers to the number to be subtracted, and “minuend” is the number that the
subtrahend is subtracted from.

If DAY(subtrahend) is not greater than DAY(minuend), the day part of the result is
equal to DAY(minuend) - DAY(subtrahend).

If DAY(subtrahend) is greater than DAY(minuend), the day part of the result is
equal to N + DAY(minuend) - DAY(subtrahend), where N is the last day of
MONTH(subtrahend). (For example, if MONTH(subtrahend) is 1, N is 31.)
MONTH(subtrahend) is incremented by one.

If MONTH(subtrahend) is not greater than MONTH(minuend), the month part of
the result is equal to MONTH(minuend) - MONTH(subtrahend).

If MONTH(subtrahend) is greater than MONTH(minuend), the month part of the
result is equal to 12 + MONTH(minuend) - MONTH(subtrahend).
YEAR(subtrahend) is incremented by one.

The year part of the result is equal to YEAR(minuend) - YEAR(subtrahend).

For example, the result of DATE(’3/15/2000’) - ’12/31/1999’ is 00000215 (a
duration of 0 years, 2 months, and 15 days).

Incrementing and Decrementing Dates: The result of adding a duration or
subtracting it from a date is a date. The result must be within the range of dates.

When a labeled duration of years is added to or subtracted from a date, the result
is a date (that is, the specified number of years before or after the date in the
operation). Only years are counted. The month of the result is always the same as
the month of the date in the operation. The day of the result is also the same as
the day of the date in the operation, unless the result would be February 29 of a
non-leap year, in which case the day part of the result is 28 and SQLWARN7 is set
to W.

Chapter 8. Application Design Considerations 179

When a labeled duration of months is added to or subtracted from a date, the
result is a date (that is, the specified number of months before or after the date in
the operation). Only months (calendar pages) and years (if necessary) are counted.
The day of the result is the same as the day of the date in the operation, unless the
result would be an incorrect date, in which case the day part of the result is the
last day of the month and SQLWARN7 is set to W.

When a labeled duration of days is added to or subtracted from a date, the result
is a date (that is, the specified number of days before or after the date in the
operation).

When a positive date duration is added to a date or a negative duration subtracted
from it, the result is a date (that is, y years, m months, and d days after the date in
the operation, where y, m, and d are the year, month, and day parts of the date
duration). When a positive date duration is subtracted from a date or a negative
duration added to it, the result is a date (that is, y years, m months, and d days
before the date in the operation). The arithmetic is performed using the rules
defined above, including the setting of SQLWARN7 whenever an end-of-month
adjustment is performed. The date duration must be DEC(8,0).

Peculiarities of Date Arithmetic: What does it mean to add a month to a given
date? The rules defined above are based on the assumption that the result should
be the same day of the next month. Thus, one month after January 1 is February 1,
and one month after February 1 is March 1. But what is one month after January
31? This difficulty, which is the reason why certain contracts are always dated the
first of the month, is resolved by the further assumption that the result should be
the last day of February.

Thus, adding a month to a given date gives the same day of the next month unless
the next month does not have such a day, in which case the result is the last day of
that month. Similarly, one month from the last day of a month is not necessarily
the last day of the next month. For example, one month from the last day of

Let D1 be the DATE 1984-02-29, a leap year.
SQLWARN7

D1 + 1 DAY = 1984-03-01 ' '
D1 + 2 MONTHS = 1984-04-29 ' '
D1 + 1 YEAR = 1985-02-28 'W'
D1 + 4 YEARS = 1988-02-29 ' '

Let N be DEC(8,0) and set to 00010203.
D1 + N

= 1984-02-29 + 1 YEAR + 2 MONTHS + 3 DAYS
= 1985-02-28 + 2 MONTHS + 3 DAYS 'W'
= 1985-04-28 + 3 DAYS
= 1985-05-01

Let D2 be the DATE 1985-03-31.
SQLWARN7

D2 + 1 MONTH = 1985-04-30 'W'
D2 + 2 MONTHS = 1985-05-31 ' '

Figure 44. Setting SQLWARN7 During Date Arithmetic. When incrementing or decrementing
dates, SQLWARN7 is set when the resulting date is an incorrect date because of leap year
or month difference, and a valid date is derived.

180 Database Administration

February is not the last day of March. In sum, “a date + a labeled duration of
months - a labeled duration of months” is not necessarily equal to the original
date.

The definition of the month does not permit a consistent system of date arithmetic.
If this is a problem, you can avoid it by using days rather than months. For
example, to increment the date “DATE3” by the difference between the dates
“DATE1” and “DATE2”, the expression “DATE (DAYS(DATE1) - DAYS(DATE2) +
DAYS(DATE3))” will give an accurate result, whereas “DATE1 - DATE2 + DATE3”
may not.

Time Arithmetic: Times can be incremented, decremented, and subtracted. The
only peculiarity is the modules of 24 hours. For example, adding any multiple of
24 hours to a time gives the same time. The exception is 00:00:00, where adding
24:00:00 becomes 24:00:00.

Subtracting Times: When two times are subtracted, the result is a time duration
that gives the number of hours, minutes, and seconds between the two times. The
data type of the result is DECIMAL(6,0).

In the following procedural description of the operation, the term “subtrahend”
refers to the number to be subtracted, and “minuend” is the number that the
subtrahend is subtracted from.

If SECOND(subtrahend) is not greater than SECOND(minuend), the seconds part
of the result is equal to SECOND(minuend) - SECOND(subtrahend).

If SECOND(subtrahend) is greater than SECOND(minuend), the seconds part of
the result is equal to 60 + SECOND(minuend) - SECOND(subtrahend).
MINUTE(subtrahend) is incremented by one.

If MINUTE(subtrahend) is not greater than MINUTE(minuend), the minute part of
the result is equal to MINUTE(minuend) - MINUTE(subtrahend).

If MINUTE(subtrahend) is greater than MINUTE(minuend), the minute part of the
result is equal to 60 + MINUTE(minuend) - MINUTE(subtrahend).
HOUR(subtrahend) is incremented by one.

The hour part of the result is equal to HOUR(minuend) - HOUR(subtrahend).

Incrementing and Decrementing Times: The result of adding a duration to a
time or subtracting a duration from it is a time. In each of the following cases, any
overflow or underflow of hours is discarded. Thus, the result is always within the
range of a time.

When a labeled duration of hours is added to or subtracted from a time, the result
is a time (that is, the specified number of hours before or after the time in the
operation). Only hours are counted. Thus, the minute and second of the result are
the same as the minute and second of the time in the operation.

When a labeled duration of minutes is added to or subtracted from a time, the
result is a time (that is, the specified number of minutes before or after the time in
the operation). Only minutes and hours (if necessary) are counted. Thus, the
second of the result is the same as the second of the time in the operation.

Chapter 8. Application Design Considerations 181

When a labeled duration of seconds is added to or subtracted from a time, the
result is a time (that is, the specified number of seconds before or after the time in
the operation).

When a time duration is added to or subtracted from a time, the result is a time
(that is h hours, m minutes, and s seconds before or after the time in the operation,
where h, m, and s are the hour, minute, and second parts of the time duration). The
time duration must be a DEC(6,0) value.

Timestamp Arithmetic: Timestamps can be incremented, decremented, and
subtracted. The operations are a combination of the date arithmetic and time
arithmetic defined above, except that any overflow or underflow of hours is
reflected in the date part of the result.

Subtracting Timestamps: When two timestamps are subtracted, the result is a
timestamp duration that gives the number of years, months, days, hours, minutes,
and seconds between the two timestamps. The data type of the result is
DECIMAL(20,6).

In the following procedural description of the operation, the term “subtrahend”
refers to the number to be subtracted, and “minuend” is the number that the
subtrahend is subtracted from.

If MICROSECOND(subtrahend) is not greater than MICROSECOND(minuend), the
microseconds part of the result is equal to MICROSECOND(minuend) -
MICROSECOND(subtrahend).

If MICROSECOND(subtrahend) is greater than MICROSECOND(minuend), the
seconds part of the result is equal to 1000000 + MICROSECOND(minuend) -
MICROSECOND(subtrahend). SECOND(subtrahend) is incremented by one.

Second and minute are subtracted as specified in the rules for “Subtracting Times”
on page 181.

If HOUR(subtrahend) is not greater than HOUR(minuend), the hour part of the
result is equal to HOUR(minuend) - HOUR(subtrahend).

If HOUR(subtrahend) is greater than HOUR(minuend), the hour part of the result
is equal to 24 + HOUR(minuend) - HOUR(subtrahend). DAY(subtrahend) is
incremented by one.

Day, month, and year are subtracted as specified in the rules for “Subtracting
Dates” on page 179.

Incrementing and Decrementing Timestamps: The result of adding a duration to
or subtracting it from a timestamp is a timestamp. In each of the following cases,
date and time arithmetic are performed as defined above, except that an overflow
or underflow of hours is carried into the date part of the result, which must be
within the range of dates.

When a labeled duration of years is added to or subtracted from a timestamp, the
result is a timestamp (that is, the specified number of years from the timestamp).

When a labeled duration of months is added to or subtracted from a timestamp,
the result is a timestamp (that is, the specified number of months from the
timestamp).

182 Database Administration

When a labeled duration of days is added to or subtracted from a timestamp, the
result is a timestamp (that is, the specified number of days from the timestamp).

When a labeled duration of hours is added to or subtracted from a timestamp, the
result is a timestamp (that is, the specified number of hours from the timestamp).

When a labeled duration of minutes is added to or subtracted from a timestamp,
the result is a timestamp (that is, the specified number of minutes from the
timestamp).

When a labeled duration of seconds is added to or subtracted from a timestamp,
the result is a timestamp (that is, the specified number of seconds from the
timestamp).

When a labeled duration of microseconds is added to or subtracted from a
timestamp, the result is a timestamp (that is, the specified number of microseconds
from the timestamp).

When a date duration is added to or subtracted from a timestamp, the result is a
timestamp. The year, month, and day parts are the result of the arithmetic
operation performed using the rules defined for incrementing or decrementing a
date by a date duration. The hour, minute, second, and microsecond parts are the
same as those of the timestamp in the operation.

When a time duration is added to or subtracted from a timestamp, the result is a
timestamp. The time part is the result of the arithmetic operation performed using
the rules defined above for incrementing or decrementing a time by a time
duration, except that any overflow or underflow of hours is carried into the date
part of the result. The microsecond part of the result is the same as the
microsecond part of the timestamp in the operation.

When a timestamp duration is added to or subtracted from a timestamp, the result
is a timestamp (that is, y years, x months, d days, h hours, m minutes, s seconds,
and z microseconds before or after the time in the operation, where these values
are the year, month, date, hour, minute, second and microsecond parts of the
timestamp duration). Date and time arithmetic are performed as previously
defined, except that an overflow or underflow of hours is carried into the date part
of the result. Microseconds overflow into seconds. The timestamp duration must be
DEC(20,6).

Figure 45 on page 184 and Figure 46 on page 185 summarize date/time addition
and subtraction, respectively. The STRING column in both tables mean a character
string in a valid date/time format.

Chapter 8. Application Design Considerations 183

An X denotes a valid date/time addition operation.

DATE/TIME ADDITION = OPERAND + OPERAND

LEFT OR RIGHT OPERAND

DURATIONS

SIMPLE

DATE X X X X DATE

TIME X X X X

TIME

TIME

TIME
STAMP X X X X X X X X X X STAMP

LEFT OR
RIGHT

OPERAND

RESULT
DATA
TYPE

D
A
T
E

T
I

M
E

T
I

M
E
S
T
A
M
P

T
I

M
E
S
T
A
M
P

S
T
R
I
N
G

D
A
T
E

T
I

M
E

Y
E
A
R

M
O
N
T
H

D
A
Y

H
O
U
R

M
I
N
U
T
E

S
E
C
O
N
D

M
I
C
R
O

S
E
C
O
N
D
S

Figure 45. Date/Time Addition

184 Database Administration

Both 1 and 2 denote a valid date/time subtraction operation. 1 means a result data
type of DECIMAL(8,0), DECIMAL(6,0), or DECIMAL(20,6) that is deemed as a
date duration, time duration, or timestamp duration, respectively. 2 means a result
data type of date, time, or timestamp.

Data Access Changes
Users do not have to specify how data is to be accessed; only what data is to be
accessed. Access path selection is done by the database manager, which determines
which strategy will minimize the cost of processing a query. Cost is based on
estimates of processor and I/O requirements. Users are not only free of such
matters, they are not allowed to use any knowledge of such details. This allows the
program to continue to operate when the underlying storage structures are
changed.

Data Structure Changes
Both logical and physical structural changes can be made to data without
significant effect on users or their programs. The database manager permits
flexibility in the binding of programs’ data references to the data objects in the
database. This significantly reduces the impact of changes.

The following sections note a few important considerations to reduce the effect of
data restructuring.

DATE/TIME SUBTRACTION = MINUEND - SUBTRAHEND

S U B T R A H E N D

DURATIONS

SIMPLE

DATE 1 1 2 2 2 2 1=(8,0)
2=DATE

TIME 1 1 2 2 2 2 1=(6,0)

2=TIME

2=TIME

1=(20,6)
TIME

STAMP 1 1 2 2 2 2 2 2 2 2 2 2 STAMP

MINUEND

RESULT
DATA
TYPE

D
A
T
E

T
I
M
E

T
I
M
E
S
T
A
M
P

T
I
M
E
S
T
A
M
P

S
T
R
I
N
G

D
A
T
E

T
I
M
E

Y
E
A
R

M
O
N
T
H

D
A
Y

H
O
U
R

M
I
N
U
T
E

S
E
C
O
N
D

M
I
C
R
O

S
E
C
O
N
D
S

Figure 46. Date/Time Subtraction

Chapter 8. Application Design Considerations 185

Program Reference Flexibility: When a program is preprocessed, references to
nonexistent tables, views, or columns, or the use of statements that require a level
of authority that has not yet been granted, do not prevent a package from being
created; these conditions only cause warning messages. If the required authority or
object exists when the referencing statement is processed, execution will proceed
normally.

Although this design is very useful, it exacts a performance penalty. Preprocessing
of such a program should be done again before the program is used extensively.
By repeating the preprocessing step after acquiring the authority or having the
required objects created, you avoid implicit, dynamic preprocessing of those
statements that had unresolved objects or authority at the time of the original
preprocessing.

Adding New Columns to Existing Tables (ALTER TABLE): When you add new
columns to existing tables, referencing programs are normally not affected.

With SELECT statements, when selected columns are specifically named (rather
than specifying SELECT *) or when a view is used, there is no effect on the
program.

With INSERT statements, the effect of added columns on existing programs can be
eliminated by specifically naming the target fields or by using a view, when the
new columns permit NULL values. If the fields are not named, and if affected or
new columns do not permit NULLS, the program must be changed and
preprocessed again.

With the UPDATE statement, there is no effect because of changes, because
individual fields are always specifically named.

With DELETE statements, the action applies to the row as a whole, so adding
fields has no direct effect on existing programs.

When you add new fields, you may have to rewrite old programs to pick up the
new function associated with those fields. However, with the above described
restrictions, there need be no effect on old programs for existing function.
Programs can continue to work normally through such changes until it is really
necessary to update them.

Dropping Columns and Tables (DROP TABLE): To drop a column from a table,
drop the table (DROP TABLE) and recreate it (CREATE TABLE) without that
column. If the column dropped is not used by an existing program, dropping it in
this manner does not functionally affect that program. The program is
automatically re-preprocessed when it is next used.

Note: If the table has data in it, before dropping it, save the data. Either use the
DBS Utility to unload the table to a tape or DASD SAM file; or create a new
temporary table, and use an INSERT with Subselect statement to copy the
data into it. Later, you can either use the DBS Utility to reload the data into
the newly created table; or use an INSERT with Subselect statement to copy
the data from the temporary table to the newly created table, then drop the
temporary table.

When you drop a table, all keys, indexes, and privileges are lost.

186 Database Administration

When a program is preprocessed, all of its dependencies (such as tables needed)
are recorded in the SYSTEM.SYSUSAGE table. Then, whenever one of these objects
is dropped, the SYSTEM.SYSUSAGE table is searched to check for dependencies; if
the program depends on the object just dropped, it marks the entry invalid in the
SYSTEM.SYSACCESS table against the package for that program, and marks any
loaded copies of the package (in the cache) unusable.

The next time the package is invoked, it will automatically be re-preprocessed. If
referenced objects have been reestablished properly, the preprocessing will succeed.
The user will not be aware of the activity, except for a longer than usual time delay
when the package is first invoked after the change.

Of course, when a program requires a field that is dropped, it can no longer
function properly until it is brought current with the change. Because the program
references the dropped field, if it is submitted for execution without being
changed, the automatic re-preprocessing will fail and the submitter will be notified.

Adding Indexes to Tables: Adding an index to a table has no effect on users or
programs that use the table. However, to make it possible to take advantage of
potential performance improvements offered by the index, programs using it
should be preprocessed again. (You should apply the UPDATE STATISTICS
statement for the table after adding the index and before preprocessing the
program again.) The preprocessing step enables the database manager to
re-examine the possible access strategies, and possibly take advantage of the new
index.

Dropping an Index for a Table: Indexes for tables used in programs are recorded
in SYSTEM.SYSUSAGE in the same manner described above for tables. When an
index is dropped, the same automatic re-preprocessing occurs for dependent
programs, allowing adjustment of the access strategy to reflect the lost index. For a
dropped index, there is no need for further action by the programmers who create
the using programs, because the automatic re-preprocess activity handles required
adjustments.

Changing Data Relationships: Data relationships are handled by keeping the
data structures simple (see “Step 7: Normalize Your Tables” on page 9) and
expressing the relationships in the accessing statements. If this is done properly,
new relationships can be accomplished without changing existing programs or
users. For example, new tables may be associated with old ones by way of joins;
predicates may use fields from many tables, and new views may be added.

Changing Referential Integrity Relationships: There is considerable flexibility
allowed in adding or dropping referential constraints. If the structure of your data
changes, you can drop the primary key of a table, and create a new primary key
for it. For information on primary keys, see “Step 4: Identify One or More
Columns as a Primary Key” on page 4. You can also add new foreign keys to
accommodate changes in the structure of your data, and drop old ones when they
are no longer used. For more information, see “Step 6: Plan for Referential
Integrity” on page 6.

When referential constraints are changed or if keys are inactivated, application
programs that access the affected tables will automatically be re-preprocessed and
compiled.

Changing Unique Constraints: Unique constraints are similar to primary keys,
and are useful when uniqueness on more than one column is desired. You can

Chapter 8. Application Design Considerations 187

drop the unique constraint of a table and create a new one, or add additional ones.
For information on unique constraints, see “Step 4: Identify One or More Columns
as a Primary Key” on page 4.

When unique constraints are dropped or inactivated, application programs that
access the affected tables will automatically be re-preprocessed and compiled.

Data Authorization Changes
When new authorization is added, old programs are completely unaware of the
change.

When the preprocessor encounters program dependencies on specific
authorizations, these dependencies are recorded in the SYSTEM.SYSTABAUTH
table as described above for dependent objects. When a program-dependent
authorization is removed, the package associated with the program is marked
invalid, and the automatic re-preprocessing occurs as described before. If proper
authorization is re-acquired before the automatic re-preprocessing, the package is
re-preprocessed successfully; otherwise, the invoker is notified of the problem and
the re-preprocessing fails.

The Preprocessor KEEP Option for RUN Authority
The preprocessor has an option called KEEP|REVOKE, which allows for either
keeping or revoking previously granted RUN authority. It pertains to the version
of the package that is produced by the new preprocessing step.

This design simplifies the effect of changes that require repeating the preprocessing
step, by not having to repeat the associated authorization procedures. When an
automatic re-preprocessing occurs, the KEEP option is implicitly in effect.

Changing the Users of Data
Because users are not affected by data sharing, new users can be added, data can
be employed by different people in different ways, and previous uses can be
discontinued without effect on current users or their programs.

Hypothetical Change Support
The recovery facilities also offer a significant benefit for managing changes to
applications. With these facilities, changes can be applied, examined, tested and
then everything can be backed out with a ROLLBACK statement, and it will
appear as if nothing happened. With ISQL, you must run with AUTOCOMMIT off.

The DBA may ask hypothetical questions without disrupting live data. Answers for
questions such as: “What if I change the supplier of part ZT33592 to improve the
delivery time?” or “What is the effect on overall product cost?” may be very
valuable and, because they impose no permanent changes on the database, may be
made safely.

188 Database Administration

Chapter 9. DB2 Server for VM Database Configurations

This chapter provides an overview of some of the many possible configurations.
(For detailed information on how to establish any particular configuration, see the
DB2 Server for VM System Administration manual.) It also contains information on
VSE Guest Sharing, and on the VM/ESA operating environment.

DB2 Server for VM Concepts
The following terms are used in the descriptions of the DB2 Server for VM
configurations that follow:

Database
A collection of CMS minidisks that store both user and system information.
The latter includes data used to secure and manage the database, such as a
list of valid users.

Database Manager
A program that provides database management services. This program
executes in its own virtual machine, referred to as the database machine.

The database manager controls any updates or deletes made to the
database, and maintains its security and integrity.

To protect the integrity of the database, users do not have direct access to
it. Rather, their requests are sent to the database manager, which processes
them and returns the results to the users.

Service Machine
A virtual machine required by any processor that does not have its own
DB2 Server for VM database machine, and has users who want to access a
DB2 Server for VM database in a collection.

Notes:

1. A collection is a group of VM processors that are connected together
using channel-to-channel, binary synchronous lines, or local area
networks.

2. The term local applies to either resources or users. The service machine
provides essential DB2 Server for VM support to users by allowing
access to the production minidisk.

User Machine
A virtual machine that runs either ISQL, DBS Utility, or a user-written
application program that uses SQL.

User machines cannot make changes directly to the database. They must
send SQL statements to the database manager.

Resource Adapter
The DB2 Server for VM code used by ISQL, the DBS Utility, and
application programs to communicate with the database machine. It
enables users to communicate with the database manager. Users need not
be aware of it.

© Copyright IBM Corp. 1987, 2001 189

Operating Modes for the Database Machine
The database machine can run in two modes of operation: multiple user or single
user. The DB2 Server for VM operator (the person logged onto the database
machine) selects the mode when he or she starts up the database machine.

In multiple user mode, the most common mode of operation, one or more users or
applications concurrently access the same database. The database manager runs in
its own virtual machine, while one or more DB2 Server for VM applications run in
other virtual machines.

In single user mode, the database manager and an application program run in a
single VM machine, and no other users are allowed access. Some maintenance
tasks, such as adding auxiliary storage to the database, require this mode.

It is also possible to operate more than one DB2 Server for VM database machine
in multiple user mode: that is, multiple databases are being accessed by many
users concurrently. This is called “multiple database mode”.

Example Configurations
The following configurations all assume that the database machines are operating
in multiple user mode.

One Database Machine with One Database
In the simplest configuration, there is one database machine and one database.
(This environment is created by the installation process.)

Figure 47 shows an example. Here, all virtual machines reside on the same
processor.

MARYLOU STEVE CINDY
User vitual machines access
the database through the
SQLMACH database machine.

The SQLMACH database machine
accepts and services the SQL
requests from the users. It
is a virtual machine that
executes the database manager
code.

The DB01 database is
comprised of CMS minidisks
that are owned by the SQLMACH
database machine.

SQLMACH

DB01 minidisks

(1)

(2)

Figure 47. Example of One Database Machine Running One Database

190 Database Administration

Points (1) and (2) in the figure are as follows:
1. The SQLMACH database machine was set up to use the DB01 database.

The operator selects a database when the database machine is started.
2. Three user virtual machines (MARYLOU, STEVE, and CINDY) communicate

with the SQLMACH database machine to access the DB01 database. They must
enter:

SQLINIT DBNAME(DB01)

to specify DB01 as the default database. Then, when they invoke ISQL, the DBS
Utility, or an application program, this default database will be accessed. See
“SQLINIT EXEC” on page 237 for information on the SQLINIT EXEC.

One Database Machine with Two Databases
In Figure 48, all virtual machines reside on the same processor.

Points (1) and (2) in the figure are as follows:
1. The database machine was set up to use the DB01 database.

The operator selects a database when the database machine is started. In this
example, the operator had the choice of selecting the DB01 or DB02 database.
The DB01 database was chosen.
Note that a database machine can only access one database at a time. To access
the DB02 database, the operator must restart the SQLMACH database machine,
specifying the DB02 database.

2. Three user virtual machines (MARYLOU, STEVE, and CINDY) communicate
with the database machine to access the DB01 database. They must enter:

SQLINIT DBNAME(DB01)

MARYLOU STEVE CINDY
User vitual machines access
the database through the
SQLMACH database machine.

The SQLMACH database machine
services the SQL requests
from users. It can own
more than one database but
can only manage one database
at a time.

The database, comprised of
CMS minidisks are owned
by the SQLMACH machine.

SQLMACH

DB01 DB02

(1)

(2)

Figure 48. One Database Machine that Owns More than One Database

Chapter 9. DB2 Server for VM Database Configurations 191

to specify DB01 as the default database. Then, when they invoke ISQL, the DBS
Utility, or an application program, this default database will be accessed. (See
“SQLINIT EXEC” on page 237 for information on the SQLINIT EXEC.)

Here, users cannot access the DB02 database. If they entered “SQLINIT
DBNAME(DB02)” and then tried to access DB02 (using ISQL, the DBS Utility,
or an application program), an SQL error would occur.

If users need to access DB02, the operator will have to restart the SQLMACH
database machine, specifying that DB02 is to be accessed. DB01 must be
stopped before DB02 can be restarted.

Several Database Machines with Many Databases
In Figure 49, all virtual machines reside on the same processor.

Points (1), (2), and (3) of the figure are as follows:
1. The SQLMACH database machine was set up to use the DB01 database.

The SQLMACH operator selects a database when the database machine is
started. In this example, the operator had the choice of selecting the DB01 or
DB02 database. The DB01 database was chosen.
Note that a database machine can only access one database at a time. To access
the DB02 database, the operator must restart the SQLMACH database machine,
specifying the DB02 database.

2. The SQLMFB database machine was set up to use the DB03 database.
Note that it is possible for one database machine to access a database “owned”
by another database machine, as long as the virtual machines reside on the
same processor. For example, the SQLMFB database machine could access the
DB02 database, provided that the SQLMFB operator knows the minidisk
passwords for the DB02 database minidisks.

MARYLOU STEVE CINDY

SQLMACH

DB01 DB02

(1)

(3)

MIKE MARY

SQLMFB

DB03

SQLMFB owns
the DB03
database

SQLMACH owns
the DB01
and DB02
databases

(2)

Figure 49. Two Database Machines with Three Databases

192 Database Administration

Note: A database machine “owns” a database if its virtual machine directory
contains the MDISK statements for the database minidisks.

3. Five user virtual machines (MARYLOU, STEVE, CINDY, MIKE and MARY)
communicate with the database machines. MARYLOU, STEVE, and CINDY
must enter:

SQLINIT DBNAME(DB01)

to specify DB01 as their default database, while MIKE and MARY must enter:
SQLINIT DBNAME(DB03)

to specify DB03 as their default database. (See “SQLINIT EXEC” on page 237
for information on the SQLINIT EXEC.)

Here, users cannot access the DB02 database. If they entered “SQLINIT
DBNAME(DB02)” and then tried to access DB02 (using ISQL, the DBS Utility,
or an application program), an SQL error would occur.

If users need to access DB02, the SQLMACH database machine operator will
have to restart the SQLMACH database machine, specifying that DB02 is to be
accessed. Restarting the SQLMACH database machine to access DB02 will stop
users from accessing DB01.

Users can change the database they are accessing in two ways:
a. Using the SQLINIT EXEC to specify a new default.
b. Using the CONNECT statement to switch databases. This can be done from

within an application (ISQL, the DBS Utility, or an application program).
For example, suppose MARYLOU is accessing DB01 using ISQL. She can
switch to DB03 by entering the following SQL statement:

CONNECT TO DB03

See “Connecting to an Application Server in VM” on page 95 for more
information.

Multiple Database Machines on Different Processors
Users can access a database that resides on another processor, provided both
processors are running on VM/ESA systems, and are connected in TSAF, SNA or
TCP/IP network. (Refer to the DB2 Server for VM System Administration manual for
information about network configurations.)

Figure 50 shows an example of accessing a database located on another processor.

Chapter 9. DB2 Server for VM Database Configurations 193

Points (1), (2), and (3) of the figure are as follows:
1. The SQLMACH database machine was set up to use the DB01 database.

The SQLMACH operator selects a database when the database machine is
started. In this example, the operator had the choice of selecting the DB01 or
DB02 database. The DB01 database was chosen.
Note that a database machine can only access one database at a time. To access
the DB02 database, the operator must restart the SQLMACH database machine,
specifying the DB02 database.

2. The SQLREM database machine was set up to use the DB04 database.
The database is established as a global resource.

Note: Databases can be classified as either local or global. A local database can
only be accessed by users located on the same processor as itself, while a
global one can also be accessed by users located on other processors
within the collection.

The SQLREM operator specified the DB04 database at startup.

It is possible for a database machine to access a database “owned” by another
database machine, provided the virtual machines reside on the same processor.
The SQLREM database machine cannot access the DB01 database (owned by
SQLMACH), because SQLMACH and DB01 are on a different processor.

3. Four user virtual machines (MARYLOU, STEVE, CINDY and RALPH)
communicate with the database machines.
MARYLOU and STEVE enter:

MARYLOU STEVE CINDY

SQLMACH

DB01 DB02

(1)

(3)

Processor 1 Processor 2

RALPH

SQLMFB

DB04

A User Virtual
Machine can
access a data
base on another
system

DB01, DB02
are owned by
SQLMACH.

DB04 is
owned by
SQLREM

(2)

Figure 50. User Accessing a Database on Another Processor

194 Database Administration

SQLINIT DBNAME(DB01)

to specify DB01 as their default database, while CINDY and RALPH enter:
SQLINIT DBNAME(DB04)

to specify DB04 as their default database.

Note that although CINDY is on a different processor from RALPH, both access
the DB04 database in the same way, and CINDY is able to specify DB04 as her
default database.

Users can change the database they are accessing in two ways:
a. Using the SQLINIT EXEC to specify a new default database.

After establishing a new default database, the user could then access the
database using ISQL, the DBS Utility, or application programs.

b. Using the SQL CONNECT statement.
This can be done from within an application (ISQL, the DBS Utility or
application program).
For example, suppose MARYLOU is accessing DB01 using ISQL. She can
switch DB04 by entering the following SQL statement:

CONNECT TO DB04

Refer to “Connecting to an Application Server in VM” on page 95 for more
information.

Accessing a Database from a Processor that Does Not Have
One

Users on processors that do not have a database machine or a database can access
a database on another processor. (The processors must be running on VM/ESA
systems, and all user IDs must be unique between processors.) Figure 51 shows an
example.

Chapter 9. DB2 Server for VM Database Configurations 195

Points (1), (2), and (3) of the figure are as follows:
1. The SQLMACH database machine was set up to use the DB01 database.

The SQLMACH operator selects a database when the database machine is
started. This database is established as a global resource.

2. Four user virtual machines (MARYLOU, STEVE, CINDY, and JOHN)
communicate with the database machine (SQLMACH) to access DB01.
MARYLOU, STEVE, CINDY, and JOHN enter:

SQLINIT DBNAME(DB01)

to specify DB01 as their default database.

When MARYLOU, STEVE, CINDY, or JOHN invoke ISQL, the DBS Utility, or
an application program, DB01 will be accessed.

3. JOHN is on Processor 2 which does not have a database machine or database.
JOHN must have a link to the service machine disk in order to access the
database on Processor 1. This service machine must be installed on Processor 2.

