
DB2 Server for VSE & VM

Performance Tuning Handbook
Version 7 Release 3

GC09-2987-01

���

DB2 Server for VSE & VM

Performance Tuning Handbook
Version 7 Release 3

GC09-2987-01

���

Before using this information and the product it supports, be sure to read the general information under “Notices” on page 221.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

Order publications through your IBM representative or the IBM branch office serving your locality or by calling
1-800-879-2755 in the United States or 1-800-IBM-4YOU in Canada.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1993, 2003. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About This Manual vii
Who Should Use This Manual vii
Organization vii
Prerequisite Reading viii
Syntax Notation Conventions viii
SQL Reserved Words xii
Conventions Used for Highlighting Examples . . xiii

Summary of Changes xv
Summary of Changes for DB2 Version 7 Release 3 xv

Enhancements, New Functions, and New
Capabilities xv
Reliability, Availability, and Serviceability
Improvements xvi

Chapter 1. Improving Performance . . . 1
Elements of Performance 1

Tuning Guidelines 1
Performance Improvement Process 2
How Much Can a System be Tuned? 3

Workload 3
Performance Indicators 3
Establishing Performance Objectives 4

Response Time. 4
Throughput. 5
Availability 5
A Less Formal Approach 5

Monitoring Performance 5
Creating a Monitoring Plan 6
Monitoring Interval 6
Cost of Monitoring 6
Measurements 6
Tools 7

Factors Affecting Performance 9
Resources 9
Overhead 11

Choosing Between Tuning Trade-offs 12

Chapter 2. Measuring Performance . . 13
Understanding Performance Measurements. . . . 13

Relative Measurements 13
Sampling Interval 14

Operating System Measurements 14
Processor (CPU) Load 14
Real and Virtual Storage Load 14
System Paging DASD Load 14
Machine or Partition DASD I/O Load 15
Individual Device Utilization 15
Translating Performance Measurements to
Indicators 15
CICS Monitoring (CICSPARS for VSE) 17

DB2 Server for VSE & VM Tools 19
Physical Data Locations 19
Initialization Parameters 20
CIRD Transaction (CICS) 21

COUNTER Operator Command 22
SHOW Commands 25
Database catalog. 38

Chapter 3. Managing Storage and
Configuring the Operating System . . . 43
Real and Virtual Storage 43

Virtual Addressing 43
Address Space Size 47

DASD Storage 58
In VSE 58
In VM 58
Mapping of Dbspaces to DASD. 59
Logical To Physical Page Relationships 59
Storage Pools 59
Managing Storage Pool Space 59
Data Clustering 66
Reorganizing Data 70
Index Fragmentation 73
Invalid Indexes 74

DASD Balancing. 75
Evenly Distributing Workload across Physical
Volumes 75

VM Specifics 78
Fair Share Scheduling 78

VSE Specifics 79
Dispatching Priority 79
Fast CCW Translation 79
Virtual Addressability Extension (VAE) 79
Compile Partition Size 80

CICS Specifics 80
AMXT/MXT 80
ISQL 80
Temporary storage 81

Guest Sharing with VSE under VM 81
Distributed Configuration Considerations 81

DB2 Server for non-DRDA Requestors can access: 81
DB2 Server for VM non-DRDA Servers can be
accessed by: 81
DB2 Server for VM DRDA Requestors can access: 82
DB2 Server for VM DRDA Servers can be
accessed by: 82
DB2 Server for VSE non-DRDA Requestors can
access: 82
DB2 Server for VSE non-DRDA Servers can be
accessed by: 82
DB2 Server for VSE DRDA Online (CICS)
Requestors can access: 82
DB2 Server for VSE DRDA Batch Requestors can
access: 83
DB2 Server for VSE DRDA Servers can be
accessed by: 83
Performance Implications. 83
Applications Planning 83

© Copyright IBM Corp. 1993, 2003 iii

|
||

Chapter 4. Configuring the Application
Server and Requester 85
Database Manager Storage 85

Database I/O 85
Package Cache 88

Concurrency 88
Agents 88
CICS 90
Pseudo-Agents 90
Dispatching Agents 92
Startup Mode. 93

Locking 93
Locking Contention. 93
Lock Escalation 99
Deadlock 101

Recovery 102
Logical Units of Work 102
Checkpoints 102
Logging and Archiving 105

Communications 108
DRDA Performance Considerations (VM) . . . 108
Fetch and Insert Blocking 110
Synchronous Communications (VM). 112

Considerations for ISQL and Adhoc Queries . . . 112
AUTOCOMMIT 112
Isolation Levels 113
Temporary Tables 113
Views 113

DBS Utility Considerations 113
Automatic Statistics Collection. 113
Suppressing Automatic Statistics Collection . . 113
TAPE Blocking 114
Lock Escalation 114
UNLOAD and RELOAD PACKAGE
Considerations 115

Chapter 5. Improving Data Access
Performance 117
Access Paths and Indexes 117

Dbspace Scans 118
Index Scans 118
Index-Only Access Scans 119
Unique Index with Key Matching Predicate(s) 120
Indexes for Sorting 120
Recommendations for Indexes 120
Disadvantages of Indexes 121

Placing Tables into Dbspaces 121
Organizing Referential Structures. 121
Predicate Processing 122

Column Attributes. 123
Key-matching Predicates 123
Sargable and Residual Predicates 125
Join Predicates 126
Search Conditions and Their Processing
Characteristics 126
Filter Factors 130
Examples of Predicate Processing. 131
Impact of CCSIDs on Sargability 131

Tuning Queries with Several Tables 132
Methods of Joining Two or More Tables . . . 133

Nested Loop Join (Type 1) 133
Merge Scan Join (Type 2) 134
Choosing an Access Method 135
Multiple Joins 136

Keeping Database Statistics Current 137
Using Catalog Statistics 138

Modelling your Production System 139
Determining the Cost of Access Methods 140

Processing Cost. 140
I/O Cost 140

Using Explanation Tables to Evaluate Performance 140
Explain Processing 141
Estimating Sizes of Responses 152
Using EXPLAIN for Database Design 153

Modifying Table Designs to Enhance Performance 153

Chapter 6. Data Spaces Support for
VM/ESA 157
Improving DB2 Server for VM Performance . . . 157

Understanding VM Data Spaces 157
Understanding how VMDSS uses Data Spaces 159
Storage Pools 163
Internal Dbspaces 163
Directory 164
Managing Main and Expanded Storage. . . . 165
Striping 167
Performance Counters 168
Planning Structure by Storage Pool 168
Logical and Physical Mapping. 169
VSE Guest Sharing 170

Enabling Requirements 171
Operating System Overview 171
Virtual Machine Overview 171
Software Requirements 171
Virtual Storage Requirements 171
Real Storage Requirements 172
DASD Storage Requirements 172
Hardware Requirements. 174

Before Enabling 174
Program Directory for DB2 Server for VM. . . 174
Preventive Service Planning 175
Corrective Service 175
Enabling Options 175

Enabling 175
Pre-Enable Checklist 176
Enable Checklist 176
Backing Up, Configuring and Enabling Your
Database Machine 177
Disabling VMDSS 188

Operating 188
Storage Pool Specifications 188
Changing Storage Pool Specifications at Startup 189
Checking Your Current Storage Pool
Specifications 191
Changing Storage Pool Specifications
Dynamically. 191

Using Data Spaces with Internal Dbspaces . . . 192
Unmapped Internal Dbspaces 192
Mapped Internal Dbspaces 192

Using Data Spaces with the Directory 193
Reblocking the Database Directory 193

iv Performance Tuning Handbook

Using Data Spaces Support with a New
Database 195

Chapter 7. Tuning Performance for
Data Spaces Support 197
Deciding When to Use Data Spaces 197

Advantages 197
Storage Pool 199
Internal Dbspaces 199
Directory 199

Managing Your Working Storage Size 200
Choosing the Target Working Storage Size. . . 200
Choosing Storage Residence Priorities 201
Unmapped Internal Dbspaces 202

Managing Checkpoints 202
Choosing the Checkpoint Interval 203
Choosing the Save Interval 203

Using Striping 204
With One Dbextent Per Pool 204
One Dbextent Per Device 204
Dbextent Size 204
Number of Dbextents. 204
Using Striping with Existing Data 205

Choosing Logical or Physical Mapping 205
Real Storage Requirements for Data Spaces . . . 205

Appendix A. Storage Pool
Specification File Format 207

File Format 207
Data Line Syntax 207
Ordering Data Lines 208
Specification File Example 208

Appendix B. Determining Number of
Data Spaces 211
Maximum Number of Data Spaces 211

Logical Mapping 211
Physical Mapping 213

Maximum Total Size 216
Displaying Current Data Spaces 216

Appendix C. Why is the TARGETWS
Value Frequently Exceeded? 217
VMDSS Usage Scenario 217

Notices 221
Trademarks 223

Bibliography. 225

Index 229

Contacting IBM 241
Product information 241

Contents v

vi Performance Tuning Handbook

About This Manual

Who Should Use This Manual
This manual will help you analyze and tune the performance of the DB2® VSE &
VM product in an IBM VM system or in VSE. It is designed for the person who
designs or customizes any of the following:
v Operating systems that support the DB2 Server for VSE & VM product
v DB2 Server for VSE & VM application servers
v DB2 Server for VSE & VM databases
v DB2 Server for VSE & VM application programs

Organization
Before you can make effective judgements about how to tune the DB2 Server for
VSE & VM product, you need to understand what happens inside each part of the
product. This manual will help you understand:
v How each part of the DB2 Server for VSE & VM product works
v How each of those parts affects performance
v How to tune the performance of each part
v How to monitor how it is performing.

This manual does not provide diagnostic information. (For the symptoms of
common performance problems and potential cures, refer to the DB2 Server for VSE
& VM Diagnosis Guide and Reference manual.)

The chapters of this manual are arranged as follows:

Summary of Changes: Lists the changes made to the product since Version 6
Release 1.

Chapter 1, “Improving Performance”: This is an introduction to the subjects of
performance design and tuning. It discusses the basic process including the
development of goals, strategies and plans.

Chapter 2, “Measuring Performance”: This is an overview of the various tools
available to measure the performance of the application server itself and as a part
of the entire VM or VSE system.

Chapter 3, “Managing Storage and Configuring the Operating System”: This
discusses how to effectively manage physical (DASD) and virtual storage. It also
explains various operating system parameters and how to set them to optimize the
performance of a system that includes a DB2 Server for VSE & VM application
server.

Chapter 4, “Configuring the Application Server and Requester”: This explains the
various subsystems in the application server and requester and how they can affect
performance. It discusses how each initialization parameter governs how each
subsystem operates, and where to look for performance indicators that describe
how well each subsystem is performing.

© Copyright IBM Corp. 1993, 2003 vii

Chapter 5, “Improving Data Access Performance”: This discusses how to improve
performance by changing either how the data is accessed or by changing the
structure of the data itself. The first method involves analyzing and rewriting SQL
statements, while the second method involves reorganizing data, effectively
managing indexes, and working with database statistics.

Chapter 6, “Data Spaces Support for VM/ESA”: This discusses how to improve the
performance of your application server, by using the Data Spaces facility in
VM/ESA.

Chapter 7, “Tuning Performance for Data Spaces Support”: This discusses the
various tuning actions which can be used to improve Data Spaces Support
performance.

Prerequisite Reading
This manual assumes that you are familiar with at least one of the following IBM
publications:
v DB2 Server for VSE & VM Application Programming

v DB2 Server for VM System Administration

v DB2 Server for VSE System Administration

v DB2 Server for VSE & VM Operation

v DB2 Server for VSE & VM Database Administration

v DB2 Server for VSE & VM Diagnosis Guide and Reference

v DB2 Server for VSE & VM SQL Reference.

It also assumes you are familiar with IBM VM systems, CMS commands, and
EXECs; or VSE, job control language, and CICS®.

Syntax Notation Conventions
Throughout this manual, syntax is described using the structure defined below.
v Read the syntax diagrams from left to right and from top to bottom, following

the path of the line.
The ��─── symbol indicates the beginning of a statement or command.
The ───� symbol indicates that the statement syntax is continued on the next
line.
The �─── symbol indicates that a statement is continued from the previous line.
The ───�� symbol indicates the end of a statement.
Diagrams of syntactical units that are not complete statements start with the
�─── symbol and end with the ───� symbol.

v Some SQL statements, Interactive SQL (ISQL) commands, or database services
utility (DBS Utility) commands can stand alone. For example:

Others must be followed by one or more keywords or variables. For example:

�� SAVE ��

viii Performance Tuning Handbook

v Keywords may have parameters associated with them which represent
user-supplied names or values. These names or values can be specified as either
constants or as user-defined variables called host_variables (host_variables can only
be used in programs).

v Keywords appear in either uppercase (for example, SAVE) or mixed case (for
example, CHARacter). All uppercase characters in keywords must be present;
you can omit those in lowercase.

v Parameters appear in lowercase and in italics (for example, synonym).
v If such symbols as punctuation marks, parentheses, or arithmetic operators are

shown, you must use them as indicated by the syntax diagram.
v All items (parameters and keywords) must be separated by one or more blanks.
v Required items appear on the same horizontal line (the main path). For example,

the parameter integer is a required item in the following command:

This command might appear as:
SHOW DBSPACE 1

v Optional items appear below the main path. For example:

This statement could appear as either:
CREATE INDEX

or
CREATE UNIQUE INDEX

v If you can choose from two or more items, they appear vertically in a stack.
If you must choose one of the items, one item appears on the main path. For
example:

�� SET AUTOCOMMIT OFF ��

�� DROP SYNONYM synonym ��

�� SHOW DBSPACE integer ��

�� CREATE
UNIQUE

INDEX ��

�� SHOW LOCK DBSPACE ALL
integer

��

About This Manual ix

Here, the command could be either:
SHOW LOCK DBSPACE ALL

or
SHOW LOCK DBSPACE 1

If choosing one of the items is optional, the entire stack appears below the main
path. For example:

Here, the command could be:
BACKWARD

or
BACKWARD 2

or
BACKWARD MAX

v The repeat symbol indicates that an item can be repeated. For example:

This statement could appear as:
ERASE NAME1

or
ERASE NAME1 NAME2

A repeat symbol above a stack indicates that you can make more than one
choice from the stacked items, or repeat a choice. For example:

v If an item is above the main line, it represents a default, which means that it will
be used if no other item is specified. In the following example, the ASC keyword

�� BACKWARD
integer
MAX

��

�� ERASE $ name ��

�� VALUES ($

,

constant
host_variable_list
NULL
special_register

) ��

x Performance Tuning Handbook

appears above the line in a stack with DESC. If neither of these values is
specified, the command would be processed with option ASC.

v When an optional keyword is followed on the same path by an optional default
parameter, the default parameter is assumed if the keyword is not entered.
However, if this keyword is entered, one of its associated optional parameters
must also be specified.
In the following example, if you enter the optional keyword PCTFREE =, you
also have to specify one of its associated optional parameters. If you do not
enter PCTFREE =, the database manager will set it to the default value of 10.

v Words that are only used for readability and have no effect on the execution of
the statement are shown as a single uppercase default. For example:

Here, specifying either REVOKE ALL or REVOKE ALL PRIVILEGES means the
same thing.

v Sometimes a single parameter represents a fragment of syntax that is expanded
below. In the following example, fieldproc_block is such a fragment and it is
expanded following the syntax diagram containing it.

��
ASC

DESC
��

��
PCTFREE = 10

PCTFREE = integer
��

�� REVOKE ALL
PRIVILEGES

��

��
NOT NULL

UNIQUE
PRIMARY KEY

fieldproc_block ��

About This Manual xi

SQL Reserved Words
The following words are reserved in the SQL language. They cannot be used in
SQL statements except for their defined meaning in the SQL syntax or as host
variables, preceded by a colon.

In particular, they cannot be used as names for tables, indexes, columns, views, or
dbspaces unless they are enclosed in double quotation marks (").

fieldproc_block:

FIELDPROC program_name

$

,

(constant)

xii Performance Tuning Handbook

ACQUIRE
ADD
ALL
ALTER
AND
ANY
AS
ASC
AVG

BETWEEN
BY

CALL
CHAR
CHARACTER
COLUMN
COMMENT
COMMIT
CONCAT
CONNECT
COUNT
CREATE
CURRENT

DBA
DBSPACE
DELETE
DESC
DISTINCT
DOUBLE
DROP

EXCLUSIVE
EXECUTE
EXISTS
EXPLAIN

FIELDPROC
FOR
FROM

GRANT
GRAPHIC
GROUP

HAVING

IDENTIFIED
IN
INDEX
INSERT
INTO
IS

LIKE
LOCK
LONG

MAX
MIN
MODE

NAMED
NHEADER
NOT
NULL

OF
ON
OPTION
OR
ORDER

PACKAGE
PAGE
PAGES
PCTFREE
PCTINDEX
PRIVATE
PRIVILEGES
PROGRAM
PUBLIC

RESOURCE
REVOKE
ROLLBACK
ROW
RUN

SCHEDULE
SELECT
SET
SHARE
SOME
STATISTICS
STORPOOL
SUM
SYNONYM

TABLE
TO

UNION
UNIQUE
UPDATE
USER

VALUES
VIEW

WHERE
WITH
WORK

Conventions Used for Highlighting Examples
Sample commands and messages are provided throughout this manual. While you
will not see highlighting on your screen, it is included in this manual for emphasis:
v Commands are highlighted using bold type.
v Messages are not highlighted
v Important parts of some messages are emphasized with underlining.

For example:

About This Manual xiii

set pool 1 seq
ARI0065I Operator command processing is complete.
show pool 1

POOL NO. 1: NUMBER OF EXTENTS = 2 DS3 SEQ

EXTENT TOTAL NO. OF NO. OF NO. OF %
NO. PAGES PAGES USED FREE PAGES RESV PAGES USED
1 855 74 781 8
2 855 47 808 5

TOTAL 1710 121 1589 20 7
ARI0065I Operator command processing is complete.

xiv Performance Tuning Handbook

Summary of Changes

This is a summary of the technical changes to the DB2 Server for VSE & VM
database management system for this edition of the book. Several manuals are
affected by some or all of the changes discussed here. For your convenience, the
changes made in this edition are identified in the text by a vertical bar (|) in the
left margin. This edition may also include minor corrections and editorial changes
that are not identified.

This summary does not list incompatibilities between releases of the DB2 Server
for VSE & VM product; see either the DB2 Server for VSE & VM SQL Reference, DB2
Server for VM System Administration, or the DB2 Server for VSE System
Administration manuals for a discussion of incompatibilities.

Summary of Changes for DB2 Version 7 Release 3
Version 7 Release 3 of the DB2 Server for VSE & VM database management
system is intended to run on the VM/ESA Version 2 Release 4 or later environment
and on the Virtual Storage Extended/Enterprise Systems Architecture (VSE/ESA®)
Version 2 Release 5 Modification 1 or later environment.

Enhancements, New Functions, and New Capabilities
The following have been added to DB2 Version 7 Release 3:

Cancel TCP/IP Agent in VM
With this new functionality, if the client is connected to a DB2 for VM application
server via TCP/IP, and the client disconnects from the application server, the DB2
for VM application server will detect that the client has disconnected and will
immediately release the resources that it had held.

Force Inactive Users
This function introduces a new DB2 Server for VM operator command, FORCE
INACTIVE. The FORCE INACTIVE command will disconnect inactive users on
DB2 Server for VM. Also, when SQLEND is issued on DB2 Server for VM, inactive
users will be automatically disconnected so that they do not delay database
shutdown. This will make the behavior of SQLEND consistent on DB2 Server for
VM and on DB2 Server for VSE.

See the DB2 Server for VSE & VM Operation manual for further details.

CLI/JDBC V8 Redesign
If you would like to use DB2 Server for VSE & VM as a server with access by
CLI/ODBC/JDBC/OLE clients, you need the support of schema functions on the
DB2/VSE&VM database servers. These schema functions allow applications to get
catalog information in a way that is database vendor independent. The schema
functions return a standard result set to the user. In DB2 Universal Database V8.1,
these functions are implemented with views and stored procedures if the views
rely on SQL that is not supported on the VSE & VM platforms.

There is now a set of stored procedures that will generate the schema functions
results sets without views. The result sets returned by these stored procedures
correspond to the results obtained from other servers when SELECTing from the
schema views.

© Copyright IBM Corp. 1993, 2003 xv

|
|
|
|

|

|

|
|
|
|
|

|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|

|
|
|
|

The schema stored procedures created on VM and VSE servers are invoked
internally by CLI/JDBC drivers.

See the DB2 Server for VSE & VM Database Administration manual for additional
information.

Control Center for VSE Enhancements
The Control Center for VSE restriction of a hard coded user name and password
for connecting to a database has been removed. When a Control Center for VSE
transaction is initiated in CICS, Control Center will request the user ID and the
password from the terminal user. A parameter card will be used for batch
programs to input the user ID and password.

Control Center for VM Enhancements
Control Center enhancements include support for new operator commands,
enhancements to existing operator functions, and enhancements to current
initialization parameters.

Reliability, Availability, and Serviceability Improvements

Alternate Logging
A new inactive log can now take over when the active log reaches the ARCHPCT
value and alternate logging is enabled, instead of immediately forcing a log archive
to be taken. A log archive can then be taken at a later time, as determined by the
operator. If an attempt to switch to the inactive log occurs and that inactive log has
not already been archived, the operator is forced to take an archive of the inactive
and active logs.

For more information, see the following DB2 Server for VSE & VM documentation:
v DB2 Server for VSE System Administration

v DB2 Server for VM System Administration

v DB2 Server for VSE & VM Diagnosis Guide and Reference

v DB2 Server for VSE & VM Operation

v DB2 Server for VSE Program Directory

v DB2 Server for VM Program Directory

Data Restore Changes
Data Restore now allows users to use the RELOAD function with
RECOVERY=YES, even if an event such as a COLDLOG has broken the logical
continuity of the log files. In this case, the log can now be applied until this event
is reached. Alternate logging is fully supported with Data Restore for VSE & VM
V7.3.

Release Empty Pages
You can now release empty pages in any dbspace on VM without having to issue
DROP DBSPACE, by using a new single user mode utility called SQLRELEP. A
new single user mode startup option, STARTUP=P, is introduced to enable you to
release empty pages on VSE. For more information, see the DB2 Server for VSE &
VM Database Administration manual.

More Information on TCP/IP Messages
In the event of a TCP/IP server-side error, new messages will now be displayed
with more information pertaining to the TCP/IP error. This information will
include the input parameters of the service causing the error.

xvi Performance Tuning Handbook

|
|

|
|

|
|
|
|
|
|

|
|
|
|

Migration Considerations
Migration is supported from SQL/DS® Version 3 and DB2 Server for VSE & VM
Versions 5 and 6. Migration from SQL/DS Version 2 Release 2 or earlier releases is
not supported. Refer to the DB2 Server for VM System Administration manual or the
DB2 Server for VSE System Administration manual for migration considerations.

Summary of Changes xvii

xviii Performance Tuning Handbook

Chapter 1. Improving Performance

Elements of Performance
Performance is the way a computer system behaves given a particular workload. It
can be measured through the system’s response time, throughput, and availability;
and it is affected by:
v The resources available
v How well they are used and shared

In general, you should undertake performance tuning when you want to improve
the cost-benefit ratio of your system. Specific goals would be:
v To process a larger or more demanding work load without increasing processing

costs. (For example, without buying new hardware or using more processor
time.)

v To obtain faster system response or higher throughput without increasing
processing costs.

v To reduce processing costs without affecting service to your users.

Translating performance from technical terms to economic terms is difficult.
Performance tuning certainly costs money (through people’s time and through
processor time), so before you undertake a tuning project, weigh its costs against
its possible benefits. Some of these benefits are tangible, such as more efficient use
of resources and the ability to add more users to the system, others such as greater
user satisfaction because of quicker response time, are intangible. All of these
benefits must be considered.

Tuning Guidelines
The following guidelines should help you develop an overall approach to
performance tuning.

Remember the Law of Diminishing Returns: Your greatest performance benefits
usually come from your initial efforts. Further changes generally produce smaller
and smaller benefits and require more and more effort.

Do Not Tune Just for the Sake of Tuning: Tune to relieve identified constraints. If
you tune resources that are not the primary cause of performance problems, this
has little or no effect on response time until you have relieved the major
constraints, and it can actually make subsequent tuning work more difficult. If
there is any significant improvement potential, it lies in improving the performance
of the resources that are major factors in the response time.

Consider the Whole System: You can never tune one parameter or system in
isolation. Before you make any adjustments, consider how it will affect the system
as a whole.

Change one Parameter at a Time: Do not change more than one performance
tuning parameter at a time. Even if you are sure that all the changes will be
beneficial, you will have no way of evaluating how much each change contributed.
You also cannot effectively judge the trade-off you have made by changing each
parameter. Every time you adjust a parameter to improve one area, you almost
always affect at least one other area.

© Copyright IBM Corp. 1993, 2003 1

Measure and Reconfigure by Levels: For the same reasons that you should only
change one parameter at a time, tune one level of your system at a time. You can
use the following list as a guide:
v Hardware
v Operating System (VM or VSE)
v CICS (for VSE)
v Application Server and Requester
v Database
v SQL Statement
v Application Program

Check for Hardware and Software Problems: Some performance problems may be
corrected by applying service, either to your hardware, through an engineering
change (EC) or microcode assists, or to your software through a program
temporary fix (PTF). Do not spend excessive time monitoring and tuning your
system, when simply applying service may make it unnecessary.

Understand the Problem Before you Upgrade your Hardware: Even if it seems
that additional storage or processor power could immediately improve
performance, take the time to understand where your bottlenecks are. You may
spend the money on additional DASD only to find that you do not have the
processing power or the channels to exploit it.

Put Fallback Procedures in Place Before You Start Tuning: As noted earlier, some
tuning can cause unexpected performance results. If this leads to poorer
performance, it should be reversed and alternative tuning tried. If the former setup
is saved in such a manner that it can be recalled, the backing out of the incorrect
change becomes much simpler.

Performance Improvement Process
Use the following process to improve the performance of any system:
1. Establish performance indicators.
2. Define performance objectives.
3. Develop a performance monitoring plan.
4. Carry out the plan.
5. Analyze your measurements to determine whether you have met your

objectives. If you have, consider reducing the number of measurements you
make. Performance monitoring itself uses system resources. Otherwise continue
with Step 6.

6. Determine the major constraints in the system.
7. Decide where you can afford to make trade-offs and which resources can bear

an additional load. (Nearly all tuning involves trade-offs among system
resources and the various elements of performance.)

8. Adjust the configuration of your system. If you think that it is feasible to
change more than one tuning option, implement one at a time. If there are no
options left at any level, you have reached the limits of your resources and
need to upgrade your hardware.

9. Return to Step 4 above and continue to monitor your system.

Periodically, or after significant changes to your system or workload:
v Return to Step 1 above

2 Performance Tuning Handbook

v Reexamine your objectives and indicators
v Refine your monitoring and tuning strategy.

How Much Can a System be Tuned?
There are limits to how much you can improve the efficiency of a system. Consider
how much time and money you should spend on improving system performance,
and how much the spending of additional time and money will help the users of
the system.

Your system may perform adequately without any tuning at all, but it probably
will not perform to its potential. Unfortunately using the default tuning parameters
is usually not a good solution. Each database is unique. As soon as you develop
your own database, and applications to use it, investigate the tuning parameters
available and learn how you can customize their settings to reflect your situation.
In some circumstances, there will only be a small benefit from tuning a system,
however in most, the benefit may be significant.

As your system approaches a performance bottleneck, it is more likely that tuning
will be effective. If you are close to this and you increase the number of users on
the system by, say, 10 percent, the response time is likely to rise by much more
than 10 percent. However, there is a point beyond which tuning cannot help you.
At that point, the only thing to do (other than adding new hardware) is to change
your objectives.

Workload
When devising a strategy to improve performance, you need to consider the
workload in two environments: test, and production. Ideally you should have
access to both, but often tuning must be done without the benefit of a test system.

Test Workload: In a test environment you can use strictly defined workloads to
model how changes to performance parameters may affect your production
system. Consider modeling your production system with a small subset of
transactions from it. By running a wide variety of SQL statements from different
applications you can create a rough sketch of your system. While it may not
perform exactly the way the production system will, it can help you discover
unexpected effects before they occur in production.

Production Workload: In contrast, you probably do not have a great deal of
control over the size and nature of the workload in your production
environment—you can measure it, looking for maximums, minimums, averages,
and variances over time, but it is almost impossible to accurately predict exactly
what it will be. Instead look for trends that can help you predict future capacity
requirements. For example, will you need to buy hardware or invest in additional
performance tuning to support a rapidly growing workload.

Performance Indicators
The first rule of control engineering is:

If you cannot measure it, you cannot control it .

When you set your performance objectives, take a practical look at what you can
measure. While you may want to establish a high-level throughput objective of,
say, “55 transactions per second” there may not be an easy way to measure this.

Chapter 1. Improving Performance 3

Instead, consider using an indicator that is readily available. For example, the
BEGINLUW counter records how may logical units of work (LUWs) started during
the last monitoring period. While this does not actually represent the number of
transactions per second, it does act as a rough indicator of throughput.

Establishing Performance Objectives
How you define good performance depends on your particular needs and
priorities. Performance objectives should be realistic, in line with your budget,
understandable, and measurable.

Response Time
Response time represents the elapsed time between when a user submits an SQL
request to a server (usually through an application program), and when the
response arrives on the user’s screen. It can also represent the elapsed time
required to respond to an SQL request submitted from a batch application
program.

The easiest response time objective to state is a maximum time, such as, “SQL
queries will return in under 2 seconds”. However, response times can vary for
many reasons. So, include acceptable tolerances in your targets. For example, “SQL
queries will return in under 2 seconds 80% of the time”. This allows for unusual
transactions that have exceptionally heavy processing or database access
requirements.

Components of Response Time
Response time for any database transaction has three components. The SQL
statement is generated in an application program; it travels through a network to
an application server; and finally, the server generates a response, which is
returned to the program through the network.

Application server response time represents the time it takes for the server to
interpret your request and retrieve or update data. This can be affected not only by
how well your database and SQL statements are designed, but also by how well
the server’s initialization parameters are tuned.

Network response time represents the communication delay between the
application program and the application server. It also represents any delay
between a user’s terminal and the application program. This usually does not
represent a large part of overall response time, unless your server and application
program are physically separated by large distances.

Application program response time can often be the fastest part of the process,
but do not overlook it. Some programs can take more time to process data than
was required to retrieve this data from the server. For example, if you retrieve
floating-point data that needs to be displayed in scientific notation, your program
may take longer to perform the conversion than it took for the server to generate
the answer set. Therefore, do not assume that if you double the speed of your
server, your end users will see their response time cut in half.

You can also use a stored procedure (user-written application program that is
compiled and stored at the server) to eliminate many of the network send and
receive operations, and thereby reduce network cost of distributed database access.
For more information on stored procedures, see the DB2 Server for VSE & VM
Database Administration manual.

4 Performance Tuning Handbook

Throughput
Throughput measures the amount of work processed over a period of time (refer to
“Workload” on page 3). You can measure it either in a controlled test system or in
a production system.

In a test system you are able to define representative workloads and measure how
many of these transactions your system can complete per unit of time. For
example, you can measure the number of transactions per second.

In a production environment, look for measurements that are effective as averages
over time that will give you a rough indicator of throughput of your overall
system, such as BEGINLUW. Also look at the throughput of your various
subsystems — for example, the pages processed per second by your DASD I/O
system.

Availability
Availability is a measure of the proportion of time a system or resource is ready
when it is required.

It is usually measured in hours, weeks, or months. For example, you may want to
set an objective of 8 hours downtime (time when your server is unavailable) per
month, based on a 24-hour day. Downtime is not necessarily caused by a
malfunction. You may need to shut the application server down to apply service or
perform maintenance.

A Less Formal Approach
If you do not have enough time to set performance objectives and to monitor and
tune in a comprehensive manner, you can address performance by listening to
your users. Find out if they are having performance-related problems. You can
usually locate the problem, or at least where to start, by asking a few simple
questions. For example:
v What do you mean by “slow response”? Is it 10% slower than you expect it to

be, or tens of times slower?
v When did you notice the problem? Is it recent or has it always been there?
v How many users are complaining? Is it just one or two individuals, or a whole

group?
v If a whole group of users are experiencing difficulties, are they connected to the

same terminal controller?
v Are the problems related to a specific transaction or application program?
v Do the problems appear during regular periods, such as lunch hour, or are they

continuous?

Monitoring Performance
Performance monitoring can help you understand how the various parts of your
overall computer system are working. There are two types:

Real time
You can monitor the immediate state of your system to solve problems
such as locking contention or storage shortages.

Chapter 1. Improving Performance 5

Statistical
You can also monitor the performance of a system over a period of time to
help you tune the parameters of the system or plan for future capacity
requirements.

Creating a Monitoring Plan
You need to plan how you will monitor your system and how you will analyze the
data that results. When you create your plan, do the following:
v Create a master schedule of monitoring. Large batch jobs or maintenance runs

can cause peaks in activity. Coordinate monitoring with other operations so that
they do not conflict with unusual peaks, unless that is what you want to
monitor.

v Determine the kinds of analysis that you will perform and the tools that you
will use. Document the data that you will extract from each monitoring tool.
Some of these tools provide reports that help to organize data, but in addition
you should create worksheets or utility programs to help you extract and
organize the performance indicators specific to your system.

v Create a list of people who should review the results of your monitoring. These
results should be summarized and shared with everyone involved with your
system. Consider including application programmers, operators, and your end
users.

v Determine standards and criteria for implementing changes in system
parameters and workload. Describe how often you will permit changes, and
outline a strategy to monitor their effects.

Monitoring Interval
An important factor affecting the accuracy of your performance measurements is
the monitoring interval. Most useful performance values, whether measured
directly or calculated from other measures, are averages over time.

If the interval that you use to calculate this average is too long, you may lose
significant values. For example, you would not see a 10-minute peak in DASD
paging load or a 10-minute drop in the effective use of the local buffers if you only
look at your performance indicators once a day.

If the interval is too short, your results may not be statistically valid. For example,
if one checkpoint occurred during one 30-minute interval, you could not
confidently say that the database manager was performing two checkpoints per
hour.

Cost of Monitoring
You need to weigh the benefits of making performance measurements against the
additional overhead involved. While recording performance numbers every 10
seconds may give you an excellent picture of how your database manager is
working, the additional load on the operating system may reduce your overall
performance, or consume large amounts of DASD space.

Measurements
Performance measurements are relative: they tell how a system behaves for a
particular workload. A system is considered to perform well if it can complete a
particular workload faster than other systems or with fewer resources.

6 Performance Tuning Handbook

In a test system, you can control the workload by running the same tasks many
times. During each iteration you can measure how fast your system completed the
tasks and how much resource it used.

However, in a production system it is difficult to compare measurements taken at
different times, because the workload is constantly changing. To obtain a
performance measurement, you must compare the average performance of your
system measured over a period of time to the workload it processed during that
time. To make these comparisons, you need to calculate two types of relative
measurements: load and performance.

Load is usually measured as a rate, in tasks per unit of time. These measurements
help you determine the amount of work that the database manager or the
operating system is performing during a period of time. High load values in some
areas and low load in others may suggest a bottleneck in the system. Also, while
similar load measurements do not guarantee that two workloads are comparable,
different ones show that they are not comparable.

Performance can be measured as a percentage from 0% to 100%, where 100% is
optimal. For practical reasons it is often calculated by comparing the number of
successes compared to the number of attempts. For example, if the database
manager looks in the local buffers for a page 100 times, and finds the page it is
looking for 75 times, the local buffers are 75% effective. This measurement helps
you estimate how effectively various components of the entire system are
performing.

The percentage can be calculated in several ways:

You can also express a performance measurement as a hit ratio, with the following
calculation:

In this case, the higher the ratio the better the performance. The lowest value for a
hit ratio is 1.

Use the formula that makes the most “sense” to you. Some formulas fit some
measurements better or are easier to understand than others. Mathematically, they
are all equivalent.

Tools
A wide range of tools for monitoring performance is available in both VM and in
VSE. Each tool covers a particular area or a different level of the overall system.

VM Tools
The CP Monitor subsystem measures the performance of the VM operating system
and its resources and the VM/Performance Reporting Facility (VM/PRF) product
creates usage and historical reports from those measurements. You can control the

Failure
Attempt

= 1 - 100X
Success
Attempt

100 =X
Attempt - Failure

Attempt
100X

Chapter 1. Improving Performance 7

amount and nature of the data collection, based on the analysis you want to do. To
create reports from the collected data, you must either do some programming, or
you can use VM/PRF to produce standard reports. This facility contains reports
helpful in monitoring the overall DASD I/O performance of your database. The
CP Monitor subsystem is included with the VM system. VM/PRF is available from
IBM.

The CP INDICATE USER and QUERY TIME commands measure the resources
consumed by your database virtual machine. Includes measurements of system
paging use, database manager DASD I/O, and CPU load. Included with VM as a
part of CP. (Refer to page 15.)

The Real Time Monitor VM/ESA (RTM VM/ESA) provides on-line performance
monitoring. Data is typically gathered in short intervals, usually one to three
minutes.

You can use this tool to capture system level data about your system and the
database machine. It is available from IBM.

VSE Tools

The VSE Interactive Interface contains information about CPU use, system paging,
active users, channel and device activity, storage layout, and system activity. Each
is presented in a separate dialog. It is included with VSE. Refer to the DB2 Server
for VSE & VM Operation manual.

VSAM LISTCAT provides information on the location of VSAM data sets. It is
provided with VSE. (Refer to the DB2 Server for VSE & VM Operation manual.)

CICS Tools
The CICS Monitoring Facility measures the performance of CICS under VSE and
CICSPARS/VSE creates historical reports. Both are available from IBM. (Refer to
page 17.)

The CIRD transaction displays a snapshot of the links between CICS and your
application server. It is provided with the DB2 Server for VSE & VM base product.
(Refer to page 21.)

The CICS statistics facility gathers statistical data on CICS performance. It is
provided with CICS. (Refer to the CICS/VSE Performance Guide manual.)

DB2 Server for VSE & VM Tools
As well as the tools described below, the DB2 Family Solutions Directory manual
contains descriptions and ordering information for a wide variety of performance
monitoring and tuning tools. These tools are available from a number of
companies including IBM and are included under the section heading “Database
Administration Tools”.

Whenever the application server starts, it displays how its Initialization
Parameters are set. These parameters describe how the server has been configured.
It is included with the DB2 Server for VSE & VM base product. (Refer to page 20.)

The DB2 Server for VSE & VM system catalog contains information about the
dbspaces, tables, indexes, keys, packages, authorities, and other objects in the
database. Much of the information is used by the database manager when it
decides how to retrieve data from the database. It is included with the DB2 Server
for VSE & VM base product. (Refer to page 38.)

8 Performance Tuning Handbook

The SHOW operator commands are available which display the status of the
application server. For example, user activity, locking, log usage, and storage can
all be monitored with these commands. It is included with the DB2 Server for VSE
& VM base product. (Refer to page 25.)

The COUNTER operator command measures the performance of your application
server by recording how often significant events occur in the database manager.
These events relate to workload, locking, and database manager storage (buffer
pools). It is included with the DB2 Server for VSE & VM base product. (Refer to
page 22.)

IBM DB2 Control Center for VSE & VM automates DBA functions such as
archiving, recovery, adding dbextents, deleting dbextents, adding dbspaces, startup,
shutdown, startup parameter changing, dbspace reorganizations, catalog index
reorganizations, and database monitoring. Any of these functions may be initiated
immediately by an automated user (local or remote), or they may be scheduled to
execute at any specified date and time, or repetitive execution interval. It is
available from IBM.

The DB2 Server for VSE & VM accounting facility records how much CPU time is
consumed and how many buffer pool looks were done during the time that a user
is signed onto the application server. The DB2 Server for VSE & VM trace facility
records the sequence of events that occur in different components of the database
manager (for example, you could trace the sequence of locks that lead up to a
deadlock). While both these tools can be extremely useful in diagnosing
performance problems, use them very sparingly. Both consume a great deal of
system resources and can actually severely affect overall performance when they
have been turned on. For more information on the accounting facility, refer to the
DB2 Server for VSE System Administration or the DB2 Server for VM System
Administration manuals. For more information on the trace facility, refer to the DB2
Server for VSE & VM Operation manual.

The DB2 Server DSS SHOW TARGETWS operator command measures the
amount of main and expanded storage your database machine is currently using. It
is included with the DB2 Server DSS Feature. (Refer to the DB2 Server for VSE &
VM Operation manual.)

The DB2 Server DSS COUNTER POOL operator command measures the
performance of individual storage pools, internal dbspaces and the directory. It is
included with the DB2 Server DSS Feature. (Refer to the DB2 Server for VSE & VM
Operation manual.)

Factors Affecting Performance

Resources

Processor
The processor (sometimes referred to as the CPU) is generally the most expensive
resource in a system. As such, they should be used as efficiently and fully as
possible. In a highly-utilized, well-tuned system, the processor is in use at least
80% of the time. If yours is already above that level, you must either upgrade your
processor or find a more efficient way to do the job. For example, rewrite your
application program, or investigate the structure of your data or SQL statements.
Refer to Chapter 5, “Improving Data Access Performance” on page 117.

Chapter 1. Improving Performance 9

Storage

Real and Virtual Storage: Your system’s performance is directly affected by how
well the database manager and your operating system share a common pool of
storage between different processes.

For example, agent structures, buffer pools, locks, and packages all require storage.
In general, the more storage allocated to a specific component, the faster it will
perform (within limits). However, you can only allocate storage from the limited
amount available in your database machine or partition. You need to trade-off the
requirements of each component in order to balance the entire system.

For example, if DASD I/O is a performance bottleneck during regular operation
and locking is not, consider using less storage for locks and more for the DASD
buffer pools. For more information, refer to “Real and Virtual Storage” on page 43.
(This is a good example of how performance issues interrelate. By increasing the
number of buffers in the pool you decrease your DASD I/O during regular
operation, but increase it during checkpoint processing. If checkpoint processing
was a problem you have just made it worse. Refer to “Choosing the Checkpoint
Interval” on page 103.)

The DASD I/O System: The database manager moves data to and from DASD as
required. How efficiently it does that has a significant impact on the overall
performance of your application server. How much real storage is available, the
size of the buffer pools, and how often a checkpoint is performed all determine
how often the database manager needs to move data between itself and DASD.

You can also improve the performance of the DASD I/O subsystem by using
DASD caching, Virtual Disks (see “Virtual Disk Support for VSE/ESA for Internal
Dbspaces” on page 48 or “Virtual Disk Support for VM/ESA for Internal
Dbspaces” on page 54), or the DB2 DSS Support (see Chapter 6, “Data Spaces
Support for VM/ESA” on page 157).

DASD Storage: How you manage DASD storage affects performance in four
ways:

Dividing DASD
How you divide a limited amount of storage between indexes and data,
and among dbspaces and among storage pools determines to a large
degree how each will perform in different situations.

Wasting DASD
Wasted storage in itself may not affect the performance of the system that
is using it, but it may represent a resource that could be used to improve
performance elsewhere.

Distributing DASD I/O
How well you balance the demand for DASD I/O across multiple DASD
devices, controllers and channels can affect how fast the database manager
can retrieve information from DASD, refer to “DASD Balancing” on
page 75.

Running out of DASD
While running out of storage can disrupt your users and you are forced to
bring down the application server to add storage, just getting close can
degrade performance. (If you reach the application server’s short on
storage level you trigger unnecessary SOSLEVEL checkpoints, refer to
“Short on Storage Cushion” on page 59.)

10 Performance Tuning Handbook

For more information, refer to “DASD Storage” on page 58.

Overhead

Concurrency
The database manager uses agents and pseudo agents to allow concurrent use of
its resources. It uses agent structures to divide processor time between multiple
users and its own internal tasks, such as checkpoint processing and operator
commands. The number of agents available, combined with how the agents are
scheduled and dispatched can affect the overall performance of your system. For
more information, refer to “Concurrency” on page 88.

Your operating system must also divide processor time among multiple
applications (your application server being one). If the operating system favors
your server and gives it more than its even share of time, your server may perform
well, but at the expense of other applications. For VM, refer to “Fair Share
Scheduling” on page 78. For VSE, refer to “Dispatching Priority” on page 79.

Locking
In multiple user mode (MUM), several agents may need to access the same data at
the same time. This poses a problem if one agent tries to change data while
another agent is still looking at it.

Consider two application programs, each trying to add ten dollars to the same
account at the same time. Both programs read the account balance at the same
time. They both see 100 dollars in the account. The first program updates the value
in the account with 110 dollars, the second program does likewise. The problem is
that when both programs are finished there is only 110 dollars in the account
instead of 120.

To avoid this problem, the database manager can lock the account as soon as the
first program looks at it and hold the lock until the program is finished updating
the balance. The second program waits until the first is complete.

Performance Implications: Of course while locking protects your data, there is a
performance cost. Not only can waiting for locks increase response time (locks can
last to the end of a logical unit of work), but each lock requires additional storage
and processing time. Refer to “Locking Contention” on page 93.

Also, because there are a set number of potential locks defined at initialization
time, you may run out. You may need more than were originally defined. If this
happens, locks will be escalated, (refer to “Lock Escalation” on page 99) a process
that requires additional storage and processor time.

Deadlocks (refer to “Deadlock” on page 101) can also be a problem. While the
database manager detects deadlocks before they occur, the more potential deadlock
situations that you create the more resources are required to avoid them.

Recovery
Maintaining the integrity of your data means preventing its accidental or
intentional destruction, alteration, or loss. If your data is ever affected, there are
three systems to ensure that you can recover it.

Checkpoint Processing
A checkpoint ensures that any modifications to your database, which are
temporarily stored in main storage, are written to DASD. This ensures that

Chapter 1. Improving Performance 11

the integrity of your database is protected even if your application server
crashes, refer to “Checkpoints” on page 102.

Logging
A log is a file maintained on DASD that records the old and new values
each time a change is made in your database. If you lose any changes
because of a system failure, you can use the log to undo or redo the
changes and restore the data to its original state.

Archiving
A database archive is a copy of the entire database. A log archive is an
archive, or series of archives of the log. In the case of a serious failure you
can restore the database archive, and instruct the database manager to redo
any of the changes recorded in the log archive.

For information on both logging and archiving, refer to “Logging and Archiving”
on page 105.

Choosing Between Tuning Trade-offs
The art of tuning is finding and removing constraints. In most systems,
performance is limited by a single constraint. However, removing that constraint,
while improving performance, inevitably reveals a different constraint, and you
often have to remove a series of constraints. Because tuning generally involves
decreasing the load on one resource at the expense of increasing the load on a
different resource, relieving one constraint always creates another. A system will
always be constrained.

When you choose to remove a constraint, consider which resources can accept an
additional load in the system without themselves becoming worse constraints.
Tuning usually involves a variety of actions that can be taken, each with its own
trade-off.

12 Performance Tuning Handbook

Chapter 2. Measuring Performance

This chapter discusses some basic performance measurements you need to make at
the operating system level. It also includes descriptions of several basic
measurement tools included with the DB2 Server for VSE & VM product.

Understanding Performance Measurements
Performance measurements are relative: they tell how a system behaves for a
particular workload. Usually, a system is considered to perform well if it can
complete a particular workload faster than other systems or with fewer resources.

In a test system, you can control the workload in your system by running the same
tasks many times. During each iteration you can measure how fast your system
completed the tasks and how much resource it used.

