
DB2 Server for VSE & VM

Application Programming
Version 7 Release 2

SC09-2889-01

���

DB2 Server for VSE & VM

Application Programming
Version 7 Release 2

SC09-2889-01

���

Before using this information and the product it supports, be sure to read the general information under “Notices” on page 403.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

Order publications through your IBM representative or the IBM branch office serving your locality or by calling
1-800-879-2755 in the United States or 1-800-IBM-4YOU in Canada.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1987, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

|

|
|
|

|
|

|
|

Contents

About This Manual vii
Audience and Purpose of This Book vii
Organization of This Book viii
Related Publications ix
Syntax Notation Conventions ix
SQL Reserved Words xiii
Conventions for Representing DBCS Characters . . xiii
Components of the Relational Database
Management System xiv

Summary of Changes xvii
Summary of Changes for DB2 Version 7 Release 2 xvii

Enhancements, New Functions, and New
Capabilities xvii
Reliability, Availability, and Serviceability
Improvements xviii

Chapter 1. Getting Started 1
What is the DB2 Server for VSE & VM Product? . . 2
What is SQL? 3

Embedding SQL Statements in Host Language
Programs 4

Writing a Program 4

Chapter 2. Designing a Program 7
Defining the Main Parts of a Program 8

Creating the Prolog 8
Creating the Body 12
Creating the Epilog 15

Using Logical Units of Work. 18
Defining the Logical Unit of Work 18
Beginning a Logical Unit of Work 18
Considering the CICS/VSE Logical Unit of Work
(DB2 Server for VSE Only) 18
Ending a Logical Unit of Work 19

Summary 20
Using Host-Dependent Sample Applications . . . 21

Chapter 3. Coding the Body of a
Program 25
Defining Static SQL Statements 27
Naming Conventions 27
Coding SQL Statements to Retrieve and Manipulate
Data 28

Retrieving Data 28
Defining an SQL Query 28
Retrieving or Inserting Multiple Rows 35
Retrieving Single Rows 40

Constructing Search Conditions 41
Performing Arithmetic Operations 41
Using Null Values 43
Using the Predicates of a Search Condition . . . 43

Using Functions 45
Using Column Functions 45

Using Scalar Functions 46
Using Data Types 46

Assigning Data Types When the Column Is
Created. 46
Using Long Strings 47
Using Datetime Data Types 48
Using Character Subtypes and CCSIDs 48
Converting Data 50
Truncating Data 51
Using a Double-Byte Character Set (DBCS) . . . 53

Using Expressions 54
Using Arithmetic Operators 54
Using Special Registers 55
Concatenating Character and Graphic Strings . . 56
Using Host Variables 57
Using Host Structures 57
Using Constants 58
Using Indicator Variables 61

Using Views 63
Creating a View 64
Querying Tables through a View 65
Using Views to Manipulate Data 66
Dropping a View 68

Joining Tables 68
Joining Tables Using the Database Manager . . 68
Performing a Simple Join Query 68
Joining Another User’s Tables 69
Analyzing How a Join Works 70
Using VARCHAR and VARGRAPHIC within Join
Conditions. 70
Using Nulls within Join Conditions 70
Joining a Table to Itself Using a Correlation
Name 71
Imposing Limits on Join Queries 73
Using SELECT * In a Join. 73

Grouping the Rows of a Table 73
Using VARCHAR and VARGRAPHIC within
Groups 74
Using Nulls within Groups 74
Using Select-Lists in Grouped Queries 74
Using a WHERE Clause with a GROUP BY
Clause 75
Using the HAVING Clause 75
Combining Joins. 76
Illustrating Grouping with an Exercise 76

Nesting Queries 78
Using the IN Predicate with a Subquery 82
Considering Other Subquery Issues 82
Executing Subqueries Repeatedly: Correlation . . 83
Writing a Correlated Subquery 84
How the Database Manager Does Correlation . . 85
Illustrating a Correlated Subquery 86
Using a Subquery to Test for the Existence of a
Row 91
Table Designation Rule for Correlated Subqueries 91
Combining Queries into a Single Query: UNION 92

© Copyright IBM Corp. 1987, 2001 iii

||
|
||
|
||

SQL Comments within Static SQL Statements . . . 95
Using Stored Procedures 95

Writing Stored Procedures 97
Returning Information from the SQLCA 98
Language Environment® (LE) Considerations . . 99
Preparing to Run a Stored Procedure 99
Calling Stored Procedures 99
Authorization 100
AUTHIDs 100
Stored Procedure Parameters 101
Datatype Compatibility 102
Conventions for Passing Stored Procedure
Parameters 102
Coding Examples 104
Special Considerations for C 104
Special Considerations for PL/I 104
Result Sets 104
Using the DESCRIBE PROCEDURE SQL
Statement 108
Using the DESCRIBE CURSOR SQL Statement 109

Chapter 4. Preprocessing and
Running a DB2 Server for VM
Program 115
Defining the Steps to Execute the Program . . . 116
Comparing Single User Mode to Multiple User
Mode 116
Using 31-Bit Addressing 116
Initializing the User Machine 117

Using VM Implicit Connect. 117
Preprocessing the Program 118

Using the SQLPREP EXEC Procedure 118
Preprocessing with an Unlike Application Server 134
Using the Preprocessor Option File 134
Using the Flagger at Preprocessor Time. . . . 135
Improving Performance Using Preprocessing
Parameters 136
Using the INCLUDE Statement 143

Compiling the Program 144
Link-Editing and Loading the Program 144

Link-Editing the Program with DB2 Server for
VM TEXT Files 144
Including the TEXT File in the Link-Editing . . 145
Creating a Load Module Using the CMS
GENMOD Command 146

Running the Program 146
Using a Consistency Token 146
Loading the Package and Rebinding. 146
Using Multiple User Mode 147
Using Single User Mode. 148
Specifying User Parameters in Single User Mode 149

Distributing Packages across Like and Unlike
Systems 149

Chapter 5. Preprocessing and
Running a DB2 Server for VSE
Program 151
Defining the Steps to Execute the Program . . . 152
Using 31-Bit Addressing 152

How DB2 Establishes User IDs for CICS/VSE
Transactions 153

User IDs for Remote CICS/VSE Transactions 154
Using Batch for Remote CICS/VSE Transactions 154

Preprocessing the Program 154
Preprocessing by Mode 156
Defining the Preprocessing Parameters 158
Using the Preprocessor Option Member . . . 168
Using the Flagger at Preprocessor Time. . . . 168
Using the CICS/VSE Translator 169
Improving Performance Using Preprocessing
Parameters 170
Using the INCLUDE Statement 177

Compiling the Program 178
Link-Editing and Loading the Program 178

Link-Editing the Program with Supplementary
Information 178

Running the Program 180
Using a Consistency Token 180
Loading the Package and Rebinding. 180
Running by Mode 180
Running under CICS/VSE Support 181
Accessing Other DB2 Family Application
Servers 182

Installing Applications that Access the Database
Manager 182

Installing a Batch Application 182
Installing an Online CICS/VSE Application . . 183
Distributing Packages across Like and Unlike
Systems 185
Creating a Package Using CBND 186

Chapter 6. Testing and Debugging 193
Doing Your Own Testing 194

Checking Warnings and Errors at Preprocessor
Time 194
Testing SQL Statements 195

Using the Automatic Error-Handling Facilities . . 195
Using the SQLCA 197
Examining Errors 198

Handling Errors in a Select-List 205
Handling Arithmetic Errors. 205
Handling Numeric Conversion Errors 206
Handling CCSID Conversion Errors 207

Chapter 7. Using Dynamic Statements 209
Dynamically Defining SQL Statements 210
Comparing Non-Query Statements to Query
Statements 210
Using Non-Query Statements 210

Executing Non-Parameterized Statements . . . 210
Executing Parameterized Statements. 212

Using Query Statements 214
Executing a Non-Parameterized Select-Statement 214
Executing a Parameterized SELECT Statement 221

Executing a Parameterized Non-Query Statement 224
Generating a SELECT Statement 224

Using an Alternative to a Scanning Routine . . . 225
Ensuring Data Type Equivalence in a Dynamically
Defined Query 226

iv Application Programming

Summarizing the Fields of the SQLDA 228
Using the SQLN Field 230
Using the SQLD Field in the SQLDA 230

Using the PREPARE Statement 231
SQL Functions Not Supported in Dynamic
Statements 232

Chapter 8. Using Extended Dynamic
Statements 235
Contents 235

Using Extended Dynamic Statements to
Maintain Packages. 236
Illustrating the Use of Extended Dynamic
Statements 240
Grouping Extended Dynamic Statements in an
LUW 246
Mapping Extended Dynamic Statements to
Static and Dynamic Statements 249
SQL Functions Not Supported in Extended
Dynamic Statements 250

Chapter 9. Maintaining Objects Used
by a Program 251
Managing Dbspaces 252

Defining Dbspaces. 252
Modifying the Size of Dbspaces 255
Automatically Locking Dbspaces 256
Overriding Automatic Locking 256
Deleting the Contents of Dbspaces 257

Other Data Definition Statements. 258
Using Tables, Indexes, Statistics, Synonyms,
Comments, and Labels 258
Using Stored Procedures and PSERVERS . . . 261

Chapter 10. Assigning Authority and
Privileges 265
Defining User Access to the Database 266

Defining Authority Types for the Database . . 266
Granting Authority to Users 266
Revoking Authority from Users 267

Defining Privileges 267
Defining Privileges on Tables and Views . . . 268
Defining Privileges on Packages 269

Chapter 11. Special Topics. 273
Using Datetime Values with Durations 274

Using Durations 274
Resolving Peculiarities of Date Arithmetic . . . 274

Using Field Procedures 277
Assigning Field Procedures to Columns . . . 278
Understanding Field Procedure Rules 279

Using CMS Work Units (DB2 Server for VM) . . . 282
Using Work Units in Application Programs . . 283
How Locking Works with CMS Work Units . . 284
Environmental Considerations. 285

Ensuring Data Integrity 285
Ensuring Entity Integrity 285
Using Unique Constraints 286
When Creating a View 286

Ensuring Referential Integrity 286
Switching Application Servers 298

Identifying Switching Options 298
Comparing Switching to Other Methods (DB2
Server for VM) 298
How to Switch Servers (DB2 Server for VSE) 299
Accessing a New Application Server 300
Illustrating Sample Code 301
Preprocessing the Program on Multiple
Application Servers 302

Condition Handling with LE/VSE (DB2 Server for
VSE) 303

Appendix A. Using SQL in Assembler
Language 305
Using ARIS6ASD, an Assembler Language Sample
Program (DB2 Server for VSE Only) 306
Using ARIS6ASC, an Assembler Language Sample
Program (DB2 Server for VM Only) 306
Acquiring the SQLDSECT Area 306
Imposing Usage Restrictions on the SQLDSECT
Area 308
Rules for Using SQL Statements in Assembler
Language. 310

Identifying Rules for Case 310
Declaring Host Variables 310
Embedding SQL Statements 312
Using the INCLUDE Statement 313
Using Host Variables in SQL Statements . . . 313
Using DBCS Characters in Assembler Language 313

Handling SQL Errors 314
Using Dynamic SQL Statements in Assembler
Language. 314
Defining DB2 Server for VSE & VM Data Types for
Assembler Language 315
Using Reentrant Assembler Language Programs 317
Using Stored Procedures 322

Appendix B. Using SQL in C 327
A C Sample Program 328
Rules for Using SQL in C 328

Placing and Continuing SQL Statements . . . 328
Delimiting SQL Statements 329
Identifying Rules for Case 329
Identifying Rules for Character Constants . . . 329
Using the INCLUDE Statement 329
Using the CONNECT Statement (DB2 Server for
VSE) 330
Using the C Compiler Preprocessor 330
Declaring Host Variables 330
Using Host Variables in SQL Statements . . . 335
Using the Pointer Type Attribute 335
Using Host Variables as Function Parameters 337
Using C Variables in SQL: Data Conversion
Considerations 338
Using C NUL-Terminated Strings and
Truncation 338
Calculating Dates 338
Using Trigraphs 339
Using DBCS Characters in C 339

Contents v

Considering Preprocessor-Generated Statements 339
Handling SQL Errors 342
Using Dynamic SQL Statements in C 343
Defining DB2 Server for VSE & VM Data Types for
C 344
Using Reentrant C Programs 346
Using Stored Procedures 346

Appendix C. Using SQL in COBOL 349
A Sample COBOL Program. 350
Rules for Using SQL in COBOL 350

Placing and Continuing SQL Statements . . . 350
Delimiting SQL Statements 351
Identifying Rules for Case 351
Declaring Host Variables 352
Using Host Variables in SQL Statements . . . 355
Using Long VARCHAR Host Variables (DB2
Server for VSE) 355
Using Preprocessor Options 355
Handling SQL Errors 359
Using Dynamic SQL Statements in COBOL . . 360
Defining DB2 Server for VSE & VM Data Types
for COBOL 362
Using Reentrant COBOL Programs 364
Using the DYNAM Compiler Option 365
Using Stored Procedures 365

Appendix D. Using SQL in Fortran 367
A Fortran Sample Program 368
Rules for Using SQL in Fortran 368

Placing and Continuing SQL Statements . . . 368
Placing Data Statements 369
Using Fortran Common Areas (DB2 Server for
VSE) 369
Identifying Rules for Case 369
Declaring Host Variables 369
Embedding SQL Statements 371
Using Host Variables in SQL Statements . . . 371
Using Variable Length Character Strings . . . 371
Using DBCS Characters in Fortran 372
Using the INCLUDE Statement 373
Using Fortran Variables in SQL: Data
Conversion Considerations 373

Handling SQL Errors 373
Handling Program Interrupts 374

Using Dynamic SQL Statements in Fortran . . . 374
Restrictions When Using the Fortran Preprocessor 375
Defining DB2 Server for VSE & VM Data Types for
Fortran 376

Appendix E. Using SQL in PL/I 379
Using PL/I Sample Programs 380
Rules for Using SQL in PL/I 380

Placing and Continuing SQL Statements . . . 380
Delimiting SQL Statements 380
Using the INCLUDE Statement 381
Declaring Static External Variables 381
Identifying Rules for Case 381
Declaring Host Variables 381
Using Host Variables in SQL Statements . . . 384
Using PL/I Variables in SQL: Data Conversion
Considerations 384
Using DBCS Characters in PL/I 384
Using SQL Statements in PL/I Subroutines . . 385
Coding the SIZE Parameter in VSE JCL (DB2
Server for VSE) 386

Handling SQL Errors 386
Handling Program Interrupts 387
Using Dynamic SQL Statements in PL/I 387
Defining DB2 Server for VSE & VM Data Types for
PL/I 389
Using Stored Procedures 390

Appendix F. Decision Tables to Grant
Privileges on Packages 393
How to Use the Decision Tables 394
Decision Tables 395

Notices 403
Programming Interface Information 405
Trademarks 405

Bibliography. 407

Index 411

Contacting IBM 421
Product information 421

vi Application Programming

||
||

About This Manual

This preface:
v Identifies the book’s audience and purpose
v Describes the book’s organization
v Lists related publications
v Explains how to read the syntax diagrams
v Presents the conventions for describing MIXED data values.

Audience and Purpose of This Book
This book is for application programmers writing programs in assembler language,
C, COBOL, 1 Fortran, or PL/I. Throughout the book, the term host languages will
often be used to refer to any or all of these particular languages.

This book assumes that you can write programs in one of these host languages for
a Virtual Storage Extended/Enterprise Systems Architecture (VSE/ESA) operating
system, or a Virtual Machine/Enterprise Systems Architecture (VM/ESA)
environment. You may also find it useful to know how to use CICS® and ICCF (or
equivalent products) for a VSE/ESA system, and the conversational monitor
system (CMS) for VM/ESA system.

The purpose of the book is to explain how to write application programs that use
the Structured Query Language (SQL) to access data stored in DATABASE 2
Server for Virtual Machine/Enterprise Systems Architecture (DB2 Server for VM)
and in DATABASE 2 Server for Virtual Storage Extended/Enterprise Systems
Architecture (DB2 Server for VSE) tables. To achieve its purpose, the book:
v Introduces basic concepts
v Provides in-depth discussion of complex areas
v Offers tips of what to do and what not to do
v Focuses more on the Data Manipulation Language of SQL than on the Data

Definition Language or the Data Control Language. (The details of the latter two
components of SQL are of greater interest to the database administrator than to
the application programmer.)

v Describes the host language interfaces and the preprocessor process
v Supplements the material with examples
v Acts as a reference pointer to the appropriate chapters of the DB2 Server for VSE

& VM SQL Reference manual for details on such technical facts as naming
conventions, rules, and syntax.

The REXX Interface to the DB2 Server for VM product (DB2 Server RXSQL) is a
separately priced feature of this product. For information on this interface, see the
DB2 REXX SQL for VM/ESA Installation and Reference manual.

Programmers writing in APL2 should refer to the APL2 Programming: Using
Structured Query Language manual.

1. Throughout this book, COBOL is used to represent either OS/VS COBOL, VS COBOL II, IBM COBOL for MVS and VM, or IBM
COBOL for VSE; except where noted otherwise.

© Copyright IBM Corp. 1987, 2001 vii

Organization of This Book
The following information provides a brief description of each chapter and
appendix in the book.

This preface identifies the audience, the purpose, and the use of the book.

Summary of Changes describes the new features of DB2 Server for VSE & VM
Version 7 Release 2.

“Chapter 1. Getting Started” on page 1 provides an overview of the application
server, the SQL language that accesses the application server, and the host
application languages that embed the SQL language.

“Chapter 2. Designing a Program” on page 7 describes the basic framework for
designing a DB2 Server for VSE & VM application based on its three main parts:
the prolog, body, and epilog.

“Chapter 3. Coding the Body of a Program” on page 25 describes the coding
entered in the program body to retrieve and manipulate DB2 Server for VSE & VM
data. Data retrieval is described in terms of tables, associated views, and the
various means of accessing and selecting table data. Data manipulation focuses on
inserting, updating, and deleting data.

“Chapter 4. Preprocessing and Running a DB2 Server for VM Program” on
page 115 and “Chapter 5. Preprocessing and Running a DB2 Server for VSE
Program” on page 151 provide information on the steps you take to preprocess and
run an application program. These steps include initial preparation of the system,
as well as preprocessing, compiling, link-editing, loading, and running the
program.

“Chapter 6. Testing and Debugging” on page 193 shows you how to test a new
program, process program errors, and monitor program execution.

“Chapter 7. Using Dynamic Statements” on page 209 describes how to dynamically
process SQL statements that are specified at run time.

“Chapter 8. Using Extended Dynamic Statements” on page 235 explains how
extended dynamic SQL statements can be used to create and maintain packages of
SQL statements. The SQL statements that create and maintain the packages are
available only in an application written in the assembler language.

“Chapter 9. Maintaining Objects Used by a Program” on page 251 discusses the
management of DB2 Server for VSE & VM objects. First it describes the database
space (dbspace); then it discusses the data objects used to manage the data itself,
including tables, indexes, synonyms, comments, and labels.

“Chapter 10. Assigning Authority and Privileges” on page 265 explains the
techniques used to control user access to, and user manipulation of, the data. A
section on user access discusses granting and revoking database authority, while a
section on privileges describes assigning of user privileges for tables, views and
packages.

“Chapter 11. Special Topics” on page 273 covers various special topics, such as
ensuring data integrity, that supplement the material in the preceding chapters.

viii Application Programming

Appendixes A through E describe information specific to each application host
language.

Appendix F contains decision tables used by the system to grant privileges on
packages.

The Bibliography lists the full titles and order numbers of related publications. It is
followed by the Index.

Related Publications
v DB2 Server for VSE & VM Overivew
v DB2 Server for VSE & VM Interactive SQL Guide and Reference
v DB2 Server for VSE & VM Database Services Utility
v DB2 Server for VSE & VM Quick Reference
v DB2 Server for VSE & VM SQL Reference
v DB2 Server for VSE Messages and Codes
v DB2 Server for VM Messages and Codes.

You will need to consult the DB2 Server for VSE & VM SQL Reference manual
extensively for technical details and the sample tables while working with this
book. The sample tables are used for many of the examples in this book.

Syntax Notation Conventions
Throughout this manual, syntax is described using the structure defined below.
v Read the syntax diagrams from left to right and from top to bottom, following

the path of the line.
The ��─── symbol indicates the beginning of a statement or command.
The ───� symbol indicates that the statement syntax is continued on the next
line.
The �─── symbol indicates that a statement is continued from the previous line.
The ───�� symbol indicates the end of a statement.
Diagrams of syntactical units that are not complete statements start with the
�─── symbol and end with the ───� symbol.

v Some SQL statements, Interactive SQL (ISQL) commands, or database services
utility (DBS Utility) commands can stand alone. For example:

Others must be followed by one or more keywords or variables. For example:

v Keywords may have parameters associated with them which represent
user-supplied names or values. These names or values can be specified as either
constants or as user-defined variables called host_variables (host_variables can only
be used in programs).

�� SAVE ��

�� SET AUTOCOMMIT OFF ��

About This Manual ix

v Keywords appear in either uppercase (for example, SAVE) or mixed case (for
example, CHARacter). All uppercase characters in keywords must be present;
you can omit those in lowercase.

v Parameters appear in lowercase and in italics (for example, synonym).
v If such symbols as punctuation marks, parentheses, or arithmetic operators are

shown, you must use them as indicated by the syntax diagram.
v All items (parameters and keywords) must be separated by one or more blanks.
v Required items appear on the same horizontal line (the main path). For example,

the parameter integer is a required item in the following command:

This command might appear as:
SHOW DBSPACE 1

v Optional items appear below the main path. For example:

This statement could appear as either:
CREATE INDEX

or
CREATE UNIQUE INDEX

v If you can choose from two or more items, they appear vertically in a stack.
If you must choose one of the items, one item appears on the main path. For
example:

Here, the command could be either:
SHOW LOCK DBSPACE ALL

or
SHOW LOCK DBSPACE 1

If choosing one of the items is optional, the entire stack appears below the main
path. For example:

�� DROP SYNONYM synonym ��

�� SHOW DBSPACE integer ��

�� CREATE INDEX
UNIQUE

��

�� SHOW LOCK DBSPACE ALL
integer

��

x Application Programming

Here, the command could be:
BACKWARD

or
BACKWARD 2

or
BACKWARD MAX

v The repeat symbol indicates that an item can be repeated. For example:

This statement could appear as:
ERASE NAME1

or
ERASE NAME1 NAME2

A repeat symbol above a stack indicates that you can make more than one
choice from the stacked items, or repeat a choice. For example:

v If an item is above the main line, it represents a default, which means that it will
be used if no other item is specified. In the following example, the ASC keyword
appears above the line in a stack with DESC. If neither of these values is
specified, the command would be processed with option ASC.

�� BACKWARD
integer
MAX

��

�� $ERASE name ��

�� VALUES ($

,

constant)
host_variable_list
NULL
special_register

��

��
ASC

DESC
��

About This Manual xi

v When an optional keyword is followed on the same path by an optional default
parameter, the default parameter is assumed if the keyword is not entered.
However, if this keyword is entered, one of its associated optional parameters
must also be specified.
In the following example, if you enter the optional keyword PCTFREE =, you
also have to specify one of its associated optional parameters. If you do not
enter PCTFREE =, the database manager will set it to the default value of 10.

v Words that are only used for readability and have no effect on the execution of
the statement are shown as a single uppercase default. For example:

Here, specifying either REVOKE ALL or REVOKE ALL PRIVILEGES means the
same thing.

v Sometimes a single parameter represents a fragment of syntax that is expanded
below. In the following example, fieldproc_block is such a fragment and it is
expanded following the syntax diagram containing it.

��
PCTFREE = 10

PCTFREE = integer
��

�� REVOKE ALL
PRIVILEGES

��

�� fieldproc_block
NOT NULL

UNIQUE
PRIMARY KEY

��

fieldproc_block:

FIELDPROC program_name

$

,

(constant)

xii Application Programming

SQL Reserved Words
The following words are reserved in the SQL language. They cannot be used in
SQL statements except for their defined meaning in the SQL syntax or as host
variables, preceded by a colon.

In particular, they cannot be used as names for tables, indexes, columns, views, or
dbspaces unless they are enclosed in double quotation marks (").

ACQUIRE
ADD
ALL
ALTER
AND
ANY
AS
ASC
AVG

BETWEEN
BY

CALL
CHAR
CHARACTER
COLUMN
COMMENT
COMMIT
CONCAT
CONNECT
COUNT
CREATE
CURRENT

DBA
DBSPACE
DELETE
DESC
DISTINCT
DOUBLE
DROP

EXCLUSIVE
EXECUTE
EXISTS
EXPLAIN

FIELDPROC
FOR
FROM

GRANT
GRAPHIC
GROUP

HAVING

IDENTIFIED
IN
INDEX
INSERT
INTO
IS

LIKE
LOCK
LONG

MAX
MIN
MODE

NAMED
NHEADER
NOT
NULL

OF
ON
OPTION
OR
ORDER

PACKAGE
PAGE
PAGES
PCTFREE
PCTINDEX
PRIVATE
PRIVILEGES
PROGRAM
PUBLIC

RESOURCE
REVOKE
ROLLBACK
ROW
RUN

SCHEDULE
SELECT
SET
SHARE
SOME
STATISTICS
STORPOOL
SUM
SYNONYM

TABLE
TO

UNION
UNIQUE
UPDATE
USER

VALUES
VIEW

WHERE
WITH
WORK

Conventions for Representing DBCS Characters
When MIXED data values are shown in examples then the following conventions
are used:

Convention Meaning

< Represents the DBCS delimiter character X '0E'.

About This Manual xiii

> Represents the DBCS delimiter character X '0F'.

x Represents an SBCS character (x can be any lowercase letter).

�XX� Represents a DBCS character (�XX� can be any double-byte
uppercase letter).

Components of the Relational Database Management System
Figure 1 depicts a typical configuration with one database and two users.

Figure 2 on page xv depicts a typical configuration with one database, one batch
partition user, and a CICS

®

partition with several interactive users.

Storage
Pool

Database

Application Server

Communication Link (IUCV, APPC/VM or TCP/IP)

MDISK LINK

Database Manager

Database
Machine

User
Machine

Applications

Application Requester

Interactive SQL

Resource AdapterData System Control

Relational Data System

Database Storage
Subsystem

Preprocessors

DBS Utility

User
Machine

Applications

Application Requester

Interactive SQL

Preprocessors

DBS Utility

Resource Adapter

Figure 1. Basic Components of the RDBMS in VM/ESA

xiv Application Programming

The database is composed of :
v A collection of data contained in one or more storage pools, each of which in turn

is composed of one or more database extents (dbextents). A dbextent is a VM
minidisk or a VSE VSAM cluster.

v A directory that identifies data locations in the storage pools. There is only one
directory per database.

v A log that contains a record of operations performed on the database. A database
can have either one or two logs.

The database manager is the program that provides access to the data in the
database. In VM it is loaded into the database virtual machine from the production
disk. In VSE it is loaded into the database partition from the DB2 Server for VSE
library.

The application server is the facility that responds to requests for information from
and updates to the database. It is composed of the database and the database
manager.

The application requester is the facility that transforms a request from an
application into a form suitable for communication with an application server.

Storage
Pool

Database

Database Manager

Applications

Application Requester

Application Requester

Data System Control

Interactive SQL

Relational Data System

CICS Application

Database Storage
Subsystem

Online Resource Adapter

Batch Resource Adapter

Dbextent

ent

ent

Log
Directory

VSE Batch
Partition

Application
Program

Application Server

Database
Partition

VSE

CICS Partition

DB2
for VSE
Library

VSAM

Figure 2. Basic Components of the RDBMS in VSE/ESA

About This Manual xv

xvi Application Programming

Summary of Changes

This is a summary of the technical changes to the DB2 Server for VSE & VM
database management system for this edition of the book. Several manuals are
affected by some or all of the changes discussed here. For your convenience, the
changes made in this edition are identified in the text by a vertical bar (|) in the
left margin. This edition may also include minor corrections and editorial changes
that are not identified.

This summary does not list incompatibilities between releases of the DB2 Server
for VSE & VM product; see either the DB2 Server for VSE & VM SQL Reference, DB2
Server for VM System Administration, or the DB2 Server for VSE System
Administration manuals for a discussion of incompatibilities.

Summary of Changes for DB2 Version 7 Release 2
Version 7 Release 2 of the DB2 Server for VSE & VM database management
system is intended to run on the Virtual Machine/Enterprise Systems Architecture
(VM/ESA®) Version 2 Release 3 or later environment and on the Virtual Storage
Extended/Enterprise Systems Architecture (VSE/ESA™) Version 2 Release 3
Modification 1 or later environment.

Enhancements, New Functions, and New Capabilities
The following have been added to DB2 Version 7 Release 2:

Security Enhancements
The following enhancements have been made to the CONNECT statement in
DRDA:
v Server and client support for password encryption over TCP/IP and SNA
v CONNECT IDENTIFIED BY enablement for the VM requestor

For more information, see the following DB2 Server for VSE & VM documentation:
v DB2 Server for VM System Administration

v DB2 Server for VSE System Administration

v DB2 Server for VSE & VM Application Programming

v DB2 Server for VSE & VM SQL Reference

v DB2 Server for VM Program Directory

v DB2 Server for VSE Program Directory

Archive Tape Handling Enhancements
Two initialization parameters have been added:
v For VSE & VM, the TAPEMGR parameter allows you to specify that tape

manager functionality is available and will be used.
v For VSE only, the ARCHTAPE parameter allows you to specify that the archive

tape be automatically unloaded from the tape drive at the end of writing each
tape of a log or database archive.

For more information, see the following DB2 Server for VSE & VM documentation:
v DB2 Server for VM System Administration

v DB2 Server for VSE System Administration

© Copyright IBM Corp. 1987, 2001 xvii

|

|

|
|
|
|
|

|

|

|
|
|

|

|

|

|

|

|

|

|

|

|
|

|
|

|
|
|

|

|

|

v DB2 Server for VSE & VM Operation

v DB2 Server for VM Program Directory

v DB2 Server for VSE Program Directory

New Database Replication Utility
A new utility has been added in support of database replication:

Redefine Database
Extracts the definition of database objects from a DB2 Server for VSE &
VM database and generates a DBSU job to create the same objects on
another DB2 database.

For more information, see the following DB2 Server for VSE & VM documentation:
v DB2 Server for VM System Administration

v DB2 Server for VSE System Administration

v DB2 Server for VSE & VM Database Administration

v DB2 Server for VM Program Directory

v DB2 Server for VSE Program Directory

SHOW Command Enhancements
The SHOW DBCONFIG command has been changed to show the current version,
release, and modification level of the database, in addition to the version, release,
and modification level at which the database was originally generated.

The SHOW INITPARM command has been changed to show the current version,
release, and modification level of the database.

The SHOW SQLDBGEN command has been added to show the current database
information. The output can be used to create a new SQLDBGEN file (for VM) or
ARISDBG.A source member (for VSE) in order to generate a copy of the database
with the current configuration. This copy can be used, for example, to create a new
test system.

For more information, see the following DB2 Server for VSE & VM documentation:
v DB2 Server for VM System Administration

v DB2 Server for VSE System Administration

v DB2 Server for VSE & VM Database Administration

v DB2 Server for VSE & VM Operation

v DB2 Server for VM Messages and Codes

v DB2 Server for VSE Messages and Codes

Reliability, Availability, and Serviceability Improvements

TCP/IP Auto-Restart
The database is now able to detect when TCP/IP has gone down, and
automatically restart it. New initialization parameters control enablement of
auto-restart and the maximum number of retry attempts.

For more information, see the following DB2 Server for VSE & VM documentation:
v DB2 Server for VM System Administration

v DB2 Server for VSE System Administration

v DB2 Server for VSE & VM Operation

v DB2 Server for VM Program Directory

xviii Application Programming

|

|

|

|
|

|
|
|
|

|

|

|

|

|

|

|
|
|
|

|
|

|
|
|
|
|

|

|

|

|

|

|

|

|

|
|
|
|

|

|

|

|

|

v DB2 Server for VSE Program Directory

Support for STGPROT=YES Parameter in CICS (VSE only)
Changes have been made to the instructions used in DB2 Server for VSE to allow
the use of STGPROT=YES when starting CICS/TS for VSE/ESA.

See the DB2 Server for VSE Program Directory for additional information.

Migration Considerations
Migration is supported from SQL/DS™ Version 3 and DB2 Server for VSE & VM
Versions 5 and above. Migration from SQL/DS Version 2 Release 2 or earlier
releases is not supported. Refer to the DB2 Server for VM System Administration or
DB2 Server for VSE System Administration manual for migration considerations.

Summary of Changes xix

|

|
|
|

|

|
|
|
|
|

xx Application Programming

Chapter 1. Getting Started

What is the DB2 Server for VSE & VM Product? . . 2
What is SQL? 3

Embedding SQL Statements in Host Language
Programs 4

Using DB2 Server RXSQL (DB2 Server for VM
Only) 4

Writing a Program 4

© Copyright IBM Corp. 1987, 2001 1

What is the DB2 Server for VSE & VM Product?
The DB2 Server for VSE & VM product is a database management system that uses
the relational data model. You can think of a relational data model as a collection
of ordinary two-dimensional tables, where each table has a specific number of
columns, unordered rows, and a specific item of data at the intersection of every
column and row. You access data by performing operations on tables. All you need
to know are the names of tables and of the columns that contain the desired data.

The sample tables in Appendix G of the DB2 Server for VSE & VM SQL Reference
manual are used in examples throughout this manual. In Table 1, the
DEPARTMENT table has columns DEPTNO, DEPTNAME, MGRNO, and
ADMRDEPT.

Table 1. DEPARTMENT Table Contents

DEPTNO DEPTNAME MGRNO ADMRDEPT

A00 SPIFFY COMPUTER SERVICE
DIV.

000010 A00

B01 PLANNING 000020 A00

C01 INFORMATION CENTER 000030 A00

D01 DEVELOPMENT CENTER ? A00

D11 MANUFACTURING SYSTEMS 000060 D01

D21 ADMINISTRATION SYSTEMS 000070 D01

E01 SUPPORT SERVICES 000050 A00

E11 OPERATIONS 000090 E01

E21 SOFTWARE SUPPORT 000100 E01

Suppose, for example, you want a list of all the different departments
(DEPTNAME) in your company. You could get this information simply by
knowing the name of the table DEPARTMENT and of the column DEPTNAME
that the data is in, and coding this in an appropriate SQL statement.

2 Application Programming

DB2 Server for VSE
You can use the database management system under any supported Virtual
Storage Extended (VSE) operating system. Application programs running
under VSE can be:
v Online programs operating in CICS partitions, controlled by the Customer

Information Control System/Virtual Storage Extended (CICS/VSE) or the
Customer Information Control system/Transaction Server (CICS/TS)

v Batch programs operating in interactive partitions controlled by the IBM
Interactive Communications and Control Facility (ICCF).

v Pure batch programs.

Under the VSE operating system, you can write batch or online programs to
access one or more DB2 Server for VSE application servers, or application
servers using VSE Guest Sharing. In addition, you can write batch or online
programs to access one or more DB2 family application servers using DRDA
Remote Unit of Work (RUOW). The application server is the facility that
receives and processes requests to access data.

Access to multiple application servers is not available for CICS application
programs; however, CICS programs running in different CICS partitions can
access different application servers.

DB2 Server for VM
You can use the DB2 Server for VM database management system under any
supported Virtual Machine (VM) operating system. Application programs
running under VM can be:
v Online programs that operate in virtual machines and are controlled by the

conversational monitor system (CMS).
v Noninteractive programs that operate in virtual machines in VM.

You can also write distributed applications that can access multiple
application servers, as well as application servers other than DB2 Server for
VSE & VM such as DB2 for MVS. The DB2 Server for VM application server
is the facility that receives and processes requests to access data.

For a discussion of terms and concepts, such as application server, that are
used throughout this manual, refer to the DB2 Server for VSE & VM Overview,
the DB2 Server for VSE & VM SQL Reference, and the DRDA: Every Manager's
Guide manuals.

What is SQL?
DB2 Server for VSE & VM data is handled by the Structured Query Language
(SQL), which contains statements that retrieve, delete, insert, and update tables in a
DB2 Server for VSE & VM database. You can embed these statements in
application programs written in any of the following host languages: assembler
language, C, COBOL, Fortran, PL/I, or REXX (for DB2 Server for VM).

Chapter 1. Getting Started 3

|
|
|

|
|
|

These SQL statements do all data handling, thereby decreasing the data handling
done by the programs themselves. Programs that access DB2 Server for VSE & VM
data can also access data from other sources, such DL/I databases (for VSE) and
CMS files (for VM).

Embedding SQL Statements in Host Language Programs
Programs that use the DB2 Server for VSE & VM database management system are
host programs because they act as hosts for SQL. How you embed SQL statements
varies for each of the supported host languages.

The core of SQL is the same for each host language. For this reason, the SQL
statements are presented throughout this book in basic form unless otherwise noted:
that is, without any of the language-dependent delimiters.

In this book, examples that have combinations of SQL statements and host
language statements are shown in a language-independent form called pseudocode.
Pseudocode shows program logic but must be recoded in a specific programming
language before it can be used. When SQL statements are shown in pseudocode
examples, they are preceded by the words EXEC SQL to help you distinguish them
from the pseudocode. When shown by themselves, they are not preceded by these
words.

To use SQL statements in a programming language, you must be familiar with the
rules for embedding them in that language. These rules are discussed in Appendix
section of this manual (one for each language).

You should browse through the appropriate appendix before you continue reading,
and refer to it as needed when you are ready to code your first DB2 Server for
VSE & VM application. You can also refer to Chapter 6 of the DB2 Server for VSE &
VM SQL Reference manual for information on SQL statements.

Using DB2 Server RXSQL (DB2 Server for VM Only)
The REXX Interface Installation (DB2 Server RXSQL) extends the support of the
database manager to include REXX as a host language. SQL statements are
supported in DB2 Server RXSQL by DB2 Server RXSQL requests that are imbedded
in REXX programs. Because REXX is an interpretive language, DB2 Server RXSQL
requests do not need to be preprocessed or compiled before they are run. You can
compile REXX programs, but this has no effect on the DB2 Server RXSQL requests.
You can use DB2 Server RXSQL to:
v Make prototypes and test application programs
v Write application programs for production environment
v Write interpretive as well as compiled code.

For a discussion of application programming using REXX, refer to the DB2 REXX
SQL for VM/ESA Installation and Reference manual.

Writing a Program
Writing a program that accesses DB2 Server for VSE & VM data consists of the
following steps: Designing the program entails determining what tasks the
program must perform, and then creating a plan for the program to perform these
tasks. The structure of the program should be based on its three main parts:
prolog, body, and epilog. Coding the program entails using SQL statements and
tools to manipulate DB2 Server for VSE & VM data. The operations on the data

4 Application Programming

must conform to the design of the program. Preparing the program for execution
entails preprocessing, compiling, link-editing, and loading it. Testing and
debugging the program entails:
v Executing the program using test data
v Checking the results
v Identifying errors created in the previous steps
v Correcting the errors.

Releasing the program entails putting it into production (that is, making it
available to its intended users). In this step, you control who will be allowed to
run the program and to work with the data that it accesses.

Chapter 1. Getting Started 5

6 Application Programming

Chapter 2. Designing a Program

Defining the Main Parts of a Program 8
Creating the Prolog 8

Declaring Variables That Interact with the
Database Manager 8
Handling Errors with the SQL
Communications Area 11
Using Additional Nonexecutable Statements 12

Creating the Body 12
Connecting to the Application Server 12
Defining Objects 14
Manipulating Objects 14
Controlling Application Server Resources . . 14
Granting Authorities and Privileges 14

Creating the Epilog 15
Ending the Program 15

Using Logical Units of Work. 18
Defining the Logical Unit of Work 18
Beginning a Logical Unit of Work 18
Considering the CICS/VSE Logical Unit of Work
(DB2 Server for VSE Only) 18
Ending a Logical Unit of Work 19

Using the COMMIT Statement 19
Using the ROLLBACK Statement 19

Summary 20
Using Host-Dependent Sample Applications . . . 21

© Copyright IBM Corp. 1987, 2001 7

Defining the Main Parts of a Program
A DB2 Server for VSE & VM application program contains three main parts: the
prolog, the body, and the epilog. Certain SQL statements must appear at the
beginning and end of the program to handle the transition from the host language
to the embedded SQL statements.

The prolog is at the beginning of every program and must contain:
v SQL statements that provide for error handling by setting up the SQL

communications area or by declaring an SQLCODE variable.
v Declarations of all variables that the database manager uses to interact with the

host program.

The body contains the SQL statements that will enable you to access and manage
data. Among the statements included in this section are:
v The CONNECT statement, which establishes a connection to an application

server
v Data manipulation statements (for example, the select-statement)
v Data definition statements (for example, the CREATE statement)
v Data control statements (for example, the GRANT statement).

The epilog is at the end of the application program, and contains SQL statements
that:
v Save (commit) or do not use (rollback) changes made to data.
v Release the program’s connection to the application server.

Creating the Prolog

Declaring Variables That Interact with the Database Manager
All host program variables that interact with the database manager must be
declared in an SQL declare section. A program may contain multiple SQL declare
sections. An SQL declare section is a group of host program variable declarations
that are preceded by the SQL statement BEGIN DECLARE SECTION and followed by
the SQL statement END DECLARE SECTION. Host program variables declared in an
SQL declare section are host variables and can be used in host-variable references
in SQL statements.

The attributes of each host variable depend on how the variable is used in the SQL
statement. For example, variables that receive data from or store data in DB2
Server for VSE & VM tables must have data type and length attributes compatible
with the column being accessed. To determine the data type for each variable, you
must be familiar with DB2 Server for VSE & VM data types, shown in Table 6 on
page 46. Each column of every table is assigned a data type when the table is
created.

Relating Host Variables to an SQL Statement: Host variables can be used to
receive data from the database manager or to transfer data from the host program
to the database manager. Host variables that receive data from the database
manager are output host variables. Host variables that transfer data from the host
program to the database manager are input host variables.

Consider the following SELECT INTO statement:

8 Application Programming

SELECT HIREDATE, EDLEVEL
INTO :HDATE, :LVL
FROM EMPLOYEE
WHERE EMPNO = :IDNO

It contains two output host variables, HDATE and LVL, and one input host
variable, IDNO. The database manager uses the data stored in the host variable
IDNO to determine the EMPNO of the row that is retrieved from the EMPLOYEE
table If a row that meets the search criteria is found, HDATE and LVL receive the
data stored in the columns HIREDATE and EDLEVEL respectively. This statement
illustrates an interaction between the host program and the database manager
using columns of the EMPLOYEE table.

Each column of a table is assigned a data type and each data type can be related to
a host language data type. For example, the INTEGER data type is a 31-bit binary
integer. This is equivalent to the following data description entries in each of the
host languages, respectively:

COBOL:
01 variable-name PICTURE S9(9) COMPUTATIONAL.

Assembler:
variable-name DS F

C:
long variable-name;

Fortran
INTEGER variable-name

PL/I:
DCL variable-name BINARY FIXED(31);

All the host language equivalents for a particular DB2 Server for VSE & VM data
type are listed at the end of each host language appendix.

After you determine which column a host variable interacts with, you need to find
out what DB2 Server for VSE & VM data type that column has. Do this by
querying the DB2 Server for VSE & VM catalog, which is a set of tables containing
information about all tables created in the database. This catalog is described in the
DB2 Server for VSE & VM SQL Reference manual.

After you have determined the data types, you can refer to the conversion charts at
the end of the host language appendixes, and code the appropriate declarations.
Table 2 shows the declarations in each host language.

Chapter 2. Designing a Program 9

Table 2. Examples of Declarations and Embedded SQL Statements

Assembler Col. 1 Col. 16 Col. 72
| | |
EXEC SQL BEGIN DECLARE SECTION

HDATE DS CL10
LVL DS H
IDNO DS CL6
EXEC SQL END DECLARE SECTION
EXEC SQL INCLUDE SQLCA
EXEC SQL WHENEVER SQLERROR GOTO ERRCHK
EXEC SQL SELECT HIREDATE, EDLEVEL *

INTO :HDATE, :LVL *
FROM EMPLOYEE *
WHERE EMPNO = :IDNO

.

.

.
ERRCHK

C EXEC SQL BEGIN DECLARE SECTION;
char HDATE[11];
short LVL;
char IDNO[7];

EXEC SQL END DECLARE SECTION;
EXEC SQL INCLUDE SQLCA;
EXEC SQL WHENEVER SQLERROR GOTO ERRCHK;
EXEC SQL SELECT HIREDATE, EDLEVEL

INTO :HDATE, :LVL
FROM EMPLOYEE
WHERE EMPNO = :IDNO;

.

.

.
ERRCHK: errout();

COBOL Cols. 8 12
| |
DATA DIVISION.

FILE SECTION.

WORKING-STORAGE SECTION.
EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 HDATE PICTURE X(10).
01 LVL PICTURE S9(4) COMPUTATIONAL.
01 IDNO PICTURE X(6).
EXEC SQL END DECLARE SECTION END-EXEC.
EXEC SQL INCLUDE SQLCA END-EXEC.

PROCEDURE DIVISION.
EXEC SQL WHENEVER SQLERROR GOTO ERRCHK END-EXEC.
EXEC SQL SELECT HIREDATE, EDLEVEL

INTO :HDATE, :LVL
FROM EMPLOYEE
WHERE EMPNO = :IDNO END-EXEC.

.

.

.
ERRCHK.

10 Application Programming

Table 2. Examples of Declarations and Embedded SQL Statements (continued)

Fortran Col. 7
|
EXEC SQL BEGIN DECLARE SECTION
CHARACTER*10 HDATE
INTEGER*2 LVL
CHARACTER*6 IDNO
EXEC SQL END DECLARE SECTION
EXEC SQL INCLUDE SQLCA
EXEC SQL WHENEVER SQLERROR GOTO 4000
EXEC SQL SELECT HIREDATE, EDLEVEL

* INTO :HDATE, :LVL
* FROM EMPLOYEE
* WHERE EMPNO = :IDNO

.

.

.
4000 CONTINUE

PL/I Col. 2
|
EXEC SQL BEGIN DECLARE SECTION;

DCL HDATE CHARACTER(10);
DCL LVL BINARY FIXED(15);
DCL IDNO CHARACTER(6);

EXEC SQL END DECLARE SECTION;
EXEC SQL INCLUDE SQLCA;
EXEC SQL WHENEVER SQLERROR GOTO ERRCHK;

EXEC SQL SELECT HIREDATE, EDLEVEL
INTO :HDATE, :LVL
FROM EMPLOYEE
WHERE EMPNO = :IDNO;

.

.

.
ERRCHK:

Table 2 also shows the BEGIN and END DECLARE SECTION statements for DB2
Server for VSE. Observe how the delimiters for SQL statements differ for each
language. For the exact rules of placement, continuation, and delimiting of these
statements, see the appendixes of this book.

Handling Errors with the SQL Communications Area
The SQL Communications Area (SQLCA) is discussed in detail in “Using the
Automatic Error-Handling Facilities” on page 195. This section presents an
overview. To declare the SQLCA, code this statement in your program:

INCLUDE SQLCA

When you preprocess your program, the database manager inserts host language
variable declarations in place of the INCLUDE SQLCA statement. The system
communicates with your program using the variables for warning flags, error
codes, and diagnostic information.

The system returns a return code in SQLCODE after executing each SQL statement.
The SQLCODE is an integer value that summarizes the execution of the statement.
Refer to the DB2 Server for VSE & VM SQL Reference manual for a detailed
description of the SQLCODE field. Refer to the DB2 Server for VM Messages and
Codes or the DB2 Server for VSE Messages and Codes manuals for information about
specific SQLCODEs.

Chapter 2. Designing a Program 11

A return code is also returned in SQLSTATE after each SQL statement is executed.
SQLSTATE is a character field that provides common error codes across IBM’s
relational database products. SQLSTATE values comply with the SQL92 standard.
For a discussion of SQLSTATE, refer to the DB2 Server for VSE & VM SQL Reference
manual. For more information about specific SQLSTATEs, refer to the DB2 Server
for VM Messages and Codes or the DB2 Server for VSE Messages and Codes manuals.

When a statement is executed successfully, SQLCODE is set to 0 (SQLSTATE is
'00000'). A negative SQLCODE indicates an error condition. Positive SQLCODES
indicate that a statement has executed successfully but a warning code may be
issued which means that you must verify whether the SQL statement was executed
without unexpected results.

The system supports the use of a stand-alone SQLCODE. If you request this
support, do not include the SQLCA definition in your program. However, you
must provide the integer variable SQLCODE (SQLCOD in Fortran). For a detailed
discussion, see “Using the Automatic Error-Handling Facilities” on page 195.

If you want the system to control error checking after each SQL statement, use the
WHENEVER statement. The following WHENEVER statement indicates to the
system what to do when it encounters a negative SQLCODE:

WHENEVER SQLERROR GO TO errchk

That is, whenever an SQL error (SQLERROR) occurs, program control is
transferred to code that follows a specific label, such as ERRCHK. This code
should include logic to analyze the error indicators in the SQLCA. Depending
upon the ERRCHK definition, action may be taken to execute the next sequential
program instruction, to perform some special functions, or, as in most situations, to
roll back the current logical unit of work (LUW) and terminate the program. See
“Using Logical Units of Work” on page 18 for more information on LUWs.

Using Additional Nonexecutable Statements
Generally, other nonexecutable SQL statements are also part of the prolog. These are
discussed later in this manual, and in the DB2 Server for VSE & VM SQL Reference
manual. Examples of other nonexecutable statements are:
v INCLUDE text_file_name
v INCLUDE SQLDA

Creating the Body

Connecting to the Application Server

Your program must establish a connection to the application server before it can
run any executable SQL statements. This connection identifies the authorization ID
of the user who is running the program, and the name of the application server on
which the program will be run.

12 Application Programming

DB2 Server for VM
The program can establish the connection in two ways:
v Issue the CONNECT statement to explicitly request the connection.

You can then specify the authorization ID and the name of the target
application server. See the DB2 Server for VSE & VM SQL Reference manual
for a detailed discussion of the CONNECT statement. Not all forms of the
CONNECT statement are available when you are using DRDA protocol.

v Allow the application requester to connect implicitly, using the VM logon
ID established by the SQLINIT command.

DB2 Server for VSE
VSE non-interactive (batch) and ICCF application programs must establish the
connection by explicitly issuing the CONNECT statement. You can enter the
authorization ID and the name of the target application server. See the DB2
Server for VSE & VM SQL Reference manual for a detailed discussion of the
CONNECT statement.

The CONNECT statement must be the first SQL statement executed in the
batch application. If you release the connection in any logical unit of work
other than the last one, issue a new CONNECT statement to reestablish the
connection. If the first SQL statement is a CONNECT statement without the
TO clause, the default application server is connected. For more information
about the defaults that determine which application server is accessed, refer
to the DB2 Server for VSE System Administration manual. CICS online
applications can establish the connection in two ways:
v Issue the CONNECT statement to explicitly request the connection. You can

then specify the authorization ID and the name of the target application
server. See the DB2 Server for VSE & VM SQL Reference manual for a
detailed discussion of the CONNECT statement.

v Allow the application to connect implicitly, allowing the user ID and
password checking to be performed by the interactive system.

Unless the TO parameter is specified by a CICS/VSE application on a
CONNECT statement, the CICS/VSE application will first establish
connections to the default application server. On subsequent CONNECTs
performed by that application, if the TO parameter is not specified then the
connection to the previously connected server will be maintained. For more
information about the defaults that determine which application server is
accessed, refer to the DB2 Server for VSE System Administration manual.

The authorization ID established by the connection must have been granted both
the privilege to execute the program’s package and CONNECT authority for the
target application server. For DB2 Server for VM, the package has authority to
perform the actions specified in the statements in the program if the owner of the
package has the authority. For DB2 Server for VSE, the package has the authority
to access database resources specified in the SQL statements in the program if the
owner of the package has the authority.

Chapter 2. Designing a Program 13

DB2 Server for VSE
After the connection has been established, your program can issue SQL
statements that manipulate data, define and maintain database objects, and
begin control operations, such as, granting user authority, and committing
changes to the database. See the DB2 Server for VSE & VM SQL Reference
manual for a more detailed discussion of the CONNECT statement.

Defining Objects
The following are some of the statements that you can use to create and drop
database objects such as tables, indexes, and synonyms. (These statements are
discussed in “Chapter 9. Maintaining Objects Used by a Program” on page 251.)
v CREATE TABLE
v DROP TABLE
v ALTER TABLE
v CREATE INDEX
v DROP INDEX
v CREATE VIEW
v DROP VIEW
v CREATE SYNONYM
v DROP SYNONYM
v CREATE PROCEDURE
v ALTER PROCEDURE
v DROP PROCEDURE
v CREATE PSERVER
v ALTER PSERVER
v DROP PSERVER

Manipulating Objects
The following are some of the statements that you can use to manipulate database
objects:
v SELECT
v INSERT
v UPDATE
v DELETE

These statements are discussed in detail in “Chapter 3. Coding the Body of a
Program” on page 25.

Note: Refer to the DB2 Server for VSE & VM SQL Reference manual for a
description of select-statements.

Controlling Application Server Resources
The following are some of the statements that you can use to manage logical units
of work, dbspaces, and locks:
v CONNECT
v ACQUIRE DBSPACE
v DROP DBSPACE
v ALTER DBSPACE
v UPDATE STATISTICS

Granting Authorities and Privileges
There are two statements to use to assign and withdraw privileges on objects or
authorities to user IDs:
v GRANT
v REVOKE

14 Application Programming

They are discussed in detail in “Chapter 10. Assigning Authority and Privileges”
on page 265.

Creating the Epilog

Ending the Program
The application epilog is the logical end of your DB2 Server for VSE & VM
application program. To properly end your program:
1. End the current logical unit of work (if one is in progress) by explicitly issuing

either a COMMIT statement if you want the changes to be committed (saved in
the database), or a ROLLBACK statement if you do not want them to be saved.

2. Release your connection to the application server.

DB2 Server for VSE
The two tasks are accomplished differently for VSE batch or ICCF
applications, and for CICS/VSE transactions.

Chapter 2. Designing a Program 15

DB2 Server for VM
Although an implicit COMMIT or ROLLBACK statement is automatic for any
application that accesses an application server, you should still issue an
explicit COMMIT or ROLLBACK statement. For DB2 Server for VM
application programs that are not executed through an EXEC, implicit
COMMIT or ROLLBACK processing occurs when the application program is
completed. For those that are executed through an EXEC, this processing does
not occur until the EXEC is completed. To sever the connection and cause the
COMMIT or ROLLBACK to take effect from an EXEC, the SQLRMEND EXEC
must be invoked. See “Invoking Applications in CMS SUBSET” on page 284
for limitations on the use of SQLRMEND, and the DB2 Server for VSE & VM
Database Administration manual for more information on this EXEC.

When an implicit COMMIT or ROLLBACK is invoked, the logical unit of
work will be committed if the termination was normal, or rolled back if the
termination was abnormal. An application is terminated normally when it
returns to CMS or, in single virtual machine mode, to the DB2 Server for VM
calling routine. Any other kind of termination, such as HX, CMS abend,
program check, or any user machine termination, is abnormal.

In the VM environment, user-written interactive SQL applications are
provided with an inherent facility to cancel an SQL statement without
terminating the running application. This cancellation facility is invoked with
the SQLHX immediate command established by the DB2 application
requester. The only special processing ability required of the application is
that it be sensitive to the -914 SQLCODE (SQLSTATE '57014'). If the user ID
and password were established with an explicit SQL CONNECT, you must
reissue the CONNECT statement. If you do not, the user ID password and
application server revert to the value established by the implicit CONNECT.

The application can modify the basic cancel facility by defining additional
names for the DB2 Server for VM-defined SQLHX command or by requesting
the system to remove the SQLHX command and the exit it invokes. Use the
ARIRCAN macro to do these modifications. For more details on the
ARIRCAN macro interface (RMXC) and the SQLHX command, see the DB2
Server for VM System Administration manual.

For more information on CMS, consult the VM/ESA: CMS Command Reference
or the VM/ESA: CMS User’s Guide manuals.

Ending the Program for VSE Batch or ICCF Applications (DB2 Server for VSE
Only): You can enter either

COMMIT RELEASE

to end the current logical unit of work and commit the changes to the database, or
ROLLBACK RELEASE

to end the current logical unit of work and restore the changes made to the
database. The RELEASE keyword is optional; it releases your connection to the
application server. You should always explicitly end your logical unit of work;
however, you should release the connection only when ending the last logical unit
of work (if your program has more than one) or when changing your authorization
ID or the connected application server. If you release the connection in any logical

16 Application Programming

unit of work other than the last logical unit of work, enter a new CONNECT
statement to reestablish the connection. You should not release and reestablish the
connection unnecessarily because this may degrade the performance of your
program. Begin subsequent logical units of work with an explicit CONNECT
statement if the previous logical unit of work was terminated using the RELEASE
option.

If you do not code a RELEASE as described above, the system issues one implicitly
for you upon task/program termination. Not coding the RELEASE when ending
the last logical unit of work is inefficient, however; DB2 Server for VSE resources
are held until the application terminates even though you may not be using them.

Note: If you forget to end your logical unit of work, the system interrogates a VSE
flag to determine whether the program connection (to the application server)
terminated normally or abnormally. If the program terminated normally, the
system issues a COMMIT statement on behalf of the program. If the
program terminated abnormally, the system issues a ROLLBACK statement.

Once again, to avoid confusion, always explicitly end your logical units of work.

Ending the Program for CICS/VSE Transactions (DB2 Server for VSE Only):
You can enter

COMMIT

to end the current logical unit of work and commit the changes to the database, or
ROLLBACK

to end the current logical unit of work and restore the changes made to the
database. You do not have to explicitly release your connection to the application
server (although you can, if you wish). DB2 Server for VSE online support
automatically releases the connection for use by other CICS/VSE transactions
when the current logical unit of work is committed or rolled back.

If your transaction contains more than one logical unit of work, however, it is not
necessary to re-CONNECT to the application server every time you want to start a
logical unit of work. When the connection to the database manager is implicitly
dropped, DB2 Server for VSE online support remembers the user ID, password,
and server-name established in the transaction’s original CONNECT. The next time
a logical unit of work is begun in that same transaction, online support implicitly
issues a CONNECT for you. The re-connection is transparent to the transaction.

You do not have to explicitly issue a COMMIT if that is how you want to end the
logical unit of work. A normal transaction termination causes a COMMIT
statement to be issued on behalf of the transaction.

A CICS/VSE syncpoint or syncpoint rollback also causes the system to issue a
COMMIT or ROLLBACK on behalf of the transaction. Conversely, a DB2 Server for
VSE COMMIT or ROLLBACK statement causes a CICS/VSE syncpoint to be taken.
If your application is using multiple resources, however, you should issue the
SYNCPOINT statement or SYNCPOINT ROLLBACK statement instead of the DB2
Server for VSE COMMIT statement or ROLLBACK statement. Internally,
SYNCPOINT statements are always more efficient than the corresponding SQL
statements.

Under the CICS/VSE system, an interactive transaction can establish a user exit
that will get control at points where an SQL program might be canceled. Control is

Chapter 2. Designing a Program 17

transferred when the online resource manager is about to wait either for an SQL
statement to complete2 or for a cross partition link to become available. The user
exit can be used to cause the current SQL statement to be canceled. The cancel will
cause a -914 SQLCODE (SQLSTATE '57014') to be returned to the transaction and a
ROLLBACK to be performed on the logical unit of work. A macro (ARIRCAN) is
available to establish the user exit. (The ARIRCAN macro can also be used to set
user data for the CIRD transaction.) For more details on the ARIRCAN macro
interface and the coding of the exit, see CANCEL Exit in the DB2 Server for VSE &
VM Diagnosis Guide and Reference manual.

Using Logical Units of Work

Defining the Logical Unit of Work
A logical unit of work (LUW) is a sequence of SQL statements (possibly with
intervening host language code) that the database manager treats as a whole.

The system ensures the consistency of data at the LUW level, by ensuring that
either all operations within an LUW are completed, or none are completed.
Suppose, for example, that money is to be deducted from one account and added
to another. If both these updates are placed in a single LUW, and if a system
failure occurs while they are in progress, then when the system is restarted, the
data is automatically restored to the state it was in before the LUW began. If a
program error occurs, all changes made by the statement in error are restored.
Work done in the LUW prior to execution of the statement in error is not undone,
unless you specifically roll it back. To determine whether the LUW terminated
automatically, you should check the value of SQLWARN6 in the SQLCA. See
“Using the Automatic Error-Handling Facilities” on page 195 for more information.

Beginning a Logical Unit of Work
An LUW is begun implicitly with the first executable SQL statement and is ended
by either a COMMIT or a ROLLBACK statement, or when the program ends.

The following are examples of statements that do not start a logical unit of work:
BEGIN DECLARE SECTION INCLUDE SQLCA
END DECLARE SECTION INCLUDE SQLDA
WHENEVER

An executable SQL statement always occurs within an LUW. If such a statement is
encountered after you end an LUW, it automatically starts another.

Considering the CICS/VSE Logical Unit of Work (DB2 Server
for VSE Only)

For logical unit of work processing to function as described in this manual, ALL
CICS/VSE INSTALLATIONS MUST DO THE FOLLOWING:

1. The CICS System Initialization Table (DFHSIT) must be generated with
DBP=YES.
If this is not done, the CICS/VSE system attempts to commit all changes,
regardless of whether a rollback was intended. (Alternatively, DBP=xx can be
specified if a suffixed version of the CICS/VSE Dynamic Backout Program is
being used.)

2. This exit is not available when a transaction is using the DRDA protocol to access remote application servers.

18 Application Programming

2. In addition, each online application that has access to the application server
must have Dynamic Transaction Backout set to YES. You can do this by
specifying DTB=YES in the resource definition online (RDO) facility (or
DFHCSDUP).
Your installation can specify DTB=YES on the initial DFHCSDUP statement, or
DTB=YES on each entry DFHCSDUP statement for applications having access
to the database manager.

Note: DTB=NO is not supported in RDO. All transactions defined in the macro
with DTB=NO are handled in RDO as if DTB=YES had been specified.
For more information, see the CICS/VSE Resource Definition (Online)
manual.

For more information, refer to the CICS/VSE System Programming Reference or the
CICS/VSE Resource Definition (Macro) manuals.

Ending a Logical Unit of Work
When you end an LUW, you can use either the COMMIT statement to save its
changes, or the ROLLBACK statement to ensure that these changes are not saved.

Using the COMMIT Statement
This statement ends the current LUW, and commits any changes made during it.

Changes should be committed as soon as application requirements permit. In
particular, programs should be written so that uncommitted changes are not held
over a terminal read request, which can result in locks and other resources being
held for a long time.

Each application program must explicitly end its LUW before terminating. If you
do not end it explicitly, the system automatically commits (upon successful
termination of the program) all changes made by the program during its pending
LUW unless one of the following conditions occurs:
v A log full condition is encountered.
v Some other system condition occurs that causes database manager processing to

end.
v Control is not returned to CMS (DB2 Server for VM only). For a discussion of

this subject, see the section on the SQLRMEND EXEC in the DB2 Server for VSE
& VM Database Administration manual.

See “Creating the Epilog” on page 15 and “Using the Automatic Error-Handling
Facilities” on page 195 for more information about program termination.

Note: The COMMIT statement has no effect on the contents of host variables.

Using the ROLLBACK Statement

This statement ends the current LUW, and restores the data to the state it was in
prior to the LUW beginning.

Note: The ROLLBACK statement has no effect on the contents of host variables.

Under some circumstances, the system automatically backs out of an LUW. Refer
to “Automatically Locking Dbspaces” on page 256 for more information.

Chapter 2. Designing a Program 19

Note: If you use a ROLLBACK statement in a routine that was entered because of
an error or warning and you use the SQL WHENEVER statement, specify
WHENEVER SQLERROR CONTINUE and WHENEVER SQLWARNING
CONTINUE before the ROLLBACK. This avoids a program loop if the
ROLLBACK fails with an error or warning.

The ROLLBACK statement should not be issued if a severe error occurs (indicated
by an S in the SQLWARN0 field of the SQLCA). The only statement that can be
issued after a severe error is a CONNECT statement.

Summary
Figure 3 on page 20 summarizes the general framework for a DB2 Server for VSE
& VM application in pseudocode format. This framework works for VSE batch or
ICCF applications, and for CICS/VSE transactions. This framework must, of
course, be tailored to suit your own program.

Start Program
EXEC SQL BEGIN DECLARE SECTION

DECLARE USERID FIXED CHARACTER (8)
DECLARE PW FIXED CHARACTER (8)

.

.
(other host variable declarations)

.

.
EXEC SQL END DECLARE SECTION
EXEC SQL INCLUDE SQLCA
EXEC SQL WHENEVER SQLERROR GOTO ERRCHK
READ FROM SYSIPT USERID, PW

.

.

.
EXEC SQL CONNECT . . .
EXEC SQL SELECT . . .
EXEC SQL INSERT . . .
EXEC SQL DELETE . . .
EXEC SQL UPDATE . . .

.

.

.
EXEC SQL COMMIT RELEASE
ERRCHK

.

.

.
End Program

Application
Prolog

Application
Body (SQL
statements)

Application
Epilog

Figure 3. Pseudocode Framework for Coding Programs

20 Application Programming

Using Host-Dependent Sample Applications
Some host-dependent sample application programs and the DB2 Server for VSE
JCL streams the DB2 Server for VM EXECs that can be used to preprocess,
compile, link or edit, and run them are shipped with this product. These programs
manipulate data in the tables by using embedded SQL statements and printing the
results. You may want to model your initial programs from these sample
applications. See Table 3 for DB2 Server for VM information on these samples.
Table 4 for DB2 Server for VSE information on these samples.

Table 3. Sample Application Programs - DB2 Server for VM

Language Program Name EXEC Appendix

Assembler ARIS6ASC SQLASMC A

C ARIS6CC SQLC B

COBOL ARIS6CBC SQLCBLC C

Fortran ARIS6FTC SQLFTN D

PL/I ARIS6PLC SQLPLI E

Table 4. Sample Application Programs - DB2 Server for VSE

Language Program Name JCL (Z type member) Appendix

Assembler ARIS6ASD ARIS6ASD A

C ARIS6CD ARIS6CD B

COBOL ARIS6CBD ARIS6CBD C

COBOL II ARIS6CBD ARIS6C2D C

Fortran ARIS6FTD ARIS6FTD D

PL/I ARIS6PLD ARIS6PLD E

DB2 Server for VM
As an example, to preprocess, compile, link edit, and run the sample COBOL
program from a DB2 Server for VM user machine enter:

SQLCBLC

Chapter 2. Designing a Program 21

DB2 Server for VSE
Generalized job control to invoke the VSE programs is shown in Figure 4 on
page 23.

The sample programs and job control were written for the compiler levels
stated in the prolog of the sample programs. If you want to run the sample
applications on a different level compiler, refer to the appropriate compiler
manual.

Each of the above applications assumes that the user SQLDBA has a
password of SQLDBAPW. If the samples are run with a userid other than
SQLDBA, or if the password has been changed, the parameters in the
generalized JCL must also be changed. Along with these changes, the host
variables used by the CONNECT statement in the sample programs must also
be modified to reflect a new user ID or password.

The DB2 Server for VM sample programs and EXECs were written for the
compiler levels stated in the prolog of these programs. If you wish to run them on
a different level compiler, refer to the appropriate compiler manual.

22 Application Programming

* **
* ** GENERALIZED JCL TO PREPROCESS, COMPILE, LINKEDIT AND **
* ** EXECUTE THE SAMPLE PROGRAMS ON VSE SYSTEMS. **
* **
*
// JOB ARISSAMP PREPROCESS SAMPLE PROGRAM
// EXEC PROC=ARIS72PL *-- DB2 for VSE Library ID PROC
// DLBL SQLGLOB,......,DISP=(OLD,KEEP) *-- SQLGLOB Parameter file
// ASSGN SYS089,SYSPCH *-- Save SYSPCH assignment
// DLBL IJSYSPH,'PREPROCESSOR.OUTPUT',0 *-- PREPROCESSOR output//10
// EXTENT SYSPCH,....... *--

ASSGN SYSPCH,... *-- Assign to disk
*
// EXEC PGM=ARIPRPx,SIZE=AUTO,PARM='USERID=SQLDBA/SQLDBAPW, *

PREPNAME=ARIS6xxx' *-- Invoke DB2 for VSE PREPROCESSOR
READ MEMBER ARIS6xxx.A *-- sample program name

/*
CLOSE SYSPCH,SYS089 *-- Close & Assign SYSPCH

// DLBL IJSYSIN,'PREPROCESSOR.OUTPUT',0 *-- Input File
// EXTENT SYSIPT,...... *-- Same as SYSPCH in

ASSGN SYSIPT,... *-- preprocess step
*
// OPTION CATAL *-- Link Edit (catalog)

PHASE ARIS6xxx,* *-- Name of executable phase
// EXEC compiler *-- Compile

INCLUDE ARIPRDID *-- DB2 for VSE Batch Resource
Adapter stub

INCLUDE *-- Include runtime routines
*

ENTRY ARIS6xxx *--
// EXEC LNKEDT *-- Link Edit

CLOSE SYSIPT,SYSRDR *-- Reset SYSIPT
// ASSGN *-- Program assignments
// EXEC PGM=ARIS6xxx,SIZE=(....) *-- Execute Phase

data input to sample program *-- Input data
/*
/&

DB2 Server for VSE

Notes:
1. JCL must be changed to specify the correct device address, DASD extents, compiler references.
2. Replace ARIPRPx with the preprocessor name.

See “Preprocessing the Program” on page 154 for a list of the preprocessor names.
3. Replace ARIS6xxx with sample program name.
4. See “Preprocessing by Mode” on page 156 for a list of preprocessor work files.
5. See “Link-Editing and Loading the Program” on page 178 for a complete list of modules to be included.
6. The SQLGLOB DLBL statement must be added in the JCL if it has not been added to the system

standard label subarea.

Figure 4. Generalized Execution JCL for Sample Programs (Multiple User Mode) - DB2 Server for VSE

Chapter 2. Designing a Program 23

24 Application Programming

Chapter 3. Coding the Body of a Program

Defining Static SQL Statements 27
Naming Conventions 27
Coding SQL Statements to Retrieve and Manipulate
Data 28

Retrieving Data 28
Defining an SQL Query 28

Using the SELECT Clause 30
Using the FROM Clause 32
Using the WHERE Clause 32
Using the GROUP BY Clause 32
Using the HAVING Clause 33
Using the ORDER BY Clause 33
Using the FOR UPDATE OF Clause 34
Using the WITH Clause 35

Retrieving or Inserting Multiple Rows 35
Using the Cursor with a Select-Statement . . 35
Declaring a Cursor 35
Using a Cursor in an Application Program . . 36
Manipulating the Cursor 36
Illustrating the Use of the Query Cursor . . . 40

Retrieving Single Rows 40
Constructing Search Conditions 41

Performing Arithmetic Operations 41
Using Null Values 43
Using the Predicates of a Search Condition . . . 43

Evaluating Predicates 44
Using Additional Types of Predicates 45

Using Functions 45
Using Column Functions 45
Using Scalar Functions 46

Using Data Types 46
Assigning Data Types When the Column Is
Created. 46
Using Long Strings 47

Defining Long Strings 47
Performing Operations on Long Strings . . . 48
Programming Tip 48

Using Datetime Data Types 48
Using Character Subtypes and CCSIDs 48

Determining Default Subtypes and CCSIDs. . 49
Assigning Subtypes and CCSIDs When a
Column Is Created 50
Assigning Subtypes and CCSIDs to Data in a
Program 50

Converting Data 50
Summarizing Data Conversion 51

Truncating Data 51
Using a Double-Byte Character Set (DBCS) . . . 53

Using Expressions 54
Using Arithmetic Operators 54
Using Special Registers 55
Concatenating Character and Graphic Strings . . 56
Using Host Variables 57
Using Host Structures 57
Using Constants 58

Using Numeric Constants 58

Using Character Constants 59
Using Graphic Constants 60
Using Date and Time Constants 61

Using Indicator Variables 61
Notes Common to Both Input and Output
Indicator Variables 62
Notes on Input Indicator Variables 62
Notes on Output Indicator Variables 63

Using Views 63
Creating a View 64
Querying Tables through a View 65
Using Views to Manipulate Data 66
Dropping a View 68

Joining Tables 68
Joining Tables Using the Database Manager . . 68
Performing a Simple Join Query 68
Joining Another User’s Tables 69
Analyzing How a Join Works 70
Using VARCHAR and VARGRAPHIC within Join
Conditions. 70
Using Nulls within Join Conditions 70
Joining a Table to Itself Using a Correlation
Name 71

Rules for Table Designation 72
Imposing Limits on Join Queries 73
Using SELECT * In a Join. 73

Grouping the Rows of a Table 73
Using VARCHAR and VARGRAPHIC within
Groups 74
Using Nulls within Groups 74
Using Select-Lists in Grouped Queries 74
Using a WHERE Clause with a GROUP BY
Clause 75
Using the HAVING Clause 75
Combining Joins. 76
Illustrating Grouping with an Exercise 76

Nesting Queries 78
Using the IN Predicate with a Subquery 82
Considering Other Subquery Issues 82
Executing Subqueries Repeatedly: Correlation . . 83
Writing a Correlated Subquery 84
How the Database Manager Does Correlation . . 85
Illustrating a Correlated Subquery 86
Using a Subquery to Test for the Existence of a
Row 91
Table Designation Rule for Correlated Subqueries 91
Combining Queries into a Single Query: UNION 92

String Columns 94
Numeric Columns 94
Datetime/Timestamp Columns 95

SQL Comments within Static SQL Statements . . . 95
Using Stored Procedures 95

Writing Stored Procedures 97
Returning Information from the SQLCA 98
Language Environment® (LE) Considerations . . 99
Preparing to Run a Stored Procedure 99

© Copyright IBM Corp. 1987, 2001 25

Calling Stored Procedures 99
Authorization 100
AUTHIDs 100
Stored Procedure Parameters 101
Datatype Compatibility 102
Conventions for Passing Stored Procedure
Parameters 102

The GENERAL Linkage Convention 102
The GENERAL WITH NULLS Linkage
Convention 103

Coding Examples 104

Special Considerations for C 104
Special Considerations for PL/I 104
Result Sets 104

Coding Client Programs to Process Results
Sets 105
Result Set Processing 106

Using the DESCRIBE PROCEDURE SQL
Statement 108
Using the DESCRIBE CURSOR SQL Statement 109

Coding Summary to Process Result Sets . . 110

26 Application Programming

Defining Static SQL Statements
This chapter describes how to code SQL statements directly into a program for
subsequent preprocessing. These statements which are known before running the
program are called static SQL statements. Those that are not known until the
program is actually run, and have to be built dynamically at run time from input
by the user, are called dynamic and extended dynamic SQL statements. Refer to
“Chapter 7. Using Dynamic Statements” on page 209 for a detailed description of
dynamic statements and, “Chapter 8. Using Extended Dynamic Statements” on
page 235 for a detailed description of extended dynamic statements.

Naming Conventions

The following is a list of the identifiers that must conform in general to specific
naming rules:
v Authorization names
v Column names
v Constraint names
v Correlation names
v Cursor names
v Dbspace names
v Descriptor names
v Host variable names
v Index names
v Package names
v Passwords
v Procedure names
v Server names
v Statement names
v Synonyms
v Table names
v View names.

For a description of the naming rules, refer to the DB2 Server for VSE & VM SQL
Reference manual.

You can access a data object (table, view, dbspace, or package) owned by someone
else if you know the owner’s authorization-name and have the appropriate DB2
Server for VSE & VM privileges. You need to qualify references to the object by
prefixing its name with the owner’s authorization-name followed by a period. For
example, to access the table called EMPLOYEE which is owned by SMITH, enter
SMITH.EMPLOYEE.

When you specify the owner along with an object name, you have fully qualified the
object and uniquely identified the table. For example, you cannot have two
SMITH.EMPLOYEE tables at the same time.

To avoid confusion and errors, use fully qualified object names. This is especially
true if you are coding programs that will be preprocessed by another user.

Chapter 3. Coding the Body of a Program 27

Coding SQL Statements to Retrieve and Manipulate Data
The DB2 Server for VSE & VM product provides application programmers with
statements for retrieving and manipulating data; the coding task consists of
embedding these statements into the host language code. This chapter shows how
to code statements that will retrieve and manipulate data for one or more rows of
data in DB2 Server for VSE & VM tables. (It does not go into the details of the
different host languages. For exact rules of placement, continuation, and delimiting
SQL statements, see the host language appendixes.)

Retrieving Data
One of the most common tasks of an SQL application programmer is to retrieve
data. This is done using the select-statement, which is a form of query that searches
for rows of tables in the database that meet specified search conditions. If such
rows exist, the data is retrieved and put into specified variables in the host
program, where it can be used for whatever it was designed to do.

After you have written a select-statement, you code the SQL statements that define
how information will be passed to your application.

You can think of the result of a select-statement as being a table having rows and
columns, much like a table in the database. If only one row is returned, you can
deliver the results directly into host variables specified by the SELECT INTO
statement. For example, the following statement will deliver the salary of the
employee with the last name of 'HAAS' into the host variable EMPSAL:

SELECT SALARY
INTO :EMPSAL
FROM EMPLOYEE
WHERE LASTNAME='HAAS'

If more than one row is returned, you must use a cursor to fetch them one at a
time. A cursor is a named control structure used by an application program to
point to a specific row within an ordered set of rows.

Writing select-statements, defining cursors, and using the SELECT INTO statement
are discussed in the next few sections. For a detailed definition of queries, refer to
the DB2 Server for VSE & VM SQL Reference manual.

Defining an SQL Query
This section discusses the three forms of a query: the subselect, the fullselect, and the
select-statement.

Figure 5 shows the most basic form, the subselect query.

The subselect query retrieves the columns specified in the SELECT clause from the
tables specified in the FROM clause, applies whatever restrictions the optional
clauses; (WHERE, GROUP BY, and HAVING) might put on the scope of the rows

�� select-clause from-clause
where-clause group-by-clause

�

�
having-clause

��

Figure 5. Format of the Subselect

28 Application Programming

selected; and presents the results in a result table, which will be called R. The rows
of R are unordered. Only the SELECT clause and the FROM clause are mandatory.

An example of a subselect query is:
SELECT EMPNO, LASTNAME
FROM EMPLOYEE
WHERE WORKDEPT = 'E11'

Figure 6 shows the fullselect query.

The fullselect query is a merge of two result tables (R1 and R2) from two subselects
into one final result table (R). The merging is done by the UNION operator. The
rows of R are unordered. (For a description of the UNION operation, see
“Combining Queries into a Single Query: UNION” on page 92.)

An example of a fullselect is:
SELECT EMPNO, WORKDEPT, 'EDUCATION'
FROM EMPLOYEE
WHERE EDLEVEL > 16
UNION ALL
SELECT RESPEMP, DEPTNO, 'STAFFING'
FROM PROJECT
WHERE PRSTAFF > 5

By using the literal 'EDUCATION' in the first subselect and 'STAFFING' in the
second, you will be able to tell from R which row was included as a result of
which criterion (or query).

Figure 7 shows the select-statement.

The select-statement can optionally put the rows of R from the fullselect in order by
the values of the columns identified in the ORDER BY clause. Alternatively, the
select-statement can allow the rows of R to be subsequently updated in the

�� $

| union |

subselect
(fullselect)

��

union:

UNION
UNION ALL

Figure 6. Format of the Fullselect

�� fullselect
order-by-clause
update-clause

with-clause

��

Figure 7. Format of the Select-statement

Chapter 3. Coding the Body of a Program 29

application program, under the restriction that this only be done to those columns
listed in the update-clause (FOR UPDATE OF). (This explanation excludes
consideration of the preprocessor NOFOR support, which is discussed in the next
chapter.) Also, the with-clause may be used to select which isolation level that is to
be used by the query. This overrides any other isolation level specification.

An example of a select-statement is:
SELECT EMPNO, FIRSTNME, LASTNAME, HIREDATE
FROM EMPLOYEE
ORDER BY HIREDATE, LASTNAME

Note: In this example, the UNION operator and some of the optional clauses in
the fullselect are not used.

The distinction among these three forms of query is often quite subtle and
academic. It can be useful, however, when other SQL statements specify the form
of query that is allowed as part of the statement. For example, CREATE VIEW and
INSERT are two statements that use the subselect. This tells you that you cannot
incorporate UNION or ORDER BY in the query component of those statements.

Using the SELECT Clause

This clause is the first part of a subselect query. It consists of the keyword SELECT
followed by a select-list, which usually consists of one or more expressions.
(Expressions are discussed later in this chapter.)

The following are examples of select-lists that can occur in queries to the sample
tables:

SELECT EMPNO, FIRSTNME, LASTNAME

SELECT EMPNO, BONUS + COMM

SELECT SALARY * 1.10

SELECT 250

SELECT HIREDATE + 1 YEAR

If you specify DISTINCT immediately after SELECT, the system eliminates
duplicates from the query-result. (You can use DISTINCT only once in any query.)
For example, the following SELECT clause returns the set of different departments:

��
ALL

SELECT
DISTINCT

$

*
,

expression
table_name.*
view_name.*
correlation_name.*

��

Figure 8. Format of the SELECT clause

30 Application Programming

Similarly, the following SELECT clause returns the set of different departments and
jobs:
ALL indicates that duplicates are not to be eliminated. This is the default.

SQL provides a special shorthand notation for selecting all the columns of a table:
SELECT *

For example, the following statement returns the entire row from the
DEPARTMENT table for manager number 000010:

SELECT *
INTO :DEPART, :NAME, :MGR, :EMPDEPT
FROM DEPARTMENT WHERE MGRNO = '000010'

As a good programming practice, however, you should explicitly specify every
column you want to be returned by your query. This will avoid programming
errors when, for example, a new column is added to a table but your program is
using SELECT * and making no provision to store the extra column value.

If you specify a constant as a select-list expression, that constant occurs in every
row returned by the query. For example, the following figure shows a query that
returns a constant:

An alphabetic constant, such as 'NAME IS', is always enclosed within single
quotation marks (') when used in an SQL statement. A numeric constant should
not be enclosed this way.

SELECT DISTINCT WORKDEPT

DB manager returns
only one of these

WORKDEPT

A00
A00
C01
D11

SELECT DISTINCT WORKDEPT, JOB

DB manager
returns only
one of these

WORKDEPT JOB

E21
E21
E21
E21

MANAGER
FILEREP
FILEREP
FILEREP

SELECT 'NAME IS', LASTNAME
FROM EMPLOYEE
WHERE EMPNO='000140'

EXPRESSION 1

NAME IS

LASTNAME

NICHOLLS

Chapter 3. Coding the Body of a Program 31

Using the FROM Clause

This clause specifies the name of the table from which you want to retrieve data. If
you are authorized, you can access a table that is owned by someone else, by
adding the name of the owner before the table_name with a period. For example, to
specify the table EMPLOYEE owned by user SMITH:

FROM SMITH.EMPLOYEE

Because any number of users can define a table with the same name, you should
always use fully qualified table names. This avoids confusion if you are writing a
program that someone else will preprocess.

As Figure 9 indicates, multiple table names are possible, and some or all of these
names can have corresponding correlation names. These aspects of the FROM
clause are discussed later in this chapter.

Using the WHERE Clause

This clause specifies your search conditions. If you do not include it, all the rows
of the table will be used to calculate the expressions in the select-list. Here are some
examples of WHERE clauses:

WHERE SALARY > 30000

WHERE EMPNO = :X

WHERE SALARY < :R1 AND EDLEVEL = :Y

Search conditions are discussed in “Constructing Search Conditions” on page 41.

Using the GROUP BY Clause

This clause lets you group rows with matching values in one or more columns.
Here is an example of the use of the GROUP BY clause:

�� $

,

FROM table_name
view_name correlation_name

��

Figure 9. Format of the FROM Clause

�� WHERE search_condition ��

Figure 10. Format of the WHERE Clause

�� $

,

GROUP BY column_name ��

Figure 11. Format of the GROUP BY Clause

32 Application Programming

SELECT WORKDEPT, SUM(SALARY)
FROM EMPLOYEE
GROUP BY WORKDEPT

For more information, see “Grouping the Rows of a Table” on page 73.

Using the HAVING Clause

This clause specifies the conditions that must be satisfied by the group. Here is an
example:

SELECT WORKDEPT, SUM(SALARY)
FROM EMPLOYEE
GROUP BY WORKDEPT HAVING WORKDEPT <> 'A00'

For more information, see “Grouping the Rows of a Table” on page 73.

Using the ORDER BY Clause

This clause delivers the rows of the result table in the order specified. You can
indicate order by specifying a list of column names or integers that refer to
select-list items. For example, ORDER BY 3,5 denotes ordering primarily by the
third item and secondarily by the fifth item in the select-list. By using integers in
the ORDER BY clause, you can order the query result by a selected expression that
is not a simple column name.

The following query returns results ordered by the expression SALARY + COMM:
SELECT EMPNO, SALARY+COMM
FROM EMPLOYEE
WHERE WORKDEPT='D11'
ORDER BY 2

You cannot specify ordering by a column that is not in the select-list. For example,
the following statement would fail because FIRSTNME is not in the select-list:

The optional word ASC indicates ascending order, and is the default. DESC
indicates descending order. ORDER BY 2,5 DESC indicates ascending order on
item 2 and descending order on item 5. Character data is ordered alphabetically,
numeric data algebraically, and datetime data chronologically. Null values are

�� HAVING search_condition ��

Figure 12. Format of the HAVING Clause

�� $

,
ASC

ORDER BY column_name
integer DESC

��

Figure 13. Format of the ORDER BY Clause

SELECT SALARY, LASTNAME
FROM EMPLOYEE
ORDER BY FIRSTNAME Incorrect

Chapter 3. Coding the Body of a Program 33

sorted first in descending order, and last in ascending order. If you do not specify
an ORDER BY clause, rows will be delivered in an order determined by the
system.

By default, string data is sorted based on the System/390® collating sequence.
However, the collating sequence required for certain alphabets is different from the
default System/390 collating sequence. Users expect that sorted data will match
the order that is culturally correct for them, and that searches on data will return
the result that is correct for the sorting sequence of their language. They are at ease
with only one sort order, the one used in their dictionaries, telephone directories,
book indexes, and so on.

A way to accommodate special sorting requirements is to use Field Procedures.
Field Procedures can be used to encode data being inserted into a column. The
encoding effectively alters the collating sequence for the data in the column,
enabling the special sorting requirements to be met by the System/390 collating
sequence. For more information, see “Using Field Procedures” on page 277.

Trailing blanks in variable string (VARCHAR and VARGRAPHIC) columns do not
affect the relative order of rows delivered by the ORDER BY clause. Because the
system does not use the trailing blanks when it compares VARCHAR or
VARGRAPHIC rows, two columns that differ only by their number of trailing
blanks may not maintain their relative positions.

Using the FOR UPDATE OF Clause

This clause is optional for static SQL if NOFOR support is specified at preprocessor
time.

The update-clause (FOR UPDATE OF) tells the system that you might want to
update some columns of the result table. To update with a cursor, use the WHERE
CURRENT OF clause in an UPDATE statement. (See “Manipulating the Cursor” on
page 36.) You can update only those columns that you list in the update-clause. A
column can be in the update-clause without being in the select-list; therefore, you can
update columns that are not explicitly retrieved by the cursor. The update-clause is
not required for deletion of the current row of a cursor. Deletion with a cursor is
done using the WHERE CURRENT OF clause in a DELETE statement. For an
explanation of the DELETE statement, see the DB2 Server for VSE & VM SQL
Reference manual.

Note: If you do not want to be bound by the above restriction on which columns
can be updated, you simply invoke NOFOR support at preprocessor time
and omit the update-clause. In this situation, the preprocessor will assist you
by issuing warning or error messages if your program tries to update
columns that are not in the current database. If the conditions identified by
the warning messages are not corrected, unexpected error messages can
subsequently occur at program run time.

�� $

,

FOR UPDATE OF column_name ��

Figure 14. Format of the UPDATE clause

34 Application Programming

Using the WITH Clause
The WITH clause specifies the isolation level for the query, which overrides any
other isolation level specification. For example, a statement specifying WITH UR in
a package prepped with ISOL(CS) will use an isolation level of uncommitted read.

For more information on isolation levels, see “Selecting the Isolation Level to Lock
Data” on page 136 (DB2 Server for VM) or “Selecting the Isolation Level to Lock
Data” on page 170 (DB2 Server for VSE).

Retrieving or Inserting Multiple Rows

Using the Cursor with a Select-Statement
The previous section showed how to use a select-statement to create an SQL query.
You can now use that query to retrieve values into an application program from
multiple rows in a table.

To do so, you must first declare an SQL cursor, which is a control structure that
points to a row in a table. The rows returned by the query are called the result table
of the cursor.

A cursor can be in an open or a closed state. In the open state, it maintains a
position in its result table on a certain row (called the current row). If you delete the
current row, the cursor will be positioned between the two rows that surrounded
the deleted rows. If you request the next row and receive a message that there are
no more rows (SQLCODE 100 and SQLSTATE '02000'), the cursor will be
positioned after the last row. Before you OPEN the cursor, it is said to be
positioned before the first row.

Declaring a Cursor

Use the DECLARE CURSOR statement to define a cursor. This statement associates
a cursor_name with a specified select-statement, insert-statement, or statement-name.
For example:

DECLARE C1 CURSOR FOR SELECT LASTNAME, FIRSTNME
FROM EMPLOYEE WHERE SALARY>:AMT

DECLARE C2 CURSOR FOR INSERT INTO ACTIVITY
(ACTNO, ACTKWD, ACTDESC)
VALUES (:ACT, :KEYWORD, :DESC)

�� WITH RR
CS
UR

��

Figure 15. Format of the WITH clause

�� DECLARE cursor_name CURSOR FOR select-statement
insert-statement

statement_name

��

Figure 16. Format of the DECLARE CURSOR statement

Chapter 3. Coding the Body of a Program 35

Note: Statement-name is only used with dynamic SQL. For an explanation of its
use, see “Retrieving the Query Result” on page 220.

The select-statement or insert-statement is a part of the DECLARE CURSOR
statement, so you must not place EXEC SQL in front of SELECT or INSERT
(however, do place it in front of the DECLARE).

Using a Cursor in an Application Program
Your program may contain many DECLARE CURSOR statements that define
different cursors and associate them with different queries. During the processing
of a program, several cursors may be in the open state at one time. It is possible to
define more than one cursor that operates on the same data within the same
logical unit of work. It is also possible to open a cursor and then operate on the
same data with a non-cursor operation such as a Searched DELETE. However,
mixing these operations should be avoided, because the result of one operation can
adversely affect another. For example, do not update a row using a Positioned
UPDATE and subsequently delete it with another cursor operation or with a
Searched DELETE.

The DECLARE CURSOR statement that defines a cursor must occur earlier in the
program than any statement operating on that cursor. It does not result in any
processing when the program is executed (that is, it does not automatically open
the cursor).

The scope of a cursor-definition is an entire program. Therefore, cursor names must
be unique within a program. You cannot have two DECLARE CURSOR statements
in the same program that use the same cursor-name, even if they are in different
blocks or procedures.

For additional detail on the DECLARE CURSOR statement, see the DB2 Server for
VSE & VM SQL Reference manual.

Manipulating the Cursor
After you define a cursor, you can manipulate it using the SQL statements shown
in Table 5. (See the DB2 Server for VSE & VM SQL Reference manual for a complete
description of these statements.)

Table 5. SQL Statements for Manipulating Cursors

Statements for
Manipulating Query and
Insert Cursors

Statements for
Manipulating Query
Cursors

Statements for
Manipulating Insert
Cursors

OPEN FETCH PUT

CLOSE Positioned DELETE

Positioned UPDATE

The OPEN Statement:

Partial Format:

�� OPEN cursor_name ��

If you are opening a query-cursor (a cursor defined in terms of a select-statement),
this statement examines the input host variables (if any) used in the definition of

36 Application Programming

the cursor, determines the result table for the cursor, and leaves it in the open
state. When the system executes an OPEN statement for a query-cursor, it positions
the cursor before the first row of the result table. After the query-cursor is opened,
the system does not reexamine its input variables until you close and reopen the
cursor. No rows in the result table are fetched to the host program until a FETCH
statement is executed. Always open the cursor before issuing the first FETCH or
PUT statement.

If you are opening an insert-cursor and your program is blocking, this statement
prepares the system to block the rows that are to be inserted. With an insert-cursor,
you can change the values of the input host variables between inserts; you do not
have to close and reopen the cursor.

The FETCH Statement:

Partial Format:

�� FETCH cursor_name INTO $

,

host_variable_list ��

This statement can be executed only when the indicated cursor is in the open state.
The position of the cursor is advanced to the next row of the result table, and the
selected columns of this row are delivered into the output host variables referenced
in the host_variable_list.

The following is an example of the FETCH statement:

A cursor can move forward only when it is in its result table; the system cannot
return to rows that have already been fetched (other than closing the cursor and
reopening it).

If the result table of the cursor is empty, or if all its rows have already been
fetched, the system returns the not found return code (SQLCODE=100 and
SQLSTATE='02000') and the cursor is positioned after the last row of the result
table. To perform further operations with the cursor, you must close and reopen it.

It is possible for two or more rows in the result table to have exactly the same
values. (For example, many rows of the EMPLOYEE table may have the same
WORKDEPT, and you might define a cursor that selects only WORKDEPT from
the table.) These duplicate values are not eliminated from the result table unless
you specify DISTINCT in the SELECT clause of the DECLARE CURSOR statement.

You can use indicator variables in the INTO clause. (For a detailed discussion of
indicator variables, see “Using Indicator Variables” on page 61.) Each main

OPEN QUERY1
FETCH QUERY1 INTO :E1, :B1

DECLARE QUERY1 CURSOR FOR
SELECT EMPNO, BONUS*1.10
FROM EMPLOYEE
WHERE WORKDEPT='D11'

The values are
returned in these
host variables.

Chapter 3. Coding the Body of a Program 37

variable in the INTO clause may, at your option, have an associated indicator
variable. If a null value is returned, and you haven’t provided an indicator
variable, a negative SQLCODE is returned to your program and execution of the
statement is halted.

The PUT Statement:

Partial Format:

�� PUT cursor_name ��

This statement can be executed only when the indicated cursor is in the open state.
The PUT statement inserts one row of data as defined by a cursor. The contents of
input host variables referenced in the host_variable_list (defined in the VALUES
clause of the DECLARE CURSOR statement for insert) are delivered to the
database.

For instance, the following statements insert a new row of data into the
EMPLOYEE table:

DECLARE CC CURSOR FOR
INSERT INTO EMPLOYEE (EMPNO, FIRSTNME, MIDINIT, LASTNAME, EDLEVEL)
VALUES (:EMP, :FIRST, :MID, :LAST, :ED)

OPEN CC
PUT CC
CLOSE CC

The values represented by the host variables :EMP, :FIRST, :MID, :LAST, and :ED
are placed into the corresponding columns of the new row. The other columns are
assigned the null value.

After the PUT statement is executed, you can assign different values to the input
host variables to add another row. Alternatively, you can place constants in the
VALUES clause of the DECLARE CURSOR statement instead of host variables.
This causes identical values to be inserted into the related columns for each PUT.

The PUT statement is used mostly for inserting multiple rows of data into a table
in groups or blocks (although, it also works with non-blocked inserts). Blocked
inserts are specified with the BLOCK preprocessor parameter. If blocking is in
effect, rows are not inserted until the block is full, or until a CLOSE statement is
issued. For information on preprocessing your program with the BLOCK option
specified, see “Preprocessing the Program” on page 118 (DB2 Server for VM) or
“Preprocessing the Program” on page 154 (DB2 Server for VSE). For information on
using the BLOCK option in DRDA protocol for DB2 Server for VM see “Using the
Blocking Option to Process Rows in Groups” on page 141.

The Positioned DELETE Statement:

Partial Format:

�� DELETE FROM table_name WHERE CURRENT OF cursor_name ��

38 Application Programming

This statement can be executed only when the indicated cursor is in the open state
and positioned on a row of the result table. It deletes that particular row from the
table. The cursor itself remains where it was; it is considered to be in the between
position and, cannot be used for further deletions or updates until it is
repositioned by a FETCH statement.

From the example under the FETCH statement, you could delete a row from the
EMPLOYEE table after doing a FETCH, by issuing:

DELETE FROM EMPLOYEE
WHERE CURRENT OF QUERY1

The Positioned UPDATE Statement:

Partial Format:

�� UPDATE table_name set_clause WHERE CURRENT OF cursor_name ��

This statement is similar to the DELETE statement, except that it updates the row
of the table on which the cursor is positioned rather than deleting it, leaving the
position of the cursor unchanged. When using this statement, you must specify the
update-clause in the select-statement.

The following example updates the SALARY column of each fetched row of the
EMPLOYEE table:

DECLARE QUERY2 CURSOR FOR
SELECT LASTNAME, FIRSTNAME, MIDINITT
FROM EMPLOYEE
WHERE WORKDEPT = 'D21'
FOR UPDATE OF SALARY

OPEN QUERY2

FETCH QUERY2 INTO :LAST, :FIRST, :MID

UPDATE EMPLOYEE
SET SALARY = SALARY + :DELTA
WHERE CURRENT OF QUERY2

CLOSE QUERY2

The CLOSE Statement:

Format:

�� CLOSE cursor_variable ��

The indicated cursor leaves the open state, and its result table becomes undefined.
No FETCH or PUT statement can be executed on the cursor, and no DELETE or
UPDATE statement can refer to its current position until the cursor is reopened by
an OPEN statement. The CLOSE statement permits the resources associated with
maintaining an open cursor to be released. It should be placed in your program so
that it is executed as soon as the program is finished using a cursor.

Chapter 3. Coding the Body of a Program 39

If your program is blocking, you can close an insert-cursor with an incomplete
block to insert the remaining rows.

Always close a cursor before committing changes. If changes are committed before
an insert cursor (that is being blocked) is closed, an error occurs.

Illustrating the Use of the Query Cursor
Figure 17, which shows a fragment of pseudocode, illustrates the use of a query
cursor C1. It finds the employees of all the rows of the EMPLOYEE table whose
department number matches host variable DEPT. The FETCH statements retrieve
the selected columns successively into host variables EMP, FNAME, and LNAME.
After the results are retrieved, they are displayed on the console.

Recall that SQLCODE is set to +100 (SQLSTATE '02000') when there are no rows
remaining to be fetched.

Retrieving Single Rows
The SELECT INTO statement finds the only row of the table specified in the
FROM clause that satisfies the given search condition. From this row, the system
selects the columns that you supplied in the select-list. The results are inserted in
the host variables that you specified in the INTO clause. The data type and length
attributes of the host variables must be compatible with the data type and length
attributes of the expressions in the select-list. If specified, the WITH clause specifies
the isolation level to be used on the query and overrides any other isolation level
specification.

DEPT = ' D11'

EXEC SQL DECLARE C1 CURSOR FOR
SELECT EMPNO, FIRSTNME, LASTNAME
FROM EMPLOYEE
WHERE WORKDEPT=:DEPT
ORDER BY EMPNO

EXEC SQL OPEN C1

EXEC SQL FETCH C1 INTO :EMP, :FNAME, : LNAME
DO WHILE (SQLCODE=0)
DISPLAY (EMP, FNAME, LNAME)
EXEC SQL FETCH C1 INTO :EMP, :FNAME, :LNAME

END-DO

DISPLAY ('END OF LIST')
EXEC SQL CLOSE C1

Initialize DEPT (the
input host variable).

Declare cursor C1.

Open the cursor.

Fetch the next row of
the result table into
the ouput host
variables and display
them.

When the result table
is empty, close the
cursor.

Figure 17. Using a Cursor

40 Application Programming

For example, the following statement selects the employee number, last name, and
yearly salary from the EMPLOYEE table where the employee number is '000130'. It
places the result in the host variables EMP, NAME, and PAY:

SELECT EMPNO, LASTNAME, SALARY
INTO :EMP, :NAME, :PAY
FROM EMPLOYEE
WHERE EMPNO = '000130'

If the number of expressions in the select-list is greater than the number of output
host variables in the INTO clause, a warning flag (called SQLWARN3) in the
SQLCA is set to W. Also, if more than one row satisfies the search condition in a
SELECT INTO statement, an error condition occurs, and the values of the host
variables are unpredictable.

Constructing Search Conditions
One of the most common operations in SQL is to search through a table, choosing
certain rows for processing. A search condition is the criterion for choosing rows.

In the following select-statement example, CODE = 'A' AND PART='B' AND
TYPE='X' constitute the search condition:

SELECT * FROM T1
WHERE CODE = 'A' AND PART='B' AND TYPE='X'

When you are constructing search conditions, be careful to perform arithmetical
operations only on numeric data types, and to make comparisons only among
compatible data types. Graphic data types are compatible only with other graphic
data types. If you use a host variable in an expression, its host language data type
must be compatible with the rest of the expression.

Performing Arithmetic Operations
Whenever an arithmetic or comparison operator has operands of two different
types, the database manager evaluates it in the greater of the two types: FLOAT
takes precedence over DECIMAL, which takes precedence over INTEGER, which
takes precedence over SMALLINT. For example, if the PRICE column is of type
INTEGER and has the value 25, the expression PRICE*.5 will evaluate to 12.5, a
decimal value. The predicate PRICE*.5=12 is false, because the decimal value forces
the predicate to be evaluated in decimal. (Decimal values are stored in
System/390™ packed decimal format.)

The system computes all floating-point values in normalized form, as described in
the ESA/390 Principles of Operation manual. When a floating-point value is stored in
a table, it may not be stored exactly as entered. For example, an SQL INSERT
statement could specifically insert the constant 3E0 into a column. Internally,
however, the value might actually be stored as 2.9999. Floating-point values may

�� $

,

select-clause INTO host_variable_list �

� from-clause
where-clause with-clause

��

Figure 18. Format of the SELECT INTO statement

Chapter 3. Coding the Body of a Program 41

become even more imprecise when arithmetic operations are performed on them.
You should use the BETWEEN predicate (described later) when comparing
floating-point values.

If the operands of an arithmetic or comparison operator are both single-precision
and double-precision floating-point data, the former is converted to the latter
before any comparison is made or any arithmetic operation performed. If the
equals (=) comparison operator compares these two types of data, the result of the
comparison may not be what you expected. In the following examples, column C1
is defined to contain single-precision floating-point data and column C2 is defined
to contain double-precision floating-point data:

INSERT INTO T1 (C1, C2) VALUES (10.95, 10.95)

SELECT * FROM T1
WHERE C1 = 10.95

SELECT * FROM T1
WHERE C2 = 10.95

SELECT * FROM T1
WHERE C1 = C2

The first and second select statements here will return rows that contain the value
10.95. The third select will not return any rows. This is because the 10.95 cannot be
exactly expressed as a floating-point value. The double-precision floating-point
representation has more significant bits than the single-precision floating-point
representation. When the single-precision floating-point value is converted to
double-precision float, X’00’s are added to the last four bytes of the
double-precision equivalent. The single-precision float data is therefore not equal to
the double-precision float data and hence the search condition in the last select
above is not satisfied.

Decimal numbers have a maximum precision of up to 31 digits. In contrast, a
double-precision floating point number preserves up to approximately 17 digits. So
when a decimal number with precision greater than 17 is promoted to a
floating-point number, digits are lost. Because floating-point numbers can have a
larger magnitude than decimal numbers, the float data type is higher than the
decimal in the data type promotion scheme. The following example shows how
this can cause unexpected results:

SELECT * FROM DEPARTMENT WHERE 1E0 + 12345678901234567890.1
= 12345678901234567890.1;

You would expect this statement to return no rows, because adding one to a
constant makes it unequal to itself. To execute this statement, the system promotes
the two decimal numbers to floating-point values. When this is done, all but the
first 17 digits are lost. When ’1E0’ is added to the first decimal number, > it is not
large enough to change the converted decimal value. The end result is that both
sides of the expression evaluate as being equal. It is therefore important to be
careful when combining floating-point and decimal data types in expressions.

Arithmetic operations between two items of type SMALLINT produce a result of
type INTEGER, in order to avoid possible overflow problems (as might easily
occur in multiplication). When INTEGER or SMALLINT values are used in a
division computation, the result is of type INTEGER, and any remainder is
dropped. (See “Converting Data” on page 50 for conversion information.)

42 Application Programming

Using Null Values
The system allows nulls in values in a table. A null is a nonexistent value; that is,
it represents a value that is undefined. You can think of a null value as an empty
space, or as a space reserved for later insertion of data.

When null values occur within expressions, the value of the expression is also null.
For example, in the following predicate both SALARY and COMM may be a null
value:

If either SALARY or COMM is null, expression1 above is null.

Using the Predicates of a Search Condition
A search condition is a collection of one or more predicates. Each predicate specifies
a test that is applied to the rows of the table. You can connect predicates with the
logical operators AND and OR. For example:

predicate1 AND predicate2 OR predicate3

The keyword NOT can be used to negate a predicate:
predicate1 AND NOT predicate2

The precedence rule among the keywords is as follows:
1. NOT is applied
2. AND is applied
3. OR is applied.

Use parentheses to override this precedence rule if necessary. For example, the
search condition in Figure 19 contains three predicates; it is used to find the rows
of the EMPLOYEE table pertaining to an employee from department D11 who also
has 17 or 18 years of education.

SALARY + COMM < 100

expression1 expression2

Chapter 3. Coding the Body of a Program 43

Figure 19 also shows that the format of a predicate is a comparison between two
values or expressions. This format is represented as follows:

expression comparison-operator expression

A comparison-operator may be any of the following:
= "equal to"
¬= "not equal to"
<> "not equal to"
> "greater than"
>= "greater than or equal to"
< "less than"
<= "less than or equal to"

The above symbols are the only comparison operators that you can use in SQL
statements. For example, the system does not recognize ≠ even if it is supported in
the host language. The correct representation of inequality is ¬= or <>.

For a detailed description of search conditions, see the DB2 Server for VSE & VM
SQL Reference manual.

Evaluating Predicates
The following rules apply when the system evaluates predicates:
1. When two character strings are compared, EBCDIC alphabetic ordering is used.

For example:
'A' < 'B'
'A' < 'ABLE'
'Z' < '35'
'A1' < 'B'
'a' < 'A'

2. When two short strings are compared, trailing blanks are not significant. For
example, if the NAME column of a table is of type CHAR(10), you can write
NAME='SMITH' in your search condition, and the condition will be satisfied by
the database value:

'SMITH '.

Trailing blanks are significant in the LIKE predicate; see the DB2 Server for VSE
& VM SQL Reference manual.

Search Condition:

Predicate 1:

WORKDEPT='D11' AND (EDLEVEL = 17 OR EDLEVEL = 18)

WORKDEPT = 'D11'

Predicate 3

Predicate 2

Predicate 1

expression

comparison operator

expression

Figure 19. Breakdown of Search Conditions and Predicates

44 Application Programming

3. In performing an arithmetic operation, if either of the operands is null, the
result of the operation is null.

4. In performing a comparison operation, if either of the expressions is null, the
result of the comparison is unknown, and the row being evaluated does not
qualify for inclusion in the result table.

5. No predicates are permitted on long host variables. Except for LIKE, predicates
are not permitted on long columns.

6. When decimal numbers of different scales are compared, the shorter scale is
extended with trailing zeros sufficient to match the scale of the larger number.
For example, 25.45 is equal to 25.4500.

7. When two graphic strings are compared, the value of the respective data
columns is compared in a manner similar to that used for character data types.
The single character sequencing is generally of no value for graphic ordering.
However, you can specify the sorting sequence of graphic characters in a
graphic column by associating the column with a field procedure. For more
information on field procedures refer to “Using Field Procedures” on page 277.

8. If a query is executed against an empty table, the database manager may not,
for performance reasons, carry out all validation checks. For example, an
invalid date string in a host variable is not flagged as an error unless a row is
being evaluated.

Using Additional Types of Predicates
In addition to the basic predicates that compare two expressions, the system
provides the predicates listed below, which you can use either alone or with other
predicates by including the keywords AND, OR, and NOT to form a search
condition. For detailed information on the rules and use of these predicates, see the
DB2 Server for VSE & VM SQL Reference manual.
v BETWEEN
v IN
v LIKE
v NULL
v EXISTS
v Quantified (SOME, ALL).