Performance Considerations with Multiple Databases
Most of the processing time for any transaction is spent in the database machine
and not in an application program. It is possible to have users on one processor
accessing data stored on another processor if the operating systems are VM/ESA
systems. However, because of the processor overhead of inter-processor
communication, a database should be placed on a processor that is closest to its
greatest number of users, preferably on the same one.

If you plan to have users on one processor accessing a database on another
processor, you should consider the overhead of inter-processor communication.
Most message traffic between the user and the database machine should flow

Processor 1
Processor 2

JOHNCINDYSTEVEMARYLOU

SQLMACH

DB01

(1)

(2) (3)

Figure 51. Accessing a Database from Another Processor

196 Database Administration

within a single processor. Only a small percentage of messages should flow
between processors, as happens when users infrequently access data located on
other processors.

Although the end user does not need to know the physical location of a database,
you must have a good understanding of user-group requirements in a particular
business environment. Users should first be grouped according to the business
tasks they perform. Databases and tables can then be arranged so that they are
always accessed by most users in a particular group. A good understanding of the
business environment and the needs of various user groups can aid in determining
whether users on one processor are allowed to access databases on other
processors.

When planning your database configuration, you should generally avoid:
v Database configurations with central databases
v Databases with randomly distributed tables.

Database configurations should be designed so that:
v Groups of tables are situated in the database closest to their greatest number of

users
v Tables in databases on other processors are only occasionally accessed.

For more information on performance considerations, see the DB2 Server for VM
System Administration manual.

VSE Guest Sharing (On VM/ESA Systems Only)
If you have VSE/AF 4.1.0 or higher running as a guest under a VM/ESA system,
VSE users can access DB2 Server for VM databases through VSE Guest Sharing.
The database accessed can be on the same VM/ESA system as the one that
supports the VSE guest, or on another VM/ESA system in the same TSAF
collection, SNA or TCP/IP network. A VSE guest user can use database switching
to target another database. An example of a DB2 Server for VM database with VSE
Guest Sharing support is shown in Figure 52 on page 198.

Chapter 9. DB2 Server for VM Database Configurations 197

In a VSE Guest Sharing environment, VM/ESA users and applications can use the
same functions they use in a VM/ESA environment without being aware of guest
sharing.

For more information on VSE Guest Sharing, and on the DB2 Server for VM
configurations that you can implement, see the DB2 Server for VM System
Administration manual.

BATCH

BATCH

CICS

ISQL
CICS

VSE/AF

APPC

ISQL
CMS

CMS

CP

DB2
Server
for VM

DSC

RDS

DBSS

CMS

DBSU

PREPROCESSORS

CICS/ICCF

SQL
TRANS-
ACTION

VSE/AF

APPC

database
(logs,
directories,
data)

Figure 52. VSE Guest Sharing Configuration

198 Database Administration

Chapter 10. Usage Environments in VSE

The hardware and software needed to run the DB2 Server for VSE system varies
depending on the usage of the DB2 Server for VSE system.

Depending on your requirements, your DB2 Server for VSE environment may be
set-up in different ways. The purpose of this chapter is to give you an idea of the
various different usage environments that can be set up. Further information about
how to set up various DB2 Server for VSE environments can be found in the DB2
Server for VSE System Administration manual.

This chapter describes five different DB2 Server for VSE usage environments. You
will need to consider each of these environments and choose the one appropriate
for your processing requirements. It also describes the recommended and required
options of the associated program products.

Batch/Interactive Application Processing

Batch/interactive processing (Figure 53) is mostly execution of compiled PL/I,
COBOL, C, Fortran or assembler programs which are batch (or VSE/ICCF) SQL
applications. Some dynamic SQL processing may occur in the form of application
preprocessing and compilation, and DBS Utility executions.

VSE/ICCF
MONITOR

VSE/ICCF
TRANSACTION

TERMINALS
TTF

PREPROCESSOR

PREPROCESSOR

DBS UTILITY

DBS UTILITY

DB2 Server
for VSE

APPLICATION

DB2 Server
for VSE

APPLICATION

DB2 Server
for VSE

DATABASE

VSE/ICCF INTERACTIVE
PARTITIONS

VSE/ADVANCED FUNCTIONS

BATCH PARTITION(S)

DB2 Server for VSE PARTITION

DB2 Server
for VSE
DBMS

(VSAM)

/

/

/

Figure 53. Batch/Interactive Configuration

© Copyright IBM Corp. 1987, 2001 199

Operation of this type of system places minimal demands on system resources
(real storage and processor power). However, there is a corresponding loss of
function, because such a system cannot support the query/report writing facilities
(ISQL) of the DB2 Server for VSE or online (CICS) transaction processing with DB2
Server for VSE.

There are no special prerequisites beyond the base DB2 Server for VSE
prerequisites for VSE/Advanced Functions and VSE/VSAM except that one of the
supported programming languages (PL/I, COBOL, C, Fortran, or assembler) is
required. VSE/ICCF is not required, but it can be used for terminal access and
invocation of the SQL applications, and for data administration activities.

A batch/interactive system should be considered for automation of fixed business
applications that do not require end user access to the system. Such a system is
typically developed on a larger system that is configured to support application
development.

Online (CICS) Transaction Processing

Online transaction processing usage of the DB2 Server for VSE system (Figure 54)
is mostly preplanned CICS SQL transactions. Some dynamic SQL processing may
occur in the form of SQL/DS preprocessor and DBS Utility jobs, which do not run
under the CICS subsystem.

Like the batch/interactive application processing usage, the online transaction
processing usage demands fewer real storage and processor resources than
dynamic SQL usage demands.

SQL
TR

SQL
TRANSACTION

CICS

DB2 Server
for VSE

DBMS (VSAM)

DB2 Server for VSE PARTITION

PREPROCESSOR

DBS UTITILY

DB2 Server
for VSE

APPLICATION

BATCH PARTITION(S)

VSE/ADVANCED FUNCTIONS

DB2 Server
for VSE
DATABASE

/
/ TERMINALS

/

Figure 54. Online Transaction Processing Configuration

200 Database Administration

Online transaction processing with the DB2 Server for VSE system requires
installation of CICS Release 2.3, or an equivalent transaction processing product.
The DB2 Server for VSE online support must also be installed. The CICS
subsystem provides the terminal management and transaction processing
environment. Programs may be written in PL/I, COBOL, C, or assembler, but not
Fortran as the CICS subsystem does not support Fortran. You can, however, use
Fortran for batch programs.

An online transaction processing system should be considered for preplanned
business applications where end user access to the system is managed through
CICS transactions programmed for specific end user tasks.

ISQL might be installed, but its use would be limited to data administration
functions.

For the online transaction processing environment, the system should be
configured as follows:
v CICS Options:

– The Dynamic Transaction Backout Program (DBP) is required for proper
coordination and recovery with the DB2 Server for VSE database manager.

– The Exec Interface Program (EIP) is required to support transaction access to
the DB2 Server for VSE application server.

– The CICS User Exit Interface is also required for transaction access to the DB2
Server for VSE application server.

– The CICS Monitoring Facility is optional, but should be used so that the DB2
Server for VSE database manager participates in the monitoring by providing
performance class information.

– The CICS Restart Resynchronization facility is required to support task-related
user exit resynchronization and to use the SQL/DS accounting facility in an
online environment.

v The VSE/POWER program is required for the system printer or remote
workstation printer report-writing support in ISQL. It is not required for report
writing to CICS terminal printers. Only the VSE/POWER program provides
multiple copy capability.

Chapter 10. Usage Environments in VSE 201

Application Development

Application development usage of the DB2 Server for VSE system (Figure 55)
includes a large amount of data design, application coding, and testing. Such
activities typically involve a modest level of dynamic SQL activity in the form of
data definition, catalog queries, and program preprocessing. Correspondingly, there
is more demand for real storage and processor resources, than that demanded by
application or transaction processing.

The program products required to support application development on the DB2
Server for VSE system vary depending on the type of application being developed
and the DB2 Server for VSE facilities to be used. The optional program products
and their options are discussed below in terms of their value to application
development usage of the DB2 Server for VSE system.
1. Programming Languages

For development of programmed applications you would need one or more of
the PL/I, COBOL, C, Fortran, or Assembler language products.

2. VSE/ICCF
You can install VSE/ICCF (or an equivalent) to support an interactive
application development capability.

3. The CICS subsystem

VSE/ICCF
MONITOR

SQL
TRANS

ISQL
TRANS.

CICS VSE/ICCF
INTERACTIVE TRANS.
PARTITION

PREPROCESSOR

DBS UTITLITY

DB2 Server for
VSE

APPLICATION

VSE/ICCF INTERACTIVE
PARTITIONS

DB2 Server
for VSE
DBMS
(VSAM)

DB2 Server for VSE PARTITION

PREPROCESSOR

DBS UTILITY

DB2 Server for
VSE

APPLICATION

BATCH PARTITION(S)

VSE/ADVANCED FUNCTIONS

/
/ TERMINALS

/

DB2 Server
for VSE
DATABASE

Figure 55. Application Development Configuration

202 Database Administration

The CICS subsystem is required to support development of CICS transactions
or use of the ISQL facilities for application development. It should be generated
with the dynamic transaction backout program (DBP), the EXEC interface
program (EIP), and the CICS user exit interface. Optionally, you can generate it
with the Monitoring Facility and Restart Resynchronization. Restart
resynchronization is required if you want to (1) use the SQL/DS accounting
facility in an online environment, and (2) support task-related user exits.

4. VSE/POWER
The VSE/POWER program is required for the system printer or remote
workstation printer report-writing support in ISQL. It is not required for report
writing to CICS terminal printers. Only the VSE/POWER program provides
multiple copy capability.

Query/Report Writing

The query/report-writing usage environment supports dynamic SQL query and
report writing by end users. Due to the dynamic interpretation of user requests
and the fact that data requests are unconstrained, this usage environment places a
relatively high demand on system resources. The internal sort capability of the DB2
Server for VSE database manager is likely to be used frequently.

The program products and options required to support this environment are as
follows:
1. The CICS subsystem

SQL
TRANS.

ISQL
TRANS.

CICS
PARTITION

TERMINAL
PRINTER

TERMINALS

SYSTEM
PRINTER

DB2 Server
for VSE

DATABASE

DB2 Server
for VSE

APPLICATION

DB2 Server for VSE PARTITION

PREPROCESSOR

DBS UTILITY

DB2 Server
for VSE
DBMS

(VSAM)

VSE/POWER

VSE/POWER PARTITION

BATCH PARTITION

VSE/ADVANCED FUNCTIONS

Figure 56. Query/Report Writing Configuration

Chapter 10. Usage Environments in VSE 203

ISQL operates as a set of CICS transactions. The CICS subsystem should be
generated with the following options:
v Dynamic Backout Program (DBP)
v Exec Interface Program (EIP)
v CICS User Exit Interface
v CICS Monitoring Facility (optional)
v CICS Restart Resynchronization, if you want to use either the SQL/DS

accounting facility in an online environment or support task-related user
exits.

2. VSE/POWER
The VSE/POWER program is required for the system printer or remote
workstation printer report-writing support in ISQL. It is not required for report
writing to CICS terminal printers. Only the VSE/POWER program provides
multiple copy capability.

204 Database Administration

Chapter 11. Stored Procedures

Stored Procedure Concepts
A stored procedure is a user-written application program that is compiled and
stored at the server. When the database manager is running in multiple user mode,
local applications or remote DRDA applications can invoke the stored procedure.
Since the SQL statements issued by a stored procedure are local to the server, they
do not incur the high network costs of distributed statements. Instead, a single
network send and receive operation is used to invoke a series of SQL statements
contained in the stored procedure.

There are several other benefits that can be gained through the use of stored
procedures, including:
v In many applications, the integrity of the host variables used in SQL statements

is critical to the business function provided by the application. For example, a
debit/credit application might need to guarantee that the host variable values do
not change between debit and credit operations. In these applications, the
application designer would like to guarantee that sophisticated users cannot
employ online debugging tools to manipulate the content of SQL statements or
host variables used by the SQL application. By using stored procedures, the
application designer can encapsulate the application’s SQL statements into a
single message to the server, which moves the sensitive processing beyond the
reach of even the most sophisticated workstation user.

v Stored procedures can be used to hide the details of the database design from
client applications. In addition to simplifying the writing of client applications,
this means that if the database design is changed, only the stored procedure
needs to be modified. The more client applications that use the stored procedure,
the greater the benefit.

v Stored procedures can be used to hide sensitive data from application programs.
v Business logic can be encapsulated at the server, rather than being included in

numerous application programs.
v It is easier to maintain an environment in which applications are kept at the

server rather than spread across a number of requesters.

Stored Procedure Servers

The Stored Procedure Server
In DB2 Server for VSE & VM, all stored procedures are fenced, which means that
they are separated from the database manager with respect to execution and
memory usage. This is necessary to ensure that a stored procedure does not
v inadvertently use storage that is allocated to the database manager
v monopolize processing in the database machine or partition, which would

effectively hang the database

A fenced implementation is achieved through the use of stored procedure servers.
An stored procedure server is an application requester that is local to the database
manager and is used to execute the stored procedure. A fenced implementation is
achieved as follows:

© Copyright IBM Corp. 1987, 2001 205

v In VM, the stored procedure server is a separate virtual machine that is local to
the DB2 Server for VSE & VM server, and uses the ’private resource’ facility of
VM.

v In VSE, the stored procedure server is a separate static or dynamic partition.

Note that a stored procedure server must be dedicated to a single database server.

The Stored Procedure Handler
The stored procedure handler is a DB2 Server for VSE & VM supplied utility,
called ARISPRC, that interfaces between the database manager and the stored
procedure. It runs in the stored procedure server and does the following:
v Initializes the runtime environment. This is done when the stored procedure

server is started. For the steps involved, see ″The START PSERVER Command″
in the DB2 Server for VSE & VM Operation manual.

v Waits to receive an SQL CALL request from the database manager.
v Invokes the specified stored procedure, which will send requests and receive

replies directly to and from the database manager.
v Returns the output parameters and result set information to the database after

the stored procedure has terminated.
v Waits for another SQL CALL request from the database manager.

Stored Procedure Server Groups
The group clause of the CREATE PSERVER statement makes it possible to define
groups of stored procedure servers. This is useful if
v certain stored procedures must always have a server available. In this case, a

stored procedure server group could be dedicated to the procedure, and other
procedures could share other groups.

v certain procedures have special requirements, for example, the need for
unusually large amounts of virtual storage.

v certain procedures must access resources that are note required by most
procedures.

The group option gives the database administrator flexibility in defining the
environment and is useful for system tuning.

Setting up a Stored Procedure Server
The SERVGROUP column in SYSTEM.SYSROUTINES is cross-referenced with the
SERVGROUP column in SYSTEM.SYSPSERVERS to establish the server that is to
be used for a stored procedure.

In DB2 Server for VM, the following requirements exist:
v The PSERVER column in SYSTEM.SYSPSERVERS specifies the name of the

stored procedure server.
v The VM machine name (user ID) of the stored procedure server must equal the

value in the PSERVER column in SYSTEM.SYSPSERVERS. The CP directory of
the database machine must contain the following statement:
– IUCV userid

where userid is the VM ID of the stored procedure server virtual machine. This
enables the database manager to request the services of the stored procedure
server. Note that this can also be enabled by putting an IUCV ALLOW statement
in the CP directory of the stored procedure server virtual machine. However, the
first method requires the database machine to have explicit access to the stored
procedure server machine, and the second method allows any machine to

206 Database Administration

connect to the stored procedure server machine. Since the stored procedure
server must be dedicated to a single database machine, the first method is
preferred.

v The CP directory of the stored procedure server VM machine must contain the
following statements:
1. IPL CMS

This directory control statement causes CP to start CMS in the stored
procedure server virtual machine.

2. OPTION MAXCONN nnnn

This directory control statement indicates the number of IUCV and
APPC/VM connections allowed for the virtual machine. Unless a stored
procedure that runs on the server does work that requires additional
connections, setting nnnn to 1 is sufficient.

v The PROFILE EXEC for the stored procedure server VM machine must have the
following CMS commands:
– SET SERVER ON
– SET FULLSCREEN OFF
– SET AUTOREAD OFF

The following is a sample profile:

Note: the PROFILE EXEC should not contain any commands that require
console input, or put the ID into VM READ.

v A $SERVER$ NAMES file, which controls who can connect to the VM machine
and what module to invoke when the machine is started, must exist. An
example of a $SERVER$ NAMES file entry is:

'GLOBALV INIT' /* The following three lines have to be in PSERVER's PROFILE EXEC
'SET SERVER ON'
'SET FULLSCREEN OFF'
'SET AUTOREAD OFF'

'SET CMSTYPE HT'
'SET IMSG OFF'
'SET LANGUAGE AMENG (ADD ARI USER'

'CP SET RUN ON' /* This prevents CP READ upon */
/* RECONNECTing to userid. */

'CP TERM MODE VM' /* Accept CMS commands. */

'GLOBAL LOADLIB SCEERUN' /* LAODLIB FOR LE PROGRAMS */

'CP LINK SQLMACH 195 195 RR' /*Link to database product disk */
'ACCESS 195 Q' /*Access as Q disk */
'EXEC SQLINIT DB(SQLMACH)' /*Initialize as normal AR */
IF RC <> 0 THEN DO

SAY 'SQLINIT FAILED WITH RETURN CODE = ' RC
'TELL SQLMACH SQLINIT FAILED IN PSERVER'
'#CP LOGOFF'

END
ELSE

SAY 'PSERVER INITIALIZATION COMPLETED.'

Chapter 11. Stored Procedures 207

The fields in the $SERVER$ NAMES files represent the following:
– nick

The name of the private resource. This is VM machine name of the stored
procedure server virtual machine.

– list

The user IDs of the users that are authorized to access the private resource.
This is the VM machine name of the database server virtual machine. Since
stored procedure servers must be dedicated to a single database, only one
name can be specified here. The stored procedure handler will not start if
more than one name is specified.

– module

The name of the stored procedure handler, ARISPRC.

For complete details on setting up the machine, see ″Managing Private
Resources: in the VM/ESA Connectivity Planning, Administration, and Operation
manual″.

v Ensure that the Stored Procedure handler module (ARISPRC) can be accessed by
the stored procedure server. The DB2 Server for VSE & VM installation process
creates this module on the database machine’s production disk.

v Ensure that the Stored Procedure Server has been defined to the database by
using the CREATE PSERVER command. See DB2 for VSE & VM SQL Reference
for more information on this command.

v All stored procedures must be LE-compliant and their load modules must reside
in a disk accessible to the stored procedure servers that will invoke them.

In DB2 Server for VSE, the following requirements exist:
v The JCL used to start the database must contain a statement that defines logical

device 098 (for example, ’ASSGN SYS098,cuu’), to enable POWER to find and
execute the JCL that starts the stored procedure handler. An example is
illustrated below:

The following is a sample JCL to start up the DB2 Server for VSE 7.1.0 database:

Note: You will need to customize ARIS71PL, ARIS71DB to work with your local
VSE/ESA environment.

v The PSERVER column in SYSTEM.SYSPSERVERS specifies the name of the
stored procedure server. This name must be of datatype CHAR(8).

:nick.SQLSVR01 :module.ARISPRC
:list.SQLMACH

// ASSGN SYS098,SYSPCH

// JOB Start DB2 for VSE in multiple user mode with Stored Procedure Support
// EXEC PROC=ARIS71PL
// EXEC PROC=ARIS71DB
// ASSGN SYS098,SYSPCH
// EXEC PGM=ARISQLDS,SIZE=AUTO,PARM='DBNAME=SAMPLE_DB'

208 Database Administration

v The name in the PSERVER column is also the name by which the stored
procedure handler identifies itself to VSE for XPCC communications.

v There must be a JCL for each stored procedure server you define. The JCL is
used to start up the server’s partition. The file name of the JCL and the jobname
in the JOB card should both be the stored procedure server’s name (as defined
in the PSERVER column of SYSTEM.SYSPSERVERS). The JCL must be
catalogued into a library, in the search path defined in your database startup
JCL, as an A-TYPE member. The following is a sample JCL for stored procedure
server SQLSVR01:

Note: For the PUNCH card, you must use . $$ PUN instead of * $$ PUN. Also,
you must make sure that all your stored procedure phases are in the search path
defined in this JCL so that stored procedure server handler phase, ARISPRC, to
be able to find and load the stored procedure.

v Stored procedure server support is currently treated as an optional feature.
Hence, you will need to build the stored procedure server handler phase
manually. The name of the phase is ARISPRC. The following is a sample JCL
used to linkedit the ARISPRC phase. The phase should reside in your
production library together with other DB2 for VSE phases.

Note: ARISLKHZ is a the linkbook used to linkedit the stored procedure server
phase, and it is a member of your production library.

v All stored procedure will have to be compiled using LE enabled compiler. The
phases of these stored procedures have to be in the search path defined in stored
procedure server’s startup JCL.

Managing Stored Procedure Servers

Stored Procedure Server Allocation
When a stored procedure is running, the stored procedure server in which it is
executing is dedicated to it. Since no other stored procedure can execute in that
server until the current one finishes, it is not possible to execute multiple stored

. $$ PUN CLASS=6,DISP=I,JNM=SQLSVR01
* $$ LST CLASS=V,DISP=D,DEST=(,SYSID01)
// JOB SQLSVR01
// OPTION NODUMP,NOSYSDUMP
// ASSGN SYS098,SYSPCH
// LIBDEF *,SEARCH=(CMPLR22.SCEEBASE,CMPLR22.LEVSEBC,

CMPLR22.SCEECICS,PRD2.DB2710)
ON $RC > 0 GOTO END

// EXEC PGM=ARISPRC,SIZE=1M
/.END
/*
/&

* *
* L I N K PSERVER component *
* *
// OPTION CATAL

INCLUDE ARISLKHZ
// EXEC LNKEDT,PARM='MSHP'
/*

Chapter 11. Stored Procedures 209

procedures concurrently with a single stored procedure server. However, multiple
stored procedures can execute concurrently if multiple stored procedure servers are
defined.

The CREATE PROCEDURE statement must be used to define a stored procedure
before it can be used. The CREATE PROCEDURE puts the definition of the
procedure into the catalog tables SYSTEM.SYSROUTINES and
SYSTEM.SYSPARMS. See DB2 Server for VSE & VM SQL Reference for the
definitions of these tables as well as more details on the CREATE PROCEDURE
statement. A third catalog table, SYSTEM.SYSPSERVERS, is used to identify the
stored procedure servers. See DB2 for VSE & VM SQL Reference for the definition
of this table. When the database manager is started, DB2 Server for VSE & VM
loads the contents of these tables into cached structures. The cached structures
contain the information from the catalog tables, as well as information about the
run time status of stored procedures and stored procedure servers. When the
database manager is started, the status of a stored procedure defaults to STARTED,
and the status of a stored procedure server defaults to STOPPED. The database
manager then issues a START PSERVER command for any stored procedure server
for which the AUTOSTART value of the corresponding row in
SYSTEM.SYSPSERVERS is Y. When the START PSERVER command completes, the
status of that stored procedure server is STARTING. When an SQL CALL
statement is issued, the database manager uses the cached information to
determine the server at which this stored procedure will run. To determine the
server, DB2 Server for VSE & VM does the following. Note that when these steps
make reference to the catalog tables, it is the cached information from the tables
that they are referring to.
1. Gets the value of the SERVGROUP column from the row in

SYSTEM.SYSROUTINES for the procedure
2. Looks for the first row in SYSTEM.SYSPSERVERS in which the value of the

column SERVGROUP matches the SERVGROUP value retrieved from
SYSTEM.SYSROUTINES, and which is not currently running a stored
procedure. If one is found, the action taken by the database manager depends
on the status of the procedure server:
v If its status is STARTED, the database manager sends a command to that

server, to cause it to invoke the stored procedure.
v If its status is STARTING, the database manager completes the START

PSERVER processing, by establishing a connection to the stored procedure
server and invoking the stored procedure handler. It then changes the status
of the stored procedure server to STARTED and sends a command to the
server, to cause it to invoke the stored procedure.

v If its status is STOPPING, the database manager ignores that server.
v If its status is STOPPED, the database manager checks whether that server

can be started implicitly. If it can be started implicitly, DB2 Server for VSE &
VM issues the START PSERVER command, and when the command
completes, that server is used to run the stored procedure. For more
information on starting a stored procedure server implicitly, refer to the
description of the IMPLICIT/NOIMPLICIT option of the STOP PSERVER
command in the DB2 Server for VSE & VM Operation manual.

If none of the servers in the group can be used, and the group checked was not the
default group, DB2 Server for VSE & VM checks whether the stored procedure can
run in the default group. Servers in the default group are indicated by a value of
NULL for the SERVGROUP column in SYSTEM.SYSPSERVERS. If the DEFSERV
column in SYSTEM.SYSROUTINES contains a ’Y’ or is NULL, then that procedure

210 Database Administration

can run in a server in the default group. If no servers are available in
SERVGROUP, or if SERVGROUP in SYSTEM.SYSROUTINES is blank, and the
procedure can run in the default group, DB2 Server for VSE & VM will attempt to
run the stored procedure in one of the default servers. The process it uses to find a
server in the default group is the same as the one it used to look for a server in a
specific group, as described earlier.

If none of the servers at which it can run are available, the stored procedure waits
for a free server. If more than one stored procedure is waiting for the same server,
the one that has been waiting the longest will be invoked when the server is
available.

Figure 57 shows how DB2 Server for VSE & VM resolves the server name. Note
that in order to illustrate the process used, the figure shows cached data. Not all of
the columns shown are in the corresponding catalog table.
The following steps are involved in Figure 57:

1. SQL CALL PROC1 is issued. The database manager retrieves the SERVGROUP
value from the row for PROC1 in the cached information from
SYSTEM.SYSROUTINES.

2. The database manager looks for the first row in the cached information from
SYSTEM.SYSPSERVERS in which the SERVGROUP column matches the
SERVGROUP value retrieved from the cached information for
SYSTEM.SYSROUTINES and the PROC information is blank.

3. The row for PSERVER SRV5 is found, but it is stopped and cannot be started
implicitly.

4. Since there are no other servers in GROUP1 that are not already running a
stored procedure, the database manager checks the column DEFSERV to see if
PROC1 can run in the default server group. A value of ’Y’ or NULL in this
column indicates that it can run in the default group.

5. The SYSTEM.SYSPSERVERS data contains a value of NULL in the
SERVGROUP column for any server in the default group. In this case, SRV1
and SRV2 are in the default server group and both are available. The database
manager will use SRV1 since it is the first one found. It will update the cached
information from SYSTEM.SYSPSERVERS to indicate that SRV1 is being used
for PROC1, and send a command to SRV1 to cause it to invoke the stored
procedure PROC1.

PROCEDURE

PROC1

PSERVER

SRV1

SRV2

SRV3

SRV4

SRV5

LOADMOD

........

DESCRIPTION

DEFAULT

DEFAULT

SERVGROUP

GROUP1

PROC

PROCX

PROCY

DEFSERV

Y

STATUS

STARTED

STRATED

STRATED

STRATED

STOPPED

AUTHID

MOD1

AUTOSTART

Y

Y

Y

N

SERVGROUP

GROUP1

GROUP1

GROUP1

EXEC SQL CALL PROC1
1

5

3

2 4

Figure 57. How DB2 Server for VSE & VM Determines the Stored Procedure Server to Use

Chapter 11. Stored Procedures 211

States of a Stored Procedure Server
A stored procedure server can be in several different states: STARTED, STARTING,
STOPPING or STOPPED. Each state reflects/indicates the availability of the server
and whether or not its definition can be altered or dropped. The START and STOP
PSERVER operator commands can be used to change the state of a stored
procedure server. An incoming SQL CALL request can also change the state of a
stored procedure server, but only in certain situations, as will be described later.
Following is a description of how each state is achieved and the functions that can
be performed on the server for each of these states.

STOPPED
This is the default state for all stored procedure servers when the database
manager is started. It is also achieved when a procedure server is stopped using
the STOP PSERVER operator command. This state has two conditions that
determine whether certain functions, such as an SQL CALL implicitly starting the
server, are allowed. These two conditions are IMPLICIT and NOIMPLICIT. At
startup, all stored procedure servers are STOPPED with IMPLICIT. Here is a
summary of the differences between the two:
v STOPPED with IMPLICT: in this state, the stored procedure server is considered

to be available as it can be implicitly started by the database manager if an SQL
CALL request requires it to execute. When the IMPLICIT condition is true, the
stored procedure server definition cannot be altered or dropped. A stored
procedure server achieves this state when the STOP PSERVER IMPLICIT
operator command is issued.

v STOPPED with NOIMPLICIT: in this state the stored procedure server is not
available to execute any SQL CALL requests, and the database manager cannot
implicitly start the stored procedure server. Since the server is not available, its
definition can be altered or dropped. This is the only state that allows changes
to the server’s definition. To achieve this status issue the STOP PSERVER
NOIMPLICIT operator command on the desired server. Also, if the database
manager’s attempt to start the server (i.e. establish a physical connection) times
out, the stored procedure server will be STOPPED NOIMPLICIT by the database
manager. This is done as a time-out might indicate a problem with the stored
procedure server handler. See the DB2 Server for VSE & VM Diagnosis Guide and
Reference manual for more information.

A stored procedure server will always be stopped if a severe error is encountered
during the execution of a stored procedure. The IMPLICIT/NOIMPLICIT condition
is not changed, unless a connection time-out has occurred, as mentioned above.

STOPPING
A server can only achieve this state if it was executing a stored procedure at the
time the STOP PSERVER command was issued. When the state is ″stopping″, the
database manager know that once the current SQL CALL requests concludes, the
stored procedure server must be stopped. The stored procedure server will remain
available as long as the IMPLICIT condition is true.

STARTING
In this state, the server is ready to start executing an SQL CALL request. It has
been allocated a communication block but it is not yet connected. The database
manager will establish the connection once an SQL CALL statement requests to use
the server. If the connection is successful, the status will be changed to started. If it
fails, the server will be stopped. The IMPLICIT/NOIMPLICIT condition will
remain unchanged. If the connection times out, as mentioned earlier, the server
will be stopped with the NOIMPLICIT condition true. A server in this state can
also be stopped by issuing the STOP PSERVER operator command.

212 Database Administration

STARTED
In this state, the stored procedure server is connected to the database server and is
either executing an SQL CALL statement, or is ready to execute an SQL CALL.
This state can only be reached if an SQL CALL statement requested to use the
server. The START PSERVER operator command will not promote a stored
procedure server to this state as it does not establish the physical connection with
the database server. The STOP PSERVER command demotes the server to a status
of STOPPED and severs its connection if it is not currently executing an SQL CALL
request. If the server is in use, the STOP PSERVER command will demote it to a
status of STOPPING. The database server will complete the ″stopping″ sequence
once the SQL CALL request concludes, by severing the stored procedure server’s
connection, freeing its communication block and changing the status to STOPPED.
The IMPLICIT/NOIMPLICIT conditions will be dictated by the last STOP
PSERVER operator command issued against the server.

For more information on the STOP and START PSERVER commands see the DB2
Server for VSE & VM Operation manual. For more information on the SQL CALL
statement see the following manuals:
v DB2 Server for VSE & VM Application Programming

v DB2 Server for VSE & VM SQL Reference.

Altering or Dropping a Stored Procedure Server Definition
The following describes how to remove or alter a stored procedure server:
v Issue the STOP PSERVER command for that stored procedure server, specifying

the NOIMPLICIT option.
v Use the SQL DROP or ALTER PSERVER statement to delete or alter the row for

that server from SYSTEM.SYSPSERVERS. Note that the row can not be deleted
from SYSTEM.SYSPSERVERS if it is the only server in its group, and procedures
exist that must run in that group.

v Optionally take the steps necessary to remove the stored procedure virtual
machine (in VM) or redefine the partition (in VSE).