However, in a production system it is difficult to compare measurements taken at
different times because the workload is constantly changing. To obtain a
performance measurement, you must compare the average performance of your
system measured over a period of time to the workload it processed during that
time. To make these comparisons, you need to calculate two types of relative
measurements:
v Load
v Effective use

Relative Measurements

Load
Measured as a rate, in tasks per unit time. These measurements help you
determine the load on the database manager or the operating system over a period
of time. High load values in some areas and low load in others may suggest a
bottleneck in the system. Also, while similar load measurements do not guarantee
that two workloads are comparable, different ones show that the workloads are not
comparable.

Effective Use
Measured in a range from 0% to 100% (where 100% indicates optimal
performance). These measurements help you estimate how effective the various
buffers in the DASD I/O system are performing.

Effective use is calculated by comparing the number of pages the system looks for
in a buffer to the number it finds there. You can think of this as the number of
successes compared to the number of attempts. For example, if the database
manager looks in the local buffers for a page 100 times, and finds the page it is
looking for 75 times, the local buffers are 75% effective.

This percentage can be calculated in several ways:
Success Attempt - Failure Failure
------- X 100% = ----------------- x 100% = 1 - ------- x 100%
Attempt Attempt Attempt

You can also express effective use as a hit ratio with the following calculation:

© Copyright IBM Corp. 1993, 2003 13

Attempt

Failure

In this case, the higher the value of the hit ratio the better the performance, the
lowest value for a hit ratio is 1.

Sampling Interval
An important factor affecting the accuracy of your performance measurements is
the sampling interval. Most useful performance values, whether measured directly
or calculated from other measures, are averages over time.

If the sampling interval is too long, you may lose significant values. For example,
you would not see a 10-minute peak in DASD paging load or a 10-minute drop in
the effective use of the local buffers if you only looked at the VMDSS performance
counters once a day.

If the interval is too short, your results may not be statistically valid. For example,
if one checkpoint occurred during one 30 minute interval, you could not
confidently say that the database manager was performing 2 checkpoints per hour.

You also need to weigh the benefits of making performance measurements against
the additional overhead involved. While recording performance numbers every 10
seconds may give you an excellent picture of how your database is working, the
additional load on the operating system may reduce your database’s performance,
or consume large amounts of DASD space.

Operating System Measurements
There are a wide variety of tools available to measure the performance of your
operating system, some of which are included in “VSE Tools” on page 8, and “VM
Tools” on page 7. When you look for performance measurements in those tools,
focus on three questions. How well is the system performing as a whole? How
well is your database machine or partition performing? How is the database
machine or partition affecting the performance of other processes that are running
at the same time? With that in mind, consider the following generic measurements:

Processor (CPU) Load
Measure the overall percent utilization of your processor (CPU), refer to
“Processor” on page 9. You also need to measure the percentage of the total CPU
time devoted to the database machine or partition, refer to “Concurrency” on
page 11.

Real and Virtual Storage Load
Measure the number of virtual pages in your database machine or partition that
have been allocated real storage. Break the real pages into main, and auxiliary
pages (and in the case of VM, expanded storage pages). Refer to “Real and Virtual
Storage” on page 43. Also compare the number of virtual pages that have been
allocated above the 16MB line to those below, refer to “Storage Above 16MB (31 Bit
Addressing)” on page 47.

System Paging DASD Load
Measure the rate of DASD I/O to and from auxiliary storage, refer to “Auxiliary
Storage” on page 43. Pay special attention to I/O to and from system paging

14 Performance Tuning Handbook

DASD. This is the slowest type of auxiliary storage and the largest drain on
performance. Also, compare the overall system paging DASD load to that required
by the database machine or partition.

Machine or Partition DASD I/O Load
Measure the rate of DASD I/O initiated by the database machine or the partition
itself, refer to “Database I/O” on page 85. The database manager directs the
operating system to write and read pages to and from its data, directory, log, and
archive disks or datasets. These I/Os are independent of system paging DASD and
are always measured separately.

Individual Device Utilization
This includes individual DASD volumes, channels, and controllers. Measure the
percentage of time that these individual devices are busy. This is more effective
than using a load measurement because it takes into account the capability of the
device itself. Refer to “DASD Balancing” on page 75.

Translating Performance Measurements to Indicators
The following is a description of the CP INDICATE USER and QUERY TIME
commands included with the VM operating systems. It serves as an example of
how to extract performance counters and simple measurements and translate them
into useful indicators.

CP INDICATE USER and QUERY TIME Commands
These two commands enables you to monitor the overall performance of your
database machine. The most important indicators they provide are:

RES=nnnn
Counts the number of virtual machine pages that are currently in main
storage. Convert the number of pages into bytes by multiplying the value
by 4096 (bytes per page).

READS=nnnnnn
Counts the total number of pages moved from system paging DASD to
main storage for a virtual machine since it was logged on. (Refer to
“Auxiliary Storage” on page 43.)

WRITES=nnnnnn
Counts the total number of pages moved from main storage to system
paging DASD for a virtual machine since it was logged on. (Refer to
“Auxiliary Storage” on page 43.)

CONNECT=hh:mm:ss
Records the total elapsed time the virtual machine was logged on the
system.

VIRTCPU=mmm:ss
Records the total virtual machine processor time used since the virtual
machine was logged on.

TOTCPU=mmm:ss
Records the total virtual machine processor time plus the total CP
processor time used (virtual plus overhead) since the virtual machine was
logged on.

Chapter 2. Measuring Performance 15

IO=nnnnnn
Records the total number of I/O requests issued by the machine since it
was logged on. This includes all I/Os started by the DASD I/O system,
refer to “Database I/O” on page 85.

Note: Several IUCV *BLOCKIO requests may be blocked together to form
a single IO request. This count includes all the IO requests, it does
not count each page or block moved.

The IO value will not equal the DASDIO counter.

These commands are only really useful when you use them together. To issue
QUERY TIME and INDICATE USER together, type the following from the operator
console:

#CP QUERY TIME #CP INDICATE USER

Note: The # symbol is the default escape character. It may be different depending
on how your system has been customized.

You also need to compare two consecutive commands. For example, consider the
following two QUERY TIME and INDICATE USER commands:

#cp query time #cp indicate user
CP QUERY TIME
CP INDICATE USER
TIME IS 15:07:20 EST TUESDAY 02/14/99
CONNECT= 01:21:45 VIRTCPU= 000:06.28 TOTCPU= 000:09.86
USERID=SQLDBA MACH=XC STOR=0009M VIRT=V XSTORE=NONE
IPLSYS=CMS DEVNUM=00031
PAGES: RES=001497 WS=001260 LOCK=000000 RESVD=000000
NPREF=000000 PREF=000000 READS=000130 WRITES=000018
CPU 00: CTIME=01:22 VTIME=000:06 TTIME=000:10 IO=007553

RDR=000000 PRT=000738 PCH=000000
VVECTIME=000:00 TVECTIME=000:00

#cp query time #cp indicate user
CP QUERY TIME
CP INDICATE USER
TIME IS 15:08:31 EST TUESDAY 02/14/99
CONNECT= 01:22:56 VIRTCPU= 000:07.50 TOTCPU= 000:11.82
USERID=SQLDBA MACH=XC STOR=0009M VIRT=V XSTORE=NONE
IPLSYS=CMS DEVNUM=00031
PAGES: RES=001499 WS=001472 LOCK=000000 RESVD=000000
NPREF=000000 PREF=000000 READS=000135 WRITES=000022
CPU 00: CTIME=01:23 VTIME=000:08 TTIME=000:12 IO=009049

RDR=000000 PRT=000974 PCH=000000
VVECTIME=000:00 TVECTIME=000:00

The output shows that, during 71 seconds (CONNECT advanced from 01:21:45 to
01:22:56) the following occurred:

RES The number of virtual pages in main storage increased by two (1499-1497).

READS
Five reads from system paging DASD (135-130)

WRITES
Four writes to system paging DASD (22-18)

16 Performance Tuning Handbook

VIRTCPU
1.22 seconds of virtual machine time were used (07.50-06.28)

TOTCPU
1.96 seconds of total CPU time were used (11.82-09.86)

IO 1496 I/O requests were issued (9049-7553)

There are four important values that you can calculate from these numbers:

Sampling Interval
∆ CONNECT. The change in elapsed time between CP QUERY TIME
commands.

Main Storage Load
(RES+ (∆ RES/2))(4096)/(Total bytes of main storage). Indicates the
average load on main storage.

System Paging DASD Load
(∆ READS+∆ WRITES)/sampling interval. Indicates the average load on
system paging DASD.

Total Processor (CPU) Load
(∆ TOTCPU/sampling interval)x100. Indicates the average percent of total
CPU time your virtual machine is using. While this looks like an effective
use measurement, it is really a measure of the load your database machine
is placing on the CPU.

DASD I/O Load
∆ IO/sampling interval. Indicates the average load on the I/O system (tape
and console I/O is also included, but not Paging or Spooling I/O).

For example, from the previous example:
v Sampling Interval: 71 seconds (01:21:45 to 01:22:56)
v An average of 1498 pages of main storage were used. This converts to 6135808

bytes or 5.85MB. If you knew, for example, that your processor has 32MB of
main storage, you could calculate that the database machine was using almost
18.3% of it (5.85/32x100).

v System Paging DASD Load: 0.127/second ((4+5)/71)
v Total CPU Load: 2.76% ((1.96/71)x100)
v DASD I/O Load: 21.07/second (1496/71).

For more information, refer to the VM/ESA: CP Command and Utility Reference
manual.

CICS Monitoring (CICSPARS for VSE)
This facility collects performance data during on-line processing for later off-line
analysis. Monitoring data is recorded in the CICS journal data sets. This data can
be formatted using the CICS Performance Analysis Reporting System (CICSPARS)
field-developed program. The CICSPARS program is used with the VSE system for
generalized performance analysis reporting (DOS/GPAR) to print analysis reports
and summary reports of DB2 Server for VSE data as user clocks and counters.

CICSPARS collects performance class data for two general areas, link usage and
call usage:
v Link usage data collected

– Total number of link requests. This corresponds to the total number of logical
units of work.

Chapter 2. Measuring Performance 17

– Total number of link requests resulting in a wait because all links are busy.
– Total time waiting for links.
– Total time holding links. This corresponds to the total time for all logical units

of work.
v Call usage data collected

– Number of calls to the database manager. This number can be greater than
the total number of SQL statements issued by the application programs. This
can occur because of the implicit connect support (for CICS users not required
to provide user ID and password information to the database manager), the
TPSP support, and the fact that a single SQL statement can result in multiple
database manager calls. Multiple calls may occur when an SQL statement has
a large amount of output.

– Number of failing calls to the database manager. These are calls that result in
negative SQLCODEs.

– Total time waiting for database manager calls to process.

The CICS monitoring facility automatically associates all performance class data
with the CICS transaction running at the time. This allows data reduction
programs that process this information to construct a performance profile for any
given transaction or call summarized by transaction type. With reference to the
DB2 Server for VSE timings listed previously, the transaction profile shown in
Figure 1 can be created.
In Figure 1, blocks (A) and (B) represent intervals during the lifetime of the

transaction when other services within the CICS environment are being used.
Because most of these other services are also represented in the performance class
data, the use of these services can also be broken down, if required, in a manner
similar to the breakdown shown for the database manager. Consequently, the
database manager is integrated into a composite picture of each transaction’s
performance. This allows any transaction (or set of transactions) experiencing
unacceptable response times to be investigated in a simple, systematic manner.

Before the CICS monitoring facility can be run, CICS must be set up to process the
clocks and counters to be used and the journals used to record the data. For
information on the entries required in various CICS tables, see the DB2 Server for
VSE Program Directory.

After the CICS tables have been updated, the CICS monitoring facility can be
started by using either the CICS CSTT transaction or the MONITOR=PER keyword
of the CICS DFHSIT macro. These methods are also shown in the DB2 Server for
VSE Program Directory.

Table 1 on page 19 shows how to relate the DB2 Server for VSE clocks to the
DFHMCT entries. The specification of the keyword ID maps to the clock definition.

Not
connected
to a link

(A)
(B)

Waiting
for a
link

Holding a link

CICS/VSE transaction

No pending
DB2/VSE
requests

Waiting
for
DB2/VSE
services

Figure 1. CICS Transaction Time Usage

18 Performance Tuning Handbook

The specifications of the ID keyword must use the numeric values shown in
Table 1.

Table 1. Relationship of CICS DFHMCT ID Keywords to Clocks

ID Keyword for CICS/VSE
DFHMCT Entry

Defines the Clock that Measures

ID=(PP,16)
ID=(PP,17)

Time waiting for a link

ID=(PP,18)
ID=(PP,19)

Time holding a link

ID=(PP,20)
ID=(PP,21)

Time for DB2 Server for VSE processing

The CICS DFHMCT entries also define the four DB2 Server for VSE counters. The
argument for the ID keyword for these counters must be ID=(PP,22). The order of
the four counters is:
v Counter 1, the number of link allocates
v Counter 2, the number of link waits
v Counter 3, the number of DB2 Server for VSE requests
v Counter 4, the number of DB2 Server for VSE errors.

DB2 Server for VSE & VM Tools

Physical Data Locations

Disk Locations (VM)
The file definitions that the application server uses to point to the directory, log,
and dbextent disks appear in the start up message stream. For example:

sqlstart DB(SQLMACH1)
Ready; T=0.03/0.05 14:22:40
ARI0717I Start SQLSTART EXEC: 09/15/99 14:22:40 EDT.
ARI0663I FILEDEFS in effect are:
ARISQLLD DISK ARISQLLD LOADLIB Q1
BDISK DISK 300
LOGDSK1 DISK 301
LOGDSK2 DISK 302
DDSK1 DISK 303
DDSK2 DISK 304
DDSK3 DISK 305
DDSK4 DISK 306...

This database has its directory disk at virtual address 300, its log disks at 301 and
302, and its dbextents from 303 to 306. The physical minidisk locations are defined
in the VM Directory. To find out the DASD type, volume identifier, and size of
each disk, type: #CP Q V DASD from the operator console. For example:

Chapter 2. Measuring Performance 19

#cp q v dasd...
DASD 0300 3390 PA326B R/W 6 CYL ON DASD 168B
DASD 0301 3390 PA3268 R/W 3 CYL ON DASD 1688
DASD 0302 3390 PA3268 R/W 3 CYL ON DASD 1688
DASD 0303 3390 PA326A R/W 5 CYL ON DASD 168A
DASD 0304 3390 PA326A R/W 5 CYL ON DASD 168A
DASD 0305 3390 PA326A R/W 2 CYL ON DASD 168A
DASD 0306 3390 PA3269 R/W 2 CYL ON DASD 1689...

Data Set Placement (VSE)
In DB2 Server for VSE, dbextents are defined as VSAM datasets. To find out their
dataset names, look in the database identification procedure for your server
(shipped as an example procedure ARIS72DB), which is executed just before the
ARISQLDS start up job step in the start up job stream. (Procedure ARIS72DB is
only an example. The database identification procedure for your server may have a
different name and point to different disks.)

// DLBL BDISK,’SQL.BDISK.DBASE.DB’,,VSAM,CAT=SQLCAT
// DLBL LOGDSK1,’SQL.LOGDSK1.DBASE.DB’,,VSAM,CAT=SQLCAT
// DLBL LOGDSK2,’SQL.LOGDSK2.DBASE.DB’,,VSAM,CAT=SQLCAT
// DLBL DDSK1,’SQL.DDSK1.DBASE.DB’,,VSAM,CAT=SQLCAT
// DLBL DDSK2,’SQL.DDSK2.DBASE.DB’,,VSAM,CAT=SQLCAT
// DLBL DDSK3,’SQL.DDSK3.DBASE.DB’,,VSAM,CAT=SQLCAT
// DLBL DDSK4,’SQL.DDSK4.DBASE.DB’,,VSAM,CAT=SQLCAT
// DLBL DDSK5,’SQL.DDSK5.DBASE.DB’,,VSAM,CAT=SQLCAT
// DLBL DDSK6,’SQL.DDSK6.DBASE.DB’,,VSAM,CAT=SQLCAT

You can find the size and location of the datasets either by using the Access
Method Services (IDCAMS) utility (part of VSAM LISTCAT), or through the VSE
interactive interface. Both are documented in the DB2 Server for VSE & VM
Operation manual.

Initialization Parameters
When you initialize the application server, important information is presented on
the operator console:

20 Performance Tuning Handbook

sqlstart DB(SQLMACH1)...
ARI0020I Virtual machine addressing mode = 31

Virtual machine storage size = 24576KB...
ARI0015I SYNCPNT parameter value is Y....
ARI0016I TRACEBUF parameter value is 0.
ARI0016I CHKINTVL parameter value is 150.
ARI0016I NCSCANS parameter value is 30.
ARI0016I NCUSERS parameter value is 5.
ARI0016I NDIRBUF parameter value is 100.
ARI0016I NLRBS parameter value is 2520.
ARI0016I NLRBU parameter value is 1000.
ARI0016I NPACKAGE parameter value is 10.
ARI0016I NPACKPCT parameter value is 30.
ARI0016I NPAGBUF parameter value is 100.
ARI0016I SLOGCUSH parameter value is 90.
ARI0016I SOSLEVEL parameter value is 10.
ARI0016I DISPBIAS parameter value is 7.
ARI0016I LTIMEOUT parameter value is 0.
ARI0283I Log analysis is complete.
ARI0282I LUW UNDO is completed.
ARI0281I LUW REDO is completed.
ARI0143I The application server has been initialized

with the following values:
CHARNAME = INTERNATIONAL, DBCS = NO, CHARSUB = SBCS,
CCSIDSBCS = 500, CCSIDMIXED = 0, CCSIDGRAPHIC = 0.

ARI0060I Database manager initialization complete.
ARI0045I Ready for operator communications.

You can find the value of some of these parameters from the console log, or from
the start up options file in VM, or from an options member that is specified in the
PARM list of the start up EXEC statement. You can also use the ’SHOW
INITPARM’ operator command to display most of the parameters when the server
is running in multiple user mode. For more information, refer to the DB2 Server for
VSE & VM Operation manual.

CIRD Transaction (CICS)
CIRD is a DB2 Server for VSE-supplied transaction, that lets you display a
snapshot of the links between CICS and the application server. While it does not
provide historical information, it can help you diagnose problems with individual
transactions or get an immediate feel for the level of link contention between CICS
and the server.

It contains the following information:
v Which users are waiting for a link
v Which ones are currently using a link to access the server
v Which ones are holding a link but not accessing the application server
v Which ones previously held a link, but currently do not.

For example:

Chapter 2. Measuring Performance 21

DBDCCICS CONNECTED TO SERVER SQLDB1_NEWYORK_INV.
STATUS OF ONLINE DB2 FOR VSE APPLICATIONS:

TRANSACTIONS WAITING TO ESTABLISH A LINK TO THE APPLICATION
SERVER ARE:
TASKNO TRANID TERMID USERID USERDATA WAIT TIME
------ ------ ------ -------- -------- ---------
000033 MKE2 L222 00:01:32
000025 INV L224 JIM 00:08:32

TRANSACTIONS HOLDING A LINK AND NOW ACCESSING THE APPLICATION
SERVER ARE:
TASKNO TRANID TERMID USERID USERDATA TIME USED TOTAL LUW

FOR CURRENT TIME
ACCESS

------ ------ ------ -------- -------- ------------ ---------
000019 CISQ DEPT222 L199 00:01:32 00:03:48
000037 INV L209 TERRY 00:00:01 00:00:03

TRANSACTIONS HOLDING A LINK TO THE APPLICATION SERVER BUT NOT
USING ARE:
TASKNO TRANID TERMID USERID USERDATA TIME SINCE TOTAL LUW

LAST ACCESS TIME
------ ------ ------ -------- -------- ------------ ---------
000003 CISQ WILLIAM L210 00:07:01 00:10:56

TRANSACTIONS WHICH PREVIOUSLY ACCESSED THE APPLICATION SERVER
(NOT HOLDING LINK):
TASKNO TRANID TERMID USERID USERDATA TIME SINCE

LAST ACCESS
------ ------ ------ -------- -------- ------------
000003 MKE2 ROBERT L210 00:20:04

TIME=14:28:23 DATE=04/30/99

For information on how to display CIRD transaction information, and detailed
information on how to use and interpret CIRD display information, refer to the
DB2 Server for VSE System Administration manual.

COUNTER Operator Command
While a detailed description of this operator command is included in the DB2
Server for VSE & VM Operation manual, this section includes an example of how to:
v Use the command with the RESET operator command
v Interpret the counter values
v Turn these values into performance indicators.

After resetting the counters (with the RESET operator command) and performing
several queries, the COUNTER * command was issued:

22 Performance Tuning Handbook

reset *
Counters reset at DATE=’09-06-99’ TIME=’14:27:00’
ARI0065I Operator command processing is complete.
counter *
Counter values at DATE=’09-06-99’ TIME=’14:58:12’
Calls to RDS RDSCALL : 68
Calls to DBSS DBSSCALL: 139
LUWs started BEGINLUW: 58
LUWs rolled back ROLLBACK: 11
System checkpoints taken CHKPOINT: 1
Maximum locks exceeded LOCKLMT : 0
Lock escalations ESCALATE: 0
Waits for lock WAITLOCK: 4
Deadlocks detected DEADLCK : 1
Looks in page buffer LPAGBUFF: 298722
DBSPACE page reads PAGEREAD: 200134
DBSPACE page writes PAGWRITE: 97451
Looks in directory buffer LDIRBUFF: 5054
Directory block reads DIRREAD : 4014
Directory block writes DIRWRITE: 120
Log page reads LOGREAD : 2
Log page writes LOGWRITE: 40
Total DASD reads DASDREAD: 4524
Total DASD writes DASDWRIT: 49
Total DASD I/O DASDIO : 3986
Lock timeouts detected LTIMEOUT: 2
ARI0065I Operator command processing is complete.

There are several important values that you can calculate from the COUNTER
command:

Sampling Interval
∆ TIME. The elapsed time between the RESET and the COUNTER
command. For more information on sampling intervals, refer to
“Monitoring Interval” on page 6.

LUW Load
BEGINLUW/Sampling Interval. This is the average rate at which the
database manager receives logical units of work. It measures the average
load on the database machine or partition. You can also use it as a relative
measure of throughput (refer to “Throughput” on page 5).

Checkpoint Load
CHKPOINT/sampling interval. This is the average rate of checkpoints.
Checkpoints are overhead; they represent an additional load on the
database machine. For more information on checkpoint processing, refer to
“Managing Checkpoints” on page 202.

Deadlock Performance
(DEADLCK/BEGINLUW)x100. Indicates the percentage of time a logical
unit of work is rolled back because of a potential deadlock. Ranges from 0
to 100% where 0% indicates that no LUWs were rolled back. While some
potential deadlocks are a normal occurrence in any multiple user system, a
value above 5% should be investigated. For more information, refer to
“Deadlock” on page 101.

This information can also be expressed as the deadlock hit ratio
(BEGINLUW/DEADLCK). Any value over 20 is usually acceptable.

Waitlock Performance
(WAITLOCK/RDSCALL)x100. Indicates the percentage of time a call to

Chapter 2. Measuring Performance 23

the relational data system had to wait because it needed a resource that
was blocked by an incompatible lock held by another call. Ranges from 0
to 100% were 0% indicates no waits. While waits are a normal occurrence
in any multiple user system, a value above 10% should be investigated. For
more information, refer to “Locking Contention” on page 93.

Note: While this value gives you an indication of how often an agent
waits, it does not indicate the length of each wait. Always listen to
your users and look for agents that are stuck in a lock wait with the
operator SHOW LOCK commands, refer to “Locking Contention” on
page 35.

This information can also be expressed as the waitlock hit ratio
(RDSCALL/WAITLOCK). Any value over 10 is usually acceptable.

Lock Request Block Performance
ESCALATE+LOCKLMT. Indicates the number of times that a logical unit
of work reached the user (NLRBU) or system (NLRBS) lock limit. This
value should be close to zero, which indicates that there was no shortage
of lock request blocks during the monitoring interval. For more
information, refer to “Lock Escalation” on page 99.

Local Buffers Effective Use
(1-PAGEREAD/LPAGBUFF)x100. Indicates the percentage of time the
database manager found a page in the local buffers and did not need to
retrieve it from DASD. Ranges from 0 to 100%, where 100% means that
every page the database manager needed was in the local buffers. For
more information on the local buffer pool, refer to “Database I/O” on
page 85.

This information can also be expressed as the local buffers hit ratio
(LPAGBUFF/PAGEREAD).

Directory Buffers Effective Use
(1-DIRREAD/LDIRBUFF)x100. Indicates the percentage of time the
database manager found a page in the directory buffer pool and did not
need to retrieve it from DASD. Ranges from 0 to 100%, where 100% means
that every directory page the database manager needed was in the
directory buffer pool. For more information on the directory buffer pool,
refer to “Database I/O” on page 85.

This information can also be expressed as the directory buffers hit ratio
(LDIRBUFF/DIRREAD).

For example, from the previous output:
v Sampling Interval: 1872 seconds (14:58:12-14:27:00)
v LUW Load: 3.54/second (58/1872)
v Checkpoint Load: 2/hour (1/1872*3600) This value is not statistically valid. You

need to monitor checkpoints over a longer period of time for an accurate
calculation.

v Deadlock Performance: 1.72% (1/58)X100. While this value is statistically
questionable it is far enough below the recommended value of 5% that deadlock
should not be considered a significant problem.

v Deadlock Hit Ratio: 58 (58/1). 58 is greater than 20 and should be acceptable.
v Waitlock Performance 5.88% (4/68)X100. Below 10% and not a problem.
v Lock Request Block Performance: 0

24 Performance Tuning Handbook

v Local Buffers Effective Use: 33% (1-200134/298722)x100. Check the type of
transactions you are running. Unless you are performing update intensive
transactions, this value should be much higher. Consider increasing the
NPAGBUFF initialization parameter.

v Local Buffers Hit Ratio: 1.49 (298722/200134)
v Directory Buffers Effective Use: 20.58% (1-4014/5054)X100. This value is as bad

as the local buffer use value. Consider increasing the NDIRBUF initialization
parameter.

v Directory Buffers Hit Ratio: 1.26 (5054/4014).

DB2 VM Data Spaces Support
DB2 VM Data Spaces Support also includes additional counters that can help you
monitor the performance of the DASD I/O systems. Each storage pool has its own
set of four counters. There is also a set for internal dbspaces and a set for the
directory. For a complete description of all these counters and how to use them,
refer to the DB2 Server for VSE & VM Operation manual.

SHOW Commands
The SHOW commands, documented in the DB2 Server for VSE & VM Operation
manual, provide information on how your application server is performing. This
section includes examples of how to use these commands to understand how the
server is managing: storage, concurrency, locking.

Storage

Available Storage Pool Space: The SHOW DBEXTENT command displays
physical storage information about each storage pool defined. For example,
consider a database with an SOSLEVEL of 10% (refer to “Short on Storage
Cushion” on page 59):

show dbextent
POOL TOTAL NO. OF NO. OF NO. OF % NO. OF
NO. PAGES PAGES USED FREE PAGES RESV PAGES USED EXTENTS SOS
1 741 730 11 20 99 1 *
2 171 11 160 20 6 1
3 114 56 58 20 49 1
4 114 0 114 20 0 1

FREE 22500

The asterisk (*) under the SOS column indicates that storage pool number one is
short on storage. The flag is set if the difference between the NO. OF PAGES USED
and the TOTAL PAGES is less than the SOSLEVEL percentage times the TOTAL PAGES.
In this case, pool one has 99% (730/741 X 100) of its pages used or 1% or its pages
are free. Because this is less than the 10% SOSLEVEL, the flag is set.

Note: The NO. OF PAGES USED includes the number of shadow pages in the pool.

Proportion of Available Pages: The SHOW DBSPACE command shows the
division of pages between header, data, and index pages in a dbspace. For
example:

Chapter 2. Measuring Performance 25

show dbspace 3
TYPE NUMBER NUMBER OF % FREE NUMBER OF
OF PAGES OF PAGES OCCUPIED PAGES SPACE EMPTY PAGES
HEADER 8 1 (12 %) 73 % 0
DATA 1365 756 (55 %) 25 % 392
INDEX 128 27 (27 %) 79 % 18
ARI0065I Operator command processing is complete.

(The SYSTEM.SYSDBSPACES catalog table contains additional information on
dbspaces, refer to page 39.)

This example shows more than half of the data page space is occupied. It also
shows a large number of empty data pages, which indicates that you may need to
drop and reacquire (reorganize) this dbspace. As an alternative to reorganizing the
dbspace, you can use the VM utility SQLRELEP to release the empty pages. In
VSE, bringing up the server with STARTUP=P can be used to release empty pages.
For more information, refer to “Running out of Dbspace Pages” on page 65.

Note: This command performs a dbspace scan, which can take a significant
amount of time and affect the performance of other users if the dbspace is
large. Refer to “Dbspace Scans” on page 118.

Available Dbextent Storage: The SHOW POOL command displays physical
storage information about each dbextent in a storage pool.

For example, consider a database with two storage pools and an SOSLEVEL of
10% (refer to “Short on Storage Cushion” on page 59):

show pool

POOL NO. 1: NUMBER OF EXTENTS = 3

EXTENT TOTAL NO. OF NO. OF NO. OF %
NO. PAGES PAGES USED FREE PAGES RESV PAGES USED
1 285 274 11 96
2 285 33 252 11
3 741 0 741 0

TOTAL 1311 307 1004 20 23

POOL NO. 2: NUMBER OF EXTENTS = 1 SHORT ON STORAGE

EXTENT TOTAL NO. OF NO. OF NO. OF %
NO. PAGES PAGES USED FREE PAGES RESV PAGES USED
4 285 260 25 91

TOTAL 285 260 25 20 91

FREE AREAS: NUMBER OF DELETED EXTENTS = 0

EXTENT TOTAL
NO. PAGES
END 10350
TOTAL 10350

Maximum number of DBEXTENTs = 64
ARI0065I Operator command processing is complete.

26 Performance Tuning Handbook

|
|
|
|
|
|

This example shows that pool number two is short on storage (SOS). While
dbextent number one has less storage available than dbextent number four, the
pool it belongs to (pool one) is not short of storage because it still contains two
dbextents, each containing a significant amount of storage.

Virtual Storage: The SHOW STORAGE command displays how much of the
database machine or partition’s virtual address space has been allocated to various
storage queues, refer to “Storage Queues” on page 46. Two storage queues are
created for:
v Each real agent
v The OPERATOR agent, used to process operator commands
v The CHECKPT agent, used to process checkpoints
v The RECOVERY agent, used to write archives
v An area called PROTOTYPE that is used for global storage blocks such as

accounting records.
v The TCPIP agent, used to handle TCP/IP communications. This agent is ONLY

present if you have TCP/IP communication started by your server.

Storage that has been allocated to control blocks and programming structures that
must reside below the 16MB line are indicated by a B in the LOC column. Storage
that may be allocated anywhere above or below the line is indicated by an A in the
LOC column.

The SHOW STORAGE command displays how much of the database machine or
partition’s address space has been ALLOCATED to each queue. It also displays how
much of it is actually IN USE and how much is FREE. “Free space” is space that has
been reserved by the queue but is not currently in use.

Space allocated to a specific real agent queue (including “free” space) is released at
the end of a logical unit of work (LUW). (A minimum amount of space, 8KB,
always remains allocated for each real agent queue.)

The HIGHSTOR column contains the maximum amount of storage allocated to a
queue since the RESET HIGHSTOR operator command was last issued. One high
storage entry exists for storage that is restricted to below the 16MB line and one
exists for storage that can reside either above or below the line.

A USERID column is also included for each real agent. It indicates the user ID that
held the real agent when the A, or B high storage value was set.

SUMMARY contains the total amount of virtual storage allocated to all the QUEUES. It
also contains the total amount of virtual storage allocated to the entire database
manager SYSTEM. These values include the storage allocated to the queues plus the
storage used by the database manager itself for structures such as trace buffers.

Chapter 2. Measuring Performance 27

show storage
Status of Storage at DATE=’01-15-99’ TIME=’11:57:28’

AGENT LOC ALLOCATED IN USE FREE HIGHSTOR USERID
OPERATOR A 4096 1104 2992 4096

B 4096 0 4096 4096
CHECKPT A 2048 0 2048 2048

B 2048 0 2048 2048
RECOVERY A 4096 0 4096 4096

B 4096 0 4096 4096
1 A 16384 1952 14432 144816 MARISSA

B 8192 0 8192 8192
2 A 72776 67360 5416 136472 LAURA

B 8192 0 8192 8192
3 A 8192 2912 5280 161200 ANDREW

B 8192 0 8192 8192
4 A 16384 3936 12448 185016 DAVID

B 8192 0 8192 8192
5 A 16384 2992 13392 241600 DANIEL

B 8192 0 8192 8192
PROTOTYPE A 1154768 1053240 101528 1218784

B 307232 299136 8096 307232
SUMMARY
QUEUES A 1295128 1133496 161632 1702992

B 358432 299136 59296 358432
PACKAGES A 245760 201000 44760 270048
SYSTEM A 1295952 1703816

B 388936 388936
ARI0065I Operator command processing is complete.

Concurrency
The SHOW ACTIVE command displays the status of active real agent structures.
Agents are used by the database manager to divide processor time between
multiple users and its own internal tasks, such as checkpoint processing and
operator commands. For more information, refer to “Agents” on page 88.

Use this command to:
v Identify the current state of an active agent — for example, whether it is

currently processing work or waiting, and if the latter, what its waiting for.
v How many agents are available, and how many are currently being used.

For example:

show active
Status of agents:

Checkpoint agent is not active.
User Agent: 1 User ID: SMITH is R/W APPL 7B4

Agent is processing and is in I/O Wait.
User Agent: 2 User ID: MICHAEL is R/O SUBS 7B9

Agent is not processing and is in communication Wait.
User Agent: 3 User ID: JESSICA IS R/O APPL 5A4

Agent is processing an operator command.
User Agent: 4 User ID: TESTUSER IS R/W APPL 7BB

Agent is processing and is in I/O Wait.
User Agent: 5 User ID: MACNIELL IS R/O APPL 7B9

Agent is not processing and is in communication Wait.
0 agent(s) not connected to an APPL or SUBSYS.

ARI0065I Operator command processing is complete.

28 Performance Tuning Handbook

This display shows that there are five real agents available and they are all
currently being used (0 agent(s) not connected). It also shows that agents one,
two, four, and five are all processing work but are waiting for either
communications or an I/O operation. Agent three is currently processing an
operator command.

The SHOW USERS command (VM systems only) displays the status of both
pseudo and real agent structures. (For information on these structures, refer to
“Agents” on page 88.) You can use it to see how many, if any, pseudo agents are
waiting for real agent structures. For example, consider a database machine that
owns seven disks: four dbextents, one directory disk, and two log disks (do not
include the service or the production disk):

show users
Status of connected users:
6 users are connected to the application server.
3 Users are active.

User ID: DAVE SQL ID: SMITH not processing
User ID: POTTS SQL ID: BRIAN not processing
User ID: TUNA SQL ID: FISH

2 Users are waiting.
User ID: KIM SQL ID: TASK115
User ID: MICHAEL SQL ID: MIKE2

1 Users are inactive.
User ID: KOHLMANN SQL ID: PETER

0 Agents are available.
44 User connections are available.
ARI0065I Operator command processing is complete.

This example shows that:
v MAXCONN is set to 58 (44+6+7+1). 44 connections are available, six users are

connected, seven disks are connected to the machine, and one for the connection
to *IDENT. (Refer to “VM (MAXCONN)” on page 91.)

v NCUSERS is set to 3 (3+0=3). All three real agents are occupied. (Refer to
“Tuning Parameters (NCUSERS)” on page 89.)

v Two users (KIM and MICHAEL) are waiting for real agents. Neither KIM nor
MICHAEL will become active until DAVE, POTTS, or TUNA complete their
current logical unit of work.

v One user (KOHLMANN) is inactive; it is neither waiting for a real agent nor is
it processing work.

v User ID TUNA is currently processing work.

Not only does the SHOW CONNECT command display much of the information
included with the SHOW ACTIVE and SHOW USERS operator commands, it also
includes:
v Information that uniquely identifies DRDA* application requestors
v The timestamp when the current state began
v The timestamp when the user was connected to the application server
v The CPU time used since the user was connected to the server (only displayed if

you start the server with accounting on).

Chapter 2. Measuring Performance 29

For the VSE System

The VSE SHOW CONNECT statement contains several additional values. See
“VSE SHOW CONNECT” on page 33.

You can use this information to force specific users to end their work and
terminate their conversations with the server. Refer to the DB2 Server for VSE
& VM Operation manual.

show connect
Status of Connected Users 1999-02-04 10:25:33

Checkpoint agent is not active.
User Agent: 1 User-ID: SHUM SQL-ID: SHUM

is R/W APPL 7B1
Agent is processing with LPAGEBUF=1032

State started: 1999-02-04 10:15:30
Conversation started: 1999-02-04 10:12:45
CPU time: 00:00:01

User Agent: 2 User-ID: SQLUSRSS SQL-ID: SQLUSRSS
is R/O APPL 30BD
Agent is not processing and is in communication wait.

State started: 1999-02-04 09:48:28
Conversation started: 1999-02-04 09:48:00
CPU time: 00:00:02
LUWID: CAIBMOML.*IDENT.A532D460755B.0001
EXTNAM: SQLUSRSS.1
Requester: SQLDS/VM V3.3.0 at TORVMLB4

User Agent: 3 User-ID: PETERSON SQL-ID: PETERSON
is R/O APPL 3758
Agent is processing and is in LOCK wait.

State started: 1999-02-04 10:23:11
Conversation started: 1999-02-04 10:22:15
CPU time: 00:00:01
LUWID: CAIBMOML.STLLU.A5241A50FABD.0001
EXTNAM: PETERSON .BATCH .PETERSON.DSNESPRR
Requester: DB2 V2.3.0 at IBMREGRDBSTL0012

User-ID: SWAGRMAN SQL-ID: SQLDBA
User is waiting for an agent

State started: 1999-02-04 10:22:11
Conversation started: 1999-02-04 10:03:05
CPU time: 00:00:02
LUWID: IBMNET07.*IDENT.AB457DFF69BC.0001
EXTNAM: SWAGRMAN.1
Requester: SQLDS/VM V3.3.0 at TOROLAB3

User-ID: JAVIER SQL-ID: JAVIER
User is inactive

State started: 1999-02-04 10:02:11
Conversation started: 1999-02-04 09:27:49
CPU time: 00:00:03
LUWID: IBMNET07.*IDENT.AB457DFF6ABC.0001
EXTNAM: JAVIER.1
Requester: SQLDS/VM V3.3.0 at TOROLAB

3 Users are active.
1 Users are waiting.
1 Users are inactive.
0 Agents are available.
94 User connections are available.

ARI0065I Operator command processing is complete.

30 Performance Tuning Handbook

The current time is 10:25:33. There are three active users:
v Agent 1 (SHUM) has been processing for approximately ten minutes

(10:25-10:15), and has used one second of CPU time since it connected to the
server.

v Agent 2 (SQLUSRSS) has been in a communication wait for almost 37 minutes,
and has used two seconds of CPU time.

v Agent 3 (PETERSON) has been in a lock wait for a little less than two minutes,
and used one second of CPU time.

There are two other connected users. One is waiting for an agent, the other is
inactive.
v User-ID SWAGRMAN has been waiting for an agent for a little over three

minutes, and has used two seconds of CPU time.
v Finally, User-ID JAVIER has been inactive for over 23 minutes, and has used

three seconds of CPU time.

You can also determine from the additional lines of information (LUWID,
EXTNAM, Requester) that all the requestors, with the exception of Agent 1, are
DRDA requestors.

The example below an agent is executing a stored procedure.

Chapter 2. Measuring Performance 31

show connect
Status of Connected Users 1999-09-30 08:56:42
Checkpoint agent is not active.
User Agent: 1 User-ID: SQLUSRKJ SQL-ID: SQLUSRKJ

is R/O APPL 1666
Agent is not processing and is in communication wait.
State started: 1999-09-30 08:56:39
Conversation started: 1999-09-30 08:56:12
Protocol: SQLDS
Package: SQLDBA.MAINPGM Section: 4
Procedure: PROC1 Modname: MYPROC
Procedure Package: SQLDBA.MYPROC Section: 4

User Agent: 2 User-ID: SQLUSRJR SQL-ID: SQLUSRJR
is R/O APPL 1667
Agent is not processing and is waiting for a stored procedure
server in group GROUP1
State started: 1999-09-30 08:56:39
Conversation started: 1999-09-30 08:56:12
Protocol: SQLDS
Package: SQLDBA.MAINPGM2 Section: 3

User Agent: 3 User-ID: SQLUSRTH SQL-ID: SQLUSRTH
is R/O APPL 1668
Agent is processing with LPAGEBUFF=1032
State started: 1999-09-30 08:56:39
Conversation started: 1999-09-30 08:56:12
Protocol: SQLDS
Package: SQLDBA.MAINPGM3 Section: 4
Procedure: PROC3 Modname: MYPROC3

Procedure Package: SQLDBA.MYPROC3 Section: 2
User Agent: 4 User-ID: SQLUSRJR SQL-ID: SQLUSRTL

is R/O APPL 1669
Agent is not processing and is waiting for stored procedure
PROC4 AUTHID SQLUSRTL to be started
State started: 1999-09-30 08:58:00
Conversation started: 1999-09-30 08:57:35
Protocol: SQLDS
Package: SQLDBA.MAINPGM4 Section: 3

4 Users are active.
0 Users are waiting.
0 Users are inactive.
2 Agents are available.
2 User connections are available.

ARI0065I Operator command processing is complete.

In the example above:
v The information for User Agent 1 shows both Package and Procedure Package

information, which means that the agent is currently running a stored
procedure. In this example, Agent 1 is running the package
SQLDBA.MAINPGM, and SQLDBA.MAINPGM has called the stored procedure
executing the package SQLDBA.MYPROC. The agent is in communication wait,
which in this case means that the stored procedure is processing, and the
database manager is waiting for the procedure to end or to pass another SQL
command.

v The information for User Agent 2 shows Package information, but no Procedure
Package information. This means that the agent is running the main program,
which in this example is SQLDBA.MAINPGM2. The agent is waiting for a
stored procedure server in group GROUP1, which means that it has issued an
SQL CALL statement, but no stored procedure servers are available in the group
in which the procedure can run (GROUP1).

32 Performance Tuning Handbook

v The information for User Agent 3 shows both Package and Procedure Package
information, which means that the agent is currently running a stored
procedure. In this example, Agent 3 is running the package
SQLDBA.MAINPGM3, and SQLDBA.MAINPGM3 has called the stored
procedure executing the package SQLDBA.MYPROC3. The agent is processing,
which means that the database manager is currently executing an SQL command
that was passed to it by the stored procedure.

VSE SHOW CONNECT
If a CICS user requests that the operator terminate a CICS transaction containing
DB2 Server for VSE statements, the operator should first force the associated DB2
Server for VSE agent by using the FORCE command before terminating the
transaction. Prior to SQLDS Version 3 Release 5, the operator may not be able to
determine which agent to force, because multiple agents may use the same DB2
Server for VSE user ID. Furthermore, if the agent is not forced before the
transaction is terminated, the resource adapter may encounter an error and shut
itself down. This would cause the links to DB2 Server for VSE through that
particular resource adapter to be lost. In SQLDS Version 3 Release 4, only the
CICS task number representing the AXE transaction is displayed, and only for
remote (DRDA) users.

Operators can now identify which agent should be forced by displaying the CICS
task number, the CICS terminal ID, and the RMID for all local CICS users as part
of the output for the SHOW CONNECT command. This information will be
displayed for both VSE and VM (Guest Sharing) users.

The additional information on the SHOW CONNECT command will enable the
operator to identify which agent should be forced. This is accomplished by the
following steps:
1. The user tells the operator to cancel the task associated with a particular

terminal ID. Alternatively, they may ask that a specific task be terminated.
2. The operator then issues the SHOW CONNECT command to determine which

agent is associated with either the task ID or the terminal ID that was specified
by the user.

3. The operator can then force the correct agent and then terminate the CICS
transaction.

The CICS task number, CICS terminal id, and RMID will be displayed for all local
(VSE or VM Guest Sharing) CICS transactions whenever the agent is in work. The
CICS terminal ID may contain a value of 'N/A' indicating that the terminal ID is
not available, such as when a user issues queries through ISQL. The CICS task
number, the CICS terminal id, and the RMID will not be displayed for batch users,
or for agents whose work status is NIW (not in work). For remote (DRDA) users,
only the CICS task number representing the AXE transaction will be displayed; the
CICS terminal id and the RMID will not be displayed.

When a CICS transaction is using a release of the Resource Adapter prior to
Version 3 Release 5, the CICS terminal id and the RMID are not available to the
database server and 'N/A' will be displayed.

Included below are sample outputs for each of the cases where additional
information may be displayed.

Chapter 2. Measuring Performance 33

SHOW CONNECT for CICS Transaction (Version 3 Release 5):

SHOW CONNECT for ISQL Query:

SHOW CONNECT for Agent Not in Work:

SHOW CONNECT for Batch User:

F4 004 User Agent: 1 User-ID: JOAO SQL-ID: JOAO
F4 004 is R/O APPL 12BCF
F4 004 Agent is processing and is in communication wait.
F4 004 State started: 1999-09-02 15:21:22
F4 004 Conversation started: 1999-09-02 15:21:22
F4 004 Task no.: 147 RMID: 32 Term. id: 077D

Figure 2. CICS Transaction (Version 3 Release 5 Requester)

F4 004 User Agent: 1 User-ID: JOAO SQL-ID: JOAO
F4 004 is R/O APPL 12BCF
F4 004 Agent is processing and is in communication wait.
F4 004 State started: 1999-09-02 15:21:22

F4 004 Conversation started: 1999-09-02 15:21:22
F4 004 Task no.: 147 RMID: 32 Term. id: N/A

Figure 3. ISQL Query

F4 004 User Agent: 2 User-ID: DBDCCICS SQL-ID: DBDCCICS
F4 004 is NIW SUBS

F4 004 Agent is not processing and is in communication wait.
F4 004 State started: 1999-09-03 15:19:57
F4 004 Conversation started: 1999-09-03 15:19:57

Figure 4. Agent Not in Work

F4 004 User Agent: 2 User-ID: SQLDBA SQL-ID: SQLDBA
F4 004 is R/W APPL 18D9
F4 004 Agent is not processing and is in communication wait.
F4 004 State started: 1999-09-08 15:34:51
F4 004 Conversation started: 1999-09-08 15:34:41

Figure 5. Batch User

34 Performance Tuning Handbook

SHOW CONNECT for DRDA User:

SHOW CONNECT for Guest Sharing:

SHOW CONNECT for VM User:

SHOW CONNECT for CICS Transaction (Version 3 Release 4):

Locking

Locking Contention: The SHOW LOCK command can help you understand and
resolve immediate locking contention problems. (For information on this area, refer
to “Locking Contention” on page 93.) Consider the following situation:
1. The default lock level (PAGE) is in effect.
2. PETER, BRIAN, and LAURA all select the salary of MICHAEL THOMPSON in

the EMPLOYEE table through ISQL. They are all granted a SHARE (S) lock on

F4 004 User Agent: 2 User-ID: EDUARDA SQL-ID: EDUARDA
F4 004 is R/W APPL 12FC4
F4 004 Agent is processing and is in communication wait.
F4 004 State started: 1999-09-02 15:23:17
F4 004 Conversation started: 1999-09-02 15:23:15
F4 004 CPU time: 00:00:01
F4 004 LUWID: CAIBMOML.OECGW001.A6773D6F8611.0001
F4 004 EXTNAM: EDUARDA.1
F4 004 Requester: SQLDS/VM V3.5.0 at TOIVMLB6
F4 004 Rmtuser ID: 2
F4 004 LU name: OMPGW001
F4 004 Task no.: 0000134

Figure 6. DRDA User Accessing VSE Database

User Agent: 1 User-ID: VSEMCH10 SQL-ID: SQLDBA
is R/O SUBS 1796
Agent is not processing and is in communication wait.
State started: 1999-09-08 10:42:55
Conversation started: 1999-09-08 10:42:43
Task no.: 371 RMID: 12 Term. id: N/A

Figure 7. VSE Guest Sharing User to VM Database Using ISQL

User Agent: 1 User-ID: SQLUSRMR SQL-ID: SQLUSRMR
is R/O APPL 178F
Agent is not processing and is in communication wait.
State started: 1999-09-08 10:41:11
Conversation started: 1999-09-08 10:41:04

Figure 8. VM Requester Accessing VM Database

F4 004 User Agent: 1 User-ID: JOAO SQL-ID: JOAO
F4 004 is R/O APPL 12BCF
F4 004 Agent is processing and is in communication wait.