Using Functions
There are two types of functions. Column functions apply the function to a group of
values in a column and produce one result value. Scalar functions apply the
function to one or more values in each row and produce a result value for each
row.

Using Column Functions
The column functions are:

AVG MAX MIN SUM COUNT

The argument of a column function is an expression containing a column name
(optionally preceded by DISTINCT or ALL— ALL is the default). The argument
follows the function and must be enclosed in parentheses.

DISTINCT indicates that duplicate values are to be eliminated before the function
is applied. The following example counts the number of different projects that
satisfy the search condition:

SELECT COUNT(DISTINCT PROJNO)

Chapter 3. Coding the Body of a Program 45

For a detailed discussion of each of the column functions, see the DB2 Server for
VSE & VM SQL Reference manual.

Using Scalar Functions
The scalar functions are:

CHAR FLOAT MINUTE TIMESTAMP
DATE HEX MONTH TRANSLATE
DAY HOUR SECOND VALUE
DAYS INTEGER STRIP VARGRAPHIC
DECIMAL LENGTH SUBSTR YEAR
DIGITS MICROSECOND TIME

You can use scalar functions wherever an expression can be used. The first or only
argument of each scalar function is an expression. If the value of any expression is
a null value, the result will be a null value as well, except for the VALUE function.

For a detailed discussion of each of the scalar functions, see the DB2 Server for VSE
& VM SQL Reference manual.

Using Data Types

Assigning Data Types When the Column Is Created
Each column of every DB2 Server for VSE & VM table is given an SQL data type
when the column is created. Table 6 shows the data types and how they are stored
internally.

Table 6. SQL Data Types

SQL Data Type How Stored

INTEGER or INT Stored as a signed 31-bit binary integer

SMALLINT Stored as a signed 15-bit binary integer

DECIMAL[(p[,s])] or
DEC[(p[,s])] ⁴ , ⁵

Stored as a packed decimal number of precision p and scale s. Precision is the total
number of digits; scale is the number of digits to the right of the decimal point. For
example, 251.66 fits in a DECIMAL(5,2) data area. When precision and scale are
calculated, if the precision is greater than 31, leading zeros will be removed until it is
equal to 31. Trailing zeros are not removed. The default scale is 0 and the default
precision is 5.

FLOAT(n) ¹ Stored as a single-precision (4-byte) floating-point number in short System/390
floating-point format, or as a double-precision (8-byte) floating-point number in long
System/390 floating-point format.

CHARACTER[(n)] or
CHAR[(n)] ³

Stored as a character string of fixed length n, where ≤ 254. The default length is 1.

VARCHAR(n) ² , ³ Stored as a varying-length character string of maximum length n, where n ≤ 32767. If
254 < n ≤ 32767, VARCHAR(n) is considered a long string.

LONG VARCHAR ³ Stored as a varying-length character string of maximum length 32767.

GRAPHIC[(n)] Stored as a string of double-byte character set (DBCS) characters of fixed length n,
where n ≤ 127. The default length is one DBCS character.

VARGRAPHIC(n) ² Stored as a varying-length string of DBCS characters of maximum length n, where n ≤
16383. If 127 < n ≤ 16383, VARGRAPHIC(n) is considered a long string.

LONG VARGRAPHIC Stored as a varying-length string of DBCS characters of maximum length 16383.

DATE Stored as a string of 4 bytes. Each byte is two packed decimal digits. The first two
bytes are the year, the next is the month, and the last is the day.

46 Application Programming

Table 6. SQL Data Types (continued)

SQL Data Type How Stored

TIME Stored as a string of 3 bytes. Each byte is two packed decimal digits. The first byte is
the hour, the next is the minute, and the last is the second.

TIMESTAMP Stored as a string of 10 bytes. Each byte is two packed decimal digits. The first 4
bytes are the date, the next 3 are the time, and the last 3 are the microsecond.

Notes:

1. The FLOAT data type refers to either single-precision floating-point data (4
bytes) or double-precision floating point-data (8 bytes).
v REAL and FLOAT(n), where n is from 1 to 21, are synonyms. They are both

stored as 4 bytes.
v FLOAT, DOUBLE PRECISION, and FLOAT(n), where n is from 22 to 53, are

synonyms. They are all stored as 8 bytes.
v When single- and double-precision floating-point data are compared to one

another, the result of the comparison may not be what you expected. See
“Constructing Search Conditions” on page 41.

2. These data types have some special considerations to watch out for.
v For the CREATE TABLE and ALTER TABLE statements, when VARCHAR(n)

or VARGRAPHIC(n) has “n” greater than 254 or 127 respectively, the
database manager treats the column as a long string when storing and
retrieving data. Long strings are discussed in the next section.
The column is treated as VARCHAR or VARGRAPHIC, however, in two
respects:
– The value stored in the LENGTH and SYSLENGTH columns of

SYSTEM.SYSCOLUMNS is “n”.
– The value returned to the user in the SQLLEN field of the SQLDA is “n”.

When n is less than 255 (VARCHAR) or 128 (VARGRAPHIC) on these
statements, the treatment of the column is unchanged.

v Trailing blanks are not considered relevant in comparisons of VARCHAR or
VARGRAPHIC values, unless these values are either concatenated, returned
to the application program, or used in a scalar function.
For example, if string X1 = "STRING " and string X2 = "STRING" and X3 =
X1 CONCAT X2 then X3 will be equal to "STRING STRING". However, X1 is
considered equal to X2 in a compare statement such as a SELECT...WHERE.

3. Columns defined with these data types can contain MIXED or BIT data.
4. NUMERIC is a synonym for DECIMAL, and may be used when creating or

altering tables. In such cases, however, the CREATE or ALTER function will
establish the column (or columns) as DECIMAL.

5. C application programs can use the decimal data type so that host variables can
match table definitions and do not have to do C numeric conversions for table
columns that are defined as decimal.

Using Long Strings

Defining Long Strings
A long string column is either a LONG VARCHAR, LONG VARGRAPHIC,
VARCHAR(n) (where 254 < n ≤ 32 767), or VARGRAPHIC(n) (where 127 < n ≤ 16
383). Long strings are intended for storage of unstructured data such as text

Chapter 3. Coding the Body of a Program 47

strings, images, and drawings. For a list of restrictions on the use of long strings,
refer to the section on data types in the DB2 Server for VSE & VM SQL Reference
manual.

Performing Operations on Long Strings
The only operations permitted on long strings are:
v SELECT in an outer-level query (not in a subquery).
v INSERT into the database from an input host variable (not from a constant or

from a subquery). You can, however, insert null values into long strings with the
usual INSERT statement mechanisms. (That is, you are not restricted to host
variables when inserting nulls.)

v UPDATE from an input host variable or UPDATE to the null value. (SET
LONGFIELD=:X and SET LONGFIELD=NULL are permitted, but SET
LONGFIELD=’HELLO’ and SET LONGFIELD=OTHERFIELD are not permitted.)

v DELETE of rows containing long strings.

Programming Tip
The restrictions on the use of long strings can usually be avoided by the
appropriate use of the SUBSTR function.

Using Datetime Data Types
Datetime is a collective DB2 Server for VSE & VM term that includes date, time,
and timestamp. Although datetime values can be used in certain arithmetic
operations and are compatible with certain strings, they are neither strings nor
numbers. Conversely, strings and numbers are not datetime values. A datetime
value is either:
v A DATE, TIME, or TIMESTAMP column value
v A value returned by the DATE, TIME, or TIMESTAMP scalar functions
v A value returned by the CURRENT DATE, CURRENT TIME, or CURRENT

TIMESTAMP special registers.

Datetime values of the same type can be subtracted. If date1 and date2 are DATE
columns, date1 - date2 is a valid expression. Date1 - '01/01/2000' is also a valid
expression because '01/01/2000' is a valid string representation of a date. However,
'01/01/2000' - '12/20/1999' is not valid because strings cannot be subtracted and a
string is interpreted as a date only if the other operand is a value of data type
DATE. Scalar functions are provided to explicitly convert strings to datetime
values. The following expression is valid: DATE('01/01/2000') - '12/20/1999'.

For detailed information on the components and valid formats and lengths of the
date, time, and timestamp data types and the assignment of these data types to
host variables or CHAR-type columns, see the DB2 Server for VSE & VM SQL
Reference manual.

Using Character Subtypes and CCSIDs
Character subtypes and coded character set identifiers (CCSIDs) provide a means
of identifying the character data representation scheme to be used for character
and graphic data in your system. For example, by using a certain CCSID, you can
specify that all character data in your system is single-byte EBCDIC data.

Subtypes are a way of specifying that you want to use the application server
system default CCSID associated with that subtype. CCSIDs apply to both
character and graphic data, while subtypes apply only to character data.

48 Application Programming

For a detailed description of coded character sets and CCSIDs, see the DB2 Server
for VSE & VM SQL Reference manual.

For most applications, you do not need to specify subtypes or CCSIDs, because the
system defaults can usually meet your character data representation requirements.

If this is not the case, you may have to become familiar with Character Data
Representation Architecture (CDRA). Refer to the section about data integrity
concerns in the Character Data Representation Architecture Reference and Registry
manual for a discussion of using CDRA to meet your requirements.

The following are examples of problems that can be solved by the specification of
CCSIDs or subtypes. The solutions to these problems are discussed in “Assigning
Subtypes and CCSIDs When a Column Is Created” on page 50 and “Assigning
Subtypes and CCSIDs to Data in a Program” on page 50.
v A column is required in a table to contain mixed data (that is, data that can

contain both double-byte and single-byte characters), but the system default
specifies that all newly created columns will be used to contain single-byte
character set data only.

v A table creation program is required that is to be used at multiple sites, all of
which can use different system default subtype and CCSID values. The tables to
be created must have the ability to store data of a particular CCSID.

v An application program written in assembler language must insert data into a
graphic column, but variables with a graphic data type are not supported.

Determining Default Subtypes and CCSIDs
Refer to the SYSTEM.SYSOPTIONS catalog table to determine the application
server system defaults. The rows containing the following values in the
SQLOPTION column are important: CHARSUB, CCSIDSBCS, CCSIDMIXED,
CCSIDGRAPHIC, and CHARNAME.

DB2 Server for VM
For the application requester system defaults, invoke the SQLINIT EXEC
using the QUERY option. The fields that contain important information are
CCSIDSBCS, CCSIDMIXED, CCSIDGRAPHIC, and CHARNAME. (For a
discussion of the SQLINIT EXEC, refer to the DB2 Server for VSE & VM
Database Administration manual.)

Examples of items that assume application requester system defaults are input and
output SQLDA elements (the default can be overridden), and host variables.

The following are examples of items that assume application server system
defaults:
v Columns (default can be overridden)
v Special registers.

The following are examples of items that assume application requester system
defaults:
v Input and output SQLDA elements (default can be overridden)
v Host variables.

For information on setting system defaults, refer to the DB2 Server for VM System
Administration or the DB2 Server for VSE System Administration manual.

Chapter 3. Coding the Body of a Program 49

Assigning Subtypes and CCSIDs When a Column Is Created
There are three ways to assign subtypes or CCSIDs to a column:
v Use the application server system defaults.
v Use the preprocessor parameters CHARSUB, CCSIDSBCS, CCSIDMIXED, and

CCSIDGRAPHIC to override the system default for columns created by the
CREATE TABLE and ALTER TABLE statements in the package. (See
“Preprocessing the Program” on page 118 (DB2 Server for VM) “Preprocessing
the Program” on page 154 (DB2 Server for VSE) for information on these
parameters.)

v Use the subtype or CCSID clause in a column’s definition within the CREATE
TABLE or ALTER TABLE statement to override the application server system
default or the preprocessor default. (For more information on these statements,
refer to the DB2 Server for VSE & VM SQL Reference manual.)

Assigning Subtypes and CCSIDs to Data in a Program
There are two ways to assign subtypes or CCSIDs to the data items in a program:
v Use application requester system defaults
v Execute the SQL statement using dynamic SQL so that the data items can be

described in a user-defined SQLDA. A CCSID can be assigned to each data item
in the SQLDA.
For examples of how to build an SQLDA that contains CCSID information, see
“Chapter 7. Using Dynamic Statements” on page 209. For a more detailed
discussion on using the SQLDA, refer to the DB2 Server for VSE & VM SQL
Reference manual.

Converting Data
For the database manager, the operands in an assignment or comparison operation
must be compatible. For example, a character string cannot be compared to a
numeric string, a graphic string cannot be compared to a character string, and an
arithmetic operation cannot contain a character string operand. Refer to the DB2
Server for VSE & VM SQL Reference manual for more details about compatible data
types.

Operands that are compatible but are not identical in data types, lengths, datetime
formats, or CCSIDs, can be used in assignment and comparison operations but
require data conversion as follows:
v For assignment operations, conversion is done before the data is assigned. For

example, if a host variable is defined as a SMALLINT field and a column is
defined as INTEGER, a SELECT INTO operation converts the INTEGER column
to SMALLINT before it is assigned to the host variable. In this situation,
overflow may occur if the value is too large to fit into a SMALLINT field.
Depending on the data types and the host language, some data may be lost. The
DB2 Server for VSE & VM SQL Reference manual discusses potential data loss in
the assignment of COBOL integers.
To retrieve a datetime value, (that is, a DATE, TIME, or TIMESTAMP), it must
be assigned to a character string host variable. The assignment operation
converts the datetime value to a character string representation. Whenever a
string representation of a datetime value is used in any other operation with a
datetime value, the operation is performed with a temporary copy of the string
that has been converted to the data type of the datetime value.

50 Application Programming

If a conversion error occurs when the database manager assigns a value to a
host variable in the INTO clause of a SELECT or FETCH statement, and if you
have provided an indicator variable for the affected host variable, the system
returns the following:
– A value of −2 in the indicator variable
– An undefined value in the host variable
– Warning values in both SQLCODE and SQLSTATE that are appropriate for

the condition.

If you have not provided an indicator variable, both SQLCODE and SQLSTATE
return error codes (a negative value for SQLCODE, and a data exception for
SQLSTATE).

v For comparison operations, one field may be converted if necessary to match the
data type, length, or CCSID of another. For example, if two character strings in a
comparison operation have different CCSIDs (one is an SBCS string and the
other is a mixed string), a temporary copy of the SBCS data is converted to the
mixed data CCSID before the data is compared.

For more information about data conversion and conversion errors, see the
discussion about assignments and comparisons in the DB2 Server for VSE & VM
SQL Reference manual.

Summarizing Data Conversion
Data conversion is summarized in tabular form in the DB2 Server for VSE & VM
SQL Reference manual. Overflow (loss on the left) or truncation (loss on the right)
may occur on some conversion attempts.

Truncating Data
Truncations are handled differently for numeric, character, and datetime data.

Numeric data Truncation of zeros on the left, or of the fractional
part of decimal or floating-point values
(single-precision or double-precision) takes place
without error or warning. Any other loss of data
on conversion is an overflow error. If overflow
occurs in an outer select and an indicator variable
is supplied for the host variable, the indicator
variable is set to −2 and a positive SQLCODE is
returned; otherwise, a negative SQLCODE is
returned.

Character data When output from the database manager does not
fit into a host variable, a warning is returned.
SQLWARN1 is set to indicate truncation. In this
case, if you provide an indicator variable, the value
within it denotes the actual length of the variable
in characters before truncation.

When an input character string value does not fit
into a DB2 Server for VSE & VM column, an error
results.

Whenever truncation occurs, it follows specific
rules depending on the character subtype involved.
Also, padding may occur when a string is assigned
to either a fixed-length host variable or to a
fixed-length column and the source string is

Chapter 3. Coding the Body of a Program 51

shorter than the length of the target. Padding, like
truncation, follows rules depending on subtype.
These rules are in the DB2 Server for VSE & VM
SQL Reference manual.

SBCS and mixed are the only two types of
character data truncation. In mixed truncation, the
integrity of target data is ensured. For example, if
'ab<�CCDDEE�>cd' is truncated to a length of 6, the
result with mixed truncation is 'ab<�CC�>'. The
system counts to byte 6. Because this would split a
double-byte character, the number of bytes is
rounded to the next lowest whole number. It also
always ensures that the < and > characters
correctly identify the double-byte characters.

Table 7 shows the type of truncation that occurs
depending on the subtype of the source and target
data.

Table 7. Truncation Types

Subtype of Source Subtype of Target Result

Mixed Mixed Mixed truncation

SBCS SBCS SBCS truncation

Mixed SBCS SBCS truncation1

SBCS Mixed SBCS truncation1

Note:

1. If the source data contains DBCS data, a conversion error occurs during SBCS
truncation.

Table 8 shows the results of SBCS and mixed
truncation when selecting 'ab<�CCDDEE�>fg' into
various host variables:

Table 8. Examples of Mixed Data Truncation and SBCS Truncation

Target Host Variable SBCS Truncation Mixed Truncation

CHAR(6) 'ab<CCD' 'ab<�CC�>'

CHAR(7) 'ab<CCDD' 'ab<�CC�>�'

VARCHAR(7) 'ab<CCDD' 'ab<�CC�>'

Note: For mixed data, the only difference between
the second and the third example is the
length of the resulting VARCHAR string. A
blank is added to the fixed string.

TIME data When the seconds part of a retrieved ISO, JIS, or
EUR format TIME value is truncated, SQLWARN1
is set to indicate that truncation has occurred. The
seconds that are truncated are placed in the
indicator variable if one is provided.

TIMESTAMP data On output, any portion of the microseconds part of
a TIMESTAMP may be truncated (including the
decimal point). However, no warning is given

52 Application Programming

(SQLWARN1 is not set). If an indicator variable is
provided, it is unchanged.

For more information about how computations are performed internally or how
overflows can occur, refer to the section about arithmetic operations in the DB2
Server for VSE & VM Database Administration manual.

Using a Double-Byte Character Set (DBCS)
DBCS characters can be used in identifiers, constants, and data in DB2 Server for
VSE & VM programs. Strings containing DBCS characters are formatted as
<�XXXX�>, where < represents the shift-out character, and > represents the shift-in
character. Each XX represents one double-byte character set character. The <>
delimiters are single-byte character set (SBCS) characters.

In identifiers, characters constants, and character data, the delimiters are significant
so redundant delimiter pairs are not removed. For example, the following strings
of DBCS characters are not equivalent:
<�AABB�><�CCDD�> and <�AABBCCDD�>

In graphic data and constants, the delimiters are not significant.

Each DBCS character requires 2 bytes for its representation; therefore, an even
number of bytes must be between the < and >. The number of bytes used to
represent a string of DBCS characters is equal to:

2 * the number of DBCS characters + 2 (for mixed data)

2 * the number of DBCS characters (for graphic data)

Strings of DBCS characters cannot span lines, whereas mixed strings containing
strings of DBCS and SBCS characters can span lines if each string of DBCS
characters in the mixed string is on one input record. For a discussion of the rules
for using DBCS characters in constants, see “Using Character Constants” on
page 59 and “Using Graphic Constants” on page 60.

To use DBCS characters in application programs, you must know the following:
v To use host identifiers that contain DBCS characters in DB2 Server for VM, your

compiler must support DBCS and the application requester must have the DBCS
option set to YES. To check whether this setting is correct, do an SQLINITQRY; if
you need to change this setting, issue an SQLINIT with the DBCS option set to
YES. (For a detailed discussion of the SQLINIT EXEC, see the DB2 Server for VSE
& VM Database Administration manual.)

v To use host identifiers in DB2 Server for VSE, the DBCS option in the
SYSTEM.SYSOPTIONS catalog must be set to yes. Your compiler must also
support DBCS.

v To use SQL identifiers that contain DBCS characters, the application server must
support DBCS characters and mixed data. To verify this for the application
server, make sure that in the SYSTEM.SYSOPTIONS catalog table the
CHARNAME setting identifies a mixed character set and the DBCS setting is
YES. In addition, DBCS characters must be permitted in the particular identifier.
For a discussion of rules for using DBCS characters in identifiers, refer to the
DB2 Server for VSE & VM SQL Reference manual.

v To use host variables with graphic data type, the preprocessor must allow a
graphic data type for the host language of the source program. This is true for
COBOL and PL/I only in DB2 Server for VSE. The DB2 Server for VM

Chapter 3. Coding the Body of a Program 53

preprocessors that allow graphic data type are COBOL and PL/I. If you need
this facility when using another language, see the appendix for that language for
a discussion of alternative actions.

v To use graphic and mixed constants (that is, character constants that contain
DBCS characters) in an application program, the DB2 Server for VM application
server and application requester or DB2 Server for VSE application server must
support mixed data. To verify this for the application server, make sure that the
CHARNAME setting in the SYSTEM.SYSOPTIONS catalog table identifies a
mixed character set. To verify this for the DB2 Server for VM application
requester, issue an SQLINIT command with the QRY option. The CHARNAME
value returned identifies a mixed character set. For a discussion of character sets,
refer to > the DB2 Server for VM System Administration or the DB2 Server for VSE
System Administration manual. If the DB2 Server for VM application requester
does not support DBCS characters, you can obtain this support by using the
SQLPREP GRaphic option (available to COBOL and PL/I only).

Using Expressions
An expression refers to a column, a constant, a host variable, an SQL special register
(for example, the USER special register), the SQL keyword NULL, a column
function, a scalar function, an arithmetic expression, or any of these that can be
connected by the concatenation operator. (The concatenation operator is discussed
later in this chapter.) Using expressions, you can do calculations on data as part of
a query. The calculations are performed before the data is returned to your
program.

Table 9 shows a simple arithmetic expression:

Table 9. Breakdown of an Arithmetic Expression

Expression

(BONUS - :MARKDOWN * .80)

constant
host variable
column name

Using Arithmetic Operators
There are four arithmetic operators that you can use:

* multiplication
/ division
+ addition
- subtraction

Usually, the system reads an arithmetic expression from left to right, first applying
any negations, then any multiplication or division operations, and then finally any
additions and subtractions. For example, in the following expression:

BONUS - :MARKDOWN * .80

The system would take the value of the host variable MARKDOWN, multiply it by
.80, and then subtract the result from the bonus.

You can change this order-of-precedence by using parentheses. For instance, if the
above example were coded:

54 Application Programming

(BONUS - :MARKDOWN) * .80

The system would first subtract MARKDOWN from BONUS, and then multiply
the result by .80. The two results would probably end up being quite different.

Host variables can be used in arithmetic expressions. For example:
PRICE * :QUANTITY + 1.44

As mentioned earlier, you must precede the names of host variables by a colon (:)
to distinguish them from column names. That is, the following is interpreted as a
host variable:

:PROJNO

The following, however, is interpreted as a column name:
PROJNO

Numeric constants can stand alone or be used in arithmetic combination with other
constants or host variables or column names to form expressions. All three of the
following are valid expressions:

200 -798.9768 PRICE * :QUANTITY + 1.44

Character constants cannot be used in arithmetic combinations, except when a
character string representing a datetime value is used in datetime arithmetic. The
following expression is valid:

HIRE_DATE - '2000-01-01'

The following expression is not valid:
'FUDGE'*'GUMDROP'+'LEMON'

If you attempt to combine two pieces of data that do not have compatible data
types with arithmetic operators, an error code is returned. The system performs
data conversion on different types of data that are compatible.

Using Special Registers
Any of the following special registers can be used wherever an expression of the
appropriate data type is used:
v CURRENT DATE (defined as DATE)
v CURRENT SERVER (defined as CHAR(18))
v CURRENT TIME (defined as TIME)
v CURRENT TIMESTAMP (defined as TIMESTAMP)
v CURRENT TIMEZONE (defined as DECIMAL(6,0))
v USER (defined as CHAR(8))

Using CURRENT DATE, TIME, and TIMESTAMP: The values of all datetime
special registers in the same statement are based on the same time-of-day (TOD)
clock reading.

In the examples below, one uses the select-statement and the other uses the
UPDATE statement.

Chapter 3. Coding the Body of a Program 55

Using CURRENT TIMEZONE: The CURRENT TIMEZONE is a signed
time-duration containing the local time zone value. A negative value represents
differentials west of the Greenwich-Mean-Time (GMT). A positive value represents
differentials east of the GMT. CURRENT TIMEZONE can be used to convert local
time into GMT by subtracting CURRENT TIMEZONE from local time. CURRENT
TIMEZONE can be subtracted from a TIME or TIMESTAMP data type.

The following example shows a query that involves CURRENT TIMEZONE.
SELECT RECEIVED - CURRENT TIMEZONE

FROM IN_TRAY

Using CURRENT SERVER: This special register holds the server name of the
application server currently connected. It has a CHAR(18) data type.

The following example shows a query that includes the CURRENT SERVER special
register:

SELECT ID, INDATE, INTIME
FROM SAMP1
WHERE INRDB=CURRENT SERVER

Using USER: This special register is evaluated as the currently connected userid
that is, the user ID of the person who is running the program, regardless of who
preprocessed it. USER behaves exactly like a fixed-length character string constant
of length 8, with trailing blanks if the user ID has fewer than eight characters.

Notes:

1. You cannot use this keyword in an arithmetic expression (for example,
USER+3).

2. You can use it in a predicate where you compare it to a character string (for
example, USER = 'JIM').

3. You can use it in the LIKE predicate, where it is treated as a pattern.
4. You can, with some restrictions, use it in the SET clause of an UPDATE

statement, or in the VALUES clause of an INSERT statement. In both cases, the
data in the target column must be character data type (CHAR or VARCHAR).

The following is a valid expression that includes the USER special register:
SELECT *
FROM SYSTEM.SYSCATALOG
WHERE CREATOR = USER

Concatenating Character and Graphic Strings
You can use the concatenation operator (CONCAT) to concatenate character strings
or graphic strings. Long strings cannot be used with the concatenation operator.

The following example shows the concatenation of employees’ last names and jobs,
separated by a hyphen:

SELECT LASTNAME CONCAT '-' CONCAT JOB FROM EMPLOYEE

SELECT CURRENT DATE, PRSTDATE
FROM PROJECT
ORDER BY PRSTDATE

UPDATE PROJECT SET PRSTDATE = CURRENT DATE,
PRENDATE = '2000-01-20'

WHERE PROJNAME = 'OPERATION'

56 Application Programming

For a full description of this operation, including rules for character subtypes and
CCSIDs, see the DB2 Server for VSE & VM SQL Reference manual.

Note: The || symbol is a synonym for CONCAT. Because the | symbol is not in a
consistent position in all code pages, the use of || could impair code
portability.

Using Host Variables
As previously stated, host variables are host program variables that are declared in
an SQL declare section. The host program can use these variables to interact with
the database manager.

You can use host variables to pass data to or receive data from the database
manager. Host variables used to contain column data or data used to evaluate an
expression are called main variables. The data type and length attributes of a main
variable depend on the data type and length of the column or expression to which
the variable relates.

You can also use host variables to communicate information to and from the
database manager about the contents of the main variable. If a host variable is
used in this context, it is an indicator variable. Only use host variables that are
declared with a data type equivalent to 15-bit integer as indicator variables. Refer
to “Using Indicator Variables” on page 61 for a description of their use.

Several SQL statements permit the use of host variables. Refer to the DB2 Server for
VSE & VM SQL Reference manual for the syntax of these SQL statements. The
syntax diagrams indicate whether host variables are permitted or required.

For a description of how to declare host variables, refer to the appropriate host
language appendix.

Using Host Structures
A host structure is a special form of host variable. It is any two-level structure or
substructure declared in an SQL declare section. Host structures can replace all or
part of a host_variable_list. A host_variable_list can contain references to more than
one host structure.

The elements of the host structure comprise the list of main variables in the
host_variable_list. To provide indicator variable support for the elements of the host
structure, you must use an indicator array. An indicator array of n elements
provides indicator variable support for the first n elements of the host structure.

The elements of host structures and structures that contain host structures can
replace scalar host variables in an SQL statement. You can qualify the element
name with the names of parent structures and substructures. The following syntax
diagram shows the format of a structure element reference.

It is only necessary to qualify a structure or element name where failure to do so
would result in an ambiguous reference.

�� element_name
struct_name.

��

Chapter 3. Coding the Body of a Program 57

Elements of indicator arrays cannot be used as host variables and host structures
(or structures that contain host structures) cannot be declared as arrays or contain
arrays.

Refer to the appropriate host language appendix for rules on the declaration of
host structures and indicator arrays. Refer to the DB2 Server for VSE & VM SQL
Reference manual for more information on the use of host structures and indicator
arrays in SQL statements.

Using Constants
Constants (also called literals) can be numeric or character data. They are fixed
values that can be coded into SQL statements. Like host variables, they are used in
various clauses in a number of different SQL statements.

The following example shows a character string constant coded in a WHERE
clause:

DECLARE C CURSOR FOR
SELECT *
FROM EMPLOYEE
WHERE LASTNAME = 'PEREZ'

Constants can be used in the SELECT clause to set up a new column in the result
table, which has the specified constant in each of its occurrences. For example, the
statement:

DECLARE C CURSOR FOR
SELECT LASTNAME, 'WOW', 100.0
FROM EMPLOYEE
WHERE COMM > 3200

would have the following result table:

Using Numeric Constants
Integer constants consist of a number with an optional sign, such as -56, 103, or
+786. (If you do not include a sign, the system assumes that the number is
positive.) All integer constants are 4 bytes long; that is, there are no constants with
a data type of SMALLINT.

Decimal constants consist of a number with a decimal point, such as 78.9687,
-.00132, 64570., or +1672.80. If you do not supply a decimal point, the constant is
interpreted as an integer. In storage, the number occupies a maximum of 16 bytes.
Precision p, where 1 ≤ p ≤31, is the total number of digits. Scale s, where 0 ≤ s ≤p,
is the number of those digits that are to the right of the decimal point. Leading
and trailing zeros are included in both precision and scale. When the precision and
scale are calculated, if the precision is greater than 31, leading zeros are removed
until the precision is equal to 31. Trailing zeros are never removed. When decimal
data values are multiplied or divided, an overflow condition may occur.

Consider the following:

LASTNAME EXPRESSION 1 EXPRESSION 2
___________ _______________ _________________
LUCCHESI WOW 100.0
HAAS WOW 100.0
THOMPSON WOW 100.0
GEYER WOW 100.0

58 Application Programming

a string of thirty one 9’s. * 1.0

The string of 9’s is treated as DECIMAL(31,0) and 1.0 as DECIMAL(2,1). The
precision and scale of the product will then be 31 and 1 (DECIMAL(31,1)),
respectively. This will result in a decimal overflow and an arithmetic exception will
occur.

This decimal overflow, can be prevented by changing the constant '1.0' to '1.' This
would define this constant as DECIMAL (1,0) and the resulting product as
DECIMAL (31,0) instead of DECIMAL (31,1). If an expression contains decimal
constants, you can influence its precision and scale by adding leading or trailing
zeros to those constants.

A floating-point constant is an integer or a decimal constant followed by an
exponent marked by the letter E. The E must be followed by an exponent. The 1E0
is acceptable and evaluates to 1. All these are permissible floating-point constants:
-2E5, 2.2E-1, .2E6, +5E+2 or 4E0. All floating-point constants are double-precision in
the system.

Using Character Constants
Character string constants are coded within quotation marks, and are
varying-length character strings of letters, digits, or special characters, such as
'SMITH', '52', or 'k@r -5B'. A character constant implicitly assumes either a FOR
SBCS DATA or a FOR MIXED DATA attribute. You cannot assign the FOR BIT
DATA attribute to a character constant. The constant is assumed to have a subtype
of SBCS unless the following conditions are true. If the following conditions are
true, the constant is assigned a subtype of mixed.
v The application server supports mixed data.
v The constant contains mixed data.

Mixed data is composed of a mix of SBCS and DBCS characters in one string. The
DBCS portions of the string must be correctly formatted strings of DBCS
characters. (For a discussion of the format and rules for using strings of DBCS
characters, see “Using a Double-Byte Character Set (DBCS)” on page 53.) An
example of mixed data is:

'abc<�DEFG�>hi<�JKLM�>nop'

where abc, hi, and nop represent SBCS characters, and �DEFG� and �JKLM� represent
DBCS characters.

To obtain a single quotation mark in a string of SBCS characters, you must code
two consecutive single quotation marks. For example, the constant 'DON''T GO' is
interpreted as DON'T GO. To obtain a single quotation mark in a string of DBCS
characters, you only need to code a single quotation mark. Refer to the DB2 Server
for VSE & VM SQL Reference manual for more information on mixed strings of
SBCS and DBCS characters.

You can also code a character constant using its hexadecimal representation.
Hexadecimal constants are treated like regular character constants. In DB2 Server
for VM, hexadecimal constants are converted from the application requester default
CCSID to the application server default CCSID before they are used.

The hexadecimal representation of a constant value must be enclosed within single
quotation marks and preceded by an X. For example:

X'2D' X'C1C2C3C4' X'4256457D'

Chapter 3. Coding the Body of a Program 59

Each pair of hexadecimal numbers (0-9, A-F) represents a single byte. (Either
uppercase or lowercase letters can be used.) Therefore, the number of hexadecimal
numbers must be even and, when representing a DBCS character in a mixed
constant, it must be a multiple of 4 (each DBCS character occupies 2 bytes in
storage).

You can use hexadecimal constants to represent SBCS and mixed character data
only. The maximum size for hexadecimal constants is 254 hexadecimal digits (that
is, 127 SBCS characters or 63 DBCS characters).

The following is a valid expression using a hexadecimal constant:
LASTNAME CONCAT X'FF' CONCAT FIRSTNME

Using Graphic Constants
Graphic string constants are fully supported in COBOL and PL/I programs, but
with different formats. The system supports three formats of the graphic constant:
the SQL format and two PL/I formats.

The SQL format of the graphic constant is:
G'<�XXXX�>'

Note: N is a synonym for G.

The G identifies the constant that follows as graphic; the <�XXXX�> is any valid
string of DBCS characters, and the single quotation marks delimit the constant. You
do not need to double the quotation marks in a graphic constant to obtain a single
quotation mark. Use this format of the graphic constant in all situations except
static SQL statements in PL/I programs.

The PL/I formats of the graphic constant are:
1. '<�XXXX�>'G

2. <�@'XXXX@'@G�>

Note: N is a synonym for G.

Again, the G indicates that the constant is a graphic constant, and that the string
bound by < and > must be a valid string of DBCS characters. In the second format,
the single quotation marks and the G are within the string of DBCS characters;
they are the DBCS format of the quotation mark and the G. In the second format,
to obtain a single DBCS quotation mark, double the occurrence of the DBCS
quotation mark within the string of DBCS characters. Use either of these formats of
the graphic constant in static SQL statements in PL/I programs.

The PL/I preprocessor converts PL/I format graphic constants into SQL format
graphic constants (G'<�XXXX�>') when they appear in SQL statements. This is done
before passing the SQL statement to the application server for processing.
Therefore, some DB2 Server for VSE & VM messages for incorrect syntax may refer
to the SQL format of the constant, even though a PL/I format constant was coded
in your program.

Graphic constants assume the default graphic CCSID. Subtypes do not apply to
graphic data. For example, you cannot assign the FOR BIT DATA attribute to a
graphic constant. For detailed information on CCSIDs and subtypes, see “Using
Character Subtypes and CCSIDs” on page 48.

60 Application Programming

For information on the rules for the format and use of strings of DBCS characters
with DB2 Server for VM, see “Using a Double-Byte Character Set (DBCS)” on
page 53.

Using Date and Time Constants
A datetime constant is a character string constant or a decimal constant in a
datetime context, as shown in the following examples:

END_DATE - '1999-09-13'

END_DATE - 10000101.

In the first example, '1999-09-13' is a datetime character string constant; in the
second, 10000101. is a decimal constant. A datetime decimal constant is a date
duration, a time duration, or a timestamp duration. A date duration represents a
number of years, months, and days, and is expressed as a DEC(8,0) number. A
time duration represents a number of hours, minutes, and seconds, and is
expressed as a DEC(6,0) number. A timestamp duration represents a number of
years, months, days, hours, minutes, seconds, and microseconds, and is expressed
as a DEC (20,6) number.

For more detailed information on date and time values, as well as durations, see
“Using Datetime Values with Durations” on page 274.

Using Indicator Variables
Using indicator variables is optional in a host-variable reference. In static SQL
statements, indicator variables can be used to indicate that the corresponding host
variables should be treated as null values or truncated values. Output indicator
variables appear in the INTO clause of a SELECT or FETCH statement, and are
associated with output that is passed from the database to the application
program. Input indicator variables appear in the predicates of WHERE and
HAVING clauses, in the SET clause of an UPDATE statement, with VALUES in an
INSERT statement or in the SELECT clause, and are associated with input that is
passed from the application program to the database.

Output indicator variables should always be used wherever null values are
allowed in the database. Input indicator variables can be used to put null values
into the database. They should, however, not be used in predicates unless there is a
very good reason for doing so, because there may be a significant cost in
performance.

Refer to the DB2 Server for VSE & VM SQL Reference manual for a description of
the format of a host-variable reference that contains an indicator variable.

The following example illustrates the use of indicator variables.
SELECT FIRSTNME, LASTNAME
INTO :FNME:FNMEIND, :LNME :LNMEIND
FROM EMPLOYEE WHERE WORKDEPT = 'A00'

In this example, the indicator variable FNMEIND provides indicator variable
support for the main variable FNME. The indicator variable LNMEIND provides
indicator variable support for the main variable LNME.

The following notes on the use of indicator variables are grouped according to the
type of indicator variable to which they apply.

Chapter 3. Coding the Body of a Program 61

Notes Common to Both Input and Output Indicator Variables
1. The indicator variable must be of a host language data type equivalent to an

SQL SMALLINT.
2. A negative indicator variable indicates a null value for its main variable.

Notes on Input Indicator Variables
When using input indicator variables, be aware of the following:
1. Input indicator variables can be used to indicate that a column value is to be

set to null (when the indicator variable is negative). If you provide an input
indicator variable and assign it a negative value, the null value is inserted in
the column value for the row. If the indicator variable is zero or a positive
value, the main variable is inserted. Truncation does not apply to input
variables.

2. A negative indicator variable can be used in static SQL for any of the following
predicates:
v The basic comparison ones (such as = or >)
v BETWEEN
v IN
v LIKE
v The quantified ones (ANY, ALL)

See the DB2 Server for VSE & VM SQL Reference manual for the different sets of
rules for truth values for these predicates.

3. Do not use input indicator variables in search conditions (WHERE or HAVING
clauses) to test for null values. The correct way to test for nulls is with the
NULL predicate (described earlier):

This will return every row where MGRNO is null.

If MGRIND has been set negative to make MGR null, the truth value is
“UNKNOWN”, and nothing will be returned.

4. On the other hand, there are cases where setting up a negative input indicator
variable in the predicate can prove useful and efficient. For example, if an
application prompts the user to interactively supply information that will
identify an employee (by either number or name), you can design the program
to use only one select-statement to extract the indicated employee data from the
database.
Here is the pseudocode:

WHERE MGRNO IS NULL Correct

WHERE MGRNO = :MGR:MGRIND Incorrect

62 Application Programming

get either empno or lastname from user
if empno is entered then empnoind = 0, else empnoind = -1
if lastname is entered then nameind = 0, else nameind = -1
SELECT * FROM EMPLOYEE
WHERE EMPNO = :EMPNO:EMPNOIND
OR LASTNAME = :NAME:NAMEIND

Notes on Output Indicator Variables
When using output indicator variables, be aware of the following:
1. The value returned in an output indicator variable is coded as shown in

Table 10.
2. Output indicator variables are optional. If a null value is returned, however,

and you have not provided an indicator variable, a negative SQLCODE and an
error SQLSTATE are returned to your program. If your data is truncated and
there is no indicator variable, no error condition results. See “Converting Data”
on page 50 for more information about truncation.

Table 10. Values Returned in Output Indicator Variables

Value Returned Meaning

0 Denotes that a non-null value that has been returned in the
associated host variable is not null.

< 0 Denotes that the value associated with the host variable is null,
and should be treated exactly the same way as null column
values. A -1 denotes that the null value resulted from a normal
operation. A -2 denotes that the null value resulted from either a
conversion error or an error while evaluating an arithmetic
expression in an outer-select clause.

> 0 Denotes that the system truncated the returned value in the
associated host variable because the host variable was not of
sufficient length.

In addition, if the truncated item was a DBCS character or a string
of DBCS characters, the indicator variable contains the length in
characters before truncation. If the truncated item was a TIME
value, truncated at its seconds part, the indicator variable contains
the seconds. The SQLWARN1 warning flag in the SQLCA is set to
'W' whenever truncation occurs.

Using Views

Views allow multiple users to see different presentations of the same data. For
example, several users may be operating on a table of data about employees. One
may see data about some employees but not others; another may see data about all
employees but none of their salaries; and a third may see data about employees
joined together with some data from another table. Each of these users is operating
on a view that is derived from the real table of data about employees. Each view
appears to be a table and has a name of its own.

You can create views with authorization statements to control access to sensitive
data. For example, you might create a view based on a GROUP BY query that
gives certain users access to the average salary of employees in each department,
but prevents them from seeing any individual salaries.

Chapter 3. Coding the Body of a Program 63

A view is a dynamic “window” on tables. When you update a real table, you can
see the updates through a view; when you update a view, the real table underlying
the view is updated. There are, however, restrictions on modifying tables through a
view.

Because a view is not physically stored, you cannot create an index on it. However,
if you create an index on the real table underlying a view, you may improve the
performance of queries on the view.

Creating a View

In the following example, a view is created from the EMPLOYEE table:
CREATE VIEW PHONEBOOK (FNAME, LNAME, NUMBER, DEPART, JOBTITLE) AS

SELECT FIRSTNME, LASTNAME, PHONENO, WORKDEPT, JOB
FROM EMPLOYEE WHERE JOB <> 'PRES' WITH CHECK OPTION

The CREATE VIEW statement causes the indicated select-statement to be stored as
the definition of a new view, and gives a name to the view and (optionally) to each
column in it. If you do not specify the column names, the columns of the view
inherit the names of the columns from which they are derived.

You must specify a name for any view column that is not derived directly from a
single table column (for example, if a view column is defined as AVG(SALARY) or
SALARY+COMMISSION). Columns derived in this manner are often called virtual
columns, (and contain virtual data). You must also specify new column names if the
selected columns of the view do not have unique names (for example, if the view
is a join of two tables, each of which has a column named PROJNO).

In general, the data types of the columns of the view are inherited from the
columns on which they are defined. If a view column is defined on a function, the
data type of the view column will be the data type of the function result. (For
more details on functions, refer to the DB2 Server for VSE & VM SQL Reference
manual.)

If you want to prevent the execution of subsequent inserts or updates to the view
that involve data that is outside the domain of the view’s definition (as specified in
the WHERE clause of its subselect), you can add the WITH CHECK OPTION
clause. This clause, however, is not allowed for updateable views that are built on
subqueries. The checking that is performed at insert or update time is performed
according to a set of rules that cover the situation in which a view is dependent on
other views. See the DB2 Server for VSE & VM SQL Reference manual for these
rules.

Some other considerations when creating views are:

�� CREATE VIEW view_name

$

,

(column_name)

�

� AS subselect
WITH CHECK OPTION

��

64 Application Programming

v Internal database manager limitations restrict a view to approximately 140
columns. The number of referenced tables, lengths of column names, and
WHERE clauses all further reduce this number.

v If the subselect in a view definition has a “SELECT *” clause, the view has as
many columns as the underlying table. If columns are later added to the
underlying table by ALTER statements, the new columns will not appear in the
view (unless you drop and re-create the view).

v The name of the view must be unique among all the tables, views, and
synonyms that you have already created. You can refer to another user’s views,
if so authorized, by using the owner-name as a prefix (for example,
SMITH.PHONEBOOK).

v You can define a view in terms of another view: that is, the subselect that defines
a view may refer to one or more other views. In this case, follow the rules listed
under “Using Views to Manipulate Data” on page 66.

v There is no ORDER BY clause in a subselect; therefore, like a table, a view has no
intrinsic order. (Of course, you can specify an ORDER BY clause when you write
queries against the view.)

v Host variables are not permitted in a CREATE VIEW statement. (For example,
predicates such as PRICE = :X are not permitted.)

v The owner of the view is considered to be the authorization ID under which the
program is preprocessed.

v When you define a new view, you receive the same privileges that you have on
the underlying table. If you possess these privileges with the GRANT option,
you can grant privileges on your view to other users. (See “Chapter 10.
Assigning Authority and Privileges” on page 265 for information on the GRANT
option.) If the view is derived from more than one underlying table, you receive
the SELECT privilege, provided that you have this privilege on all the tables
from which it is derived. (If you have no privileges on the underlying tables, the
CREATE VIEW statement returns an error code.) Only the SELECT privilege is
possible, because multi-table views do not permit insertion, deletion, or update.

v Primary keys and foreign keys (discussed in “Ensuring Data Integrity” on
page 285) cannot be defined on a view.

v If you defined your view on a table that has a primary key, and you make
changes to that view, the view should contain all the columns of the key.

v The subselect is not executed when the view is created, which means that
semantic errors (for example, specifying "WHERE COL = '10'" when COL is a
decimal column) are not detected until the view is used. To determine whether a
statement contains semantic errors, you can enter 'SELECT *' against the view
after creating it.

Querying Tables through a View
You can write queries (select-statements) against views exactly as if they were real
tables. When you make a query against a view, the query is combined with the
definition of the view to produce a new query against real stored tables. This
query is then processed in the usual way. For example, the following query might
be written against the view PHONEBOOK that was defined under “Creating a
View” on page 64:

SELECT FNAME,LNAME
FROM PHONEBOOK
WHERE DEPART = 'D11'
ORDER BY 2

Chapter 3. Coding the Body of a Program 65

The system combines the query with the definition of PHONEBOOK, and
processes the resulting internal query:

SELECT FIRSTNME, LASTNAME
FROM EMPLOYEE
WHERE JOB <> 'PRES'
AND WORKDEPT = 'D11'
ORDER BY 2

During the processing of a query on a view, the system may detect and report
errors (by a negative SQLCODE) in either of two phases:
v The combination of the query with the view-definition (for example, attempting

to add together two strings of character-type)
v The execution of the resulting query on real tables (for example, attempting to

fetch a null value when no indicator variable is provided).

Note: If a view materialization is required to process the view, this view must not
contain any LONG VARCHAR columns in the view definition. For a
detailed description of view materialization, refer to the DB2 Server for VSE
& VM Database Administration manual.

Using Views to Manipulate Data
Like select-statements, INSERT, DELETE, and UPDATE statements can be applied
to a view just as though it were a real stored table. The SQL statement that
operates on the view is combined with the definition of the view to form a new
SQL statement that operates on a stored table. Any data modification made by
such a statement is visible to users of the view, the underlying table, or other
views defined on the same table (if the views “overlap” in the modified area).

The following is an example of an update applied to the view PHONEBOOK,
showing how the update can be modified to operate on the real table EMPLOYEE:

View Definition for PHONEBOOK:

CREATE VIEW PHONEBOOK (FNAME, LNAME, NUMBER, DEPART, JOBTITLE) AS
SELECT FIRSTNME, LASTNAME, PHONENO, WORKDEPT, JOB
FROM EMPLOYEE WHERE JOB <> 'PRES' WITH CHECK OPTION

UPDATE PHONEBOOK
SET NUMBER = '9111'
WHERE LNAME = 'SMITH'
AND FNAME = 'DANIEL'

becomes:
UPDATE EMPLOYEE
SET PHONENO = '9111'
WHERE LASTNAME = 'SMITH'
AND FIRSTNME = 'DANIEL'
AND JOB <> 'PRES'

Note: Because of the WITH CHECK OPTION, the following update will not be
allowed when Sally takes over as president:

UPDATE PHONEBOOK
SET JOBTITLE = 'PRES'
WHERE LNAME = 'KWAN'
AND FNAME = 'SALLY'

You must observe the following rules when modifying tables through a view:

66 Application Programming

1. INSERT, DELETE, and UPDATE of the view are not permitted if the view
involves any of the following operations: join, GROUP BY, DISTINCT, or any
column function such as AVG.

2. A column of a view can be updated only if it is derived directly from a column
of a single stored table. Columns defined by expressions such as SALARY +
BONUS or SALARY * 1.25 cannot be updated. (These columns are sometimes
called virtual columns.) If a view is defined containing one or more such
columns, the owner does not receive the UPDATE privilege on these columns.
INSERT statements are not permitted on views containing such columns, but
DELETE statements are.

3. The ALTER TABLE, CREATE INDEX, and UPDATE STATISTICS statements
cannot be applied to a view.

You can use an INSERT statement on a view that does not contain all the columns
of the stored table on which it is based. For example, consider the EMPLOYEE
table with none of the columns defined as NOT NULL. You could insert rows into
the view PHONEBOOK even though it does not contain the MIDINIT, EDLEVEL
or any other columns of the underlying table EMPLOYEE.

You can insert or update rows of a view in such a way that they do not satisfy the
definition of the view. For example, the view PHONEBOOK is defined by the
condition JOB <> ’PRES’. It would be possible to insert rows into PHONEBOOK
having a value equal to ’PRES’ in the JOB column. This insertion takes effect on
the underlying table, EMPLOYEE, but the resulting rows are not visible in the
view PHONEBOOK, because they do not satisfy the definition of PHONEBOOK.
In fact, an update to PHONEBOOK that sets JOB=’PRES’ causes a row to “vanish”
from PHONEBOOK (a cursor positioned on the row retains its position, but later
scans through PHONEBOOK do not see this row). If you want to ensure that all
rows inserted or updated are subsequently visible in the view, then define your
view with 'WITH CHECK OPTION'.

However, the EMPLOYEE table does have columns defined as NOT NULL, and
two of them (MIDINIT and EDLEVEL) are not available through the PHONE view.
If you try to insert a row through the view, the system attempts to insert NULL
values into all the EMPLOYEE columns that are “invisible” through the view.
Because the MIDINIT and the EDLEVEL columns are not included in the view, and
do not permit null values, the system does not permit the insertion through the
view.

Be extremely careful when updating tables through views that may contain
duplicate rows. For example, suppose a view JOBS is defined on the EMPLOYEE
table containing only the columns WORKDEPT and JOB. Because EMPNO is not
included in the view, and many employees may have the same job description, a
user of the view cannot tell which EMPNO corresponds to a given row of the
view. If the user positions a cursor on a row where JOB = ’CLERK’, and then
updates the current row of this cursor, a row of the stored EMPLOYEE table is
updated. However, because there may be many clerks in the EMPLOYEE table,
and the unique qualifier EMPNO is not part of the view, the user cannot control
which employee is updated.

Chapter 3. Coding the Body of a Program 67

Dropping a View

Format

�� DROP VIEW view_name ��

The DROP VIEW statement drops the definition of the indicated view from the
database. When you drop a view, the system also:
v Drops all other views defined in terms of the indicated view. (The underlying

tables on which the views are defined are not affected.)
v Deletes all privileges on the dropped views from the authorization catalog

tables.
v Marks invalid all packages that refer to the dropped views.

The invalid packages remain in the database until they are explicitly dropped by
a DROP PACKAGE statement. When an invalid package is next invoked, the
system attempts to regenerate it and restore its validity. However, if the program
contains any SQL statement that refers to a dbspace, table, or view that has been
dropped, that SQL statement returns an error code at run time.

If a DROP VIEW statement attempts to drop a view that is currently in use by
another running logical unit of work, the statement is queued until that LUW
ends.

Joining Tables
With joins, you can write a query against the combined data of two or more tables.
(You can also join views.)

To join tables, follow these steps:
1. In the FROM clause, list all the tables you want to join.
2. In the WHERE clause, specify a join condition to express a relationship between

the tables to be joined.

Note: The data types of the columns involved in the join condition do not have
to be identical; however, they must be compatible. The join condition is
evaluated the same way as any other search condition, and the same
rules for comparisons apply. (These rules are discussed under “Using
Expressions” on page 54.)

Joining Tables Using the Database Manager
The system forms all combinations of rows from the indicated tables. For each
combination, it tests the join condition. If you do not specify a join condition, all
combinations of rows from tables listed in the FROM clause are returned, even
though the rows may be completely unrelated.

Performing a Simple Join Query
The join query in Figure 20 on page 69 finds the project number and the last name
of the employees in department D11:

68 Application Programming

The WHERE clause above expresses a join condition. If a row from one of the
participating tables does not satisfy the join condition, that row does not appear in
the result of the join. So, if a EMPNO in the EMPLOYEE table has no matching
EMPNO in the EMP_ACT table (or if EMPNO in the EMP_ACT table has no
matching EMPNO in the EMPLOYEE table), that row does not appear in your
result.

Note: More than one table in a join may have a common column name. To identify
exactly which column you are referring to, you must use the table name as a
prefix, as in the example above. Unique column names do not require a
table name prefix.

Here is the query result (based on the example tables):

Joining Another User’s Tables
If you are referring to another user’s table, you must prefix the table name with
the owner-name. If, for example, the tables in the query above belonged to JONES,
you would write:

DECLARE C1 CURSOR FOR
SELECT PROJNO, LASTNAME
FROM EMPLOYEE, EMP_ACT
WHERE EMPLOYEE.EMPNO = EMP_ACT.EMPNO
AND WORKDEPT = 'D11'

ORDER BY PROJNO, LASTNAME

OPEN C1
FETCH C1 INTO :X, :Y
CLOSE C1

Join
Condition

Figure 20. A Simple Join

PROJNO LASTNAME
______ _____________
MA2111 BROWN
MA2111 BROWN
MA2111 LUTZ
MA2112 ADAMSON
MA2112 ADAMSON
MA2112 WALKER
MA2112 WALKER
MA2112 YOSHIMURA
MA2112 YOSHIMURA
MA2113 JONES
MA2113 JONES
MA2113 PIANKA
MA2113 SCOUTTEN
MA2113 YOSHIMURA

Chapter 3. Coding the Body of a Program 69

Analyzing How a Join Works
When writing a join query, it is often helpful to mentally go through the query to
see how SQL develops a JOIN.

For example, look at the previous select-statement. It refers to the EMPLOYEE and
EMP_ACT tables. Joining the two tables will produce one table that contains all the
columns in both tables.

Each EMPNO in the EMPLOYEE table is compared to every EMPNO in the
EMP_ACT table. When the EMPNO column of both tables matches, a row is
formed that contains the combined columns of the “matching” rows. Notice that
the only column name that is common to both tables is EMPNO. If the name of
this EMPNO column were different in each table, the EMPNO column of the result
could have been called either name. This is because of the equality expressed in
the join condition. In fact, the select-list could have specified EMPLOYEE.EMPNO
instead of EMP_ACT.EMPNO, and identical results would have been produced.

Now consider what happens when the second part of the WHERE clause (AND
WORKDEPT=’D11’) is applied.

The result is further reduced so that only the rows with a department name of D11
remain. The entire search condition is now satisfied. The system strips off the
columns not specified in the select-list. This produces the query result previously
shown.

Using VARCHAR and VARGRAPHIC within Join Conditions
If you are joining VARCHAR or VARGRAPHIC columns, trailing blanks are not
used. For example, "JONES" and "JONES " match. If they were from two different
EMPLOYEE tables joined on the LASTNAME column, they would form one row.

Using Nulls within Join Conditions
Like other predicates, a join condition is never satisfied by a null value. For
example, if a row in the EMPLOYEE table and a row in the EMP_ACT table both
have a null EMPNO, neither row will appear in the result of the join.

column
table name

owner

DECLARE C1 CURSOR FOR
SELECT PROJNO, LASTNAME
FROM JONES.EMPLOYEE, JONES.EMPACT
WHERE JONES.EMPLOYEE.EMPNO = JONES . EMP_ ACT . EMPNO
AND WORKDEPT = 'D11'
ORDER BY PROJNO, LASTNAME

OPEN C1
FETCH C1 INTO :X, :Y
CLOSE C1

70 Application Programming

Joining a Table to Itself Using a Correlation Name
You can write a query in which you join a table to itself, by repeating the table
name two or more times in the FROM clause. This tells the system that the join
consists of combinations of rows from the same table. When you repeat the table
name in the FROM clause, it is no longer unique. You must give one or both table
names in the FROM clause a unique correlation_name to correctly designate the
tables.

You use the correlation names to resolve column name ambiguities in the select-list
and the WHERE clause. Rules for table designation are given at the end of this
section.

For example, the following query finds the total of the values from the ACSTAFF
column (PROJ_ACT table) for activities 60 and 70 for any project that contains both
these activities:

This type of join query can also be easily visualized. Each PROJNO in the
PROJ_ACT table is compared to every other PROJNO in the PROJ_ACT table.
When two rows with the same PROJNO are found, a row is formed. The new row
contains the combined columns of the “matching” rows.

Now consider what happens when the second part of the WHERE clause
(PA1.ACTNO = 60 AND PA2.ACTNO = 70) is applied.

The result is further reduced to only the rows with an ACTNO of 60 in the first
ACTNO column and with an ACTNO of 70 in the second ACTNO column.

Finally, the system sorts the query by PROJNO and strips off the columns not
specified in the select-list. This produces:

DECLARE C1 CURSOR FOR
SELECT PA1.PROJNO, PA1.ACSTAFF + PA2.ACSTAFF
FROM PROJ_ACT PA1, PROJ_ACT PA2
WHERE PA1.PROJNO = PA2.PROJNO AND

PA1.ACTNO = 60 AND PA2.ACTNO = 70
ORDER BY 1

OPEN C1
FETCH C1 INTO

:PRONUM, :TOTAL
CLOSE C1

Chapter 3. Coding the Body of a Program 71

If the table is owned by another user, the table name must be qualified in the usual
fashion. For example, here is how to write the above query if the owner of the
PROJ_ACT table is SCOTT:

Rules for Table Designation
1. Only exposed table names and correlation names in the FROM clause can be

referenced in other clauses.
An exposed table name is one that is not followed by a correlation_name (for
example, PROJECT). A nonexposed table name is a table name which is
followed by a correlation_name (for example, PROJECT P). In the latter example,
PROJECT has no scope in the query and cannot be referenced; the table
designator in this case is P.

2. Exposed table names in the FROM clause must be different from each other.
3. Correlation names in the FROM clause must be different from each other and

different from any exposed table names.

These rules are illustrated here:

PROJNO EXPRESSION 1 PROJNO EXPRESSION 1
------ ------------ ------ ------------
AD3111 2.30 AD3113 2.00
AD3111 1.30 AD3113 1.25
AD3111 2.00 AD3113 1.75
AD3111 1.00 AD3113 1.50
AD3112 1.50 AD3113 1.75
AD3112 1.25 AD3113 2.25
AD3112 1.75 AD3113 1.50
AD3112 1.00 AD3113 2.00
AD3112 1.25 AD3113 1.75
AD3112 1.00 AD3113 2.00
AD3112 1.50 AD3113 1.50
AD3112 0.75 AD3113 0.75
AD3112 1.50 AD3113 1.25
AD3112 1.25 AD3113 1.00
AD3112 1.75 AD3113 1.25
AD3112 1.00 MA2112 3.00
AD3112 1.75 MA2112 3.50
AD3112 1.50 MA2112 3.00
AD3112 2.00 MA2113 3.00
AD3112 1.25 MA2113 3.00

DECLARE C1 CURSOR FOR
SELECT PA1.PROJNO, PA1.ACSTAFF + PA2.ACSTAFF
FROM SCOTT.PROJ_ACT PA1, SCOTT.PROJ_ACT PA2
WHERE PA1.PROJNO = PA2.PROJNO AND

PA1.ACTNO = 60 AND PA2.ACTNO = 70
ORDER BY 1
OPEN C1
FETCH C1 INTO

:PRONUM, :TOTAL
CLOSE C1

72 Application Programming

The above query is not allowed. EMPLOYEE is a nonexposed table name and
cannot be used to qualify column LASTNAME.

The above query is allowed. The second table in the FROM clause can be
designated by the exposed table name EMPLOYEE. There is no ambiguity or
conflict with the table name EMPLOYEE in the first table of the FROM clause,
because that is a nonexposed table name.

Imposing Limits on Join Queries
The example of a simple join query in Figure 20 on page 69 had only one join
condition relating the values of EMPNO in two tables. The following limits exist
with respect to joins:
v You can join up to 16 tables in a query
v The maximum number of join columns in a query is 40. Note, however, that this

limit is evaluated after the Optimizer does query transformation internally, and
that this transformation may affect the number of join columns in the query.

For more information on these limits, see the section on 'SQL Limits' in the DB2
Server for VSE & VM SQL Reference manual.

Using SELECT * In a Join
The notation SELECT * in a join query means “select all the columns of the first
table, followed by all the columns of the second table, and so on.” You can also use
the notation SELECT T1.*. to select all the columns of the table T1. However, it is
not recommended that you use either SELECT * or SELECT T1.* for join queries
written in programs because if someone adds a new column to the first table in the
join (by an ALTER TABLE statement), the columns of the second table are no
longer delivered into the correct host variables. To avoid this problem, use a
select-list in which all the columns are specifically listed.

Grouping the Rows of a Table
The DB2 Server for VSE & VM SQL Reference manual shows how to apply the
column functions (SUM, AVG, MIN, MAX, and COUNT) to a table. However, you
can apply these functions only to particular columns in rows that satisfy a search
condition. For example, the following statement finds the average number of
employees for all occurrences of project number AD3111 in the PROJ_ACT table:

SELECT AVG(ACSTAFF)
FROM PROJ_ACT
WHERE PROJNO = 'AD3111'

In contrast, the grouping feature of the database manager permits you to
conceptually divide a table into groups of rows with matching values in one or

SELECT EMPLOYEE.LASTNAME FROM EMPLOYEE E Incorrect

SELECT EMPLOYEE.LASTNAME FROM EMPLOYEE E, EMPLOYEE Correct

Chapter 3. Coding the Body of a Program 73

more columns. You can then apply a function to each group. For example, to find
the average number of employees for each project in the PROJ_ACT table:

SELECT PROJNO,AVG(ACSTAFF)
FROM PROJ_ACT
GROUP BY PROJNO
ORDER BY PROJNO

The query yields this result based on the sample table PROJ_ACT:
One or more column functions can be applied to the groups. The following query

finds the maximum, minimum, and average salary for each department, along
with the count of the number of rows in each group (the column function
COUNT(*) evaluates to the number of rows in the group):

SELECT WORKDEPT, MAX(SALARY), MIN(SALARY), AVG(SALARY), COUNT(*)
FROM EMPLOYEE
GROUP BY WORKDEPT

Using VARCHAR and VARGRAPHIC within Groups
If you are grouping a VARCHAR or VARGRAPHIC column, trailing blanks are
ignored. For example, if a select-statement was grouped by DESCRIPTION,
“BOLT” and “BOLT ” would match. They would be placed in the same group.

Using Nulls within Groups
If you are grouping columns that return null values, the null values are grouped in
those columns. The null values may be returned because of undefined column
values or arithmetic exception errors.

If you have defined a VIEW that contains a GROUP BY clause, the view columns
named in the GROUP BY have the same nullability as the corresponding base table
columns.

Using Select-Lists in Grouped Queries
When you use the GROUP BY clause in a query, the database manager returns
only one result row for each group. The select-list of such a query can contain only:
v GROUP BY columns

PROJNO AVG(ACSTAFF)
------ -----------------
AD3100 0.5000000000000000000000000
AD3110 1.0000000000000000000000000
AD3111 0.9357142857142857142857142
AD3112 0.6227272727272727272727272
AD3113 0.8461538461538461538461538
IF1000 0.6000000000000000000000000
IF2000 0.5500000000000000000000000
MA2100 0.7500000000000000000000000
MA2110 1.0000000000000000000000000
MA2111 1.0000000000000000000000000
MA2112 1.2142857142857142857142857
MA2113 1.0714285714285714285714285
OP1000 0.2500000000000000000000000
OP1010 2.5000000000000000000000000
OP2000 0.7500000000000000000000000
OP2010 1.0000000000000000000000000
OP2011 0.5000000000000000000000000
OP2012 0.5000000000000000000000000
OP2013 0.5000000000000000000000000
PL2100 1.0000000000000000000000000

74 Application Programming

v Column functions.

For example, this statement is incorrect:

You cannot include LASTNAME in the select-list because LASTNAME does not
occur in the GROUP BY clause, and is not the operand of a column function. Aside
from breaking language rules, the above statement is incorrect because a
department may have many employees. It is as though you were asking the
system to return multiple values to the same variable at the same time.

Using a WHERE Clause with a GROUP BY Clause
A grouping query can have a standard WHERE clause that eliminates
non-qualifying rows before the groups are formed and the column functions are
computed. Write the WHERE clause before the GROUP BY clause. For example:

SELECT WORKDEPT, AVG(SALARY)
FROM EMPLOYEE
WHERE HIREDATE > '1970-01-01'
GROUP BY WORKDEPT

Using the HAVING Clause
You can apply a qualifying condition to groups so that the system returns a result
only for the groups that satisfy the condition, by including a HAVING clause after
the GROUP BY clause. A HAVING clause can contain one or more
group-qualifying predicates connected by ANDs and ORs. Each group-qualifying
predicate compares a property of the group such as AVG(ACSTAFF) with one of
the following:
1. Another property of the group (for example, HAVING AVG(ACSTAFF) > 2 *

MIN(ACSTAFF))
2. A constant (for example, HAVING AVG(ACSTAFF) > 1.00)
3. A host variable (for example, HAVING AVG(ACSTAFF) > :LIMIT).

For example, the following query finds the average mean number of employees for
projects having more than three activities:

SELECT PROJNO,AVG(ACSTAFF)
FROM PROJ_ACT
GROUP BY PROJNO
HAVING COUNT(*) > 3
ORDER BY PROJNO

You can specify DISTINCT as part of the argument of a column function in the
HAVING clause, because DISTINCT eliminates duplicate values before a function
is applied. Thus, COUNT(DISTINCT PROJNO) computes the number of different
project numbers. You cannot use DISTINCT in both the select-list and HAVING
clause; you can use it only once in a query.

It is possible (though unusual) for a query to have a HAVING clause but no
GROUP BY clause. In this case, the system treats the entire table as one group.

SELECT WORKDEPT, LASTNAME, AVG(SALARY)

FROM EMPLOYEE
GROUP BY WORKDEPT

Wrong

Chapter 3. Coding the Body of a Program 75

Because the table is treated as a single group, you can have at most one result row.
If the HAVING condition is true for the table as a whole, the selected result (which
must consist entirely of column functions) is returned; otherwise the “not found”
code (SQLCODE = 100 and SQLSTATE='02000') is returned.

Combining Joins
This section discusses the WHERE, GROUP BY, HAVING, and ORDER BY clauses
of the select-statement.

You can use the various query techniques together in any combination. A query
can join two or more tables and can also have a WHERE clause, a GROUP BY
clause, a HAVING clause, and, if defined in a cursor, an ORDER BY clause. The
sequence of application for these clauses is listed below:
1. Conceptually, all possible combinations of rows from the listed tables are

formed.
2. The WHERE clause, which may contain join conditions, is applied to filter the

rows of the conceptual table.
3. The GROUP BY clause is applied to form groups from the surviving rows.
4. The HAVING clause is applied to filter the groups. Only the surviving groups

will return a result.
5. The select-list expressions are evaluated.
6. The ORDER BY clause determines the order in which the query result is

returned.

Illustrating Grouping with an Exercise
By now you may be wondering when you need to use which feature. Consider this
problem:

Write a query that returns:
v The department number
v The manager’s employee number
v The total number of activities for all the projects in the department
v The sum of the estimated mean number of employees needed to staff the activities for all

the projects in the department.

Consider only projects that are estimated to end after January, 1 2000, and only include
departments with more than two activities. Finally, order the result by department name.

The first thing that you must do is to find in the example tables the names of the
columns that contain the requested information, so that you can create a select-list:
v “department number” is the DEPTNO column of the DEPARTMENT table.
v “manager’s employee number” is the MGRNO column of the DEPARTMENT

table.
v “activities” is the ACTNO column of the PROJ_ACT table, but the problem

requests the total number of activities for all the projects in a department, so you
must include the column function COUNT(*) in the select-list.

Note: You need the total number of activities for a particular department; this
means that the query will have to group by department.

v “estimated mean number of employees needed to staff the activities” implies the
ACSTAFF column of the PROJ_ACT table. However, the problem requests The
sum of the estimated mean number of employees needed to staff the activities for all

76 Application Programming

the projects in the department. So you must include the column function SUM
in the select-list; this means that the query will have to group by department.

Note: The columns DEPTNO and MGRNO (from the DEPARTMENT table) and
ACSTAFF (from the PROJ_ACT table) come from different tables so you will
need a join. However, the DEPARTMENT, and PROJ_ACT tables do not
have a common column. To join them, you will have to use the PROJECT
table in a three-table join. PROJECT contains both the DEPTNO column of
the DEPARTMENT table and the PROJNO column of the PROJ_ACT table.

First, define the cursor(s) to be used in your program:

DECLARE C1 CURSOR FOR

Now write a SELECT clause:
SELECT DEPARTMENT.DEPTNO, MGRNO, SUM(ACSTAFF), COUNT(*)

Note: Since a DEPTNO column appears in both the DEPARTMENT and the
PROJECT tables, you must qualify which table it is from.

Write a FROM clause that lists the three tables used in the join:
FROM DEPARTMENT, PROJECT, PROJ_ACT

You must include a WHERE clause because of the join condition; one line to join
the DEPARTMENT table to the PROJECT table, and one to join the PROJECT table
to the PROJ_ACT table:

WHERE DEPARTMENT.DEPTNO = PROJECT.DEPTNO
AND PROJECT.PROJNO = PROJ_ACT.PROJNO

However, the problem states that only projects that are estimated to end on or after
January 1, 2000 should be considered. This condition needs to be added to the
WHERE clause:

AND PRENDATE >= '2000-01-01'

Note that PRENDATE is a column in the PROJ_ACT table and is unique among all
the column names of the joined tables, so it does not have to be qualified. So far,
the SQL statement is:

It is now necessary to group by DEPTNO to find the sum for each part, but
MGRNO is also in the select-list, so it must be listed in the GROUP BY clause
(recall the rules for grouping). Including MGRNO in the GROUP BY clause does
not affect the formation of the groups, however, because MGRNO is a property of
a given DEPTNO. The GROUP BY clause is:

GROUP BY DEPARTMENT.DEPTNO, MGRNO

Note: You can group by PROJECT.DEPTNO if you choose, because of the equality
expressed between DEPARTMENT.DEPTNO and PROJECT.DEPTNO in the

DECLARE C1 CURSOR FOR
SELECT DEPARTMENT.DEPTNO, MGRNO, SUM(ACSTAFF), COUNT(*)
FROM DEPARTMENT, PROJECT, PROJ_ACT
WHERE DEPARTMENT.DEPTNO = PROJECT.DEPTNO
AND PROJECT.PROJNO = PROJ_ACT.PROJNO
AND PRENDATE >= '2000-01-01'

Chapter 3. Coding the Body of a Program 77

join condition. If you use PROJECT.DEPTNO in the GROUP BY clause,
however, you must also use it in the select-list.

If the table name is fully qualified in the FROM clause, it is good practice to fully
qualify it in the whole statement.

The problem requires that the departments included in the query have at least two
activities for all the projects in the department; a HAVING clause is needed to filter
out the unwanted groups:

HAVING COUNT(*) > 2

To have the system return the results in DEPTNO order, type:

Now you must position the cursor and identify the corresponding host variables
used in your program:

OPEN C1
FETCH C1 INTO :DEPT, :MGRN, :TOTSTAFF, :NUMACT
CLOSE C1

By incorporating the FETCH statement in a suitable host program loop along with
an appropriate output command, this query produces the following result:

Nesting Queries
In all previous queries, the WHERE clause contained search conditions that the
database manager used to choose rows for computing expressions in the select-list.
A query can refer to a value or set of values computed by another query (called a
subquery).

Consider this query which finds all the activities for project IF1000:
SELECT ACTNO, ACSTAFF
FROM PROJ_ACT
WHERE PROJNO = 'IF1000'

DECLARE C1 CURSOR FOR
SELECT DEPARTMENT.DEPTNO, MGRNO, SUM(ACSTAFF), COUNT(*)
FROM DEPARTMENT, PROJECT, PROJ_ACT
WHERE DEPARTMENT.DEPTNO = PROJECT.DEPTNO
AND PROJECT.PROJNO = PROJ_ACT.PROJNO
AND PRENDATE >= '2000-01-01'
GROUP BY DEPARTMENT.DEPTNO, MGRNO
HAVING COUNT(*) > 2
ORDER BY 1

DEPTNO MGRNO SUM(ACSTAFF) COUNT(EXPRESSION 1)
------ ------ ----------------- -------------------
C01 000030 5.75 10
D01 ? 2.00 3
D21 000070 25.40 32
E21 000100 4.00 7

78 Application Programming

Suppose that you want to modify the query so it finds the activities for project
IF1000 whose estimated mean number of employees is greater than the minimum
estimated mean for that project.

The problem involves two queries:

A pseudocode solution for the problem is as follows:

1. Find the minimum estimated mean number
of employees for project IF1000

SELECT MIN (ACSTAFF)

INTO :MINSTAFF
FROM PROJ_ACT
WHERE PROJNO = 'IF1000'

2. Find quotations for project number IF1000
find the estimated mean number of
employees needed to staff the activity.

DECLARE C1 CURSOR FOR
SELECT ACTNO, ACSTAFF
FROM PROJ_ACT
WHERE PROJNO = 'IF1000'

AND ACSTAFF > ?

OPEN C1
FETCH C1 INTO :AN, :AS
CLOSE C1

Chapter 3. Coding the Body of a Program 79

You can arrive at the same result by using a single query with a subquery.
Subqueries must be enclosed in parentheses, and may appear in a WHERE clause
or a HAVING clause. The result of the subquery is substituted directly into the
outer-level predicate in which the subquery appears; thus, there must not be an
INTO clause in a subquery. For example, this query solves the above problem:

The example subquery above is indented for ease of reading. Remember, however,
that the syntax of SQL is fully linear and no syntactic meaning is carried by
indentation or by breaking a query into several lines.

By using a subquery, the pseudocode is simplified:

EXEC SQL SELECT MIN (ACSTAFF)

INTO :MINSTAFF
FROM PROJ_ACT
WHERE PROJNO = 'IF1000'

EXEC SQL DECLARE C1 CURSOR FOR

SELECT ACTNO, ACSTAFF
FROM PROJ_ACT
WHERE PROJNO = 'IF1000'
AND ACSTAFF > :MINSTAFF

EXEC SQL OPEN C1
EXEC SQL FETCH C1 INTO :AN, : AS
DO WHILE (SQLCODE=0)

DISPLAY (AN, AS)
EXEC SQL FETCH C1 INTO :AN, :AS

END-DO
DISPLAY ('END OF LIST')
EXEC SQL CLOSE C1

Initialize ACSTAFF

Declare cursor using
a subquery that
retrieves quotations

Retrieve quotations

DECLARE C1 CURSOR FOR
SELECT ACTNO, ACSTAFF
FROM PROJ_ACT
WHERE PROJNO = 'IF1000'
AND ACSTAFF >

(SELECT MIN(ACSTAFF)
FROM PROJ_ACT
WHERE PROJNO = 'IF1000')

OPEN C1
FETCH C1 INTO :AN, :AS
CLOSE C1

Outer-Level Query

Subquery

80 Application Programming

The subquery above returns a single value MIN(ACSTAFF) to the outer-level
query. Subqueries can return either a single value, no value, or a set of values; each
variation has different considerations. In any case, a subquery must have only a
single column or expression in its select-list, and must not have an ORDER BY
clause.

Returning a Single Value: If a subquery returns a single value, as the one subquery
above did, you can use it on the right side of any predicate in the WHERE clause
or HAVING clause.

Returning No Value: If a subquery returns no value (an empty set), the outer-level
predicate containing the subquery evaluates to the unknown truth-value.

Returning Many Values: If a subquery returns more than one value, you must
modify the comparison operators in your predicate by attaching the suffix ALL,
ANY, or SOME. These suffixes determine how the set of values returned is to be
treated in the outer-level predicate. The > comparison operator is used as an
example (the remarks below apply to the other operators as well):

expression > (subquery)
denotes that the subquery must return one value at most (otherwise an error
condition results). The predicate is true if the given column is greater than the
value returned by the subquery.

expression >ALL (subquery)
denotes that the subquery may return a set of zero, one, or more values. The
predicate is true if the given column is greater than each individual value in
the returned set. If the subquery returns no values, the predicate is true.

expression >ANY (subquery)
denotes that the subquery may return a set of zero, one, or more values. The
predicate is true if the given column is greater than at least one of the values
in the set. If the subquery returns no values, the predicate is false.

expression >SOME (subquery)
SOME and ANY are synonymous.

The following example uses a > ALL comparison to find those projects with
activities whose estimated mean number of employees is greater than all of the
corresponding numbers for project AD3111:

EXEC SQL DECLARE C1 CURSOR FOR
SELECT ACTNO, ACSTAFF
FROM PROJ_ACT
WHERE PROJNO = 'IF1000'
AND ACSTAFF >

(SELECT MIN(ACSTAFF)
FROM PROJ_ACT
WHERE PROJNO = 'IF1000')

EXEC SQL OPEN C1
EXEC SQL FETCH C1 INTO :AN, : AS
DO WHILE (SQLCODE=0)

DISPLAY (AN, AS)
EXEC SQL FETCH C1 INTO :AN, :AS

END-DO
DISPLAY ('END OF LIST')
EXEC SQL CLOSE C1

Chapter 3. Coding the Body of a Program 81

Using the IN Predicate with a Subquery
Your query can also use the operators IN and NOT IN when a subquery returns a
set of values. For example, the following query lists the surnames of employees
responsible for projects MA2100 and OP2012:

The subquery is evaluated once, and the resulting list is substituted directly into
the outer-level query. For example, if the subquery above selects employee
numbers 60 and 330, the outer-level query is evaluated as if its WHERE clause
were:

WHERE EMPNO IN (60, 330)

The list of values returned by the subquery can contain zero, one, or more values.
The operator IN is equivalent to =ANY, and NOT IN is equivalent to <>ALL.

Considering Other Subquery Issues
A subquery can contain GROUP BY or HAVING clauses. If it is linked by an
unmodified comparison operator such as = or >, the subquery may return one
group. If it is linked by a modified comparison operator ALL, ANY, or SOME,
[NOT] IN, or [NOT] EXISTS , it may return more than one group.

A subquery may include a join, a grouping, or one or more inner-level subqueries.
You may include many subqueries in the same outer-level query, each in its own
predicate and enclosed in parentheses.

DECLARE C1 CURSOR FOR
SELECT PROJNO, ACTNO
FROM PROJ_ACT
WHERE ACSTAFF > ALL

(SELECT ACSTAFF
FROM PROJ_ACT
WHERE PROJNO = 'AD3111')

OPEN C1
FETCH C1 INTO :PN, :AN
CLOSE C1

DECLARE C1 CURSOR FOR
SELECT LASTNAME
FROM EMPLOYEE
WHERE EMPNO IN

(SELECT RESPEMP
FROM PROJECT
WHERE PROJNO = 'MA2100'
OR PROJNO = 'OP2012')

OPEN C1
FETCH C1 INTO :LNAME
CLOSE C1

82 Application Programming

Executing Subqueries Repeatedly: Correlation
In all the examples of subqueries above, the subquery is evaluated only once and
the resulting value or set of values is substituted into the outer-level predicate. For
example, recall this query from the previous section:

This query finds the activities for project IF1000 whose estimated mean number of
employees is greater than the minimum estimated mean for that project. Now
consider the following problem:

Find the project and activity numbers for activities that have an estimated mean
number of employees that is less than the average estimated mean for that activity as
calculated across all projects.

The subquery needs to be evaluated once for every activity number. You can do
this by using the correlation capability of SQL, which permits you to write a
subquery that is executed repeatedly, once for each row of the table identified in the
outer-level query. This type of “correlated subquery” computes some property of
each row of the outer-level table that is needed to evaluate a predicate in the
subquery.

In the first query, the subquery was evaluated once for a particular project; in the
new problem, it must be evaluated once for every activity. One way to solve the
problem is to place the query in a cursor definition and open the cursor once for
each different activity. The activities are determined by using a separate cursor.

Here is a pseudocode solution:

DECLARE C1 CURSOR FOR
SELECT ACTNO, ACSTAFF
FROM PROJ_ACT
WHERE PROJNO = 'IF1000'
AND ACSTAFF >

(SELECT MIN(ACSTAFF)
FROM PROJ_ACT
WHERE PROJNO = 'IF1000')

Chapter 3. Coding the Body of a Program 83

By using a correlated subquery, you can let the system do the work for you and
reduce the amount of code you need to write.

Writing a Correlated Subquery
To write a query with a correlated subquery, you use the same basic format as an
ordinary outer query with a subquery. However, in the FROM clause of the outer
query, just after the table name, you place a correlation_name. (See “Joining a Table
to Itself Using a Correlation Name” on page 71 for more information on correlation
names.) The subquery may then contain column references qualified by the
correlation_name. For example, if X is a correlation_name, then “X.ACTNO” means
“the ACTNO value of the current row of the table in the outer query.” The
subquery is (conceptually) reevaluated for each row of the table in the outer query.

The following query solves the problem presented earlier. That is, it finds the
project and activity numbers for activities that have an estimated mean number of
employees that is less than the average estimated mean for that activity, as
calculated across all projects.

SELECT PROJNO,ACTNO,ACSTAFF
FROM PROJ_ACT X
WHERE ACSTAFF < (SELECT AVG(ACSTAFF)

FROM PROJ_ACT
WHERE ACTNO = X.ACTNO)

EXEC SQL OPEN QUERY1
EXEC SQL FETCH QUERY1 INTO :ACTNO
DO WHILE (SQLCODE = 0)

END-DO
EXEC SQL CLOSE QUERY1
DISPLAY ('END OF LIST')

EXEC SQL DECLARE QUERY1 CURSOR FOR

EXEC SQL DECLARE QUERY2 CURSOR FOR

SELECT DISTINCT ACTNO
FROM PROJ_ACT

SELECT PROJNO, ACSTAFF
FROM PROJ_ACT
WHERE ACTNO = :ACTNO
AND ACSTAFF <

(SELECT AVG(ACSTAFF)
FROM PROJ_ACT
WHERE ACTNO = :ACTNO)

EXEC SQL OPEN QUERY2
EXEC SQL FETCH QUERY2

INTO :PROJNO, :ACSTAFF
DO WHILE (SQLCODE = 0)

DISPLAY (PROJNO, ACTNO, ACSTAFF)
EXEC SQL FETCH QUERY2 INTO :PROJNO, :ACSTAFF

END-DO
EXEC SQL CLOSE QUERY2
SQLCODE = 0
EXEC SQL FETCH QUERY1 INTO :ACTNO

Get the next
activity.

Evaluate the query
for that activity

Get an activity

Retrieve all activity
numbers in PROJ_ACT
(eliminate duplicates)

Retrieve PROJNO and
ACSTAFF for activities
that have fewer employees
than the average for
that activity

84 Application Programming

The pseudocode for the correlated subquery solution is:

How the Database Manager Does Correlation
Conceptually, the query is evaluated as follows:
1. PROJ_ACT, the table identified with the correlation_name X, is placed to the side

for reference. Let this table be called X, because it is the correlation table.
2. The system identifies X.ACTNO with the X table, and uses the values in that

column to evaluate the query. (The entire query is evaluated once for every
ACTNO in the X table.)

Note: ACTNO = X.ACTNO is not used in the WHERE clause of the outer-level
query as it was in the uncorrelated subquery, because the system keeps track
of the X.ACTNO for which it is evaluating the query.

Suppose another condition is added to the problem:

Find the project and activity numbers for activities that have an estimated end date
after January 1, 2000 and have an estimated mean number of employees that is less than
the average estimated mean for that activity.

The new query is:

EXEC SQL DECLARE QUERY CURSOR FOR
SELECT PROJNO,ACTNO,ACSTAFF

FROM PROJ_ACT X
WHERE ACSTAFF < (SELECT AVG(ACSTAFF)

FROM PROJ_ACT
WHERE ACTNO = X.ACTNO)

EXEC SQL OPEN QUERY
EXEC SQL FETCH QUERY INTO :PROJNO, :ACTNO, :ACSTAFF
DO WHILE (SQLCODE=0)

DISPLAY (PROJNO, ACTNO, ACSTAFF)
EXEC SQL FETCH QUERY INTO :PROJNO, :ACTNO, :ACSTAFF

END-DO
DISPLAY ('END OF LIST')
EXEC SQL CLOSE QUERY

EXEC SQL DECLARE QUERY CURSOR FOR

SELECT PROJNO, ACTNO, ACSTAFF
FROM PROJ_ACT X
WHERE ACSTAFF <

(SELECT AVG(ACSTAFF)
FROM PROJ_ACT
WHERE ACTNO = X.ACTNO)

EXEC SQL OPEN QUERY
EXEC SQL FETCH QUERY INTO :PN, :AN., :AS
EXEC SQL CLOSE QUERY

PROJNO ACTNO ACSTAFF

AD3100
AD3110

10
10
60

.

.
.
.

.

.

0.50
1.00
0.80

X

Chapter 3. Coding the Body of a Program 85

The X table in this query is slightly different. Conceptually, whenever there are
other conditions besides the one containing the subquery, they are applied to the
correlation table first. The X table that is derived from the PROJ_ACT table is:

The values 70, 80, and 130 are used for X.ACTNO. Similarly, if you include a
GROUP BY clause in the outer-level query, that grouping is applied to the
conceptual correlation table first. Thus, if you use a correlated subquery in a
HAVING clause, it is evaluated once per group of the conceptual table (as defined
by the outer-level query’s GROUP BY clause). When you use a correlated subquery
in a HAVING clause, the correlated column-reference in the subquery must be a
property of each group (that is, must be either the group-identifying column or
another column used with a column function).

The use of a column function with a correlated reference in a subquery is called a
correlated function. The argument of a correlated function must be exactly one
correlated column (for example, X.ACSTAFF), not an expression. A correlated
function may specify the DISTINCT option; for example: COUNT(DISTINCT
X.ACTNO). If so, the DISTINCT counts as the single permitted DISTINCT
specification for the outer-level query-block (remember that each query-block may
use DISTINCT only once). For information on query-block, refer to the DB2 Server
for VSE & VM Database Administration manual.

Illustrating a Correlated Subquery
When would you want to use a correlated subquery? The use of a column function
is sometimes a clue. Consider this problem:

List the employees whose level of education is higher than the average for their
department.

First you must determine the select-list items. The problem says to “List the
employees”. This implies that the query should return something to identify the

EXEC SQL DECLARE QUERY CURSOR FOR
SELECT PROJNO, ACTNO, ACSTAFF
FROM PROJ_ACT X
WHERE ACENDATE > '2000-01-01'
AND ACSTAFF <

(SELECT AVG(ACSTAFF)
FROM PROJ_ACT
WHERE ACTNO = X.ACTNO)

EXEC SQL OPEN QUERY
EXEC SQL FETCH QUERY INTO :PN, :AN., :AS
EXEC SQL CLOSE QUERY

PROJNO ACTNO ACSTAFF ACSTDATE ACENDATE
------ ------ ------- ---------- ----------
AD3111 80 1.25 1999-04-15 2000-01-15
MA2112 70 1.50 1999-02-15 2000-02-01
MA2113 70 2.00 1999-04-01 2000-12-15
MA2113 80 1.50 1999-09-01 2000-02-01
OP1010 130 4.00 1999-01-01 2000-02-01

Only rows with an ACENDATE greater than '2000-01-01' are included
in this "correlation table".

86 Application Programming

employees. LASTNAME from the EMPLOYEE table should be sufficient. The
problem also discusses the level of education (EDLEVEL) and the employees’
departments (WORKDEPT). While the problem does not explicitly ask for these
columns, including them in the select-list will help illustrate the solution. A part of
the query can now be constructed:

SELECT LASTNAME, WORKDEPT, EDLEVEL
FROM EMPLOYEE

Next, a search condition (WHERE clause) is needed. The problem statement says,
“...whose level of education is higher than the average for that employee’s
department”. This means that for every employee in the table, the average
education level for that employee’s department must be computed. This statement
fits the description of a correlated subquery. Some property (average level of
education of the current employee’s department) is being computed for each row.
A correlation_name is needed on the EMPLOYEE table:

SELECT LASTNAME, WORKDEPT, EDLEVEL
FROM EMPLOYEE Y

The subquery needed is simple; it computes the average level of education for each
department:

The complete SQL statement is:
Suppose that instead of listing the employee’s department number, you list the

department name. A glance at the sample tables will tell you that the information

SELECT AVG(EDLEVEL)
FROM EMPLOYEE
WHERE WORKDEPT = Y.WORKDEPT

This clause tells the database
manager to compute the subquery
once for each employee in the
outer- level query table.

SELECT LASTNAME, WORKDEPT, EDLEVEL
FROM EMPLOYEE Y
WHERE EDLEVEL >

(SELECT AVG(EDLEVEL)
FROM EMPLOYEE
WHERE WORKDEPT = Y.WORKDEPT)

This will produce the following:

LASTNAME WORKDEPT EDLEVEL
--------------- -------- -------
HAAS A00 18
KWAN C01 20
PULASKI D21 16
HENDERSON E11 16
LUCCHESI A00 19
PIANKA D11 17
SCOUTTEN D11 17
JONES D11 17
LUTZ D11 18
MARINO D21 17
JOHNSON D21 16
SCHNEIDER E11 17
MEHTA E21 16
GOUNOT E21 16

Chapter 3. Coding the Body of a Program 87

you need (DEPTNAME) is in a separate table (DEPARTMENT). The outer-level
query that defines a correlation variable can also be a join query.

When you use joins in an outer-level query, list the tables to be joined in the
FROM clause, and place the correlation_name next to one of these table names.

To modify the query to list the department’s name instead of the number, replace
WORKDEPT by DEPTNAME in the select-list. The FROM clause must now also
include the DEPARTMENT table, and the WHERE clause must express the
appropriate join condition.

This is the modified query:

This will produce the following:

The above examples show that the correlation_name used in a subquery must be
defined in the FROM clause of some query that contains the correlated subquery.
However, this containment may involve several levels of nesting. Suppose that
some departments have only a few employees and therefore their average
education level may be misleading. You might decide that in order for the average
level of education to be a meaningful number to compare an employee against,
there must be at least five employees in a department. The new statement of the
problem is:

List the employees whose level of education is higher than the average for that
employee’s department. Only consider departments with at least five employees.

The problem implies another subquery because, for each employee in the
outer-level query, the total number of employees in that persons department must
be counted:

SELECT LASTNAME, DEPTNAME, EDLEVEL
FROM EMPLOYEE Y, DEPARTMENT
WHERE Y.WORKDEPT = DEPARTMENT.DEPTNO
AND EDLEVEL >

(SELECT AVG(EDLEVEL)
FROM EMPLOYEE
WHERE WORKDEPT = Y.WORKDEPT)

LASTNAME DEPTNAME EDLEVEL
--------------- ------------------------------------ -------
HAAS SPIFFY COMPUTER SERVICE DIV. 18
LUCCHESI SPIFFY COMPUTER SERVICE DIV. 19
KWAN INFORMATION CENTER 20
PIANKA MANUFACTURING SYSTEMS 17
SCOUTTEN MANUFACTURING SYSTEMS 17
JONES MANUFACTURING SYSTEMS 17
LUTZ MANUFACTURING SYSTEMS 18
PULASKI ADMINISTRATION SYSTEMS 16
MARINO ADMINISTRATION SYSTEMS 17
JOHNSON ADMINISTRATION SYSTEMS 16
HENDERSON OPERATIONS 16
SCHNEIDER OPERATIONS 17
MEHTA SOFTWARE SUPPORT 16
GOUNOT SOFTWARE SUPPORT 16

88 Application Programming

SELECT COUNT(*)
FROM EMPLOYEE
WHERE WORKDEPT = Y.WORKDEPT

Only if the count is greater than or equal to 5 is an average to be computed:
SELECT AVG(EDLEVEL)

FROM EMPLOYEE
WHERE WORKDEPT = Y.WORKDEPT
AND 5 <=

(SELECT COUNT(*)
FROM EMPLOYEE
WHERE WORKDEPT = Y.WORKDEPT)

Finally, only those employees whose level of education is greater than the average
for that department are included:

This will produce the following:

Note: The above query is different from the previous correlated subqueries in that
the first subquery may return no values. Suppose that a department with
three employees is being evaluated.

Working from bottom to top, the following occurs:

SELECT LASTNAME, DEPTNAME, EDLEVEL
FROM EMPLOYEE Y, DEPARTMENT
WHERE Y.WORKDEPT = DEPARTMENT.DEPTNO
AND EDLEVEL >

(SELECT AVG(EDLEVEL)
FROM EMPLOYEE
WHERE WORKDEPT = Y.WORKDEPT
AND 5 <=

(SELECT COUNT(*)
FROM EMPLOYEE
WHERE WORKDEPT = Y.WORKDEPT));

LASTNAME DEPTNAME EDLEVEL
--------------- ------------------------------------ -------
PIANKA MANUFACTURING SYSTEMS 17
SCOUTTEN MANUFACTURING SYSTEMS 17
JONES MANUFACTURING SYSTEMS 17
LUTZ MANUFACTURING SYSTEMS 18
PULASKI ADMINISTRATION SYSTEMS 16
MARINO ADMINISTRATION SYSTEMS 17
JOHNSON ADMINISTRATION SYSTEMS 16
HENDERSON OPERATIONS 16
SCHNEIDER OPERATIONS 17

Chapter 3. Coding the Body of a Program 89

The inner-most subquery evaluates to 3. Thus, the expression “AND 5 <= 3” is
false. Because that expression is false, no rows satisfy the search condition of the
next subquery, and a null value is returned to the outer-most query. This causes
the predicate “EDLEVEL > subquery)” to evaluate to the unknown truth value.
The join condition “Y.WORKDEPT = DEPARTMENT.DEPTNO”, however, is
always true:

The following figure is the “AND” truth table for search conditions; “TRUE AND
UNKNOWN” causes the search condition in the query to be “UNKNOWN,” as
indicated above.

SELECT LASTNAME, DEPTNAME, EDLEVEL
FROM EMPLOYEE Y, DEPARTMENT
WHERE Y . WORKDEPT = DEPARTMENT . DEPTNO

AND EDLEVEL > NULL Predicate is unknown

(SELECT AVG(EDLEVEL)

FROM EMPLOYEE
WHERE WORKDEPT = Y.WORKDEPT

AND 5 <= 3 Predicate is false

(SELECT COUNT(*)

FROM EMPLOYEE

WHERE WORKDEPT = ' A00 '))

WHERE Y.WORKDEPT = DEPARTMENT.DEPTNO AND EDLEVEL > (subquery)

"TRUE" AND "UNKNOWN"

"UNKNOWN"

90 Application Programming

No rows satisfy the search condition, so no employee is listed for department A00;
exactly the result wanted in this case.

Using a Subquery to Test for the Existence of a Row
You can use a subquery to test for the existence of a row satisfying some condition.
In this case, the subquery is linked to the outer-level query by the predicate
EXISTS or NOT EXISTS. (Refer to the DB2 Server for VSE & VM SQL Reference
manual for the syntax of the EXISTS predicate.)

When you link a subquery to an outer query by an EXISTS predicate, the subquery
does not return a value. Rather, the EXISTS predicate is true if the answer set of
the subquery contains one or more rows, and false if it contains no rows.

The EXISTS predicate is often used with correlated subqueries. The example below
lists the departments that currently have no entries in the PROJECT table:

You may connect the EXISTS and NOT EXISTS predicates to other predicates by
using AND and OR in the WHERE clause of the outer-level query.

Table Designation Rule for Correlated Subqueries
Unqualified correlated references are allowed. For example, assume that table EMP
has a column named SALARY and that table DEPT has a column named BUDGET,
but no column named SALARY.

SELECT * FROM EMP
WHERE EXISTS (SELECT * FROM DEPT

WHERE BUDGET < SALARY)

In this example, the system checks the innermost FROM clause for a SALARY
column. Not finding one, it then checks the next innermost FROM clause (which in

T

F

?

T F ?AND

T

F

?

F

F

F

?

F

?

DECLARE C1 CURSOR FOR
SELECT DEPTNO, DEPTNAME
FROM DEPARTMENT X
WHERE NOT EXISTS

(SELECT *
FROM PROJECT
WHERE DEPTNO = X.DEPTNO)

ORDER BY DEPTNO

Chapter 3. Coding the Body of a Program 91

this case is the outer FROM clause). It is only necessary to use a qualified
correlated reference when you want the system to ignore a column with the same
name in the innermost tables.

To assist you in these situations, a warning message SQLCODE +12 (SQLSTATE
'01545') is issued whenever an SQL statement is executed that contains an
unqualified correlated reference in a subquery.

Combining Queries into a Single Query: UNION
The UNION operator enables you to combine two or more outer-level queries into
a single query. Each of the queries connected by UNION is executed to produce an
answer set; these answer sets are then combined, and duplicate rows are
eliminated from the result.

When ALL is used with UNION (that is, UNION ALL), duplicate rows are not
eliminated when two or more outer-level queries are combined into a single query.
If you are using the ORDER BY clause, you must write it after the last query in the
UNION. The system applies the ordering to the combined answer set before it
delivers the results to your program using the usual cursor mechanism.

It is possible (though unusual) to write a query using the UNION operator that
does not return results with a cursor. In this instance, only one row must be
retrieved from the tables, and an INTO clause must be placed only in the first
query.

The UNION operator is useful when you want to merge lists of values derived
from two or more tables and eliminate any duplicates from the final result.
UNION ALL will give better performance, however, because no internal sort is
done. This sort is done with the UNION operator to facilitate the elimination of
duplicates.

When both UNION and UNION ALL are used in the same query, processing is
from left-to-right. If the last union operation is UNION, the duplicates will be
eliminated from the final results; if it is UNION ALL, the duplicates will not be
eliminated. However, the left-to-right priority can be altered by the use of
parenthesis. A parenthesized subselect is evaluated first, followed, from
left-to-right, by the other components of the statement. For example, the results of
the following two queries, where A, B, and C are subselects, could be quite
different:

A UNION (B UNION ALL C)
(A UNION B) UNION ALL C

In the following example, the query returns all projects for which the estimated
mean number of employees is greater than 0.50, and it returns all the projects
where the proportion of employee time spent on the project is greater than 0.50:

92 Application Programming

The database manager combines the results of both queries, eliminates the
duplicates, and returns the final result in ascending order.

Note: The ascending order is a direct result of the internal sort, which is
performed to facilitate the elimination of duplicates.

To connect queries by the UNION operator, you must ensure that they obey the
following rules:
v All corresponding items in the select-lists of the queries in the union must be

compatible.
v An ORDER BY clause, if used, must be placed after the last query in the union.

The order-list must contain only integers, not column names. In the example
query above, ORDER BY 1 is acceptable, but ORDER BY PROJNO is not.

SELECT PROJNO,'MEAN'
FROM PROJ_ACT
WHERE ACSTAFF > .50

UNION

SELECT PROJNO,'PROPORTION'
FROM EMP_ACT
WHERE EMPTIME > .50

PROJNO EXPRESSION
------ ------------
AD3110 MEAN
AD3110 PROPORTION
AD3111 MEAN
AD3111 PROPORTION
AD3112 MEAN
AD3112 PROPORTION
AD3113 MEAN
AD3113 PROPORTION
IF1000 MEAN
IF1000 PROPORTION
IF2000 MEAN
IF2000 PROPORTION
MA2100 MEAN
MA2100 PROPORTION
MA2110 MEAN
MA2110 PROPORTION
MA2111 MEAN
MA2111 PROPORTION
MA2112 MEAN
MA2112 PROPORTION
MA2113 MEAN
MA2113 PROPORTION
OP1010 MEAN
OP1010 PROPORTION
OP2000 MEAN
OP2010 MEAN
OP2010 PROPORTION
OP2011 MEAN
OP2011 PROPORTION
OP2012 MEAN
OP2012 PROPORTION
PL2100 MEAN
PL2100 PROPORTION

Chapter 3. Coding the Body of a Program 93

v None of the queries in a union may select long strings.
v A union may not be specified inside a subquery.
v A union may not be used in the definition of a view.
v VARCHAR and VARGRAPHIC values that differ only by trailing blanks are

considered equal. One of the values will be eliminated as a duplicate value
unless UNION ALL is selected.

Unions between columns that have the same data type and the same length
produce a column with that type and length. If they are not of the same type and
length but they are union-compatible, the resulting column-type is a combination
of the two original columns.

The results of a UNION between two union-compatible items is summarized
below. The first row and first column of the table represent the data-type of the
first and second columns of the UNION join.

String Columns

CHAR VARCHAR GRAPHIC VARGRAPHIC

CHAR CHAR VARCHAR ERROR ERROR

VARCHAR VARCHAR VARCHAR ERROR ERROR

GRAPHIC ERROR ERROR GRAPHIC VARGRAPHIC

VARGRAPHIC ERROR ERROR VARGRAPHIC VARGRAPHIC

The length attribute of the resulting column will be the greater of the length
attributes of the original columns.

The UNION operators between columns that have the same character subtype and
CCSID produce a column with that subtype and CCSID. If they do not have the
same subtype and CCSID, the resulting subtype and CCSID are determined
following specific rules. For a detailed discussion of these rules, refer to the DB2
Server for VSE & VM SQL Reference manual.

Numeric Columns

SMALLINT INTEGER DECIMAL SINGLE
PRECISION

DOUBLE
PRECISION

SMALLINT SMALLINT INTEGER DECIMAL DOUBLE
PRECISION

DOUBLE
PRECISION

INTEGER INTEGER INTEGER DECIMAL DOUBLE
PRECISION

DOUBLE
PRECISION

DECIMAL DECIMAL DECIMAL DECIMAL DOUBLE
PRECISION

DOUBLE
PRECISION

SINGLE
PRECISION

DOUBLE
PRECISION

DOUBLE
PRECISION

DOUBLE
PRECISION

SINGLE
PRECISION

DOUBLE
PRECISION

DOUBLE
PRECISION

DOUBLE
PRECISION

DOUBLE
PRECISION

DOUBLE
PRECISION

DOUBLE
PRECISION

DOUBLE
PRECISION

When both of the original columns are DECIMAL data-types, special rules apply
for determining the scale and precision of the resulting column.

94 Application Programming

Where s is the scale of the first column of the UNION join, s’ is the scale of the
second column, p is the precision of the first column, and p’ is the precision of the
second, the resulting column’s precision is:
MIN(31,MAX(s , s') + MAX(p-s , p'-s'))

The scale of the resulting column is the maximum scale of the original columns of
the UNION join, MAX(s, s’).

When a UNION is performed on a DECIMAL and either an INTEGER or
SMALLINT column, the resulting column’s scale and precision can be calculated
with the previous formulas. However, remember to substitute 11 and 0 for the
precision and scale of an INTEGER column, and 5 and 0 for a SMALLINT column.

Datetime/Timestamp Columns

DATE TIME TIMESTAMP

DATE DATE ERROR ERROR

TIME ERROR TIME ERROR

TIMESTAMP ERROR ERROR TIMESTAMP

Note: CHAR, VARCHAR, GRAPHIC, and VARGRAPHIC are not
union-compatible with DATE, TIME, or TIMESTAMP.

SQL Comments within Static SQL Statements
You can use a comment as a separator within static SQL statements written in the
various host languages. This comment is referred to as an SQL comment (as
opposed to host language comments), and is identified by two consecutive
hyphens (--) on the same line, not separated by a space and not part of a literal, a
string of DBCS characters, a quoted identifier, or an embedded host language
comment. In COBOL, the two hyphens must be preceded by a blank. The comment
ends at the end of the line.

Here is the sample query from the previous discussion on UNION, documented
with a few SQL comments:

SELECT PROJNO,'MEAN'
FROM PROJ_ACT -- PROJECT ACTIVITY TABLE
WHERE ACSTAFF > .50
-- FIRST QUERY IS FOR ESTIMATED MEAN NUMBER OF EMPLOYEES
UNION
-- SECOND QUERY IS FOR PROPORTION OF EMPLOYEE TIME
SELECT PROJNO,'PROPORTION'
FROM EMP_ACT -- EMPLOYEE ACTIVITY TABLE
WHERE EMPTIME > .50

The DB2 Server for VSE & VM SQL Reference manual for the detailed syntax rules
on the use of SQL comments within application programs.

Using Stored Procedures
A stored procedure is a user-written application program that is compiled and
stored at the server. When the database manager is running in multiple user mode,
local applications or remote DRDA applications can invoke the stored procedure.
Since the SQL statements issued by a stored procedure are local to the server, they

Chapter 3. Coding the Body of a Program 95

do not incur the high network costs of distributed statements. Instead, a single
network send and receive operation is used to invoke a series of SQL statements
contained in the stored procedure.

Figure 21 and Figure 22 illustrate how the use of stored procedures reduces
network traffic by decreasing the number of commands that flow between the
application requester and the application server.

For information on the stored procedure environment, including stored procedure
servers, refer to the DB2 Server for VSE & VM Database Administration manual.

There are several other benefits that can be gained through the use of stored
procedures, including:
v In many applications, the integrity of the host variables used in SQL statements

is critical to the business function provided by the application. For example, a

Application Server
Application Requester ┌──────────────────────────┐

┌───────────────────────┐ │ │
│ │ │ │
│ EXEC SQL CREATE ├──────────� │ Process statement and │
│ TABLE ... │�───────────┤ return SQLCA │
│ │ │ │
│ EXEC SQL INSERT ... ├──────────� │ Process statement and │
│ │�───────────┤ return SQLCA │
│ │ │ │
│ EXEC SQL COMMIT ├──────────� │ Process statement and │
│ WORK ... │�───────────┤ return SQLCA │
│ │ │ │
└───────────────────────┘ │ │

└──────────────────────────┘

Figure 21. Without Stored Procedures

Application Server Stored Procedure Server
┌───────────────────────┐ ┌────────────────────────┐

Application Requester │ │ │ │
┌───────────────────┐ │ │ │ │
│ │ │ │ │ │
│ EXEC SQL CALL ... ├────�│Send request to stored ├───�│Invoke stored procedure │
│ │ │procedure server │ │application │
│ │ │ │ │ │
│ │ │Process statement and │�───┤EXEC SQL INSERT ... │
│ │ │return SQLCA ├───�│ │
│ │ │ │ │ │
│ │ │Process statement and │�───┤EXEC SQL UPDATE ... │
│ │ │return SQLCA ├───�│ │
│ │ │ │ │ │
│ Process results │�────┤Return results to │�───┤Stored procedure │
│ │ │application requester │ │completes and returns │
│ │ │ │ │results │
│ │ │ │ │ │
│ EXEC SQL COMMIT ├────�│Process statement and │ │ │
│ WORK ... │�────┤return SQLCA │ │ │
└───────────────────┘ │ │ │ │

└───────────────────────┘ └────────────────────────┘

Figure 22. With Stored Procedures

96 Application Programming

debit/credit application might need to guarantee that the host variable values do
not change between debit and credit operations. In these applications, the
application designer would like to guarantee that sophisticated users cannot
employ online debugging tools to manipulate the content of SQL statements or
host variables used by the SQL application. By using stored procedures, the
application designer can encapsulate the application’s SQL statements into a
single message to the server, which moves the sensitive processing beyond the
reach of even the most sophisticated workstation user.

v Stored procedures can be used to hide the details of the database design from
client applications. In addition to simplifying the writing of client applications,
this means that if the database design is changed, only the stored procedure
needs to be modified. The more client applications that use the stored procedure,
the greater the benefit.

v Stored procedures can be used to hide sensitive data from application programs.
v Business logic can be encapsulated at the server, rather than being included in

numerous application programs.
v It is easier to maintain an environment in which applications are kept at the

server rather than spread across a number of requesters.

Writing Stored Procedures
Stored procedure that are to be used on a DB2 Server for VSE & VM database can
be written in PL/I, COBOL, C, or Assembler. Stored procedures are very much like
regular application programs, with the following exceptions:
v They must be LE compliant
v They cannot contain the following SQL statements: CONNECT, COMMIT,

ROLLBACK, or CALL

Note: Stored procedures must be written as MAIN programs; they cannot be SUB
programs.

The following is an example of a simple stored procedure. It contains one SQL
statement that SELECTs the salary of a given employee from the
SQLDBA.EMPLOYEE table. The employee number is provided as input, and the
salary and the SQLCODE for the SELECT statement are returned.

Chapter 3. Coding the Body of a Program 97

The following is an example of a CALL statement that could be used to invoke the
procedure shown above:

CALL SAMP_PROC ('000250', :SALARY, :SQLCD)

The SQL CALL statement is discussed in more detail in “Calling Stored
Procedures” on page 99.