To remove a stored procedure server group, follow the steps above for each stored
procedure server in the group. It is possible to remove all the servers in a group
only if as there are no stored procedures defined that can use that server group. If
this is the case, it is not be possible to remove the last procedure server in the
group. Any stored procedures that run in the group must be moved to another
group (by using the ALTER PROCEDURE statement and specifying the SERVER
GROUP clause) or dropped before the last stored procedure server in the group
can be dropped.

Stored Procedures

Preparing a Stored Procedure to Run
Before a stored procedure can be invoked, it must be
v Preprocessed by the DB2 Server for VSE & VM precompiler to create a package

in the database.
v Compiled by the appropriate high level, LE compliant, language compiler, or

assembled.
v In VM, Linkedited and GENMODed to create a load module, which must be

placed on a disk that can be accessed by the stored procedure server. In VSE,
linkedited to create a phase, which must be catalogued into a library identified
in the LIBDEF statement of the JCL that starts the stored procedure server.

Chapter 11. Stored Procedures 213

v Defined to the SYSTEM.SYSROUTINES catalog table by the database
administrator, by issuing the SQL CREATE PROCEDURE statement.

v Started, by issuing the START PROC command

If a stored procedure load module or phase is modified, a STOP PROC command
must be issued, followed by a START PROC command, so that the database
manager will cause the stored procedure server to load the new copy of the stored
procedure load module or phase into memory.

After these steps are complete, the user that created the package associated with
the stored procedure is able to GRANT RUN authority on the package to other
users, allowing them to issue the SQL CALL statement to run the stored procedure.

Dropping or Altering a Stored Procedure
The following describes how to remove or alter a stored procedure:
v Issue the STOP PROC command for that procedure, specifying the REJECT

option.
v Use the SQL DROP PROCEDURE statement to delete the rows for the procedure

from SYSTEM.SYSROUTINES and SYSTEM.SYSPARMS, or the SQL ALTER
PROCEDURE statement to change the definition in SYSTEM.SYSROUTINES.

v Optionally delete the load module or phase

Note: There is a special case where issuing the STOP PROC ACTION REJECT
command will not suffice to allow altering or dropping a stored procedure
definition. If the procedure is still running in a stored procedure server, you will
not be allowed to alter or drop its definition, even if the status is STOP-REJ. The
execution of an SQL ALTER or DROP PROCEDURE command will return with
SQLCODE -15000. You can use the SHOW PSERVER and SHOW PROC operator
commands to monitor the procedure’s progress before you try to alter or drop its
definition.

Initialization Parameters Affecting Stored Procedure Execution

PTIMEOUT Parameter
This parameter serves two purposes:
1. The number of seconds before DB2 Server for VSE & VM ceases to wait for an

SQL CALL to be assigned to a stored procedure server. If the PTIMEOUT
interval expires, the SQL statement fails, and SQLCODE -913 is returned with
SQLSTATE 40001.

2. The number of seconds before DB2 Server for VSE & VM ceases to wait for the
stored procedure server connection request to be established. If the PTIMEOUT
interval expires, message ARI4168I is displayed and the connection attempt
terminates. DB2 Server for VSE & VM will then try to use the next available
stored procedure server, thus the SQL CALL request will not be terminated.

A value of 0 means that no PTIMEOUT is in effect. The default for PTIMEOUT is
180.

PROCMXAB Parameter
Specify the number of times a stored procedure is allowed to terminate abnormally,
after which a STOP PROC ACTION REJECT is performed against the procedure
and all subsequent SQL CALL statements are rejected. Note that a time-out that
occurs while waiting for a stored procedure server to be assigned for an SQL

214 Database Administration

CALL statement is not included in this count. The default, 0, means that the first
abend of a stored procedure causes SQL CALLs to that procedure to be rejected.
For production systems, you should accept the default.

Summary of Environment Interactions
Figure 58 shows the interactions between the database manager, the stored
procedure server, the stored procedure handler, and the stored procedure itself. The
figure does not show the definition of the stored procedure server or of the stored
procedure itself; it is assumed that this has already been done.

1. If the AUTOSTART value in the cached information from
SYSTEM.SYSPSERVERS is Y, the database manager starts the stored procedure
server during SQLSTART processing. If the AUTOSTART value is N, then the
operator issues the START PSERVER command to start the stored procedure
server. The START PSERVER command changes the status of the stored
procedure server to STARTING. In VM, it also allocates a pseudoagent, and in
VSE, it allocates a new XPCC block, both to be used for the connection between
the database manager and the stored procedure server. See ″The START
PSERVER Command″ in the DB2 Server for VSE & VM SQL Reference for more
details.

2. The user application at the application requester executes an EXEC SQL CALL
statement.

3. An SQL application can contain one or more SQL CALL statements. The SQL
CALL statement is stored in a package in the DB2 Server for VSE & VM
database using the DB2 Server for VSE & VM preprocessor. When the SQL
CALL statement is received, the database manager consults the cached
information from SYSTEM.SYSROUTINES and SYSTEM.SYSPARMS to:
v Determine the load module or phase associated with the stored procedure.
v Determine the programming language used to implement the stored

procedure.

Database Machine/
Parition

DB2 ServerApplication
Requester

EXEC SQL
CALL

procedure

Start PSERVER

CALL procedure

Return to requester

Stored Procedure Server

Procedure
Complete START
PSERVER
processing

ARISPRC

Receive CALL and
Invoke procedure

Procedure done,
return results to DB2
Server and clean up

LE/370
Run Time

Resource
Adapter

Stored Procedure Server

1

32

8

5

7 6

4

5

Figure 58. Stored Procedure Environment

Chapter 11. Stored Procedures 215

v Determine the run time options for the procedure.
v Validate the parameter list supplied.
v Perform any necessary data conversion between the parameters provided by

the requester and the arguments required by the stored procedure.
v Determine the stored procedure server to use. See ″Stored Procedure Server

Allocation″ on page 209 for more information on how DB2 Server for VSE &
VM resolves this. If the stored procedure server that is found has a status of
STARTING, the database manager must complete the START PSERVER
processing before sending the SQL CALL statement to the stored procedure
server. In this case, the database manager establishes a connection with the
stored procedure server, invokes the stored procedure server, and sets the
status of the stored procedure server to STARTED. When the stored
procedure handler starts, it initializes the communications and run-time
environments and waits for instructions from the database manager
concerning which procedure to run.

The database manager hooks the agent used by the requester that issued the
SQL CALL to the selected stored procedure server. The database manager must
maintain the CONNECT information for the original requester as well, in order
to return the result of the SQL CALL statement.

The database manager saves its environment in preparation for receiving and
processing requests from the stored procedure. Finally it sends a request to the
stored procedure handler to invoke the stored procedure.

4. The stored procedure handler (ARISPRC) receives the request, and does the
following:
v Sets up the parameters the stored procedure expects, using the parameters

sent by the database manager.
v Loads the procedure that is to run, if it is not already loaded from a previous

execution.
v Initializes the resource adapter environment, to ensure that no residual data

is inherited from a prior execution.
v Passes control to the stored procedure.

5. The stored procedure server effectively becomes a local requester and uses the
connection that exists to communicate directly with the database manager. It
uses private flows to execute the stored procedure. The database manager
receives and processes the requests, and sends replies to the resource adapter.
This continues until the stored procedure finishes. Note that the resource
adapter is responsible for ensuring that disallowed statements are detected. For
more details on the disallowed statements see ″The SQL CALL″ in the DB2
Server for VSE & VM SQL Reference.

6. When the stored procedure terminates, control returns to ARISPRC.
7. ARISPRC packages any output parameters and sends them to the database

manager. Any cursors that were declared with the WITH RETURN option, and
are left open when the stored procedure terminates, define result sets that can
be fetched by the requester that issued the SQL CALL. Result sets are returned
by the database server in the order the cursors were opened in the stored
procedure. After sending the results to the database manager, ARISPRC cleans
up the resource adapter environment and waits for the next request to invoke a
stored procedure.

8. When the database manager receives the stored procedure results from
ARISPRC, it hooks the agent structure back to the original requester, and passes
the stored procedure results back, using DRDA flows if necessary.

216 Database Administration

Appendix A. Estimating Your Dbspace Requirements

This appendix describes procedures and calculations you can follow to determine
the amount of storage to allocate to your dbspaces. You must determine:
1. The required size of each permanent dbspace, described in “Estimating

Dbspace Size”
2. The storage required to hold a working set of the data, described “Estimating

Internal Dbspace Size and DASD Needs for Sort Operations” on page 232.

Estimating Dbspace Size
You need to estimate data storage requirements to establish dbspace sizes. The
required size of a dbspace depends on:
v The total number of tables and indexes to be stored in the dbspace
v The size of tables
v The size of indexes
v The amount of free space
v The allowance made for unused pages.

Using the above estimated values, you can calculate the required size of the
dbspace by determining and adding the number of pages required for:
v The sum of the storage requirements of each table

Refer to “Estimating Storage for a Table” on page 218. For each table the storage
requirement is further described in:
– “Estimating the Number of Header Pages” on page 220
– “Estimating the Number of Data Pages” on page 221
– “Estimating the Number of Index Pages” on page 229.

v An allowance for unused pages and free space.
Setting allowances and using defaults rather than estimating the number of
header and index pages is discussed in “General Guidelines” on page 217.

The following formula shows how these values are used to calculate the number of
dbspace pages needed for a set of tables:

General Guidelines
For most dbspaces, it is sufficient to use the default value of 8 for the number of
HEADER PAGES. You should also use the default of 33 percent for PCTINDEX,
rather than estimate the number of index pages needed, unless you anticipate
doing extensive indexing. This default reserves approximately one third of the total
space for indexes. If you assume both defaults, 8 HEADER PAGES and 33 percent
for PCINDEX, the above formula becomes:

DBSPACE PAGES = 8 + 1.50 x (DATA PAGES + ALLOWANCE)

The DBSPACE PAGES number derived must be rounded up to a multiple of 128.
That is,

REQUIRED DBSPACE PAGES = TRUNC [(DBSPACE PAGES + 127) / 128] x 128

DBSPACE PAGES = HEADER PAGES + DATA PAGES + INDEX PAGES + ALLOWANCE

© Copyright IBM Corp. 1987, 2001 217

The TRUNC function, for truncate operation, indicated here means to compute the
value between the brackets [] and then use only the integer part of that value. For
example, if the value calculated is 27.8, use 27.

You should allow from 50 to 200 percent for ALLOWANCE, depending on the
nature of the tables to be stored. If the number of rows are relatively stable and
you do not anticipate adding columns to tables (or even adding tables), adding an
ALLOWANCE of 50 percent is safe. To allow all forms of growth (inserting rows,
adding columns, and adding tables), you should consider an ALLOWANCE of 200
percent (2 x data pages).

Notes:

1. The ALLOWANCE in the above formulas correspond to reserved unused
pages. As such, they will not use real space in the storage pool. Dbspace
allocations should be substantially greater than what appears to be necessary
by the above algorithm. Because dbspace pages do not occupy storage pool
slots until they are loaded, there is little to be gained in making a table a tight
fit in a dbspace.

2. When a dbspace can no longer contain a table, you can change the parameters
of the dbspace. See “Altering the Design of a Dbspace” on page 73 for more
information.

Estimating Storage for a Table
To estimate the amount of storage required for a table, consider:
v Amount (or average amount) of storage required for a row of the table
v Storage for long-field columns (average for each column)
v Number of rows the table is likely to have.

Note: For tables with variable length rows, data page requirements will depend
upon the placement of the rows of different length on the pages. Some
orderings will require more data pages than others. When estimating
storage for these tables, refer to “Estimating Data Pages for a Table with
Variable Length Rows” on page 226.

There are no guidelines for estimating the number of rows your table will have.
However, for the purpose of determining the dbspace requirements, it is wise to
look ahead to potential growth of the table in the foreseeable future. Consider the
estimated size of the table 2 or 3 years from now, rather than its current size.

The length of a stored row can be estimated using Table 28. To complete the
calculations of Table 28, you must know the type and length of all columns in your
tables. If long-field columns are involved, you should first calculate the average
length of long-field columns using Table 29 on page 220.

Table 28. Form for Calculating the Average Row Length of a Stored Row

COLUMN OVERHEAD
The number of columns supporting nulls
The number of VARCHAR(n) columns with n≤254
The number of VARGRAPHIC(n) columns with n≤127
The number (N) of LONG FIELDS1 N x 6

SUM OF COLUMN OVERHEAD FACTORS

218 Database Administration

Table 28. Form for Calculating the Average Row Length of a Stored Row (continued)

COLUMN DATA STORAGE FACTORS2

INTEGER: 4
SMALLINT: 2
DECIMAL: TRUNC [PRECISION/2 + 1]
FLOAT: 8 3

FLOAT: 4 3

CHAR(n): n
GRAPHIC(n): n x 2 4

DATE: 4
TIME: 3
TIMESTAMP: 10
VARCHAR(n) n≤254: average length
VARGRAPHIC(n) n≤127: average length x 2 4

LONG FIELDS : calculated separately (See Table 29 on page 220.)

SUM OF COLUMN DATA STORAGE FACTORS

ROW OVERHEAD FACTOR 8

AVERAGE LENGTH OF EACH STORED ROW (AVGROWLEN) ___

Notes:

1. The following data types are long fields: VARCHAR(n) with n>254, VARGRAPHIC(n) with n>127, LONG
VARCHAR, and LONG VARGRAPHIC.

2. The factors indicated in the COLUMN DATA STORAGE FACTORS area are to be used for each column of the
type specified. The sum of those factors goes on the line at the right. For example, if a table consists of 4
columns of DECIMAL data, calculate the factor for each DECIMAL column, add up those factors, and enter the
sum on the line opposite DECIMAL.

3. The value 8 for FLOAT is for double-precision floating point columns (FLOAT(n) where 22≤n≤53, or n is not
specified). The value 4 for FLOAT is for single-precision floating point columns (FLOAT(n) where 1≤n≤21).

4. Each graphic character occupies 2 bytes of storage. When you determine the average length of a GRAPHIC or
VARGRAPHIC column in characters, multiply that number by 2 to get the number of bytes.

Column Overhead refers to descriptive information stored with an instance of the
column. The overhead depends upon the characteristics of the column, as follows:
v If it is allowed to be NULL, each value has a 1-byte prefix for indication of a

null entry.
v If it is a varying length character string (that is VARCHAR(n) with n≤254), each

value has a 1-byte length indicator.
v If it is a varying length graphic string (VARGRAPHIC(n) with n≤127), each value

has a 1-byte length indicator.

Pointers to the long-field values are stored in a special internal format that
involves 6 bytes of control information in the stored row (2-byte length value and
4-byte tuple identifier (TID)).

Column Data Storage refers to the storage space occupied by the actual column
values. The numbers shown are number of bytes.
v For DECIMAL data, the data is stored in a packed decimal format. Each digit

(precision) occupies half a byte and the sign occupies half a byte. As the data is
stored in whole bytes, you must round up to the next whole byte. If the number
of digits is n, the field occupies TRUNC [(n + 2) / 2] bytes.

v For varying-length data columns, estimate the average length. If there is a wide
variation in the individual lengths, estimate a higher number for the average. If

Appendix A. Estimating Your Dbspace Requirements 219

the rows are long, the DB2 database manager may move to new, empty, pages
sooner in the loading process than otherwise is necessary.

Row Overhead is a fixed overhead for each row in the table. It consists of a 6-byte
row header and a 2-byte offset into the page, for a total of 8 bytes.

Table 29. Formula for Calculating the Average Length of a Long-Field Column

LONG-FIELD VALUE OVERHEAD = (TRUNC [(average length + 3999) / 4000] x 20)

LONG-FIELD VALUE STORAGE = (TRUNC [(average length + 249) / 250] x 250)

AVERAGE LENGTH OF EACH STORED LONG FIELD (AVGCOLLEN) =
LONG-FIELD VALUE OVERHEAD + LONG-FIELD VALUE STORAGE

Note: The above formula should be used to calculate the average length of a stored long field. The calculation
needs to be done for each column of a table that is a long field. The following data types are long fields:
VARCHAR(n) with n>254, VARGRAPHIC(n) with n>127, LONG VARCHAR, and LONG VARGRAPHIC.

Graphic characters occupy 2 bytes of storage. When you determine the average length of a GRAPHIC or
VARGRAPHIC column in characters, multiply that number by 2 to get the number of bytes.

LONG-FIELD Value Overhead
The value of a LONG FIELD is stored separately from the rest of the stored row.
The value is stored as a chain of entries in an internal table. Each entry of the
internal table is composed of 16 columns of 250 bytes each (some potentially null).
Each record has 20 bytes of overhead (a 2-byte offset, a 6-byte row header, and a
12-byte unary link pointer chain). Thus, the overhead for a LONG-FIELD value
depends on the actual length of the data and includes 20 bytes for each 4000-byte
(16 columns of 250 bytes) entry required to store the value.

Long-Field Value Storage
Long-field values are stored in increments of 250 bytes. Each increment is one
fixed-length 250-byte column value in the internal table. For example a 10-byte
long-field value occupies 250 bytes of storage, plus the long-field-value overhead
of 20 bytes. A 248-byte long-field value occupies 250 bytes, a 260-byte long-field
value occupies 500 bytes storage, and so on.

Estimating the Number of Header Pages
The number of header pages for a dbspace can be established on the SQL
ACQUIRE DBSPACE statement. In general, you should use the default value of 8
for this option.

A more precise estimate of the number of header pages follows. It is more complex
than the general guidelines above, but will assist you in your calculations if you
require a better estimation.

The header pages contain information of the objects defined in a dbspace. Each
object defined in the dbspace, such as a table or an index, is recorded in the header
pages via a control row. For more information on the types of objects that can be
defined in a dbspace and the types of control rows that are inserted in the header
pages, see the DB2 Server for VSE & VM Diagnosis Guide and Reference manual.

To estimate the number of header pages required:
1. Calculate the number of bytes required by the objects defined in the dbspace as

follows:
v Dbspace control information occupies 24 bytes.

220 Database Administration

v For each table created in the dbspace, add 32 + 2c bytes where c equals the
number of columns in the table.

v For each index created on a table in the dbspace, add 20 + 2d bytes where d
equals the number of indexed columns.

v For each table in the dbspace containing one or more long-field columns
(LONG VARCHAR, LONG VARGRAPHIC, VARCHAR(n) where n > 254, or
VARGRAPHIC(n) where n > 127), add 84 bytes.

2. Divide the total number of bytes required by 4080.
3. Round the result to the next highest integer.
4. The result is the number of header pages required for the dbspace.

For example, assume you are planning to acquire a dbspace that will contain 3
tables. Table A has 10 columns, 2 indexes each defined on a single column, and no
long-field columns. Table B has 14 columns; 1 index containing 3 columns, and no
long-field columns. Table C contains 3 columns, 1 index containing 1 column, and
2 long-field columns. The estimated number of header pages for this dbspace is as
follows:

DBSPACE: 24

Table A: 32 + (2 x 10) ← table
20 + (2 x 1) ← index 1
20 + (2 x 1) ← index 2

Table B: 32 + (2 x 14) ← table
20 + (2 x 3) ← index

Table C: 32 + (2 x 3) ← table
20 + (2 x 1) ← index
84 ← long-field columns
=============

Total: 350 bytes

Divide by 4080 1 header page required.

Estimating the Number of Data Pages
The number of data pages required to store a table depends on whether the rows
in the table are of fixed or variable length. The next section describes a method for
calculating the pages required for storing tables with fixed length rows. For tables
with variable length rows (rows with VARCHAR or VARGRAPHIC data), refer to
“Estimating Data Pages for a Table with Variable Length Rows” on page 226.

Note: Long-field columns do not produce variable length rows because the
long-field values are stored separately.

Pages Required for Storing Tables with Fixed Length Rows
The number of data pages required to hold the tables can be estimated after
determining the average row lengths (AVGROWLEN) for each table and the
effective page size (EPS) based on PCTFREE setting at the time the pages are to be
loaded.

The number of data pages required is estimated as follows:
1. Determine the average row length (AVGROWLEN) as in Table 28 on page 218.
2. Determine the free space requirement (PCTFREE). Use a whole number for

PCTFREE. That is, if the percent free is 10, use 10 for PCTFREE, not 0.10.
3. Calculate:

Appendix A. Estimating Your Dbspace Requirements 221

40 x PCTFREE + AVGROWLEN

4. Use the number calculated in step 3 to find the corresponding EPS in the
following table:

Table 30. Effective Page Size Based on Free Space Requirement

40 x PCTFREE + AVGROWLEN EPS (Effective Page Size)

8–17 4065 + AVGROWLEN

18–32 4050 + AVGROWLEN

33–52 4030 + AVGROWLEN

53–102 3980 + AVGROWLEN

103–252 3830 + AVGROWLEN

253–502 3580 + AVGROWLEN

503–1002 3080 + AVGROWLEN

1003–2002 2080 + AVGROWLEN

2003–4020 62 + AVGROWLEN

4021–4080 2 + AVGROWLEN

4081– See note below.

Note: For the case where (40 x PCTFREE + AVGROWLEN) >= 4081:
If AVGROWLEN <= 4080, number of rows per page = 1 and EPS = AVGROWLEN.
If AVGROWLEN > 4080, row size exceeds DB2 limits. Reduce your row size and
recalculate.

5. Calculate the number of rows per page:
Rows per Page = MINIMUM (256, TRUNC [EPS/AVGROWLEN])

6. Calculate the number of data pages required as follows:
If the average long-field length is <= 4020, then:

REQUIRED Number of Rows Number of Rows x Number of Long Fields
DATA = -------------- + --------------------------------------
PAGES Rows per Page 4020 / Average Long-Field Length

Note: When evaluating the expression, truncate the denominator 4020/average
long-field length to the nearest integer and round up the results of both
division expressions to the nearest integer before adding them.

If the average long-field length is >4020:
REQUIRED Number of Rows
DATA = -------------- + Number of Rows x Number of Long Fields
PAGES Rows per Page

Average Long-Field Length
x -------------------------

4020

Note: Round the results of both division terms up to the nearest integer before
evaluating the expression.

If you are loading tables separately, calculate the number of pages required for
each table separately. If you are loading the tables in an interleaved fashion, use
the longest AVGROWLEN of all the tables in determining the Effective Page Size.

Notes:

1. Storage for long fields (LONG VARCHAR, LONG VARGRAPHIC,
VARCHAR(n) with n>254, VARGRAPHIC(n) with n>127) columns must be

222 Database Administration

calculated apart from the rest of the row. AVGROWLEN will include six bytes
for each long-field value. However, storage for the actual long field will be
calculated separately.

2. If you have already established a database and are defining a new dbspace,
you can get an estimate of the data pages required by modeling the dbspace.
That is, create the tables in a test dbspace and load a sample of the data. Then
you can issue queries against SYSTEM.SYSDBSPACES and
SYSTEM.SYSCATALOG to find out how many pages were required for the data
sample. The data for the real tables will be proportionately higher. When
modeling data, avoid using nulls in the sample. Nulls tend to produce low
results.

Examples of Estimating the Number of Data Pages

Example 1: The example work sheet shown in Table 31 is for a table that has just
one CHAR(100) column supporting nulls.

Table 31. Example 1 — Calculating the Average Row Length

COLUMN OVERHEAD
The number of columns supporting nulls
The number of VARCHAR(n) columns with n≤254
The number of VARGRAPHIC(n) columns with n≤127
The number (N) of Long Fields
v N x 6

SUM OF COLUMN OVERHEAD FACTORS

1
0
0

0

1

COLUMN DATA STORAGE FACTORS
v INTEGER: 4
v SMALLINT: 2
v DECIMAL: TRUNC [PRECISION/2 + 1]
v FLOAT: 8 (for double-precision)
v FLOAT: 4 (for single-precision)
v CHAR(n): n
v GRAPHIC(n): n x 2
v DATE: 4
v TIME: 3
v TIMESTAMP: 10
v VARCHAR(n): average length
v VARGRAPHIC(n): average length x 2
v Long Fields: calculated separately (See

Table 29.)

SUM OF COLUMN DATA STORAGE FACTORS

0
0
0
0
0
100
0
0
0
10
0
0
0

100

ROW OVERHEAD FACTOR 8

AVERAGE LENGTH OF EACH STORED ROW 109

The number of DATA PAGES required to load 25000 rows into this table in a
dbspace defined to have 10 % free space is:
1. Determine the Average Row Length.

AVGROWLEN = 109

2. Determine the Free Space Requirement.
PCTFREE = 10

3. Calculate 40 x PCTFREE + AVGROWLEN.
40 x 10 + 109 = 509

Appendix A. Estimating Your Dbspace Requirements 223

4. From Table 30 on page 222, determine the Effective Page Size (EPS), using the
number calculated in step 3 to find the corresponding EPS.

503 - 1002 3080 + AVGROWLEN

EPS = 3080 + 109 = 3189

5. Calculate the number of rows per page.
Rows per Page = MINIMUM (256, TRUNC [3189/109]) = 29

6. The number of data pages required is:
Number of Rows Number of Rows x Number of Long Fields
-------------- + -------------------------------------- = 863
Rows per Page 4020 / Average Long-Field Length

Example 2: The example work sheet shown in Table 32 is for a table that has:
v 2 DECIMAL(6,0) columns supporting nulls (4 bytes each)
v 1 DECIMAL(9,0) column defined as NOT NULL (5 bytes)
v 1 INTEGER column defined as NOT NULL (4 bytes)
v 1 SMALLINT column supporting nulls (2 bytes)
v 1 CHAR(3) column supporting nulls (3 bytes)
v 1 CHAR(4) column supporting nulls (4 bytes)
v 1 GRAPHIC(10) column defined as NOT NULL (20 bytes)
v 1 DATE column supporting nulls (4 bytes)
v 1 TIME column defined as NOT NULL (3 bytes)
v 2 VARCHAR(10) columns supporting nulls (average 8 bytes each)
v 1 VARCHAR(15) column supporting nulls (average 12 bytes)
v 1 VARCHAR(250) column supporting nulls (average 32 bytes)
v 1 VARGRAPHIC(15) column supporting nulls (average 12 characters or 24 bytes)

Table 32. Example 2 — Calculating the Average Row Length of a Stored Row

COLUMN OVERHEAD
The number of columns supporting nulls
The number of VARCHAR(n) columns with n≤254
The number of VARGRAPHIC(n) columns with n≤127
The number (N) of Long Fields
v N x 6

SUM OF COLUMN OVERHEAD FACTORS

11
4
1

0

16

COLUMN DATA STORAGE FACTORS
v INTEGER: 4
v SMALLINT: 2
v DECIMAL: TRUNC [PRECISION/2 + 1]

v FLOAT: 8 (for double-precision)
v FLOAT: 4 (for single-precision)

v CHAR(n): n
v GRAPHIC(n): n x 2
v DATE: 4
v TIME: 3
v TIMESTAMP: 10
v VARCHAR(n): average length
v VARGRAPHIC(n): average length x 2
v Long Fields: calculated separately

SUM OF COLUMN DATA STORAGE FACTORS

4
2
13

0
0

7
20
4
3
0
60
24

137

ROW OVERHEAD FACTOR 8

AVERAGE LENGTH OF EACH STORED ROW 161

224 Database Administration

The number of DATA PAGES required to load 600 rows into this table in a dbspace
defined to have 15 percent free space is:
1. Determine the Average Row Length.

AVGROWLEN = 161

2. Determine the Free Space Requirement.
PCTFREE = 15

3. Calculate 40 x PCTFREE + AVGROWLEN.
40 x 15 + 161 = 761

4. From Table 30 on page 222, determine the Effective Page Size (EPS), using the
number calculated in step 3 to find the corresponding EPS.

503 - 1002 3080 + AVGROWLEN

EPS = 3080 + 161 = 3241

5. Calculate the number of rows per page.
Rows per Page = MINIMUM (256, TRUNC [3241/161]) = 20

6. The number of data pages required is:
Number of Rows Number of Rows x Number of Long Fields
-------------- + -------------------------------------- = 30
Rows per Page 4020 / Average Long-Field Length

Usually, you store a table this small in a dbspace with other tables. If a dbspace
has more than one table, the total number of DATA PAGES required for the
dbspace is the sum of the data page requirements of all the tables in the dbspace.

Example 3: The example work sheets shown in Table 33 and Table 34 on page 226
are for a table that has:
v 2 DECIMAL(6,0) columns supporting nulls (4 bytes each)
v 1 DECIMAL(9,0) column defined as NOT NULL (5 bytes)
v 1 INTEGER column defined as NOT NULL (4 bytes)
v 1 SMALLINT column supporting nulls (2 bytes)
v 1 CHAR(3) column supporting nulls (3 bytes)
v 1 CHAR(4) column supporting nulls (4 bytes)
v 1 GRAPHIC(10) column defined as NOT NULL (20 bytes)
v 2 DATE columns supporting nulls (4 bytes each)
v 1 TIMESTAMP column defined as NOT NULL (10 bytes)
v 2 VARCHAR(10) columns supporting nulls (average 8 bytes each)
v 1 VARCHAR(15) column supporting nulls (average 12 bytes)
v 1 VARGRAPHIC(15) column supporting nulls (average 12 characters or 24 bytes)
v 1 LONG VARCHAR column supporting nulls (average 32 bytes)

Table 33. Example 3 — Calculating the Average Row Length of a Stored Row

COLUMN OVERHEAD
The number of columns supporting nulls
The number of VARCHAR(n) columns with n≤254
The number of VARGRAPHIC(n) columns with n≤127
The number (N) of Long Fields
v N x 6

SUM OF COLUMN OVERHEAD FACTORS

12
3
1

6

22

Appendix A. Estimating Your Dbspace Requirements 225

Table 33. Example 3 — Calculating the Average Row Length of a Stored Row (continued)

COLUMN DATA STORAGE FACTORS
v INTEGER: 4
v SMALLINT: 2
v DECIMAL: TRUNC [PRECISION/2 + 1]
v FLOAT: 8 (for double-precision)
v FLOAT: 4 (for single-precision)
v CHAR(n): n
v GRAPHIC(n): n x 2
v DATE: 4
v TIME: 3
v TIMESTAMP: 10
v VARCHAR(n): average length
v VARGRAPHIC(n): average length x 2
v Long Fields: calculated separately (See

Table 34.)

SUM OF COLUMN DATA STORAGE FACTORS

4
2
13
0
0
7
20
8
0
10
28
24

116

ROW OVERHEAD FACTOR 8

AVERAGE LENGTH OF EACH STORED ROW 146

Table 34. Example 3 — Calculating the Average LONG VARCHAR Stored Length

LONG VARCHAR VALUE OVERHEAD
The number(N) of LONG VARCHAR columns

• N x (TRUNC [(average length + 3999) / 4000] x 20) 20

LONG VARCHAR VALUE STORAGE
TRUNC [(average length + 249) / 250] x 250 250

AVERAGE LENGTH OF EACH STORED LONG VARCHAR 270

The number of DATA PAGES required to load 25000 rows into this table in a
dbspace defined to have 10 percent free space is:
1. Determine the Average Row Length.

AVGROWLEN = 146

2. Determine the Free Space Requirement.
PCTFREE = 10

3. Calculate 40 x PCTFREE + AVGROWLEN.
40 x 10 + 146 = 546

4. From Table 30 on page 222, determine the Effective Page Size (EPS), using the
number calculated in step 3 to find the corresponding EPS.