F4 004 State started: 1999-09-02 15:21:22
F4 004 Conversation started: 1999-09-02 15:21:22
F4 004 Task no.: 147 RMID: N/A Term. id: N/A

Figure 9. CICS Transaction (Version 3 Release 4 Requester)

Chapter 2. Measuring Performance 35

the pages that contain Michael’s salary and the page that contains index keys
used to retrieve it. They are also granted an INTENT SHARE (IS) lock on the
table and dbspace that contain Michael’s salary.

3. Instead of clearing her query, LAURA leaves its results on her screen. This
places her in a communication wait.

4. PETER tries to add $1000 to THOMPSON’s salary, but is placed in a lock wait.
(While he is granted an UPDATE (U) lock on the data page, the EXCLUSIVE
(X) lock he needs on that page is incompatible with BRIAN and LAURA’s
SHARE (S) lock.)

5. BRIAN tries to increase THOMPSON’s salary by 5%, but is also placed in a
lock wait. (The update lock he needs is incompatible with the update lock that
PETER already holds.)

A SHOW LOCK ACTIVE command reveals that LAURA is in a communication
wait, and BRAIN and PETER are in a lock wait. (You can also determine this with
a SHOW ACTIVE command.)

show lock active
WAIT TOTAL LONG WANTLOCK WANTLOCK

AGENT USER STATE LOCKS LOCKS TYPE DBSPACE
C CHECKPT NIW 0 0
1 BRIAN LOCK 55 55 PAGE 7
2 PETER LOCK 55 55 PAGE 7
3 LAURA COMM 44 44
ARI0065I Operator command processing is complete.

A SHOW LOCK MATRIX reveals that BRIAN is waiting for PETER, and PETER is
waiting for LAURA. (The number seven in the lock matrix indicates that the
contention is in dbspace seven.)

show lock matrix
Lock Request Block (LRB) and Lock Status:
NLRBS IN USE FREE NLRBU MAX USED BY LUW
------- ------- ------- ------- ---------------

2520 213 2307 1000 386
*** THE LOCKWAIT TABLE ***

ENTRY = DBSPACE NUMBER ON WHICH THERE IS LOCK CONTENTION
The presence of an entry shows
the agent requesting the lock and
the agent contending for or holding the lock.

AGENT AGENT CONTENDING FOR OR HOLDING THE LOCK
REQUESTING
LOCK

1 2 3 4 5
BRIAN PETER LAURA

1 BRIAN 7
2 PETER 7
3 LAURA
4
5

ARI0065I Operator command processing is complete.

A SHOW LOCK GRAPH of BRIAN clearly shows the chain of lock contention
that has occurred. Until LAURA clears her screen and returns her SHARE (S) lock,
neither PETER nor BRIAN can leave their lock wait.

36 Performance Tuning Handbook

show lock graph brian
LOCK LOCK WAIT LOCK DBSP LOCK REQ REQ
REQUESTER HOLDER STAT TYPE NUMBR QUALIFIER STATE MODE DUR
1 BRIAN 2 PETER LOCK PAGE 7 88 G WAIT U LONG
2 PETER 3 LAURA COMM PAGE 7 88 C WAIT X LONG
ARI0065I Operator command processing is complete.

The SHOW LOCK USER command displays both how many locks of each type
are held plus the number they are waiting for.

show lock user
DBSPACE LOCK NUMBER

AGENT USER NUMBER TYPE IN SIX IS IX S U X Z WAITERS...
1 BRIAN 7 DBSP 0 0 1 0 0 0 0 0 0
1 BRIAN 7 IPAG 0 0 0 0 1 0 0 0 0
1 BRIAN 7 TABL 0 0 1 0 0 0 0 0 0...
2 LAURA 7 DBSP 0 0 1 0 0 0 0 0 0
2 LAURA 7 IPAG 0 0 0 0 1 0 0 0 0
2 LAURA 7 PAGE 0 0 0 0 2 0 0 0 2
2 LAURA 7 TABL 0 0 1 0 0 0 0 0 0...
3 PETER 7 DBSP 0 0 0 1 0 0 0 0 0
3 PETER 7 IPAG 0 0 0 0 1 0 0 0 0
3 PETER 7 PAGE 0 0 0 0 0 1 0 0 2
3 PETER 7 TABL 0 0 0 1 0 0 0 0 0

ARI0065I Operator command processing is complete.

In this case, PETER has an UPDATE (U) lock on the page that holds
THOMPSON’s salary, but it cannot be promoted to an EXCLUSIVE (X) lock
because it is incompatible with LAURA’s SHARE (S) lock. BRIAN has a SHARE
lock but cannot promote it to an UPDATE lock because it is incompatible with
PETER’s UPDATE lock.

Lock Escalation: The SHOW LOCK MATRIX command can help you understand
and resolve lock escalation problems. (For information on this area, refer to “Lock
Escalation” on page 99.) Consider the following situation:

show lock matrix
Lock Request Block (LRB) and Lock Status:
NLRBS IN USE FREE NLRBU MAX USED BY LUW
------- ------- ------- ------- ---------------

2520 213 2307 1000 386...

The maximum number of lock request blocks that can be held by a single agent
(NLRBU) is set to 1000. The number that can be held by all the agents (NLRBS) is
set to 2520. 213 blocks are currently in use and 2307 are free. The maximum
number of blocks held since the last lock escalation is 386.

Do not rely on this command alone. The MAX USED BY LUW may appear to be
significantly lower than NLRBS, but remember MAX USED is reset to zero after every
escalation. If the database manager is constantly escalating locks, you may be
unlucky enough to only see the value immediately following an escalation. Make

Chapter 2. Measuring Performance 37

sure that you consult the ESCALATE and LOCKLMT counters as well. Refer to
“Lock Request Block Performance” on page 24.

Database catalog
Information about the database is maintained in a set of tables called the catalog
which are created during database generation. They describe tables, columns,
indexes, keys, packages, authorities and other objects in the database. This section
describes how to select information from various tables that contain performance
information.

The catalog also holds statistical information on the data stored in the database.
The database manager uses it to select an access path for each SQL request it
processes. Refer to “Keeping Database Statistics Current” on page 137 for a
description of each table that contains this information and what the values in each
column means. Also refer to “Using Catalog Statistics” on page 138 for a discussion
of how to model a large production database with a small test database by altering
the values in the catalog.

SYSTEM.SYSCATALOG
The following SQL statement retrieves performance information from the
SYSCATALOG table about all the tables in the sample dbspace:

SELECT tname, avgrowlen, rowcount, npages, noverflow
FROM system.syscatalog
WHERE dbspacename=’sample’
AND creator=’sqldba’

TNAME AVGROWLEN ROWCOUNT NPAGES NOVERFLOW
------------------ --------- ------------ ------------ ------------
ACTIVITY 31 18 2 0
DEPARTMENT 39 9 1 0
EMP_ACT 36 74 2 0
EMPLOYEE 80 32 2 0
INVENTORY 21 22 1 0
OPERATIONS 44 15 2 0
PROJ_ACT 29 77 2 0
PROJECT 64 20 1 0
PROJECTS 43 5 1 0
QUOTATIONS 24 53 1 0
SUPPLIERS 57 10 2 0

AVGROWLEN
The average length of all the rows in the table, measured in bytes, refer to
“Free Space in Data Pages” on page 61.

ROWCOUNT and NOVERFLOW
ROWCOUNT is the total number of rows in the table. NOVERFLOW is the
number of rows in the tables that have overflowed from their original page
in storage to another page. This is caused by variable length rows
expanding because of updates. As a rule of thumb, if NOVERFLOW is
greater than 5% of ROWCOUNT, it is probably time to reorganize the
table, refer to “Reorganizing a Single Table” on page 71. However,
remember that there are no absolute rules in performance tuning. You have
to balance the cost of reorganization against the performance impact of the
overflow rows.

38 Performance Tuning Handbook

If you decide to reorganize the table because of this, you may also want to
use the ALTER DBSPACE command to increase the PCTFREE value of the
dbspace that contains the table, refer to “Free Space in Data Pages” on
page 61.

NPAGES
An estimate of the number of pages on which rows of this table appear.

SYSTEM.SYSCOLUMNS
The following SQL statement retrieves performance information from the
SYSCOLUMNS table about all columns in the employee table:

SELECT cname, coltype, length, nulls, ccsid
FROM system.syscolumns
WHERE tname = ’employee’
AND creator=’sqldba’

CNAME COLTYPE LENGTH NULLS CCSID
------------------ -------- ------- ----- ------------
BIRTHDATE DATE Y ?
BONUS DECIMAL (9, 2) Y ?
COMM DECIMAL (9, 2) Y ?
EDLEVEL SMALLINT N ?
EMPNO CHAR 6 N 500
FIRSTNME VARCHAR 12 N 500
HIREDATE DATE Y ?
JOB CHAR 8 Y 500
LASTNAME VARCHAR 15 N 500
MIDINIT CHAR 1 N 500
PHONENO CHAR 4 Y 500
SALARY DECIMAL (9, 2) Y ?
SEX CHAR 1 Y 500
WORKDEPT CHAR 3 Y 500

COLTYPE and LENGTH
The datatype and length of the column. It is important that the predicates
in a WHERE clause have the same data type and length, refer to “Column
Attributes” on page 123.

NULLS
Whether a column can contain NULL values affects how it is accessed.
(Refer to page 119 and page 2 on page 128.)

CCSID
The coded character set identifier (CCSID) of the column. CCSIDs can
affect whether a predicate becomes sargable or residual, refer to “Impact of
CCSIDs on Sargability” on page 131.

SYSTEM.SYSDBSPACES
The following SQL statement retrieves performance information from the
SYSDBSPACES table about the subscriptions dbspace:

Chapter 2. Measuring Performance 39

SELECT dbspaceno, npages, nactive, pctindx, freepct, lockmode, pool
FROM system.sysdbspaces
WHERE dbspacename=’subscriptions’
AND creator=’sqldba’

DBSPACENO NPAGES NACTIVE PCTINDX FREEPCT LOCKMODE POOL
--------- ------------ ------------ ------- ------- -------- ------

75 480819 18427 25 0 T 2
* End of Result *** 1 Rows Displayed ***Cost Estimate is 1*********************

NPAGES
The number of logical 4KB (kilobyte) pages available in this dbspace. In
this case there are 1.878GB (gigabytes) of storage in this dbspace, refer to
“Dbspace Full” on page 65.

NACTIVE
The number of active pages in the dbspace. It represents the number of
4KB data pages that must be read during a dbspace scan. In this case, the
database manager must scan almost 72MB of storage to complete a
dbspace scan. For more information refer to “Dbspace Scans” on page 118.

PCTINDX
The percentage of pages to be reserved for index pages, refer to
“Proportion of Index to Data and Header Pages” on page 61.

FREEPCT
The current percentage of space on each page that is kept free when data is
inserted in the dbspace, refer to “Free Space in Data Pages” on page 61.

LOCKMODE
Indicates whether row (T), page (P), or dbspace (S) level locking is being
used for this dbspace, refer to “Minimum Lock Level” on page 96.

POOL
The number of the storage pool where pages from this dbspace are stored.
You can use the SHOW POOL operator command to display information
about this pool, refer to page 26.

SYSTEM.SYSINDEXES
The following SQL statement retrieves performance information from the
SYSINDEXES table about all the indexes in the sample dbspace:

40 Performance Tuning Handbook

SELECT iname, cluster, clusterratio, lockmode, ipctfree, release
FROM system.sysindexes, system.syscatalog
WHERE system.sysindexes.tname = system.syscatalog.tname
AND dbspacename=’sample’
AND creator=’sqldba’

INAME CLUSTER CLUSTERRATIO LOCKMODE IPCTFREE RELEASE
------------------ ------- ------------ -------- -------- -------
PKEYB1PAIBMXWNCV W 9375 P 10 7.1.0
PKEYB1PAIAXH1U6L F 10000 P 10 7.1.0
MGRNOI C 10000 P 10 7.1.0
PROJNOIN W 9306 P 10 7.1.0
EMPNOIN C 10000 P 10 7.1.0
PKEYB1PAIA5RUD1W F 10000 P 10 7.1.0
WORKDEPTI N 8667 P 10 7.1.0
INV1 F 10000 P 10 7.1.0
OPE1 W 9231 P 10 7.1.0
PKEYB1PAIBSXHRBH F 10000 P 10 7.1.0
DEPTNOI C 10000 P 10 7.1.0
PKEYB1PAIBEPN7Y2 F 10000 P 10 7.1.0
RESPEMPI C 10000 P 10 7.1.0
PRO1 F 10000 P 10 7.1.0
QUO1 F 10000 P 10 7.1.0
SUP1 F 10000 P 10 7.1.0

You can also retrieve the same information for the indexes of a single table. In this
case the employee table:

SELECT iname, cluster, clusterratio, lockmode, ipctfree, release
FROM system.sysindexes
WHERE tname=’employee’
AND creator=’sqldba’

INAME CLUSTER CLUSTERRATIO LOCKMODE IPCTFREE RELEASE
------------------ ------- ------------ -------- -------- -------
PKEYB1PAIA5RUD1W F 10000 P 10 7.1.0
WORKDEPTI N 8667 P 10 7.1.0

CLUSTER and CLUSTERRATIO
CLUSTER indicates whether the index is a clustering index, refer to “The
Clustering Index” on page 67. You can also use it to get an idea of whether
an index is clustered, refer to “Clustered Indexes” on page 66.

CLUSTERRATIO is updated when the index’s statistics are updated
(SYSTEM.SYSINDEXES catalog table). It indicates the percentage of time
that the data pages are in a logical sequence in relation to the index. In this
case, when the statistics for WORKDEPTI were last updated, the data
pages it referred to were in a logical sequence 86.67% of the time.

For more information on how to interpret CLUSTER and CLUSTERRATIO,
refer to “Identifying Unclustered Indexes” on page 68.

LOCKMODE
Indicates whether page (P) or row level locking (K) is being used on this
index, refer to “Minimum Lock Level” on page 96.

IPCTFREE
The amount of free space reserved in the index for later insertions and
updates, refer to “Free Space in Index Pages” on page 62.

Chapter 2. Measuring Performance 41

RELEASE
The release of the DB2 Server for VSE & VM product that was installed
when the index was created. If the index was created prior to Version 2
Release 2 (2.2) it should be dropped and recreated to take advantage of
performance improvements incorporated into the index structure at that
time.

42 Performance Tuning Handbook

Chapter 3. Managing Storage and Configuring the Operating
System

Real and Virtual Storage
There are two types of storage: real and virtual.

Real Storage
Composed of main and auxiliary storage. Main storage is the fastest
storage and it is where data and programs must be before the CPU can
directly act upon them. Auxiliary storage comprises expanded storage, and
system paging DASD. Data and programs reside in one of these two areas
when there is no room in main storage.

Virtual Storage
Virtual storage is an addressable space image for the user from which
instructions and data are mapped into real storage locations. The operating
system uses real storage (main and auxiliary storage) to create virtual
machines (in the case of VM) or partitions (in the case of VSE).

Virtual Addressing
In VM, each virtual machine has its own virtual address space, which is where you
load and run programs. VSE supports multiple address spaces that can each
contain several partitions.

Because these address spaces are virtual, the operating system does not dedicate a
piece of main storage to each virtual machine or partition. You do not need to buy
8MB of main storage for each 8MB virtual machine or partition. Instead the
operating system only uses main storage for those parts of virtual storage you
need right now, or are likely to need in the near future.

Pages
These parts of virtual storage are divided into 4KB (4096 byte) blocks called pages.
When a virtual machine or partition needs a page that it has not accessed before,
the operating system retrieves the page from its location on DASD, and loads it
into an empty page in main storage. (Before a page can be used, it must be in main
storage.)

Auxiliary Storage
When the operating system runs out of free pages in main storage, it moves the
least recently used (“oldest”) page to auxiliary storage to create a free space for a
new page.

The VM operating system uses two types of auxiliary storage: system paging
DASD, and optional expanded storage. If your system has expanded storage, a
page will be moved there first. If expanded storage is full, the least recently used
page in expanded storage is moved to system paging DASD by way of main
storage. When a virtual machine needs a page that it has previously used, the
operating system moves it back to main storage from expanded storage or from
system paging DASD, if it is not already in main storage.

© Copyright IBM Corp. 1993, 2003 43

The VSE operating system only uses system paging DASD: it does not support
expanded storage. When the operating system runs out of free pages in main
storage, it moves the least recently used page directly to system paging DASD.
When a partition needs a page that it has previously used, the operating system
moves it back to main storage from system paging DASD, if it is not already in
main storage.

Figure 10. Standard Virtual Machine Storage

44 Performance Tuning Handbook

This paging system accomplishes two things. First, it allows each virtual machine
or partition to use much more storage than could be accommodated in main
storage alone. Second, it keeps the most recently used pages in the storage devices
that are the fastest to access. (The most recently used pages are the ones most
likely to be used again in the near future.) Main and expanded storage are much
faster than system paging DASD, and while expanded storage can be as fast as
main storage, it is effectively slower because the operating system still needs to
move the page into main storage before it can use it.

The Hidden Cost of System Paging DASD: Each time the database machine or
partition (or the CICS partition) requires a page that the operating system cannot
find in main storage, a page fault occurs. The entire database machine or partition,
and therefore the entire database manager, must wait until the page is returned
from auxiliary storage. Consider a system that requires an average of 50ms to
return one page. So at 6 faults per second the database manager is idle 300 out of
1000ms, or almost one third of the time.

Note: This is not true for DASD I/O. A database machine does not wait for
*BLOCKIO, nor does a database partition wait for VSAM. The database

Figure 11. Standard VSE Partition Storage

Chapter 3. Managing Storage and Configuring the Operating System 45

manager will dispatch another agent (unless you are running in single user
mode) while it waits for the DASD I/O to complete. Refer to “Database
I/O” on page 85.

This is also not true for Page Faults that occur in Data Space (when VMDSS
is enabled). Only one agent must wait for this kind of Page Faults.

Partition Deactivation (VSE): The TPBAL command (VSE system control
statement) specifies the number of partitions that are eligible for deactivation.
Whenever the TPIN macro (refer to the IBM VSE/ESA System Macros Reference
manual) is executed, the number of partitions specified by the TPBAL command
will be deactivated starting with the lowest priority partition and proceeding to the
highest eligible partition (excluding the partition which executed the TPIN macro).
All deactivated partitions are suspended (kept idle) until the TPOUT macro is
executed. This can become a severe problem if, for example, the deactivated
partition is an application server or a requester that is currently holding database
locks. Whenever possible, ensure that the database partition, the CICS partition, or
any DB2 Server for VSE batch partitions are NOT eligible for deactivation.

Storage Queues
A storage queue is a control structure that the database manager uses to share its
virtual space between processes. Queues are created at startup for:
v Each real agent
v The operator
v For checkpoint processing
v Recovery
v Global storage blocks such as accounting records.

The database manager allocates virtual storage to the different processes as they
require it (within limits). Once the storage has been allocated, it cannot be used by
any other process until the owning process releases it.

Real agent queues release all but 8KB of their allocated storage at the end of a
logical unit of work (LUW). Even if the real agent no longer requires the virtual
storage, it may keep it until the end of its current LUW.

Virtual space may be allocated either above or below the 16MB virtual storage line
(refer to “Storage Above 16MB (31 Bit Addressing)” on page 47.) However, because
certain control blocks and program structures must always reside below the 16MB
line, two storage queues are created for each process. One storage queue is for
blocks and structures that must always reside below the line, the other queue is for
blocks and structures that may reside either below or above the line.

When an agent requests virtual storage, the database manager decides whether the
blocks and structures must reside below the 16MB line or whether they can reside
either above or below the line. If they must reside below the line, space is allocated
in the below or B queue. If they may reside above or below the line, space is
allocated in the anywhere or A queue.

When the database manager looks for address space for blocks and structures in
the B queue, it looks below the 16MB line. When the database manager looks for
address space for blocks and structures in the A queue, it first tries to find free
space above the 16MB line. If there is none, it will try to find free space below the
line. If there is no free space below the line for either the A queue or for the B

46 Performance Tuning Handbook

queue, releasing unused packages from storage. If it can no longer release
packages, you will receive an error message and the database machine or partition
may abend.

Address Space Size
While increasing the size of your virtual database machine or partition may
increase your application server’s capacity, it does not necessarily improve its
performance. This is because the operating system has to supply enough fast real
storage to make the virtual storage appear to be real storage.

However, if sufficient real storage is available, you can take advantage of
additional virtual storage, by increasing:
v The number of concurrent users (NCUSERS). Refer to “Agents” on page 88.
v In VM, the number of pseudo agents (MAXCONN). Refer to “VM

(MAXCONN)” on page 91.
v In VSE, increase the number of connections between the CICS partition and the

database partition (CIRB transaction). Refer to “Tuning Parameter (CIRB)” on
page 90. You can also increase the number of remote DRDA users (RMTUSERS).
Refer to “VSE (RMTUSERS)” on page 91.

v The size of the buffers pools (NPAGBUF, NDIRBUF). Refer to “Database I/O” on
page 85.

v The number of lock request blocks (NLRBU, NLRBS). Refer to “Lock Escalation”
on page 99.

v The size of the package cache (NPACKAGE). Refer to “Package Cache” on
page 88.

You need to monitor the real storage and the I/O in your system. If you do not
have enough main (and in VM expanded) storage to support additional virtual
storage, you may dramatically increase the load on your I/O subsystem and on
your processor. In extreme cases this can lead to thrashing. (The processor and I/O
subsystem spend most of their resources moving pages from main to auxiliary
storage and have little or no resources left for practical work.)

Storage Above 16MB (31 Bit Addressing)
In VM, your database machine’s address space can be larger than the old 16MB
limit. In VSE, you can use a database partition larger than the old 16MB limit.

(As mentioned in “Address Space Size”, anytime you increase your virtual storage,
you can realize significant performance improvements by using storage above
16MB, but only if you have the resources to support it.)

Saved Segments (VM Only)
A saved segment is a range of pages of virtual storage you can define to hold data
or reentrant code (programs), which can be shared by multiple virtual machines.
For detailed information, on how to create saved segments and which DB2 Server
for VM components can be loaded into them, refer to the DB2 Server for VM System
Administration manual.

Loading frequently used DB2 Server for VM components in saved segments has
several advantages:
v Because several users can access the same physical storage, real storage use is

minimized.
v Using saved segments decreases the I/O rate and DASD paging space

requirements, thereby improving virtual machine performance.

Chapter 3. Managing Storage and Configuring the Operating System 47

v Saved segments attached to a virtual machine can reside above its defined
virtual storage. This allows the virtual machine to use its defined storage for
other purposes.

For more information on saved segments, refer to the DB2 Server for VM System
Administration manual.

Virtual Disk Support for VSE/ESA for Internal Dbspaces
Your internal dbspaces can use a virtual disk to improve their performance. Virtual
Disk Support lets you use a data space as a virtual disk. A virtual disk is much
faster than a conventional disk because it uses main storage instead of DASD. The
virtual disk appears to any program or job as just another disk, only faster.

However, virtual disk storage is temporary. Anything in a virtual disk is lost
whenever the VSE operating system is restarted. For this reason, DO NOT use
virtual disks for anything other than internal dbspaces. These dbspaces are only
used as temporary workspace, so it does not matter if their contents are lost. The
storage pool containing the virtual disk must NOT be used for any permanent
dbspaces.

While the use of virtual disks is limited to internal dbspaces, they can improve the
performance of index creation, joins, sorts, and other operations that require
temporary workspace.

Remember, as mentioned in “Address Space Size” on page 47, anytime you
increase your use of virtual storage, you can realize significant performance
improvements, but only if you have the real storage to support it.

Note: It is recommended that database generation be done with real minidisks
only. If you decide to generate a database which uses a virtual disk, ensure
that the virtual disk is used in a pool containing only internal dbspaces.

Using Virtual Disks with Internal Dbspaces: To use a virtual disk with internal
dbspaces, you must:
1. Take an archive of your database, before making any changes to it.
2. Modify the IPL procedure and the background initialization procedure to create

a virtual disk.
3. Define a VSAM user catalog and dbextent on the virtual disk.
4. Add a label for the dbextent in the cataloged procedure and add the dbextent

to a NEW storage pool that will contain only internal dbspaces.
5. Move some of the dbextents from the original pool that contained the internal

dbspaces into the new pool or define additional physical dbextents to be added
to the new pool.

6. Add internal dbspaces to the new storage pool.
7. Backup the VSAM user catalog defined on the virtual disk so that it can be

restored whenever the VSE system is restarted.
8. Modify the application server startup job to restore the VSAM user catalog if

the VSE system has been restarted since the VSAM user catalog and dbextent
were created.

9. Archive your database after making the above changes so that you have an
archive that reflects these changes.

48 Performance Tuning Handbook

A detailed example of how to complete these steps appears below. For more
information on virtual disks in VSE/ESA, refer to the IBM VSE/ESA Planning
manual and the IBM VSE/ESA Extended Addressability manual.

Note: All of the following steps should be read before executing any of them.

Step 1, Archive Your Database: This will be needed if problems arise during the
setup for using a virtual disk and you need to restore your database to its previous
state without any virtual disk.

Step 2, Modify IPL Procedure: Modify the IPL procedure to do the following:
v Include ADD statements for the virtual disk addresses
v Increase VSIZE and page data set allocation to accommodate the new virtual

disk.

For example, consider a system where a 20MB virtual disk is added to a VSE
system with VSIZE=75MB:
...
009,$$A$SUPX,VSIZE=95M,VIO=576K,VPOOL=194K,LOG...
ADD 900:906,FBAV...
DPD VOLID=DOSRES,CYL=209,NCYL=100,TYPE=N,DSF=N
DPD VOLID=DOSRES,CYL=398,NCYL=8,TYPE=N,DSF=N
DPD VOLID=DOSRES,CYL=410,NCYL=29,TYPE=N,DSF=N...
DLA NAME=AREA1,VOLID=DOSRES,CYL=60,NCYL=3,DSF=N
SVA PSIZE=640K,SDL=300,GETVIS=768K
/+
/*...

This example increases the VSIZE of the VSE operating system from 75MB to
95MB. It reserves virtual addresses 900 through 906 for fixed block architecture
virtual disks, and it sets aside an additional 29 cylinders of 3390 DASD on
DOSRES volume starting at address 410 for system paging DASD. (108 cylinders
were already being used at addresses 209, and 398. Also, there are 180 4KB pages
in every 3390 cylinders. So 29 cylinders is equal to 20MB.)

Step 3, Define and Initialize a Virtual Disk: Create a procedure (to be invoked
as part of the background initialization JCL, for example $0JCL) that will do the
following:
v Define data space size using SYSDEF command
v Initialize virtual disks using // VDISK command.

For example:

Chapter 3. Managing Storage and Configuring the Operating System 49

...
* DEFINE THE SIZE OF THE DATASPACE
// SYSDEF DSPACE,DSIZE=20M
* DEFINE AND INITIALIZE EACH VIRTUAL DISK
// VDISK UNIT=900,BLKS=40320,VOLID=QPVDS1,VTOC=008
/*
/+...

This example reserves approximately 20MB of virtual storage for virtual disks.
(Remember you do not need 20MB of real storage to support 20MB of virtual
storage.) The virtual disk at address 900 uses approximately 20MB of that storage
(40320 512-byte blocks, with 8 512-byte blocks of that reserved for the VTOC). (The
virtual disk addresses were defined in Step 2.)

Note: Because of the structure of a virtual disk, blocks must be allocated in
multiples of 960 blocks. So instead of 2048 512-byte blocks for 1MB of
storage, you can only allocate 1920 blocks.

Step 4, Define a Backup File: Define a sequential file on a real disk for use later
when backing up the VSAM user catalog (defined on the next step on a virtual
disk). For example:
...
* DEFINE A SEQUENTIAL FILE FOR VDISK UCAT BACKUP
// EXEC IDCAMS,SIZE=AUTO

DEFINE NONVSAM (NAME(VDISK1.UCAT.BKUP) -
DEVICETYPES(3390) VOLUMES(SYSWK1))

/*...

This example creates a backup file called VDISK1.UCAT.BKUP.

Note: The above JCL does not work if it is used on FBA DASD. If only FBA DASD
is used, do one of the following:
v Skip this step
v Use a VSAM ESDS file for the backup file.

Step 5, Define a VSAM User Catalog: Define a VSAM user catalog on the virtual
disk using the DEDICATE option. For example:
...
* DEFINE A VSAM USER CATALOG
// EXEC IDCAMS,SIZE=AUTO
DEFINE USERCATALOG (-

NAME (VDS1.USER.CATALOG) -
DEDICATE -
VOLUME (QPVDS1))

/*...

This example creates a VSAM user catalog called VDS1.USER.CATALOG on volume
QPVDS1 and dedicates the entire volume for this VSAM user catalog. (Volume
QPVDS1 was defined in Step 3.)

50 Performance Tuning Handbook

Step 6, Define a Virtual Disk Dbextent: Define a dbextent (VSAM cluster) on the
virtual disk. For example:
...
* ADD CLUSTERS FOR THE DATA BASE VIRTUAL DISK
// DLBL VDSUC1,’VDS1.USER.CATALOG’,,VSAM
* DEFINE CLUSTERS
// EXEC IDCAMS,SIZE=AUTO

DEFINE CLUSTER (NAME(SQL34.DDSK8.VDSK.DB) NONINDEXED REUSE -
CNVSZ (4096) BLOCKS(39360) VOL(QPVDS1) -
RECSZ (4089 4089) SHR(2)) CAT(VDS1.USER.CATALOG)

/*...

This example defines a dbextent named SQL34.DDSK8.VDSK.DB in the VSAM user
catalog VDS1.USER.CATALOG (The VSAM user catalog was defined in Step 5.)

Step 7, Add a Label for the Virtual Disk Dbextent: Update the cataloged
procedure to include a DLBL statement for the new dbextent. For example:
...
* CATALOG DATABASE DBEXTENT LABELS
// EXEC LIBR,PARM=’MSHP’
ACCESS S=IJSYSRS.SYSLIB
CATALOG DTLDVDSK.PROC R=Y
* ***************** SQL/DS DBEXTENT LABELS **************
// DLBL TSQLUC,’TSQL.USER.CATALOG’,,VSAM
// DLBL VDSUC1,’VDS1.USER.CATALOG’,,VSAM
// DLBL BDISK,’SQL34.BDISK.DTLD.DB’,,VSAM,CAT=TSQLUC
// DLBL LOGDSK1,’SQL34.LOGDSK1.DTLD.DB’,,VSAM,CAT=TSQLUC
// DLBL DDSK1,’SQL34.DDSK1.DTLD.DB’,,VSAM,CAT=TSQLUC...
// DLBL DDSK7,’SQL34.DDSK7.DTLD.DB’,,VSAM,CAT=TSQLUC
// DLBL DDSK8,’SQL34.DDSK8.VDSK.DB’,,VSAM,CAT=VDSUC1
/+
/*...

This example adds a DLBL statement for DDSK8 that identifies dbextent
SQL34.DDSK8.VDSK.DB. (The dbextent was created in Step 6.) DDSK7 is one of the
dbextents that belonged to the original internal dbspace storage pool.

Step 8, Add Dbextents to a New Storage Pool: Add dbextents to the new storage
pool by following instructions included in the DB2 Server for VSE System
Administration manual. (Refer to “adding and deleting dbextents”.)

To avoid using too much real storage, it is recommended that you include at least
two dbextents in the new pool. The first must be the virtual disk. The second,
should be a physical dbextent that can accommodate the overflow from the virtual
disk. You can use some of the dbextents from the original pool that contained the
internal dbspaces (in this example DDSK7). Make the total size of both dbextents
large enough to accommodate your current internal dbspaces and make the virtual
disk as large as possible without over committing real storage.

Also, ensure that you add the virtual dbextent before you add any physical
dbextents. The database manager searches the dbextents for a free page in the
order that they were added.

Chapter 3. Managing Storage and Configuring the Operating System 51

Attention: Do not accidentally place the virtual disk in an existing storage pool
that contains anything other than internal dbspaces. You will lose valuable data
and a full database or pool level restore will be required.

The following is an example of the ARISADD member, which specifies how
procedure ARIS250D will add and delete dbextents to and from pools:

POOL 9
ADD 8 9
DELETE 7
ADD 7 9
ARCHIVE

This example adds dbextent 8 (DDSK8) to storage pool 9. (DDSK8 was identified
in Step 7.) Ensure that you add the virtual disk dbextent to a new storage pool
(reserved only for internal dbspaces). It also removes dbextent 7 (DDSK7) from the
original pool that contained the internal dbspaces. It then adds it to the new pool
(pool 9) that contains the virtual disk dbextent.

Step 9, Back Up the Virtual Disk VSAM User Catalog: Back up the VSAM user
catalog defined on the virtual disk into the sequential file on a real disk. For
example:
...
// LIBDEF PHASE,SEARCH=IJSYSRS.SYSLIB
* THIS JOB UNLOADS A VSE/VSAM CATALOG USING THE REPRO COMMAND
// DLBL IJSYSCT,’VSAM.MASTER.CATALOG’,,VSAM
// ASSGN SYS001,DISK,VOL=SYSWK1,SHR
// DLBL CATOUT,’VDISK1.UCAT.BKUP’,999
// EXTENT SYS001,SYSWK1,1,0,33315,75
// DLBL IJSYSUC,’VDS1.USER.CATALOG’, X

,VSAM
// EXEC IDCAMS,SIZE=AUTO

REPRO INFILE (IJSYSUC) -
OUTFILE (CATOUT -
ENVIRONMENT (-
BLOCKSIZE (2068) -
RECORDFORMAT (VARBLK) -
RECORDSIZE (516) -

) -
)

/*...

This example unloads the VSAM user catalog VDS1.USER.CATALOG to the backup file
VDISK1.UCAT.BKUP. (The backup file was created in Step 4.) The backup file will be
used to restore the VSAM user catalog on the virtual disk whenever the VSE
system is restarted. Restoring the VSAM user catalog redefines the VSAM space
and cluster previously defined on the virtual disk and sets the high used RBA to
what is was before the system restart, thus allowing the database manager to
successfully use it.

Step 10, Add Internal Dbspaces to the New Pool: Invoke the application server
to add only internal dbspaces into this new pool. For example:

52 Performance Tuning Handbook

...
* ADD INTERNAL DBSPACES TO THE DATABASE
// LIBDEF *,SEARCH=PRD2.SQL340
// EXEC PROC=DTLDVDSK
// EXEC ARISQLDS,SIZE=AUTO,PARM=’SYSMODE=S,STARTUP=S’

INTERNAL 50 1024 9
/*...

This example JCL creates 50 internal dbspaces, each of 1024 4KB pages, in storage
pool 9. (Storage pool 9 was created in Step 8.)

Step 11, Add Conditional JCL to Application Server Startup: Create conditional
JCL that does the following:
v Check that the dbextent defined earlier on the virtual disk still exists (1 and 2). If

it does not, do the following:
– Disconnect the VSAM user catalog from the master catalog (3)
– Redefine the VSAM user catalog on the virtual disk (4)
– Restore the VSAM user catalog from the sequential file (5)
– If the restore fails for any reason cancel the job (6).

v Start the application server.

For example:
...
// DLBL IJSYSCT,’VSAM.MASTER.CATALOG’,,VSAM
// ASSGN SYS001,DISK,VOL=SYSWK1,SHR
// DLBL VDSBKUP,’VDISK1.UCAT.BKUP’
// EXTENT SYS001,SYSWK1,1,0
// DLBL IJSYSUC,’VDS1.USER.CATALOG’,,VSAM
// EXEC IDCAMS,SIZE=AUTO

LISTCAT CAT(VDS1.USER.CATALOG) ENT(SQL34.DDSK8.VDSK.DB) ALL (1)
IF LASTCC NE 0 THEN DO (2)

EXPORT VDS1.USER.CATALOG DISCONNECT (3)
DEFINE USERCATALOG (NAME(VDS1.USER.CATALOG) - (4)

DEDICATE VOLUME (QPVDS1))
IF LASTCC NE 0 THEN CANCEL JOB
REPRO INFILE (VDSBKUP ENVIRONMENT - (5)

(BLOCKSIZE (2068) -
RECORDFORMAT (VARBLK) -
RECORDSIZE (516))) -

OUTFILE (IJSYSUC)
IF LASTCC GT 4 THEN CANCEL JOB (6)

END
/*...

Place this sample JCL in front of your current application server startup job. It
checks for the existence of dbextent SQL34.DDSK8.VDSK.DB in the VSAM user
catalog VDS1.USER.CATALOG. If it no longer exists, the JCL restores the VSAM user
catalog from the backup created in Step 4. The application server will then start
normally and will use the virtual disk for internal dbspaces.

Step 12, Archive Your Database: The ADD DBEXTENT and DELETE DBEXTENT
operations are not recorded in the log. Since these operations update the directory
(but not the database itself), problems can be encountered if you normally archive

Chapter 3. Managing Storage and Configuring the Operating System 53

the database and then try to restore that archive with the ADD DBEXTENT or
DELETE DBEXTENT occurring in between the archive and the restore. Archiving
before and after you make changes to the virtual disk will assist you if problems
occur. For more information, refer to the DB2 Server for VSE System Administration
manual.

Virtual Disk Support for VM/ESA for Internal Dbspaces
Your internal dbspaces can use a virtual disk to improve their performance. Virtual
Disk Support lets you use a data space as a virtual disk. A virtual disk is much
faster than a conventional disk because it uses main storage instead of DASD. The
virtual disk appears to any program or job as just another disk, only faster.

However, virtual disk storage is temporary. All data on a virtual disk is lost when
it is detached from a user ID or when the user ID logs off. For this reason, DO
NOT use virtual disk for anything other than internal dbspaces. These dbspaces
are only used as temporary workspace, so it does not matter if their contents is
lost. The storage pool containing the virtual disk must NOT be used for any
permanent dbspaces.

While the use of a virtual disk is restricted to internal dbspaces, they can be used
to improve the performance of index creations, joins, sorts, and other operations
that require temporary workspace.

Remember, anytime you increase your use of virtual storage, you can realize
significant performance improvements, but only if you have the real storage to
support it.

Note: It is recommended that database generation be done with real minidisks
only. If you decide to generate a database which uses a virtual disk, ensure
that the virtual disk is used in a pool containing only internal dbspaces.

Using Virtual Disks with Internal Dbspaces: To use a virtual disk with internal
dbspaces, you must:
1. Take an archive of your database, before making any changes to it.
2. Define a virtual disk in the database manager’s VM Directory entry.
3. Run the SQLADBEX EXEC to add the virtual disk as the first dbextent of a

NEW storage pool. The virtual disk must be the first dbextent in the new pool.
If you have dbextents in the old storage pool where your internal dbspaces are
currently defined, you should delete some of these dbextents from the old pool
and add them to the new pool. Alternatively, you could add one or more real
disk dbextents to the new pool.

4. Run the SQLADBSP EXEC to move your internal dbspaces to the new pool.
5. Modify the 'CP LINK' command for the virtual disk in the 'dbname SQLFDEF

Q' file.
6. Modify the database manager’s PROFILE EXEC or database start up EXEC to

CMS FORMAT and RESERVE the virtual disk and make a duplicate LINK to
this virtual disk. (this is explained further in the following detailed steps)

7. Archive your database after making the above changes, so that you have an
archive that reflects these changes.

A detailed example of how to complete these steps appears below. Please read all
the steps before executing any of them.

54 Performance Tuning Handbook

Step 1, Archive Your Database: This will be needed if problems arise during the
setup for using a virtual disk and you need to restore your database to its previous
state without any virtual disk.

Step 2, Define a Virtual Disk in the Database Manager’s VM Directory Entry:
Determine the size of the virtual disk to be added. It should be large enough for
most sorts, but must not be so large as to cause excessive VM paging. Define this
virtual disk in the VM Directory, similar to:

MDISK 0329 FB-512 V-DISK nnnnnnnn M

For information about defining a virtual disk in a VM Directory, refer to the
VM/ESA: Planning and Administration manual.

Step 3, Add Dbextents to a New Storage Pool: Add the virtual disk, and
possibly other dbextents, to a new storage pool. For information about using the
SQLADBEX EXEC, refer to the DB2 Server for VM System Administration manual.

To avoid using too much real storage, it is recommended that you include at least
two dbextents in the new pool. The virtual disk must be the first dbextent in the
new pool. Other dbextents should be real minidisks to accommodate the overflow
from the virtual disk. You can use some of the dbextents from the pool that
originally contained the internal dbspaces. Make the total size of the dbextents in
the new pool large enough to accommodate your current internal dbspaces.

Also, ensure that you add the virtual dbextent before you add any real minidisks.
The database manager searches the dbextents for a free page in the order they
were added.

If you are also using DB2 Server DSS, you should use SEPINTDB=Y to use your
internal dbspaces in a data space, instead of using a virtual disk. If you still want
to use a virtual disk, you MUST update your Storage Pool Specification file to
specify 'BLK' and 'SEQ' for the storage pool containing the virtual disk. VM does
not allow a virtual disk to be mapped to a data space. In this case, message
ARI2018E will be issued identifying the virtual disk address.

Attention: Do not accidentally place the virtual disk in an existing storage pool
containing permanent dbspaces. You will lose valuable data and a full database or
pool level restore will be required.

When you run the SQLADBEX EXEC, you specify the actions to be taken by
answering the prompts. When you see message ARI6145D, reply 1 (yes), to view
the 'dbname SQLADBEX A' file created from the prompts.

Assume you have the following set up and are changing to use a virtual disk for
internal dbspaces:
v Your internal dbspaces are currently defined in pool 3, which also contains

permanent dbspaces.
v Pool 3 currently has 3 dbextents, addresses 324, 325, and 326, which correspond

to dbextent numbers 4, 5, and 6.
v You have a virtual disk defined at address 329 and you want to add it to the

new pool number 8, as dbextent number 9.
v You want to 'move' dbextents 5 and 6 in pool 3 to the new pool 8.
v You DO want to take an archive after these changes.

Note: Running the SQLADBEX EXEC will cause a break in the continuity of
your log archives, so a database archive should always be taken.

Chapter 3. Managing Storage and Configuring the Operating System 55

After starting the SQLADBEX EXEC and entering the information at the prompts,
reply 1 (yes) to message ARI6145D. This will display the 'dbname SQLADBEX A'
file in XEDIT; its contents can be reviewed, modified, or both. This file specifies the
sequence of actions that SQLADBEX will perform. Given our assumptions above,
the file will appear as follows:
ADD 9 8 <-- add virtual disk to pool 8
DELETE 5 3 <-- delete dbextent 5 from pool 3
DELETE 6 3 <-- delete dbextent 6 from pool 3
ADD 5 8 <-- add dbextent 5 to pool 8
ADD 6 8 <-- add dbextent 6 to pool 8
ARCHIVE <-- an archive will be taken

Refer to the DB2 Server for VM System Administration manual for more details,
cautions and warnings concerning the adding and deleting of dbextents.

The last step of the SQLADBEX EXEC will update the 'dbname SQLFDEF Q' file,
to match dbextents that have been added, deleted, or both. The 'CP LINK'
command for the virtual disk in this file must be updated; this is documented in a
following step.

Step 4, Move the Internal Dbspaces to the New Storage Pool: This step will
'move' the internal dbspaces from the old pool to the newly added pool which
contains the virtual disk, by using the SQLADBSP EXEC. You may also add
permanent dbspaces to the database at this time (except into the new pool) or you
can simply redefine the pool where internal dbspaces will be placed. Remember,
this new pool, with the virtual disk dbextent, can ONLY contain internal dbspaces.
For information about using the SQLADBSP EXEC, refer to the DB2 Server for VM
System Administration manual.

Step 5, Modify the 'dbname SQLFDEF Q' File: In this step, you will edit and
modify the 'dbname SQLFDEF Q' file to change the 'CP LINK' mode for the virtual
disk dbextent. This is required to allow the virtual disk to only be formatted and
reserved once per IPL CMS of the database manager. If this step is not performed,
the virtual disk must be formatted and reserved prior to each start up of the
database manager (for example, SQLSTART).

This is done by having the virtual disk linked to the database manager virtual
machine twice. When the 'dbname SQLFDEF Q' file detaches the virtual disk, the
second link remains attached to the machine and the formatting of the virtual disk
is not lost. This second link and the formatting is done from the database
manager’s PROFILE EXEC (this is set up in the next step).

Be sure you have the production minidisk (normally 'Q') accessed R/W. XEDIT the
'dbname SQLFDEF Q' file. Locate the line containing the 'CP LINK userid cuu cuu
W' statement for the address ('cuu') of the virtual disk. Change the CP LINK
'MODE' character from 'W' to 'M'.

Attention: If you delete the virtual disk extent and add it again (through the
SQLADBEX EXEC), you must again change the LINK Mode character from 'W' to
'M'.

Step 6, Modify the PROFILE EXEC: In this step you will modify the database
manager’s PROFILE EXEC so that the virtual disk will be CMS formatted and
reserved each time the database manager virtual machine IPL’s CMS. In addition,
a second link to the virtual disk will be set up (see the previous step).

56 Performance Tuning Handbook

Attention: If an error occurs such that the virtual disk is not usable, the database
cannot be brought up. In this situation, you must correct the error to make the
virtual disk usable, or you must replace the virtual disk with a real minidisk at the
same address (and at least the same size). The replacement minidisk must be
formatted and reserved, as usual, before the database is brought up.

It is recommended that a separate EXEC be created to perform the LINK, FORMAT
and RESERVE commands, and that this EXEC be called from the PROFILE EXEC.
You can place the following statements in your PROFILE EXEC to initialize the
virtual disk for usage:
’EXEC PREPVDSK’ /* Call EXEC to Prepare Virtual Disk */
If rc ¬= 0 Then Do; Say "PREPVDSK rc =" rc; Exit rc; End

Note: The 'If' statement above will cause the PROFILE EXEC to end if an error is
returned from the PREPVDSK EXEC. This assumes that the PROFILE EXEC
will eventually invoke the SQLSTART EXEC after the virtual disk has been
initialized. This is done because the database cannot be started if the virtual
disk is not properly initialized. You may need to tailor this processing to suit
your particular operational environment.