Returning Information from the SQLCA
Information about the execution of SQL statements within a stored procedure is
not returned to the application that invoked the stored procedure. If SQLCODE,
SQLSTATE, or any other information from the SQLCA is required by the calling
application, that information must be included in the parameter list of the stored
procedure and the parameters must be set explicitly in the stored procedure. This
is because there are many situations in which a negative SQLCODE does not
necessarily indicate a problem (such as dropping a table that does not exist). The
person who writes the stored procedure application must determine what
SQLCODEs should be returned to the caller.

IDENTIFICATION DIVISION.
PROGRAM-ID. SAMP1.

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

DATA DIVISION.
FILE SECTION.
WORKING-STORAGE SECTION.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 CHAR6HV PIC X(6).
01 SALHV PIC S9(7)V9(2) COMPUTATIONAL-3.

EXEC SQL END DECLARE SECTION END-EXEC.

EXEC SQL INCLUDE SQLCA END-EXEC.

LINKAGE SECTION.
01 CHAR6 PIC X(6).
01 SALARY PIC S9(7)V9(2) COMPUTATIONAL-3.
01 SQLCD PIC S9(9) COMP.

PROCEDURE DIVISION USING CHAR6 SALARY SQLCD.

* TURN OFF SQL EXCEPTION PROCESSING *
EXEC SQL WHENEVER SQLWARNING CONTINUE END-EXEC.
EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.

MOVE CHAR6 TO CHAR6HV.

EXEC SQL
SELECT SALARY INTO :SALHV FROM SQLDBA.EMPLOYEE

WHERE EMPNO = :CHAR6HV
END-EXEC.

MOVE SALHV TO SALARY.
MOVE SQLCODE TO SQLCD.

STOP RUN.

98 Application Programming

See “Writing Stored Procedures” on page 97 for an example of a stored procedure
that returns an SQLCODE.

Language Environment® (LE) Considerations
As mentioned previously, stored procedures must be LE-compliant. IBM Language
Environment for MVS and VM and the IBM Language Environment for VSE/ESA
establish a common run-time environment for different programming languages. It
combines essential run-time services, such as condition handling and storage
management. All of these services are available through a set of interfaces that are
consistent across programming languages. With LE, you can use one run-time
environment for your applications, regardless of the application’s programming
languages or system resource requirements.

Language Environment is the prerequisite run-time environment for applications
generated with the following IBM compiler products:
v IBM C for VM/ESA
v IBM SAA AD/Cycle C/370
v IBM COBOL for MVS and VM
v IBM SAA AD/Cycle COBOL/370
v IBM PL/I for MVS and VM
v IBM SAA AD/Cycle PL/I MVS and VM
v IBM C for VSE/ESA
v IBM COBOL for VSE/ESA
v IBM PL/I for VSE/ESA

Stored procedures can be written in assembly language as long as the assembly
language program uses the required macros to operate as an IBM Language
Environment application program.

For complete details, see the Language Environment documentation.

Preparing to Run a Stored Procedure
For DB2 Server for VM, once the stored procedure has been written, it must be
preprocessed, compiled, and linked like any application program, and the load
module must be put on a disk that can be accessed by the stored procedure server
that will run the stored procedure. For DB2 Server for VSE, once the stored
procedure has been written, it must be preprocessed, compiled, and linked like any
application program, and the phase must be put in a library that is in the stored
procedure server’s search path. In addition, the CREATE PROCEDURE statement
must be used to define the stored procedure to the database manager. See the DB2
Server for VSE & VM SQL Reference manual for information on the CREATE
PROCEDURE statement.

Calling Stored Procedures
Once a stored procedure has been created and the CREATE PROCEDURE
statement has been used to define it, it can be invoked. The SQL CALL statement
is used in an application program to invoke a stored procedure. The syntax of the
CALL statement is shown in Figure 23 on page 100.

Chapter 3. Coding the Body of a Program 99

For a complete description of the CALL statement, see the DB2 Server for VSE &
VM SQL Reference manual.

As indicated in Figure 23, the procedure name can be a host variable or a constant,
and parameters can be provided in a parameter list or in a descriptor (SQLDA). A
simple example of a CALL statement might look like this:

EXEC SQL CALL PROC1 ('000250', :lastname, :salary, :sqlcd)

The CALL statement shown above assumes that none of the input parameters can
have null values. If you need to allow for null values, use indicator variables with
the host variables, as follows:

EXEC SQL CALL PROC1 (:empno :empnoi,
:lastname :lnamei,
:salary :salaryi,
:sqlcd :sqlcdi)

If you do not know the parameter structure of the procedure, or if you prefer to
use one structure rather than several host variables, you would use the following
form of the CALL statement:

EXEC SQL CALL PROC1 USING DESCRIPTOR :sqlda

where sqlda is the name of an SQLDA. The parameter information must be put in
the SQLDA before the CALL is issued.

The final example provides maximum flexibility:
EXEC SQL CALL :procname USING DESCRIPTOR :sqlda

where sqlda is the name of an SQLDA. The parameter information must be put in
the SQLDA before the CALL is issued.

Authorization
Authorization for stored procedures is done on a package level. That is, the issuer
of the CALL statement must be authorized to run the package associated with the
stored procedure. See “Chapter 10. Assigning Authority and Privileges” on
page 265 for more information on authorization.

AUTHIDs
On the CREATE PROCEDURE statement, you can specify an AUTHID. If you do,
then only a user with that AUTHID can run the stored procedure. The AUTHID
corresponds to the SQL ID of a connected user. This facility is useful for testing
modifications to a stored procedure. It allows the database administrator to create
a private copy of the stored procedure, modify and test it, without affecting the

�� CALL procedure-name
host-variable

$

()
,

host-variable
constant
NULL

USING DESCRIPTOR descriptor-name

��

Figure 23. Syntax of SQL CALL statement

100 Application Programming

copy of the stored procedure that is publicly accessible. Once the stored procedure
is fully tested, it can replace the existing, publicly accessible stored procedure.

Stored Procedure Parameters
The parameters for a stored procedure are defined on the CREATE PROCEDURE
statement. The CREATE PROCEDURE statement makes an entry in
SYSTEM.SYSPARMS for each parameter. The entry in SYSTEM.SYSPARMS
indicates the datatype, size, and purpose (input, output, or both) of the parameter.

The stored procedure must have a declaration for each parameter that is passed to
it. The declaration of each parameter must be compatible with the datatype and
size specified for it in SYSTEM.SYSPARMS. Table 11 shows the compatible
definitions for parameters in C, COBOL, PL/I, and Assembler.

Table 11. Definitions of Stored Procedure Parameters

SYSPARMS C COBOL PL/I Assembler

CHAR(n) char
varname[n+1]

PIC X(n) CHAR(n) CLn

CHAR(1) char PIC X(1) CHAR(1) CL1

VARCHAR(n) char
varname[n+1]

01 parm
49 parml

PIC S9(4) COMP
49 parmd

PIC X(n)

CHAR(n)
VARYING

H,CLn

SMALLINT short PIC S9(4) COMP BIN FIXED(15) H

INTEGER long PIC S9(9) COMP BIN FIXED(31) F

DECIMAL(x,y) DECIMAL[(p,[s])]
or DEC[(p,[s])]

PIC S9(x-y)V9(y) COMP-3 DEC FIXED(x,y) PLn[’decimal
constant’] or
P’decimal
constant’

REAL float COMP-1 BIN FLOAT(21) E

FLOAT double COMP-2 BIN FLOAT(53) D

GRAPHIC(n) not supported PIC G(n) DISPLAY-1 or PIC N(n) GRAPHIC(n) not supported

VARGRAPHIC(n) not supported 01 parm
49 parml

PIC S9(4) COMP
49 parmd

PIC G(n)
USAGE IS DISPLAY-1

or
49 parmd PIC N(n)

GRAPHIC(n)
VARYING

not supported

Each of the high-level language definitions for stored procedure parameters
support only a single instance (scalar value) of the parameter. There is no support
for structure, array, or vector parameters. In some applications, it may be necessary
to return a table of results, where the table represents multiple occurrences of one
or more of the parameters passed to the stored procedure. Since this support is not
provided by the SQL CALL statement, one of the following techniques may be
used by the application to provide the required capability:
v If the data to be returned is in a table in the database, the calling program can

fetch the rows directly using SQL. Since a DRDA requester can intermix SELECT
and CALL statements in a unit of work, the DRDA block fetch protocol can be
used to retrieve the required data efficiently.

Chapter 3. Coding the Body of a Program 101

v Tabular data can be converted to string format and returned as a character string
parameter to the calling program. The calling program and the stored procedure
can establish a convention for interpreting the content of the character string. For
example, the SQL CALL statement can pass a 1920 byte character string
parameter to a stored procedure, allowing the stored procedure to return a 24 by
80 screen image to the calling program.

Datatype Compatibility
The datatype of a parameter provided on the CALL does not have to be identical
to the datatype expected by the stored procedure, but it must be compatible. That
is, if the stored procedure expects a CHAR(4) parameter, the caller can provide a
character or varchar value with a length of 4 or less. Similarly, if the procedure
expects an integer, most numeric datatypes (decimal, smallint, float) are acceptable,
as long as the number is not too large to be represented by an integer. In general,
datatypes that are considered compatible in other SQL statements are also
considered compatible in an SQL CALL. That is, if the value being provided on the
SQL CALL could be inserted into a column that has the same datatype as the
stored procedure parameter, then it is valid for the SQL CALL statement.

For more information on datatype compatibility, see the DB2 Server for VSE & VM
SQL Reference manual.

Conventions for Passing Stored Procedure Parameters
When an SQL CALL statement is issued, DB2 Server for VSE & VM builds a
parameter list for the stored procedure, containing the parameters provided on the
SQL CALL statement. When the initial parameter list is built, the parameters
contain the values established on entry to the SQL CALL statement. Eventually, the
database manager will run the stored procedure and return values for the
parameters to the calling program. If a stored procedure fails to set one or more of
the output parameters, the database manager will not detect this fact. Instead, it
will return the output parameter(s) to the calling program, with the value(s)
established on entry to the SQL CALL statement.

In order for the stored procedure to receive parameters correctly, the stored
procedure must be coded to accept the parameter list supplied by the database
manager. DB2 Server for VSE & VM supports two parameter list conventions. The
parameter list convention is determined by the value of the PARAMETERSTYLE
column in the SYSTEM.SYSROUTINES catalog table, which can be GENERAL or
GENERAL WITH NULLS.

The GENERAL Linkage Convention
If the GENERAL linkage convention is used:
v Input parameters cannot be NULL.
v NULLs can be passed for output parameters only.
v The stored procedure cannot return NULLs for output parameters.
v A parameter must be defined in the stored procedure for each parameter passed

in the SQL CALL statement.

For performance reasons, the calling application may choose to pass null indicators
with the output parameters on the SQL CALL statement. If the null indicator
associated with an output parameter is negative on entry to the SQL CALL
statement, the application requester transmits only the null indicator to the server.
This can be beneficial when dealing with large output parameters, since the entire
output parameter is not transmitted to the server. Upon successful completion of

102 Application Programming

the SQL CALL statement, none of the null indicators associated with the output
parameters will be null, since the stored procedure is restricted to non-null
parameter values.

When the GENERAL parameter list format is used, register 1 points to a list of
addresses, which in turn point to the individual parameters. Figure 24 describes
the GENERAL parameter list convention.

The GENERAL WITH NULLS Linkage Convention
This is the default. If the GENERAL WITH NULLS linkage convention is used:
v Input parameters can be NULL. This is achieved through the use of indicator

variables, or by specifying the keyword NULL.
v The stored procedure can return NULLs for output parameters, by using

indicator variables.
v A parameter must be defined in the stored procedure for each parameter passed

in the SQL CALL statement. An array of indicator variables, with one indicator
variable for each parameter, must also be defined in the stored procedure.

The indicator variables are passed to the stored procedure as a single parameter -
an array of SMALLINT variables with an element for each indicator variable.

Figure 25 on page 104 describes the GENERAL WITH NULLS parameter list
convention.

Reg 1 Addr of parm 1

Addr of parm 2

Addr of parm 3

Addr of parm n

Parm 1 data

Parm 2 data

Parm 3 data

Parm n data

Figure 24. GENERAL parameter list

Chapter 3. Coding the Body of a Program 103

The stored procedure must determine which input parameters are null by
examining the array of indicator variables. The stored procedure must also assign
values to the indicator variables when returning the output parameters to the
calling program.

The array of indicator variables is not defined in the PARMLIST column of
SYSTEM.SYSROUTINES, and is not specified as a parameter in the SQL CALL
statement. In the SQL CALL statement in the client program, the indicator
variables are coded after each parameter, for example:

EXEC SQL CALL PROCX (:parm1:indicator1, :parm2:indicator2)
or

EXEC SQL CALL PROCX (:parm1 INDICATOR :indicator1, :parm2 INDICATOR :indicator2)

In order to support the linkage conventions described above, the high level
language application must be coded to support the required parameter list
convention.

Coding Examples
For examples of how to code stored procedures to receive and return parameters in
C, COBOL, PL/I, or Assembler, refer to the appendix for that language.

Special Considerations for C
The PLIST(OS) run-time option must be supplied.

Special Considerations for PL/I
The NOEXECOPS procedure option must be supplied.

Result Sets
In addition to returning parameters, a stored procedure can return query data,
known as result sets. A result set is defined by declaring a cursor with the WITH
RETURN clause, opening the cursor within the stored procedure, and leaving it
open when the procedure returns. The resulting rows of data that can be fetched
constitute a result set.

Reg 1 Addr of parm 1

Addr of parm 2

Addr of parm 3

Addr of parm n

Parm 1 data

Parm 2 data

Parm 3 data

Parm n data

Indicator 1

Indicator 2

Indicator 3

Indicator n

Addr of Indicator
vector

Figure 25. GENERAL WITH NULLS parameter list

104 Application Programming

Notes:

1. For a procedure to return result sets, the RESULT_SETS column in the
SYSTEM.SYSROUTINES entry for that procedure must contain a non-zero
value.

2. The DB2 Server for VSE & VM requester does not have the capability to
process result sets for procedures invoked over SQLDS protocol. DB2 Server
for VSE & VM returns result sets only to DRDA clients.

3. If any FETCHes are issued within the stored procedure, the result set rows
returned to the client start with the row after the last row that was fetched
within the stored procedure. That is, if the stored procedure issues three
FETCHes, the result set returned to the client starts with the fourth row.

4. The stored procedure must not use blocking. This is because if blocking is on,
the application server returns a full block of rows when a FETCH is issued,
leaving the cursor positioned on the row after the last row of the block. If the
stored procedure does not FETCH all of the rows in the block, the rows that
have already been returned to the stored procedure will not be returned to the
application requester.

5. The name of the stored procedure’s cursor is returned to the client along with
the result set. The client application obtains the cursor name and an
application-oriented description of the result set through extensions to the
SQL DESCRIBE statement. Because of this, the cursor names within the stored
procedures should be meaningful to a DRDA client application.

6. The SELECT statement associated with the cursor can reference tables,
synonyms, and views.

7. The database manager does not return result sets for cursors that are closed
before the stored procedure terminates. The application programmer must
issue an SQL CLOSE for each cursor that is not supposed to be returned to
the DRDA client.

8. Result sets are returned to the DRDA client in the order in which the cursors
were opened by the stored procedure.

9. When a stored procedure returns result sets, a warning SQLCODE is returned
on the CALL statement. The SQL warning tells the application program that
result sets are present.

10. Assume the RESULTSETS column in system catalog table SYSROUTINES has
the value "x" and the DRDA client supports up to "y" result sets. The database
manager returns the lesser of "x" and "y" result sets to the client (call it "z").
If a stored procedure attempts to return more than "z" result sets, the SQL
CALL statement completes with SQLCODE +464 and SQLSTATE 01609 and
the database manager returns the first "z" result sets.
If the stored procedure returns 1 to "z" result sets, the SQL CALL statement
completes with SQLCODE +466 and SQLSTATE 01610 and the database
manager returns all the result sets.

Coding Client Programs to Process Results Sets
A client application program can receive and process result sets over DRDA from a
stored procedure by using the following SQL Extensions:
v The RESULT SET LOCATOR SQL data type, which allows a host variable to be

used as a unique identifier for a query result set returned by the stored
procedure. This is only supported in client applications written in Assembler, C,
COBOL, or PL/I.

v The SQL ASSOCIATE LOCATORS statement, which associates result set locator
variables with each result set returned by the stored procedure.

Chapter 3. Coding the Body of a Program 105

v The SQL ALLOCATE CURSOR statement, which defines a cursor and associates
it with a result set locator variable. This cursor is then used to fetch the rows in
the result set.

v The SQL DESCRIBE PROCEDURE statement, which allows the client application
retrieve information about the result sets returned by the stored procedure.

v >The SQL DESCRIBE CURSOR statement, which allows the client application to
receive information belonging to the particular result set associated with the
cursor that will be used to fetch the rows in the result set.

A client application programmer should consider the following when calling a
stored procedure that may return result sets:
v The client application can determine how many result sets are returned by using

the DESCRIBE PROCEDURE statement, and determine the contents of each
result set by using the DESCRIBE CURSOR statement.

v By knowing the number and contents of the result sets that a stored procedure
returns, an application program can be simplified. However, if code is written
for the more general case, in which the number and contents of result sets can
vary, major modifications to the client program are avoided if the stored
procedure changes.

v The DB2 Server for VSE & VM requester has read-only access to stored
procedure result sets. The DRDA limited block fetch protocol is used to transmit
the result set to the client, even when the stored procedure’s cursor is
updateable. This means that on UPDATE WHERE CURRENT OF or a DELETE
WHERE CURRENT of statement cannot be issued against a result set. If one of
these commands is issued against a result set, SQLCODE -520 is returned with
SQLSTATE 42828.

For information on how to process result sets on clients other than DB2 Server for
VSE & VM Requester, refer to the following manuals:
1. IBM DB2 Universal Database Call Level Interface Guide and Reference

2. DB2 for OS/390 Application Programming and SQL Guide.

Result Set Processing
If the number of result sets and the characteristics of each result set are know, the
following steps need to be performed in order to access each result set:
v Declare as many result-set locator variables as the number of result sets returned

by the stored procedure.
v Invoke the stored procedure using the SQL CALL statement.
v Issue the ASSOCIATE LOCATORS statement once.
v Issue one ALLOCATE CURSOR statement for each result set returned by the

stored procedure.

Figure 26 on page 107 shows the relationship among the new SQL statements and
the new data type.

106 Application Programming

After the SQL CALL statement is executed, the ASSOCIATE LOCATORS statement
is issued. The ASSOCIATE LOCATORS statement associates the result sets
returned by the stored procedure with the result-set locator variables declared
previously and specified in the ASSOCIATE LOCATORS statement (see (1) in
Figure 26). For each result set returned, the ALLOCATE CURSOR statement is
issued to assign a local cursor name to the result set locator variable (see (2) in
Figure 26). Then, the rows of each result set can be processed by using the FETCH
statement specifying the local cursor name (see (3) in Figure 26).

Note that the order of the association of result sets and result set locator variables
is the order that the stored procedure used in opening the cursor; the first open
cursor issued by the stored procedure is associated with the first result set locator
variable, the second open cursor issued by the stored procedure is associated with
the second result set locator variable, and so on. Also, note that only cursors that
were opened with the option WITH RETURN, and remain open after the
procedure terminates, are returned.

Multiple result sets can be processed in parallel. For example, the first row of the
first result set is processed, the first row of the second result set is processed, then
the second row of the first result set is processed.

After the client program issues an SQL CALL statement, the DESCRIBE
PROCEDURE statement can be used to obtain information about the result sets
returned by the stored procedure. The DESCRIBE PROCEDURE statement should
be used when the number of result sets the stored procedure returned is unknown.
The DESCRIBE PROCEDURE returns the number of result sets returned from the
stored procedure and places information about the results sets in SQLDA.

Likewise, after the client program issued an SQL CALL statement, the DESCRIBE
CURSOR statement can be used to obtain information about a specific result set
returned by the stored procedure. The DESCRIBE CURSOR statement should be
used when the column names and data types of a particular result set are
unknown. After execution of the DESCRIBE CURSOR statement, the SQLDA
contains the information belonging to each column in the result set.

FETCH CURSOR1

RESULT SET LOCATOR1

OPEN RESULT SET 1

OPEN RESULT SET 2

OPEN RESULT SET 3

ASSOCIATE

LOCATORS

RESULT SET LOCATOR2

RESULT SET LOCATOR3

FETCH CURSOR2

FETCH CURSOR3

ALLOCATE

CURSOR1

ALLOCATE

CURSOR2

ALLOCATE

CURSOR3

CLIENT STORED PROCEDURE

1

2

3

Figure 26. Relationship Among the New SQL Statements and the New Data Type

Chapter 3. Coding the Body of a Program 107

Note: When the server is DB2 Server for VSE & VM, private protocol is not
supported. These new statements are only supported for distributed
applications. If any of these statements is executed over private protocol, the
user will receive SQLCODE -947.

Using the DESCRIBE PROCEDURE SQL Statement
After the client program issues an SQL CALL statement, the DESCRIBE
PROCEDURE statement can be used to obtain information about the result sets
returned by the stored procedure. Figure 27 shows the DESCRIBE PROCEDURE
statement.

The DESCRIBE PROCEDURE statement should be used when the number of result
sets returned by the stored procedure is unknown. The DESCRIBE PROCEDURE
returns the number of result sets returned from the stored procedure and places
information about the result sets in an SQLDA, which must be made large enough
to hold the maximum number of result sets that the stored procedure may return.

To use the SQLDATA field from the DESCRIBE PROCEDURE statement, a result
set locator variable needs to be set up. A subscript variable is not valid in an
ALLOCATE CURSOR statement. For instance, the following is required to use the
SQLDATA variable for a COBOL program:
...

* Redefine the SQLDATA pointer as PIC S9(9) comp.

SQLDA

SQLVAR1

SQLVAR2

...

...

SQLD = 2

SQLNAME = CURSOR1

SQLIND = -1

SQLDATA = LOCATOR1

SQLNAME = CURSOR2

SQLIND = -1

SQLDATA = LOCATOR2

CLIENT STORED

PROCEDURE

OPEN CURSOR1

OPEN CURSOR2
DESCRIBE

PROCEDURE

Figure 27. DESCRIBE PROCEDURE Statement

108 Application Programming

03 SQLDATA POINTER.
03 SQLDATANUM REDEFINES SQLDATA S9(9) COMP.

...

* Declare a result set locator variable to move the SQLDATA
* POINTER field too, to be used in the ALLOCATE CURSOR statement.
* You need to redefine this variable as PIC S9(9) comp.

01 LOCPTR SQL TYPE IS
RESULT-SET-LOCATOR VARYING.

01 LOCNUM REDEFINES LOCPTR S9(9) COMP.
...

* After the DESCRIBE PROCEDURE statement you can
* move the SQLDATANUM variable to the LOCNUM variable

MOVE SQLDATANUM(INDEX) TO LOCNUM.

* You can now allocate the cursor for the result set.

EXEC SQL ALLOCATE CURSOR1 CURSOR FOR RESULT SET
:LOCPTR

END-EXEC.
...

An alternative to using the SQLDATA field as shown above is to use the
ASSOCIATE LOCATORS statement to assign values to locator variables.

Using the DESCRIBE CURSOR SQL Statement
Once the application program issues an SQL CALL statement, the DESCRIBE
CURSOR statement can be used to obtain information about a specific result set
returned by the stored procedure. Figure 28 on page 110 shows the DESCRIBE
CURSOR statement.

Chapter 3. Coding the Body of a Program 109

The DESCRIBE CURSOR statement should be used when the column names and
data types of a particular result set are unknown. After execution of the DESCRIBE
CURSOR statement, the contents of the SQLDA are similar to the execution of a
SELECT statement:
v The first 5 bytes of the SQLDAID are set to ’SQLRS’.
v SQLD contains the number of columns for this result set.
v Each SQLVAR entry gives information about a column.

In an SQLVAR entry:
v The SQLTYPE field contains the data type of the column.
v The SQLLEN field contains the length attribute of the column.
v The SQLNAME field contains the name of the column.
v The cursor name in the statement must have been previously allocated through

the ALLOCATE CURSOR statement.

Coding Summary to Process Result Sets
The following summarizes the steps to code a client application to process result
sets:
1. Declare a result set locator variable for each result set that is returned. If the

number of result sets is unknown, declare enough locator variables for the
maximum number of result sets that might be returned.

2. Call the stored procedure and check the SQL return code for a +466. A 466
SQLCODE indicates that the stored procedure returned one or more result sets.

SQLD = 3

SQLTYPE = CHARACTER

SQLLEN = 5

SQLNAME = COL1

SQLTYPE = CHARACTER

SQLLEN = 15

SQLNAME = COL2

SQLTYPE = INTEGER

SQLLEN = 4

SQLNAME = COL3

SQLVAR 1
2
3

SQLDA

DESCRIBE

CURSOR

SQLVAR1

SQLVAR2

SQLVAR3

RESULT SET 1

COL1 COL2 COL3

5 15 4
...

...

Figure 28. DESCRIBE PROCEDURE Statement

110 Application Programming

3. Determine how many result sets the stored procedure is returning if this is
unknown. Use the SQL statement DESCRIBE PROCEDURE to determine the
number of result sets returned and the corresponding cursor names. DESCRIBE
PROCEDURE places information about the result sets in the SQLDA.

4. Associate result set locators to result sets.
5. Allocate cursors for fetching rows from the result sets.
6. Determine the contents of the result sets if unknown. Use the SQL statement

DESCRIBE CURSOR to determine the format of a result set and put this
information in an SQLDA. For each result set, an SQLDA big enough to hold
descriptions of all columns in the result set is needed. If the DESCRIBE
PROCEDURE statement is not used, host variables of the correct datatype and
size must be provided to receive the result sets.

7. Fetch rows from the result sets into host variables by using the cursors you
allocate with the ALLOCATE CURSOR statements. If the DESCRIBE CURSOR
statement is executed before the FETCH, the following steps should be
performed before fetching any rows:
v Allocate storage for host variables and indicator variables. Use the content of

the SQLDA from the DESCRIBE CURSOR statement to determine how much
storage you need for each host variable.

v Put the address of the storage for each host variable in the appropriate
SQLDATA field of the SQLDA.

v Put the address of the storage for each indicator variable in the appropriate
SQLIND field in the SQLDA.

Fetching rows from a result set is the same as fetching rows from a table.
8. Close all allocated cursors when finished processing the result sets.

The following sections are examples of C language code that accomplish each of
the steps discussed above.

Processing a Known Number of Result Sets: The following example of C
language code shows how to receive result sets when the number of result sets
returned is known. Coding for other languages is similar.
/***/
/* Declare result set locators. For this example, */
/* assume you know that two result sets will be returned. */
/* Also, assume that you know the format of each result set. */
/***/

EXEC SQL BEGIN DECLARE SECTION;
static volatile SQL TYPE IS RESULT_SET_LOCATOR *loc1, *loc2;

EXEC SQL END DECLARE SECTION;

...
/***/
/* Call stored procedure P1. */
/* Check for SQLCODE +466, which indicates that result sets */
/* were returned. */
/***/

EXEC SQL CALL P1(:parm1, :parm2, ...);

if(SQLCODE==+466)
{
/***/
/* Establish a link between each result set and its */

...
/***/
/* Associate a cursor with each result set. */

Chapter 3. Coding the Body of a Program 111

/***/
EXEC SQL ALLOCATE C1 CURSOR FOR RESULT SET :loc1;
EXEC SQL ALLOCATE C2 CURSOR FOR RESULT SET :loc2;

/***/
/* Fetch the result set rows into host variables. */
/***/

while(SQLCODE==0)
{

EXEC SQL FETCH C1 INTO :order_no, :cust_no;

...
}
while(SQLCODE==0)
{
EXEC SQL FETCH C2 :order_no, :item_no, :quantity;

...
}

/***/
/* All result sets have been processed, close allocated */
/* cursor. */
/***/

EXEC SQL CLOSE C1;
EXEC SQL CLOSE C2;

...
}

Processing a Unknown Number of Result Sets: The following example of C
language code shows how to receive result sets when the number of result sets
returned, or what is in each result set, is unknown.
/***/
/* Declare result set locators. For this example, */
/* assume that no more than three result sets will be */
/* returned, so declare three locators. Also, assume */
/* that you do not know the format of the result sets. */
/***/

EXEC SQL BEGIN DECLARE SECTION;
static volatile SQL TYPE IS RESULT_SET_LOCATOR *loc1, *loc2, *loc3;

EXEC SQL END DECLARE SECTION;

...

/***/
/* Call stored procedure P2. */
/* Check for SQLCODE +466, which indicates that result sets */
/* were returned. */
/***/

EXEC SQL CALL P2(:parm1, :parm2, ...);

if(SQLCODE==+466)
{
/***/
{
/***/
/* Determine how many result sets P2 returned, using the */
/* statement DESCRIBE PROCEDURE. :proc_da is an SQLDA */
/* with enough storage to accommodate up to three SQLVAR */
/* entries. */
/***/

EXEC SQL DESCRIBE PROCEDURE P2 INTO :proc_da;

...
/***/
/* Now that you know how many result sets were returned, */
/* establish a link between each result set and its */

112 Application Programming

/* locator using the ASSOCIATE LOCATORS. For this example, */
/* we assume that three result sets are returned. */
/***/

EXEC SQL ASSOCIATE LOCATORS (:loc1, :loc2, :loc3) WITH PROCEDURE P2;

...
/***/
/* Associate a cursor with each result set. */
/***/

EXEC SQL ALLOCATE C1 CURSOR FOR RESULT SET :loc1;
EXEC SQL ALLOCATE C2 CURSOR FOR RESULT SET :loc2;
EXEC SQL ALLOCATE C3 CURSOR FOR RESULT SET :loc3;

/***/
/* Use the statement DESCRIBE CURSOR to determine the */
/* format of each result set. */
/***/

EXEC SQL DESCRIBE CURSOR C1 INTO :res_da1;
EXEC SQL DESCRIBE CURSOR C2 INTO :res_da2;
EXEC SQL DESCRIBE CURSOR C3 INTO :res_da3;

...
/***/
/* Assign values to the SQLDATA and SQLIND fields of the */
/* SQLDAs that you used in the DESCRIBE CURSOR statements. */
/* These values are the addresses of the host variables and */
/* indicator variables into which DB2 will put result set */
/* rows. */
/***/

...
/***/
/* Fetch the result set rows into the storage areas */
/* that the SQLDAs point to. */
/***/

while(SQLCODE==0)
{

EXEC SQL FETCH C1 USING :res_da1;

...
}
while(SQLCODE==0)
{

EXEC SQL FETCH C2 USING :res_da2;

...
}
while(SQLCODE==0)
{

EXEC SQL FETCH C3 USING :res_da3;
...

}

/***/
/* All result sets have been processed, close allocated */
/* cursor. */
/***/

EXEC SQL CLOSE C1;
EXEC SQL CLOSE C2;
EXEC SQL CLOSE C3;

...

}

Chapter 3. Coding the Body of a Program 113

114 Application Programming

Chapter 4. Preprocessing and Running a DB2 Server for VM
Program

Defining the Steps to Execute the Program . . . 116
Comparing Single User Mode to Multiple User
Mode 116
Using 31-Bit Addressing 116
Initializing the User Machine 117

Using VM Implicit Connect. 117
Preprocessing the Program 118

Using the SQLPREP EXEC Procedure 118
Executing the SQLPREP EXEC in Single User
Mode 118
Executing the SQLPREP EXEC in Multiple
User Mode 118
DB2 Server for VM Program Preparation
Parameters 119
Parameters for SQLPREP EXEC for Single
and Multiple User Modes 122
Parameters for SQLPREP EXEC for Single
User Mode Only 133
Parameters for SQLPREP EXEC in Multiple
User Mode Only 134

Preprocessing with an Unlike Application Server 134
Using the Preprocessor Option File 134
Using the Flagger at Preprocessor Time. . . . 135
Improving Performance Using Preprocessing
Parameters 136

Selecting the Isolation Level to Lock Data 136
Using the Blocking Option to Process Rows
in Groups 141

Using the INCLUDE Statement 143
Including External Source Files 143
Including Secondary Input 143

Compiling the Program 144
Link-Editing and Loading the Program 144

Link-Editing the Program with DB2 Server for
VM TEXT Files 144

Using the Resource Adapter Stub Routine 145
Using Other TEXT Files 145

Including the TEXT File in the Link-Editing . . 145
Using the CMS LOAD Command 145
Using the CMS TXTLIB Command 146

Creating a Load Module Using the CMS
GENMOD Command 146

Running the Program 146
Using a Consistency Token 146
Loading the Package and Rebinding. 146
Using Multiple User Mode 147
Using Single User Mode. 148
Specifying User Parameters in Single User Mode 149

Distributing Packages across Like and Unlike
Systems 149

© Copyright IBM Corp. 1987, 2001 115

Defining the Steps to Execute the Program

This section discusses the factors involved in preparing a DB2 Server for VM
application program for operation. The major steps are:
1. Preprocessing
2. Compiling
3. Link-editing and loading
4. Running.

You also have to consider a few points before creating a DB2 Server for VM
package. They are:
v Running in single or multiple user mode
v Initializing your machine
v Using VM implicit connect.

Comparing Single User Mode to Multiple User Mode
One important factor that affects how application programs are preprocessed and
executed is whether the database manager is running in single or multiple user
mode.

Running a Program in Single User Mode

In single user mode, the system and your application programs run in a single
virtual machine. The application or preprocessor starts the database machine,
processes the SQL statements, and returns control to CMS. The application server
must be restarted for every invocation of an application program or preprocessor.
The database machine may have more than one application server defined for it,
but only a single application server can be active at any time.

Running a Program in Multiple User Mode

In multiple user mode, one or more applications concurrently access the same
application server. The system runs in one virtual machine while one or more DB2
Server for VM application programs or preprocessors operate in other virtual
machines. More than one application can access the same application server at the
same time, and an application program can access more than one application
server. Use the CONNECT statement to switch application servers from within an
application. This facility is called switching application servers (see “Switching
Application Servers” on page 298).

Using 31-Bit Addressing
The addressing mode of the application server is established when the application
server is started. The addressing mode of the application server is determined by
the information stored in the addressing mode (AMODE) field of the SQLDBN file
associated with the application server.

The addressing mode of the application requester is always 31-bit addressing.

Single user mode applications are invoked in the addressing mode of the
application server. If your single user mode application or user exit requires 24-bit
addressing and the addressing mode of the application server is 31-bit, you will
need to change the operating mode or the addressing mode of the application
server.

116 Application Programming

If the addressing mode of the application server does not match the addressing
mode of the single user mode application, errors may result.

Refer to the DB2 Server for VM System Administration manual for information on
single user mode, user exits, and how to determine and change the addressing
mode. To determine your dependencies on 24-bit addressing, see the VM/ESA:
CMS Application Migration Guide manual.

Initializing the User Machine
To preprocess or run a DB2 Server for VM application program in multiple user
mode, you must associate your user ID with the application server that you want
your program to access. To do this, specify the application server in the SQLINIT
EXEC.

You need only do this once, as long as you continue to operate on the same
application server or are using the CONNECT statement to switch application
servers. Even if you log off and log back on to your virtual machine, you retain
your association with the application server that was established by the SQLINIT
EXEC (the association is recorded on your A-disk).

If you want to switch to a different application server and cannot use the
CONNECT statement to do so, you must end your application program and
invoke the SQLINIT EXEC again, specifying the new application server.

For information on the SQLINIT EXEC, refer to the DB2 Server for VSE & VM
Database Administration manual.

Using VM Implicit Connect
In the VM environment, an explicit CONNECT statement is not required. Instead,
the database manager accepts the password verification of the VM virtual machine
and uses the VM user ID as the DB2 Server for VM user ID. This support is called
“implicit connect.” Implicit connect is possible if either the special user ID
ALLUSERS or the individual users have been granted CONNECT authority.

For example, assume the following GRANT statement:
GRANT CONNECT TO A, B, C, ALLUSERS

After this statement, any VM user may be implicitly connected to the system.
However, if the following statement is used, only users A, B, C can be implicitly
connected to the system:

REVOKE CONNECT FROM ALLUSERS

Thus, the special user ID “ALLUSERS” can be used to selectively turn the implicit
connect capability on or off for the total user set, while individual users can retain
implicit connect authority.

If no explicit CONNECT is performed, an implicit connect occurs when the
database manager receives a request to execute the first executable SQL statement.
If the implicit connect is processed successfully, the statement is executed. As a
result, the SQLCA contains information on the status of the execution of that
statement. Information regarding warning conditions encountered while the
connection was processed is lost. If the connection fails, the SQLCA contains
information on the status of the connection.

Chapter 4. Preprocessing and Running a DB2 Server for VM Program 117

Preprocessing the Program
Preprocessing does two things:
v It changes the SQL source code so that it can be processed during host language

compiling
v It converts the SQL statements into a package, and binds the package to the

database.

The preprocessor replaces all the SQL statements in the program with host
language code that invokes the new package. The new version of the program also
contains the SQL statements in comment form. The package contains information
to carry out the SQL requests made by the program. The database manager follows
the best access path to the data for each SQL statement in the program, using
available indexes and data statistics of which the system keeps track.

When the program is run, the new code calls the system to handle each SQL
statement. It also links the program to the application server and translates
messages and statements between the two.

Using the SQLPREP EXEC Procedure
The SQLPREP EXEC is used in both single and multiple user mode to preprocess
application programs.

The preprocessors supplied with the database manager have the following
program names:

ASM Assembler Preprocessor

C C Preprocessor

COBOL COBOL Preprocessor

Fortran Fortran Preprocessor

PLI PL/I Preprocessor

The preprocessor takes source program input from SYSIN, and produces a
modified source program, a source listing, and a package in the database. The
modified source program output is sent to SYSPUNCH, and the source listing to
SYSPRINT. Using the SQLPREP EXEC, you can direct SYSIN, SYSPUNCH, and
SYSPRINT to various virtual devices and CMS files.

The syntax diagram on page “DB2 Server for VM Program Preparation
Parameters” on page 119 lists all the parameters for the SQLPREP EXEC. An
explanation of each parameter follows the figure.

Executing the SQLPREP EXEC in Single User Mode
In single user mode, the SQLPREP EXEC is executed on the database machine.
(The DBname parameter indicates that you are in single user mode, and identifies
the application server that you want to access.) The SQLPREP EXEC then issues an
SQLSTART and passes the DBname parameter. If the preprocessor encounters no
errors (warnings are permissible), a package is created or replaced on the specified
application server.

Executing the SQLPREP EXEC in Multiple User Mode
Use the SQLPREP EXEC in multiple user mode to preprocess an application
program on one or more application servers. Use the SQLINIT EXEC to establish
the default application server. If you want to preprocess your application program

118 Application Programming

on other application servers, use the DBList or DBFile parameter to specify the
other application servers on which you want to preprocess your application. Either
of these parameters temporarily overrides the application server specified by the
SQLINIT EXEC.

For each application server specified, the SQLPREP EXEC:
1. Establishes a link to the application server
2. Preprocesses the application program against the application server
3. Displays summary messages showing the results for this preprocessing step.

A package is created for each application server on which the program was
successfully preprocessed. If an error is encountered during preprocessing on one
of these application servers, and the ERROR parameter was not specified, a
package is not created for that application server. See page 125 for a discussion of
the ERROR option.

When the SQLPREP EXEC is used for more than one application server, only one
copy of the modified source program output is retained (the PUNCH parameter),
but all the source listings (the PRINT parameter) are appended to produce a single
source listing. The NOPUNCH and NOPRINT parameters may be used to
suppress modified source program output and source listings, respectively.

DB2 Server for VM Program Preparation Parameters
The following are parameters for all DB2 Server for VM preprocessors unless
otherwise noted.

�� SQLPREP ASM
C
COBol
FORTran
PLI

�

� PrepParm (PREPname= package_id
collection_id.

�

�
,PrepFile= (fileparms)

prepparms

�

�
,USERid= authorization_name/password

�

�)
sysIN (fileparms)

Reader
sysPRint (fileparms)

Printer
Terminal

�

�
sysPUnch (fileparms)

Punch

�

Chapter 4. Preprocessing and Running a DB2 Server for VM Program 119

�
(1) (2)

multiple-user-mode-parms
(2)

single-user-mode-parms

��

Notes:

1 Optional for multiple-user-mode.

2 Valid for DB2 Server for VM only.

fileparms:

filename
filetype

filemode

prepparms:

,APOST

(1)
,Quote

,NOBLocK

,BLocK
(2)

,SBLocK

,CCSIDGraphic (integer)
�

�
,CCSIDMixed (integer) ,CCSIDSbcs (integer)

�

�
,CHARSUB (Sbcs)

Mixed
Bit

,NOCHECK

,CHECK
,ERROR

(1)
,COB2

(1)

,COBRC
�

�
,CTOKEN (NO)

,CTOKEN (NO)
YES

,DATE (EUR)
ISO
JIS
LOCAL
USA

,NOEXIST

,EXIST
�

�
,EXPLAIN (NO)

,EXPLAIN (NO)
YES

(3)
,NOFOR

(4)
,DYNALC

Notes:

1 COBOL only (DB2 Server for VM only).

2 Not meaningful for DB2 Server for VSE; (DB2 Server for VM only).

3 Implied if STDSQL(89) is specified for DB2 Server for VM.

120 Application Programming

4 COBOL, PL/I, C, and Assember only.

prepparms (continued):

,NOGRaphic

(1)
,GRaphic

,ISOLation (RR)

,ISOLation (CS)
RR

(2)
RS
UR
USER

,KEEP

,REVOKE
�

�
,LABEL (label_text)

,LineCount (60)

,LineCount (integer)
�

�
(2)

,OWner (authorization_name)

,PERiod

(2)
,COMma

,PRint

,NOPRint
�

�
,PUnch

,NOPUnch (2)
,QUALifier (collection_id)

�

�
,RELease (COMMIT)

,RELease (COMMIT)
(2)

DEALLOCATE

,REPLACE

,NEW

,SEQuence

(3)
,NOSEQuence

�

�
,SQLApost

(2) (4)
,SQLQuote

(5)
,NOSQLCA

�

�
,SQLFLAG (SAA)

89
(COMPLETE)

,STDSQL (NO)

,STDSQL (NO)
(6)

89

�

�
,TIME (EUR)

ISO
JIS
LOCAL
USA

Chapter 4. Preprocessing and Running a DB2 Server for VM Program 121

Notes:

1 COBOL and PL/I only (DB2 Server for VM only).

2 Only meaningful for a non-DB2 Server for VM or -DB2 Server for VSE
application server.

3 C only.

4 COBOL only.

5 Implied if STDSQL(89) is specified.

6 86 is a synonym for 89.

multiple-user-mode-parms:

$

DBFile (fileparms)

DBList (server_name)

single-user-mode-parms:

Dbname (server_name)
dcssID (dcss_id)

�

�
LOGmode (A)

L PARMID (filename)
N
Y

Parameters for SQLPREP EXEC for Single and Multiple User
Modes
The parameters for the SQLPREP EXEC that apply to both single and multiple user
mode are described below. When choosing names within any of these parameters,
avoid whatever line-end-delimiter character (normally #) is being used in your
installation.

ASM

C

COBol

FORTran

PLI
This parameter identifies to the EXEC the preprocessor to be executed. This
parameter is required, and must be specified first. The order in which you specify
the other keywords is not important.

PREPname=package_id

PREPname=collection_id.package-id
The collection_id.package_id is the name by which the database manager

122 Application Programming

identifies the package. The collection_id portion is optional, and fully qualifies
the package_id and any unqualified objects referenced within the package.

If collection_id is not specified, it defaults to the user’s authorization ID at the
application requester site. In the database manager, however, an object’s
collection_id must be the same as the user’s authorization ID at the application
server site. If the collection_id does not match the application server
authorization ID, a preprocessing error results. This restriction does not apply
if the application server authorization ID has DBA authority.

The authorization ID at the application requester and application server sites is
the authorization_name specified on the USERid parameter. If the USERid
parameter is not specified, the authorization ID is the VM logon ID at the
application requester site. In some situations, the VM logon ID is converted
before it is received at the application server site. If the authorization ID is the
VM logon ID, the conversion can cause the authorization IDs at each site to
differ.

To avoid a situation in which the collection_id does not match the application
server authorization ID, explicitly state the collection_id equal to the application
server authorization ID.

For information on how to determine the authorization ID at the application
server site, refer to the DB2 Server for VM System Administration and the
Distributed Relational Database Connectivity Guide manuals.

USERid=authorization_name/password
The authorization_name is the name by which the application server identifies
the owner of a package. The password should agree with the one established
for this authorization_name by a DB2 Server for VM GRANT CONNECT
statement. This information is used when executing a CONNECT statement to
gain access to the application server, which determines whether proper
authorization exists for the static SQL statements in the program.

If the USERid option is not specified, refer to the DB2 Server for VM System
Administration manual, Chapter 6, Maintaining Database Security, for more
information about how to resolve the userid and password.

PrepFile=(filename)

PrepFile=(filename filetype)

PrepFile=(filename filetype filemode)
The PrepFile parameter identifies the file name (and optionally the file type
and file mode) of the CMS (or SFS) file containing the list of preprocessor
parameters. If filetype is not specified, PREPPP is used as the default. If filemode
is not specified, A is used as the default and the first file found with the
default file name and file type are used. For a detailed discussion of the
options file, see “Using the Preprocessor Option File” on page 134.

The following parameters can be specified in the PrepFile or on the command
line.

PrepParm
These parameters specify the preprocessor options.

APOST

Quote (COBOL preprocessor only)
You must include the Quote preprocessor parameter whenever you use the
Quote parameter in the COBOL compiler. Quote causes the preprocessor to
use double quotation marks (") as constant delimiters in the VALUE

Chapter 4. Preprocessing and Running a DB2 Server for VM Program 123

|
|
|

clauses of the declarations it generates. If you do not specify this
parameter, the COBOL preprocessor defaults to APOST and generates
single quotation mark (') delimiters for its internal source declarations.

The use of a single or double quotation marks in SQL statements is not
affected by this parameter.

NOBLocK

BLocK

SBLocK
When the BLocK parameter is specified, all eligible query cursors return
results in groups of rows, and all eligible insert cursors process inserts in
groups of rows. This improves the performance of programs running in
multiple user mode, where many rows are inserted or retrieved. For a
discussion of eligible cursors, see “Using the Blocking Option to Process
Rows in Groups” on page 141.

When NOBLocK is specified, rows are not grouped.

SBLocK is primarily for use with application servers that support the FOR
FETCH ONLY clause on the DECLARE CURSOR statement. Application
servers do not support this clause, but application requesters can connect
to application servers that do support FOR FETCH ONLY.

Following is a comparison of the BLocK and SBLocK options as they apply
to the DB2 Server for VM preprocessors:
v If there are COMMIT, ROLLBACK, or dynamically defined statements in

a program, then:
– With BLocK, all eligible cursors are blocked (that is, the data on

which the cursor operates is transferred in groups of rows).
– With SBLocK, the FOR FETCH ONLY clause of the DECLARE

CURSOR statement can be used to select the cursors that are to be
blocked. Cursors without this clause are not blocked.

v If there are no COMMIT, ROLLBACK, or dynamically defined
statements in a program, the effects of BLocK and SBLocK are the same:
all eligible cursors are blocked.

Note: Only the DB2 Server for VM preprocessors turn off SBLocK blocking
because of the presence of COMMIT and ROLLBACK statements. In
non-DB2 Server for VM preprocessors, only the presence of
dynamically defined statements has this effect.

If you want to change the BLocK option, you must recompile (or
reassemble) and relink your program after preprocessing it. Preprocessing
alone does not change the BLocK setting.

The blocking of FETCH statements is supported when you use the DRDA
protocol, but blocking of INSERT statements is not. The blocking of
INSERT statements is only supported when you use SQLDS protocol. See
“Using the Blocking Option to Process Rows in Groups” on page 141 for
guidelines on deciding the programs for which to specify blocking.

CCSIDGraphic (integer)
This parameter specifies the default CCSID attribute to be used for graphic
columns created in the package, if an explicit CCSID is not specified on the
CREATE or ALTER statements in the package. If this parameter is not
specified, the target application server uses the system default.

124 Application Programming

CCSIDMixed (integer)
This parameter specifies the default CCSID attribute to be used for
character columns created with the mixed subtype in the package, if an
explicit CCSID is not specified on the CREATE or ALTER statements in the
package. If this parameter is not specified, the target application server
uses the system default.

CCSIDSbcs (integer)
This parameter specifies the default CCSID attribute to be used for
character columns created with the SBCS subtype in the package, if an
explicit CCSID is not specified on the CREATE or ALTER statements in the
package. If this parameter is not specified, the target application server
uses the system default.

CHARSUB (Sbcs)

CHARSUB (Mixed)

CHARSUB (Bit)
This parameter specifies the character subtype attribute to be used for
character columns created in the package, if an explicit subtype or CCSID
is not specified. If you do not specify this parameter, the target application
server uses the system default.

NOCHECK

CHECK

ERROR
If you specify the NOCHECK parameter, the preprocessor executes
normally; that is, it generates modified source code and performs package
functions. NOCHECK is the default.

If you specify the CHECK parameter, the preprocessor checks all SQL
statements for validity and generates error messages if necessary, but does
not generate a package or modified source code.

If you specify ERROR, the preprocessor executes normally except that most
statement-parsing errors are tolerated; that is, it generates modified source
code and performs package functions. When one of these errors is
detected, the preprocessor generates an error message in the output listing
and the modified source code in commented form, and continues
processing. The program can be compiled and executed, but the erroneous
statement cannot be executed. Use this option when you are preprocessing
against multiple application servers, where at least one statement in the
program is specific to an unlike application server. This option lets you
successfully preprocess on each application server regardless of the
presence of statements which that application server does not allow. In
some situations, the ERROR option is overridden and a severe error
condition results. Refer to “Checking Warnings and Errors at Preprocessor
Time” on page 194 for a discussion on debugging your SQL statements
when using the ERROR option.

COB2 (COBOL preprocessor only)
This parameter enables you to use certain COBOL II functions that are
supported by the COBOL II Release 3 compiler and later. Refer to “Using
the COB2 Parameter (DB2 Server for VM)” on page 356 for a list of those
functions.

COBRC (COBOL preprocessor only)
If this parameter is specified, the preprocessor will generate the statement

Chapter 4. Preprocessing and Running a DB2 Server for VM Program 125

'MOVE ZEROS TO RETURN-CODE' after it generates a call to ARIPRDI.
For more information, see “Using the COBRC Parameter” on page 357

CTOKEN (NO)

CTOKEN (YES)
This parameter causes the preprocessor to store a consistency token in the
modified source code and the package. At run time, consistency tokens in
the program’s load module and package must match before the application
server executes the package. CTOKEN(NO) is the default. If CTOKEN(YES)
is specified, the consistency token generated by the preprocessor will be an
8-byte 390 Time-of-Day (TOD) clock value. If CTOKEN(NO) is specified,
the consistency token will be 8 blanks. For a more detailed discussion of
consistency tokens, see “Using a Consistency Token” on page 146.

DATE (EUR)

DATE (ISO)

DATE (JIS)

DATE (LOCAL)

DATE (USA)
If this parameter is specified, the output date format chosen overrides the
default format specified at installation time; otherwise, all dates will be
returned in the default format specified at installation time. (See the DB2
Server for VSE & VM SQL Reference manual for a description of these
formats.)

NOEXIST

EXIST
If the EXIST parameter is specified, the preprocessor executes normally;
that is, it generates modified source code and performs package functions.
An error will be generated if objects (such as tables) referenced in
statements in the program do not exist or if proper authorization does not
exist.

If the NOEXIST parameter is specified, object and authorization existence
is not required, and if not found, a warning will be issued. NOEXIST is the
default.

EXPLAIN(NO)

EXPLAIN(YES)
This parameter specifies whether explanatory information for all
explainable SQL statements in a package should be produced.
EXPLAIN(NO) is the default.

If EXPLAIN(YES) is specified, each explainable SQL statement in the
program is explained during preprocessing. If you specify EXPLAIN(YES),
an EXPLAIN ALL is executed. The complete set of explanation tables must,
therefore, be available. If they are not available, you receive an SQLCODE
-649 (SQLSTATE = 42704) and preprocessing is not successful. To interpret
the explanation tables, refer to the DB2 Server for VSE & VM Performance
Tuning Handbook manual.

NOFOR
This parameter enables you to omit the FOR UPDATE OF clause in the
static cursor query statement, and execute positioned updates to any
column in the result table for which you have UPDATE authority. It is
referred to in this manual as NOFOR support.

126 Application Programming

Note: This option is also implied if the STDSQL (89) or STDSQL (86)
parameter is specified.

DYNALC
This parameter enables you to preprocess an application program
containing FETCH statements for a cursor that is allocated by a dynamic
ALLOCATE CURSOR statement.

Note: This option is only accepted by the COBOL, PL/I, C, and Assembler
preprocessors.

NOGRaphic

GRaphic (COBOL and PL/I preprocessors only)
The GRaphic parameter indicates to the preprocessor whether graphic
constants can be used in SQL statements and whether DBCS string format
should be validated. NOGRaphic is the default.

If GRaphic is specified, the preprocessor accepts SQL statements containing
graphic constants, and checks that all strings of DBCS characters are
correctly formatted.

If NOGRaphic is specified, the preprocessor does not allow graphic
constants in SQL statements, and does not verify the format of strings of
DBCS characters.

Note: If the DBCS parameter of the SQLINIT EXEC is specified as YES, the
graphic option is not used and preprocessing occurs as though
GRaphic had been specified. Refer to “Initializing the User Machine”
on page 117 for a discussion of the SQLINIT EXEC.

ISOLation (RR)

ISOLation (CS)

ISOLation (RS)

ISOLation (UR)

ISOLation (USER)
This parameter lets you specify one of the following isolation levels at
which your program runs:
v Specify RR (repeatable read) to have the database manager hold a lock

on all data read by the program in the current logical unit of work. This
is the default.

v Specify CS (cursor stability) to have the database manager hold a lock
only on the row or page of data pointed to by a cursor.

v Specify UR (uncommitted read) to have the database manager allow
applications to read data without locking, including uncommitted
changes made by other applications.

v RS (read stability) is not supported by application servers. For a
description of RS, see the IBM SQL Reference manual.

v Specify USER to have the application program control its isolation level.
You cannot specify the USER option when you are using DRDA protocol
(if you do, it is ignored and the isolation level defaults to CS).

See “Selecting the Isolation Level to Lock Data” on page 136 for guidelines
on choosing the isolation level for your program.

Chapter 4. Preprocessing and Running a DB2 Server for VM Program 127

Note: If you want to change the ISOLation option, you must recompile (or
reassemble) and relink your program after preprocessing it.
Preprocessing alone does not change the ISOLation setting.

KEEP

REVOKE
These parameters are applicable if the program has previously been
preprocessed, and the owner has granted the RUN privilege on the
resulting package to some other users. Specify the KEEP parameter to have
these grants of the RUN privilege remain in effect when the preprocessor
produces the new package. Specify the REVOKE parameter to remove all
existing grants of the RUN privilege. (These grants will also be removed if
the owner of the program is not entitled to grant all the privileges
embodied in the program.)

KEEP is the default.

LABEL (label_text)
This parameter specifies a label for the package. Label_text can be up to 30
characters in length; the default is spaces.

LineCount (integer)
The parameter determines how many lines per page are to be printed in
the output listing. The value integer specifies the number of lines per page.
The valid range for this value is 10 to 32 767. If no value is specified, or if
there is an error in the specification of the LineCount parameter, then the
default value of 60 is used.

OWner (authorization_name)
This parameter specifies the authorization_name of the owner of the package
being created. The OWner parameter is to be used when you are
preprocessing against a non-DB2 Server for VM application server.
However, if you specify this parameter when preprocessing against an
application server, the authorization_name must be the same as the
application server authorization ID. If this parameter is not specified, the
application server selects the default.

See the section on PREPname on page 122 for a discussion on application
server and application requester authorization IDs.

PERiod

COMma
This parameter specifies the character that delimits decimals in SQL
statements. PERiod is the default.

For an application server, the only acceptable decimal delimiter is a period.

PRint

NOPRint
The PRint parameter specifies that the entire preprocessor modified source
listing output is produced. The NOPRint parameter specifies that the
preprocessor listing output is suppressed, except for the summary
messages that are normally printed at the end. PRint is the default.

PUnch

NOPUnch
The PUnch parameter specifies that the preprocessor modified source
output is produced. The NOPUnch parameter specifies that the
preprocessor modified source output is suppressed.

128 Application Programming

QUALifier (collection_id)
This parameter specifies the default collection_id to be used within the
package to resolve unqualified object names in static SQL statements.

The QUALifier parameter is meant to be used when preprocessing against
a non-DB2 Server for VM application server. If you specify this parameter
when preprocessing against an application server, the collection_id must be
the same as the application server authorization ID. If you do not specify
this parameter, the default is selected by the application server.

RELease (COMMIT)

RELease (DEALLOCATE)
This parameter specifies when the application server releases the package
execution resources and any associated locks.

For an application server, the only acceptable action is
RELEASE(COMMIT), which releases resources at the end of a logical unit
of work.

REPLACE

NEW
This parameter specifies whether the package being created is new or
whether it will replace an existing package that has the same name. If
REPLACE is specified and no previous package exists with the same name,
no error or warning is issued, and the package is created. REPLACE is the
default. If NEW is specified, an error will occur if the package already
exists with the same name.

Note: If NEW is specified along with KEEP or REVOKE, an error will
occur.

SEQuence

NOSEQuence (C preprocessor only)
If SEQuence is specified, the preprocessor searches only columns 1 through
72 of the source file. When NOSEQuence is specified, the preprocessor
assumes there are no sequence numbers in the input file and it accepts
input from columns 1 to 80. SEQuence is the default.

Note: In the latter case, you must use the NOSEQ and MARGINS (1,80) C
compiler options when compiling the modified source.

SQLApost

SQLQuote (COBOL preprocessor only)
This parameter specifies the character that delimits strings (quoted literals)
in SQL statements. SQLApost and SQLQuote are optional parameters.
SQLApost is the default.

For an application server, the only acceptable string delimiter is a single
quotation mark.

NOSQLCA
This parameter allows you to declare an SQLCODE without declaring all
of the SQLCA structure. It is referred to as NOSQLCA support in this
manual.

If you request NOSQLCA support, it is your responsibility to make sure
that there are no explicit declarations of the SQLCA in your application

Chapter 4. Preprocessing and Running a DB2 Server for VM Program 129

program. For more information on using SQLCODE without the SQLCA,
refer to “Using the Automatic Error-Handling Facilities” on page 195.

Note: This option is also implied if the STDSQL(89) or STDSQL (86)
parameter is specified.

SQLFLAG (SAA)

SQLFLAG (89)

SQLFLAG (89(COMPLETE))
This parameter invokes Flagger, a function that flags those static SQL
statements that do not conform to the SQL-89 standard or IBM’s Systems
Application Architecture* (SAA*) standard on an SQL dialect. If you
specify SAA, it provides syntax checking against the SAA Database Level 1
standard. If you specify 89, it will provide syntax checking against the
SQL-89 standard. If you specify 89(COMPLETE), it will provide both
syntax and semantics checking against the SQL-89 standard. Note that you
cannot check both SAA and SQL-89 in the same preprocessor run.

See “Using the Flagger at Preprocessor Time” on page 135 for more details
on this facility, including an explanation of the SQL-89 standard.

STDSQL (NO)

STDSQL (89)
STDSQL refers to the SQL Standard that has been implemented in the
user’s application program. If NO is specified or the STDSQL parameter is
not used, the preprocessor uses DB2 Server for VM standards. If 89 is
specified, functions specific to ANS SQL standard 89 are also provided by
the preprocessor. STDSQL(NO) is the default. These functions consist of
the following support:
v NOSQLCA
v NOFOR

Note: STDSQL(86) is a synonym for STDSQL(89).

TIME (EUR)

TIME (ISO)

TIME (JIS)

TIME (LOCAL)

TIME (USA)
If this parameter is specified, the output time format chosen overrides the
default format specified during installation. If it is not specified, all times
will be returned in the default format that was specified during
installation. (See the DB2 Server for VSE & VM SQL Reference manual for a
description of these formats.)

sysIN
Two choices exist:
1. sysIN(filename)

sysIN(filename filetype)
sysIN(filename filetype filemode)
This optional parameter identifies the filename (fn), and optionally the
filetype (ft) and filemode (fm), of the CMS file containing the
preprocessor source input. The filetype specification defaults to the
following:

130 Application Programming

ASM ASMSQL

C CSQL

COBOL COBSQL

Fortran FORTSQL

PL/I PLISQL

The file mode specification will default to A.

The following CMS FILEDEF command is issued for the preprocessor
source input file:
FILEDEF SYSIN DISK fn ft fm (RECFM FB LRECL 80 BLOCK 800)

2. sysIN(Reader)
This specification of the sysIN optional parameter identifies that the
preprocessor source input file is a virtual reader file. The following
CMS FILEDEF command is issued for the preprocessor source input
file:
FILEDEF SYSIN READER (RECFM F LRECL 80)

Note: If the sysIN parameter is not specified, you must enter a CMS
FILEDEF command for the preprocessor source input
(ddname=SYSIN) before issuing the SQLPREP EXEC.

sysPRint
Five choices exist:
1. sysPRint(filename)

sysPRint(filename filetype)
sysPRint(filename filetype filemode)
This optional parameter identifies the filename (fn) and optionally the
filetype (ft) and filemode (fm) of the CMS file containing the preprocessor
source output listing. The filetype specification defaults to LISTPREP,
and the filemode specification to A.
If this form of the sysPRint parameter is supplied, the following CMS
FILEDEF command is issued for the preprocessor source output listing
file:
FILEDEF SYSPRINT DISK fn ft fm . . .

(RECFM FBA LRECL 121 BLOCK 1210 DISP MOD)

2. sysPRint(Printer)
This specification of the sysPRint optional parameter identifies that the
preprocessor source output listing file is directed to a virtual printer
file. If sysPRint(Printer) is specified, the following CMS FILEDEF
command is issued for the preprocessor source output listing file:
FILEDEF SYSPRINT PRINTER (RECFM FA LRECL 121)

3. sysPRint(Terminal)
This specification of the sysPRint optional parameter identifies that the
preprocessor source output listing file is directed to the console
terminal. If sysPRint(Terminal) is specified, the following CMS
FILEDEF command is issued for the preprocessor source output listing
file:
FILEDEF SYSPRINT TERM (RECFM FA LRECL 121)

4. If the sysPRint parameter is not specified and the preprocessor source
input file was assigned to the virtual reader, then the preprocessor

Chapter 4. Preprocessing and Running a DB2 Server for VM Program 131

source output listing file is assigned to the virtual printer by the CMS
FILEDEF command described in item 2 above.

5. If the sysPRint parameter is not specified and the preprocessor source
input file was assigned to a CMS file, then the following default CMS
FILEDEF command is issued for the preprocessor source output listing
file:
FILEDEF SYSPRINT DISK fn LISTPREP A . . .

(RECFM FBA LRECL 121 BLOCK 1210 DISP MOD)

In this example, fn is the file name specification used for the
preprocessor SYSIN file, and file mode is defaulted to A.

Note: If sysPRint and sysIN information is not specified, then the user
must issue a CMS FILEDEF command for the preprocessor source
output listing file (ddname=SYSPRINT) before issuing the SQLPREP
EXEC.

sysPUnch
Four choices exist:
1. sysPUnch(filename)

sysPUnch(filename filetype)
sysPUnch(filename filetype filemode)
This optional parameter identifies the filename (fn) and optionally the
filetype (ft) and filemode (fm) of the CMS file containing the preprocessor
modified source output. The file type specification will default to a
value based on the preprocessor invoked as follows:

ASM ASSEMBLE

C C

COBOL COBOL

Fortran Fortran

PL/I PLIOPT

The file mode specification will default to A.

If this form of the sysPUnch parameter is supplied, the following CMS
FILEDEF command is issued for the preprocessor modified source
output file:
FILEDEF SYSPUNCH DISK fn ft fm . . .

(RECFM FB LRECL 80 BLOCK 800)

2. sysPUnch(Punch)
This specification of the sysPUnch optional parameter identifies that the
preprocessor modified source output file is directed to a virtual punch
file. If sysPUnch(Punch) is specified, the following CMS FILEDEF
command is issued for the preprocessor modified source output file:
FILEDEF SYSPUNCH PUNCH (RECFM F LRECL 80)

3. If the sysPUnch parameter is not specified and the preprocessor source
input file was assigned to the virtual reader, then the preprocessor
modified source output file is assigned to the virtual punch with the
CMS FILEDEF command described above in item 2 above.

132 Application Programming

4. If the sysPUnch parameter is not specified and the preprocessor source
input file is assigned to a CMS file, then the following default CMS
FILEDEF command is issued for the preprocessor modified source
output file:
FILEDEF SYSPUNCH DISK fn ft A . . .

(RECFM FB LRECL 80 BLOCK 800)

In this example, fn is the file name specification used for the
preprocessor source input file, and file mode is defaulted to A. ft is the
default file type as determined by the previously mentioned method.

Note: If sysPUnch and sysIN information is not specified, then the user
must issue a CMS FILEDEF command for the preprocessor modified
source output file (ddname=SYSPUNCH) before issuing the
SQLPREP EXEC.

Parameters for SQLPREP EXEC for Single User Mode Only
The parameters for the SQLPREP EXEC that apply only to single user mode are:

DBname(dbname)
This mandatory parameter identifies the name of the application server to be
accessed by the SQL statements in the preprocessor source input file.

This parameter is used as the DBname parameter for the SQLSTART EXEC that
is executed when the database manager is started in single user mode. The
system initialization parameters SYSMODE=S and PROGNAME=progname
(where progname varies according to which preprocessor is being invoked)
will also be supplied in the PARM parameter of the SQLSTART EXEC.

dcssID(dcssid)
This parameter identifies the method by which all DB2 Server for VM modules
will be loaded for execution. If this parameter is specified, it will be used as
the dcssID parameter for the SQLSTART EXEC. If this parameter is omitted,
the dcssID parameter will not be passed to the SQLSTART EXEC.

Refer to the DB2 Server for VM System Administration manual for more
information.

LOGmode (Y)

LOGmode (A)

LOGmode (N)

LOGmode (L)
This parameter identifies the value to be used for the DB2 Server for VM
initialization LOGmode parameter when the database manager is started in
single user mode. If this parameter is omitted, the LOGmode parameter will
not be supplied as an initialization parameter to the SQLSTART EXEC.

Refer to the DB2 Server for VM System Administration manual for more
information.

PARMID (filename)
This parameter identifies the file name of a CMS file that contains DB2 Server
for VM initialization parameters. If this parameter is omitted, the PARMID
parameter will not be passed as a parameter to the SQLSTART EXEC.

Refer to the DB2 Server for VM System Administration manual for more
information.

Chapter 4. Preprocessing and Running a DB2 Server for VM Program 133

Parameters for SQLPREP EXEC in Multiple User Mode Only
The parameters for the SQLPREP EXEC that apply only to multiple user mode are:

DBFile (filename)

DBFile (filename filetype)

DBFile (filename filetype filemode)
This optional parameter specifies the file name, the file type, and optionally the
file mode of a CMS file containing a list of application servers on which the
program will be preprocessed. If filetype is not specified, PREPDB will be used
as the default file type. If filemode is not specified, the first file with the given
filename and filetype will be used.

The rules governing the format of the CMS file are as follows:
v Each record has only one application server name.
v The first word in each record is the application server name.
v Comments can be added to the right of the application server name,

separated from the application server name by a blank. will be treated as a
comment.

v An empty record or a record with an ″*″ in the first position will be treated
as a comment.

DBList (server_name)
This optional parameter specifies a list of application servers on which the
program will be preprocessed.

Note that this parameter and the DBFile parameter are mutually exclusive.

Preprocessing with an Unlike Application Server
The SQLPREP EXEC accepts only those parameters and options which are listed in
this manual. Some of those options are only meaningful to one or more of the
other IBM relational database server or servers. The SQLPREP EXEC does not filter
out options that are not applicable to an application server before sending them to
that application server.

Equivalent parameters and options for IBM relational database products are given
in the IBM SQL Reference manual. For example, the VALIDATE(BIND) parameter in
the DB2 product for MVS and the EXIST parameter for the DB2 Server for VM
product are equivalent preprocessing parameters.

When the DB2 Server for VM system acts as an application server and receives an
unsupported preprocessing parameter value, it returns an error message to the
application requester.

Using the Preprocessor Option File
Instead of specifying all the preprocessing parameters (found in PrepParm) in the
SQLPREP EXEC you can use an options file. Maintaining a set of standard options
files has several advantages: they can save you time; they can ensure consistent use
of preprocessing parameters; and the number of parameters that you can use is not
limited by the number of positions on the command line.

You can use a preprocessor options file by including the PrepFile parameter when
you issue the PREP command. The file itself can contain only one preprocessor
parameter per line. If more are found an error message is returned. Blank lines are
ignored, and parameters may be in either upper or lower case. Comments may be
inserted into the options file by placing an asterisk (*) to the left of the comment.

134 Application Programming

Everything to the right of the asterisk is ignored. The file must be fixed blocked
and must have a record length of 80 bytes. Figure 29 is an example of a
preprocessor option file.

Using the Flagger at Preprocessor Time
The Flagger is invoked at preprocessor time by the optional parameter SQLFLAG
It provides an auditing function on the static SQL statements in the host program.
This function is independent of the other preprocessor functions, and has no
bearing on whether the preprocessor run will complete satisfactorily.

The audit compares the static SQL statements with the SAA standard or the
SQL-89 standard. SQL-89 is a collective term that implies support of SQL as
defined by the Federal Information Processing Standards (FIPS) 127-1. It includes:
v ANSI X.3.135-1989 (without the Integrity Enhancement feature)
v ANSI X.3.168-1989
v ISO 9075-1989 (without the Integrity Enhancement feature)

In addition to basic syntax checking against SQL-89, Flagger optionally performs
semantics checking against SQL-89. This includes some integrity checking between
the SQL statements and the database. For example, it checks:
v Whether a statement contains column names or table names that do not

currently exist.
v Whether a statement contains ambiguity among column names, such as an

unqualified name for a column that exists in more than one of the tables in the
query.

v Whether a statement contains inconsistencies between the data types of the host
variables and their corresponding table columns.

Any statements that do not conform to the standards are flagged in the form of
information messages in the preprocessor output listing. Flagger, however, does
not force you to comply with the standards. The purpose of Flagger is to provide
guidance for those users who want to conform to these standards, so that they can
have SQL consistency across operating environments.

Note: The DB2 Server for VM product is a superset of the SQL-89 standard
without the Integrity Enhancement feature. For example, the datetime data
types are not part of SQL-89 and the CONNECT statement is not part of
SQL-89. The use of extensions such as these will generate information
messages for deviations from the standard specified in the SQLFLAG
parameter.

The Flagger messages generated at preprocessor time range from ARI5500 to
ARI5599, and are further classified as follows:
1. ARI5500-ARI5539 and ARI5570-ARI5599 are information messages that indicate

that an extension to the SQL-89 standard (nonconformance) has been found.
These start with “FLAGGER message.”

* prep parameters for program SAMPLE
ISOL(CS) *cursor stability isolation level
TIME(ISO)
BLOCK *indicate inserts and retrieves in groups

Figure 29. An Example of a Preprocessor Option File

Chapter 4. Preprocessing and Running a DB2 Server for VM Program 135

2. ARI5540-ARI5569 are warning messages that indicate a failure on the part of
Flagger itself.
In this event, SQL-89 semantics checking will be turned off and its syntax
checking may or may not be turned off, depending on the nature of the failure.
However, the preprocessor run itself will continue, and any inconsistencies
discovered by Flagger prior to the failure will be included in the output listing
of the run.

Improving Performance Using Preprocessing Parameters
When preprocessing your program, you can specify two performance parameters,
the SBLocK/BLocK/NOBLocK option, and the ISOLation level option. The format
and use of these options within the SQLPREP EXEC was discussed under
“Preprocessing the Program” on page 118. The next section discusses when you
would want to specify each of these options.

(Other performance considerations are discussed in the DB2 Server for VSE & VM
Database Administration manual.)

Selecting the Isolation Level to Lock Data
The database manager puts locks on data that your program works with, to keep
other users from reading or changing that data. You can specify either to lock all
the data that the current logical unit of work (LUW) has read, to lock just the row
or page of data that a cursor is currently pointing to, or to not lock any data being
read. This is called specifying the isolation level of the lock.

The isolation level used by an application is set using the ISOLation preprocessing
parameter. On SELECT, SELECT INTO, INSERT, searched UPDATE, and DELETE
statements, the WITH clause may be specified to override the value specified on
the preprocessing parameter.

If you choose to put a lock on all the data that your program’s current LUW has
read, this is called specifying isolation level repeatable read. Repeatable read locks are
held until the end of the LUW. If you choose to put a lock on just the row or page
of data that your cursor is pointing to, then you are specifying isolation level cursor
stability. With cursor stability locking, when the cursor moves, the system frees all
the data previously read by the program that was held by the lock. If you choose
not to lock the data that your program will read, this is called specifying isolation
level uncommitted read. With uncommitted read, no locks are held on the data being
read, and as a result, the data can be changed by other applications.

Both repeatable read and cursor stability provide you with the following data
isolation from other concurrent users:
v Your LUW cannot modify or read any data that another active LUW has

modified. Similarly, if your LUW has modified some data, no one else can
modify or read that data until your LUW has ended. Modify means to apply
INSERT, DELETE, UPDATE, or PUT commands; READ means to apply SELECT
or FETCH commands.

v If your LUW has a cursor pointing to a row of data, no other LUW can modify
that data. Similarly, your LUW cannot modify a row to which another user has a
cursor pointing.

In addition to the above, repeatable read locking provides you with the following
data isolation from other concurrent users:

136 Application Programming

v No other LUW can modify any row that your active LUW has read. Also, you
cannot modify any data that another active LUW, specifying repeatable read, has
read.

v You do not have to worry about your data being changed between reads, as
long as you do not end your LUW between those reads.

This extra isolation has its drawbacks, however. When you specify repeatable read
for data in public dbspaces with PAGE or ROW level locking, you reduce the
concurrency of the data. This means that other users may be locked out from the
data for a long time, causing delays in their programs’ executions.

If you specify cursor stability instead, you reduce these locking problems by
making the data more available. With this isolation level, the system does not hold
the locks as long. After a cursor has moved past a row or page of data, the lock on
that data is dropped. This increases concurrency so that other users can access data
faster.

Cursor stability can, however, cause some data inconsistencies. For instance:
1. If a user’s LUW reads data twice, it can get different results. This could happen

if another user modifies the data and commits the changes between read
operations.

2. A modification based on a prior reading can be incorrect. This can occur if
another LUW modifies the rows that a user has read and commits the changes
before that user can do the modification. (Note that when the user is retrieving
data in application programs, the only row that is safe from modification is the
one that is currently being pointed to by a cursor.)

3. If an SQL statement in the user’s LUW is traversing a table by way of an index,
the user might find the same row twice. (This case applies to FETCH cursors,
searched INSERT by way of subselect, and searched UPDATE with subselect
that traverse a table by way of an index.) This can occur because, after the
user’s statement reads the row the first time, another user can update the
column value that is indexed and commit the change. The change could cause
the committed row to be ahead of the row currently being retrieved by the
statement. The first user’s statement would then find the row again with its
updated index column value.

4. If an SQL statement in the LUW is traversing a table by way of an index, it can
fail to find a row (or rows) even if the row meets the selection criteria. (This
situation applies to FETCH cursors, Searched DELETE, Searched INSERT by
way of the subselect, and Searched UPDATE by way of the subselect that
traverse a table by way of an index.) This can occur because while the LUW is
reading, another user modifies the indexed column in the row and commits the
change (as above). The change could cause the committed row to be behind the
row the user’s statement is currently reading. Thus, the statement would not
find the row, even if the row met the selection criteria.

5. If you enter a SELECT statement to retrieve a single row, a cursor is opened
when the system processes the statement and is closed when the row is
returned. All PAGE and ROW level locks are released when the cursor is
closed; therefore, no locks are held after the row is returned. For single-row
processing using a SELECT statement with a fully qualified unique index, a
cursor is not opened and again no locks are held once the row has been
returned. As a result, applications which update a selected column based on
the values retrieved may have unexpected results because the lock was not
held for the duration of the LUW. For example:

Chapter 4. Preprocessing and Running a DB2 Server for VM Program 137

HOST_EMPNO = '000250'
EXEC SQL SELECT SALARY /* HOST_SALARY is 19180 */

INTO :HOST_SALARY
FROM EMPLOYEE
WHERE EMPNO = :HOST_EMPNO;

HOST_SALARY = HOST_SALARY + 1000; /* HOST_SALARY increased to 20180 */

EXEC SQL UPDATE EMPLOYEE /* UPDATE SALARY in EMPLOYEE */
SET SALARY = :HOST_SALARY; /* TABLE with HOST_SALARY */
WHERE EMPNO = :HOST_EMPNO;

EXEC SQL SELECT SALARY /* HOST_SALARY may not be 20180 */
INTO :HOST_SALARY /* because lock was not held for*/
FROM EMPLOYEE /* the duration of the LUW */
WHERE EMPNO = :HOST_EMPNO;

COMMIT WORK;

In the previous example, it is possible that two or more users could read the
salary column with the same value at approximately the same time. They
would then each increment the number and issue the UPDATE statement. The
second user would wait for the first user’s update to finish, and then overwrite
it with the same number.

Unlike RR or CS, uncommitted read does not provide any data isolation from
other concurrent users. Like CS though, concurrency is improved, although at the
risk of data inconsistency. UR can cause similar data inconsistencies as those
described for CS and should only be used when it is not necessary that the data
you are reading be committed.

An application using isolation level UR is still restricted to access only data for
which it has authorization. However, because it will be able to read uncommited
changes, it will be able to read additional rows which an application, with the
same authorization but using RR or CS, could not. This is illustrated by the
following example.

Rows of table:
A
B
C

<---D
E

Scenario: 1
U1 reads (using UR) A B
U2 inserts D
U1 continues reading C D E
U2 rolls back
-- U1 has read a non-existent row

Scenario: 2
U1 reads (using CS) A B
U2 inserts D
U1 continues reading C, must wait to read D
U2 rolls back
U1 continues reading E

Note: In scenario 1, U1 has read an extra row which U1 in
scenario 2 could not.

When should each of these options be chosen for your program? Usually, you
should specify repeatable read locking. Only use cursor stability if your program
causes or will cause locking problems. For instance, you would probably want to
use cursor stability for transactions that perform terminal reads without
performing a COMMIT or ROLLBACK, or programs that do bulk reading, because
it is handy for programs that browse through large amounts of data. For programs
that perform commits or rollbacks before issuing terminal reads, you should use
repeatable read locking, because they probably will not cause locking problems.

138 Application Programming

Also, any application that needs to protect itself against updates should also use
repeatable read locking. For programs where concurrency is wanted, for example,
data being queried simultaneous to being updated, you would use uncommitted
read locking. Of course, this would be for applications where data integrity was
not important because the data being read may not necessarily have been
committed. For single row processing (UPDATE and DELETE, for example) by
way of unique indexes, cursor stability performs no better, and may perform
worse, than repeatable read isolation.

One additional isolation level exists in DRDA protocol: Read Stability (RS). RS is
not supported by a DB2 Server for VSE & VM application server, but it is
recognized as a valid preprocessing option by the database manager. For more
information on this option, refer to the DB2 Server for VSE & VM SQL Reference
manual.

Upon receiving a request for the RS isolation level, an application server escalates
it to RR and proceeds without indicating the escalation to the application requester.

You can also mix isolation levels, to have your program set, change, and control its
own isolation level as it is running. You can specify mixed isolation level with the
USER option of the ISOLation preprocessor parameter, as detailed under
“Preprocessing the Program” on page 118.

If you choose this option, your program must pass the isolation level value to the
application server by a program variable. It must declare a one-character program
variable and must set this variable to the desired isolation level value before
executing SQL statements. For repeatable read, your program should set this
variable to R; for cursor stability, the variable should be set to C; and for
uncommitted read, the variable should be set to U. The program can change the
variable at any time so that subsequent SQL statements are executed at the new
isolation level value. However, if your program changes the isolation level while a
cursor is OPEN, the change does not take effect for operations on that cursor until
it has been closed and opened again. That is, until the cursor is closed all
operations on that cursor are executed at the isolation level value that was in effect
when the cursor was opened. Note that the changed isolation level will be used
(without error) for SQL statements not referencing the opened cursor.

If the program sets the isolation level variable to a value other than C, R or U, or if
it fails to initialize the variable, the system stops execution and returns an error
code in the SQLCA.

Table 12 shows the isolation level variable name for each of the host languages.

Table 12. Variable Names for Specifying Mixed Isolation Levels

Host Language Variable Name Example

assembler SQLISL SQLISL DS CL1

C SQLISL char SQLISL;

COBOL SQL-ISL 01 SQL-ISL PIC X(1).

Fortran SQLISL CHARACTER SQLISL

PL/I SQLISL DCL SQLISL CHAR(1);

Chapter 4. Preprocessing and Running a DB2 Server for VM Program 139

Note: If you forget to declare the isolation level variable in a PL/I program, the
PL/I compiler issues an informational message which can, in some
environments, be suppressed.

If you preprocess using DRDA protocol, the USER isolation level option is not
supported. In DRDA protocol, the application requester changes any USER
isolation level request to CS. If you preprocess using SQLDS protocol but later
invoke the package using DRDA protocol, the application server defaults to the CS
isolation level at run time. If a package is preprocessed and invoked using SQLDS
protocol, the isolation level setting is not affected.

Isolation level cursor stability or uncommitted read only has meaning for data in
public dbspaces with ROW or PAGE level locking. Data in private dbspaces or in
public dbspaces with DBSPACE level locking always uses repeatable read isolation.
However, programs which access such data and do not require repeatable read
should be preprocessed with cursor stability or uncommitted read. The data
concurrency requirements might change and cause the data to be moved to a
public dbspace with PAGE or ROW level locking. In this case, the program would
not need to be repreprocessed to run at isolation level cursor stability or
uncommitted read.

To use the features of CS or UR, data must reside in public dbspaces with PAGE or
ROW level locking. DML statements against private dbspaces or public dbspaces
with PAGE or ROW level locking under isolation level CS or UR are handled the
same as if isolation level RR were used.

When the system uses a dbspace scan (that is, does not use an index) to access a
table in a dbspace with ROW level locking using isolation level cursor stability, the
effect is the same as repeatable read. That is, no other LUW can update the table
until the logical unit of work performing the dbspace scan ends. Also, if an LUW
is updating a table, another LUW (using cursor stability) cannot access that table
with a dbspace scan until the updating LUW ends. This reduced concurrency for
dbspace scans does not apply to tables in dbspaces with PAGE level locking, or to
accessing tables through indexes. Because most database accesses will typically use
indexes, the reduced concurrency caused by dbspace scans should not occur
frequently.

The isolation level specification affects UPDATE and DELETE processing as well as
SELECT processing. For UPDATE and DELETE processing, the system acquires
UPDATE locks. UPDATE locks can be acquired for both cursor stability and
repeatable read isolation level settings. If the user actually wants to update or
delete the data, the UPDATE lock is changed to an EXCLUSIVE lock; otherwise,
the UPDATE lock is changed to a SHARE lock.

Note the following about UPDATE LOCKS:
v They are used for page or row locking, but not for dbspace locking.
v They apply to index pages or index keys only for the Searched DELETE

statement.
v For Positioned DELETE processing, the named cursor must have been declared

in the FOR UPDATE clause of the DECLARE CURSOR statement.
v For FETCH processing that uses repeatable read isolation level, these locks are

acquired only if certain predicates are present in the statement. See the DB2
Server for VSE & VM Database Administration manual for more information.

140 Application Programming

Internally generated SELECT, UPDATE, or DELETE statements use cursor stability
locking no matter what the isolation level is set to. (See “Enforcing Referential
Integrity” on page 295 for information on these statements). Conversely, data
definition statements such as CREATE, ACQUIRE, or GRANT, use repeatable read
locking no matter what the isolation level is set to. These statements, therefore,
should not play a role in your choice of isolation level.

Note: Catalog access for SQL statement preprocessing is also always done with
repeatable read locking.

Using the Blocking Option to Process Rows in Groups
You can insert and retrieve rows in groups or blocks, instead of one at a time. This
is called specifying the blocking option. Specifying one of the blocking options
(SBLock or BLock), improves performance for DB2 Server for VM application
programs that:
v Execute in multiple user mode, and
v Retrieve or insert multiple rows.

You can specify the blocking option as a DB2 Server for VM preprocessor
parameter, or as an option on the CREATE PACKAGE statement. After a program
has been preprocessed with the blocking option, all eligible cursor SELECTs and all
eligible cursor INSERTs within the program are blocked. You do not have to specify
a block size or block factor.

When using DRDA protocol, you can specify the block size by using the SQLINIT
EXEC. Performance is closely related to block size when using DRDA protocol.

The programs that would benefit the most from blocking are those that do
multiple-row inserts (with PUT statements) or multiple-row SELECTs (with FETCH
statements). In both cases, a cursor must be defined. (See “Retrieving or Inserting
Multiple Rows” on page 35; for more information on cursors.) Thus, a general rule
for blocking is USE BLOCKING FOR PROGRAMS THAT DECLARE CURSORS.

A program can use either PUT or FETCH statements without being sensitive to
whether the system is blocking. These statements work regardless of whether you
specified the blocking option. What information is returned in the SQLCA after
each PUT or FETCH, however, depends on whether blocking is in effect or not.

Remember that when you preprocess a program with the blocking option, all
eligible INSERT and SELECT cursors are blocked. You cannot specify blocking for
just INSERTs or for just SELECTs. If you specify the blocking option, it
automatically applies to both.

When are INSERT or SELECT statements not eligible for blocking? The database
manager sometimes overrides blocking for a particular cursor because of storage
limitations in the virtual machine, or because of SQL statement ineligibility. The
following SQL statements are ineligible for blocking and cause blocking to be
overridden automatically for the cursors they refer to:
v DECLARE CURSOR...FOR UPDATE
v Any DECLARE CURSOR statement with a related select-statement containing a

long string
v Any DECLARE CURSOR statement that has a subsequent DELETE...WHERE

CURRENT OF statement

Chapter 4. Preprocessing and Running a DB2 Server for VM Program 141

v Any DECLARE CURSOR statement that has a corresponding UPDATE...WHERE
CURRENT OF statement and the program is preprocessed with NOFOR
support.

The system also disqualifies blocking if it cannot fit at least two rows into a block.
(The number of rows that fit into a block may differ from one PUT/FETCH
statement to the next, even when such statements operate on the same table.)

The system does not halt the program when it overrides blocking. Instead, in each
of the above cases, it sets a warning flag in the SQLCA. The warning can be
detected by using WHENEVER SQLWARNING in the program. See “Using the
Automatic Error-Handling Facilities” on page 195 for more information on the
SQLCA and the SQL WHENEVER declarative statement.

Note: The DECLARE CURSOR... statement can also be written without the FOR
UPDATE OF clause, even though positioned updating is subsequently done.
(This is allowed when NOFOR support is invoked at preprocessor time.) In
this case, blocking is also ineligible.

The system also overrides blocking for all programs running in single user mode.
In this instance, the system does not usually return a warning to the SQLCA. A
warning is returned to the SQLCA for programs running in single user mode if:
v The program is preprocessed with the BLocK option
v An SQL statement that is being processed dynamically (with PREPARE) is

disqualified for blocking.

The DBS Utility may get blocking ineligible warnings when it is run in single user
mode because it is preprocessed with the BLocK option, but uses PREPARE to
process SELECT statements.

Note: Always CLOSE a cursor before issuing a COMMIT statement, especially
when blocking. If you commit changes before closing an insert cursor that is
being blocked, you receive an error. If you are using DRDA protocol and if
the HOLD option is in effect, your application does not have to close the
cursor before committing the LUW.

Imposing Blocking Restrictions:

1. The length of host variables in the SQLDA or host_variable_list cannot be
changed after the first FETCH or PUT when blocking.

2. The data type of host variables in the SQLDA or host_variable_list cannot be
changed after the first FETCH or PUT when blocking.

3. The number of data elements in the host_variable_list or SQLDA cannot be
changed after the first FETCH or PUT when blocking.

4. If a COMMIT is issued while a blocking PUT cursor is open, an error occurs.

When blocking is active, a single SQLCA is returned with each block of rows. This
SQLCA is returned to the application program with the last row in the block.
However, for the final block of rows, the FETCH that returns the “not found”
condition (SQLCODE = +100 and SQLSTATE='02000') will return the SQLCA. (For
more information on SQLCA refer to “Using the SQLCA” on page 197). This has
the following implications for application programming:
v No warning conditions are returned to the application until the SQLCA is

returned.

142 Application Programming

For example, if SQLWARN3 is set (to indicate that the application has fewer
target variables in the INTO clause than the number of items in the SELECT
list), the application will not be notified until either the last row in a block or the
“not found” condition is returned.

v If SQLWARN1 (truncation occurrence) is set, it is impossible to tell from the
SQLCA information which row (or rows) in a block caused the warning
condition. However, if the application resets the indicator variable to 0 before
each fetch, and then examines the indicator variable after each fetch, truncation
can be detected on an ongoing basis.

Using the Blocking Option in DRDA Protocol: When the database manager is
acting as an application requester in DRDA protocol, no blocking is provided on a
PUT statement. Each PUT statement results in the execution of an INSERT
statement. Blocking of inserts is not supported when your application is accessing
a remote application server using DRDA protocol. If you are loading a large
amount of data while using DRDA protocol, transfer the data through some other
means, and then use the local utility to load it into the application server.

In DRDA protocol, the block size for FETCH statements is determined by the
QRYBLKSIZE parameter in SQLINIT. For information on SQLINIT, refer to the
DB2 Server for VSE & VM Database Administration manual.

Using the INCLUDE Statement

Including External Source Files
The inclusion of external source files is indicated to the DB2 Server for VM
preprocessor by an embedded SQL statement, the INCLUDE statement, in the
user’s source code. This statement can appear anywhere that an SQL statement can
appear, and indicates within the source code where the external source is to be
placed. The syntax for the INCLUDE statement is as follows:

where text_file_name is a 1- to 8-character identifier that identifies the file name of
the external source file. Text_file_name cannot be delimited by double quotation
marks. The first character must be a letter (A-Z), $, #, or @; the remaining
characters must be letters, digits (0-9), $, #, @, or underscore (_), unless further
restricted by the operating system. Also, text_file_name cannot be SQLCA or
SQLDA, because these are special INCLUDE keywords.

Including Secondary Input
You can use the INCLUDE statement to obtain secondary input from a CMS file. If
a source program input to a DB2 Server for VM preprocessor uses the INCLUDE
facility, any files to be used as secondary input must be accessed by the user. A
search of all accessed CMS mini-disks for the file name and file type is conducted
in standard CMS search order and the first match determines the file mode. This
filename, filetype, and filemode are used as the secondary input or external source.
The CMS file containing the secondary input statements must be fixed-length,
80-character records.

The INCLUDE statement causes input to be read from the specified file name until
the end of the file, at which time the SYSIN input resumes. The file to be included
must have an appropriate file type:

�� INCLUDE text_file_name ��

Chapter 4. Preprocessing and Running a DB2 Server for VM Program 143

ASMCOPY assembler

CCOPY C

COBCOPY COBOL

FORTCOPY Fortran

PLICOPY PL/I

The file mode is determined by the search of the virtual machine’s accessed
minidisks. If the INCLUDE statement specifies a file name that is not located on
any user-accessed CMS mini-disk, an error will result.

Secondary input must not contain preprocessor INCLUDE statements other than
INCLUDE SQLDA or INCLUDE SQLCA, although it may contain both host
language and SQL statements. If an INCLUDE statement is encountered, an error
will result.

Compiling the Program
After you successfully preprocess your program, you can compile it using your
normal host language compiler. By preprocessing, you have already done all the
translating that the program needs for the database manager. Just use the new
code that you got after you preprocessed. Compile this code as you would any
other program, using the usual compilers.

This book does not cover the specifics of compiling your host-language code.
However, there are several special rules for SQL programs, depending on the host
language, that you must follow:
v If your PL/I application program contains DBCS data, you must specify the

GRAPHIC option for the compiler. If your COBOL application program contains
DBCS data or is reentrant, the output of the DB2 Server for VM preprocessor
must be processed by the COBOL II Release 2 (or later) program.

v If the QUOTE option is used for the DB2 Server for VM COBOL preprocessor, it
should also be used for the COBOL compiler.

v If the NOSEQuence option is used for the DB2 Server for VM C preprocessor,
the NOSEQ and MARGINS (1,80) options must be used with the C compiler.

v If the compiler provides a mechanism whereby run-time program interrupts are
trapped before control returns to CMS, the database manager may not identify
that an abnormal termination has occurred. As a result, an implicit COMMIT is
executed instead of an implicit ROLLBACK. See the host language appendixes
for a discussion of program interrupts.

Link-Editing and Loading the Program
After compilation, programs must be link-edited and loaded before they can be
run.

Link-Editing the Program with DB2 Server for VM TEXT Files
To enable your program to communicate with the application server, you must
link-edit your program with one or more DB2 Server for VM TEXT files, one of
which is the resource adapter stub. Every DB2 Server for VM application program
must be link-edited with this stub; Fortran and COBOL programs need to be
link-edited with additional TEXT files.

144 Application Programming

Using the Resource Adapter Stub Routine
The resource adapter stub routine has a file name of ARIRVSTC, but is invoked by
its entry point name ARIPRDI. To link-edit this stub routine successfully with the
user program, you must INCLUDE ARIRVSTC or place the TEXT files in a CMS
TXTLIB. This will make the entry point ARIPRDI known to the link-edit process.

Using Other TEXT Files
Other files that need to be link-edited, depending on the host language, include:
v For all programs written in Fortran, you must also link-edit the TEXT files

ARIPEIFA and ARIPSTR. If the Fortran program uses the TEXT file ARISSMF,
this file must also be link-edited (refer to “Examining the SQLCA” on page 199
for more information).

v For all reentrant programs written in COBOL, you must also link-edit the TEXT
file ARIPADR4. Non-reentrant COBOL programs may continue to link-edit the
TEXT file ARIPADR until they are repreprocessed and recompiled. After, they
must link-edit the TEXT file ARIPADR4.

v For all programs that use the DBS Utility, you must also include ARIDBS which
is a member of ARISQLLD LOADLIB. (For information on the DBS Utility refer
to the DB2 Server for VSE & VM Database Services Utility manual.)

v For all programs (except Fortran programs) that use the TEXT file ARISSMA,
you must also link-edit this file (refer to “Examining the SQLCA” on page 199
for more information).

If you receive an unresolved external reference message for a module name that
begins with ARI or SQL, check the link process to ensure that all required extra
linkage modules are included.

Some of these modules contain entry points with names that are different from the
module name. The code generated by the DB2 Server for VM preprocessor can
reference one of these entry points, depending on the SQL statements in your
application.

Including the TEXT File in the Link-Editing

Using the CMS LOAD Command
One way to link-edit these TEXT files to your program is to INCLUDE them after
your program name in the CMS LOAD command. Then, when you load your
program, the CMS linkage editor automatically links your program to the TEXT
files relocatable modules that you specified, and resolves virtual storage addresses
among the TEXT files.

For example, SAMPLE1 is the user’s program name and ARIRVSTC is the TEXT
file in the CMS LOAD command below:

To see other examples of REXX EXEC’s that use the CMS LOAD command, see
any of the REXX EXEC’s listed in Table 3 on page 21.

Note that if the user machine has READ access to the production minidisk, the
CMS LOAD command will automatically load the needed TEXT file, searching all
accessed CMS minidisks in ascending order (A through Z) for TEXT files that it
needs. For additional information about CMS LOAD, see the VM/ESA: CMS
Command Reference manual.

LOAD SAMPLE1 ARIRVSTC

Chapter 4. Preprocessing and Running a DB2 Server for VM Program 145

Using the CMS TXTLIB Command
Instead of specifying ARIRVSTC in the CMS LOAD command, you can put
ARIRVSTC and all your application TEXT files into a TXTLIB. To create a TXTLIB,
enter:
TXTLIB GEN my-lib ARIRVSTC program-name . . .

To add new programs to a TXTLIB, enter the following command:
TXTLIB ADD my-lib program-name2 program-name3 . . .

After a program is in a TXTLIB, enter the following commands to perform the
link-edit:
GLOBAL TXTLIB my-lib
LOAD program-name

For more information about TXTLIB, see the VM/ESA: CMS Command Reference
manual.

Creating a Load Module Using the CMS GENMOD Command
All of the TEXT files are on the DB2 Server for VM production minidisk (Q-disk).
After loading the DB2 Server for VM application, you should create a module by
issuing the CMS GENMOD command. This module can be used in multiple user
mode, but is not required; it is required, however, to run in single user mode. For
example, to create a module for an assembler application program called
SAMPLE1 that has been compiled and added to a TXTLIB called LIBRARY1, enter
the following commands:
GLOBAL TXTLIB LIBRARY1
LOAD SAMPLE1
GENMOD SAMPLE1

This creates a CMS file with a file name of SAMPLE1 and a file type of MODULE.

To see other examples of REXX EXEC’s that use the CMS GENMOD command, see
any of the REXX EXEC’s listed in Table 3 on page 21.

Running the Program

Using a Consistency Token
Consistency tokens ensure that a program’s load module and the database package
are used together. When preprocessing, you can instruct the preprocessor to place a
consistency token in both the load module and the package (see CTOKEN
parameter on page 126). If the two tokens do not match, the application server
prevents the program from running.

Note: If you inadvertently forget to compile or link-edit a new version of a
program, you can run an old version of a program with a new version of
the package. Conversely, with multiple application servers, you can
inadvertently run a new version of a program with an old version of the
package. In either situation, you will probably get program errors or
incorrect results if you have not used consistency tokens.

Loading the Package and Rebinding
The package that the preprocessors stored carries out the SQL request. When the
application server loads the package, it checks that the package is still valid. A

146 Application Programming

package may not be valid if one of its dependencies has been dropped. For
example, some index that the package uses may have been dropped.

Packages are also invalidated when primary keys and referential constraints are
added to, dropped from, activated, or deactivated on tables that the modules
depend on. The following rules apply:
v If a primary key is added, dropped, activated, or deactivated, all packages that

have a dependency on the parent table will be invalidated. This includes any
tables that have a foreign key relationship with the parent table.

v If a foreign key is added, dropped, activated, or deactivated, all packages that
have a dependency on the dependent table or parent table will be invalidated.

The system has an internal change management facility that keeps track of whether
packages are valid or not. If a package is valid, the system begins running the
program; if the package is not valid, the system tries to re-create it. The original
SQL statements are stored with the package when you preprocess the program.
The system uses them to automatically bind the program again. It does this
dynamically (that is, while it is running). If the rebinding works, a new package is
created and stored in the database and the system then continues execution of the
program. If the rebinding does not work, an error code is returned to the program
in the SQLCA, and the program stops running.

A successful rebinding has no negative effect on your program except for a slight
delay in processing your first SQL statement. To minimize this delay, you can use
the DBSU REBIND PACKAGE command to rebind the invalid package after it has
been invalidated, but before it is executed. See the DB2 Server for VSE & VM
Database Services Utility manual for information on this command.

Using Multiple User Mode
When the database manager has been started in multiple user mode, the user
machine should have IPLed CMS and been initialized for DB2 Server for VM
processing (by the SQLINIT EXEC).

If the program has any input or output files, file definitions may be required. The
CMS FILEDEF command is described in the VM/ESA: CMS Command Reference
manual.

In addition, if your application was compiled using a Language Environment
Compiler, the Language Environment must be available at runtime for your
application to use the dynamic library routines. One way to do this is by including
SCEERUN LOADLIB on the GLOBAL LOADLIB list. For more information, see the
compiler documentation.

If a module was created, you can execute the program by specifying the name of
the module followed by any user program parameters. For example, the following
command starts assembler program SAMPLE1 in multiple user mode, and passes
the user parameters directly to the program:

SAMPLE1 parm1 parm2

Chapter 4. Preprocessing and Running a DB2 Server for VM Program 147

If a module was not created, you can execute the program by first specifying the
CMS LOAD command, as described in the previous section, and then the CMS
START command. For example, to execute the program SAMPLE1, enter:

where:

SAMP is the control section name or entry point name that receives
control at run time. If an asterisk (*) is used (instead of a name),
control is passed to the default entry point.

parm1 parm2 are parameters passed to the program. If parameters are passed,
the control name or section name or * operand must be specified;
otherwise the first parameter is taken as the entry point.

When parameters are passed on the START command, the requirements of both
CMS and the language of the application program must be met. See the VM/ESA:
CMS Command Reference manual, for a description of the CMS START command
and the appropriate language guide or reference manuals for details on how to
pass parameters.

Using Single User Mode
Single user mode application programs are programs that run in the same machine
as the DB2 Server for VM code and that are under the control of the database
manager. In this case, the user machine and the database machine are the same.

Single user mode programs are invoked by starting the application server with the
SQLSTART EXEC. (Before invoking the system, you must enter IPL CMS.) You
must specify both the mode (SYSMODE=S) and your program name
(PROGNAME=name) when you enter the SQLSTART EXEC.

When SQLSTART is invoked, the systems loads the program (identified by the
PROGNAME parameter) and passes control to it after the system is initialized. For
single user mode, the module must be available.

The DB2 Server for VSE & VM Operation manual lists all the initialization
parameters you can specify when you start the system in single user mode. A
system programmer can also determine the best initialization parameters for your
system and pass them on to you.

The following is an example of the SQLSTART EXEC for invoking programs in
single user mode with no user parameters:

Note: If your program or the database manager ends abnormally, you may receive
a minidump (depending on what initialization parameters were specified).
Mini-dumps are described in the DB2 Server for VSE & VM Diagnosis Guide
and Reference manual.

LOAD SAMPLE1 ARIRVSTC
START SAMP parm1 parm2

SQLSTART DB(SQLDBA) PARM(SYSMODE=S,LOGMODE=A,DUMPTYPE=N,PROGNAME=SAMPLE1)

148 Application Programming

Specifying User Parameters in Single User Mode
When starting the database manager in single user mode, you can also specify user
parameters to be passed to your application program using the PARM keyword of
the SQLSTART EXEC. The SQLSTART EXEC purges the CMS program and console
stacks. Thus, any program run in single user mode cannot rely on console or
program stack input.

Place a slash (/) between the initialization parameters and the user parameters. For
example:

Note: Only the first 130 characters of the command line are read by CMS. The
exception to this rule occurs when SQLSTART is called from a user-written
EXEC; then CMS reads the first 256 characters. If you specify many
initialization parameters and user parameters, they will not fit on the
command line. Thus, you must use a CMS file for some of the parameters.
Because user parameters cannot be specified in a CMS file, you should
specify the initialization parameters in the CMS file, and the user parameters
on the command line.

A program written in C, PL/I, COBOL or Fortran requires an interface routine to
process the user parameters.

Distributing Packages across Like and Unlike Systems
To run your application program on another DB2 Server for VSE & VM database
manager, you can simply distribute its load module and the DB2 Server for VSE &
VM package. (You do not have to distribute the source code and then preprocess
and compile it on the other system). Reload the package to all application servers
that your package accesses, and send the load module to all DB2 Server for VSE &
VM application requesters that your program accesses. You can unload the package
to be distributed from the application server into a file, and subsequently reload
the file into the new application server. Only the owner of the package or the
database administrator can unload or reload the package.

If the package is distributed among application servers that are at different release
levels of the system or are non-DB2 Server for VM or DB2 Server for VSE servers,
a run-time error occurs if the package uses a feature that is not available on the
application server on which the package was reloaded. To ensure that the load
module and the package that you are distributing are meant to be used together,
use the preprocessor parameter CTOKEN to place the same consistency token in
both the load module and the package. Refer to “Preprocessing the Program” on
page 118. If the two tokens do not match, the application server stops the program
from running. For information on distributing packages on both like and unlike
systems, and on distributing packages using DRDA protocol, refer to the DB2
Server for VSE & VM Database Services Utility manual.

SQLSTART DB(SQLDBA)
PARM(SYSMODE=S,LOGMODE=A,DUMPTYPE=N,PROGNAME=SAMPLE1/parm1,parm2)

Chapter 4. Preprocessing and Running a DB2 Server for VM Program 149

150 Application Programming

Chapter 5. Preprocessing and Running a DB2 Server for VSE
Program

Defining the Steps to Execute the Program . . . 152
Using 31-Bit Addressing 152
How DB2 Establishes User IDs for CICS/VSE
Transactions 153

User IDs for Remote CICS/VSE Transactions 154
Using Batch for Remote CICS/VSE Transactions 154

Preprocessing the Program 154
Preprocessing by Mode 156

Using Multiple User Mode 156
Using Single User Mode. 157

Defining the Preprocessing Parameters 158
Using the Preprocessor Option Member . . . 168
Using the Flagger at Preprocessor Time. . . . 168
Using the CICS/VSE Translator 169
Improving Performance Using Preprocessing
Parameters 170

Selecting the Isolation Level to Lock Data 170
Using the Blocking Option to Process Rows
in Groups 175

Using the INCLUDE Statement 177
Including External Source Members 177
Including a Library Source 177

Compiling the Program 178

Link-Editing and Loading the Program 178
Link-Editing the Program with Supplementary
Information 178

Including Relocatable Modules 178
Including CICS/VSE Procedures 178
Including Extra Linkage Modules 179

Running the Program 180
Using a Consistency Token 180
Loading the Package and Rebinding. 180
Running by Mode 180

Using Multiple User Mode 180
Using Single User Mode. 181

Running under CICS/VSE Support 181
Accessing Other DB2 Family Application
Servers 182

Installing Applications that Access the Database
Manager 182

Installing a Batch Application 182
Installing an Online CICS/VSE Application . . 183
Distributing Packages across Like and Unlike
Systems 185
Creating a Package Using CBND 186

© Copyright IBM Corp. 1987, 2001 151

Defining the Steps to Execute the Program
After you code your program, you must follow a series of steps to prepare it to be
run. The number of steps varies depending on the host language of the program
and the environment in which the program is running. However, the steps below
are common in each case. In order to run your DB2 Server for VSE application
program you must:
v Preprocess the SQL code
v Compile the program
v Link-Edit and Load the program
v Run the program.

If the program is an online program, the CICS statements have to be “translated”
before the program is compiled.

When the database manager was installed, your installation may have optionally
chosen to generate the starter database. The statements
// EXEC PROC=ARIS72DB
// EXEC PROC=ARIS72PL

are contained in single user mode job control examples throughout this section in
order to identify the database and the libraries used.

The ARIS72DB procedure contains the DLBL statements required for accessing the
starter database. The ARIS72PL procedure identifies the DB2 Server for VSE
production libraries. To access a different database, you must substitute a different
procedure (or your own DLBL statements) for ARIS72DB. To access your own
libraries, you must substitute a different procedure (or your own VSE LIBDEF
statements) for ARIS72PL.

Determine if the DB2 Server for VSE database and library definition statements are
required by contacting the person who installed the system. Or, refer to the DB2
Server for VSE Program Directory. This manual contains a description of the
database and library definition job control statements required for a database, and
the product-supplied procedures available.

Using 31-Bit Addressing
The application server runs in 31-bit addressing mode (AMODE 31). In single user
mode, the database manager transfers control to the application in the addressing
mode established during link editing of the program. The database manager
continues to operate in 31-bit addressing mode when control returns from the
application program.

If you are writing a multiple user mode application, your application is not
affected by the addressing mode of the application server.

Refer to the DB2 Server for VSE System Administration manual for information on
single user mode and user exits.

152 Application Programming

How DB2 Establishes User IDs for CICS/VSE Transactions
Online DB2 Server for VSE transactions need not issue an SQL CONNECT to
establish the user id within the database manager. When a transaction does not
issue a CONNECT statement with the “userid IDENTIFIED BY password” clause,
DB2 Server for VSE online support attempts to establish the user ID for the
transaction.

This implicit CONNECT capability is useful if your installation requires its
terminal users to sign-on using the CESN transaction. For many DB2 Server for
VSE transactions, your installation might consider the sign-on verification
sufficient. It may also be useful if your installation has just installed the system,
and finds it convenient to have all users identified by one name (for example,
TESTUSER).