503 - 1002 3080 + AVGROWLEN

EPS = 3080 + 146 = 3226

5. Calculate the number of rows per page.
Rows per Page = MINIMUM (256, TRUNC [3226/146]) = 22

6. The number of data pages required is:
Number of Rows Number of Rows x Number of Long Fields
-------------- + -------------------------------------- = 2923
Rows per Page 4020 / Average Long-Field Length

Estimating Data Pages for a Table with Variable Length Rows
The following methods provide estimates for tables containing variable length data
with data types VARCHAR and VARGRAPHIC. Tables with columns containing

226 Database Administration

variable length data types result in rows of differing lengths that can be distributed
throughout a dbspace in different ways depending upon the order in which data is
loaded. The distribution of the variable length rows in the dbspace can
significantly affect the number of data pages occupied by a table.

There are three different methods you can use to more accurately estimate the data
page requirements for tables with variable length rows:

Modeling An approach using a test dbspace containing a test table that
contains a representative sample of the data. The accuracy of this
estimates depends solely on the representativeness of the test table.

Worst case An approach that provides an estimate of the number of data
pages that will accommodate the table regardless of the order of
the rows. This approach will overestimate the number of pages in
many cases, but will always ensure that you have allocated enough
pages.

Splitting An approach requiring an approximation of the number of rows
that fall within a range of row lengths. This may produce a more
realistic number of pages than the worst case method but does not
ensure that the table will fit.

Estimating Data Pages with Modeling: Establish a database before you begin
modeling your data page requirements. Then, do the following:
1. Acquire a test dbspace.
2. Create the table in the dbspace and load a sampling of the data into it.
3. Ensure that the statistics for the table are up-to-date. If the statistics are not

current, this can be done by performing a load (with statistics set on), or by
performing an explicit UPDATE STATISTICS on the table.

4. Get the NACTIVE value for this dbspace from the SYSDBSPACES catalog table.
Since there is only one table (and its companion table, if there is one or more
long fields) in the dbspace, then the NACTIVE value indicates the number of
data pages this table is currently using.

5. Multiply the NACTIVE value by a factor representing the relationship between
the actual table size and this test table size. The result is an estimate of the
number of data pages the actual table requires.

Consider the following when modeling your data page requirements in this way:
v Design a test table large enough to cover at least several data pages.
v Before creating the test table in the test dbspace, drop the dbspace and acquire it

again. This ensures that previous use of the dbspace does not affect your
modeling results.

v Try to arrange the various lengths of the rows in a sequence as close as possible
to what you expect from your real table.

Estimating Using the Worst Case Method: This method is the safest method to
use; it will ensure that you have enough pages regardless of the distribution of the
rows in the table. However, it may overestimate your requirements.

To use this method you need to know the:
v Length of the longest row in the table
v Average length of a row in the table
v Number of rows in the table.

Then do the following:

Appendix A. Estimating Your Dbspace Requirements 227

1. Calculate the maximum row length (MAXROWLEN) by using the maximum
length of the VARCHAR and VARGRAPHIC columns instead of the average
length as shown in Table 28 on page 218.

2. Substituting MAXROWLEN for AVGROWLEN, perform steps 1 to 4 of the
formula for estimating the number of pages as shown in “Estimating the
Number of Data Pages” on page 221. This produces the Effective Page Size for
the MAXROWLEN (denoted EPSmax).

3. Estimate the average lengths of columns in your table and calculate the average
row length (AVGROWLEN) as described in Table 28 on page 218.

4. Calculate the worst case estimate using the following formula:
AVGROWLEN x Number of Rows

Worst Case = MINIMUM (Number of rows, --------------------------)
EPSmax - MAXROWLEN + 1

Example using the Worst Case Method:

Consider a 500,000 row table being loaded into a dbspace with PCTFREE=10.
Assume the overall AVGROWLEN value is 50 bytes. Assume the calculated
MAXROWLEN value is 110 bytes for this table.

Calculate the EPSmax value as follows:
40 x PCTFREE + MAXROWLEN = 40 x 10 + 110 = 510

The corresponding EPSmax is 3190.

Substitute the values in the worst case formula:
50 x 500000

MINIMUM (500000, --------------) = MINIMUM (500000, 8114.2)
3190 - 110 + 1

To store this table you need at most 8115 data pages.

Estimating Using the Splitting Method: This method assumes that you can
approximate the frequency of different ROWLENGTHs in the table to be stored.
This method is as follows:
1. Split the set of all rows into several ROWLENGTH groups and calculate page

requirements for each group as if it were a separate table using the formula
described in “Estimating the Number of Data Pages” on page 221.

2. Add the page requirements for the groups to estimate the total table page
requirements.

Try several different groupings of rows, making sure that each group is large
enough to cover several data pages. If groups of rows do not cover several data
pages, the estimate could be too high.

Different groupings will give different results. Select the highest overall page
estimate to ensure that your estimate includes a contingency.

Example Using the Splitting Method:

Consider a 2000 row table to be loaded into a dbspace with PCTFREE=0. Assume
the overall AVGROWLEN value to be 1000 bytes. Assume, also, that 25 percent of
the rows in the table are longer than 800 bytes, with an AVGROWLEN value =
2500 bytes. The remaining 75 percent of the rows are less than 800 bytes long, with
an AVGROWLEN value = 500 bytes.

228 Database Administration

We consider two groups of rows for this calculation:

Group 1
with 1500 rows and AVGROWLEN = 500

Group 2
with 500 rows and AVGROWLEN = 2500.

Perform the calculations described in “Estimating the Number of Data Pages” on
page 221 treating each group as a table.

For Group 1 with AVGROWLEN = 500 and PCTFREE = 0, the EPS is 4080.
Therefore we can fit 8 rows per page (4080/500 = 8.16) and we need 188 pages
(1500/8 = 187.5) to store the 1500 rows.
For Group 2 with AVGROWLEN = 2500 and PCTFREE = 0, the EPS is 2562.
Therefore we can fit 1 row per page (2562/2500 = 1.02) and we need 500 pages
(500/1 = 500) to store the 500 rows.

Adding these two page requirements together gives an overall estimate of 688 data
pages (188 + 500) to store the whole 2000 row table.

Compare this to the result if you used the formula for fixed length rows. Using
only the formula described in “Pages Required for Storing Tables with Fixed
Length Rows” on page 221 and the overall AVGROWLEN of 1000, the EPS is 4080.
Therefore we can fit 4 rows per page (4080/1000 = 4.08) and we need 500 pages
(2000/4 = 500) to store all 2000 rows. This is considerably less than the 688 pages
estimated. The real number of data pages required is likely between 500 and 688
depending on the order in which the rows are being stored in the dbspace.

Estimating the Number of Index Pages
Generally speaking, you should take the default allocation for index pages in the
dbspace (PCTINDEX=33). This is means that the number of index pages is
approximately DATA PAGES / 2. This leaves you considerable freedom to vary the
indexing you do on the tables in the dbspace. Another way of looking at this is
that if the number of index pages is more than half the number of data pages, you
may be trying to support too many indexes on the tables in the dbspace. As a
result, you may experience performance problems on INSERT, UPDATE, and
DELETE operations.

However, if the data in the dbspace is largely used for read only operations, you
may want to create a lot of different indexes. If this is the case, you may need
more index pages than is provided for by the default PCTINDEX value of 33
percent. For such read only (or read mostly) cases, you may want to do the
detailed analysis of index page requirements to determine the appropriate
PCTINDEX value based on the size of indexes you plan on supporting.

If the data in the dbspace is to have very few indexes with rather small key
lengths, then you may want to do the detailed analysis of index page requirements
to determine an appropriate PCTINDEX value that is smaller than the default.

The formula for calculating the appropriate PCTINDEX value is:
TOTAL INDEX PAGES

PCTINDEX = ---
HEADER PAGES + DATA PAGES + TOTAL INDEX PAGES

In this formula, TOTAL INDEX PAGES is the sum of the number of index pages
required for each planned index.

Appendix A. Estimating Your Dbspace Requirements 229

The next section provides the guidelines for estimating the number of index pages
required for an index.

Estimating the Size of an Index
Index storage is allocated in pages. Each page contains data for only one index.
The minimum storage required for any index is one page.

To estimate the amount of storage required for an index, you must consider the
type of information in the index key and the amount of information in the table
being indexed. The following table information must be considered for calculating
the size of an index:
v The number of rows in the table
v The length of a key value
v Whether the key is variable or fixed in length
v The number of distinct keys in the table

For indexes that are not unique, this result may be less than the total number of
rows in the table. Each entry in a leaf page of the index consists of a key value
and one or more row pointers, called Tuple Identifiers or TIDs, for the row
having this key value.
For unique indexes, each entry contains just one TID.
These entries are called clusters.

v The amount of free space (PCTFREE) defined for the index. The PCTFREE value
is the percentage of free space to be left on index pages during index creation.

For fixed length unique key indexes, the following calculations for index size will
be accurate. For variable length or non-unique indexes, the calculations may either
overestimate or underestimate the size of an index.

Generally, the size may be overestimated if:
v A large variable length column is the last column in the index or
v There are a large number of duplicates in the index.

The size may be underestimated if the varying length keys are not evenly
distributed. For example, if the ordering of the keys in the index is from shortest to
longest, then the lengths are not evenly distributed and space will be
underestimated.

To calculate the size of the index perform the following steps:
1. Calculate the Effective Index Page Size

The Effective Index Page Size (EIPS) is similar to the effective page size
calculated for data pages. The formula for index pages differs for fixed length
and variable length index keys.
For fixed length index keys:

EIPSmax = 4056 - (41 x PCTFREE)

For variable length index keys:
a. Calculate the maximum encoded length of each variable length column in

the index (in bytes).
For a short VARCHAR column, if it is the last column in the key,

VARCOL(n) = maximum length of column

Otherwise,

230 Database Administration

VARCOL(n) = (INTEGER((max length of column - 1) / 4) + 1) * 5

For a short VARGRAPHIC column, if it is the last column in the key,
VARCOL(n) = 2*(maximum length of column)

Otherwise,
VARCOL(n) = (INTEGER((2*max length of column-1)/4)+1) * 5

b. Calculate the maximum length of a key
KEYLENmax = the sum of the lengths of fixed columns (in bytes)

+ VARCOL(1) + ... + VARCOL(n)
+ 1 for the length of the key
+ 1 for each column that allows nulls

c. Use this KEYLENmax value to calculate the maximum length of a cluster
with 1 TID.

CLUSTERmax = KEYLENmax
+ 1 for number of TIDs
+ 4 for the TID

d. Use this CLUSTERmax value to calculate the minimum effective index
page size for leaf pages.

EIPSminleaf = 4056 - (41 x PCTFREE) - CLUSTERmax + 1

e. Use the KEYLENmax value again to calculate the maximum length of a
nonleaf pair.

PAIRLENmax = KEYLENmax
+ 3 for the page number
+ 4 (if index is not unique)

f. Use this PAIRLENmax value to calculate the minimum effective index page
size for nonleaf pages.

EIPSmin-nonleaf = 4056 - (41 x PCTFREE) - PAIRLENmax + 1

2. Calculate the average number of rows per key value.
The average number of rows identified in one cluster is:

NUMBER_KEYS = Number of distinct keys

ROWSPERCLUSTER = Number of rows in table

NUMBER_KEYS

If ROWSPERCLUSTER is greater than 255, then the key must be duplicated.
In this case, the following calculations must be done:

NUMBER_KEYS = (TRUNC [1 + (ROWSPERCLUSTER/255)]) x NUMBER_KEYS

Number of rows in table
ROWSPERCLUSTER = -----------------------

NUMBER_KEYS

3. Calculate the average length of a key value.
a. Calculate the average encoded length of each variable length column in

the index, if any, in bytes.
VARCOLavg(n) = (1.25 x average length of column) + 3

These numbers must be rounded up to integer values.

Once again, when determining the length of graphic data, allow 2 bytes
for each character.

b. Calculate the average length of a key in the index.

Appendix A. Estimating Your Dbspace Requirements 231

KEYLEN = the sum of the lengths of fixed columns (in bytes)
+ VARCOLavg(1) + ... + VARCOLavg(n)
+ 1 if there are any variable-length columns
+ 1 for each column that allows nulls

4. Calculate the cluster size for the index, using the value of ROWPERCLUSTER
from step 2 on page 231.

CLUSTERSIZE = 1 + KEYLEN + (4 x ROWSPERCLUSTER)

5. Calculate the number of keys that can be put on a leaf page, using the value
of CLUSTERSIZE from step 4.

#KEYSleaf = TRUNC [EIPS/CLUSTERSIZE]

where EIPS is EIPSmax for an index with fixed length keys or EIPSminleaf for
an index with variable length keys.

6. Calculate the number of leaf pages, using the the values of NUMBER_KEYS
from step 2 on page 231 and #KEYSleaf from step 5:

LEAF PAGES = TRUNC [1 + (NUMBER_KEYS/#KEYSleaf)]

7. Calculate the length of a nonleaf page entry with the value of KEYLEN from
step 3b on page 231.

PAIRLEN = KEYLEN + 3
+ 4 (if index is not unique)

8. Use the value of PAIRLEN from step 7 to calculate the number of keys that
can be put on a nonleaf page.

#KEYSnonleaf = TRUNC [EIPS/PAIRLEN]

where EIPS is EIPSmax for an index with fixed length keys or
EIPSmin-nonleaf for an index with variable length keys.

9. Calculate the number of nonleaf pages required at each level, using the value
of LEAF PAGES from step 6.

level = 1
NONLEAF PAGES(level)=

TRUNC [1 + (LEAF PAGES/KEYSnonleaf)]

While the number of nonleaf pages at the current level is greater than 1, do
the following:

level = level + 1
NONLEAF PAGES(level) =

TRUNC [1 + (NONLEAF PAGES(level-1)/KEYSnonleaf)]

10. Calculate the total number of index pages by adding the LEAF PAGES value
from step 6 and the nonleaf pages for every level as calculated in step 9.

INDEX PAGES = LEAF PAGES + NONLEAF PAGES(1) + ... + NONLEAF PAGES(n)

Estimating Internal Dbspace Size and DASD Needs for Sort Operations
Internal dbspaces are most commonly used as work areas for sorting data. It is
helpful to predict the amount of space needed to perform a sort, in order to
estimate how big your internal dbspaces should be.

This section will discuss how much space is required to perform a particular sort.
Since multiple users can be performing a sort concurrently, it is more difficult to
determine the maximum internal dbspace requirements for your database than for
a given sort. This maximum depends both on the expected size of a sort, as well as
how many sorts are expected to be occurring concurrently. You must also consider
non-sort usage of internal dbspaces, such as to contain materialized views or
intermediate query results. Refer to the DB2 Server for VM System Administration or

232 Database Administration

DB2 Server for VSE System Administration manual for more information about
internal dbspace usage, including guidelines for determining the number and size
of internal dbspaces for your database.

The size of internal dbspaces in a database is often dictated by the largest sort
operation possible in that database, such as the sort needed to create an index on
the largest table in the database.

When Do We Sort?
Sorting is performed whenever an operation requires that data be ordered or that
duplicate values be eliminated, and no appropriate index exists that provides the
necessary ordering. Even if an appropriate index exists, the Optimizer may decide
not to use it.

In most cases, it is readily apparent where a sort can occur. The following is a list
of all cases:
v Index creation, such as a result of the CREATE INDEX statement, the adding or

activating of a PRIMARY KEY or UNIQUE CONSTRAINT, or the reorganizing
of an invalid index. We sort on the index or key/constraint columns.

v UNION statement. We sort on the columns listed in the SELECT list of the
queries being unioned. The sort eliminates duplicate values. (No duplicate
elimination occurs for UNION ALL.)

v ORDER BY and GROUP BY clauses. Both these clauses request that data be
ordered. We sort on the columns or expressions (ORDER BY can sort on the
result of an expression in the SELECT list) listed in the clause.

v DISTINCT clause. This is another case of sorting to eliminate duplicate values.
We sort on the columns listed in the clause.

v Merge/scan (type 2) join. This type of join requires that the columns on which
we are joining be ordered. We sort on the join columns.

You can use the EXPLAIN command if you are unsure whether or not a particular
query performs a sort. If you query performs more than one of the above, then it
may perform multiple sorts. If you UNION or join more than two tables, another
sort may be performed for each additional table, since we UNION and join tables
two at a time.

For further information on sorting, refer to the DB2 Server for VSE & VM Diagnosis
Guide and Reference manual.

Internal Dbspace Characteristics
The characteristics of an internal dbspace are different from those of a permanent
dbspace:
v Each page is 4096 bytes.
v No free space is reserved on pages.
v There is no space at the end of a page reserved for pointers to each row on the

page, and the limit of 256 rows per page is removed.
v There is always exactly one header page.
v Pages of internal dbspaces are never shadowed when they are modified.

There are no free space classes for internal dbspace pages, since data is always
added at the end, and hence there is never a need to search for free space in which
to store a row. This avoids the space wastage which can occur due to the

Appendix A. Estimating Your Dbspace Requirements 233

granularity of free space classes (a row will be stored on a page in an internal
dbspace whenever the page has enough free bytes to hold the row).

You can see that internal dbspaces are much simpler than permanent dbspaces.
Calculating the number of pages needed to hold a certain amount of data is also
simpler.

Calculating Internal Dbspace Size Requirements
We will calculate the amount of space required to hold a copy of the working set
of data during a sort. Specifically, we will calculate the size of the initial working
set, since the working set can only get smaller due to the elimination of duplicate
values. In building the initial working set, we retrieve a portion of the input data
(enough to fill an internal sort buffer), sort it, and write the sorted portion to an
internal dbspace. Duplicates may be eliminated during the sort. We will not
consider the effects of duplicate elimination in these calculations, since these effects
are dependent on the order in which data is encountered.

The following steps calculate the size of a sort row. The sort row is made up
mostly of the columns by which we are ordering, that is the sort key, plus any
other columns which must appear in the result.
1. Calculate the average length of a sort key.

a. Calculate the average encoded length of each variable length ordering
column (in bytes). The average length should not include trailing blanks (if
any) since these blanks are not stored in the sort key.

VARCOLavg(n) = (1.25 x average length of varying-length
ordering column n) + 3

These numbers must be rounded up to integer values.

The encoding of varying-length values incurs an overhead of approximately
25 percent.

b. Calculate the average length of a sort key.
SORTKEYLEN = the sum of the lengths of fixed-length ordering columns

(in bytes)
+ VARCOLavg(1) + ... + VARCOLavg(n)
+ 1 for each ordering column that allows nulls

For index creation, the TID of the data row is part of the sort key/row. If
the sort is for index creation:

SORTKEYLEN = SORTKEYLEN + 4

2. Calculate the average length of a sort row. We add overhead for the sort row
header, plus add any non-ordering columns which must appear in the result.
There are no non-ordering columns for index creation. Non-ordering columns
are not encoded.

SORTROWLEN = SORTKEYLEN
+ 3 bytes (sort row header)
+ the sum of the lengths of fixed-length non-ordering columns

(in bytes)
+ the sum of the average lengths of varying-length non-ordering

columns (in bytes)
+ 1 for each non-ordering column which allows nulls

For cases other than index creation, where the sort key contains at least one
varying-length column, there will be the following additional overhead:

234 Database Administration

v A one-byte counter will indicate the number of varying-length key columns
containing trailing blanks. This counter is used even if none of the columns
contain trailing blanks. In this case it is set to zero.

SORTROWLEN = SORTROWLEN + 1

v In addition to the column counter, the number of trailing blanks that each
column originally had is recorded. If at least one column had trailing blanks,
then a one-byte counter is allocated for each varying-length column.

SORTROWLEN = SORTROWLEN + number of varying-length sort key columns

If the data does not contain trailing blanks, then this overhead is not
incurred.

3. Adjust for varying-length data.
For varying length sort rows, the order in which rows are encountered and
stored can affect the number of pages required. To account for this possibility,
we can use a method similar to the Effective Index Page Size used in
calculating the size of an index. Briefly, this method models the worst case
where the last sort row we try to insert into a page is the largest possible sort
row, and the page has one fewer bytes of free space available. This gives us our
maximum space wastage per page, and will yield the upper bound on the
number of pages we will use. To determine the Effective Internal Dbspace Page
Size (EIDPS), do the following:
a. For fixed-length data

EIDPS = 4080

b. For varying-length data, repeat the previous calculations to determine
SORTROWLEN, substituting the maximum length of varying-length
columns for the average length. This gives us MAX SORTROWLEN.

EIDPS = 4080 - (MAX_SORTROWLEN + 1)

The following steps will calculate the number of pages required to hold a copy of
all sort rows. This is the minimum size of internal dbspace that is required to
perform the sort.
1. First calculate how many rows will fit on a page.

ROWS_PER_PAGE = TRUNC [EIDPS/SORTROWLEN]

2. Determine the number of sort rows.
For index creation, the number of sort rows is the same as the number of rows
in the table. For cases where only a subset of the rows in a table participates in
a sort, then the number of participating rows must be estimated based on your
knowledge of the query and the contents of the table.

NROWS = number of rows expected to participate in the sort

3. Compensate for effect of sort buffering
A block of input rows is encoded and stored in a sort buffer. The contents of
this buffer are then sorted and written out to pages of an internal dbspace.
Since the buffer is large enough to fill several internal dbspace pages, and the
space in the buffer is contiguous while each internal dbspace page has a
header, then we must account for this in determining the number of pages
required.
a. Calculate how many rows are in the block of rows that would fill the sort

buffer.
ROWS_PER_BLOCK = TRUNC [40948 / SORTROWLEN]

b. Calculate how many internal dbspace pages would be filled by a block of
rows.

PAGES_PER_BLOCK = ROWS_PER_BLOCK / ROWS_PER_PAGE

Appendix A. Estimating Your Dbspace Requirements 235

This number must be rounded up to an integer value.
c. Calculate how many full blocks the expected number of sort rows would

generate.
FULL_BLOCKS = TRUNC [NROWS / ROWS_PER_BLOCK]

d. Calculate how many rows would be in the last (not full) block.
ROWS_LAST_BLOCK = NROWS - (ROWS_PER_BLOCK x FULL_BLOCKS)

4. Finally, using all the information we have derived so far, calculate the number
of pages required. We add one more page to account for the header page of the
internal dbspace.

NPAGES = (FULL_BLOCKS x PAGES_PER_BLOCK)
+ (ROWS_LAST_BLOCK / ROWS_PER_PAGE) ← round up
+ 1

For a sort to be successful, the internal dbspace must be defined to have at
least NPAGES pages.

Calculating Total Internal Dbspace and DASD Needs
So far we have calculated the size of the sort working set. After the initial working
set has been created, we then merge all the sorted portions to yield a final sorted
result. Multiple merge passes may occur before the final result is created. During
this process, two copies of the working set exist, in two internal dbspaces. For
successful completion of a sort, more than one internal dbspace must be available.

The final result may be smaller than intermediate results, due to such things as the
elimination of the three byte sort row header, and the decoding of varying-length
values in cases other than index creation. The amount of DASD required is
reduced only in the case where a single merge pass is performed; that is, when one
pass is made through the data from the initial working set to the final result. This
only occurs on sorts which are sufficiently small, or where the data is already
almost completely sorted.

When sorting for duplicate elimination, the merge process will remove duplicates.
As with the duplicate elimination which occurred during sorting, it is difficult to
predict the effect this will have. Note that, for calculating DASD requirements, we
are only interested in the duplicate elimination which would occur during the first
merge pass, since the second copy of the working set is created by this pass. The
completion of the first merge pass is the point at which our peak DASD usage
occurs.

We will not consider these cases, and calculate the amount of DASD required to
perform the sort as:

number of DASD pages = NPAGES x 2

For the sort to complete successfully, the storage pool to which the internal
dbspaces are assigned must have sufficient DASD pages available.

236 Database Administration

Appendix B. CMS EXECs

SQLINIT EXEC
The SQLINIT EXEC initializes a user machine for application server access. With
this EXEC, users specify the application server they wish to access and any special
options. Each user must run the SQLINIT EXEC.

Note: The user machine must be initialized regardless of whether you are
operating in single user mode or multiple user mode.

Initializing a User Machine
Before a user can run any DB2 Server for VM application program, use the DBS
Utility, run the preprocessors, or use ISQL:
1. The user machine must have read access to a database machine’s production

minidisk (Q-disk), read/write access to its own work minidisk (A-disk), and be
able to communicate with the database machine (by IUCV or APPC/VM).
For Information about providing minidisk access to user machines and
allowing user machines to communicate with the database machine, see the
DB2 Server for VM System Administration manual.

2. The user must log on and enter IPL CMS (if this was not done during the
logon procedure).

3. The user must initialize the user machine for application server access using
the SQLINIT EXEC. The syntax and options of the SQLINIT EXEC are
discussed below.

Note: Because the SQLINIT EXEC may issue the CMS NUCXLOAD and CMS
NUCXDROP commands, it should not be run in the CMS/DOS
environment.

Figure 59 on page 238 shows the format of the SQLINIT EXEC.

© Copyright IBM Corp. 1987, 2001 237

The parameters of the SQLINIT EXEC are as follows:

Dbname
specifies the application server to be accessed. For the DBNAME keyword, you
can use any initial substring (for example, D, DB, DBN, DBNA, or DBNAM). If
DBNAME is omitted, the name of the last application server specified is used
as a default. If SQLINIT cannot determine the last application server accessed,
you are prompted to reissue the SQLINIT EXEC with the DBNAME parameter
specified. The application server can be either:
v A DB2 Server for VM application server
v Any application server that supports IBM’s implementation of the

Distributed Relational Database Architecture (DRDA) protocol.

dcssID
specifies the name of the bootstrap package that contains the saved segment ID
of the RA and ISQL components. This parameter should be specified only if

��

$

SQLINIT

Dbname (server_name)
dcssID (dcss_id)

No
SYNChronous (Yes)

SQLDS
Protocol (AUTO)

DRDA
8

QryBlksize (integer)
No

DBCS (Yes)
CHARNAME (charname)

ISO
DATEformat (USA)

EUR
JIS
LOCal
ISO

TIMEformat (USA)
EUR
JIS
LOCal

Yes
WorkUnit (No)

00
TraceRA (nn)

0000
TraceDRRM (nnnn)

0
TraceCONV (n)
SSSNAME (string)

STack
QueRY
RESET

��

Figure 59. SQLINIT EXEC

238 Database Administration

you want to use a specific saved segment for the database manager code;
otherwise, it should be omitted. If you specify DCSSID, you must specify
DBNAME.

You can specify ID instead of DCSSID for the keyword. No other abbreviation
is valid. For more information about using saved segments for the database
manager code, refer to the DB2 Server for VM System Administration manual.

DCSSID identifies a bootstrap package that invokes RA or ISQL code that
resides in a discontiguous saved segment. If DCSSID is not specified, the
dcss_id value from the resid SQLDBN file on the production disk is used. If the
resid SQLDBN file is not available, and you are in a VM/ESA environment, the
dcss_id value from the SQLDCSID DEFAULT file (if available) is used. If
neither value is available, SQLDBA SQLRMBT and SQLDBA SQLISBT are
used. See “SQLINIT, SQLSTART, Bootstrap Modules and SQLDBN files” on
page 244 for more information on this topic.

Note: In a VM/ESA environment, resid may or may not be the same as
server_name.

SYNChronous
determines whether synchronous or asynchronous communication is used
between the user and database machines. Synchronous communication
performs better than asynchronous communication but has the following
restriction: you cannot use SQLHX or CANCEL to cancel SQL statements. The
only way to end an LUW is to use the DB2 Server for VM FORCE operator
command, or to re-IPL CMS.

Use synchronous communication primarily when running a well tested
production application against local application servers. The default value for
SYNCHRONOUS is NO.

Protocol
indicates the application requester access protocol to be used for
communicating with the application server.

If you specify the SQLDS option, the SQLDS protocol is used for
communication between a DB2 Server for VM application requester and a DB2
Server for VM application server. If this option is specified, the application
requester cannot connect to a non-DB2 Server for VM application server. Use
this option if both the application server and the application requester are part
of DB2 Server for VM system and both use the same default CCSIDs. SQLDS is
the default value.

Note: If PROTOCOL(SQLDS) is specified, the CCSID defaults set for the
application requester with the SQLINIT EXEC are not used; the CCSIDs
set for the application server are used.

If you specify the AUTO option, the application requester uses the SQLDS
protocol when communicating with a DB2 Server for VM application server
and the DRDA protocol when communicating with other application servers. If
both the application requester and the application server use AUTO protocol
but have different default CCSIDs, CCSID conversion is done correctly for
requests and replies. The AUTO option lets you access both like and unlike
systems without changing the PROTOCOL option and reissuing SQLINIT. You
should use this option in the following cases:
v The user needs access to both like and unlike systems.

Appendix B. CMS EXECs 239

v The CCSID defaults are not the same on the application server and the
application requester. For correct CCSID conversion the application server
must also use AUTO protocol.

v You need an LUWID associated with each task so that you can easily trace a
task back to its originating site.

If you specify the DRDA option, the application requester will use the DRDA
protocol when communicating with a like or unlike application server. If the
database machine is running code prior to Version 3 Release 3, the SQLDS
protocol is forced for that connection. Of the three options, DRDA has the
greatest performance overhead and storage requirements.

Notes:

1. The PROTOCOL value is ignored in single user mode and the SQLDS
protocol is used for the connection.

2. The DRDA and AUTO options can only be specified if:
v The DRDA facility is installed on the DB2 Server for VM application

requester
v The other application server to which you want to connect supports

IBM’s implementation of the DRDA protocol.

QryBlksize
specifies the block size of the returned rows of data when blocking performs
FETCHes. The number is specified in denominations of 1K and can range
anywhere from 1K to 32K. The default value is 8K.

Note: The QRYBLKSIZE parameter is ignored when the SQLDS protocol is
used for the connection.

DBCS
specifies whether DBCS character handling of SO/SI pairs is done or not. This
value is used by ISQL, the DBS Utility, and the preprocessors instead of the
value currently found in the SYSTEM.SYSOPTIONS table. If NO is specified,
keywords are converted from lowercase to uppercase by ISQL and the DBS
Utility. If YES is specified, error checking is done on DBCS data by ISQL, the
DBS Utility, and the preprocessors. The default value for DBCS is NO.

CHARNAME
specifies the CCSID values (CCSIDSBCS, CCSIDMIXED, and CCSIDGRAPHIC)
used by the application requester, and is used to determine how to fold
characters from lowercase to uppercase. Its value must be a valid character
name, such as those found in the CHARNAME column of the
SYSTEM.SYSCCSIDS table. CHARNAME is supported for the DRDA and
AUTO PROTOCOL options. The DB2 Server for VM product is shipped with
CHARNAME of the user machine initially set to INTERNATIONAL.

The SQLPREP EXEC, the DBS Utility, and the Resource Adapter use the
CHARNAME value for folding support in both single user mode and multiple
user mode. See the DB2 Server for VSE & VM Application Programming manual
for information on the SQLPREP EXEC.

DATEformat
specifies the date format. The default is ISO. This parameter is for information
only. It represents the date format in which the user wants to see date values
returned.

240 Database Administration

TIMEformat
specifies the time format. The default is ISO. This parameter is for information
only. It represents the time format in which the user wants to see time values
returned.

WorkUnit
specifies whether CMS Work Unit support is to be used for an application. The
default is Yes.

TraceRA
specifies the parts of the Resource Adapter (RA) that are to be traced and the
level of the trace. The positional digits correspond to the following Resource
Adapter subcomponents and functions:
v RA control flow
v Communications.

When 0 is specified, tracing is turned off. When 1 is specified, tracing is done
in limited detail. When 2 is specified, tracing is done in greater detail. The
default value for TRACERA is 00.

Note: A data stream trace is obtained by tracing the communications
subcomponent.

The following CMS FILEDEF command was entered to define the default trace
output file:

FILEDEF ARITRAC TAP2 SL (BLKSIZE 4096 NOCHANGE PERM

You can enter a different CMS FILEDEF command to override the default. The
options you specify on your CMS FILEDEF command will not be overridden
unless you reenter a CMS FILEDEF command to change them.