The following is a sample 'PREPVDSK EXEC':
/* REXX */ Trace ’O ’; Address ’COMMAND’
/* Use this EXEC to FORMAT and RESERVE a Virtual Disk, */
/* that is used as the FIRST Dbextent of a Storage Pool containing */
/* ONLY INTERNAL DBSPACES. */
/* */
/* ATTENTION: This process, to use a Virtual Disk, requires that the */
/* CP Link Mode letter be changed from ’W’ to ’M’ in the */
/* SQLFDEF file for the CP LINK command for the DATABASE */
/* Address of the Virtual Disk. */
/* */
/* This EXEC should be called from the PROFILE EXEC of the Database */
/* Virtual Machine, to prepare the Virtual Disk for use. */
/* (once per LOGON/IPL of the Database Machine) */
/* */
/* The Virtual Disk MDISK is Linked R/O with an unused address, */
/* (which is refered to below as the PERANENT ADDRESS) so that */
/* that subsequent Detaches of the normal address (refered to below */
/* as the SQLFDEF ADDRESS) by this EXEC and the SQLFDEF file will */
/* NOT lose the FORMAT/RESERVE information. */
/* */
/* The Virtual Disk MDISK is Linked again, R/W, with its SQLFDEF */
/* address, for the FORMAT/RESERVE processing. This address is then */
/* Detached. It will be Linked again later by the SQLFDEF file when */
/* the database machine runs the SQLSTART EXEC. */
/* */
/* If the R/O Link of the Virtual Disk is detached by mistake, */
/* you MUST run this EXEC before running SQLSTART again. */
/* */
/********* UPDATE THE FOLLOWING 5 VARIABLES AS APPROPRIATE: *********/
dbname = ’dbname ’ /* Database Name */
pdisk = ’0cuu’ /* Virtual Disk PERMANENT Address */
vdisk = ’0cuu’ /* Virtual Disk SQLFDEF Address */
vlabel = ’DDKnn ’ /* Virt Disk Label (Dbextent Number)*/
ufm = ’Z’ /* Unused Filemode Letter */

z=Diagrc(8?,’CP DETACH’ vdisk) /* Be sure SQLFDEF Addr is NOT Linked */
z=Diagrc(8?,’CP LINK *’ vdisk pdisk ’RR’) /* Get PERMANENT R/O Link */
Parse Var z cprc . ; If cprc ¬= 0 Then Exit cprc
z=Diagrc(8?,’CP LINK *’ vdisk vdisk ’M’) /* Get SQLFDEF R/W Link */
Parse Var z cprc . ; If cprc ¬= 0 Then Exit cprc
’SET CMSTYPE HT’; ’RELEASE’ ufm; ’SET CMSTYPE RT’
Push vlabel

Chapter 3. Managing Storage and Configuring the Operating System 57

Push ’1’
’FORMAT’ vdisk ufm ’(BLKSIZE 4096 NOERASE’ /* FORMAT the Vdisk */
If rc ¬= 0 Then Exit rc
Push ’1’
’RESERVE’ dbname vlabel ufm /* RESERVE the Vdisk */
If rc ¬= 0 Then Exit rc
’SET CMSTYPE HT’; ’RELEASE’ ufm; ’SET CMSTYPE RT’
z=Diagrc(8?,’CP DETACH’ vdisk) /* Detach the SQLFDEF address again, */
Exit 0 /* ... it will be re-Linked by SQLFDEF during SQLSTART. */

Step 7, Archive Your Database: Neither the ADD DBEXTENT nor the DELETE
DBEXTENT operation is recorded in the log. Since these operations update the
directory (but not the database itself), problems can be encountered if you
normally archive the database and then try to restore that archive with the ADD
DBEXTENT or DELETE DBEXTENT occurring in between the archive and the
restore. For more information about this problem, refer to the DB2 Server for VM
System Administration manual. Archiving before and after you make changes to the
virtual disk will assist you if problems occur.

DASD Storage
How you manage DASD storage affects performance in four ways:

How Storage Is Divided
How you divide a limited amount of storage between indexes and data,
and among dbspaces and among storage pools determines to a large
degree how each will perform in different situations.

Wasted Storage
Wasted storage in itself may not affect the performance of the system that
is using it, but it may represent a resource that could be used to improve
performance elsewhere.

Distributing DASD I/O
How well you balance the demand for DASD I/O across several DASD
devices, controllers and channels can affect how fast the database manager
can retrieve information from DASD.

Running out of Storage
While running out of storage can disrupt your users because you are
forced to bring down the application server to add storage, just getting
close can degrade performance. (If you reach the application server’s short
on storage level you trigger unnecessary SOSLEVEL checkpoints, refer to
“Short on Storage Cushion” on page 59.)

In VSE
The directory, logs, and dbextents are VSAM Entry Sequenced Data Sets (ESDS)
with a control interval size of 512 bytes for the directory and 4096 bytes for the
logs and dbextents. The database manager uses VSAM Control Interval processing
to read and write records to the VSAM ESDS.

In VM
The directory, logs, and dbextents are CMS reserved minidisks with a blocksize of
512 bytes for the directory and 4096 bytes for the logs and dbextents (the directory
may have a blocksize of 4096 bytes, if Data Spaces Support is used). These
minidisks have CMS-like files that are in a format to be used with the IUCV
*BLOCKIO I/O system that reads and writes records to these files. These minidisks
are called reserved because they have been processed by the CMS RESERVE

58 Performance Tuning Handbook

command. It specifies that the minidisk consists of a single CMS file, which is
allocated using all available disk blocks. This CMS file cannot be processed by
most CMS file system commands and must never be modified, except by the
database manager.

Mapping of Dbspaces to DASD
Logical dbspaces must be mapped to physical dbextents on DASD. The database
manager does this by maintaining page map table(s), for each dbspace, which map
a given dbspace page to its location on DASD. The page map table is stored in the
DB2 Server for VSE & VM directory. There can be multiple page map tables per
dbspace. Each page map table block is equivalent to 128 pages in a dbspace.

Logical To Physical Page Relationships
Physical page slots in the storage pool are allocated to the dbspaces dynamically
upon first reference. Once a logical page has had a physical page slot allocated to
it, it will continue to have a physical page allocated, even if empty, until the
dbspace is dropped or empty pages are released. Empty pages can be released
back to the storage pool either by running the SQLRELEP EXEC in VM or by
bringing up the server using STARTUP=P in VSE. For more information, refer to
“Running out of Dbspace Pages” on page 65

Storage Pools
A storage pool is a collection of one or more dbextents, which can be used to
control the distribution of the database across DASDs. The maximum number of
storage pools for a given database is specified by the database generation keyword
MAXPOOLS. A storage pool does not exist until a dbextent is assigned to it.
Dbspaces are assigned to a given storage pool when they are defined. That means
when physical page slots are allocated to the dbspace, they are allocated from the
storage pool to which the dbspace belongs.

In addition, if the storage pool contains more than one dbextent, the database
manager allocates pages in a storage pool in sequence, usually allocating all the
pages in one dbextent before using the next dbextent. With the DB2 Server DSS
Feature, the database manager can distribute pages evenly across all the extents,
refer to “Striping” on page 198.

Managing Storage Pool Space

Short on Storage Cushion
The short on storage (SOS) cushion helps you avoid completely filling a storage
pool. If the database manager is running:
v In SUM with LOGMODE not equal to N or
v In MUM

and the percentage of space available in one pool falls below the SOS level, the
database manager performs a checkpoint to release shadow pages (refer to
“Shadow Pages” on page 63). If this does not release enough pages to fall below
the SOS level, a warning message is sent to the operator. If you are already short
on storage and need more storage in a pool, refer to “Running out of Dbspace
Pages” on page 65.

Tuning Parameter (SOSLEVEL): While it is acceptable to reach the SOSLEVEL
initialization parameter occasionally, do not let any of your storage pools hover
around it. SOSLEVEL initiated checkpoints are unnecessary overhead. If they occur

Chapter 3. Managing Storage and Configuring the Operating System 59

|
|
|
|
|
|
|

frequently, it is a good sign that you should either free space in the overloaded
pools, or increase their size by adding dbextents.

Do not just lower the SOSLEVEL to avoid checkpoints. If you have less than 10%
free space in a storage pool the database manager will initiate a checkpoint during
a rollback even if you set SOSLEVEL below 10%.

Instead, set SOSLEVEL to at least 15% and try to keep at least 25% free space in
each storage pool. This ensures that even if you accumulate a large number of
shadow pages in a pool, the database manager will not initiate unnecessary
checkpoints.

Performance Indicator (SHOW POOL): Use the SHOW POOL operator command
to determine what percentage of each storage pool is full. If the free space in a
pool falls below the SOSLEVEL parameter, the SHORT ON STORAGE flag appears in
the report for that pool. (Refer to page 26.)

Also watch the CHKPOINT counter. If you notice an excessive number of
checkpoints occurring during insert or update transactions, the database manager
may be doing the following:
v Reaching the SOSLEVEL and performing a checkpoint.
v The checkpoint releases just enough shadow pages for the pool to fall below the

SOSLEVEL.
v Subsequent processing quickly refills the pool to the SOSLEVEL and another

checkpoint is taken.

The database manager may spend so much time processing SOSLEVEL
checkpoints that it can perform little useful work. Changing the SOSLEVEL will
not help this problem. Instead, add storage to the pool, refer to “Running out of
Dbspace Pages” on page 65.

Types of Pages
There are four types of pages that can reside in a dbspace:

Header Pages
These pages contain an inventory of all the dbspace attributes, tables and
indexes created in the dbspace.

Data Pages
These pages contain table rows that may be from several different tables in
the dbspace.

Index Pages
These pages contain index entries. Each page contains information for one
specific index on one specific table.

Shadow Pages
These pages are used to ensure that the database manager can reconstruct
changes to the database after a system failure, refer to “Shadow Pages” on
page 63.

Number of Header Pages
Because there are never many header pages in a single dbspace, never more than
eight, they do not represent a significant impact on performance. We suggest that
they remain at the system default of eight.

60 Performance Tuning Handbook

Proportion of Index to Data and Header Pages
The amount of space you reserve for index pages, depends on how many indexes
you expect to create and on the number and size of columns included in the
indexes. You can use the following as a guideline:

Read-Only Data
Since many indexes are recommended for read-only data, you should
reserve at least the default of 33% and as much as 50% for the pages in a
dbspace for index pages.

Update Intensive Data
You can reserve less than the default of 33% of the pages in a dbspace for
index pages, since you may not use as many indexes for this type of data.
(It is expensive to update indexes every time data is updated, so it is
suggested that you use fewer indexes with this data.)

If you are unsure whether your data is read-only or update intensive, use the
default of 33% index pages.

Tuning Parameter (PCTINDEX): You can set the proportion of index to data and
header pages in a dbspace when you acquire it using the PCTINDEX parameter.
For example, the following statement acquires a dbspace and reserves 50% of its
pages as index pages:

ACQUIRE PUBLIC dbspace NAMED test_dbspace (PCTINDEX=50)

Performance Indicator (PCTINDX): To determine the current percentage of
reserved index pages in a dbspace, look in the PCTINDX column of the
SYSTEM.SYSDBSPACES catalog table for your dbspace.

Free Space in Data Pages
You can reserve a percentage of each data page for updates that make the changed
row longer than it was before. This free space is not used for inserts. You can
reclaim the free space for inserts through an ALTER DBSPACE statement. The
percentage of free space you choose will depend on the type of activity being
carried out on the data in the dbspace:

High Insert/Low Update Activity
This is the situation where there will be few updates, or all columns are
fixed length and non-nullable in the tables. Here, you would set the
percentage of free space to a high value before loading the data; then lower
it to a low value. The difference between the original value and the final
value can then be used by insert activity.

Low Insert/High Update Activity
In this situation, PCTFREE should be set to a low to medium value,
depending on the likelihood of updated rows increasing in length.
(Increase PCTFREE in proportion to the likelihood of increasing row
length.) The space saved by PCTFREE will be used by the update activity
only if the update increases the size of the row and the free space will
accommodate the new row.

Low Insert/Low Update Activity Or Read-Only Data
Read-only data is data that is loaded into a dbspace and then never
modified or updated, only retrieved using query statements. In this
situation, set PCTFREE to a low value or zero, before you load any data
into the dbspace.

Chapter 3. Managing Storage and Configuring the Operating System 61

High Insert/High Update Activity
In this situation, set PCTFREE to a high value while you load data into the
database and then lower it. This would allow space for use by both update
and insert activities.

One purpose of PCTFREE is to minimize overflow because of row expansion.
When UPDATE commands are executed on an existing row and the length of the
row increases, the row could expand into the free space reserved with PCTFREE. If
the expansion exceeds the free space, the page becomes full, and it causes an
overflow. The row is relocated to a new page and a pointer chaining to the new
location is set in the old page. If the row has to be moved again, the pointer is set
to mark the newest location. Therefore, the database manager never reads more
than two pages for one row.

The other purpose of PCTFREE is to reserve space on a page when data is loaded.
After loading, PCTFREE can be lowered to allow the free space to be used for
inserts (to help keep the data clustered).

Tuning Parameter (PCTFREE): You can set the percentage of space on each page
that is kept free when data is inserted in the dbspace, when you acquire it using
the PCTFREE parameter. For example, the following statement acquires a dbspace
and reserves 20% of the space on each page for inserts:

ACQUIRE PUBLIC dbspace NAMED test_dbspace (PCTFREE=20)

You need to know the PCTFREE setting for a dbspace before you can calculate the
number of rows you can effectively store on a single data page. For a complete
description of how to calculate this, refer to “Estimating the Number of Data Pages
Required” in the DB2 Server for VSE & VM Database Administration manual.

Performance Indicator (FREEPCT): To determine the current percentage of space
on each page that is kept free when data is inserted in the dbspace, look in the
FREEPCT column of the SYSTEM.SYSDBSPACES catalog table for your dbspace.

Performance Indicator (AVGROWLEN): To determine average length of the rows
in a table, look in the AVGROWLEN column of the SYSTEM.SYSCATALOG catalog
table.

Performance Indicator (NOVERFLOW): To determine how many rows are
overflowing onto new pages, look in the NOVERFLOW column of the
SYSTEM.SYSCATALOG catalog table. As a rule of thumb, if the number of
overflow rows in a table (NOVERFLOW) exceeds 5% of the total number of rows
in the table (ROWCOUNT), it is probably time to reorganize the table. Refer to
“Reorganizing Data” on page 70.

If you decide to reorganize the table because of this, you may also want to alter
the dbspace to give it a larger PCTFREE value.

Free Space in Index Pages
You can reserve a percentage of space in each index page for future index entries,
which allows index maintenance to take place without splitting of index pages. Its
default is 10 percent, which is a good value for most purposes. If you expect much
insert or update activity after the creation of the index, you might want to override
the default by setting the percentage to a higher value. If you expect no insert or
update activity after the creation of the index, you might want to override the

62 Performance Tuning Handbook

default by setting the percentage to zero. Usually, a low value (5% to 10%) is a
good choice when creating an index, as this allows enough room to accommodate
a low level of maintenance.

Tuning Parameter (PCTFREE): You can set the percentage of space in each index
page for future index entries, when you create it using the PCTFREE parameter.
For example, the following statement creates an index and reserves 20% of the
space on each page for future entries:

CREATE INDEX test_index ON test_table (test_column) PCTFREE=20

You can change a current PCTFREE value by either dropping the index and
recreating it with a new PCTFREE, or you can reorganize it with the DBS Utility.
For example, the following command will reorganize index index_number_one
created by smith and give it a PCTFREE value of 50:

REORGANIZE INDEX (smith.index_number_one) PCTFREE=50

For more information on reorganizing indexes, refer to “Reorganizing Fragmented
Indexes” on page 73.

Performance Indicator (IPCTFREE): To determine the current percentage of space
in each index page for future index entries, look in the IPCTFREE column of the
SYSTEM.SYSINDEXES catalog table for your index.

Shadow Pages
Shadow pages are used whenever you make changes to your database. They use
space in a storage pool that is only released during a checkpoint. If you are not
careful to leave enough free space in your pools, shadow pages can fill them before
the space is reclaimed at the next checkpoint. This is true even if you are only
modifying rows and not adding new ones.

Each permanent (not internal) dbspace page has two entries in the page map table.
One points to the current page while the other points to the shadow page. The
current page contains any updates made to the page since the last checkpoint. The
shadow page contains the original page as it was at the time of that checkpoint.
(See “Choosing the Checkpoint Interval” on page 103 for a discussion of
checkpoints.) If there have been no changes to the table since the last checkpoint,
both entries point to the current page.

The database manager uses this system to reconstruct changes to the database after
a system failure. When the database manager is restarted after a system failure, it
will use the page map table entries that point to the shadow pages. This effectively
resets the database to its state at the last checkpoint. The LOG is then used to
re-apply updates for LUWs committed after the last checkpoint.

When the database manager updates a page the following occurs:
1. A new physical page is allocated from a storage pool. This uses one physical

4KB page in a storage pool. It does not deplete the available data pages of the
dbspace.

2. The current page map table entry is set to the new page location.
3. The new page is created in the local buffer pool.

At the next checkpoint the following occurs:
1. The new page in the buffer pool is written to the new physical location in a

storage pool and the buffer page is released for reuse.

Chapter 3. Managing Storage and Configuring the Operating System 63

2. The shadow page map entries are set equal to the current page map entries,
and the physical pages in the shadow page map entries that have been changed
are released.

Note: Do not confuse shadow page recovery with rollback work processing.
Shadow pages are NOT released during a ROLLBACK. During a rollback
the contents of the log are read and any changes to the database are undone.
For example the database manager will undo a CREATE TABLE with a
DROP TABLE. If a ROLLBACK were accomplished by falling back on
shadow pages, you could not recover if a system failure occurred during
ROLLBACK processing.

Determining the Number of Shadow Pages in Use: If you want to know how
many pages are used by a specific update transaction, you can compare the
number of PAGES USED (SHOW POOL) before and after the transaction. For
example, consider a storage pool with two dbextents. Force a checkpoint (drop a
dbspace created for the purpose), and then enter a SHOW POOL command:

show pool

POOL NO. 1: NUMBER OF EXTENTS = 2

EXTENT TOTAL NO. OF NO. OF NO. OF %
NO. PAGES PAGES USED FREE PAGES RESV PAGES USED
1 855 245 610 28
2 855 0 855 0

TOTAL 1710 245 1465 20 14
ARI0065I Operator command processing is complete....

This pool has 245 PAGES USED. This total includes data, header, and pages index.
However, since you have just forced a checkpoint it does not include any shadow
pages.

If you now perform a transaction (for example an UPDATE statement) you can
determine how many shadow pages it uses by reissuing the SHOW POOL
operator command. For example, enter another SHOW POOL after the checkpoint:

show pool

POOL NO. 1: NUMBER OF EXTENTS = 2

EXTENT TOTAL NO. OF NO. OF NO. OF %
NO. PAGES PAGES USED FREE PAGES RESV PAGES USED
1 855 249 606 29
2 855 0 855 0

TOTAL 1710 249 1461 20 14
ARI0065I Operator command processing is complete....

This time the pool has 249 PAGES USED. This means that your transaction used 4
shadow pages (249-245).

If you force another checkpoint, the database manager will now release all the
shadow pages in the pool and reclaim the space. (There will be 245 PAGES USED and
610 FREE PAGES.)

64 Performance Tuning Handbook

Note: The above procedure will not be accurate if the transaction performs enough
database modifications to cause a checkpoint to occur.

Running out of Dbspace Pages
If you have run out of pages in a dbspace it is because of one of two conditions,
either the logical dbspace is full or the storage pool to which is assigned no longer
has any unallocated physical pages.

Storage Pool Full: If all the pages in a storage pool have been allocated, you can
reorganize the dbspaces allocated to it by dropping and recreating (reorganizing)
them. This will reclaim space wasted because of fragmentation, refer to
“Reorganizing Data” on page 70. You can also run a utility to free up the empty
pages. In VM, the utility is invoked via the SQLRELEP EXEC. In VSE, it is invoked
by starting the server with STARTUP=P. For more information, refer to the DB2
Server for VSE & VM Database Administration manual.

If neither or these methods reclaims enough space, you must add a dbextent to the
pool. For instruction on how to do this, refer to the DB2 Server for VM System
Administration or the DB2 Server for VSE System Administration manuals.

You cannot make more pages available by deleting tables or rows in another
dbspace using the same pool. Deleted data pages are not returned to their pool.
After a data page in a storage pool has been assigned to a specific dbspace, it
cannot be used by another dbspace using the same pool until the entire dbspace is
dropped or the release empty pages utility is run.

You can use the SHOW DBEXTENT operator command (refer to page 25) to
monitor the storage available in each storage pool, and you can use the SHOW
POOL operator command (refer to page 26) to monitor the number of pages
available in each dbextent in the pool.

Dbspace Full: A dbspace cannot be extended after it is defined (either during
initial database generation or when it is added to a storage pool). Your only
choices are to delete rows or tables in the dbspace itself, or unload the contents of
the dbspace and reload them into a new dbspace that is larger than the original.

Alternatively, just over allocate the dbspace when you acquire it (refer to the
ACQUIRE dbspace command in the DB2 Server for VSE & VM SQL Reference
manual). A dbspace is only a logical allocation of space in the form of directory
page tables. You will not actually consume the total number of pages in the storage
pool that you defined for all the dbspaces in the pool. Define the size of dbspace
based on how large they may become, but define the size of the storage pool based
on how much storage you need right now, which includes shadow pages. As your
tables grow and you need more pages, just add dbextents to the pool.

Note: The amount of storage you need right now includes space for shadow
pages.

You can use the SHOW DBSPACE operator command (refer to page 25) to monitor
the number of header, data, and index pages allocated to the dbspace and the
percentage of each actually in use.

Shadow Pages: You may find that even though you have not added a significant
number of new rows to a dbspace it may become full. This occurs because every
time you modify a existing index or data page (or create a new one) a shadow page
is created. These pages require additional storage that is not reclaimed until the

Chapter 3. Managing Storage and Configuring the Operating System 65

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|

next checkpoint, refer to “Shadow Pages” on page 63. To avoid this problem,
ensure that there is enough free space in your storage pools to accommodate
shadow pages. You will usually require between 15% and 25% free space measured
immediately after a checkpoint. For example:

show dbextent

POOL TOTAL NO. OF NO. OF NO. OF % NO. OF
NO. PAGES PAGES USED FREE PAGES RESV PAGES USED EXTENTS SOS

1 1710 1410 300 20 83 2
FREE 268626
ARI0065I Operator command processing is complete.

This dbextent has 17% free space (100-83). You may want to add space to ensure
that shadow pages will not become a storage problem.

Ever Increasing Index: One reason for running out of index pages is that you are
using an “ever increasing index”. For example, consider a table where you only
keep data for three months. Every month you delete any rows that were created
more than three months earlier. To keep track of the creation dates, you use a date
column, or timestamp and create an index on that column.

Unfortunately in this example, even though you delete old rows, the pages that
contain their index keys remain allocated to the table. They are not released for
reuse. They also remain allocated to the same range of values (or dates), so in this
example, they may never be reused. For example, if one index page contained keys
for a range of dates from March 1, 1996 to April 14, 1996, it will only ever be
reused for that range.

If you have this type of index, you must constantly monitor the percentage of free
index pages in the dbspace. You can use the SHOW DBSPACE operator command,
refer to “Proportion of Available Pages” on page 25.

To recover the wasted storage used by an ever increasing index, you must
reorganize it. Refer to “Reorganizing Fragmented Indexes” on page 73.

Data Clustering

Clustered Indexes
You can say that an index is clustered if the data is logically stored in an order
which closely matches the sequence of the index. That means that, ideally, when
you retrieve the rows following the order of a clustered index, the database
manager can do so by looking at a minimum number of pages.

Consider the following; all the rows in a table are retrieved in the sequence of an
index. As the database manager retrieves each row, it counts the number of times it
needs to access a different page than the one it is currently using.

In the best case, the number of pages accessed is exactly equal to the number of
pages occupied by that table within the dbspace. A data page is read, all the rows
of the subject table in that page are retrieved, and then the next page is read. In
this case, the pages are read sequentially - each page read only once.

Remember that saying an index is clustered really means that the table is clustered
relative to the index. If the database manager can use the index to sequentially

66 Performance Tuning Handbook

retrieve the rows in the table by looking at a minimal number of data pages, the
index is clustered. Another index acting on the same data may or may not be
considered clustered.

The Clustering Index
The first index created on a table is, by default, the clustering index. It inserts new
rows into data pages so that as many pages as possible are clustered relative to the
clustering index, refer to “Clustered Indexes” on page 66.

Default Clustering versus Clustering Index Strategy: When data is inserted into
a table, there are two strategies for finding a place for the data in the dbspace:
default logic and clustering index logic. Essentially the default logic places any
new rows at the end of the table, while the clustering index logic places a new row
in index sequence, as much as possible. While the clustering strategy tries to keep
a clustering index clustered, the only way to ensure that it is completely clustered
is to reorganize the data, refer to “Reorganizing Data” on page 70.

The default logic strategy is used if a clustering index is not available (indicated
by a “D” in the CLUSTERTYPE column in SYSTEM.SYSCATALOG for the table).
This strategy uses the value in the CLUSTERROW column in
SYSTEM.SYSCATALOG for the table to determine the starting point to look for
available space for the insert. The value in CLUSTERROW is a pointer to the end
of the table. If the value in CLUSTERROW is significantly incorrect, the database
manager has to do extra work to find a page that has sufficient free space to hold
the row to be inserted. The value of CLUSTERROW can be significantly incorrect if
UPDATE STATISTICS has not been executed recently or an application program
that is doing the insert has not been preprocessed (prepped) recently. Because a
preprocessed program that inserts with the default logic stores the value of
CLUSTERROW in the package, you must periodically preprocess this kind of
program to update the CLUSTERROW value in the package.

The clustering index strategy is used if a clustering index is available (indicated
by a “I” in the CLUSTERTYPE column in SYSTEM.SYSCATALOG for the table).
This strategy attempts to place the new row on the same page as rows with similar
key values. This determines the starting point to look for available space for the
insert. If there is no available space on the pages at or near this starting point then
the database manager must do additional work to find a page that has sufficient
free space to hold the row to be inserted. Insufficient free space can occur because
no free space was established for the dbspace or because inserts have used all the
free space. If you reorganize the dbspace, refer to “Reorganizing all the Tables in a
Dbspace” on page 71, you can establish free space for inserts.

When you create a table, CLUSTERTYPE is set to “D” and CLUSTERROW is set to
zero. When you create the first index on a table, CLUSTERTYPE is set to “I”. If
you reorganize the clustering index (refer to “Reorganizing Fragmented Indexes”
on page 73) it will remain the clustering index. If you drop the clustering index,

CLUSTERTYPE is set back to “D”. To establish a different index as the clustering
index you usually drop all indexes on the table, create the new clustering index as
the first index, and then create any other indexes. Refer to “Reorganizing a Single
Table” on page 71 and “Reorganizing all the Tables in a Dbspace” on page 71. You
can also change the clustering index by updating the SYSTEM.SYSINDEXES
catalog table, refer to “Changing the Clustering Index without Dropping Indexes”
on page 72.

How Indexes Become Unclustered
Indexes become unclustered when:

Chapter 3. Managing Storage and Configuring the Operating System 67

v A significant number of rows were added to a table since the clustering index
was first created or since the data was last reorganized

v And there was insufficient free space available to put the rows into their optimal
locations.

You can increase the number of rows that you can add before the index becomes
unclustered by increasing the PCTFREE setting when you reorganize your data.
Refer to “Reorganizing a Single Table” on page 71.

Identifying Unclustered Indexes
Deciding whether an index is clustered requires some judgement. First, you need
to execute an UPDATE STATISTICS statement against the table the index belongs
to. Second, you need to look at the CLUSTERRATIO and the CLUSTER column in
the SYSTEM.SYSINDEXES catalog table.

The CLUSTERRATIO value is used by the optimizer to choose a suitable index for
access path selection. This value represents a percentage, with the two decimal
places implied. The value is calculated by:

ROWCOUNT - PAGE JUMPS
CLUSTERRATIO = 10000 * ---------------------

ROWCOUNT - PAGE COUNT

where: PAGE COUNT = the number of pages the table occupies
PAGE JUMPS = the number of times a different data page is

referenced to access all the data in the table
in index order

The CLUSTERRATIO value ranges between 0 and 10000, and indicates the
percentage of time that the table’s row, when retrieved using that index, are in
logical page sequence.

The CLUSTER value, in addition to giving a general idea about whether the index
is clustered, is also used to identify the clustering index for the table.

Table 2. CLUSTER values

CLUSTER Value Clustered Clustering

F Yes Yes

C Yes No

W No Yes

N No No

The CLUSTER column will show that an index is not clustered if the following is
true:

PAGE JUMPS
110% < ----------- x 100

PAGE COUNTS

(The number of jumps per page is greater than 1.1.)

Clustering VIEW: You can include all the important information about clustering
and indexes in one VIEW. For example, the VIEW should contain the following
information:
v The name of the index and its creator
v The CLUSTERRATIO of the index

68 Performance Tuning Handbook

v The CLUSTER value of the index
v The number of rows in a table that the index acts on
v The number of pages in the table that the index acts on

For example:

SELECT i.iname,
i.clusterratio,
i.cluster,
t.rowcount,
t.npages
FROM system.sysindexes i, system.syscatalog t
WHERE t.tname = i.tname and

t.creator = i.creator

to help you determine if your index is clustered, your view should also include:
v The number of jumps
v The number of jumps per page.

While the CLUSTERRATIO and CLUSTER values are very useful in determining
how clustered a index is, you may find it useful to see how many jumps the
database manager makes for each page it reads. Remember each additional jump
per page represents an unnecessary I/O. You may also want to compare the
number of jumps per page to the number of rows per page. Unfortunately there is
no concrete rule you can use to decide when an index is unclustered. However, the
more information you have available the better you will be able to get a “feel” for
the state of the index.

To calculate the number of jumps, rearrange the clusterratio calculation to solve for
jumps instead of clusterratio. For example:

CLUSTERRATIO
PAGE JUMPS = ROWCOUNT - ------------- X (ROWCOUNT - PAGE COUNT)

10000

If the page jumps calculation was included in a SELECT with the name of the
index, the SELECT would look like this:

SELECT i.iname,
(t.rowcount-(i.clusterratio/10000.0*(t.rowcount-t.npages)))
FROM system.sysindexes i, system.syscatalog t
WHERE t.tname = i.tname and

t.creator = i.creator

The following SELECT statement:
v Combines the previous two SELECT statements and adds the jumps per page

ratio.
v Orders the results by the jumps per page ratio, so you can see the indexes with

the worst ratio first
v Excludes indexes created against empty tables.

Chapter 3. Managing Storage and Configuring the Operating System 69

SELECT i.iname,
i.clusterratio,
i.cluster,
t.rowcount,
t.npages,
(t.rowcount-(i.clusterratio/10000.0*(t.rowcount-t.npages))),
((t.rowcount-(i.clusterratio/10000.0*(t.rowcount-t.npages))))/t.npages
FROM system.sysindexes i, system.syscatalog t
WHERE t.tname = i.tname and

t.creator = i.creator and
t.npages > 0 and
t.rowcount > 0

ORDER BY 7 desc

Reorganizing Data
You should reorganize data for one of four reasons:
v A table’s clustering index has become unclustered. Refer to “Identifying

Unclustered Indexes” on page 68.
v The number of overflow rows in a table (NOVERFLOW) exceeds 5% of the total

number of rows in the table (ROWCOUNT). Refer to “Free Space in Data Pages”
on page 61.

v To change which index acts as the clustering index.
v To return once populated but now empty data pages to the storage pool, refer to

“Storage Pool Full” on page 65.

The first two conditions indicate that the rows can no longer be efficiently
retrieved.

Essentially, reorganizing involves unloading the data and reloading it. Unload the
data, making sure that the clustering index exists. If a clustering index is available,
the data is unloaded following its sequence. Drop the clustering index and reload
the data (it will be reloaded in the order of the clustering index). Then recreate the
clustering index. This reclusters the data according to the clustering index, and
reclaims space that was lost because of row overflow.

The following instructions assume that you are using the DBS utility to unload and
reload tables. For more information on its use, refer to the DB2 Server for VSE &
VM Database Services Utility manual.

There are several questions you need to ask before you choose a way to reorganize
your data.
v If you are reorganizing all the tables in a dbspace at once and there are not

many tables in that dbspace with field procedures), and it is not difficult for you
to recreate all the indexes, referential constraints, and unique keys in that
dbspace, follow the instructions in “Reorganizing all the Tables in a Dbspace” on
page 71. While this set of instructions requires you to recreate the entire dbspace,
the actual process of reloading the data is faster than the following alternative.

v If you only need to reorganize one or two tables or if your table contains
columns with field procedures, or if it is too much work to recreate all their
indexes, referential constraints, and unique keys, follow the instructions in
“Reorganizing a Single Table” on page 71. However, if you also want to change
which index acts as the clustering index, you will have to drop and recreate all
the table’s indexes.

70 Performance Tuning Handbook

v If you only want to change the clustering index in a single table that uses
several other indexes, follow the instructions in “Changing the Clustering Index
without Dropping Indexes” on page 72. Unlike the previous procedure, this set
of instructions does not require you to drop and recreate all the table’s indexes.

Reorganizing a Single Table
The following method reorganizes a single table. It uses the DBS Utility RELOAD
PURGE command. While it is not as fast as the RELOAD NEW command, you do
not need to manually drop and recreate any indexes, referential constraints, and
unique keys (unless you want to change the clustering index).
1. If you want to change which index acts as the clustering index, do the

following:
a. Drop all indexes for the table by issuing a DROP INDEX statement for each

one.
b. Create a new index (using the CREATE INDEX statement). This index will

act as the clustering index.
2. Unload the table (usually to tape), by issuing a DBS Utility UNLOAD TABLE

command. The rows are automatically unloaded in the key sequence of the
clustering index.

3. Set the PCTFREE value of the dbspace to a high enough value to allow space
on pages for future clustered insertion of rows.

4. Set UPDATE STATISTICS ON if you want to automatically collect statistics
during the RELOAD, or set it OFF if you plan to UPDATE ALL STATISTICS
after the RELOAD. Refer to “Automatic Statistics Collection” on page 113.

5. Reload the table by issuing a DBS utility RELOAD command with the PURGE
option specified.
During RELOAD command processing with the PURGE option specified, all
rows of the specified table are deleted. As part of the PURGE, the DBS utility
drops the clustering index, deactivates any active primary keys, active foreign
keys, and active unique keys, and deletes all indexes on the table before
deleting and reloading the data. After the table has been reloaded, the DBS
utility recreates the clustering index, primary key, and unique keys, and
recreates the remaining indexes. It then reactivates all the foreign keys it
dropped. Since packages are invalidated because of table index deletions, they
are dynamically repreprocessed the next time someone attempts to execute the
package.

6. Reduce PCTFREE to make the free space available for use on normal INSERT
activity.

7. If you set UPDATE STATISTICS OFF, collect statistics for all columns by issuing
the UPDATE ALL STATISTICS command.

8. If you changed which indexes acts as the clustering index, recreate the other
table indexes required, using CREATE INDEX statements. The definition of all
indexes on a table can normally be determined by querying the
SYSTEM.SYSINDEXES system catalog table, as long as the length of the column
names on which the index is defined is less than 100 characters.

Reorganizing all the Tables in a Dbspace
The following method reorganizes all the tables in a dbspace.
1. Record any index, referential constraint, unique key definitions, or field

procedures authorizations in the dbspace.
2. If you want to change which index acts as the clustering index for any tables

in the dbspace, do the following for those tables:

Chapter 3. Managing Storage and Configuring the Operating System 71

a. Drop all indexes for the table by issuing a DROP INDEX statement for
each one.

b. Create a new index (using the CREATE INDEX statement). This index will
act as the clustering index.

3. Unload the dbspace (usually to tape), by issuing a DBS Utility UNLOAD
DBSPACE command. The tables will be unloaded in the order of the
clustering index.

4. Drop and recreate the dbspace.
5. Set the PCTFREE value of the dbspace to a high enough value to allow space

on pages for future clustered insertion of rows.
6. Set UPDATE STATISTICS ON if you want to automatically collect statistics

during the RELOAD, or set it OFF if you plan to UPDATE ALL STATISTICS
after the RELOAD. Refer to “Automatic Statistics Collection” on page 113.

7. Reload the dbspace by issuing a DBS Utility RELOAD DBSPACE command
with the NEW option specified.
The NEW option assumes that none of the tables you are reloading currently
exist in the dbspace. A program that accesses a table, the index of which was
dropped, is re-preprocessed when it is next executed, which ensures that it
takes advantage of the new clustering properties.
If a table in the dbspace has field procedures associated with it, the table
should be dropped and recreated to include the field procedures and reloaded
using the PURGE parameter. It is not necessary to unload the table again, as
the table can be reloaded from the unloaded dbspace file.

8. Recreate the clustering index.
9. Reduce PCTFREE to make the free space available for use on normal INSERT

activity.
10. If you set UPDATE STATISTICS OFF, collect statistics for all columns by

issuing the UPDATE ALL STATISTICS command.
11. Recreate the other table indexes, any referential constraints and any unique

keys.

Changing the Clustering Index without Dropping Indexes
The following method reorganizes a single table, and changes which index will act
as the clustering index. It eliminates the need to individually drop and recreate all
indexes on the table. (The steps can be performed in a single execution of the DBS
Utility.)
1. On the SYSTEM.SYSINDEXES table entry for the original clustering index,

update the CLUSTER column value of “F” or “W” to “N”.
2. Change the value in the CLUSTERRATIO column to 1000 (10.00%).
3. If the new clustering index does not exist, create it with a CREATE INDEX

statement.
4. On the SYSTEM.SYSINDEXES catalog table entry, update the CLUSTER column

for the new clustering index to the value “W”.
5. Change the value in the CLUSTERRATIO column to 7500 (75.00%).
6. Unload the table by issuing a DBS Utility UNLOAD TABLE command.
7. Set UPDATE STATISTICS ON if you want to automatically collect statistics

during the RELOAD, or set it OFF if you plan to UPDATE ALL STATISTICS
after the RELOAD. Refer to “Automatic Statistics Collection” on page 113.

8. Reload the table by issuing a DBS Utility RELOAD command with the PURGE
option specified.

72 Performance Tuning Handbook

During RELOAD command processing with the PURGE option specified, all
rows of the specified table are deleted and the table index (if one exists) is
dropped and recreated. A program that accesses a table, the index of which was
dropped, is re-preprocessed when it is next executed, which ensures that it
takes advantage of the new clustering properties.

9. If you set UPDATE STATISTICS OFF, collect statistics for all columns by issuing
the UPDATE ALL STATISTICS command.

Index Fragmentation

A fragmented index is characterized by excessive amounts of free space in the
index pages, which usually is spread unevenly among the pages. Free space
distributed unevenly implies that index keys are also distributed unevenly. Indexes
can become fragmented by insert, delete, and update activity on the table.

To help prevent index fragmentation, indexes should be created after the data has
been loaded into the table, and an adequate PCTFREE value should be specified
for the index.

If the index is created before the data is loaded, page splits occur and the index
becomes fragmented when the data is loaded. In fact, if the data is loaded in
clustering order, each index page of the clustering index has 50% free space.

If a sufficient PCTFREE value is specified for the index when it is created,
subsequent inserts do fit on the existing index page, avoiding index page splits.

Indexes must either be reorganized or dropped and recreated to correct the
fragmentation. If they are dropped and recreated, any packages with dependencies
on them are marked invalid. In addition, if a clustering index is dropped, it no
longer functions as the clustering index if there are other indexes on the table. In
this case, all indexes would have to be dropped, the clustering index recreated, and
then the rest of the indexes recreated. If indexes are reorganized, dependent
packages are not marked invalid, and the clustering properties do not change.

Reorganizing Fragmented Indexes
To determine whether an index should be reorganized, enter the SHOW DBSPACE
operator command to see how many index pages are occupied in the dbspace, and
what the actual percentage of free space in the occupied pages is. Next, determine
the expected percentage of free space by averaging the PCTFREE settings of all the
indexes. If the actual free space is appreciably higher than the expected amount,
index fragmentation or skewed index values are the likely cause.

There are two ways to reorganize an index. One is to obtain all index definitions
from the catalog tables, drop the index with the DROP INDEX statement, then
recreate it with the CREATE INDEX statement.

The other is to enter the following DBS Utility command:
REORGANIZE INDEX (index-name)

You must be the owner of the index or have DBA authority.

The advantages of the REORGANIZE INDEX utility are:
v A dbspace scan is not required to retrieve the rows of the table.
v A sort of the index key columns is not required.

Chapter 3. Managing Storage and Configuring the Operating System 73

v Dependent packages are not invalidated and therefore do not require
re-preprocessing.

v The clustering property of a clustering index is not lost. (If there is more than
one index on a table, and a clustering index is reorganized by being dropped
and re-created, it is no longer the clustering index.)

For more information on the REORGANIZE INDEX utility, see the DB2 Server for
VSE & VM Database Services Utility manual.

Notes:

1. You must use the ALTER TABLE statement to reorganize an index that was
created by the database manager to enforce the uniqueness of a primary key or
a unique constraint (see the DB2 Server for VSE & VM Database Administration
manual).

2. A different utility is provided to reorganize the catalog table indexes (see the
DB2 Server for VSE & VM Database Administration manual.).

3. Reorganizing an index is not a solution for an unclustered index. To correct an
unclustered index, you must reorder the data to match the index sequence,
refer to “Reorganizing Data” on page 70. In addition, issuing the REORGANIZE
INDEX command does not return freed pages to the storage pool. The freed
pages are only returned to the storage pool if you drop the dbspace.

Invalid Indexes
An index can become invalid in the following ways.
v During a ROLLBACK or UNDO operation, if the database manager requires a

free index page but is unable to reclaim any, the index is marked invalid. More
than one index can become invalid during the LUW. Rollback, UNDO, or REDO
processing continues, but no updates are made to invalid indexes, and thus they
no longer reflect the data. These indexes cannot be used until they have been
reorganized, or, dropped and recreated.

v An index can be marked invalid if duplicates have occurred in a unique index.
This can only happen if:
– a checkpoint occurs during a searched UPDATE deferring checking of

uniqueness,
– a system failure occurs before the end of the statement, and
– the database is started with an empty log.

At the end of initialization, any unique indexes that contain duplicates are
marked invalid.

v An index can also be marked invalid if the following events occur in order:
– A checkpoint occurs during a CREATE or REORGANIZE INDEX.
– A system failure occurs before the database manager can complete the

CREATE or REORGANIZE statement.
– The application server is restarted with an empty log.

When an index is marked invalid, packages that use that index are not marked
invalid; however, the packages will become invalid if the index is dropped. If the
index is reorganized, the packages will remain valid.

Additional details about invalid indexes can be found under the SHOW INVALID
command in the DB2 Server for VSE & VM Operation manual.

Transient Indexes
An index can be marked transient in the following ways.

74 Performance Tuning Handbook

v An index is marked transient during a CREATE INDEX statement or
REORGANIZE INDEX command. In this case, the index remains transient for
the duration of the statement. When the index has been created or reorganized
successfully, the index is marked valid.

v A unique index can be marked transient during a searched UPDATE statement
where uniqueness checking is being deferred. In this case, the index remains
transient for the duration of the LUW. The index is marked transient when the
first duplicate is inserted. When the statement is completed, if duplicates still
exist SQLCODE -803 (SQLSTATE 23505) is issued, and the UPDATE statement is
rolled back. The index is marked valid at the end of the LUW.

Additional details about transient indexes can be found under the SHOW
INVALID command in the DB2 Server for VSE & VM Operation manual.

Reorganizing an Invalid Index
Use the SHOW INVALID operator command to display all invalid indexes in the
database, as well as the reason why each index is invalid.

Use the REORGANIZE INDEX utility to revalidate an invalid index that is invalid
because you encountered a NO ROOM IN THE STORAGE POOL message.

If the invalid index was created to support a primary key or a unique constraint, it
can be reorganized with the ALTER TABLE table_name ACTIVATE key_name
command.

When reorganizing an invalid index, the database manager must scan the dbspace
and sort the index keys, because the invalid index may not contain all the keys.

You cannot use the REORGANIZE INDEX utility to revalidate a unique index that
contains duplicates causing it to be marked invalid. You must drop this index,
remove the duplicates, and re-create it. If the index was created to support a
primary key or a unique constraint, you must deactivate the primary key or
unique constraint with the ALTER TABLE table_name DEACTIVATE key_name
command, remove the duplicates, and reactivate the primary key or unique
constraint with the ALTER TABLE table_name ACTIVATE key_name command.

DASD Balancing
How well you balance the demand for DASD I/O across several DASD volumes
can affect how fast the database manager can retrieve information from DASD.

Do not spend a lot of time and effort balancing the utilization of your DASD
channels and controller. Instead, concentrate on balancing the utilization of your
DASD volumes. You can then simply allocate an even number of volumes to each
controller.

Evenly Distributing Workload across Physical Volumes

Moving Dbextents
To evenly distribute your workload across all volumes of DASD, use the following
method as a guide:
1. Measure the current utilization of your DASD volumes.
2. Select the highest utilized volume. While DASD balancing based on utilization

may not necessarily give optimal performance (it assumes all your volumes
perform equally well), it is an excellent place to start. (You can also select a

Chapter 3. Managing Storage and Configuring the Operating System 75

volume based on average service time. Choose the volume with the highest
average service time. Balancing this way ensures that you will drive faster
DASD harder.)

3. If there is more than one dbextent on the volume, move one dbextent to the
lowest utilized volume. In VM use DDR, and in VSE use VSAM backup and
restore. (While you can use the copy dbextent facility that is supplied with the
DB2 Server for VSE & VM product to move a dbextent, DDR and VSAM are
much faster.)

4. If there is only one dbextent, examine the assignment of dbspaces to pools to
dbextents. Refer to “Reassigning Dbspaces”.

5. Measure the current utilization of your DASD volumes again.
a. If you find a significant improvement, return to step 2.
b. If you do not find a significant improvement, return to step 3 and select a

different dbextent to move.
c. If there is no significant difference between the utilization of the highest and

the lowest utilized volumes they are balanced. Occasionally, measure the
utilization of your DASD volumes to ensure that they are still balanced.

Reassigning Dbspaces
To reassign your dbspaces, first determine which storage pool the dbextent belongs
to, then choose one of the following options:
v Move a dbspace from one storage pool to another.
v Move a table from one dbspace to another. This choice is not valid if this is

already the only table in the dbspace. Also make sure that if you move the table
you do not put more than one highly used table in the same dbspace.

v Change the dbextent(s) in the storage pool to which the dbspace is allocated.

Moving Dbspaces:

1. Select a dbspace to move. While you can use the SHOW DBSPACE operator
command to see how many pages from the storage pool have been allocated to
a dbspace, you cannot easily determine how utilized the dbspace is. You must
rely on your knowledge of how the table(s) in the dbspace are used.

2. Unload all the tables in that dbspace.
3. Acquire a dbspace in a new storage pool. This storage pool should have

dbextents on the lowest utilized volumes. To accomplish this, you may have to
add a dbextent or dbspace or both.

4. Reload the tables.
5. If a table in the dbspace has field procedures associated with it, the table

should be dropped and recreated to include the field procedures and reloaded
using the PURGE parameter.