DB2 Server for VSE online support establishes a user ID for CICS/VSE transactions
as follows:
1. If the transaction issues an SQL CONNECT statement with the “userid

IDENTIFIED BY password” clause, the user ID is established explicitly for the
application.

2. If the transaction does not issue such a CONNECT statement, the online
support attempts to establish the user ID implicitly as follows:
a. If the transaction had a user ID established for a previous logical unit of

work, and the previous logical unit of work did not specify the RELEASE
option for COMMIT WORK or ROLLBACK WORK, that user ID is used.
(Remember that the connection to the application server is dropped every
time a logical unit of work ends with release; thus, the user ID has to be
re-established if the transaction has more than one logical unit of work
ending with release.) Otherwise...

b. If the user has signed on using the CESN transaction and the transaction is
associated with a terminal, the sign-on user ID is used for the user ID.
Otherwise...

c. The user ID that was specified as an input parameter to the transaction that
enabled the DB2 Server for VSE online support to a particular server
becomes the user ID. This transaction could be either CIRB or CIRA. The
person that invoked CIRB or CIRA will know what the user ID is.
However...

d. A user ID need not be specified when CIRB or CIRA is invoked. It is an
optional parameter. If no user ID was specified, and none of the previous
cases applied, the user ID established for your transaction is CICSUSER.

Once the user ID is determined as described above, one more requirement must be
met in order to successfully complete the connection to the application server.
Either the specific user ID must have been granted CONNECT authority or
“ALLUSERS” must have been granted CONNECT authority. “ALLUSERS” is a
special user ID that permits any user ID to be implicitly connected without having
been specifically granted CONNECT authority. “ALLUSERS” can be used by the
DBA to turn on or off the implicit connect capability.

Earlier in this book, it was recommended that you always explicitly connect to the
application server to avoid confusion. However, it is recognized that many
installations have terminal operators that need not be aware of DB2 Server for VSE
user ID or authorization capabilities. In these cases, the DB2 Server for VSE

Chapter 5. Preprocessing and Running a DB2 Server for VSE Program 153

implicit CONNECT support can be very useful. For more details on the CICS
transaction environment, see the DB2 Server for VSE & VM Database Administration
manual.

User IDs for Remote CICS/VSE Transactions
For online DB2 Server for VSE transactions which are accessing a remote server
and which issued an SQL CONNECT statement with the “userid IDENTIFIED BY
password” clause to establish the user ID within the database manager, the user ID
is established explicitly for the transaction.

For online DB2 Server for VSE transactions which are accessing a remote server
and which did not issue an SQL CONNECT statement with the “userid
IDENTIFIED BY password” clause to establish the user id within the database
manager, the Online Resource Adapter will attempt to establish the user ID for the
transaction implicitly as follows:
1. If the transaction had a user ID established for a previous remote logical unit of

work, and the previous logical unit of work did not specify the RELEASE
option for COMMIT WORK or ROLLBACK WORK, and the transaction did not
switch to another application server, that user ID and its corresponding
password are used. (Remember that every time a logical unit of work ends
with RELEASE or the transaction switched to another application server, and
you enter another SQL statement, you are implicitly connected as the CICS
signon userid. Therefore, the user ID has to be re-established if the transaction
has more than one logical unit of work ending with RELEASE or if the
transaction is switching application servers.)

2. The user ID returned by the CICS ASSIGN command is used for the user ID.

Using Batch for Remote CICS/VSE Transactions
Application programs running in batch can connect to remote application servers,
process some work, and then CONNECT to another application server (local or
remote) and do more processing.VSE Batch application programs which are
accessing a remote server and use the SQL CONNECT statement, can manipulate
and access remote data managed by application servers. The CONNECT statement
must be the first SQL statement issued by the Batch application. The VSE Batch
application only accesses one remote database per unit of work.

The current unit of work must be completed by using the COMMIT or
ROLLBACK statements before the CONNECT statement can be used to switch to
another userid or application server.

Before a batch application program can access a remote application server, the
following tasks must be completed:
v VSE TCP/IP support is installed and enabled
v The Dbname Directory has been updated to identify the remote application

server being accessible through TCP/IP
v Update the SQLGLOB file with default parameters for userids accessing remote

servers. This task is optional.

Preprocessing the Program
Preprocessing performs the following actions :

154 Application Programming

v It changes the SQL source code so that it can be processed during host language
compiling

v It does either or both of the following:
– It converts the SQL statements into a package, and binds the package to the

database.
– It creates a bind file that can subsequently be used by the online utility

(CBND) to create a package in a remote (or local) database.

The preprocessor replaces all the SQL statements in the program with host
language code that invokes the new package. The new version of the program also
contains the SQL statements in comment form. The package, created either by the
preprocessor or by CBND, contains information to carry out the SQL requests
made by the program. The database manager follows the best access path to the
data for each SQL statement in the program, using available indexes and data
statistics of which the system keeps track.

When the program is run, the new code calls the system to handle each SQL
statement. It also links the program to the application server and translates
messages and statements between the two.

The preprocessors supplied with the database manager have the following
program names:

ARIPRPA - Assembler Preprocessor
ARIPRPB - C Preprocessor
ARIPRPC - COBOL Preprocessor
ARIPRPF - Fortran Preprocessor
ARIPRPP - PL/I Preprocessor

You preprocess your program to prepare it to use the system. To preprocess your
program, you invoke the appropriate preprocessor through VSE job control
statements. A job control ASSGN SYSIPT statement should point to your source
program. Other job control statements must point to where the preprocessor
should place the modified source-program output (ASSGN SYSPCH) and printed
output (ASSGN SYSLST).

You can suppress SYSPCH and SYSLST output through NOPRINT and
NOPUNCH parameters to the preprocessor.

The preprocessor requires the job control statement DLBL SQLGLOB. In addition,
when you want the preprocessor to generate a bind file, job control statements
DLBL SQLBIND and DLBL BINDWKF are required. These DLBL statements must
be provided in either the preprocess job control or the system standard label
subarea. For more information see “Creating a Package Using CBND” on page 186.

You can supply preprocessor parameters through the VSE EXEC statement PARM
keyword. The preprocessor parameters are described later in this chapter.

If the preprocessor encounters an SQL error, it inserts statements in the modified
source code that cause a subsequent compile (or assemble) to fail.

If the preprocessor encounters a severe error in an SQL statement, all processing
stops. Syntactic checking is only performed on subsequent SQL statements if the
error is not severe. The preprocessor also puts statements in the preprocessed

Chapter 5. Preprocessing and Running a DB2 Server for VSE Program 155

program which will cause a subsequent compile to fail. If successful, the
preprocessor places an entry in the SYSTEM.SYSACCESS catalog to record the
newly created package.

Different job control is required to invoke the preprocessors depending on whether
the system is running in multiple user or single user mode.

Preprocessing by Mode
Prior to invoking any of the preprocessors, data sets for input, output, and work
files must be assigned. Data sets used by each of the preprocessors are shown in
Table 13 and Table 14. Many VSE systems may already have the logical units
assigned and data set labels defined during the IPL procedure.

Table 13. Data Sets Required by All Preprocessors

Data Set Used For

SYSIPT Source input is read from here

SYSPCH Modified source output is written here

SYSLST Print (report) output is written here

SQLGLOB CHARNAME and DBCS options are obtained from this VSAM file

SQLBIND Bind files are written to this VSAM file (needed only if the bind
preprocessor option is specified).

BINDWKF A VSAM work file used when performing VSAM I/O against the bind file
(needed only if the bind preprocessor option is specified).

Table 14. Work Files Required for Each Preprocessor

Preprocessor Data Set Requirement

Assembler SYS001 The file must be the same size as the source input file.

C SYS001 The file must be the same size as the source input file.

COBOL SYS001 One logical record for each line of source code plus about 10 records for each
SQL statement. Also, add an allowance for diagnostic messages.

SYS002 Approximately 20 to 60 logical records for each SQL statement. The number
you should reserve depends on the complexity of the SQL statement —
particularly the number of host variables referenced.

SYS003 Approximately 10 to 40 logical records for each SQL statement. (This number
also depends on host variable references.)

SYS004 The file must be the same size as the source input file.

Fortran SYS001 One logical record for each line of source code plus about 10 records for each
SQL statement. Also, add an allowance for diagnostic messages.

SYS002 Approximately 20 to 60 logical records for each SQL statement. The number
you should reserve depends on the complexity of the SQL statement —
particularly the number of host variables referenced.

SYS003 The file must be the same size as the source input file.

PL/I SYS001 The file must be the same size as the source input file.

Using Multiple User Mode
When invoking any preprocessor in multiple user mode, it is recommended that
you specify SIZE=AUTO.

156 Application Programming

Figure 30 shows generic job control that invokes a preprocessor in multiple user
mode.

Using Single User Mode
When invoking any preprocessor in single user mode, you must specify
SIZE=AUTO. The job control for single user mode initializes the system with the
preprocessor name and desired parameters. Figure 31 shows generic job control
that invokes a preprocessor in single user mode:

The job control starts the system and invokes the preprocessor. The EXEC
statement initializes the system in single user mode and passes to it (as a
parameter) the name of the preprocessor (ARIPRPx). Note that the slash (/) is
actually written in the EXEC statement. It separates the general DB2 Server for
VSE options (such as SYSMODE and PROGNAME) from the preprocessor options
(such as PREPNAME and USERID). For prepparms, specify desired preprocessor
parameters; the parameters are in the following section.

The DB2 Server for VSE & VM Operation manual lists all the DB2 Server for VSE
initialization parameters for single user mode. However, the person who installs
the system should determine what the best initialization parameters for your
installation are, and pass these on to you.

Note: COBOL programs invoking COBOL SORT cannot be run in single user
mode.

// JOB jobname
// ASSGN SYSIPT,cuu *-- } Optional - may be
// ASSGN SYSPCH,cuu *-- } assigned by
// ASSGN SYSLST,cuu *-- } standard label
// ASSGN SYSxxx,cuu *-- Preprocessor work files
// DLBL SQLGLOB,....,DISP=(OLD,KEEP) *-- } Optional - may be
// DLBL SQLBIND,....,DISP=(OLD,KEEP) *-- } provided by
// DLBL BINDWKF,.... *-- } standard label
*
// EXEC PGM=ARIPRPx,SIZE=AUTO,PARM='prepparms'

.

. Input card stream if SYSRDR and SYSIPT are

. assigned to the same device or file

.
/*
/&

Note:
1. JCL must be changed to specify the correct Device address and Library definitions
2. Replace ARIPRPx with preprocessor name
3. PrepParms are discussed in “Defining the Preprocessing Parameters” on page 158.
4. You can code your own LIBDEF statements.

Refer to the DB2 Server for VSE Program Directory for more information on coding LIBDEF statements.
5. You can replace the input card stream with the READ MEMBER statement if the source file has been

cataloged as membertype A.

Refer to the DB2 Server for VSE Program Directory for more information on the READ MEMBER
statement.

Figure 30. Invoking the DB2 Server for VSE Preprocessor in Multiple User Mode

Chapter 5. Preprocessing and Running a DB2 Server for VSE Program 157

Defining the Preprocessing Parameters
The following are parameters for all DB2 Server for VSE preprocessors unless
otherwise noted.

Program Preparation Parameters

�� PARM= ' PREPname= package_id
collection_id.

�

� ,USERid= authorization_name/password
,DBNAME= server_name

�

� '
,PrepFile= (membername)

.membertype
prepparms

��

prepparms:

,APOST

(1)
,Quote

,NOBIND

(2)
,BIND

,NOBLocK

,BLocK ,CCSIDGraphic (integer)
�

// JOB jobname
// EXEC PROC=ARIS72DB *-- DB2 for VSE Starter database
// EXEC PROC=ARIS72PL *-- Library definition
// ASSGN SYSIPT,cuu *-- } Optional - may be
// ASSGN SYSPCH,cuu *-- } assigned by
// ASSGN SYSLST,cuu *-- } standard label
// ASSGN SYSxxx,cuu *-- Preprocessor workfiles
// DLBL SQLGLOB,....,DISP=(OLD,KEEP) *-- } Optional - may be
// DLBL SQLBIND,....,DISP=(OLD,KEEP) *-- } provided by
// DLBL BINDWKF,.... *-- } standard label
*
// EXEC PGM=ARISQLDS,SIZE=AUTO,PARM='SYSMODE=S,LOGMODE=A, *

PROGNAME=ARIPRPx/prepparms'
.
. Input card stream if SYSRDR and SYSIPT are
. assigned to the same device or file
.

/*
/&

Note:
1. JCL must be changed to specify the correct Device address
2. Replace ARIPRPx with preprocessor name
3. PrepParms are discussed in “Defining the Preprocessing Parameters”.

Figure 31. Invoking the DB2 Server for VSE Preprocessor in Single User Mode

158 Application Programming

�
,CCSIDMixed (integer) ,CCSIDSbcs (integer)

�

�
,CHARSUB (Sbcs)

Mixed
Bit

,NOCHECK

,CHECK
,ERROR

(1)

,COB2

(1)

,COBRC
�

�
,CTOKEN (NO)

,CTOKEN ()
NO
YES

,DATE (EUR)
ISO
JIS
LOCAL
USA

,NOEXIST

,EXIST
�

�
,EXPLAIN (NO)

,EXPLAIN (NO)
YES

(3)
,NOFOR

(4)

,DYNALC

Notes:

1 COBOL only (DB2 Server for VSE only).

2 Ignored by Fortran (DB2 Server for VSE only).

3 Implied if STDSQL(89) is specified for DB2 Server for VSE.

4 COBOL, PL/I, C, and Assembler only.

prepparms (continued):

,NOGRaphic

(1)
,GRaphic

,ISOLation (RR)

,ISOLation (CS)
RR
USER

,KEEP

,REVOKE
�

�
,LABEL (label_text)

,LineCount (60)

,LineCount (integer)

,PACKAGE

,NOPACKAGE
�

�
,PRint

,NOPRint

,PUnch

,NOPUnch

,REPLACE

,NEW

,SEQuence

(2)
,NOSEQuence

�

�
(3)

,NOSQLCA ,SQLFLAG (SAA)
89

(COMPLETE)

�

Chapter 5. Preprocessing and Running a DB2 Server for VSE Program 159

�
,STDSQL (NO)

,STDSQL (NO)
(4)

89

,TIME (EUR)
ISO
JIS
LOCAL
USA

Notes:

1 PL/1 and COBOL only (DB2 Server for VSE only).

2 C only.

3 Implied if STDSQL(89) is specified.

4 86 is a synonym for 89.

Specify these parameters using the PARM keyword of the VSE job control EXEC
statement. The order in which you specify them is unimportant. You must separate
all preprocessor parameters by a comma or by one or more blanks. (See Table 15.)

Note: The maximum number of bytes that can be included within the quotation
marks after the PARM keyword is 100. Therefore, you should take
advantage of the abbreviations and defaults for the preprocessor parameters.

Table 15. Specifying Preprocessor Parameters

Multiple User Mode

// EXEC PGM=ARIPRPx,SIZE=AUTO,PARM='PREP=MYJOB,USERID=SAM/SECRET'

Single User Mode

Col. 72 -----------------
|

// EXEC PGM=ARISQLDS,SIZE=AUTO,PARM='SYSMODE=S,LOGMODE=A, *
PROGNAME=ARIPRPx/PREPNAME=MYJOB,USERID=SAM/SECRET'

In single user mode, the first / separates the preprocessor parameters from the DB2 Server for VSE initialization
parameters. The second / separates the authorization-name from the password in the USERID preprocessor
parameter (described below).

If you want to keep the authorization-name and password secret, you must
suppress the printout of the job control EXEC statement that contains the
preprocessor parameters. To do this, surround the preprocessor job control with the
statements shown in Figure 32.

If the program is preprocessed successfully and PACKAGE was specified, an entry
is made in the DB2 Server for VSE catalog table SYSTEM.SYSACCESS. The
CREATOR column is set to the value specified for authorization-name; the TNAME

NOLOG <--- Suppress display of JCL on the system
// OPTION NOLOG <--- Suppress output to SYSLST

(c)
(c)
(c)

LOG <--- Resume output to the CONSOLE
// OPTION LOG <--- Resume output to SYSLST

Figure 32. Suppressing Job Control Display of Authorization-Name and Password

160 Application Programming

column is set to the value specified for PREPNAME. For more information about
the DB2 Server for VSE catalog, refer to the DB2 Server for VSE & VM SQL
Reference manual.

PREPname=package_id

PREPname=collection_id.package-id
The collection_id.package_id is the name by which the database manager
identifies the package. The collection_id portion is optional, and fully qualifies
the package_id and any unqualified objects referenced within the package.

If collection_id is not specified, it defaults to the authorization_name specified on
the USERid parameter. If it is specified, it must equal the authorization_name
specified on the USERid parameter.

USERid=authorization_name/password
The authorization_name is the name by which the application server identifies
the owner of a package. The password should agree with the one established
for this authorization_name by a DB2 Server for VSE GRANT CONNECT
statement. This information is used when executing a CONNECT statement to
gain access to the application server, which determines whether proper
authorization exists for the static SQL statements in the program.

DBNAME=server_name
This parameter identifies the name of the application server to be accessed by
the SQL statements in the preprocessor source file. This parameter is used as
the server_name in the TO clause of the CONNECT statement executed at
preprocessing time. If this parameter is not specified, the preprocessor accesses
the default application server.

Refer to the DB2 Server for VSE System Administration manual for a discussion
of the default application server.

PrepFile=(membername)

PrepFile=(membername.membertype)
The PrepFile parameter identifies the membername and optionally
membertype of a VSE source member containing the list of preprocessor
parameters. If membertype is not specified, it defaults to A.

The following parameters can be specified in the PrepFile or in the
preprocessor parameters. For a more detailed discussion of the options file, see
“Using the Preprocessor Option Member” on page 168.

PrepParm
The following parameters specify the preprocessor options.

APOST

Quote (COBOL preprocessor only)
If you do not specify this parameter, the preprocessor defaults to APOST
and generates single quotation mark (') delimiters for its internal source
declarations. The Quote preprocessor parameter should be used whenever
the Quote parameter is used in the COBOL compiler. Quote causes the
preprocessor to use double quotation marks (") as constant delimiters in
the VALUE clauses of the declarations it generates.

The use of a single quotation mark (') or double quotation marks (") in
SQL statements is not affected by this parameter.

APOST/Quote is stored in the bind file header if BIND is specified and a
bind file is successfully created after preprocessing.

Chapter 5. Preprocessing and Running a DB2 Server for VSE Program 161

NOBIND

BIND
If you specify the NOBIND parameter, the preprocessor does not create a
bind file; NOBIND is the default.

If you specify the BIND parameter, the preprocessor creates a bind file. A
bind file will not be created if NOCHECK is in effect and there was an
error found during SQL statement validation. BIND is ignored if CHECK is
specified. For a more detailed discussion of the bind file, see “Creating a
Package Using CBND” on page 186.

Note: The Fortran preprocessor ignores the BIND parameter, if specified.

NOBLocK

BLocK
When the BLock parameter is specified, all eligible query cursors return
results in groups of rows, and all eligible insert cursors process inserts in
groups of rows. If you do not specify this parameter, NOBLock is the
default. This improves the performance of programs running in multiple
user mode, where many rows are inserted or retrieved. For a discussion of
eligible cursors, see “Using the Blocking Option to Process Rows in
Groups” on page 175.

When NOBLocK is specified, rows are not grouped.

BLock/NOBLock is stored in the bind file header if BIND is specified and
a bind file is successfully created after preprocessing.

If you want to change the BLocK option, you must recompile (or
reassemble) and relink your program after preprocessing it. You must also
use CBND to rebuild the package if BIND is specified. Preprocessing alone
does not change the BLocK setting. You must also use CBND to rebuild the
package if BIND is specified.

CCSIDGraphic (integer)
This parameter specifies the default CCSID attribute to be used for graphic
columns created in the package, if an explicit CCSID is not specified on the
CREATE or ALTER statements in the package. If this parameter is not
specified, the target application server uses the system default. This option
is stored in the bind file header if BIND is specified and a bind file is
successfully created after preprocessing.

CCSIDMixed (integer)
This parameter specifies the default CCSID attribute to be used for
character columns created with the mixed subtype in the package, if an
explicit CCSID is not specified on the CREATE or ALTER statements in the
package. If this parameter is not specified, the target application server
uses the system default. This option is stored in the bind file header if
BIND is specified and a bind file is successfully created after
preprocessing.

CCSIDSbcs (integer)
This parameter specifies the default CCSID attribute to be used for
character columns created with the SBCS subtype in the package, if an
explicit CCSID is not specified on the CREATE or ALTER statements in the
package. If this parameter is not specified, the target application server
uses the system default. This option is stored in the bind file header if
BIND is specified and a bind file is successfully created after
preprocessing.

162 Application Programming

CHARSUB (Sbcs)

CHARSUB (Mixed)

CHARSUB (Bit)
This parameter specifies the character subtype attribute to be used for
character columns created in the package, if an explicit subtype or CCSID
is not specified. If you do not specify this parameter, the target application
server uses the system default. This option is stored in the bind file header
if BIND is specified and a bind file is successfully created after
preprocessing.

NOCHECK

CHECK

ERROR
If you specify the NOCHECK parameter, the preprocessor executes
normally; that is, it validates all SQL statements when performing package
functions. If NOPACKAGE is specified, package functions are not
performed and so NOCHECK is ignored in this case. NOCHECK will be
stored in the BIND file header if BIND is specified and a bind file is
successfully created after preprocessing; NOCHECK is the default.

If you specify the CHECK parameter, the preprocessor checks all SQL
statements for validity and generates error messages if necessary, but does
not generate a package or bind file. PACKAGE and BIND are ignored if
CHECK is specified.

If you specify ERROR, the preprocessor executes normally except that most
statement-parsing errors are tolerated. When one of these errors is
detected, the preprocessor generates an error message in the output listing
and the modified source code in commented form, and continues
processing. The program can be compiled and executed, but the erroneous
statement cannot be executed. If NOPACKAGE is specified, package
functions are not performed and so ERROR is ignored in this case. ERROR
will be stored in the bind file header if BIND is specified and a bind file is
successfully created after preprocessing.

You should use the ERROR option when you are also generating a bind
file and intend to bind it against a remote application server, where at least
one statement in the program is specific to an unlike application server.

COB2 (COBOL preprocessor only)
This parameter enables you to use certain COBOL II functions that are
supported by the COBOL II Release 3 compiler and later. Refer to “Using
the COB2 Parameter (DB2 Server for VSE)” on page 356 for a list of those
functions.

COBRC (COBOL preprocessor only)
If this parameter is specified, the preprocessor will generate the statement
'MOVE ZEROS TO RETURN-CODE' after it generates a call to ARIPRDI.
For more information, see “Using the COBRC Parameter” on page 357

CTOKEN (NO)

CTOKEN (YES)
This parameter causes the preprocessor to store a consistency token in the
modified source code and the package. At run time, consistency tokens in
the program’s load module and package must match before the application
server executes the package. CTOKEN(NO) is the default. If CTOKEN(YES)
is specified, the consistency token generated by the preprocessor will be an

Chapter 5. Preprocessing and Running a DB2 Server for VSE Program 163

8-byte 390 Time-of-Day (TOD) clock value. If CTOKEN(NO) is specified,
the consistency token will be 8 blanks. For a more detailed discussion of
consistency tokens, see “Using a Consistency Token” on page 180. This
option is stored in the bind file header if BIND is specified and a bind file
is successfully created after preprocessing.

DATE (EUR)

DATE (ISO)

DATE (JIS)

DATE (LOCAL)

DATE (USA)
If this parameter is specified, the output date format chosen overrides the
default format specified at installation time; otherwise, all dates will be
returned in the default format specified at installation time. (See the DB2
Server for VSE & VM SQL Reference manual for a description of these
formats.) This option is stored in the bind file header if BIND is specified
and a bind file is successfully created after preprocessing.

NOEXIST

EXIST
If the EXIST parameter is specified, the preprocessor executes normally;
that is, it generates modified source code and performs package functions.
An error will be generated if objects (such as tables) referenced in
statements in the program do not exist or if proper authorization does not
exist.

If the NOEXIST parameter is specified, object and authorization existence
is not required, and if not found, a warning will be issued. NOEXIST is the
default. NOEXIST/EXIST is stored in the bind file header if BIND is
specified and a bind file is successfully created after preprocessing.

EXPLAIN(NO)

EXPLAIN(YES)
This parameter specifies whether explanatory information for all
explainable SQL statements in a package should be produced.
EXPLAIN(NO) is the default.

If EXPLAIN(YES) is specified, each explainable SQL statement in the
program is explained during preprocessing. If you specify EXPLAIN(YES),
an EXPLAIN ALL is executed. The complete set of explanation tables must,
therefore, be available. If they are not available, you receive an SQLCODE
-649 (SQLSTATE = 42704) and preprocessing is not successful. To interpret
the explanation tables, refer to the DB2 Server for VSE & VM Performance
Tuning Handbook manual. This option is stored in the bind file header if
BIND is specified and a bind file is successfully created after
preprocessing.

NOFOR
This parameter enables you to omit the FOR UPDATE OF clause in the
static cursor query statement, and execute positioned updates to any
column in the result table for which you have UPDATE authority. It is
referred to in this manual as NOFOR support.

Note: This option is also implied if the STDSQL (89) or STDSQL (86)
parameter is specified.

164 Application Programming

DYNALC
This parameter enables you to preprocess an application program
containing FETCH statements for a cursor that is allocated by a dynamic
ALLOCATE CURSOR statement.

Note: This option is only accepted by the COBOL, PL/I, C, and Assembler
preprocessors.

NOGRaphic

GRaphic (COBOL and PL/I preprocessors only)
The GRaphic parameter indicates to the preprocessor whether graphic
constants can be used in SQL statements and whether DBCS string format
should be validated. NOGRaphic is the default.

If GRaphic is specified, the preprocessor accepts SQL statements containing
graphic constants, and checks that all strings of DBCS characters are
correctly formatted.

If NOGRaphic is specified, the preprocessor does not allow graphic
constants in SQL statements, and does not verify the format of strings of
DBCS characters.

Note: If the DBCS value in the GLOBAL SQLGLOB parameters is set to
YES, the graphic option is not used and preprocessing occurs as
though GRaphic had been specified. In addition, the default graphic
option becomes GRaphic.

ISOLation (CS)

ISOLation (RR)

ISOLation (UR)

ISOLation (USER)
This parameter lets you specify one of the following isolation levels at
which your program runs:
v Specify RR (repeatable read) to have the database manager hold a lock

on all data read by the program in the current logical unit of work. This
is the default.

v Specify CS (cursor stability) to have the database manager hold a lock
only on the row or page of data pointed to by a cursor.

v Specify UR (uncommitted read) to have the database manager allow
applications to read data without locking, including uncommitted
changes made by other applications.

v Specify USER to have the application program control its isolation level.

See “Selecting the Isolation Level to Lock Data” on page 170 for guidelines
on choosing the isolation level for your program. This option is stored in
the bind file header if BIND is specified and a bind file is successfully
created after preprocessing.

Note: If you want to change the ISOLation option, you must recompile (or
reassemble) and relink your program after preprocessing it. You
must also use CBND to rebuild the package if BIND is specified.
Preprocessing alone does not change the ISOLation setting.

KEEP

Chapter 5. Preprocessing and Running a DB2 Server for VSE Program 165

REVOKE
These parameters are applicable if the program has previously been
preprocessed, and the owner has granted the RUN privilege on the
resulting package to some other users. Specify the KEEP parameter to
have these grants of the RUN privilege remain in effect when the
preprocessor produces the new package. Specify the REVOKE
parameter to remove all existing grants of the RUN privilege. (These
grants will also be removed if the owner of the program is not entitled
to grant all the privileges embodied in the program.)

KEEP is the default. KEEP/REVOKE is stored in the bind file header if
BIND is specified and a bind file is successfully created after
preprocessing.

LABEL (label_text)
This parameter specifies a label for the package. Label_text can be up to
30 characters in length; the default is spaces. This option is stored in
the bind file header if BIND is specified and a bind file is successfully
created after preprocessing.

LineCount (integer)
The parameter determines how many lines per page are to be printed
in the output listing. The value integer specifies the number of lines per
page. The valid range for this value is 10 to 32 767. If no value is
specified, or if there is an error in the specification of the LineCount
parameter, then the default value of 60 is used.

PACKAGE

NOPACKAGE
If you specify the PACKAGE parameter, the preprocessor performs
package functions and creates a package against a local database.
PACKAGE is ignored if CHECK is specified; PACKAGE is the default.

If you specify the NOPACKAGE parameter, the preprocessor does not
perform package functions and will not create a package. If you
specify NOCHECK as well as NOPACKAGE, NOCHECK is ignored. If
you specify ERROR as well as NOPACKAGE, ERROR is ignored.

PRint

NOPRint
The PRint parameter specifies that the entire preprocessor modified
source listing output is produced. The NOPRint parameter specifies
that the preprocessor listing output is suppressed, except for the
summary messages that are normally printed at the end. PRint is the
default.

PUnch

NOPUnch
The PUnch parameter specifies that the preprocessor modified source
output is produced. The NOPUnch parameter specifies that the
preprocessor modified source output is suppressed.

REPLACE

NEW
This parameter specifies whether the package being created is new or
whether it will replace an existing package that has the same name. If
REPLACE is specified and no previous package exists with the same
name, no error or warning is issued, and the package is created.

166 Application Programming

REPLACE is the default. If NEW is specified, an error will occur if the
package already exists with the same name. REPLACE/NEW is stored
in the bind file header if BIND is specified and a bind file is
successfully created after preprocessing.

SEQuence

NOSEQuence (C preprocessor only)
If SEQuence is specified, the preprocessor searches only columns 1
through 72 of the source file. When NOSEQuence is specified, the
preprocessor assumes there are no sequence numbers in the input file
and it accepts input from columns 1 to 80. SEQuence is the default.

Note: In the latter case, you must use the NOSEQ and MARGINS
(1,80) C compiler options when compiling the modified source.

NOSQLCA
This parameter allows the user to declare an SQLCODE without
declaring all of the SQLCA structure. It is referred to as NOSQLCA
support in this manual.

Note: This option is also implied if the STDSQL(89) or STDSQL (86)
parameter is specified.

SQLFLAG (SAA)

SQLFLAG (89)

SQLFLAG (89(COMPLETE))
This parameter invokes Flagger, a function that flags those static SQL
statements that do not conform to the SQL-89 standard or IBM’s
Systems Application Architecture* (SAA*) standard on an SQL dialect.
If you specify SAA, it provides syntax checking against the SAA
Database Level 1 standard. If you specify 89, it will provide syntax
checking against the SQL-89 standard. If you specify 89(COMPLETE),
it will provide both syntax and semantics checking against the SQL-89
standard. Note that you cannot check both SAA and SQL-89 in the
same preprocessor run.

See “Using the Flagger at Preprocessor Time” on page 168 for more
details on this facility, including an explanation of the SQL-89
standard.

STDSQL (NO)

STDSQL (89)
STDSQL refers to the SQL Standard that has been implemented in the
user’s application program. If NO is specified or the STDSQL
parameter is not used, the preprocessor uses DB2 Server for VSE
standards. If 89 is specified, functions specific to ANS SQL standard 89
are also provided by the preprocessor. STDSQL(NO) is the default.
These functions consist of the following support:
v NOSQLCA
v NOFOR

Note: STDSQL(86) is a synonym for STDSQL(89).

TIME (EUR)

TIME (ISO)

TIME (JIS)

Chapter 5. Preprocessing and Running a DB2 Server for VSE Program 167

TIME (LOCAL)

TIME (USA)
If this parameter is specified, the output time format chosen overrides
the default format specified during installation. If it is not specified, all
times will be returned in the default format that was specified during
installation. (See the DB2 Server for VSE & VM SQL Reference manual
for a description of these formats.) This option is stored in the bind file
header if BIND is specified and a bind file is successfully created after
preprocessing.

Using the Preprocessor Option Member
Instead of specifying all the preprocessing parameters in the preprocessor job you
can use an options member. This has several advantages. You can maintain a set of
standard options members. They can save time, and ensure consistent use of
preprocessing parameters.

You can use a preprocessor options member by including the PrepFile parameter
when you are preprocessing. The member can contain only one preprocessor
parameter per line. If more are found an error message is returned. Blank lines are
ignored, and the parameters may be in either upper- or lowercase. You can insert
comments into the options file by placing an asterisk (*) to the left of the comment.
Everything to the right of the asterisk is ignored. The file is a VSE source member.

Using the Flagger at Preprocessor Time
The Flagger is invoked at preprocessor time by the optional parameter SQLFLAG
It provides an auditing function on the static SQL statements in the host program.
This function is independent of the other preprocessor functions, and has no
bearing on whether the preprocessor run will complete satisfactorily.

The audit compares the static SQL statements with the SAA standard or the
SQL-89 standard. SQL-89 is a collective term that implies support of SQL as
defined by the Federal Information Processing Standards (FIPS) 127-1. It includes:
v ANSI X.3.135-1989 (without the Integrity Enhancement feature)
v ANSI X.3.168-1989
v ISO 9075-1989 (without the Integrity Enhancement feature)

In addition to basic syntax checking against SQL-89, Flagger optionally performs
semantics checking against SQL-89. This includes some integrity checking between
the SQL statements and the database. For example, it checks:
v Whether a statement contains column names or table names that do not

currently exist.
v Whether a statement contains ambiguity among column names, such as an

unqualified name for a column that exists in more than one of the tables in the
query.

v Whether a statement contains inconsistencies between the data types of the host
variables and their corresponding table columns.

* prep parameters for program SAMPLE
ISOL(CS) *cursor stability isolation level
TIME(ISO)
BLOCK *indicate inserts and retrieves in groups

Figure 33. The preprocessor option file example.

168 Application Programming

Any statements that do not conform to the standards are flagged in the form of
information messages in the preprocessor output listing. Flagger, however, does
not force you to comply with the standards. The purpose of Flagger is to provide
guidance for those users who want to conform to these standards, so that they can
have SQL consistency across operating environments.

Note: The DB2 Server for VSE product is a superset of the SQL-89 standard
without the Integrity Enhancement feature. For example, the datetime data
types are not part of SQL-89 and the CONNECT statement is not part of
SQL-89. The use of extensions such as these will generate information
messages for deviations from the standard specified in the SQLFLAG
parameter.

The Flagger messages generated at preprocessor time range from ARI5500 to
ARI5599, and are further classified as follows:
1. ARI5500-ARI5539 and ARI5570-ARI5599 are information messages that indicate

that an extension to the SQL-89 standard (nonconformance) has been found.
These start with “FLAGGER message.”

2. ARI5540-ARI5569 are warning messages that indicate a failure on the part of
Flagger itself.
In this event, SQL-89 semantics checking will be turned off and its syntax
checking may or may not be turned off, depending on the nature of the failure.
However, the preprocessor run itself will continue, and any inconsistencies
discovered by Flagger prior to the failure will be included in the output listing
of the run.

Using the CICS/VSE Translator
CICS/VSE provides translators for C, COBOL, PL/I, and assembler language
programs to convert CICS/VSE statements to CICS/VSE calls, similar to the
function performed by the DB2 Server for VSE preprocessors. When program
modules include both SQL and CICS/VSE statements, the appropriate CICS/VSE
translator and the appropriate DB2 Server for VSE preprocessor must be run before
compiling the language. This replaces the CICS/VSE and SQL statements with
appropriate host language statements that invoke the CICS/VSE or database
manager.

SQL statements may contain certain encoding, in quoted strings, that would not be
properly bypassed by the CICS/VSE translators when scanning for CICS/VSE
statements. For example,
"...EXEC CICS ..." "...'..."

When using the QUOTE option in COBOL, the same problem may occur for
single-quoted strings. Also, when SQL statements contain DBCS constants, a
similar problem may arise because DBCS constants may contain single quotation
marks as part of the double-byte character set.

If a CICS/VSE translator is run before the DB2 Server for VSE preprocessor, these
problems may occur in the form of unmatched quotation marks from a CICS/VSE
standpoint, because a translator does not allow for SQL statements embedded in
programs. Therefore, you should run the DB2 Server for VSE preprocessor before
running a CICS/VSE translator. This will ensure that the SQL statements are
commented out before a CICS/VSE translator processes the program.

Currently, there is a problem with running the DB2 Server for VSE preprocessor
before a CICS translator. The preprocessor’s output goes to SYSPCH as 81-byte

Chapter 5. Preprocessing and Running a DB2 Server for VSE Program 169

records; a CICS/VSE translator, however, accepts only 80-byte input. For COBOL
and PL/I programs this is not a severe problem, because these preprocessors
append the stacker select and punch control character as the eighty-first byte.
While SYSPCH is unblocked, CICS ignores the extra byte.

For assembler and C, however, the card punch control character is appended as the
first byte. In this case it is necessary to process the DB2 Server for VSE assembler
preprocessor output with a utility (OBJMAINT) to eliminate the leading byte
before processing by a CICS translator. See Figure 37 on page 184.

These problems can also be avoided by placing the SQL statements in a separate
module from the one containing CICS statements.

Improving Performance Using Preprocessing Parameters
When preprocessing your program, you can specify two performance parameters,
the BLocK/ NOBLocK option and the ISOLation level option. discussed under
“Preprocessing the Program” on page 154. These options are specified under the
PARM keyword of the job control EXEC statement. The format and use of these
parameters was discussed earlier in this chapter. The next section discusses when
you would want to specify each of these options.

(Other performance considerations are discussed in the DB2 Server for VSE & VM
Database Administration manual.)

Selecting the Isolation Level to Lock Data
The database manager puts locks on data that your program works with, to keep
other users from reading or changing that data. You can specify how long the
system holds the lock on data. You can specify either to lock all the data that the
current logical unit of work (LUW) has read, to lock just the row or page of data
that a cursor is currently pointing to, or to not lock any data being read. This is
called specifying the isolation level of the lock.

The isolation level used by an application is set using the ISOLation preprocessing
parameter. On SELECT, SELECT INTO, INSERT, searched UPDATE, and DELETE
statements, the WITH clause may be specified to override the value specified on
the preprocessing parameter.

If you choose to put a lock on all the data that your program’s current LUW has
read, this is called specifying isolation level repeatable read. Repeatable read locks are
held until the end of the LUW. If you choose to put a lock on just the row or page
of data that your cursor is pointing to, then you are specifying isolation level cursor
stability. With cursor stability locking, when the cursor moves, the system frees all
the data previously read by the program that was held by the lock. If you choose
not to lock the data that your program will read, this is called specifying isolation
level uncommitted read. With uncommitted read, no locks are held on the data being
read, and as a result, the data can be changed by other applications.

Both repeatable read and cursor stability provide you with the following data
isolation from other concurrent users:
v Your LUW cannot modify or read any data that another active LUW has

modified. Similarly, if your LUW has modified some data, no one else can
modify or read that data until your LUW has ended. Modify means to apply
INSERT, DELETE, UPDATE, or PUT commands; READ means to apply SELECT
or FETCH commands.

170 Application Programming

v If your LUW has a cursor pointing to a row of data, no other LUW can modify
that data. Similarly, your LUW cannot modify a row to which another user has a
cursor pointing.

In addition to the above, repeatable read locking provides you with the following
data isolation from other concurrent users:
v No other LUW can modify any row that your active LUW has read. Also, you

cannot modify any data that another active LUW, specifying repeatable read, has
read.

v You do not have to worry about your data being changed between reads, as
long as you do not end your LUW between those reads.

This extra isolation has its drawbacks, however. When you specify repeatable read
for data in public dbspaces with PAGE or ROW level locking, you reduce the
concurrency of the data. This means that other users may be locked out from the
data for a long time, causing delays in their programs’ executions.

If you specify cursor stability instead, you reduce these locking problems by
making the data more available. With this isolation level, the system does not hold
the locks as long. After a cursor has moved past a row or page of data, the lock on
that data is dropped. This increases concurrency so that other users can access data
faster.

Cursor stability can, however, cause some data inconsistencies. For instance:
1. If a user’s LUW reads data twice, it can get different results. This could happen

if another user modifies the data and commits the changes between read
operations.

2. A modification based on a prior reading can be incorrect. This can occur if
another LUW modifies the rows that a user has read and commits the changes
before that user can do the modification. (Note that when the user is retrieving
data in application programs, the only row that is safe from modification is the
one that is currently being pointed to by a cursor.)

3. If an SQL statement in the user’s LUW is traversing a table by way of an index,
the user might find the same row twice. (This case applies to FETCH cursors,
searched INSERT by way of subselect, and searched UPDATE with subselect
that traverse a table by way of an index.) This can occur because, after the
user’s statement reads the row the first time, another user can update the
column value that is indexed and commit the change. The change could cause
the committed row to be ahead of the row currently being retrieved by the
statement. The first user’s statement would then find the row again with its
updated index column value.

4. If an SQL statement in the LUW is traversing a table by way of an index, it can
fail to find a row (or rows) even if the row meets the selection criteria. (This
situation applies to FETCH cursors, Searched DELETE, Searched INSERT by
way of the subselect, and Searched UPDATE by way of the subselect that
traverse a table by way of an index.) This can occur because while the LUW is
reading, another user modifies the indexed column in the row and commits the
change (as above). The change could cause the committed row to be behind the
row the user’s statement is currently reading. Thus, the statement would not
find the row, even if the row met the selection criteria.

5. If you enter a SELECT statement to retrieve a single row, a cursor is opened
when the system processes the statement and is closed when the row is
returned. All PAGE and ROW level locks are released when the cursor is
closed; therefore, no locks are held after the row is returned. For single-row

Chapter 5. Preprocessing and Running a DB2 Server for VSE Program 171

processing using a SELECT statement with a fully qualified unique index, a
cursor is not opened and again no locks are held once the row has been
returned. As a result, applications which update a selected column based on
the values retrieved may have unexpected results because the lock was not
held for the duration of the LUW. For example:
HOST_EMPNO = '000250'
EXEC SQL SELECT SALARY /* HOST_SALARY is 19180 */

INTO :HOST_SALARY
FROM EMPLOYEE
WHERE EMPNO = :HOST_EMPNO;

HOST_SALARY = HOST_SALARY + 1000; /* HOST_SALARY increased to 20180 */

EXEC SQL UPDATE EMPLOYEE /* UPDATE SALARY in EMPLOYEE */
SET SALARY = :HOST_SALARY; /* TABLE with HOST_SALARY */
WHERE EMPNO = :HOST_EMPNO;

EXEC SQL SELECT SALARY /* HOST_SALARY may not be 20180 */
INTO :HOST_SALARY /* because lock was not held for*/
FROM EMPLOYEE /* the duration of the LUW */
WHERE EMPNO = :HOST_EMPNO;

COMMIT WORK;

In the previous example, it is possible that two or more users could read the
salary column with the same value at approximately the same time. They
would then each increment the number and issue the UPDATE statement. The
second user would wait for the first user’s update to finish, and then overwrite
it with the same number.

Unlike RR or CS, uncommitted read does not provide any data isolation from
other concurrent users. Like CS though, concurrency is improved, although at the
risk of data inconsistency. UR can cause similar data inconsistencies as those
described for CS and should only be used when it is not necessary that the data
you are reading be committed.

An application using isolation level UR is still restricted to access only data for
which it has authorization. However, because it will be able to read uncommited
changes, it will be able to read additional rows which an application, with the
same authorization but using RR or CS, could not. This is illustrated by the
following example.

Rows of table:
A
B
C

<---D
E

Scenario: 1
U1 reads (using UR) A B
U2 inserts D
U1 continues reading C D E
U2 rolls back
-- U1 has read a non-existent row

Scenario: 2
U1 reads (using CS) A B
U2 inserts D
U1 continues reading C, must wait to
read D
U2 rolls back
U1 continues reading E
Note: In scenario 1, U1 has read an extra

row which U1 in scenario 2 could not.

172 Application Programming

When should each of these options be chosen for your program? Usually, you
should specify repeatable read locking. Only use cursor stability if your program
causes or will cause locking problems. For instance, you would probably want to
use cursor stability for transactions that perform terminal reads without
performing a COMMIT or ROLLBACK, or programs that do bulk reading, because
it is handy for programs that browse through large amounts of data. For programs
that perform commits or rollbacks before issuing terminal reads, you should use
repeatable read locking, because they probably will not cause locking problems.
Also, any application that needs to protect itself against updates should also use
repeatable read locking. For programs where concurrency is wanted, for example,
data being queried simultaneous to being updated, you would use uncommitted
read locking. Of course, this would be for applications where data integrity was
not important because the data being read may not necessarily have been
committed.

You can also mix isolation levels, to have your program set, change, and control its
own isolation level as it is running. You can specify mixed isolation level with the
USER option of the ISOLation preprocessor parameter, as detailed under
“Preprocessing the Program” on page 154.

If you choose this option, your program must pass the isolation level value to the
application server by a program variable. It must declare a one-character program
variable and must set this variable to the desired isolation level value before
executing SQL statements. For repeatable read, your program should set this
variable to R; for cursor stability, the variable should be set to C; and for
uncommitted read, the variable should be set to U. The program can change the
variable at any time so that subsequent SQL statements are executed at the new
isolation level value. However, if your program changes the isolation level while a
cursor is OPEN, the change does not take effect for operations on that cursor until
it has been closed and opened again. That is, until the cursor is closed all
operations on that cursor are executed at the isolation level value that was in effect
when the cursor was opened. Note that the changed isolation level will be used
(without error) for SQL statements not referencing the opened cursor.

If the program sets the isolation level variable to a value other than C, R or U, or if
it fails to initialize the variable, the system stops execution and returns an error
code in the SQLCA.

Table 16 shows the isolation level variable name for each of the host languages.

Table 16. Variable Names for Specifying Mixed Isolation Levels

Host Language Variable Name Example

assembler SQLISL SQLISL DS CL1

C SQLISL char SQLISL;

COBOL SQL-ISL 01 SQL-ISL PIC X(1).

Fortran SQLISL CHARACTER SQLISL

PL/I SQLISL DCL SQLISL CHAR(1);

Note: If you forget to declare the isolation level variable in a PL/I program, the
PL/I compiler issues an informational message which can, in some
environments, be suppressed.

Chapter 5. Preprocessing and Running a DB2 Server for VSE Program 173

Isolation level cursor stability or uncommitted read only has meaning for data in
public dbspaces with ROW or PAGE level locking. Data in private dbspaces or in
public dbspaces with DBSPACE level locking always uses repeatable read isolation.
However, programs which access such data and do not require repeatable read
should be preprocessed with cursor stability or uncommitted read. The data
concurrency requirements might change and cause the data to be moved to a
public dbspace with PAGE or ROW level locking. In this case, the program would
not need to be repreprocessed to run at isolation level cursor stability or
uncommitted read.

To use the features of CS or UR, data must reside in public dbspaces with PAGE or
ROW level locking. DML statements against private dbspaces or public dbspaces
with PAGE or ROW level locking under isolation level CS or UR are handled the
same as if isolation level RR were used.

When the system uses a dbspace scan (that is, does not use an index) to access a
table in a dbspace with ROW level locking using isolation level cursor stability, the
effect is the same as repeatable read. That is, no other LUW can update the table
until the logical unit of work performing the dbspace scan ends. Also, if an LUW
is updating a table, another LUW (using cursor stability) cannot access that table
with a dbspace scan until the updating LUW ends. This reduced concurrency for
dbspace scans does not apply to tables in dbspaces with PAGE level locking, or to
accessing through indexes. Because most database accesses will typically use
indexes, the reduced concurrency caused by dbspace scans should not occur
frequently.

The isolation level specification affects UPDATE and DELETE processing as well as
SELECT processing. For UPDATE and DELETE processing, the system acquires
UPDATE locks. UPDATE locks can be acquired for both cursor stability and
repeatable read isolation level settings. If the user actually wants to update or
delete the data, the UPDATE lock is changed to an EXCLUSIVE lock; otherwise,
the UPDATE lock is changed to a SHARE lock.

Note the following about UPDATE LOCKS:
v They are used for page or row locking, but not for dbspace locking.
v They apply to index pages or index keys only for the Searched DELETE

statement.
v For Positioned DELETE processing, the named cursor must have been declared

in the FOR UPDATE clause of the DECLARE CURSOR statement.
v For FETCH processing that uses repeatable read isolation level, these locks are

acquired only if certain predicates are present in the statement. See the DB2
Server for VSE & VM Database Administration manual for more information.

Internally generated SELECT, UPDATE, or DELETE statements use cursor stability
locking no matter what the isolation level is set to. (See “Enforcing Referential
Integrity” on page 295 for information on these statements). Conversely, data
definition statements such as CREATE, ACQUIRE, or GRANT, use repeatable read
locking no matter what the isolation level is set to. These statements, therefore,
should not play a role in your choice of isolation level.

Note: Catalog access for SQL statement preprocessing is also always done with
repeatable read locking.

174 Application Programming

Using the Blocking Option to Process Rows in Groups
You can insert and retrieve rows in groups or blocks, instead of one at a time. This
is called specifying the blocking option. When you specify the blocking option,
improves performance for DB2 Server for VSE application programs that:
v Execute in multiple user mode, and
v Retrieve or insert multiple rows.

You can specify the blocking option as a DB2 Server for VSE preprocessor
parameter, or as an option on the CREATE PACKAGE statement. After a program
has been preprocessed with the blocking option, all eligible cursor SELECTs and all
eligible cursor INSERTs within the program are blocked. You do not have to specify
a block size or block factor. The block size for inserts and SELECTs is automatically
fixed.

The programs that would benefit the most from blocking are those that do
multiple-row inserts (with PUT statements) or multiple-row SELECTs (with FETCH
statements). In both cases, a cursor must be defined. (See “Retrieving or Inserting
Multiple Rows” on page 35 for more information on cursors.) Thus, a general rule
for blocking is USE BLOCKING FOR PROGRAMS THAT DECLARE CURSORS.

A program can use either PUT or FETCH statements without being sensitive to
whether the system is blocking. These statements work regardless of whether you
specified the blocking option. What information is returned in the SQLCA after
each PUT or FETCH, however, depends on whether blocking is in effect or not.

Remember that when you preprocess a program with the blocking option, all
eligible INSERT and SELECT cursors are blocked. You cannot specify blocking for
just INSERTs or for just SELECTs. If you specify the blocking option, it
automatically applies to both.

When are INSERT or SELECT statements not eligible for blocking? The system
sometimes overrides blocking for a particular cursor because of storage limitations
in the database partition, or because of SQL statement ineligibility.
v DECLARE CURSOR...FOR UPDATE
v Any DECLARE CURSOR statement with a related select-statement containing a

long string
v Any DECLARE CURSOR statement that has a subsequent DELETE...WHERE

CURRENT OF statement
v Any DECLARE CURSOR statement that has a corresponding UPDATE...WHERE

CURRENT OF statement and the program is preprocessed with NOFOR
support.

The system also disqualifies blocking if it cannot fit at least two rows into a block.
(The number of rows that fit into a block may differ from one PUT/FETCH
statement to the next, even when such statements operate on the same table.)

The system does not halt the program when it overrides blocking. Instead, in each
of the above cases, it sets a warning flag in the SQLCA. The warning can be
detected by using WHENEVER SQLWARNING in the program. See “Using the
Automatic Error-Handling Facilities” on page 195 for more information on the
SQLCA and the SQL WHENEVER declarative statement.

Chapter 5. Preprocessing and Running a DB2 Server for VSE Program 175

Note: The DECLARE CURSOR... statement can also be written without the FOR
UPDATE OF clause, even though positioned updating is subsequently done.
(This is allowed when NOFOR support is invoked at preprocessor time.) In
this case, blocking is also ineligible.

The system also overrides blocking for all programs running in single user mode.
In this instance, the system does not usually return a warning to the SQLCA. A
warning is returned to the SQLCA for programs running in single user mode if:
v The program is preprocessed with the BLocK option
v An SQL statement that is being processed dynamically (with PREPARE) is

disqualified for blocking.

The DBS Utility may get blocking ineligible warnings when it is run in single user
mode because it is preprocessed with the BLocK option, but uses PREPARE to
process SELECT statements.

Note: Always CLOSE a cursor before issuing a COMMIT statement, especially
when blocking. If you commit changes before closing an insert cursor that is
being blocked, you receive an error.

Imposing Blocking Restrictions:

1. The length of host variables in the SQLDA or host_variable_list cannot be
changed after the first FETCH or PUT when blocking.

2. The data type of host variables in the SQLDA or host_variable_list cannot be
changed after the first FETCH or PUT when blocking.

3. The number of data elements in the host_variable_list or SQLDA cannot be
changed after the first FETCH or PUT when blocking.

4. If a COMMIT is issued while a blocking PUT cursor is open, an error occurs.

When blocking is active, a single SQLCA is returned with each block of rows. This
SQLCA is returned to the application program with the last row in the block.
However, for the final block of rows, the FETCH that returns the “not found”
condition (SQLCODE = +100 and SQLSTATE='02000') will return the SQLCA. (For
more information on SQLCA refer to “Using the SQLCA” on page 197). This has
the following implications for application programming:
v No warning conditions are returned to the application until the SQLCA is

returned.
For example, if SQLWARN3 is set (to indicate that the application has fewer
target variables in the INTO clause than the number of items in the SELECT
list), the application will not be notified until either the last row in a block or the
“not found” condition is returned.

v If SQLWARN1 (truncation occurrence) is set, it is impossible to tell from the
SQLCA information which row (or rows) in a block caused the warning
condition. However, if the application resets the indicator variable to 0 before
each fetch, and then examines the indicator variable after each fetch, truncation
can be detected on an ongoing basis.

Using the Blocking Option in DRDA Protocol: If the DB2 Server for VSE
database manager is acting as an application server to a non-DB2 Server for VSE
application requester during a FETCH operation, the application server stores reply
messages in blocking buffers. The size of the buffer is less than or equal to the
block size, except when the data rows are longer than the block size.

176 Application Programming

Using the INCLUDE Statement

Including External Source Members
The inclusion of external source members is indicated to the DB2 Server for VSE
preprocessor by an embedded SQL statement, the INCLUDE statement, in the
user’s source code. This statement can appear anywhere that an SQL statement can
appear, and indicates within the source code where the external source is to be
placed. The syntax for the INCLUDE statement is as follows:

where text_file_name identifies the external source member. The text_file_name is a 1
to 8 character identifier and cannot be delimited by double quotation marks. The
first character must be a letter (A-Z), $, #, or @; the remaining characters must be
letters, digits (0-9), $, #, @, or underscore (_) unless further restricted by the
operating system. Also, text_file_name cannot be SQLCA or SQLDA, as these are
special INCLUDE keywords.

The statements contained in the external source specified by may be host language
statements or SQL statements (except for another INCLUDE statement). INCLUDE
statements may not be nested, but the external source may contain INCLUDE
SQLDA or INCLUDE SQLCA statements.

Note: The INCLUDE statement can be in an SQL DECLARE section, or the entire
SQL DECLARE section can be within external source members.

Including a Library Source
The INCLUDE statement may be used to obtain secondary input from a VSE
source member.

INCLUDE causes input to be read from the specified source member until the end
of that source member is read. At this time, SYSIPT input resumes. (File records
representing the source statements must be unblocked, fixed-length, 80-character
records.) The source member must be cataloged as the following source types:

A - assembler
B - C
C - COBOL
G - Fortran
P - PL/I

If the INCLUDE statement specifies a source member that is not cataloged for the
appropriate source member type, an error results.

Source member input must not contain preprocessor INCLUDE statements other
than INCLUDE SQLDA or INCLUDE SQLCA, although it may contain both host
language and DB2 Server for VSE statements. If an INCLUDE statement is
encountered, an error will result.

Within the INCLUDE statement, text_file_name specifies a “source member” in the
DB2 Server for VSE library. The source member type is determined by the
preprocessor that is invoked.

�� INCLUDE text_file_name ��

Chapter 5. Preprocessing and Running a DB2 Server for VSE Program 177

The text_file_name specification must not contain the source member type identifier;
the source member type will be based on the aforementioned preprocessor.

Compiling the Program
After you successfully preprocess your program, you can compile it using your
normal host language compiler, and create an object deck. Use the modified source
output of the DB2 Server for VSE preprocessor as input to the compiler. By
preprocessing, you have already done all the translating that the program needs
for the database manager. However, if the program is an on-line program, the CICS
statements have to be “translated” before the program is compiled. Just use the
new code that you got after you preprocessed. Compile this code as you would
any other program, using the usual compilers.

This book does not cover the specifics of compiling your host-language code.
However, there are several special rules for SQL programs, depending on the host
language, that you must follow:
v If your PL/I application program contains DBCS data, you must specify the

GRAPHIC option for the compiler. If your COBOL application program contains
DBCS data or is reentrant, the output of the DB2 Server for VSE preprocessor
must be processed by the COBOL II Release 2 (or later) program.

v If the QUOTE option is used for the DB2 Server for VSE COBOL preprocessor, it
should also be used for the COBOL compiler.

v If the NOSEQuence option is used for the DB2 Server for VSE C preprocessor,
the NOSEQ and MARGINS (1,80) options must be used with the C compiler.

Link-Editing and Loading the Program
After compilation, programs must be link-edited and loaded before they can be
run.

Link-Editing the Program with Supplementary Information

Including Relocatable Modules
To allow your program to communicate with the database manager, you must
link-edit your program with one or more DB2 Server for VSE relocatable modules.
One of these relocatable modules is called the resource adapter stub. Every DB2
Server for VSE application program must be link-edited with this stub. Fortran and
COBOL programs need to be link-edited with additional relocatable modules. Also,
depending on the nature of your program, you may have to link-edit with others.
For instance, when link-editing a module that uses CICS/VSE, you may have to
INCLUDE a CICS/VSE module immediately following the PHASE system control
statement and before the EXEC ASSEMBLY system control statement. Whether you
INCLUDE this module depends on your host language.

When you load your program, the VSE linkage editor automatically links your
program to all modules that you included. The linkage editor also resolves virtual
storage addresses between files.

Including CICS/VSE Procedures
When link-editing a module that uses CICS/VSE, you should include the following
procedures for your application:

178 Application Programming

v For all assembler applications, you must have an INCLUDE for CICS/VSE
module DFHEAI immediately following the PHASE system control statement
and before the EXEC ASSEMBLY system control statement. DFHEAI must be the
phase entry point.

v For all C applications, you must have an INCLUDE for CICS/VSE module
DFHELII. This module must be the phase entry point.

v For all COBOL applications, you must have an INCLUDE for CICS/VSE module
DFHECI immediately following the PHASE system control statement and before
the EXEC IGYCRCTL (EXEC FCOBOL in OS/VS COBOL) system control
statement. DFHECI must be the phase entry point.

v For all PL/I applications, you must have an INCLUDE for CICS/VSE module
DFHPL1I immediately following the PHASE system control statement and
before the EXEC PLIOPT (EXEC IEL1AA in IBM PL/I for VSE) system control
statement. DFHPL1I must be the phase entry point.

See Figure 37 on page 184 for an example of these procedures.

Including Extra Linkage Modules
When link-editing any DB2 Server for VSE application, you must include some
extra linkage modules following the application program module that uses the
database manager. Use these extra modules as indicated below:
v For all batch and ICCF applications, you must include the linkage module

ARIPRDID.
v For all online (CICS/VSE) applications, you must include the linkage module

ARIRRTED.

In addition to the modules listed above, some of these may be required:
v For all programs written in COBOL (regardless of whether they are batch, ICCF,

or online), you must also include the module ARIPADR4. Include ARIPADR if
your program was preprocessed prior to SQL/DS Version 2 Release 2. (You need
not include it if VSE autolink is used.)

Note: If you use a COBOL SORT in your program, include ARIPADR4 (or
ARIPADR) and ARIPRDID (or ARIRRTED) before the compile step.

v For all programs written in Fortran, you must also include the modules
ARIPEIFA and ARIPSTR. If the Fortran program uses the module ARISSMF, this
file must also be included. See the discussion of the SQLCA in “Chapter 6.
Testing and Debugging” on page 193.

v For all programs that will include the DBS utility (regardless of whether they are
batch, ICCF, or online), you must also include the modules ARISYSDD,
ARIDSQLA, and ARIDDFP.

v All programs (except Fortran programs) that use the module ARISSMA, must
also link-edit this module. See the discussion of the SQLCA in “Chapter 6.
Testing and Debugging” on page 193 for further information.

If you receive an unresolved external reference message for a module name that
begins with ARI or SQL, check the link process to ensure that all required extra
linkage modules are included.

Some of these modules contain entry points with names that are different from the
module name. The code generated by the DB2 Server for VSE preprocessor can
reference one of these entry points, depending on the SQL statements in your
application.

Chapter 5. Preprocessing and Running a DB2 Server for VSE Program 179

Running the Program

Using a Consistency Token
Consistency tokens ensure that a program’s load module and the database package
are used together. When preprocessing, you can instruct the preprocessor to place a
consistency token in both the load module and the package (see CTOKEN
parameter 163. If the two tokens do not match, the application server prevents the
program from running.

Note: If you inadvertently forget to compile or link-edit a new version of a
program, you can run an old version of a program with a new version of
the package. Conversely, with multiple application servers, you can
inadvertently run a new version of a program with an old version of the
package. In either situation, you will probably get program errors or
incorrect results if you have not used consistency tokens.

Loading the Package and Rebinding
The package that the preprocessors or CBND stored carries out the SQL request.
When the application server loads the package, it checks that the package is still
valid. A package may not be valid if one of its dependencies has been dropped.
For example, some index that the package uses may have been dropped.

Packages are also invalidated when primary keys and referential constraints are
added to, dropped from, activated, or deactivated on tables that the modules
depend on. The following rules apply:
v If a primary key is added, dropped, activated, or deactivated, all packages that

have a dependency on the parent table will be invalidated. This includes any
tables that have a foreign key relationship with the parent table.

v If a foreign key is added, dropped, activated, or deactivated, all packages that
have a dependency on the dependent table or parent table will be invalidated.

The system has an internal change management facility that keeps track of whether
packages are valid or not. If a package is valid, the system begins running the
program; if the package is not valid, the system tries to re-create it. The original
SQL statements are stored with the package when you preprocess the program.
The system uses them to automatically bind the program again. It does this
dynamically (that is, while it is running). If the rebinding works, a new package is
created and stored in the database and the system then continues execution of the
program. If the rebinding does not work, an error code is returned to the program
in the SQLCA, and the program stops running.

A successful rebinding has no negative effect on your program except for a slight
delay in processing your first SQL statement. To minimize this delay, you can use
the DBSU REBIND PACKAGE command to rebind the invalid package after it has
been invalidated, but before it is executed. See the DB2 Server for VSE & VM
Database Services Utility manual for information on this command.

Running by Mode

Using Multiple User Mode
The job control for multiple user mode executes the application program; the
application server must already be initialized. The application program
communicates with the application server, which resides in a separate partition,

180 Application Programming

through the DB2 Server for VSE linkage module (ARIPRDID or ARIRRTED). The
linkage module is given control for each SQL statement in the application program.

You can invoke the application with standard job control statements or CICS/VSE
procedures. It is recommended that you specify SIZE=AUTO. (Specify SIZE=750K
for PL/I programs.) Figure 34 shows job control for invoking programs in multiple
user mode:

Using Single User Mode
The job control for single user mode invokes the application server and passes to
the system the name of the application to be run. The system then loads and
invokes the application program. Once the single user mode application receives
control, it accesses the application server in the same way as multiple user mode
applications. The system supports the VSE register save conventions. See the DB2
Server for VSE System Administration manual for more about single user mode
execution using the VSE register save conventions.

The DB2 Server for VSE & VM Operation manual lists all the initialization
parameters you can specify when you start the system in single user mode. A
system programmer can also determine the best initialization parameters for your
installation and pass them on to you.

Figure 35 shows job control for invoking programs in single user mode. The
SIZE=AUTO specification is required. (Specify SIZE-AUTO, 750K for PL/I
programs.)

If your program or the system abnormally ends, you may receive a mini-dump
(depending on what initialization parameters were specified when the system was
started). Mini-dumps are described in the DB2 Server for VSE System Administration
manual.

Running under CICS/VSE Support
DB2 Server for VSE-CICS/VSE support must be initialized before applications can
be run as CICS/VSE transactions. Usually the CICS/VSE support is initialized
when the system is started. Once the support is started, you can use normal
CICS/VSE procedures to invoke transactions that use the system. See the DB2
Server for VSE System Administration manual for more information on starting and
stopping CICS/VSE support.

// JOB USER PROGRAM
// EXEC PGM=MYPROG,SIZE=AUTO
/*
/&

Figure 34. Invoking a User Program in Multiple User Mode

// JOB SINGLE
// EXEC PGM=ARISQLDS,SIZE=AUTO,PARM='SYSMODE=S,PROGNAME=name'
/*
/&

Figure 35. Invoking a User Program in Multiple User Mode

Chapter 5. Preprocessing and Running a DB2 Server for VSE Program 181

Accessing Other DB2 Family Application Servers
If your VSE/ESA has been initialized as a VSE/ESA guest system under VM, your
(multiple user mode) VSE application can access a DB2 Server for VM application
server. Therefore, if the application was designed to run in single user mode it
must be converted to multiple user mode. This conversion can be accomplished by
modifying the job control language (JCL). See the DB2 Server for VSE System
Administration manual for more information on VSE Guest Sharing.

Your online CICS/VSE application can also use the DRDA protocol to access other
DB2 Family application servers, including DB2 Server for VM, DB2 Universal
Database Server for OS/390, or DB2 Universal Database (UDB). Before doing this,
the DRDA requester code must be installed on your VSE system. Also each DB2
Family server to be accessed must be defined to the DB2 Server for VSE online
resource adapter as a remote application server. See the DB2 Server for VSE System
Administration manual for more details on defining remote application servers.

Installing Applications that Access the Database Manager

Installing a Batch Application
Installing a batch application involves running the application through a DB2
Server for VSE preprocessor. The preprocessor output must be compiled (or
assembled), and the object decks must be link-edited. Refer to Figure 36 on
page 183 for generic JCL for these tasks.

182 Application Programming

Installing an Online CICS/VSE Application
Two steps are required to install an online application:
1. You must run the application through a DB2 Server for VSE preprocessor. If the

application uses the EXEC CICS interface, it must also be run through the
CICS/VSE translator. The CICS/VSE translator output must be compiled (or
assembled), and the object decks must be link-edited.

2. CICS/VSE must be made aware of the application. You must define the
CICS/VSE transaction identifier to be used to activate the application, and
define the phase associated with the transaction identifier. Refer to Figure 37 on
page 184 for generic JCL for these tasks.

// MYPROG program name
*
// DLBL IJSYSPH,'PREPROCESSOR.OUTPUT',0 *-- PREPROCESSOR output
// EXTENT SYSPCH,........ *--

ASSGN SYSPCH,.... *-- SYSPCH assignment
*
// LIBDEF *-- Library definitions
*
// ASSGN SYSxxx,... *-- Preprocessor workfiles
*
// DLBL SQLGLOB,....,DISP=(OLD,KEEP) *-- SQLGLOB parm file
// DLBL SQLBIND,....,DISP=(OLD,KEEP) *-- BIND output file
// DLBL BINDWKF,.... *-- BIND work file
*
// EXEC ARIPRPx,SIZE=AUTO,PARM='USERID=SQLDBA/SQLDBAPW,PREPNAME=MYPROG,*

KEEP,....... ' *-- Invoke DB2 for VSE PREPROCESSOR
*
* MYPROG input here if SYSRDR and SYSIPT assigned to same device
*
/*

CLOSE SYSPCH,00D *-- Close SYSPCH
*
// DLBL IJSYSIN,'PREPROCESSOR.OUTPUT',0 *-- Input File
// EXTENT SYSIPT,........ *--

ASSGN SYSIPT,.... *--
*
// OPTION CATAL *--

ACTION MAP *--
PHASE MYPROG,* *--

// EXEC compiler *-- Compile
INCLUDE ARIPRDID *-- DB2 for VSE Resource

Adapter stub
INCLUDE *-- Include runtime routines

*
// EXEC LNKEDT *-- Link Edit

CLOSE SYSIPT,00C *-- Reset SYSIPT
/*
/&

Notes:
1. JCL must be changed to specify the correct DASD extents, Device address, Compiler references & Library

definitions
2. Replace ARIPRPx with the preprocessor name
3. See Table 14 on page 156 for a list of preprocessor work files
4. See “Link-Editing and Loading the Program” on page 178 for a complete list of modules to be included.

Figure 36. Creating an Object Deck and Phase for a Batch Program (Multiple User Mode)

Chapter 5. Preprocessing and Running a DB2 Server for VSE Program 183

// MYPROG program name
// DLBL IJSYSPH,'PREPROCESSOR.OUTPUT',0 *-- PREPROCESSOR output
// EXTENT SYSPCH,...... *--

ASSGN SYSPCH,... *-- SYSPCH assignment
// LIBDEF *-- Library definitions
// ASSGN SYSxxx,... *-- Preprocessor workfiles
// DLBL SQLGLOB,....,DISP=(OLD,KEEP) *-- SQLGLOB parm file
// DLBL SQLBIND,....,DISP=(OLD,KEEP) *-- BIND output file
// DLBL BINDWKF,.... *-- BIND work file
// EXEC ARIPRPx,SIZE=AUTO,PARM='USERID=SQLDBA/SQLDBAPW,PREPNAME=MYPROG,*

KEEP,....... ' *-- Invoke DB2 for VSE PREPROCESSOR
*
* MYPROG input here if SYSRDR and SYSIPT assigned to same device
*
/*

CLOSE SYSPCH,00D *-- Close SYSPCH
*
* For ASSEMBLER only, convert to 80 byte input format for
* CICS Translator, dropping the stacker select prefix added
* to SYSPCH above. See notes for details
*
// DLBL IJSYSIN,'PREPROCESSOR.OUTPUT',0 *--} For ASSEMBLER replace
// EXTENT SYSIPT,..... *--} with statements in the

ASSGN SYSIPT,... *--} notes section
*
// DLBL IJSYSPH,'TRANSLATOR.OUTPUT',0 *-- CICS Translator output
// EXTENT SYSPCH,...... *--

ASSGN SYSPCH,... *--
*
// EXEC DFHExP1$,SIZE=400K *-- CICS Translator

CLOSE SYSIPT,00C *--
CLOSE SYSPCH,00D *--

*
// DLBL IJSYSIN,'TRANSLATOR.OUTPUT',0 *-- CICS Translator output
// EXTENT SYSIPT,....... *-- (input to the compiler)

ASSGN SYSIPT,... *--
*
// OPTION CATAL *--

ACTION MAP *--
PHASE MYPROG,* *--
INCLUDE DFHxxxx *-- CICS host language module

// EXEC compiler *-- Compile
INCLUDE ARIRRTED *-- DB2 for VSE Resource

Adapter stub
INCLUDE *-- Include runtime routines

// EXEC LNKEDT *-- Link Edit
CLOSE SYSIPT,00C *-- Reset SYSIPT

/*
/&

Figure 37. Creating an Object Deck and Phase for an Online Program (Multiple User Mode) (Part 1 of 2)

184 Application Programming

Distributing Packages across Like and Unlike Systems
To run your application program on another DB2 Server for VSE & VM database
manager, you can simply distribute its load module and the DB2 Server for VSE &
VM package. (You do not have to distribute the source code and then preprocess
and compile it on the other system). Reload the package to all application servers
that your package accesses, and send the load module to all DB2 Server for VSE &
VM application requesters that your program accesses. You can unload the package
to be distributed from the application server into a file, and subsequently reload
the file into the new application server. Only the owner of the package or the
database administrator can unload or reload the package.

If the package is distributed among application servers that are at different release
levels of the system, a run-time error occurs if the package uses a feature that is
not available on the application server on which the package was reloaded. To
ensure that the load module and the package that you are distributing are meant
to be used together, use the preprocessor parameter CTOKEN to place the same
consistency token in both the load module and the package. Refer to
“Preprocessing the Program” on page 154. If the two tokens do not match, the
application server stops the program from running. For information on distributing
packages on both like and unlike systems, refer to the DB2 Server for VSE & VM
Database Services Utility manual.

If your CICS/VSE application is to run at other DB2 Family application servers, do
the following:
v When you preprocess your application, specify the BIND option so that a bind

file is created.
v CICS translate, compile, and linkedit the preprocessor source output to create a

VSE phase.
v Use the CBND transaction to generate a package at each DB2 application server

at which the application is to be run. CBND uses the bind file created in the
preprocessor step above.

Notes:
1. JCL must be changed to specify the correct DASD extents, Device address, Compiler/Translator references and

Library definitions
2. Replace ARIPRPx with the preprocessor name
3. Replace DFHExP1$ with the CICS Host Language Translator
4. See Table 14 on page 156 for a list of preprocessor work files
5. See “Link-Editing and Loading the Program” on page 178 for a complete list of modules to be included
6. For assembler and C, the following statements are to replace the three statements identified in the JCL:

// DLBL UIN,'PREPROCESSOR.OUTPUT',0 *-- Output from DB2 for VSE Preprocessor
// EXTENT SYS004,.....
// ASSGN SYS004,...
// DLBL UOUT,'OBJMAINT.OUTPUT',0 *-- Output from strip operation
// EXTENT SYS005,.....
// ASSGN SYS005,..
// EXEC OBJMAINT
./ LIST PARM=JOB
./ BLOCK BLKSIZE=80
./ COPY
/*
// DLBL IJSYSIN,'OBJMAINT.OUTPUT',0 *-- Input to Translator
// EXTENT SYSIPT,.....
// ASSGN SYSIPT,..

Figure 37. Creating an Object Deck and Phase for an Online Program (Multiple User Mode) (Part 2 of 2)

Chapter 5. Preprocessing and Running a DB2 Server for VSE Program 185

For more information on CBND, see “Creating a Package Using CBND”.

Creating a Package Using CBND
If a bind file is generated after processing, it can be used to create a package in a
remote or local application server. This enables the CICS online application
program to access a remote DRDA server. To convert the SQL statements in a bind
file into a package, use the CBND CICS transaction. CBND can be used to bind all
applications whose bind file was generated by the preprocessor to a remote or
local server. To create a package locally, for a Fortran application, you still need to
run the batch preprocessor. Executing the preprocessor with the BIND option and
executing CBND are complementary. The preprocessor creates and stores the bind
file in a master or private VSAM file and CBND reads the bind file back into an
application server.

If using the CBND command, you must be either the owner of the program whose
bind file you are binding to a remote server or a database administrator.

A second level transaction, CB2D, is required for CBND to complete the bind
process. The CB2D transaction is invoked internally by CBND through an EXEC
CICS START command. One or more CB2D transactions can be started by one
CBND transaction based on the number of application servers specified in the
CBND DBLIST input parameter. Each CB2D is responsible for connecting to a
target database and creating a package. This transaction needs to be defined
during installation to fully enable the CBND function.

The CBND transaction has 13 parameters:

186 Application Programming

Table 17. CBND Transaction Parameters

Parameter Description

PACKAGE (positional
parameter 1)

This parameter identifies the package to be created and the
associated bind file. The associated bind file must be created by the
DB2 Server for VSE preprocessor and its contents must not be
changed in any way. collection_id.package_id is the name by which
the database manager identifies the package to be created and the
associated bind file. The collection_id portion is optional, and fully
qualifies the package_id and any unqualified objects referenced
within the package.

If the collection_id is not specified, and the user_id is, the
collection_id defaults to the user_id. If neither is specified, the
collection_id defaults to the connected authorization-id.

You must be the owner of the bind file that you want to bind. To
bind another user’s bind file, you must have DBA authority.

�� CBND PACKAGE(package_id)
collection_id.

�

�
INfile (private_file_id)

�

�

$

$

NEW
REPLACE

KEEP
REVOKE

OWner (authorization_name)
QUALifier (collection_id)

NOCHECK
CHECK
ERROR

,

DBList (server_name)
USERid (authorization_name/password)
MSGQueue (name)

QRY

��

Note: For any options not specified on the CBND transaction, the default option will be
the option specified when the package was preprocessed, unless otherwise noted.

Chapter 5. Preprocessing and Running a DB2 Server for VSE Program 187

Table 17. CBND Transaction Parameters (continued)

Parameter Description

REPLACE This parameter is specified if an existing package is to be replaced
by the bind. If the package does not exist, a new package is created
without an error or warning message.

KEEP causes the existing grants of RUN privilege to remain in
effect when the package is bound. However, if the owner of the
package is not entitled to grant all privileges embodied in the
package, all existing grants of the RUN privilege are revoked. The
KEEP and REVOKE parameters apply if the package has
previously been created and the owner of the package has granted
the RUN privilege on the resulting package to other users. The
KEEP and REVOKE parameters are allowed only with REPLACE.

If the REVOKE parameter is specified, all existing grants of the
RUN privilege are revoked. The KEEP and REVOKE parameters
are allowed only with REPLACE.

NEW The NEW parameter is specified if the package to be created does
not exist and is to be created. If the package with the same name
and owner already exists in the remote application server, CBND
fails.

OWner This parameter specifies the authorization_name of the owner of the
package being created. The OWner parameter is to be used when
you are binding against a remote application server. However, if
you specify this parameter when binding against a local DB2
Server for VSE & VM application server, the authorization_name
must be the same as the application server authorization ID.

QUALifier This parameter specifies the default collection_id within the package
to resolve unqualified object names in static SQL statements.

The QUALifier parameter is meant to be used when you are
binding against a remote application server. If you specify this
parameter when binding against a DB2 Server for VSE & VM
application server, the collection_id must be the same as the
application server authorization ID.

NOCHECK This parameter is specified if you want the application server to
check all SQL statements for validity and perform package
functions. It will generate a package if no statement-parsing error
was found; If you specify the NOCHECK parameter, it overrides
the ERROR parameter in the bind file

CHECK This parameter is specified if you want the application server to
check all SQL statements for validity and generates error messages
if necessary, but does not generate a package; If you specify
CHECK parameter, it overrides NOCHECK or ERROR parameter
in the bind file.

188 Application Programming

Table 17. CBND Transaction Parameters (continued)

Parameter Description

ERROR This parameter specifies how statement parsing errors are
tolerated. If the ERROR option is specified, then syntactic or
semantic errors detected at the application server side will not stop
the creation of the package. If the ERROR option is not specified in
both CBND and the bind file, the application server will not create
the package when those errors occur.

With the ERROR option, a syntactic error will cause the DB2 for
VSE & VM database to generate an Error Section in the package.
At run-time, invocation of this statement will yield SQLCODE -525

With the ERROR option, the creation of a package fails only if
there was a DRDA protocol error, or a severe error detected on the
AS side.

QRY This parameter causes CBND to display the preprocessor options
stored in the header of the bind file. The preprocessor options will
be displayed at the terminal where CBND was invoked.
MSGQueue is ignored if QRY is specified. No package functions
will be performed if QRY is specified.

An example of displayed output is as follows:

ARI5418I - THE BIND OPTIONS CURRENTLY IN EFFECT FOR
- PACKAGE SQLDBA.MYPROG ARE:
- NOCHECK
- KEEP
- BLOCK
- ISQL(CS)
- EXPLAIN(NO)
- APPLICATION SERVER DEFAULT DATE
- APPLICATION SERVER DEFAULT TIME
- NOEXIST
- REPLACE
- APOST
- CTOKEN(NO)
- CCSIDS(500)
- CCSIDM(0)
- CCSIDG(0)
- APPLICATION SERVER DEFAULT CHARSUB
- DEFAULT PACKAGE LABEL

INfile This parameter identifies the 7-character VSAM file name defined
to CICS through FCT or RDO (CICS/ESA R410) which contains the
bind file to be loaded into the database.

If this parameter is omitted, the bind file is assumed to reside in
the master VSAM file named SQLBIND. SQLBIND is defined to
CICS during installation, it is also used as the DLBL filename
which identifies the bind file used for input. If your bind file
resides in a private VSAM file, you will then specify the VSAM file
name that matches this private VSAM file. To do this, you must
make sure that this VSAM file is properly defined to CICS.

DBList This parameter specifies a list of application servers on which the
bind file will be bound.

If this parameter is omitted, the bind file is bound to the default
application server. For more information on establishing a default
application server, see the DB2 Server for VSE & VM Database
Administration manual.

Chapter 5. Preprocessing and Running a DB2 Server for VSE Program 189

Table 17. CBND Transaction Parameters (continued)

Parameter Description

USERid This parameter specifies the userid and password that CBND will
use to execute a CONNECT statement to gain access to each
application server where the package will be created.

If this parameter is omitted, CBND will connect implicitly to the
application server where the package will be created. That is, the
online resource adapter will establish the userid for this particular
CBND transaction. For more information on how the userid is
established in the case of an implicit connect, see the DB2 Server for
VSE & VM Database Administration manual.

MSGQueue This parameter specifies the name of the temporary storage queue
to be used to store the bind error or warning message (if any). If
this parameter is omitted, no error or warning message will be
stored, CBND will just display a summary report of the bind
process on the terminal where CBND was invoked. The summary
report contains the bind options used for the bind process, host
variables, declarations, and the result of the bind. The user can
browse the message queue specified using CEBR when CBND
completes. This queue is kept in main storage and is not
recoverable. It stays until it is purged by CEBR or if CICS is
recycled. The user must determine when they should delete queues
that are no longer needed to prevent possible short on temporary
storage situations.

The preprocessor requires the job control statement DLBL SQLGLOB. In addition,
when you want the preprocessor to generate a bind file, job control statements
DLBL SQLBIND and DLBL BINDWKF are required. These DLBL statements must
be provided in either the preprocess job control or the system standard label
subarea. The DLBL SQLBIND indicates the VSAM file into which the preprocessor
should place the output bind file. The BINDWKF indicates the work file into
which the preprocessor should use when performing VSAM I/O against the bind
file. The DLBL SQLGLOB contains the CHARNAME and DBCS options which are
necessary for bind file creation. See Figure 38. As mentioned earlier, you can
suppress SQLBIND output through CHECK and NOBIND parameters of the
preprocessor.

A user can choose to store the bind file generated by the preprocessor in a master
DB2 Server for VSE VSAM bind file, or in his or her private VSAM bind file.

If a user chose to have his application program’s bind file stored in the master DB2
Server for VSE VSAM bind file, the user should specify the recommended VSAM
dataset name “DB2.BIND.MASTER” on the DLBL SQLBIND job control statement.
This master VSAM bind file is defined to the system when DB2 Server for VSE
Version 7 Release 1 was installed. Therefore, the user does not need to define or set
up the file. However, if a different cluster name was used to define the master
VSAM file, the user should then specify the corresponding dataset name used.

// DLBL SQLBIND,'DB2.BIND.MASTER',,VSAM,CAT=catalog,DISP=(OLD,KEEP)
// DLBL BINDWKF,'DB2.BIND.WORKF',,VSAM,CAT=catalog
// DLBL SQLGLOB,'DB2.SQLGLOB.MASTER',,VSAM,CAT=catalog,DISP=(OLD,KEEP)

Figure 38. DLBL Statements for SQLBIND and SQLGLOB VSAM file

190 Application Programming

If a user chose to have his application program’s bind file stored in a private
VSAM bind file, the user must specify the name of his or her private VSAM bind
file on the DLBL SQLBIND job control. The user must first define the private
VSAM bind file, using the same VSAM characteristics as the master VSAM bind
file. For more information on how to define the VSAM cluster for the private bind
file, see the DB2 Server for VSE Program Directory.

Chapter 5. Preprocessing and Running a DB2 Server for VSE Program 191

192 Application Programming

Chapter 6. Testing and Debugging

Doing Your Own Testing 194
Checking Warnings and Errors at Preprocessor
Time 194
Testing SQL Statements 195

Using the Automatic Error-Handling Facilities . . 195
Using the SQLCA 197

Using the SQLERRM Field 198
Using the SQLWARN Field 198

Examining Errors 198

Using the WHENEVER Statement 198
Determining the Scope of the WHENEVER
Statement 199
Examining the SQLCA 199

Handling Errors in a Select-List 205
Handling Arithmetic Errors. 205
Handling Numeric Conversion Errors 206
Handling CCSID Conversion Errors 207

© Copyright IBM Corp. 1987, 2001 193

Doing Your Own Testing

Checking Warnings and Errors at Preprocessor Time
If errors or warnings are detected during preprocessing, the preprocessor inserts
messages into the modified source code and preprocessor listing files to indicate
that a problem was encountered. A return code is also issued indicating the
severity of the problem.

Messages associated with warning conditions are inserted into the files in comment
form so that the compilation of the modified source code is not inhibited. A return
code of 4 is issued and, if no problems of greater severity are found, package
processing occurs. All warnings should be investigated, because they may indicate
a situation that must be corrected before the program is executed. For example, if
you use the NOEXIST preprocessor option and a table is not found at
preprocessing time, the database manager issues a warning because it assumes that
the table will be created before the program is executed. If the program is executed
and the table is not found, the successful execution of the program is inhibited and
an error results.

DB2 Server for VM
Messages associated with error conditions are treated differently if the
preprocessor option ERROR is specified.

When you are preprocessing without the ERROR option, messages are
inserted in the files in uncommented form so that the compilation process is
inhibited. A return code of 8 or greater is issued, and no package processing
occurs.

When preprocessing with the ERROR option, most statement-parsing errors
are tolerated. Messages associated with these errors are inserted into the files
in commented form, and the return code is downgraded to a warning:
detection of these errors does not inhibit package processing. However, some
statement-parsing errors, such as errors with host identifiers and all errors
that could jeopardize the integrity of the package, are too severe to be
ignored. Such errors are treated as outlined for preprocessing without the
ERROR option.

Because the ERROR option allows preprocessing to complete successfully
even though errors have been detected, ensure that each statement is
preprocessed successfully on the application server on which the statement
will be executed. Check the preprocessor listing associated with the binding
application server.

DB2 Server for VSE
When you are preprocessing, messages associated with error conditions are
inserted in the files in uncommented form so that the compilation process is
inhibited. A return code of 8 or greater is issued, and no package processing
occurs.

To check for error and warning conditions:

194 Application Programming

1. Scan the modified source code or preprocessor listing file for error and warning
message. Error message numbers are formatted as ARInnnnE, and warning
message numbers as ARInnnnW or ARInnnnI.
Messages generated during preprocessor initialization and termination are
stored in the listing file, not in the modified source code. A listing file
containing these messages is produced regardless of whether the NOPRint
preprocessor parameter is specified.

2. Look up the message numbers, SQLCODES and SQLSTATES issued by the
system in the DB2 Server for VM Messages and Codes or the DB2 Server for VSE
Messages and Codes manual.

3. If the error was detected by a non-DB2 Server for VM application server or
non-DB2 Server for VSE application server, look up the SQLCODE and
SQLSTATE explanations in the Messages and Codes manual associated with the
database management system that detected the problem.

4. Use ISQL HELP for online information about messages and SQLCODEs issued
by the database manager. To obtain limited online help information for
SQLSTATEs, type HELP SQLSTATE from ISQL.

Testing SQL Statements
Several facilities are available to help you test SQL statements:
v Interactive facilities such as ISQL or QMF can be used for testing statements;

however, the range of statements that can be tested with these facilities is
limited. For example, you cannot test the following:
– Statements that use host language delimiters, host variables, cursors, or

statement names.
– Dynamic or extended dynamic SQL statements.

For other static SQL statements, however, these facilities are fast and easy to use,
and you can do data definitions, authorizations, and data control tasks. For
information on ISQL, see the DB2 Server for VSE & VM Interactive SQL Guide and
Reference manual.

v The DBS Utility can be used for testing the same range of SQL statements that
can be tested using ISQL or QMF. In addition, it lets you use file input and
output, which makes submitting and reviewing test conditions easier, and lets
you set up and restore test databases with DBS Utility data load and unload
commands. For information on the DBS Utility, see the DB2 Server for VSE & VM
Database Services Utility manual.

v DB2 Server RXSQL can be used for testing statements with host variables,
statement names, and cursors. You can test dynamic and extended dynamic SQL
statements. DB2 Server RXSQL can be used to prototype application programs.
For information on DB2 Server RXSQL, see the DB2 REXX SQL for VM/ESA
Installation and Reference manual.

Using the Automatic Error-Handling Facilities
Every SQL application program must provide for error handling, by declaring an
SQL Communications Area (or alternatively, just the SQLCODE variable, as
described later in this section). This area receives messages that the database
manager sends to the program. By testing certain fields of this area, you can test
for certain conditions during the program’s execution.

Chapter 6. Testing and Debugging 195

Error handling helps protect the integrity of the database when a program fails.
For example, consider the two-step operation needed to transfer $500 from one
account to another in a bank:
1. Subtract $500 from account A
2. Add $500 to account B.

If the system or your program fails after the first statement is executed, some
customer has just “lost” $500. This type of incomplete update is said to leave the
database in an inconsistent state.

To avoid creating an inconsistent state, use a logical unit of work (LUW). An LUW
is a group of related SQL statements, possibly with intervening host language
code, that you want treated as a unit. The two steps in the previous example
would make up a single LUW. SQL requests within an LUW can be made against
a remote application server; such an LUW is called a remote unit of work.

LUWs prevent inconsistencies caused by system errors or SQL statement errors.
For system errors, the system automatically restores all changes made during the
LUW where it encountered the error. This rollback of the LUW is identified by a
negative SQLCODE and a W in the SQLWARN6. When a non-severe SQL error
occurs, the system restores all changes made by the statement in error. This
statement rollback is identified by a negative SQL code and a blank in
SQLWARN6. For work done in the LUW before execution of the statement in error,
do the following:
v Declare an SQL Communications Area (or just the SQLCODE variable)
v Code an SQL WHENEVER statement
v Code the actions to be taken if an error occurs.

To declare the SQL Communications Area (SQLCA), code this statement in your
program:

INCLUDE SQLCA

When you preprocess your program, the system inserts host language variable
declarations in place of the INCLUDE SQLCA statement, and SQL communicates
with your program using this group of variables. The system uses the variables for
warning flags, error codes, and diagnostic information. All these variables are
discussed in the DB2 Server for VSE & VM SQL Reference manual.

The system returns a return code in SQLCODE after executing each SQL statement.
When a statement is executed successfully, SQLCODE is set to 0 (SQLSTATE is
'00000'). The system indicates error conditions by returning a negative SQLCODE.
A positive SQLCODE indicates normal or warning conditions experienced while
executing the statement.

The system also returns a return code in SQLSTATE after executing each SQL
statement. SQLSTATE provides common return codes for IBM’s relational database
products. SQLSTATE values comply with the SQL92 standard. For a discussion of
return codes in SQLSTATE, refer to the DB2 Server for VSE & VM SQL Reference
manual.

The system supports a stand-alone SQLCODE. If you request this support, you
must not include the SQLCA definition in your program. You must, however,
provide the integer variable SQLCODE (SQLCOD in Fortran). Refer to “Parameters
for SQLPREP EXEC for Single and Multiple User Modes” on page 122 or “Defining
the Preprocessing Parameters” on page 158 for information on the preprocessor
parameters that provide NOSQLCA support.

196 Application Programming

The following WHENEVER statement specifies a system action that is to occur
when an SQL error (that is, a negative SQLCODE) is returned:

WHENEVER SQLERROR GO TO ERRCHK

That is, whenever an SQL error (SQLERROR) occurs, program control is
transferred to code which follows a specific label, such as ERRCHK. This code
should include logic to analyze the error indicators in the SQLCA. Depending on
how ERRCHK is defined, action may be taken to execute the next sequential
program instruction, to carry out some special functions, or, as in most cases, to
roll back the current LUW and end the program.

Using the SQLCA

As mentioned previously, the database manager returns a return code in the
SQLCA after almost every SQL statement. The only statements that do not return
SQLCODEs are SQL declarative statements, which are not executed; therefore, no
SQLCODE can be returned. (Never test for an SQLCODE after a declarative
statement.) The following are examples of declarative statements:
v BEGIN DECLARE SECTION
v END DECLARE SECTION
v WHENEVER
v INCLUDE SQLCA
v INCLUDE SQLDA.

When a nondeclarative statement is in error, the system reverses any changes to
the database caused by that statement. For any previous work done in the LUW,
you have to tell the system what action to take.

Table 18 shows a representation of the SQLCA structure with host-language
independent data type descriptions. (Refer to the appendixes for the SQLCA data
types of a particular programming language.)

Table 18. SQLCA Structure (in Pseudocode)

SQLCA -- a structure composed of:
SQLCAID -- character string of length 8
SQLCABC -- 31-bit binary integer
SQLCODE -- 31-bit binary integer
SQLERRM -- varying character string of maximum length 70
SQLERRP -- character string of length 8
SQLERRD -- an array composed of:

SQLERRD(1) -- 31-bit binary integer
SQLERRD(2) -- 31-bit binary integer
SQLERRD(3) -- 31-bit binary integer
SQLERRD(4) -- 31-bit binary integer
SQLERRD(5) -- 31-bit binary integer
SQLERRD(6) -- 31-bit binary integer

SQLWARN -- a sub-structure composed of:
SQLWARN0 -- single character
SQLWARN1 -- single character
SQLWARN2 -- single character
SQLWARN3 -- single character
SQLWARN4 -- single character
SQLWARN5 -- single character
SQLWARN6 -- single character
SQLWARN7 -- single character
SQLWARN8 -- single character
SQLWARN9 -- single character
SQLWARNA -- single character

SQLSTATE - character string of length 5

Chapter 6. Testing and Debugging 197

The DB2 Server for VSE & VM SQL Reference manual explains the structure of the
SQLCA, and describes each field in detail. Some tips about SQLERRM and
SQLWARN fields are provided below.

Using the SQLERRM Field
The message texts associated with particular SQLCODEs (which can be found in
the DB2 Server for VM Messages and Codes or the DB2 Server for VSE Messages and
Codes manual), often include variables which are returned in the SQLERRM field of
the SQLCA. In some situations, the format of the last variable in the SQLERRM
field is 'FOnn', which specifies the format number of the SQLCODE message text.
The 'FO' is an abbreviation for format, and 'nn' represents the number that
identifies the version of the message text that applies. If there is more than one
variable returned through SQLERRM, the variables are separated by X'FF'.

The first two bytes of SQLERRM (which is varying-length) contain the total length
of the string.

See “Handling Numeric Conversion Errors” on page 206 for the values of this field
when a numeric conversion occurs in an outer select and “Handling Errors in a
Select-List” on page 205 for the values when an error occurs while evaluating
expressions in an outer select.

Using the SQLWARN Field
This field contains characters that warn of various conditions encountered during
the processing of your statement. Alternatively, specific warnings may be indicated
by positive values in the SQLCA field, SQLCODE. For example, a warning
indicator is set when the system ignores null values in computing an average.
When the system encounters a particular condition, it sets the corresponding
warning character to a designated value, such as W, N, or Z. When the system
encounters two different warning conditions and must set the warning character to
either W or N, the system randomly chooses one value. If the system encounters
three different warning conditions and must set the value of the warning character
to W, N, or Z, the system sets the value of the warning character to W or N, but
not Z. The warning character Z is, therefore, overridden by W or N. One or more
warning characters may be set to W regardless of the code returned in SQLCODE.
The meanings of the warning characters are listed in the DB2 Server for VSE & VM
SQL Reference manual.

Because there is only one return code structure in each program, you should copy
out of the structure any information that you wish to save before the next SQL
statement is executed. Of particular note are the SQLCODE and the warning
indicators (SQLWARN).

Examining Errors

Using the WHENEVER Statement
The WHENEVER statement is a nonexecutable statement that assists you in
reacting to unusual conditions, based on data returned in the SQLCA.

The following three conditions can be addressed with WHENEVER statements:

SQLERROR Occurs when SQLCODE is negative.

SQLWARNING
Occurs when SQLCODE is positive but not 100, or when
SQLCODE is zero and SQLWARN0 is W.

NOT FOUND Occurs when SQLCODE is 100 (SQLSTATE is '02000').

198 Application Programming

Each SQL statement is within the scope of one WHENEVER statement for each of
the three conditions. A WHENEVER statement for an already specified condition
can be overridden at any time by coding another WHENEVER statement for the
same conditions.

One of three actions can be taken for a WHENEVER statement:

GOTO or GO TO Transfers control to a specified location.

STOP Terminates the program. The STOP action cannot
be used with the NOT FOUND condition.

CONTINUE Executes the next sequential instruction.

If a WHENEVER statement is not coded for a condition, it is processed as if the
condition were CONTINUE.

For a full discussion of the WHENEVER statement, see the DB2 Server for VSE &
VM SQL Reference manual.

Determining the Scope of the WHENEVER Statement
The scope of a WHENEVER statement is determined by its position in the source
program listing, not by its place in the logic flow. (This is because WHENEVER is
a declarative statement.) For example:

In the pseudocode program fragment above, the scope of the first WHENEVER is
only the SELECT INTO statement. The second WHENEVER applies to the DROP
INDEX statement (and to all SQL statements that follow it until another
WHENEVER is encountered). The CREATE INDEX and DELETE statements are
not covered by a WHENEVER (there is no preceding WHENEVER); therefore, the
default CONTINUE action applies for WHENEVER conditions.

Examining the SQLCA
The SQLCA structure can be examined using the WHENEVER statement. You can
test for both general (SQLCODE < 0 | SQLWARN0 <> blank) and specific
(SQLCODE = -911 | SQLWARN6 = ’W’) warning or error conditions. To do this,
use a WHENEVER statement with a GOTO somewhere in the source program
before the SQL statements for which you want to directly examine the SQLCA.

DO WHILE (X > Y)
EXEC SQL CREATE INDEX I1 ON EMP_ACT (ACTNO)

.
(host language code)

.

.
EXEC SQL DELETE FROM EMP_ACT

WHERE EMPN = '000220'

EXEC SQL WHENEVER SQLERROR STOP
.

(host language code)
.
.

EXEC SQL SELECT EMPNO, PROJNO, ACTNO INTO :EMPNUM.

.
EXEC SQL WHENEVER SQLERROR CONTINUE

END-DO
EXEC SQL DROP INDEX I1

..
.

(host language code)
.

First WHENEVER

Second WHENEVER

Chapter 6. Testing and Debugging 199

For example, Figure 39 shows pseudocode for an error handling routine:

When an error occurs, control is passed to the ERRCHK label. Then, in order to
prevent a program loop in this routine, a WHENEVER SQLERROR CONTINUE
statement is issued. (It is safe to do this because WHENEVER statements never
return an SQLCODE.) Next, the severity of the error is determined. If a severe
error occurs, the execution of any SQL statements on this application server (except
a CONNECT statement) terminates the application abnormally. The pseudocode
example reports the error and ends.

If the error is not severe, the pseudocode example displays an informational
message giving the SQLCODE, and an attempt is made to undo any changes. The
pseudocode example determines whether the ROLLBACK successfully completed,
by checking the SQLCODE after the ROLLBACK statement.

After a severe error, only a CONNECT statement is permitted. If the application
program reconnects to the application server in which the severe error occurred,
two possibilities exist. If the application server has been restarted or has otherwise
recovered, the application may continue; otherwise, another severe error will result.

EXEC SQL WHENEVER SQLERROR GOTO ERRCHK
.
.
.

ERRCHK: * Prevent further errors from branching here
EXEC SQL WHENEVER SQLERROR CONTINUE

* Handle severe errors first
IF SQLWARN0 = 'S'

DISPLAY('A SEVERE ERROR HAS OCCURRED.')
DISPLAY('SQLCODE = ' SQLCODE)

.

.

.
STOP

END-IF
* Describe the error

DISPLAY('AN ERROR HAS OCCURRED.')
DISPLAY('SQLCODE =' SQLCODE)

.

.

.
EXEC SQL ROLLBACK WORK

* Check for errors
IF SQLCODE < 0

DISPLAY('ROLLBACK WORK FAILED. SQLCODE = ')
DISPLAY(SQLCODE)

.

.

.
* Recovery from error is complete.

ELSE
DISPLAY('ROLLBACK WORK SUCCEEDED.')

.

.

.
END-IF

Figure 39. Pseudocode Error-Handling Routine

200 Application Programming

If your application program is accessing multiple application servers, you can enter
a CONNECT statement to switch to another application server and continue
processing.

Using TEXT Files to Get SQLCA Field Information: When an SQL error occurs,
you can examine the SQLCA in order to determine the problem. To reduce the
time taken to do so, you can issue a call from the application to either a DB2
Server for VSE module, a DB2 Server for VM TEXT file ARISSMF (for Fortran
programs), or a TEXT file ARISSMA (for all other programs). The pseudo formats
of these calls in each of the languages are:

CALL ARISSMA,(SQLCA,S1,S2,S3,S4,S5),VL /* Assembly Language */
ARISSMA(SQLCA,S1,S2,S3,S4,S5) /* 'C' */
CALL 'ARISSMA' USING SQLCA S1 S2 S3 S4 S5. /* COBOL */
CALL ARISSMF(SQLCA,SQLERP,S1,S2,S3,S4,S5) /* Fortran */
CALL ARISSMA(SQLCA,S1,S2,S3,S4,S5); /* PL/I */

In this example, S1, S2, S3, S4, and S5 are character strings declared within the
program and according to the rules of the specific language. Each string will
contain information on specific SQLCA fields, after the call to ARISSMA/ARISSMF.
Table 19 shows the parameter name for the strings, their SQL name, their lengths,
and the corresponding SQLCA fields.

Table 19. SQLCA Error Information Strings

Parameter Name SQL Name Length SQLCA Field

S1 SQLCSTR1 13 SQLCODE

S2 SQLCSTR2 13 SQLERRD1

S3 SQLCSTR3 13 SQLERRD2

S4 SQLCSTR4 12 SQLERRP (part 1)

S5 SQLCSTR5 14 SQLERRP (part 2)

Chapter 6. Testing and Debugging 201

DB2 Server for VSE

Notes:

1. For assembler you must INCLUDE modules ARIPRDID and ARISSMA
before the link-edit step.

2. For C you must:
v Declare the strings 1 character longer than that shown in the table. Also,

within the program itself, you must append the end-of-string character
“\0” to the last position within each of the character strings before
displaying them on the screen.

v Include the statement

#pragma linkage (ARISSMA,OS);

to indicate that System/390 linkage is used in the call to ARISSMA.
v INCLUDE modules ARIPRDID and ARISSMA before the link-edit step.

3. For COBOL you must INCLUDE modules ARIPRDID, ARIPADR4, and
ARISSMA before the link-edit step. If the program was preprocessed prior
to SQL/DS Version 2 Release 2, use ARIPADR instead of ARIPADR4.

4. For Fortran you must INCLUDE modules ARIPRDID, ARIPEIFA,
ARISSMF, and ARIPSTR before the link-edit step.

5. For PL/I you must:
v Declare ARISSMA as an external entry point to indicate that

System/390 linkage is used in the call to ARISSMA:
DCL ARISSMA ENTRY EXTERNAL OPTIONS(ASM,RETCODE);

v INCLUDE modules ARIPRDID and ARISSMA before the link-edit step.

202 Application Programming

DB2 Server for VM

Notes:

1. For assembler language, load modules ARIRVSTC and ARISSMA, as
follows:

LOAD program_name ARIRVSTC ARISSMA

2. For C, you must:
v Declare the strings one character longer than that shown in the table.

Also, within the program itself, you must append the end-of-string
character “\0” to the last position within each of the character strings
before displaying them on the screen.

v Include the statement:
#pragma linkage (ARISSMA,OS);

to indicate that System/390 linkage is used in the call to ARISSMA.
v Load modules ARIRVSTC and ARISSMA:

LOAD program_name ARIRVSTC ARISSMA (RESET CEESTART

3. For COBOL, load modules ARIRVSTC, ARIPADR (or ARIPADR4), and
ARISSMA:

LOAD program_name ARIRVSTC ARIPADR (or ARIPADR4) ARISSMA

4. For Fortran, load modules ARIRVSTC, ARIPEIFA, ARIPSTR, and
ARISSMF:

LOAD program_name ARIRVSTC ARIPEIFA ARIPSTR ARISSMF

5. For PL/I, you must:
v Declare ARISSMA as an external entry point, to indicate that

System/390 linkage is used in the call to ARISSMA:
DCL ARISSMA ENTRY EXTERNAL OPTIONS(ASM,RETCODE);

v Load modules ARIRVSTC and ARISSMA:
LOAD program_name ARIRVSTC ARISSMA (RESET CEESTART

ARISSMA/ARISSMF returns information in the strings to your program. This
information can be displayed or can be written to a file. The format in which the
information is returned is shown below.

SQLCSTR1 PRCS/nnnnnnnn; where n is the decimal representation of the
absolute value of the SQLCODE, right-justified, and padded with
0’s for a total length of 8 digits.

SQLCSTR2 PRCS/nnnnnnnn; where n is the decimal representation of the
absolute value of the SQLERRD1, right-justified and padded with
0’s for a total length of 8 digits.

SQLCSTR3 PRCS/nnnnnnnn; where n is the decimal representation of the
absolute value of the SQLERRD2, right-justified and padded with
0’s for a total length of 8 digits.

SQLCSTR4 FLDS/SQLERRP. This value is always returned in the string.

SQLCSTR5 VALU/Caaaaaaaa; where a is left-justified, padded by blanks, and is
the module name provided in field SQLERRP.

Suppose the SQLCA fields have the following values when the error occurred:

Chapter 6. Testing and Debugging 203

SQLCODE = -901
SQLERRD1 = -160
SQLERRD2 = -33
SQLERRP = ARIXOEX

then the values of the strings will be:
SQLCSTR1 ==> PRCS/00000901
SQLCSTR2 ==> PRCS/00000160
SQLCSTR3 ==> PRCS/00000033
SQLCSTR4 ==> FLDS/SQLERRP
SQLCSTR5 ==> VALU/CARIXOEX

These values may be displayed as shown in the pseudocode in Figure 40:

DB2 Server for VSE
Another reason an application might want to process the SQLERROR
condition is for graceful cleanup and termination. An example of this is a
CICS/VSE conversational transaction. Rather than abnormally terminating on
SQLERROR, a conversational transaction might do the following:
v Issue a CICS/VSE SYNCPOINT ROLLBACK or SQL ROLLBACK. This

backs out uncommitted changes to CICS/VSE and DB2 Server for VSE
recoverable resources.

v Issue an error message to the terminal user. Such a message typically
informs the user of the state of affairs and identifies the user’s options for
proceeding with the transaction.

The ISQL transaction handles SQLERROR in a similar manner. That is, rather
than terminating the ISQL session, the user is given an error message and
allowed to proceed.

EXEC SQL WHENEVER SQLERROR GOTO ERROR
.
.
.

ERROR: * Display string information
CALL ARISSMA
DISPLAY('SQLCSTR1 ='SQLCSTR1)
DISPLAY('SQLCSTR2 ='SQLCSTR2)
DISPLAY('SQLCSTR3 ='SQLCSTR3)
DISPLAY('SQLCSTR4 ='SQLCSTR4)
DISPLAY('SQLCSTR5 ='SQLCSTR5)

Figure 40. Pseudocode to Display Error Information

204 Application Programming

DB2 Server for VM
The processing of the SQLERROR condition not only allows an application to
terminate normally, but also permits easy recovery from errors. An example
of this is the ISQL application. Rather than terminating the ISQL session, the
user is given an error message and allowed to proceed. In fact, the
application could give the user the opportunity to indicate whether backout is
necessary. ISQL does this when you omit the WHERE clause in an UPDATE
or DELETE statement by checking SQLWARN4. That way, you have the
chance to confirm that all the rows in the table are to be deleted or updated.
Additional code could be added to the pseudocode example to check for this
situation.

Handling Errors in a Select-List
The database manager tolerates the occurrence of certain errors resulting from the
execution of expressions occurring in a select_list of an outer select statement.

Handling Arithmetic Errors
The arithmetic errors that can be tolerated are listed in Table 20.

Table 20. Tolerated Arithmetic Errors

Arithmetic Errors That Will Be Tolerated

v DECIMAL
– Divide Exception
– Decimal Overflow

v FLOAT
– Divide Exception
– Exponent Overflow

v INTEGER, SMALLINT
– Divide Exception
– Fixed Point Overflow

Note: FLOAT can be either single-precision or double-precision float. Refer to
“Assigning Data Types When the Column Is Created” on page 46 for more
information on floating-point data types.

Errors in date and time arithmetic are not tolerated. For example,
DATE('9999-12-31') + 1 DAY

results in a negative SQLCODE because the result would be an invalid date.

In the next example however, if the value of C2 is zero, the arithmetic error would
be tolerated.