Note: The trace output, requested using the TRACERA, TRACEDRRM, and
TRACECONV parameters, is stored in a single file.

TraceDRRM
specifies the parts of the DRRM component that are to be traced and the level
of the trace. The positional digits correspond to the following DRRM
subcomponents and functions:
v Parser
v Generator
v Dictionary
v RDIIN Manager.

When 0 is specified, tracing is turned off. When 1 is specified, tracing is done
in limited detail. When 2 is specified, tracing is done in greater detail. The
default value for TRACEDRRM is 0000.

The following CMS FILEDEF command was entered to define the default trace
output file:

FILEDEF ARITRAC TAP2 SL (BLKSIZE 4096 NOCHANGE PERM

You can enter a different CMS FILEDEF command to override the default. The
options you specify on your CMS FILEDEF command will not be overridden
unless you reenter a CMS FILEDEF command to change them.

Appendix B. CMS EXECs 241

Notes:

1. The TRACEDRRM parameter is ignored when the SQLDS protocol is used
for the connection.

2. The trace output, requested using the TRACERA, TRACEDRRM, and
TRACECONV parameters is stored in a single file.

TraceCONV
specifies that the data conversion component is to be traced and the level of
the trace.

When 0 is specified, tracing is turned off. When 1 is specified, tracing is done
in limited detail. When 2 is specified, tracing is done in greater detail. The
default value for TRACECONV is 0.

The following CMS FILEDEF command was entered to define the default trace
output file:

FILEDEF ARITRAC TAP2 SL (BLKSIZE 4096 NOCHANGE PERM

You can enter a different CMS FILEDEF command to override the default. The
options you specify on your CMS FILEDEF command will not be overridden
unless you reenter a CMS FILEDEF command to change them.

Note: The trace output, requested using the TRACERA, TRACEDRRM, and
TRACECONV parameters, is stored in a single file.

SSSNAME
specifies the name of the status shared segment. This parameter is optional.
For more information on defining the status shared segment for the DB2 Server
for VM system, refer to the DB2 Server for VM System Administration manual.

STack
places all values currently set for the parameters of the SQLINIT EXEC, except
DCSSID, onto the CMS stack in the same sequence as shown for QUERY.

QueRY
displays all values currently set for the parameters of the SQLINIT EXEC,
except DCSSID. It also displays the resource adapter code release level, CCSID
values, LDATELEN value, and LTIMELEN value. (See “SQLGLOB EXEC” on
page 246 for information about LDATELEN and LTIMELEN.)

Note: The value returned for CHARNAME is valid only if the value specified
for the PROTOCOL parameter is not SQLDS. If the PROTOCOL
parameter value is SQLDS, the CHARNAME value returned for the
application requester is the same as the CHARNAME value of the
application server to which it is connected (even if they are not the
same).

The following is sample output from an SQLINIT QUERY.

242 Database Administration

ARI0717I Start SQLINIT EXEC: 05/29/92 14:52:40 EDT.
SELECTED TABLE IS: SQL/DS
DBNAME=SQLDBA
DBCS=NO
SYNCHRONOUS=NO
DATEFORMAT=ISO
TIMEFORMAT=ISO
TRACERA=00
LDATELEN=0
LTIMELEN=0
RELEASE=3.3.0
WORKUNIT=NO
QRYBLKSIZE=8
PROTOCOL=SQLDS
CHARNAME=INTERNATIONAL
CCSIDSBCS=500
CCSIDMIXED=0
CCSIDGRAPHIC=0
TRACEDRRM=0000
TRACECONV=0
SSSNAME=
ARI0796I End SQLINIT EXEC: 05/29/92 14:52:40 EDT

RESET
resets all values currently set for the parameters of the SQLINIT EXEC, except
DCSSID. The next time the SQLINIT EXEC is invoked, the defaults are used.

The SQLINIT EXEC parameter values are stored in the CMS LASTING GLOBALV
file. Each time the SQLINIT EXEC is run, the parameter values are appended to
the LASTING GLOBALV file. To maintain the LASTING GLOBALV file size,
duplicate entries can be removed. Subsequently, when the user reenters the
SQLINIT EXEC, the parameter value is established as follows:
1. If the user specifies a parameter on the SQLINIT EXEC, that parameter value is

used.
2. If a parameter is not specified on the SQLINIT EXEC, the value stored in the

LASTING GLOBALV file is used. That is, the default is the value used on the
most recent SQLINIT EXEC.

3. If there are no values in the LASTING GLOBALV file (no values were specified
on a previous SQLINIT EXEC, or SQLINIT RESET has reset the entries to
blanks in the LASTING GLOBALV file), the application server-wide defaults
established by the SQLGLOB EXEC are used.

4. If nothing is available, that is, if no application server-wide defaults established
by the SQLGLOB EXEC exist, the SQLINIT EXEC will supply hardcoded
defaults, except for the DBNAME parameter.

The parameter values remain in the LASTING GLOBALV file until explicitly
changed through a subsequent SQLINIT EXEC with new parameters. SQLINIT
RESET resets the entries to blanks, for any SQLINIT EXEC parameter values
currently stored in the LASTING GLOBALV file.

The LASTING GLOBALV file is left on the user’s A-disk. This means that users do
not have to run the SQLINIT EXEC every time they log on. (This also means that
users do not need to run the SQLINIT EXEC from their PROFILE EXECs.) The
only times the user needs to rerun the SQLINIT EXEC are:
v When the user wants to change the default application server
v When the user wants to change any of the SQLINIT EXEC parameter values.

Appendix B. CMS EXECs 243

SQLINIT, SQLSTART, Bootstrap Modules and SQLDBN files
The SQLINIT EXEC provides for a user’s program to communicate with the
database machine by copying to the user’s A-disk the following bootstraps:

dcss-id SQLRMBT Q ---> ARISRMBT MODULE A
dcss-id SQLISBT Q ---> ARISISBT MODULE A

The bootstrap modules reside on the production minidisk (Q-disk).

Prior to Version 3 Release 1, the SQLINIT EXEC used the ARISRMBT module to
obtain default SQLINIT EXEC values. The SQLINIT EXEC now uses the LASTING
GLOBALV file instead of this bootstrap module to obtain default values. The
bootstrap module is still produced to maintain compatibility with load modules
generated prior to Version 3 Release 1.

The ARISRMBT module is for the resource adapter, but it is incomplete. The
resource adapter needs to know the name of the database machine with which it is
to communicate.

Note: In a VM/ESA environment, the resource adapter only needs to know the
database (resource) name.

The resource adapter also needs to know the default DCSSID. At this time
ARISRMBT does not contain this information. The SQLINIT EXEC uses a CMS file
called a SQLDBN file to locate information about a database. The SQLDBN file is
created by the SQLSTART EXEC. When the SQLSTART EXEC is invoked, it starts
the database manager code in a particular machine to access a particular
application server. The SQLSTART EXEC creates a CMS file on the production
minidisk to record this information (if the CMS file does not already exist). The
name of the file is taken from the DBNAME parameter if the resid is the same as
the server-name; otherwise, the resid will be resolved using the RESID NAMES file.
The filetype is SQLDBN. So, suppose you log on the SQLDBA database machine
and enter:

SQLSTART DBNAME(DB01) DCSSID(MYBOOT)

The SQLSTART EXEC accesses or creates the DB01 SQLDBN Q file. DB01 contains
the following information:
1. The server-name of the application server being accessed (DB01)
2. The name of the database machine that is accessing the application server

(SQLDBA)

Note: The name of the database machine is not needed to complete the
bootstrap in a VM environment.

3. The name of the bootstrap or DCSSID being used (MYBOOT).

When the database machine is shut down, the resid SQLDBN file remains on the
production minidisk. (The name of the file is taken from the DBNAME parameter
if the resid is the same as the server-name; otherwise, the resid will be resolved using
the RESID NAMES file.) It is updated whenever a database machine is started to
access the application server and one of the following is true:
v The DCSSID specified on the SQLSTART EXEC is different from the one stored

in the SQLDBN file
v The AMODE specified on the SQLSTART EXEC is different from the one stored

in the SQLDBN file

244 Database Administration

v The DBNAME specified on the SQLSTART EXEC is different from the one stored
in the SQLDBN file

v The database machine trying to access the application server is different from
the one that last created the SQLDBN file.

The SQLINIT EXEC uses these SQLDBN files to complete the resource adapter
bootstrap module. That is, the SQLINIT EXEC looks for the SQLDBN file having
the resid that corresponds to the DBNAME parameter. If the DBNAME is greater
than 8 bytes, it uses the SQLDCSID DEFAULTS file. Otherwise, the SQLINIT EXEC
reads the information in the SQLDBN file and then generates the complete
resource adapter bootstrap on the work minidisk:

ARISRMBT MODULE A resid SQLDBN Q ARISRMKC TEXT Q

|
V

ARISRMBT MODULE A

The new module is called ARISRMBT. It will replace any existing ARISRMBT
MODULE on the user’s A-disk. ARISRMBT serves two purposes:
v It identifies where the resource adapter code is to be loaded
v It tells the resource adapter where to direct its communications.

Note the resid SQLDBN files will not be available to user machines that:
v Access an application server that resides on a different processor
v Access an application server that does not own the Production (Q) minidisk to

which the user has a link.

If the SQLDBN file is not available, the SQLINIT EXEC looks for the SQLDCSID
DEFAULT file for a default saved segment (DCSSID). If the SQLDBN file or
SQLDCSID DEFAULT file is not found on the Production (Q) disk, the default
SQLDBA SQLRMBT and SQLDBA SQLISBT bootstrap modules are used. If the
dcss-id from the default SQLDBN file is not the one desired, specify the dcss-id on
the SQLINIT EXEC to override it.

Note: The SQLDCSID DEFAULT file is only used in a VM environment. The
SQLDCSID DEFAULT file is created by the SQLGENLD EXEC. See the DB2
Server for VM System Administration manual for more information on saved
segments.

The ISQL bootstrap module, on the other hand, only identifies where the ISQL
code is to be loaded. Because ISQL uses the resource adapter also, there is no need
to identify the database machine in the ISQL bootstrap.

When an application initially calls the database manager, the bootstraps are
executed to load the resource adapter and to help establish communication with
the database machine. The database name is used for APPC/VM communication in
VM environments.

Note that the bootstrap modules are left on the user’s A-disk. This means that a
user does not have to run the SQLINIT EXEC every time he or she logs on. (This
also means that users do not need to run the SQLINIT EXEC from their PROFILE
EXECs.) The only times the user needs to rerun SQLINIT are:
v When the user wants to change the default application server. If for any reason

the bootstraps are not valid, it is detected and a message is issued to the user.

Appendix B. CMS EXECs 245

v When the user wishes to use bootstraps that have been defined after running the
SQLINIT EXEC.
For example, if bootstrap modules are defined, the user runs the SQLINIT EXEC,
and then new bootstrap modules are defined, the user will have to run the
SQLINIT EXEC again to take advantage of the new bootstrap modules.

When the DBNAME parameter is not specified on the SQLINIT EXEC, the name of
the application server last accessed will be obtained from the ARISRMBT module
residing on the user’s A-disk. New versions of the ARISRMBT and ARISISBT
modules will then be generated to reflect the information stored in the SQLDBN
file for that application server.

You can run the SQLINIT EXEC any number of times from within another EXEC.

SQLGLOB EXEC
Use the SQLGLOB EXEC to set the default parameter values for the SQLINIT
EXEC, except DCSSID, for your local DB2 Server for VM application server. The
default values will only be used for application requests that have linked to the
production disk of the local application server. The syntax of the SQLGLOB EXEC
is similar to that of the SQLINIT EXEC.

The SQLGLOB EXEC creates a file on the production disk, called SQLGLOB
DEFAULTS, containing all the default values for the SQLINIT EXEC, except
DCSSID. If a user runs the SQLINIT EXEC without specifying some of the
parameter values and these values are not stored in the LASTING GLOBALV file,
then the missing parameter values are taken from the SQLGLOB DEFAULTS file
that was created with the SQLGLOB EXEC. The syntax of the SQLGLOB EXEC is
shown in Figure 60 on page 247.

246 Database Administration

The parameters of the SQLGLOB EXEC are as follows:

Dbname
specifies the application server to be accessed. For the DBNAME keyword, you
can use any initial substring (for example, D, DB, DBN, DBNA, or DBNAM). If
DBNAME is omitted, the name of the last application server specified is used
as a default. The application server can be either:
v A DB2 Server for VM application server
v Any application server that supports IBM’s implementation of the

Distributed Relational Database Architecture (DRDA) protocol.

��

$

SQLGLOB

Dbname (server_name)
No

SYNChronous (Yes)
SQLDS

Protocol (AUTO)
DRDA

8
QryBlksize (integer)

No
DBCS (Yes)
CHARNAME (charname)

ISO
DATEformat (USA)

EUR
JIS
LOCal
ISO

TIMEformat (USA)
EUR
JIS
LOCal

0
LDATELEN (integer)

0
LTIMELEN (integer)

Yes
WorkUnit (No)

00
TraceRA (nn)

0000
TraceDRRM (nnnn)

0
TraceCONV (n)
SSSNAME (string)

STack
QueRY
RESET

��

Figure 60. SQLGLOB EXEC

Appendix B. CMS EXECs 247

Note: Access to non-DB2 Server for VM application servers is only possible
if the DRDA facility is installed on the DB2 Server for VM application
requester.

SYNChronous
determines whether synchronous or asynchronous communication is used
between the user and database machines. Synchronous communication
performs better than asynchronous communication but has the following
restriction: you cannot use SQLHX or CANCEL to cancel SQL statements. The
only ways to end an unwanted LUW is to use the FORCE command, or to
re-IPL CMS.

Use synchronous communication primarily when running a well tested
production application against local application servers. The default value for
SYNCHRONOUS is NO.

Protocol
indicates the application requester access protocol to be used for
communicating with the application server.

If you specify the SQLDS option, the SQLDS protocol is used for
communication between a DB2 Server for VM application requester and a DB2
Server for VM application server. If this option is specified, the application
requester cannot connect to a non-DB2 Server for VM application server. Use
this option if both the application server and the application requester are part
of DB2 Server for VM system and both use the same default CCSIDs. SQLDS is
the default value.

Note: If PROTOCOL(SQLDS) is specified, the CCSID defaults set for the
application requester with the SQLINIT EXEC are not used; the CCSIDs
set for the application server are used.

If you specify the AUTO option, the application requester uses the SQLDS
protocol when communicating with DB2 Server for VM application servers and
the DRDA protocol when communicating with other application servers. If
both the application requester and the application server use AUTO protocol
but have different default CCSIDs, CCSID conversion is done for requests and
replies. The AUTO option lets you access both like and unlike systems without
changing the PROTOCOL option and reissuing SQLINIT. You should use this
option in the following cases:
v The user needs access to both like and unlike systems.
v The CCSID defaults are not the same on the application server and the

application requester. For correct CCSID conversion the application server
must also use AUTO protocol.

v You need an LUWID associated with each task so that you can easily trace a
task back to its originating site.

If you specify the DRDA option, the application requester will use the DRDA
protocol when communicating with a like or unlike application server. If the
database machine is running code prior to Version 3 Release 3, the SQLDS
protocol is forced for that connection. Of the three options, DRDA has the
greatest performance overhead and storage requirements.

Notes:

1. The PROTOCOL value is ignored in single user mode and the SQLDS
protocol is used for the connection.

2. The DRDA and AUTO options can only be specified if:

248 Database Administration

v The DRDA facility is installed on the DB2 Server for VM application
requester

v The other application server to which you want to connect supports
IBM’s implementation of the DRDA protocol.

QryBlksize
specifies the block size of the returned rows of data when blocking performs
FETCHes. The number is specified in denominations of 1K and can range
anywhere from 1K to 32K. The default value is 8K.

Note: The QRYBLKSIZE parameter is ignored when the SQLDS protocol is
used for the connection.

DBCS
specifies whether DBCS character handling of SO/SI pairs is done or not. This
value is used by ISQL, the DBS Utility, and the preprocessors instead of the
value currently found in the SYSTEM.SYSOPTIONS table. If NO is specified,
keywords are converted from lowercase to uppercase by ISQL and the DBS
Utility. If YES is specified, error checking is done on DBCS data by ISQL, the
DBS Utility, and the preprocessors. The default value for DBCS is NO.

CHARNAME
specifies the CCSID values (CCSIDSBCS, CCSIDMIXED, and CCSIDGRAPHIC)
used by the application requester, and determines how to fold characters from
lowercase to uppercase. Its value must be a valid character name, such as those
found in the CHARNAME column of the SYSTEM.SYSCCSIDS table.
CHARNAME is supported for the DRDA and AUTO PROTOCOL options. The
DB2 Server for VM product is shipped with CHARNAME of the user machine
initially set to INTERNATIONAL.

The SQLPREP EXEC, the DBS Utility, and the Resource Adapter use the
CHARNAME value for folding support in both single user mode and multiple
user mode. See the DB2 Server for VSE & VM Application Programming manual
for information on the SQLPREP EXEC.

DATEformat
specifies the date format. The default is ISO. This parameter is for information
only. It represents the date format in which the user wants to see date values
returned.

TIMEformat
specifies the time format. The default is ISO. This parameter is for information
only. It represents the time format in which the user wants to see time values
returned.

LDATELEN
gives the length of the local date format. The values may range from 10 to 254,
and 0. The default is 0, which indicates that LOCAL format is not available.

LTIMELEN
gives the length of the local time format. The values may range from 8 to 254,
and 0. The default is 0, which indicates that LOCAL format is not available.

WorkUnit
specifies whether CMS Work Unit support is to be used for an application. The
default is Yes. CMS Work Units are supported in VM environments only.

TraceRA
specifies the parts of the Resource Adapter (RA) that are to be traced and the
level of the trace. The positional digits correspond to the following Resource
Adapter subcomponents and functions:

Appendix B. CMS EXECs 249

v RA control flow
v Communications.

When 0 is specified, tracing is turned off. When 1 is specified, tracing is done
in limited detail. When 2 is specified, tracing is done in greater detail. The
default value for TRACERA is 00.

The following CMS FILEDEF command was entered to define the default trace
output file:

FILEDEF ARITRAC TAP2 SL (BLKSIZE 4096 NOCHANGE PERM

You can enter a different CMS FILEDEF command to override the default. The
options you specify on your CMS FILEDEF command will not be overridden
unless you reenter a CMS FILEDEF command to change them.

Note: The trace output, requested using the TRACERA, TRACEDRRM, and
TRACECONV parameters is stored in a single file.

TraceDRRM
specifies the parts of the DRRM component that are to be traced and the level
of the trace. The positional digits correspond to the following DRRM
subcomponents and functions:
v Parser
v Generator
v Dictionary
v RDIIN Manager.

When 0 is specified, tracing is turned off. When 1 is specified, tracing is done
in limited detail. When 2 is specified, tracing is done in greater detail. The
default value for TRACEDRRM is 0000.

The following CMS FILEDEF command was entered to define the default trace
output file:

FILEDEF ARITRAC TAP2 SL (BLKSIZE 4096 NOCHANGE PERM

You can enter a different CMS FILEDEF command to override the default. The
options you specify on your CMS FILEDEF command will not be overridden
unless you reenter a CMS FILEDEF command to change them.

Notes:

1. The TRACEDRRM parameter is ignored when the SQLDS protocol is used
for the connection.

2. The trace output, requested using the TRACERA, TRACEDRRM, and
TRACECONV parameters is stored in a single file.

TraceCONV
specifies that the data conversion component is to be traced and the level of
the trace.

When 0 is specified, tracing is turned off. When 1 is specified, tracing is done
in limited detail. When 2 is specified, tracing is done in greater detail. The
default value for TRACECONV is 0.

The following CMS FILEDEF command was entered to define the default trace
output file:

FILEDEF ARITRAC TAP2 SL (BLKSIZE 4096 NOCHANGE PERM

250 Database Administration

You can enter a different CMS FILEDEF command to override the default. The
options you specify on your CMS FILEDEF command will not be overridden
unless you reenter a CMS FILEDEF command to change them.

Note: The trace output, requested using the TRACERA, TRACEDRRM, and
TRACECONV parameters is stored in a single file.

SSSNAME
specifies the name of the status shared segment. This parameter is optional,
and is intended for use with products such as the IBM SystemView
Information Warehouse DataHub Support/VM software. For more information
on defining the status shared segment for the DB2 Server for VM system, refer
to the DB2 Server for VM System Administration manual.

STack
places all values currently set for the parameters of the SQLGLOB EXEC onto
the CMS stack in the same sequence as shown for QUERY.

QueRY
displays all values currently set for the parameters of the SQLGLOB EXEC. It
also displays the resource adapter code release level and CCSID values. The
following is sample output from an SQLGLOB QUERY.

ARI0717I Start SQLGLOB EXEC: 05/29/92 10:27:36 EDT.
DBNAME=SQLDBA
DBCS=NO
SYNCHRONOUS=NO
DATEFORMAT=ISO
TIMEFORMAT=ISO
TRACERA=00
LDATELEN=0
LTIMELEN=0
RELEASE=3.3.0
WORKUNIT=NO
QRYBLKSIZE=8
PROTOCOL=SQLDS
CHARNAME=INTERNATIONAL
CCSIDSBCS=500
CCSIDMIXED=0
CCSIDGRAPHIC=0
TRACEDRRM=0000
TRACECONV=0
SSSNAME=
ARI0796I End SQLGLOB EXEC: 05/29/92 10:27:36 EDT

RESET
resets all values currently set for the parameters of the SQLGLOB EXEC. The
next time the SQLGLOB EXEC is run, the defaults are used.

SQLCIREO EXEC
This EXEC reorganizes the indexes on the catalog tables. The following diagram
shows the format of the SQLCIREO EXEC.

�� SQLCIREO Dbname (dbname)
dcssID (ssid) PARM (parameter)

��

Figure 61. SQLCIREO EXEC

Appendix B. CMS EXECs 251

Dbname
specifies the name of the database for which you want to reorganize the
catalog indexes. Any initial substring for DBNAME can be used as the
keyword (for example DB or D).

dcssID
specifies the name of a bootstrap package that identifies a saved segment. You
can use DCSSID or ID for the keyword. If not specified, DCSSID defaults to
SQLDBA. The SQLDBA bootstrap package causes the database manager code
to be loaded into the DMSFREE area.

PARM
specifies additional DB2 Server for VM initialization parameters. If you specify
the PARM parameter, it must follow the other SQLCIREO parameters.

The valid initialization parameters are:
ARCHPCT=n
CHARNAME=name
CHKINTVL=n
DUMPTYPE=F|N|P
LOGMODE=A|L|N|Y
NCSCANS=n
NDIRBUF=n
NPAGBUF=n
PARMID=name
SLOGCUSH=n
SOSLEVEL=n
TRACCONV=n
TRACDBSS=nnnnnnnnnnn
TRACDRRM=nnnn
TRACDSC=nn
TRACEBUF=n
TRACRDS=nnnnnnn
TRACWUM=n
TRACSTG=n

Initialization parameters are described in the DB2 Server for VM System
Administration manual and the DB2 Server for VSE & VM Operation manual.

SQLCIREO automatically supplies the initialization parameters DBNAME
(based on what you supply in the EXEC parameter DBNAME), SYSMODE=S,
and STARTUP=I.

To avoid the processing involved in switching log modes, use the same
LOGMODE that you normally use.

Because the catalog index reorganization utility runs in single user mode, the
only way to trace it is with the TRACDBSS, TRACDSC, and TRACWUM
initialization parameters. (The TRACE operator command cannot be used in
single user mode.)

If you are using tracing, you may want to enter your own CMS FILEDEF and
LABELDEF commands before invoking SQLCIREO. These optional CMS
FILEDEF and LABELDEF commands are described in the VM/ESA: CMS
Application Development Reference for your VM system.

For example, to reorganize the indexes for the PRODX database, you might enter:

252 Database Administration

SQLCIREO D(PRODX) PARM(LOGMODE=A)

The catalog index reorganization utility directs messages to SYSPRINT. If you do
not supply a FILEDEF command for SYSPRINT, SQLCIREO assigns SYSPRINT to
the terminal. This FILEDEF command directs the utility’s messages to the CMS file
REORG PRT A:

FILEDEF SYSPRINT DISK REORG PRT A (RECFM FBA LRECL 121 BLOCK 1210

The utility prints informational messages that describe what actions it has taken.
Packages are not invalidated if they use an index reorganized by the SQLCIREO
utility.

If the catalog index reorganization utility abnormally ends, all changes it has made
to the database are rolled back. You should rerun the utility after correcting the
problem.

SQLDBID EXEC
The SQLDBID EXEC displays the name of the default application server that has
been established by the SQLINIT EXEC.

Figure 62 shows the format of the SQLDBID EXEC.

The SQLDBID EXEC resides on the production minidisk. The SQLDBID EXEC
displays the name of the default application server that will be accessed if the
resource adapter bootstrap on the A-disk is used.

The SQLDBID EXEC does no more than display information. If the name of the
application server displayed is not the one you want to access, you must rerun the
SQLINIT EXEC.

If you specify the LIFO or FIFO parameters, the information provided by the
SQLDBID EXEC is stacked onto the most recently created buffer of the program
stack (system provided data queue). If you specify the FIFO parameter, the
information is stacked on a first in, first out basis. If you specify the LIFO
parameter, the information is stacked on a last in, first out basis. If neither
parameter is specified, message ARI0320I, specifying the application server name,
is issued.

SQLRMEND EXEC
The SQLRMEND EXEC manages the communication links between an application
program and an application server. It does this in two ways:
v If you have more than one program called from an EXEC, SQLRMEND can

ensure the integrity of each program by dropping the link used by the current
program, or dropping the resource adapter code which drops all links between
all programs and all application servers they access

�� SQLDBID
LIFO
FIFO

��

Figure 62. SQLDBID EXEC

Appendix B. CMS EXECs 253

v If you have one program, SQLRMEND can drop the resource adapter code to
free storage from your virtual machine.

v If your program runs the CMS subset, a ROLLBACK or COMMIT of all LUWs is
prevented. This is to ensure that any LUWs in the native CMS MODE are not
affected.

Usually the resource adapter code and control blocks are not dropped and
outstanding work is not committed until the end of the VM command. When
programs are invoked from within EXECs, the “end of command” is at the end of
the EXEC, not the end of the program. If you want to drop the resource adapter
code or perform COMMIT/ROLLBACK processing at the end of a program (not at
the end of the EXEC), you must run the SQLRMEND EXEC. Figure 63 shows the
format of the SQLRMEND EXEC.

The SQLRMEND EXEC resides on the production minidisk.

The SQLRMEND EXEC can be used to drop the DB2 Server for VM resource
adapter code and its control blocks from within the DMSFREE (user free storage)
area of a user’s virtual machine. It allows users who invoke more than one
program from within an EXEC to free the storage used by the resource adapter.
The storage can then be used by other programs.

The SQLRMEND EXEC can also be used to perform COMMIT/ROLLBACK
processing on all outstanding work. It allows users who invoke more than one
program from within an EXEC to COMMIT or ROLLBACK all outstanding work
before the next program is executed.

You may have separate logical units of work active at one time. You could do this
by having one or more programs running in separate CMS Work Units. When you
use SQLRMEND in this situation, the second option (RELEASE, KEEP, or ALL)
determines which CMS Work Units are affected.

Note: You cannot use COMMIT ALL or ROLLBACK ALL in CMS subset mode to
prevent the user from affecting any work done previously in a normal CMS
mode. The SQLRMEND EXEC will not allow these parameters in CMS
subset mode.

COMMIT RELEASE
is the default. Specifies the currently active LUW within the active work unit is
to be committed, the communication link to be released. Resource adapter code
is dropped only if there is just one CMS Work Unit.

If you have more than one CMS Work Unit, only the current LUW is
committed, and the link between the program and the database it is accessing
is dropped.

COMMIT KEEP
specifies the active LUW within the active work unit is to be committed and
the communication link and the resource adapter code are to be kept.

��
COMMIT

SQLRMEND ROLLBACK
RELEASE
KEEP
ALL

��

Figure 63. SQLRMEND EXEC

254 Database Administration

COMMIT ALL
specifies all active LUWs for all suspended and active work units are to be
committed, the communication link(s) to be released, and the resource adapter
code is to be dropped.

ROLLBACK RELEASE
specifies the active LUW in the active work unit is to be rolled back and the
communication link is to be released. Resource adapter code is dropped only if
there is just one CMS Work Unit.

If you have more than one CMS Work Unit, the current link between the
program and the application server it is accessing is dropped, and the current
logical unit of work is rolled back.

ROLLBACK KEEP
specifies the currently active LUW in the active work unit is to be rolled back
and that the communication link and the resource adapter code are to be kept.

ROLLBACK ALL
specifies all active LUWs for all suspended and active work units are to be
rolled back, the communication link(s) to be released, and the resource adapter
code is to be dropped.

COMMIT
is equivalent to COMMIT RELEASE.

RELEASE
is equivalent to COMMIT RELEASE.

ROLLBACK
is equivalent to ROLLBACK RELEASE.

KEEP
is equivalent to COMMIT KEEP.

ALL
is equivalent to COMMIT ALL.

The KEEP option will keep the communication link. Therefore if you want to
access an application server again from within the EXEC, your next program will
be able to use the same SQL connection (user ID and application server) without
issuing an explicit CONNECT.

Unless you are maintaining more than one CMS Work Unit, the RELEASE option
will drop the communication link and the resource adapter code. Only the storage
used for the resource adapter control blocks will be freed. If you want to access the
DB2 application server again from within the EXEC, you do not need to enter
anything to get the resource adapter code back into storage. Just invoke the DB2
Server for VM application. The resource adapter code will automatically be
reloaded.

If you can have more than one CMS Work Unit, the RELEASE option drops the
current link. Logical units of work in other CMS Work Units are still active.

Example
The following example is a portion of an EXEC that runs in a VM system, and
invokes two programs. The second program runs in a separate CMS Work Unit.
After it has completed, the SQLRMEND EXEC is invoked with the COMMIT ALL
option, which commits the logical units of work active in each program, drops
both links, and frees the storage used by the resource adapter.

Appendix B. CMS EXECs 255

•
•
•

EXEC SQLINIT DB(DB01) ←Set up access to DB01 in first work unit
SQLPROG1 ←Run program that accesses DB01
EXEC SQLINIT DB(DB02) ←Set up access to DB02 in second work unit
SQLPROG2 ←Run program that accesses DB02
EXEC SQLRMEND COMMIT ALL ←commits both logical units of work, drops

both links, and drops resource adapter

The SQLINIT EXEC is invoked to switch application servers for the second
program.

ARISDBHD EXEC
The ARISDBHD EXEC deletes SQL/DS HELP text, including administrator
supplied topics, for one or more languages. It does not delete the message
repository.

To run the ARISDBHD EXEC, you must have:
v Read access to the SQL/DS service minidisk or SFS directory
v Read access to the SQL/DS production minidisk or SFS directory
v The connect password for SQLDBA.

The parameters of the ARISDBHD EXEC are as follows:

Dbname(dbname)
Replace dbname with the name of the database in which the HELP text is to
be deleted.

When you run the ARISDBHD EXEC:
1. Specify which HELP text languages to delete.
2. Confirm that you want to delete the HELP text for the specified languages.
3. Execute the delete procedure.

Step 1 When you invoke the ARISDBHD EXEC, you will be prompted for the
connect password for SQLDBA. After entering the password, the contents
of the SYSLANGUAGE table are reformatted and displayed. Specify the
language key for each language whose HELP text you wish to delete
(separated by commas or blanks) or ALL to specify all HELP text for all
languages in the database.