6. Drop the old dbspace.
7. Recreate the indexes, views, and authorities.
8. Recreate any referential integrity constraints.

Moving Tables:

1. Select a table to move. While you can use the NPAGES column in the
SYSTEM.SYSCATALOG table to see how many pages from the dbspace have
been allocated to a table, you cannot easily determine how utilized the table is.
You must rely on your knowledge of how the table(s) in the dbspace are used.

2. Unload the table.
3. Select a dbspace in a new storage pool.

76 Performance Tuning Handbook

4. If the table has field procedures associated with it, recreate the table to include
the field procedures.

5. Reload the tables.
6. Drop the old table.
7. Recreate the indexes, views, and authorities.
8. Recreate any referential integrity constraints.

Change Dbextents: You can either let the database manager do most of the work
for you, or you can do it yourself:

Let the Database Manager Do it

1. Add dbextents to the storage pool until there is more free space in the
pool than on the dbextent to be deleted (allowing sufficient space for
shadow pages and an adequate SOSLEVEL).

2. Delete the dbextent on the most used volume. The database manager
will automatically move data from the extent to be deleted onto the
remaining dbextents in the pool.

Do it Yourself

1. Unload all the tables in all the dbspaces in a storage pool.
2. Drop all the dbspaces in the storage pool.
3. Re-assign dbextents to the storage pool.

v One simple technique is to split one dbextent into two smaller
dbextents on two separate volumes. One dbextent remains on the
highly utilized volume and the other is allocated to a low utilized
volume. You cannot use the DB2 Server for VSE & VM copy dbextent
facility to do this.

v Unless you are using the DB2 Server DSS Feature with striping
turned on, do not just add a new dbextent to the pool. That will not
result in any usage of the new dbextent until the previous dbextents
are full.

4. Acquire dbspaces in the storage pool.
5. Reload the tables.

Note: Unless you are using striping, data is added to the dbextents in
the order that they were created. The database manager will fill
the first dbextent before it proceeds to the next one.

6. If a table in the dbspace has field procedures associated with it, the
table should be dropped and recreated to include the field procedures
and reloaded using the PURGE parameter.

7. Recreate the indexes, views, and authorities.
8. Recreate any referential integrity constraints.

General Considerations
There are other things to consider when you organize your dbspaces, storage
pools, dbextents and physical DASD.

Place the database catalog tables into their own pool. At database generation time,
the catalog is placed in pool number one. All other, non-catalog tables, should be
moved to different pools.

Place internal dbspaces in their own pool. Performance should benefit greatly for
large complex queries if you use data spaces with this pool. Assign the pool to a
set of dbextents that includes a virtual disk. Refer to “Virtual Disk Support for

Chapter 3. Managing Storage and Configuring the Operating System 77

VSE/ESA for Internal Dbspaces” on page 48 or to “Virtual Disk Support for
VM/ESA for Internal Dbspaces” on page 54. In VM/ESA, if you have DB2 VM
Data Spaces Support, use unmapped data spaces support for internal dbspaces.
Refer to Chapter 6, “Data Spaces Support for VM/ESA” on page 157.

Caching is best used where data is frequently reused. For example, the database
directory is primarily read from and will benefit from caching, while the log is
primarily written to and will not benefit from it. Any highly utilized dbextent disk
that contains tables that are primarily used for read only transactions will benefit
from caching.

Attention: The amount of frequently-reused-data should not exceed the size of the
cache.

If you have faster storage devices available, use them for your highest utilized
dbextents.

Place the database directory on a separate volume from your storage pool
dbextents. Because you may use all of these at the same time, if you do not
separate them you may create a bottleneck. You can place the directory and the
log(s) in the same volume, but it is better to separate them. If you use dual
logging, be sure to put each log on a different physical device (and controller and
channel, if possible).

If you are using the DB2 Server DSS Feature with striping turned on, make sure
that each dbextent in a storage pool is on a separate volume. Refer to “Striping” on
page 198.

If you are not using DB2 Server DSS striping, place dbextents consecutively on the
same physical volume. This avoids unnecessary head movement. In a VM system,
you can control exactly where a minidisk is placed. However, if you want to place
dbextents consecutively in a VSE system, you need to backup all VSAM datasets
on a particular disk and then reallocate them consecutively.

VM Specifics

Fair Share Scheduling
VM was originally designed to support a large number of equally important
virtual machines. To ensure that each user receives an equal allotment of its
resources, VM’s scheduler attempts to give each machine in the system a fair share
of the processor’s time.

However, if you are only using one or two database machines that use most of
your system’s resources, fair share scheduling may keep them from receiving the
processor time they need. The database and user machines may receive
approximately the same resources to perform their tasks. However because the
database machines are performing work for many users they may need much more
resource than the users. The database machines may become a bottleneck, because
the user machines are spending more time waiting for them than for processor
time.

Fortunately, there are several parameters that let you shift fair share scheduling in
the database machine’s favor. Use these carefully. It is easy to over adjust them and
virtually lockout all other users in your system.

78 Performance Tuning Handbook

SET SHARE
You can use the SET SHARE command or the SHARE directory statement
to control the percentage of system resources a virtual machine receives.
These resources include processors, real storage, and paging I/O capability.
A virtual machine receives a proportion of any scarce resource according to
its share setting.

You can use this command to ensure that a database machine receives an
absolute minimum share of system resources and that the remaining
resources are divided among the rest of the user machines. (However,
remember that by allocating an absolute share of system resources to a
single machine, you will also limit its share to that amount.

If the database machine is not the only multiple user server on the system,
give it a relative (instead of absolute share).

SET QUICKDSP
You can use either the SET QUICKDSP command or the QUICKDSP
operand of the OPTION directory statement to designate virtual machines
that will not wait in the eligible list when they have work to do. Instead, a
virtual machine with a quick dispatch setting (QUICKDSP) is added to the
dispatch list immediately without first waiting in the eligible list.

You should always use this command to ensure that a database machine
never waits longer than absolutely necessary for another machine when it
has work to do.

For more information on either QUICKDSP or SHARE, refer to the VM/ESA:
Planning and Administration manual.

VSE Specifics

Dispatching Priority
The database partition should be configured according to the following guidelines:
v Set its priority lower than any CICS partitions that are accessing it.
v Set its priority immediately below the CICS partition with the lowest priority

that is accessing it.
v Set its priority higher than any batch partitions accessing it.
v Do not include it in a partition balancing pool.

Fast CCW Translation
Do not use fast CCW translation (FASTTR job control option) in the database or
CICS partitions. Include the following option card in the application server start up
job:

// OPTION NOFASTTR

With DB2 Server for VSE, the VSAM I/O buffer address normally changes every
time it does an I/O, hence will suffer from using FASTTR. It performs I/O directly
from its local buffer.

Virtual Addressability Extension (VAE)
While there is a performance advantage to placing the database partition and the
CICS partition in the same address space, it is nearly impossible. Instead, place the
database partition and the CICS partition in separate address spaces. This will

Chapter 3. Managing Storage and Configuring the Operating System 79

increase the contention between these two partitions and introduce additional
overhead for address space switching. However, you will have a significant
amount of space for:
v Additional agent structures
v Larger buffer pools
v More locks
v A larger package cache

All of these will improve your server’s performance if you have enough main
storage to avoid increased paging.

31 Bit Addressing
You can use 31 bit addressing to increase the database partition size above the
normal 16MB limit (refer to “Storage Above 16MB (31 Bit Addressing)” on
page 47). However, because only one partition in the address space can use storage
above the 16MB line, it is still impractical to place CICS and the database partition
in one address space. Fortunately, with 31 bit addressing the cost of address space
switching becomes a relatively minor performance concern.

Compile Partition Size
Ensure that the partition you intend to use to compile application programs is
large enough. Preprocessing tends to produce relatively large source programs, and
compiles can take as much as ten times longer than necessary if your partition is
too small. Start with a partition size of 1.2MB and expand it if necessary.

CICS Specifics

AMXT/MXT
If you are adding DB2 Server for VSE work to an existing CICS environment,
consider increasing the CICS DFHSIT macro AMXT value. The optimal level of
CICS subtasking may now be higher than it was. Each active ISQL user requires
two active tasks within CICS. If the AMXT limit is reached, response time is
adversely affected.

Note: If you are using the new CICS Transaction Server under VSE/ESA 2.4, the
DFHSIT AMXT parameter is obsolete. Please see the CICS TS documentation
for more information.

ISQL

Transaction Name
Use transaction name ISQ2 rather than CISQ for ISQL. The ISQL transaction will
attempt to start a second transaction called ISQ2. If it cannot find ISQ2 it will look
for the CISQ transaction. Using the name ISQ2 avoids the additional processing
involved in searching for both ISQ2 and CISQ. (The ISQL transaction first looks for
a second transaction whose name is constructed by replacing the last character of
the first transaction ID with 2. In this case it would be ISQ2.)

Number of Concurrent Users
Consider limiting the number of concurrent ISQL users. If the database manager is
only used from the CICS environment through ISQL, you can limit the number of
concurrent users by limiting the number of links to the application server when
you start the DB2 Server for VSE online support (CIRB transaction).

80 Performance Tuning Handbook

If you plan to use the database manager from the CICS environment through both
ISQL and preplanned transactions, you can do this using the CICS CMXT
parameter. This is done by assigning the CISQ transaction to its own CICS class
and setting CMXT for that class to the desired limit.

Do not place a CMXT limit on the ISQL transaction ID. It may cause problems
with long queries. The ISQL transaction will temporarily end in the middle of a
long query, leaving the CISQ transaction active while it waits for a reply from the
application server. If more ISQL users logon, the number of ISQL transactions can
reach the CMXT limit. When the CISQ transaction eventually gets a reply from the
server, it try’s to restart its partner ISQL transaction. This will fail if the CMXT
limit has been reached.

You can use CMXT to allocate CICS-DB2 Server for VSE links for CICS production
work that requires access to DB2 Server for VSE data. For example, if 6 CICS-DB2
Server for VSE links are defined, and CMXT limits the number of ISQL users to 4,
at least 2 links are always available for other DB2 Server for VSE requests.

Instead of limiting the total number of ISQL users, you can also limit the number
of ISQL users by group. For more information refer to the DB2 Server for VSE
System Administration manual.

Temporary storage

Auxiliary versus Main
Consider using AUXILIARY storage if you expect to run large routines. All ISQL
routines are read into CICS temporary storage (either MAIN or AUXILIARY)
before the first command in the routine is run. Using MAIN temporary storage
improves performance but uses more virtual storage. Using AUXILIARY temporary
storage slightly degrades performance, but reduces the amount of virtual storage
required.

To use MAIN storage, code TSP=1$ on the CICS SIT or to use AUXILIARY storage,
code TSP=2$.

Guest Sharing with VSE under VM
VSE users can access a VM application server if the VSE system is running as a
second level guest under VM. While all the tuning suggestions for a native VSE
application server also apply to a second level guest, there is an additional
consideration. The VM system must be tuned to provide sufficient resources to
both the VSE guest and the database server.

Distributed Configuration Considerations

DB2 Server for non-DRDA Requestors can access:
v DB2 Server for VM Servers on the local processor or on a processor within a

TSAF collection
v DB2 Server for VM Servers on a remote processor in an SNA network

DB2 Server for VM non-DRDA Servers can be accessed by:
v DB2 Server for VM non-DRDA Requestors on the local processor or on a

processor within a TSAF collection

Chapter 3. Managing Storage and Configuring the Operating System 81

v DB2 Server for VM non-DRDA Requestors on a remote processor in an SNA
network

v DB2 Server for VSE non-DRDA Requestors in a VSE guest machine in the local
VM processor or on a processor within a TSAF collection (guest sharing)

v DB2 Server for VSE non-DRDA Requestors in a VSE guest machine on a remote
processor in an SNA network (guest sharing to remote VM)

DB2 Server for VM DRDA Requestors can access:
v DB2 Server for VM DRDA Servers on the local processor or on a processor

within a TSAF collection
v DB2 Server for VM DRDA Servers on a remote processor in an SNA network
v DB2 Server for VM DRDA Servers in an SNA network or in a TCP/IP network
v DB2 Server for VSE DRDA Servers in an SNA network (via the CICS AXE

transaction) or in a TCP/IP network
v non-DB2 Server for VSE & VM DRDA Servers in an SNA network or in a

TCP/IP network

DB2 Server for VM DRDA Servers can be accessed by:
v DB2 Server for VM DRDA and non-DRDA Requestors on the local processor or

on a processor within a TSAF collection
v DB2 Server for VM DRDA Requestors on a remote processor in an SNA network

or in a TCP/IP network
v DB2 Server for VSE non-DRDA Requestors in a VSE guest machine in the local

VM processor or on a processor within a TSAF collection (guest sharing)
v DB2 Server for VSE Online (CICS) DRDA Requestors in an SNA network or in a

TCP/IP network
v DB2 Server for VSE Batch DRDA Requestors in a TCP/IP network
v non-DB2 Server for VSE & VM DRDA Requestors in an SNA network or in a

TCP/IP network

DB2 Server for VSE non-DRDA Requestors can access:
v DB2 Server for VSE DRDA and non-DRDA Servers on the local processor
v DB2 Server for VM DRDA and non-DRDA Servers via guest sharing from a VSE

guest machine on the local processor or on a processor within a TSAF collection

DB2 Server for VSE non-DRDA Servers can be accessed by:
v DB2 Server for VSE non-DRDA Online (CICS) Requestors on the local processor
v DB2 Server for VM non-DRDA Batch Requestors on the local processor

DB2 Server for VSE DRDA Online (CICS) Requestors can
access:

v DB2 Server for VSE DRDA and non-DRDA Servers on the local processor
v DB2 Server for VSE & VM DRDA Servers in an SNA network or in a TCP/IP

network
v non-DB2 Server for VSE & VM DRDA Servers in an SNA network or in a

TCP/IP network

82 Performance Tuning Handbook

DB2 Server for VSE DRDA Batch Requestors can access:
v DB2 Server for VSE DRDA and non-DRDA Servers on the local processor
v DB2 Server for VSE & VM DRDA Servers in a TCP/IP network
v non-DB2 Server for VSE & VM DRDA Servers in a TCP/IP network

DB2 Server for VSE DRDA Servers can be accessed by:
v DB2 Server for VSE DRDA and non-DRDA Requestors on the local processor

(Online and Batch)
v non-DB2 Server for VSE & VM DRDA Requestors in an SNA network (via the

CICS AXE transaction)
v non-DB2 Server for VSE & VM DRDA Requestors in a TCP/IP network

Performance Implications
How you configure a distributed system can have a significant impact on the
performance of all the processors in the network. While this guide cannot describe
all possible distributed installations, nor can it suggest the best possible installation
for you, it does include some basic guidelines and several simple examples.

See the VM/ESA: Connectivity Planning, Administration, and Operation manual for
your operating system for details on optimizing performance in a TSAF collection
or SNA network. For information on both SNA networks and the connectivity
issues that are relevant in IBM distributed database systems, see the Distributed
Relational Database Connectivity Guide manual.

Applications Planning
If your application program needs to interact with a remote processor, there are
several things that you can do to minimize the communication traffic between the
requester and the server.

Fetch and Insert Blocking
Blocking groups multiple row insertions or retrievals into one request. Instead of
sending a separate instruction for each insert or fetch done by a cursor, instructions
are grouped together and sent in one communication block. This reduces message
traffic and overhead. (However, it is not supported in single user mode, or with
DRDA.) For more information, refer to “Fetch and Insert Blocking” on page 110.

Hold File
The creation of hold files is a technique allowing you to save the results of a query
(database information) in CMS or CICS files. Subsequent requests for this
information are satisfied by retrieving it from the CMS or CICS files.

Local Copy
If your application requires information from a database on another processor that
is not periodically updated, consider copying the information into temporary tables
in a local database. For example, if you need access to a monthly sales summary,
simply unload the summary data from the remote server once a month and load it
into your local server.

Stored Procedures
Your applications can use stored procedures on the remote server. This can reduce
the amount of data that must be moved over the network. For more information,
see the DB2 Server for VSE & VM Application Programming and DB2 Server for VSE
& VM Database Administration manuals.

Chapter 3. Managing Storage and Configuring the Operating System 83

84 Performance Tuning Handbook

Chapter 4. Configuring the Application Server and Requester

Database Manager Storage

Database I/O
Before a page of data can be used by the database manager, it must be located in
its data page buffers. The buffers are two areas of storage in your database machine
or partition, which are allocated when you start the database manager. One area
called the directory buffer pool is reserved for pages from the DB2 Server for VSE &
VM directory disk. The size of the pool is determined by the NDIRBUF
initialization parameter. The other area called the local buffer pool is reserved for
pages from the storage pools. Its size is determined by the NPAGBUF initialization
parameter.

When the database manager needs a page, it looks for it in its buffer pool. If it
does not find it there, it uses a service (IUCV *BLOCKIO or paging in VM, and
VSAM in VSE) to read the page from DASD into a free space in its pool.

Since the buffer pools are part of a primary address space, the operating system
treats them like part of the database manager code. If a buffer page is not
referenced frequently, it may be moved out to system paging DASD by the VM or
VSE paging system. In VM the page may also be moved out to expanded storage if
it is available. (Refer to “Auxiliary Storage” on page 43.)

© Copyright IBM Corp. 1993, 2003 85

When the database manager needs a buffer for another page, it overwrites the
“oldest” unmodified page in the pool with a new page. This is referred to as
releasing a page or stealing a buffer.

While a page is in the buffer pool, the database manager may modify it. To ensure
the integrity of your data, a modified page will not be released until it has been
written back to DASD. If the database manager needs a buffer occupied by a
modified page, it first writes the page to DASD, then loads the buffer with a new
page.

Figure 12. The Standard DB2 Server for VM DASD I/O System. The database manager
explicitly directs the operating system to move pages to and from DASD. Once database
machine pages are in main storage, they may be moved out to system paging DASD by the
paging system. In VSE, pages are moved by VSAM and the database machine is a database
partition.

86 Performance Tuning Handbook

Tuning Parameters
The sizes of these buffer pools are among the more important factors determining
performance. You can significantly improve performance by optimizing these
values. Unless your system’s main storage is extremely constrained, the default
values are probably too low.

Buffer pool sizes are set by initialization parameters:
v NDIRBUF, which is the number of 512-byte blocks in the directory buffer pool
v NPAGBUF, which is the number of 4KB pages in the local buffer pool.

The optimal buffer pool size is governed by the trade-off between database I/O
and system paging I/O (refer to “Auxiliary Storage” on page 43). In general, an
increase in the buffer pool sizes improves performance only if the resulting
increase in system paging is small. Stated another way, the buffer pools should be
backed up by a corresponding amount of available main storage.

Using a Large Buffer Pool: The database manager is designed to efficiently
manage its buffer pools no matter how large they are. Very large buffer pools can
be an excellent tuning choice if sufficient virtual and real storage is available.

Using a Small Buffer Pool: At the other extreme, if your environment is
characterized by limited real storage and a relatively high paging rate, consider
using smaller buffer pool sizes. Avoid extremely small buffer pools: they increase
the likelihood that work has to be backed out because of buffer pool contention.
Twenty buffer pages per real agent (20*NCUSERS) is an absolute minimum, and is
usually too low for most applications.

Performance Indicator
The performance information available through the COUNTER operator command
is helpful in guiding the selection of buffer pool sizes. Two especially useful
measurements are the local buffers effective use and the directory buffer effective
use values. (Refer to “COUNTER Operator Command” on page 22.)

There are no fixed guidelines as to what constitutes a good or bad value, because
this depends upon the availability of main storage to back up the buffer pools, as
described above. Of more interest are their relative values under different
conditions. For example, before and after observations can be used to find out how
effective an increase in the buffer pool size was in reducing database I/O. A large
decrease in I/O indicates that the change was effective, whereas a small increase
would suggest that the change was not worthwhile. Alternatively, calculate your
buffer hit ratios (see “Measurements” on page 6) before and after your change.

Because directory buffers are eight times smaller than the local buffer pages, you
can afford to be much more generous with them. Consider increasing NDIRBUF
enough to cause the directory read rate (DIRREAD/sampling interval) to be very
low. On a well tuned system, the directory pool effective use tends to be much
higher than the local buffer effective use.

Using Virtual Disks
Your internal dbspaces can use a virtual disk to improve their performance. Virtual
Disk Support lets you use a data space as a virtual disk. A virtual disk is much
faster than a conventional disk because it uses main storage instead of DASD. A
virtual disk appears to any program or job as just another disk, only faster. Refer
to “Virtual Disk Support for VSE/ESA for Internal Dbspaces” on page 48 and 54.

Chapter 4. Configuring the Application Server and Requester 87

Package Cache
The package cache works much the same as the buffer pools, except that instead of
storing data pages, the package cache stores packages. When a package is loaded
into the database machine’s virtual storage, users can use it consecutively without
reloading it each time. Unfortunately, separate users cannot use the same package
at the same time. If a package is already in use when a user requests it, an
additional copy will be loaded.

You need to trade-off the advantage of reducing your DASD I/O by having a large
cache capable of storing a large number of packages, against the storage the
packages consume.

Tuning Parameters
The package cache has a series of slots that contains information about the
packages loaded into the database machine or partition. One slot is used for each
package. The total number of slots available is determined at application server
startup by two initialization parameters:
v NPACKAGE, which defines the maximum number of packages available for

each real agent.
v NCUSERS, which is the number of real agent structures.

The number of slots in the package cache is calculated as follows:
NPACKAGE X NCUSERS

For example, if NPACKAGE is 10 and NCUSERS is 5, the number of slots in the
cache is 50 (10X5). While NCUSERS is part of the calculation, do not use it to tune
the size of the cache. Instead, increase or decrease NPACKAGE and set NCUSERS
based on your requirements for real agents. (Refer to “Agents”.)

You can also set a package cache threshold that limits the number of packages that
will remain in the cache. At the end of a logical unit of work (LUW), the database
manager checks the number of packages in the cache. If that number exceeds the
threshold, the database manager releases the package that has been in the cache
the longest to make room for a new one.

The package cache threshold is determined at startup by an initialization
parameter (NPACKPCT) and is calculated as follows:

NPACKPCT
NPACKAGE X NCUSERS X ----------

100

For example, if there are 50 slots in the cache and NPACKPCT is 80%, the package
cache threshold is 40 packages (50X80/100). While NPACKAGE and NCUSERS
appear in the calculation, do not tune the threshold with them, rather, use
NPACKPCT.

Concurrency

Agents
The database manager uses a set of control blocks called an agent structure (or real
agent) to service requests from multiple users accessing a common database.

There are always at least two agent structures created: the Operator and the
Checkpoint agents. (The initialization process is executed under the Operator

88 Performance Tuning Handbook

agent. The checkpoint agent is activated whenever a checkpoint is to be taken.) In
single user mode, there is also a User agent structure under which the user’s SQL
requests are executed. In multiple user mode, one or more real agent structures are
allocated; the number is equal to the value of the NCUSERS initialization
parameter.

Allocating Users to Agent Structures
There are differences in agent handling between single and multiple user mode.

In single user mode (SUM) this process is quite simple. There are three agents
created: the Operator, Checkpoint, and User. At initialization time, the Operator
agent performs the initialization functions. When initialization is complete, it
becomes dormant and control is passed to the User agent, which is said to be
“dispatched”. The User agent executes until a checkpoint or archive is required, at
which point the Checkpoint agent is dispatched, and the User agent waits until the
checkpoint has been completed.

The User and Checkpoint agent alternate until the User agent finishes its work.
Then the Checkpoint agent performs a final checkpoint and the Operator agent
shuts down the application server.

In multiple user mode (MUM), when initialization has been completed, all the user
agents start dormant. When a user first issues an SQL statement, a connection is
established between the user and the database manager. The connection remains in
effect until an explicit or implicit (COMMIT WORK RELEASE) release occurs.

VSE: In VSE, a batch user is connected to the application server by connecting a
batch partition directly to a real agent in the database partition. An interactive user
is connected to the server by establishing at least one link between the CICS
partition and a real agent in the database partition. A remote DRDA user is
connected to a pseudo agent in the server. The pseudo agent then connects to a
real agent when one becomes available (refer to “Pseudo-Agents” on page 90).

VM: In an IBM VM system, a connection is established between the user machine
and a pseudo-agent in the database machine. The pseudo agent then connects to a
real agent when one becomes available (refer to “Pseudo-Agents” on page 90).

Tuning Parameters (NCUSERS)
In both VSE and VM the number of real agents is determined by the DB2 Server
for VSE & VM initialization parameter NCUSERS. If you have the resources to
support more users, increase NCUSERS. For example, ten users want to share the
server, but there are only four real agents available. Six users must wait for one of
the four to finish a logical unit of work before they receive access to a real agent. If
you have the processing power to concurrently service all ten, there is no reason to
make some wait.

However, remember that by increasing the level of concurrency in your system,
you are also increasing overhead. Each additional real agent requires a minimum
of 110KB of storage and, if you use the default size for your buffer pools, an
additional 18KB of storage (four 4KB local buffers and four 512-byte directory
buffers). Additional real agents can also:
v Increase the system paging in your database machine or partition, “Auxiliary

Storage” on page 43
v Increase overall DASD I/O and buffer looks, “Database I/O” on page 85
v Increase locking contention, deadlocks, and lock escalations, refer to “Locking”

on page 93

Chapter 4. Configuring the Application Server and Requester 89

v Increase the size of the package cache, “Package Cache” on page 88.

Performance Indicator

SHOW CONNECT: Use the SHOW CONNECT or SHOW USERS operator
command to see how many real agents are in use, and when appropriate how
many pseudo agents are waiting for real agents. If all your real agents are never in
use at the same time, you should reduce NCUSERS to save resources. If you
consistently have more than five pseudo agents waiting for a real agent consider
increasing NCUSERS by one if you have the resources to support an additional
real agent. Refer to page 29.

For CICS users, refer to the performance indicator discussion under the heading
“CICS”.

CICS
Before a CICS user can access your application server, you must establish at least
one link between the CICS partition and the database partition.

Tuning Parameter (CIRB)
The CIRB transaction defines one or more links, each of which is exclusively
attached to a real agent until it is terminated by the CIRT transaction.

Because each link requires its own real agent it is important to establish an
appropriate number of links. If you establish too many links for the number of
concurrent users you expect to access your server through CICS, you will
needlessly tie up real agents, and the resources they require. However, if you do
not establish enough links, CICS users will be forced to wait for a free link. As
well as causing a delay, not having enough links increases your overhead. Storage
and processor time are consumed to concurrently manage these links. CICS must
manage all the links in a queue and select one user each time a link becomes
available.

To help you decide whether you should err on the side of too many links or not
enough, consider which resources are more constrained, — those of CICS or those
of your application server. If CICS resources are constrained, increase the number
of links. If your server’s resources are constrained, decrease the number of links.

Performance Indicator
There are two tools for CICS links, the CICSPARS/VSE report, and the CIRD
transaction. The CICSPARS/VSE report presents historical information on how
many waits for links occurred during a monitoring interval. In contrast, the CIRD
transaction provides a snapshot of the same information.

Pseudo-Agents
Pseudo-agents allow many users to share, but not concurrently, a few real agent
structures. This saves a significant amount of storage because each real agent
requires a minimum of 110KB of storage, a pseudo-agent uses less than 600 bytes.
(The 110KB value increases depending on how the real agent is currently being
used, refer to the DB2 Server for VM System Administration or the DB2 Server for
VSE System Administration manuals.)

90 Performance Tuning Handbook

Differences between VM and VSE

While pseudo agents are always used in a VM system, they are only used in
a VSE system for remote DRDA users.

When a user CONNECTs to an application server, that user is allocated a
pseudo-agent. The pseudo-agent is assigned to a real agent (assuming one is
available) when the user sends an SQL statement to the server. If all real agents are
in use, any users having sent messages to the database machine have their
pseudo-agents placed on a “wait” queue until a real agent is available. A real agent
becomes available whenever an active user (one whose pseudo-agent already owns
a real agent) completes a logical unit of work.

Table 3. Real and Pseudo Agents

Real Agent Pseudo Agent

Storage per Agent Minimum 110KB 600 bytes

Number (VM) NCUSERS (DB2 Server for
VM initialization parameter)

MAXCONN − minidisks − #
of active Stored Procedure
Servers - 1 (CP directory)

Number (VSE) NCUSERS (DB2 Server for
VSE initialization parameter)

RMTUSERS (remote DRDA
users)

When assigned At SQL command request At CONNECT

When freed End of LUW End of connection

When no agents are
available

Pseudo agent waits in FIFO
queue

No connection, error message

Guest Sharing: With Guest Sharing, the DB2 Server for VSE Online Resource
Adapter, running under the control of CICS, can establish the number of
communication links specified during online Resource Adapter Initialization. Each
of the links is associated with a pseudo-agent to which a real agent is permanently
assigned. These pseudo and real agents are not available to other users until the
Online Resource Adapter is terminated.

Note: For CMS users to simultaneously access the database, NCUSERS must be
greater than the number of CICS links.

Tuning Parameter
The only reason you would want to restrict the number of pseudo agents is to
send an error message to a user indicating that no real agents are available instead
of putting this user in a queue.

If this is not a problem, set the number of pseudo-agents to the maximum number
of users that could possibly wish to connect to the application server at one time.
The virtual storage requirement of 600 bytes per connection should be negligible.

VM (MAXCONN): The number of pseudo-agents allocated is equal to the value
of MAXCONN specified in the CP directory minus the number of CMS minidisks
used for the database machine and minus one for the connection to *IDENT.

VSE (RMTUSERS): Pseudo-agents are not used for CICS users nor are they used
for batch partition users. However, they are used for remote DRDA users. The

Chapter 4. Configuring the Application Server and Requester 91

RMTUSERS initialization parameter sets the number of pseudo agents available to
remote DRDA users. This limits the number of remote DRDA users that can access
the server at any one time because each DRDA user requires one pseudo agent. To
calculate the number of real agents that can be shared between remote DRDA
users, subtract the number of active batch partition users and the number of CIRB
initiated CICS connections from the number of real agents (NCUSERS). For
example, consider the following:
v NCUSERS is 10, refer to “Tuning Parameters (NCUSERS)” on page 89
v There are 5 CIRB initiated CICS connections, refer to “Tuning Parameter (CIRB)”

on page 90
v Two batch partitions are active
v RMTUSERS is 20.

This means that there are three (10-5-2) real agents that must be shared between as
many as 20 pseudo agents (each connected to a remote DRDA user).

Privileged Remote DRDA User (VSE Server)
You can specify that a remote DRDA user is privileged. Normally, a remote DRDA
user is assigned one pseudo agent during the time it is connected to an application
server, and shares the available real agents with the other pseudo agents. It always
releases a real agent at the end of a logical unit of work (LUW) (refer to “Agents”
on page 88). However, a privileged remote DRDA user holds a real agent until it

disconnects from the server. Only specify a user as privileged if you expect it to
constantly submit work to the server. For example, large batch applications.
Interactive applications are not good candidates.

To specify a privileged remote DRDA user, you need to update the LOCALAXE
entry in the DBNAME directory for that user. For instructions, refer to the DB2
Server for VSE System Administration manual.

Performance Indicator (SHOW USERS)
You can use the SHOW USERS operator command to look for consistently free
pseudo agents. This indicates that you could probably reduce MAXCONN for VM,
or RMTUSERS for VSE. However, constantly busy pseudo agents may indicate that
you should increase them.

The most effective indicator that either parameter is set too low is to look for
complaints from your users that they cannot connect to the application server.
They will receive SQLCODE=-933 with SQLSTATE=57030.

Dispatching Agents
Real agents are placed in a queue and wait there until they receive a slice of the
processor time from the database manager (referred to as being dispatched). Before
an agent is dispatched, it must:
v Not be in a wait state. For example it cannot be waiting for an I/O operation to

complete or waiting for a lock held by another user.
v Be at the top of the queue. This is determined by two processes: Prioritization,

and Fair Share Auditing.

Prioritization
After each dispatch, the agents in the queue are reprioritized so that shorter LUWs
are moved to the top of the queue. “Special purpose” or “system” agents, such as
the operator or checkpoint agents, are not reprioritized after each dispatch; rather,
they permanently reside at the top of the dispatch queue so that they receive the
highest priority assigned to any agent.

92 Performance Tuning Handbook

Fair Share Auditing
Fair Share Auditing is invoked at regular intervals, during which the dispatch
queue is scanned for a “deprived” agent and, if one is found, it is moved to the
top of the queue. A deprived agent is one that has referenced the buffer pools less
than a calculated fair value. This value is based on the average number of
references per LUW and per real agent.

Tuning Parameter (DISPBIAS)
You can affect the frequency of Fair Share Auditing with the DISPBIAS
initialization parameter. You can set it from 1 to 10 and it defaults to 7. The higher
the number the less frequent the audits. A setting of 10 causes short LUWs to be
strongly favored and long LUWs to be strongly disfavored whereas a setting of 1
causes less favoritism to short LUWs.

Performance Indicator
While there are no quantifiable indicators for this parameter, you can determine if
it needs tuning by listening to your users. Can you differentiate between users that
use short LUWs and those that use long LUWs? If people with short LUWs
complain, try increasing DISPBIAS. If people with long LUWs complain, try
decreasing DISPBIAS.

Startup Mode
If there are periods where you only need to support large sequential jobs (for
example, an overnight batch window or long DBS utility job), consider running
your application server in single user mode (SUM). You will reduce the overhead
of both concurrent processing and in communications.

In single user mode, pseudo agents are not created and there is no overhead
associated with prioritizing real agents or with fair share auditing. Also, since the
application server does not need to communicate with a user machine or partition,
you reduce overhead by eliminating the APPC/VM (in VM) or XPCC (in VSE) or
TCP/IP conversations.

Locking
To optimize your application server’s performance, you need to minimize the
overhead of locking, while you maintain the integrity of your data. Concentrate on
three areas:
v Reduce lock contention by reducing the number of locks you require and the

duration of each lock, refer to “Locking Contention”.
v Reduce the number of lock escalations, refer to “Lock Escalation” on page 99.
v Reduce the number of potential deadlocks, refer to “Deadlock” on page 101.

There are a number of techniques to help you with each area.

Locking Contention
Lock contention occurs when an agent tries to lock an object that is already locked
with a conflicting mode by another agent. The more locks the database manager
uses and the longer each lock lasts the greater the probability that contention will
occur.

To understand when locks come into contention, you must first understand:
v Locking Hierarchy
v Lock Modes

Chapter 4. Configuring the Application Server and Requester 93

v Lock Compatibility

Locking Hierarchy
The database manager locks objects in the database according to a hierarchy.

The database manager grants locks in the order of the hierarchy. Thus, an agent
accessing a row, has to first obtain a lock on the dbspace, the table and the page
that contain the row before it can obtain a lock on the row itself. (After the first
row is locked, it is not necessary to get the DBSPACE and table locks again since
they will be held until the end of the LUW.)

Lock Modes
There are eight types of locks, or lock modes:

Share (S)
This type locks an object (dbspace, table, page or row) for reading when
using the repeatable read (RR) or the cursor stability (CS) isolation levels.
Other agents can obtain share locks on the same object and look at it
simultaneously.

Exclusive (X)
This type locks an object for updating. Objects locked in X mode can be
read by applications using isolation level UR.

Super Exclusive (Z)
This type locks an object (dbspace, table, page or row) for updating. Other
agents cannot obtain any other locks on the same object and cannot read or
manipulate it in any way, even if using isolation UR.

Intent Share (IS)
This type indicates that a share lock is being used on an object lower in the
hierarchy. For example, if an agent needs a share lock on a table it first
needs to obtain an intent share lock on the dbspace that contains the table.

Intent Exclusive (IX)
This type indicates that an exclusive lock is being used on an object lower
in the hierarchy.

Intent None (IN)
This type indicates that no locks are held on objects lower in the hierarchy
for reading using isolation level UR. For example, an application using
isolation level UR to read a row will get an IN lock on the dbspace and

DBSPACE

TABLE

DATA PAGE

ROW INDEX KEY VALUE

INDEX PAGE

Figure 13. Locking Hierarchy

94 Performance Tuning Handbook

table, but will then not hold any locks on the page or row. See the DB2
Server for VSE & VM Diagnosis Guide and Reference manual for more
information.

Share with Intent Exclusive (SIX)
This type indicates that a share lock was held on this object but that an
exclusive lock is now being used on an object lower in the hierarchy.

Update (U)
This type of lock is used during a FETCH when the cursor is declared FOR
UPDATE. It locks an object for reading, but indicates that an update may
be required. If the agent finishes with an object without updating it, the
lock is downgraded to share. If an update is required, the lock is upgraded
to exclusive. While the update lock is held, other agents can obtain share
locks on the same object to look at it simultaneously, but they cannot
obtain update or exclusive locks on it.

Lock Duration
Locks can be held and released almost instantly or held until the end of the current
logical unit of work. The lock duration depends on the lock mode, the type of
internal data manipulation call, and the isolation level (refer to “Isolation Level” on
page 97). A detailed table including the relationships between all of these is
included in the DB2 Server for VSE & VM Diagnosis Guide and Reference manual.

Lock Compatibility
The main purpose of having different lock modes is to be able to define which
requests to access a certain object are compatible with other requests and which are
incompatible. The matrix in Table 4 indicates which lock modes are compatible
with each other. Yes means the requested lock is compatible with the held lock
(and therefore is granted). No means the request is denied or the requesting agent
is put in a LOCK WAIT. Either way a lock contention occurs.

Table 4. Compatibility of Lock Modes

MODE OF LOCK REQUEST

MODE OF LOCK
HOLD

IN IS IX S U SIX X Z

IN Yes Yes Yes Yes Yes Yes Yes No

IS Yes Yes Yes Yes Yes Yes No No

IX Yes Yes Yes No No No No No

S Yes Yes No Yes Yes No No No

U Yes Yes No Yes No No No No

SIX Yes Yes No No No No No No

X Yes No No No No No No No

Z No No No No No No No No

Public and Private Dbspaces: More than one user can have concurrent access to a
private dbspace, but for read operations only. That is, multiple users can hold a
shared lock on the dbspace.

Number of Concurrent Users
The amount of locking contention is directly related to the number of concurrent
users allowed to access the application server (NCUSERS). While you could reduce
locking contention by reducing NCUSERS, this would affect your overall response

Chapter 4. Configuring the Application Server and Requester 95

time, refer to “Tuning Parameters (NCUSERS)” on page 89. You need to find a
balance between having users wait for a lock and having them wait for access to
the server.

Minimum Lock Level
The smallest possible lock level is a single row in a table. However, you can
increase the minimum lock level in a dbspace to be a single page or the dbspace
itself. Using a larger minimum lock level reduces the number of locks required,
which reduces locking overhead but may increase locking contention. (The default
lock level is a single page.)

Tuning Parameter: You can define a larger lock level with the ACQUIRE
DBSPACE statement or change an existing size with ALTER DBSPACE.

The default lock level (PAGE) should be appropriate for most applications.
However, you may consider using the DBSPACE lock level if your application is
read-only and accesses the data primarily through dbspace scans.

Only consider ROW level locking for applications that access small answer sets
through index scans. Also, this level should not be used with an application
performing a dbspace scan using cursor stability.

Performance Indicator: You can find the minimum lock size for a given dbspace
in the SYSTEM.SYSDBSPACES catalog table in the LOCKMODE column. Refer to
“SYSTEM.SYSDBSPACES” on page 39.

Indexes
Remember that index pages and key values are locked for any SQL statement that
uses the index or whenever the table that they are indexing is updated. If your
indexes are not critical to fast access to your data, you can reduce lock contention
by reducing the number of indexes defined on your data. In other words, do not
create unnecessary indexes.

Unique Indexes and Row Level Locking: If you are using row level locking,
make sure that your tables contain a unique index. They perform better, with
respect to locking contention, because the database manager is able to determine
the exact row it needs to lock. Without a unique index it may unnecessarily lock
several rows at once. If you cannot create a unique index on a single column,
create a unique multicolumn index. For example if you want to sort the
EMPLOYEE table by the JOB column, create an index on JOB and EMPNO
(JOB,EMPNO). The index will still sort by JOB, but it can also be a UNIQUE index.

Access Path
You can usually reduce the number of locks required for a particular SQL
statement by ensuring that it is accessing the data as efficiently as possible. For
information on access path selection, refer to Chapter 5, “Improving Data Access
Performance” on page 117.

Logical Unit of Work
Since a lock will never last longer than a logical unit of work (refer to “Logical
Units of Work” on page 102), it is critical that you make your LUWs as short as
possible. Commit work frequently, even if you are only reading tables.

Do not use ROLLBACK WORK to release locks. While rolling back a LUW also
releases locks, a roll back involves more work and processor time than a commit
work and should only be used when you want to undo updates, inserts, or
deletions.

96 Performance Tuning Handbook

Isolation Level
You can set the isolation level for a particular application program during
preprocessing. It represents the degree of independence that the application
program will have from other programs. A lower isolation level maximizes
concurrency and performance but increases the risk of inconsistent data appearing
in applications. There are three isolation levels: repeatable read, cursor stability, and
uncommitted read.

Repeatable Read (default): A repeatable read application program locks every
object it accesses until the end of the current logical unit of work. It guarantees
that within a logical unit of work it can repeatedly read the same row of data
without having it changed by some other user. With repeatable read, a user is
completely isolated from interference by other applications. Other users must wait
until your logical unit of work is complete before they can modify the data you
were using.

Cursor Stability: A cursor stability application program only locks an object for
as long as it is directly accessing it. This allows more than one user to work on the
same data at the same time. It is possible to issue the same query twice within a
logical unit of work and get different results. That is, rows in a table, or pages in a
DBSPACE, that you have already read are subject to change by other users. It also
means that the data may appear “inconsistent”. If this is not a problem, and will
not affect the integrity of your application program, seriously consider using cursor
stability. It can significantly reduce the locking contention in your system.

Cursor stability only applies to tables in PUBLIC DBSPACEs with PAGE or ROW
level locking. An application program that accesses tables in PRIVATE DBSPACEs
or PUBLIC DBSPACEs with DBSPACE level locking always act like a repeatable
read program.

Note: When the database manager uses a DBSPACE scan (does not use an index)
to access a table in a DBSPACE with ROW level locking using isolation level
cursor stability, the effect is similar to repeatable read: no other logical unit
of work can update the table until the logical unit of work performing the
DBSPACE scan ends. Also, if one logical unit of work has updated a table,
another logical unit of work (using cursor stability) cannot access that table
with a DBSPACE scan until the updating logical unit of work ends. This
reduced concurrency for DBSPACE scans does not apply for tables in
DBSPACEs with PAGE level locking, or when accessing through indexes.

Uncommitted Read: Many uncommitted read (UR) application programs can
query the same data simultaneously while the data is being updated by another
application. This isolation level prevents read-only applications from waiting on
applications that have changed or may change the data about to be read.
Uncommitted read provides the lowest degree of isolation and hence greater
concurrency and throughput.

Since isolation level UR gives applications the ability to read data that is not
necessarily committed, data can appear to be inconsistent. For example, it is
possible for you to issue the same query twice within a logical unit of work and
get different results. You must be very careful when deciding to use uncommitted
read for your applications. Only choose it for an application if it is not important
that the data read is necessarily committed.

Chapter 4. Configuring the Application Server and Requester 97

Note: Uncommitted read applies only to tables in PUBLIC DBSPACEs with page
or row level locking. Tables in PRIVATE DBSPACEs or PUBLIC DBSPACEs
with DBSPACE level locking always have the repeatable read isolation level.

Isolation level uncommitted read (UR) is defined as follows:
v An application can see uncommitted changes made by other application

processes
v An application cannot update uncommitted changes made by other application

processes
v The re-execution of a statement can be affected by other application processes
v Uncommitted updated rows cannot be updated by other application processes
v Uncommitted updated rows can only be read by application processes using UR
v Accessed rows can be updated by other application processes
v Accessed rows can be read by other application processes
v The current row of a read-only cursor can be changed by other application

processes
v The current row of an updatable cursor cannot be changed by other application

processes.

User Defined: While you normally set the isolation level for a program when you
preprocess it, you may allow the application program to dynamically set its
isolation levels during execution. For more information on this, refer to the USER
isolation level in the DB2 Server for VSE & VM Application Programming manual.

Isolation Level and Updates:

Note: The isolation level does not affect the duration of the locks held on data that
have been inserted, deleted, or updated in an LUW. Locks on this data are
always held until the end of the LUW, regardless of the isolation level.

Guidelines for Selecting an Isolation Level: We recommend that you use cursor
stability whenever possible because it reduces the duration of locks for the
application program that uses it. For even further reductions in locking and lock
durations, you may consider using uncommitted read. Only use this isolation level
for applications in which data integrity is not important. The effects of cursor
stability and uncommitted read can be very subtle. Specific guidelines for selecting
isolation levels are in the appropriate DB2 Server for VSE & VM manuals. For
guidelines on selecting an isolation level in application programs, see the DB2
Server for VSE & VM Application Programming manual. For guidelines that apply to
the DBS utility, see the DB2 Server for VSE & VM Database Services Utility or the
DB2 Server for VSE & VM Database Services Utility manuals. For ISQL guidelines,
see the DB2 Server for VSE & VM Interactive SQL Guide and Reference or the DB2
Server for VSE & VM Interactive SQL Guide and Reference manuals.

Catalog Tables
Catalog tables can be exclusively locked by:
v Data definition statements
v Data control statements (granting authorizations)
v Preprocessing
v Dynamic repreprocessing
v Inserts (loading tables and dbspaces)
v Extended dynamic CREATE PROGRAM, PREPARE, or DROP STATEMENT

98 Performance Tuning Handbook

v UPDATE STATISTICS

Try to avoid any or all of these during peak load periods and try not to include
them in your application programs. If you cannot avoid them, at least COMMIT
WORK after each statement.

Performance Indicator
To display locking contention as it occurs, use the SHOW LOCK operator
commands. They can help you identify agents that are locking other agents out of
critical data and solve immediate locking problems.

To test the frequency of lock contentions after they occur, use the COUNTER
operator command. Specify the WAITLOCK counter to get the number of lock
requests that resulted in a wait.

Lock Escalation
The database manager uses internal control blocks called lock request blocks
(LRBs) to manage locking. Each time a lock is acquired one or more LRBs are used.
The number of LRBs that can be held by any given agent is defined by the
initialization parameter NLRBU. The sum of the number of LRBs held by all agents
cannot exceed the limit defined by the NLRBS initialization parameter. When either
of these limits is reached, lock escalation is initiated for the agent that caused the
limit to be exceeded.

Lock escalation is the act of trading low level locks (page, row, table, index page, or
key value locks) for the appropriate DBSPACE lock for one of the DBSPACEs in
which the victim agent holds locks. The DBSPACE chosen is the one in which the
agent holds the most locks.

Note: The lock manager is selective about the locks it escalates. A request for data
in DBSPACE X does not necessarily cause escalation to go after a lock on
DBSPACE X.

The lock manager requests a lock on the chosen DBSPACE. The lock mode
requested is the same as the most restrictive lock that the agent holds in the
DBSPACE. For example, if the agent holds any Z locks, a Z lock is requested. The
next choice would be an X lock, followed by an S lock. If the DBSPACE lock
cannot be granted, the system checks for a possible deadlock. If no deadlock is
found, the DBSPACE lock request is queued. After the DBSPACE lock is granted,
the lower level locks are freed.