DATE('1999-12-31') + C1/C2 DAYS

The expression in the outer select_list may be by itself, or it can be an argument in
a scalar or column function other than the column functions AVG and SUM.

If the errors occur on an outer select_list, and every output host variable that is
associated with the expression that is in error has an associated output indicator
variable, the system does the following:
v The output indicator variable for each arithmetic expression in error is set to -2.

Chapter 6. Testing and Debugging 205

v A positive warning SQLCODE is placed in the SQLCA.
v SQLWARN0 in the SQLCA remains unaffected.
v The value of the associated host variable is undefined.
v Execution of the statement continues, such that all expressions and values not

having arithmetic errors are returned.
v If the statement is a FETCH, the cursor remains open.

However, if the errors do not occur on the outer select_list, or if there are arithmetic
errors on the select_list and not every output host variable that is associated with
the expression in error has an associated output indicator variable, the system
takes the following actions:
v A negative error SQLCODE -802 (SQLSTATE '22003') is returned in the SQLCA.
v The values of the host variables and any supplied indicator variables in the

select_list are undefined.
v Execution of the statement is halted.
v If the statement is a FETCH, the cursor will remain open.

In either case, the SQLERRM of the SQLCA error message will identify the first
expression in error in the outer select_list. The following are returned in the error
message:
v The exception type
v The arithmetic operation being performed at the time of the error
v The data type of the select_list items being manipulated
v The ordinal position of the expression in error.

Depending on when the error is detected, some parts of the error message will be
blank.

Handling Numeric Conversion Errors
The numeric conversion errors that can be tolerated are listed in Table 21.

Table 21. Tolerated Numeric Conversion Errors

v FLOAT to
– DECIMAL
– INTEGER
– SMALLINT

v DECIMAL to
– DECIMAL
– FLOAT
– INTEGER
– SMALLINT

v INTEGER to
– DECIMAL
– SMALLINT

v SMALLINT to
– DECIMAL

Note: FLOAT can be either single-precision or double-precision float. Refer to
“Assigning Data Types When the Column Is Created” on page 46 for more
information on floating-point data types.

If an error occurs while converting numeric values into the data type of the host
variables, and output indicator variables are provided with host variables, for
which numeric conversion errors occurred, the system does the following:

206 Application Programming

v The output indicator variable for each host variable for which a numeric
conversion error occurred is set to -2.

v If no other warning SQLCODE is contained in the SQLCA, then a positive
warning SQLCODE is placed in the SQLCA and the error message tokens in
SQLERRM will identify the first conversion error.

v SQLWARN0 in the SQLCA is unaffected.
v The values of the associated host variables are undefined.
v Execution of the statement continues such that all values not in error are

returned to your program.
v If the statement is a FETCH then the cursor will remain open.

If output indicator variables are not provided for host variables for which numeric
conversion errors occurred, the system does the following:
v A negative error SQLCODE is placed in the SQLCA
v The SQLCA error message tokens identify the first conversion error
v The values of the host variables and indicators are undefined
v Execution of the statement is halted
v If the statement is a FETCH then the cursor will remain open.

In either case, the SQLERRM of the SQLCA will identify the first expression in
error, and the following will be returned in the error message:
1. The data type of the value being moved into the host variable
2. The ordinal position of the expression in error
3. The data type of the host variable.

Handling CCSID Conversion Errors
The database manager tolerates CCSID conversion errors in which a character or
characters have been mapped to the defined error byte.

If this occurred during CCSID conversion of data to be returned to the user, and
output indicator variables are provided with host variables, the system does the
following:
v For each host variable for which the CCSID conversion error byte mapping has

occurred, the output indicator is set to -2.
v If no other warning SQLCODE is in the SQLCA, a positive warning SQLCODE

is placed there, and the error message tokens in SQLERRM will identify the first
conversion error.

v SQLWARN0 in the SQLCA is unaffected.
v The values of the associated host variables are undefined.
v Execution of the statement continues and returns all correct values to your

program.
v For a FETCH statement, the cursor remains open.

If output indicator variables are not provided for host variables for which CCSID
conversion errors occurred, the database manager does the following:
v A negative SQLCODE is placed in the SQLCA.
v The SQLCA error message tokens identify the first conversion error.
v The values of the host variables, and any indicators, are undefined.
v Execution of the statement is halted.
v For a FETCH statement, the cursor remains open.

Chapter 6. Testing and Debugging 207

208 Application Programming

Chapter 7. Using Dynamic Statements

Dynamically Defining SQL Statements 210
Comparing Non-Query Statements to Query
Statements 210
Using Non-Query Statements 210

Executing Non-Parameterized Statements . . . 210
Executing Parameterized Statements. 212

Using Query Statements 214
Executing a Non-Parameterized Select-Statement 214

Using the PREPARE and DESCRIBE
Statements 214
Declaring the SQL Descriptor Area (SQLDA) 214
Processing a Run-Time Query Using the
SQLDA 215
Allocating Storage for the SQLDA Using the
SQLVAR Array 216
Initializing the SQLN Field of the SQLDA 216
Inserting Values in the SQLDA 216

Analyzing the Elements of SQLVAR 218
Allocating Storage for the Result of the
Select-Statement 219
Retrieving the Query Result 220

Executing a Parameterized SELECT Statement 221
Generating an Additional SELECT Statement 221

Executing a Parameterized Non-Query Statement 224
Generating a SELECT Statement 224

Using an Alternative to a Scanning Routine . . . 225
Ensuring Data Type Equivalence in a Dynamically
Defined Query 226
Summarizing the Fields of the SQLDA 228

Using the SQLN Field 230
Using the SQLD Field in the SQLDA 230

Using the PREPARE Statement 231
SQL Functions Not Supported in Dynamic
Statements 232

© Copyright IBM Corp. 1987, 2001 209

Dynamically Defining SQL Statements
Previous chapters have described how to code various SQL statements directly into
a program and have the database manager preprocess them. For some kinds of
applications, however, it is desirable to execute SQL statements that are not known
until the program is actually running. An example would be a program to support
an interactive user who wishes to type queries and receive results at a terminal. In
this case, you cannot embed the SQL statements in the program and have the DB2
Server for VSE & VM preprocessor recognize them, because the program reads the
statements from a terminal when it is running. To support applications such as
this, the system provides facilities for executing SQL statements that are specified
at run time.

For a detailed description of each of these statements, see the DB2 Server for VSE &
VM SQL Reference manual. The following SQL statements define dynamic
statements.
v PREPARE - prepares a single statement for execution
v DESCRIBE - obtains information about columns in the select_list of a prepared

select-statement

v EXECUTE - executes a non-select-statement in a package
v EXECUTE IMMEDIATE - prepares a single statement and immediately executes

it
v DECLARE CURSOR - in connection with OPEN, FETCH, PUT, and CLOSE,

executes a SELECT or an INSERT statement
v OPEN (cursor)
v FETCH (cursor)
v PUT (cursor)
v CLOSE (cursor).

Comparing Non-Query Statements to Query Statements
The SQL statements that you can dynamically define and execute fall into one of
two categories: non-query SQL statements (such as ALTER, CREATE, DELETE,
INSERT, and UPDATE) and query statements (such as SELECT). General usage
techniques for both categories are discussed below; specific statement syntax is
shown in the following sections.

Using Non-Query Statements

Executing Non-Parameterized Statements
The simplest SQL statements to execute dynamically are those that do not return
any result other than values in the SQLCA. No output host variables are used. This
is the case with all data definition and data control statements, and with all data
manipulation statements except SELECT.

Suppose an inventory control program is designed around the following table:
CREATE TABLE INVENTORY

(PARTNO SMALLINT NOT NULL,
DESCRIPTION VARCHAR(24) ,
QONHAND INTEGER)

The program reads SQL DELETE statements similar to these from a terminal:

210 Application Programming

DELETE FROM INVENTORY WHERE PARTNO =221
DELETE FROM INVENTORY WHERE PARTNO =315
DELETE FROM INVENTORY WHERE PARTNO =807

After reading a statement, the program immediately executes it.

SQL statements must be prepared before they can be executed. Because the SQL
statements are read at run time, they have not been prepared. An SQL statement
called EXECUTE IMMEDIATE causes an SQL statement to be prepared and
executed—all at run time. Here is a pseudocode solution to the above problem:

EXEC SQL BEGIN DECLARE SECTION
DECLARE DSTRING VARYING CHARACTER (80)

.

.
EXEC SQL END DECLARE SECTION

READ DSTRING FROM TERMINAL
EXEC SQL EXECUTE IMMEDIATE :DSTRING

A DELETE statement is read into a host variable called DSTRING. DSTRING is
then used as a parameter in the EXECUTE IMMEDIATE statement, causing the
DELETE statement to be immediately prepared and executed.

A host variable can be used as a parameter for the EXECUTE IMMEDIATE
statement. The table below shows how the host variable must be declared in the
different languages:

Table 22. Declaring of Host Variables

Language Fixed-
Length
Variable

Varying-Length
Variable

String Constant

Assembler X

C X

COBOL X X

Fortran X X

PL/I X X X

The Fixed-Length Variable refers to CHAR host variables, Varying-Length Variable
refers to VARCHAR host variables, and String Constant refers to quoted character
string constants. The following is an example of a String Constant dynamic
statement:

EXECUTE IMMEDIATE 'DELETE FROM INVENTORY WHERE PARTNO=201'

The SQL statement submitted to EXECUTE IMMEDIATE must not contain host
language delimiters or SQL delimited identifiers. That is, the statement must be in
basic form. Avoid using either delimited identifiers or strings of DBCS characters
in statements specified in string constants.

Note: The preferred method is to use a host variable rather than the string
constant.

The EXECUTE IMMEDIATE statement itself, however, must have appropriate
delimiters. For example, in COBOL all SQL statements must be preceded by EXEC
SQL, and followed by the END-EXEC keyword as follows:

Chapter 7. Using Dynamic Statements 211

EXEC SQL EXECUTE IMMEDIATE
'DELETE FROM INVENTORY WHERE PARTNO = 201'
END-EXEC.

If the host language you are using permits it, you can concatenate a constant to a
variable. For example, PL/I uses two vertical bars (||) as the concatenation
symbol:

EXEC SQL EXECUTE IMMEDIATE 'DELETE FROM INVENTORY WHERE' || PREDS;

Note: The concatenation symbol used here is not the same as the concatenation
operator discussed in “Chapter 3. Coding the Body of a Program” on
page 25.

The “EXEC SQL” and the semicolon (;) are the host language delimiters for PL/I.
At run time, the variable PREDS should contain a character string representing one
or more predicates that complete the DELETE statement. The variable PREDS must
not be used as a host variable, since it is being concatenated to the constant string.

Executing Parameterized Statements
In the example above, note that the DELETE statements that were dynamically
executed contained no host variables. That is, they were executed only once, with a
single value for PARTNO. Suppose that you wanted to execute the DELETE
statement repeatedly with different values, without having to key in the entire
statement each time. Consider how it might be done if you coded the DELETE
statement directly in a program:

READ PART FROM SYSIPT
DO WHILE (PART ¬= 0)

EXEC SQL DELETE FROM INVENTORY WHERE PARTNO = :PART
READ PART FROM SYSIPT

END-DO

The loop is repeated until a PART of 0 is read.

Now, suppose that you wish to read both the DELETE statement and the part
numbers from a terminal for dynamic execution. When this is done, the DELETE
statement itself should not contain host variables; rather, it should contain question
marks (?) to indicate where the value is to be substituted:

DELETE FROM INVENTORY WHERE PARTNO = ?

This type of statement is called a parameterized SQL statement (a parameter is an
input host variable). Thus far, none of the dynamic statements contained any
parameter markers, and they could be executed using EXECUTE IMMEDIATE.
Parameterized SQL statements require a slightly more complex facility called
PREPARE and EXECUTE. This facility can be thought of as an EXECUTE

IMMEDIATE performed in two steps. The first step (PREPARE) causes the
parameterized statement to be prepared, and gives it a name of your choosing.
(This name should not be declared as a host variable.) The second step (EXECUTE)
causes the statement to be executed using values that you supply for the
parameters. After a statement is prepared, it can be executed many times. Here is
the pseudocode:

212 Application Programming

You must not execute a dynamically defined statement after ending the logical unit
of work in which the statement was prepared. If you do, an error is issued.

In routines similar to the above example, the number of parameters and their data
types must be known, because the host variables that provide input data are
declared when the program is being written.

Naturally, this greatly limits the number of different SQL statements that you can
read in. In the above example, the only SQL statements that can be executed are
those containing a single parameter. This single parameter is defined as a 15-bit
integer in the program, and must be used as such. For example, the pseudocode
above can also process the statements below. (At the terminal, the user types in a
statement followed by values for the parameter markers.)

INSERT INTO INVENTORY (PARTNO) VALUES(?)

For each value you provide for “?”, the INSERT statement is executed, and a new
row is inserted into INVENTORY. The value you provide is placed in the PARTNO
column. The other columns of the table are given the null value (provided they are
nullable).

UPDATE INVENTORY SET DESCRIPTION = 'GEAR' WHERE PARTNO = ?

For each value you provide for “?”, the UPDATE statement is executed, and the
DESCRIPTION column of the INVENTORY table is set to ’GEAR’.

UPDATE INVENTORY SET QONHAND = 0 WHERE PARTNO = ?

For each value you provide for “?”, the UPDATE statement is executed, and the
QONHAND column in the INVENTORY table is set to 0.

Obviously there are some applications for this kind of dynamic statement
processing, but they are quite specialized. Suppose new parts are added to the
inventory. Each part is a different kind of gear, and none of the parts are yet in the
warehouse. The input stream for the pseudocode above would be as follows:

INSERT INTO INVENTORY (PARTNO) VALUES (?)
301
302
303
304
0
UPDATE INVENTORY SET DESCRIPTION = 'GEAR' WHERE PARTNO = ?
301
302
303
304

DO

.

.

.

READ DSTRING FROM TERMINAL
DO WHILE (DSTRING = ")

EXEC SQL PREPARE S1 FROM :DSTRING
READ PART FROM TERMINAL
DO WHILE (PART = 0)

EXEC SQL EXECUTE S1 USING :PART
READ PART FROM TERMINAL

END-DO
READ DSTRING FROM TERMINAL

END-DO

.

.

.

END-DO

Preprocess the DELETE
statement and call it
S1.

Execute S1 (the DELETE
statement) repeatedly
using different values
for PARTNO.

Chapter 7. Using Dynamic Statements 213

0
UPDATE INVENTORY SET QONHAND = 0 WHERE PARTNO = ?
301
302
303
304
0

Using Query Statements

Executing a Non-Parameterized Select-Statement

Using the PREPARE and DESCRIBE Statements
A somewhat more complex facility is needed for executing a dynamically defined
select-statement. Usually, a select-statement returns the result of a query into one or
more host variables. When the query is read from a terminal at run time, however,
you cannot know in advance how many and what type of variables to allocate to
receive the result. The database manager therefore provides a special statement
called DESCRIBE by which a program can obtain a description of the data types of
a query result. After using the DESCRIBE statement, the program can dynamically
allocate storage areas of the correct size and type to receive the result of the query.
If DESCRIBE is used on a prepared SQL statement that was not a SELECT, the
system indicates this by returning a zero in the variable SQLD of the SQL
descriptor area.

When handling a run-time query, the program first uses the PREPARE statement
which (as in the previous section) preprocesses the SQL statement. The PREPARE
step also associates a statement-name with the query. The DESCRIBE statement is
then used to obtain a description of the answer set. On the basis of this
description, the program dynamically allocates a storage area suitable to hold one
row of the result. The program then reads the query result by associating the name
of the statement with a cursor and by using cursor manipulation statements
(OPEN, FETCH, and CLOSE).

SELECT INTO statements cannot be executed dynamically.

Declaring the SQL Descriptor Area (SQLDA)
Dynamically defined queries center around a structure called the SQL Descriptor
Area (SQLDA). The SQLDA is usually a based structure; that is, storage for it is
allocated dynamically at run time. Figure 41 on page 215 is a representation of the
SQLDA structure with host-language-independent data type descriptions. Each
host language has different considerations for the SQLDA structure; you should
read the section on dynamic statements in the appropriate appendix before you
attempt to code a program that uses the SQLDA. In addition, see “Summarizing
the Fields of the SQLDA” on page 228 for information about the fields of the
SQLDA.

214 Application Programming

Note: The SQLLEN field can be divided into two subfields. The subfields are used
only when working with DECIMAL values. Such usage is described in the
following section.

To include the declaration of the descriptor area in an assembler, C, or PL/I
program, specify:

INCLUDE SQLDA

The INCLUDE SQLDA statement must not be placed in the SQL declare section.
As with the SQLCA, you can code this structure directly instead of using the
INCLUDE SQLDA statement. If you choose to declare the structure directly, you
can specify any name for it. For example, you can call it SPACE1 or DAREA
instead of SQLDA.

Processing a Run-Time Query Using the SQLDA
To process a run-time query, you must declare the SQLDA structure. Below is an
illustration showing the SQLDA structure as a box; similar illustrations are used in
following examples. Remember that SQLDA is a based structure (or, in assembler,
a DSECT); no storage has actually been allocated yet.

The meanings of the various fields are described as they are used. A summary of
the meanings of the fields of the SQLDA is presented later for quick reference.

If a select-statement is assigned to the variable QSTRING, it can be read in from
SYSIPT (DB2 Server for VSE) a terminal (DB2 Server for VM) or assigned within
the program itself. In this example, the following select-statement is read in from the
terminal:

SELECT DESCRIPTION, QONHAND FROM INVENTORY WHERE PARTNO = 221

SQLDA -- a based structure composed of:
SQLDAID -- character string of length 8
SQLDABC -- 31-bit binary integer
SQLN -- 15-bit binary integer
SQLD -- 15-bit binary integer
SQLVAR -- an array composed of:

SQLTYPE -- 15-bit binary integer
SQLLEN -- 15-bit binary integer

SQLPRCSN -- 1-byte (used for DECIMAL)
SQLSCALE -- 1-byte (used for DECIMAL)

SQLDATA -- 31-bit binary integer (pointer)
SQLIND -- 31-bit binary integer (pointer)
SQLNAME -- varying-length character string

of up to 30 characters

Figure 41. SQLDA Structure (in Pseudocode)

S Q L D A I D

SQLDABC SQLN SQLD

(1) (2)

SQLIND 11

SQLNAME

SQLVAR
.SQLDATA

(1) SQLTYPE
(2) SQLLEN
11 is the length
of the character
string in SQLNAME.
SQLNAME is a 30-byte
area immediately
following 11.

Chapter 7. Using Dynamic Statements 215

This select-statement has no INTO clause. When it is read in, it is assigned to the
host variable QSTRING, which is then preprocessed by the PREPARE statement:

READ QSTRING FROM TERMINAL
EXEC SQL PREPARE S1 FROM :QSTRING

Allocating Storage for the SQLDA Using the SQLVAR Array
Now you can allocate storage for the SQLDA. The techniques for acquiring storage
are language dependent; refer to the appropriate compiler or assembler manual.

Note: The usage of the SQLDA depends on the USING clause option of the
DESCRIBE statement (discussed later in this chapter). In this section, it is
assumed that the NAMES option of the USING clause has been specified.
The amount of storage you need to allocate depends upon how many
elements you want to have in the SQLVAR array. Each select_list item must
have a corresponding SQLVAR array element. Therefore, the number of
select_list items determines how many SQLVAR array elements you should
allocate. However, because select-statements are specified at run time, it is
not possible to know how many select_list items there will be. Consequently,
you must guess.

Suppose, in this example, that no more than three items are ever expected in
the select_list. This means that the SQLVAR array should have a dimension
of three, because each item in a select_list must have a corresponding entry
in SQLVAR.

Initializing the SQLN Field of the SQLDA
Having allocated an SQLDA of what you hope will be adequate size, you must
now initialize the SQLDA field called SQLN. SQLN is set to the number of
SQLVAR array elements you have allocated (that is, SQLN is the dimension of the
SQLVAR array). In this example, you must set SQLN to 3. Here’s the pseudocode
for what was done so far:

Allocate an SQLDA of size 3
SQLN = 3

Inserting Values in the SQLDA
Having allocated storage, you can now DESCRIBE the statement. (Make sure that
SQLN is set before the DESCRIBE.)

DESCRIBE S1 INTO SQLDA

When the DESCRIBE is executed, the system places values in the SQLDA. These
values provide information about the select_list.

Figure 42 on page 217 shows the contents of the SQLDA after the DESCRIBE is
executed for the example select-statement. The third SQLVAR element is not shown
because it was not used.

216 Application Programming

The SQLDAID and SQLDABC fields are initialized by the system when a
DESCRIBE statement is executed (you can ignore these for now).

If you do not allocate a large enough SQLDA structure, SQLD will be set to the
number of required SQLVAR elements after the DESCRIBE. Suppose, for example,
that the select-statement contained four select_list expressions instead of two. The
SQLDA was allocated with an SQLVAR dimension of three. The system cannot
describe the entire select_list because there is not enough storage. In this case,
SQLD is set to the actual number of select_list expressions; the rest of the structure
is ignored. Thus, after a DESCRIBE it is a good practice to check SQLN. If SQLN is
less than SQLD, you need to allocate a larger SQLDA based on the value in SQLD:

EXEC SQL DESCRIBE S1 INTO SQLDA
IF (SQLN < SQLD)

Allocate a larger SQLDA using the value of SQLD.
Reset SQLN to the larger value.
EXEC SQL DESCRIBE S1 INTO SQLDA

END-IF

For the example select-statement, however, the SQLDA was of adequate size.
SQLVAR has a dimension of three, and there are only two select_list expressions.
SQLN remains set to 3, and SQLD is set to 2.

Eye-catcher S Q L D A SQLN and SQLD

148 3 2

449 24 500(2)

X ' 01 ' (1) 11 D E

S C R I P T I O

Note:

1. The hexadecimal value
X ' 01 ' is in byte 1.
Bytes 2, 3, and 4 are
undefined.

2. Bytes 1 and 2
contain X ' 000 '. The
value 500 is in bytes
3 and 4.

SQLVAR
Element 1

7 Q O N H A N

D

497 4

SQLVAR
Element 2

N

Figure 42. Contents of SQLDA after Executing the DESCRIBE

Chapter 7. Using Dynamic Statements 217

If you use DESCRIBE on a non-select-statement, SQLD is set to 0. If your program
is designed to process both query and non-query statements, you can describe each
statement (after it is prepared) to determine whether it is a query. This example
routine is designed to process only query statements, so no test is provided.

Analyzing the Elements of SQLVAR
Your program must now analyze the elements of SQLVAR. Remember that each
element describes a single select_list expression. Consider again the select-statement
that is being processed:

SELECT DESCRIPTION, QONHAND FROM INVENTORY WHERE PARTNO = 221

The first item in the select_list is DESCRIPTION. As illustrated in the beginning of
this section, each SQLVAR element contains the fields SQLTYPE, SQLLEN,
SQLDATA, SQLIND, and SQLNAME. The system returns a code in SQLTYPE that
describes the data type of the expression and tells you whether nulls are
applicable. For a detailed explanation on how to interpret the codes returned in
SQLTYPE, refer to the DB2 Server for VSE & VM SQL Reference manual.

For example, SQLTYPE is set to 449 in the first SQLVAR element. This indicates
that DESCRIPTION is a VARCHAR column and that nulls are permitted in the
column.

The system sets SQLLEN to the length of the column. For character strings,
SQLLEN is set to the maximum number of bytes of the string. For graphic strings,
SQLLEN is set to the maximum number of double-byte characters in the string.
For decimal data, the precision and scale are returned in the first and second bytes,
respectively. (Recall that the SQLLEN field has two sub-fields called SQLPRCSN
and SQLSCALE for this purpose.) For other data types, SQLLEN is set as follows:
SMALLINT -- SQLLEN = 2
INTEGER -- SQLLEN = 4
Single precision float -- SQLLEN = 4
Double precision float -- SQLLEN = 8
DATE -- SQLLEN = 10 or LOCAL
TIME -- SQLLEN = 8 or LOCAL
TIMESTAMP -- SQLLEN = 26

Note: For DATE, TIME, and TIMESTAMP, see “Using Datetime Data Types” on
page 48.

Because the data type of DESCRIPTION is VARCHAR, SQLLEN is set equal to the
maximum length of the character string. For DESCRIPTION, that length is 24.
When the select-statement is later executed, a storage area large enough to hold a
VARCHAR(24) string will be needed. In addition, because nulls are permitted in
DESCRIPTION, a storage area for a null indicator variable would also be needed.

For character and graphic string columns, the system puts the CCSID attribute of
the column in bytes 3 and 4 of the SQLDATA field. In Figure 42 on page 217,
DESCRIPTION is a character column; therefore, the CCSID of DESCRIPTION is
stored in the SQLDATA field of element 1. The example shows a CCSID of 500,
which means that the data stored in the column is stored in CCSID 500 format.

For character string columns, the database manager stores an indicator in byte 1 of
the SQLIND field. The indicator is set according to the subtype associated with the
column. In Figure 42 on page 217, the indicator for DESCRIPTION is set to X'01',
which means that DESCRIPTION has a subtype of SBCS. Columns with a subtype
of SBCS can contain single-byte character set characters only. For DB2 Server for
VM, byte 1 is not set when DRDA protocol is in use.

218 Application Programming

The last field in an SQLVAR element is a varying-length character string called
SQLNAME. The first two bytes of SQLNAME contain the length of the character
data. The character data itself is usually the name of the field used in the select_list
expression (DESCRIPTION in the above example). The exceptions to this are
select_list items that are unnamed, such as functions (for example, SUM(SALARY))
and expressions (A+B-C). These exceptions are described in greater detail under
“Summarizing the Fields of the SQLDA” on page 228.

The second SQLVAR element in the above example contains the information for
the QONHAND select_list item. The 497 code in SQLTYPE indicates that
QONHAND is an INTEGER column that permits nulls. For an INTEGER data
type, SQLLEN is set to 4. SQLNAME contains the character string QONHAND,
and has the length byte set to 7.

Allocating Storage for the Result of the Select-Statement
After analyzing the result of the DESCRIBE, you can allocate storage for variables
that will contain the result of the select-statement. For DESCRIPTION, a varying
character field of length 24 must be allocated; for QONHAND, a binary integer of
31 bits (plus sign) must be allocated. Both QONHAND and DESCRIPTION permit
nulls, so you must allocate two additional halfwords to function as indicator
variables.

After the storage is allocated, you must change the SQLDA. For each element of
the SQLVAR array, do the following:
v Set SQLDATA to the address of the area in which the results will be placed.
v Set SQLIND to the address of the area in which the indicator information will be

placed.
v If the data type of the area in which the results will be stored is character or

graphic and you want to override the CCSID of the data area with, for example,
the CCSID of the column, you must do the following:
– For DB2 Server for VM, if you are using the SQLDS protocol, change the 6th

position of the SQLDAID field to '+'. For example, set the SQLDAID field to
'SQLDA+ '.

– For DB2 Server for VSE, change the 6th position of the SQLDAID field to '+'.
For example, set the SQLDAID field to 'SQLDA+ '.

– Set the length of the SQLNAME field to 8. (The length here is not the
SQLLEN field, but is the length associated with the SQLNAME field. For
example, in the SQLDA defined for C, the field referred to is sqlname.length.)

– Initialize bytes 1 and 2 of the SQLNAME field to 0
– Put the CCSID override value in bytes 3 and 4 of the SQLNAME field.

Note: When no override is present, the CCSID of the data area defaults to the
application requester’s default.

In the following example, the SQLDA is updated to contain the appropriate
addresses. Because a CCSID override is not required, the SQLNAME field is not
modified. Here is what the structure now looks like:

Chapter 7. Using Dynamic Statements 219

This is the pseudocode for what was done so far:
EXEC SQL INCLUDE SQLDA

.

.
READ QSTRING FROM TERMINAL
EXEC SQL PREPARE S1 FROM :QSTRING
Allocate an SQLDA of size 3.
SQLN = 3
EXEC SQL DESCRIBE S1 INTO SQLDA
IF (SQLN < SQLD)

Allocate a larger SQLDA using the value of SQLD.
Reset SQLN to the larger value.
EXEC SQL DESCRIBE S1 INTO SQLDA

END-IF
Analyze the results of the DESCRIBE.
Allocate storage to hold select_list results.
Set SQLDATA and SQLIND for each select_list item.

Retrieving the Query Result
Now comes the easy part: retrieving the query result. Dynamically defined queries,
as noted earlier, must not have an INTO clause. Thus, all dynamically defined
queries must use a cursor. Special forms of the DECLARE, OPEN, and FETCH
statements are used for dynamically defined queries.

The DECLARE CURSOR statement for the example query is as follows:
DECLARE C1 CURSOR FOR S1

The only difference is that the name of the prepared select-statement (S1) is used
instead of the select-statement.

The actual retrieval of result rows is as follows:
EXEC SQL OPEN C1
EXEC SQL FETCH C1 USING DESCRIPTOR SQLDA
DO WHILE (SQLCODE = 0)

DISPLAY (results pointed to by SQLDATA and SQLIND
for all pertinent SQLVAR elements)

S Q L D A

148 3 2

449 24

11 D E

S C

N

497 4

7 Q O N H

D

Main Variable:

Varying Character (24)

Indicator:

Halfword

Main Variable:

Binary Integer Fullword

Indicator:

Halfword

220 Application Programming

EXEC SQL FETCH C1 USING DESCRIPTOR SQLDA
END-DO
DISPLAY ('END OF LIST')
EXEC SQL CLOSE C1

The cursor is opened, and the result table is evaluated. (Note that there are no
input host variables needed for the example query. Methods of providing input
host variables are discussed later.) The query result rows are then returned using a
FETCH statement (which does not have output host variables in this example).
This statement returns results into the data areas referenced in the descriptor called
SQLDA. The same SQLDA that was set up by DESCRIBE is now being used for
the output of the select-statement.

The next section describes a more general routine in which you can process queries
that have parameters in the WHERE clause. You should not read that section until
you have coded some of the simpler dynamic queries discussed thus far.

Executing a Parameterized SELECT Statement
In the example above, the query that was dynamically executed had no parameters
(input host variables) in the WHERE clause:

SELECT DESCRIPTION, QONHAND FROM INVENTORY WHERE PARTNO = 221

Suppose you wanted to execute the same query a number of times using different
values for PARTNO. A parameterized SQL statement is needed:

SELECT DESCRIPTION, QONHAND FROM INVENTORY WHERE PARTNO = ?

Generating an Additional SELECT Statement
In previous parameterized SQL statements, the number of parameters and their
data types had to be known. What if they are unknown? The DESCRIBE statement,
at first glance, is not feasible because it describes only select_lists. With some
additional programming, however, you can use the DESCRIBE statement to obtain
information about the parameter markers (?). Specifically, the code must scan the
FROM and WHERE clauses to determine the table and column with which the
parameter marker (?) is associated. The code can then construct a select-statement
using those column names in the select_list. For the parameterized statement above,
the following query can be generated:

SELECT PARTNO FROM INVENTORY

The query (assigned to WSTRING below) can then be preprocessed and described:
Allocate an SQLDA of size 3.
SQLN = 3
EXEC SQL PREPARE S2 FROM :WSTRING
EXEC SQL DESCRIBE S2 INTO SQLDA

Here is what the SQLDA looks like after the fabricated select-statement is described.
Only the first element of SQLVAR is shown because the others are not used:

Chapter 7. Using Dynamic Statements 221

An analysis of the SQLDA shows that there is only one parameter marker (?), and
that parameter is associated with PARTNO. The SQLTYPE value (500) indicates
that PARTNO contains integer halfwords. Thus, you need to allocate a binary
integer halfword for the parameter marker (?) variable. SQLDATA must then be set
to point to this area.

Previously, the SQLDA was used in a FETCH statement, and query results were
returned into the storage areas pointed to by SQLDATA and SQLIND. In other
words, the SQLDA was used for output. Now, the SQLDA is going to be used to
provide input values for the WHERE clause by an OPEN statement. When the
SQLDA is being used for input, you must assign values to the dynamically
allocated storage areas pointed to by SQLDATA. If the SQLTYPE value returned by
DESCRIBE indicates that the field permits nulls, you must either supply an
indicator variable pointed to by SQLIND, or reset SQLTYPE to indicate that nulls
are not permitted. If indicator variables are not required, you should reset
SQLTYPE. For example, if the SQLTYPE returned by DESCRIBE is 501, you should
set it to 500 before using the SQLDA to provide input. After the storage for the
parameter markers is allocated, you should read in values and assign them to
those areas. Here is the completed SQLDA (assuming 221 is read in for the
parameter marker (?)):

After an SQLDA is set up in this fashion, it can be referred to in an OPEN
statement that contains a USING clause. For example, a previously declared cursor
called C1 is opened using SQLDA:

OPEN C1 USING DESCRIPTOR SQLDA

Because SQLDA currently has 221 in the field pointed to by SQLDATA, C1 is
evaluated using that value.

Figure 43 on page 223 shows the pseudocode for the complete example. Two
SQLDA-like structures are used. One is called SQLDA, and is the usual structure;
the other (declared directly) is called SQLDA1. The fields of SQLDA1 are suffixed

Eye-catcher S Q L D A SQLN and SQLD

148 3 1

500 2 (SQLDATA)

(SQLIND) 6 P A

R T N O
SQLVAR
Element 1

Eye-catcher S Q L D A SQLN and SQLD

148 3 1

500 2

(SQLIND) 6 P A

R T N O
SQLVAR
Element 1

Value for "?":

221

222 Application Programming

with a “1”; for example, SQLDATA1 and SQLN1. An asterisk in position 1 of the
pseudocode denotes a comment.

EXEC SQL INCLUDE SQLDA
Directly declare SQLDA1.

.

.

.
* Read in a parameterized query.
*

READ QSTRING FROM TERMINAL
*
* PREPARE and DESCRIBE the query; set up the output SQLDA.
*

EXEC SQL PREPARE S1 FROM :QSTRING
Allocate an SQLDA of size 3.
SQLN = 3
EXEC SQL DESCRIBE S1 INTO SQLDA
IF (SQLN < SQLD)

Allocate a larger SQLDA using the value of SQLD.
Reset SQLN to the larger value.
EXEC SQL DESCRIBE S1 INTO SQLDA

END-IF
Analyze the results of the DESCRIBE.
Allocate storage to hold select list results.
Set SQLDATA and SQLIND for each select_list item.

*
* Declare a cursor.
*

EXEC SQL DECLARE C1 CURSOR FOR S1
*
* Fabricate a query so PREPARE and DESCRIBE can be used to
* set up the input SQLDA1.
*

Scan the FROM clause and the WHERE clause of QSTRING for
parameter markers (?) and generate an appropriate
query in WSTRING.
Allocate an SQLDA1 of size 1 (1 was obtained from the scan).
SQLN1 = 1
EXEC SQL PREPARE S2 FROM :WSTRING
EXEC SQL DESCRIBE S2 INTO SQLDA1
Analyze the results of the DESCRIBE.
Reset SQLTYPE1 to reflect that there is no indicator variable.
Allocate storage to hold the input values (the parameter marker (?)
values).
Set SQLDATA1 for each parameter marker (?) value.

*
* Read in input parameters and retrieve the query results using
* cursor C1. Note that the pseudocode reads in only one parameter
* marker (?). Your actual code must provide for the possibility
* that more than one parameter marker (?) might be provided.
*

Figure 43. Parameterized Query Statement (Part 1 of 2)

Chapter 7. Using Dynamic Statements 223

Executing a Parameterized Non-Query Statement
“Executing Parameterized Statements” on page 212, introduces parameterized
statements, however, it is necessary to know the number of parameter markers (?)
and their data types before run time. The preceding section shows how you can
analyze a parameterized query so that a select-statement can be generated and
subsequently described. The same principle can be used for parameterized
non-query statements.

Generating a SELECT Statement
For example, suppose this DELETE statement is read from the terminal and
assigned to DSTRING:

DELETE FROM QUOTATIONS WHERE PARTNO = ? AND SUPPNO = ?

Suppose also that the number of parameter markers (?) and their corresponding
data types are unknown before run time. The same routine that you coded to scan
the FROM and WHERE clauses of select-statements can be used to scan the above
DELETE statement. Then, a SELECT statement containing the relevant columns can
be constructed:

SELECT PARTNO, SUPPNO FROM QUOTATIONS

This select-statement is then prepared and described as in the previous section. The
setup of the SQLDA is also identical: once the SQLDA is analyzed, space to hold
the parameter marker values is allocated, and these values are read in and
assigned to these locations. The SQLDA will be used for input to the WHERE
clause of the SQL statement; no indicator variables are allowed. Because the
statement is a non-query statement, the SQLDA is pointed to in the EXECUTE
statement. Figure 44 on page 225 illustrates the pseudocode for a parameterized
non-query statement.

READ PARM FROM TERMINAL
DO WHILE (PARM ¬= 0)

Assign PARM to area pointed to by SQLDATA1.
EXEC SQL OPEN C1 USING DESCRIPTOR SQLDA1
EXEC SQL FETCH C1 USING DESCRIPTOR SQLDA
DO WHILE (SQLCODE = 0)

DISPLAY (results pointed to by SQLDATA and SQLIND)
EXEC SQL FETCH C1 USING DESCRIPTOR SQLDA

END-DO
EXEC SQL CLOSE C1
DISPLAY ('ENTER ANOTHER VALUE OR 0')
READ PARM FROM TERMINAL

END-DO
DISPLAY ('END OF QUERY')

Figure 43. Parameterized Query Statement (Part 2 of 2)

224 Application Programming

You may need a more complex scanning routine, depending on how many
different non-query statements you wish to process. For example, the above
routine would have to be modified if you wanted to process INSERT statements. In
that case, you would have to scan for the table and column names.

Note: Indicator variables are permitted when you are providing input to the
INSERT statement with EXECUTE.

Using an Alternative to a Scanning Routine
In the previous sections on parameterized statements (both query and non-query),
you must rely on a scanning routine to generate a query. Once the query is
generated, DESCRIBE obtains information about the columns and expressions
associated with a parameter marker.

If you have not coded a scanning routine that generates a query, there is a simple
alternative: have the user describe the parameter markers for you, and fill in the
SQLDA yourself. There is no rule that says you must use a DESCRIBE to fill in the
SQLDA. When using the SQLDA for input or output, it does not matter what fills
it in, as long as the needed values are there.

When you use the SQLDA for input (which is always the case for parameter
markers), not all fields have to be filled in. Specifically, SQLDAID and SQLDABC
need not be filled in. Thus, if you choose this method, you will need to ask the
user for the following:
1. How many parameter markers (?) are there?

EXEC SQL INCLUDE SQLDA
.
.
.

READ DSTRING FROM TERMINAL
Scan the FROM clause and the WHERE clause of DSTRING for

parameter markers (?) and generate an appropriate query
in WSTRING.

Allocate an SQLDA of size 2 (2 was obtained from the scan).
SQLN = 2
EXEC SQL PREPARE S2 FROM :WSTRING
EXEC SQL DESCRIBE S2 INTO SQLDA
Analyze the results of the DESCRIBE.
Reset SQLTYPE to reflect that there is no indicator variable.
Allocate storage to hold the input values (the parameter marker (?)
values).
Set SQLDATA for each parameter marker (?) value.

EXEC SQL PREPARE S1 FROM :DSTRING
Read parameter marker (?) values from the terminal.

* A zero parameter value terminates the DO loop.
DO WHILE (parameters ¬= 0)

Assign the values to the storage allocated for
input variables.

EXEC SQL EXECUTE S1 USING DESCRIPTOR SQLDA
Prompt user for more values.
Read parameter marker (?) values from the terminal.

END-DO
.
.
.

Figure 44. Parameterized Non-Query Statement

Chapter 7. Using Dynamic Statements 225

2. What are the data types and lengths of these parameters?

In addition, if the routine is to handle both query and non-query statements, you
may want to ask the user what category of statement it is. (Alternatively, you can
write code to look for the SELECT keyword.)

The code that interrogates the user and sets up the SQLDA would take the place of
the scanning routine and DESCRIBE in the previous sections:

With a Scanning Routine:

.

.

.
READ DSTRING FROM TERMINAL
Scan the FROM and WHERE clauses of DSTRING for parameter markers (?)
and generate an appropriate query in WSTRING.
Allocate an SQLDA of size 2 (2 was obtained from the scan).
SQLN = 2

EXEC SQL PREPARE S2 FROM :WSTRING
EXEC SQL DESCRIBE S2 INTO SQLDA

Analyze the results of the DESCRIBE.
Reset SQLTYPE to reflect that there is no indicator variable.
Allocate storage to hold the input values

(the parameter marker (?) values).
Set SQLDATA for each parameter marker (?) value.

.

.

.

Without a Scanning Routine:

.

.

.
READ DSTRING FROM TERMINAL
Interrogate user for number of parameter markers (?).
Allocate an SQLDA of that size.
Set SQLN and SQLD to the number of parameter markers (?).
For each parameter marker (?):

Interrogate user for data types, lengths, and
indicators.

Set SQLTYPE and SQLLEN.
Allocate storage to hold the input values

(the parameter marker (?) values).
Set SQLDATA and SQLIND (if applicable) for each

parameter marker (?).
.
.
.

The statement can then be processed in the usual manner.

Ensuring Data Type Equivalence in a Dynamically Defined Query
In previous uses of the SQLDA for input or output, SQLTYPE always described the
data type of the storage area pointed to by SQLDATA. In the following example,
the type code 500 (originally obtained with a DESCRIBE of the select-statement)
describes the data type of the main variable.

226 Application Programming

In previous sections, the select_list item, the type code, and the data type of the
storage area allocated for holding query results are all equivalent. That is, in the
above example, PARTNO is a SMALLINT column (with no nulls permitted), 500 is
the type code meaning SMALLINT NOT NULL, and the area allocated is a binary
integer halfword. To force a data conversion, you must allocate a storage area
having a different data type and then change SQLTYPE in the SQLDA. Suppose
that you wanted to select the SMALLINT part numbers into an integer area. Here
is the sequence of instructions needed:

EXEC SQL PREPARE S1 FROM :STRING
EXEC SQL DESCRIBE S1 INTO SQLDA
Allocate a binary integer fullword of storage.
Set SQLDATA to point to it.
SQLTYPE = 496

When the FETCH is executed, SMALLINT is converted to INTEGER. Similarly, you
could have converted the retrieved PARTNO values to FLOAT merely by setting
SQLTYPE to 480 and by allocating a floating-point word of storage.

This conversion can be done when the SQLDA is used for input also. Consider the
normal case:

As before, PARTNO is SMALLINT. The main variable is also allocated as
SMALLINT (binary integer halfword), and the SQLTYPE that describes the main
variable represents a SMALLINT. To perform data conversion on input, you need
to change only the SQLTYPE and the type of storage allocated to hold the input
values. This is done exactly as in the previous example. To insert a floating-point
variable into the SMALLINT PARTNO column, for example, these steps are
needed:

FETCH USING DESCRIPTOR

SQLDA
SELECT PARTNO

FROM INVENTORY
WHERE DESCRIPTION = 'GEAR'

500

Binary Halfword
Main Variable:

Figure 45. The FETCH Using Descriptor

EXECUTE USING DESCRIPTOR

INSERT INTO INVENTORY (PARTNO)
SQLDA

VALUES (?)
500

Binary Halfword
Main Variable:

Figure 46. The EXECUTE Using Descriptor

Chapter 7. Using Dynamic Statements 227

EXEC SQL PREPARE S1 FROM :STRING
EXEC SQL PREPARE S2 FROM 'SELECT PARTNO FROM INVENTORY'
EXEC SQL DESCRIBE S2 INTO SQLDA
Allocate an 8-byte floating-point area.
Set SQLDATA to point to it.
Assign a floating-point number to the area.
SQLTYPE = 480
EXEC SQL EXECUTE S1 USING DESCRIPTOR SQLDA

All dynamic data conversion is done according to the rules summarized under
“Converting Data” on page 50.

If you change the SQLTYPE code and then allocate a storage area of an incorrect
type, the system treats the storage area as though it were of the type indicated by
SQLTYPE. For example, suppose SQLTYPE indicates that the storage area pointed
to by SQLDATA is an INTEGER, but that the actual area allocated is a binary
integer halfword (SMALLINT). The field is treated as though it is an INTEGER,
not a SMALLINT. This type of error may yield confusing results.

When a datetime data code is used in an SQLDA on a FETCH, the system assumes
that the variable declared to hold the result is fixed-length character.

Summarizing the Fields of the SQLDA
This section summarizes the SQLDA structure and related information.

As you have learned in the previous sections, the SQLDA can be used in any
number of ways. In general, the fields within the SQLDA must be initialized either
by using a DESCRIBE statement or by user code. Once they are initialized, the
SQLDA can be used for input (in EXECUTE, OPEN, and PUT) or for output (in
FETCH).

Figure 47 on page 229 summarizes the sequence of events needed to initialize the
SQLDA for use in processing dynamically defined statements in DB2 Server for
VM. In any case, you must always initialize SQLN before the DESCRIBE.

228 Application Programming

Sequence of Events

SQLDA
Fields:

First,
DESCRIBE
initializes:

Then
you must
initialize:

Next, if you intend
to use the
SQLDA for input
(EXECUTE or
OPEN), you must
place values in
the locations

pointed to by
SQLDATA and
SQLIND. When
the SQLDA is
used for output
(FETCH), the
system places
values in those
areas.

EXECUTE,
OPEN, PUT
and FETCH
use:

SQLDAID(3)
SQLDABC
SQLN(1)
SQLD

SQLVAR

SQLTYPE
SQLLEN
SQLDATA
SQLIND(2)
SQLNAME(3)

X
X

X

X
X
X
X
X

X
X
X

X

X
X
X

X

Notes:
1. You must set SQLN before the DESCRIBE.
2. Only provide indicator variables if they are allowed. In dynamic SQL, indicator variables

should be used for output. They can be used for input in an INSERT or UPDATE, but not
in predicates.

3. Only update the SQLDAID and SQLNAME fields if a CCSID override is required. The database
manager extracts the CCSID from the 3rd and 4th byte of the SQLNAME field only
when the following are true:

* The data type of the user data area is character or graphic
* If the SQLDS protocol is being used, the 6th byte of the SQLDAID field has been set to '+'.

For example, the SQLDAID field is 'SQLDA+ '.
* The length of the SQLNAME field is 8
* The first two bytes of data in the SQLNAME field are X ' 0000 '.

Figure 47. SQLDA Initialization - DB2 Server for VM

Chapter 7. Using Dynamic Statements 229

If you do not use a DESCRIBE to set up the SQLDA, you need only fill in those
fields that are actually used by the OPEN, FETCH, PUT, or EXECUTE statements.

For applications that override the defaults for subtypes and CCSIDs, the SQLDA
provides output information on subtypes and CCSIDs. The DB2 Server for VSE &
VM SQL Reference manual contains a description of the structure of the SQLDA,
and an explanation of each field within the SQLDA. The following are some
additional guidelines for using the SQLN and SQLD fields.

Using the SQLN Field
Always set this value when the structure is allocated. When the USING clause of
the DESCRIBE statement is set to NAMES, LABELS, or ANY, specify the maximum
number of expected select_list items. When you set the USING clause option to
BOTH, specify twice the number of expected select_list items.

Using the SQLD Field in the SQLDA
If the statement being described is not a select-statement, the database manager
returns a zero in SQLD. If the statement is a select-statement, SQLD is set to indicate

Sequence of Events

SQLDA
Fields:

First,
DESCRIBE
initializes:

Then
you must
initialize:

Next, if you intend
to use the
SQLDA for input
(EXECUTE or
OPEN), you must
place values in
the locations

pointed to by
SQLDATA and
SQLIND. When
the SQLDA is
used for output
(FETCH), the
system places
values in those
areas.

EXECUTE,
OPEN, PUT
and FETCH
use:

SQLDAID(3)
SQLDABC
SQLN(1)
SQLD

SQLVAR

SQLTYPE
SQLLEN
SQLDATA
SQLIND(2)
SQLNAME(3)

X
X

X

X
X
X
X
X

X
X
X

X

X
X
X

X

Notes:
1. You must set SQLN before the DESCRIBE.
2. Only provide indicator variables if they are allowed. In dynamic SQL, indicator variables

should be used for output. They can be used for input in an INSERT or UPDATE, but not
in predicates.

3. Only update the SQLDAID and SQLNAME fields if a CCSID override is required. The database
manager extracts the CCSID from the 3rd and 4th byte of the SQLNAME field only
when the following are true:

* The data type of the user data area is character or graphic
* The 6th byte of the SQLDAID field has been set to '+'.

For example, the SQLDAID field is 'SQLDA+ '.
* The length of the SQLNAME field is 8
* The first two bytes of data in the SQLNAME field are X ' 0000 '.

Figure 48. SQLDA Initialization DB2 Server for VSE

230 Application Programming

the number of SQLVAR elements. This number is either the number of select_list
elements (when the USING clause of the DESCRIBE statement is set to NAMES,
LABELS, or ANY), or twice the number of select_list elements (if the USING clause
is set to BOTH).

In the second case (USING clause set to BOTH), your program should reset SQLD
to half its value before issuing a subsequent FETCH or PUT. This is because only
the first N/2 elements contain information; the rest contains label information only.

If (after a DESCRIBE) SQLD is greater than SQLN, the SQLVAR array is not large
enough to contain descriptions for all the select_list items. In this case, you must
allocate a larger SQLDA based on the value of SQLD. The value in SQLN is not
changed.

If you set the value of SQLD yourself, and you set it to less than SQLN, the excess
elements of the SQLVAR array are ignored.

Using the PREPARE Statement

Although a statement to be “prepared” cannot contain any host variables, it can
contain parameters to be filled in when the statement is executed. These
parameters are denoted by parameter markers (?). You can specify parameters only
in places where a data value could be used. (A parameter cannot represent the
name of a table or a column.) The pseudocode example below prepares an INSERT
statement that has three parameters:
QSTRING='INSERT INTO DEPARTMENT(DEPTNO,DEPTNAME,ADMRDEPT) VALUES (?,?,?)'

PREPARE S1 FROM :QSTRING

Each time S1 is executed, values must be supplied for the three parameters that
were specified with question marks.

If your program constructs dynamic SQL statements by manipulating quoted
strings, remember that SQL uses two single quotation marks to represent a
quotation mark inside a quoted string. The following example illustrates this rule:

PREPARE S1 FROM 'INSERT INTO DEPARTMENT(DEPTNO,DEPTNAME,ADMRDEPT)
VALUES ('A00','SPIFFY COMPUTER SERVICE DIV.','A00'')'

In this example, the text beginning with INSERT and ending with A00'') is a
constant string. Each pair of quotation marks is collapsed to a single quotation
mark.

In COBOL, a constant string-spec is treated as a COBOL character string and is
affected by the Quote/APOST option. This option determines the character string
delimiters. If you use the same character (" or ') in the constant string-spec as the
one established by Quote/APOST option for the outer string delimiters,
unexpected string termination can result.

�� PREPARE statement_name FROM string_constant
host_variable

��

Figure 49. Format of the PREPARE statement

Chapter 7. Using Dynamic Statements 231

It is best to avoid using a constant string-spec whenever it may contain quotation
marks. Instead, you should build the SQL statement as a host variable string-spec,
using the known host language rules for character strings. For SQL statements that
contain graphic constants, be aware that some DBCS characters may contain the
encodings for EBCDIC quote. This could cause unintentional termination of host
language strings that contain DBCS characters.

A parameter marker (?) can appear in an SQL statement to be “prepared” in any
place that a host variable may appear, with the following exceptions:
v A parameter marker cannot be used in a select_list or a FROM-clause (but it may

be used in the WHERE clause of a SELECT statement).
The following examples are invalid:

SELECT ? FROM EMPLOYEE
SELECT EMPNO FROM ?

The following example is valid:
SELECT * FROM EMPLOYEE WHERE EMPNO = ?

v At least one of the operands of the arithmetic and comparison operators, or of
the BETWEEN and IN predicates, must not be a parameter marker.
The following examples are invalid:

SELECT * FROM EMPLOYEE WHERE SALARY > ? + ?
SELECT * FROM EMPLOYEE WHERE ? = ?
SELECT * FROM EMPLOYEE WHERE ? IN (?,?)

The following examples are valid:
SELECT * FROM EMPLOYEE WHERE SALARY > 20000 + ?
SELECT * FROM EMPLOYEE WHERE SALARY = ?
SELECT * FROM EMPLOYEE WHERE ? IN (?,?,20000)

v A parameter marker cannot be the sole argument of a scalar function. It,
however, can be used in an arithmetic expression as long as the other parameter
is a number.
The following example is invalid:

SELECT * FROM EMPLOYEE WHERE HIREDATE > DATE(?)

The following example is valid:
SELECT * FROM EMPLOYEE WHERE HIREDATE > DATE(14+?)

v A parameter marker cannot be used as the sole operand in an arithmetic
expression that involves a datetime value.
The following examples are invalid:

SELECT * FROM EMPLOYEE WHERE HIREDATE = START_DATE + ?
SELECT * FROM EMPLOYEE WHERE HIREDATE = 10000000. + ?

The following example is valid:
SELECT * FROM EMPLOYEE WHERE HIREDATE = HIREDATE + (1000000.+?)

SQL Functions Not Supported in Dynamic Statements
The following SQL functions are not supported in dynamic SQL:
v Syntax and semantic flagging of the dynamically executed statement
v SQL comments
v Negative indicator variables in predicates
v Optional choice for the FOR UPDATE OF clause in cursor query statements

(NOFOR support).

232 Application Programming

v SQL CALL statement.

Chapter 7. Using Dynamic Statements 233

234 Application Programming

Chapter 8. Using Extended Dynamic Statements

Contents

Using Extended Dynamic Statements to
Maintain Packages. 236
Illustrating the Use of Extended Dynamic
Statements 240

Developing a Query Application 240
Developing a Language Preprocessor . . . 242

Grouping Extended Dynamic Statements in an
LUW 246

Considering Virtual Storage in an LUW (DB2
Server for VM Only) 248

Using COMMIT WORK and ROLLBACK
WORK Statements (DB2 Server for VSE
Only) 248
Considering Virtual Storage in a Logical Unit
of Work (DB2 Server for VSE Only) 248

Mapping Extended Dynamic Statements to
Static and Dynamic Statements 249
SQL Functions Not Supported in Extended
Dynamic Statements 250

© Copyright IBM Corp. 1987, 2001 235

Using Extended Dynamic Statements to Maintain Packages
Extended dynamic statements support the direct creation and maintenance of
packages for DB2 Server for VSE & VM data. For DB2 Server for VSE, extended
dynamic statements can only be used with assembler language. For DB2 Server for
VM, extended dynamic statements can only be used with assembler language or in
the optional DB2 Server RXSQL feature (described in the DB2 REXX SQL for
VM/ESA Installation and Reference manual). Refer to the DB2 Server for VSE & VM
SQL Reference manual for a detailed discussion of the restrictions with DRDA
protocol.

Note: This topic is more advanced than previous sections and the techniques
discussed here are not relevant to all application programs.

Before reading this chapter, you should be familiar with how to use packages as
described in “Preprocessing the Program” on page 118 (DB2 Server for VM) or
“Preprocessing the Program” on page 154 (DB2 Server for VSE), and dynamically
defined statements, as described in “Chapter 7. Using Dynamic Statements” on
page 209. Extended dynamic statements provide a function similar to that provided
by the DB2 Server for VSE & VM preprocessors, but may be particularly useful
where:
v The current preprocessors do not support the language of the application or

support program.
v SQL statements are conceived and built dynamically, but are executed

repetitively (in a different logical unit of work). In this case it is more efficient to
avoid having to repeat the preprocessing of statements each time they are
executed, as would be required for normal dynamic statements.

v You want to build and maintain an application package of SQL statements to be
shared by a group of users.

v The utilization of program storage is critical and there are a significant number
of predefined “transactions” involving DB2 Server for VSE & VM data.

Individual SQL statements can be added or deleted without affecting or repeating
the preprocessing of other SQL statements in the package.

The following extended dynamic statements are supported. (They are described in
detail in the DB2 Server for VSE & VM SQL Reference manual.)
v CREATE PACKAGE—build an empty package
v PREPARE—add a statement to a package
v DESCRIBE—obtain information about columns in the select_list of a prepared

select-statement

v EXECUTE—execute a statement in a package
v DECLARE CURSOR—in connection with OPEN, FETCH, PUT, and CLOSE,

execute a SELECT or an INSERT statement in a package
v OPEN (cursor)
v FETCH (cursor)
v PUT (cursor)
v CLOSE (cursor)
v DROP STATEMENT—delete a statement from a package.

Except for CREATE PACKAGE and DROP STATEMENT, the names of these
statements are the same as the corresponding “normal” dynamic statements
discussed in “Chapter 7. Using Dynamic Statements” on page 209, but their format

236 Application Programming

and meaning are somewhat different. For example, the statement-id, package-id,
and cursor-name fields are all specified by host variables.

Unlike dynamic statements which are related through a specific statement name,
extended dynamic statements are related through the symbolic host variables used
for the statement-id and package-id. This relationship is shown in Figure 50.
Because the statement-id and package-id are host variables, actual values can be
substituted when the program is executed. STMTID is returned by an extended
PREPARE statement, and is used as input by the subsequent extended EXECUTE
(or DECLARE CURSOR) statement.

The differences between dynamic and extended dynamic statements are illustrated
in Figure 51. As shown in this figure, the normal dynamic statements are intended
primarily for supporting an interactive environment. As such, the PREPARE and
EXECUTE commands must be used within the same logical unit of work. In
contrast, extended dynamic statements are generally used in a compile
environment where the EXECUTE (or DECLARE CURSOR) may be in a logical

HOST PROGRAM VARIABLES

USERNAME PROGRAMX

PREPARE FROM :STRING
SETTING :STMTID

IN :USER.:PROG

EXECUTE :STMID
IN :USER.:PROG

USING :SQLDA

SQLDA
STRUCTURE

CREATE PROGRAM :USER.PROG

SELECT * FROM EMPLOYEE

Figure 50. Relationship between Extended Dynamic Statements Expressed Using Host
Program Variables

Chapter 8. Using Extended Dynamic Statements 237

unit of work that is different from the one where the SQL statement was prepared.
This makes it possible to PREPARE statements at different times. In DB2 Server for
VSE & VM terms, they can be prepared in one logical unit of work (stored in a
package), and called out for execution from another logical unit of work (from the
same or a different program). This is made possible by passing the program and
statement identifiers between the preparation environment and the execution
environment.

CREATE PACKAGE and DROP STATEMENT have no counterparts in the normal
dynamic statement set.

CREATE PACKAGE creates an empty package and is normally followed by
extended PREPARE statements to add statements to the package. If the CREATE
PACKAGE has a MODIFY option, the package may even be changed in another
logical unit of work. The change may take the form of additional extended
PREPAREs (adding statements to those already there), or DROP STATEMENTs
(deleting statements previously prepared). If a program is created with the
NOMODIFY option, it cannot be changed without completely replacing it. You do
this by using CREATE PACKAGE with the REPLACE option and specifying the
same package-id. When you use DB2 Server for VM DRDA protocol, there is no
support for the MODIFY option. The MODIFY option of the CREATE PACKAGE
statement defaults to NOMODIFY.

DYNAMICALLY DEFINED
STATEMENTS

(INTERACTIVE)

S1

S1

S2

C1

C1

C1

C1

PREPARE

PREPARE FROM :STRING

FROM :STRING

DECLARE CURSOR FOR... S2

FETCH INTO...

OPEN

CLOSE

EXECUTE USING...

EXTENDED DYNAMIC
STATEMENTS
(COMPILED)

PREPARE FROM :STRING

SETTING :STMTID :PROGIN

:STMTID

:STMTID :PROG

:PROG

:CURS

:CURS

:CURS

:CURS

OPEN

CLOSE

FETCH INTO...

IN

IN

CURSOR

Names must be resolved
in the same logical unit
of work and program

Pass Values between
logical units of work

or programs

Figure 51. Comparing Dynamic to Extended Dynamic Statements

238 Application Programming

The DROP PACKAGE statement is not listed as an extended dynamic statement,
because it has general applicability for all packages, not just those that are built
with extended dynamic statements. (See the DB2 Server for VSE & VM SQL
Reference manual for more information on the DROP PACKAGE statement.) Like
the extended dynamic statements, DROP PACKAGE permits the package name to
be specified as a host program variable.

DB2 Server for VM
Like all SQL statements, extended dynamic statements require preprocessing,
but are only supported by the assembler preprocessor. Once they are
preprocessed (and the containing program is compiled), the program holding
them may itself be used to process SQL statements and create packages. That
is, it may prepare SQL statements for repetitive execution. A package created
in SQLDS protocol that uses extended dynamic statements is not supported
in DRDA protocol, nor is a package created in DRDA protocol that uses
extended dynamic statements supported in SQLDS protocol. The
nonmodifiable environment, when using extended dynamic statements, is
supported with the following restrictions:
v The Positioned UPDATE or Positioned DELETE statements are not

supported.
v If you use the basic format of the extended PREPARE statement to prepare

a statement that contains parameter markers, you must include the USING
DESCRIPTOR clause to identify an input SQLDA structure.

v The prepare single row format of the extended PREPARE statement is not
supported.

v The NODESCRIBE option of the CREATE PACKAGE statement is not
supported.

v Cursors are unsupported if they are declared with the “WITH HOLD”
clause.

Chapter 8. Using Extended Dynamic Statements 239

DB2 Server for VSE
Like all SQL statements, extended dynamic statements require preprocessing,
but are only supported by the assembler preprocessor. Once they are
preprocessed (and the containing program is compiled), the program holding
them may itself be used to process SQL statements and create packages. That
is, it may prepare SQL statements for repetitive execution. A package created
in SQLDS protocol that uses extended dynamic statements is not supported
in DRDA protocol, nor is a package created in DRDA protocol that uses
extended dynamic statements supported in SQLDS protocol. The
nonmodifiable environment, when using extended dynamic statements, is
supported with the following restrictions:
v The Positioned UPDATE or Positioned DELETE statements are not

supported.
v If you use the basic format of the extended PREPARE statement to prepare

a statement that contains parameter markers, you must include the USING
DESCRIPTOR clause to identify an input SQLDA structure.

v The prepare single row format of the extended PREPARE statement is not
supported.

v The NODESCRIBE option of the CREATE PACKAGE statement is not
supported.

v The temporary extended prepare format of the extended PREPARE
statement is not supported.

v The using output descriptor clause in the extended EXECUTE statement is
not supported.

v The USER parameter in the ISOLATION option of the CREATE PACKAGE
statement is not supported.

v The LOCAL parameter in the DATE or TIME option of the CREATE
PACKAGE statement is not supported.

v Cursors are unsupported if they are declared with the “WITH HOLD”
clause. However, VSE Online and Batch applications may use the “WITH
HOLD” clause against other DRDA servers if they support it, except when
extended dynamic statements are used.

Illustrating the Use of Extended Dynamic Statements

Developing a Query Application
Consider the following example. A support group needs to develop a program that
dynamically accepts SQL statements for execution and does not know what SQL
statements will be processed. This is a typical application for normal dynamic SQL
statements. But since there is also a requirement for repetitively executing the
preprocessed statements at a later time (stored SQL application) without having to
repeat the PREPARE, it is an application for extended dynamic statements.

A program that handles preparation of end user SQL statements can also execute
these statements. This is essentially a query language program (but it supports
more than just select-statements). The program may also support deleting
statements from and adding them to existing packages. (See the beginning of this
chapter for a list of extended dynamic statements for doing this, as well as
statements to control execution.)

240 Application Programming

The program may use CREATE PACKAGE and extended PREPARE to build a
package and prepare the end-user SQL statements. However, you must first
preprocess the program itself, by running it through the assembler preprocessor
and the assembler. See Figure 52 (the application program is referred to as a
“Support Program”).

The resulting support program can accept end-user SQL statements, and create
packages in the database to hold them. For example, there can be a separate
package to hold the SQL statements for each end-user. A more advanced support
program may even accept end-user commands that are at a higher level than that
supported by the system, and then translate them to SQL statements before
preparing them.

The package P is built by the support program (by CREATE PACKAGE) for the
particular SQL statements. If the support program allows both adding SQL
statements to and dropping them from P, then the support program must utilize
and be preprocessed with a DROP STATEMENT as well as the PREPARE. Of
course, there are a few other ordinary SQL statements that may be appropriate for
the support program: WHENEVER, COMMIT/ROLLBACK, and so on to make it
complete.

So far, this example has not addressed execution of the end-user SQL statements.
We have already listed the extended dynamic statements that support execution
(extended EXECUTE, DECLARE CURSOR, and so on). The support program
would ordinarily support end-user commands to retrieve data and update data
(using either direct SQL statements or higher level commands that require

SUPPORTPROGRAM

SUPPORTPROGRAM

CREATE PACKAGE

Scan User Commands

PREPARE

COMMITWORK

DB2 for VSE & VM
ASSEMBLER PREPROCESSOR

ASSEMBLER

Object
End User
Commands

DB2 for VSE & VM

P

Package

Figure 52. An Example of an Interpretive Support Program for Building and Executing SQL
Statements in a Package

Chapter 8. Using Extended Dynamic Statements 241

conversion). This addition does not alter the concept shown in Figure 52 on
page 241, except to add additional extended dynamic statements to the support
program.

The DESCRIBE statement can be used in the same way as shown under normal
dynamic statements.

Note that only one “copy” of each extended dynamic statement need be provided
in the support program, because each of these statements is parameterized with
host variables that can be dynamically changed for each use. For example, one
DECLARE CURSOR statement may service all cursor retrievals, even if they are
concurrently open, because each can be given a different cursor name by the host
variable value for the cursor name, and a different statement identifier by the host
variable value for the statement-id. This is important in cases where the use of
program storage is critical and there are a significant number of predefined
transactions.

Developing a Language Preprocessor
The previous example is structurally simple. It assumes that the support program
remains in control as an interpreter through preparation, maintenance, and
execution of the user’s SQL statements.

For a typical language preprocessor program such as those provided with the DB2
Server for VSE & VM product, however, this is not the case. If you write a support
program for a new language preprocessor, you would probably separate the two
parts, each with SQL statements:
1. One for preparation of end-user SQL statements and creation of a package.
2. Another for supporting the execution of the SQL statements that were prepared

by the first part.

The SQL facilities required are similar to the previous example, except that no
package maintenance functions are needed. The language preprocessor has the
following characteristics:
v It is a batch program, rather than an interpreter.
v Because it requires extended dynamic statements, it is written in assembler

language. (This was also true in the previous example.) Alternatively, at least
part of it must be written in assembler language (the part that contains the
extended dynamic statements) and the remaining part must be written in a
language that is capable of calling an assembler module.

v Rather than accepting predefined commands from the end-user, the end-user’s
source language code is scanned for SQL statements, which must be identified
by some defined convention (for example, EXEC SQL) for proper recognition.

v The support program must record information about host program variables in a
control structure that is added to the end-user’s source program and passed by a
generated call to the execution-time part of the support program. This control
structure builds SQLDA structures that are passed to or received from the
system (refer to the extended EXECUTE, OPEN and FETCH statements).

v The execution part of the support program is link/loaded with the user’s
application program, where it is available to handle the execution-time
functions.

v As each end-user SQL statement is prepared, the package-id and the
statement-id (returned by the system along with the package-id) must be saved
in a control structure (again generated into the end-user’s source program) for
use by the execution-time support program.

242 Application Programming

v For each SQL statement in the end-user’s source program, a call must be
generated to the execution-time support program, passing the control structure,
containing the host variable, package-id, and statement-id information for the
current SQL statement.

v The execution-time support program must build the SQLDA structures required,
set values in host variables required by the execution-time extended dynamic
statements, and then execute these statements.

This process is illustrated in Figure 53, Figure 54, Figure 55, and Figure 56. The
support program is the preprocessor for language X. It preprocesses the end-user
program, modifying the source (adding control structures and generating calls to
pass to the support program Part 2 at execution-time). Once the modified end-user
source has been compiled by the language X compiler, it is combined in one load
module with the object code for the support program Part 2, which provides the
DB2 Server for VSE & VM support for execution-time functions (DECLARE
CURSOR, and so on).

Figure 53 shows the preprocessing and assembly steps for the two parts of the
support program. For DB2 Server for VM, no packages are created, because there
are no SQL statements in either part that need to be stored in a package.

Figure 54 on page 244 shows how the two resulting object modules of the support
program process end-user SQL statements.

OBJECT
SUPPORTPROGRAM

PARTI

SOURCE
SUPPORTPROGRAM

PARTI

Preparation Time
Functions

SQLStatement
Expansions and
SQLCalls Added

DB2 for VSE & VM
Assembler

Preprocessor
Assembler

OBJECT
SUPPORTPROGRAM

PARTII

SOURCE
SUPPORTPROGRAM

PARTII

Execution Time
Functions

SQLStatement
Expansions and
SQLCalls Added

DB2 for VSE & VM
Assembler

Preprocessor
Assembler

Figure 53. Preprocessing and Assembling of a Two-Part Support Program

Chapter 8. Using Extended Dynamic Statements 243

Part 1 scans the end-user’s source for SQL statements, uses CREATE PACKAGE to
build an empty package, P, uses extended PREPARE statements to add SQL
statements to P, and uses a COMMIT statement to finalize P. It also adds calls and
control structures, required by Part 2 of the support program, to the user’s source
program and comments out the original SQL statement.

Part 2 of the support program works with the package, P, executing the SQL
statements scanned and prepared by Part 1, and using the control structures
passed in the calls generated by Part 1. Part 2 must be link/loaded with any
end-user module that is preprocessed by Part 1.

DB2 for VSE & VM

SOURCE
END-USER PROGRAM

P, LANGUAGE X.

EXPANDED SOURCE
END-USER PROGRAM, P

SELECT

Scan Routines

Build/Setup
Routines

SELECTCommented Out
and replaced by Control
Structure and a Call to

Support Program, Part II

COMPILE
(LANGUAGE X)

OBJECT, END-USER
PROGRAM, P

Linked with

OBJECT
SUPPORTPROGRAM

PARTI

OBJECT
SUPPORTPROGRAM

PARTII

Set up Extended Dynamic
Statements needed for

Execution Time and
Execute Them

DECLARE CURSOR

FETCHOPEN

CLOSE

COMMITWORK

DESCRIBE

EXECUTE

CREATE PACKAGE

Preprocessing End-User
Program, P.

Execution of End-User
Program, P.

Packages

P

PREPARE

COMMITWORK

Figure 54. Preprocessing and Executing an End-User Program by a Two-Part Support
Program

244 Application Programming

Figure 55 shows Part 1 of the support program in more detail, with pseudocode to
illustrate a simple user program that includes a DECLARE...CURSOR FOR
SELECT..., an OPEN of that cursor, and a FETCH for the same cursor. Control
structures are shown in more detail, and some particular values for parameters are
given. The value 26 returned from the PREPARE statement is only for purposes of
illustration, representing a unique identifier returned by the system to identify the
statement within the package P. A user ID may be necessary to identify the owner
of the package, but it is omitted here for simplicity. Other statements, such as
CLOSE (cursor) and COMMIT are not shown in order to simplify the illustration.

Figure 56 on page 246 shows the execution-time flow between the end-user’s object
program and the support program (Part 2) in more detail. The two calls shown
correspond to the two calls generated in Figure 55. This example does not go far
enough to illustrate that two calls of the same type (two opens, for example)
would share the same set of logic and the same extended dynamic statement
(OPEN) in the support program.

DB2 for VSE & VM

END USER'S SOURCE PROGRAM
(P)

SUPPORTPROGRAM (OBJECT)
PARTI

External Invocation Passing:
Program Name (P) and User's Source

Declare Variables
A,B,C

DECLARE C1 CURSOR
FOR SELECT...

OPEN C1

CALLSP2

CALLSP2

SCAN
Record Name, Type, Length of

Variables found
SCAN
Move SQLStatement (SELECT...)

SCAN
Build a control structure in

end-user's source:

Build a call to Support Program,
Part II

SCAN
Build a Control Structure in

end-user's source:

FETCH C1
INTO :A, :B, :C

Build a call to Support Program,
Part II

Ctl Structure

Ctl Structure

()

()

COMPILE

Package

P

26

Call Type:
Cursor:
Program:
Stmtid:

OPEN
C1
P
26

Call Type: Fetch
Cursor
Program
Stmtid

C1
P
26

Variables Type Len
A
B
C

CHAR
DEC
INTEGER

10
6,2
4

26

Put Program (P) into "PROG"
CREATE PACKAGE :PROG

into variable "Q"
PREPARE FROM :Q SETTING :S

IN PACKAGE :PROG

Figure 55. Pseudocode Example of Preprocessing the End-User Program P

Chapter 8. Using Extended Dynamic Statements 245

Grouping Extended Dynamic Statements in an LUW
There are primarily three cases to consider when determining the proper grouping
of extended dynamic statements in a logical unit of work:
1. An LUW contains a CREATE PACKAGE without the MODIFY option. This

would be the case for a language preprocessor application.
2. An LUW contains a CREATE PACKAGE with the MODIFY option. This would

be the case for an application that gets new SQL statements from its users, then
prepares and executes them immediately (but also has them available for later
execution, because they are stored in a package).

3. An LUW contains no CREATE PACKAGE (the referenced package has been
created with the MODIFY option in another LUW). This would be the case for
an application that prepares, executes, or changes statements in a package that
was created previously.

In the first case, the only other extended dynamic statement permitted is the
PREPARE statement, and it must reference only the program that is specified in
the CREATE PACKAGE statement. If the LUW is terminated by a COMMIT
statement, a DB2 Server for VSE & VM package is created. If no extended
PREPARE statements were executed, the package is empty and the COMMIT
statement returns an SQLCODE of -759 (SQLSTATE '42943'). If a ROLLBACK

END USER'S OBJECT
PROGRAM (P)

OBJECT SUPPORTPROGRAM
PARTII

CALLSP2 (OPEN) CALLTYPE: OPEN

SETCursor Name in
host variable, C
(Value 'C')

SETSTMT-id in
host variable, SI
(Value 26)

SETProgram in
host variable, PI
(Value 'P')

DECLARE :C CURSOR
FOR :SI
IN PROGRAM :PI

OPEN :C

CALLTYPE: FETCH

Set Cursor, STMT-id, and
Program, as above

Build a SQLDA
Structure Using
variable information
for A, B, C,

FETCH :C USING
DESCRIPTOR SQLDA

MOVE A, B, C results
from SQLDAto
Passback Area

Control
Structure

Passback
Area

CALLSP2 (FETCH)

Control
Structure

DB2 for VSE & VM

Package

P

Figure 56. Pseudocode Example of Executing the End-User Program P

246 Application Programming

statement terminates the LUW, no package is created. In Figure 57, Example 1 is a
valid illustration of this case.

DB2 Server for VM
If you are using DRDA protocol, MODIFY defaults to NOMODIFY when
specified on the CREATE PACKAGE statement. No error is returned if
MODIFY is specified. If a COMMIT statement is used for an empty package
(that is, the package contains no statements) created with the NOMODIFY
option, one of the following SQLCODEs is received:
v When using the SQLDS protocol, no package is created, and an SQLCODE

of -759 (SQLSTATE '42943') is issued.
v When using the DRDA protocol, a package containing an indefinite section

is created, and an SQLCODE of 0 (SQLSTATE '00000') is returned.

In the second case, the rules discussed above for case 1 apply, but Extended
DESCRIBE, EXECUTE, DECLARE CURSOR, OPEN, FETCH, DROP STATEMENT,
and CLOSE statements may also be used in the same LUW, referencing the

1 2 3

4 5 6

7 8

IN X1
IN X2
IN X3
IN X2
IN X2
IN X2

DESCRIBE
EXECUTE
EXECUTE
PREPARE
DESCRIBE
EXECUTE

EXECUTE
PREPARE
DROP STATEMENT

PREPARE

IN Z
IN Y
IN Y

...............

...............

...............

...............

...............

...............

...................

...................
......

COMMIT WORK

COMMIT WORK

EXECUTE
DROP STATEMENT
PREPARE
DECLARE..CURSOR

OPEN
FETCH
CLOSE

DESCRIBE
EXECUTE

IN X2
IN X1
IN X1
IN X1

IN X1
IN X1

......................
.......

......................
.......

......................

......................

X

PREPARE

COMMIT WORK

IN X.....................

CREATE PACKAGE
USING OPTION
NOMODIFY

CREATE PACKAGE
USING OPTIONS
MODIFY, DESCRIBE

PREPARE

DESCRIBE
EXECUTE
DECLARE..CURSOR

OPEN
FETCH
CLOSE

COMMIT WORK

Y

IN Y

IN Y
IN Y
IN Y

......................

....................
......................

......

CREATE PACKAGE
USING OPTION MODIFY

PREPARE
CREATE PROGRAM

X4

IN X4
X5

...................

INVALID

DROP STATEMENT
EXECUTE

PREPARE
DESCRIBE

IN X1
IN X2

IN X1
IN X2

INVALID INVALID

.......
.....................

...................
.................

IN Z.....................

INVALID

Figure 57. Placement of Extended Dynamic Statements in Logical Units of Work

Chapter 8. Using Extended Dynamic Statements 247

statements just added to or already contained in the current package. However,
you cannot reference a package other than the one created in the current LUW. In
Figure 57 on page 247, example 2 is a valid example of this case. Example 3
illustrates an invalid case 2 sequence. If the current LUW is committed before
extended PREPAREs are used to add statements to it (it is empty), it still may be
extended in a later LUW (since it is modifiable, it may make sense to leave it
empty initially).

In case 3, where the current LUW contains no CREATE PACKAGE, extended
dynamic statements may reference any package that has been created with a
CREATE PACKAGE statement. However, after an extended dynamic statement that
causes modification of the package is used (an extended PREPARE or DROP
STATEMENT), subsequent extended dynamic statements in the same LUW may
only refer to the modified package. Once the LUW is terminated, reference to any
package that has been created by a CREATE PACKAGE may be resumed. (Note
that this does not preclude additional restrictions: to modify a package, you must
have created it with the MODIFY option, and to DESCRIBE a statement in a
package, it must have been created with the DESCRIBE option.)

For example, if packages X1, X2, and X3 have been created with a CREATE
PACKAGE, where X1 and X2 have the MODIFY and DESCRIBE options. Examples
1, 2, 4, and 5 in Figure 57 on page 247 are valid, while Examples 3, 6, 7, and 8 are
invalid.

Considering Virtual Storage in an LUW (DB2 Server for VM Only)
If virtual storage consumption by the database manager is an important
consideration, you must be aware of the trade-off in using modifiable packages.
The amount of virtual storage required to represent statements prepared in the
current LUW may be significantly more than that required for previously prepared
statements. If you enter a COMMIT before executing the statement, the virtual
storage requirement for the package will be considerably less, but additional work
will be performed to store the updated package and to reload it for execution.

You should make this trade-off based on the nature of the preprocessing in your
application.

When declaring extended dynamic cursors, you must consider virtual storage
requirements. Cursor names are dynamically mapped to statement numbers when
DECLARE CURSOR statements are executed. A small amount of virtual storage is
required for each uniquely named cursor declared in an LUW. This storage is not
released until the end of the LUW. The amount of storage held, therefore, can
become quite large when many unique cursor names are declared.

Using COMMIT WORK and ROLLBACK WORK Statements (DB2
Server for VSE Only)
It is a good practice to always do a COMMIT WORK or ROLLBACK WORK in
your program that contains extended dynamic statements before you terminate the
program. If you use extended dynamic statements in a CICS/VSE transaction, it is
imperative that a COMMIT or ROLLBACK WORK be done before ending the
transaction. (A CICS abnormal termination may occur, especially if the logical unit
of work contains a CREATE PACKAGE statement.)

Considering Virtual Storage in a Logical Unit of Work (DB2
Server for VSE Only)
If virtual storage consumption by the database manager is an important
consideration, you should be aware of the trade-off in using modifiable packages.
The amount of virtual storage required to represent statements prepared in the

248 Application Programming

current LUW may be significantly more than that required for previously prepared
statements. If you enter a COMMIT WORK before executing the statement, the
virtual storage requirement for the package will be considerably less, but
additional work will be performed to store the updated package and to reload it
for execution.

You should make this trade-off based on the nature of the preprocessing in your
application.

When declaring extended dynamic cursors, you must consider virtual storage
requirements. Cursor names are dynamically mapped to statement numbers when
DECLARE CURSOR statements are executed. A small amount of virtual storage is
required for each uniquely named cursor declared in an LUW. This storage is not
released until the end of the LUW. The amount of storage held, therefore, can
become quite large when many unique cursor names are declared.

Mapping Extended Dynamic Statements to Static and Dynamic
Statements

Table 23 shows how static and dynamic SQL statements are mapped to the SQL
statements that preprocess and execute them.

Table 23. Mapping Extended Dynamic to Static and Dynamic Statements

Static and Dynamic SQL
Statement

SQL Statement
Executed at
Preprocessing Time

SQL Statement Executed at
Run Time

CLOSE N/A Extended CLOSE

COMMIT N/A COMMIT

CONNECT N/A CONNECT

DECLARE CURSOR FOR
statement

Basic Extended
PREPARE of statement

Extended DECLARE
CURSOR

DECLARE CURSOR FOR
statement_name

See Table 24 Extended DECLARE
CURSOR

DESCRIBE statement_name N/A Extended DESCRIBE

DROP PACKAGE N/A DROP PACKAGE

EXECUTE N/A Extended EXECUTE

EXECUTE IMMEDIATE
string_constant

Basic Extended
PREPARE of
string_constant

Extended EXECUTE

EXECUTE IMMEDIATE
host_variable

Empty Extended
PREPARE

Temporary Extended
PREPARE
Extended EXECUTE

FETCH N/A Extended FETCH

OPEN N/A Extended OPEN

PREPARE string_constant Basic Extended
PREPARE of
string_constant1

N/A

PREPARE host_variable Empty Extended
PREPARE1

Temporary Extended
PREPARE

PUT N/A Extended PUT

ROLLBACK N/A ROLLBACK

Chapter 8. Using Extended Dynamic Statements 249

Table 23. Mapping Extended Dynamic to Static and Dynamic Statements (continued)

Static and Dynamic SQL
Statement

SQL Statement
Executed at
Preprocessing Time

SQL Statement Executed at
Run Time

SELECT INTO Single row Extended
PREPARE

Extended EXECUTE

Other executable statements Basic Extended
PREPARE

Extended EXECUTE

Non-executable statements N/A N/A

Note:

1. See Table 24 if used in context of a cursor.

Table 24 shows the SQL statements that prepare statements executed with a cursor.

Table 24. Preprocessing Related PREPARE and DECLARE CURSOR Statements

Example Statements Extended Dynamic SQL Statement
Executed at Preprocessing Time

PREPARE string_constant
DECLARE CURSOR statement_name

Basic Extended PREPARE
N/A

PREPARE host_variable
DECLARE CURSOR statement_name

Empty Extended PREPARE
N/A

DECLARE CURSOR statement_name
PREPARE string_constant

Empty Extended PREPARE
Temporary Extended PREPARE1

DECLARE CURSOR statement_name
PREPARE host_variable

Empty Extended PREPARE
N/A

Note:

1. This example is not supported in packages created with the NOMODIFY option
specified.

SQL Functions Not Supported in Extended Dynamic
Statements

The following SQL facilities are not supported for statements that are prepared
using extended dynamic SQL, unless the application program that performs the
extended PREPARE statement supplies the support:
v Checking of the statement for conformance to SQL-89 or SAA standards
v Use of SQL comments
v Optional choice for the FOR UPDATE OF clause in cursor query statements
v Use of negative indicator values in predicates, unless the statement is prepared

using the descriptor format of the extended PREPARE statement.

These restrictions do not apply to Fortran application programs, because the DB2
Server for VSE & VM preprocessors provide the necessary support.

Refer to the DB2 Server for VSE & VM SQL Reference manual for more information
on restrictions that apply to extended dynamic statements.

250 Application Programming

Chapter 9. Maintaining Objects Used by a Program

Managing Dbspaces 252
Defining Dbspaces. 252

Finding Available Space 253
Specifying Properties of Dbspaces 254

Modifying the Size of Dbspaces 255
Automatically Locking Dbspaces 256
Overriding Automatic Locking 256
Deleting the Contents of Dbspaces 257

Other Data Definition Statements. 258
Using Tables, Indexes, Statistics, Synonyms,
Comments, and Labels 258

Creating Tables 259
Modifying Tables 259

Dropping Tables 259
Using Indexes 259
Updating Catalog Tables for Table and Index
Activity 260
Using Synonyms 260
Using Comments 260
Using Labels 260

Using Stored Procedures and PSERVERS . . . 261
Using Stored Procedures 261
Example of a Stored Procedure Definition 261
Using PSERVERs 262
Example of a Stored Procedure Server
Definition 263

© Copyright IBM Corp. 1987, 2001 251

Managing Dbspaces
This section discusses the data definition statements for dbspaces and should be
read in conjunction with the DB2 Server for VSE & VM SQL Reference manual,
which contains the syntax, authorization rules, and usage rules of these statements.

Note: This section applies to DB2 Server for VSE & VM application servers only.

Defining Dbspaces
A dbspace is a portion of the database that can contain one or more tables and any
associated indexes. Each table that is stored is placed in a dbspace chosen by the
creator of the table.

Dbspaces are defined when the database is generated and may be added later by
the ADD DBSPACE process. Each dbspace remains unnamed and available until it
is acquired with an ACQUIRE DBSPACE statement, generally by the Database
Administrator (DBA). An acquired dbspace can be later returned to the list of
available dbspaces by the DROP DBSPACE statement.

The user who acquires a dbspace can either specify from which storage pool the
database manager is to acquire the dbspace, or can allow the system to choose the
storage pool by default. Storage pool are collections of DB2 Server for VSE data
sets or DB2 Server for VM minidisks called dbextents, and control the distribution
of the database across direct access storage devices (DASD).

Storage pools can be recoverable or nonrecoverable. Recoverable storage pools protect
their data using the automatic recovery for data updates. With nonrecoverable
storage pools, system overhead is reduced, but if there is a system failure, some
data may be lost, because the burden of recovery is placed on the user.
Nonrecoverable storage pools are particularly useful in cases where large amounts
of data are loaded from an external source, and that data is never modified
thereafter. See the DB2 Server for VM System Administration or the DB2 Server for
VSE System Administration manual for more information about storage pools.

The acquiring user also gives a name to the dbspace, and defines certain
characteristics for it. If it is to be private, the user who acquires it becomes its
owner; if it is of type public, its owner becomes public.

If you have DBA authority, you can acquire a dbspace for another user by
concatenating the userid to the dbspace-name:

ACQUIRE PRIVATE dbspace NAMED JONES.SPACE1

In the above statement, the owner of the dbspace is user JONES. User JONES can
refer to the dbspace as simply SPACE1.

A user holding RESOURCE authority can create new tables in any public dbspace,
or in any private dbspace owned by that user. Users who do not have RESOURCE
authority can also create tables in any private dbspace that was acquired for that
user by the DBA. Only users having DBA authority can create tables in a private
dbspace owned by another user.

The ability to access and update tables belonging to another user is controlled by
the system. Authorized users can access and update tables in any dbspace of any
type, by adding the owner-name as a prefix to the table name (for example,
SMITH.INVENTORY).

252 Application Programming

Note: Even users who are authorized to access data in someone else’s dbspace
may not be permitted to do so if the dbspace is in use.

An attempt to read data in a private dbspace results in a negative SQLCODE if any
data in the dbspace has been modified by a still-active logical unit of work. An
attempt to modify data in a private dbspace results in a negative SQLCODE if any
data in the dbspace has been read or modified by a still-active logical unit of work. If
the locked data you attempt to access is in a public dbspace, your program waits
and does not regain control until the lock is freed. If you attempt to update locked
data in a private dbspace, the system immediately returns control to your program,
with a negative SQLCODE.

The size of the space that is locked is the lock size. The lock size on a private
dbspace is always the entire dbspace, while the default lock size on a public
dbspace is somewhat smaller to allow for more concurrency. Thus, you should
place tables in public dbspaces if you expect that more than one user may need
concurrent access to them. On the other hand, because operations on private
dbspaces do not pay the overhead of acquiring individual locks within the
dbspace, a private dbspace is an efficient place to store tables for the exclusive use
by one user at a time. The cost of smaller locks is higher overhead. Table 25 and
Table 26 summarize the database manager locking mechanism.

Refer to the DB2 Server for VSE & VM Diagnosis Guide and Reference manual for
more information on locking.

Table 25. Locking Summary for Private Dbspaces
If you attempt to: But another user has already:

read the data (acquired a share
lock)

modified the data (acquired
an exclusive lock)

Read data You are allowed to read the data You receive a negative
SQLCODE

Modify data You receive a negative
SQLCODE

You receive a negative
SQLCODE

The lock size for a private dbspace is always the entire dbspace.

Table 26. Locking Summary for Public Dbspaces
If you attempt to: But another user has already:

read the data (acquired a share
lock)

modified the data (acquired
an exclusive lock)

Read data You are allowed to read the data Your program waits
Modify data Your program waits Your program waits

The lock size of a public dbspace defaults to a page (4096 bytes). The lock size can be
changed by the ACQUIRE DBSPACE or ALTER DBSPACE statements.

Finding Available Space
The ACQUIRE DBSPACE statement causes the system to find an available dbspace
of the requested type (public or private) and give it the dbspace-name you specify.
The dbspace-name must be an SQL identifier, as described in the DB2 Server for
VSE & VM SQL Reference manual; you can use it to refer to the DBSPACE in other
SQL statements, such as CREATE TABLE.

Chapter 9. Maintaining Objects Used by a Program 253

If the dbspace type is public, its owner becomes public; if the type is private, its
owner becomes the user who preprocessed the program in which the ACQUIRE
DBSPACE is embedded. Dbspace names must be unique within all the dbspaces
owned by the same user, but may duplicate the name of a dbspace owned by
another user.

Specifying Properties of Dbspaces
You can optionally specify one or more of the following properties of a dbspace, in
any order. Separate the parameters with commas.

NHEADER Number of Header Pages. The number of 4096-byte logical pages
in the dbspace that are reserved for header pages. The system uses
header pages to record information about the contents of the
dbspace.

Notes:

1. NHEADER cannot be larger than eight pages.
2. If NHEADER is not specified, the default is eight pages.
3. You cannot change NHEADER after the dbspace has been

acquired. If you choose a small number for NHEADER, it may
limit the number of tables that can be created in the dbspace.

PAGES Number of Pages. The minimum number of 4096-byte logical
pages that you require for this dbspace.

Notes:

1. The system may actually give you more pages than you request
because it acquires storage in units of 128 pages. However, of
the available dbspaces, the one chosen will be the smallest that
will satisfy the size specified for PAGES. The system determines
the number of pages that you receive by rounding the number
you specify to the next higher multiple of 128 pages. For
example, if you specify PAGES=53, the system acquires a block
of 128 pages. If you specify PAGES=130, the system acquires
256 pages.

2. If you do not specify PAGES, the system acquires the smallest
available dbspace by default.

PCTINDEX Percentage of Index Pages. The percentage (0 to 99) of all pages in
the dbspace that are reserved for indexes.

Notes:

1. If you do not specify PCTINDEX, the default is 33 percent.
2. You cannot change PCTINDEX after the dbspace has been

acquired. If you choose a small number for PCTINDEX, it may
limit the number of indexes that can be created on tables in the
dbspace. (If you find that the PCTINDEX is too small, you can
acquire another dbspace and move the data there.)

PCTFREE Percentage of Free Space. The percentage (0 to 99) of the space on
each page that the system is to keep empty when data is inserted
into the dbspace.

Notes:

1. If you do not specify PCTFREE, the default is 15 percent.
2. Typically a user might acquire a dbspace with PCTFREE set to

some value such as 25 percent. The dbspace is then loaded with
data by the Database Services Utility (described in the DB2

254 Application Programming

Server for VSE & VM Database Services Utility manual). The
system ensures that at least 25 percent of the space on each
page is left empty. After the initial loading of the dbspace, the
user can set PCTFREE to zero by means of the ALTER
DBSPACE statement (described later). Then, in subsequent
insertions, the system places new data in the space reserved
during initial loading. Using reserved free space in this way
results in a more favorable physical clustering of data on pages
when the data is loaded, and, therefore, improves access time.
The DB2 Server for VSE & VM Database Administration manual
discusses data clustering in more detail.

3. The value of PCTFREE is critical during mass insertion of data
into a dbspace (for example, a DBS Utility DATALOAD
command). Refer to the appendix on estimating the number of
data pages required in the DB2 Server for VSE & VM Database
Administration manual for more information on the dbspace
percent free specification.

LOCK Lock Size. Applicable to public dbspaces only (private always locks
a dbspace). The valid specifications for size are DBSPACE, PAGE,
and ROW.

Notes:

1. The lock size determines the size of the locks that are acquired
when a user reads or updates data. If you specify ROW, the
system locks only an individual row in the table; PAGE or
DBSPACE cause the smallest lockable unit to be a page (4096
bytes) or a dbspace, respectively. Key-level locking is used for
indexes on tables in dbspaces for which row-level locking is
specified.

2. In general, using larger locking units causes less overhead to be
spent in acquiring locks, but also limits concurrency.

3. The default lock size for each public dbspace is PAGE.

STORPOOL Storage Pool Number. Indicates from which storage pool a dbspace
is to be acquired.

Notes:

1. If a dbspace of the specified type and size is not available in
this storage pool, the ACQUIRE DBSPACE is unsuccessful, and
a negative SQLCODE is returned.

2. If you do not specify STORPOOL, the system acquires a
dbspace of the correct type and size from any recoverable storage
pool. To acquire a dbspace from a nonrecoverable storage pool,
you must specify the STORPOOL parameter.

Modifying the Size of Dbspaces
The ALTER DBSPACE statement enables you to alter the percentage of free space
that is reserved on each data page when records are inserted into a public or
private dbspace. It also enables you to alter the lock size of a public dbspace. (You
cannot alter the lock size of a private dbspace.)

When you acquire a dbspace, you should set the percentage (0 to 99) of free space
to some number greater than zero (the default is 15 percent). A typical use of
ALTER DBSPACE is to set the percentage of free space to zero (PCTFREE=0) after
initial loading of data into a dbspace; subsequent insertions can then take

Chapter 9. Maintaining Objects Used by a Program 255

advantage of the free space that is reserved during the loading process. It is also
possible to increase PCTFREE again for a later loading phase.

To alter the lock size of a public dbspace at any time, use the LOCK parameter.
(You can specify both the PCTFREE and LOCK parameters when altering a public
dbspace, in either order, separated with a comma. Each may be specified only
once.) The valid lock sizes are ROW, PAGE, and DBSPACE, as described under the
ACQUIRE DBSPACE statement. When an ALTER DBSPACE statement is executed
to alter the lock size of a dbspace, the system acquires an exclusive lock on the
entire dbspace and holds the lock until the end of the current logical unit of work.
The newly selected lock size then becomes effective for subsequent logical units of
work.

Automatically Locking Dbspaces
When you operate the database manager in single user mode, there is no
contention from other users when you attempt to access data; there may be
however in multiple user mode. To provide for concurrent access, the system
internally acquires locks on data accessed by a logical unit of work.

All LUWs automatically acquire exclusive locks on all data that they modify, and
share locks on data that they are reading. Exclusive locks prevent other users from
either reading or modifying the data; share locks permit other users to read, but
prevent them from modifying the data.

For UPDATE and DELETE processing, the system acquires update locks. If the user
wants to change the data, the update lock is changed to an exclusive lock; otherwise,
the update lock is changed to a share lock. An update lock is acquired for a Positioned
DELETE only if the cursor was declared with the FOR UPDATE clause. This type
of lock is also acquired on a parent table when changes are made to its dependent
tables. In general, locks are held to the end of the LUW in which they are acquired.
(See “Selecting the Isolation Level to Lock Data” on page 136 (DB2 Server for VM)
or “Selecting the Isolation Level to Lock Data” on page 170 (DB2 Server for VSE)
for more information.)

Potential deadlocks are automatically detected and corrected. A deadlock occurs
when two LUWs are each waiting to access data that the other has locked. The
system detects this situation and backs out the most recent LUW, meaning that all
changes made to the database during the LUW are restored, and then the locks
that were acquired for the LUW are released. The other application can then
proceed. If your LUW is backed out, a negative SQLCODE is returned and
SQLWARN6 is set to W.

Locking is automatic and requires no user intervention. However, certain
statements permit users to adjust or override the normal locking. You can adjust
the size of the lockable data units with the LOCK option of the ACQUIRE
DBSPACE and ALTER DBSPACE statements. You can also override automatic
locking and explicitly acquire certain kinds of locks with the LOCK statement as
discussed below.

Note: Only single user mode prevents locking.

Overriding Automatic Locking
The LOCK statement overrides the automatic locking mechanism and explicitly
acquires a lock on a table or dbspace, which is held the end of the current LUW.

256 Application Programming

The LOCK statement is useful only in multiple user mode. In single user mode,
there is no contention for resources, and, hence, no locking. When running in
single user mode, all LOCK statements are ignored.

An exclusive lock prevents other users from either reading or changing any data in
the locked table or dbspace. A share lock permits other users to read, but prevents
them from modifying, the data in the locked object.

The requested lock may be unavailable because other LUWs are reading or
modifying the indicated data. If this is the case, the LUW that requested the lock
waits until the other active LUWs have ended. The system then grants the lock,
and the requesting LUW proceeds normally.

The LOCK statement is entirely optional, as the system has fully automatic locking.
You may issue all SQL queries and updates independently of explicit LOCK
statements.

The LOCK statement is useful mainly for avoiding the overhead of acquiring many
small locks when scanning over a table. For example, suppose some dbspace has
been acquired with a lock size of ROW. If you know that you will be accessing all
the rows of a table within that dbspace, you may want to explicitly lock the entire
table to avoid the overhead of acquiring locks on each individual row.

In a private dbspace, a LOCK statement on a table is the same as one on the entire
dbspace, because locking is always done at the DBSPACE level for private
dbspaces.

Deleting the Contents of Dbspaces
The DROP DBSPACE statement deletes the entire contents of a dbspace. When the
logical unit of work is committed, the dbspace is available to be acquired. The
DROP DBSPACE statement is a much faster way to delete the contents of a
dbspace than by deleting the data one row at a time or dropping one table at a
time. (You can use DROP DBSPACE with both public and private dbspaces.)

For any table that is dropped implicitly by the DROP DBSPACE statement, all
referential constraints in which it is a dependent are dropped, and all referential
constraints in which it is a parent are also dropped. Furthermore, any unique
constraints defined in the table are dropped.

When a dbspace is dropped, packages for programs that operate on that dbspace
are marked invalid. In addition, if a parent table has been dropped, the packages
with tables dependent on that parent table are also marked invalid, because the
relationship between the parent table and its dependent tables was dropped.

If one of these programs is running, the system does not drop the dbspace until
the running program ends its current LUW. The invalid packages remain in the
database until they are explicitly dropped using the DROP PACKAGE statement
(discussed in the DB2 Server for VSE & VM SQL Reference manual).

When an invalid package is invoked, the system attempts to dynamically
re-preprocess it. If the package was not invalidated because the relationship
between a parent table and its dependent tables was dropped, and the program
contains any SQL statement that refers to a dbspace or table that has been
dropped, that SQL statement returns a negative SQLCODE at execution time.

Chapter 9. Maintaining Objects Used by a Program 257

Other Data Definition Statements
In addition to SQL data definition statements for dbspaces, there are those that
enable you to:
v Create and drop tables (CREATE TABLE and DROP TABLE)
v Create and drop indexes on tables (CREATE INDEX and DROP INDEX)
v Add new columns to existing tables; and add, drop, activate, or deactivate

primary keys, foreign keys, and unique constraints (ALTER TABLE)
v Create and drop synonyms for table names (CREATE SYNONYM and DROP

SYNONYM)
v Enter comments about tables into the DB2 Server for VSE & VM catalog tables

(COMMENT ON)
v Label tables and columns in dynamic SQL application programs (LABEL ON).

The following discussion is only an introduction to these statements. Refer to the
DB2 Server for VSE & VM SQL Reference manual for their syntax and detailed usage
rules.

Using Tables, Indexes, Statistics, Synonyms, Comments, and
Labels

One advantage of the database manager is that you can define new objects in the
database without stopping the system or invoking special utilities. This provides
great flexibility: for example, your application program can create a table for
storing and manipulating some temporary result, and drop the table when it is no
longer needed.

Data definition statements automatically update the catalog tables that describe the
database. (These catalog tables are explained in the DB2 Server for VSE & VM SQL
Reference manual.) If an error occurs while you are processing a data definition
statement, the system stops processing the statement, and reverses only the
changes resulting from the statement in error. Any work done before the execution
of the statement in the LUW will not be affected. If you want to, you can enter a
ROLLBACK statement to undo any other changes made in the LUW.

Also, if you plan to DROP and re-CREATE the object later in the program, make
sure that you start a new LUW after you drop the object. For example, if you write
a procedure that creates and drops a temporary table, make sure that your
program issues a COMMIT before the end of the procedure. (For more information
on the LUW refer to “Using Logical Units of Work” on page 18.)

Some data definition statements may invalidate the packages of one or more
programs previously preprocessed. For example, dropping the index used by a
program to access a table will invalidate the package of that program. Other
examples include adding keys (primary or foreign) to a table, or dropping,
activating, or deactivating keys on the table. When the program is used, a new
package is created based on the dependencies currently available. No changes need
be made to the program. The process of creating the new package called rebinding
is entirely transparent to programs, except for a slight delay in processing the first
SQL statement. (Rebinding is discussed in “Chapter 4. Preprocessing and Running
a DB2 Server for VM Program” on page 115 (DB2 Server for VM) or “Chapter 5.
Preprocessing and Running a DB2 Server for VSE Program” on page 151 (DB2
Server for VSE).)

258 Application Programming

Creating Tables
Use the CREATE TABLE statement to create a new table in the database and to
define the datatypes and subtypes of all the columns in the table. You can also use
it to define primary keys and foreign keys which may be used to ensure referential
integrity. This is done by specifying a primary key, a foreign key, and a delete or
update rule that defines the relationship. Only a primary key is required for entity
integrity.

If you specify the NOT NULL option for a column, the system does not permit
null values in that column. Any statement that attempts to place a null value in
such a column is rejected with an error code.

You can also associate a field procedure with a column. For more information on
field procedures see “Using Field Procedures” on page 277.

You can define a unique constraint when creating a table. This consists of one or
more columns where the combined value in these columns is unique. This enables
you to ensure data integrity for columns where a primary key would not be
practical.

Note: Instead of declaring a column to be of DECIMAL (or NUMERIC) data type
with a scale of 0, you should consider declaring it INTEGER or SMALLINT.
These data types use storage more effectively, and other processing will be
more efficient. If the precision is less than 5, use SMALLINT; if the precision
ranges from 5 to 7, use INTEGER.

Once a table has been created, you may not change the data types of its columns
or drop a column from the table. However, you may add new columns, a primary
key, foreign keys, and unique constraints by using the ALTER TABLE statement.

Modifying Tables
Use the ALTER TABLE statement to add a new column to an existing table, or to
add, drop, activate or deactivate primary keys, foreign keys, and unique
constraints.

Dropping Tables
Use the DROP TABLE statement to drop a table from the database. All indexes,
primary and foreign keys, unique constraints, views defined on the table, and all
privileges granted on the table, are also dropped. All contents of the table are lost.
However, users can have previously defined synonyms (by a CREATE SYNONYM
statement) for the name of the table that was dropped; these synonyms remain in
effect even though the table no longer exists.

Using Indexes
Use the CREATE INDEX statement to create an index on one or more columns of a
table, and to give a name to the new index. The indicated table must exist, but it
may be empty.

You can create an index on a column in either ascending (ASC) or descending
(DESC) order. Ascending order is the default. Performance may be improved for
queries that access the indexed column in the specified order.

An index is maintained until it is explicitly dropped with a DROP INDEX
statement, or until its table or dbspace is dropped.

Chapter 9. Maintaining Objects Used by a Program 259

Indexes are invisible to application programs in the sense that the system provides
no means for using an index directly. The database manager selects the index, if
any, that is to be used in processing a given query or data manipulation statement.

Updating Catalog Tables for Table and Index Activity
Use the UPDATE STATISTICS statement to bring up to date the internal statistics
recorded by the system for a table and its indexes. These statistics, which are
contained in the catalog tables, include the size of the table, various index
characteristics, and other information. The system uses these statistics when
choosing access paths for SQL statements. If the statistics are not kept up to date,
less efficient access paths may be chosen.

You should invoke the UPDATE STATISTICS statement for a table after a
significant number of changes have been made to its data since it updated; for
example, if a table has been changed by 20 percent or more.

Using Synonyms
Use the CREATE SYNONYM statement to define an alternative name for a table or
view. For example, the following statement defines the alternative name PEOPLE
to refer to the table named EMPLOYEE whose owner is SMITH:

CREATE SYNONYM PEOPLE FOR SMITH.EMPLOYEE

The right-hand side of the CREATE SYNONYM statement (SMITH.EMPLOYEE in
the above example) must be the name of a table or a view, not another synonym.

Synonyms are commonly used when a group of users all want to share a table.
Suppose one user, ADAMS, creates a table called DATA. All users sharing this
table can then enter the statement:

CREATE SYNONYM DATA FOR ADAMS.DATA

Each user can then refer to the shared table as DATA, without using the fully
qualified name ADAMS.DATA. (Remember that ADAMS must authorize the other
users to access his table.)

Once created, a synonym remains in effect until it is explicitly dropped by a DROP
SYNONYM statement.

Using Comments
Use the SQL COMMENT ON statement to associate remarks or comments with
your tables or views, or with columns in your tables or views. The comment you
specify is placed into one of the catalog tables.

Using Labels
Use the SQL LABEL ON statement to define a label for a table name or a column
name. Unlike synonyms, labels cannot be used as identifiers. Instead, they can be
used in displays created by applications that process SQL statements dynamically.
You can enter SQL statements using the actual table and column names (which are
easier to enter). The program can display the results using the labels (which are
easier to understand) instead of the table and column names.

Labels are ignored by DBS Utility and ISQL SELECT processing. Only column
names will identify SQL select-statement output displayed by DBS Utility or ISQL
processing.

260 Application Programming

Using Stored Procedures and PSERVERS

Using Stored Procedures
Before a stored procedure can run, you must define it to DB2. Use the SQL
statement CREATE PROCEDURE to define a stored procedure to DB2. To alter the
definition, use the ALTER PROCEDURE statement.

Table 27 lists the characteristics of a stored procedure and the CREATE
PROCEDURE and ALTER PROCEDURE parameters that correspond to those
characteristics.

Table 27. Characteristics of a Stored Procedure

Characteristic CREATE/ALTER PROCEDURE Parameter

Stored procedure name
Parameter declarations

PROCEDURE

External name EXTERNAL NAME

Language LANGUAGE ASSEMBLE
LANGUAGE C
LANGUAGE COBOL
LANGUAGE PLI

Parameter style PARAMETER STYLE GENERAL
PARAMETER STYLE GENERAL WITH NULLS

Name of group of servers
where stored procedure can
run

SERVER GROUP server-group-name

Whether or not a stored
procedure can run in default
server group

DEFAULT SERVER GROUP YES
DEFAULT SERVER GROUP NO

Load module stays in
memory after it executes

STAY RESIDENT NO
STAY RESIDENT YES

Run-time options RUN OPTIONS options

Maximum number of result
sets returned

RESULT SETS integer

Commit work on return from
stored procedure

COMMIT ON RETURN YES
COMMIT ON RETURN NO

For information on the parameters for the CREATE PROCEDURE or ALTER
PROCEDURE statement, see the DB2 Server for VSE & VM SQL Reference manual.

Example of a Stored Procedure Definition
Suppose you have written and prepared a stored procedure that has these
characteristics:
v The name is B.
v It takes two parameters:

– An integer input parameter named V1
– A character output parameter of length 9 named V2

v It is written in the C language.
v The load module name is SUMMOD.
v The parameters can have null values.
v It should be deleted from memory when it completes.
v The Language Environment run-time options it needs are:

Chapter 9. Maintaining Objects Used by a Program 261

MSGFILE(OUTFILE),RPTSTG(ON),RPTOPTS(ON)

v It can be executed by any stored procedure server in the group named
PAYROLL.

v It can return at most 10 result sets.
v When control returns to the client program, DB2 should not commit updates

automatically

This CREATE PROCEDURE statement defines the stored procedure to DB2:
CREATE PROCEDURE B(V1 INTEGER IN, V2 CHAR(9) OUT)

LANGUAGE C
EXTERNAL NAME SUMMOD
PARAMETER STYLE GENERAL WITH NULLS
STAY RESIDENT NO
RUN OPTIONS 'MSGFILE(OUTFILE),RPTSTG(ON),RPTOPTS(ON)'
SERVER GROUP PAYROLL
DEFAULT SERVER GROUP NO
RESULT SETS 10
COMMIT ON RETURN NO;

Later, you need to make the following changes to the stored procedure definition:
v The stored procedure can also be run in the default server group in addition to

the group of stored procedure servers named PAYROLL.