If you decide to stop the procedure at this point, enter QUIT.

Each time you select a language, it is flagged on the screen; a null entry
will process your selections.

Step 2 The languages that you indicated for deletion are displayed on the next
screen. Confirm that you want to delete all these languages by entering
YES. To exit from the procedure without deleting any HELP text languages,
enter NO.

Step 3 When prompted, enter the owner ID and virtual address of the CMS HELP
text for the language specified.

�� ARISDBHD Dbname(dbname) ��

256 Database Administration

If you know that there is no CMS HELP text for the language specified,
enter SKIP to bypass the language.

If you accidentally delete the CMS HELP text for a different language by
entering the wrong virtual address, you can restore the environment by
executing the ARISDBMA EXEC for the deleted language and rerunning
this EXEC with the correct address.

If you wish to delete an entire language (both the messages and the HELP text),
use the ARISDBLD EXEC instead. The ARISDBHD EXEC deletes both ISQL help
and CMS help. This EXEC displays a list of currently installed languages, which
may contain languages that have already had their help deleted but are still active
(that is, are listed in the SYSLANGUAGE table and have the appropriate message
repository available). You will be prompted to select the HELP text languages for
deletion. You should not specify languages whose HELP text has already been
deleted. Since this EXEC cannot be used to delete a message repository, the
SYSLANGUAGE table and the ARISNLSC MACRO will not be updated in any
way. This EXEC will not affect the default language setting.

ARISDBLD EXEC
The ARISDBLD EXEC deletes the SQL/DS messages and HELP text, including
administrator supplied topics, for one or more languages.

To run the ARISDBLD EXEC, you must have:
v Read access to the SQL/DS service minidisk or SFS directory
v Read access to the SQL/DS production minidisk or SFS directory
v The connect password for SQLDBA.

The parameters of the ARISDBLD EXEC are as follows:

Dbname(dbname)
Replace dbname with the name of the database in which the messages and
HELP text are to be deleted.

When you run the ARISDBLD EXEC it prompts you to:
1. Specify which languages to delete
2. Determine which is to become the new default language, if the current default

language is to be deleted, and two or more languages will remain on the
system

3. Confirm that you want to delete the messages and HELP text for the specified
languages.

Step 1 When you invoke the ARISDBLD EXEC, you will be prompted for the
connect password for SQLDBA. After entering the password, the contents
of the SYSLANGUAGE table are reformatted and displayed. Specify the
language key for each language whose HELP text you wish to delete
(separated by commas or blanks).

If you decide to stop the procedure at this point, enter QUIT.

�� ARISDBLD Dbname(dbname) ��

Appendix B. CMS EXECs 257

Each time you select a language, it is flagged on the screen; a null entry
will process your selections.

Step 2 To delete the current default language with two or more languages
remaining on the system, you must specify which of the remaining
languages will be the new default language. When the current default
language is flagged for deletion, a list of the remaining languages and keys
is displayed. Specify the key for the new default language.

If only one language remains on the system, it will automatically become
the new default language.

Step 3 The languages that you flagged for deletion are displayed on the next
screen. Confirm that you want to delete all these languages by entering
YES. To exit from the procedure without deleting any HELP text languages,
enter NO.

Step 4 When prompted, enter the owner ID and virtual address of the CMS HELP
text for the language specified.

If you know that there is no CMS HELP text for the language specified,
enter SKIP to bypass the language.

If you accidentally delete the CMS HELP text for a different language by
entering the wrong virtual address, you can restore the environment by
executing the ARISDBMA EXEC for the deleted language and rerunning
this EXEC with the correct address.

A minimum of one language must be left on the ARISNLSC macro and the
SQLDBA.SYSLANGUAGE table; it is not possible to delete all the languages.

For each language being deactivated, the following occurs:
v The ARISNLSC MACRO is updated. If the current default language has been

marked for deletion, you must specify a new default language.
v The message repository for this language is deleted from the production

minidisk or directory.
v The ISQL HELP text is deleted by updating the SYSTEXT2 table.
v The ARISDBMC EXEC is invoked to delete CMS help.

SQLLEVEL EXEC
The SQLLEVEL EXEC displays the SQL/DS release level that is installed. For
example:
To run the SQLLEVEL EXEC, you must have:

v Read access to the SQL/DS service minidisk or SFS directory
v Read access to the SQL/DS production minidisk or SFS directory.

The parameters for the SQLLEVEL EXEC are as follows:

*** SQL/DS VERSION 7 RELEASE 1 MODIFICATION 0 ***

�� SQLLEVEL
RELMOD

��

258 Database Administration

RELMOD
If you include this parameter, the EXEC places the version, release, and
modification levels in the CMS stack. (These values are all integers.)

Appendix B. CMS EXECs 259

260 Database Administration

Appendix C. Querying the Status of an Application (VM Only)

SQLQRY is implemented as a CMS immediate command and enables you to query
the status of the application that you are currently running on the user machine. It
is initialized by the DB2 Server for VM resource adapter when the first database
statement is processed, and can be issued while your application is running. Since
it is implemented as a CMS immediate command, it can be used even when your
application is not accepting other input. See the VM/ESA: CMS User’s Guide
manual for more information about CMS immediate commands.

The SQLQRY command is particularly useful if problems arise while you are
switching between application servers. In these cases, use SQLQRY to determine
the application server to which you are currently connected.

Notes:

1. You can only enter the SQLQRY command from the user machine after the
resource manager has been loaded and while an application is running.

2. You cannot use the SQLQRY command if you are using the SYNChronous(YES)
option with the SQLINIT EXEC, if you are not receiving CP messages (for
example, if you specified CP SET MSG OFF), or if your application has locked
the keyboard. See “SQLINIT EXEC” on page 237 for information on the
SYNChronous(YES) option.

The following information is displayed at the terminal when you enter the
SQLQRY command:

EXTNAME
displays the user ID of the application requester to which you are currently
connected. It also displays the CMS Work Unit number, if CMS Work Units
are in use.

RDBMS
displays the name, class, and release level (version, release, and
modification level) of the application server being accessed. If the
Protocol(DRDA) or Protocol(AUTO) option is specified with the SQLINIT
EXEC and the SQLQRY command is issued before handshaking (the
process of establishing a connection) is completed, “n/a” will be displayed
for both the class and release level of the application server. If the
Protocol(SQLDS) option is specified with the SQLINIT EXEC and the
SQLQRY command is issued, “SQLDS/VM” will be displayed for the
application server class and “n/a” will be displayed for the application
server release level, because handshaking does not take place. See
“SQLINIT EXEC” on page 237 for information on the Protocol parameter.

STATUS
displays the communication state. COMM indicates that the Work Unit
sent an SQL statement to the database machine and has been waiting for a
reply since the time shown. APPL indicates that the Work Unit returned
control to the application at the time shown. VRA indicates that the VM
Resource Adapter is processing your request.

LUWID
displays the logical unit of work identifier, which uniquely identifies an
LU6.2 conversation. Its value is
netid.luname.instance_number.sequence_number, where netid and luname are up

© Copyright IBM Corp. 1987, 2001 261

to 8 characters long, instance_number is 12 characters long, and
sequence_number is 4 characters long. LUWID is only used for conversations
that use the AUTO and DRDA Protocol options. If the middle portion of
the LUWID contains *IDENT, then the application server is a local one or
is in a TSAF collection; in these cases, no LU name and TPN are displayed.
If TCP/IP is being used, the LUWID has the format
IPADDRESS.PORT.INSTANCE_NUMBER, where IPADDRESS is 8
characters long, PORT is 4 characters long, and INSTANCE_NUMBER is 12
characters long.

LU displays the logical unit name, if the access is through VTAM.

TPN displays the transaction program name. Its character and hexadecimal
versions are both displayed. For a DB2 application server, this is the same
as the resource ID.

TCPIP displays the IP address of the target host system. It is only displayed when
TCP/IP is being used.

PORT displays the port number of the target application server. It is only
displayed when TCP/IP is being used.

Example
Figure 64 displays sample output from an SQLQRY command issued in a VM/ESA
environment with Protocol(AUTO) and two active CMS Work Units.

You can have multiple active CMS Work Units in a user machine, each accessing
an application server. In this example, information is displayed for two CMS Work
Units.

EXTNAME contains the user ID of the application requester, concatenated with the
CMS Work Unit number.

Because Protocol(AUTO) is used, a unique LUWID is assigned to each
conversation.
v Work Unit #1:

11:09:51 * MSG FROM SQLUSR6 : Status of Server Conversations on 2000-09-20.
11:09:51 * MSG FROM SQLUSR6 : EXTNAME = SQLUSR6.1
11:09:51 * MSG FROM SQLUSR6 : RDBMS = SQLRDB1 SQLDS/VM V6.1.0
11:09:51 * MSG FROM SQLUSR6 : STATUS = COMM TIME = 2000-09-20.11:09:43
11:09:51 * MSG FROM SQLUSR6 : LUWID = IBMNET01.*IDENT.45F2ABCD236D42.0001
11:09:51 * MSG FROM SQLUSR6 :
11:09:51 * MSG FROM SQLUSR6 : EXTNAME = SQLUSR6.2
11:09:51 * MSG FROM SQLUSR6 : RDBMS = IBMSTLDB2 DB2 V2.3.0
11:09:51 * MSG FROM SQLUSR6 : STATUS = APPL TIME = 2000-09-20.11:07:32
11:09:51 * MSG FROM SQLUSR6 : LU = STLMVS04 TPN = "6DB (X'07F6C4C2')
11:09:51 * MSG FROM SQLUSR6 : LUWID = IBMNET01.TORLU001.45F2ABCD236DFE.0001
11:09:51 * MSG FROM SQLUSR6 :
11:09:51 * MSG FROM SQLUSR6 : EXTNAME = SQLUSR6.3
11:09:51 * MSG FROM SQLUSR6 : RDBMS = SQLMACGM SQLDS/VM V7.1.0
11:09:51 * MSG FROM SQLUSR6 : STATUS = COMM TIME = 2000-09-20.11:07:32
11:09:51 * MSG FROM SQLUSR6 : TCPIP = 9.21.23.32 PORT = 8030
11:09:51 * MSG FROM SQLUSR6 : LUWID = G9151720.L372.B1622DADEF8A

Figure 64. Sample Output from SQLQRY in a VM Environment with Protocol(AUTO) and
CMS Work Units

262 Database Administration

– Accesses a SQL/DS V3.3.0 application server called SQLRDB1. Since no LU
name or TPN are displayed, the application server must be a local one or is in
a TSAF collection. For the same reason, the middle portion of the LUWID is
*IDENT.

– Has a STATUS of COMM, indicating that it must have sent an SQL statement
to the application server and has been waiting for a reply (since 11:09:43, as
indicated by TIME).

v Work Unit #2:
– Accesses a DB2* V2.3.0 application server called IBMSTLDB2. The LU name

and TPN are displayed because the application server is in a VTAM network.
The DB2 application server uses the default DRDA TPN of X'07F6C4C2'.

– Has a STATUS of APPL, indicating that it has already returned control to the
application (at 11:07:32, as indicated by TIME).

v Work Unit #3:
– Accesses a DB2 Server for VM Version 7 Release 1 application server called

SQLMACGM. The HOST name and SERVICE port connection are displayed
because the application server is in a TCP/IP network.

Appendix C. Querying the Status of an Application (VM Only) 263

264 Database Administration

Appendix D. Maximums

The following tables describe logical data maximums and ISQL maximums.
Information about database maximums and system maximums can be found in the
DB2 Server for VM System Administration or DB2 Server for VSE System
Administration manual.

Table 35. Logical Data Maximums

Restricted Parameter Maximum

Number of Tables per Database
Number of Indexes per Database

Number of Views per Database1

Number of Programs per Database1

Number of Tables per DBSPACE4

Number of Indexes per Table
Number of Columns per Table
Number of unique CCSID combinations per Table
Number of Columns per View3

Number of Columns in a SELECT-list

Length of a Row in a Table (Bytes)2

Number of Columns in an Index
Length of an Index Key (Bytes)
Number of Foreign Keys per Table

8,000,000
8,000,000

2,549,490
2,549,490

255

255
255
80
≈ 140
255

4,080
16
255
32,767

Notes:

1. The number of views plus the number of programs cannot exceed 2,549,490. This limit
assumes that you create the maximum number of dbspaces possible (9998) for
packages. Each dbspace can contain 255 packages. If you only create 10 dbspaces for
packages, you only have room for 2,550 packages.

2. Not including long field columns.

3. There is no specific limit on the number of columns in a view, because it depends on
many factors which affect this limit. A view of up to 140 columns should work in most
situations.

4. This maximum includes tables implicitly created as well as user-defined tables. Each
table with one or more long fields requires a table created implicitly to hold the long
fields. Long fields are LONG VARCHAR, LONG VARGRAPHIC, VARCHAR(n) where
n > 254, and VARGRAPHIC(n) where n > 127.

ISQL Maximums
Table 36. ISQL Maximums

Restricted Parameter Maximum

Maximum number of columns in a query
Maximum length of a command (bytes)

45
2,048

The maximum number of columns in a query may be further reduced by the
width of the columns selected.

© Copyright IBM Corp. 1987, 2001 265

266 Database Administration

Appendix E. SQLGLOB Parameters (VSE Only)

DB2 Server for VSE stores certain environmental parameters in a VSAM file called
“SQLGLOB.” ISQL, DBSU and the preprocessors retrieve the CHARNAME and
DBCS values from this SQLGLOB file. The online and batch Resource Adapters
also access this file to determine certain environmental parameters as they
communicate with a remote application server.

The SQLGLOB VSAM file will hold both GLOBAL and USER parameters. There is
one set of global SQLGLOB parameters, which is the system-wide default values.
These global parameters are initially set with the IBM-supplied default values
during installation using the ARISGDEF procedure and subsequently updated
using the DSQG transaction. A CICS user can choose to override the global
SQLGLOB parameters by setting up his or her own user SQLGLOB parameters.
This is done by executing the DSQU transaction. There is one set of user
SQLGLOB parameters for every CICS user who executed the DSQU transaction. A
batch user can choose to override the global SQLGLOB parameters by setting up
their own user SQLGLOB parameters. This is done by executing the program
ARIRBGUD (JCL: ARISBGUD.Z) and specifying the Update (U) command and a
user ID. The ARIRBGUD program can also be used to update the global SQLGLOB
parameters, to query one of the user’s parameters or all of the user’s parameters,
or to delete a user’s set of parameters.

The SQLGLOB VSAM file is defined to the system and initially updated with the
IBM-supplied default global SQLGLOB parameter values during product
installation.

The SQLGLOB parameters and their initial IBM-supplied global default values are
described below:

QryBlksize
Specifies the block size used to return rows of data when DRDA blocking is
used to perform FETCHes. The number is specified in denominations of 1K
and can range anywhere between 1K and 32K.

This option is only used when the application requester is communicating with
a remote application server.

The IBM-supplied global default QryBlksize is 8K.

CHARNAME
Specifies the character set name, which determines the CCSID values for
CCSIDSBCS, CCSIDMIXED and CCSIDGRAPHIC used by the application
requester, and determines how ISQL and the preprocessors fold characters
from lowercase to uppercase. Its value must be a valid character set name,
such as those found in the CHARNAME column of the SYSTEM.SYSCCSIDS
table.

This value is used by ISQL, DBSU, and the preprocessors instead of the value
currently found in the SYSTEM.SYSOPTIONS table.

The IBM-supplied global default CHARNAME is INTERNATIONAL.

DBCS
Specifies whether DBCS character handling of SO/SI pairs is done or not. This

© Copyright IBM Corp. 1987, 2001 267

value is used by ISQL, DBSU, and the preprocessors instead of the value
currently found in the SYSTEM.SYSOPTIONS table.

YES
Specifies that error checking is done on DBCS data by the preprocessors,
DBSU and ISQL. If double byte characters are to be used, DBCS must be
set to YES.

NO
Specifies that error checking is not done on DBCS data by the
preprocessors, DBSU and ISQL.

The IBM-supplied global default DBCS is NO.

SYNCPOINT
Specifies how commits or rollbacks are to be coordinated by the CICS/VSE
syncpoint manager.

1 Specifies a one-phase commit is to be done. In this case, the CICS/VSE
sync point manager is not involved and unprotected APPC conversations
are used.

2 Specifies a two-phase commit is to be done. In this case, protected APPC
conversations will be used to connect to the DRDA server and the
CICS/VSE sync point manager will be used to coordinate two-phase
commits. If a user is updating a remote server and other CICS resources
which participate in two-phase commit within a logical unit of work,
SYNCPOINT must be set to 2.

This option is only used when the online CICS application requester is
communicating with a remote application server through SNA.

The IBM-supplied global default SYNCPOINT is 1.

TRACERA
Specifies a two digit number (nn) which specifies the parts of the Batch and
Online Resource Adapter that are to be traced and the level of the trace. Trace
data is collected only when the application is connected to a remote server. The
positional digits correspond to the following Resource Adapter subcomponents
and functions:
v Resource Adapter control flow
v Communications.

0 Tracing is turned off.

1 Tracing is done in limited detail.

2 Tracing is done in greater detail.

TRACERA is ignored on local connections.

The IBM-supplied global default TRACERA is 00.

TRACEDRRM
Specifies a four digit number (nnnn) which specifies the parts of the DRRM
component that are to be traced and the level of the trace. Trace data is
collected only when the application is connected to a remote server. The
positional digits correspond to the following DRRM subcomponents and
functions:
v Parser

268 Database Administration

v Generator
v Dictionary
v RDIIN Manager.

0 Tracing is turned off.

1 Tracing is done in limited detail.

2 Tracing is done in greater detail.

TRACEDRRM is ignored on local connections.

The IBM-supplied global default TRACEDRRM is 0000.

TRACECONV
Specifies a 1 digit number (n) which specifies that the data conversion
component is to be traced and the level of the trace. Trace data is collected
only when the application is connected to a remote server.

0 Tracing is turned off.

1 Tracing is done in limited detail.

2 Tracing is done in greater detail.

TRACECONV is ignored on local connections.

The IBM-supplied global default TRACECONV is 0.

Communications Protocol
Specifies which network access method (SNA or TCP/IP) to use for remote
connections.

S Specifies that SNA is used for the connection to the remote application
server. In this case, the remote application server entry in the DBNAME
Directory should contain SNA routing information (SYSID and REMTPN).
S is the default for this field.

T Specifies that TCP/IP is used for the connection to the remote application
server. In this case, the remote application server entry in the DBNAME
Directory should contain TCP/IP routing information (TCPPORT and
TCPHOST, or TCPPORT and IPADDR).

This option is only used when the online CICS application requester is
communicating with a remote application server. Note that Batch Applications
must always use TCP/IP to communicate with a remote server.

The IBM-supplied global default COMMUNICATIONS PROTOCOL is SNA.

Transactions for Updating SQLGLOB Parameters
This section describes the various CICS transactions that a user can use to manage
parameters stored in the SQLGLOB VSAM file.

DSQG - Update global SQLGLOB Parm Transaction
The DSQG transaction is a CICS transaction which updates a subset of the global
SQLGLOB parameters.

Appendix E. SQLGLOB Parameters (VSE Only) 269

This must be defined as a secured transaction. That is, this transaction must be
defined with a TRANSEC value greater than 1, so that it cannot be initiated by any
user on the CICS system. Only authorized CICS users should be allowed to invoke
this transaction.

This transaction has five parameters as shown in the following syntax diagram. See
“Appendix E. SQLGLOB Parameters (VSE Only)” on page 267 for more information
on these DSQG parameters.

�� DSQG ,
CHARNAME,

,
QryBlksize,

,
DBCS,

�

� ,
SYNCPOINT, Communications Protocol

��

Each time the DSQG transaction is executed, the global SQLGLOB parameters are
replaced as follows:
1. If the user specifies a parameter on the DSQG transaction, that parameter value

is used.
2. If a parameter is not specified on the DSQG transaction, the current global

SQLGLOB parameter is used.

The global SQLGLOB parameters remain in effect until they are explicitly changed.
The global SQLGLOB parameters can be changed by invoking the DSQG
transaction and specifying the new parameters, or by invoking program
ARIRBGUD (the SQLGLOB File Batch Update/Query Program) and specifying the
Update (U) command with the user ID *SYSDEF*.

DSQU - Update user SQLGLOB Parm Transaction
The DSQU transaction is a CICS transaction which initializes the SQLGLOB
parameters for the signed-on user ID. The user SQLGLOB parameters, like the
global SQLGLOB parameters, are stored in the SQLGLOB VSAM file.

This transaction has eight parameters, as shown in the following syntax diagram.
See “Appendix E. SQLGLOB Parameters (VSE Only)” on page 267 for more
information on these DSQU parameters.

�� DSQU ,
CHARNAME,

,
QryBlksize,

,
DBCS,

,
SYNCPOINT,

�

� ,
TRACERA,

,
TRACEDRRM,

,
TRACECONV, Communications Protocol

��

Each time the DSQU transaction is executed, the user SQLGLOB parameters are
replaced. When a user reissues the DSQU transaction, the parameter value is
established as follows:
1. If the user specifies a parameter on the DSQU transaction, that parameter value

is used.
2. If a parameter is not specified on the DSQU transaction, the current user

SQLGLOB parameter is used. That is, the default is the value used on the most

270 Database Administration

recent DSQU transaction. However, if the user SQLGLOB parameter does not
exist, the global SQLGLOB parameter is used.

The user SQLGLOB parameters remain in effect until they are explicitly changed or
until they are explicitly deleted through a subsequent DSQD transaction. The user
SQLGLOB parameters can be changed by invoking the DSQU transaction and
specifying the new parameters or by invoking the program ARIRBGUD (SQLGLOB
File Batch Update/Query Program) and specifying the Update (U) command with
the appropriate user ID and new parameters. The user SQLGLOB parameters can
be deleted by invoking the DSQD transaction or by invoking the program
ARIRBGUD and specifying the Delete (D) command with the appropriate user ID.

All DRDA connections initiated by online CICS transactions, except those initiated
by ISQL, CBND, or any task that was started by the EXEC CICS START command,
will use the signed-on user’s SQLGLOB parameters, if they exist. If they do not
exist, these DRDA connections will use the global SQLGLOB parameters.

ISQL, CBND, and any task that was started by the EXEC CICS START command
will use the global SQLGLOB parameters for DRDA connections regardless of who
is signed on, with the following exceptions:
1. ISQL uses the user DBCS parameter to determine whether DBCS character

handling is required or not.
2. ISQL uses the user CHARNAME parameter to get the folding table to fold

input from the terminal from lowercase to uppercase, but it uses the global
CHARNAME for CCSID data conversion.

All DRDA connections initiated by VSE batch application programs will use the
SQLGLOB parameters (if they exist) of the user ID specified on the SQL
CONNECT statement. If they do not exist, these DRDA connections will use the
global SQLGLOB parameters.

DSQQ - Query SQLGLOB Parm Transaction
The DSQQ transaction is a CICS transaction which displays all the SQLGLOB
parameters. Which version of the SQLGLOB parameters (user or global) is
displayed depends on whether or not the userid parameter is specified on the
DSQQ command.

This transaction has one parameter, as shown in the following syntax diagram:

�� DSQQ
userid

��

userid
Specifies the user ID whose user SQLGLOB parameters are to be displayed.

If the userid parameter is specified and the user SQLGLOB parameters of the
specified userid exist, DSQQ will display the user SQLGLOB parameters.

If the userid parameter is omitted, DSQQ will display the global SQLGLOB
parameters.

Appendix E. SQLGLOB Parameters (VSE Only) 271

DSQD - Delete user SQLGLOB Parm Transaction
The DSQD transaction is a CICS transaction which deletes a signed-on user ID’s
user SQLGLOB parameters.

This transaction has no parameters, as shown in the following syntax diagram:

�� DSQD ��

After the signed-on user’s user SQLGLOB parameters are deleted, any subsequent
DRDA connections done on behalf of this signed-on user ID will use the global
SQLGLOB parameters.

Batch Program to Update/Query the SQLGLOB File
If a “CONNECT user ID” is needed for a remote server, but the user ID does not
exist as a CICS user ID, then a batch program and JCL are supplied to allow the
SQLGLOB file to be updated for any user ID. This stand-alone program,
ARIRBGUD, allows a new user ID to be inserted or an existing user ID to be
updated, deleted or queried based on the input given to the program. Input for
this program is provided from SYSIPT “cards” (80 byte records).

Table 37 describes the layout of the input for ARIRBGUD:

Table 37. ARIRBGUD Input Layout. Description

Start —
End
Column
#s

Field Name Usage

1 - 1 COMMAND ’Q’ = query, ’D’ = delete, or ’U’ = update. This field is
mandatory.

3 - 10 USERID This is the user ID in the SQLGLOB file that is to be operated
upon. This can be ’*’ if COMMAND is ’Query’. This field is
mandatory with an 8 byte maximum length.

12 - 29 CHARNAME Character Set Name; it determines CCSID values and folding (18
bytes maximum).

31 - 32 QRYBLKSIZE Block size used for Blocked Fetches, in integral ’K’ bytes, from 1
to 32.

34 - 34 DBCS ’Y’ if DBCS is allowed. ’N’ if DBCS is not allowed.

36 - 36 SYNCPOINT ’1’ or ’2’, for one- or two-phase COMMIT (DRDA 1 or DRDA 2).
This field is only used by the CICS Application Requester for
remote DRDA connections.

38 - 39 TRACERA Resource Adapter Trace flags, two digits, each either ’0’, ’1’ or ’2’.

41 - 44 TRACEDRRM DRRM Trace flags, four digits, each either ’0’, ’1’ or ’2’.

46 - 46 TRACECONV CONV Trace Flags, 1 digit, either ’0’, ’1’ or ’2’.

48 - 48 COMMPROTOCommunications Protocol to be used for Remote database access:
’S’=SNA or ’T’=TCP/IP. Only used by CICS , not Batch.

Notes:

1. The COMMAND and USERID are always required.

272 Database Administration

2. For the Query COMMAND only, the user ID can be specified as ’*’, which
means display all user IDs in the SQLGLOB file.

3. For a Query or Delete COMMAND, all other fields are ignored.
4. For an Update COMMAND, fields that are left blank remain unchanged in an

existing record for the user ID. If the user ID does not already have an existing
record in SQLGLOB, then the System Default record values are used.

5. The System Default record (user ID = X'FF's) CANNOT be deleted by this
program. It CAN be updated or queried. Considering this user ID cannot be
displayed, it is displayed as the string ″*SYSDEF*″, and this string must be
used for the Update or Query COMMAND as the ″CONNECT User ID″.

The following is an example of the SYSLST output from the program ARIRBGUD,
with a default of 120 print positions per print line. Input records are shown in bold
italics. Note that the first byte of the listing is a printer carriage control character.

The following is an example of the SYSLST output from ARIRBGUD, because of a
JCL error or because the file has never been created:

The JCL to execute the program ARIRBGUD (SQLGLOB File Batch Update/Query
Program) can be found in the IBM-supplied job ARISBGUD.Z.

1ARIRBGUD - Batch Query/Update of DB2 for VSE SQLGLOB File 1999/12/31 23:59:59

0 CCSID CCSID CCSID QRYBLK SYNC ----TRACE--- COMM
COMMAND USER CHARNAME SBCS MIXED DBCS SIZE DBCS POINT RA DRRM CONV PROTO

0---—> Q UUUUUUUU
QUERY uuuuuuuu cccccccccccccccccc sssss sssss sssss 12K Y 1 00 0000 0 TCPIP

0---—> U UUUUUUUU 32 N 2 11 2222 S
UPDATE UUUUUUUU cccccccccccccccccc sssss sssss sssss 32K N 2 11 2222 0 SNA

0---—> D UUUUUUUU
DELETE UUUUUUUU

0---—> Q UUUUUUUU
ARI0485I The user SQLGLOB parameters for user UUUUUUUU do not exist.

0---—> U BADPARM 99
ARI0494E Invalid input parameter entered. Parameter = QRYBLKSIZE.

0---—> X JUNK STUFF
ARI4599E Invalid COMMAND given, must be 'Q'(Query), 'U'(Update) or 'D'(Delete).

0---—> D *SYSDEF*
ARI4598E You can not DELETE the system default record from the SQLGLOB file.

0---—> Q *
---—> List of all Users in the SQLGLOB file:
QUERY uuuuuuuu cccccccccccccccccc sssss sssss sssss bbbbb d s tt tttt t ppppp
QUERY uuuuuuuu cccccccccccccccccc sssss sssss sssss bbbbb d s tt tttt t ppppp

...

...

...
QUERY *SYSDEF* cccccccccccccccccc sssss sssss sssss bbbbb d s tt tttt t ppppp

1ARIRBGUD - Batch Query/Update of DB2 for VSE SQLGLOB File 1999/12/31 23:59:59

0ARI0487E The SQLGLOB file does not exist.

Appendix E. SQLGLOB Parameters (VSE Only) 273

Using Online and Batch Resource Adapter Tracing
The online (CICS) and batch Resource Adapter tracing is used for problem
analysis. You would normally not turn tracing on unless requested to do so by
IBM Support. The Online Resource Adapter trace output can be directed to a tape
or a disk file, which must be defined in the CICS start up JCL and predefined in
the CICS Destination Control Table. See the DB2 Server for VSE Program Directory
for details about setting up the Destination Control Table. The batch Resource
Adapter trace can only be directed to a tape file, which must be defined in the
batch job JCL. Tracing is only performed for application statements that access
remote DRDA servers.

Tracing is activated by updating the SQLGLOB file record for the SQL CONNECT
statement user IDs (or the default Online user IDs). A ’1’ or ’2’ character placed in
the TRACERA, TRACEDRRM or TRACECONV component field activates tracing
for the respective subcomponents. A ’0’ character in this field deactivates tracing.
Care should be taken when updating the trace fields in the Global Default user ID
because this would cause tracing to be activated for ALL users who do not have a
record in the SQLGLOB file; also, under CICS, all trace data is intermingled in the
single trace output file. You can use the DSQU CICS transaction or the ARIRBGUD
program (described in “Batch Program to Update/Query the SQLGLOB File” on
page 272) to update the SQLGLOB file records.

Online Trace File JCL
The following is JCL that must be placed in the CICS start up JCL to define the
trace output file:
v For a tape file:

// ASSGN SYS018,181
// TLBL ARITRAC,'name of trace file'

v For a disk file:
// ASSGN SYS018,DISK,VOL=volxxx,SHR
// DLBL ARITRAC,'name of trace file',0,SD
// EXTENT SYS018,volxxx,n,n,nnn,nn

Batch Trace File JCL
The following is JCL that must be placed in the batch job JCL to define the trace
output file:
// ASSGN SYS005,181
// TLBL ARITRAC,'name of trace file'

Formatting the Online or Batch Trace File
After the trace is finished, you can invoke the trace formatting utility that comes
with the DB2 Server for VSE system. The above JCL must also be used when the
trace file is used as input to the trace formatter utility, except ’SYS004’ must be
used instead of ’SYS005’ or ’SYS018’ when your trace file is on tape. ’SYS018’ must
be used when your Online trace file is on disk. Note that the Batch trace file
cannot be on disk. See ″Formatting DB2 Server for VSE Trace Output″ in DB2
Server for VSE & VM Operation.

Before the Online Resource Adapter trace file can be formatted, it must be closed
using the following CICS command:
CEMT SET QUEUE(ARIT) DISABLED CLOSED

274 Database Administration

Before the batch Resource Adapter trace file can be formatted, it must be closed
using the following JCL statement ″after″ the batch job step being traced:
// MTC WTM,SYS005,2

Appendix E. SQLGLOB Parameters (VSE Only) 275

276 Database Administration

Notices

IBM may not offer the products, services, or features discussed in this document in
all countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10594-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1987, 2001 277

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
Mail Station P300
522 South Road
Poughkeepsie, NY 12601-5400
U.S.A

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements, or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility, or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs in source language,
which illustrates programming techniques on various operating platforms. You
may copy, modify, and distribute these sample programs in any form without
payment to IBM, for the purposes of developing, using, marketing, or distributing
application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs.