As the user resumes access to the DBSPACE (which is now locked at the DBSPACE
level), lower level locks are not required and are not obtained. Thus, for any given
LUW, the user can escalate only once on a particular DBSPACE. Or another way of
looking at it, the maximum number of times an LUW can be escalated is the
number of DBSPACEs accessed during that LUW.

Tuning Parameters (NLRBU, NLRBS): If an application program is causing too
many lock escalations, consider the following alternatives:
v Change the locking level of some of the dbspace(s) used by the application (for

example, from ROW to PAGE) by using either the SQL ALTER DBSPACE or the
SQL LOCK statement. This will reduce the number of locks required by the
application.

Chapter 4. Configuring the Application Server and Requester 99

Note: Using a larger minimum lock level can increase locking contention. Refer
to “Minimum Lock Level” on page 96.

v Reduce the duration of the locks by changing the application: add SQL
COMMIT WORK statements to the application.

v If appropriate, consider running the application by itself: either in single user
mode, where no locking is required, or in multiple user mode with a reduced
NCUSERS.

v If you are currently using the repeatable read isolation level, consider using
cursor stability or uncommitted read.

If you cannot reduce the number of lock escalations, you may need to increase the
number of available lock request blocks by increasing the the NLRBU, and NLRBS
initialization parameters.

To establish the lock request block requirements for running an DB2 Server for VSE
& VM preprocessor, or for an application that is causing escalation problems:
1. Start the application server in multiple user mode with NCUSERS=1, NLRBU

about five times its current setting, and NLRBS set to the same value as
NLRBU.

2. Start the application and allow it to complete processing.
3. Verify that no escalation occurred by displaying the ESCALATE and LOCKLMT

counters. If no escalation occurred, enter the SHOW LOCK MATRIX operator
command. MAX USED BY LUW will show the number of lock request blocks
required.

4. If an escalation did occur, set NLRBU to a value greater than or equal to MAX
USED BY LUW, then start the application server again, and rerun the
application.

Performance Indicators (COUNTER, SHOW LOCK MATRIX): To test the
frequency of lock escalations, use the COUNTER operator command, refer to
“COUNTER Operator Command” on page 22. Specify both the ESCALATE and the
LOCKLMT counters to get the number of successful escalations and the number of
unsuccessful escalation attempts respectively. (An escalation can fail if the LUW
that reached the lock limit is rolled back because of a deadlock, or if a sufficient
number of lock request blocks cannot be freed.)

Note: ESCALATE and LOCKLMT may increase during preprocessing, because
locks are required then as well.

You can also use the SHOW LOCK MATRIX operator command that displays
information about lock request block usage, refer to “Lock Escalation” on page 37.
You can determine whether unexpected delays are caused by locking; monitor how
the database manager is using lock request blocks; and determine the lock request
blocks required to preprocess a single application.

One of the values displayed by SHOW LOCK MATRIX is called MAX USED BY
LUW. It is the maximum number of lock request blocks used by any one
application during a logical unit of work. (When any LUW exceeds NLRBU and
the escalation process occurs, MAX USED BY LUW is set to zero.)

In addition you can look for SQLCODE -912 (SQLSTATE 57028), or SQLCODE -915
(SQLSTATE 57029). These indicate rollbacks that occur because of, insufficient lock
request blocks for the database manager, or insufficient lock request blocks for a
user application, respectively.

100 Performance Tuning Handbook

Deadlock
The database manager performs deadlock detection prior to placing any agent into
a lock wait. A deadlock occurs when agent A holds resource X and agent B wants
resource X while holding resource Y, which agent A wants. There is an impasse,
which the system removes by rolling back the youngest LUW. For example,
consider two users, LAWRENCE and VERONICA:
1. LAWRENCE selects rows from the EMPLOYEE table, placing a SHARE (S) lock

on the table.
2. VERONICA also selects from the same table, also placing a SHARE (S) lock on

it.
3. LAWRENCE tries to UPDATE the employee table, but cannot because he is

placed in a lock wait. The EXCLUSIVE (X) lock he needs before he can update
the table is incompatible with VERONICA’s SHARE (S) lock.

4. VERONICA also tries to UPDATE the same table, but cannot. The EXCLUSIVE
(X) lock she needs before she can update the table is incompatible with
LAWRENCE’s SHARE (S) lock. However, before she is placed in a lock wait,
the database manager detects a potential deadlock.

5. The database manager rolls back VERONICA’s logical unit of work because it
is younger than LAWRENCE’s LUW.

6. LAWRENCE receives the lock he needs because VERONICA loses her SHARE
(S) lock when her LUW ends, and VERONICA receives the following message:

UPDATE SQLDBA.EMPLOYEE SET SALARY=60000 WHERE LASTNAME=’HAAS’
ARI7955I THE SYSTEM ENDED YOUR QUERY RESULT TO PROCESS YOUR COMMAND.
ARI0503E AN SQL ERROR HAS OCCURRED.

THE CURRENT LOGICAL UNIT OF WORK HAS BEEN
ROLLED BACK DUE TO A DEADLOCK. IT WAS WAITING
FOR A PAGE LOCK IN DBSPACE = 17
HELD BY USER LAWRENCE.

ARI0505I SQLCODE = -911 ROWCOUNT = 0
ARI0504I SQLERRP: ARIXRSS SQLERRD1: -110 SQLERRD2: -99
ARI0502I FOLLOWING SQL WARNING CONDITIONS ENCOUNTERED:

NULLWHERE NOLUW
ARI7021E THE APPLICATION SERVER HAS ISSUED A ROLLBACK

STATEMENT. ALL WORK ENTERED FOR PROCESSING SINCE
THE LAST COMMIT STATEMENT WAS ROLLED BACK.
YOU MAY HAVE TO REENTER SOME STATEMENTS.

While the database manager does not allow deadlocks to occur, the more potential
deadlock situations that you create the more resources are required to avoid them.

Note: The time required to detect potential deadlocks increases exponentially
(power of two) with the number of real agent structures in your database
manager. For example, it takes 100 times longer to process deadlocks when
NCUSERS=20 than it does when NCUSERS=2.

Tuning Parameters
Application Design: Look for two applications that access the same data in the
opposite order. If you can, switch the order of access for one application so they
both use the same order.

Reschedule Applications: If you find that two applications often create deadlocks,
try to reschedule them to run at different times of the day.

Chapter 4. Configuring the Application Server and Requester 101

Reduce Lock Contention: The other way to reduce potential deadlocks is to simply
reduce the number and duration of locks that your database manager needs to use,
refer to “Locking Contention” on page 93.

Reduce Lock Escalation: Escalation can also cause deadlocks. For example,
suppose two users are updating tables in a dbspace. When the lock size is
escalated to a dbspace level, both users can be locked out, with each waiting for
the other to complete a logical unit of work. Refer to “Lock Escalation” on page 99.

Performance Indicator
To determine if deadlocks are a problem, look for users receiving SQLCODE -911
(SQLSTATE 40001, rollback due to deadlock).

Note: This message may also be received during preprocessing, as the locks are
required then as well.

To test the frequency of deadlocks, use the COUNTER operator command and
specify the DEADLOCK counter. It displays the number of deadlocks detected,
each of which causes a rollback.

Recovery

Logical Units of Work
When a user or an application program has made a change or a group of related
changes to the database, and if the application in question completed successfully,
the user or program issues an SQL COMMIT WORK statement to the application
server, to commit these changes to the database. If the application did not complete
successfully, the user instead issues an SQL ROLLBACK WORK statement, which
undoes all the changes made up to the point of the error since the last COMMIT
WORK statement, or since the start of the program or session.

A group of SQL statements is called a logical unit of work (LUW). An LUW can be
as small as one statement, or as large as an entire application execution (or ISQL
session). All SQL statements are executed within an LUW. If no LUW exists when
a statement is issued, then the database manager creates one implicitly.

CMS Work Units (VM)
Users working on a VM operating system can take advantage of CMS work units,
which allow them to maintain more than one logical unit of work (LUW) at a time.
With separate CMS work units, application programs can be independent of one
another. For example, a user can run a program, and in the middle of an LUW,
have that program call a second program which runs in a separate CMS work unit.
When work is committed in the second program, it does not affect the active LUW
in the first program.

Note: CMS work units require extra processing overhead, so should only be used
when necessary. If an application does not need this support, set the
WORKUNIT option of the SQLINIT command to NO.

Checkpoints
A checkpoint is an internal operation where the database manager writes modified
data and status information to DASD, and writes a summary status record to the
log.

102 Performance Tuning Handbook

What occurs during the Checkpoint Process?
When the database manager takes a checkpoint:
v It writes the contents of the local and directory buffer pools to DASD.
v It frees all shadow pages. (Whenever it “modifies” a page in a storage pool, it

creates a new page in the same pool, and keeps the original as a shadow page.
Refer to “Shadow Pages” on page 63).

v If LOGMODE=Y (no archive), the database manager clears space in the log up to
the beginning of the oldest LUW still active when the checkpoint is taken.

v It updates the directory pages to account for released shadow pages and
updated page allocation maps.

When do Checkpoints Occur?
A checkpoint is scheduled when:
v The number of log pages specified by the CHKINTVL initialization parameter

have been written to the log, refer to “Choosing the Checkpoint Interval”.
v During rollback, the total number of free pages in a storage pool is less than or

equal to 10. (This does not apply when LOGMODE= N.)
v A COMMIT WORK is processed in single user mode with no logging

(LOGMODE=N)
v The percentage of free pages in a storage pool reaches the minimum specified by

the SOSLEVEL initialization parameter, refer to “Short on Storage Cushion” on
page 59. (This does not apply when LOGMODE=N.)

v A DROP DBSPACE is issued.
v Soft recovery processing is complete during startup.
v An archive (both before and after) is performed.
v Before switching to an inactive log and after the switch has completed

successfully. (This only applies when alternate logging is enabled.)
v A shutdown is issued, either in multiple user mode (MUM) or single user mode

(SUM).
v A log-full condition occurs, refer to “Log Cushion and Automatically Initiated

Archives” on page 107.
v An LUW that updates data in a nonrecoverable storage pool ends.

Performance Implications
A checkpoint has two performance implications:
v It performs a high amount of I/O to DASD. It writes all the modified buffer

pages and data space pages back to DASD, and updates the directory disk.
v It holds up processing. User agents must wait until the checkpoint is finished

before they can proceed.

Choosing the Checkpoint Interval
To control the duration between checkpoints, use the CHKINTVL initialization
parameter. This parameter specifies how many log pages the database manager
will fill before it takes its next checkpoint.

Setting the Time Between Checkpoints: The time between checkpoints depends on
the number of modifications you make to the database. If logging is turned on, the
database manager writes to the log every time you perform an insert, update, or
delete. The more modifications you make, the faster you will reach a checkpoint. If
you only perform queries, the database manager may never perform a checkpoint.

We recommend that you adjust the CHKINTVL parameter so that the database
manager takes a checkpoint every 10 to 15 minutes. Should you experience a
system failure, it should take you no longer than 10 to 15 minutes to restart the
database manager once you have recovered your system. If you adjust CHKINTVL

Chapter 4. Configuring the Application Server and Requester 103

|
|

so that checkpoints occur less frequently, for example every four hours, it may take
up to or more than four hours to restart your database.

Many installations find that the optimum CHKINTVL setting is between 50 and
300. Installations with large, randomly modified databases are in the lower end of
that range, and installations with small databases tend to be in the upper end of
that range. Large databases having a relatively low frequency of random
modifications also tend to be in the upper end of that range.

If you set the CHKINTVL parameter too low, you minimize the risk of filling the
log or storage pools. However, while each checkpoint is faster, you increase the
overall number of checkpoints.

If you set it too high, you lower the overhead associated with checkpoint
processing. However, consider the following adverse affects:
v It may take longer to recover from a system failure.
v You risk filling the log and storage pools if you are running with LOGMODE=Y.

This consideration does not apply if you are doing archiving (LOGMODE=A or
L), because in that situation log space is reclaimed only when the database or
log is archived.

v You may see an increase in the time required to complete a single checkpoint.
However, unless your standard workload includes a significant amount of
random data modifications over a relatively large area (more than 100MB), you
probably will not notice significant delays. The effect is unimportant if the
database is small or if there is very little random data modification activity. Bulk
sequential data modifications also do not generally cause problems.

v You will probably require more storage to support additional shadow pages.
Whenever the database manager modifies a page in a storage pool, it creates a
new page in the same pool, and keeps the original as a shadow page. Therefore
the longer the period between checkpoints, the more modified pages will
accumulate in your storage pools. 25% free storage in each storage pool is
generally sufficient, refer to “Short on Storage Cushion” on page 59.

Forcing Checkpoints: You can avoid checkpoint processing during peak periods by
manually forcing them to occur when required. For example, consider a bank that
processes a large number of transactions when its customers are on break for
lunch, between 11:00AM and 1:00PM. A checkpoint could lock tellers out of the
database for several minutes frustrating both the tellers and the bank’s customers.

To avoid a checkpoint, the checkpoint interval is set very high. Just before the
lunch rush, an empty dbspace, created for the purpose, is dropped to force a
checkpoint. After the rush, the dbspace is recreated and dropped again to force
another checkpoint and ensure that the lunch time work is saved to DASD.

If you plan to use this method to control when checkpoints occur, create a plan
that specifically indicates when each is to occur and make sure that it is followed.
Not performing any checkpoints can cause more performance problems in the long
run than you will avoid in the short run.

DB2 VM Data Spaces Support: The DB2 Server DSS feature can make checkpoint
processing faster by limiting the number of modified pages in main and expanded
storage. When the number of modified pages in a data space exceeds an
initialization parameter called the save interval (SAVEINTV), the database manager
directs the operating system to save all the modified pages in that data space to

104 Performance Tuning Handbook

DASD. Unlike the save that occurs during checkpoint, the database manager can
continue to service users while this is being done. For more information on the
save interval, refer to Chapter 6, “Data Spaces Support for VM/ESA” on page 157.

Logging and Archiving

Log
A log is a file maintained on DASD that records all the changes to the database.
Each time a DML statement (for example, INSERT, DELETE, UPDATE) is
processed by the database manager, the old and new values are written in the log.
If any changes to the database must be undone or redone, you can use the log to
restore the data to its proper state.

Archive
An archive is a copy of data in your database at the time the archive was made.
You can archive an entire database, a portion of the database, or even the log.
Typically, you use archives to recover from a DASD failure.

You can create three different archives:

Selective Archive
Is a copy of individual tables or even dbspaces. You can create a selective
archive using either the DBS utility or IBM DB2 for VM Control Center
(refer to page 9).

Database Archive
Is a copy of the entire database at a specific time. A database archive
includes the database directory and all dbextents, but excludes the log.

Log Archive
Is a copy of the current log on either tape or disk.

Note: By using the DB2 for VSE & VM Data Restore Feature, you can also
create incremental archives and restore individual storage pools.

Alternate Logging
A database must have at least one log. Optionally, you can define a second log to
be used once the first log is full. This can prevent log archives from occurring at
unscheduled times.

For information on the alternate logging option, see the DB2 Server for VM System
Administration or the DB2 Server for VSE System Administration manuals.

Dual Logs
Dual logging protects the database in case of a DASD failure on the log. With
single logging, any I/O error on the log minidisk causes the database manager to
end. With dual logging, database updates are recorded in the active log and its
dual copy. If alternate logging is enabled, a dual copy of the alternate log is also
maintained. This reduces the risk of losing the log, as an unrecoverable error is
unlikely to occur on both logs at the same time.

Note: To ensure that you really have true dual log protection, each log file or
minidisk must reside on a separate DASD volume. For information on the
dual logging option, see the DB2 Server for VM System Administration or the
DB2 Server for VSE System Administration manuals.

Choosing a Logmode
You can choose from four different log mode values:

Chapter 4. Configuring the Application Server and Requester 105

|
|
|
|

|
|

|
|
|
|
|
|
|

|
|
|
|

LOGMODE=Y
A log records all changes to the database. These are stored in the log until
a checkpoint saves the changes to DASD. It is totally your responsibility to
schedule archives of the database, because the database manager never
initiates any for you. If the application server or your operating system
abends, you can recover up to and including the last complete LUW. If you
suffer a database DASD failure, you can recover from your last archive.
This value is the default.

LOGMODE=A
A log records all changes to the database. These are stored in the log until
a database archive occurs. This ensures that you can recover from either an
abend or a DASD failure up to and including the last complete LUW. The
database manager automatically initiates a database archive when the log
is nearly full. While you can wait for this to occur, it is more efficient to
perform regular archives yourself, refer to “Log Cushion and
Automatically Initiated Archives” on page 107.

LOGMODE=L
A log records all changes to the database. These are stored in the log until
a log archive occurs. This lets you recover using the last database archive
plus subsequent log archives. You can recover up to and including the last
complete LUW.

Note: Before you can use LOGMODE=L, you must create a database
archive.

If alternate logging is not enabled, the database manager automatically
initiates a log archive when it is nearly full. When alternate logging is
enabled, an attempt is made to switch to the inactive log. While you can
wait for a log archive or alternate log switch to occur, it is more efficient to
perform regular archives yourself, refer to “Log Cushion and
Automatically Initiated Archives” on page 107.

LOGMODE=N
Indicates that nothing is recorded in the log. This option is not
recommended for normal operation and it is only available in single user
mode.

When you choose a log mode, decide how much protection you want, and the
amount of time you can spend in recovering data.

If you are running in single user mode (SUM) and you do not need to protect
your data from either system or DASD failures, specify LOGMODE=N. The
application server will run faster because it will not require the extra time to create
archives or maintain a log.

If you do not need to protect your data from DASD failures, specify
LOGMODE=Y. The application server will run faster because it will not require
the extra time to create archives and you can maintain a smaller log.

LOGMODE=Y cannot protect you from DASD failures because the contents of the
log are only saved until the next checkpoint. After the checkpoint, the current
contents of the log can be overwritten by new changes. If several checkpoints have
occurred since your last database archive, you cannot use the contents of the log to
recover.

106 Performance Tuning Handbook

|
|
|
|
|
|

If you must have the ability to recover from DASD failures, choose either mode
A or L. With LOGMODE=A an archive of the entire database is created
periodically, so you can restore your entire database or individual storage pools by
using the latest database archive along with the contents of the current log. With
LOGMODE=L, archives are also taken but you can create archives of the database
less frequently than with mode A, because you have log archives as well. If a
DASD failure occurs, you can restore the entire database or individual storage
pools by using the latest database archive, the sequence of log archives that follow
it, and the contents of the current log. If you are doing a log archive for the first
time you will be prompted to do a database archive first. You will not be
prompted again. You must schedule any subsequent archives yourself.

To decide between LOGMODE=A or L, consider:
v How important it is to recover quickly after a DASD failure. You recover more

quickly with LOGMODE=A.
v How much time you can devote to taking archives. Because the log is usually

smaller than the database, log archives require less time to create than database
archives. You can create both archives when you stop the application server, or
while users are still accessing data in the database. If you create a database
archive when users are accessing data in the database, they must wait longer for
the application server to process their requests.

When you choose a log mode, use it whenever you start the system. Do not
change the log mode without thought and planning. If you must do so, you may
have to carry out additional procedures. For more information, see the DB2 Server
for VM System Administration or the DB2 Server for VSE System Administration
manuals.

Tuning Parameters

Log Cushion and Automatically Initiated Archives: The SLOGCUSH
initialization parameter defines when automatically initiated log-full processing
begins. It is expressed in terms of a percentage of the log. When the log fills to the
SLOGCUSH value, the database manager aborts the oldest active logical units of
work until enough log space is freed to bring the percentage of the log below the
SLOGCUSH level.

The ARCHPCT initialization parameter defines when automatically initiated
archives will occur or, when alternate logging is enabled, when we attempt to
switch to the inactive log disk. It is also expressed in terms of a percentage of the
log. When alternate logging is not enabled and the log fills to the ARCHPCT value,
the database manager forces either a log or database archive depending on
whether it is running in LOGMODE A or L.

Ideally, you should never reach SLOGCUSH or ARCHPCT. Log-full processing and
automatically initiated archives or switching to the inactive log reduce
performance, and often occur during peak workloads, so avoid them by:
v Ensuring that your log is large enough.
v Trying to maintain enough free log space through regular log or database

archives (LOGMODE=A or L) and through regular checkpoints (LOGMODE=Y).

Note: Checkpoints only free space in the log when you run your application
server with LOGMODE=Y.

v COMMITing WORK frequently to avoid long running LUWs.
v Running very long LUWs in single user mode without logging (LOGMODE=N).

Chapter 4. Configuring the Application Server and Requester 107

|
|
|
|
|
|

|
|
|

|

|
|

|
|

|

|

Since performing an archive impacts performance less than log-full processing
avoid the latter by:
v Setting SLOGCUSH > ARCHPCT.
v Ensure that there is a comfortable difference between SLOGCUSH and

ARCHPCT. (If the SLOGCUSH percentage is reached during an online archive
operation, all SQL processing is suspended until the archive operation is
complete.)

v Setting SLOGCUSH high enough to avoid log—full processing but not too high
to risk completely filling the log.

v Enable archiving (LOGMODE=A or L). SLOGCUSH has no effect if archiving is
disabled.

Using VSAM Buffers (VSE): In VSE, you can use the BUFND startup parameter
for the directory, data, and log disks. By using VSAM-controlled buffers and
sequential processing, VSAM is able to read multiple records with a single I/O
request. The number of records read together will depend on the number of
buffers available to VSAM, which are specified when the Access Method Control
Block (ACB) is created for the directory, data, and log disks. A second set of ACBs
is required to avoid interfering with normal I/O processing during an online
archival.

The default number of ACB buffers in DB2 Server for VSE is 40. To change this
value, use the BUFND parameter in the DLBL statement of the JCL for the
directory, data, and log disks.

Performance Indicator (SHOW LOG)
You can use the SHOW LOG operator command to determine if archiving has
been enabled and what percentage of the active log is full. Also, if archiving is
enabled, it displays the percentage of the log remaining before ARCHPCT is
reached. If archiving is disabled, it displays the percentage of the log remaining
before SLOGCUSH is reached.

Communications

DRDA Performance Considerations (VM)
This section discusses how to use the PROTOCOL parameter and different block
sizes in a DRDA protocol environment to obtain maximum performance from the
database manager. For information on setting up this type of environment, refer to
the DB2 Server for VM System Administrationor the DB2 Server for VSE System
Administration manuals.

PROTOCOL Performance Considerations
The PROTOCOL parameter specifies the types of protocols that the application
server can process and the types of protocol under which the application requester
runs.

On the application server, the PROTOCOL parameter is specified in the SQLSTART
EXEC. The PROTOCOL parameter has two options on the application server,
SQLDS and AUTO. When PROTOCOL=SQLDS is specified, the DB2 Server for VM
application server allows access from DB2 Server for VM application requesters
only. (The application requesters and application servers can be in either a local or
remote environment.) This is the default option. When PROTOCOL=AUTO is
specified, the DB2 Server for VM application server allows access from DB2 Server
for VM application requesters and non-DB2 Server for VM application requesters.

108 Performance Tuning Handbook

|
|
|
|
|
|

On the application requester, the PROTOCOL parameter is specified in the
SQLINIT EXEC. The PROTOCOL parameter has three options on the application
requester, SQLDS, AUTO and DRDA. When PROTOCOL(SQLDS) is specified, the
DB2 Server for VM application requester cannot connect to a non-DB2 Server for
VM application server. This is the default option. When PROTOCOL(AUTO) or
PROTOCOL(DRDA) is specified, the DB2 Server for VM application requester can
connect to DB2 Server for VM application servers and non-DB2 Server for VM
application servers.

When a connection is made between the application requester and the application
server, the combination specified by these parameters determines the protocol to be
used (either SQLDS protocol or DRDA protocol).

Table 5 shows the protocol used between the application requester and the
application server.

Table 5. Protocol Used Between the application requester and the application server

Application Requester

Application Server

DB2 Server for VM (SQLSTART) Non-DB2 Server
for VM

(including DB2
Server for VSE)SQLDS AUTO

DB2 Server for
VM (SQLINIT)

SQLDS SQLDS SQLDS Not Allowed

AUTO SQLDS SQLDS DRDA

DRDA Not Allowed DRDA DRDA

Non-DB2 Server for VM Not Allowed DRDA Not Applicable

When the DB2 Server for VM application server is started with
PROTOCOL=AUTO, DRDA “handshaking” occurs (unless the application
requester is a DB2 Server for VM application requester that has been initialized
with PROTOCOL(SQLDS)). Handshaking is an identification exchange between the
application server and the application requester. During this handshaking
sequence, information is exchanged between the application requester and the
application server. This exchange includes CCSID information and generation of an
LU 6.2 LUWID.

For more information on handshaking, see the discussion on accessing a remote
relational database manager in the Distributed Relational Database Architecture
Reference manual.

The PROTOCOL parameters used also affect CCSID conversion. If either the
application requester or application server specifies SQLDS for the PROTOCOL
parameter, the application requester default CCSIDs are ignored, and the
application server CCSIDs are assumed.

Application requester CCSIDs are used when:
v Both the application server and the application requester specify the AUTO

option, or
v The application server is started with PROTOCOL=AUTO option, and the

application requester specifies PROTOCOL(DRDA) on the SQLINIT EXEC.

When communication is between a DB2 Server for VM application server and a
DB2 Server for VM application requester, the AUTO option yields the same

Chapter 4. Configuring the Application Server and Requester 109

performance advantages as the SQLDS option except that it has a slight overhead
when establishing a connection with the application server. Specifying the AUTO
option on the DB2 Server for VM application server has many advantages. This
option allows the application server to receive both SQLDS protocol or DRDA
protocol, from both DB2 Server for VM application requesters and non-DB2 Server
for VM application requesters. If you specify the AUTO option on the DB2 Server
for VM application requester, it makes the necessary adjustments for both DB2
Server for VM application servers and non-DB2 Server for VM application servers.

When PROTOCOL(DRDA) is specified on the application requester, DRDA
protocol is forced for connections, even if the target is a DB2 Server for VM
application server. The DRDA option is useful when you are doing prototype
testing between a DB2 Server for VM application requester and a DB2 Server for
VM application server to model problems that may occur in communications with
a non-DB2 Server for VM application server. You can also use the DRDA option to
test SQL extensions only available in a DRDA protocol environment, for example, a
larger block size.

Fetch and Insert Blocking
The database manager lets you use blocking for row insertion and row retrieval.
Blocking improves performance in multiple user mode because data is sent
between your program and the database manager in blocks of rows (rather than one
row at a time). This reduces overhead from communications between the
application server and the requester. Most applications that do multiple-row
insertions or retrievals would benefit from blocking.

Implementing Blocking
To use blocking, specify the BLOCK parameter when preprocessing the program.
(For extended dynamic statements, specify the BLOCK parameter on the CREATE
PROGRAM statement.) When you run the program, blocking is automatically used
for:
v Insert cursors (those that use OPEN, PUT, and CLOSE statements); and,
v Fetch cursors (those that use OPEN, FETCH, and CLOSE statements).

It is unnecessary for programs to explicitly handle the blocks because they are
managed by the database manager. With the SQLDS protocol, 8KB blocks are used
for both fetch and insert blocking. With the DRDA protocol, insert blocking is
disabled and the rows are inserted one at a time; however, the block size for fetch
blocking can be set by the application requester from 1K-byte to 32K-byte by using
the QRYBLKSIZE option of the SQLINIT EXEC (see the DB2 Server for VSE & VM
Database Administration manual).

For VSE Users

In VSE with the DRDA protocol, insert blocking is disabled and the rows are
inserted one at a time; however, the block size for fetch blocking can be set
by the application requester from a minimum value of 512 bytes to a
maximum value of 32KB - 1 byte (32767).

Note: Blocking is only useful if the block size is sufficiently large that many rows
can be blocked (that is, it must be greater than the maximum row length).

110 Performance Tuning Handbook

For retrievals, as many rows as the block will hold are sent to the application
requester on the first fetch (with the DRDA protocol, the first block is sent with the
OPEN statement). When the program fetches all the rows in the block, the next
fetch that it issues causes another block to be sent. The program never needs to
explicitly request a block.

For insertions, the blocks are also handled automatically. Whenever the program
issues a PUT, a row is added to the block. When another row cannot fit into the
block, the resource adapter sends the block to the database manager.

Suppressed Blocking

Single User Mode: The database manager does not do blocking for single user
mode applications. Because both it and the application run in the same partition
(for VSE) or machine (for VM) there is no cross-partition/machine communication
overhead to be saved. Programs that have been preprocessed using the BLOCK
parameter do not need to be re-preprocessed to run in single user mode. There is
an automatic suppression of the blocking; no warning is sent to the program at run
time. Some programs, however, process SQL statements dynamically at run time
by using the PREPARE statement. These programs, when preprocessed with the
BLOCK option, will receive a runtime warning if a dynamically processed
statement is disqualified for blocking.

Multiple User Mode: In some instances, there is also suppressed blocking in
multiple user mode. Suppressed blocking for a cursor occurs when:
v There is not enough virtual storage to get one block.
v Two rows cannot fit into one block.
v The cursor retrieves long fields (LONG VARCHAR or LONG VARGRAPHIC or

VARCHAR(n) or VARGRAPHIC(n) where n is greater than 254, or 127,
respectively).

v The cursor contains a FOR UPDATE clause.
v The cursor is operated on by a DELETE ... WHERE CURRENT OF CURSOR

statement.
v The cursor is operated on by an UPDATE ... WHERE CURRENT OF CURSOR

statement.

In all cases, a warning is sent to the program, in the SQLCA, to let it know that
blocking was suppressed, and execution continues. Notice that the database
manager suppresses blocking on a cursor level. It may be doing blocking for some
cursors in a program even though the blocking for other cursors is suppressed.

The advantages of fetch and insert blocking are not limited to user programs. DB2
Server for VSE & VM facilities take advantage of blocking as well. The DBS utility
and ISQL take advantage of blocking. Refer to the DB2 Server for VSE & VM
Database Administration, and the DB2 Server for VSE & VM Interactive SQL Guide and
Reference manuals. (ISQL use of blocking is limited to fetch blocking.)

One minor performance disadvantage to using blocking is that the database
manger uses extra virtual storage (equal to the block size) for every open cursor.
The storage is freed when the user closes the cursor or when the user ends the
logical unit of work (whichever comes first). This not only applies to user
applications, but to the DBS utility. (ISQL only has one cursor open at a time
because a user can only issue one SELECT statement at a time.)

Chapter 4. Configuring the Application Server and Requester 111

Another minor performance disadvantage is that in not using a block worth of
data, you pay the overhead of that block. For example, only 10 rows are returned
in a block capable of holding 200 rows.

For more information on using fetch or put operations in programs with blocking,
refer to the DB2 Server for VSE & VM SQL Reference and DB2 Server for VSE & VM
Application Programming manuals.

Synchronous Communications (VM)
The SYNCHRONOUS parameter of SQLINIT EXEC determines whether
synchronous or asynchronous communication is used between the user and
database machines. Synchronous communication performs better than
asynchronous communication but has the following restrictions:
v You cannot use SQLHX or CANCEL to cancel SQL statements. The only ways to

terminate an unwanted LUW is to use the operator command FORCE, or to
re-IPL CMS.

v You cannot use the SQLQRY command to query the status of the application
that you are currently running on the DB2 Server for VSE & VM user machine.

We recommend that you use synchronous communication primarily when running
a well-tested production batch application against local application servers. Always
use the default, asynchronous communication, with interactive programs such as
ISQL.

Considerations for ISQL and Adhoc Queries
Adhoc queries or the Interactive SQL facility (ISQL) can significantly affect how
your database system performs.

AUTOCOMMIT
You should do all ISQL work in AUTOCOMMIT ON mode, the default. In
AUTOCOMMIT ON mode, ISQL internally issues a COMMIT WORK, thus freeing
DB2 Server for VSE & VM resources between query requests for possible use by
others.

The COMMIT WORK is done immediately after a statement completes
successfully. The only exception is for INSERT, DELETE, or UPDATE statements
that change more than one row. For these statements, ISQL will give you a chance
to rollback.

Use AUTOCOMMIT OFF mode, if you must have explicit control over committing
work. For example, if two SQL statements update data in two tables
simultaneously (as with debit and credit operations) and these updates must be
synchronized to prevent inconsistent data, use AUTOCOMMIT OFF mode. If you
are using this mode, package SQL statements into an ISQL routine so that terminal
read delays are minimized or eliminated.

You can cancel any SQL statement if it is still in progress by issuing the ISQL
CANCEL statement. (This statement causes a ROLLBACK WORK RELEASE to be
executed.) That is, you can enter CANCEL if you are prompted to clear the screen,
or prompted to enter CANCEL. You can also enter CANCEL to any ISQL message
requesting a reply.

112 Performance Tuning Handbook

Isolation Levels
To minimize contention on shared resources, do all adhoc query work with the
isolation level set to cursor stability (CS) unless the work being performed requires
the repeatable read (RR) isolation level to ensure consistent data.

Alternatively, if it is not important that the data you are reading has necessarily
been committed, consider setting the isolation level to uncommitted read (UR).

Adhoc users should be aware that when they are viewing a query result they may
be delaying other users especially if querying the catalog tables.

Temporary Tables
If a long series of adhoc queries is expected against certain data in a large
database, it may be best to copy that data into one or more temporary tables and
query the copy. The queries will run faster and indexes can be created without
being concerned with the effect of additional index maintenance on production
work that is updating the data.

If a series of adhoc queries is expected against data in several related tables,
consider creating a temporary table that contains the joined results of those tables.
Queries run against this temporary table will run faster and be easier to formulate.
An added benefit is that the temporary table can be created in a PRIVATE
DBSPACE where locking overhead during query execution is negligible. The
INSERT using subselect form of the SQL INSERT statement can be used to create
the copy.

Views
Instead of giving end users access to an entire table, provide them with a view on
just the portion of the table that they need. In addition to the security benefits, this
is an effective strategy for reducing the amount of processor and input/output
usage that can be generated by indiscriminate querying of the data.

DBS Utility Considerations

Automatic Statistics Collection
Unless you specify otherwise, statistics are automatically collected and updated
during execution of the RELOAD, and RELOAD DBSPACE commands. If you are
performing a DATALOAD, statistics will also be automatically collected if you load
data into a single empty table with no indexes. The database manager
automatically issues an implicit UPDATE STATISTICS statement following the
DATALOAD. This can be time-consuming, if the number of active data pages in
that DBSPACE is large.

Note: This type of automatic collection only updates statistics for columns with
indexes. For multicolumn indexes it only updates the leading column. If you
want to ensure that all the columns have their statistics up to date, suppress
automatic collections and enter UPDATE ALL STATISTICS immediately
following a dataload. Refer to page 138.

Suppressing Automatic Statistics Collection
The automatic collection of statistics can be suppressed by specifying SET UPDATE
STATISTICS OFF in the DBS input file before the DATALOAD. In cases where the
database manager will not implicitly issue the UPDATE STATISTICS statement (but

Chapter 4. Configuring the Application Server and Requester 113

rather collects statistics during the load), there is no advantage in explicitly
suppressing statistics collection. Otherwise, consider suppressing the UPDATE
STATISTICS statement if either of the following conditions apply:
v There are many DATALOADs into the same table. UPDATE STATISTICS could

be executed after the last one, or on a periodic basis.
v You know the statistics are not going to change significantly (for example, a

small amount of data is being added to a large table). In such cases, you could
postpone updating the statistics until more substantial changes have occurred.

TAPE Blocking
In the case of UNLOAD, a block size greater than 8244 bytes for tape output files
is recommended for improved performance. Specify the block size in the CMS
FILEDEF command associated with the OUTFILE statement.

Lock Escalation
When running the DBS utility in multiple user mode to load (INSERT) or unload
(SELECT) rows from a database, you may encounter lock escalation. SQL LOCK
DBSPACE or LOCK TABLE statements override the automatic locking mechanism;
they can be used to avoid deadlock conditions.

A user-issued SQL LOCK statement is useful only during multiple user mode
processing for table data in a public dbspace that is not defined with locking at the
dbspace level. A user-acquired database lock remains in effect until the end of the
logical unit of work in which it was issued.

DATALOAD and RELOAD Locking Considerations
If you insert many rows into the database with a RELOAD command or a
DATALOAD command without the COMMITCOUNT option specified, consider
using the SQL LOCK DBSPACE statement to eliminate or reduce lock escalation.
An exclusive lock on the dbspace where the tables being loaded are defined does
not appreciably increase lock contention and reduces the likelihood of deadlock
with another user.

Note: An exclusive lock on a table being loaded does not prevent lock escalation
and is not recommended.

You can also avoid lock escalation during multiple user mode DATALOAD
processing by issuing a SET AUTOCOMMIT ON command before the DATALOAD
command and specifying a sufficiently low COMMITCOUNT value in the
DATALOAD INFILE subcommand. Use of DATALOAD COMMITCOUNT
processing reduces the likelihood of the locking required by DATALOAD
processing delaying other users accessing the table being loaded or other tables in
the same dbspace where the table being defined resides. If the target table is in a
dbspace defined with ROW level locking, a COMMITCOUNT value of
approximately 200 should be sufficiently low. If the dbspace is defined with PAGE
locking, the COMMITCOUNT value can be higher (1000, for example) and lock
escalation is still avoided. Do not arbitrarily set the COMMITCOUNT value too
low because frequent commit points increase DATALOAD run time.

SELECT, DATAUNLOAD, and UNLOAD Locking Considerations
If you are running with an isolation level setting of repeatable read (the default
processing mode) and you know that a particular SELECT, DATAUNLOAD, or
UNLOAD operation is going to access many rows from one or more tables in the
database, lock escalation then normally occurs. You should consider acquiring a
SHARE lock on the table(s) being accessed. If all the tables being accessed reside in

114 Performance Tuning Handbook

the same dbspace, you should consider acquiring a SHARE lock on the dbspace
being accessed. This action can reduce lock contention and the likelihood that a
SELECT, DATAUNLOAD, or UNLOAD causes a deadlock with another user. Other
users can modify other tables in the same dbspace where the table being accessed
resides.

UNLOAD and RELOAD PACKAGE Considerations
To obtain the best performance when using the UNLOAD PACKAGE command
and the RELOAD PACKAGE command, consider doing the following:
v Unload or reload large numbers of packages in your system’s off-peak usage

time or in single user mode.
v If you are unloading or reloading packages in multiple user mode, use blocking

(by ensuring that the DBS utility was initialized with the BLOCK option).

These actions improve performance by preventing interruptions by other users.

PROGRAM is a synonym for PACKAGE. Therefore, UNLOAD or RELOAD
PROGRAM, and UNLOAD or RELOAD PACKAGE are equivalent commands.

When unloading or reloading a modifiable package, an exclusive lock is held on
the catalog table SYSACCESS. This may cause a performance deterioration for
other users wanting to run the exclusively locked package.

Chapter 4. Configuring the Application Server and Requester 115

116 Performance Tuning Handbook

Chapter 5. Improving Data Access Performance

User applications can access data without being dependent on how the data is
stored or on the types of access paths available to locate the data. The optimizer
determines an efficient access path to the data. This capability makes data more
readily available for use by many diverse applications; however, you can
experience a wide range of performance characteristics for the variety of possible
application requests.

Ideally, the user of a relational database need not be concerned with how data is
accessed. This is probably true for end users who write SQL queries quickly for
one-time or occasional use. However, for those who plan transaction programs that
may be executed thousands of times a day, some knowledge about the database
manager and how it chooses among various access paths and evaluation sequences
can enable them to significantly improve performance.

You can directly influence the access path to data in several ways (the first five are
discussed in this chapter):
v Creating or dropping indexes
v Maintaining up-to-date statistical information on your database
v Changing the number of tables in a dbspace
v Updating the catalog statistics used to estimate access costs
v Rewriting a query in a more efficient form
v Reorganizing data, refer to “Reorganizing Data” on page 70
v Reorganizing indexes, refer to “Index Fragmentation” on page 73.

Access Paths and Indexes
To evaluate a query, the database manager determines an access plan that consists
of a set of access paths (one for each table listed in the query) and other actions (for
example, a sort). Five types of access paths are described here:
v Dbspace scans
v Nonselective index scans
v Selective index scans
v Index-only access scans
v Unique index with key matching predicate(s).

For each method, a model query is given that refers to a generic table T, with
columns C1, C2, C3, and so on.

Notes:

1. The examples below use SELECT * because they are modeling arbitrary queries.
For actual queries, the use of SELECT * is not recommended: all queries should
only select the columns that are required in the answer set, in order to reduce
the cost of processing the query, and to provide additional access path
opportunities.

2. Considerations regarding the number of data pages read may not apply to
tables with long fields.

© Copyright IBM Corp. 1993, 2003 117

Dbspace Scans
Assuming that T has no indexes, the model query is:

SELECT * FROM T WHERE C1 = 42

Because a page can contain rows from any table in a dbspace, the database
manager must read every active data page in the dbspace to locate every row of T
and to determine whether its value of C1 matches the given value. If there are
other tables besides T in the dbspace, they will have to be read as well. If the
fraction of the dbspace occupied by T is small, then most of the pages read will
contain few or no rows from T.

It is a good idea to make a dbspace scan as inexpensive as possible. This can be
accomplished by having one table in a dbspace and reorganizing its rows so that
there are none that overflow from their original page onto another page. For
information, see “Reorganizing a Single Table” on page 71. Another factor is the
amount of free space left on each page. For information, see the DB2 Server for VSE
& VM Database Administration manual.

Index Scans
For an index scan, the model query is:

SELECT * FROM T WHERE C2 = 42

An index scan improves performance by enabling the database manager to avoid
the following:
v Reading all of the active data pages in the dbspace.
v Reading data pages that do not contain desired rows.
v Sorting the result.

An index scan performs better than a dbspace scan in many situations. However, it
has the following drawbacks:
v If VARCHAR or VARGRAPHIC columns are selected, or if not all columns

referenced are in the index, then the index scan must read the index pages as
well as the data pages. (A dbspace scan reads only data pages.)

v If the index is not clustered (even if the index is a clustering index), some data
pages may be read more than once. Refer to “Clustered Indexes” on page 66.

There are two types of index scans: nonselective and selective. An index scan on T
is selective if C2 is the first column of the index key. All other index scans are
nonselective.

Nonselective Index Scans
If T has an index on C1, the database manager can use the index to pick out only
those pages that contain rows of table T.

Be aware that if T is the only table in its dbspace, this method may be no better
than a dbspace scan. It is only more efficient in those cases where only a portion of
the pages in the dbspace contain rows from table T, the result needs to be sorted
on the index key, or index sargs can be applied to the index keys.

Selective Index Scans
If T has an index on C2, the database manager will be able to use the index to pick
out only those rows from table T where C2 = 42. That is, the only pages that will
be accessed are index leaf pages that contain keys where C2 = 42, and non-leaf
pages that must be traversed to navigate to these leaf pages.

118 Performance Tuning Handbook

A selective index scan is generally the most efficient access path. This is true even
in the case where T is the only table in the dbspace, if only a portion of the data
pages contain rows where C2 = 42. (If all or nearly all pages contained rows
where C2 = 42, then a dbspace scan would likely be more efficient).

Index-Only Access Scans
Although in general the database manager has to read data pages for a table to
evaluate a query, there are cases where all the columns referenced are present in
the index and the predicates do not require the data page. If these conditions are
met, then only index pages will be read. This is called index-only access, and is
possible for both selective and nonselective index scans. The model query is:

SELECT C2, C3 FROM T WHERE C2 = 50

(It is assumed here that an index exists on columns C2 and C3.)

Clustering Index
There is no advantage to using a clustered index with index-only access, because
clustered indexes are only valuable when the database manager uses an index to
access data pages.

Examples of Index only Access
The following are examples of queries that use index-only access. It is assumed
that a multicolumn index exists on columns C1, C2, C3, and C4.

SELECT COUNT(*) FROM T WHERE C2 = 5

The database manager scans the entire index looking for C2=5, but no data
pages are read.
SELECT C2 FROM T

The database manager scans the entire index, but no data pages are read.
SELECT MIN(C1) FROM T

The database manager does not read the entire index; just a single value.
SELECT MAX(C1) FROM T

For MAX column functions, C1 must be defined as NOT NULL so that a single
value is read rather than the entire index.
SELECT C1 FROM T WHERE C1 = 42 AND C4 = 100

The database manager reads only the index entries where C1 = 42 and then
scans for C4=100, but no data pages are read.

Index-only access is not possible when a VARCHAR or VARGRAPHIC column
appears in the SELECT list or in a residual predicate.

Creating Indexes
In some cases, it may be reasonable to create an index that includes data just to
improve the performance of certain common queries. For example, the sample
ACTIVITY table identifies each activity by an activity number (ACTNO). It also
contains a 6-character activity keyword (ACTKWD). If the table were often used to
decode activity numbers by retrieving the corresponding keywords, it might be
useful to have an index on both columns. The model query would be:

SELECT ACTKWD FROM ACTIVITY WHERE ACTNO = 42

Another case where index-only access is beneficial is a table with very long rows,
where the portion of the row retrieved is small compared to the size of the row. If

Chapter 5. Improving Data Access Performance 119

a query needs only three or four relatively short columns of that data, an index on
those columns might be worthwhile merely to avoid the cost of scanning all data
pages and extracting the useful data.

Unique Index with Key Matching Predicate(s)
The model query is:

SELECT * FROM T WHERE C1 = 42

Here, access is most direct if there is a unique index on column C1. In this case,
the database manager reads only as much of the index as needed to locate one
entry, and then at most one data page. Furthermore, instead of using a scan, it uses
a more efficient operation to return a single row. Refer to “Key-matching
Predicates” on page 123.

Indexes for Sorting
The primary use of indexes is to provide selective access to data, but they are also
used to sort data in a specified way. Consider this query:

SELECT * FROM EMPLOYEE
WHERE WORKDEPT LIKE ’A%’

ORDER BY EMPNO

The database manager can access the rows needed through an index on
WORKDEPT, but then it would have to sort all of those rows by EMPNO. It might
estimate that it would be more efficient to access all rows in order by an index on
EMPNO, then check the value of WORKDEPT in each one, but eliminate the sort.

The database manager can use indexes for ORDER BY and GROUP BY, but not
always for SELECT DISTINCT. It can avoid a sort for SELECT DISTINCT if a
unique index is used, or if there is a GROUP BY list that is a subset of the SELECT
list.

Note: If an application program contains a SELECT DISTINCT statement that is
preprocessed using a unique index, the preprocessor records that the
package has a dependency on the unique index. If the unique index ever
becomes invalid, the entire package will be invalidated and it will be
dynamically repreprocessed the next time it is executed.

Recommendations for Indexes
The nature and purpose of your data will determine what indexes you should
create, but the following very general guidelines may be of some help:
v If you delete rows from or update the primary key on parent tables, define

indexes on foreign keys.
v Define primary keys or unique constraints wherever they apply. The database

manager automatically defines unique indexes for these.
v Use indexes to speed up the most frequent queries to tables with more than 15

data pages; and for tables with more than 10 pages that are primarily accessed
for reading only.

v Create indexes on fixed-length rather than varying length columns.
v Create indexes to include columns frequently queried to allow for index-only

access.
v Whenever possible, create unique indexes. If you cannot create a unique index

on a single column, create a unique multicolumn index. For example if you want

120 Performance Tuning Handbook

to sort the EMPLOYEE table by the JOB column, create an index on JOB and
EMPNO (JOB,EMPNO). The index will still sort by JOB, but it can also be a
UNIQUE index.

v In a multicolumn index, place the “most” unique column first.