Execute this ALTER PROCEDURE statement to make the changes:
ALTER PROCEDURE B

DEFAULT SERVER GROUP YES;

Using PSERVERs
Stored procedures are executed by stored procedure servers. These servers are
organized into named groups. Use the SQL statement CREATE PSERVER to add a
stored procedure server to a group. To alter the definition, use the ALTER
PSERVER statement.

Table 28 lists the characteristics of a stored procedure server and the CREATE
PSERVER and ALTER PSERVER parameters that correspond to those
characteristics.

Table 28. Characteristics of a Stored Procedure

Characteristic CREATE/ALTER PSERVER Parameter

Stored Procedure server name PSERVER procedure-server

Name of the group to which
the stored procedure server
belongs

GROUP group-name

Whether or not the database
manager should issue a
START PSERVER command
when the database initializes

AUTOSTART NO
AUTOSTART YES

A description of the stored
procedure server

DESCRIPTION description

For information on the parameters for the CREATE PROCEDURE or ALTER
PROCEDURE statement, see the DB2 Server for VSE & VM SQL Reference manual.

262 Application Programming

Example of a Stored Procedure Server Definition
Suppose you must set up a stored procedure server that has these characteristics:
v The name is SERVER1
v It is part of stored procedure group PAYROLL
v The database manager is not to issue a START PSERVER command when it

initializes

This CREATE PSERVER statement defines the stored procedure server to DB2:
CREATE PSERVER SERVER1
GROUP PAYROLL
AUTOSTART NO

Later, you need to make the following changes to the stored procedure server
definition:
v The database manager should issue a START PSERVER command when it

initializes
v The description of the stored procedure server is to be ″This is the first server

used by payroll procedures″

Execute this ALTER PROCEDURE statement to make the changes:
ALTER PSERVER SERVER1
AUTOSTART YES
DESCRIPTION 'This is the first server used by payroll procedures'

Chapter 9. Maintaining Objects Used by a Program 263

264 Application Programming

Chapter 10. Assigning Authority and Privileges

Defining User Access to the Database 266
Defining Authority Types for the Database . . 266
Granting Authority to Users 266
Revoking Authority from Users 267

Defining Privileges 267
Defining Privileges on Tables and Views . . . 268

Revoking Privileges 268
Defining Privileges on Packages 269

Assigning User Privileges to the Owner . . 269
Assigning Privileges to Others. 270
Differences Between Static and Dynamic
Statements 270
Revoking the Run Privilege 271
Recording Assigned Privileges in the Catalog
Tables 271

© Copyright IBM Corp. 1987, 2001 265

Defining User Access to the Database

Defining Authority Types for the Database
When a database is initially generated, there is only one user defined for it. This
user, referred to as SQLDBA, has a special authority called “DBA” authority. Only
someone with DBA authority can grant authorities to other users.

The types of authorities are:

CONNECT Authorization to access the database

RESOURCE Authorization to acquire space in the database

SCHEDULE Authorization to issue a connect without a password (internal to
the on-line Resource Adapter)

DBA Authorization to perform database administration functions.

Granting any one of these authorities to a user who does not already have the
CONNECT authority causes that user to be granted CONNECT authority. For
example, if resource authority is granted to a user who currently has no
authorities, the user will have both RESOURCE and CONNECT authority; if DBA
authority is granted, the user will have DBA, CONNECT, SCHEDULE, and
RESOURCE authorities.

Granting Authority to Users
The following information applies to the GRANT statement and to DB2 Server for
VSE & VM application servers only. For a discussion of authorities for another
application server, refer to that product’s library.

Note: In discussions about granting authorities and privileges in this chapter, the
“grantor” is defined as the user who preprocessed the program in which the
GRANT statement appears. However, for dynamically defined GRANT
statements, the grantor is determined at run time, based on the connected
authorization ID.

The System Authorities form of the GRANT statement allows a user having DBA
authority to grant authorities to other users. See the DB2 Server for VSE & VM SQL
Reference manual for the syntax.

The IDENTIFIED BY clause is optional when granting any of the authorities. If the
clause is included, a password is added or changed for each user specified. If the
password is the same as the one that currently exists for the user, the change has
no real effect. If no passwords are given, none is assigned and previously assigned
passwords are retained.

User IDs and passwords are limited to eight characters. They can be entered in
double quotation marks to bypass checking under the rules of SQL identifier
naming. Embedded blanks are not permitted, even in double quotation marks. If
you specify IDENTIFIED BY, you must include a password for every user ID
specified. The passwords and user IDs must correspond as indicated in the
statement format above.

You can change your password by issuing the following form of the CONNECT
statement which does not require special authority.
CONNECT ... IDENTIFIED BY ...

266 Application Programming

To do this, you need only have CONNECT authority, and may or may not have
already been assigned a password.

Granting CONNECT to ALLUSERS is a special case that establishes implicit
connect capability for all users in the system when operating under the CICS/VSE
system or VM. ALLUSERS may be specified only once for DB2 Server for VM. (See
“Using VM Implicit Connect” on page 117.)

(CICS/VSE connect considerations are discussed in “Chapter 5. Preprocessing and
Running a DB2 Server for VSE Program” on page 151 for DB2 Server for VSE.)

Granting an authority that a user already possesses has no additional effect, except
for changing the password if it is specified.

You should not grant CONNECT authority to SYSTEM or PUBLIC. They are used
internally.

Revoking Authority from Users

Note: In discussions about revoking authorities and privileges in this chapter, the
“revoker” is defined as the user who preprocessed the program in which the
REVOKE statement appears. However, for dynamically defined REVOKE
statements, the revoker is determined at run time, based on the connected
authorization ID.

The System Authorities form of the REVOKE statement allows a user having DBA
authority to revoke an authority from any other users regardless of who originally
granted it. The only exceptions are:
v Anyone with DBA authority cannot revoke their authority
v No one can revoke RESOURCE authority from a user who has DBA authority.

See the DB2 Server for VSE & VM SQL Reference manual for the syntax of the
REVOKE statement.

If you enter REVOKE for an authority that a user does not have, the revocation is
ignored.

Revoking a user’s CONNECT authority causes any other authorities to be revoked
as well, and the user is deleted from the catalog table SYSUSERAUTH. Revoking
CONNECT authority does not cause objects owned by that user to be dropped; if
they should be dropped, this can be done by a user with DBA authority.

Revoking DBA authority automatically causes all other authorities except
CONNECT to be revoked. Revoking RESOURCE or SCHEDULE authority implies
no other revocations.

Defining Privileges
The system keeps track of the privileges that each authorization ID has, and makes
sure that each ID performs only authorized operations on the database.

Authorized users can create and drop tables or views, and compile and run
programs that operate on these tables or views. Anyone who creates a table or
view or compiles a program can selectively share the use of that table, view, or
program with other authorization IDs.

Chapter 10. Assigning Authority and Privileges 267

The privileges you need vary depending on what operations you want to perform.
There are two categories of privileges: privileges on tables and views, and
privileges on programs.

Defining Privileges on Tables and Views
You can have any or all of the following privileges on specific tables and views:

ALTER Privilege to add new columns and keys to a table
(does not apply to views)

DELETE Privilege to delete rows from tables and views

INDEX Privilege to create new indexes on a table (does not
apply to views)

INSERT Privilege to insert new rows into tables or views

REFERENCES Privilege to add, drop, activate, or deactivate a
foreign key relationship (does not apply to views)

SELECT Privilege to retrieve data from tables or views

UPDATE Privilege to change column values in tables or
views.

When you create a new table or view, you are automatically given full privileges
on it. In most situations, you are also given the GRANT option on each privilege
which enables you to grant any or all of these individual privileges to other
authorization IDs. When you grant a privilege, you may include the GRANT
option so that the recipient will be able to grant the privilege to others in turn.

If you grant the privileges on an object to PUBLIC, all authorization IDs (including
those that do not yet exist) will have the same privileges that you have.

If you have DBA authority, you have the same privileges on an object and you can
grant those privileges (or drop the object) in the same way that the owner of the
object can.

Any privilege that you hold on a table or view may be exercised directly through
ISQL and the DBS utility as well as application programs.

Privileges on tables and views are listed in the database manager catalog tables.
SYSTABAUTH and SYSCOLAUTH. To check what privileges you hold or have
granted to other authorization IDs, make the suitable queries on these tables. See
the DB2 Server for VSE & VM SQL Reference manual for more information on the
catalog tables.

Revoking Privileges
Once you have granted a privilege, you can revoke it by issuing a REVOKE
statement. (You can never revoke a privilege from yourself.) If you revoke a
privilege from user LEENA, it is automatically revoked from all authorization IDs
to whom LEENA granted it, unless the other authorization IDs have another
independent source for the same privilege. The most common and most convenient
way to enter a REVOKE statement is through ISQL or the DBS utility. You can
code REVOKE statements within a program; however, because the user ID and
passwords in the REVOKE statements cannot be host variables, the statements
have limited use.

268 Application Programming

If you attempt to revoke a privilege that is currently in use by a running program,
the REVOKE statement is queued until the program ends its current logical unit of
work. For example, if you revoke the UPDATE privilege from user MARY, but
MARY’s program is running and is already making updates, your REVOKE
statement does not take effect until MARY’s updates are finished.

The database manager can also automatically revoke privileges on views, or drop
the view definition. Suppose BILL grants GENE the SELECT privilege with the
GRANT option on the EMPLOYEES table. GENE then defines a view called
SALARY on this table, and grants the SELECT privilege on that view to other
users. After some time, BILL decides to revoke the SELECT privilege on the
EMPLOYEES table from GENE. When BILL does so, the system also automatically
revokes the SELECT privilege from SALARY also, including all SELECT privileges
on SALARY that GENE passed on. If after this process GENE holds no privileges
on SALARY, the definition of SALARY is dropped.

Defining Privileges on Packages

Assigning User Privileges to the Owner
Application programs must be preprocessed before they are compiled or
assembled. Successfully preprocessing an application program results in the
creation or replacement of a package in the database. The contents of the package
are then used to satisfy database requests at run time.

When the package is created, the system determines the level of the RUN privilege
to be given to the owner (EXECUTE privilege can be used as a synonym for RUN
privilege). This depends on such factors as the preprocessed SQL statements, the
existence and ownership of the referenced objects (tables, indexes, dbspaces, and so
on), and the owner’s authorization level (DBA, RESOURCE, or CONNECT) for
DB2 Server for VM, and (DBA, RESOURCE, SCHEDULE, or CONNECT) for DB2
Server for VSE.

The owner of a package is assigned the RUN privilege based on the following
rules:
v If the owner does not have DBA authority, the RUN privilege is assigned when

the preprocessor successfully creates or replaces the package.
v If the owner has DBA authority, the RUN privilege is assigned when none of the

preprocessed SQL statements depends on the owner having DBA authority.
There is an exception to this rule: if an SQL statement selects information from a
table on which the owner does not have the explicit SELECT privilege, and the
owner has DBA authority, then the owner may still be assigned the RUN
privilege. This will depend on the result of preprocessing all the other SQL
statements in the program.

When a particular SQL statement references objects that do not exist or have
different attributes at preprocessing time, the system still creates a package for the
program and assigns RUN privilege to the owner. In this case, the required objects
must be correctly defined at run time, or execution of the program will fail.

In fact, the determination of whether an owner receives the RUN privilege is based
on the aggregate “score” of all preprocessed SQL statements in the program. Each
statement is individually assigned an authorization score; at the end of the
preprocessing phase, the system picks the lowest score, and assigns that to the
owner.

Chapter 10. Assigning Authority and Privileges 269

The scores, and the decision tables used to assign them, are discussed in
“Appendix F. Decision Tables to Grant Privileges on Packages” on page 393.

Assigning Privileges to Others
The database manager provides a GRANT statement that allows the owner of a
package to grant the RUN privilege on the package to other users.

Determining When the Owner Can Grant the RUN Privilege: The owner of a
package is assigned the GRANT RUN privilege when all preprocessed SQL
statements in the program allow the owner to GRANT RUN. If the owner can
grant the RUN privilege on a package, a user with DBA authority has the same
ability.

Circumstances which enable an owner to gain the GRANT RUN privilege include:
v The owner has the necessary privileges (with the GRANT option) to access any

referenced objects.
v The package does not contain any statements that require DBA authority. The

following are examples of operations that require DBA authority:
– Acquiring a public dbspace
– Creating a table in another user’s dbspace or in a SYSTEM dbspace
– Acquiring a dbspace for another user
– Altering another user’s table when the owner doesn’t have explicit ALTER

authority on the table
– Locking another user’s dbspace
– Commenting on another user’s table
– Dropping another user’s object
– Locking another user’s table
– Altering another user’s dbspace
– Creating an index on another user’s table when the owner doesn’t have

explicit INDEX authority on that table
– Creating a table for another user
– Inserting, deleting, or updating another user’s table when the owner doesn’t

have the explicit authority to do so.

Note: The following statements also require DBA authority, but do not affect the
RUN privilege, because they are not checked until run time (when they may
be rejected).
v ALTER DBSPACE when the owner qualifier is not given
v LOCK DBSPACE when the owner qualifier is not given
v DROP DBSPACE when the owner qualifier is not given
v CREATE TABLE in someone else’s dbspace or in a SYSTEM dbspace

when the DBSPACE owner qualifier is not given.

Differences Between Static and Dynamic Statements
There is a difference between static, dynamic, and extended dynamic SQL
statements, when determining the privileges of the owner and other users of the
package being run.

Static At preprocessing time the objects referenced in
static statements are checked for existence, for
usage consistent with the definitions in the
database, and to determine whether the package
owner has the required privileges. This process
allows the person who is preprocessing a package
to encapsulate a set of object privileges that he or
she possesses into that package and to
subsequently grant them to others.

270 Application Programming

Dynamic All dynamic statements are checked at the time the
PREPARE or EXECUTE IMMEDIATE statement is
run and the privileges on the objects referenced in
the statement are checked against those of the
authorization ID of the runner of the package.
There is, therefore, no way to encapsulate object
privileges with dynamic statements.

Extended Dynamic For modifiable packages, all statements are checked
against the privileges of the person who is
preparing or modifying the package, as per static
SQL. For nonmodifiable packages, statements
prepared with extended PREPARE Filling Empty
Section statement are checked as per dynamic SQL,
and statements prepared with the other forms of
extended PREPARE are checked as per static SQL.

Revoking the Run Privilege

The REVOKE statement may be used to revoke the RUN privilege on a package in
the same way it revokes privileges on tables and views.

In some situations, the system automatically revokes the RUN privilege from a
number of users. Suppose user GENE has preprocessed a program that makes use
of some privilege, such as SELECT. GENE receives the RUN privilege on the
package with the GRANT option, and grants this privilege to other users.

If the SELECT privilege is now revoked from GENE, the package associated with
the program is automatically marked invalid. When the program is run (by GENE
or any other user), the system attempts to regenerate a valid (fully authorized)
package. At the time of this regeneration process, the following outcomes are
possible:
1. GENE has all the privileges required by the program, and furthermore has the

GRANT option on all these privileges. In this case, the package is regenerated,
all existing grants of the RUN privilege on the program remain in effect, and
execution proceeds normally.

2. For some SQL statements in the program, GENE lacks the necessary privilege,
or has the privilege without the GRANT option. In this case, GENE retains the
RUN privilege on the program, but all existing grants of the RUN privilege are
revoked. When the program is run, those SQL statements for which GENE has
the necessary privilege execute successfully, and others return error codes.

Recording Assigned Privileges in the Catalog Tables
The database manager records the current RUN and GRANT RUN privileges held
by all authorization IDs in the SYSPROGAUTH catalog table. The entries in the
catalog identify:
v The grantor
v The grantee
v The package that is the subject of the RUN privilege
v A marker indicating that the grantee holds either RUN (‘Y’) or GRANT RUN

(‘G’) authority.

The entries are added to the catalog tables as an application is preprocessed. The
entries may depend, of course, on whether the package satisfies the various

Chapter 10. Assigning Authority and Privileges 271

conditions described in the preceding sections. The system also makes entries in
the SYSPROGAUTH catalog table when someone grants the RUN privilege to
another authorization ID.

The system also updates the SYSUSERAUTH, SYSCOLAUTH, and SYSTABAUTH
catalog tables. The package’s dependency on some authorization is recorded in
these catalog tables. For example, when a package requires RESOURCE authority
to execute successfully, an entry is made in SYSUSERAUTH to reflect that
dependency. The system uses the catalog table entries to keep track of valid and
invalid packages.

272 Application Programming

Chapter 11. Special Topics

Using Datetime Values with Durations 274
Using Durations 274
Resolving Peculiarities of Date Arithmetic . . . 274

Summarizing Addition Operations 276
Summarizing Subtraction Operations . . . 277

Using Field Procedures 277
Assigning Field Procedures to Columns . . . 278
Understanding Field Procedure Rules 279

Input from an Application Program 279
Output to an Application Program 280
Comparison 280
Referential Integrity 280
Scalar Functions 280
Column Functions 281
Concatenation 281
The IN and BETWEEN Predicates 282
The LIKE Predicate 282
Sorting 282
Null Values 282
Unions and Joins 282
Sub-SELECTS 282

Using CMS Work Units (DB2 Server for VM) . . . 282
Using Work Units in Application Programs . . 283

Processing the First SQL Statement in the
Work Unit 283
Invoking Another Application Program. . . 283
Invoking Applications in CMS SUBSET. . . 284
Processing Applications Concurrently . . . 284
Accessing the Database from Different Points
in the Program 284
Copying Data across Databases 284

How Locking Works with CMS Work Units . . 284
Environmental Considerations. 285

Performance Considerations 285
Ensuring Data Integrity 285

Ensuring Entity Integrity 285
Using Unique Constraints 286
When Creating a View 286
Ensuring Referential Integrity 286

Defining Terms 286
Ensuring Referential Integrity in New Tables 288
Adding Referential Integrity to Existing
Tables 289
Managing Table Relationships 290
Modifying Applications to Ensure Integrity 290
Modifying Data in Tables Containing
Referential Constraints 291
Generating SQL Statements in Response to
Table Modifications 295
Enforcing Referential Integrity 295
Removing Referential Constraints 297

Switching Application Servers 298
Identifying Switching Options 298
Comparing Switching to Other Methods (DB2
Server for VM) 298
How to Switch Servers (DB2 Server for VSE) 299
Accessing a New Application Server 300
Illustrating Sample Code 301
Preprocessing the Program on Multiple
Application Servers 302

Condition Handling with LE/VSE (DB2 Server for
VSE) 303

© Copyright IBM Corp. 1987, 2001 273

Using Datetime Values with Durations

Using Durations
A duration is a value that represents an interval of time. The value may be a
constant, a column name, a host variable, a function, an expression, or an
expression followed by a duration attribute. Numbers are interpreted as durations
only in certain contexts as defined in the DB2 Server for VSE & VM SQL Reference
manual; the arithmetic of using date, time, and timestamp is discussed in detail.
Figure 59 on page 276 and Figure 60 on page 277 summarize this topic.

Resolving Peculiarities of Date Arithmetic
What does it mean to add a month to a given date? Presumably the result should
be the same day of the next month. That is, one month after January 1 is February
1, and one month after February 1 is March 1. But what is one month after January
31? This difficulty (which is the reason why certain contracts are always dated the
first of the month) is resolved by the further assumption that the result should be
the last day of February. Thus, adding a month to a given date gives the same day
of the next month except when the next month does not have such a day, in which case
the result is the last day of that month. But, one month from the last day of a
month is not necessarily the last day of the next month. One month from the last
day of February, for example, is not the last day of March. Thus (a date) + (a
simple duration of months) - (a simple-duration of months) is not necessarily equal
to the original date.

The definition of a month does not permit a consistent system of date arithmetic. If
this is a problem, it can be avoided by using days rather than months. For
example, to increment the date date3 by the difference between the dates date1 and
date2, the expression:

DATE (DAYS(date1) - DAYS(date2) + DAYS(date3))

will give an accurate result whereas date1 - date2 + date3 may not. Figure 58 on
page 275 shows how SQLWARN7 provides warnings during date arithmetic when
the resulting date has to be adjusted to derive a valid date.

274 Application Programming

Let D1 be the DATE 2000-02-29, a leap year:
SQLWARN7

D1 + 1 DAY = 2000-03-01 ' '
D1 + 2 MONTHS = 2000-04-29 ' '
D1 + 1 YEAR = 2001-02-28 'W'
D1 + 4 YEARS = 2004-02-29 ' '

Let N be DEC(8,0) and set to 00010203.
D1 + N

= 2000-02-29 + 1 YEAR + 2 MONTHS + 3 DAYS
= 2001-02-28 + 2 MONTHS + 3 DAYS 'W'
= 2001-04-28 + 3 DAYS
= 2001-05-01

Let D2 be the DATE 2001-03-31:
SQLWARN7

D2 + 1 MONTH = 2001-04-30 'W'
D2 + 2 MONTHS = 2001-05-31 ' '

Figure 58. Setting SQLWARN7 during Date Arithmetic. When incrementing or decrementing
dates, SQLWARN7 is set when the resulting date is an invalid date because of a leap year or
month difference, and a valid date is derived.

Chapter 11. Special Topics 275

Summarizing Addition Operations

v An X denotes valid datetime addition operation.
v STRING means a character string in a valid datetime format.

DATETIME ADDITION = OPERAND + OPERAND

LEFT OR RIGHT OPERAND

DURATIONS

SIMPLE

DATE X X X X DATE

TIME X X X X

TIME

TIME

TIME
STAMP X X X X X X X X X X STAMP

LEFT OR
RIGHT

OPERAND

RESULT
DATA
TYPE

D
A
T
E

T
I

M
E

T
I

M
E
S
T
A
M
P

T
I

M
E
S
T
A
M
P

S
T
R
I
N
G

D
A
T
E

T
I

M
E

Y
E
A
R

M
O
N
T
H

D
A
Y

H
O
U
R

M
I
N
U
T
E

S
E
C
O
N
D

M
I
C
R
O

S
E
C
O
N
D
S

Figure 59. Datetime Addition

276 Application Programming

Summarizing Subtraction Operations

v 1 or 2 denotes a valid datetime subtraction operation.
v 1 means a result data type of DECIMAL(8,0), DECIMAL(6,0) or DECIMAL(20,6)

which is deemed as a date duration, time duration, or timestamp duration
respectively. 2 means a result data type of date, time, or timestamp.

v STRING means a character string in a valid datetime format.

Using Field Procedures
Field procedures enable you to alter the sorting sequence of values entered in a
single short string column (CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC). For
some applications the standard EBCDIC sorting sequence is not appropriate. For
example, telephone directories sometimes require that names like “McCabe” and
“MacCabe” appear next to each other, and the standard sorting routine would
separate them. Another example is a national language character set that does not
use the Roman alphabet. For example, Kanji (Japanese) can only be sorted properly
using a field procedure.

If you assign a field procedure to a column, it is called whenever values in that
column are changed or are inserted, and it transforms (encodes) the original value
into one value that sorts properly.

DATETIME SUBTRACTION = MINUEND - SUBTRAHEND

S U B T R A H E N D

DURATIONS

SIMPLE

DATE 1 1 2 2 2 2 1=(8,0)
2=DATE

TIME 1 1 2 2 2 2 1=(6,0)

2=TIME

2=TIME

1=(20,6)
TIME

STAMP 1 1 2 2 2 2 2 2 2 2 2 2 STAMP

MINUEND

RESULT
DATA
TYPE

D
A
T
E

T
I
M
E

T
I
M
E
S
T
A
M
P

T
I
M
E
S
T
A
M
P

S
T
R
I
N
G

D
A
T
E

T
I
M
E

Y
E
A
R

M
O
N
T
H

D
A
Y

H
O
U
R

M
I
N
U
T
E

S
E
C
O
N
D

M
I
C
R
O

S
E
C
O
N
D
S

Figure 60. Datetime Subtraction

Chapter 11. Special Topics 277

When you retrieve a row from the encoded column, the same field procedure
decodes it into the original form. You will never see the encoded string. From a
user’s point of view, all a field procedure does is change the sorting sequence for a
column.

For example, consider a table with a short string column that contains the four
divisions in a company: North, South, East, and West. Divisions are usually sorted
as follows:

East
North
South
West

You can, however, write a field procedure that encodes North as 1, South as 2, East
as 3 and West as 4. The divisions would then be sorted as follows:

North
South
East
West

Note: The encoded values do not have to be the same data type as the decoded
values. Refer to the DB2 Server for VSE & VM SQL Reference manual for a
description of the catalog table SYSCOLUMNS, which contains the
descriptions of decoded columns, and SYSFIELDS, which contains the
descriptions of the corresponding encoded columns.

While field procedures are used primarily to alter the standard EBCDIC sorting
sequence, they can also be used in any application program that requires short
strings to be stored differently from how they are inserted or retrieved.

For a sample field procedure and the rules for writing field procedures, refer to the
DB2 Server for VM System Administration or the DB2 Server for VSE System
Administration manual.

DB2 Server for VSE & VM provides two field procedures for performing cultural
sorts. They are:

FP870L2
Sample field procedure for cultural sorting for the Latin 2 code page
(Regions: Slovenia, Poland, and Romania).

FP102CY
Sample field procedure for cultural sorting for the Cyrillic code page
(Regions: Russia, Bulgaria, Serbia, and Montenegro).

If Data Propagator Capture for VSE or VM is being used on tables that have
columns with field procedures, “1-way” field procedures must be defined on the
Data Propagator Change Data (CD) tables to properly propagate this data. Refer to
the DB2 Server for VM System Administration or the DB2 Server for VSE System
Administration manual for more information.

Assigning Field Procedures to Columns
To assign a field procedure to a new column, include the FIELDPROC clause on
either the CREATE TABLE or ALTER TABLE statement. To assign field procedures
to columns in an existing table, you must unload the data, recreate the table to
include the field procedures, and they reload the data back into the table. If you
create a column without a field procedure, you cannot add one later.

278 Application Programming

Refer to the DB2 Server for VSE & VM SQL Reference manual for the syntax
diagrams for the CREATE and ALTER TABLE statements. The fieldproc-block for
these diagrams is shown below.

For example:
ALTER TABLE SCOTT.SUPPLIERS ADD RATING CHAR(6) FIELDPROC MYFLDPRO (10,5)

The constants (10,5), that follow the program_name MYFLDPRO are optional
parameters, defined when the field procedure is written and passed to the field
procedure when it is invoked.

Understanding Field Procedure Rules
In most cases you will not have to worry about the rules that define when a field
procedure encodes or decodes a short string. However, if you understand when
the database manager calls field procedures, this can help you understand their
performance implications. The less you call field procedures to encode or decode
strings the better your application’s performance will be.

Understanding when field procedures are called can also help you to avoid some
pitfalls. For example, consider a table TABLE_A with a column COLUMN_A that
has fieldproc F1, and consider these two statements:

SELECT SUBSTR(MAX(COLUMN_A,1,5)) FROM TABLE_A

SELECT MAX(SUBSTR(COLUMN_A,1,5)) FROM TABLE_A

You might assume that the two statements should return essentially the same
result; however, different results can be returned depending on your coding. In the
first statement, the database manager does the following:
1. Finds the maximum encoded value in COLUMN_A
2. Decodes the result from MAX with field procedure F1
3. Applies the SUBSTR function to the decoded value of the result from MAX.

In the second statement, the database manager does the following:
1. Decodes the value in COLUMN_A with field procedure F1
2. Applies the SUBSTR function to the decoded value in COLUMN_A
3. Applies the MAX function to the result of the SUBSTR function.

That is, the first statement MAX is applied to encoded values, and the second is
applied to decoded values.

The rest of this section covers the rules that define when a field procedure encodes
or decodes a short string.

Input from an Application Program
The field procedure is called to encode data when your application program inserts
or updates data. This includes the following statements:
v INSERT

�� FIELDPROC program_name

$

,

(constant)

��

Figure 61. fieldproc-block Syntax

Chapter 11. Special Topics 279

v PUT
v UPDATE

Output to an Application Program
The field procedure is called to decode data when your application program
fetches or selects data. This includes the following statements:
v FETCH
v SELECT INTO

Comparison
If a column with a field procedure is compared to a constant, the constant is first
encoded by the field procedure. The comparison is then performed between the
encoded values in the column and the encoded value of the constant.
Host-variables, parameter markers, and the USER special register are treated the
same way.

For example, consider the following SQL statement where COLUMN_A has field
procedure F1:

SELECT * FROM MY_TABLE WHERE COLUMN_A > 'SMITH'

When processing the above statement, the database manager first encodes 'SMITH',
and then for each row in MY_TABLE, compares F1 to the encoded value in
COLUMN_A.

A field procedure can only encode short strings values. If the variable or constant
is of a data type other than CHAR, VARCHAR, GRAPHIC or VARGRAPHIC, a
negative SQLCODE is returned.

If a column with a field procedure is compared to another column, both columns
must have field procedures with the same program_name, comparable encoded data
type, and the same CCSID. If not, a negative SQLCODE is returned.

Referential Integrity
If a primary key column has a field procedure, then the foreign key column must
have the same field procedure, and the CCSIDs of both key columns must be the
same. Otherwise, a negative SQLCODE is returned. For two field procedures to be
the same, their program_names, encoded data type, encoded data length, and input
parameters must be identical.

For example, the following is correct:
CREATE TABLE PRIMARY

(COLUMN_A CHAR(10) FIELDPROC F1 NOT NULL,
COLUMN_B INTEGER)
PRIMARY KEY(COLUMN_A)

CREATE TABLE FOREIGN
(COLUMN_A CHAR(10) FIELDPROC F1 NOT NULL,
COLUMN_B CHAR(10))

ALTER TABLE FOREIGN
ADD FOREIGN KEY (COLUMN_A)
REFERENCES PRIMARY ON DELETE SET NULL

Scalar Functions
All scalar functions operate on decoded values. For example, if ’V’ is a string in a
column with a field procedure, HEX(’V’) returns the hexadecimal representation of
’V’. The result is not associated with the original column’s field procedure.
However, if the result of a scalar function is compared to a column that is

280 Application Programming

associated with a field procedure, this result is encoded by the comparison
column’s field procedure. The comparison is then made between the encoded
value of the column and the encoded result of the scalar function. This is
consistent with how columns with field procedures are compared to constants.

For example:
1. Consider a table (MY_TABLE) with COLUMN_A that has field procedure F1

and COLUMN_B that has field procedure F2. Consider the following SQL
statement:

SELECT * FROM MY_TABLE WHERE COLUMN_A > SUBSTR(COLUMN_B,3,3)

For each row of MY_TABLE, the following occurs:
a. The encoded values of COLUMN_B are decoded by field procedure F2.
b. The substring operation is applied to the decoded value of COLUMN_B.
c. The result of the substring operation is encoded by field procedure F1.
d. Finally, the encoded value of COLUMN_A is compared to the encoded

result of the substring operation.
2. Consider a table (MY_TABLE) with three columns, where COLUMN_A has

field procedure F1, COLUMN_B has field procedure F2, and COLUMN_C is
NOT NULL and has field procedure F3. Consider the following SQL statement:

SELECT * FROM MY_TABLE WHERE COLUMN_A > VALUE(COLUMN_B,COLUMN_C)

For each row of MY_TABLE, the following occurs:
a. If the value of COLUMN_B is not null, then COLUMN_B is decoded, using

F2. Call the result ’M’.
b. If the value of B is null, then C is decoded, using F3. Call the result ’M’.
c. ’M’ is then encoded using F1.
d. The encoded result of the VALUE function is then compared to the encoded

value of COLUMN_A.

Note: A field procedure is never called to encode or decode a NULL value. A
NULL value always maps to a NULL.

3. If a column with a field procedure is the argument of the LENGTH function,
first it is decoded by the field procedure, and then the length of the result is
returned. Of course, if the column data type is a fixed length (for example,
CHAR(15)), there is no need to actually decode the column value. The length
returned by the function is simply the fixed length of the column (15 in this
example).

Column Functions
The column functions MAX and MIN operate on encoded values. The remaining
column functions operate on numeric data, and are not affected by field
procedures.

Concatenation
The concatenation operator is basically a scalar function, and follows the same
rules as a scalar function.

For example, consider a table (MY_TABLE) with COLUMN_A that has field
procedure F1 and COLUMN_B that has field procedure F2. Now, consider the
following SQL statement:

SELECT * FROM MY_TABLE WHERE COLUMN_A > 'ADDITION' CONCAT COLUMN_B

For each row in MY_TABLE, the following occurs:
1. The value of COLUMN_B is decoded by F2.

Chapter 11. Special Topics 281

2. ’ADDITION’ is concatenated with the decoded value in COLUMN_B.
3. The result of the concatenation is encoded by field procedure F1.
4. The encoded result of the concatenation is compared to the encoded value of

COLUMN_A.

The IN and BETWEEN Predicates
These predicates operate the same as a comparison between a column with a field
procedure and a constant.

The LIKE Predicate
This predicate operates on decoded values.

Sorting
Indexes will be based on encoded values. The ORDER BY and GROUP BY clauses
will sort the data according to the encoded format. The database manager also
sorts values during a UNION operation.

Null Values
While a column with a field procedure may be defined to allow null values, the
field procedure is never called to process a null value. A decoded null value
always maps to an encoded null value, and an encoded null always maps to a
decoded null.

Unions and Joins
The rules for comparing two columns with field procedures apply to unions and
joins. The two columns must have the same field procedure.

Sub-SELECTS
All the rules described above apply to sub-SELECTs.

For example:
SELECT * FROM TABLE_1

WHERE COLUMN_A=(SELECT COLUMN_B FROM TABLE_2);

SELECT * FROM TABLE_1
WHERE COLUMN_A IN (SELECT COLUMN_B FROM TABLE_2);

If the columns COLUMN_A and COLUMN_B have different field procedures these
statements are invalid (field procedure comparison rules apply). For example:

INSERT INTO T1 (COLUMN_A) SELECT COLUMN_B FROM T2;

In this statement, the decoded data types for COLUMN_A and COLUMN_B must
be compatible. If so, the value in COLUMN_B will be decoded with F2. The
decoded value is then encoded by F1, and the resulting value is inserted into
COLUMN_A.

Using CMS Work Units (DB2 Server for VM)
Application programs can use the CMS work unit facility, which supports the
following DB2 Server for VM functions:
v One application can invoke another, independent of the processing of the

invoked application.
v An application can be invoked in the CMS SUBSET, independent of the program

from which the CMS SUBSET was invoked.
v Applications can issue concurrent server requests for DB2 Server for VM

resources.
v An application can establish more than one path into the same database.

282 Application Programming

v An application can copy data from one DB2 Server for VM database to another
without first having to write the data to a temporary file.

Note: You should not use the CMS SUBSET function if the WORKUNIT option in
SQLINIT/SQLGLOB is set to NO.

Using Work Units in Application Programs
Associated with each work unit is a unique work unit id assigned by CMS. When
you invoke your program, a default work unit id identifies the currently active
work unit for your program. To switch to a new work unit, you must explicitly
change the currently active work unit.

Use the CMS routines shown in Table 29 to manage work units:

Table 29. Routines to Manage Work Units

CSL Call Function Description

DMSGETWU Get
work unit id

Obtains and reserves a work unit id from CMS.
You must invoke this routine for each separate
work unit you wish to manage.

DMSPUSWU Push
work unit id

Pushes the work unit id onto the work unit stack.
Makes the pushed work unit the currently active
one.

DMSPOPWU Pop
work unit id

Pops the work unit id from the top of the stack.
The next work unit on the stack becomes the
currently active one.

Processing the First SQL Statement in the Work Unit
Although a work unit may have been established and made the currently active
work unit, it is not known to the database manager until the first SQL statement in
the work unit is executed. When this SQL statement is processed, the work unit id
is obtained from CMS, a logical path (work unit) is established between the
application and the DB2 Server for VSE & VM resource, and the user is connected
to either the default application server or the explicitly connected application
server. (The default application server is the one established by the SQLINIT
EXEC.) The CONNECT statement can be used to connect to the desired application
server.

If the work unit id is already known, no change occurs in the database to which
the user is connected in that work unit, unless the user explicitly issues a
CONNECT to change the database.

Invoking Another Application Program
One DB2 Server for VSE & VM application can be invoked from another. By
starting a separate CMS work unit before invoking the second application, the
calling application will not be affected by any COMMIT or ROLLBACK statement
issued from the called application. When the called application pops its work unit
id from the top of the stack, control is returned to the first application. The calling
application is in the same state as it was before it called the other application. The
calling application and the called application can access the same database or
different databases.

Figure 62 on page 284 illustrates how the calling program can be isolated from the
work committed or rolled back by the called program.

Chapter 11. Special Topics 283

Invoking Applications in CMS SUBSET
A DB2 Server for VSE & VM application (for example ISQL) can interrupt
processing of its logical unit of work to go into CMS SUBSET and invoke another
DB2 Server for VSE & VM application. The processing done by the invoked
application does not affect the invoking program. When control is returned to the
invoking program, the LUW is in the same state as it was before going into CMS
SUBSET.

To prevent the application in the CMS SUBSET from affecting any work done by
the invoking application in normal CMS, the SQLRMEND EXEC cannot be used
with the COMMIT ALL or ROLLBACK ALL parameters while in CMS SUBSET
mode. (See the DB2 Server for VSE & VM Database Administration manual for more
information on the SQLRMEND EXEC.)

Processing Applications Concurrently
More than one DB2 Server for VSE & VM application can concurrently process
against the same DB2 Server for VSE & VM database or different DB2 Server for
VSE & VM databases. The application server ensures that processing done by one
application is independent of that done by another. In order to do this, the server
acquires and manages work units for each application.

Accessing the Database from Different Points in the Program
By acquiring two or more work units, an application can logically access the same
database from different points in the application. These work units (and their paths
into the database) cannot be processed concurrently.

Copying Data across Databases
Applications can copy data from one database to another by following these steps:
1. Establish a work unit #1.
2. CONNECT to database #1.
3. Establish a work unit #2.
4. CONNECT to database #2.
5. Make work unit #1 the current work unit.
6. Open a cursor and read into an array as many rows as feasible.
7. Make work unit #2 the current work unit.
8. Open an insert cursor and put all rows from an array into a table.
9. Repeat until all rows are read and put into a table.

How Locking Works with CMS Work Units
If an active work unit requests a SHARE lock on a DB2 Server for VSE & VM
resource, and a suspended work unit has an EXCLUSIVE lock on the same
resource, the active work unit has to wait until the EXCLUSIVE lock is released.

Program 1 Program 2

WU1 WU2

Start .
.
.

COMMIT/ROLLBACK

End

Establish WU2
Call Program 2
Re-establish WU1

.

.

.

.

.

Figure 62. Program Transitioning Using CMS Work Units

284 Application Programming

Since the suspended work unit cannot resume processing until the active work
unit is released or suspended, the user will be in an infinite wait state unless a
cancel is issued or the agent is forced off.

This same locking problem will occur if the suspended work unit has a SHARE
lock on the resource and the active work unit requests an EXCLUSIVE lock on the
same resource.

Environmental Considerations
To use CMS work units, your CMS virtual machine and the database virtual
machine must be running under the VM/ESA operating system, the application
server must be running in multiple user mode, and the Work Unit option in the
SQLINIT EXEC must be set to yes (the default) at initialization time. See the DB2
Server for VSE & VM Database Administration manual for more information on
SQLINIT EXEC.

The database manager does not reuse links for different work units. If you no
longer need a work unit, you should enter either COMMIT RELEASE or
ROLLBACK RELEASE, to free the (APPC/VM) path for reuse.

Performance Considerations
There is a degradation in performance when SQLINIT WORKUNIT (YES) is
specified either directly, or indirectly as the default. This applies even if the
application is not using multiple work units.

Ensuring Data Integrity
Data integrity refers to the accuracy and correctness of data in the database. When
related changes are made to a database, the database manager maintains integrity
of the data by ensuring that either all or none of the changes are made. This
protects other users and programs from using inconsistent or wrong data. This
type of integrity is called atomic integrity.

Data integrity is also maintained by ensuring the uniqueness of certain data in the
database. For example, the SUPPLIERS table must not have duplicate supplier
numbers (SUPPNO). Using this integrity rule, the database manager ensures that
duplicates do not exist. This type of integrity is called entity integrity.

For consistency and integrity, when one table references values in another table,
the referenced values must exist in both tables, or the reference is not valid. The
database manager automatically enforces rules that you define on the tables. These
rules are called referential constraints. Enforcement of referential constraints ensures
the referential integrity of the data referenced.

Ensuring Entity Integrity
The rule that each row in the EMPLOYEE table must represent one and only one
employee is an example of entity integrity. By defining a primary key on the table,
you can ensure that duplicate rows do not occur, thereby enforcing entity integrity.
For example, in the following SQL statement, the column EMPNO is defined as a
primary key, so a unique index is automatically created on that column. This
enforces uniqueness of the data in that column.

CREATE TABLE EMPLOYEE
(EMPNO CHAR(6) NOT NULL,
FIRSTNME VARCHAR(12) NOT NULL,

Chapter 11. Special Topics 285

LASTNAME VARCHAR(15) NOT NULL,
SALARY DECIMAL(9,2) ,
PRIMARY KEY (EMPNO)
)

Using Unique Constraints
A unique constraint enables you to enforce data integrity without having to
enforce entity integrity. While a primary key can ensure that each row in the
EMPLOYEE table represents one and only one employee, a unique constraint can
ensure that each entry in another column is unique. For example, a company has
one telephone for every employee and wants to maintain a set of unique phone
numbers. Its database, however, already uses an employee number as a primary
key. A unique constraint can ensure that no phone numbers are repeated in the
table. Also, if the phone number consists of several columns (area code, 7-digit
number, extension), the unique constraint can include all those columns.

CREATE TABLE EMPLOYEE
(EMPNO CHAR(6) NOT NULL,
FIRSTNME VARCHAR(12) NOT NULL,
LASTNAME VARCHAR(15) NOT NULL,
AREACODE CHAR(3) NOT NULL,
PHONENUM CHAR(7) NOT NULL,
PHONEEXT CHAR(4) NOT NULL,
PRIMARY KEY (EMPNO)
UNIQUE PHONE (AREACODE,PHONENUM,PHONEEXT)
)

The ALTER TABLE command can be used to add, activate, deactivate, or remove a
unique constraint. Another way to remove a unique constraint is either by
dropping the table or the dbspace. Although a unique index is created when the
unique constraint is created, the constraint cannot be dropped by dropping the
index.

When Creating a View
The WITH CHECK OPTION clause in the CREATE VIEW statement is an example
of data integrity in the maintenance of data defined by a view. See “Creating a
View” on page 64.

Ensuring Referential Integrity

Defining Terms
Referential integrity defines the condition on a set of tables in which the existence
of values in one table depends on the existence of the same values in another table.
By enforcing referential constraints (referential integrity rules) that are part of the
table definitions, the database manager ensures the referential integrity of the data
in the tables.

Figure 63 on page 287 shows examples of relationships supported by the database
manager.

286 Application Programming

You should be familiar with the following terms:

Relationship A relationship is formed by connecting two tables
directly. The tables are related through matching
column values in the tables. For example, in
Figure 63, tables T1 and T2 show a simple
relationship. T3 has two relationships with T4. T5
has two paths to T7 (one directly, the other through
T6), but only one relationship with T7. T5 also has a
relationship with T6. Tables are connected to each
other when relationships are formed.

Referential Constraint A relationship between a primary key and a
foreign key, along with a set of rules that define
how the relationship is maintained. This
relationship is that every foreign key value must
match a primary key value or be null.

Referential Cycle A set of referential constraints such that each table
in the set is a descendent of itself.

Referential Structure A set of tables that are related to each other by
referential constraints. For example, T5 is a parent
of both T6 and T7, which are its dependents. T7 is
also a dependent of T6.

T11

T9

T1

T2

T3

T4

T5

T6

T7

T8

T10

Figure 63. Table Relationships with Referential Integrity. T1, T2, ... are tables. Arrows point
from parent tables to dependent tables.

Chapter 11. Special Topics 287

Parent Table A table whose primary key is referenced in a
referential constraint. For example, T1 is the parent
of T2.

Dependent Table A table with a foreign key that is related to another
table (the parent) through a referential constraint.
For example, T4 is a dependent of T3.

Delete-Connected Table A table that may be involved in a delete operation
on another table.

Descendent Table A table is a descendent table if it is a dependent
table or a dependent of a descendent table. For
example, in Figure 63 on page 287, both T6 and T7
are descendent tables of T5.

Parent Row A row in a parent table with a primary key value
that is referenced by the foreign key value in at
least one row in a dependent table.

Dependent Row A row in a dependent table with a foreign key
value that matches a primary key value in the
parent table referenced in the referential constraint.

Self-Referencing Table A self-referencing table is both the parent and the
dependent table in the same relationship. This
relationship is not supported by the DB2 Server for
VSE & VM product. For example, T11 is a
self-referencing table.

Primary Key A set of non-null columns that together uniquely
identify every row in a table. The values in these
columns are known as primary key values.

Foreign Key A set of columns whose values are called foreign
key values. A foreign key only exists as part of a
referential constraint.

Ensuring Referential Integrity in New Tables
To ensure referential integrity in new tables, you must specify a primary key, a
foreign key, and a delete rule that together define the relationship between the
parent table and the dependent table. Delete rules specify what will happen to the
dependent rows if the corresponding parent row is deleted. Insert and update rules
are automatically defined on tables when primary keys and foreign keys are
defined on those tables.

The relationship is defined when the new table is created using the CREATE
TABLE statement.

You should be aware of the referential constraints of the tables you manipulate, as
well as the rules for those tables. In this way you can avoid violating any
referential constraints, and take appropriate action should you inadvertently do so.

In the example below, the EMPLOYEE table is the parent of the DEPARTMENT
table. This relationship is established by specifying a primary key (EMPNO) on the
EMPLOYEE table and a foreign key (MGRNO) on the DEPARTMENT table. This
relationship specifies that every manager listed in the DEPARTMENT table is also
listed in the EMPLOYEE table. The REFERENCES privilege is required on the
parent table. The foreign key is nullable.

288 Application Programming

Adding Referential Integrity to Existing Tables
To add referential integrity to existing tables, you must add a primary key, a
foreign key, and a delete rule that together define the relationship between the
parent table and the dependent table. Delete rules specify what will happen to the
dependent rows if the corresponding parent row is deleted. Insert and update rules
are implicitly defined on tables when primary keys and foreign keys are defined
on those tables.

The relationship is defined using the ALTER TABLE statement.

When keys (primary or foreign) are added to an existing table, any packages that
depend on the table are invalidated. When the application programs are run again,
the packages will be dynamically repreprocessed. Refer to “Running the Program”
on page 146 (DB2 Server for VM) or “Running the Program” on page 180 (DB2

Server for VSE) for more information on dynamic repreprocessing.

As in the case of new tables, you should be aware of the referential constraints of
the tables you manipulate as well as the rules for those tables, in order to avoid
violating any referential constraints or to take appropriate action should you
inadvertently do so.

Consider the existing DEPARTMENT and PROJECT tables. The PROJECT table
was created by the following CREATE TABLE statement:

The following ALTER TABLE statement adds a referential constraint to the
PROJECT table, thereby establishing a relationship between it and the existing
DEPARTMENT table:

ALTER TABLE PROJECT
ADD FOREIGN KEY DNUM (DEPTNO)

REFERENCES DEPARTMENT ON DELETE CASCADE;

CREATE TABLE EMPLOYEE

(EMPNO
FIRSTNME
MIDINIT
LASTNAME
WORKDEPT
PHONENO
SALARY
PRIMARY KEY (EMPNO)

CHAR(6) NOT NULL
VARCHAR(12) NOT NULL
CHAR(1) NOT NULL
VARCHAR(15) NOT NULL
CHAR(3) ,
CHAR(4) ,
DECIMAL(9,2) ,

)

CREATE TABLE DEPARTMENT

(DEPTNO
DEPTNAME
MGRNO
PRIMARY KEY (DEPTNO)
FOREIGN KEY MNUM (MGRNO)

REFERENCES EMPLOYEE ON DELETE SET NULL)

CHAR(3) NOT NULL
VARCHAR(36) NOT NULL
CHAR(6) ,

,

primary key

primary key

foreign key

CREATE TABLE PROJECT

(PROJNO
PROJNAME
DEPTNO
RESPEMP
PRSTAFF
PRIMARY KEY (PROJNO)

CHAR(6) NOT NULL
VARCHAR(24) NOT NULL
CHAR(3) NOT NULL
CHAR(6) NOT NULL
DECIMAL(5,2) ,

)

primary key

foreign key (To be added)

Chapter 11. Special Topics 289

In this relationship, DEPARTMENT is the parent table and PROJECT is the
dependent table. This specifies that every department that is responsible for a
project is also in the DEPARTMENT table.

Note: The ALTER TABLE statement can also be used to defer the enforcement of
referential constraints or cause the removal of referential constraints. These
topics are discussed in the section “Enforcing Referential Integrity” on
page 295.

Managing Table Relationships
The ALTER TABLE statement can be used to add, drop, activate, or deactivate
primary and foreign keys. Various clauses of the statement alter the keys that
establish relationships between tables. When the ALTER TABLE statement
establishes or changes relationships, specific privileges are required on parent
tables and dependent tables. Table 30 shows the privileges that are required.

Table 30. Privileges to Use the ALTER TABLE Statement

ALTER TABLE Clause
Privilege on
Parent Table

Privilege on
Dependent Table

Add Column ALTER

Add Primary Key ALTER

Add Foreign Key REFERENCES ALTER

Drop Primary Key ALTER
REFERENCES1

ALTER

Drop Foreign Key REFERENCES ALTER

Deactivate Primary Key ALTER
REFERENCES1

ALTER

Deactivate Foreign Key REFERENCES ALTER

Activate Primary Key ALTER
REFERENCES1

ALTER

Activate Foreign Key REFERENCES ALTER

Note: The REFERENCES privilege is required only if the parent table has
dependents.

You can grant to or revoke from another user the privilege to add, drop, activate,
or deactivate a relationship between a parent table and its dependent. In order to
enter any of these statements, you must have the REFERENCES privilege on the
parent table whenever a referential constraint is to be:
v Created on a new table (CREATE TABLE)
v Added to an existing table (ALTER TABLE)
v Dropped, activated, or deactivated (ALTER TABLE).

By revoking the privileges previously granted on tables in a referential structure,
you can prevent the accidental removal of constraints that your applications may
depend on.

Modifying Applications to Ensure Integrity
Applications that currently enforce consistency and integrity of their data can be
modified to let the database manager do the checking. Using the referential
constraints and the integrity rules that apply to the tables containing the data, the
system checks that the rules are adhered to, and thereby enforces integrity of the

290 Application Programming

data. As this function can be performed by the database manager, some existing
code can be removed from the application.

Modifying Data in Tables Containing Referential Constraints
To maintain the consistency and integrity of the data, the database manager checks
that integrity rules for insert, update, and delete operations are followed.

Applying Insert Rules: The database manager checks the implicit insert rules when
a row is inserted into either the parent or a dependent table in a referential
structure. When a row is inserted into a parent table, the database manager checks
that the primary key remains unique and does not contain null values. When a
row is inserted into a dependent table, the database manager checks each foreign
key for the following:
v Each has a matching primary key in the parent table, or
v Each contains a null value in one or more of its columns.

Assuming for the moment that department D21 does not already exist in the
parent table (DEPARTMENT), the following INSERT statement adds a new row to
DEPARTMENT.

INSERT INTO DEPARTMENT (DEPTNO,DEPTNAME,MGRNO,ADMRDEPT)
VALUES (‘D21’,‘ADMINISTRATION SYSTEMS’,‘000070’,‘D01’)

Note: The primary key (the DEPTNO column) in the DEPARTMENT table remains
unique and does not contain null values.

Table 31. Part of Department Table

DEPTNO DEPTNAME MGRNO

A00 SPIFFY COMPUTER SERVICE DIV. 000010

B01 PLANNING 000020

C01 INFORMATION CENTER 000030

D01 DEVELOPMENT CENTER ?

D11 MANUFACTURING SYSTEMS 000060

E11 OPERATIONS 000090

D21 ADMINISTRATION SYSTEMS 000070

Assuming for the moment that project IF2000 does not already exist in the
dependent table (PROJECT), the following INSERT statement adds a new row with
DEPTNO = C01 to PROJECT. This value for DEPTNO must exist in the parent
(DEPARTMENT) table.

INSERT INTO PROJECT (PROJNO,PROJNAME,DEPTNO,RESPEMP,PRSTAFF)
VALUES (‘IF2000’,‘USER EDUCATION’,‘C01’,‘000030’,1.00)

Chapter 11. Special Topics 291

Applying Update Rules: When a key value is updated, the database manager
checks the implicit update rules. A key value may be updated when a parent row
(primary key) or a dependent row (foreign key) is updated. If the primary key is
updated due to updates made to the parent table, the database manager checks
that the updated primary key is unique and is not null. All rows in the dependent
table that reference the primary key must first be deleted or updated, or an error
will occur. This ensures that the dependent table is not referencing an “old”
primary key.

If foreign keys are updated, the database manager checks that each updated
foreign key has either a matching primary key in the corresponding parent table,
or that the updated foreign key is a null key. A foreign key is null when one or
more of its column values are null.

Notes:

1. If a searched update contains a subquery, any table referenced in the subquery
must not be a dependent of the table in the UPDATE clause. (See the DB2
Server for VSE & VM SQL Reference manual for more information.) In the
example below, the NAME table must not be a descendent of the EMPLOYEE
table:

UPDATE EMPLOYEE
SET SALARY = 65000.00
WHERE LASTNAME = 'SMITH' AND EXISTS
(SELECT * FROM NAME
WHERE LASTNAME = 'SMITH')

2. In recoverable storage pools, when a searched update is performed against a
column or set of columns, defined in a unique index, primary key, or unique
constraint, uniqueness is checked after all rows have been updated. If
duplicates exist, then the statement is rolled back.

3. In nonrecoverable storage pools, searched updates are sensitive to the order
(ascending or descending) of the data. Since a unique index is automatically
created on a primary key column, you cannot use a searched update against a
primary key column. This ensures that updates to the primary key are
independent of the order of the data.

4. Positioned updates are sensitive to the order (ascending or descending) of the
data. Since a unique index is automatically created on a primary key column,
you cannot use a positioned update against a primary key column. This
ensures that updates to the primary key are independent of the order of the
data.

The following operations change the DEPTNO B01 to F01 in the DEPARTMENT
table. Since DEPTNO is a primary key in the parent table, the foreign key with
DEPTNO equal to B01 must also be changed in the dependent table (PROJECT).

Primary
key
column

Part of parent table (DEPARTMENT)

DEPTNO DEPTNAME MGRNO

C01 INFORMATION CENTER 000030

Foreign
key column

Part of dependent table (PROJECT)

PROJNO

IF2000

PROJNAME

USER EDUCATION

DEPTNO

C01

RESPEMP

000030

PRSTAFF

1.00

292 Application Programming

INSERT INTO DEPARTMENT (DEPTNO,DEPTNAME,MGRNO,ADMRDEPT)
VALUES (‘F01’,‘PLANNING’,‘000020’‘,A00’)

UPDATE PROJECT
SET DEPTNO = 'F01'
WHERE DEPTNO = 'B01'

DELETE FROM DEPARTMENT
WHERE DEPTNO = 'B01'

The example below changes the DEPTNO A00 to D11 for the ADMIN SERVICES
project in the PROJECT table. Since DEPTNO is a primary key in the parent table,
the database manager ensures that DEPTNO D11 in the dependent table
(PROJECT) also exists in the parent table (DEPARTMENT).

UPDATE PROJECT
SET DEPTNO = 'D11'
WHERE PROJNAME = 'ADMIN SERVICES'

Applying Delete Rules: The database manager does not do any checking when

data is deleted from dependent tables. The delete rule in a referential constraint
clause defines what action should be taken by the database manager when a
parent row is deleted. The delete rules are:
v The RESTRICT rule prevents the deletion of a parent row unless all the

dependent rows have been deleted first. This is the default rule.

Primary
key
column

Part of parent table (DEPARTMENT)

DEPTNO DEPTNAME MGRNO

F01 PLANNING 000020

Foreign
key column

Part of dependent table (PROJECT)

PROJNO

PL2100

PROJNAME

WELD LINE PLANNING

DEPTNO

F01

RESPEMP

000020

PRSTAFF

1.00

Primary
key
column

Part of parent table (DEPARTMENT)

DEPTNO DEPTNAME MGRNO

D11 MANUFACTURING
SYSTEMS

000060

Foreign
key column

Part of dependent table (PROJECT)

PROJNO

AD3100

PROJNAME

ADMIN SERVICES

DEPTNO

D11

RESPEMP

000010

PRSTAFF

6.50

Chapter 11. Special Topics 293

v The SET NULL rule sets all nullable columns of the foreign key to null before
deleting the parent row. At least one column of the foreign key must be nullable.

v The CASCADE rule deletes rows at each level containing dependent tables that
have the referential constraint CASCADE.

Restrictions on Using Delete Rules:

v If a table with a referential constraint of CASCADE has dependent tables that
have different delete rules, such as RESTRICT, a delete operation is successful
only if the object row is not found in the dependent table. If the object row is
found in the dependent table, the CASCADE delete operation is rolled back.
That is, the SET NULL and RESTRICT rules maintain their referential integrity
between parent and dependent tables.

v A table cannot be delete-connected to itself in a referential cycle involving two
or more tables.

v If a dependent table is delete-connected to the parent table through multiple
delete paths, each path must have the same delete rule and this rule cannot be
SET NULL.

v If a Searched DELETE contains a subquery, any table referenced in the subquery
and any table that has a referential constraint of CASCADE or SET NULL with
the table referenced in the subquery must not be a dependent of the table in the
FROM clause. (See the DB2 Server for VSE & VM SQL Reference manual for more
information.)

In the following example, the NAME table must not be a descendent of the
EMPLOYEE table:

DELETE FROM EMPLOYEE
WHERE LASTNAME = 'SMITH' AND EXISTS
(SELECT * FROM NAME
WHERE LASTNAME = 'SMITH')

In the example below, the row with EMPNO equal to 000050 is deleted from the
EMPLOYEE table:

DELETE FROM EMPLOYEE
WHERE LASTNAME = 'GEYER'

Because the EMPLOYEE table is a parent table and the delete rule is SET NULL in
the relationship that exists between the EMPLOYEE table and the DEPARTMENT

Primary
key
column

Part of parent table (DEPARTMENT)

DEPTNO DEPTNAME MGRNO

E01
SUPPORT SERVICES

?

Foreign
key column

Part of PROJECT table

PROJNO

OP1000

PROJNAME

OPERATION SUPPORT

DEPTNO

E01

RESPEMP

?

PRSTAFF

6.00

Foreign
key
column

Foreign
key column

294 Application Programming

table, the database manager sets MGRNO equal 000050 to null in the
DEPARTMENT table. Also, because the EMPLOYEE table is a parent table and the
delete rule is SET NULL in the relationship that exists between the EMPLOYEE
table and the PROJECT table, the database manager sets RESEMP equal 000050 to
null in the PROJECT table. (Refer to Figure 64 on page 296 for more information.)

In the example below, the row with DEPTNO equal to D01 is deleted from the
DEPARTMENT table:

DELETE FROM DEPARTMENT
WHERE DEPTNAME = 'DEVELOPMENT CENTER'

Because the DEPARTMENT table is a parent table and the CASCADE rule was set
in the relationship that exists between the DEPARTMENT table and the PROJECT
table, the row with DEPTNO D01 is also deleted from the PROJECT table.

Generating SQL Statements in Response to Table Modifications
When INSERT, UPDATE, and DELETE statements are issued against tables in a
referential structure, the database manager generates internal SQL statements,
which it uses to ensure the consistency and integrity of the data in the tables. The
number of rows affected, the cost of processing the INSERT, UPDATE, DELETE,
and the internally generated statements are returned in the SQLERRD fields in the
SQLCA. The SQLERRD(3) gives the number of rows that were processed
successfully. Upon successful completion of the DELETE statement, SQLERRD(5)
contains the number of dependent rows that were successfully deleted or set to
null. For other data-manipulating language (DML) statements, SQLERRD(5) is set
to zero. The relative cost of processing all the statements is given in the
SQLERRD(4) field.

Additional information on internally generated statements can be found in tables
updated by the EXPLAIN statement. (This statement is discussed in the DB2 Server
for VSE & VM SQL Reference manual.) To determine this information, enter the
EXPLAIN statement for the INSERT, UPDATE, or DELETE statement.

Enforcing Referential Integrity
Referential constraints may be enforced as soon as they are defined, or their
enforcement may be deferred. If the constraints are enforced as soon as they are
defined, the insert, update, and delete integrity rules are enforced immediately
when the INSERT, UPDATE, and DELETE statements are issued.

To defer the enforcement of a constraint is to render the constraint inactive so that
it is not immediately enforced when the INSERT, UPDATE, and DELETE
statements are issued. This is done by deactivating either the primary key, the
dependent foreign key(s), or the foreign key(s). If any of these keys are
deactivated, both the parent and the dependent tables become inactive and
unavailable for data manipulation statements to general users (that is, other than
the DBA and the owner of the tables). However, these tables are available for data
definition statements.

When a primary key is deactivated, all active dependent foreign keys are implicitly
deactivated, and the primary key index is dropped from the parent table. Both
parent and dependent tables become inactive. A primary key cannot be implicitly
deactivated.

With a table in an inactive state, only the owner of the table or a database
administrator (DBA) can enter data manipulating language (DML) statements

Chapter 11. Special Topics 295

against it. No one can enter INSERT, UPDATE, and DELETE statements that cause
statements to be generated against an inactive table.

When keys (either primary or foreign) are activated, the constraints are
automatically verified. If they cannot be verified because of integrity problems, an
error message is returned, and the tables remain unavailable for data manipulation
statements entered by users other than the DBA or the owner.

When keys (either primary or foreign) are activated or deactivated, packages that
depend on the table are invalidated. When the program is run again, it is
dynamically repreprocessed.

In general, you would defer the enforcement of referential constraints between
tables when large amounts of data are to be loaded, or when data is to be loaded
in an order that violates the referential constraint at some point during the loading
operation. For further information, refer to the DB2 Server for VSE & VM Database
Administration manual.

The relationships among the EMPLOYEE, DEPARTMENT, and PROJECT tables are
shown in Figure 64.

DEPARTMENT

MGRNO
DEPTNO

. . . .

PROJECT

DEPTNO
RESEMP

. . . .

WORKDEPT
EMPNO

. . . .

EMPLOYEE

(R)

(N)

(N)(N)

Figure 64. Relationships among the TABLES. Arrows point from primary keys in parent tables
to foreign keys in dependent tables. Delete rules are labeled as (C) = CASCADE, (N) = SET
NULL, (R) = RESTRICT.

296 Application Programming

Then,
ALTER TABLE DEPARTMENT DEACTIVATE PRIMARY KEY

explicitly deactivates the primary key in DEPARTMENT, and implicitly deactivates
the foreign keys DNUM in the PROJECT table and WORKNUM in the EMPLOYEE
table. The DEPARTMENT, EMPLOYEE, and PROJECT tables become inactive.
Therefore, only the owner of these tables or the DBA can enter data manipulation
statements against the tables.

However,
ALTER TABLE DEPARTMENT DEACTIVATE FOREIGN KEY MNUM

will not affect the primary key in the EMPLOYEE table. However, both the
EMPLOYEE table and the DEPARTMENT table become inactive since the foreign
key affects both tables. As mentioned earlier, when tables become inactive, only the
owner of the tables or the DBA can enter data manipulation statements against
them.

Removing Referential Constraints
To remove a referential constraint, you must drop the foreign key. When a table
that contains foreign keys is dropped, the referential constraints associated with
that table are removed. You can drop a table explicitly with the DROP TABLE
statement, or implicitly with the DROP DBSPACE statement. You can also drop the
foreign key with the ALTER TABLE statement, provided that you have the ALTER
privilege on the dependent table and the REFERENCES privilege on the parent
table. For descriptions of the above three statements, see “Chapter 9. Maintaining
Objects Used by a Program” on page 251.

CREATE TABLE EMPLOYEE

(EMPNO
FIRSTNME
MIDINIT
LASTNAME
WORKDEPT
PHONENO
SALARY
PRIMARY KEY (EMPNO)

CHAR(6)
VARCHAR(12)
CHAR(1)
VARCHAR(15)
CHAR(3)
CHAR(4)
DECIMAL(9,2)

NOT NULL,
NOT NULL,
NOT NULL,
NOT NULL,

,
,
,
)

NOT NULL,
NOT NULL,

,
,

CREATE TABLE DEPARTMENT

(DEPTNO
DEPTNAME
MGRNO
PRIMARY KEY (DEPTNO)
FOREIGN KEY MNUM (MGRNO)

REFERENCES EMPLOYEE ON DELETE SET NULL)

CHAR(3)
VARCHAR(36)
CHAR(6)

primary key

primary key

foreign key

ALTER TABLE EMPLOYEE ADD FOREIGN KEY WORKNUM (WORKDEPT)
REFERENCES DEPARTMENT ON DELETE SET NULL

NOT NULL,
NOT NULL,
NOT NULL,
NOT NULL,

,
,

CREATE TABLE PROJECT

(PROJNO
PROJNAME
DEPTNO
RESPEMP
PRSTAFF
PRIMARY KEY (PROJNO)
FOREIGN KEY DNUM (DEPTNO)

REFERENCES DEPARTMENT ON DELETE CASCADE)

CHAR(6)
VARCHAR(24)
CHAR(3)
CHAR(6)
DECIMAL(5,2)

primary key

foreign key

Chapter 11. Special Topics 297

When a table that contains a primary key is dropped, the database manager drops
the primary key and any foreign keys that reference the primary key and removes
the referential constraints associated with those foreign keys. The ALTER TABLE
statement can also be used to drop a primary key directly. To use the ALTER
TABLE statement for this purpose, you must have the ALTER and REFERENCES
privileges on the parent table as well as the ALTER privilege on all dependent
tables.

When keys are dropped, any packages that depend on the table are invalidated.
When the program is run again, it is dynamically repreprocessed. The new
package no longer contains internally generated statements to enforce referential
integrity.

Switching Application Servers
You can access multiple application servers from within an application program,
but only one application server can be accessed at a time. DB2 Server for VM
application servers can reside on the same processor as the user, or on another
processor (in the TSAF collection or the SNA network). VSE application servers
must reside on the same processor as the user, if DRDA protocol is not being used.
If the VSE application server does not reside on the same processor as the
CICS/VSE online user, the VSE application server must be accessed during the
DRDA protocol. This VSE server must be defined as a remote DRDA server to the
DB2 Server for VSE Online Resource Adapter. VM application servers, accessed
through VSE guest sharing or using the DRDA protocol, may reside on the same
processor as the user, or on another processor (in the TSAF collection or the SNA
network). If a program is written to access multiple application servers, its package
must exist on all of them.

This section discusses these authorities in more detail, and explains how to switch
application servers from your application program. For a detailed discussion on
establishing communication links between application requesters and application
servers, refer to the DB2 Server for VM System Administration or the DB2 Server for
VSE System Administration manual.

Identifying Switching Options
Use the CONNECT statement to switch among application servers if you want
application programs to connect to different application servers while running. For
more information on the CONNECT statement, see the DB2 Server for VSE & VM
SQL Reference manual.

Comparing Switching to Other Methods (DB2 Server for VM)
Figure 66 on page 299 and Figure 68 on page 302 show how an application
program, indicated by PGM, accesses three application servers with and without
switching application servers in the program. The application servers can reside on
the same processor as the program or on a different processor.

The application server specified by the SQLINIT EXEC is the default application
server. In Figure 68 on page 302 the default application server is DB01.

If you are not switching application servers in the program, to access another
application server you must terminate the program, reissue the SQLINIT EXEC,
and run the program again. In Figure 66 on page 299, for example, to switch from

298 Application Programming

application server DB01 to application server DB02, you must terminate the
program PGM, reissue SQLINIT, and run the program again.

When you are switching application servers in the program, an application
program can switch to a new application server during execution with the
CONNECT statement. Like the SQLINIT method, a package for the program must
exist on all application servers it accesses, and each logical unit of work must end
before you switch to a different application server. See “Parameters for SQLPREP
EXEC for Single and Multiple User Modes” on page 122 for the options used to
preprocess the program on multiple application servers.

How to Switch Servers (DB2 Server for VSE)
Figure 67 on page 300 shows how an application program, indicated by PGM,
accesses three application servers by switching application servers in the program.
The application servers can reside on the same processor as the program or on a
different processor. When you are switching application servers in the program, an
application program can switch to a new application server during execution with
the CONNECT statement. A package for the program must exist on all application
servers it accesses, and each logical unit of work must end before you switch to a
different application server. See “Preprocessing the Program on Multiple
Application Servers” on page 302 for more details.

PGM PGM PGMSQLINIT
DB(DB01)

SQLINIT
DB(DB02)

SQLINIT
DB(DB03)

Application
Server
DB01

Application
Server
DB02

Application
Server
DB03

Figure 65. Switching Application Servers NOT Implemented within the Program

PGMSQLINIT
DB(DB01)

Application
Server
DB01

Application
Server
DB02

Application
Server
DB03

Figure 66. Switching Application Servers Implemented

Chapter 11. Special Topics 299

Accessing a New Application Server
An DB2 Server for VM application accesses the application server established by
the SQLINIT command when:
v The first CONNECT statement in an application does not contain the TO clause.
v Either a COMMIT RELEASE or ROLLBACK RELEASE statement is executed

and the next statement is not a CONNECT statement with the application server
name specified in the TO clause.

v No CONNECT statement is executed by an application. That is, an implicit
connect is performed.

An DB2 Server for VSE application accesses the default application server when:
v The first CONNECT statement in an application does not contain the TO clause.
v Either a COMMIT RELEASE or ROLLBACK RELEASE statement is executed by

a batch application and the subsequent CONNECT statement does not contain
the TO clause.

v No CONNECT statement is executed by a CICS/VSE application. That is, an
implicit connect is performed.

DB2 Server for VSE
For more information about the defaults that determine the application server
that is accessed, refer to the DB2 Server for VSE System Administration manual.

The application accesses a new application server after executing: An application
accesses a specific application server after executing:
v a CONNECT statement with the application server name specified in the TO

clause.

DB2 Server for VSE
You must enter a CONNECT statement from a batch application after a
COMMIT RELEASE statement or ROLLBACK RELEASE statement to
reestablish the user ID and target application server. Otherwise subsequent
SQL statements are not successful (SQLCODE -563). A null CONNECT
statement is not sufficient.

For DB2 Server for VM to query the user ID and the identity of the application
server to which you are currently connected, as well as the relational database
management system (RDBMS) running the application server, do one of the

PGM

Application
Server
DB01

Application
Server
DB02

Application
Server
DB03

Figure 67. Switching Application Servers Implemented - DB2 Server for VSE

300 Application Programming

following from within an application program. For DB2 Server for VSE to query
the user ID and the identity of the application server to which you are currently
connected, enter one of the following from within an application program.
v A null CONNECT statement, which returns the user ID and the identification of

the RDBMS (DB2 Server for VM) and the application server in the SQLCA. Refer
to the discussion of the CONNECT statement in the DB2 Server for VSE & VM
SQL Reference manual for a description of the format and location of the
information that is returned.
For DB2 Server for VSE if a null CONNECT is issued as the first SQL statement
in a batch application, blanks are returned in the SQLCA for the user ID and
application server name and the execution of subsequent SQL statements are not
successful (SQLCODE -563).

v A SELECT statement requesting the USER and CURRENT SERVER, which
returns the user ID and the identification of the application server in the host
variables associated with the USER and CURRENT SERVER special registers.

If you are using DB2 Server for VM, from your terminal, enter:
v An SQLQRY command, which displays the user ID and the identification of the

RDBMS and the application server on the terminal. Refer to the discussion of the
SQLQRY command in the DB2 Server for VSE & VM Database Administration
manual for a description of the format of the information that is returned and
the restrictions on the use of the SQLQRY command.

Illustrating Sample Code
Figure 68 on page 302 shows how an application can take advantage of switching
application servers.

Chapter 11. Special Topics 301

In the above example, the application connects to three application servers (DB01,
DB02, and DB03), and performs a series of operations when accessing each one.
When accessing DB01, the program retrieves information from the application
server (with the FETCH statement) and processes the information.

Next, it accesses DB02, and some rows are deleted from a table; then accesses
DB03, and rows are inserted into a table.

Preprocessing the Program on Multiple Application Servers
An application program that allows access to multiple application servers with the
CONNECT statement must exist on every application server that the program is to
access.

The DB2 Server for VSE preprocessors provide the DBNAME parameter to
preprocess a program on different application servers. In addition, the CBND
transaction provides the DBLIST parameter to create a package on different
application servers.

The DB2 Server for VM SQLPREP EXEC provides the option to preprocess a
program on multiple application servers with the DBFile or DBList parameter.
However, an application using either of these parameters is preprocessed on one
application server at a time. Each of the application servers provided in the DBFile
or DBList parameter preprocesses the program separately and consecutively, and
generates a source listing. These source listings are concatenated.

Program In User's Machine

Declarations, (and so forth)

DB_NAME = 'DB01'
EXEC SQL CONNECT TO :DB_NAME
EXEC SQL DECLARE CUR1 CURSOR FOR SELECT . . .
EXEC SQL OPEN CUR1
DO until all rows fetched:

EXEC SQL FETCH CUR1 INTO

(Use data)
END DO
EXEC SQL CLOSE CUR1
EXEC SQL COMMIT RELEASE

.

.

.
DB_NAME = 'DB02'
EXEC SQL CONNECT TO :DB_NAME
EXEC SQL DELETE FROM . . . WHERE . . .
EXEC SQL COMMIT RELEASE

.

.

.
DB_NAME = 'DB03"
EXEC SQL CONNECT TO :DB_NAME
EXEC SQL INSERT INTO . . . VALUES . . .
EXEC SQL COMMIT RELEASE

Application
Server
DB01

Application
Server
DB02

Application
Server
DB03

Figure 68. Pseudocode Illustrating How to Switch Application Servers

302 Application Programming

When an application that accesses different application servers is being
preprocessed, certain warnings may be issued by the preprocessor. For example, if
TABLE1 exists in DB01, but your application program is preprocessed against
DB02 or DB03, you will receive warning messages that the table does not exist in
those application servers. If your program does not access TABLE1 in DB02 or
DB03, these messages can be ignored; however, if TABLE1 will be accessed in
either DB02 or DB03, you must create TABLE1 in the accessed application server.

You should repreprocess the program on the application servers that you updated
before executing the program. If you are using the preprocessing option
CTOKEN=NO, you only need to preprocess the application program on one
application server. If you specify CTOKEN=YES, you must repreprocess on all
application servers that the program accesses to get the same timestamp.

During execution, the table being referenced in an SQL statement may reside in the
currently accessed application server or in another application server. In fact, a
table of the same name, but with different attributes, may be in the application
server. The database manager issues a warning message that there are
inconsistencies, but preprocessing will continue. The statement causing the
warning remains in the package, and will only cause an application failure if it is
referenced at run time. Conditions that will generate a warning and the
corresponding SQLCODE include:
v Column column was not found in table owner.table. (SQLCODE = +205 and

SQLSTATE='01533')
v Incompatible data types were found in an expression or compare operation.

(SQLCODE = +401 and SQLSTATE='01578')
v The string representation of a date/time value has invalid syntax. (SQLCODE =

+180 and SQLSTATE='01572')

For more information on preprocessing against unlike DB2 Server for VM
application servers, refer to “Preprocessing the Program” on page 118.

Condition Handling with LE/VSE (DB2 Server for VSE)
The DB2 Server for VSE environment is sensitive to errors or conditions. A failing
SQL transaction or application can potentially leave a DB2 Server for VSE database
in an inconsistent state. For this reason, it is essential that DB2 Server for VSE
knows about the failure of a transaction or application that has been updating a
database so that it can perform database rollback.

When a user runs an application with the TRAP(ON) run-time option of LE/VSE
and the DB2 Server for VSE application is running in Single User Mode, LE/VSE
and DB2 Server for VSE keep track of calls to and returns from the database. If a
program interrupt or abend occurs when the application is running, the LE/VSE
condition manager is informed whether the problem occurred in the application or
in the database manager. If the program interrupt or abend occurs in the database
manager, the LE/VSE condition handler passes the condition back to DB2 Server
for VSE.

If a program interrupt or abend occurs in the application outside the database
manager, the LE/VSE condition manager will perform its own condition handling
actions. If the condition manager gets control then the user must do one of the
following:
v Resolve the error completely so that the application can continue.

Chapter 11. Special Topics 303

v Make sure that the application terminates abnormally by using the
ABTERMENC(ABEND) run-time option of LE/VSE to transform all abnormal
terminations into operating system abends in order to cause DB2 Server for VSE
to do the necessary recovery processing when the DB2 Server for VSE server is
warm started.

Note: The following methods are available for specifying any LE/VSE run-time
options, including ABTERMENC(ABEND):
1. As an installation wide default through the CEEDOPT assembler

language source file.
2. In the assembler user exit routine CEEBXITA.
3. As an application default through the CEEUOPT assembler language

source file. CEEUOPT is assembled into an object module which is
linked with the application program.

4. In JCL through the PARM parameter of the JCL EXEC statement.
5. In PL/I source code through the PLIXOPT string.

See the IBM Language Environment for VSE/ESA Programming Guide for more
details.

v Provide a modified run-time assembler user exit (CEEBXITA) that transforms all
abnormal terminations into operating system abends. The assembler user exit
should check the return code and reason code or the CEEAUE_ABTERM bit,
and request an abend by setting the CEEAUE_ABND flag to ON, if appropriate.

Note: CEEBXITA assembler user exit is intended for use by the application
programmer. It is not intended for DB2 Server for VSE use. See the IBM
Language Environment for VSE/ESA Programming Guide for more details.

304 Application Programming

Appendix A. Using SQL in Assembler Language

Using ARIS6ASD, an Assembler Language Sample
Program (DB2 Server for VSE Only) 306
Using ARIS6ASC, an Assembler Language Sample
Program (DB2 Server for VM Only) 306
Acquiring the SQLDSECT Area 306
Imposing Usage Restrictions on the SQLDSECT
Area 308
Rules for Using SQL Statements in Assembler
Language. 310

Identifying Rules for Case 310
Declaring Host Variables 310

Embedding SQL Statements 312
Using the INCLUDE Statement 313
Using Host Variables in SQL Statements . . . 313
Using DBCS Characters in Assembler Language 313

Handling SQL Errors 314
Using Dynamic SQL Statements in Assembler
Language. 314
Defining DB2 Server for VSE & VM Data Types for
Assembler Language 315
Using Reentrant Assembler Language Programs 317
Using Stored Procedures 322

© Copyright IBM Corp. 1987, 2001 305

Using ARIS6ASD, an Assembler Language Sample Program (DB2
Server for VSE Only)

ARIS6ASD is an assembler language sample program for VSE systems that is
shipped with the DB2 Server for VSE product. It resides on the production disk for
the base product. You may find it useful to print this sample program before going
through this appendix as the hard copy will provide an illustration for many of the
topics discussed here.

Note, for example, how the program satisfies the requirements of the application
prolog and epilog. Near the beginning of the program, all the host variables are
declared, the SQLDSECT area is acquired (and set to zero), and error handling is
defined. Near the logical end of the program, the database changes are rolled back,
to assure that the database remains consistent for each use of the sample program.
(For your own applications, of course, you will enter a COMMIT statement.)

The DS and DC statements for the host variables were determined by referring to
Table 32 on page 315, which shows the assembler representation for each of the
DB2 Server for VSE data types supported by assembler programs. When you are
coding your own applications, you must obtain the data types of the columns that
your host variables interact with. This can be done by querying the catalog tables.
These tables are described in the DB2 Server for VSE & VM SQL Reference manual.

Using ARIS6ASC, an Assembler Language Sample Program (DB2
Server for VM Only)

ARIS6ASC is an assembler language sample program for VM systems that is
shipped with the DB2 Server for VM product. It resides on the production disk for
the base product. You may find it useful to print this sample program before going
through this appendix as the hard copy will provide an illustration for many of the
topics discussed here.

Note, for example, how the program satisfies the requirements of the application
prolog and epilog. Near the beginning of the program, all the host variables are
declared, the SQLDSECT area is acquired (and set to zero), and error handling is
defined. Near the logical end of the program, the database changes are rolled back,
to assure that the database remains consistent for each use of the sample program.
(For your own applications, of course, you will enter a COMMIT statement.)

The DS and DC statements for the host variables were determined by referring to
Table 32 on page 315, which shows the assembler representation for each of the
DB2 Server for VM data types supported by assembler programs. When you are
coding your own applications, you must obtain the data types of the columns that
your host variables interact with. This can be done by querying the catalog tables.
These tables are described in the DB2 Server for VSE & VM SQL Reference manual.

Acquiring the SQLDSECT Area
The assembler preprocessor puts all the variables and structures it generates within
a DSECT named SQLDSECT. The preprocessor also generates a fullword variable
called SQLDSIZ, which contains the length of the SQLDSECT DSECT in bytes.
Thus, for all assembler programs, you must provide an area of size SQLDSIZ, set
the area to zero, and provide addressability to the SQLDSECT DSECT.

306 Application Programming

Figure 69 shows DB2 Server for VSE sample code that does just that for VSE batch
and ICCF applications:

DB2 Server for VM
Use CMSSTOR OBTAIN macros to acquire storage. If you want to use CMS
OS or DOS simulation, you can use the following macros:
v GETMAIN for a CMS OS/VS program
v GETVIS for a CMS VSE program.

Note that SQLDSIZ is in bytes, and that you need the length in doublewords
for the CMSSTOR macro.

Figure 70 on page 308 shows sample DB2 Server for VM pseudocode that can be
used to acquire the SQLDSECT area.

TESTNAME CSECT
STM 14,12,12(13)
BALR regx,0
USING *,regx
L 0,SQLDSIZ
GETVIS ADDRESS=(1),LENGTH=(0)
LR regy,1
USING SQLDSECT,regy
(add code to zero the area)

.

.

.
END

This area is needed only until the program is finished executing all SQL statements, at
which time the area should be freed (FREEVIS).

Figure 69. Acquiring the SQLDSECT Area for VSE Batch and ICCF Applications - (DB2
Server for VSE)

Appendix A. Using SQL in Assembler Language 307

If you know the approximate size of the SQLDSECT that will be generated in your
program, you can define an area (AREA DS CLxxxx) within your program and use
this as your SQLDSECT area. Your program will not be re-entrant if you use this
method.

The preprocessor generates the code to calculate SQLDSIZ directly in front of the
last statement in the source program. Make the last statement an END statement.

If the assembler preprocessor is run with the CHECK option, SQLDSECT and
SQLDSIZ are not generated. Errors occur if you attempt to assemble the output
generated by the preprocessor when the CHECK option is specified. See
“Chapter 4. Preprocessing and Running a DB2 Server for VM Program” on
page 115 or “Chapter 5. Preprocessing and Running a DB2 Server for VSE
Program” on page 151 for more information about preprocessor parameters.

For DB2 Server for VSE CICS/VSE transactions, Figure 69 on page 307 does not
apply. Figure 71 is a CICS/VSE example.

Note: You must provide a save area for all assembler programs.

Imposing Usage Restrictions on the SQLDSECT Area
There are two performance considerations about the SQLDSECT area that you
should be aware of:
v Acquire and clear the SQLDSECT area only once.

The DB2 Server for VSE examples shown in Figure 69 on page 307 and Figure 71
assume that the TESTNAME is entered once.

TESTNAME CSECT
STM 14,12,12(13)
BALR regx,0
USING *,regx
LA regy,7(0,0)
A regy,SQLDSIZ
SRL regy,3
(save computed doubleword length for CMSSTOR RELEASE)
LR 0,regy
CMSSTOR OBTAIN,DWORDS=(0)
LR regz,1
USING SQLDSECT,regz
(add code to zero the area)

.

.

.
(add code to free storage by CMSSTOR RELEASE)
END

This area is needed only until the program is finished executing all SQL statements, at
which time the area should be freed (CMSSTOR RELEASE).

Figure 70. Acquiring a Dynamic SQLDSECT Area - DB2 Server for VM

label1 EQU regx
EXEC CICS GETMAIN SET(label1) LENGTH(SQLDSIZ+2) INITIMG(00)
USING SQLDSECT,regx

Figure 71. Acquiring the SQLDSECT Area for CICS/VSE Applications - DB2 Server for VSE

308 Application Programming

The DB2 Server for VM example shown in Figure 70 on page 308 assumes that
the TESTNAME is entered once. If TESTNAME is a subroutine of a mainline
module, and if TESTNAME is invoked many times, you should acquire the
SQLDSECT in the mainline module. The following is an example of how this
may be done:
1. In TESTNAME add an entry card as follows:

ENTRY SQLDSIZ

This allows the field containing the size information for the SQLDSECT area
to be accessed externally.

2. The mainline module can now access the size information using the
following sequence:
For DB2 Server for VM

L regy,=V(SQLDSIZ) GET POINTER TO FIELD CONTAINING SIZE
LA 0,7(0,0) ROUND UP FOR DOUBLEWORDS
A 0,0(,regy) SET LENGTH + 7
SRL 0,3 CONVERT BYTES TO DOUBLEWORDS
CMSSTOR OBTAIN,DWORDS=(0) GET STORAGE
LR regy,1 SAVE POINTER TO SQLDSECT
(Zero the SQLDSECT area.)

For DB2 Server for VSE
L regy,=V(SQLDSIZ) GET POINTER TO FIELD CONTAINING SIZE
L 0,0(,regy) SET LENGTH
GETVIS ADDRESS=(1),LENGTH=(0)
LR regy,1 SAVE POINTER TO SQLDSECT
(Zero the SQLDSECT area.)

3. When the mainline module calls TESTNAME, it should pass the pointer to
the SQLDSECT. Assuming that regy still contains the pointer, TESTNAME
simply issues the appropriate USING statement as follows:

TESTNAME CSECT
STM 14,12,12(13)
BALR regx,0
USING SQLDSECT,regy

.

.

Depending on how many times TESTNAME is invoked, the above could be
an important performance consideration. Using the technique reduces the
path length because you only need to get, clear, and free storage once.
Further, the cleared SQLDSECT area serves as a “first pass” flag for the
batch/ICCF and CMS resource adapters. Thus, by letting the mainline
module initialize the SQLDSECT area only once, you further avoid
significant resource adapter “first pass” processing.

v Provide only one SQLDSECT area.
If you structure an application so that the mainline module invokes several
modules that each contain SQL commands, you need to provide only one
SQLDSECT area. The area that you provide must be the largest SQLDSECT area.
For example, suppose the mainline module invokes MODA and MODB, each of
which contains SQL commands, but which have different SQLDSECT area
requirements. The mainline module must satisfy the larger of the two
requirements.
By inserting the following into MODA and MODB, you could allow the
mainline module to calculate the SQLDSECT area requirement:

Appendix A. Using SQL in Assembler Language 309

INTO MODA: INTO MODB:

MODADSIZ DC A(SQLDSIZ) MODBDSIZ DC A(SQLDSIZ)
ENTRY MODADSIZ ENTRY MODBDSIZ
. .
. .

The mainline module could reference the above entries and provide for the
maximum SQLDSECT area. The following example shows how the mainline
module could determine the requirement of MODA:

L regy,=V(MODADSIZ) GET POINTER TO POINTER FIELD
L regy,0(,regy) GET POINTER TO FIELD CONTAINING SIZE
L 0,0(,regy) SET LENGTH.

The same technique could be used to access the SQLDSIZ of MODB. Given the
two SQLDSIZ values, the mainline module should provide for a SQLDSECT area
equal in size to the greater SQLDSIZ value.

By using only one SQLDSECT area for your application, you reduce the storage
requirement and minimize the first pass processing.

Rules for Using SQL Statements in Assembler Language
This section lists the rules for embedding SQL statements within an assembler
program.

Note: OPSYN and ICTL assembler statements may not be used.

Identifying Rules for Case
Uppercase must be used for all SQL statements, except for text within quotation
marks, which will be left in the original case.

Declaring Host Variables
The following example shows an SQL declare section for an assembler program:

310 Application Programming

The preceding example illustrates the following rules:
1. All assembler variables that are to be used in SQL statements must be

declared, and their declarations must appear within one or more sections that
begin with:

EXEC SQL BEGIN DECLARE SECTION

and end with:
EXEC SQL END DECLARE SECTION

Each of these two statements must be totally contained on one line.

Note: There is no semicolon delimiter at the end of the SQL statements. There
may be a label on either of the statements, and host language
comments are allowed after the statements.

2. Host language comments are allowed on any statement within the SQL
declare section, as are host language comment line images (* in column 1).

3. The assembler preprocessor processes the statements in the declare section as
follows:
a. If there is no label, the preprocessor ignores the statement and goes on to

the next.
b. If there is a label, but the opcode is not DS or DC, the preprocessor ignores

the statement and goes on to the next.
c. If there is a label and a DS or DC opcode, the operand is checked. The

operand must be an acceptable data type, as shown in Table 32 on
page 315. Here are some examples:

F
F'5'
H
H'100'
CL255
CL5'ABCDE'

Col. 1 Col.16 Col. 72
| | |
| | |
LABEL EXEC SQL BEGIN DECLARE SECTION
AA DS F
BB DC H'3' comment
* comment card or
* comment section
CC DC CL80'xxxx......................................xxxx*

xxxx...............xxxxx'
XYZ DSECT
DD DS D
EE DS CL5
FF DS H,CL40

ORG FF
GG DS H
HH DS CL40 comment
* continued comment
II DS PL5
JJ DC PL5'123.45'
KK DS 0H
LL DS CL12
XX DS CL10 *

continuation of comment
LABEL2 EXEC SQL END DECLARE SECTION comment

Appendix A. Using SQL in Assembler Language 311

H,CL5
H'5',CL5'ABCDE'
D
D'2.5E10'
PL2
PL5'123.45'
P'123'
P'123.45'
P'1234'
P'123.456'
H,CL32767

The first character of the operand may also be zero and used as follows:
0H
0F
0D
0C

In this case, the line is ignored and the next line is processed.

If there are no errors at this stage, the variable is validly defined as a host
variable. If there are errors, the line is flagged as an error, and the next line
is processed.

4. The database manager allows host variable names, statement labels, and SQL
descriptor area names of up to 256 characters in length, subject to any
assembler language restrictions mentioned in this appendix.

5. The opcode for a declare statement must be coded on the first line of the
statement. Because the line length is 71, this limits the length of host variable
names to 68 characters.

6. Continuations are allowed by coding a non-blank character in column 72 of
the line to be continued, and coding the continuation anywhere from columns
16 to 71 inclusive on the next line, leaving 1-15 blank.

7. Continuation of tokens (the basic syntactical units of a language) is allowed
from one line to the next, by coding the first part of the token up to column
71 of the line to be continued, and coding the second part of the token from
column 16 on the continuation line. If either column 71 of the continued line
or column 16 of the continuation line is blank, the token will not be
continued. See the DB2 Server for VSE & VM SQL Reference manual for a
discussion on tokens.

8. The declare section can be anywhere that a normal DS or DC can be used.
Because the assembler preprocessor is a two-pass operation, the declare
section can come after the SQL statements that use the host variables.

9. There can be more than one SQL declare section in a program.
10. Host variable names cannot contain variable symbols (for example,

&ABCDEFG, &SYSNDX, &SYSPARM). These names must be resolved at
preprocessing time. Variable symbols will be resolved at assembly time.

Embedding SQL Statements
The following are the rules for embedding SQL statements within assembler
programs:
1. Each SQL statement must be preceded by EXEC SQL, which must be on the

same line. Only blanks can appear between the EXEC and SQL. There must not
be a semicolon (;) delimiter on the SQL statement.

2. The first line of an SQL statement can have a label beginning in column 1. If
there is no label, the statement must begin in column 2 or greater.

312 Application Programming

3. Rules for continuation of statements and tokens are the same as those described
for host variables.

4. No host language comments are allowed within an SQL statement. Any such
comments are considered part of the SQL statement.

5. If an entire statement must be contained on one line, there cannot be SQL
comments embedded in the statement. There are three such statements:
v BEGIN DECLARE SECTION
v END DECLARE SECTION
v INCLUDE.

6. Avoid using labels or variable names that begin with SQL, ARI, or RDI. Also
avoid names beginning with PID, PBC, PA, PB, PC, PD, PE, PL, or PN where
these letters are followed by numbers. These names may conflict with names
generated by the assembler preprocessor.

7. All SQL statements must be in one CSECT.
8. The EXEC SQL must be coded on the first line of the statement. Because the

line length is 71, this limits the length of a LABEL to 62 characters.

Using the INCLUDE Statement
To include external secondary input, specify the following at the point in the
source code where the secondary input is to be included:

EXEC SQL INCLUDE text_name

Text_name is the A-Type source member of a VSE library. Text_name is the file name
of a CMS file with an “ASMCOPY” file type, located on a CMS minidisk accessed
by the user.

The INCLUDE statement must be completely contained on one line. There may be
a label on the command, and host language comments are allowed after the
command.

Using Host Variables in SQL Statements
When you place host variables within an SQL statement, you must put a colon (:)
in front of every host variable, to distinguish them from the SQL identifiers (such
as a column name). When the same variable is used outside of an SQL statement,
do not use a colon.

A host variable can represent a data value, but not an SQL identifier. For example,
you cannot assign a character constant, such as “MUSICIANS”, to a host variable,
and then use that host variable in a CREATE TABLE statement to represent the
table name. The following pseudocode sequence is invalid:

Using DBCS Characters in Assembler Language
The rules for the format and use of DBCS characters in SQL statements are the
same for assembler language as for other host languages supported by the
database manager. For a discussion of these rules, see “Using a Double-Byte
Character Set (DBCS)” on page 53.

Assembler language does not provide a way to define graphic host variables. If
you want to add graphic data to or retrieve it from DB2 Server for VSE & VM

Incorrect
IT = ' MUSICIANS '
CREATE TABLE :TT (NAME ...

Appendix A. Using SQL in Assembler Language 313

tables, you must execute the affected statements dynamically. By doing so, the data
areas that are referenced by each statement can be described in an SQLDA. In the
SQLDA, you must set the data type of the areas containing graphic data to one of
the graphic data types. For a discussion of the SQLDA, refer to the DB2 Server for
VSE & VM SQL Reference manual.

Handling SQL Errors
There are two ways to declare the SQL communication area (SQLCA):
v You can code the following statement in your source program:

EXEC SQL INCLUDE SQLCA

The preprocessor replaces this with a declaration of the SQLCA structure.
v You may declare the SQLCA directly, as shown in Figure 72.

You must not declare the SQLCA within the SQL declare section. The meaning
of the fields is explained in DB2 Server for VSE & VM SQL Reference manual.

You may find that the only variable in the SQLCA you really need is SQLCODE. If
this is the case, declare just the SQLCODE variable, and invoke NOSQLCA support
at preprocessor time.

Using Dynamic SQL Statements in Assembler Language
An SQLDA structure may be required for dynamically executed SQL statements.
There are two ways to declare the SQLDA structure:
v You can code the following statement in your source program:

EXEC SQL INCLUDE SQLDA

The preprocessor replaces this with a declaration of the SQLDA structure.
v You can declare the SQLDA directly, as shown in Figure 73 on page 315.

SQLCA DS 0F
SQLCAID DS CL8
SQLCABC DS F
SQLCODE DS F
SQLERRM DS H,CL70
SQLERRP DS CL8
SQLERRD DS 6F
SQLWARN DS 0C
SQLWARN0 DS CL1
SQLWARN1 DS CL1
SQLWARN2 DS CL1
SQLWARN3 DS CL1
SQLWARN4 DS CL1
SQLWARN5 DS CL1
SQLWARN6 DS CL1
SQLWARN7 DS CL1
SQLWARN8 DS CL1
SQLWARN9 DS CL1
SQLWARNA DS CL1
SQLSTATE DS CL5

Figure 72. SQLCA Structure (in Assembler)

314 Application Programming

The SQLDA structure must not be declared within an SQL declare section. When
you specify INCLUDE SQLDA, the assembler preprocessor generates a CSECT
statement at the end of the SQLDA. This CSECT is generated with the name of the
CSECT currently active in your program.

You must not specify a constant string on a PREPARE or EXECUTE IMMEDIATE
statement. You can only specify a host variable defined as a variable-length
character string:

EXEC SQL PREPARE S1 FROM :STRING1
EXEC SQL EXECUTE IMMEDIATE :STRING1

.

.
EXEC SQL BEGIN DECLARE SECTION
STRING1 DS H,CLxxxxx (xxxxx <= 8192)
EXEC SQL END DECLARE SECTION

The halfword of STRING1 must contain the length of the string, and the character
portion must contain the string itself when the PREPARE or EXECUTE
IMMEDIATE statement is executed.

See Appendix B of the DB2 Server for VSE & VM SQL Reference manual for more
information on the individual fields within SQLDA.

Defining DB2 Server for VSE & VM Data Types for Assembler
Language
Table 32. DB2 Server for VSE & VM Data Types for Assembler

Description DB2 Server for VSE &
VM Keyword

Equivalent Assembler
Declaration

A binary integer of 31 bits, plus sign. INTEGER or INT F

A binary integer of 15 bits, plus sign. SMALLINT H

SQLDA DSECT
SQLDAID DS CL8
SQLDABC DS F
SQLN DS H
SQLD DS H
SQLVAR DS 0F
SQLVARN DSECT
SQLTYPE DS H
SQLLEN DS 0H
SQLPRSCN DS CL1
SQLSCALE DS CL1
SQLDATA DS A
SQLIND DS A
SQLNAME DS H,CL30
&SYSECT CSECT

Figure 73. SQLDA Structure (in Assembler)

Appendix A. Using SQL in Assembler Language 315

Table 32. DB2 Server for VSE & VM Data Types for Assembler (continued)

Description DB2 Server for VSE &
VM Keyword

Equivalent Assembler
Declaration

A packed decimal number, precision p, scale s
(1≤p≤31 and 0≤s≤p). In storage the number occupies
a maximum of 16 bytes. Precision is the total
number of digits. Scale is the number of digits to
the right of the decimal point.

DECIMAL[(p[,s])] or
DEC[(p[,s])]¹ 1

PLn[‘decimal constant’] or
P‘decimal constant’

For declarations using PLn, the
precision is 2n-1 (n is the number
of bytes). For the declarations
using P, the length of the decimal
constant, excluding the decimal
point and sign, is the precision.
For the declarations using P or PL,
the scale is that of the decimal
constant. For the declarations
using P, the decimal constant must
be specified. For the declarations
using PLn, the decimal constant is
optional. If it is not specified, the
scale is 0.

A single precision (4-byte) floating-point number in
short System/390 floating-point format.

REAL or FLOAT(p), 1 ≤
p ≤ 21

E

A double precision (8-byte) floating-point number in
long System/390 floating-point format.

FLOAT or FLOAT(p), 22
≤ p ≤ 53 or DOUBLE
PRECISION

D

A fixed-length character string of length n where 0
< n ≤ 254.

CHARACTER[(n)] or
CHAR[(n)]

CLn

A varying-length character string of maximum
length n. If n > 254 or ≤ 32,767; this data type is
considered a long field. (See “Using Long Strings”
on page 47.) (Only the actual length is stored in the
database.)

VARCHAR(n) H,CLn

A varying-length character string of maximum
length 32 767 bytes.

LONG VARCHAR H,CLn

A fixed-length string of n DBCS characters, where 0
< n ≤ 127.

GRAPHIC[(n)] Not supported.

A varying-length string of n DBCS characters. If n >
127 or ≤ 16 383, this data type is considered a long
field. (See “Using Long Strings” on page 47.)

VARGRAPHIC(n) Not supported.

A varying-length string of DBCS characters of
maximum length 16 383.

LONG VARGRAPHIC Not supported.

A fixed or varying-length character string
representing a date. The minimum and maximum
lengths vary with both the format used and
whether it is an input or output operation. See the
DB2 Server for VSE & VM SQL Reference manual for
more information.

DATE CLn or H,CLn

A fixed or varying-length character string
representing a time. The minimum and maximum
lengths vary with both the format used and
whether it is an input or output operation. See the
DB2 Server for VSE & VM SQL Reference manual for
more information.

TIME CLn or H,CLn

316 Application Programming

Table 32. DB2 Server for VSE & VM Data Types for Assembler (continued)

Description DB2 Server for VSE &
VM Keyword

Equivalent Assembler
Declaration

A fixed or varying-length character string
representing a timestamp. The lengths can vary on
input and output. See the DB2 Server for VSE & VM
SQL Reference manual for more information.

TIMESTAMP CLn or H,CLn

Notes:

1. NUMERIC is a synonym for DECIMAL, and may be used when creating or
altering tables. In such cases, however, the CREATE or ALTER function will
establish the column (or columns) as DECIMAL.

Using Reentrant Assembler Language Programs
A reentrant program has the characteristic of dynamic allocation of space for data
and save areas. This reentrant characteristic can be used in assembler programs. In
this case, the data and save areas are allocated in a calling (driver) program and
passed to a called (reentrant) program as parameters. Storage for these areas need
not be allocated in the called program.

A convenient use for reentrancy is the use of an SQLDA structure declared as a
DSECT in the calling program. This, in combination with an INCLUDE SQLDA
statement in the called program, permits the passing back of values, extracted by a
SELECT/FETCH in the called program, in a clean and simple manner. A
DESCRIBE statement can be used by the called program to fill the SQLDA
structure, or it can be hand-filled in the driver program. Other SQL statements (for
example, INSERT, DELETE, UPDATE) utilize a single data location to communicate
just an SQLCODE.

If statement results other than the SQLCODE are desired, an SQLCA structure can
be allocated in the driver program. However, unlike the SQLDA structure
allocation by a DSECT, the fields of the SQLCA structure must be hard-coded into
the driver, because the driver will not be preprocessed. An INCLUDE SQLCA
statement, within a DSECT, is then required in the called program. SQLCA
communication between the two programs can be achieved by passing the address
of the first field of the SQLCA structure to the reentrant program.

The “Locda DSECT” structure is hard-coded in the Driver Program, instead of
being defined by an “EXEC SQL INCLUDE SQLDA”, so that there is no need to
preprocess the Driver Program. This example assumes there is only a single host
variable returned by the FETCH. For production application programming, it is
recommended that macros be created for defining the SQLCA and SQLDA
structures (with optional DSECT statement) when used in programs that will not
be preprocessed.

The following are skeleton programs illustrating the use of the SQLDA structure,
and a single data location for communicating SQLCODEs. The reentrant example
illustrates only a FETCH statement. If more than one “action” statement (INSERT,
DELETE, and so on) is used, then various flags are needed to direct access to the
individual operations. The required modifications to include an SQLCA structure
follow these skeletons.

Appendix A. Using SQL in Assembler Language 317

Driver CSECT , Driver Program
* Standard Linkage Conventions ...

STM R14,R12,12(R13) Save callers registers
:

Qstring DC H'57',CL57'SELECT DESCRIPTION FROM INVENTORY WHERE QONHA $
ND < 100' SQL Statement to be executed

:
LA R13,Save1 Subroutine Register Savearea Address

* Forward and backward chain saveareas together
:
LA R4,1 '1' indicates 1st call to subroutine
ST R4,Loccode SQLCODE returned from subroutine

* (Also used as 1st call switch)
:

* Create SQLDA structure to pass to subroutine:
* (OR Subroutine could fill in by using DESCRIBE)

LA R4,LSQLDA Point R4 at SQLDA area
USING Locda,R4 reference SQLDA fields
:
LA R7,Outarea+1 Address where DESCRIPTION stored
ST R7,Locdata
LA R7,Indaddr Address where Indicator Value stored
ST R7,Locind

* NOTE: Setting of other SQLDA fields is not shown, but may be required
:

*
* Loop to call reentrant subroutine (Loop needed for Cursor operation)
LOOP EQU *
*
* Blank Output area for next FETCH result:

:
LA R1,Parmlist Parms passed to subroutine through R1
L R15,=V(Reentran) Load Subroutine Entry Point address
BALR R14,R15 Call Reentrant Subroutine
CLC Loccode,F0 Any error from subroutine ?
BE FetchOK No, continue as normal
CLC Loccode,F100 Cursor EOF occurred ???
BE Final Yes, all done.
B Errchk No, some kind of error, go handle.

*
FetchOK EQU *
* Test indicator values for NULL, etc, and handle as appropriate:

:
*
* Output result from a Fetch: (Data conversion may be necessary)

:
*
* Branch back to Loop for another Fetch

B LOOP
:

Errchk EQU *
* Handle errors returned by subroutine.

:
Final EQU *
* Program complete, restore registers and return to caller

:
BR R14 Return to caller
:

Figure 74. Driver Program (Part 1 of 2)

318 Application Programming

* Declare Section
:
:

F0 DC F'0' 'NO ERRORS' retcode from subroutine
F100 DC F'100' 'CURSOR EOF' retcode from subroutine

:
SaveRA DS 18F register savearea for use by Resource
* ... Adapter when called by subroutine
Save1 DS 18F subroutine register savearea
Loccode DS F SQLCODE variable passed to subroutine
* (return code from subroutine)

:
Parmlist DS 0D Subroutine Parameter List:

DC A(Qstring) SQL Statement to execute
DC A(LSQLDA) Local SQLDA area
DC A(Loccode) Return Code from subroutine
DC A(Hostvar) Host Variable Workarea
DC A(SaveRA) Resource Adapter register savearea
:

Indaddr DS F Indicator area
Outarea DS CL80 Fetch value return area

:
LSQLDA DS CL500 Local SQLDA area
Hostvar DS CL500 Subroutine Host Variable workarea

:
Locda DSECT , Describes SQLDA fields
Locdaid DS CL8
Locdabc DS F
Locn DS H
Locd DS H
Locvar DS 0F assumes one one Host Variable used
Loctype DS H
Loclen DS 0H
Locprcsn DS X
Locscale DS X
Locdata DS A
Locind DS A
Locname DS H,CL30 ...end of Local SQLDA area

:
:
END Driver ...end of Driver Program

Figure 74. Driver Program (Part 2 of 2)

Appendix A. Using SQL in Assembler Language 319

Reentran CSECT , Reentrant Subroutine
* Standard Linkage Conventions. Register Savearea address in R13.

STM R14,R12,12(R13) Save callers registers
:

* Get Parameter addresses
L R3,0(0,R1) Point to Qstring
L R4,4(0,R1) Point to SQLDA area
USING SQLDA,R4 Reference SQLDA fields
L R5,8(0,R1) Point to Loccode (SQLCODE) return code
USING LSQLCODE,R5 Reference Passed SQLCODE variable
L R6,12(0,R1) Point to Hostvar workarea
USING Hostvar,R6 Reference Hostvar workarea
LR R7,R13 R7 points to callers savearea
L R13,16(0,R1) Point R13 at "our" passed savearea ...

* ... for use by Resource Adapter calls
* Forward and backward chain saveareas together

ST R13,8(0,R7) Caller savearea points to "our" savearea
ST R7,4(0,R13) "our" savearea points to caller savearea
:

* Check if this is first call to subroutine:
CLC F0,0(R5) If NOT zero, it is first call
BE Next Is zero - NOT first call

EXEC SQL CONNECT ...
:
LH R1,0(R3) Get length of Qstring
LA R1,1(R1,0) Length minus 1 for EXecute ...

* ... plus 2 for length Halfword ...
* ... equals length + 1.

EX R1,MOVQSTR move length & Qstring to Hostvar area
EXEC SQL PREPARE S1 FROM :QSTRING

CLC SQLCODE,F0 Any errors ?
BNE Exit Yes, return it to caller
:

* Fill in passed SQLDA structure (possibly with DESCRIBE),
* if not done in Driver program.