278 Database Administration

Trademarks
The following terms are trademarks of International Business Machines
Corporation in the United States, or other countries, or both:

AIX
APL2
AS/400
C/370
CICS
CICS/VSE
DATABASE 2
DataHub
DataPropagator
DB2
DFSMS/VM
DRDA
Distributed Relational Database Architecture
Extended Services
IBM
Information Warehouse
IBMLink
MVS
OS/2
OS/400
QMF
RACF
System/370
SystemView
VM/ESA
VSE/ESA
VTAM

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks
of others.

Notices 279

280 Database Administration

Bibliography

This bibliography lists publications that are
referenced in this manual or that may be helpful.

DB2 Server for VM Publications

v DB2 Server for VSE & VM Application
Programming, SC09-2889

v DB2 Server for VSE & VM Database
Administration, SC09-2888

v DB2 Server for VSE & VM Database Services
Utility, SC09-2983

v DB2 Server for VSE & VM Diagnosis Guide and
Reference, LC09-2907

v DB2 Server for VSE & VM Overivew, GC09-2995
v DB2 Server for VSE & VM Interactive SQL Guide

and Reference, SC09-2990
v DB2 Server for VSE & VM Master Index and

Glossary, SC09-2890
v DB2 Server for VM Messages and Codes,

GC09-2984
v DB2 Server for VSE & VM Operation, SC09-2986
v DB2 Server for VSE & VM Quick Reference,

SC09-2988
v DB2 Server for VM System Administration,

SC09-2980
v DB2 Server for VSE & VM Performance Tuning

Handbook, GC09-2987
v DB2 Server for VSE & VM SQL Reference,

SC09-2989

DB2 Server for VSE Publications

v DB2 Server for VSE & VM Application
Programming, SC09-2889

v DB2 Server for VSE & VM Database
Administration, SC09-2888

v DB2 Server for VSE & VM Database Services
Utility, SC09-2983

v DB2 Server for VSE & VM Diagnosis Guide and
Reference, LC09-2907

v DB2 Server for VSE & VM Overivew, GC09-2995
v DB2 Server for VSE & VM Interactive SQL Guide

and Reference, SC09-2990
v DB2 Server for VSE & VM Master Index and

Glossary, SC09-2890
v DB2 Server for VSE Messages and Codes,

GC09-2985
v DB2 Server for VSE & VM Operation, SC09-2986

v DB2 Server for VSE System Administration,
SC09-2981

v DB2 Server for VSE & VM Performance Tuning
Handbook, GC09-2987

v DB2 Server for VSE & VM SQL Reference,
SC09-2989

Related Publications

v DB2 Server for VSE & VM Data Restore,
SC09-2991

v DRDA: Every Manager's Guide, GC26-3195
v IBM SQL Reference, Version 2, Volume 1,

SC26-8416
v IBM SQL Reference, SC26-8415

VM/ESA Publications

v VM/ESA: General Information, GC24-5745
v VM/ESA: VMSES/E Introduction and Reference,

GC24-5837
v VM/ESA: Installation Guide, GC24-5836
v VM/ESA: Service Guide, GC24-5838
v VM/ESA: Planning and Administration,

SC24-5750
v VM/ESA: CMS File Pool Planning,

Administration, and Operation, SC24-5751
v VM/ESA: REXX/EXEC Migration Tool for

VM/ESA, GC24-5752
v VM/ESA: Conversion Guide and Notebook,

GC24-5839
v VM/ESA: Running Guest Operating Systems,

SC24-5755
v VM/ESA: Connectivity Planning, Administration,

and Operation, SC24-5756
v VM/ESA: Group Control System, SC24-5757
v VM/ESA: System Operation, SC24-5758
v VM/ESA: Virtual Machine Operation, SC24-5759
v VM/ESA: CP Programming Services, SC24-5760
v VM/ESA: CMS Application Development Guide,

SC24-5761
v VM/ESA: CMS Application Development

Reference, SC24-5762
v VM/ESA: CMS Application Development Guide for

Assembler, SC24-5763
v VM/ESA: CMS Application Development Reference

for Assembler, SC24-5764

© Copyright IBM Corp. 1987, 2001 281

v VM/ESA: CMS Application Multitasking,
SC24-5766

v VM/ESA: CP Command and Utility Reference,
SC24-5773

v VM/ESA: CMS Primer, SC24-5458
v VM/ESA: CMS User’s Guide, SC24-5775
v VM/ESA: CMS Command Reference, SC24-5776
v VM/ESA: CMS Pipelines User’s Guide, SC24-5777
v VM/ESA: CMS Pipelines Reference, SC24-5778
v VM/ESA: XEDIT User’s Guide, SC24-5779
v VM/ESA: XEDIT Command and Macro Reference,

SC24-5780
v VM/ESA: Quick Reference, SX24-5290
v VM/ESA: Performance, SC24-5782
v VM/ESA: Dump Viewing Facility, GC24-5853
v VM/ESA: System Messages and Codes, GC24-5841
v VM/ESA: Diagnosis Guide, GC24-5854
v VM/ESA: CP Diagnosis Reference, SC24-5855
v VM/ESA: CP Diagnosis Reference Summary,

SX24-5292
v VM/ESA: CMS Diagnosis Reference, SC24-5857
v CP and CMS control block information is not

provided in book form. This information is
available on the IBM VM/ESA operating
system home page
(http://www.ibm.com/s390/vm).

v IBM VM/ESA: CP Exit Customization, SC24-5672
v VM/ESA REXX/VM User’s Guide, SC24-5465
v VM/ESA REXX/VM Reference, SC24-5770

C for VM/ESA Publications

v IBM C for VM/ESA Diagnosis Guide, SC09-2149
v IBM C for VM/ESA Language Reference,

SC09-2153
v IBM C for VM/ESA Compiler and Run-Time

Migration Guide, SC09-2147
v IBM C for VM/ESA Programming Guide,

SC09-2151
v IBM C for VM/ESA User’s Guide, SC09-2152

Virtual Storage Extended/Enterprise Systems
Architecture (VSE/ESA) Publications

v IBM VSE/ESA Administration, SC33-6505
v IBM VSE/ESA Diagnosis Tools, SC33-6514
v IBM VSE/ESA General Information, GC33-6501
v IBM VSE/ESA Guide for Solving Problems,

SC33-6510

v IBM VSE/ESA Guide to System Functions,
SC33-6511

v IBM VSE/ESA Installation, SC33-6504
v IBM VSE/ESA Messages & Codes, SC33-6507
v IBM VSE/ESA Networking Support, SC33-6508
v IBM VSE/ESA Operation, SC33-6506
v IBM VSE/ESA Planning, SC33-6503
v IBM VSE/ESA System Control Statements,

SC33-6513
v IBM VSE/ESA System Macros User’s Guide,

SC33-6515
v IBM VSE/ESA System Macros Reference,

SC33-6516
v IBM VSE/ESA System Utilities, SC33-6517
v IBM VSE/ESA Unattended Node Support,

SC33-6512
v IBM VSE/ESA Using IBM Workstations,

SC33-6509

CICS/VSE Publications

v CICS/VSE Application Programming Reference,
SC33-0713

v CICS/VSE Application Programming Guide,
SC33-0712

v CICS Application Programming Primer (VS
COBOL II), SC33-0674

v CICS/VSE CICS-Supplied Transactions, SC33-0710
v CICS/VSE Customization Guide, SC33-0707
v CICS/VSE Facilities and Planning Guide,

SC33-0718
v CICS/VSE Intercommunication Guide, SC33-0701
v CICS/VSE Performance Guide, SC33-0703
v CICS/VSE Problem Determination Guide,

SC33-0716
v CICS/VSE Recovery and Restart Guide, SC33-0702
v CICS/VSE Release Guide, GC33-1645
v CICS/VSE Report Controller User’s Guide,

SC33-0705
v CICS/VSE Resource Definition (Macro), SC33-0709
v CICS/VSE Resource Definition (Online),

SC33-0708
v CICS/VSE System Definition and Operations

Guide, SC33-0706
v CICS/VSE System Programming Reference,

SC33-0711
v CICS/VSE User’s Handbook, SX33-6079
v CICS/VSE XRF Guide, SC33-0704

CICS/ESA Publications

282 Database Administration

v CICS/ESA General Information, GC33-0803

VSE/Virtual Storage Access Method (VSE/VSAM)
Publications

v VSE/VSAM Commands and Macros, SC33-6532
v VSE/VSAM Introduction, GC33-6531
v VSE/VSAM Messages and Codes, SC24-5146
v VSE/VSAM Programmer’s Reference, SC33-6535

VSE/Interactive Computing and Control Facility
(VSE/ICCF) Publications

v VSE/ICCF Administration and Operation,
SC33-6562

v VSE/ICCF Primer, SC33-6561
v VSE/ICCF User’s Guide, SC33-6563

VSE/POWER Publications

v VSE/POWER Administration and Operation,
SC33-6571

v VSE/POWER Application Programming,
SC33-6574

v VSE/POWER Networking, SC33-6573
v VSE/POWER Remote Job Entry, SC33-6572

Distributed Relational Database Architecture
(DRDA) Library

v Application Programming Guide, SC26-4773
v Architecture Reference, SC26-4651
v Connectivity Guide, SC26-4783
v DRDA: Every Manager's Guide, GC26-3195
v Planning for Distributed Relational Database,

SC26-4650
v Problem Determination Guide, SC26-4782

C/370 for VSE Publications

v IBM C/370 General Information, GC09-1386
v IBM C/370 Programming Guide for VSE,

SC09-1399
v IBM C/370 Installation and Customization Guide

for VSE, GC09-1417
v IBM C/370 Reference Summary for VSE,

SX09-1246
v IBM C/370 Diagnosis Guide and Reference for

VSE, LY09-1805

VSE/REXX Publication

v VSE/REXX Reference, SC33-6642

Other Distributed Data Publications

v IBM Distributed Data Management (DDM)
Architecture, Architecture Reference, Level 4,
SC21-9526

v IBM Distributed Data Management (DDM)
Architecture, Implementation Programmer’s Guide,
SC21-9529

v VM/Directory Maintenance Licensed Program
Specification, GC20-1836

v IBM Distributed Relational Database Architecture
Reference, SC26-4651

v IBM Systems Network Architecture, Format and
Protocol Reference, SC30-3112

v SNA LU 6.2 Reference: Peer Protocols, SC31-6808
v Reference Manual: Architecture Logic for LU Type

6.2, SC30-3269
v IBM Systems Network Architecture, Logical Unit

6.2 Reference: Peer Protocols, SC31-6808
v Distributed Data Management (DDM) General

Information, GC21-9527

CCSID Publications

v Character Data Representation Architecture,
Executive Overview, GC09-2207

v Character Data Representation Architecture
Reference and Registry, SC09-2190

DB2 Server RXSQL Publications

v DB2 REXX SQL for VM/ESA Installation and
Reference, SC09-2891

C/370 Publications

v IBM C/370 Installation and Customization Guide,
GC09-1387

v IBM C/370 Programming Guide, SC09-1384

Communication Server for OS/2 Publications

v Up and Running!, GC31-8189
v Network Administration and Subsystem

Management Guide, SC31-8181
v Command Reference, SC31-8183
v Message Reference, SC31-8185
v Problem Determination Guide, SC31-8186

Distributed Database Connection Services
(DDCS) Publications

v DDCS User’s Guide for Common Servers,
S20H-4793

v DDCS for OS/2 Installation and Configuration
Guide, S20H-4795

VTAM Publications

Bibliography 283

v VTAM Messages and Codes, SC31-6493
v VTAM Network Implementation Guide, SC31-6494
v VTAM Operation, SC31-6495
v VTAM Programming, SC31-6496
v VTAM Programming for LU 6.2, SC31-6497
v VTAM Resource Definition Reference, SC31-6498
v VTAM Resource Definition Samples, SC31-6499

CSP/AD and CSP/AE Publications

v Developing Applications, SH20-6435
v CSP/AD and CSP/AE Installation Planning Guide,

GH20-6764
v Administering CSP/AD and CSP/AE on VM,

SH20-6766
v Administering CSP/AD and CSP/AE on VSE,

SH20-6767
v CSP/AD and CSP/AE Planning, SH20-6770
v Cross System Product General Information,

GH23-0500

Query Management Facility (QMF) Publications

v Introducing QMF, GC27-0714
v Installing and Managing QMF for VSE,

GC27-0721
v QMF Reference, SC27-0715
v Installing and Managing QMF for VM,

GC27-0720
v Developing QMF Applications, SC27-0718
v QMF Messages and Codes, GC27-0717
v Using QMF, SC27-0716

Query Management Facility (QMF) for Windows
Publications

v Getting Started with QMF for Windows,
SC27-0723

v Installing and Managing QMF for Windows,
GC27-0722

DL/I DOS/VS Publications

v DL/I DOS/VS Application Programming,
SH24-5009

COBOL Publications

v VS COBOL II Migration Guide for VSE,
GC26-3150

v VS COBOL II Migration Guide for MVS and
CMS, GC26-3151

v VS COBOL II General Information, GC26-4042
v VS COBOL II Language Reference, GC26-4047

v VS COBOL II Application Programming Guide,
SC26-4045

v VS COBOL II Application Programming
Debugging, SC26-4049

v VS COBOL II Installation and Customization for
CMS, SC26-4213

v VS COBOL II Installation and Customization for
VSE, SC26-4696

v VS COBOL II Application Programming Guide for
VSE, SC26-4697

Data Facility Storage Management
Subsystem/VM (DFSMS/VM) Publications

v DFSMS/VM RMS User’s Guide and Reference,
SC35-0141

Systems Network Architecture (SNA)
Publications

v SNA Transaction Programmer’s Reference Manual
for LU Type 6.2, GC30-3084

v SNA Format and Protocol Reference: Architecture
Logic for LU Type 6.2, SC30-3269

v SNA LU 6.2 Reference: Peer Protocols, SC31-6808
v SNA Synch Point Services Architecture Reference,

SC31-8134

Miscellaneous Publications

v IBM 3990 Storage Control Planning, Installation,
and Storage Administration Guide, GA32-0100

v Dictionary of Computing, ZC20-1699
v APL2 Programming: Using Structured Query

Language, SH21-1056
v ESA/390 Principles of Operation, SA22-7201

Related Feature Publications

v DB2 for VM Control Center Operations Guide,
GC09-2993

v DB2 for VSE Control Center Operations Guide,
GC09-2992

v DB2 Replication Guide and Reference, SC26-9920

284 Database Administration

Index

A
ABNEXIT macroinstructions 124
abnormal end 124, 125
accessing

checking which application
server 253

accounting facility 204
ACQUIRE DBSPACE 26
acquiring dbspace

for use 20
PRIVATE dbspace 22
PUBLIC dbspace 22

activate
all keys and constraints on a table 68
primary key 68
unique constraint 68

adding
a new DB2 user

to DB2 Server for VSE & VM
application server 79

to non-DB2 Server for VSE & VM
application server 79

alternate HELP text languages 137
column to a table 65, 186
dbspace 20
HELP text topic 141
index to a table 187

ALLUSERS 101
authorization ID 101

ALTER
restriction for view 45

ALTER TABLE
activating keys and constraints 67
adding column to a table 186
inactive key, table, constraint 65

altering
table

activating keys and constraints 68
authorization 64
deactivate primary/foreign

key 68
design 64
inactive key, table, constraint 66

application considerations
database 163
development

database support 163
PRIVATE dbspace 163
PUBLIC dbspace 164

maintenance 173
application development

support in DB2 Server for VSE 202
use of synonyms 170

application program
backing out data 129
building source code files 162
capability 160
checking code 171
code development 162
database consideration 163

application program (continued)
DB2 Server for VSE & VM

implementation 147
design

implementation alternatives 147
implementation

considerations 166
prototyping 160

development capability 160
development consideration 169
function prototyping 161
maintenance consideration 173
privilege 94
recovery from failure 121
report writing 155
runner 108

application requester
description 13

application server
access protocols 239, 248
connecting implicitly 95
connecting to 95, 98
controlling access to 88
default 82, 95
description 13
switching 97, 103

ARINEWUS 80
ARISISBT MODULE 244
ARISPRC utility 206
ARISRMBT MODULE 244, 245
ARISRMKC TEXT Q 245
arithmetic operation

binary 177
date/time arithmetic

performing operations 178
rules 178
using labeled duration expressions

in 178
decimal 176
floating point 177

arithmetic operator
in syntax diagrams xiii

atomic operation 120, 129
auditing security

loading information into a table 112
printing information 116
through the catalog tables 109
tracing 109

authority
changing 188
CREATE TABLE 88
granting 90
revoking 92
type

CONNECT 88
DBA 41, 87, 90, 164
RESOURCE 41, 88, 164
SCHEDULE 88

authorization
change 188
check 110

authorization (continued)
retrieving catalog information

about 54
authorization ID

ALLUSERS 101
AUTOCOMMIT 129
AVGCOLLEN 220
AVGROWLEN 219

B
back-up copy of a database 133
backing out data during an ISQL

session 128
batch/interactive

application consideration 166
application processing 199
application security 166
capability 147
error handling 167
recovery 166

batch job 147
batch partition 147
binary arithmetic operation 177
BIT data

choosing subtype 34
blocking

backouts initiated by application
programs 130

preprocessor BLOCK option 127
bootstrap module 245
building source code files 162

C
CANCEL 127, 129
CASCADE

DELETE considerations 7
cascading REVOKE 94
catalog

used in database design 17, 52
catalog table

authorities and privileges 87, 89
information about privileges 54
reorganizing the indexes on 76
securing 107
support 173
SYSCATALOG 52
used in database design 52, 161
view 54

CCSID (coded character set identifier)
application programming for

distributed data 14
moving data between application

servers 71
performance overhead 14
specifying for a column 30, 34

changing
data relationships 187
referential integrity relationships 187

© Copyright IBM Corp. 1987, 2001 285

changing (continued)
table design 64, 65
unique constraints 187
user passwords 107
users of data 188

CHAR
choosing rather than VARCHAR 34

character data
choosing between VARCHAR and

CHAR 34
character subtype

choosing BIT 34
choosing MIXED 34
choosing SBCS 34
specifying for a column 30

CHARNAME parameter of exec 240,
249

CHECK option of preprocessor 171
checking

application code 171
choose

in syntax diagrams xiv
CICS (Customer Information Control

System)
CISQ transaction 126
CONNECT considerations 101
CSSN transaction 101
DFHPCT macroinstruction 126
DFHSIT macroinstruction 126
dynamic transaction backout

program 120, 169
GCBE abend code 126
implicit CONNECT support 101
interactive application support 202
ISQL support 203
multiple application servers 125
option 201
pseudoconversational transaction 169
recovery processing 169
sign on 168
synchronization points 125
SYNCPOINT 169
transaction processing 148, 200
transaction program 148
user identification and

verification 168
CICS macroinstruction

DFHPCT 126
DFHSIT 126

CICSUSER default user ID 101
CISQ transaction 126
clustering index

description 25, 48
when to create 51

CMS (Conversational Monitor System)
subset mode 150
work unit 120

code development 162
collection 189
column

adding 186
changing name in a view 44
data storage 219
data types for 32
dropping 186
maximum number in a query 265
more than 254 bytes 51

column (continued)
multicolumn key 5
naming 4
naming convention 31
null value 4
overhead 219
primary key 4
retrieving catalog information 53
specifying

CCSID 30, 34
character subtype 30
data type 30
field procedure 31
name 30

valid data type 4
command

AUTOCOMMIT 129
CANCEL 127, 129
DBS SET LINEWIDTH 148
FORCE 133
FORMAT 154
INPUT 45, 60
length maximum in ISQL 265
PRINT 154
REPRO (VSAM) 61
SET ERRORMODE 167
SHOW DBSPACE 76

comment
retrieving from catalog tables 55
storing 54

COMMENT ON statement 55
COMMIT WORK 119

in application programs 169
configurations of the DB2 Server for VM

system 189, 198
CONNECT 97, 168

explicit 87
implicit 87
to switch databases 193

CONNECT authority 88
connecting

to an application server 95, 98
to application server

CICS transactions 101
explicitly 97
implicitly 95, 97

connecting to the DB2 Server for VSE &
VM system 168

considerations for
application database 163
creating a table 39
creating indexes 50
deferred constraint enforcement 69
DELETE, INSERT, UPDATE 7
normalization 29
referential integrity 39
row size 29
unique constraints 38

constraint
unique 5

comparison to unique index 38
considerations in defining 38
description 38
instead of unique index 48

controlling access to
application server 88
data 164

conventions
highlighting xi
syntax diagram notation xiii

converting
data types 174

converting data types 169
copying

a table 62
data from one table to another 61

copyright notice in HELP text 145
CREATE INDEX

PCTFREE clause 48
using the statement 47

CREATE TABLE 28, 88, 173
CREATE VIEW

using the statement 42
WITH CHECK OPTION 42

creating
back-up copy of a database 133
HELP text table 142
indexes

considerations 50
free space considerations 48
general information 47
key 50
ordering columns in key 47
to implement design 17
unique 48

primary key 38
restrictions in creating 44
restrictions on using 44
table

description 27
foreign key 39
primary key 39
referential constraints 39
referential integrity 39
to implement design 17

view
description 42
for multiple tables 43
for one table 43
new column names 44
restrictions on 44
to implement design 17
using several tables 43

CSSN transaction 101

D
data

access change 185
administration 173
authorization change 188
independence 173, 174
moving 71
object 17
prototyping 160
recovery 17
structure change 185
supported conversions 174

data stream trace 241
Data System Control (DSC) 17
data type

choosing between CHAR and
VARCHAR 34

286 Database Administration

data type (continued)
choosing between VARGRAPHIC and

GRAPHIC 34
conversion supported by the DB2

Server for VSE & VM system 169
DATE 35
DECIMAL 176

default 176
OVERFLOW error 176
precision and scale of result 177

defining, for columns 32
numeric data 32
specified when defining a column 30
supported conversions 174
TIME 35
TIMESTAMP 35

database
back-up copy creation 133
column 4
configurations

one machine, one database 190
one machine, two databases 191
several machines, different

processors 193
several machines, many

databases 192
defining 4
definition 189
design

analysis 161
documentation 161
generating test data 160
loading test data 160
modeling 160
normalizing a table 9
planning for distributed data 13
relationship 2
table 2
terminology 1

designing using DB2 Server for VSE &
VM catalog 52

entity 1
example configuration 190
example configurations

accessing from another
processor 195

one machine, one database 190
one machine, two databases 191
several machines, different

processors 193
several machines, many

databases 192
generation 17, 20
implementing the design 17
logical design 177
machine 189
maintaining consistency under

ISQL 171
maintenance

altering the design 57
procedure 76
removing 58
removing tables 73

manager 189
moving 77
multiple 189
operating mode 190

database (continued)
physical

concept 19
recovery considerations 119, 135
recovery from user logic error 133
relationship 1
resetting data 134
resource adapter 189
service machine 189
support

for application development 163
for query/report writing 164

user machine 189
database administrator (DBA)

authority 164
Database Services utility (DBS utility)

application
error handling 167
recovery 167
security 167

connecting implicitly 96
copying a table 62
DATALOAD 169
DATAUNLOAD 169
failure 126
interactive processing 148
loading test data 169
maintenance of a database 76
message file 126
overview of uses 148
printing the HELP text 145
report writing 155
restriction for view 45
termination 126
testing SQL functions 162
to load data 59
under VSE/ICCF 59
UNLOAD/RELOAD

reorganizing data 148
resetting data 131

DATE data type 35
date duration

description 177
DATE parameter of exec 249
date/time arithmetic

performing date/time arithmetic
operations 36

rules for date/time arithmetic 36
using labeled duration expressions in

arithmetic operations 36
DATEFORMAT parameter of exec 240
DB2 Server for VM facility, used by

EXEC 156
DBA authority

description 90
introduction 87
to ALTER DBSPACE 74

DBCS parameter of exec 240, 249
DBEXTENT

description 18
DBNAME parameter of exec 238, 247,

252
dbspace

acquiring
identifying characteristics 22
identifying requirements 21
restricted 27

dbspace (continued)
adding 20, 21
altering the design 73
application development 163
back-up 131
consideration for query user 165
defining 17, 20
description 19
estimating sizes of 217
free space, estimating 24
indexes 19, 229
mapping table to 21
pages 217
PRIVATE 21, 88, 164
PUBLIC 21, 164
referential integrity 19
removing 75
reorganizing to free storage pool

pages 74
requirement 20
resetting data 131
size estimating 23, 217
special

HELPTEXT 143, 165
ISQL 165
SAMPLE 165

SYS000n 131, 133
system 165
table in 19, 41
tables in 21
type 22
usage parameter 20, 22
use in testing 169

DCSSID parameter of exec 238, 252
DECIMAL

in column definition 32
storage 219

decimal arithmetic operation 176
default

in syntax diagrams xv
default application server 95
delete rule

CASCADE 7
dependent table 8
parent table 7
RESTRICT 7
SET NULL 7

deleting
a user 83
restriction for view 45
stored query 85
table 72

dependent table
description 7

dependently inactive table 66
designing DB2 databases

documentation and analysis 161
terminology 1

developing application program 162
DFHPCT CICS macroinstruction 126
DFHSIT CICS macroinstruction 126
directory

description 17
distributed data

application programming 14
description 13
implications 15

Index 287

distributed data (continued)
limitations and restrictions 14
planning 13

DRDA protocol
access to application server 13
DATALOAD, DATAUNLOAD 72
EXTLUWID 111, 114
logical unit of work identifier 111

DROP DBSPACE 58, 84
DROP INDEX 84
DROP PACKAGE 85
DROP TABLE 57, 84, 186
DROP VIEW 84
dropping

column 186
dbspace 75
index for a table 187
resource adapter code 254
table 72, 186

DSC (Data System Control) 17
DUALLOG initialization parameter 134
dynamic

application backout 120
recovery from user errors 128

dynamic statement
extended 154, 156
support 154, 155

dynamic transaction backout program of
the CICS subsystem 120

E
editing

PRIVATE table 156
routine 159

entity 1
equijoin 5
error handling

batch and VSE/ICCF
applications 167

DBS Utility application 167
estimating

calculating PCTINDEX 229
dbspace size 23, 217
index size 230
length of a stored row 218
number of data pages in a

dbspace 221
number of header pages for

dbspace 220
storage for a table 218
storage pool size 23

example
accessing a database on another

processor 194
adding a column to a table 65
altering design of a table 64
changing parameters of a dbspace 74
changing user passwords 107
connecting to default application

server 95
connecting under authorization

ID 103
copying tables 62
establishing a default application

server 95

example (continued)
estimating the number of data pages

for a table 223
granting access to VSE guests 91
granting authorities 91
merging data from multiple tables 63
monitoring privileges 94
moving data between dbspaces 62
printing the HELP text 145
reloading the HELP Text 145
removing a dbspace 75
removing user from application

server 83
restricting access using views 104,

106
revoking authorities 92
running the DBS Utility 112
set up a new ISQL user 81
switching application server 97, 103
synonym usage in application

program development 170
typical security audit queries 115
unloading the

“PUBLIC”.“HELPTEXT”
dbspace 145

EXEC
ARISDBHD 256
ARISDBLD 257
authorization 258
SQLCIREO 252
SQLDBID 253
SQLGLOB 247
SQLINIT 95, 237
SQLLEVEL 258
SQLRMEND 124, 254
SQLSTART 244
syntax 237, 256, 257, 258
using DB2 Server for VM facility 156
using ISQL 150

EXPLAIN 161
explanation table 161
explicit

connect 97
CONNECT 87

extended dynamic statement 154, 156
EXTLUWID

DRDA protocol 111, 114

F
failure

application 119
DASD 119
DBS Utility processing 126
ISQL session 126
online application 125
preprocessor 127
subsystem 119
system 119
user logic error 119

fast restore 135
field procedure

in comparisons 37
specified by FIELDPROC clause 35
specified when defining a column 31
using null values 31
when creating a table 35

FIELDPROC
clause of ALTER TABLE

statement 35
clause of CREATE TABLE

statement 35
parameters 35

file maintenance and reporting 148
filtered log recovery 128
fixed-length

rows 29
FLOAT data type of column 32
floating point arithmetic operation 177
FORCE 98, 133
foreign key

CREATE TABLE 39
description 7
planning for 7

FORMAT 154
fragment of syntax

in syntax diagrams xvi
free space

for index entries 48
in a dbspace 24

function
RETRIEVE 60

G
GCBE abend code 126
generation/loading of test data 160
GRANT 90, 93
GRANT SCHEDULE 89
granting

authority 90, 91
privilege 93
remote user 91

GRAPHIC
choosing rather than

VARGRAPHIC 34
in column definition 33

guest sharing, VSE 197

H
hardcopy output of HELP text

using DBS Utility 145
using ISQL 146

header page in a dbspace 24, 220
HELP text

adding a topic 141
copyright notice 145
creating your own tables 142
dbspace 165
enlarging the HELPTEXT

dbspace 143
in alternate languages 137
modification 137
moving to another dbspace 145
printing the text 145
table 139

high-level-language program 147
highlighting

conventions xi
host variable

in syntax diagrams xiii
hypothetical change to data 188

288 Database Administration

I
implicit

connect 95
CONNECT 87
CONNECT support 101

inactive key
description 65
implicit 66

inactive table
description 66

INCLUDE 163
index

adding 187
avoiding on frequently updated

columns 52
CLUSTERED 48
CLUSTERING 48, 51
creating 17, 47
description 47
dropping 187
duplicate key value 52
estimating size of 230
key

column order 47
considerations 47, 50

location in dbspaces 20
maintenance 48
migration considerations 52
nonunique 52
pages in a dbspace 26, 229
PCTFREE consideration 48
performance considerations 51
primary key 39
reorganizing on catalog tables 76
restriction for view 45
retrieving catalog information

about 53
unique

creating 47
general description 48
when to use 51

index key
description 47

initializing a user machine
setting system defaults 246

INPUT 60
insert

restriction for view 45
rule

dependent table 8
for foreign key 40
for primary key 40
parent table 8

INSERT
with subselect 169, 186

INSERT with subselect 186
INTEGER data type of column 32
interactive application 147
Interactive Structured Query Language

(ISQL)
affected by implicit CONNECT 96
backing out 128
CONNECT considerations 100
database consistency 171
dbspace 165
EXEC using 150
FORMAT 154

Interactive Structured Query Language
(ISQL) (continued)

INPUT 60
INPUT restrictions for views 45
maximums 265
PRINT 154
report writing 154
routine 149

testing SQL statements 161, 171
routines 164
session termination 126
setting up a new user 80
stored query 171
stored query to test SQL

statement 171
testing SQL statements 171
training new users 83

internal dbspaces
DASD needs for sorting 232
estimating size 232

ISQL EXEC 150

J
join

equijoin 5
path 5

K
kanji

language key 138
KEEP option

of preprocessor 188
key

language 137
multicolumn 5, 51
primary 4, 38
unique 4, 5

key-level locking 26
keyword

ALLUSERS 101
in syntax diagrams xiii

L
labeled duration

description 177
LANGKEY 138
language key 137

reserved ranges 138
when adding HELP text 142

LASTING GLOBALV file 244
LDATELEN parameter of exec 249
like

description 13
loading data

for new users 83
from a terminal 60
from CMS file 59
from other table 61
from sequential file 61
from virtual reader file 59
from VSAM file 61
into tables 59
using a test dbspace 169

loading data (continued)
using DBS Utility 160
using the DBS Utility 59

loading security audit information into a
table 112

local
definition 13

LOCK 74
LOCK parameter 26
locking

key-level 26
log

database information 17
description 17
recovery (filtered) 128

logical data design
index 47

logical data maximum 265
logical unit of work (LUW)