Disadvantages of Indexes
The above descriptions of the various types of access paths should suggest to you
that indexes can reduce access time significantly. But before you begin creating
them, carefully consider their costs:
v They require storage space.
v It takes time to create and maintain them.
v There is overhead associated with keeping them synchronized with the tables

they index. It takes more time for the database manager to update a table that
uses an index or insert new data into it.

v They may increase locking contention.
v They increase the time required for recovery.

Placing Tables into Dbspaces
Each large table should be placed in its own dbspace, so that rows from other
tables do not have to be examined during a dbspace scan. Another advantage is
that if you later wish to eliminate that table, you can do so with a DROP
DBSPACE statement, which will run very fast because the data, index, and header
pages do not have to be examined.

Very small tables may be grouped together in the same dbspace, because relatively
few additional pages have to be read during a dbspace scan. However, avoid page
level locking in this situation.

Dbspace scans are done during CREATE INDEX, DROP TABLE, and UPDATE
STATISTICS processing, and may be used to satisfy other SQL requests, depending
on index availability.

By default, locking takes place at the page-level. This is usually the best trade-off
between concurrency and locking overhead. You should consider locking at the
row-level when many applications access one small part of the database. The tables
there could be put in their own dbspaces, for which you would request row-level
locking (using an ACQUIRE DBSPACE or ALTER DBSPACE statement).

When you request row-level locking for a dbspace, key-level locking is also done
for indexes in that dbspace. Key-level locking on indexes reduces contention, but
increases overhead.

Organizing Referential Structures
Because referential operations (update of a primary or foreign key, deletion of a
parent row, or insertion of a foreign key) involve access to more than one table,
when organizing a referential structure you should carefully consider the
implications of concurrency. (The issues discussed here are equally applicable to
any set of related tables.)

Referential operations require access to multiple tables, and possibly to multiple
rows of dependent tables. This characteristic increases the possibility of deadlock
situations. When the primary key of a parent table is modified (DELETE,

Chapter 5. Improving Data Access Performance 121

UPDATE), all dependent rows are accessed (and possibly also modified).
Conversely, when a foreign key in a dependent table is modified (INSERT,
UPDATE), the parent table is accessed. If two such operations run concurrently in
different logical units of work (LUWs), a deadlock situation could result, which
would trigger the automatic rollback of the later LUW.

Note: A similar potential deadlock situation would be encountered whenever
logically related data is concurrently accessed in opposing ways.

Similarly, when multiple users access referential structures, lock contention
increases (because the users are accessing the same tables, and the number of rows
accessed can be quite large). This contention may reduce concurrency.

A user who understands the nature of referential operations can minimize their
effect on concurrency, by reducing the chances of multiple users performing
logically unrelated operations contending for locks. (Contention cannot be avoided
if users are performing logically conflicting operations.) Consider the following
ways to improve concurrency:
v Do not put tables from different referential structures in the same dbspace. In

general always try to place only one table in each dbspace.
v Create an index on a foreign key. (Whenever possible this should be a unique

index that exactly matches the columns of the foreign key. If necessary make the
index unique by creating a multicolumn index.) This provides the most selective
access path possible to dependent rows whose foreign key has a particular
value. Operations on a parent row can use this index to scan the dependent
table, thus avoiding the need for a dbspace scan or a nonselective index scan.
You should use discretion in creating such indexes, especially on tables with
several foreign keys. For example, you may consider creating them only on the
most often referenced foreign keys. These indexes will be of particular use in
reducing deadlock situations in environments where parent tables and
dependent tables are being modified concurrently, and will also provide faster
execution of all referential operations against parent rows.

Predicate Processing
Search conditions contain predicates joined with AND, OR, and NOT. A predicate
is a search condition in a WHERE or HAVING clause of an SQL statement.
Examples include C1 = 10, C2 BETWEEN 10 AND 20, EXISTS(subquery), and C4 NOT
LIKE ’A%’. Only those rows that satisfy a predicate are returned.

Predicates are resolved in one of two categories: residual or sargable. (Sargable is a
term derived from the words “search argument”.) Sargable predicates are applied
at the Database Storage Subsystem (DBSS) level; residual predicates are applied at
the Relational Data System (RDS) level.

Figure 14 on page 123 shows the hierarchy of predicates.

122 Performance Tuning Handbook

Sargable predicates are further divided into two categories: those that use the
index, and those that do not. The former are called either key-matching predicates
or index page sargs. The latter are called data page sargs.

A key-matching predicate, which is applied directly to the index key, is created
when the columns referenced in the predicate form an initial substring of an index
on the table.

An index page sarg is resolved using the index page, but is not used to search the
index key. It is created when the columns referenced in the predicate are not an
initial substring of an index, but are contained in the index.

A data page sarg does not use the index, and always requires the data pages be
read. It is created when the columns referenced in the predicate are not contained
in the index.

Column Attributes
The next sections deal with predicates in the WHERE clause. For these predicates,
it is important that the data types and CCSIDs of any columns and literals match
whenever possible. That is, numeric values should use the same representation,
including the same precision and scale for DECIMAL values. Character and
graphic values should have the same length. Columns and literals should use the
same CCSID, refer to “Impact of CCSIDs on Sargability” on page 131. Adhering to
this rule will always give the database manager the greatest flexibility in choosing
an efficient access path. All the examples assume that this rule has been followed.
For more information, refer to note number one on page 127.

Key-matching Predicates
Before a predicate can be considered key-matching it must be in the correct form
and a suitable index must be available.

Form of Key-matching Predicates
Some types of predicates can match index entries; other types cannot. For example,
if the EMPLOYEE table has an index on the column SEX, it matches the predicate
in this query:

SELECT * FROM EMPLOYEE WHERE SEX = ’M’

Predicate

residual
sargable

index page

index page
sarg

key-matching
predicate

data page

data page
sarg

Figure 14. Predicate Hierarchy

Chapter 5. Improving Data Access Performance 123

On the other hand, the same index does not match the predicate in this query:
SELECT * FROM EMPLOYEE WHERE SEX < > ’F’

We call a predicate key-matching if it can match the entries in a suitable index.
Table 6 on page 126 shows which predicate types are key-matching.

If a predicate fails to match the index, it may still be applied to the index, but not
used to search it.

Only one predicate per column can be chosen as the key, however, other predicates
on that column are eligible to be a sargable predicate. For predicates that are joined
with AND, one per column is chosen as the key. The one with the best filter factor
establishes the path and the other is turned into a sargable predicate. For example,
consider a table with three columns C1, C2, and C3. A multi-column index is
created (C3, C2, C1) and the following WHERE clause is used in a SELECT
statement:

...WHERE C1>1 AND
C1<2 AND
C2=2 AND
C3=3

Only the first, third, and fourth predicates are chosen as key-matching predicates
(C1>1, C2=2, C3=3). The second predicate (C1<2) is not chosen as key-matching
but it is sargable.

For maximum efficiency, use key-matching predicates and create suitable
indexes. The database manager may not always use an index to apply a
key-matching predicate—other factors may intervene. But the first step in reducing
the processing cost of a query is to use key-matching predicates where possible
and then create suitable indexes.

In general, when you create an multi-column index, put the column with the most
distinct values first, and continue in order to the least distinct values.

One exception to this rule is the case where the index provides a necessary
ordering of the data. With this query:

SELECT * FROM EMPLOYEE
WHERE EDLEVEL > 14 AND JOB = ’CLERK’

ORDER BY EDLEVEL

an index on EDLEVEL,JOB enables the database manager to access data in the
order required by the ORDER BY clause, thus saving a sort at the end. This may
be enough to justify scanning index entries for rows that are rejected.

Suitable Index for Key-matching Predicate
For a simple predicate, an index is fully matched if the column in the predicate is
the first column of the index. For example, the predicate C1=10 matches an index
on columns C1, C2, C3, as well as an index on column C1 alone. If there are
additional predicates on columns C2 and C3, they may also be evaluated through
the multicolumn index.

For a search condition where all the predicates are joined by an AND, it is enough
if the index includes the set of columns as an initial substring. For example, an
index on columns C1, C3, C4, and C6 is fully matched by the search condition
C1=10 AND C4='A' AND C3=7 AND C6=9, as long as all but the last column are
matched with equality predicates. The last predicate can be either an equality or a
range predicate.

124 Performance Tuning Handbook

The same index is not fully matched by the search condition C1=10 AND C4='A'
AND C6=9, because the set of columns in that search condition (C1,C4,C6) is not
an initial substring of C1, C3, C4, C6. However, the database manager can use the
index for the parts of the search condition that do form an initial substring; in the
example, it can apply the predicate C1=10 through the index. In addition, it can
still use the index to evaluate the predicates on C4 and C6, so that data pages do
not need to be accessed.

Similarly, such an index is not fully matched by the search condition C1=10 AND
C3=7 AND C4>'A' AND C6=9, because the predicate C4>'A' is not an equality
predicate. An index can only be matched up to and including the first non-equality
predicate. Thus, the database manager can apply the predicates C1=10 AND C3=7
AND C4>'A' as key-matching predicates to the index. Again, the predicate on C6
can be evaluated as an index sarg so that data pages do not need to be accessed.

Hence, the order of the index columns is important; it should take into account the
kinds of queries used. For example, suppose the Spiffy Computer department
intends to query its employee table regularly with predicates such as EDLEVEL >
14 AND JOB = 'CLERK'. With an index on EDLEVEL,JOB, the database manager
finds the first index entry with EDLEVEL greater than 14 and scans the remainder
of the index from there upward. But with an index on JOB,EDLEVEL, it scans only
the entries for clerks having EDLEVEL > 14, giving a shorter access path.

Note: If you created an index in order to improve the performance of an SQL
statement, you should probably check that the database manager actually
uses the index for that statement. To find out what access and processing
methods it has chosen, use the EXPLAIN statement (see “Using Explanation
Tables to Evaluate Performance” on page 140).

Sargable and Residual Predicates
Rows that are retrieved go through two stages of processing. Predicates can be
applied at the first stage are called sargable predicates; those that cannot be applied
until the second stage are called residual predicates. Predicates in the HAVING
clause are always residual. Resolution of predicates and the predicate hierarchy are
detailed in “Predicate Processing” on page 122. Table 6 on page 126 shows which
predicates are sargable and which are not.

There is a definite performance advantage in using sargable predicates: they
require fewer CPU instructions than do residual predicates, because they eliminate
rows that would otherwise be passed from first to second stage processing. Thus,
whenever possible, avoid a residual predicate by rewriting your SQL statement.

Example
Table T contains 1000 rows, and column C6 contains the integers from 1 to 1000.
Consider this query:

SELECT * FROM T WHERE INTEGER(C6/7) = 2

Because the column in the predicate is involved in an arithmetic expression, the
predicate is residual. The first stage must access 1000 rows and pass them all back
to the second stage. If you instead write the predicate as WHERE C6 BETWEEN 14
AND 20, then only seven rows are passed back to the second stage. Furthermore,
the predicate C6 BETWEEN 14 AND 20 is key-matching. If there is an index on C6,
the first stage need only access seven rows.

Sargable predicates are better than residual predicates, but a suitable index is
better still. Avoiding the processing cost of a residual predicate won’t help you

Chapter 5. Improving Data Access Performance 125

much if you have to access ten million rows without an index. (You can use
EXPLAIN to tell whether a sargable predicate exists for a particular column, refer
to the REFERENCE EXPLAIN table in the DB2 Server for VSE & VM SQL Reference
manual.)

Join Predicates
In general, any predicate involving more than one table is a join predicate. In the
database manager, a condition of the form T1.C1=T2.C2 (the equijoin) is handled
specially by the optimizer. For information on joins, see “Methods of Joining Two
or More Tables” on page 133.

Search Conditions and Their Processing Characteristics
Table 6 shows the different types of search conditions, and their processing
characteristics. The following conventions are used:
v A search condition consists of one or more predicates
v Predicates are combined using the logical operators AND/OR
v NOT can be applied to either predicates or search conditions
v Expression is any expression involving arithmetic operators, concatenation, scalar

functions, or column functions
v Value is a literal or host variable
v Litexpr is any value or expression
v Anyexpr is any column, value or expression
v Char is any character string that does not begin with the ‘%’ or ‘_’ special

characters
v pattern is any character string that begins with the '%' or ‘_’ special characters
v Op is one of the operators: <, <=, >, >=, =, <>, ¬=
v Rop is one of the range operators: <, <=, >, >=
v Q is one of the quantifiers: ANY, ALL, SOME
v <> represents <> or ¬=
v [] indicates parts of the predicate that are optional.

Note: If the predicate falls in two different categories, choose the more specific
category.

Table 6. Search Conditions and Their Processing Characteristics

Search Conditions Key-
Matching?

Sargable? Default Filter Factor
(FF)

Notes

COL = value
COL IS NULL
COL rop value
COL BETWEEN value1 AND value2
COL LIKE 'char'
COL IN (value1,...)

Yes
Yes
Yes
Yes
Yes
Yes

Yes
Yes
Yes
Yes
Yes
Yes

1/25
1/25
1/3
1/10
1/10
1/25*size

1,16
2
1,16,19
1,4,16,19
5,19
1,3,6,16,17

COL <> value
COL IS NOT NULL
COL NOT BETWEEN value1 AND value2
COL NOT IN (value1,...)
COL NOT LIKE 'value'
COL LIKE 'pattern'
COL LIKE host variable

No
No
No
No
No
No
No

Yes
Yes
No
Yes
No
No
No

24/25
24/25
9/10
1 - 1/25*size
9/10
1/10
1/10

1,7,16
2
7,8,19
1,7,9,16,17
19
19
16,19

T1.COL = T2.COL (different tables)
T1.COL rop T2.COL (different tables)
T1.COL <> T2.COL (different tables)

Yes
Yes
No

Yes
Yes
Yes

1/25
1/3
24/25

1,15
1,15,19
1,15

126 Performance Tuning Handbook

Table 6. Search Conditions and Their Processing Characteristics (continued)

Search Conditions Key-
Matching?

Sargable? Default Filter Factor
(FF)

Notes

T1.COL1 = T1.COL2 (same table)
T1.COL1 rop T1.COL2 (same table)
T1.COL1 <> T1.COL2 (same table)

No
No
No

No
No
No

1/25
1/3
24/25

19

COL = [Q] (uncorrelated scalar subquery)
COL rop [Q] (uncorrelated scalar subquery)
COL <> [Q] (uncorrelated scalar subquery)

Yes
Yes
No

Yes
Yes
Yes

1/25
1/3
24/25

1,10
1,10,19
1,10

litexpr = [Q] (uncorrelated scalar subquery)
litexpr rop [Q] (uncorrelated scalar subquery)
litexpr <> [Q] (uncorrelated scalar subquery)

No
No
No

No
No
No

1
1/3
1

10
10,19
10

COL = (subquery)
COL <> (subquery)
COL rop (subquery)
litexpr = (subquery)
litexpr <> (subquery)
anyexpr op Q (subquery)

No
No
No
No
No
No

No
No
No
No
No
No

1/25
24/25
1/3
1
1
1

11
11
11,19
11
11
11

anyexpr [NOT] IN (subquery)
[NOT] EXISTS (subquery)

No
No

No
No

1
1

11
11

COL = expression
COL <> expression
COL rop expression
anyexpr NOT BETWEEN anyexpr AND anyexpr
anyexpr BETWEEN anyexpr AND anyexpr
anyexpr <> expression
litexpr rop anyexpr
litexpr = anyexpr
litexpr <> anyexpr
litexpr NOT IN (value,...)
litexpr IN (value,...)

No
No
No
No
No
No
No
No
No
No
No

No
No
No
No
No
No
No
No
No
No
No

1/25
24/25
1/3
9/10
1/10
24/25
1/3
1
∼0
∼0
1

12
12
12,19
12,18,19
12,18,19
12
12
12
12
12,17
12,17

search condition AND search condition
search condition OR search condition
NOT search condition

Yes
No
No

Yes
Yes
No

FF1*FF2
FF1+FF2-FF1*FF2
1-FF

13
14

Notes to Table 6 on page 126: Search conditions which are listed as key-matching
or sargable are only potentially so; they may not be treated as such because of the
following factors:
1. The value must be of the same or compatible type as the column. Adhere to

this rule whenever possible. Numeric data types have the following hierarchy:
SMALLINT < INTEGER < DECIMAL < FLOAT

A value’s data type can be converted to any higher data type. For example,
INTEGER can be converted to a DECIMAL (given sufficient precision) or
FLOAT, but not to SMALLINT. Similar compatibility considerations exist for
character and graphic data lengths, as well as for the precision and scale of
decimal data.

If the data type of the column is CHAR(n) or GRAPHIC(n), the predicate that
references it is sargable if the length of that predicate value is less than or
equal to “n”. The column and the predicate should also have the same CCSID,
refer to “Impact of CCSIDs on Sargability” on page 131.

Chapter 5. Improving Data Access Performance 127

If the data type of the column is DECIMAL(m,n), it must be possible to
accommodate the number of decimal digits before and after the decimal point
in the target decimal field (P1-S1 <= P2-S2 and S1<=S2 where P is precision
and S is scale).

Even-precision DECIMAL variables are supported by the DB2 Server for VSE
& VM product for the assembler preprocessor. You can use even-precision
DECIMAL columns in tables that are referenced by Assembler programs. Host
variables in even-precision will be left as is by the preprocessor. Therefore,
when these programs access even-precision DECIMAL data, predicates
become sargable instead of RESIDUAL. Your performance may improve when
using SQL statements that use even-precision packed DECIMAL columns.

2. The NULL predicate must be applied to a column without the NOT NULL
attribute in order to be key-matching or sargable. Otherwise, the predicate is
residual.

3. If a multicolumn index exists, at most one IN predicate can be used to match
columns of the index. For example, if a table T1(C1, C2, C3) and an index C1,
C2, C3 exist, the following query will have only one key-matching predicate,
not three:
SELECT * from T1 where C1 IN (:HV1, :HV2) AND C2 IN (:HV3, :HV4) AND C3=5

4. If value1 and value2 are equal, then for filter factor calculation purposes the
predicate is treated as though it were the equality predicate COL = value1.

5. Although the LIKE predicate is a residual predicate, the database manager
takes advantage of the character argument to generate a BETWEEN predicate
which is both key-matching and sargable. This BETWEEN predicate is then
applied by the first stage either as a key-matching or a sargable predicate.
This transformation does not apply if the pattern is a host variable or the
ESCAPE clause exists. It also does not apply if the character data is mixed
data.

6. If there are no host variables in the list, then a BETWEEN predicate will be
generated using the lowest and highest values. This predicate is sargable, and
can be used to reduce the number of rows returned to the second stage.

7. Whenever possible, avoid negating a predicate using NOT. Instead, use an
equivalent form that distributes the negation. In some cases, the database
manager will perform this transformation for you. For example, the predicate
NOT COL = value is treated like COL ¬= value.

8. This predicate, although residual as stated, can be rewritten to eliminate the
NOT BETWEEN into COL < value1 OR COL > value2, which is sargable. (See
note 14.)

9. Because this predicate is residual when more than one value is used, it might
be beneficial to rewrite it as COL ¬= value1 AND COL ¬= value2 AND ...
which is sargable.

10. An uncorrelated scalar subquery can return at most one value, and can be
evaluated before the query that contains it. This returned value is then used to
replace the subquery. The predicate is scalar only if the subquery statement
specifies a COLUMN function and the subquery does not contain a GROUP
BY clause, or if the predicate containing the subquery is not quantified.

11. Predicates that reference correlated subqueries or subqueries that can return
more than one row are always residual.

12. An expression makes any predicate residual. Sometimes a query can be
rewritten to avoid the presence of an expression. For example, instead of
“SALARY+200 = 20000”, write “SALARY = 198000”. The second form is
executed more efficiently.

128 Performance Tuning Handbook

13. For this kind of search condition to be key-matching, all predicates must refer
to columns that form an initial substring of the index columns. All but the last
column must be matched with equality predicates; the last predicate can be
either an equality or a range predicate.
In search conditions containing multiple predicates on the same column, only
one predicate can be chosen as the key. The predicate providing the best
filtering establishes the path, and the others are turned into sargable
predicates.

14. All predicates in a search condition that contains an OR remain sargable only
if all the individual predicates are sargable; otherwise, they are all treated as
residual. In other words, a single residual OR will cause all the predicates in a
search condition to be residual.
If all the predicates refer to the same column and the column is indexed, the
search condition can be rewritten using the IN predicate.
For example, instead of:

SELECT * FROM EMP_ACT
WHERE ACTNO=90 OR ACTNO=100

write:
SELECT * FROM EMP_ACT

WHERE ACTNO IN (90,100)

If different columns are referenced and the columns are indexed, then a
UNION may be a more efficient form of the query.

In the following example, the database manager will have to examine all rows
in the EMPLOYEE table to find those that satisfy the two predicates:

SELECT * FROM EMPLOYEE
WHERE JOB = ’CLERK’
OR LASTNAME = ’JONES’

The same request can be processed more efficiently if it is reformulated as the
UNION of two SELECT statements:

SELECT * FROM EMPLOYEE WHERE JOB = ’CLERK’
UNION
SELECT * FROM EMPLOYEE WHERE LASTNAME = ’JONES’

15. A join is accomplished by first accessing the outer table and looking for rows
that satisfy all predicates on that table only. For each such row, the inner table
is then accessed to find all rows there that match that row’s join column
value. Because a specific value is being used, a join predicate of
“colname = colname” becomes “colname = value”. This is why join
predicates can give selective access to a table, if the table is the inner table.
A join predicate is only sargable if the data types of the two columns are
identical (disregarding whether the columns support NULLS). If the data
types are CHAR(n), VARCHAR(n), GRAPHIC(n), and VARGRAPHIC(n), the
lengths must match. If they are DECIMAL(m,n), precision and scale must both
match.
The database manager path selection takes this into account when it decides
which table should be accessed first.

16. Predicates using indicator variables are sargable only if they meet the
following criteria:
v The predicate is of the form COL = :HV1:IND1 or of the form COL = ?
v COL is a nullable column

Chapter 5. Improving Data Access Performance 129

Predicates using indicator variables which do not meet the above criteria are
always residual.

17. When the IN predicate contains only one value in the list, it is converted to an
EQUAL predicate.

18. All BETWEEN and NOT BETWEEN predicates that do not have a column as
the first argument and values as the second and third arguments, are residual.

19. For the following cases the default filter factor is determined from the
COLCOUNT value in the SYSTEM.SYSCOLUMNS catalog table (refer to
“SYSTEM.SYSCOLUMNS” on page 39):
v COL rop host variable
v COL rop COL
v COL like predicate
v COL BETWEEN anyexpr AND anyexpr

Filter Factors
The objective of a predicate is to return to the user only those rows satisfying a
particular search condition. Every predicate is treated like a filter that reduces the
number of rows returned. The degree to which the predicate reduces the size of
the answer set is the filter factor (FF). The filter factor is an estimate of the
proportion of rows that remain after a predicate has “filtered out” the rows that do
not satisfy it.

The filter factor is a value between 0 and 1. If it is 1, the whole table is selected,
and the predicate has no filtering effect; if it is 0, no rows are returned.

The database manager estimates a filter factor for every predicate. If the predicate
is either too complex (contains an expression), uses disjunction (OR), uses host
variables, or if there are no statistics available for the columns it references, then a
default filter factor is used. The defaults for various predicates are shown in
Table 6 on page 126.

Sometimes the optimizer will not use the index when a predicate uses host
variables. This is because the optimizer is forced to make assumptions about the
values that are not available when the statement is being preprocessed. In such
cases, you can usually improve performance by executing the SQL statement
dynamically with fixed values.

Table 7. Filter Factors

COLCOUNT Value Filter Factor for rop Filter Factor for LIKE,
BETWEEN

>=100,000,000 1/10000 3/100000

>=10,000,000 1/3000 1/10000

>=1,000,000 1/1000 3/10,000

>=100,000 1/300 1/1000

>=10,000 1/100 3/1000

>=1000 1/30 1/100

>=100 1/10 3/100

<100 1/3 1/10

=-1 1/3 1/10

130 Performance Tuning Handbook

Examples of Predicate Processing
The following examples of predicates illustrate the general rules shown in Table 6
on page 126. In each case, assume that there is an index on columns C1, C2, C3,

C4 of the table.

WHERE C1 = 5 AND C2 = 7
Both predicates are sargable, and both can be applied as key-matching
predicates to the index.

WHERE C1 = 5 AND C2 > 7
Both predicates are sargable, and both can be applied as key-matching
predicates to the index.

WHERE C1 > 5 AND C2 = 7
Both predicates are sargable, but only the first can be applied as a
key-matching predicate. Because all the predicates reference columns in the
index, the second predicate will be applied as an index page predicate.

WHERE C1 > 5 OR C2 = 7
Both predicates are sargable, and the combination is sargable. The OR
prevents the use of key-matching predicates. The index can not be used for
a selective index scan. However, both predicates will be applied as index
page predicates.

WHERE C1 IN (subquery) AND C2 = C1
Both predicates are residual. The index is not considered for a selective
index scan, and both predicates are evaluated residually.

WHERE C1 = 5 AND C2 = 7 AND C3+5 = 7
Only the first two predicates are sargable and can be applied as
key-matching predicates. The third predicate is residual. The index is
considered for selective access. All rows satisfying those two predicates are
passed to residual processing to evaluate the third predicate.

WHERE C1 = 5 OR C2 = 7 OR C3+5 = 7
The third predicate is residual; hence, the combination is residual. All three
predicates are evaluated residually.

WHERE C1 = 5 OR (C2 = 7 AND C3 = C4)
The third predicate is residual, so, the combination of the second and third
predicates (in parentheses) is also residual. Hence, the total combination is
residual. All predicates are evaluated residually.

WHERE (C1 > 5 OR C2 = 7) AND C3 = C4
The combination of the first two predicates is sargable, but the OR
prevents the use of key-matching predicates. The third predicate is
residual. The index is not considered for a selective index scan, but the
combined predicate (in parentheses) is sargable and will be applied as
index page predicates. All rows satisfying those two predicates are passed
to residual processing to evaluate the third predicate.

WHERE C1 > 5 AND C2 = 7 AND C5 = 8
All predicates are sargable, but only the first can be applied as a
key-matching predicate. Because the remaining predicates reference
columns in both the index and data pages, the remaining two predicates
are applied as data page sargs.

Impact of CCSIDs on Sargability
The DB2 Server for VSE & VM SQL Reference manual lists the rules used to decide
which operand will undergo Coded Character Set Identifier (CCSID) conversion in

Chapter 5. Improving Data Access Performance 131

a comparison operation. These rules will help you to maintain sargability
whenever possible. The rules were defined to ensure that a column operand will
only undergo CCSID conversion if it is absolutely necessary.

Whenever a column operand is chosen to undergo CCSID conversion, the
predicate becomes residual because CCSID conversion is performed from RDS, and
not from DBSS. In most cases, this is a necessary consequence of using the CCSID
support. In other cases, it can be avoided by understanding how the rules apply
and by changing the application or the data.

Consider the search condition: COL = value (where value is a host variable). This
search condition is normally sargable (see Table 6 on page 126). The database
manager attempts to keep this search condition sargable by always performing
CCSID conversion on the host variable operand. There is a case, however, when
the rules state that the column operand is the one that should be converted: when
the subtype of the column is SBCS and the subtype of the host variable CCSID is
mixed.

If it is possible that the host variable will contain mixed data, then the column
operand must undergo CCSID conversion and the predicate must become residual.
One way to make this predicate sargable is to set the column subtype to mixed.
This may not always be possible or desirable, but you should consider this
situation when setting the subtype of new columns.

If the host variable will never contain mixed data, then it is possible to make this
predicate sargable by changing the subtype of the host variable from mixed to
SBCS. To do this, change the default CCSID values on the application requester.
Refer to the DB2 Server for VM System Administration or the DB2 Server for VSE
System Administration manuals for information on how to change the CHARNAME
setting for an application requester. This situation may not be possible or desirable,
especially if graphic or mixed data is used elsewhere in the query.

Tuning Queries with Several Tables
The process of combining rows of one table with rows of another is called a join. It
is often possible to write a query against two or more tables either as a join or as
one or more nested SELECT clauses. The first method is usually more efficient, as
this gives the optimizer more choices during access path selection.

The following query retrieves data about all designers in departments that are
responsible for projects that are part of a major project MA2100. It will be used
here to illustrate different access methods in detail.

FROM EMPLOYEE E, PROJECT P
WHERE E.JOB = ’DESIGNER’

AND E.WORKDEPT = P.DEPTNO
AND P.MAJPROJ = ’MA2100’

In this example, the following assumptions are made:
v Each table is in its own dbspace
v Table EMPLOYEE

– Has 10 000 rows on 500 pages
– Has an index on EMPNO with 25 pages
– Has an index on WORKDEPT with 10 pages

v Table PROJECT

132 Performance Tuning Handbook

– Has 3000 rows on 60 pages
– Has an index on PROJNO with 8 pages
– Has an index on RESPEMP with 8 pages

v COLCOUNT for MAJPROJ is 100.
v COLCOUNT for WORKDEPT is 1000; for JOB, 50

Methods of Joining Two or More Tables
To join two tables in a single query, the database manager chooses the less costly
of a nested loop join and a merge scan join. The two methods are described below.

Nested Loop Join (Type 1)
In nested loop joins, the rows of one table (the “outer” table) are retrieved one by
one. Sargable and residual predicates are applied to eliminate unqualified rows.
For each qualified row of the outer table, the database manager opens a cursor on
the second table (the “inner” table), and retrieves all rows that satisfy both the join
predicate connecting the two tables and any local predicates on the inner table.

Either table can be scanned by a dbspace or index scan. The outer table is scanned
once, while the inner table is scanned as many times as the number of qualifying
rows in the outer table. Hence, the nested loop join is most efficient when the inner
table has an efficient access path, and when only a few rows of the outer table
remain after applying predicates to it. For a nested loop join:
Join cost = cost of outer table scan

+ ((Estimated number of qualifying records in outer table) x
(cost of inner table scan))

If the inner table is small enough to fit into its share of the buffer pool, the
database manager anticipates that the entire inner table will remain in buffers
throughout the operation. On this assumption, the I/O cost in the second term of
the join cost is estimated as no more than the cost of scanning the inner table once.
The nested loop join is illustrated in Figure 15.

Chapter 5. Improving Data Access Performance 133

Merge Scan Join (Type 2)
For this method, there must be one or more predicates of the form
TABLE1.COL1 = TABLE2.COL2, where the two columns have the same data type
and length attribute. One of the predicates is chosen as the merge join predicate. The
approach is to scan both tables in the order of the merge join columns, and to
merge the result together whenever matching rows are found.

If the outer table has no efficient index on the join columns, an intermediate table
is built by sorting the outer table on the join columns, applying any local
predicates, and eliminating unused columns. The inner table is handled similarly.
The database manager then reads the first row of both ordered tables (applying
any predicates that remain). If the merge join predicate matches, the database
manager returns the combined result. It then reads the next row of the inner table,
which might match the same row of the outer table, and continues to read rows
from the inner table and return the results until the merge join predicate fails to
match. When there is no longer a match, the database manager reads the next
outer table row. If that row has the same join predicate value, the database
manager goes back and reads the matching group of records from the inner table
again. If the outer row has a new join predicate value, the database manager
searches ahead in the inner table until it finds either:
v A matching inner row, in which case the matching process is repeated.
v An inner row with a higher value than the join predicate. Then the database

manager discards the unmatched row of the outer table and searches through
the outer table until either a matching row or a row with a higher join predicate
value is found. If a matching row is found, the matching process is again
repeated. If a higher join predicate is found, the search moves back into the
inner table.

Hence, for a merge scan join,

SELECT A, B, X, Y
FROM OUTER, INNER
WHERE A=10 AND B=X

Table:
Columns:

The nested loop join
produces this result.

Scan the outer table.
For each qualifying row..............................scan the inner

table to find all
matching rows..

Method: Nested Loop Join

OUTER INNER
A B X Y A B X Y

COMPOSITE

10

10

10
10

10

3

1

2
6

1

5
3
2
1
2
9
7

A
B
C
D
E
F
G

10
10
10
10
10

3
1
2
2
1

3
1
2
2
1

B
D
C
E
D

Figure 15. Nested Loop Join

134 Performance Tuning Handbook

Join cost = cost of outer table scan
+ cost of sorting and reading outer table (if needed)
+ cost of inner table scan
+ cost of sorting and reading inner table (if needed)

If an efficient index does exist on the join column, and this index has been used to
retrieve the rows of either table, the rows of that table are already in sequence. In
this case, no sort of the table is required.

Merge scan join is illustrated in Figure 16.

Choosing an Access Method
When choosing an access method for the query shown on page 134, which entails
a simple join of only two tables, four access methods must be considered: the
nested loop join and the merge scan join, each with both possible choices of the
outer and inner table. The choice will be based on a comparison of their costs.

Nested Loop, with EMPLOYEE as Outer Table
With no index on JOB, a scan occurs on all 10000 (500 pages) rows of the employee
table. For each row, it first evaluates the predicate JOB = 'DESIGNER'; an estimated
200 (1/50 x 10000) rows remain. For each of those 200 rows, a scan takes place on
all 3000 rows (60 pages) of the project table to find rows with WORKDEPT =
DEPTNO and MAJPROJ = 'MA2100'. The major costs are:

Join cost = 10 000 row scan (500 page I/Os)
+ (200 x 60 page I/Os) = 12 500 page I/Os

Nested Loop, with PROJECT as Outer Table
With no index on MAJPROJ, the database manager must scan all 3000 rows of the
project table. For each row, it first evaluates the predicate MAJPROJ='MA2100'; an

SELECT A, B, X, Y
FROM OUTER, INNER
WHERE A=10 AND B=X

Condense and sort the
outer table, or access
it through an index on
column B.

Condense and sort the
inner table, or access
it through an index on
column X.

Table:
Columns:

The merge scan join
produces this result.

Scan the outer table.
For each row,...scan a group of matching

rows in the inner table.

Method: Merge Scan Join

OUTER INNER
A B X Y A B X Y

COMPOSITE

10
10
10
10
10

1
1
2
3
6

1
2
2
3
5
7
9

D
C
E
B
A
G
F

10
10
10
10
10

1
1
2
2
3

1
1
2
2
3

D
D
C
E
B

Figure 16. Merge Scan Join

Chapter 5. Improving Data Access Performance 135

estimated 30 (1/100 x 3000) rows remain. For each of those 30 rows, the database
manager must find all the rows in the EMPLOYEE table with WORKDEPT =
DEPTNO and JOB = 'DESIGNER'. But instead of scanning the entire employee
table, it can use the index on WORKDEPT each time. Each department has an
average of 10 employees (10 000 rows / 1000 distinct departments), so the I/O cost
is 1 index leaf page and 10 data pages for each value of WORKDEPT. The major
costs are:

Join cost = 3000 row scan (60 page I/Os)
+ (30 x 11 page I/Os) = 390 page I/Os

Merge Scan, with EMPLOYEE as Outer Table
Here the database manager reads the project table and applies the local predicate
MAJPROJ = 'MA2100'. The remaining 30 rows are sorted and placed into a
temporary table (a write and read of 1 page). Then, the database manager reads
the employee table in department number order using the index on WORKDEPT
(10 index pages + 500 data pages). For each row of the employee table, the
database manager first evaluates the predicate JOB = 'DESIGNER'; if the row
qualifies, it reads rows in the inner (temporary) table that match on department
number. The costs are:

Join cost = cost of outer table index scan 510 page I/Os
+ cost of accessing inner table 60 page I/Os
+ cost of sorting and reading inner 2 page I/Os

= 572 page I/Os

Merge Scan, with PROJECT as Outer Table
If the outer table is the project table, it cannot be accessed in department number
order, and thus must be sorted. Before sorting, the database manager eliminates
the rows that do not satisfy MAJPROJ = 'MA2100', leaving 30 rows. The estimated
costs are:

Join cost = cost of outer table scan 60 page I/Os
+ cost of sorting and reading outer 2 page I/Os
+ cost of accessing inner table 510 page I/Os

= 572 page I/Os

The nested loop scan with the project table as the outer table would be the best
choice here. Only this access path makes use of the employee table index on
WORKDEPT to avoid a scan of the entire table while not requiring a sort of the
project table.

The two merge scan costs are shown as identical here because CPU costs and the
presence of duplicates have been ignored. In reality, both would affect the actual
cost calculated by the database manager.

Multiple Joins
Multiple joins are performed by logically joining two tables at a time, using either
the nested loop or merge scan join method. This does not mean that each join
necessarily produces an actual intermediate table; in a number of cases, no
intermediate tables are required.

For example, a query joining tables T1, T2, and T3 may use a nested loop join to
join T1 to T2, and a merge scan join to join the logical result (T1-T2) to T3. In this
case, an intermediate or composite table might be created, and would appear in
PLAN_TABLE if you examined the query with EXPLAIN. In addition, the
composite table may require sorting to participate in the merge scanjoin. T3 may
also require sorting (unless an index exists over the join columns). If the query has

136 Performance Tuning Handbook

no ORDER BY clause, requiring sorting of the final result, then the T1-T2
composite table can be joined (using merge scan) with T3, returning each
qualifying result row as it is found.

In short, whether composite tables are formed or not depends on a number of
factors, including the SQL statement in question, the availability and type of
indexes, and the catalog statistics. Any number of access plans can produce the
correct answer, but the optimizer will choose the lowest estimated total cost
solution.

Keeping Database Statistics Current
The catalog tables hold statistical information on data stored in the database, and
the database manager uses these statistics to determine how it will access data for
each individual SQL request. If the statistics are unavailable, then default values
are used. Table 8 shows the key statistics used for access path selection, and
identifies which catalog table they are in.

Table 8. Key Catalog Statistics Used for Path Selection

Table Name
Column Name

Description Default Value Used by
Optimizer When Catalog
Value is -1

SYSCATALOG
ROWCOUNT
NPAGES

Total number of rows for this table.
Number of pages in the dbspace that contain rows
of this table.

100
3

SYSDBSPACES
NTABS
NACTIVE
NPAGES

Number of tables in the dbspace.
Number of active pages in the dbspace.
Number of usable pages in the dbspace.

3*NTABS

SYSCOLUMNS
COLCOUNT
HIGH2KEY
LOW2KEY
AVGCOLLEN

Number of distinct values in this column.
Second highest value in this column.
Second lowest value in this column.
Average length of the column.

SYSINDEXES
FULLKEYCOUNT
FIRSTKEYCOUNT

NLEAF
NLEVELS
CLUSTERRATIO

Number of distinct values of the full key.
Number of distinct values of the first column of the key.
Equals COLCOUNT for the index column.
Number of leaf pages in the index.
Number of levels in the index.
Measure of how clustered an index is.

SYSCOLSTATS
VAL10
VAL50
VAL90
FREQ1VAL
FREQ1PCT

FREQ2VAL
FREQ2PCT

The value at the tenth percentile.
The value at the fiftieth percentile.
The value at the ninetieth percentile.
The most frequent value in the column.
Number of rows that contain that column value,
given as a percentage of the total number of rows.
The second most frequent value in the column.
Number of rows that contain that column value,
given as a percentage of the total number of rows.

Notes:
v Default values are only assigned to the base table. The values of NPAGES and NACTIVE determine PCTPAGES.
v Column statistics are used primarily for calculating filter factors. When these statistics are not available (a value

of -1), the optimizer uses a default filter factor. These default filter factors are listed in Table 6 on page 126.

Chapter 5. Improving Data Access Performance 137

It is impractical for these statistics to be maintained on every INSERT, UPDATE,
and DELETE operation; therefore, you must periodically update them in the
catalog tables with the UPDATE STATISTICS or the UPDATE ALL STATISTICS
statement.

Update your statistics whenever a table’s contents change significantly.

Suppose you enter the following UPDATE STATISTICS statement:
UPDATE STATISTICS FOR TABLE MYTABLE

The database manager updates the statistics for MYTABLE in the catalog tables.
However, the statistics are updated only for indexed columns. (For indexes having
multicolumn keys, only the first column is updated.) Similarly, whenever you
create a new index, the database manager automatically updates the statistics for
index columns.

To update the statistics for all columns in MYTABLE (even those that are not
indexed), enter the following statement:

UPDATE ALL STATISTICS FOR TABLE MYTABLE

The complete set of statistics produced by the ALL option may result in a better
access strategy being selected by the optimizer component. However, the ALL
option can greatly increase the processing time required to run the UPDATE
STATISTICS statement. UPDATE ALL STATISTICS is recommended where queries
have non-indexed columns with local predicates or queries have multi-column
indexes with local or join predicates that are not on the first column of an index.
The DB2 Server for VSE & VM SQL Reference manual describes exactly what
operations affect each statistic. The SYS0001 DBSPACE, which contains the catalog
tables, is a candidate for UPDATE ALL STATISTICS processing.

It is recommended that you schedule UPDATE STATISTICS activities during
off-peak hours.

When working with preplanned application programs, ensure that the programs
are re-preprocessed whenever the tables accessed by the application have
significantly changed (for example, a 10%-20% or more change). Before
re-preprocessing, ensure that statistics have been updated so that the optimizer is
provided with the new characteristics of the data.

The DBS utility DATALOAD and RELOAD commands automatically collect the
statistics for a table as part of the load operation; thus, it is not necessary to issue a
separate UPDATE STATISTICS statement (although see the DB2 Server for VSE &
VM Database Services Utility or the DB2 Server for VSE & VM Database Services
Utility manuals for restrictions). If you want, you can suppress this automatic
updating of statistics through the DBS Utility SET UPDATE STATISTICS command.

Note: Statistics are not updated when you use DATALOAD to load data into a
view.

Using Catalog Statistics
The following suggestions introduce the techniques of using the catalog statistics to
influence the choice of access methods made by the database manager. For more
information see “Tuning Queries with Several Tables” on page 132.

138 Performance Tuning Handbook

Modelling your Production System
If you have DBA authority, you are allowed to update the statistical values stored
in the catalog tables. See Table 8 on page 137 for a description of the columns in
question. This ability lets you create a model of your production system on a
smaller test system. You can then use the EXPLAIN statement to determine how
your production tables would be accessed for some set of SQL statements. In the
same way, you can model a future production system by making assumptions
about the size and nature of the database structure.

To create a model of your production system, the same database structure must be
in place on your test system. This means the same dbspaces, tables, indexes,
referential constraints, and so on must be defined on the test system. You can then
modify the statistics in your test system catalog tables to be identical to those in
the production system. The optimizer will choose the same paths to access your
tables on the test system as it would on the production system.

After you have a model of the production system established, you can discover
how the optimizer will react to changes in the database structure, such as adding
new indexes by updating the catalog table statistics. Using EXPLAIN will tell you
whether (and how) a new index would be used for a particular SQL statement,
and how it impacts the expected costs of executing that statement. With this
information, you can decide whether you should add the index to the production
system.

Similarly, you can now use your test system to discover how rewriting an SQL
statement into an alternate form affects the path chosen and the estimated cost for
executing the statement.

A Warning about Updating Statistics
If you supply the COLCOUNT value for an index column without running
UPDATE STATISTICS, you should also supply HIGH2KEY and LOW2KEY for the
index. If the data is not uniformly distributed you should also supply the
additional values in the SYSCOLSTATS table. These columns are defined as CHAR,
so an UPDATE statement must provide a character or hexadecimal value.
Although the columns have a length of 12, only 8 bytes of information should be
stored. Entering a character value is quite straightforward—SET LOW2KEY =
'ALAS', for instance. But to enter a numeric, date, or time value you must use the
hexadecimal value of the DB2 Server for VSE & VM internal format. To determine
the proper hexadecimal data to use for these data types, create a table with
columns of the required types and insert the values you want to use for
HIGH2KEY and LOW2KEY into it. Then display the internal format of these
values by using the HEX column function in the select list. For example:
SELECT HEX(column_name) FROM ...

Be sure to allow for a NULL indicator in keys that allow NULLS by making the
first character '00'X. If values being set are less than 8 bytes long (including the
'00'X NULL indicator byte) pad them on the right with '00'X bytes.

If the NPAGES column of SYSTEM.SYSDBSPACES is updated (to allow testing of
the access plan generation) and then an ACQUIRE DBSPACE command attempts
to acquire this dbspace, an error message may result. Updating NPAGES does not
actually change the size of a dbspace, it changes the information supplied to the
optimizer used in access plan generation.

Chapter 5. Improving Data Access Performance 139

Determining the Cost of Access Methods
The access method cost has two parts: a processing cost and an I/O cost.
Depending on the hardware environment, a query can be either CPU or I/O
bound. You may want to compare the cost characteristics of your queries to
equivalent alternatives.

Processing Cost
The database manager estimates processing cost as a result of:
v The number of rows considered
v The number of residual predicates checked for each row
v The number of rows that satisfy the residual predicates.

This estimate of the number of rows that remain after applying all the predicates is
dependent on assumptions on the distribution of data within the column. For the
first column of an index, the database manager records additional information to
help it recognize non-uniform data distributions. Otherwise, it assumes that the
data values are evenly distributed, and uses the following rules:

For a predicate of the form WHERE column = value: The number of rows is
estimated as either ROWCOUNT/COLCOUNT or ROWCOUNT*(1/COLCOUNT);
that is, the total number of rows divided by the number of distinct values in the
column. The term 1/COLCOUNT is the filter factor.

For a predicate that uses a range operator: The number of rows is estimated using
the ratio of the range encompassed in the predicate to the range of values in the
column. Thus, if LOW2KEY and HIGH2KEY are respectively 10 and 90, then the
predicate column > 70 is given a filter factor of, approximately, (90 - 70)/(90 - 10),
or 0.25. Only the first 8 bytes of the column are stored for HIGH2KEY and
LOW2KEY so it is important that columns be distinct within the first 8 bytes. (7
bytes if the column is nullable.)

I/O Cost
The I/O cost is estimated by the number of index pages, the number of data
pages, and the number of directory pages to be read.

For a dbspace scan, the number of index pages read is zero. Otherwise, it is
determined from the number of leaf pages and levels in the index (NLEAF and
NLEVELS) and the filter factors of the matching predicates.

A dbspace scan reads all data pages. The total number of pages is given by
NACTIVE.

If access is through an index, the proportion of pages read depends on the filter
factor for the predicates applied through the indexes and on the extent to which
the data rows are clustered by the index.

Using Explanation Tables to Evaluate Performance
The explanation tables produced by the EXPLAIN statement allow you to get
information about the structure and execution performance of SQL statements. This
information can help you analyze how existing database designs perform, or how
future designs will perform. Specifically, you can use explanation tables to:

140 Performance Tuning Handbook

v Find out the indexes that are used for a given statement, the number of index
columns used selectively, whether index-only access was sufficient to fulfill the
request, and whether a fetch operation was required

v Find out the sorts that are required, and the reason for the sorts
v Analyze request loads
v Estimate the size of responses
v Separate queries into their subquery structures
v Obtain costs for statements and access paths
v Assist in database design
v Determine when a program must be preprocessed again.

After you complete your design, and construct a prototype, you can use
explanation tables to see how well real queries will work against the design. (You
can select explain processing explicitly using the EXPLAIN statement, or implicitly
using the EXPLAIN(YES) preprocessing parameter or the USING EXPLAIN(YES)
option of the CREATE PACKAGE statement.)

Explain Processing
Explain processing accepts an SQL statement as an argument, analyzes it, and
inserts information about the structure and execution of that statement into the
explanation tables, which you must create. (This includes the cost of internally
generated statements.) You can then query the explanation tables.

You can select explain processing explicitly by using the EXPLAIN statement, or
implicitly using the EXPLAIN(YES) preprocessor parameter or the EXPLAIN(YES)
USING OPTION of the CREATE PACKAGE statement.