:
EXEC SQL DECLARE C1 CURSOR FOR S1

:
EXEC SQL OPEN C1

:
Next EQU *

EXEC SQL FETCH C1 USING DESCRIPTOR SQLDA
CLC SQLCODE,F100 Cursor EOF reached ??
BNE Exit No, return to caller (even if error)
:

*
* All Fetched, Close Cursor before returning
Done EQU *

EXEC SQL CLOSE C1
CLC SQLCODE,F0 Any error ?
BNE Exit Yes, return error to caller

*
* Return 'CURSOR EOF' return code to caller

MVC 0(4,R5),F100 R5 points to Loccode
:

Exit EQU * Return to caller
:

Figure 75. Reentrant Program (Part 1 of 2)

320 Application Programming

To include full SQLCA communications between the Driver Program and the
Reentrant program, you must modify both programs.

* Restore registers and return to caller
* Our return code is in Loccode

L R13,4(0,R13) Load callers savearea address
LM R14,R12,12(R13) Restore callers registers
BR R14 Return to caller
:

* Declare section
MOVQSTR MVC QSTRING(1),0(R3) EXecuted during 1st call
F0 DC F'0' 'NO ERRORS' retcode from subroutine
F100 DC F'100' 'CURSOR EOF' retcode from subroutine

:
* Include the SQLDA DSECT

EXEC SQL INCLUDE SQLDA
:

Hostvar DSECT , Passed Host Variable Workarea
QSTRING DS CL500

:
LSQLCODE DSECT , Passed SQLCODE variable
SQLCODE DS F

:
END Reentran ...end of Reentrant Subroutine

Figure 75. Reentrant Program (Part 2 of 2)

Appendix A. Using SQL in Assembler Language 321

Using Stored Procedures
The following example shows how to define the parameters in a stored procedure
that uses the GENERAL linkage convention. PLIST=OS must be specified.

In the Driver program, replace the ″Loccode″ variable definition with an ″SQLCA″
structure definition and update the 3rd address constant in the ″Parmlist″, as follows:

:
Save1 DS 18F subroutine register savearea
Locca DS 0D SQLCA structure passed to subroutine
Loccaid DS CL8
Loccabc DS F
Loccode DS F SQLCODE
Locerrm DS H,CL70
Locerrp DS CL8
Locerrd DS 6F
Locwarn DS 0C
Locwarn0 DS CL1
Locwarn1 DS CL1
Locwarn2 DS CL1
Locwarn3 DS CL1
Locwarn4 DS CL1
Locwarn5 DS CL1
Locwarn6 DS CL1
Locwarn7 DS CL1
Locwarn8 DS CL1
Locwarn9 DS CL1
LocwarnA DS CL1
Locstate DS CL5 ... end of local SQLCA structure

:
Parmlist DS 0D Subroutine Parameter List:

DC A(Qstring) SQL Statement to execute
DC A(LSQLDA) Local SQLDA area
DC A(Locca) SQLCA returned from subroutine <----
DC A(Hostvar) Host Variable Workarea
DC A(SaveRA) Resource Adapter register savearea
:

In the Reentrant program, change from just referencing the ″SQLCODE″ variable,
through the ″LSQLCODE DSECT″, to referencing the full ″SQLCA″ structure, through the
″PASSEDCA DSECT″, as follows:

:
L R5,8(0,R1) Point to Locca (SQLCA) return codes
USING PASSEDCA,R5 Reference Passed SQLCA structure
:
:

PASSEDCA DSECT , Passed SQLCA structure
EXEC SQL INCLUDE SQLCA include SQLCA field definitions

:

Figure 76. SQLCA Changes for Driver/Reentrant Programs

322 Application Programming

The following example shows how to define the parameters in a stored procedure
that uses the GENERAL WITH NULLS linkage convention.

* CODE FOR AN ASSEMBLER LANGUAGE STORED PROCEDURE THAT USES *
* THE GENERAL LINKAGE CONVENTION. *

A CEEENTRY AUTO=PROGSIZE,MAIN=YES,PLIST=OS

USING PROGAREA,R13
.
.

* GET THE PASSED PARAMETER VALUES. THE GENERAL LINKAGE CONVENTION*
* FOLLOWS THE STANDARD ASSEMBLER LINKAGE CONVENTION: *
* ON ENTRY, REGISTER 1 POINTS TO A LIST OF POINTERS TO THE *
* PARAMETERS. *

L R7,0(R1) GET POINTER TO V1
MVC LOCV1(4),0(R7) MOVE VALUE INTO LOCAL COPY OF V1

.

.

.
L R7,4(R1) GET POINTER TO V2
MVC 0(9,R7),LOCV2 MOVE A VALUE INTO OUTPUT VAR V2

.

.

.
CEETERM RC=0

* VARIABLE DECLARATIONS AND EQUATES *

R1 EQU 1 REGISTER 1
R7 EQU 7 REGISTER 7
PPA CEEPPA , CONSTANTS DESCRIBING CODE BLOCK

LTORG , PLACE LITERAL POOL HERE
PROGAREA DSECT

ORG *+CEEDSASZ LEAVE SPACE FOR DSA FIXED PART
LOCV1 DS F LOCAL COPY OF PARAMETER V1
LOCV2 DS CL9 LOCAL COPY OF PARAMETER V2

.

.

.
PROGSIZE EQU *-PROGAREA

CEEDSA , MAPPING OF THE DYNAMIC SAVE AREA
CEECAA , MAPPING OF THE COMMON ANCHOR AREA
END A

Figure 77. Stored Procedures - Using GENERAL Linkage Convention

Appendix A. Using SQL in Assembler Language 323

* CODE FOR AN ASSEMBLER LANGUAGE STORED PROCEDURE THAT USES *
* THE GENERAL WITH NULLS LINKAGE CONVENTION *

B CEEENTRY AUTO=PROGSIZE,MAIN=YES,PLIST=OS

USING PROGAREA,R13

.

.

* GET THE PASSED PARAMETER VALUES. THE GENERAL WITH NULLS LINKAGE*
* CONVENTION IS AS FOLLOWS: *
* ON ENTRY, REGISTER 1 POINTS TO A LIST OF POINTERS. IF N *
* PARAMETERS ARE PASSED, THERE ARE N+1 POINTERS. THE FIRST *
* N POINTERS ARE THE ADDRESSES OF THE N PARAMETERS, JUST AS *
* WITH THE GENERAL LINKAGE CONVENTION. THE N+1ST POINTER IS *
* THE ADDRESS OF A LIST CONTAINING THE N INDICATOR VARIABLE *
* VALUES. *

L R7,0(R1) GET POINTER TO V1
MVC LOCV1(4),0(R7) MOVE VALUE INTO LOCAL COPY OF V1
L R7,8(R1) GET POINTER TO INDICATOR ARRAY
MVC LOCIND(2*2),0(R7) MOVE VALUES INTO LOCAL STORAGE
LH R7,LOCIND GET INDICATOR VARIABLE FOR V1
LTR R7,R7 CHECK IF IT IS NEGATIVE
BM NULLIN IF SO, V1 IS NULL

.

.

.
L R7,4(R1) GET POINTER TO V2
MVC 0(9,R7),LOCV2 MOVE A VALUE INTO OUTPUT VAR V2
L R7,8(R1) GET POINTER TO INDICATOR ARRAY
MVC 2(2,R7),=H(0) MOVE ZERO TO V2'S INDICATOR VAR

.

.

.
CEETERM RC=0

Figure 78. Stored Procedure - Using GENERAL WITH NULLS Linkage Convention (Part 1 of 2)

324 Application Programming

* VARIABLE DECLARATIONS AND EQUATES *

R1 EQU 1 REGISTER 1
R7 EQU 7 REGISTER 7
PPA CEEPPA , CONSTANTS DESCRIBING THE CODE BLOCK

LTORG , PLACE LITERAL POOL HERE
PROGAREA DSECT

ORG *+CEEDSASZ LEAVE SPACE FOR DSA FIXED PART
LOCV1 DS F LOCAL COPY OF PARAMETER V1
LOCV2 DS CL9 LOCAL COPY OF PARAMETER V2
LOCIND DS 2H LOCAL COPY OF INDICATOR ARRAY

.

.

.
PROGSIZE EQU *-PROGAREA

CEEDSA , MAPPING OF THE DYNAMIC SAVE AREA
CEECAA , MAPPING OF THE COMMON ANCHOR AREA
END B

Figure 78. Stored Procedure - Using GENERAL WITH NULLS Linkage Convention (Part 2 of 2)

Appendix A. Using SQL in Assembler Language 325

326 Application Programming

Appendix B. Using SQL in C

A C Sample Program 328
Rules for Using SQL in C 328

Placing and Continuing SQL Statements . . . 328
Delimiting SQL Statements 329
Identifying Rules for Case 329
Identifying Rules for Character Constants . . . 329
Using the INCLUDE Statement 329
Using the CONNECT Statement (DB2 Server for
VSE) 330
Using the C Compiler Preprocessor 330
Declaring Host Variables 330
Using Host Variables in SQL Statements . . . 335
Using the Pointer Type Attribute 335
Using Host Variables as Function Parameters 337

Using C Variables in SQL: Data Conversion
Considerations 338
Using C NUL-Terminated Strings and
Truncation 338
Calculating Dates 338
Using Trigraphs 339
Using DBCS Characters in C 339
Considering Preprocessor-Generated Statements 339

Handling SQL Errors 342
Using Dynamic SQL Statements in C 343
Defining DB2 Server for VSE & VM Data Types for
C 344
Using Reentrant C Programs 346
Using Stored Procedures 346

© Copyright IBM Corp. 1987, 2001 327

A C Sample Program
ARIS6CD is a C language sample program for VSE systems that is shipped with
the DB2 Server for VSE product. ARIS6CC is a C language sample program for
VM systems that is shipped with the DB2 Server for VSE product. It resides on the
production disk for the base product. You may find it useful to print this sample
program before going through this appendix as the hard copy will provide an
illustration for many of the topics discussed here.

The program satisfies the requirements of the application prolog and epilog. Near
the beginning of the program all the host variables are declared, and error
handling is defined. Near the logical end of the program, the database changes are
rolled back, to assure that the database remains consistent for each use of the
sample program. (For your own applications, of course, you will enter a COMMIT
statement.)

To determine the types of C host variables to declare, refer to Table 35 on page 344
which gives the C representation for each of the DB2 Server for VSE & VM data
types. Note the following:
v C expects a character array to end in a hex 00 null character when used to

contain a character string. This null character is referred to as NUL, and is coded
as ’\0’ in a C program. An SQL character string does not end in a NUL.
Therefore, SQL will try to add a NUL to a character string when storing it in a
character array host variable, and it will expect a NUL, which it will remove,
when setting an SQL column value from a C character host variable. To account
for the NUL, declare character array host variables to one character longer than
the length of the SQL character data they are to contain. For all the rules
concerning NULs, see “Using C NUL-Terminated Strings and Truncation” on
page 338.
There are two other types of nulls to be aware of. Quite separate from the NUL
character described above, C refers to a pointer value as NULL, in a similar way
to PL/I. A C NULL pointer has a value of 0, and C allows the word NULL in
pointer assignments and expressions. This use of NULL is distinct from the DB2
Server for VSE & VM NULL, which means an undefined column or expression
value. The word NULL can be used in a C program to mean either. You can
always determine which is meant by the context.

When you are coding your own applications, you will need to obtain the data
types of the columns that your host variables interact with. This can be done by
querying the catalog tables. (These tables are described in the DB2 Server for VSE &
VM SQL Reference manual.)

Rules for Using SQL in C

Placing and Continuing SQL Statements
All statements in your C program, including SQL statements, must be contained in
columns 1 through 72 of your source file. Columns 73 through 80 can also be used
if the NOSEQuence C preprocessor option is specified; if NOSEQuence is not
specified, or if SEQuence is specified, these columns will be ignored by the
preprocessor. If NOSEQuence is used, the NOSEQ and MARGINS(1,80) C compiler
options must be used to compile the application program.

328 Application Programming

In a VSE environment, C comments may not start at column 1 because a “/*”
starting at column 1 will be mistaken as an End-Of-Data-File JCL command. Other
VSE restrictions may apply to the use of column 1 in C application programs.

Continuation of SQL statements and host variable declare statements across lines
can be accomplished by breaking the line anywhere a blank can occur.
Continuation of tokens (the basic syntactical units of a language) is allowed from
one line to the next, by coding a backslash (the C continuation character with hex
value X'E0') in the line to be continued immediately after the first part of the token
(leaving the remainder of the line blank), and coding the next part of the token
from column 1 on the continuation line. If column 1 on the continuation line is
blank, the token is not continued. See the DB2 Server for VSE & VM SQL Reference
manual for a discussion of tokens.

You can also use the trigraph ??/ in place of the backslash as the continuation
character. The C preprocessor treats end-of-line like a blank delimiter except when
it is in a literal.

Delimiting SQL Statements
Use delimiters on all SQL statements to distinguish them from regular C
statements. You must begin each SQL statement in your program with EXEC SQL,
and end each statement with a semicolon. EXEC and SQL must be in uppercase on
the same line, with only blanks separating them (no in-line C or SQL comments).
Also, EXEC SQL must be immediately followed by a blank, C comment, or SQL
comment, and it must be preceded by either a blank, C comment, {, }, trigraph ??<,
trigraph ??>,), colon, or semicolon.

Elsewhere within SQL statements, C and SQL comments are allowed anywhere
that blanks are allowed. However, there must not be any comments within SQL
statements that are dynamically defined and executed.

Any SQL statement except INCLUDE can be followed on the same line by another
SQL statement, C statement, or C comment.

Identifying Rules for Case
The keywords EXEC SQL must appear in uppercase in your C program. The rest
of an SQL statement can appear in mixed case, but will be interpreted as
uppercase, except for host variable names and text within quotation marks, which
will be left in the original case.

Note: C host variables are always treated with case sensitivity by the C
preprocessor. This is true for the C compiler too, except for externals, which
C may truncate and fold to uppercase. Keep this in mind when using host
variables with external scope.

Identifying Rules for Character Constants
Remember to follow SQL, not C, conventions when coding such character constant
strings. These strings must be delimited by single quotation marks, and an
embedded backslash is not recognized as an escape character.

Using the INCLUDE Statement
To include external secondary input, specify:

EXEC SQL INCLUDE text_name

Appendix B. Using SQL in C 329

at the point in the source code where the secondary input is to be included.

DB2 Server for VM
The text_name is the file name of a CMS file with a “CCOPY” file type and
located on a CMS minidisk accessed by the user. It is always folded to
uppercase. If anything is found after an INCLUDE statement, a warning
message is issued and the input is ignored.

DB2 Server for VSE
The text_name is the member name of a “B” type source member of a VSE
library.

Use the SQL INCLUDE statement instead of the C preprocessor #include directive
to include files that contain SQL host variables or SQL statements.

Using the CONNECT Statement (DB2 Server for VSE)
The CONNECT statement is required to establish a connection between the
database manager and the program. To do an explicit connect, specify:

EXEC SQL CONNECT :userid IDENTIFIED BY :password;

Both userid and password must be host variables declared as fixed length 8
character strings.

Using the C Compiler Preprocessor
The preprocessor must run before the C compiler and its built-in preprocessor. It is
therefore not possible to contain any C preprocessor directives within an SQL
statement. The SQL INCLUDE statement should be used instead of the C #include
for files that contain SQL host variable declarations or statements.

Declaring Host Variables
You must declare all host variables in an SQL declare section. For a description of
an SQL declare section, refer to “Declaring Variables That Interact with the
Database Manager” on page 8.

Declare host variables in the source file before the first use of the variable in an
SQL statement. You can use the following types of variables in an SQL statement:
v Scalar variables
v Structure variables
v Structure elements
v Array variables

Scalar variables, structure elements, and array elements are data objects. For
information on the use of these variables in an SQL statement, refer to “Using Host
Variables” on page 57 and “Using Host Structures” on page 57.

Note: You can declare non-host variables in an SQL declare section; however,
declarations that do not conform to DB2 Server for VSE & VM declaration
rules may return errors.

The definition of a host variable is subject to the following rules:

330 Application Programming

v A data object declared as a scalar variable or structure element may have any
one of the following basic C data types:

short Short integer

long Long integer

float Floating-point

double
Double-precision floating-point

decimal
Decimal

The keyword int is optional in the declaration of a short or long integer. You
cannot use the unqualified type int when declaring a variable to be used in an
SQL statement: specify short or long.

v A data object declared as an array element can have any of the following basic C
data types:

short Short integer

char Single character
v You can use scalar variables and structure elements as main variables. If they are

declared with a data type of short integer, you can also use scalar variables as
indicator variables.

v Character arrays hold the SQL CHARACTER data types. You should declare
character arrays with one extra character to contain the string terminating NUL.
You can use the unsigned qualifier with character array host variables. It does
not affect the way the system treats them.
An explicit constant decimal array size is required between the brackets, even if
an initializer is used on the declare. Expressions, preprocessor functions (such as
sizeof), octal or hex values, and #defined variables cannot be used as the size of
character arrays.

char value1 [5] = "TEST";
or Correct

char value1 [] = "TEST";
Incorrect

Incorrect

Incorrect

char value1 [sizeof(var)];

char value1 [MAXLEN +1]

char value1 [015];
Incorrect
(octal)

char value1 [5];

Appendix B. Using SQL in C 331

v You can only use short integer arrays as indicator arrays. The following is an
example of an indicator array:
short ind_array [10];

You cannot use indicator array elements as main or indicator variables.
v You can use a structure variable as a host structure or as a varying-length string

definition. The structure declaration must be in the following form when used to
define a varying-length string:

struct tag {
short vlen;
char vstr[nnn];
} varname1;

The structure tag is optional. Any legal C names can be used for the structure
and the contained variables. The nnn, defining the length of the largest string to
be held in the structure, is specified by you.

This structure defines a VARCHAR or LONG VARCHAR host variable with the
name varnamel and a length nnn You cannot use this structure as a host
structure; you cannot use the elements of the structure as host variables.

The system does not add or expect a NUL at the end of a VARCHAR or LONG
VARCHAR string. If one is needed, you can use a character array host variable,
or you can add one after the data value has been returned, with the statement:

varname1.vstr[varname1.vlen]='/0';

If a NUL is required, ensure that the nnn is one larger than the maximum
allowable string, so that adding the NUL at the end will never overflow the
allocated storage.

A macro is provided to assist in the declaration of VARCHAR structures:
SQLVARCHAR(varname,nnn)

will expand to:

struct{
short sqllen;
char sqlstr[nnn];

}varname;

You can use this macro wherever a structure declaration defines a varying-length
string.

v A structure variable which defines a host structure is any two-level structure,
other than a varying-length string definition, declared in an SQL declare section.
The following example is a host structure:
struct tag{char projno [7];

short actno;
long acstaff;
char acstdate [10];
char acendate [10];
}projstrct;

Note: The structure tag is optional.

This structure represents the following list of host variables when used in an
SQL statement:
projno, actno, acstaff, acstdate, acendate

332 Application Programming

In other words, the two following SQL statements are equivalent:
EXEC SQL SELECT PROJNO, ACTNO, ACTSTAFF, ACSTDATE, ACENDATE

INTO :projstrct
FROM PROJ_ACT
WHERE PROJNO = ‘100000’

EXEC SQL SELECT PROJNO, ACTNO, ACSTAFF, ACSTDATE, ACENDATE
INTO :projno, :actno, :acstaff, :acstdate, :acendate
FROM PROJ_ACT
WHERE PROJNO = ‘100000’

A host structure can either be a stand-alone structure or a substructure of a more
complex structure. The following example is a complex structure that contains a
host structure:
struct tag { char empno [7];

struct taga { char firstname [13];
char midinit [1];
char lastname [16];

} empname;
char workdept [3];
char phoneno [4];

} employee;

The structure empname is a host structure.

You can use the elements of the host structure and the elements of a complex
structure containing a host structure as host variables. In the previous example,
you can use empno, firstname, midinit, lastname, workdept and phoneno as
host variables.

You can code a substructure in the host structure to represent a varying-length
string element if the substructure conforms to the rules for a varying-length
string definition. All of the rules in the description of structures that define
varying-length strings also apply in this situation. The following example is a
host structure that contains a VARCHAR element:
struct tag { struct taga { short fnlen;

char fntext [12];
} firstname;

char midinit [1];
struct tagb {short 1nlen;

char 1ntext [15];
} lastname;

} empname;

The C preprocessor interprets the structure empname as a host structure
containing 3 elements: firstname with data type VARCHAR and length 12,
midinit with data type CHAR and length 1, and lastname with data type
VARCHAR, and length 15.

Note: Any structure matching the description of a varying-length string
definition is interpreted as a VARCHAR or LONG VARCHAR variable
and cannot be used as a host structure.

v Third level host structures are permitted in C to support varying-length strings.
The following is an example of varying-length string declarations in host
structures.

EXEC SQL BEGIN DECLARE SECTION;
struct

{
char last??(9??);
char first??(9??);

Appendix B. Using SQL in C 333

struct
{
short addlen;
char addtext??(200??);
} address;

} empname;
EXEC SQL END DECLARE SECTION;

main()
{

EXEC SQL SELECT LASTNAME, FIRSTNME, ADDRESS
INTO :empname
FROM EMPLOYEE
WHERE LASTNAME = 'JOHANSON';

}

In this example, empname is considered by the C preprocessor to be a two-level
structure because the structure of address matches that of a VARCHAR data
type. As a result, empname may be used in the SELECT statement. If, for example,
addlen was changed from short to long, the structure of address would no
longer match a VARCHAR data type and empname would be considered a
three-level structure. As a result, empname could NOT be used in a SELECT
statement.

v Union, enumeration, bitfield, and void types are not supported. Typedefs are not
supported.

v Auto, static, extern, const, volatile, and _Packed storage classes are supported.
The register storage class is not supported. If no class is specified, the usual C
default storage class applies (which depends on the placement of the declaration
within the source file).

v The system supports any sequence of declaration keywords that is also
supported by the C compiler.

v Initialization of variables on the declaration statement is supported.
v You can declare multiple variables of the same type in the same C declaration

statement. For example:
static short partno, suppno, time;
static char name [16] , adr[36];
static double qonhand, qonorder, price;

Note: You must explicitly declare all structures in C within the multi-level
structure. You cannot declare a structure for reference within another
structure (except for the SQLVARCHAR macro). In the following example,
only dates and product may be used as host structures. orderno and
custnum may be used as scalar host variables and may be qualified as
custord.orderno and ordinfo.custnum or custord.ordinfo.custnum.

EXEC SQL BEGIN DECLARE SECTION;
struct

{
char orderno??(10??);
struct

{
char custnum??(10??);
struct

{
char ordate??(7??);
char delivdte??(7??);

} dates;
} ordinfo;

struct
{

char stockno??(11??);

334 Application Programming

char quantity??(4??);
} product ;

} custord ;
EXEC SQL END DECLARE SECTION;

main()
{

EXEC SQL SELECT STOCKNO, QUANTITY
INTO :product
FROM ORDER
WHERE STOCKNO = '1234567890';

}

v You cannot duplicate variable names in a single source file, even if they are in
different blocks or functions. The C preprocessor defines a duplicate variable
name as any name that cannot be referenced unambiguously when fully
qualified. (After a variable is declared in an SQL declare section, it is known to
SQL for all functions and blocks for the rest of the source file, regardless of the
host variable’s actual scope. Therefore, that variable, or another variable with the
same name and type, cannot be used in an SQL statement, even in a scope
outside of the original SQL declare section.) See “Using Host Variables as
Function Parameters” on page 337 for more information.

v The database manager allows host variable names, statement labels, and SQL
descriptor area names of up to 256 characters in length, subject to any C
language restrictions mentioned in this appendix.

Note: Because of the restriction on the number of host variables in a statement,
host structures with greater than 256 fields will not be allowed,

v You should not declare variables whose names begin with SQL, sql, RDI, or rdi
unless otherwise instructed. These names are reserved for the database manager
use.

v Host variable names are case-sensitive. For example, a host variable called
partno is different from one called PartNo.

v Rules for continuation are the same as those described for SQL statements.

Note that other program variables can also be declared as usual outside the SQL
declare section. The previous restrictions do not apply to non-SQL declarations.

Using Host Variables in SQL Statements
When you reference host variables, host structures, structure fields or indicator
arrays in an SQL statement, you must precede each reference by a colon (:) The
colon distinguishes these variables from SQL identifiers (such as column names).
The colon is not required outside an SQL statement.

Using the Pointer Type Attribute
Scalar host variables can be defined as pointers to any C data type that the
database manager supports. The following rules and restrictions apply:
v For the basic C data types, the variable must be declared in the same way it is

referenced in an SQL statement. For example:
short *partno;

...
SELECT PARTNO INTO :*partno ...

v In the case of character arrays, the array size must be explicitly defined in the
declaration. For example:

Appendix B. Using SQL in C 335

The use of parentheses is required in order for arrays to define a pointer to an
array of 5 characters, as opposed to an array of 5 pointers to characters. (See
“Using C NUL-Terminated Strings and Truncation” on page 338 for the
limitations on string lengths.)

The host variable would then be referenced as *v1_ptr in an SQL statement.
v The asterisk is considered part of the host variable name. This means:

– The asterisk is included in the 256-character length limitation for host variable
names.

– If a host variable is declared with an asterisk, it must always be used within
the SQL statement with the asterisk. If it was declared without an asterisk,
then it must never have one in an SQL statement.

v The programmer is responsible for ensuring that the pointer is set before it is
used.

There are primarily two uses for pointer types with SQL statements:
1. Allocating or sharing storage.

A program could contain a single SQL declare section, and use pointers for
some or all large data areas. Then, before a pointer is used in an SQL
statement, an alloc function could be used to acquire storage and set the
pointer, or the pointer could be set to a shared storage area. This allows the
program to reduce its overall storage requirement. For example:

EXEC SQL BEGIN DECLARE SECTION;
...
struct tag {

short vlen;
char vstr[1000];

} *vstr_ptr;
...

EXEC SQL END DECLARE SECTION;

...
vstr_ptr = (struct tag *) malloc(sizeof(struct tag));

EXEC SQL SELECT DESCRIPTION
INTO :*vstr_ptr FROM TABLE;

...
}

2. Passing variables to functions for update.
C usually passes parameters by value. This prevents the called function from
changing the caller’s version of a parameter. Passing a parameter by reference
can be accomplished by the caller explicitly passing a pointer to the data. The
called function then changes the data referenced by the pointer by using the

Correct

Incorrect

Incorrect

char (*v1_ptr) [5];

char *v1_ptr ;

char (*v1_ptr) [];

336 Application Programming

asterisk for indirection. If the value is to be changed with an SQL statement,
the called function must also declare the pointer value of the parameter in an
SQL DECLARE section. For example:

main()
{
EXEC SQL BEGIN DECLARE SECTION;

...
long int partno;
...

EXEC SQL END DECLARE SECTION;

getdata(&partno);
...

}

getdata(partno_ptr)
EXEC SQL BEGIN DECLARE SECTION;
long int *partno_ptr;
EXEC SQL END DECLARE SECTION;
{

EXEC SQL SELECT PARTNO
INTO :*partno_ptr FROM TABLE;

...
}

Using Host Variables as Function Parameters
Host variables with the same name can only be declared in one SQL declare
section. When passing a host variable to a function within the same file as the
calling function, the variable can be used in an SQL statement in the called
function without being redeclared in an SQL declare section. For example:

main()
{

EXEC SQL BEGIN DECLARE SECTION;
...
long int partno;
...

EXEC SQL END DECLARE SECTION;

getdata(partno);
...

}

getdata(partno)
long int partno;
{

EXEC SQL BEGIN DECLARE SECTION;
long int qonhand;

EXEC SQL END DECLARE SECTION;

EXEC SQL SELECT QONHAND
INTO :qonhand FROM TABLE
WHERE PARTNO = :partno;

...
}

Given the SQL declaration of partno within main(), partno can be used in any SQL
statement that follows it in the file. If getdata had a different name for the partno
parameter, it would have to be included in getdata’s SQL declare section.

For information on how to allow a called function to update a parameter, refer to
“Using the Pointer Type Attribute” on page 335.

Appendix B. Using SQL in C 337

Using C Variables in SQL: Data Conversion Considerations
Host variables must be type-compatible with the columns with which they are to
be used. For example, if you want to retrieve into a program variable the
QONHAND column of the database, and the data type of QONHAND is
INTEGER, you should declare the program variable to be of type short, long, float,
or double.

The database manager considers the numeric data types compatible as well as the
character string data types (CHAR, VARCHAR, and LONG VARCHAR, including
strings of different declared lengths). Of course, an overflow condition may result
if, for example, you assign a 31-bit integer to a 15-bit integer and the current value
of the 31-bit integer is too large to fit in 15 bits. Truncation also occurs when a
decimal number having a scale greater than zero is assigned to an integer. In
general, overflow occurs when significant digits are lost, and truncation occurs
when nonsignificant digits are lost.

The system also considers the datetime data types to be compatible with character
data types (CHAR, and VARCHAR, but not long fields).

Using C NUL-Terminated Strings and Truncation
The database manager interprets a character string in C as NUL-terminated if the
length of the string is greater than 1 byte and less than 32,768 bytes.

The NUL-byte is mandatory when the database manager receives data from a
NUL-terminated string. You receive an SQLCODE -302 (SQLSTATE '22024') if the
NUL-byte is not found within the defined length of the string. This means that the
maximum number of bytes of data that can be stored in a NUL-terminated string
is one less than the defined length of the string.

When data is sent from the application server to a NUL-terminated string, a
NUL-byte is always appended to the end of the string. If the variable is not big
enough to hold the entire string (including the NUL), then a warning condition is
indicated using the SQLCA SQLWARN flags and the output indicator value, as
shown in the following chart. Truncation will occur even in the case where a
character value of actual length n is to be assigned to a C variable declared as
length n due to the NUL character being inserted at the last byte of the declared
length. When truncation occurs, that last byte is overwritten by NUL.

Table 33. Warning Flags after Character Truncation

Condition

SQLCA
SQLWARN0

SQLCA
SQLWARN1

Output Indicator
Variable
(if supplied)

Character string, including the
NUL, fits in the declared C
character array.

blank blank 0 (zero)

Actual data truncated. That is,
the C variable declared as less
than or equal to n, to hold a
character value of actual
length n.

W W Original length of
value (n) excluding
the NUL.

Calculating Dates
Date calculations can result in date durations, and the database manager converts
the result into any numeric type of a column or a host variable. However, to

338 Application Programming

involve a date duration in a calculation (for example, to add a duration to a date),
the date duration must be in DECIMAL(8,0) format. The system does not
automatically convert any numeric type of column or host variable to a decimal
value for use in a date calculation. If your C compiler does not support the fixed
decimal data format, the scalar “DECIMAL” conversion function must be used to
explicitly convert a value to decimal type. For example,

long duration=10100; /* 1 year and 1 month */
long result_dt;

EXEC SQL SELECT START_DATE+DECIMAL(:duration,8,0)
INTO :result_dt FROM TABLE;

Using Trigraphs
A trigraph is a sequence of three characters that you write in place of a C source
character that your input device does not generate. The following trigraphs are
supported by the C preprocessor in an SQL declare section:

??([(left bracket)

??)] (right bracket)

??< { (left brace)

??> } (right brace)

The following trigraph is supported in an SQL statement only when used as a
continuation character:

??/ \ (backslash)

Using DBCS Characters in C
The rules for the format and use of DBCS characters in SQL statements are the
same for C as for other host languages supported by the system. For a discussion
of these rules, see “Using a Double-Byte Character Set (DBCS)” on page 53.

The C language does not provide a way to define graphic host variables. If you
want to add graphic data to or retrieve it from DB2 Server for VSE & VM tables,
you must execute the affected statements dynamically. By doing so, the data areas
that are referenced by each statement can be described in an SQLDA. In the
SQLDA, you must set the data type of the areas containing graphic data to one of
the graphic data types. For a discussion of the SQLDA, refer to the DB2 Server for
VSE & VM SQL Reference manual.

Considering Preprocessor-Generated Statements
When preprocessing an SQL C program, every executable SQL statement is
translated into control block declarations, assignment statements, and a function
call to pass the control block to the preprocessor at run time. To simplify the
generation of this code during preprocessing, a number of typedef and
communication area definitions are placed just after any initial C compiler
directives or comments.

In addition, to assist the application programmer, the SQLVARCHAR macro is
inserted with the typedefs and communication area definitions.

The preprocessor-generated statements are described in Table 34 on page 340.
These statements are inserted immediately before the first line in the source
program that is not a blank line, a C comment, or a C precompiler directive.

Appendix B. Using SQL in C 339

The C preprocessor imposes two restrictions on the coding of C precompiler
directives:
1. You may not use the #INCLUDE precompile directive to include the main

function of a C program.
2. Conditional precompiler directives that contain C code must come after the first

non-precompiler directive.

Table 34. C Preprocessor-Generated Statements

Generated Code Purpose

#pragma linkage (ARIPRDI,OS) To establish correct addressability and
parameter passing conventions with
the system at run time.

#ifndef SQLVARCHAR
#define SQLVARCHAR(varname,nnn) \

struct { \
short sqllen; \
char sqlstr[nnn]; \

} varname
#endif

Macro that can be used by the
application to simplify the C program.
The definition of this macro can be
changed by including a #define
statement before the first
non-precompiler directive C statement
or SQL statement in your program.

340 Application Programming

Table 34. C Preprocessor-Generated Statements (continued)

Generated Code Purpose

typedef struct {
short CALLTYPE;
char AUTHOR[8];
short PROG_NAMEL;
char PROG_NAME[8];
short SECTION_NUM;
short CLASS_SECTION;
char *CODEPTR;
char *VPARAMPTR;
char *AUXPARAMPTR;
char *SQLTIEPTR;
char SPECIALCALL;
char CALLFLAG;
char WAITFLAG;
char RELEASEFLAG;
char VPARAMIND;
char AUXPARAMIND;
char ERRORFLAG;
char RDIDESCFLAG;
long MAILBOXLEN;
char RDIRELNO;
char RDICISL;
char RDIDATE;
char RDITIME;
long RDIFDBCK;
char *RDIEXTP;
char RDIRESV1[2];
char RDIRDB16;
char RDIRESV2;

} SQL_RDIIN;
typedef struct {

char *RDIPTR01;
char *RDIPTR02;

} SQL_RDIPT;
typedef struct {

short DATA_TYPE;
short LEN;
char *DATA_PTR;
short *INFOPTR;
short NAMEL;
char NAME[30];

} SQL_PVELMS;
typedef SQL_PVELMS *SQL_PVLMP;
typedef struct {

short CURSRLEN;
char CURSRNAM[18];

} SQL_RDICURAR;
typedef union {

long rdicnstl[2];
char rdicnstc[8];

} SQL_RDICONST;

typedefs of allocated control blocks
used when translating executable SQL
statements into C function calls.

static long SQLTIE[12];
static char RDIRDBN[16];
static struct {

char RDIEXTEC[8];
long RDIEXTFLR;
char *RDIDBNMP;
char *RDICONSP;
char *RDIBPOPT;
char *RDIXPTRS[6];

} SQLRDIX;

Communication areas used to save
information about the state of the C
program between run-time calls to the
database manager.

Appendix B. Using SQL in C 341

Handling SQL Errors
A return code structure (the SQLCA) must be in scope for each executable SQL
statement. You can define one by coding the following statement in your source
program:

EXEC SQL INCLUDE SQLCA;

The preprocessor replaces this statement with the declaration of the SQLCA
structure, and a set of #defines to make referring to the error codes and flags
easier. These are shown in Figure 79.

Note: SQLCA character array variables are not NUL-terminated. They cannot be
directly used by C string manipulation functions.

The SQLCA must not be declared within the SQL declare section. It may be
declared outside all functions in the module, which gives it global scope, or
separately within each function that contains executable SQL statements.

Instead of using the SQL INCLUDE SQLCA statement, the SQLCA can be coded
directly, or #included from a header file.

You may find that the only variable in the SQLCA that you really need is
SQLCODE. If this is the case, declare just the SQLCODE variable, and invoke
NOSQLCA support at preprocessor time.

The number of SQLCODE declarations is not limited by the DB2 Server for VSE &
VM preprocessor. If a stand-alone SQLCODE is specified, the code inserted by the
preprocessor into the C code to expand an EXEC SQL statement will refer to the
address of that SQLCODE. The C compiler determines if multiple declarations

#ifndef SQLCODE
struct sqlca
{

unsigned char sqlcaid[8];
long sqlcabc;
long sqlcode;
short sqlerrml;
unsigned char sqlerrmc[70];
unsigned char sqlerrp[8];
long sqlerrd[6];
unsigned char sqlwarn[11];
unsigned char sqlstate[5];

};
#define SQLCODE sqlca.sqlcode
#define SQLWARN0 sqlca.sqlwarn[0]
#define SQLWARN1 sqlca.sqlwarn[1]
#define SQLWARN2 sqlca.sqlwarn[2]
#define SQLWARN3 sqlca.sqlwarn[3]
#define SQLWARN4 sqlca.sqlwarn[4]
#define SQLWARN5 sqlca.sqlwarn[5]
#define SQLWARN6 sqlca.sqlwarn[6]
#define SQLWARN7 sqlca.sqlwarn[7]
#define SQLWARN8 sqlca.sqlwarn[8]
#define SQLWARN9 sqlca.sqlwarn[9]
#define SQLWARNA sqlca.sqlwarn[10]
#define SQLSTATE sqlca.sqlstate
#endif
struct sqlca sqlca;

Figure 79. SQLCA Structure (in C)

342 Application Programming

within a program section are not acceptable. In addition, the C compiler
determines which region of the code an SQLCODE declaration refers to.

Using Dynamic SQL Statements in C
You must declare an SQLDA structure to execute dynamically defined SQL
statements. You can have the database manager include the structure definition
automatically, by specifying the following statement in your source code:

EXEC SQL INCLUDE SQLDA;

You can also include the structure definition by directly coding it as shown in
Figure 80.

Note: The SQLDA character array variables sqldaid and sqlname.data are not
NUL-terminated. They cannot be directly used by C string manipulation
functions.

The SQLDA must not be declared within the SQL declare section.

Using the defined preprocessor function SQLDASIZE, your program can
dynamically allocate an SQLDA of adequate size for use with each EXECUTE
statement. For example, the code fragment below allocates an SQLDA that is
adequate for five fields, and uses it in an EXECUTE of statement S3:

struct sqlda *daptr;

daptr = (struct sqlda *)malloc(SQLDASIZE(5));
daptr->sqln=5;
/* Add code to set the rest of values and

pointers in the SQLDA */
EXEC SQL EXECUTE S3 USING DESCRIPTOR *daptr;

Note: The variable that points to the SQLDA is not defined in an SQL declare
section. Its context within an SQL statement (following INTO or USING
DESCRIPTOR) is enough to identify it.

#ifndef SQLDASIZE
struct sqlda {

unsigned char sqldaid[8];
long sqldabc;
short sqln;
short sqld;
struct sqlvar {

short sqltype;
short sqllen;
unsigned char *sqldata;
short *sqlind;
struct sqlname {

short length;
unsigned char data[30];

} sqlname;
} sqlvar[1];

};
#define SQLDASIZE(n) \

(sizeof(struct sqlda)+((n)-1)* \
sizeof(struct sqlvar))

#endif

Figure 80. SQLDA Structure (in C)

Appendix B. Using SQL in C 343

You can use a similar technique to allocate an SQLDA for use with a DESCRIBE
statement. The following program fragment illustrates the use of SQLDA with
DESCRIBE for three fields and a “prepared” statement S1:
struct sqlda *daptr;

EXEC SQL DECLARE C1 CURSOR FOR S1;
daptr = (struct sqlda *)malloc(SQLDASIZE(3));
daptr->sqln=3;
EXEC SQL DESCRIBE S1 INTO *daptr;
if (daptr->sqld > daptr->sqln)

--get a bigger one
Set sqldata and sqlind
EXEC SQL OPEN C1;
EXEC SQL FETCH C1 USING DESCRIPTOR *daptr;

There is no standard C type to support packed decimal data. If you want to get
data in packed decimal format, the SQLDA must be filled in with an SQLTYPE of
484 and with the appropriate values for precision and scale in SQLLEN. The C
program would then have to deal with the data in its packed format.

See the DB2 Server for VSE & VM SQL Reference manual for more information on
the individual fields within SQLDA.

Defining DB2 Server for VSE & VM Data Types for C
Table 35. DB2 Server for VSE & VM Data Types for C

Description DB2 Server for VSE
& VM
Keyword

Equivalent C
Declaration

A binary integer of 31 bits, plus sign. INTEGER or INT long or

long int

A binary integer of 15 bits, plus sign. SMALLINT short or

short int

A packed decimal number, precision p, scale s
(1≤p≤31 and 0≤s≤p). In storage, the number occupies
a maximum of 16 bytes. Precision is the total number
of digits. Scale is the number of those digits that are
to the right of the decimal point.

DECIMAL[(p[,s])]

or DEC[(p[,s])]
1

decimal(p,s)

If your version of the C
compiler does not provide
support for the decimal
data type, C short, long,
float and double host
variables are supported
for conversion to and
from DECIMAL columns.

To preserve decimal places: if

p<7 use float;

else use double.

A single-precision (4-byte) floating-point number, in
short System/390 floating-point format.

REAL or

FLOAT(p),
1 ≤ p ≤ 21

FLOAT

344 Application Programming

Table 35. DB2 Server for VSE & VM Data Types for C (continued)

Description DB2 Server for VSE
& VM
Keyword

Equivalent C
Declaration

A double-precision (8-byte) floating-point number, in
long System/390 floating-point format.

FLOAT or

FLOAT(p),
22 ≤ p ≤ 53

or DOUBLE
PRECISION

DOUBLE

A fixed-length character string of length 1. CHARACTER[(1)] or
CHAR[(1)]

char or char ..[1]

A NUL-terminated character string of maximum
defined length n. Range of n is 1 ≤ n ≤ 254. The
terminating NUL is mandatory upon input.

VARCHAR(n) char ..[n+1]

A NUL-terminated character string of maximum
defined length of 32 767 bytes, subject to certain
usage limitations. Range of n is 255 ≤ n ≤ 32 766. The
terminating NUL is mandatory upon input.

LONG VARCHAR char ..[n+1]

A varying-length character string of maximum length
n. If n > 254 or ≤ 32 767, this data type is considered
a long field. See “Using Long Strings” on page 47 for
more information.

VARCHAR(n) struct { short ..; char ..[n]; }

A varying-length character string of maximum length
32 767 bytes, subject to certain usage limitations.

LONG VARCHAR struct { short ..; char ..[n]; }

A fixed-length string of n DBCS characters where 0 <
n ≤ 127.

GRAPHIC[(n)] Not supported

A varying-length string of n DBCS characters. If n >
127 or ≤ 16 383, this data type is considered a long
field. See “Using Long Strings” on page 47 for more
information.

VARGRAPHIC(n) Not supported

A varying-length string of DBCS characters of
maximum length 16 383, subject to certain usage
limitations.

LONG VARGRAPHIC Not supported

A NUL-terminated or varying-length character string
representing a date.

DATE see VARCHAR(n)

A NUL-terminated or varying-length character string
representing a time.

TIME see VARCHAR(n)

A NUL-terminated or varying-length character string
representing a timestamp.

TIMESTAMP see VARCHAR(n)

Notes:

1. NUMERIC is a synonym for DECIMAL, and may be used when creating or
altering tables. In such cases, however, the CREATE or ALTER function will
establish the column (or columns) as DECIMAL.

2. For a NUL-terminated string, the declared length should be one more than the
maximum length of a datetime to allow for the terminating NUL-byte, which is
mandatory input. Refer to the DB2 Server for VSE & VM SQL Reference manual
for information on minimum and maximum lengths.

Appendix B. Using SQL in C 345

Using Reentrant C Programs
A reentrant program has the characteristic of dynamic allocation of space for data
and save areas. This characteristic can be employed in C programs. In this case, the
data and save areas are dynamically allocated in a “static” area by the IBM C
Program Product Compiler.

Using Stored Procedures
Figure 81 on page 347 shows how to define the parameters in a stored procedure
that uses the GENERAL linkage convention.
v argv contains an array of pointers to the parameters that were passed to the

stored procedure.
– argv[0] is a special entry containing the address of the stored procedure name
– argv[1] contains the address of parameter 1
– argv[2] contains the address of parameter 2

v argc contains the number of parameters that were passed to the stored
procedure, plus one to account for the procedure name which is passed in
argv[0].

346 Application Programming

Figure 82 on page 348 shows how to define the parameters in a stored procedure
that uses the GENERAL WITH NULLS linkage convention. In this case:
v argv[0] contains the address of the stored procedure name
v argv[1] contains the address of parameter 1
v argv[2] contains the address of parameter 2
v argv[n] contains the address of parameter n

v argv[n+1] contains the address of the indicator variable array

#pragma options(RENT)
#pragma runopts(PLIST(OS))
#include <stdlib.h>
#include <stdio.h>
/***/
/* Code for a C language stored procedure that uses the */
/* GENERAL linkage convention. */
/***/
main(argc,argv)

int argc; /* Number of parameters passed */
char *argv[]; /* Array of strings containing */

/* the parameter values */
{

long int locv1; /* Local copy of V1 */
char locv2[10]; /* Local copy of V2 */

/* (null-terminated) */

.

.

.
/***/
/* Get the passed parameters. */
/***/
if(argc==3) /* Should get 3 parameters: */
{ /* procname, V1, V2 */

locv1 = *(int *) argv[1];
/* Get local copy of V1 */

.

.

.
strcpy(argv[2],locv2);

/* Assign a value to V2 */

.

.

.
}

}

Figure 81. Stored Procedure - Using GENERAL Linkage Convention

Appendix B. Using SQL in C 347

#pragma runopts(PLIST(OS))
#include <stdlib.h>
#include <stdio.h>
/***/
/* Code for a C language stored procedure that uses the */
/* GENERAL WITH NULLS linkage convention. *
/***/
main(argc,argv)

int argc; /* Number of parameters passed */
char *argv[]; /* Array of strings containing */

/* the parameter values */
{

long int locv1; /* Local copy of V1 */
char locv2[10]; /* Local copy of V2 */

/* (null-terminated) */
short int locind[2]; /* Local copy of indicator */

/* variable array */
short int *tempint; /* Used for receiving the */

/* indicator variable array */

.

.

.
/***/
/* Get the passed parameters. */
/***/
if(argc==4) /* Should get 4 parameters: */
{ /* procname, V1, V2, */

/* indicator variable array */
locv1 = *(int *) argv[1];

/* Get local copy of V1 */
tempint = argv[3]; /* Get pointer to indicator */

/* variable array */
locind[0] = *tempint;

/* Get 1st indicator variable */
locind[1] = *(++tempint);

/* Get 2nd indicator variable */
if(locind[0]<0) /* If 1st indicator variable */
{ /* is negative, V1 is null */

.

.

.
}

.

.

.
strcpy(argv[2],locv2);

/* Assign a value to V2 */
(++tempint) = 0; / Assign 0 to V2's indicator */

/* variable */
}

}

Figure 82. Stored Procedure - Using GENERAL WITH NULLS Linkage Convention

348 Application Programming

Appendix C. Using SQL in COBOL

A Sample COBOL Program. 350
Rules for Using SQL in COBOL 350

Placing and Continuing SQL Statements . . . 350
Delimiting SQL Statements 351
Identifying Rules for Case 351
Declaring Host Variables 352
Using Host Variables in SQL Statements . . . 355
Using Long VARCHAR Host Variables (DB2
Server for VSE) 355
Using Preprocessor Options 355

Using the QUOTE Parameter 355
Using the COB2 Parameter (DB2 Server for
VSE) 356
Using the COB2 Parameter (DB2 Server for
VM) 356

Invoking COPYBOOKs (DB2 Server for VSE) 357
Using the COBRC Parameter 357
Using the TRUNC Compiler Option 357
Using the INCLUDE Statement 357
Using COBOL Variables in SQL: Data
Conversion Considerations 358
Other Coding Considerations 358
Using DBCS Characters in COBOL 358

Handling SQL Errors 359
Using Dynamic SQL Statements in COBOL . . 360
Defining DB2 Server for VSE & VM Data Types
for COBOL 362
Using Reentrant COBOL Programs 364
Using the DYNAM Compiler Option 365
Using Stored Procedures 365

© Copyright IBM Corp. 1987, 2001 349

A Sample COBOL Program
ARIS6CBD is a COBOL language sample program for VSE systems that is shipped
with the DB2 Server for VSE product. ARIS6CBC is a COBOL sample language
program for VM systems that is shipped with the DB2 Server for VM product. It
resides on the production disk for the base product. You may find it useful to print
this sample program before going through this appendix as the hard copy will
provide an illustration for many of the topics discussed here.

Here is a summary of the program by COBOL Divisions:
v Identification and Environment Divisions

You do not have to do anything different in either of these divisions for DB2
Server for VSE & VM applications.

v Data Division
In the Data Division of any COBOL application, you must declare all host
variables and the SQLCA structure.
The only SQL statements allowed in the Data Division are those shown in the
sample program and the INCLUDE statement; all others must be placed in the
Procedure Division.
The COBOL PICTURE clauses for the host variables are determined by referring
to Table 37 on page 362 which gives the COBOL representation for each of the
DB2 Server for VSE & VM data types. When you are coding your own
applications, you will need to obtain the data types of the columns that your
host variables interact with. This can be done by querying the catalog tables,
which are described in the DB2 Server for VSE & VM SQL Reference manual.

v Procedure Division
The program must explicitly connect to the application server. WHENEVER
statements should be coded to provide for error handling. Near the logical end
of the program, the database changes are rolled back, to ensure that the database
remains consistent for each use of the sample program. (For your own
applications, of course, you will enter a COMMIT statement.)

Rules for Using SQL in COBOL
In this appendix, the term COBOL implies OS/VS COBOL, VS COBOL II, IBM
COBOL for MVS and VM, or VSE IBM COBOL for VSE.

Placing and Continuing SQL Statements
Table 36 shows how SQL statements can be coded

Table 36. Coding SQL Statements in COBOL Program Sections

SQL Statement Program Section

BEGIN DECLARE SECTION

END DECLARE SECTION

WORKING STORAGE or

LINKAGE SECTION or

FILE SECTION

INCLUDE SQLCA WORKING-STORAGE SECTION

INCLUDE text_file_name PROCEDURE DIVISION or

DATA DIVISION

350 Application Programming

Table 36. Coding SQL Statements in COBOL Program Sections (continued)

SQL Statement Program Section

Other PROCEDURE DIVISION SQL statements are
coded between columns 12 and 72 inclusive.

The system checks that SQL statements are not used in nested programs. Also if
one program immediately follows another program, the second program must not
contain SQL statements.

The rules for continuation of tokens from one line to the next are the same as the
COBOL rules for the continuation of words and constants. If a string-constant is
continued from one line to the next, the first non-blank character in that next line
must be a single quotation mark (') or a double quotation mark ("). If a delimited
SQL identifier (such as “EMP TABLE”) is continued from one line to the next, the
first non-blank character in that next line must be a double quotation mark.
COBOL comment lines, identified by an asterisk * in column 7, can be coded
within an embedded statement.

Delimiting SQL Statements
Delimiters are required on all SQL statements to distinguish them from regular
COBOL statements. You must precede each SQL statement with EXEC SQL, and
terminate each one with END-EXEC. Any desired COBOL punctuation, such as a
period, can be placed after the END-EXEC. For example, suppose an SQL
statement occurs as one of several statements nested inside a COBOL IF-statement.
In this instance, the SQL statement should not be followed by a period.

EXEC SQL must be specified within one line; the same is true for END-EXEC. A
separator (such as a blank space, SQL comment, or end-of-line) must precede the
END-EXEC that terminates an SQL statement; however, no punctuation is required
after the END-EXEC.

If an SQL statement appears within an IF sentence such that a COBOL ELSE clause
immediately follows the SQL statement, the clause must begin with the word
ELSE. In addition, this ELSE must be contained entirely on one line. (No
continuation is allowed for the word ELSE).

SQL WHENEVER and DECLARE CURSOR statements should not be the only
contents of COBOL IF or ELSE clauses as the preprocessor does not generate
COBOL code for these statements.

If an SQL statement terminates a COBOL IF sentence, a period should immediately
follow END-EXEC with no intervening blanks. A blank should follow the period.

Because a COBOL statement can be immediately preceded by a paragraph name,
so can an embedded SQL statement. Similarly, an embedded SQL statement in the
Procedure Division can be immediately followed by a separator period.

Identifying Rules for Case
Mixed case can be used in your COBOL program. The SQL preprocessor will
change the lowercase into uppercase, except for text within quotation marks, which
will be left in the original case.

Appendix C. Using SQL in COBOL 351

Declaring Host Variables
You must declare all host variables in an SQL declare section. For a description of
an SQL declare section, refer to “Declaring Variables That Interact with the
Database Manager” on page 8.

Declare host variables in the source file before the first use of the variable in an
SQL statement. All SQL declare sections must be located in the Working-Storage
Section, the File Section, or the Linkage Section of the Data Division. You can use
the following types of variables in an SQL statement:
v Elementary items (independent or subordinate of a group item)
v Group items
v Tables

For information on the use of these variables in an SQL statement, refer to “Using
Host Variables” on page 57 and “Using Host Structures” on page 57.

Note: You can declare non-host variables in an SQL declare section; however,
declarations that do not conform to DB2 Server for VSE & VM declaration
rules may return errors.

The declaration of a host variable is subject to the following rules:
v All elementary items that are declared in an SQL declare section can be used as

main variables. If these items are declared with a data type of short integer, they
can also be used as indicator variables.

v The only tables accepted by the COBOL preprocessor are tables of short integer
elements. These may only be used as indicator arrays. The following example is
an indicator array declaration:
01 IND_ARRAY.

05 IND-ELEMENT OCCURS 15 TIMES PIC S9(4) COMP.

The COBOL preprocessor recognizes IND-ELEMENT as the indicator array.

You cannot use indicator array elements as main variables or indicator variables.
v You can use a group item as a host structure or as a varying-length string

definition. The structure must take the following form when used to define a
varying-length string:
01 VARCHAR-FIELD.

49 LEN-FIELD PIC S9(4) COMP.
49 TXT-FIELD PIC X(25).

This structure defines a VARCHAR host variable with the name
VARCHAR-FIELD and a length of 25. You cannot use this group item as a host
structure; you cannot use the elementary items in the structure as host variables.

For the rules for varying-length string variables, refer to Table 37 on page 362.
v A group item which defines a host structure is any two-level structure declared

in an SQL declare section. The following example is a host structure:
01 PROJ-STRCT.

05 PROJNO PIC X(6).
05 ACTNO PIC S9(4) COMP.
05 ACSTAFF PIC S9(9) COMP.
05 ACSTDATE PIC X(10).
05 ACENDATE PIC X(10).

352 Application Programming

This structure represents the following list of host variables when used in an
SQL statement:
PROJNO, ACTNO, ACSTAFF, ACSTDATE, ACENDATE

The two following SQL statements are equivalent:
EXEC SQL SELECT PROJNO, ACTNO, ACSTAFF, ACSTDATE, ACENDATE

INTO :PROJ-STRCT
FROM PROJ_ACT
WHERE PROJNO = ‘100000’

EXEC SQL SELECT PROJNO, ACTNO, ACSTAFF, ACSTDATE, ACENDATE
INTO :PROJNO, :ACTNO, : ACSTAFF, :ACSTDATE, :ACENDATE
FROM PROJ_ACT
WHERE PROJNO = ‘100000’

A host structure can be a stand-alone group item or a substructure of a more
complex group item. The following example is a complex group item that
contains a host structure:
01 EMPLOYEE.

05 EMPNO PIC X(6).
05 EMPNAME.

10 FIRSTNAME PIC X(12).
10 MIDINIT PIC X(1).
10 LASTNAME PIC X(15).

05 WORKDEPT PIC X(3).
05 PHONENO PIC X(4).

The group item EMPNAME is a host structure.

You can use the elementary items in the host structure and the elementary items
in the group item containing a host structure as host variables. In the previous
example, the following elementary items can be used as host variables:
EMPNO, FIRSTNAME, MIDINIT, LASTNAME, WORKDEPT, PHONENO

You can include a subordinate group item in the host structure to represent a
varying-length string element if that group item conforms to the rules for a
varying-length string definition. All of the rules previously stated for the
definition of varying-length strings also apply in this situation. The following
example is a host structure that contains a VARCHAR element:
01 EMPNAME.

05 FIRSTNAME.
49 FNLEN PIC S9(4) COMP.
49 FNTEXT PIC X(12).

05 MIDINIT PIC X(1).
05 LASTNAME.

49 LNLEN PIC S9(4)COMP.
49 LNTEXT PIC X(15).

The COBOL preprocessor interprets the structure EMPNAME as a host structure
containing three elements: FIRSTNAME with data type VARCHAR and length 12,
MIDINIT with data type CHAR and length 1, and LASTNAME with data type
VARCHAR and length 15.

Note: Any structure that matches the description of a varying-length string
definition is interpreted as a varying-length definition and cannot be used
as a host structure.

v Third-level host structures are permitted in COBOL to support varying-length
strings. The following is an example of varying-length string declarations in host
structures:

Appendix C. Using SQL in COBOL 353

WORKING-STORAGE SECTION.
EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 EMPNAME.

05 FIRST-NM PIC X(8).
05 LAST-NM PIC X(8).
05 ADDRESS.

49 ADD-LEN PIC S9(4) COMP.
49 ADD-TXT PIC X(200).

EXEC SQL END DECLARE SECTION END-EXEC.

PROCEDURE DIVISION.
EXEC SQL SELECT FIRSTNAME, LASTNAME, ADDRESS

INTO :EMPNAME
FROM EMPLOYEE
WHERE LASTNAME = 'JOHANSON'

END-EXEC

In this example, empname is considered by the COBOL preprocessor to be a
two-level structure because the structure of address matches that of a
VARCHAR data type. As a result, empname may be used in the SELECT
statement. If, for example, addlen was changed from "PIC S9(4) COMP" to "PIC
S9(9) COMP", the structure of address would no longer match a VARCHAR data
type and empname would be considered a three-level structure. As a result,
empname could NOT be used in a SELECT statement.

v A host structure field in an SQL statement must be qualified as
structurename.fieldname instead of fieldname OF structurename or fieldname IN
structurename.
In the declaration below, only DATES and PRODUCT may be used as host structures.
ORDERNO and CUSTNUM may be used as scalar host variables, and may be qualified
as CUSTORD.ORDERNO and ORDINFO.CUSTNUM or CUSTORD.ORDINFO.CUSTNUM.

WORKING-STORAGE SECTION.
EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 CUSTORD.

03 ORDERNO PIC X(10).
03 ORDINFO.

05 CUSTNUM PIC X(10).
05 DATES.

10 ORDDATE PIC X(6).
10 DELIVDTE PIC X(6).

03 PRODUCT.
05 STOCKNO PIC X(10).
05 QUANTITY PIC X(3).

EXEC SQL END DECLARE SECTION END-EXEC.

PROCEDURE DIVISION.
EXEC SQL SELECT STOCKNO, QUANTITY

INTO :PRODUCT
FROM ORDER
WHERE STOCKNO = '1234567890'

END-EXEC.

v The following restrictions apply to level numbers:
1. Independent elementary items must have a level number of 01 or 77.
2. Subordinate elementary items must have a level number from 02 to 49.
3. The outermost group item must have a level number of 01.
4. Subordinate group items must have a level number from 02 to 49.
5. Elementary items in a varying-length string definition must have a level

number of 49.
6. Level 66 and level 88 items will be ignored by the preprocessor.

354 Application Programming

v Except for an indicator array, FILLER is permitted as the name of an elementary
item. If FILLER is used as the name of an elementary item, the item will be
ignored.

v In addition to the clauses discussed in Table 37 on page 362, the COBOL
preprocessor supports the following clauses in declarations imbedded in the
SQL declare section:

GLOBAL
EXTERNAL
SYNCHRONIZED
VALUE

v Rules for continuation of variable names and COBOL keywords in declaration
statements are the same as those described for SQL statements.

v The database manager allows host variable names, statement labels, and SQL
descriptor area names of up to 256 characters in length, subject to any COBOL
language restrictions mentioned in this appendix.

Note: Due to the restriction on the number of host variables in a statement, host
structures with greater than 256 fields will not be allowed,

v You should not give any variable a name beginning with SQL or RDI. These
names are reserved for database manager use.

v Comma separators are supported between the clauses of a declaration statement.

Using Host Variables in SQL Statements
When you reference host variables, host structures, structures fields, or indicator
arrays in an SQL statement, you must precede each reference by a colon (:). The
colon distinguishes these variables from SQL identifiers (such as column names).
The colon is not required outside an SQL statement.

Using Long VARCHAR Host Variables (DB2 Server for VSE)
When you code on-line command level application programs in COBOL, be aware
of the following CICS/VSE restriction. The length of the working storage plus the
length of the TGT (TARGET GLOBAL TABLE) must not exceed 64K bytes.

This restriction only applies when using Long VARCHAR Host Variables because
the length of a single long VARCHAR host variable can be up to 32K bytes.

Using Preprocessor Options

Using the QUOTE Parameter

DB2 Server for VSE
If the COBOL compiler QUOTE option is used or if the QUOTE option has
been specified in the CBL statement of COBOL, then the QUOTE (or Q)
option of the preprocessor should also be specified. You should use a single
quotation mark (') to delineate constants used in embedded SQL statements,
regardless of the COBOL compiler QUOTE option.

Appendix C. Using SQL in COBOL 355

DB2 Server for VM
If the COBOL compiler QUOTE option is used, the QUOTE (or Q) option of
the preprocessor should also be specified. Use a single quotation mark (') to
delineate constants used in embedded SQL statements, regardless of the
COBOL compiler QUOTE option.

Using the COB2 Parameter (DB2 Server for VSE)
When the COB2 parameter is specified, certain functions supported by the COBOL
II Release 3 compiler, and later, are also supported by the database manager. These
functions include:
v Literals can be 160 characters long.
v ENDIF will be generated where appropriate when expanding code for the SQL

WHENEVER statement.

In order to make use of these features, you must specify the COB2 option when
preprocessing your application. Existing applications that use these features must
be repreprocessed and recompiled.

Using the COB2 Parameter (DB2 Server for VM)
When the COB2 parameter is specified, certain functions supported by the COBOL
II Release 3 compiler, and later, are also supported by the database manager. These
functions include:
v COBOL keywords can be in mixed case. For example, “Data Division” is

allowed.
v The COBOL picture clause enhancements:

– Can be in mixed case. Thus, “Picture” is allowed.
– Can end in either a period or a comma. For example, “Pic x(10)..”, and “pic

x(10),.” are both valid.
v DB2 Server for VM numeric column types are compatible with the COBOL

variables
Picture S9(4) USAGE BINARY
and
Picture S9(p)[V9(s)] USAGE PACKED-DECIMAL

where “p” is the precision and “s” is the scale.
v The COBOL FILLER is optional. Thus, the following example is valid even

though the fourth field is blank:
01 HEADING2.

03 FILLER Pic x(6) VALUE 'ITEM NUMBER'.
03 FILLER Pic x(5) VALUE SPACES.
03 FILLER Pic x(11) VALUE 'DESCRIPTION'.
03 Pic x(4) VALUE SPACES.
03 FILLER Pic x(8) VALUE 'QUANTITY'.

v Literals can be 160 characters long.
v The system checks that SQL statements are not used in nested programs. Also, if

one program immediately follows another, the second program must not contain
SQL statements.

v ENDIF will be generated where appropriate when expanding code for the SQL
WHENEVER statement.

356 Application Programming

In order to make use of these features, you must specify the COB2 option when
preprocessing your application. Existing applications that are to make use of these
features must be repreprocessed and recompiled.

Invoking COPYBOOKs (DB2 Server for VSE)
You should not use the COBOL COPY verb to invoke COPYBOOKS that involve
SQL host variables. Instead, use the SQL INCLUDE statement to invoke such
COPYBOOKs. This arrangement is necessary because the preprocessor is run
before the COBOL compiler.

Using the COBRC Parameter
When the COBRC parameter is specified, the preprocessor will generate the
statement 'MOVE ZEROS TO RETURN-CODE' after it generates a call to ARIPRDI.
This solves the problem of unexpected or invalid return codes being reported after
a COBOL II (IBM COBOL for MVS and VM or IBM COBOL for VSE) application
ends. For example, a REXX EXEC may contain several steps which each execute
based on a return code from the previous step. If the application programmer has
not set the COBOL special register, RETURN-CODE, the return code is not reliable.
This new parameter may be used instead of explicitly setting the special register.

Limitations:
1. If the user’s COBOL compiler does not support the special register,

RETURN-CODE, the application will not compile successfully. COBOL II
supports it and new versions of COBOL support it, but old versions do not.

2. If the application sets the special register, RETURN-CODE, and then does an
SQL call, the value is not preserved.

MOVE 4 TO RETURN-CODE.
EXEC SQL INSERT INTO MYTABLE VALUES (1,2).
STOP RUN.

The application will end with return code 0 instead of 4 because when the
EXEC SQL statement is expanded the last line generated is 'MOVE ZEROS TO
RETURN-CODE'.

3. If the user’s compiler does not support the special register, RETURN-CODE,
but they have declared a variable called RETURN-CODE, the variable will be
updated which can cause unexpected results for the application.

Using the TRUNC Compiler Option
For Version 3.2 of COBOL II or later, use the TRUNC(BIN) compiler option,
because the system is half-word boundary sensitive. Under this option, receiving
fields are truncated only at halfword, fullword, or doubleword boundaries.

Using the INCLUDE Statement
To include the external secondary input, specify the following at the point in the
source code where the secondary input is to be included:

EXEC SQL INCLUDE text_file_name END-EXEC.

The text_file_name is a C-Type source member of a VSE library. Text_file_name is
the file name of a CMS file, with a “COBCOPY” file type, located on a CMS
minidisk accessed by the user.

The INCLUDE statement can appear anywhere within the File, Linkage, or
Working Storage Sections of the Data Division, and anywhere within the Procedure
Division, including the Declaratives Section, if one is used. Note that the
INCLUDE statement is the only type of SQL statement that is allowed within the
Declaratives Section of a Procedure Division.

Appendix C. Using SQL in COBOL 357

Using COBOL Variables in SQL: Data Conversion Considerations
COBOL variables used in SQL statements must be type-compatible with the
columns of the tables with which they are to be used (stored, retrieved, or
compared). Of course, an overflow condition may occur if, for example, an
INTEGER data item is retrieved into a PICTURE S9(4) variable, and its current
value is too large to fit.

The database manager recognizes the DISPLAY SIGN LEADING SEPARATE
(DSLS) attribute for COBOL host variables. It converts input host variables in the
DSLS format to the required column format, and output host variables from the
column format to DSLS format.

The character data types CHAR, VARCHAR, and LONG VARCHAR are
considered compatible. The graphic data types GRAPHIC, VARGRAPHIC, and
LONG VARGRAPHIC are considered compatible. A varying-length string is
automatically converted to a fixed-length string, and a fixed-length string is
automatically converted to a varying-length string when necessary. If a
varying-length string is converted to a fixed-length string, it is truncated or
padded on the right with blanks to the correct length. The system also truncates or
pads with blanks if a fixed-length string is assigned to another fixed-length string
of a different size (for example, a variable of PICTURE X(12) is stored in a column
of type CHAR(18)).

The system also considers the datetime data types to be compatible with character
data types (fixed or varying, but not LONG VARCHAR and VARCHAR > 254).

Refer to “Converting Data” on page 50 for a data conversion summary.

Other Coding Considerations
You may want to consider the following points when coding SQL statements and
host variable declarations:
v The preprocessor scans past COBOL NOTE-type comments and line comments

defined by an asterisk (*) in column 7. It does not recognize line comments
identified by a slash (/) in column 7.

v An SQL comment entered in a static SQL statement must be preceded by a
blank.

v When performing subtraction in an SQL statement, delimit the minus sign (-)
with blanks:

blanks
| |
V V

QUANT - :ORDER-AMOUNT

v COBOL keywords can be coded in mixed case. For example, Data Division is
allowed.

Using DBCS Characters in COBOL

DB2 Server for VSE
If your program contains DBCS characters, the following sequence of
processing is necessary:
v DB2 Server for VSE COBOL Preprocessor
v COBOL Kanji Preprocessor
v CICS/VSE Translator, if necessary
v COBOL Compiler.

358 Application Programming

The rules for the format and use of DBCS characters in SQL statements are the
same for COBOL as for other host languages supported by the system. For a
discussion of these rules, see “Using a Double-Byte Character Set (DBCS)” on
page 53.

When coding graphic constants in SQL statements, use the SQL format of the
graphic constant:

G'<�XXXX�>'

Note: N is a synonym for G.

See “Using Graphic Constants” on page 60 for a discussion of graphic constants.

The COBOL preprocessor does not support options for changing the encoding for
the < and > characters.

Handling SQL Errors
You can declare the SQLCA return code structure that is required for the system in
two ways:
1. You may write:

EXEC SQL INCLUDE SQLCA END-EXEC.

in the Working-Storage Section of your source program. The preprocessor
replaces this with a declaration of the SQLCA structure.

2. You may declare the SQLCA yourself in the Working-Storage Section, as shown
in Figure 83 on page 359.

A COBOL program containing SQL statements must have a Working-Storage
Section. The meanings of the fields within the SQLCA are discussed in the DB2
Server for VSE & VM SQL Reference manual.

01 SQLCA.
05 SQLCAID PIC X(8).
05 SQLCABC S9(9) COMPUTATIONAL.
05 SQLCODE PIC S9(9) COMPUTATIONAL.
05 SQLERRM.

49 SQLERRML PIC S9(4) COMPUTATIONAL.
49 SQLERRMC PIC X(70).

05 SQLERRP PIC X(8).
05 SQLERRD OCCURS 6 TIMES

PIC S9(9) COMPUTATIONAL.
05 SQLWARN.

10 SQLWARN0 PIC X(1).
10 SQLWARN1 PIC X(1).
10 SQLWARN2 PIC X(1).
10 SQLWARN3 PIC X(1).
10 SQLWARN4 PIC X(1).
10 SQLWARN5 PIC X(1).
10 SQLWARN6 PIC X(1).
10 SQLWARN7 PIC X(1).
10 SQLWARN8 PIC X(1).
10 SQLWARN9 PIC X(1).
10 SQLWARNA PIC X(1).

05 SQLSTATE PIC X(5).

Figure 83. SQLCA Structure (in COBOL)

Appendix C. Using SQL in COBOL 359

In COBOL, the object of a GO TO in the SQL WHENEVER statement must be a
section name or an unqualified paragraph name.

You may find that the only variable in the SQLCA you really need is SQLCODE. If
this is the case, declare just the SQLCODE variable and invoke NOSQLCA support
at preprocessor time.

The number of SQLCODE declarations is not limited by the preprocessor. If a
stand-alone SQLCODE is specified, the code inserted by the preprocessor into the
COBOL code to expand an EXEC SQL statement will refer to the address of that
SQLCODE. The COBOL compiler determines if multiple declarations within a
program section are not acceptable. In addition, the COBOL compiler determines
which region of the code an SQLCODE declaration refers to.

DB2 Server for VSE & VM does not pass the return code in register 15 on
completion of SQL statement processing. The return code and any other
information is passed in the SQLCA. Furthermore, if the COBRC preprocessor
parameter was not specified, DB2 Server for VSE & VM does not set the return
code to zeros on completion of SQL statement processing. If IBM COBOL for MVS
and VM, IBM COBOL for VSE, or COBOL II is being used, this can cause register
15 to be uninitialized and can contain unpredictable data. This appears as very
large return codes when the COBOL application ends. This does not occur with the
DOS/VS COBOL compiler. It is the responsibility of the application programmer to
set the return code to something meaningful. The COBOL special register
RETURN-CODE should be set before the application program ends.

The simplest method is to code the following lines just before a STOP RUN or a
GOBACK statement.

MOVE ZERO TO RETURN-CODE.
STOP RUN.

Any return code meaningful to the application can be set. It can also be set to the
SQLCODE if desired.

Using Dynamic SQL Statements in COBOL
The COBOL preprocessor lets you use a descriptor area, the SQLDA, to execute
dynamically defined SQL statements. (See “Chapter 7. Using Dynamic Statements”
on page 209 for more information on dynamic SQL statements and for more

information on dynamic SQL statements and the SQLDA.) However, the COBOL
preprocessor will not replace the statement EXEC SQL INCLUDE SQLDA with a
declaration of the SQLDA structure, as is done with the SQLCA. Instead, EXEC SQL
INCLUDE SQLDA would just include the secondary input file SQLDA, as described in
“Using the INCLUDE Statement” on page 357.

Before you can use the descriptor area you must properly allocate and initialize it,
and you must manage all its address variables. The following example shows how
you could define a descriptor area in the COBOL Working-Storage section for five
fields:

360 Application Programming

Note: DOS/VS COBOL 3.1 users cannot use the ″USAGE IS POINTER″ clause
implied in this example for the DADATA and DAIND areas. Instead, these areas
must be defined with the characteristics of PIC X(4).

The descriptor area must not be declared within the SQL declare section.

The following pseudocode illustrates a use of the descriptor area, adequate for
three fields:

When decimal data is used, the values of the SQLPRCSN and SQLSCALE field can
be determined by declaring additional variables. For example:

01 PRCSNN PIC S9(4) COMP.
01 PRCSNC REDEFINES PRCSNN.

15 FILLCHAR1 PIC X.
15 PRCSNCHAR PIC X.

01 SCALEN PIC S9(4) COMP.
01 SCALEC REDEFINES SCALEN.

15 FILLCHAR2 PIC X.
15 SCALECHAR PIC X.

The following MOVE statements would move the precision and scale of the nth
selected item into PRCSNN and SCALEN, respectively:

MOVE SQLPRCSN(n) TO PRCSNCHAR.
MOVE SQLSCALE(n) TO SCARECHAR.

For COBOL, the string-spec in PREPARE and EXECUTE IMMEDIATE must be in
the same format as the SQL VARCHAR data type (you must set the proper length)
or a quoted string. If a quoted string is used, its length is limited to 120 characters
(the maximum length allowed for COBOL constants). In addition, you cannot use a
single (') or double (") quotation mark within a COBOL constant that is the object
of a PREPARE or EXECUTE IMMEDIATE statement.

01 DASQL.
02 DAID PIC X(8) VALUE 'SQLDA '.
02 DABC PIC S9(8) COMP VALUE 13216.
02 DAN PIC S9(4) COMP VALUE 5.
02 DAD PIC S9(4) COMP VALUE 0.
02 DAVAR OCCURS 1 TO 300 TIMES

DEPENDING ON DAN.
03 DATYPE PIC S9(4) COMP.
03 DALEN PIC S9(4) COMP.
03 FILLER REDEFINES DALEN.

15 SQLPRCSN PIC X.
15 SQLSCALE PIC X.

03 DADATA POINTER.
03 DAIND POINTER.
03 DANAME.

49 DANAMEL PIC S9(4) COMP.
49 DANAMEC PIC X(30).

- allocate storage for a Descriptor Area of at least size = 3
- set DAN = 3 (number of fields)
- set DAD = 3
- set the rest of the values and pointers in the Descriptor Area

EXEC SQL EXECUTE S1 USING DESCRIPTOR dasql

Appendix C. Using SQL in COBOL 361

Defining DB2 Server for VSE & VM Data Types for COBOL
Table 37. DB2 Server for VSE & VM Data Types for COBOL

Description DB2 Server for VSE
& VM
Keyword

Equivalent COBOL
Declaration

A binary integer of 31 bits, plus sign. INTEGER or INT 01 PICTURE S9(9)
COMPUTATIONAL.

A binary integer of 15 bits, plus sign. SMALLINT 01 PICTURE S9(4)
COMPUTATIONAL.

A packed decimal number, precision p, scale s
(1 ≤ p ≤ 31 and 0 ≤ s≤ p). In storage the
number occupies a maximum of 16 bytes.
Precision is the total number of digits. Scale is
the number of those digits that are to the
right of the decimal point.

DECIMAL[(p[,s])]

or DEC[(p[,s])]

01 PICTURE S9(x)[V9(y)]
COMPUTATIONAL-3.
or

01 PICTURE S9(x)[V9(y)]
PACKED-DECIMAL.
or

01 PICTURE S9(x)[V9(y)]
DISPLAY SIGN LEADING SEPARATE

Where x + y = p and
y = s

A single-precision (4-byte) floating-point
number, in short System/390 floating-point
format.

REAL or

FLOAT(p), 1 ≤ p ≤ 21

COMPUTATIONAL-1.

A double-precision (8-byte) floating-point
number, in long System/390 floating-point
format.

FLOAT or

FLOAT(p), 22 ≤ p ≤ 53

or DOUBLE

PRECISION

COMPUTATIONAL-2.

A fixed-length character string of length n
where 0 < n ≤ 254.

CHARACTER[(n)]

or CHAR[(n)]

01 S PICTURE X(n).

A varying-length character string of maximum
length n. If n > 254 or ≤ 32 767, this data type
is considered a long field. (See “Using Long
Strings” on page 47 for more information.)
(Only the actual length is stored in the
database.)

VARCHAR(n) 01 S.
49 S-LENGTH

PICTURE S9(4)
COMPUTATIONAL.

49 S-VALUE
PICTURE X(n).

A varying-length character string of maximum
length 32 767 bytes.

LONG VARCHAR 01 S.
49 S-LENGTH

PICTURE S9(4)
COMPUTATIONAL.

49 S-VALUE
PICTURE X(n).

A fixed-length string of n DBCS characters
where 0 < n ≤ 127.

GRAPHIC[(n)] 01 GNAME PICTURE G(n)
[DISPLAY-1].

362 Application Programming

Table 37. DB2 Server for VSE & VM Data Types for COBOL (continued)

Description DB2 Server for VSE
& VM
Keyword

Equivalent COBOL
Declaration

A varying-length string of n DBCS characters.
If n > 127 or ≤ 16383, this data type is
considered a long field. (See “Using Long
Strings” on page 47 for more information.)

VARGRAPHIC(n) 01 GNAME.
49 GGLEN

PICTURE S9(4)
COMPUTATIONAL.

49 GGVAL
PICTURE G(n)
[DISPLAY-1].

A varying-length string of DBCS characters of
maximum length 16383.

LONG VARGRAPHIC 01 XNAME.
49 XNAMLEN

PICTURE S9(4)
COMPUTATIONAL.

49 XNAMVAL
PICTURE G(n)
[DISPLAY-1].

A fixed or varying-length character string
representing a date. The minimum and
maximum lengths vary with both the format
used and whether it is an input or output
operation. See the DB2 Server for VSE & VM
SQL Reference manual for more information.

DATE 01 S PICTURE X(n).
or

01 S.
49 S-LENGTH

PICTURE S9(4)
COMPUTATIONAL.

49 S-VALUE
PICTURE X(n).

A fixed or varying-length character string
representing a time. The minimum and
maximum lengths vary with both the format
used and whether it is an input or output
operation. See the DB2 Server for VSE & VM
SQL Reference manual for more information.

TIME 01 S PICTURE X(n).
or

01 S.
49 S-LENGTH

PICTURE S9(4)
COMPUTATIONAL.

49 S-VALUE
PICTURE X(n).

A fixed or varying-length character string
representing a timestamp. The lengths can
vary on input and output. See the DB2 Server
for VSE & VM SQL Reference manual for more
information.

TIMESTAMP 01 S PICTURE X(n).
or

01 S.
49 S-LENGTH

PICTURE S9(4)
COMPUTATIONAL.

49 S-VALUE
PICTURE X(n).

Notes:
1. USAGE or USAGE IS is optional before COMPUTATIONAL, BINARY,

PACKED-DECIMAL, and DISPLAY-1.
2. The word IS can follow PICTURE or PIC.
3. COMPUTATIONAL can be abbreviated COMP. PICTURE can be abbreviated

PIC.

Appendix C. Using SQL in COBOL 363

4. COMPUTATIONAL-4. or USAGE BINARY can be substituted for
COMPUTATIONAL for DB2 Server for VM.

5. The following synonyms are supported:
v COMPUTATIONAL-4 for COMPUTATIONAL
v BINARY for COMPUTATIONAL
v PACKED-DECIMAL for COMPUTATIONAL-3
v N(n) for G(g)

6. INTEGER and SMALLINT data types can have sliding ranges. For example, if
you want to declare a SMALLINT variable that you know will remain very
small, you could use S9(2) instead of S9(4). Or, you could declare an integer
with a range of S9(7) instead of S9(9). However, only the ranges shown in the
above table allow for the largest possible values of SMALLINT and INTEGER.
Truncation may occur if you declare smaller ranges.

7. For COMPUTATIONAL types, 9’s may be repeated rather than using the
repetition factors in parentheses (that is, 9999 instead of 9(4)). The same is true
for the X’s in the character types and the G’s in the graphic character types.

8. In DECIMAL data types, precision is the total number of digits. Scale is the
number of digits to the right of the decimal point.

9. NUMERIC is a synonym for DECIMAL and, can be used when you are
creating or altering tables. In such cases, however, the CREATE or ALTER
function will establish the column (or columns) as DECIMAL.

10. When a VALUE clause is used for host variables of the form “PIC S9(4)
COMP”, the highest value accepted by COBOL is 9999. If you specify the
COBOL NOTRUNC option, however, a value up to 32 767 can be moved into
the host variable. If host variables are to contain long fields where the length
exceeds 9999, the NOTRUNC option must be set.

Using Reentrant COBOL Programs
A reentrant program has the characteristic of dynamic allocation of space for data
and save areas. This reentrant characteristic can be used in COBOL programs that
use the database manager.

DB2 Server for VSE
Such programs must follow the COBOL compiler’s rules for producing
reentrant programs, and must be repreprocessed, recompiled, and relinked
with the OBJECT file ARIPADR4.

Existing COBOL programs may continue to use ARIPADR until they are
recompiled. Thereafter, they must link-edit the OBJECT file ARIPADR4.

DB2 Server for VM
Such programs must follow the COBOL compiler’s rules for producing
reentrant programs, and must be repreprocessed, recompiled, and relinked
with the TEXT file ARIPADR4.

Existing COBOL programs (preprocessed prior to SQL/DS Version 2 Release
2) may continue to use ARIPADR until they are recompiled. Thereafter, they
must link-edit the TEXT file ARIPADR4.

After programs are recompiled, ARIPADR4 must be in their link or load step.

364 Application Programming

Using the DYNAM Compiler Option
The DYNAM option of the IBM COBOL for MVS and VM, IBM COBOL for VSE,
and VS COBOL II compilers can be used by applications.

If the DYNAM option is used, then it is not necessary to include any of the linkage
modules listed for COBOL programs in “Link-Editing and Loading the Program”
on page 144 (DB2 Server for VM) or “Link-Editing and Loading the Program” on
page 178 (DB2 Server for VSE.

DB2 Server for VSE
Applications using the DYNAM option must have access to the DB2 Server
for VSE production library at run time.

CICS/VSE programs do not support the DYNAM option; they must continue
to be link-edited with the required extra linkage modules.

DB2 Server for VM
COBOL applications that use the DYNAM option must have access to the
DB2 Server for VM production disk at run time.

Using Stored Procedures
The following example shows how to define the parameters in a stored procedure
that uses the GENERAL linkage convention.

The following example shows how to define the parameters in a stored procedure
that uses the GENERAL WITH NULLS linkage convention.

IDENTIFICATION DIVISION.
.
.

DATA DIVISION.
.
.
LINKAGE SECTION.
01 PARM1 ...
01 PARM2 ...
.
.

PROCEDURE DIVISION USING PARM1, PARM2.
.
.

Figure 84. Stored Procedure - Using GENERAL Linkage Convention

Appendix C. Using SQL in COBOL 365

IDENTIFICATION DIVISION.
.
.

DATA DIVISION.
.
.
LINKAGE SECTION.
01 PARM1 ...
01 PARM2 ...
01 INDARRAY PIC S9(4) USAGE COMP OCCURS 2 TIMES.
.
.

PROCEDURE DIVISION USING PARM1, PARM2, INDARRAY.
.
.

Figure 85. Stored Procedure - Using GENERAL WITH NULLS Linkage Convention

366 Application Programming

Appendix D. Using SQL in Fortran

A Fortran Sample Program 368
Rules for Using SQL in Fortran 368

Placing and Continuing SQL Statements . . . 368
Placing Data Statements 369
Using Fortran Common Areas (DB2 Server for
VSE) 369
Identifying Rules for Case 369
Declaring Host Variables 369
Embedding SQL Statements 371
Using Host Variables in SQL Statements . . . 371
Using Variable Length Character Strings . . . 371

Using DBCS Characters in Fortran 372
Using the INCLUDE Statement 373
Using Fortran Variables in SQL: Data
Conversion Considerations 373

Handling SQL Errors 373
Handling Program Interrupts 374
Using Dynamic SQL Statements in Fortran . . . 374
Restrictions When Using the Fortran Preprocessor 375
Defining DB2 Server for VSE & VM Data Types for
Fortran 376

© Copyright IBM Corp. 1987, 2001 367

A Fortran Sample Program
ARIS6FTD is a Fortran language sample program for VSE systems that is shipped
with the DB2 Server for VSE product. ARIS6FTC is a Fortran language sample
program for VM systems that is shipped with the DB2 Server for VM product. It
resides on the production disk for the base product. You may find it useful to print
this sample program before going through this appendix as the hard copy will
provide an illustration for many of the topics discussed here.

Note, for example, how the program satisfies the requirements of the application
prolog and epilog. Near the beginning of the program all the host variables are
declared, and error handling is defined. Near the logical end of the program, the
database changes are rolled back, to assure the database remains consistent for
each use of the sample program. For your own applications, of course, you will
enter a commit. the host variables are declared, and error handling is defined.

The data description statements for the host variables are determined by referring
to Table 38 on page 376. When you are coding your own applications you will need
to obtain the data types of the columns that your host variables interact with. This
can be done by querying the catalog tables. See the DB2 Server for VSE & VM SQL
Reference manual for more information on catalog tables.

Rules for Using SQL in Fortran
The Fortran SQL preprocessor supports programs written for the VS Fortran
compiler with the LANGLVL (77) option specified. Only FIXED-FORM source
statements are supported.

If Fortran labels are placed on SQL declarative statements, the label will be
removed and an information message given.

The Fortran preprocessor supports a maximum of 255 program units per input
source file (254 subprograms in addition to the main program).

DB2 Server for VM
All the restrictions that apply to extended dynamic statements apply to all
Fortran programs.

Placing and Continuing SQL Statements
All SQL statements must be placed in columns 7 to 72. Columns 73 to 80 may
contain sequence numbers and information; columns 1 to 5 may also contain
statement numbers.

The rules for continuation of tokens from one line to the next are the same as the
Fortran rules for the continuation of words and constants.

An SQL statement may use up to 124 continuation lines in addition to the first line
(for a total of 125 lines including blanks and comments). A continuation line can
be:
v A continued line (that is, a line that does not have a blank or zero in column 6).
v A blank line
v A comment line.

368 Application Programming

These lines must fall between the start of the SQL statement and the next
statement.

Notes:
1. The maximum length of an SQL statement is 8 192 characters
2. This restriction also applies to Fortran IF and ELSE statements
3. A statement is terminated by another statement or by end-of-file.

Placing Data Statements
The Fortran Release 3.0 compiler restricts the placement of data statements in
Fortran programs or subroutines. Some precaution is necessary in order to
eliminate the following warning message during compilation of the program or
subroutine:

WARNING MSGIFX1935I
DATA STATEMENT PRECEDES AN EXPLICIT TYPE STATEMENT

During preprocessing, the Fortran preprocessor places inline calls at the end of the
DB2 Server for VSE & VM declare section, if one exists; otherwise, the calls are
placed at the beginning of the program or subroutine. These calls contain data
statements that must be preceded by all declares.

If an SQL declare section does not exist, place the following dummy SQL declare
section after all other program declares to avoid the above warning message:

EXEC SQL BEGIN DECLARE SECTION
EXEC SQL END DECLARE SECTION

Since the preprocessor replaces EXEC SQL INCLUDE SQLCA with the declaration of the
SQLCA structure, the SQLCA must be included before the declare section.

The Fortran preprocessor does not recognize a FUNCTION keyword if it is
preceded by a type declaration. The FUNCTION keyword must, therefore, be the
first word in the FUNCTION statement.

Using Fortran Common Areas (DB2 Server for VSE)
For VSE single user mode, items in a Fortran COMMON statement must be
initialized in a BLOCK DATA subroutine and the COMMON statement must be
assigned a name.

Identifying Rules for Case
Mixed case can be used in your Fortran program. The SQL preprocessor will
change the lowercase into uppercase, except for text within quotation marks, which
will be left in the original case.

Declaring Host Variables
Host variables must be explicitly declared to be used in SQL statements. The
following example shows an SQL declare section for a Fortran program:

EXEC SQL BEGIN DECLARE SECTION (at beginning of section)
.
.

(Data description entries for host variables)
.
.

EXEC SQL END DECLARE SECTION (at end of section)

Appendix D. Using SQL in Fortran 369

Place the data description entries for all the host variables within the SQL declare
sections. You may use the variables appearing in these SQL declare sections in
regular Fortran statements as well as in SQL statements.

A host variable declared within the SQL DECLARE SECTION may not be
continued. The host variable declaration must appear on a single line in order to
be recognized by the preprocessor.

You can also place data description entries for non-host variables in the SQL
declare section as the Fortran preprocessor ignores data description entries within
the SQL declare section that it does not recognize as valid host variable
declarations. No error message is generated; instead, the statement is left for the
Fortran compiler to process. Thus it is possible, though not recommended, to place
all data description entries within an SQL declare section.

The rules for declaring variables within SQL declare sections are:
v Host variables must be valid Fortran variable names according to the version of

the Fortran compiler that is being used. Fortran host variable names are
restricted to a length of 18 bytes.

v Variables named in the SQL declare sections must have data descriptions like
those in Table 38 on page 376.

v Variables cannot be any of the following:
– Vector or array declarations
– Constants defined by a PARAMETER statement
– Any declarations that use expressions to define the length of the variables
– Character variables declared with an undefined length, such as

CHARACTER*(*).
v You should not give any variable a name beginning with SQL, because these

names are reserved for database manager use.
v When host variables are declared as INTEGER, and you are using the

OPTIMIZE(2) or OPTIMIZE(3) compile option, the host variables should be
declared as COMMON.
Under OPTIMIZE 2 or 3, Fortran may make register assignments to the program
variables if they are not in COMMON storage. Under some circumstances, this
can result in the database manager using an inaccurate variable value.
In the following example, NUM must be declared as COMMON if OPTIMIZE 2
or 3 is specified:

EXEC SQL DECLARE CURSOR C1 FOR INSERT INTO T1 VALUES (:NUM)
EXEC SQL OPEN C1
DO 20 NUM=1,10

EXEC SQL PUT C1
20 CONTINUE
*

EXEC SQL CLOSE C1

v Only the NONE value of the AUTODBL Fortran compile option is supported.
AUTODBL changes the precision of declared variables without altering the
source code. The preprocessor runs before the Fortran compiler and interprets
variable types based strictly on their declaration.

A host variable must be declared earlier than the first use of the variable in an SQL
statement in the program.

370 Application Programming

Embedding SQL Statements
You must precede each SQL statement in your program with EXEC SQL. No
delimiter should be used at the end of each statement.

Fortran source statements and SQL statements cannot be contained on the same
line or within the same continued statement, except when an SQL statement is
used as the imperative statement of a logical IF. Also, only one SQL statement can
be contained in a single line, or within the same continued statement.

Using Host Variables in SQL Statements
When you place host variables within an SQL statement, you must precede each
one by a colon (:), to distinguish it from the SQL identifiers (such as a column
name). When you place a host variable outside of an SQL statement, do not use a
colon.

A host variable can represent a data value, but not an SQL identifier. For example,
you cannot assign a character constant such as ‘MUSICIANS’ to a host variable,
and then use that host variable in a CREATE TABLE statement to represent the
table name. This pseudocode sequence is invalid:

Using Variable Length Character Strings
Fortran does not support variable length character strings (VARCHAR, LONG
VARCHAR). However, it is possible to circumvent this restriction in the following
way:
1. Declare INTEGER*2 to contain the length of the string
2. Declare a CHARACTER*(length) string of data
3. Declare a CHARACTER*(2 + length of string)
4. Declare a COMMON block containing (1) and (2) above
5. Use the EQUIVALENCE statement (name of (1) above, name of (3) above)
6. Specify a DATA BLOCK subroutine to initialize (1) and (2) above
7. When referencing the string in an SQL statement, use (3) above.
8. After preprocessing the Fortran program (but before compilation), change all

occurrences of the data code for the variable(s) in the input or output data
structure(s) from the CHARACTER data code to the corresponding VARCHAR
or LONG VARCHAR data code. For information on how to interpret the data
codes returned in SQLTYPE, see the DB2 Server for VSE & VM SQL Reference
manual.

Figure 86 on page 372 shows an example of how to INSERT a row into the
INVENTORY table using a VARCHAR variable for description.

Note: It is necessary to set the length field (STRNGL) to the corresponding length
of the character string (STRING) before the insert statement is executed.

When the character string is fetched, the first two bytes of the string (STRNGW)
contain the length. The variable STRNGL determines the length.

Incorrect
IT = ' MUSICIANS '
CREATE TABLE :TT (NAME ...

Appendix D. Using SQL in Fortran 371

Using DBCS Characters in Fortran
The rules for the format and use of DBCS characters in SQL statements are the
same for Fortran as for other host languages supported by the system. For a
discussion of these rules, see “Using a Double-Byte Character Set (DBCS)” on
page 53.

Fortran does not provide a way to define graphic host variables. If you want to
add graphic data to or retrieve it from DB2 Server for VSE & VM tables, you must

C*** DB2 Server for VSE & VM STATEMENT ***
C EXEC SQL BEGIN DECLARE SECTION

CHARACTER ID*8
CHARACTER PW*8
INTEGER*2 STRNGL
CHARACTER*24 STRING
CHARACTER*26 STRNGW
COMMON /SDATA/ STRNGL,STRING
EQUIVALENCE (STRNGL,STRNGW)

...

...
C*** DB2 Server for VSE & VM STATEMENT ***
C EXEC SQL END DECLARE SECTION

...

...
C*** DB2 Server for VSE & VM STATEMENT ***
C EXEC SQL INSERT INTO SQLDBA.ACTIVITY
C 1 VALUES(190, 'TSTSYS',:STRNGW)
C

SQI002(3, 1) = 1
SQI002(1, 2) = 452 * SQSHHW + 26 ---> Change 452 to 448
SQI002(2, 2) = SQLADD(STRNGW)
SQI002(3, 2) = 0
SQCALL = 'EXECUTE '
SQSTMT = −1
SQLTYP = '0'

SQLCTL(1) = SQLADD (SQCALL)
SQLCTL(2) = SQLADD (SQCOLL)
SQLCTL(3) = SQLADD (SQPROG)
SQLCTL(4) = SQLADD (SQSTMT)
SQLCTL(5) = SQLADD (SQI002)
SQLCTL(6) = 0
SQLCTL(7) = 0
SQLCTL(8) = 8
SQLCTL(9) = SQLADD (SQLISL)
SQLCTL(10) = SQLADD (SQLDAT)
SQLCTL(11) = SQLADD (SQLTIM)
SQLCTL(12) = SQLADD (SQLCNT)
SQLCTL(13) = SQLADD (SQLTYP)
CALL ARIFOR (SQLCTL)

...

...
END

* BLOCK DATA SUBROUTINE

BLOCK DATA
COMMON /SDATA/ STRGNL,STRING
INTEGER*2 STRGNL/3/
CHARACTER*24 STRING/'SYSTEM TESTING'/

END

Figure 86. Using a VARCHAR Variable

372 Application Programming

execute the affected statements dynamically. By doing so, the data areas that are
referenced by each statement can be described in an SQLDA. In the SQLDA, you
must set the data type of the areas containing graphic data to one of the graphic
data types. (For a discussion of the SQLDA, refer to the DB2 Server for VSE & VM
SQL Reference manual.)

Using the INCLUDE Statement
To include the external secondary input, specify the following at the point in the
source code where the secondary input is to be included:

EXEC SQL INCLUDE text_name

Text_name is the G-Type source member of a VSE library. Text_name is the file name
of a CMS file (with a “FORTCOPY” file type) located on a CMS minidisk accessed
by the user.

Using Fortran Variables in SQL: Data Conversion
Considerations

Host variables must be type-compatible with the columns with which they are to
be used.

A column of type INTEGER, SMALLINT, or DECIMAL is compatible with a
Fortran variable of INTEGER, INTEGER*2, or INTEGER*4. Of course, an overflow
condition may occur if, for example, an INTEGER data item is retrieved into an
INTEGER*2 variable, and its current value is too large to fit.

Fixed-length and varying-length character data (CHAR, VARCHAR, and LONG
VARCHAR) are considered compatible. A varying-length string is automatically
converted to a fixed-length string, and a fixed-length string is automatically
converted to a varying-length string, when necessary. If a varying-length string is
converted to a fixed-length string, it is truncated or padded on the right with
blanks to the correct length.

The database manager also considers the datetime data types to be compatible
with character data types (CHAR and VARCHAR, but not LONG VARCHAR and
VARCHAR > 254).

Refer to “Converting Data” on page 50 for a data conversion summary.

Handling SQL Errors
There are two ways to declare the return code structure (called SQLCA):
1. You may write:

EXEC SQL INCLUDE SQLCA

in your source program. The preprocessor replaces this with the declaration of
the SQLCA structure.

2. You may declare the SQLCA structure directly, as shown in Figure 87 on
page 374.

Appendix D. Using SQL in Fortran 373

The SQLCA must not be declared within the SQL declare section. The meanings of
the fields within the SQLCA are discussed in the DB2 Server for VSE & VM SQL
Reference manual.

You may find that the only variable in the SQLCA you really need is SQLCODE. If
this is the case, declare just the SQLCOD variable and invoke NOSQLCA support
at preprocessor time.

Note: Fortran requires SQLCOD instead of SQLCODE.

The number of SQLCOD declarations is not limited by the preprocessor. If a
stand-alone SQLCOD is specified, the code inserted by the preprocessor into the
Fortran code to expand an EXEC SQL statement will refer to the address of that
SQLCOD. The Fortran compiler determines if multiple declarations within a
program section are not acceptable. In addition, the Fortran compiler determines
which region of the code an SQLCOD declaration refers to.

Handling Program Interrupts
If a program interrupt occurs and the database manager is unaware of it, you may
get unexpected results. To allow the system to process the interrupt, specify the
run time options NOSTAE and NOSPIE. These options are only available in
Version 2 of Fortran.

Using Dynamic SQL Statements in Fortran
The Fortran preprocessor lets you use a descriptor area, the SQLDA, to execute
dynamically defined SQL statements. (See “Chapter 7. Using Dynamic Statements”
on page 209 for information on dynamic SQL statements and the SQLDA.)

However, the Fortran preprocessor will not replace the statement EXEC SQL INCLUDE
SQLDA with a declaration of the SQLDA structure, as is done with the SQLCA.
Instead EXEC SQL INCLUDE SQLDA would just include the secondary input file
SQLDA, as described in the section “Using the INCLUDE Statement” on page 373.

Before you can use the descriptor area you must properly allocate and initialize it,
and you must manage all its address variables. The following example shows how
you could define the descriptor area in Fortran for three fields:

INTEGER*4 SQLCOD,
* SQLERR(6),
* SQLTXL*2
COMMON /SQLCA1/ SQLCOD,SQLERR,SQLTXL

CHARACTER SQLERP*8,
* SQLWRN(0:10),
* SQLTXT*70,
* SQLSTT*5
COMMON /SQLCA2/ SQLERP,SQLWRN,SQLTXT,SQLSTT

Figure 87. SQLCA Structure (in Fortran)

374 Application Programming

The descriptor area must not be declared within the SQL declare section.

The following pseudocode illustrates the use of a descriptor area, adequate for
three fields:

Restrictions When Using the Fortran Preprocessor
The Fortran preprocessor is an extended dynamic preprocessor that uses the
NOMODIFY and DESCRIBE options of the extended CREATE PACKAGE
statement. The other extended CREATE PACKAGE options that are used are taken
from the parameters specified when invoking the preprocessor.

Fortran programs are preprocessed and executed using extended dynamic SQL.
Those that are preprocessed with the DB2 Server for VSE & VM Fortran
preprocessor must, therefore, comply with the same restrictions that apply to
extended dynamic SQL, or programs preprocessed or executed using extended
dynamic SQL.

The following is a partial list of restrictions when using the Fortran preprocessor.
v The BIND preprocessing parameter is ignored by the Fortran preprocessor. (DB2

Server for VSE)
v When declaring a dynamic cursor, if you are using the following format of the

PREPARE statement, you must code it in your program before the DECLARE
CURSOR statement:

PREPARE statement_name FROM string_constant

This restriction does not apply when using the following format of the
PREPARE statement:

PREPARE statement_name FROM host_variable

v When using DRDA protocol, the following statements are not supported:
SELECT INTO

CHARACTER*8 DAID
INTEGER*4 DABC
INTEGER*2 DASQLN,
* DAD,
* DATYPE_1, DATYPE_2, DATYPE_3,
* DALEN_1, DALEN_2, DALEN_3,
* DANLN_1, DANLN_2, DANLN_3
INTEGER*4 DADATA_1, DADATA_2, DADATA_3,
* DAIND_1, DAIND_2, DAIND_3
CHARACTER*30 DANAME_1, DANAME_2, DANAME_3

COMMON /DASQL/ DAID, DABC, DAN, DAD,
* DATYPE_1, DALEN_1, DADATA_1, DAIND_1, DANLN_1, DANAME_1,
* DATYPE_2, DALEN_2, DADATA_2, DAIND_2, DANLN_2, DANAME_2,
* DATYPE_3, DALEN_3, DADATA_3, DAIND_3, DANLN_3, DANAME_3

- allocate storage for a Descriptor Area of at least size = 3
- set DAN = 3 (number of fields)
- set DAD = 3
- set the rest of the values and pointers in the Descriptor Area

EXEC SQL EXECUTE S1 USING DESCRIPTOR dasql

Appendix D. Using SQL in Fortran 375

Positioned UPDATE

Positioned DELETE

v When switching between SQLDS protocol and DRDA protocol, you cannot do
the following:
– Preprocess a program using one protocol and then execute it using another

protocol.
– Preprocess a DB2 Server for VM program using one protocol, and then

repreprocess the program using another protocol. If the original program is
dropped with the DROP PACKAGE statement, you can repreprocess the
program using a different protocol.

DB2 Server for VM

Note: If the PROTOCOL option on the application requester is set to AUTO,
the system uses SQLDS protocol to communicate with another DB2
Server for VM application server, and uses DRDA protocol to
communicate with unlike application servers. The system uses DRDA
protocol to communicate with another DB2 Server for VM application
server only when the PROTOCOL option on the application requester
is set to DRDA protocol. The PROTOCOL option is set and queried
using the SQLINIT command.

Refer to “Mapping Extended Dynamic Statements to Static and Dynamic
Statements” on page 249 for details about mapping extended dynamic
statements to non-extended dynamic statements. Refer to the DB2 Server for
VSE & VM SQL Reference for a discussion of DRDA restrictions.

Defining DB2 Server for VSE & VM Data Types for Fortran
Table 38. DB2 Server for VSE & VM Data Types for Fortran

Description DB2 Server for VSE
& VM Keyword

Equivalent Fortran
Declaration

A binary integer of 31 bits, plus sign. INTEGER or INT INTEGER

INTEGER*4

A binary integer of 15 bits, plus sign. SMALLINT INTEGER*2

A packed decimal number, precision p, scale s (1 ≤
p ≤ 31 and 0 ≤ s ≤p). In storage the number
occupies a maximum of 16 bytes. Precision is the
total number of digits. Scale is the number of those
digits that are to the right of the decimal point.

DECIMAL[(p[,s])]

or DEC[(p[,s])]¹
1

Not supported.

A single-precision (4- byte) floating-point number,
in short System/390 floating-point format.

REAL or

FLOAT(p),
1 ≤ p ≤ 21

REAL

REAL*4

A double-precision (8- byte) floating-point number,
in long System/390 floating-point format.

FLOAT or

FLOAT(p), 22 ≤ p ≤ 53

or DOUBLE PRECISION

REAL*8

DOUBLE PRECISION

DOUBLEPRECISION

376 Application Programming

Table 38. DB2 Server for VSE & VM Data Types for Fortran (continued)

Description DB2 Server for VSE
& VM Keyword

Equivalent Fortran
Declaration

A fixed-length character string of length n where 0
< n ≤ 254.

CHARACTER[(n)]

or CHAR[(n)]

CHARACTER

CHARACTER*n

A varying-length character string of maximum
length n. If n > 254 but ≤ 32767, this data type is
considered a long field. (See “Using Long Strings”
on page 47 for more information.)

VARCHAR(n) Not supported.

A varying-length character string of maximum
length 32765 bytes (two bytes less than the DB2
Server for VSE & VM maximum, because of the
length field). (Character strings ≥ 255 are not
supported in Fortran releases prior to Release 1.3.)

LONG VARCHAR Not supported.

A fixed-length string of n DBCS characters where 0
< n ≤ 127.

GRAPHIC[(n)] Not supported.

A varying-length string of n DBCS characters. If n
> 127 but ≤ 16383, this data type is considered a
long field. (See “Using Long Strings” on page 47
for more information.)

VARGRAPHIC(n) Not supported.

A varying-length string of DBCS characters of
maximum length 16383.

LONG VARGRAPHIC Not supported.

A fixed-length character string representing a date.
The minimum and maximum lengths vary with
both the format used and whether it is an input or
output operation. See the DB2 Server for VSE & VM
SQL Reference manual for more information.

DATE CHARACTER

CHARACTER*n

No varying-length equivalent
is supported.

A fixed-length character string representing a time.
The minimum and maximum lengths vary with
both the format used and whether it is an input or
output operation. See the DB2 Server for VSE & VM
SQL Reference manual for more information.

TIME CHARACTER

CHARACTER*n

No varying-length equivalent
is supported.

A fixed-length character string representing a
timestamp. The lengths can vary on input and
output. See the DB2 Server for VSE & VM SQL
Reference manual for more information.

TIMESTAMP CHARACTER

CHARACTER*n

No varying-length equivalent
is supported.

Notes:

1. NUMERIC is a synonym for DECIMAL and can be used when creating or
altering tables. In such cases, however, the CREATE or ALTER function
establishes the column (or columns) as DECIMAL.

An * length specification can also be used to override a length specification
associated with the initial keyword. The following are examples:

Specification Valid Invalid (ignored)

INTEGER VAR001,VAR002(2) VAR001 4 bytes VAR002

INTEGER*2 VAR001*4,VAR002 VAR001 4 bytes VAR002 2
bytes

Appendix D. Using SQL in Fortran 377

Specification Valid Invalid (ignored)

INTEGER*4 VAR001*2/10/,VAR002*4 VAR001 2 bytes VAR002 4
bytes

INTEGER*5 VAR001*2,VAR002*4 VAR001,VAR002

REAL VAR001*8,VAR002 VAR001 8 bytes VAR002 4
bytes

REAL*8 VAR001,VAR002*4,VAR003 VAR001 8 bytes VAR002 4
bytes VAR003 8 bytes

DOUBLE PRECISION VAR001,VAR002*4 VAR001 8 bytes VAR002 4
bytes

REAL*8 VAR001(10,10)*4,VAR002 VAR002 8 bytes VAR001

REAL*16 VAR001,VAR002*4,VAR003*8 VAR002 4 bytes VAR003 8
bytes

VAR001

CHARACTER VAR1,VAR2*80 VAR1 1 byte
VAR2 80 bytes

CHARACTER*10 VAR1,VAR2*80 VAR1 10 bytes VAR2 80
bytes

CHARACTER*500 VAR1(5),VAR2*1 VAR2 1 byte VAR1

378 Application Programming

Appendix E. Using SQL in PL/I

Using PL/I Sample Programs 380
Rules for Using SQL in PL/I 380

Placing and Continuing SQL Statements . . . 380
Delimiting SQL Statements 380
Using the INCLUDE Statement 381
Declaring Static External Variables 381
Identifying Rules for Case 381
Declaring Host Variables 381
Using Host Variables in SQL Statements . . . 384
Using PL/I Variables in SQL: Data Conversion
Considerations 384

Using DBCS Characters in PL/I 384
Using SQL Statements in PL/I Subroutines . . 385
Coding the SIZE Parameter in VSE JCL (DB2
Server for VSE) 386

Handling SQL Errors 386
Handling Program Interrupts 387
Using Dynamic SQL Statements in PL/I 387
Defining DB2 Server for VSE & VM Data Types for
PL/I 389
Using Stored Procedures 390

© Copyright IBM Corp. 1987, 2001 379

Using PL/I Sample Programs
ARIS6PLD is a PL/I language sample program for VSE systems that is shipped
with the DB2 Server for VSE product. ARIS6PLC is a PL/I language sample
program for VM systems that is shipped with the DB2 Server for VM product. It
resides on the production disk for the base product. You may find it useful to print
this sample program before going through this appendix as the hard copy will
provide an illustration for many of the topics discussed here.