CICS considerations 101
description 119
general rules 121
recovery 119

logical unit of work identifier (LUWID)
DRDA protocol 111, 114

logical unit type 6.2 (LU 6.2)
security 79

LOGON procedure for implicit
connect 95

long field 51
long-field value

overhead 220
storage 220

LONG VARCHAR
in column definition 33

LONG VARGRAPHIC
in column definition 33

LTIMELEN parameter of exec 249

M
macroinstruction, CICS

DFHPCT 126
DFHSIT 126

maintenance
application program 173
database 57, 76
database consistency 171
dbspace 73
procedure for a database 76
table 59

making the HELPTEXT dbspace
larger 143

managing stored procedure servers 209
many-to-many relationship 3
many-to-one relationship 3
maximum

column
index 265
ISQL query 265
SELECT-list 265
table 265
view 265

foreign keys per table 265
indexes per database 265
indexes per table 265

Index 289

maximum (continued)
length

index key 265
ISQL command (bytes) 265
row 265

logical data limits 265
programs per database 265
tables per database 265
tables per dbspace 265
values for ISQL 265
views per database 265

merging data from multiple tables 63
migration

index considerations 52
MIXED data subtype 34
modeling data designs 160
modifying

the online HELP in the database 137
moving the HELP text to another

dbspace 145
multicolumn key 5, 47

considerations 51
multiple

database 189
tables in a view 43
user mode 190

Multiple Language HELP Text
Support 137

N
NACTIVE column

of SYSDBSPACES 143
naming a table 28
new user support 79
NHEADER

changing 73
determining 24

nonrecoverable storage pool 23
normal form

first 9
fourth 11
second 9
third 10

normalization guidelines 29
normalizing a table 9
NOT NULL option

of CREATE TABLE 31
null

foreign key 8
value 4, 31

numeric data types 32

O
object

in a database 17
security 87

occurrence of an entity 1
one-time query 149
one-to-many relationship 3
one-to-one relationship 2
online

application recovery 125, 168
application security 168
HELP 137

online (continued)
transaction consideration 168
transaction processing 148, 200

operating mode 190
operator ID 101
optional

default parameter
in syntax diagrams xv

item
in syntax diagrams xiv

keyword
in syntax diagrams xv

overflow 175
OVERFLOW error in decimal arithmetic

operation 176
owner

description 93

P
package

performance of 185
page

DASD space 19
header, in a dbspace 24

parameter
CHARNAME 240, 249
DATE 249
DATEFORMAT 240
DBCS 240, 249
DBNAME 238, 247, 252
DCSSID 238, 252
LDATELEN 249
list for a field procedure 35
LOCK 26, 74
LTIMELEN 249
NHEADER 24, 73
PARM 252
PCTFREE 24, 74
PCTINDEX 26, 73
PROTOCOL 239, 248
QRYBLKSIZE 240, 249
QUERY 242, 251
RESET 243, 251
SSSNAME 242, 251
STACK 242, 251
STORPOOL 23, 73
SYNCHRONOUS 239, 248
TIME 249
TIMEFORMAT 241
TRACECONV 242, 250
TRACEDRRM 241, 250
TRACERA 241, 249
WORKUNIT 241, 249

parent table
description 7

parentheses
in syntax diagrams xiii

PARM parameter of exec 252
password

changing user’s 107
PCTFREE

changing 74
clause of CREATE INDEX

statement 48
creating an index 48
default for index 48

PCTFREE (continued)
determining 24
reserved for an index 48

PCTINDEX 26, 73, 229
performance management

application programs 14
CLUSTERED index 48
multiple database considerations 196

periodic
back-up of critical data 131
query 149

physical database concept 19
placing table in dbspace 41
planning

distributing data 13
DRDA protocol 13

precision of decimal result 177
preparing a stored procedure to run 213
preprocessing programs

re-preprocessing 188
under development 162
with unauthorized statement 186

preprocessor
CHECK option 171
coding your own 147
KEEP option 188
termination 127

primary key
clause of CREATE TABLE

statement 38
CREATE TABLE 39
description 38
identifying 4
index 39
multicolumn 5
planning for 6
reorganizing index 68

PRINT 154
printing

report writing support 201
security audit information 116
the HELP text

using ISQL 146
using the DBS utility 145

PRIVATE dbspace
description 21
in application development 163

private query user data 164
PRIVATE table, editing 156
privilege

application program 94
GRANT option 93
granting 93
monitoring 94
remote user 94
revoking 83, 94, 107
table 92
user 92
view 92

PROCMXAB parameter 214
program

affected by implicit CONNECT 96
creator 96
privilege 94
runner 96, 108

programmed query 153
programmed report 155

290 Database Administration

PROTOCOL parameter of exec
AUTO 239, 248
DRDA 239, 248
SQLDS 239, 248

prototyping
application function 161
of data 160

pseudo-conversational transactions 169
PTIMEOUT parameter 214
PUBLIC dbspace 164

description 21
punctuation mark

in syntax diagrams xiii

Q
QRYBLKSIZE parameter of exec 240,

249
query

cost estimate 161
one-time 149
periodic 149
programmed 153
stored 149, 161, 171
to test 171
user data control 164
user identification 172

QUERY parameter of exec 242, 251
query/report writing 203

database support 164
implementation considerations 172

query/report writing capability 149
querying the status of an application

SQLQRY command 261

R
recoverable storage pool 23
recovery

application design 121
application failure 121

multiple user mode 124
single user mode 125

batch and VSE/ICCF application 166
concept 119
considerations 119, 135
DBS Utility application 167
DBS Utility failure 126
dynamic application backout 120
filtered log 128
ISQL failure 126
online application 125, 168
user error 127, 128, 131
within application program 129

referential constraint
description 39

referential integrity
activate foreign key 67
activate primary key 67
CREATE TABLE 39
dbspace 19
deactivate foreign key 68
deactivate primary key 68
deferred constraint enforcement 69
delete rule 40
dependently inactive table 66

referential integrity (continued)
description 7
explicitly inactive key 65
explicitly inactive table 66
foreign key 7
immediate constraint enforcement 68
implicitly inactive key 66
insert rule 40
performance considerations 69
planning for 6
primary key 6
primary key index 39
repairing violations 70
storage pool 18, 23
unique constraint 6
update rule 40

referential structure
description 39

relationship
many-to-many 3
many-to-one 3
multivalued 2
one-to-many 3
one-to-one 2
single-valued 2
table definition 2

REMARKS
column of SYSCATALOG 52

remote
access to DB2 Server for VSE &

VM 11
application server

administration 15
connecting implicitly 97

definition 13
distributed database 11

Remote Server Name
resolving to target database 104

removing
a user 83, 85
a user from a VSE guest 85
table 72
user machines 85

reorganize
dbspace 74, 218
index, primary key 68
indexes on the catalog tables 76

repeat symbol
in syntax diagrams xv

report writing
capability 154
printer support 201
through application program 155
through ISQL 154
through the DBS Utility 155

REPRO (VSAM) 61
request

SYNCPOINT 169
required item

in syntax diagrams xiii
reserved words

SQL xvii
RESET parameter of exec 243, 251
resetting

a database 134
a dbspace from a backup copy 133

resetting (continued)
data using DBS RELOAD

processing 131
database 135

resource adapter
ARISRMBT module 244
bootstrap module 245
dropping code 124, 254
for communication 189
keeping code 254, 255

RESOURCE authority 88, 164
RESTRICT 7
restriction

ACQUIRE DBSPACE 27
creating a view 44
using a view 44

retrieving
catalog information

authorization 54
on columns 53
on indexes 53
on tables 52
on views 54

comments in catalog tables 55
REVOKE 92, 94
REVOKE option

of preprocessor 188
revoking

a user’s password 83
CONNECT authority 83
privilege 83, 107
remote user 92

ROLLBACK
Batch/ICCF recovery 166
hypothetical question support 188
work in application programs 169,

172
ROLLBACK WORK 119, 129
routine

ARINEWUS 80
editing 159
ISQL 149, 161, 164

ROUTINE table 149, 164
row

overhead 220
pointer 219, 230

RUN authority 188

S
SBCS data

subtype 34
scale of decimal result 177
SCHEDULE authority 88
securing the database catalog table 107
security

auditing
loading information into a

table 112
printing information 116
through the catalog table 109
tracing 109

authority 87
batch and VSE/ICCF

applications 166
database catalog table 107
DBS Utility application 167

Index 291

security (continued)
online application 168
privilege 87
providing 87

self-referencing table 7
service machine 189
SET ERRORMODE 167
SET NULL 7
SET RUNMODE 162
setting up

new ISQL user 80
setting up a stored procedure server 206
sharing, VSE guest 197
SHOW DBSPACE 27, 76
size of dbspace, estimating 23, 217
size parameter 23
SMALLINT data type of column 32
SQL dynamic statement support 155
SQLCIREO EXEC 77
SQLDBA.ARINEWUS 80
SQLDBDEF utility 77
SQLDBID EXEC 253
SQLDBN file

content 244
SQLDBN files

definition of 244
updating DCSSID 244
used by SQLINIT 245

SQLDS protocol 13
SQLEND ARCHIVE 133
SQLGLOB EXEC 246
SQLGLOB Parameters (VSE Only) 267
SQLHX 98
SQLINIT EXEC 193, 196

default application server 95
default database 191
description 237
parameters 238
reasons to reissue 243, 245
resource adapter bootstrap

module 245
syntax 237

SQLQRY command
querying the status of an

application 261
SQLRMEND 124
SQLRMEND EXEC 253, 254
SQLSTART EXEC

accessing SQLDBN file 244
description 244

SSSNAME parameter of exec 242, 251
STACK parameter of exec 242, 251
statement

ACQUIRE DBSPACE 26
ALTER DBSPACE 74
ALTER TABLE 64, 186
COMMIT WORK 119
CONNECT 87, 97, 168, 193
CREATE INDEX 47
CREATE TABLE 28, 88, 173
DBS job control 148
DROP DBSPACE 75
DROP TABLE 57, 72, 186
EXPLAIN 161
extended dynamic 154
GRANT 90, 93
GRANT SCHEDULE 89

statement (continued)
INCLUDE 163
INSERT with subselect 169, 186
REVOKE 83, 92, 94
ROLLBACK 188
ROLLBACK WORK 119, 129, 169,

172
SHOW DBSPACE 27
WHENEVER 129

status shared segment, name 242, 251
storage concept 17
storage of ISQL routine 164
storage pool

description 18
nonrecoverable 23
recoverable 23
referential integrity 18, 23
reorganizing a dbspace to free

pages 74
stored procedure

altering 214
ARISPRC 206
concepts 205
dropping 214
handler 206
managing servers 209
parameters affecting execution 214
preparing to run 213
server 205
server groups 206
setting up a server 206

stored query
deleting 85
description 149
testing SQL statements 161
testing SQL statements using

ISQL 171
storing information in dbspaces 19
STORPOOL 73
string data types 32
Structured Query Language (SQL)

configuration 189
dynamic statement support 154

STXIT macroinstructions 125
subset mode of CMS 150
subtype

BIT 34
character 34

supporting your users
authorizing access 82
loading initial table 83
new user support 79
removing a user 83
specifying a default application

server 82
training 83

switching between application
servers 97

synchronization point
request in CICS 125

SYNCHRONOUS parameter of
exec 239, 248

SYNCPOINT
requests in the CICS subsystem 169

synonym
used in application development 170

syntax diagram
notation conventions xiii

SYS0001, reorganizing indexes within 76
SYS000n dbspace 131, 133
SYSLANGUAGE table 137
system

dbspace considerations for query
users 165

SYSTEM tables
SYSCATALOG 55
SYSCOLAUTH 54
SYSCOLUMNS 53, 55
SYSINDEXES 53
SYSPROGAUTH 54
SYSUSERAUTH 54
SYSVIEWS 54

SYSTEXT1 139
SYSTEXT2 139

T
table

altering 64, 186
backing up 131
clustering rows on an index 48
copying 62
copying data 61
creating 17, 28
creator 41
customized for specific user 42
defining a relationship 2
deleting 72
dependent 7
design

normalizing 29
dropping 72, 186
editing 156
estimating storage for 218
in dbspace 21
limiting access to 42
loading 148
loading data 59
location in dbspaces 20
maintaining 59
maintenance

altering 57
copying 57
loading data 57
merging data 57
moving 57
referential integrity 57
removing 57

merging data from multiple tables 63
moving 62
naming 28
normalizing 9
owner 41
parent 7
placement in dbspace 41
primary key 4
privilege 92
removing 72
retrieving catalog information 52
ROUTINE 149
self-referencing 7
space-wasting table designs 30
storing comments on 54

292 Database Administration

table (continued)
SYSTEXT1 and SYSTEXT2 139
unloading 148

terminal
operator id 101
printer 201, 203, 204
used to load data into a database 60

termination
CICS transaction 125
multiple user mode batch

application 124
single user mode applications 125

terminology for database design 1
test data

loading 160
testing

application code under
VSE/ICCF 163

testing SQL functions
SET RUNMODE 162
using ISQL 171
using ISQL routines 161
using stored queries 161
using the DBS Utility 162

TID (row pointers) 219, 230
TIME data type 35
time duration

description 178
TIME parameter of exec 249
TIMEFORMAT parameter of exec 241
TIMESTAMP date type 35
timestamp duration

description 178
TRACECONV parameter of exec 242,

250, 269
TRACEDRRM parameter of exec 241,

250, 268
TRACERA parameter of exec 241, 249,

268
tracing, CICS and Batch Resource

Adapter 274
tracing, security audit 109
training new ISQL users 83
transaction processing 148, 200
transaction program 148
truncation

on output 175
TSAF 193

U
unique constraint

activating 68
considerations in defining 38
description 5, 38
implicit 48
instead of unique index 48
referential integrity 6
reorganizing index 68
when creating a table 38

unique index
creating 47
general description 48
when to use 51

unlike
description 13

UPDATE
restriction for view 45

update rule
dependent table 9
parent table 8

UPDATE STATISTICS 63
usage environment

application development 160, 169,
202

batch/interactive 99, 147, 166, 199
cics/vse online 99
description 199, 205
online transaction processing 101,

148, 168, 200
query/report writing 149, 172, 203

user error 127, 131, 133
user ID 172

CICS default rules for 101
special

CICSUSER 101
DBDCCICS 88

user identification and verification 168
user machine 79, 81, 190
user privilege 92
using indexing in logical data design 47

V
VARCHAR

choosing rather than CHAR 34
in column definition 33

VARGRAPHIC
choosing rather than GRAPHIC 34

varying-length rows 29
view

addressing selected columns 106
addressing selected rows 106
catalog information about 54
creating 17, 42
for multiple tables 43
materializing 46
new column names 44
on a single table 43
privilege 92
reasons for using 42
restriction on access 106
restrictions on

ALTER 45
DBS DATALOAD 45
DBS RELOAD 45
DBS UNLOAD 45
DELETE 45
INDEX 45
INSERT 45
ISQL INPUT 45
UPDATE 45

storing comments on 54
using several tables 43

VSAM
file used to load database 61
REPRO 61
restriction 76

VSE batch partition 147
VSE guest sharing

configuration 197
granting access 91
removing access 85

VSE guest sharing (continued)
revoking access 92

VSE/ICCF
application 147
application program 166
DBS Utility usage 59
testing application code 163

VSE/POWER 201, 203, 204

W
WHENEVER 129
WORKUNIT parameter of exec 241, 249

X
XEDIT, as used with DB2 Server for

VM 157

Index 293

|

294 Database Administration

Contacting IBM

Before you contact DB2 customer support, check the product manuals for help
with your specific technical problem.

For information or to order any of the DB2 Server for VSE & VM products, contact
an IBM representative at a local branch office or contact any authorized IBM
software remarketer.

If you live in the U.S.A., then you can call one of the following numbers:
v 1-800-237-5511 for customer support
v 1-888-426-4343 to learn about available service options

Product information
DB2 Server for VSE & VM product information is available by telephone or by the
World Wide Web at http://www.ibm.com/software/data/db2/vse-vm

This site contains the latest information on the technical library, product manuals,
newsgroups, APARs, news, and links to web resources.

If you live in the U.S.A., then you can call one of the following numbers:
v 1-800-IBM-CALL (1-800-426-2255) to order products or to obtain general

information.
v 1-800-879-2755 to order publications.

For information on how to contact IBM outside of the United States, go to the IBM
Worldwide page at http://www.ibm.com/planetwide

In some countries, IBM-authorized dealers should contact their dealer support
structure for information.

© Copyright IBM Corp. 1987, 2001 295

|

|

|
|

|
|
|

|

|

|

|
|

|
|

|
|

|

|
|

|

|
|

|
|

����

File Number: S370/4300-50
Program Number: 5697-F42

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC09-2888-01

Sp
in

e
in

fo
rm

at
io

n:

�
�

�
D

B
2

Se
rv

er
fo

r
VS

E
&

V
M

D
at

ab
as

e
Ad

m
in

is
tr

at
io

n
Ve

rs
io

n
7

R
el

ea
se

2

	Contents
	About This Manual
	Some Terminology
	Components of the Relational Database Management System

	Organization
	Prerequisite IBM Publications
	Highlighting Conventions

	Syntax Notation Conventions
	SQL Reserved Words
	Summary of Changes
	Summary of Changes for DB2 Version 7 Release 2
	Enhancements, New Functions, and New Capabilities
	Security Enhancements
	Archive Tape Handling Enhancements
	New Database Replication Utility
	SHOW Command Enhancements

	Reliability, Availability, and Serviceability Improvements
	TCP/IP Auto-Restart
	Support for STGPROT=YES Parameter in CICS (VSE only)
	Migration Considerations

	Chapter 1. Designing a Database
	Sample Tables
	Entities, Properties, and Occurrences

	Step 1: Select the Data to Record in the Database
	Step 2: Define Tables for Each Type of Relationship
	One-to-One Relationships
	One-to-Many and Many-to-One Relationships
	Many-to-Many Relationships

	Step 3: Provide Column Definitions for Tables
	Step 4: Identify One or More Columns as a Primary Key
	Step 5: Ensure that Equal Values Represent the Same Entity
	Step 6: Plan for Referential Integrity
	Elements of Referential Integrity
	Foreign Key
	Referential Constraint
	Parent and Dependent Tables
	Self-Referencing Table

	DELETE, INSERT, and UPDATE Considerations
	DELETE Rules
	INSERT Rules
	UPDATE Rules

	Step 7: Normalize Your Tables
	First Normal Form
	Second Normal Form
	Third Normal Form
	Fourth Normal Form

	Step 8: Considerations for Distributed Data
	Definitions
	Application Programming
	System Operations
	Distributing Existing Data

	Chapter 2. Implementing Your Design
	Storage Concepts
	How Information is Stored in Dbspaces

	Database Generation
	Defining Dbspaces
	Identifying Dbspace Requirements
	Mapping Tables to Dbspaces

	Adding Dbspaces to the Database
	Acquiring Dbspaces
	Determining Dbspace Type (PUBLIC or PRIVATE)
	Determining the Size of the Dbspace (PAGES)
	Determining the Storage Pool (STORPOOL)
	Determining the Number of Header Pages (NHEADER)
	Determining the Percent Free Space Desired (PCTFREE)
	Determining the Percentage for Index Pages (PCTINDEX)
	Determining the Lock Size (LOCK)

	Retrieving Information about Dbspace Parameters
	Example

	Restrictions on the ACQUIRE DBSPACE Statement

	Creating Tables
	Controlling Who Creates Tables
	How to Create Tables
	Naming Tables
	Choosing Columns
	Considerations for Normalization
	Considerations for Row Size

	Specifying Columns
	Column Names
	Nulls

	Specifying Data Types
	Numeric Data Types
	String Data Types
	Data Types for Dates, Times, and Timestamps
	Advantages of Date/Time Data Types
	Date/Time Arithmetic and Durations
	Comparing Data Types

	Specifying a PRIMARY KEY
	Specifying a UNIQUE Constraint
	Considerations in Defining Unique Constraints

	Considerations for Referential Integrity when Creating Tables
	Primary Key Index

	Placing Tables in Dbspaces

	Creating Views
	Reasons for Using Views
	Creating a View on a Table
	Creating a View from Several Tables
	Things You Cannot Do with a View
	Materializing a View

	Creating Indexes
	Index Key
	UNIQUE Indexes
	The PCTFREE Clause
	Clustering Rows of a Table on an Index
	Some Things to Remember When Defining Keys
	General Performance Considerations on the Use of Indexes
	Migration Considerations for Indexes

	Using the Catalog in Database Design
	Retrieving Catalog Information about a Table
	Retrieving Catalog Information about Columns
	Retrieving Catalog Information about Indexes
	Retrieving Catalog Information about Views
	Retrieving Catalog Information about Authorization
	The COMMENT ON Statement
	Retrieving Comments

	Chapter 3. Maintaining Your Database
	Maintaining Tables
	Loading Data into Tables
	Loading Data in VM Using the DBS Utility
	Loading Data Using the DBS Utility in VSE/ICCF
	Loading Data from a Terminal Using ISQL INPUT
	Loading Data from Sequential Files in VSE
	Loading Data from VSAM Files
	Loading Data from Other Tables

	Copying Tables
	Example

	Moving Tables from One Dbspace to Another
	Example

	Merging Data from Multiple Tables
	Example
	Examples

	Altering the Design of a Table
	Authorization
	Example
	Adding a New Column
	Example

	Altering Referential and Unique Constraints
	Considerations When Adding Keys or Constraints
	Considerations When Dropping a Primary or Foreign Key
	Considerations When Activating Keys and Constraints
	Considerations When Deactivating Keys and Constraints

	Enforcing Referential Constraints
	Advantages and Disadvantages of Deferred Constraint Enforcement
	Repairing Rows that Violate Referential Constraints

	Moving Data from One Application Server to Another
	Removing Tables

	Maintaining Dbspaces
	Altering the Design of a Dbspace
	Changing the PAGES, STORPOOL, DBSPACE Type, NHEADER, or PCTINDEX
	Changing the PCTFREE and LOCK Parameters

	Reorganizing a Dbspace to Free Storage Pool Pages
	Removing Dbspaces
	Example

	VSAM Restrictions

	Reorganizing Indexes on the Catalog Tables
	Moving Your Database

	Chapter 4. Supporting Your Users
	Adding a New User
	Setting Up New ISQL Users
	Example

	Authorizing Access
	Specifying a Default Application Server in VM
	Loading Initial Tables
	Training New Users

	Removing Users from an Application Server
	Example

	Chapter 5. Providing Security
	Authorities
	Types of Authorities
	CONNECT Authority
	RESOURCE Authority
	SCHEDULE Authority
	DBA Authority

	Granting Authorities
	Examples
	Granting Access to VSE Guests

	Revoking Authorities
	Examples
	Revoking Access from VSE Guests

	Privileges
	Privileges of Ownership
	Granting Privileges to Other Users
	Revoking Privileges
	Monitoring Privileges
	Examples

	Privileges on Application Programs

	Connecting to an Application Server in VM
	Establishing a Default Application Server
	Example

	Connecting to the Application Server Implicitly
	How Implicit CONNECT Applies to VM Programs
	How Implicit CONNECT Applies to ISQL (VM)
	How Implicit CONNECT Applies to the DBS Utility (VM)
	How Implicit CONNECT Applies to Remote Application Servers
	How Implicit CONNECT Applies to TCP/IP

	Connecting to the Application Server Explicitly
	Switching to Another Application Server
	Connecting under Another Authorization ID
	Determining the Currently Established Application Server

	Connecting to an Application Server in VSE
	Establishing a Default Application Server
	Connecting to the Application Server in Different VSE Environments
	CICS/VSE Online Environment
	Batch/Interactive Environment
	ISQL Environment
	CICS Transaction Environment

	User IDs for Remote CICS/VSE Transactions
	Connecting to an Application Server in Special Circumstances
	Switching to Another Application Server
	Example - Without Specifying an Authorization ID and Password
	Example - Specifying an Authorization ID and Password
	Connecting under Another Authorization ID
	Example
	Determining the Current User ID and Application Server

	Resolving Remote Server Name to Target Database (CICS)
	Resolving Remote Server Name to Target Database (VSE Batch)
	Restricting Access Using Views
	Example
	Examples

	Changing User Passwords
	Example

	Securing the Database Catalog Tables
	Example 1
	Example 2
	Example 3

	Security Auditing
	Auditing Security Using the Catalog Tables
	Auditing Security Using Tracing
	Loading Security Audit Information into Tables
	Printing Security Audit Information from the Trace File

	Chapter 6. Recovering from Failures
	Overview of Recovery Concepts
	Logical Units of Work
	CMS Work Units
	Atomic Operations
	Example:

	Dynamic Application Backout
	Restart Processing

	Recovery from Application Failures
	Application Program Recovery in VM
	Dropping the DB2 Server for VM Resource Adapter Code
	Batch and VSE/ICCF Application Recovery
	Online Application Recovery
	ISQL Sessions
	DBS Utility Processing
	Preprocessor

	Recovery from User Logic Errors
	Dynamic Recovery from User Errors
	Backing Out Data During an ISQL Session
	Backouts Initiated by Application Programs

	Selective Recovery from User Data Errors
	Periodic Backup of Critical Data
	Resetting Data Using DBS RELOAD Processing

	Database Recovery from User Logic Errors
	Creating a Proper Back-up Copy of the Database
	Resetting the Database to a Previous Copy
	Resetting the Database without Reformatting the DB2 Server for VSE Data Sets

	Chapter 7. Customizing the HELP Text and Messages Text
	The SYSLANGUAGE Table
	The SYSTEXT1 and SYSTEXT2 Tables
	Adding Topics to HELP Text Tables
	Adding a HELP Topic to the HELP Text Supplied by IBM
	Creating Your Own HELP Text Tables

	Making the HELPTEXT Dbspace Larger
	Moving the HELP Text to Another Dbspace
	Printing the HELP Text Using the DBS Utility
	Printing the HELP Text Using ISQL

	Chapter 8. Application Design Considerations
	Application Implementation Capabilities
	Batch/Interactive Capabilities
	High-Level-Language Programs
	DBS File Maintenance and Reporting

	Online (CICS) Transaction Processing Capabilities
	Query Capabilities
	One-Time Queries
	Periodic Queries

	Report Writing Capabilities
	Report Writing Using ISQL
	Report Writing Using the DBS Utility
	Programmed Reports

	Programmed Application Capabilities
	EXECs that Use DB2 Server for VM Facilities
	Editing Private Tables
	Editing Routines

	Application Development Capabilities
	Data Prototyping
	Prototyping Application Function
	Code Development
	CMS Subset Considerations

	Application Database Considerations
	Database Support for Application Development
	PRIVATE Dbspaces in Application Development
	PUBLIC Dbspaces in Application Development

	Database Support for Query/Report Writing
	Private Query User Data
	Storage of ISQL Routines
	System Dbspace Considerations

	Application Implementation Considerations
	VSE Batch/Interactive Application Considerations
	Batch/ICCF Application Security
	Batch/ICCF Recovery
	Batch/ICCF Error Handling
	DBS Utility Application Security
	DBS Utility Application Recovery
	DBS Utility Application Error Handling

	Online CICS/VSE Transaction Considerations
	Online Application Security
	Online Application Recovery
	Pseudoconversational Transactions

	Application Development Considerations
	Loading Data into Test Dbspaces
	Use of Synonyms in Application Development
	Testing SQL Statements
	Using ISQL and Stored Queries
	Maintaining Database Consistency Under ISQL
	Using ISQL Stored Queries for Testing SQL Statements
	Using ISQL Routines to Test SQL Statements

	Checking Application Code
	Using the Preprocessor CHECK Option
	Use of ROLLBACK WORK During Application Execution

	Query/Report Writing Considerations
	User Identifiers (Userids) for Query Users

	Application Independence with CMS Work Units
	Application Maintenance Considerations
	Data Administration Support
	Data Independence Support
	Data Type Changes

	Arithmetic Operations
	Decimal Arithmetic Operations
	Binary Arithmetic Operations
	Floating Point Arithmetic Operations
	Date/Time Arithmetic

	Data Access Changes
	Data Structure Changes
	Data Authorization Changes
	The Preprocessor KEEP Option for RUN Authority
	Changing the Users of Data

	Hypothetical Change Support

	Chapter 9. DB2 Server for VM Database Configurations
	DB2 Server for VM Concepts
	Operating Modes for the Database Machine

	Example Configurations
	One Database Machine with One Database
	One Database Machine with Two Databases
	Several Database Machines with Many Databases
	Multiple Database Machines on Different Processors
	Accessing a Database from a Processor that Does Not Have One

	Performance Considerations with Multiple Databases
	VSE Guest Sharing (On VM/ESA Systems Only)

	Chapter 10. Usage Environments in VSE
	Batch/Interactive Application Processing
	Online (CICS) Transaction Processing
	Application Development
	Query/Report Writing

	Chapter 11. Stored Procedures
	Stored Procedure Concepts
	Stored Procedure Servers
	The Stored Procedure Server
	The Stored Procedure Handler
	Stored Procedure Server Groups
	Setting up a Stored Procedure Server

	Managing Stored Procedure Servers
	Stored Procedure Server Allocation
	States of a Stored Procedure Server
	STOPPED
	STOPPING
	STARTING
	STARTED

	Altering or Dropping a Stored Procedure Server Definition

	Stored Procedures
	Preparing a Stored Procedure to Run
	Dropping or Altering a Stored Procedure

	Initialization Parameters Affecting Stored Procedure Execution
	PTIMEOUT Parameter
	PROCMXAB Parameter

	Summary of Environment Interactions

	Appendix A. Estimating Your Dbspace Requirements
	Estimating Dbspace Size
	General Guidelines
	Estimating Storage for a Table
	LONG-FIELD Value Overhead
	Long-Field Value Storage

	Estimating the Number of Header Pages
	Estimating the Number of Data Pages
	Pages Required for Storing Tables with Fixed Length Rows
	Examples of Estimating the Number of Data Pages
	Estimating Data Pages for a Table with Variable Length Rows

	Estimating the Number of Index Pages
	Estimating the Size of an Index

	Estimating Internal Dbspace Size and DASD Needs for Sort Operations
	When Do We Sort?
	Internal Dbspace Characteristics
	Calculating Internal Dbspace Size Requirements
	Calculating Total Internal Dbspace and DASD Needs

	Appendix B. CMS EXECs
	SQLINIT EXEC
	Initializing a User Machine
	SQLINIT, SQLSTART, Bootstrap Modules and SQLDBN files

	SQLGLOB EXEC
	SQLCIREO EXEC
	SQLDBID EXEC
	SQLRMEND EXEC
	Example

	ARISDBHD EXEC
	ARISDBLD EXEC
	SQLLEVEL EXEC

	Appendix C. Querying the Status of an Application (VM Only)
	Example

	Appendix D. Maximums
	ISQL Maximums

	Appendix E. SQLGLOB Parameters (VSE Only)
	Transactions for Updating SQLGLOB Parameters
	DSQG - Update global SQLGLOB Parm Transaction
	DSQU - Update user SQLGLOB Parm Transaction
	DSQQ - Query SQLGLOB Parm Transaction
	DSQD - Delete user SQLGLOB Parm Transaction

	Batch Program to Update/Query the SQLGLOB File
	Using Online and Batch Resource Adapter Tracing
	Online Trace File JCL
	Batch Trace File JCL
	Formatting the Online or Batch Trace File

	Notices
	Trademarks

	Bibliography
	Index
	Contacting IBM
	Product information