You can learn most of the rules for using SQL within PL/I just by scanning
through the program. Note, in particular, how the program satisfies the
requirements of the application prolog and epilog. Near the beginning of the
program all the host variables are declared and error handling is defined. Near the
logical end of the program, the database changes are rolled back, to assure the
database remains consistent for each use of the sample program. For your own
applications, of course, you will enter a commit.

The DCL statements for the host variables are determined by referring to Table 40
on page 389. That figure gives the PL/I representation for each of the DB2 Server

for VSE & VM data types. When you are coding your own applications, you will
need to obtain the data types of the columns that your host variables interact with.
This can be done by querying the catalog tables, which are described in the DB2
Server for VSE & VM SQL Reference manual.

Rules for Using SQL in PL/I

Placing and Continuing SQL Statements
All statements in your PL/I program, including SQL statements, must be contained
in columns 2 through 72 of your source deck. Normal PL/I continuation rules
apply.

Continuation of tokens (the basic syntactical units of a language) is allowed from
one line to the next, by coding the first part of the token up to column 72 on the
line to be continued and coding the next part of the token from column 2 on the
continuation line. If either column 72 of the continued line or column 2 of the
continuation line is blank, the token is not continued.

See the DB2 Server for VSE & VM SQL Reference manual for a discussion on tokens.

Delimiting SQL Statements
Delimiters are required on all SQL statements to help the database manager
distinguish them from regular PL/I statements. You must precede each SQL
statement in your program with EXEC SQL, and end each statement with a
semicolon. EXEC and SQL must be on the same line, with only blanks separating
them (no in-line host language or SQL comments).

Within SQL statements, host language and SQL comments are allowed anywhere
that blanks are allowed. However, there should not be any host language or SQL
comments within SQL statements that are dynamically defined and executed.

An SQL statement cannot be followed on the same line by another SQL statement,
a normal PL/I statement, or a host language comment. When you preprocess a
program containing such a combination, the trailing statements or host language
comments are ignored and will not appear in the SYSPRINT listing.

380 Application Programming

Using the INCLUDE Statement
To include external secondary input, specify the following at the point in the
source code where the secondary input is to be included:

EXEC SQL INCLUDE text_file-name;

The text_file-name is the member name of a P-Type source member of a VSE
library or the file name of a CMS file (with a “PLICOPY” file type) located on a
CMS minidisk accessed by the user.

Declaring Static External Variables
A declaration for a variable with the attributes STATIC and EXTERNAL must also
have the attribute INITIAL. If it does not, the declaration generates a common
CSECT, which the database manager cannot handle.

PL/I programming using “DEFAULT RANGE (*) STATIC” gives an error message.
The preprocessor builds control blocks that are incompatible with this statement.

Identifying Rules for Case
The keywords “EXEC SQL” must appear in uppercase in your PL/I program. The
rest of an SQL statement can be in mixed case, but will be interpreted as
uppercase, except for text within quotation marks, which will be left in the original
case.

Declaring Host Variables
You must declare all host variables in an SQL declare section. For a description of
an SQL declare section, refer to “Declaring Variables That Interact with the
Database Manager” on page 8.

Declare host variables in the source file before the first use of the variable in an
SQL statement. You can use the following types of variables in an SQL statement:
v Scalar variables
v Structure variables
v Structure elements
v Array variables

For information on the use of these variables in an SQL statement, refer to “Using
Host Variables” on page 57 and “Using Host Structures” on page 57.

Note: You can declare non-host variables in an SQL declare section; however,
declarations that do not conform to DB2 Server for VSE & VM declaration
rules may return errors.

The declaration of a host variable is subject to the following rules:
v You can use scalar variables and structure elements as main variables. You can

also use them as indicator variables if they are declared with a data type of
short integer.

v The only arrays accepted by the PL/I preprocessor are arrays of short integer
elements. These arrays may be used as indicator arrays only. The following
example is an indicator array:
DCL IND_ARRAY(10) BINARY FIXED(15);

Indicator array elements cannot be used as main or indicator variables.

Appendix E. Using SQL in PL/I 381

v A structure variable (which defines a host structure) is any two-level structure
declared in an SQL declare section. The following example is a host structure:
DCL 01 PROJ_STRCT,

05 PROJNO CHAR(6),
05 ACTNO BINARY FIXED(15),
05 ACSTAFF BINARY FIXED(31),
05 ACSTDATE CHAR(10),
05 ACENDATE CHAR(10);

This structure represents the following list of host variables when used in an
SQL statement:
PROJNO, ACTNO, ACSTAFF, ACSTDATE, ACENDATE

In other words, the two following SQL statements are equivalent:
EXEC SQL SELECT PROJNO, ACTNO, ACTSTAFF, ACSTDATE, ACENDATE

INTO :PROJ_STRCT
FROM PROJ_ACT
WHERE PROJNO = ‘100000’

EXEC SQL SELECT PROJNO, ACTNO, ACSTAFF, ACSTDATE, ACENDATE
INTO :PROJNO, :ACTNO, :ACSTAFF, :ACSTDATE, :ACENDATE
FROM PROJ_ACT
WHERE PROJNO = ‘100000’

A host structure can either be a stand-alone structure or a substructure of a more
complex structure. The following example is a complex structure that contains a
host structure:
DCL 01 EMPLOYEE,

05 EMPNO CHAR(6),
05 EMPNAME

10 FIRSTNAME CHAR(12),
10 MIDINIT CHAR(1),
10 LASTNAME CHAR(15),

05 WORKDEPT CHAR(3),
05 PHONENO CHAR(4);

The structure EMPNAME is a host structure.

You can use the elements of the host structure and the elements of a complex
structure containing a host structure as host variables. In the previous example,
EMPNO, FIRSTNAME, MIDINIT, LASTNAME, WORKDEPT, and PHONENO can all be used
as host variables.

v DCL or DECLARE must be the first character sequence on the line, but cannot
start in column 1. You can, however, have a carriage control character in column
1. Otherwise, the line is ignored. (You can place inline host language comments
anywhere after the DECLARE or DCL keyword, and you can continue these
comments over multiple lines.)

v DECLARE statements can be continued on additional lines, but you cannot have
more than one DECLARE statement on the same line. All DECLARE statements
must end with a semicolon. Rules for continuation of variable names and PL/I
keywords are the same as those described for SQL statements.

v Declare only one host variable per DCL or DECLARE statement. If you declare
multiple variables, only the first variable is recognized; the others are ignored.
For example:

382 Application Programming

The next rule provides one exception to this limitation.
v Factoring of scalar variable names, structure element names and indicator array

names is supported. For example, the following declarations are valid:
DCL (X,Y,Z) BINARY FIXED(31);

DCL (ARR1(10), ARR2(5), ARR3(6)) BINARY FIXED (15);

DCL 01 STUCT,
05 (FLD1, FLD2, FLD3) CHAR(10),
05 FLD4 CHAR(5);

v In addition to the attributes discussed in Table 40 on page 389, the PL/I
preprocessor also supports the following attributes in declarations imbedded in
an SQL declare section:

ALIGNED
UNALIGNED
INTERNAL
EXTERNAL
STATIC
AUTOMATIC
DEFINED
CONTROLLED
CONNECTED
INITIAL

v In PL/I, the BASED and LIKE functions are not permitted in host structure
declarations.

v You cannot duplicate variable names in a single source file even if they are in
different blocks or functions. The PL/I preprocessor defines a duplicate as any
name that cannot be referenced unambiguously when fully qualified.

v You should not declare variables whose names begin with SQL or RDI, because
these names are reserved for database manager use.

v The database manager allows host variable names, statement labels, and SQL
descriptor area names of up to 256 characters in length, subject to any PL/I
language restriction mentioned in this appendix.

You can have a label on the “EXEC SQL BEGIN DECLARE SECTION;”, but not on
the “EXEC SQL END DECLARE SECTION;”. If you do place a label on this
statement, the preprocessor does not recognize it and assumes that the SQL declare
section has not ended.

When placing host language comments after either of these statements, make sure
the comment ends on the same line. If it does not, PL/I compiler errors result.

Note: Other program variables can also be declared as usual outside the SQL
declare section. The previous restrictions do not apply to non-SQL
declarations.

In the declaration below, only DATES and PRODUCTS may be used as host structures.
ORDERNO and CUSTNUM may be used as scalar host variables and may be qualified as
CUSTORD.ORDERNO and ORDINFO.CUSTNUM or CUSTORD.ORDINFO.CUSTNUM.

DCL AA FIXED BIN(15) INIT(7),
BB CHAR(7),
CC BINARY FLOAT(53);

BB and CC are ignored.

Appendix E. Using SQL in PL/I 383

EXEC SQL BEGIN DECLARE SECTION;
DCL 1 CUSTORD,

2 ORDERNO CHAR(10),
2 ORDINFO,

3 CUSTNUM CHAR(10),
3 DATES,

5 ORDDATE CHAR(6),
5 DELIVDTE CHAR(6),

2 PRODUCT,
3 STOCKNO CHAR(10),
3 QUANTITY CHAR(3);

EXEC SQL END DECLARE SECTION;

EXEC SQL SELECT STOCKNO, QUANTITY
INTO :PRODUCT
FROM ORDER
WHERE STOCKNO = '1234567890';

Using Host Variables in SQL Statements
When you reference host variables, host structures, structure fields or indicator
arrays in an SQL statement, you must precede each reference by a colon (:) The
colon distinguishes these variables from SQL identifiers (such as column names).
The colon is not required outside an SQL statement.

Using PL/I Variables in SQL: Data Conversion Considerations
Host variables must be type-compatible with the columns with which they are to
be used. For example, if you want to compare a program variable with the
QONHAND column of the database, and the data type of QONHAND is
INTEGER, you should declare the program variable BIN FIXED(31), BIN
FIXED(15), BIN FLOAT, FLOAT BIN, or FIXED DECIMAL(10). (Refer to
“Assigning Data Types When the Column Is Created” on page 46 for details on the
FLOAT data type.)

The database manager considers the numeric data types compatible, as well as the
character string data types (CHAR, VARCHAR, and LONG VARCHAR, including
strings of different declared lengths), and the graphic string data types (GRAPHIC,
VARGRAPHIC, LONG VARGRAPHIC). Of course, an overflow condition may
result if, for example, you assign a 31-bit integer to a 15-bit integer and the current
value of the 31-bit integer is too large to fit in 15 bits. Truncation also occurs when
a decimal number having a scale greater than zero is assigned to an integer. In
general, overflow occurs when significant digits are lost, and truncation occurs
when nonsignificant digits are lost.

The datetime data types are also considered compatible with character data types
(CHAR, and VARCHAR, but not LONG VARCHAR and VARCHAR > 254).

Refer to “Converting Data” on page 50 for a data conversion summary.

Using DBCS Characters in PL/I
The rules for the format and use of DBCS characters in SQL statements are the
same for PL/I as for other host languages supported by the system. For a
discussion of these rules, see “Using a Double-Byte Character Set (DBCS)” on
page 53.

When using the string-constant format of the PREPARE or EXECUTE IMMEDIATE
statement, if the statement in the string-constant contains DBCS characters, you
must append an M to the string-constant. For example:

384 Application Programming

EXEC SQL PREPARE S13 FROM
'SELECT TRANSLATE(''laabb'') || ''l<�AB�>'' FROM SYSTEM.SYSCCSIDS'M;

When coding graphic constants in static SQL statements, use one of the following
PL/I formats of the graphic constant:

1. '<�XXXX�>'G

2. <@'�XXXX�@'@G>

Note: N is a synonym for G.

When coding graphic constants in dynamically executed SQL statements, use the
SQL format of the graphic constant (that is, G'<�XXXX�>'). Refer to “Using Graphic
Constants” on page 60 for a discussion of graphic constants.

Using SQL Statements in PL/I Subroutines
The first SQL statement encountered in a sequential scan of your program by the
PL/I preprocessor that requires an in-line call to the resource adapter results in the
generation of control blocks SQLTIE and RDIEXT, and other declarations
commonly used by internal DB2 Server for VSE & VM code that is associated with
the remaining SQL statements in your program. If your program structure involves
SQL statements in multiple procedures, you must maintain structures so that the
SQLTIE and RDIEXT are addressable by all other SQL statement occurrences in
your program.

Figure 88 represents an incorrect structure.

A: PROC OPTIONS(MAIN);
.
.

CALL B;
CALL C;

.

.
B: PROC;

.

.
EXEC SQL CONNECT.....
EXEC SQL DECLARE C1 CURSOR....
EXEC SQL OPEN C1 ...

.

.
END B;

C: PROC;
.
.

EXEC SQL DECLARE C2 CURSOR....
EXEC SQL OPEN C2

.

.

.
END C;

.

.
END A;

Figure 88. Incorrect PL/I Program Structure

Appendix E. Using SQL in PL/I 385

SQLTIE and RDIEXT will be generated from the CONNECT in B, but it is not
addressable from C, where other SQL statements appear. This can be solved by
putting the CONNECT statement in A, where it will cause SQLTIE and RDIEXT to
be generated at a place that is addressable by both B and C.

Coding the SIZE Parameter in VSE JCL (DB2 Server for VSE)
When executing PL/I application programs in VSE single user mode, specify
SIZE=750K, not SIZE=AUTO, in the EXEC job control statement.

Handling SQL Errors
There are two ways to declare the return code structure (called SQLCA):
1. You can write the following statement in your source program:

EXEC SQL INCLUDE SQLCA;

The preprocessor replaces this with the declaration of the SQLCA structure.
2. You may declare the SQLCA structure directly, as shown in Figure 89.

The SQLCA must not be declared within the SQL declare section. The meanings of
the fields in the SQLCA are discussed in the DB2 Server for VSE & VM SQL
Reference manual.

You may find that the only variable in the SQLCA you really need is SQLCODE. If
this is the case, declare just the SQLCODE variable, and invoke NOSQLCA support
at preprocessor time.

The number of SQLCODE declarations is not limited by the preprocessor. If a
stand-alone SQLCODE is specified, the code inserted by the preprocessor into the
PL/I code to expand an EXEC SQL statement will refer to the address of that
SQLCODE. The PL/I compiler determines if multiple declarations within a
program section are not acceptable. In addition, the PL/I compiler determines
which region of the code an SQLCODE declaration refers to.

DCL 1 SQLCA,
2 SQLCAID CHAR(8),
2 SQLCABC BIN FIXED(31),
2 SQLCODE BIN FIXED(31),
2 SQLERRM CHAR(70) VAR,
2 SQLERRP CHAR(8),
2 SQLERRD (6) BIN FIXED(31),
2 SQLWARN,

3 SQLWARN0 CHAR(1),
3 SQLWARN1 CHAR(1),
3 SQLWARN2 CHAR(1),
3 SQLWARN3 CHAR(1),
3 SQLWARN4 CHAR(1),
3 SQLWARN5 CHAR(1),
3 SQLWARN6 CHAR(1),
3 SQLWARN7 CHAR(1),
3 SQLWARN8 CHAR(1),
3 SQLWARN9 CHAR(1),
3 SQLWARNA CHAR(1),

2 SQLSTATE CHAR(5);

Figure 89. SQLCA Structure (in PL/I)

386 Application Programming

Handling Program Interrupts
If a program interrupt occurs and the database manager is unaware of it, you may
receive unexpected results. To allow the system to process the interrupt, include
the following declaration statement after the “EXEC SQL END DECLARATION
SECTION” statement:

DCL PLIXOPT CHAR(20) VAR INIT('TRAP(OFF)') STATIC EXTERNAL;

If your PL/I compiler is NOT Language Environment enabled, add the following
statement instead:

DCL PLIXOPT CHAR(20) VAR INIT('NOSTAE,NOSPIE') STATIC EXTERNAL;

Using Dynamic SQL Statements in PL/I
You may need to declare an SQLDA structure to execute dynamically defined SQL
statements. You can have the system include the structure automatically by
specifying:
EXEC SQL INCLUDE SQLDA;

in your source code, or by directly coding the structure as shown in Figure 90.

The SQLDA must not be declared within the SQL declare section. See the DB2
Server for VSE & VM SQL Reference manual for more information on the individual
fields within the SQLDA.

In addition to the structure above, you should declare an additional mapping for
the same area. The SQLPRCSN and SQLSCALE fields of the second mapping are
used when decimal data is used. Table 39 on page 388 shows this mapping.

DCL 1 SQLDA BASED(SQLDAPTR),
2 SQLDAID CHAR(8),
2 SQLDABC BIN FIXED(31),
2 SQLN BIN FIXED(15),
2 SQLD BIN FIXED(15),
2 SQLVAR(SQLSIZE REFER(SQLN)),

3 SQLTYPE BIN FIXED(15),
3 SQLLEN BIN FIXED(15),
3 SQLDATA PTR,
3 SQLIND PTR,
3 SQLNAME CHAR(30) VAR;

DCL SQLSIZE BIN FIXED(15);
DCL SQLDAPTR PTR;

Figure 90. SQLDA Structure (in PL/I)

Appendix E. Using SQL in PL/I 387

Table 39. SQLDAX Structure (in PL/I)

DCL 1 SQLDAX BASED(SQLDAPTR),
2 SQLDAIDX CHAR(8),
2 SQLDABCX BIN FIXED(31),
2 SQLNX BIN FIXED(15),
2 SQLDX BIN FIXED(15),
2 SQLVARX(SQLSIZE REFER(SQLNX)),

3 SQLTYPEX BIN FIXED(15),
3 SQLPRCSN format 1 or format 2,
3 SQLSCALE format 1 or format 2,
3 SQLDATAX PTR,
3 SQLINDX PTR,
3 SQLNAMEX CHAR(30) VAR;

The SQLPRCSN and SQLSCALE fields can be declared in one of two formats.

Format 1: 3 SQLPRCSN BIT(8),
3 SQLSCALE BIT(8),

The fields must be set by bit 8 strings. For example, for a precision of 5 and scale of 2, the
following assignments are required:

SQLDAPTR->SQLPRCSN = '00000101'B
SQLDAPTR->SQLSCALE = '00000010'B

Format 2: 3 SQLPRCSN CHAR(1),
3 SQLSCALE CHAR(1),

This format requires the declaration of additional variables. These are a CHAR(2) variable
and a BASED FIXED BIN(15) variable for both precision and scale. For example:

DCL PRCSNC CHAR(2);
DCL PRCSNN FIXED BIN(15) BASED (ADDR(PRCSNC));
DCL SCALEC CHAR(2);
DCL SCALEN FIXED BIN(15) BASED (ADDR(SCALEC));

The SQLDAX fields for a precision of 5 and scale of 2 would be:

PRCSNN = 5;
SCALEN = 2;
SQLDAPTR->SQLPRCSN = SUBSTR(PRCSNC,2,1);
SQLDAPTR->SQLSCALE = SUBSTR(SCALEC,2,1);

Format 2, although more complex, allows PL/I manipulation of the precision and scale
fields. For example, the value of the SQLPRCSN field can be determined simply by
reversing the substring operation above. That is:

SUBSTR(PRCSNC,2,1) = SQLDAPTR->SQLPRCSN;

Such an operation cannot be done using format 1.

Because the PL/I SQLDA is declared as a based structure, your program can
dynamically allocate an SQLDA of adequate size for use with each EXECUTE
statement. For example, the code fragment below allocates an SQLDA adequate for
five fields and uses it in an EXECUTE of statement S3:

SQLSIZE=5;
ALLOCATE SQLDA SET(SQLDAPTR);
/* Add code to set values and pointers in the SQLDA */
EXEC SQL EXECUTE S3 USING DESCRIPTOR SQLDA;

The statement SQLSIZE=5 determines the size of the SQLDA to be allocated by
means of the PL/I REFER feature. The ALLOCATE statement allocates an SQLDA

388 Application Programming

of the size desired, and sets SQLDAPTR to point to it. (Before an EXECUTE
statement is issued using this SQLDA, your program must fill in its contents.)

You can use a similar technique to allocate an SQLDA for use with a DESCRIBE
statement. The following program fragment illustrates the use of SQLDA with
DESCRIBE for three fields and a “prepared” statement S1:

EXEC SQL DECLARE C1 CURSOR FOR S1;
SQLSIZE = 3;
ALLOCATE SQLDA SET(SQLDAPTR);
EXEC SQL DESCRIBE S1 INTO SQLDA;
IF SQLD > SQLN THEN

- get a bigger one;
Set SQLDATA and SQLIND;
EXEC SQL OPEN C1;
EXEC SQL FETCH C1 USING DESCRIPTOR SQLDA;

Defining DB2 Server for VSE & VM Data Types for PL/I
Table 40. Data Types for PL/I

Description DB2 Server for VSE & VM
Keyword

Equivalent PL/I Declaration

A binary integer of 31 bits, plus sign. INTEGER or INT BINARY FIXED(31)

A binary integer of 15 bits, plus sign. SMALLINT BINARY FIXED(15)

A packed decimal number, precision
p, scale s (1 ≤ p ≤ 31 and 0 ≤ s ≤ p).
In storage the number occupies a
maximum of 16 bytes. Precision is
the total number of digits. Scale is
the number of those digits that are to
the right of the decimal point.

DECIMAL[(p[,s])] or DEC[(p[,s])]¹ 1 FIXED DECIMAL(p,s)

A single-precision (4- byte)
floating-point number, in short
System/390 floating-point format.

REAL or FLOAT(p), 1 ≤ p ≤ 21 BINARY FLOAT(p) or FLOAT
BINARY(p), 1 ≤ p ≤ 21 DECIMAL
FLOAT(p) or FLOAT DECIMAL(p),
1 ≤ p ≤ 7

A double-precision (8- byte)
floating-point number, in long
System/390 floating-point format.

FLOAT or FLOAT(p), 22 ≤ p ≤ 53
or DOUBLE PRECISION

BINARY FLOAT(p) or FLOAT
BINARY(p), 22 ≤ p ≤ 53 DECIMAL
FLOAT(p) or FLOAT DECIMAL(p),
8 ≤ p ≤ 16

A fixed-length character string of
length n where 0 < n ≤ 254.

CHARACTER[(n)] or CHAR[(n)] CHARACTER(n)

A varying-length character string of
maximum length n. If n > 254 or ≤
32 767, this data type is considered a
long field. See “Using Long Strings”
on page 47 for more information.

VARCHAR(n) CHARACTER(n) VARYING

A varying-length character string of
maximum length 32,767 bytes.

LONG VARCHAR CHARACTER(n) VARYING

A fixed-length string of n DBCS
characters where 0 < n ≤ 127.

GRAPHIC[(n)] GRAPHIC(n)

A varying-length string of n DBCS
characters. If n > 127 or ≤ 16 383, this
data type is considered a long field.
See “Using Long Strings” on page 47
for more information.

VARGRAPHIC(n) GRAPHIC(n) VARYING

Appendix E. Using SQL in PL/I 389

Table 40. Data Types for PL/I (continued)

Description DB2 Server for VSE & VM
Keyword

Equivalent PL/I Declaration

A varying-length string of DBCS
characters of maximum length 16 383.

LONG VARGRAPHIC GRAPHIC(n) VARYING

A fixed or varying-length character
string representing a date. The
minimum and maximum lengths
vary with both the format used and
whether it is an input or output
operation. See the DB2 Server for VSE
& VM SQL Reference manual for more
information.

DATE CHARACTER(n) or
CHARACTER(n) VARYING

A fixed or varying-length character
string representing a time. The
minimum and maximum lengths
vary with both the format used and
whether it is an input or output
operation. See the DB2 Server for VSE
& VM SQL Reference manual for more
information.

TIME CHARACTER(n) or
CHARACTER(n) VARYING

A fixed or varying-length character
string representing a timestamp. The
lengths can vary on input and
output. See the DB2 Server for VSE &
VM SQL Reference manual for more
information.

TIMESTAMP CHARACTER(n) or
CHARACTER(n) VARYING

Notes:

1. NUMERIC is a synonym for DECIMAL and may be used when creating or
altering tables. In such cases, however, the CREATE or ALTER function will
establish the column (or columns) as DECIMAL.

2. The data type can be stated in any way that is acceptable to PL/I; BIN
FIXED(31), BINARY FIXED(31), and FIXED BIN(31) are all equivalent. If several
variables have exactly the same attributes, you can combine them in a single
DCL statement:

DCL (X,Y,Z) BIN FIXED;

Using Stored Procedures
The following example shows how to define the parameters in a stored procedure
that uses the GENERAL linkage convention. The NOEXECOPS procedure option
must be specified.

PLISAMP: PROC(PARM1, PARM2, ...)
OPTIONS(MAIN, NOEXECOPS);

DCL PARM1 ... /* first parameter */
DCL PARM2 ... /* second parameter */

.

.

.

Figure 91. Stored Procedure - Using GENERAL Linkage Convention

390 Application Programming

The following example shows how to define the parameters in a stored procedure
that uses the GENERAL WITH NULLS linkage convention.

PLISAMP: PROC(PARM1, PARM2, INDSTRUC)
OPTIONS(MAIN, NOEXECOPS);

DCL PARM1 ... /* first parameter */
DCL PARM2 ... /* second parameter */

DCL 01 INDSTRUC,
02 IND1 BIN FIXED(15), /* first ind var */
02 IND2 BIN FIXED(15); /* second ind var */

...

Figure 92. Stored Procedure - Using GENERAL WITH NULLS Linkage Convention

Appendix E. Using SQL in PL/I 391

392 Application Programming

Appendix F. Decision Tables to Grant Privileges on Packages

How to Use the Decision Tables 394 Decision Tables 395

© Copyright IBM Corp. 1987, 2001 393

How to Use the Decision Tables
The DB2 Server for VSE & VM product uses decision tables to determine whether
the owner of a package has the authority or the privilege to execute a given
statement. There are three possible scores for each static statement:

‘G’ Means that the package owner has the necessary authorization or privilege
for this statement such that the owner can receive the RUN privilege.

‘Y’ Means that the package owner has the necessary authorization or privilege
for this statement such that the owner can receive the RUN privilege, but
not the GRANT option on that privilege.

‘D’ Means that the package owner must have DBA authority to execute the
program containing this statement. No entry is made in the authorization
catalog tables.

‘G’ is the highest score, followed by ‘Y’, followed by ‘D’. For example, suppose a
program contains three statements. The package owner receives a ‘G’, on two of
them, but a ‘Y’ on the third (this occurs when the object referenced in the
statement does not exist, or the privileges of the object cannot be resolved). In this
situation, the database manager assigns the package a ‘Y’ (the lower score),
allowing the owner to run the package but not to grant the RUN privilege on the
package to another user. Because the preprocessor does not distinguish between
certain SQL statements that are applied to one application server or to another, you
can compensate by doing one of the following:
v Use dynamic statements that cause RUNAUTH=G on both application servers.
v Create separate packages on each application server. These separate packages

can then be invoked by a mainline program.
v Create dummy tables that have the same user IDs and table names on the other

application server.

Dynamic statements are always given a score of ‘G’.

The next few pages show tables. In these tables:
‘G’, ‘Y’, and ‘D’ have the meanings outlined above.
‘(G)’ and ‘(Y)’ mean that the score for the statement is either ‘G’ or ‘Y’, an error
message is produced when the program is preprocessed, a partial section for
the statement is placed into the package, and the authority for the statement is
checked again at the time the package is run.
‘n/a’ means ‘not applicable’.
package owner is the authorization ID of the person who preprocesses the
program.

394 Application Programming

Decision Tables
ACQUIRE DBSPACE

For cases A2 and B2, the system makes an entry in the SYSUSERAUTH catalog
table with RESOURCEAUTH set to ‘Y’. In addition, the NAME column is set to the
package_id and the AUTHOR column is set to the authorization ID of the person
who preprocessed the program. The entry indicates the program’s dependency.

ALTER DBSPACE

Dbspace Owner

Pkg Owner's
Authority

A DBA D G D

PUBLIC

PRIVATE

Dbspace Owner
is Pkg Owner

Dbspace Owner
not Pkg Owner

B RESOURCE (G) G (G)

C None of the above (G) (G) (G)

1 2 3

Dbspace Owner

Pkg Owner's
Authority

A DBA G D

Dbspace Owner
is Pkg Owner

Dbspace Owner
not Pkg Owner

B non-DBA G (G)

1 2

Appendix F. Decision Tables to Grant Privileges on Packages 395

ALTER TABLE

For cases B2, C1, and C2, the system makes entries in the SYSTABAUTH catalog
table with the ALTERAUTH columns set to ‘Y’. The entries represent this
package’s dependency on ALTER privilege for the table.

The preprocessor determines which level of RUN privilege to give the owner. For
some SQL statements, privileges are not checked for all objects affected by the
statement. For example, when manipulating primary and foreign keys with the
ALTER TABLE statement, ALTER privilege is only checked for the table_name
following the ALTER TABLE statement rather than all the tables involved.
Additional ALTER and REFERENCES privileges are checked at run time.

COMMENT ON

Table Owner

Pkg Owner's
Authority and
Tbl Privilege

A DBA, no ALTER DD

Table Owner
is Pkg Owner

Table Owner
not Pkg Owner

Table does not
yet exist

B ALTER without GRANT n/a Y

C ALTER with GRANT G G

1 2 3

non-DBA , no ALTER n/a

n/a

n/a

n/a

(G) (G)D

Table/View Owner

Pkg Owner's
Authority

A DBA D

Table/View Owner
is Pkg Owner

Table/View Owner
not Pkg Owner

B non-DBA G (G)

G

1 2

396 Application Programming

CREATE INDEX

For cases B2, C1, and C2, the system makes an entry in the SYSTABAUTH catalog
table with the INDEXAUTH column set to ‘Y’. The entries represent this package’s
dependency on INDEX authority privilege for the table.

Note: It is possible for the owner of a table to create an index on that table in the
name of another authorization ID. This is true even if the table owner does
not have DBA authority.

CREATE TABLE

DELETE

There are two decision tables that apply to DELETE:

The Table Where the Deletion Is Applied :

Table on which INDEX is based

Pkg Owner's
Authority and
Tbl Privilege

A
DBA, no INDEX

D

Table Exists and
the Table's Owner

Table does not yet exist
and the Table's Owner

B non-DBA, INDEX
without GRANT

n/a Y

C
non-DBA, INDEX
with GRANT

G G

1 2 3

non-DBA , no INDEX n/a

n/a

n/an/a

n/a n/a

(G)

(G)

(G) (Y)

(Y)

D

is Pkg Owner is Pkg Ownernot Pkg Owner not Pkg Owner

4

Table Owner

Pkg Owner's
Authority

A DBA D

Table Owner
is Pkg Owner

Table Owner
not Pkg Owner

B non-DBA G (G)

G

1 2

Appendix F. Decision Tables to Grant Privileges on Packages 397

In cases B2, C1, and C2, the application server makes entries in the SYSTABAUTH
catalog table with the DELETEAUTH column set to ‘Y’. The entries represent this
package’s dependency on the DELETE privilege for the table.

Any Tables Referenced in a WHERE Clause :

Note: The authorization checking in the previous decision table precedes the logic
of this table. If the first decision table yields a negative SQLCODE,
processing stops. Otherwise, the system applies the lowest level of
authorization gained from the two decision tables.

In cases B2, C1, and C2, the application server makes entries in the SYSTABAUTH
catalog table with the SELECTAUTH column set to ‘Y’. The entries represent this
package’s dependency on SELECT privilege for the table.

Table/View on which DELETE is applied

Pkg Owner's
Authority and
Tbl Privilege

A
DBA, no DELETE

D

Table/View Exists and
the Table/View's Owner

Table/View does not yet exist
and the Table/View's Owner

B non-DBA, DELETE
without GRANT

n/a Y

C
non-DBA, DELETE
with GRANT

G G

1 2 3

non-DBA , no DELETE n/a

n/a

n/an/a

n/a n/a

(G)

(G)

(G) (Y)

(Y)

D

is Pkg Owner is Pkg Ownernot Pkg Owner not Pkg Owner

4

Table/Views in WHERE clause

Pkg Owner's
Authority and
Tbl Privilege

A
DBA, no SELETE

Table/View Exists and
the Table/View's Owner

Table/View does not yet exist
and the Table/View's Owner

B non-DBA, SELECT
without GRANT

n/a Y

C
non-DBA, SELECT
with GRANT

G G

1 2 3

non-DBA , no SELECT n/a

n/a

n/an/a

n/a n/a

(G)

(G)

(G) (Y)

(Y)

D

is Pkg Owner is Pkg Ownernot Pkg Owner not Pkg Owner

4

Y

Figure 93. Tables/Views in WHERE clause

398 Application Programming

In case A2, the system makes an entry in the SYSUSERAUTH catalog table to show
this package’s dependency on DBA authority.

GRANT for Authorities Statement

INSERT:

There are two decision tables that apply to INSERT:

The Table Where the Insertion Is Applied :

In cases B2, C1, and C2, the system makes entries in the SYSTABAUTH catalog
table with the INSERTAUTH column set to ‘Y’. The entries represent this package’s
dependency on INSERT privilege for the table.

Any Tables Referenced in a WHERE Clause of a Subselect :

Authority Granted

Authority
of Grantor

A
DBA

B Non-DBA G G

1 2 3

D

GG

D G

DBA
CONNECT to

another userRESOURCE CONNECT to self

4

D

Table/Views to which INSERT is applied

Pkg Owner's
Authority and
Tbl Privilege

A
DBA, no INSERT

Table/View Exists and
the Table/View's Owner

Table/View does not yet exist
and the Table/View's Owner

B non-DBA, INSERT
without GRANT

n/a Y

C
non-DBA, INSERT
with GRANT

G G

1 2 3

non-DBA, no INSERT n/a

n/a

n/an/a

n/a n/a

(G)

(G)

(G) (Y)

(Y)

D

is Pkg Owner is Pkg Ownernot Pkg Owner not Pkg Owner

4

D

Appendix F. Decision Tables to Grant Privileges on Packages 399

Note: The authorization checking in the previous decision table precedes the logic
of this table.

The decision table used here is the same as that used by tables in the WHERE
clause of a DELETE in Figure 93 on page 398.

In cases B2, C1, and C2, the system makes entries in the SYSTABAUTH catalog
table with the SELECTAUTH column set to ‘Y’. The entries represent this
package’s dependency on SELECT privilege for the table.

In case A2, the system makes an entry in the SYSUSERAUTH catalog table to show
this package’s dependency on DBA authority.

REVOKE for Authorities Statement

SELECT

There are two decision tables that apply to SELECT:

The Tables in the FROM List :

In cases B2, C1, and C2, the application server makes entries in the SYSTABAUTH
catalog table with the SELECTAUTH column set to ‘Y’. The entries represent this
package’s dependency on INSERT privilege for the table.

Authority Revoked

Authority
of Revoker

A
DBA

B Non-DBA G G

1 2 3

D

G

D

DBA CONNECTRESOURCE

D

Table/Views in the FROM list

Pkg Owner's
Authority and
Tbl Privilege

A
DBA, no SELECT

Table/View Exists and
the Table/View's Owner

Table/View does not yet exist
and the Table/View's Owner

B non-DBA, SELECT
without GRANT

n/a Y

C
non-DBA, SELECT
with GRANT

G G

1 2 3

non-DBA, no SELECT n/a

n/a

n/an/a

n/a n/a

(G)

(G)

(G) (Y)

(Y)

D

is Pkg Owner is Pkg Ownernot Pkg Owner not Pkg Owner

4

Y

400 Application Programming

In case A2, there are some instances where a ‘Y’ entry is made in the DBAAUTH
column of the SYSUSERAUTH catalog table, showing package dependencies on
DBA authority.

Any Tables Referenced in a WHERE Clause :

Note: The authorization checking in the previous decision table precedes the logic
of this table.

The decision table used here is the same as that used by tables in the WHERE
clause of a DELETE in Figure 93 on page 398.

In cases B2, C1, and C2, the system makes entries in the SYSTABAUTH catalog
table with the SELECTAUTH column set to ‘Y’. The entries represent this
package’s dependency on SELECT privilege for the table.

In case A2, the system makes an entry in the SYSUSERAUTH catalog table to show
this package’s dependency on DBA authority.

The UPDATE Tables

There are two decision tables that apply to UPDATE:

The Table Where the Update Is Applied :

In cases B2, C1, and C2, the system makes entries in the SYSTABAUTH catalog
table with the UPDATEAUTH column set to ‘Y’. The entries represent this
package’s dependency on UPDATE privilege for the table.

Any Tables Referenced in a WHERE Clause :

Note: The authorization checking in the previous decision table precedes the logic
of this table.

Table/Views to which UPDATE is applied

Pkg Owner's
Authority and
Tbl Privilege

A
DBA, no UPDATE

Table/View Exists and
the Table/View's Owner

Table/View does not yet exist
and the Table/View's Owner

B non-DBA, UPDATE
without GRANT

n/a Y

C
non-DBA, UPDATE
with GRANT

G G

1 2 3

non-DBA, no UPDATE n/a

n/a

n/an/a

n/a n/a

(G)

(G)

(G) (Y)

(Y)

D

is Pkg Owner is Pkg Ownernot Pkg Owner not Pkg Owner

4

D

Appendix F. Decision Tables to Grant Privileges on Packages 401

The decision table used here is the same as that used by tables in the WHERE
clause of a DELETE in Figure 93 on page 398.

In cases B2, C1, and C2, the system makes entries in the SYSTABAUTH catalog
table with the SELECTAUTH column set to ‘Y’. The entries represent this
package’s dependency on SELECT privilege for the table.

In case A2, the system makes an entry in the SYSUSERAUTH catalog table to show
this package’s dependency on DBA authority.

There are two decision tables that apply to UPDATE:

The LOCK DBSPACE Table

The LOCK TABLE Table

For cases B1, B2, and C2, the system makes entries in the SYSTABAUTH catalog
table. The entries have the SELECTAUTH column set to ‘Y’ to show the package’s
dependency.

Dbspace Owner

Pkg Owner's
Authority

A DBA G D

Dbspace Owner
is Pkg Owner

Dbspace Owner
not Pkg Owner

B non-DBA G (G)

1 2

Table Owner

Pkg Owner's
Authority and
Tbl Privilege

A DBA, no SELECT DD

Table Owner
is Pkg Owner

Table Owner
not Pkg Owner

Table does not
yet exist

B SELECT without GRANT n/a Y

C SELECT with GRANT G G

1 2 3

non - DBA , no SELECT n/a

n/a

n/a

n/a

(G) (G)D

402 Application Programming

Notices

IBM may not offer the products, services, or features discussed in this document in
all countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10594-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1987, 2001 403

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
Mail Station P300
522 South Road
Poughkeepsie, NY 12601-5400
U.S.A

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements, or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility, or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs in source language,
which illustrates programming techniques on various operating platforms. You
may copy, modify, and distribute these sample programs in any form without
payment to IBM, for the purposes of developing, using, marketing, or distributing
application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs.

404 Application Programming

Programming Interface Information
This manual documents intended Programming Interfaces that allow the customer
to write programs to obtain services of DB2 Server for VSE & VM.

Trademarks
The following terms are trademarks of International Business Machines
Corporation in the United States, or other countries, or both:

APL2
CICS
CICS/VSE
DATABASE 2
DataPropagator
DB2
DRDA
IBM
Language Environment
OS/390
QMF
SQL/DS
System/390
VM/ESA
VSE/ESA

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks
of others.

Notices 405

406 Application Programming

Bibliography

This bibliography lists publications that are
referenced in this manual or that may be helpful.

DB2 Server for VM Publications

v DB2 Server for VSE & VM Application
Programming, SC09-2889

v DB2 Server for VSE & VM Database
Administration, SC09-2888

v DB2 Server for VSE & VM Database Services
Utility, SC09-2983

v DB2 Server for VSE & VM Diagnosis Guide and
Reference, LC09-2907

v DB2 Server for VSE & VM Overivew, GC09-2995
v DB2 Server for VSE & VM Interactive SQL Guide

and Reference, SC09-2990
v DB2 Server for VSE & VM Master Index and

Glossary, SC09-2890
v DB2 Server for VM Messages and Codes,

GC09-2984
v DB2 Server for VSE & VM Operation, SC09-2986
v DB2 Server for VSE & VM Quick Reference,

SC09-2988
v DB2 Server for VM System Administration,

SC09-2980
v DB2 Server for VSE & VM Performance Tuning

Handbook, GC09-2987
v DB2 Server for VSE & VM SQL Reference,

SC09-2989

DB2 Server for VSE Publications

v DB2 Server for VSE & VM Application
Programming, SC09-2889

v DB2 Server for VSE & VM Database
Administration, SC09-2888

v DB2 Server for VSE & VM Database Services
Utility, SC09-2983

v DB2 Server for VSE & VM Diagnosis Guide and
Reference, LC09-2907

v DB2 Server for VSE & VM Overivew, GC09-2995
v DB2 Server for VSE & VM Interactive SQL Guide

and Reference, SC09-2990
v DB2 Server for VSE & VM Master Index and

Glossary, SC09-2890
v DB2 Server for VSE Messages and Codes,

GC09-2985
v DB2 Server for VSE & VM Operation, SC09-2986

v DB2 Server for VSE System Administration,
SC09-2981

v DB2 Server for VSE & VM Performance Tuning
Handbook, GC09-2987

v DB2 Server for VSE & VM SQL Reference,
SC09-2989

Related Publications

v DB2 Server for VSE & VM Data Restore,
SC09-2991

v DRDA: Every Manager's Guide, GC26-3195
v IBM SQL Reference, Version 2, Volume 1,

SC26-8416
v IBM SQL Reference, SC26-8415

VM/ESA Publications

v VM/ESA: General Information, GC24-5745
v VM/ESA: VMSES/E Introduction and Reference,

GC24-5837
v VM/ESA: Installation Guide, GC24-5836
v VM/ESA: Service Guide, GC24-5838
v VM/ESA: Planning and Administration,

SC24-5750
v VM/ESA: CMS File Pool Planning,

Administration, and Operation, SC24-5751
v VM/ESA: REXX/EXEC Migration Tool for

VM/ESA, GC24-5752
v VM/ESA: Conversion Guide and Notebook,

GC24-5839
v VM/ESA: Running Guest Operating Systems,

SC24-5755
v VM/ESA: Connectivity Planning, Administration,

and Operation, SC24-5756
v VM/ESA: Group Control System, SC24-5757
v VM/ESA: System Operation, SC24-5758
v VM/ESA: Virtual Machine Operation, SC24-5759
v VM/ESA: CP Programming Services, SC24-5760
v VM/ESA: CMS Application Development Guide,

SC24-5761
v VM/ESA: CMS Application Development

Reference, SC24-5762
v VM/ESA: CMS Application Development Guide for

Assembler, SC24-5763
v VM/ESA: CMS Application Development Reference

for Assembler, SC24-5764

© Copyright IBM Corp. 1987, 2001 407

v VM/ESA: CMS Application Multitasking,
SC24-5766

v VM/ESA: CP Command and Utility Reference,
SC24-5773

v VM/ESA: CMS Primer, SC24-5458
v VM/ESA: CMS User’s Guide, SC24-5775
v VM/ESA: CMS Command Reference, SC24-5776
v VM/ESA: CMS Pipelines User’s Guide, SC24-5777
v VM/ESA: CMS Pipelines Reference, SC24-5778
v VM/ESA: XEDIT User’s Guide, SC24-5779
v VM/ESA: XEDIT Command and Macro Reference,

SC24-5780
v VM/ESA: Quick Reference, SX24-5290
v VM/ESA: Performance, SC24-5782
v VM/ESA: Dump Viewing Facility, GC24-5853
v VM/ESA: System Messages and Codes, GC24-5841
v VM/ESA: Diagnosis Guide, GC24-5854
v VM/ESA: CP Diagnosis Reference, SC24-5855
v VM/ESA: CP Diagnosis Reference Summary,

SX24-5292
v VM/ESA: CMS Diagnosis Reference, SC24-5857
v CP and CMS control block information is not

provided in book form. This information is
available on the IBM VM/ESA operating
system home page
(http://www.ibm.com/s390/vm).

v IBM VM/ESA: CP Exit Customization, SC24-5672
v VM/ESA REXX/VM User’s Guide, SC24-5465
v VM/ESA REXX/VM Reference, SC24-5770

C for VM/ESA Publications

v IBM C for VM/ESA Diagnosis Guide, SC09-2149
v IBM C for VM/ESA Language Reference,

SC09-2153
v IBM C for VM/ESA Compiler and Run-Time

Migration Guide, SC09-2147
v IBM C for VM/ESA Programming Guide,

SC09-2151
v IBM C for VM/ESA User’s Guide, SC09-2152

Virtual Storage Extended/Enterprise Systems
Architecture (VSE/ESA) Publications

v IBM VSE/ESA Administration, SC33-6505
v IBM VSE/ESA Diagnosis Tools, SC33-6514
v IBM VSE/ESA General Information, GC33-6501
v IBM VSE/ESA Guide for Solving Problems,

SC33-6510

v IBM VSE/ESA Guide to System Functions,
SC33-6511

v IBM VSE/ESA Installation, SC33-6504
v IBM VSE/ESA Messages & Codes, SC33-6507
v IBM VSE/ESA Networking Support, SC33-6508
v IBM VSE/ESA Operation, SC33-6506
v IBM VSE/ESA Planning, SC33-6503
v IBM VSE/ESA System Control Statements,

SC33-6513
v IBM VSE/ESA System Macros User’s Guide,

SC33-6515
v IBM VSE/ESA System Macros Reference,

SC33-6516
v IBM VSE/ESA System Utilities, SC33-6517
v IBM VSE/ESA Unattended Node Support,

SC33-6512
v IBM VSE/ESA Using IBM Workstations,

SC33-6509

CICS/VSE Publications

v CICS/VSE Application Programming Reference,
SC33-0713

v CICS/VSE Application Programming Guide,
SC33-0712

v CICS Application Programming Primer (VS
COBOL II), SC33-0674

v CICS/VSE CICS-Supplied Transactions, SC33-0710
v CICS/VSE Customization Guide, SC33-0707
v CICS/VSE Facilities and Planning Guide,

SC33-0718
v CICS/VSE Intercommunication Guide, SC33-0701
v CICS/VSE Performance Guide, SC33-0703
v CICS/VSE Problem Determination Guide,

SC33-0716
v CICS/VSE Recovery and Restart Guide, SC33-0702
v CICS/VSE Release Guide, GC33-1645
v CICS/VSE Report Controller User’s Guide,

SC33-0705
v CICS/VSE Resource Definition (Macro), SC33-0709
v CICS/VSE Resource Definition (Online),

SC33-0708
v CICS/VSE System Definition and Operations

Guide, SC33-0706
v CICS/VSE System Programming Reference,

SC33-0711
v CICS/VSE User’s Handbook, SX33-6079
v CICS/VSE XRF Guide, SC33-0704

CICS/ESA Publications

408 Application Programming

v CICS/ESA General Information, GC33-0803

VSE/Virtual Storage Access Method (VSE/VSAM)
Publications

v VSE/VSAM Commands and Macros, SC33-6532
v VSE/VSAM Introduction, GC33-6531
v VSE/VSAM Messages and Codes, SC24-5146
v VSE/VSAM Programmer’s Reference, SC33-6535

VSE/Interactive Computing and Control Facility
(VSE/ICCF) Publications

v VSE/ICCF Administration and Operation,
SC33-6562

v VSE/ICCF Primer, SC33-6561
v VSE/ICCF User’s Guide, SC33-6563

VSE/POWER Publications

v VSE/POWER Administration and Operation,
SC33-6571

v VSE/POWER Application Programming,
SC33-6574

v VSE/POWER Networking, SC33-6573
v VSE/POWER Remote Job Entry, SC33-6572

Distributed Relational Database Architecture
(DRDA) Library

v Application Programming Guide, SC26-4773
v Architecture Reference, SC26-4651
v Connectivity Guide, SC26-4783
v DRDA: Every Manager's Guide, GC26-3195
v Planning for Distributed Relational Database,

SC26-4650
v Problem Determination Guide, SC26-4782

C/370 for VSE Publications

v IBM C/370 General Information, GC09-1386
v IBM C/370 Programming Guide for VSE,

SC09-1399
v IBM C/370 Installation and Customization Guide

for VSE, GC09-1417
v IBM C/370 Reference Summary for VSE,

SX09-1246
v IBM C/370 Diagnosis Guide and Reference for

VSE, LY09-1805

VSE/REXX Publication

v VSE/REXX Reference, SC33-6642

Other Distributed Data Publications

v IBM Distributed Data Management (DDM)
Architecture, Architecture Reference, Level 4,
SC21-9526

v IBM Distributed Data Management (DDM)
Architecture, Implementation Programmer’s Guide,
SC21-9529

v VM/Directory Maintenance Licensed Program
Specification, GC20-1836

v IBM Distributed Relational Database Architecture
Reference, SC26-4651

v IBM Systems Network Architecture, Format and
Protocol Reference, SC30-3112

v SNA LU 6.2 Reference: Peer Protocols, SC31-6808
v Reference Manual: Architecture Logic for LU Type

6.2, SC30-3269
v IBM Systems Network Architecture, Logical Unit

6.2 Reference: Peer Protocols, SC31-6808
v Distributed Data Management (DDM) General

Information, GC21-9527

CCSID Publications

v Character Data Representation Architecture,
Executive Overview, GC09-2207

v Character Data Representation Architecture
Reference and Registry, SC09-2190

DB2 Server RXSQL Publications

v DB2 REXX SQL for VM/ESA Installation and
Reference, SC09-2891

C/370 Publications

v IBM C/370 Installation and Customization Guide,
GC09-1387

v IBM C/370 Programming Guide, SC09-1384

Communication Server for OS/2 Publications

v Up and Running!, GC31-8189
v Network Administration and Subsystem

Management Guide, SC31-8181
v Command Reference, SC31-8183
v Message Reference, SC31-8185
v Problem Determination Guide, SC31-8186

Distributed Database Connection Services
(DDCS) Publications

v DDCS User’s Guide for Common Servers,
S20H-4793

v DDCS for OS/2 Installation and Configuration
Guide, S20H-4795

VTAM Publications

Bibliography 409

v VTAM Messages and Codes, SC31-6493
v VTAM Network Implementation Guide, SC31-6494
v VTAM Operation, SC31-6495
v VTAM Programming, SC31-6496
v VTAM Programming for LU 6.2, SC31-6497
v VTAM Resource Definition Reference, SC31-6498
v VTAM Resource Definition Samples, SC31-6499

CSP/AD and CSP/AE Publications

v Developing Applications, SH20-6435
v CSP/AD and CSP/AE Installation Planning Guide,

GH20-6764
v Administering CSP/AD and CSP/AE on VM,

SH20-6766
v Administering CSP/AD and CSP/AE on VSE,

SH20-6767
v CSP/AD and CSP/AE Planning, SH20-6770
v Cross System Product General Information,

GH23-0500

Query Management Facility (QMF) Publications

v Introducing QMF, GC27-0714
v Installing and Managing QMF for VSE,

GC27-0721
v QMF Reference, SC27-0715
v Installing and Managing QMF for VM,

GC27-0720
v Developing QMF Applications, SC27-0718
v QMF Messages and Codes, GC27-0717
v Using QMF, SC27-0716

Query Management Facility (QMF) for Windows
Publications

v Getting Started with QMF for Windows,
SC27-0723

v Installing and Managing QMF for Windows,
GC27-0722

DL/I DOS/VS Publications

v DL/I DOS/VS Application Programming,
SH24-5009

COBOL Publications

v VS COBOL II Migration Guide for VSE,
GC26-3150

v VS COBOL II Migration Guide for MVS and
CMS, GC26-3151

v VS COBOL II General Information, GC26-4042
v VS COBOL II Language Reference, GC26-4047

v VS COBOL II Application Programming Guide,
SC26-4045

v VS COBOL II Application Programming
Debugging, SC26-4049

v VS COBOL II Installation and Customization for
CMS, SC26-4213

v VS COBOL II Installation and Customization for
VSE, SC26-4696

v VS COBOL II Application Programming Guide for
VSE, SC26-4697

Data Facility Storage Management
Subsystem/VM (DFSMS/VM) Publications

v DFSMS/VM RMS User’s Guide and Reference,
SC35-0141

Systems Network Architecture (SNA)
Publications

v SNA Transaction Programmer’s Reference Manual
for LU Type 6.2, GC30-3084

v SNA Format and Protocol Reference: Architecture
Logic for LU Type 6.2, SC30-3269

v SNA LU 6.2 Reference: Peer Protocols, SC31-6808
v SNA Synch Point Services Architecture Reference,

SC31-8134

Miscellaneous Publications

v IBM 3990 Storage Control Planning, Installation,
and Storage Administration Guide, GA32-0100

v Dictionary of Computing, ZC20-1699
v APL2 Programming: Using Structured Query

Language, SH21-1056
v ESA/390 Principles of Operation, SA22-7201

Related Feature Publications

v DB2 for VM Control Center Operations Guide,
GC09-2993

v DB2 for VSE Control Center Operations Guide,
GC09-2992

v DB2 Replication Guide and Reference, SC26-9920

410 Application Programming

Index

Special Characters
>

convention xiii
See also shift-in character 53

<
convention xiii
See also shift-out character 53

Numerics
24-bit addressing 116
31-bit addressing 116

A
access

concurrent 256
table belonging to other users 32

adding
columns

to a table 259
in SQL expressions 54

additional predicates 45
ALL

select-clause 31
ALL keyword

subqueries 81
ALLOCATE statement of PL/I 388
ALTER TABLE

privileges 290
altering

table 259
AND operator 43
ANSI 135, 168
ANY 81
APOST preprocessor parameter 123, 161
application

CMS 15
application epilog

batch applications 16
CICS/VSE applications 17
ICCF applications 16

application program
example 21

ARIDBS 145
ARIDDFP 179
ARIDSQLA 179
ARIPADR4 145, 179
ARIPEIFA 145
ARIPRDID

DB2 Server for VSE linkage
module 179

ARIPRPA preprocessor 155
ARIPRPC preprocessor 155
ARIPRPF preprocessor 155
ARIPRPP preprocessor 155
ARIPSTR 145
ARIRCAN 16
ARIRRTED, DB2 Server for VSE linkage

module 179

ARIS6ASC
sample program 306

ARIS6ASD
sample program 306
source code 306

ARIS6CBC
sample program 350
source code 350

ARIS6CBD
sample program 350
source code 350

ARIS6CC
sample program 328
source code 328

ARIS6CD
sample program 328
source code 328

ARIS6FTC 368
sample program 368
source code 368

ARIS6FTD 368
sample program 368
source code 368

ARIS6PLC
sample program 380
source code 380

ARIS6PLD
sample program 380
source code 380

ARISSMA 145
ARISSMF 145
ARISYSDD 179
arithmetic error

outer select 277
arithmetic operator

in syntax diagrams x
ASM preprocessor parameter 122
assembler

acquiring the SQLDSECT area 306
data types 315
declaring host variables 310
declaring the SQLCA 314
declaring the SQLDA 314
embedding SQL statements

example 9, 312
sample program 306
stored procedures 322

atomic integrity 285
authority

granting 266
overview 268
revoking from others 268

authorization-ID
naming conventions 27

automatic
revocation of privileges 269

automatic rollback
data definition statements 258
deadlocks 256

B
backing out

changes 19
backout

definition 256
backslash

hex value 329
based structures 214
basic form

description 4
batch, application programs

remote CICS/VSE transactions 154
batch applications, modules

required 179
batch program termination 16
BEGIN DECLARE SECTION 8
BIND preprocessor parameter 162
BLocK

preprocessor parameter 124
blocking 141, 175

remote unit of work 124, 143
blocks

pages 254

C
C programming language

C 344
C compiler preprocessor 330
case sensitivity 329
character constants in SQL

statements 329
considerations 328
data conversion considerations 338
data types 344
date calculations 338
DBCS data 339
declaring host variables 330
declaring SQLCA 342
declaring SQLDA 343
delimiting SQL statements 329
dynamic allocation of SQLDA 343
embedding SQL statements

example 9
INCLUDE statement 329
NUL-terminated strings and

truncation 338
placement of SQL statements 328
preprocessor generated

statements 339
preprocessor parameter 122
reentrant programs 346
stored procedures 346
trigraphs 339

case sensitivity
C 329

catalog tables 271
CBND transaction 186
CCSIDGraphic preprocessor

parameter 124

© Copyright IBM Corp. 1987, 2001 411

CCSIDMixed preprocessor
parameter 124, 162

CCSIDSbcs preprocessor parameter 125,
162

CESN transaction 153
changing

data type of a column 259
CHAR data type

assembler 315
COBOL 362
Fortran 376
PL/I 389

character
data 59
string

constant 59
character constant

SQL statements
C 329

character subtype
CCSID 48
constant 59
default values 48
overriding defaults 49

CHARSUB preprocessor parameter 125,
162

CHECK preprocessor parameter 163
checking

SQLCA 199
choose

in syntax diagrams x
CICS/VSE

CONNECT considerations 13, 153
DB2 Server for VSE linkage

module 179
logical unit of work

considerations 18
program termination 17
running in batch 154
table entries required 18
use of WHENEVER 204

CICS/VSE default rules
user IDs 153

CICSUSER default user ID 153
CIRB transaction 153
clause

order 76
CLOSE

format 39
closed state of cursor 35
CMS

applications 15
work units 282

CMS SUBSET
LUW 284
SQLRMEND EXEC 284

COB2 preprocessor parameter 163, 356
COBOL

31-bit addressing 116
COB2 compiler option

consideration 356
COBRC compiler option

consideration 357
column 7 358
continuation of SQL statements 350
COPYBOOKs 357
data conversion considerations 358

COBOL (continued)
data types 362
DBCS data 358
declaring host variables 352
declaring SQLCA 359
delimiting SQL statements 351
DYNAM compiler option 365
dynamic statement restrictions 360
embedding SQL statements

example 9
module required 179
placement of SQL statements 350
preprocessor parameter 122
QUOTE compiler option

consideration 355
sample program 350
stored procedures 365
using the COB2 parameter 356
using the COBRC parameter 357
using the INCLUDE statement 357

COBRC preprocessor parameter 163, 357
colon

used in indicator variables 62
column

correlation function 86
join considerations 69
naming convention 27
virtual 64

combining
queries 92

COMma preprocessor parameter 128
COMMENT ON 260
COMMIT 19

recommendations 16
committing changes

tables 19
common column names 69
comparison

operator 44
compiling

program 144, 178
concatenation

EXECUTE IMMEDIATE 212
operator 56
symbol 56

concurrent
access 256

CONNECT
application programs 12
statement 117

CONNECT authority
description 266
granting 266

connecting DB2 Server for VSE & VM
application programs 12

connecting to the application server
CICS/VSE transactions 153

consistency
of data 18
token 126, 146, 149, 163, 180, 185

constant
CCSID 59
character subtypes 59
search conditions 55
select-list expressions 31

constraint
defer 295

constraint (continued)
enforce 295
naming conventions 27
referential 287

contention
for resources 256

continuation of SQL statements
assembler 312
C 328
COBOL 350
Fortran 368
PL/I 380
placement of SQL statements 368

conventions
syntax diagram notation ix

conversion of data 226
See data conversion 226

converting SQL statements 186
COPYBOOKs, COBOL 357
correlation 83

function 86
name 84
subqueries using joins 87
subquery 83
table 85

COUNT(*) in a grouping query 74
CREATE INDEX 259
CREATE SYNONYM 260
CREATE TABLE 259
CREATE VIEW

WITH CHECK OPTION 64
creating

indexes 259
synonym 260
table 259

field procedure 259
NULL value 259
referential integrity 259
unique constraint 259

view 64
CTOKEN preprocessor parameter 126,

163
cultural sorting 34, 278
current row of a cursor 35
cursor

closed state 35
closing 39
current row 35
declaring 35
description 35
fetching 37
inserting 38
locking stability 136, 170
management 35
name

syntax rules 36
naming convention 27
open state 35
opening 36
ordering results 40
result table 35
scope 36

D
data

consistency 18

412 Application Programming

data (continued)
inconsistent 18
virtual 64

data code
SQLDA

datetime 228
data conversion

C 338
COBOL 358
dynamically defined statements 226
Fortran 373
join conditions 68
PL/I 384
summary 50
unions 93

data definition 258
data integrity

atomic integrity 285
referential integrity 286

Data Integrity
entity integrity 285
unique on columns 286

Data Propagator Capture
on tables 278

data type
assembler 315
C 344
CHARACTER 46
COBOL 362
DATE 46
DECIMAL 46
description 8, 46
FLOAT 46
Fortran 376
GRAPHIC 46
INTEGER 46
LONG VARCHAR 46
LONG VARGRAPHIC 46
PL/I 389
SMALLINT 46
TIME 46
TIMESTAMP 46
VARCHAR 46
VARGRAPHIC 46

database administrator (DBA)
description 266

date arithmetic
C 338

DATE data type
assembler 315
C 345
COBOL 363
Fortran 376
PL/I 389

datetime
constants 61

DB2 Server for VSE & VM
catalog tables 271
data types, introduction 8

DB2 Server for VSE production
libraries 152

DBA (database administrator)
granting authority 266

dbextent
description 252

DBFile preprocessor parameter
VM 134

DBList preprocessor parameter
VM 134

DBname parameter
preprocessor 133

DBP (Dynamic Backout Program) 18
dbspace 27

creating 252
defining 252
dropping 257
lock size 256
naming conventions 27
owner 252

dcssID parameter
preprocessor 133

deadlock
description 256

DECIMAL data type
assembler 315
C 344
COBOL 362
Fortran 376
PL/I 389

DECLARE CURSOR
coded queries 35

declaring
host variables

assembler 310
C 330
COBOL 352
Fortran 369
PL/I 381

return code structure
assembler 314
C 342
COBOL 359
Fortran 373
PL/I 386

static external variables
PL/I 381

default
in syntax diagrams xi

defining
indexes 259
synonym 260
tables 259

field procedure 259
NULL value 259
referential integrity 259
unique constraint 259

view on view 65
DELETE

delete rules 293
rules 293

delete connected
table 288

deleting
tables 259

delimiting SQL statements
assembler 312
C 329
COBOL 351
dynamic execution 211
PL/I 380

dependent
table 288

descendent
table 288

DESCRIBE
usage techniques 214

DFHCSDUP 18
DFHSIT 18
DISPLAY SIGN HEADING

SEPARATE 358
DISTINCT

HAVING clause 75
select-clause 30

distributed applications
application server 3

distributing packages 149, 185
division in SQL expressions 54
double-byte character set (DBCS)

characters for C 344
constants 60
data 339

assembler 313
C 339
COBOL 358
Fortran 372
PL/I 384

data type 363, 389
assembler 315
Fortran 376

double precision float 47
double quotation marks

considerations in COBOL 123, 161
DROP DBSPACE 257
DROP TABLE 259
DROP VIEW 68
dropping

column 259
table 259
view 68

DSECTs used by the database
manager 306

DTB (Dynamic Transaction Backout) 18
duration

date 61, 274
labeled 274
lock 256
time 61, 274
timestamp 61, 276

DYNALC preprocessor parameter 127,
165

DYNAM compiler option
COBOL 365

Dynamic Backout Program (DBP) 18
dynamic data conversion 226

assembler 314
C 343
COBOL 360
Fortran 374
PL/I 387

dynamic SQL
description 27

dynamic statements
comparison with extended dynamic

statements 238
data conversion 226
description 236
extended 236, 246

comparison with dynamic
statements 238

introduction 236
relationship between 237

Index 413

dynamic statements (continued)
extended (continued)

remote unit of work
considerations 247

logical unit of work
considerations 246

SQLDA use 228
Dynamic Transaction Backout (DTB) 18

E
END DECLARE SECTION 8
ending logical units of work

batch applications 16
CICS/VSE transactions 17
ICCF applications 16

entity integrity 285
erasing

tables 259
error handling

application programs 197
description 195
preprocessors 155

ERROR preprocessor parameter 125, 163
evaluating

predicates 44
examining the SQLCA 199
exclusive lock

description 256, 257
EXEC

sample programs 22
SQLINIT 117
SQLPREP 118
SQLSTART 148

EXECUTE
usage techniques 212

EXECUTE IMMEDIATE
usage techniques 211

EXECUTE privilege
automatic revocation 269

executing applications
multiple user mode 147
single user mode 148

EXIST preprocessor parameter 126, 164
EXISTS predicate 91
expanding tables 259
EXPLAIN preprocessor parameter 126,

164
expression

adding 54
constants used 55
description 54, 55
dividing 54
host variables 55
multiplying 54
subtracting 54

extended dynamic statement
assembler example 240
comparison with dynamic

statements 238
description 236
introduction 236
logical unit of work

considerations 246
relationship between 237
remote unit of work

considerations 247

external source member
including 143

F
FETCH

description 37
error handling for a select-list 205
format 37

fetch and insert blocking 141, 175
field procedure

collating sequence 34
using 277

FIPS 135, 168
Flagger

description 135, 168
SQLFLAG 167

FLOAT data type
assembler 315
C 344
COBOL 362
Fortran 376
PL/I 389

FOR update-clause 34
foreign key 288
Fortran 373

continuation of SQL statements 368
data types 376
declaring host variables 369
embedding SQL statements 371

example 11
long character strings 371
preprocessor

restrictions 375
preprocessor parameter 122
sample program 368

fragment of syntax
in syntax diagrams xii

FROM
correlation name 84
description 32
joins 68
PREPARE statement 231

fullselect
description 29

functions
used in grouping 73

G
general rules for naming data objects 27
GRANT option

description 268
granting

authorities 266
already owned 267

graphic constants
PL/I formats 60
SQL format 60

GRAPHIC data type
assembler 315
C 344
COBOL 363
Fortran 376
PL/I 389

GRaphic preprocessor parameter 127,
165

group-by-clause
description 32

GROUP BY clause
correlated subquery

considerations 86
description 73
subqueries 82

group query 32
See group-by-clause 32

grouping
feature 73

grouping queries
VARCHAR 74
VARGRAPHIC 74

H
HAVING clause

correlated subqueries 86
description 33, 75
subqueries 80, 82

header pages 254
hexadecimal constants

within expressions 59
host language

description 4
host structure 310, 330, 352, 369, 381

COBOL 355
description 57

host variable
assembler 313
declared in assembler 310
declared in C 330, 335, 384
declared in COBOL 352
declared in Fortran 369
declared in PL/I 381
description 57
dynamically defined statements 231
Fortran 372
function parameters

used in C 337
in syntax diagrams ix
INTO clauses 41
naming convention 27
nulls 61
PL/I 384
restriction on use in CREATE

VIEW 65
restriction on use in REVOKE 268
search conditions 55
truncation 61
used in a program 57

I
ICCF applications, modules

required 179
ICCF program termination 16
identifier

description 27
long 71

implicit
connect 117
connection 153

414 Application Programming

implicit (continued)
revocation of privileges 269

IN predicate 82
inactive

constraint 295
removing referential constraints 297
table 295

INCLUDE 143, 177
assembler 313
C 329
COBOL 357
Fortran 373
PL/I 381

INCLUDE SQLCA
assembler language 314
C 342
COBOL 359
Fortran 373
PL/I 386
pseudocode 11, 196

INCLUDE SQLDA
assembler language 314
C 343
PL/I 387
pseudocode 215

including
CICS/VSE procedures 178
external source members 143, 177
extra linkage modules 179
input from Source Statement

Library 177
relocatable modules 178
secondary input from VM

CMS file 143
inconsistency

because of cursor stability 137, 171
cursor stability inconsistencies 137,

171
inconsistent

data 18
state 18, 196

index
creating 259
naming convention 27
restriction for view 64

indicator array
description 57
in assembler 310
in C 330
in COBOL 352
in Fortran 369
in PL/I 381

INDICATOR keyword
indicator variables 62

indicator variable
description 57, 61
detecting nulls 63
detecting truncation 63
FETCH statement 37
in assembler 310
in C 330
in COBOL 352
in Fortran 369
in PL/I 381
meaning of values returned 63

initializing
SQLDA 228

initializing (continued)
your user machine 117

input host variables 36
INSERT

INSERT rules 291
rules for referential integrity 291

insert and fetch blocking 141, 175
installing

applications 116
INTEGER data type

assembler 315
C 344
COBOL 362
data types 389
Fortran 376
PL/I 389

integrity
atomic 285
data 286
entity 285
referential 286

internal statistics, updating 260
INTO clause

description 40
dynamically defined statements 216
FETCH statement 37
restriction for subqueries 80
unions 92

invoking
PL/I preprocessor

multiple user mode 156
invoking the preprocessor 118, 154
ISO 135, 168
isolation level

cursor stability 136, 170
mixing 139, 173
remote unit of work 139
repeatable read 136, 170
USER option 127, 139, 165, 173

ISOLation preprocessor parameter 127,
165

ISOLATION preprocessor
parameter 139, 173

J
job control examples

multiple user mode
preprocessing 156

suppressing printout 160
join

common column names 69
correlated subqueries 87
data conversion 68
description 68
join variable 71
limits 73
nulls 70
number permitted 73
referring to another user’s table 69,

72
SELECT * 73
single table (to itself) 71
trailing blanks 70
without join conditions 68

K
KEEP parameter 128, 166
keeping authorization names and

password secret 160
key

foreign 288
primary 288

keyword
in syntax diagrams ix

L
LABEL

SQL 260
LABEL preprocessor parameter 128, 166
limits

joins 73
link-editing

extra modules required 179
module not found 144, 178

loading
COBOL considerations 116
program 144, 178

LOCK 256
ACQUIRE DBSPACE 255
ALTER DBSPACE 255

lock size
definition 253

locking
dbspaces

explicitly 256
modifying 253
reading 253

description 256
duration 256
exclusive 256
isolation level

considerations 136, 170
share 256
tables explicitly 256
update 256

LOG job control statement 160
logical operator 43
logical unit of work (LUW)

automatic locking 256
automatic rollback 256, 258
batch considerations 16
CICS/VSE considerations 17, 18, 153
CMS considerations 15, 19
committing work done 19
description 18, 196
error handling 196
ICCF considerations 16
revoking privileges 268
rolling back work done 19
using extended dynamic

statements 246
LOGmode parameter

preprocessor 133
long character strings in Fortran 371
long strings

description 47
use 48

LONG VARCHAR
restrictions 48

unions 93

Index 415

LONG VARCHAR data type
assembler 315
C 344
COBOL 362
Fortran 376
PL/I 389

LONG VARGRAPHIC
restrictions 48

unions 93
LONG VARGRAPHIC data type

assembler 315
C 345
COBOL 363
Fortran 376
PL/I 389

M
main variable 57, 310, 330, 352, 369, 381
manipulating a cursor 36
maximum

joins 73
merging results of queries 92
mixing isolation levels 139, 173
modifying

locked dbspace 253
tables through a view 66

module not found 144, 178
multiple

row
query results 35

multiple-partition mode
locking considerations 256

multiple row results 35
multiple user mode 116

executing applications 147
invoking the preprocessors 118, 154,

156
multiplication in SQL expressions 54

N
naming

column 27
data object 27
dbspace 27
index 27
table 27

negative SQLCODE
description 11, 196

nesting correlated subqueries 88
NHEADER

ACQUIRE DBSPACE 254
NOBIND preprocessor parameter 162
NOBLocK preprocessor parameter 124
NOCHECK preprocessor parameter 163
NOEXIST preprocessor parameter 126,

164
NOFOR preprocessor parameter 126,

164
NOGRaphic preprocessor

parameter 127, 165
NOLOG job control statement 160
nonexecutable SQL statements 12
NOPACKAGE preprocessor

parameter 166

NOPRint preprocessor parameter 128,
166

NOPUnch preprocessor parameter 128,
166

NOSEQuence preprocessor
parameter 129, 167

NOSQLCA
preprocessor parameter 129
support 130, 167, 196

NOT EXISTS predicate 91
not found SQLCODE (100)

FETCH 37
NOT IN predicate 82
NOT keyword

concatenation 43
NUL-terminated strings and truncation

C 338
null value 89

grouping queries 74
indicator variables 61, 63
joins 70
search conditions 43

NUMERIC
See DECIMAL 47

O
OPEN

description 36
format 36

open state of a cursor 35
operator

arithmetic 54
comparison 44
logical 43

operator ID 153
OPTION LOG job control statement 160
OPTION NOLOG job control

statement 160
optional

default parameter
in syntax diagrams xii

item
in syntax diagrams x

keyword
in syntax diagrams xii

OPTIONS(MAIN) clause 380
OR operator 43
order

clauses 76
ORDER BY clause

description 40
restriction for CREATE VIEW 65
unions 92, 93

ordering
query results 40

output host variables 37
owner

dbspace 252
OWner preprocessor parameter 128

P
package

automatic regeneration 147, 180, 269
description 118, 155

package (continued)
distributing 149, 185
invalidating

DROP DBSPACE 257
DROP VIEW 68
REVOKE 269

PACKAGE preprocessor parameter 166
page

header 254
PAGE lock size 256
PAGES parameter of ACQUIRE

DBSPACE 254
parameter

marker 212, 231
specifying

user 149
parameterized statement

description 212
parent table

table 287
parentheses

in syntax diagrams x
PARMID preprocessor parameter 133
password

naming convention 27
PCTFREE

parameter of ACQUIRE dbspace 254
parameter of ALTER DBSPACE 255

PCTINDEX
parameter of ACQUIRE

DBSPACE 254
performance

considerations 136, 170, 285
PERiod preprocessor parameter 128
PL/I 389

attributes of variables 383
continuation of SQL statements 380
data conversion considerations 384
declaring host variables 381
declaring SQLCA 386
declaring SQLDA 387
declaring static external

variables 381
delimiting SQL statements 380
dynamic allocation of SQLDA 387
embedding SQL statements

example 11
placement of SQL statements 380
preprocessing programs coded 156
preprocessor parameter 122
sample program 380
stored procedures 390
using the INCLUDE statement 381

placement of SQL statements
assembler 312
C 328
COBOL 350
Fortran 368
PL/I 380

pointer type attribute
C 335

positions of a cursor 35
positive SQLCODE

description 11, 196
potential deadlocks 256
precedence rules 43, 54

416 Application Programming

predicates
constants 55
description 43
host variables 55
rules for evaluating 44

PREPARE
format 231
usage techniques 212

PrepFile preprocessor parameter 123,
161

PREPNAME preprocessor
parameter 122, 161

PREPPARM preprocessor
parameter 123, 161

preprocessing
description 118
multiple user mode 118, 154

PL/I 156
parameters 118
programs 155
single user mode 118, 154

Preprocessing
option file 134, 168

preprocessor 118
preprocessor parameters 136, 170

APOST 123, 161
ASM 122
BIND 162
BLocK 124
C 122
CCSIDGraphic 124
CCSIDMixed 124, 162
CCSIDSbcs 125, 162
CHARSUB 125, 162
CHECK 163
COB2 163, 356
COBOL 122, 357
COBRC 163
COMma 128
CTOKEN 126, 163
DATE 126, 164
DBFile 134
DBList 134
DBname 133
dcssID 133
ERROR 125, 163
EXIST 126, 164
EXPLAIN 126, 164
Fortran 122
GRaphic 127, 165
ISOLation 127, 165
ISOLATION 139, 173
KEEP 128, 166
LABEL 128, 166
LineCount 128, 166
LOGmode 133
NOBIND 162
NOBLocK 124
NOCHECK 163
NOEXIST 126, 164
NOFOR 126, 164
NOGRaphic 127, 165
NOPACKAGE 166
NOPRint 128, 166
NOPUnch 128, 166
NOSEQuence 129, 167
NOSQLCA 129

preprocessor parameters (continued)
OWner 128
PACKAGE 166
PARMID 133
PERiod 128
PL/I 122
PrepFile 123, 161
PREPNAME 122, 161
PREPPARM 123, 161
PRint 128, 166
PUnch 128, 166
QUALifier 128
QUOTE 123, 161, 355
RELease 129
REVOKE 128, 166
SBLocK 124
SEQuence 129, 167
SQLApost 129
SQLFLAG 167
SQLQuote 129
STDSQL 130, 167
suppressing display 160
sysIN 130
SYSIN 167
sysPRint 131
sysPUnch 132
TIME 130, 167
USERid 123, 161

preprocessorparameters
DYNALC 127, 165

primary key 288
PRint preprocessor parameter 128, 166
privilege

automatic revocation 269
description 268
package 269
programs 271
references 290
revoking 271

from others 268
table or view

alter 268
delete 268
description 268
index 268
insert 268
references 268
select 268
update 268

program
interrupts

Fortran 374
PL/I 387

naming convention 27
privileges

revoking 271
sample 21
termination

batch applications 16
program termination

CICS/VSE programs 17
CMS programs 15
ICCF applications 16

programming interface
description 405

programs using DBCS data
assembler 313

programs using DBCS data (continued)
C 339
COBOL 358
Fortran 372
PL/I 384

PSERVERs
characteristics 262
example of a definition 263
execution 262

pseudocode
description 4

PUnch preprocessor parameter 128, 166
punctuation mark

in syntax diagrams x
PUT

description 38
format 38

Q
QUALifier preprocessor parameter 128
qualifiers

column names 69
table names 27

qualify
fully 27

Query
Connected Database 56

querying
tables through a view 65

quotation mark
considerations in COBOL 123, 161
constants 59

QUOTE preprocessor parameter 123,
161, 355

R
reading from a locked dbspace 253
REBIND PACKAGE 147, 180
reentrant programs

assembler 317, 346
C 346
COBOL 364, 365

REFER feature of PL/I 388
references privilege 290

existing applications 290
modifying the contents of tables with

referential constraints 291
referential

constraint 287
cycle

definition 287
description 286
integrity 286

existing tables 289
new tables 288
rules 295

structure 287
register save conventions

support 181
relationship 287
RELEASE option

COMMIT 16
ROLLBACK 16

RELease preprocessor parameter 129

Index 417

releasing your connection
batch applications 16
CICS/VSE applications 17
CMS applications 19
ICCF applications 16
to DB2 Server for VSE & VM 19

remote unit of work
application program 3
blocking 124, 143
considerations in using extended

dynamic statements 247
CURRENT SERVER 56
extended dynamic processing 239,

240
isolation level 139
special register 56
USER isolation 127

repeat symbol
in syntax diagrams xi

repeatable read locking 136, 170
required item

in syntax diagrams x
reserved words

SQL xiii
RESOURCE authority

granting 266
Resource Definition Online Facility

(RDO) 18
restoring data 19
restriction

unions 93
result table

cursor 35
retrieving

columns of a row 31
REVOKE 268
REVOKE preprocessor parameter 128,

166
revoking

privileges 268
automatic 269
overview 268
programs 271

rollback
description 196

ROLLBACK 16, 19
rollback, automatic

data definition statements 258
deadlocks 256

ROLLBACK WORK 256
rolling back changes 19
ROW lock size 256
rules

evaluating predicates 44
naming data object 27
SQL in assembler 310
SQL in C 328
SQL in Fortran 368
SQL in PL/I 380

S
sample program

ARIS6ASD 306
ARIS6CBC 350
ARIS6CBD 350
ARIS6CC 328

sample program (continued)
ARIS6CD 328
ARIS6FTC 368
ARIS6FTD 368
ARIS6PLC 380
ARIS6PLD 380
EXECs 22
list 21

SBLocK preprocessor parameter 124
SCHEDULE authority

granting 266
scope

cursor 36
WHENEVER statement 199

search condition
AND operator 43
arithmetic operators 54
comparison operators 44
constant 55
description 41
expressions 55
host variables 55
join conditions 68
NOT keyword 43
OR operator 43
precedence rules 43, 54
predicates 43

SELECT
ALL 31
ALL keyword 81
ANY keyword 81
clause 30
constants 31
correlation 83
DISTINCT keyword 30
error handling 205
EXISTS 91
group-by-clause 32
grouping 73
having-clause 33
INTO clause 40
introduction 28
joins 68
NOT EXISTS predicate 91
order of clauses 76
ordering results 40
SELECT * form 31
select-clause 30
select-list 30
subqueries 78
unions 92
where-clause 32

SELECT *
basic queries 31
join 73
views 65

select list
constants 31
description 30
error handling 205
restrictions

GROUP BY 74
select-statement

description 29
selecting

all columns of a row 31
isolation level 138, 172

self-referencing table 288
sequence of clauses 76
SEQuence preprocessor parameter 129,

167
share lock

description 256, 257
shift-in character 53
shift-out character 53
single-partition mode

locking considerations 256
single precision float 47
single quotation mark

COBOL considerations 123, 161, 355
considerations in COBOL 123, 161
constant 59

single-row query results 41
single user mode 116

executing applications 148
invoking a program

example 148
invoking the preprocessors 118, 154
specifying user parameters 149

single virtual machine mode 116
SIZE=AUTO

invoking preprocessors 156
SMALLINT data type

assembler 315
C 344
COBOL 362
Fortran 376
PL/I 389

SOME keyword 81
source code

ARIS6ASC 306
ARIS6ASD 306
ARIS6CBC 350
ARIS6CBD 350
ARIS6CC 328
ARIS6CD 328
ARIS6FTC 368
ARIS6FTD 368
ARIS6PLC 380
ARIS6PLD 380

Source Statement Library
input 177

source value 50
special register

description 55
expressions 55
remote unit of work 56

special statements
UPDATE STATISTICS 260

SQL-89
conformance checking 135, 167, 168,

250
SQL comments

assembler 313
C 329
COBOL 351
Fortran 368
in static SQL statements 95
PL/I 380

SQL declare section 8, 57, 310, 330, 352,
369, 381

SQL Descriptor Area (SQLDA)
assembler declaration 314
C declaration 343

418 Application Programming

SQL Descriptor Area (SQLDA) (continued)
COBOL declaration 360
Fortran declaration 374
PL/I declaration 387
Structure 228

SQL identifier
description 27

SQL statements
embedding in application program

examples 12
SQLApost preprocessor parameter 129
SQLCA (SQL Communications Area)

assembler declaration 314
C declaration 342
COBOL 359
description 197
Fortran 373
PL/I declaration 386
testing 199

SQLCODE 11, 196
SQLCODE 100 (not found)

FETCH 37
SQLD field in the SQLDA 230
SQLDA (SQL Descriptor Area)

summary 228
SQLDAX structure (in PL/I) 387
SQLDSECT, acquiring 306
SQLDSIZ variable 306
SQLERRM

description 198
SQLFLAG preprocessor parameter 167
SQLHX 16
SQLINIT EXEC 117

optional CMS work unit 285
SQLN

field in SQLDA 230
setting 228

SQLPREP EXEC 118
format 118
parameters 118

SQLQRY
remote unit of work 301

SQLQuote preprocessor parameter 129
SQLRMEND EXEC 16
SQLSTART EXEC 148

example 148
SQLWARN

description 198
SQLWARN6

automatic rollback 256
starter database 152
statements

ALTER TABLE 259
BEGIN DECLARE SECTION 8
CLOSE 39
COMMENT ON 260
COMMIT 19
CONNECT 12
CREATE INDEX 259
CREATE SYNONYM 260
CREATE TABLE 259
CREATE VIEW 64
DECLARE 35
DROP DBSPACE 257
DROP SYNONYM 260
DROP TABLE 259
DROP VIEW 68

statements (continued)
END DECLARE SECTION 8
FETCH 37
INCLUDE 143, 177
INCLUDE SQLCA 11, 196
INCLUDE SQLDA 215
LABEL 260
LOCK 256
naming convention 27
OPEN 36
PREPARE 231
PUT 38
REVOKE 268
ROLLBACK 19
SELECT

basic use 28
correlation 83
grouping 73
joins 68
subqueries 78
testing for existence 91
unions 92

UPDATE STATISTICS 260
WHENEVER 199

static SQL
description 27

statistics
tables 260

storage pool
definition 252
nonrecoverable 252
recoverable 252
specifying the placement of

dbspaces 255
stored procedures

assembler 322
authorizing 100
benefits 96
C 346
calling 99
characteristics 261
client application programs 105
COBOL 365
coding examples 104
datatype compatibility 102
example of a definition 261
execution of SQL statements 98
GENERAL linkage convention 102
GENERAL WITH NULLS linkage

convention 103
Language Environment

considerations 99
parameters 101
passing parameters 102
PL/I 390
preparing 99
result sets 104
specifying AUTHIDs 100
using 95, 261
writing 97

STORPOOL parameter of ACQUIRE
DBSPACE 255

structures
based 214

subquery
ALL keyword 81
ANY keyword 81

subquery (continued)
correlation 83
IN predicate 82
introduction 78
involving unions (restriction) 94
many values returned 81
NOT IN predicate 82
single value returned 81

subselect
description 28

subtraction in SQL expressions 54
subtype

character 48
Using 59

summary
program framework 20

suppressing SYSPCH and SYSLST
output 155

suppressing the preprocessor parameter
display 160

syncpoints 17
synonym

creating 260
naming convention 27

syntax diagram
notation conventions ix

sysIN preprocessor parameter 130
SYSIN preprocessor parameter 167
SYSLST, suppressing preprocessor

output 155
SYSPCH, suppressing preprocessor

output 155
sysPRint preprocessor parameter 131
sysPUnch preprocessor parameter 132
system initialization table 18
Systems Application Architecture (SAA)

conformance checking 135, 167, 168,
250

T
table

accessing 32
altering 259
creating 259

indexes 259
synonyms 260

defining labels 260
delete-connected 288
dependent 288
descendent 288
designator

rules 72, 91
dropping 259
entering comments in catalog

tables 260
exposed table name 72
labels 71
naming convention 27
nonexposed table name 72
or view

privileges 268
parent table 287
self-referencing 288

tables, CICS/VS 18
target value 50
terminal operator id 153

Index 419

terminating
CMS applications 15

termination
batch programs 16
CICS/VSE programs 17
ICCF applications 16

testing
existence 91
SQLCA 199

TIME data type
assembler 315
C 345
COBOL 363
Fortran 377
PL/I 389

TIMESTAMP
data type

assembler 317
C 345
COBOL 363
Fortran 377
PL/I 390

duration 276
trailing blanks 70, 74
trigraphs

C 339

U
UNION ALL 92
UNION operator

CCSID 94
character subtypes 94
description 92
ordering results 92, 93
restriction for CREATE VIEW 65
usage restrictions involving

data types 93
LONG VARCHAR data 93
subqueries 94
VARCHAR and

VARGRAPHIC 94
views 94

unions 92
See UNION operator 92

unique on columns 286
uniquely identifying an object 27
unresolved external reference 145, 179
UPDATE

rules 292
update rule 292
UPDATE STATISTICS 260
updating

internal statistics 260
user ID

CICS/VSE default rules 153
CICSUSER default 153
naming convention 27

USER isolation
remote unit of work 127

user parameters
in single user mode 149

USER special register 56
USERid

preprocessor parameter 161
USERid preprocessor parameter 123

V
valid lock size 256
VARCHAR data type

assembler 315
C 344
COBOL 362
Fortran 376
PL/I 389

VARGRAPHIC
constants within expressions 60
data type

assembler 315
C 344
COBOL 363
Fortran 376
PL/I 389

view
CREATE VIEW 64
description 63
DROP VIEW 68
materialization 66
modifying tables through 66
naming convention 27
privileges 268
querying tables through 65
unions

restriction 94
virtual

columns 64
data 64

VM 144
executing applications 146
implicit connect 117
loading a program 144, 178
preprocessing programs 118

VM/CMS file
including secondary input 143

VSE
CICS/VSE CONNECT

considerations 153
compiling a program 178
preprocessing programs 155
register save conventions 181

W
warning

conditions 198
flags 198

WHENEVER 12, 196, 199
WHERE clause

ALL keyword 81
ANY keyword 81
correlated subquery 83
description 32
EXISTS predicate 91
grouping considerations 75
IN predicate 82
join conditions 68
NOT EXISTS predicate 91
NOT IN predicate 82
subqueries 78

WITH CHECK OPTION 64
WITH clause 35
work units

CMS 282

work units (continued)
using 282

writing clauses in order 76

Z
zero SQLCODE

description 11, 196

420 Application Programming

|

Contacting IBM

Before you contact DB2 customer support, check the product manuals for help
with your specific technical problem.

For information or to order any of the DB2 Server for VSE & VM products, contact
an IBM representative at a local branch office or contact any authorized IBM
software remarketer.

If you live in the U.S.A., then you can call one of the following numbers:
v 1-800-237-5511 for customer support
v 1-888-426-4343 to learn about available service options

Product information
DB2 Server for VSE & VM product information is available by telephone or by the
World Wide Web at http://www.ibm.com/software/data/db2/vse-vm

This site contains the latest information on the technical library, product manuals,
newsgroups, APARs, news, and links to web resources.

If you live in the U.S.A., then you can call one of the following numbers:
v 1-800-IBM-CALL (1-800-426-2255) to order products or to obtain general

information.
v 1-800-879-2755 to order publications.

For information on how to contact IBM outside of the United States, go to the IBM
Worldwide page at http://www.ibm.com/planetwide

In some countries, IBM-authorized dealers should contact their dealer support
structure for information.

© Copyright IBM Corp. 1987, 2001 421

|

|

|
|

|
|
|

|

|

|

|
|

|
|

|
|

|

|
|

|

|
|

|
|

����

File Number: S370/4300-50
Program Number: 5697-F42

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC09-2889-01

Sp
in

e
in

fo
rm

at
io

n:

�
�

�
D

B
2

Se
rv

er
fo

r
VS

E
&

V
M

Ap
pl

ic
at

io
n

Pr
og

ra
m

m
in

g
Ve

rs
io

n
7

R
el

ea
se

2

	Contents
	About This Manual
	Audience and Purpose of This Book
	Organization of This Book
	Related Publications
	Syntax Notation Conventions
	SQL Reserved Words
	Conventions for Representing DBCS Characters
	Components of the Relational Database Management System

	Summary of Changes
	Summary of Changes for DB2 Version 7 Release 2
	Enhancements, New Functions, and New Capabilities
	Security Enhancements
	Archive Tape Handling Enhancements
	New Database Replication Utility
	SHOW Command Enhancements

	Reliability, Availability, and Serviceability Improvements
	TCP/IP Auto-Restart
	Support for STGPROT=YES Parameter in CICS (VSE only)
	Migration Considerations

	Chapter 1. Getting Started
	What is the DB2 Server for VSE & VM Product?
	What is SQL?
	Embedding SQL Statements in Host Language Programs
	Using DB2 Server RXSQL (DB2 Server for VM Only)

	Writing a Program

	Chapter 2. Designing a Program
	Defining the Main Parts of a Program
	Creating the Prolog
	Declaring Variables That Interact with the Database Manager
	Handling Errors with the SQL Communications Area
	Using Additional Nonexecutable Statements

	Creating the Body
	Connecting to the Application Server
	Defining Objects
	Manipulating Objects
	Controlling Application Server Resources
	Granting Authorities and Privileges

	Creating the Epilog
	Ending the Program

	Using Logical Units of Work
	Defining the Logical Unit of Work
	Beginning a Logical Unit of Work
	Considering the CICS/VSE Logical Unit of Work (DB2 Server for VSE Only)
	Ending a Logical Unit of Work
	Using the COMMIT Statement
	Using the ROLLBACK Statement

	Summary
	Using Host-Dependent Sample Applications

	Chapter 3. Coding the Body of a Program
	Defining Static SQL Statements
	Naming Conventions
	Coding SQL Statements to Retrieve and Manipulate Data
	Retrieving Data
	Defining an SQL Query
	Using the SELECT Clause
	Using the FROM Clause
	Using the WHERE Clause
	Using the GROUP BY Clause
	Using the HAVING Clause
	Using the ORDER BY Clause
	Using the FOR UPDATE OF Clause
	Using the WITH Clause

	Retrieving or Inserting Multiple Rows
	Using the Cursor with a Select-Statement
	Declaring a Cursor
	Using a Cursor in an Application Program
	Manipulating the Cursor
	Illustrating the Use of the Query Cursor

	Retrieving Single Rows

	Constructing Search Conditions
	Performing Arithmetic Operations
	Using Null Values
	Using the Predicates of a Search Condition
	Evaluating Predicates
	Using Additional Types of Predicates

	Using Functions
	Using Column Functions
	Using Scalar Functions

	Using Data Types
	Assigning Data Types When the Column Is Created
	Using Long Strings
	Defining Long Strings
	Performing Operations on Long Strings
	Programming Tip

	Using Datetime Data Types
	Using Character Subtypes and CCSIDs
	Determining Default Subtypes and CCSIDs
	Assigning Subtypes and CCSIDs When a Column Is Created
	Assigning Subtypes and CCSIDs to Data in a Program

	Converting Data
	Summarizing Data Conversion

	Truncating Data
	Using a Double-Byte Character Set (DBCS)

	Using Expressions
	Using Arithmetic Operators
	Using Special Registers
	Concatenating Character and Graphic Strings
	Using Host Variables
	Using Host Structures
	Using Constants
	Using Numeric Constants
	Using Character Constants
	Using Graphic Constants
	Using Date and Time Constants

	Using Indicator Variables
	Notes Common to Both Input and Output Indicator Variables
	Notes on Input Indicator Variables
	Notes on Output Indicator Variables

	Using Views
	Creating a View
	Querying Tables through a View
	Using Views to Manipulate Data
	Dropping a View

	Joining Tables
	Joining Tables Using the Database Manager
	Performing a Simple Join Query
	Joining Another User’s Tables
	Analyzing How a Join Works
	Using VARCHAR and VARGRAPHIC within Join Conditions
	Using Nulls within Join Conditions
	Joining a Table to Itself Using a Correlation Name
	Rules for Table Designation

	Imposing Limits on Join Queries
	Using SELECT * In a Join

	Grouping the Rows of a Table
	Using VARCHAR and VARGRAPHIC within Groups
	Using Nulls within Groups
	Using Select-Lists in Grouped Queries
	Using a WHERE Clause with a GROUP BY Clause
	Using the HAVING Clause
	Combining Joins
	Illustrating Grouping with an Exercise

	Nesting Queries
	Using the IN Predicate with a Subquery
	Considering Other Subquery Issues
	Executing Subqueries Repeatedly: Correlation
	Writing a Correlated Subquery
	How the Database Manager Does Correlation
	Illustrating a Correlated Subquery
	Using a Subquery to Test for the Existence of a Row
	Table Designation Rule for Correlated Subqueries
	Combining Queries into a Single Query: UNION
	String Columns
	Numeric Columns
	Datetime/Timestamp Columns

	SQL Comments within Static SQL Statements
	Using Stored Procedures
	Writing Stored Procedures
	Returning Information from the SQLCA
	Language Environment® (LE) Considerations
	Preparing to Run a Stored Procedure
	Calling Stored Procedures
	Authorization
	AUTHIDs
	Stored Procedure Parameters
	Datatype Compatibility
	Conventions for Passing Stored Procedure Parameters
	The GENERAL Linkage Convention
	The GENERAL WITH NULLS Linkage Convention

	Coding Examples
	Special Considerations for C
	Special Considerations for PL/I
	Result Sets
	Coding Client Programs to Process Results Sets
	Result Set Processing

	Using the DESCRIBE PROCEDURE SQL Statement
	Using the DESCRIBE CURSOR SQL Statement
	Coding Summary to Process Result Sets

	Chapter 4. Preprocessing and Running a DB2 Server for VM Program
	Defining the Steps to Execute the Program
	Comparing Single User Mode to Multiple User Mode
	Using 31-Bit Addressing
	Initializing the User Machine
	Using VM Implicit Connect

	Preprocessing the Program
	Using the SQLPREP EXEC Procedure
	Executing the SQLPREP EXEC in Single User Mode
	Executing the SQLPREP EXEC in Multiple User Mode
	DB2 Server for VM Program Preparation Parameters
	Parameters for SQLPREP EXEC for Single and Multiple User Modes
	Parameters for SQLPREP EXEC for Single User Mode Only
	Parameters for SQLPREP EXEC in Multiple User Mode Only

	Preprocessing with an Unlike Application Server
	Using the Preprocessor Option File
	Using the Flagger at Preprocessor Time
	Improving Performance Using Preprocessing Parameters
	Selecting the Isolation Level to Lock Data
	Using the Blocking Option to Process Rows in Groups

	Using the INCLUDE Statement
	Including External Source Files
	Including Secondary Input

	Compiling the Program
	Link-Editing and Loading the Program
	Link-Editing the Program with DB2 Server for VM TEXT Files
	Using the Resource Adapter Stub Routine
	Using Other TEXT Files

	Including the TEXT File in the Link-Editing
	Using the CMS LOAD Command
	Using the CMS TXTLIB Command

	Creating a Load Module Using the CMS GENMOD Command

	Running the Program
	Using a Consistency Token
	Loading the Package and Rebinding
	Using Multiple User Mode
	Using Single User Mode
	Specifying User Parameters in Single User Mode

	Distributing Packages across Like and Unlike Systems

	Chapter 5. Preprocessing and Running a DB2 Server for VSE Program
	Defining the Steps to Execute the Program
	Using 31-Bit Addressing
	How DB2 Establishes User IDs for CICS/VSE Transactions
	User IDs for Remote CICS/VSE Transactions
	Using Batch for Remote CICS/VSE Transactions

	Preprocessing the Program
	Preprocessing by Mode
	Using Multiple User Mode
	Using Single User Mode

	Defining the Preprocessing Parameters
	Using the Preprocessor Option Member
	Using the Flagger at Preprocessor Time
	Using the CICS/VSE Translator
	Improving Performance Using Preprocessing Parameters
	Selecting the Isolation Level to Lock Data
	Using the Blocking Option to Process Rows in Groups

	Using the INCLUDE Statement
	Including External Source Members
	Including a Library Source

	Compiling the Program
	Link-Editing and Loading the Program
	Link-Editing the Program with Supplementary Information
	Including Relocatable Modules
	Including CICS/VSE Procedures
	Including Extra Linkage Modules

	Running the Program
	Using a Consistency Token
	Loading the Package and Rebinding
	Running by Mode
	Using Multiple User Mode
	Using Single User Mode

	Running under CICS/VSE Support
	Accessing Other DB2 Family Application Servers

	Installing Applications that Access the Database Manager
	Installing a Batch Application
	Installing an Online CICS/VSE Application
	Distributing Packages across Like and Unlike Systems
	Creating a Package Using CBND

	Chapter 6. Testing and Debugging
	Doing Your Own Testing
	Checking Warnings and Errors at Preprocessor Time
	Testing SQL Statements

	Using the Automatic Error-Handling Facilities
	Using the SQLCA
	Using the SQLERRM Field
	Using the SQLWARN Field

	Examining Errors
	Using the WHENEVER Statement
	Determining the Scope of the WHENEVER Statement
	Examining the SQLCA

	Handling Errors in a Select-List
	Handling Arithmetic Errors
	Handling Numeric Conversion Errors
	Handling CCSID Conversion Errors

	Chapter 7. Using Dynamic Statements
	Dynamically Defining SQL Statements
	Comparing Non-Query Statements to Query Statements
	Using Non-Query Statements
	Executing Non-Parameterized Statements
	Executing Parameterized Statements

	Using Query Statements
	Executing a Non-Parameterized Select-Statement
	Using the PREPARE and DESCRIBE Statements
	Declaring the SQL Descriptor Area (SQLDA)
	Processing a Run-Time Query Using the SQLDA
	Allocating Storage for the SQLDA Using the SQLVAR Array
	Initializing the SQLN Field of the SQLDA
	Inserting Values in the SQLDA
	Analyzing the Elements of SQLVAR
	Allocating Storage for the Result of the Select-Statement
	Retrieving the Query Result

	Executing a Parameterized SELECT Statement
	Generating an Additional SELECT Statement

	Executing a Parameterized Non-Query Statement
	Generating a SELECT Statement

	Using an Alternative to a Scanning Routine
	Ensuring Data Type Equivalence in a Dynamically Defined Query
	Summarizing the Fields of the SQLDA
	Using the SQLN Field
	Using the SQLD Field in the SQLDA

	Using the PREPARE Statement
	SQL Functions Not Supported in Dynamic Statements

	Chapter 8. Using Extended Dynamic Statements
	Contents
	Using Extended Dynamic Statements to Maintain Packages
	Illustrating the Use of Extended Dynamic Statements
	Developing a Query Application
	Developing a Language Preprocessor

	Grouping Extended Dynamic Statements in an LUW
	Considering Virtual Storage in an LUW (DB2 Server for VM Only)
	Using COMMIT WORK and ROLLBACK WORK Statements (DB2 Server for VSE Only)
	Considering Virtual Storage in a Logical Unit of Work (DB2 Server for VSE Only)

	Mapping Extended Dynamic Statements to Static and Dynamic Statements
	SQL Functions Not Supported in Extended Dynamic Statements

	Chapter 9. Maintaining Objects Used by a Program
	Managing Dbspaces
	Defining Dbspaces
	Finding Available Space
	Specifying Properties of Dbspaces

	Modifying the Size of Dbspaces
	Automatically Locking Dbspaces
	Overriding Automatic Locking
	Deleting the Contents of Dbspaces

	Other Data Definition Statements
	Using Tables, Indexes, Statistics, Synonyms, Comments, and Labels
	Creating Tables
	Modifying Tables
	Dropping Tables
	Using Indexes
	Updating Catalog Tables for Table and Index Activity
	Using Synonyms
	Using Comments
	Using Labels

	Using Stored Procedures and PSERVERS
	Using Stored Procedures
	Example of a Stored Procedure Definition
	Using PSERVERs
	Example of a Stored Procedure Server Definition

	Chapter 10. Assigning Authority and Privileges
	Defining User Access to the Database
	Defining Authority Types for the Database
	Granting Authority to Users
	Revoking Authority from Users

	Defining Privileges
	Defining Privileges on Tables and Views
	Revoking Privileges

	Defining Privileges on Packages
	Assigning User Privileges to the Owner
	Assigning Privileges to Others
	Differences Between Static and Dynamic Statements
	Revoking the Run Privilege
	Recording Assigned Privileges in the Catalog Tables

	Chapter 11. Special Topics
	Using Datetime Values with Durations
	Using Durations
	Resolving Peculiarities of Date Arithmetic
	Summarizing Addition Operations
	Summarizing Subtraction Operations

	Using Field Procedures
	Assigning Field Procedures to Columns
	Understanding Field Procedure Rules
	Input from an Application Program
	Output to an Application Program
	Comparison
	Referential Integrity
	Scalar Functions
	Column Functions
	Concatenation
	The IN and BETWEEN Predicates
	The LIKE Predicate
	Sorting
	Null Values
	Unions and Joins
	Sub-SELECTS

	Using CMS Work Units (DB2 Server for VM)
	Using Work Units in Application Programs
	Processing the First SQL Statement in the Work Unit
	Invoking Another Application Program
	Invoking Applications in CMS SUBSET
	Processing Applications Concurrently
	Accessing the Database from Different Points in the Program
	Copying Data across Databases

	How Locking Works with CMS Work Units
	Environmental Considerations
	Performance Considerations

	Ensuring Data Integrity
	Ensuring Entity Integrity
	Using Unique Constraints
	When Creating a View
	Ensuring Referential Integrity
	Defining Terms
	Ensuring Referential Integrity in New Tables
	Adding Referential Integrity to Existing Tables
	Managing Table Relationships
	Modifying Applications to Ensure Integrity
	Modifying Data in Tables Containing Referential Constraints
	Generating SQL Statements in Response to Table Modifications
	Enforcing Referential Integrity
	Removing Referential Constraints

	Switching Application Servers
	Identifying Switching Options
	Comparing Switching to Other Methods (DB2 Server for VM)
	How to Switch Servers (DB2 Server for VSE)
	Accessing a New Application Server
	Illustrating Sample Code
	Preprocessing the Program on Multiple Application Servers

	Condition Handling with LE/VSE (DB2 Server for VSE)

	Appendix A. Using SQL in Assembler Language
	Using ARIS6ASD, an Assembler Language Sample Program (DB2 Server for VSE Only)
	Using ARIS6ASC, an Assembler Language Sample Program (DB2 Server for VM Only)
	Acquiring the SQLDSECT Area
	Imposing Usage Restrictions on the SQLDSECT Area
	Rules for Using SQL Statements in Assembler Language
	Identifying Rules for Case
	Declaring Host Variables
	Embedding SQL Statements
	Using the INCLUDE Statement
	Using Host Variables in SQL Statements
	Using DBCS Characters in Assembler Language

	Handling SQL Errors
	Using Dynamic SQL Statements in Assembler Language
	Defining DB2 Server for VSE & VM Data Types for Assembler Language
	Using Reentrant Assembler Language Programs
	Using Stored Procedures

	Appendix B. Using SQL in C
	A C Sample Program
	Rules for Using SQL in C
	Placing and Continuing SQL Statements
	Delimiting SQL Statements
	Identifying Rules for Case
	Identifying Rules for Character Constants
	Using the INCLUDE Statement
	Using the CONNECT Statement (DB2 Server for VSE)
	Using the C Compiler Preprocessor
	Declaring Host Variables
	Using Host Variables in SQL Statements
	Using the Pointer Type Attribute
	Using Host Variables as Function Parameters
	Using C Variables in SQL: Data Conversion Considerations
	Using C NUL-Terminated Strings and Truncation
	Calculating Dates
	Using Trigraphs
	Using DBCS Characters in C
	Considering Preprocessor-Generated Statements

	Handling SQL Errors
	Using Dynamic SQL Statements in C
	Defining DB2 Server for VSE & VM Data Types for C
	Using Reentrant C Programs
	Using Stored Procedures

	Appendix C. Using SQL in COBOL
	A Sample COBOL Program
	Rules for Using SQL in COBOL
	Placing and Continuing SQL Statements
	Delimiting SQL Statements
	Identifying Rules for Case
	Declaring Host Variables
	Using Host Variables in SQL Statements
	Using Long VARCHAR Host Variables (DB2 Server for VSE)
	Using Preprocessor Options
	Using the QUOTE Parameter
	Using the COB2 Parameter (DB2 Server for VSE)
	Using the COB2 Parameter (DB2 Server for VM)
	Invoking COPYBOOKs (DB2 Server for VSE)
	Using the COBRC Parameter
	Using the TRUNC Compiler Option
	Using the INCLUDE Statement
	Using COBOL Variables in SQL: Data Conversion Considerations
	Other Coding Considerations
	Using DBCS Characters in COBOL

	Handling SQL Errors
	Using Dynamic SQL Statements in COBOL
	Defining DB2 Server for VSE & VM Data Types for COBOL
	Using Reentrant COBOL Programs
	Using the DYNAM Compiler Option
	Using Stored Procedures

	Appendix D. Using SQL in Fortran
	A Fortran Sample Program
	Rules for Using SQL in Fortran
	Placing and Continuing SQL Statements
	Placing Data Statements
	Using Fortran Common Areas (DB2 Server for VSE)
	Identifying Rules for Case
	Declaring Host Variables
	Embedding SQL Statements
	Using Host Variables in SQL Statements
	Using Variable Length Character Strings
	Using DBCS Characters in Fortran
	Using the INCLUDE Statement
	Using Fortran Variables in SQL: Data Conversion Considerations

	Handling SQL Errors
	Handling Program Interrupts
	Using Dynamic SQL Statements in Fortran
	Restrictions When Using the Fortran Preprocessor
	Defining DB2 Server for VSE & VM Data Types for Fortran

	Appendix E. Using SQL in PL/I
	Using PL/I Sample Programs
	Rules for Using SQL in PL/I
	Placing and Continuing SQL Statements
	Delimiting SQL Statements
	Using the INCLUDE Statement
	Declaring Static External Variables
	Identifying Rules for Case
	Declaring Host Variables
	Using Host Variables in SQL Statements
	Using PL/I Variables in SQL: Data Conversion Considerations
	Using DBCS Characters in PL/I
	Using SQL Statements in PL/I Subroutines
	Coding the SIZE Parameter in VSE JCL (DB2 Server for VSE)

	Handling SQL Errors
	Handling Program Interrupts
	Using Dynamic SQL Statements in PL/I
	Defining DB2 Server for VSE & VM Data Types for PL/I
	Using Stored Procedures

	Appendix F. Decision Tables to Grant Privileges on Packages
	How to Use the Decision Tables
	Decision Tables

	Notices
	Programming Interface Information
	Trademarks

	Bibliography
	Index
	Contacting IBM
	Product information