Note: Explain processing does not execute the SQL statement. It only explains how
the statement will work when you actually execute it.

Using the EXPLAIN Statement
You can use the SQL EXPLAIN statement in an application program, the DBS
utility, or ISQL to estimate execution performance. For the syntax of the EXPLAIN
statement and the structure of the explanation tables produced, refer to the DB2
Server for VSE & VM SQL Reference manual.

To explicitly process the EXPLAIN statement, you must either:
v Preprocess the program every time you change the statement that EXPLAIN is

to analyze; or,
v Use multiple EXPLAIN statements; or,
v Have the program build the EXPLAIN statement and then execute it using the

dynamic prepare statements.
v Replace all the host variables with parameter markers and then issue an

EXPLAIN for it. For specific rules regarding the use of parameter markers, see
the DB2 Server for VSE & VM SQL Reference manual.

Each time the EXPLAIN statement is executed, rows are appended to the specified
explanation tables. Any existing rows are not affected.

When the EXPLAIN statement is issued for INSERT, UPDATE, and DELETE
statements that change tables in a referential structure, information is returned not
only on the INSERT, UPDATE, and DELETE statements, but also on internally

Chapter 5. Improving Data Access Performance 141

generated statements. Refer to the DB2 Server for VSE & VM Application
Programming manuals for more information on internally generated statements.

Each of the explanation tables has a column called QUERYNO (query number).
The QUERYNO column has a data type of INTEGER. With the SET QUERYNO
clause, you can place an integer value in the QUERYNO columns of the rows
inserted by the EXPLAIN statement. Thus, you can use QUERYNO to identify new
rows, and to mark them as corresponding to a particular statement.

For integer in SET QUERYNO, you must specify an integer constant that is not
preceded by a sign. You cannot use a host variable in the SET QUERYNO clause,
even in application programs. However, you can use the “&n” place-holder
variables in ISQL.

The SET QUERYNO clause is optional. If you omit it, a NULL value is placed in
the fields of the rows inserted by the EXPLAIN statement. If you set the
QUERYNO to some initial value, this value identifies the query for which the
EXPLAIN is issued. Because QUERYNO is an INTEGER field, an error is returned
if its value exceeds 2 147 483 647.

You can enter the EXPLAIN statement from ISQL. When you enter EXPLAIN from
ISQL, you must use a character constant if you execute the statement immediately.
Alternatively, you can store the EXPLAIN statement by placing it in a routine or
by using an ISQL STORE statement. This lets you use a place-holder (for example,
&1) for explainable_sql_statement (refer to the DB2 Server for VSE & VM SQL
Reference manual for the syntax of the EXPLAIN statement, including
explainable_sql_statement). Thus, you can execute EXPLAIN for different SQL
statements without having to key in the entire EXPLAIN statement each time.
When using this technique, however, you should keep ISQL limits in mind. For
example, when the place-holder is in a routine table, the length of input to a
parameter is limited by the length of the COMMAND column of the routine table.
At most, input to a place-holder can be 254 characters. This number is further
reduced if you do not put the “&n” place-holder on a line by itself.

When you enter EXPLAIN from the DBS utility, you must use a character
constant for explainable_sql_statement. The utility does not allow the use of host
variables or place-holders in any SQL statement.

Using the EXPLAIN Option
You can select explain processing implicitly using the EXPLAIN(YES)
preprocessing parameter or the EXPLAIN(YES) using option of the CREATE
PACKAGE statement. If you select explain processing implicitly, explanatory
information is provided for all SQL statements in a package that can be explained
and for all internally generated statements. The name of the package and the name
of the owner of the package are stored in the explanation tables.

Because you cannot assign a QUERYNO when you select explain processing
implicitly, the section number assigned to the statement being preprocessed is used
as the query number. This number corresponds to the position of the query in the
application. Using the preprocessor listing file, you can determine the section
number assigned to a statement and use it to determine the corresponding rows in
the explanation tables. The following variable names are used as section numbers
for the languages specified.

142 Performance Tuning Handbook

Table 9. Variable Names for Section Number (Query Number)

Language Structure Name Variable Name

ASM RDIIN RDISECT#

COBOL RDIIN SQL-SECTION-NUM

C RDIIN SECTION_NUM

PLI RDIIN SECTION_NUM

Fortran SQLCTL SQLSTMT

For further information, see the DB2 Server for VSE & VM SQL Reference and DB2
Server for VSE & VM Application Programming manuals.

Comparing Implicit and Explicit Explain Processing
Implicit and explicit explain processing insert the same kind of information into
the explanation tables during explain processing. The package name and package
owner columns of the explanation tables, however, contain information only if
implicit explain processing is used.

There is also a difference between implicit and explicit explain processing for the
query number of an application. For explicit explain processing, if you do not
supply the query number, it is set to NULL. For implicit explain processing, you
cannot provide query numbers for SQL statements in the middle of an application,
so the section number assigned to the statement when it is processed is used as the
query number. You can then use the preprocessor listing file to determine the
section number assigned to each statement and the corresponding rows in the
explanation tables.

During explicit explain processing, rows are added to the explanation tables when
a program is preprocessed, or dynamically repreprocessed. During implicit explain
processing, rows are added when a program is preprocessed, but not when it is
dynamically repreprocessed. In all situations, explicit explain processing overrides
implicit explain processing.

When you processes an application program using the implicit EXPLAIN(YES)
option, the preprocessor checks for the existence of the EXPLAIN tables once. If it
does not find them, processing is terminated and SQLCODE -649 (SQLSTATE =
42704) is issued.

Each time the preprocessor encounters an explicit EXPLAIN statement, it checks
for the existence of the explain tables. If its does not find them the explicit
EXPLAIN is not processed and, SQLCODE -204 (SQLSTATE = 42704) or
SQLWARNING +204 (SQLSTATE = 01532) is issued. This check is repeated for
every explicit EXPLAIN statement that the preprocessor encounters.

Using Explanation Tables
There are four explanation tables: REFERENCE_TABLE, STRUCTURE_TABLE,
COST_TABLE, and PLAN_TABLE. The definitions of these tables and the
EXPLAIN statement syntax are in the DB2 Server for VSE & VM SQL Reference
manual. A DBS utility job file, ARISEXP, to generate explanation tables, indexes,
and views is shipped with the DB2 Server for VSE & VM product. Instructions for
generating the tables using the ARISEXP file are provided at the top of the file. For
further information on the contents of the explanation tables, refer to the DB2
Server for VSE & VM SQL Reference manual.

Chapter 5. Improving Data Access Performance 143

When you execute an EXPLAIN statement, information is placed in your tables,
and is independent of any other user’s explanation tables. You can review and
summarize the information placed in your explanation tables just as you can other
tables. However, because explanation tables only insert rows, you also have the
responsibility to delete unnecessary information yourself.

In the following descriptions of each table, the term query block is used. A query
block is a part of a query. Query blocks are used to distinguish the parts of a
subquery. For example, when a query does not involve a subquery, there is only
one query block: query block 1. When there is a subquery, there are two query
blocks, the outer-level query and the subquery. They are referred to as query block
1 and query block 2, respectively. Because subqueries may be nested within each
other, there may be many query blocks in a statement; each query block
corresponds to separate (but interacting) parts of the statement.

The SELECT statement in Figure 17 is used in the following descriptions of the
explanation tables. This SELECT statement has only one query block.

Assume that user Smith owns tables DEPARTMENT and EMPLOYEE where:
v DEPARTMENT has columns DEPTNO, DEPTNAME, MGRNO, and

ADMRDEPT.
v EMPLOYEE has columns EMPNO, FIRSTNME, MIDINIT, LASTNAME,

WORKDEPT, PHONENO, HIREDATE, JOB, EDLEVEL, SEX, BIRTHDATE,
SALARY, BONUS, and COMM.

Using the Cost Table: This table is updated by EXPLAIN COST or EXPLAIN
ALL. The information in this table provides the cost estimate of the statement for
which the EXPLAIN is issued and for any internally generated statement used to
enforce referential integrity. In addition, you can compute the contribution of each
subquery (if any) to the total cost estimate of the statement. (To compute the
subquery cost estimates, you will need to use information provided by the
EXPLAIN STRUCTURE statement.)

For each query block in the statement, EXPLAIN inserts one row into
COST_TABLE. The information depends on the existing indexes and catalog
statistics. If indexes are added or dropped after you issue EXPLAIN for the
statement, then the COST_TABLE entry for the command is not valid.

If you need a description of the columns in the COST_TABLE, refer to the DB2
Server for VSE & VM SQL Reference manual.

The value in COST is referred to as the cost estimate (occasionally referred to as
the optimizer cost estimate or the resource cost estimate). All of these terms refer
to the same thing: the internal value that the optimizer uses to represent the
resource cost of executing an SQL statement for which the EXPLAIN is issued and
for any internally generated statement used to enforce referential integrity. The
value is a relative value that incorporates I/O requirements with a weighted factor
of processor requirements for a query.

SELECT X.DEPTNAME, Y.FIRSTNME, Y.MIDINIT, Y.LASTNAME, Y.PHONENO
FROM DEPARTMENT X, EMPLOYEE Y
WHERE X.MGRNO = Y.EMPNO

AND X.DEPTNO = Y.WORKDEPT

Figure 17. SELECT Statement for Explanation Table Descriptions

144 Performance Tuning Handbook

Aside from the COST column, there are two other ways to get this value for a
given SQL statement. One way is to examine the SQLCA after preparing a
dynamically defined SQL statement. The cost estimate is kept in the SQLERRD(4)
field. A second way to see the cost estimate is using ISQL. ISQL displays the query
cost estimate integer. The integer results from dividing the real internal value by
1000 and adding 1 to it. This produces a number that is easier to grasp. This is a
valid technique because the numbers are relative to each other; they do not
represent real physical consumption directly.

It follows, then, that it is futile to try to develop an algorithm that directly maps
the cost estimate to a real physical unit such as time. Too many other factors are
involved (for example, overall system workload). It is best to use the cost estimate
as a general indicator.

For the SELECT statement in Figure 17, there would be only one row entered into
COST_TABLE, because there is only one query block:

Using the Plan Table: This table is updated by EXPLAIN PLAN or EXPLAIN
ALL. The information in this table describes the order in which tables are accessed
by the statement for which the EXPLAIN is issued and by any internally generated
statement used to enforce referential integrity. In addition, the PLAN_TABLE table
describes the indexes used to access the tables, and specifies whether indexes alone
were used, the methods that the database manager used to do joins, the sorts done
as part of runtime processing, and the reasons for the sorts.

As with the COST_TABLE, the PLAN_TABLE results depend on the existing
indexes and catalog statistics at the time the EXPLAIN statement is executed. If
indexes are added or deleted, then the PLAN_TABLE entry for the statement is not
valid.

For each step in the plan determined by the database manager for processing the
query, EXPLAIN inserts one row into the PLAN_TABLE. There is one step for each
table reference in a query block. There are additional steps if the database manager
must perform additional sorts at the end of processing for the query block, or if
any internally generated statements are to be processed.

The steps in the plan are ordered by the value of the PLANNO column of
PLAN_TABLE, and for each step, the TNAME column identifies the table accessed.
The phrase “previous steps of the plan” refers to PLAN_TABLE rows with smaller
values of PLANNO. The action described in a step is either a join of a table to
those previously joined, or it is a sort. (Joins themselves may involve performing
sorts.) The term “composite” refers to the result of all previous steps; the term
“new” refers to the new table that is being accessed and joined as part of a
particular plan step.

If you need a description of the columns in the PLAN_TABLE, refer to the DB2
Server for VSE & VM SQL Reference manual.

QUERYNO RINO QBLOCKNO PKGNAME PKGOWNER COST
------- ---- -------- ------- -------- ------------------

1 0 1 1.4388885498046E+01

TIMESTAMP

1999-08-26-09.49.25.601721

Figure 18. Results of COST_TABLE Query

Chapter 5. Improving Data Access Performance 145

The PLAN_TABLE for the query in Figure 17 is shown below. Because there are
many columns in PLAN_TABLE, the display of the table is split to fit on the page:

A Type 1 (or nested loop) join is performed on tables EMPLOYEE and
DEPARTMENT. The database manager accesses DEPARTMENT as the outer table
of the join (the first table accessed), and EMPLOYEE as the inner table of the join.

The row with PLANNO=1 indicates that the database manager accesses
DEPARTMENT using the index MGRNOI (which, as it happens, was created on
the MGRNO column).

The entry with PLANNO=2 indicates that the database manager has performed an
action on the EMPLOYEE table, based upon the conditions included in the query.
An index has been generated internally on the primary key EMPNO of the
EMPLOYEE table. This index performs the matching of EMPNO (in the
EMPLOYEE table) to MGRNO (in the DEPARTMENT table). This index can be
used because the value in MGRNO of DEPARTMENT, which must be matched by
the EMPNO value of EMPLOYEE. Retrieval of rows from an inner table of a join
will often, though not always, use an index on a join column of the inner table.

No sorts are used in the plan for this query. However, if the query had demanded
SELECT DISTINCT, instead of SELECT, the plan would have an additional row,
with PLANNO=3, which would have TABNO=0, METHOD=3, SORTC_UNIQ=‘Y’
and SORTCOMP=‘U’.

Using the Reference Table: This table is updated by EXPLAIN REFERENCE or
EXPLAIN ALL. The database manager inserts one row in REFERENCE_TABLE for
each column referenced in the statement (in certain ways, as explained below) and
for any internally generated statement used to enforce referential integrity. Even if
the column is referenced more than once for a table, there is still only one row
inserted for the column and that row is for the most selective predicate. However,

QUERYNO RINO QBLOCKNO PKGNAME PKGOWNER PLANNO METHOD CREATOR
------- ---- -------- ------- -------- ------ ------ -------

1 0 1 1 0 SMITH
1 0 1 2 1 SMITH

TNAME TABNO ACCESSTYPE MATCHCOLS ACCESSCREATOR
---------- ----- ---------- --------- -------------
DEPARTMENT 1 W 0 SMITH
EMPLOYEE 2 I 0 SMITH

ACCESSNAME INDEXONLY SORTNEW SORTCOMP SORTN_UNIQ SORTN_JOIN
---------- --------- ------- -------- ---------- ----------
MGRNOI N N N N N
PKEYB1H9ZR8CD51W N N N N N

SORTN_ORDERBY SORTN_GROUPBY SORTC_UNIQ SORTC_JOIN SORTC_ORDERBY
------------- ------------- ---------- ---------- -------------
N N N N N
N N N N N

SORTC_GROUPBY TIMESTAMP REMARKS
------------- -------------------------- -------
N 1999-08-26-09.49.25.601721
N 1999-08-26-09.49.25.601721

Figure 19. Results of PLAN_TABLE Query

146 Performance Tuning Handbook

multiple appearances of a table in a query (as when a table is joined to itself) can
lead to multiple descriptions of their columns.

One row is entered for each table reference, one for the statement as a whole, and
one that indicates the way in which the column is used in the query. For a
description of the columns in the REFERENCE_TABLE, refer to the DB2 Server for
VSE & VM SQL Reference manual.

For the example statement presented in Figure 17 on page 144, the new rows
entered into REFERENCE_TABLE by EXPLAIN REFERENCE might be:

These rows indicate that the statement is a SELECT statement with no subqueries,
joining two tables, SMITH.DEPARTMENT and SMITH.EMPLOYEE. The columns
MGRNO, DEPTNO from DEPARTMENT, and the columns EMPNO, WORKDEPT
from EMPLOYEE appear together in the 'WHERE' clause (identified by a Y in the

QUERYNO RINO QBLOCKNO PKGNAME PKGOWNER REFTYPE CREATOR TNAME
------- ---- -------- ------- -------- ------- ------- ----------

1 0 1 SELECT
1 0 1 TABLE SMITH DEPARTMENT
1 0 1 TABLE SMITH EMPLOYEE
1 0 1 COLUMN SMITH DEPARTMENT
1 0 1 COLUMN SMITH DEPARTMENT
1 0 1 COLUMN SMITH DEPARTMENT
1 0 1 COLUMN SMITH EMPLOYEE
1 0 1 COLUMN SMITH EMPLOYEE
1 0 1 COLUMN SMITH EMPLOYEE
1 0 1 COLUMN SMITH EMPLOYEE
1 0 1 COLUMN SMITH EMPLOYEE
1 0 1 COLUMN SMITH EMPLOYEE

TABNO CNAME COLNO FILTER DBSSPRED JOINPRED ORDERCOL
----- ----- ----- ------------------- -------- -------- --------

0 0 0.0E0 0
1 0 0.0E0 0
2 0 0.0E0 0
1 DEPTNAME 2 1.0E+00 N N 0
1 DEPTNO 1 1.111111448837E-01 Y Y 0
1 MGRNO 3 3.125E-02 Y Y 0
2 EMPNO 1 3.125E-02 Y Y 0
2 FIRSTNME 2 1.0E+00 N N 0
2 LASTNAME 4 1.0E+00 N N 0
2 MIDINIT 3 1.0E+00 N N 0
2 PHONENO 6 1.0E+00 N N 0
2 WORKDEPT 5 1.1111110448837E-01 Y Y 0

GROUPCOL UPDATECOL TIMESTAMP
-------- --------- -------------------------

0 1999-08-26-09.49.25.601721
0 1999-08-26-09.49.25.601721
0 1999-08-26-09.49.25.601721
0 1999-08-26-09.49.25.601721
0 1999-08-26-09.49.25.601721
0 1999-08-26-09.49.25.601721
0 1999-08-26-09.49.25.601721
0 1999-08-26-09.49.25.601721
0 1999-08-26-09.49.25.601721
0 1999-08-26-09.49.25.601721
0 1999-08-26-09.49.25.601721
0 1999-08-26-09.49.25.601721

Figure 20. Results of the REFERENCE_TABLE Query

Chapter 5. Improving Data Access Performance 147

DBSSPRED column), permitting indexes to be used. These columns are the JOIN
columns (identified by a Y in the JOINPRED column). FILTER may be misleading,
because the filtering depends on the order in which tables are processed.

Using the Structure Table: This table is updated by EXPLAIN STRUCTURE or
EXPLAIN ALL. The database manager inserts one row in STRUCTURE_TABLE for
each query block in the statement.

If you need a description of the columns in the STRUCTURE_TABLE, refer to the
DB2 Server for VSE & VM SQL Reference manual.

If the following SELECT statement is issued, only one row is entered in
STRUCTURE_TABLE, as shown in Figure 21 on page 149, because there is only one
query block.

EXPLAIN ALL FOR SELECT * FROM EMPLOYEE

Referential Integrity (RINO Value)
RINO is set to zero for the original statement and is automatically incremented by one for each
internally-generated statement that is processed for referential integrity or cascade delete. For example if you
perform an EXPLAIN against a statement that deletes a department from the DEPARTMENT table, the
following REFERENCE table is generated.

QNO RINO QBLOCK REFTYPE TNAME CNAME ...
----------- ------ ------ ------- ------------------ ------------------...

1 0 0 DELETE ...
1 0 1 TABLE DEPARTMENT ...
1 1 0 UPDATE ...
1 1 1 TABLE EMPLOYEE ...
1 1 1 COLUMN EMPLOYEE WORKDEPT ...
1 2 0 SELECT ...
1 2 1 TABLE PROJECT ...
1 2 1 COLUMN PROJECT DEPTNO ...

Notice that the DELETE statement that was written (RINO=0) produces two other statements: First an UPDATE
that changes the WORKDEPT column for any employee in the deleted department to NULL (RINO=1), and
second a SELECT that checks that any departments to be deleted do not have any projects assigned to them
(RINO=2).

The REFERENCE_TABLE and the PLAN-TABLE can be used together to indicate whether materialization was
used to generate a view. View materialization lifts a number of restrictions on the use of views, including the
use of column functions operating on the column of a view when the definition of the view already contains a
column function. For example:

CREATE VIEW V1(DPT,MAXSAL) AS
SELECT WORKDEPT, MAX(SALARY)
FROM EMPLOYEE
GROUP BY WORKDEPT

EXPLAIN ALL FOR SELECT DPT FROM V1

Because view materialization is used for view V1, the TNAME column in the REFERENCE_TABLE and
PLAN_TABLE will contain the name of the view. Keeping in mind that view materialization is generally more
expensive than merging the SELECT statement of the view with that of the query, the information on the
EXPLAIN tables can be helpful in performance tuning.

148 Performance Tuning Handbook

A more complicated example is provided in the following sections, where we show
how to separate the costs for individual query blocks using STRUCTURE_TABLE
and COST_TABLE together.

Using Subquery Blocks: A query may have subqueries, which in turn may have
subqueries. The database manager separates this tree of subqueries into pieces,
called query blocks. Each query block has its own tables, columns, and rowcount.
EXPLAIN STRUCTURE, COST lets you look at combined information, or to
separately examine the information for each query block.

The PARENT field gives the logical parent for each query block, which is not
always obvious from the query itself. Sometimes, a query block has no correlation
to the query where it immediately appears, so it is executed only once, when some
ancestor query block is first entered, rather than many times.

The following example has a large number of query blocks, but references only one
table (many times). It illustrates the meanings of PARENT and ATOPEN, as well as
the method for decomposing COST values into separate costs for query blocks.

Here are results from STRUCTURE_TABLE for this query. (ROWCOUNT is not
shown.)

QUERYNO RINO QBLOCKNO PKGNAME PKGOWNER ROWCOUNT TIMES
------- ---- -------- ------- -------- -------- ---------

0 1 32 0.0E0

PARENT ATOPEN TIMESTAMP
------ ------ --------------------------

0 N 1999-08-26-09.49.26.001720

Figure 21. Results of the STRUCTURE_TABLE Query

QBLOCKNO

SELECT * FROM DEPT X *** 1 ***
WHERE DNAME > ALL

(SELECT DNAME FROM DEPT *** 2 ***
WHERE X.DNO = DNO
AND LOC = 32)

AND DNO =
(SELECT DNO FROM DEPT Y *** 3 ***
WHERE MGR =

(SELECT MGR FROM DEPT Z *** 4 ***
WHERE DNAME IN

(SELECT DNAME FROM DEPT *** 5 ***
WHERE NEMP = X.NEMP)

AND DNO =
(SELECT DNO FROM DEPT W *** 6 ***
WHERE NEMP > Z.NEMP
AND LOC IN

(SELECT LOC FROM DEPT *** 7 ***
WHERE DNAME = Y.DNAME))

AND LOC = 32)
AND Y.NEMP <

(SELECT AVG(NEMP) FROM DEPT *** 8 ***
WHERE Y.MGR = MGR));

Chapter 5. Improving Data Access Performance 149

Note: A ? indicates a NULL value.

Although query block 5 is physically nested within query block 4, it references
neither Y nor Z. Hence, its value can be computed once each time query block 3 is
first entered, with a particular X row.

Query block 5 is executed once, at open time of query block 3.

Query block 7 is physically within query block 6, but can be evaluated once when
the database manager first enters query block 4. Query block 7 does not need to be
re-executed again until new values for rows outside query block 4 are required.
This is different from query block 2, for example, which must be executed once for
each row of query block 1, rather than just once when execution of query block 1
begins.

TIMES may be a fraction (and may be less than 1) because it represents the
estimated number of times, per execution of a query block, that its dependent
query blocks will be executed.

The most important use of this query block breakdown involves computation of
costs for individual query blocks, instead of costs for the query as a whole. This is
described next.

Computing Block Costs: Here are the COST_TABLE entries for the query in the
preceding section:

QUERYNO RINO QBLOCKNO PKGNAME PKGOWNER TIMES PARENT
------- ---- -------- ------- -------- ------ ------

? 0 1 9.000 0
? 0 2 0.500 1
? 0 3 9.000 1
? 0 4 0.500 3
? 0 5 2.000 3
? 0 6 1.500 4
? 0 7 1.000 4
? 0 8 1.000 3

ATOPEN TIMESTAMP
------ --------------------------

N 1999-08-26-09.49.27.011719
N 1999-08-26-09.49.27.011719
N 1999-08-26-09.49.27.011719
N 1999-08-26-09.49.27.011719
Y 1999-08-26-09.49.27.011719
N 1999-08-26-09.49.27.011719
Y 1999-08-26-09.49.27.011719
N 1999-08-26-09.49.27.011719

Figure 22. Example STRUCTURE_TABLE

150 Performance Tuning Handbook

The cost displayed is the total cost for each query block, including costs associated
with all query blocks that are below it in the logical tree of query blocks. Thus, the
cost of executing the statement is approximately 3021. (For simplicity in the
calculations that follow, the values are shown as integers, but they need not be.)

The cost for executing the entire statement helps you understand the effect of the
statement on system load, but it hides the blocks of the query that are contributing
the most to the cost of the query.

A more useful set of figures might be those listed in the following table:

Note: The following table is only an example. It is not stored in the database, and
INDIVCOST and MULTCOST are not columns in COST_TABLE.

INDIVCOST represents the cost of one execution of the individual query block
itself, not including the costs of any of its subqueries. MULTCOST not only counts
the cost of the individual query block, but multiplies INDIVCOST by the number
of times the query block is expected to be executed in the query. This is a better
measure of the cost importance of the query block than either COST or
INDIVCOST. Notice that the MULTCOST column adds up to COST(1), the total
cost of the entire query.

QUERYNO RINO QBLOCKNO PKGNAME PKGOWNER COST
------- ---- -------- ------- -------- ---------

? 0 1 3021.000
? 0 2 10.000
? 0 3 324.000
? 0 4 24.000
? 0 5 4.000
? 0 6 6.000
? 0 7 10.000
? 0 8 10.000

TIMESTAMP

1999-08-26-09.49.27.011719
1999-08-26-09.49.27.011719
1999-08-26-09.49.27.011719
1999-08-26-09.49.27.011719
1999-08-26-09.49.27.011719
1999-08-26-09.49.27.011719
1999-08-26-09.49.27.011719
1999-08-26-09.49.27.011719

Figure 23. Results of COST_TABLE Query

QBLOCKNO INDIVCOST MULTCOST
-------- --------- ----------

1 15.000 15.000
2 10.000 90.000
3 14.000 126.000
4 11.000 891.000
5 4.000 36.000
6 6.000 243.000
7 10.000 810.000
8 10.000 810.000

Figure 24. Example COST_TABLE

Chapter 5. Improving Data Access Performance 151

Thus, the following formula can be used to derive INDIVCOST:

For example:
COST(3) = 324 = INDIVCOST(3) + 9*24 + 4 + 9*10,

so INDIVCOST(3) is 14.

Here is another example:
COST(4) = 24 = INDIVCOST(4) + 0.5*6 + 10,

so INDIVCOST(4) is 11.

This formula can be used to derive MULTCOST from INDIVCOST:

For example:
MULTCOST(7) = 10 * TIMES(3) * TIMES(1) = 810.

We do not multiply TIMES(4) into that product, because 4 is 7’s immediate parent,
and 7 is done AT OPEN of 4.

This demonstrates that the most important component of the estimated cost comes
from block 4, and you might choose indexes that make processing this query block
cheaper. By inspecting the query, or from the rows in REFERENCE_TABLE, you
might decide that indexes on one of DNAME, DNO or LOC might reduce the cost
of processing.

Estimating Sizes of Responses
Because ROWCOUNT (estimated number of rows in result, for queries, or of
affected rows, for updates and deletes) is stored in STRUCTURE_TABLE, it is easy
to gauge the estimated size of responses. If your structure includes a DELETE
CASCADE rule, EXPLAIN will include the cost of the cascading effects of a

COST(I) = INDIVCOST(I) + the sum, over all blocks J that have
I as logical parent, of either:

TIMES(I) * COST(J)

if J is not done AT OPEN of I, or

COST(J)

if J is done AT OPEN of I.

MULTCOST(I) =
INDIVCOST(I) * the product of TIMES(I) for

all logical ancestors of I,
if I is not done AT OPEN of its parent,

or
INDIVCOST(I) * the product of TIMES(I) for

all logical ancestors of I EXCEPT its parent,
if I is done AT OPEN of its parent.

152 Performance Tuning Handbook

DELETE. This can help you understand whether requests are reasonable, and
whether the statistics in the database catalog tables that estimate ROWCOUNT
seem up-to-date.

ROWCOUNT can also help determine space requirements when responses are
being stored in program data structures. However, ROWCOUNT, like all estimates
made by the system, is neither precisely accurate, nor even an upper bound on the
actual number of rows in the response.

Using EXPLAIN for Database Design
A systematic analysis of many statements in the workload of the system can help
the administrator plan the access paths for the database. The analysis should
consider costs when different combinations of indexes exist. It should also consider
the costs of performing updates, which are not reflected in the COST column of
COST_TABLE, and limits on space for indexes.

You may load the database with tables ordered on certain columns. Indexes on
such columns (called CLUSTERING indexes) enable the database manager to
maintain this ordering. Because the ordering of rows within tables strongly affects
the costs of execution, it may be worthwhile to reload the database to improve
performance. For each statement, join, ORDER BY, and GROUP BY columns may
be good candidates for ordering. Also, tables that are often joined might be
interleaved on join columns when the database is loaded.

If the cost of executing a statement (as determined by EXPLAIN COST, or by
running the statement) is higher than expected, a user or administrator may want
to look at the procedure that the database manager chose to execute that statement.
Building additional access paths or altering the layout of tables may be necessary
to achieve good performance for the statement. For example, if a relation scan, that
is ACCESS TYPE=‘R’, is performed on a large table, it may be better to build an
index on some column of that table; EXPLAIN REFERENCE provides hints about
which indexes might help. Adding new indexes makes updates more expensive, so
this decision must be considered carefully.

The PLAN_TABLE can also help the administrator determine which indexes are
not being used, so that he or she may decide which indexes might be dropped.
This assumes that the administrator knows not only the significant statements in
programs, but also the significant statements issued by users directly at their
terminals.

Modifying Table Designs to Enhance Performance
The primary consideration for the performance of access to data in the database is
the number of DASD input/output requests required to access the table rows. The
indexing and clustering techniques discussed in the previous sections enhance data
access performance by reducing DASD input/output requests without impacting
your logical data (table) design. However, other techniques can be used, if you are
willing to reconsider your logical table design.

Keeping Together Frequently Updated Columns: Keep frequently updated columns
close together in the same row. This helps to reduce the amount of data that has to
be logged because only the portion of the row from the first column updated to
the last column updated is recorded in the log.

Chapter 5. Improving Data Access Performance 153

Storing Joins of Tables (Redundant Data): The evaluation of a join of two tables
involves combining information from corresponding rows of the tables. Ideally, the
corresponding rows are on the same page. However, such clustering of rows from
separate tables is difficult to establish and maintain. Then, such clustering may not
be in the best interest of query accesses to the individual tables. Assuming tables
are clustered on different pages, multiple input/output requests are required to
evaluate the join of corresponding rows of the two tables.

For example, suppose the PROJECT table is clustered on DEPTNO. Retrieving
information about a department (a DEPARTMENT row) and its corresponding
project name (PROJECT rows), involves an access to one page to get the
DEPARTMENT row and another access to a different page to get the
corresponding PROJECT rows.

If most of such joins are done just to pick up the DEPTNAME information out of
the DEPARTMENT row, it may be worthwhile to store DEPTNAME in both tables.
This eliminates the need to join the two tables to obtain department names
(DEPTNAMEs) in retrieval of project names. This, in turn, eliminates accesses to
the DEPARTMENT table pages. This, in effect, reduces database input/output
requests by “storing the join” of the two tables.

You can use the ISQL INSERT with Subselect (Format 2) to combine tables.

The extreme case of “storing joins” is to replace both tables with the complete join
(SELECT *) of the two tables. This is rarely cost effective.

The cost of storing joins is the DASD space consumed and the extra activity
required to maintain the redundant data. Table 10 shows the cost of storing the
DEPTNAME column in the PROJECT table.

Table 10. Cost of Storing DEPTNAME in the PROJECT Table

Cost Factor Approximate Cost

DASD Storage The average column length of the DEPTNAME values times
the number of rows in PROJECT (approximately 20-bytes
per PROJECT row) or approximately a 35% increase in the
average row length for PROJECT

INSERT into PROJECT This requires the application to first access the PROJECT
table to obtain the DEPTNAME for inclusion in the
PROJECT row.

UPDATE of DEPTNAME This requires an update to the PROJECT table (but this is
not a frequent operation).

DELETE of a PROJECT No extra cost.

DELETE of a DEPTNAME No extra cost.

The cost of storing the DEPTNAME information redundantly is not excessive when
compared to the input/output cost for frequent selecting of department names
with queries on project information. The cost of DASD storage looks high (about a
35% increase in the size of the PROJECT table). However, a dbspace page will still
hold about 140 PROJECT rows. Because most departments have less than 140
project names, it is still reasonable to expect all project names for a department to
be on the same page for most departments.

Storing a Logical Table as Two Tables: Another way to reduce the number of
pages occupied by a table is to reduce the size of the table. There is not much you

154 Performance Tuning Handbook

can do to make a table smaller than it really is; however, you can achieve a similar
effect by separating frequently used columns from the infrequently used columns.

You can do this by splitting the table into two (or more) tables. One table would
contain the frequently used columns and the other(s) would contain the
infrequently used columns. You could then cluster the rows of frequently used
columns on a fewer number of pages.

The cost of splitting a table is the overhead added to queries that need all columns
(which, by definition, is infrequent). Splitting a table also produces redundant data.
That is, both (all) tables would have to contain the necessary column(s) to support
the join.

Chapter 5. Improving Data Access Performance 155

156 Performance Tuning Handbook

Chapter 6. Data Spaces Support for VM/ESA

Read this chapter before you implement VM Data Spaces Support (VMDSS). It
briefly describes the concept of data spaces, how they work, and how they can
improve performance; it outlines what options you have as a VMDSS user; and it
lists the prerequisite hardware and software.

Improving DB2 Server for VM Performance
VMDSS can dramatically increase the performance of your application server, by
using the Data Spaces facility found in VM/ESA. Data spaces give your
application server access to vast amounts of fast storage, and uses a high
performance DASD I/O system that has many advantages over the standard I/O
system (IUCV *BLOCKIO).

VMDSS can also distribute data across multiple dbextents, which helps to balance
the load on your system’s DASD and allows the operating system to read and
write data in parallel. Finally, you can monitor the performance of your DASD I/O
system for individual storage pools, and control the amount of system-resource it
uses.

Understanding VM Data Spaces
To understand how data spaces work and why they are an improvement over
existing systems, you first need to understand how VM uses its paging system to
manage virtual machine storage.

Standard Virtual Machine Storage
Each virtual machine within a VM system has its own virtual address space (also
called a primary address space) which is where you load and run programs.
Because this space is virtual, the operating system does not dedicate a piece of
main storage (also called real storage) to each virtual machine. You do not need to
buy 16MB of main storage for each 16MB virtual machine. Instead the operating
system only uses main storage for those parts of virtual storage you need right
now, or are likely to need in the near future.

These parts of storage are divided into 4KB (4096 byte) blocks called pages. When a
virtual machine needs a page that it has not accessed before, the operating system
retrieves it from its location on DASD, and loads it into an empty page in main
storage. (Before a virtual machine can use a page, it must be in main storage.)

When the operating system runs out of free pages in main storage, it moves the
least recently used (“oldest”) page to auxiliary storage to create a free space for a
new page. While the virtual machine is still active (logged on), the page will
remain in either main or auxiliary storage.

VM/ESA uses two types of auxiliary storage: system paging DASD, and optional
expanded storage. If your system has expanded storage, a page will be moved
there first. If expanded storage is full, the least recently used page in expanded
storage is moved to system paging DASD by way of main storage. When a virtual
machine needs a page that it has previously used, the operating system moves it

© Copyright IBM Corp. 1993, 2003 157

back to main storage from expanded storage, or from system paging DASD, if it is
not already in main storage.

This paging system accomplishes two things. First, it allows each virtual machine
to use much more storage than could be accommodated in main storage alone.
Second, it keeps the most recently used pages in the storage devices that are the
fastest to access. (The most recently used pages are the ones most likely to be used
again in the near future.) Main and expanded storage are much faster than system
paging DASD, and while expanded storage can be as fast as main storage, it is
effectively slower because the operating system still needs to move the page into
main storage before it can use it.

Data Spaces Storage
In VM/ESA, a program running in a machine’s primary space can dynamically
create additional address spaces for data, called data spaces. Like a virtual
machine’s primary address space, a data space is a virtual space with its real pages
in main storage, in expanded storage, and on DASD. However, unlike a primary
space, you cannot run a program in a data space. Also, in VMDSS the VM paging
system manages data space pages differently than virtual machine pages. This

Physical Storage

Expanded
Storage

4K

4K

DASD

Main Storage

Virtual Storage

Control Program (CP)

Virtual Machine

4K

Physical Move

Pointer From Virtual
to Physical Page

4K

4K

Figure 25. Standard Virtual Machine Storage

158 Performance Tuning Handbook

means that data spaces do not use system paging DASD. (Unmapped internal
dbspaces are the exception. Refer to “Unmapped Internal Dbspaces” on page 164).

With VMDSS, if there is no longer any free space in main or expanded storage, the
operating system will simply replace an old data space page in main or expanded
storage with a new page. If the old page is needed again, it is reread from its
original DASD source. If the old page was modified while it was in main storage,
the operating system ensures that the modified page is written back to its original
DASD source before it is overwritten.

This expands a machine’s effective virtual storage by providing additional
addresses for data, thereby making room in the primary space for larger programs.

Understanding how VMDSS uses Data Spaces

Reading Pages
Before a page of data can be used by the database manager, it must be located in
its data page buffers. The buffers are two areas of storage in your primary address

Physical Storage

Expanded
Storage

4K

4K

4K

4K

Main Storage

Virtual Storage

Physical Move

Pointer From Virtual
to Physical Page

Control Program (CP)DASD

Data Space
Virtual

Machine

4K

4K

4K

4K

4K

4K

4K

Figure 26. Data Spaces Storage

Chapter 6. Data Spaces Support for VM/ESA 159

space, which are created when you start the database manager. One area is
reserved for pages from the directory disk, and the other for pages from storage
pools. They are called the directory buffer pool and the local buffer pool, respectively.

With Data Spaces Support off: When the database manager needs a page, it
looks for it in its buffer pool. If it does not find it there, it uses a VM service called
IUCV *BLOCKIO to read the page from DASD into a free space in its pool.

Since the buffer pools are part of a primary address space, the operating system
treats them like part of the database manager code. If a buffer page is not
referenced frequently, it may be moved out to expanded storage or system paging
DASD by the VM paging system (for more information refer to “Asynchronous
Page Fault Processing” on page 197).

Figure 27. Page Movement in the Standard DASD I/O System. The database manager
explicitly directs the operating system to move pages to and from DASD with the IUCV
*BLOCKIO instruction. Once database machine pages are in main storage, they may be
moved out to either expanded storage or system paging DASD by the VM paging system.

160 Performance Tuning Handbook

With Data Spaces Support on: If the database manager cannot find a page in its
buffer pools, it “retrieves” it from a data space and stores it in a free buffer in its
pool. When this happens, the operating system actually does most of the work. If
the page is already in main storage, the database manager can move it directly to
the buffer pool. If the page is in expanded storage or in DASD, the operating
system moves it into main storage, and then copies it into a buffer. If your
processor supports Enhanced Move Page for VM, pages are moved from expanded
storage directly into a buffer.

This system has several advantages over the standard DASD I/O system, which
uses the IUCV *BLOCKIO service. In the latter, each page move must be explicitly
requested by the database manager, whereas here paging is done by the VM
paging system. This is faster and more efficient for several reasons, including:
v Shorter path length
v Asynchronous page fault processing
v Striping

Physical Storage

Expanded
Storage

4K

Main Storage

Virtual Storage

Control Program (CP)Storage
Pool

4K Data Space
Database
Machine

Virtual Move

Physical Move

Pointer From Virtual
to Physical Page

4K

4K

4K

Figure 28. Page Movement with Data Spaces Support. The figure shows a page being read
into main storage from DASD and then into a buffer pool. The page will be in two places in
main storage until either the data space page is released or the database manager releases
the buffer page (refer to “Releasing Pages” on page 162).

Chapter 6. Data Spaces Support for VM/ESA 161

v Blocking and prefetching
v Dynamic storage size management
v More asynchronous writes.

Refer to “Deciding When to Use Data Spaces” on page 197 for a detailed
description of each advantage.

Releasing Pages

With Data Spaces Support off: When the database manager needs a buffer for
another page, it overwrites the “oldest” unmodified page in the pool with a new
page. This is referred to as releasing a page or stealing a buffer.

With Data Spaces Support on: When the database manager needs a buffer for
another page, it does so in the same way that it would with Data Spaces Support
off.

When the operating system needs main or expanded storage for itself or for other
virtual machines, it may release data space pages from main storage. Pages may
also be released at the request of the database manager. There are several
parameters you can use to control when the database manager will start releasing
pages and which pages it will choose (refer to “Managing Main and Expanded
Storage” on page 165).

Modifying Pages

With Data Spaces Support off: While a page is in the buffer pool, the database
manager may modify it. To ensure the integrity of your data, a modified page will
not be released until it has been written back to DASD. If the database manager
needs a buffer occupied by a modified page, it first writes the page to DASD, then
loads the buffer with a new page.

With Data Spaces Support on: Instead of writing the modified page to DASD,
the database manager moves it to a data space.

Once again, the operating system does most of the work. It takes the modified
page from the database manager and moves it into main or expanded storage.

If the operating system needs a main storage page that is occupied by that page, it
will move it to expanded storage or to DASD before it uses the main storage page.
Similarly, if it needs an expanded storage page that is occupied by a modified
page, it will move the modified page to DASD by way of main storage.

Checkpoints
At checkpoints, the database manager writes a summary status record to the log
and makes sure that all modified buffer pages and status information are written
to DASD. This ensures that you have a permanent record of your data on DASD.

With Data Spaces Support off: The database manager writes all the modified
pages that are still in the buffer pools to DASD. Until it is finished it cannot serve
any users.

With Data Spaces Support on: The database manager moves modified pages that
are still in the buffer pools to data spaces. It then directs the operating system to
save all the data space pages that were modified by the database manager to
DASD. Until the operating system is finished, the database manager is forced to
wait: it cannot serve any users until the checkpoint is complete.

162 Performance Tuning Handbook

Storage Pools
Individual storage pools can be used with or without Data Spaces Support.

Note: A storage pool used only for internal dbspaces and which has a dbextent on
a virtual disk cannot be used with Data Spaces Support turned on for this
pool. For more information on virtual disk support for VM/ESA for internal
dbpsaces, refer to “Virtual Disk Support for VM/ESA for Internal Dbspaces”
on page 54.

For a description of how to turn on Data Spaces Support, refer to “Specifying
Either Data Spaces Support or Standard DASD I/O” on page 189. For information
on when to use data spaces with storage pools, refer to “Storage Pool” on page 199.

Internal Dbspaces
Internal dbspaces can be used with or without Data Spaces Support.

Mapped Internal Dbspaces
Since internal dbspaces are assigned to a specific storage pool, you can turn Data
Spaces Support on and off for them by turning support on and off for that pool.
This type of Data Spaces Support is similar to the support for any other storage
pool. Since the system assigns, or “maps” each data space page to a physical page
in a dbextent (contained in a storage pool), it is referred to as mapped support.

Figure 29. Storage Pools with Data Spaces Support on and off

Chapter 6. Data Spaces Support for VM/ESA 163

Unmapped Internal Dbspaces
VMDSS also supports unmapped internal dbspaces. Instead of mapping pages onto
dbextents, VM/ESA manages them as normal virtual storage paged to VM system
paging DASD (see Figure 30).
The internal dbspaces are still assigned to a storage pool, but they do not use any

DASD in that pool. Rather they use system paging DASD. To make up for this,
you must allocate more DASD to system paging. Refer to “VM/ESA Paging
DASD” on page 173.

For a description of how to turn on Data Spaces Support for internal dbspaces,
refer to “Using Data Spaces with Internal Dbspaces” on page 192. For information
on when to use data spaces with internal dbspaces, refer to “Internal Dbspaces” on
page 199.

Directory
You can use the directory with Data Spaces Support either on or off.

With Data Spaces Support off
The database manager stores directory data on the directory disk (B-disk) in
512-byte blocks and reads these blocks into the directory buffers from the B-disk as
necessary.

Figure 30. Unmapped and mapped internal dbspaces

164 Performance Tuning Handbook

With Data Spaces Support on
The directory uses data spaces as a storage pool would. If the database manager
cannot find a block of directory data in the directory buffers, it gets the block from
a data space. If the directory block is not already in main storage, the operating
system locates the page on the B-disk that contains the directory block and copies
it into main storage (each 4KB page contains eight 512-byte directory blocks).

Any DASD accessed through a data space must have a 4KB block size. This means
that if you want to use the directory with Data Spaces Support, you must reblock
the directory minidisk from 512-byte blocks to 4KB pages.

For information on how to reblock and start Data Spaces Support for the directory,
refer to “Using Data Spaces with the Directory” on page 193. For information on
when to use Data Spaces Support with the directory, refer to “Directory” on
page 199.

Managing Main and Expanded Storage
If unchecked, VMDSS may ask for large amounts of main and expanded storage
from the operating system. If it gets it, your database machine may be very fast
but other virtual machines in the system may perform poorly.

B Disk
Buffers

Data SpaceDASD

512

Directory Using
Data Spaces Support

Database 1

Database 2

Directory Not Using
Data Spaces Support

512

512512

4K
4K

Figure 31. The Database Directory with Data Spaces Support On and Off

Chapter 6. Data Spaces Support for VM/ESA 165

The operating system always maintains control of its main and expanded storage,
and will limit how much your database machine can use. If your machine tries to
use more storage than is available, the operating system will release some of your
pages (or pages from other virtual machines) from main or expanded storage to
make room for the new ones.

Instead of waiting for the operating system to release pages, you can instruct the
database manager to do so before your machine reaches its storage limits. Pages to
be released will be selected based on the parameters you set. You can also limit the
number of modified pages in main and expanded storage to improve checkpoint
processing.

The four primary parameters provided are:
v Target working storage size
v Working storage residency priority
v Checkpoint interval
v Save interval.

Target Working Storage Size Parameter
The target working storage size parameter controls the amount of main and
expanded storage that your database machine uses. When the amount of storage
reaches this target, the database manager will start to release certain data space
pages immediately after they have been copied into the buffer pools.

While you may exceed this target, the database manager will try to keep you at or
below it if possible. (Of course, you may never reach it if the operating system is
heavily loaded.)

You can set this parameter at start up time, or dynamically while the database
manager is running.

For information on how to change this parameter, refer to the DB2 Server for VSE
& VM Operation manual. For information on how to choose a value for it, refer to
“Choosing the Target Working Storage Size” on page 200.

Working Storage Residency Priorities
The database manager decides which data space pages to release based on the
working storage residency priority of each pool.

Priorities range from a value of 1 where all pages are released, to a value of 5
where none are. The priorities in between allow a page to be released depending
on whether your current working storage size is above or below your target, and
whether the page is an index or a data page.

For information on how to change storage priorities, refer to “Specifying Storage
Residence Priorities” on page 190. For information on how to choose a storage
priority, refer to “Choosing Storage Residence Priorities” on page 201.

The Checkpoint Interval
The checkpoint interval controls the duration between database checkpoints. At a
checkpoint, the database manager makes sure that all the modified pages in main
and expanded storage are written to DASD. (Refer to “Checkpoints” on page 162.)
If there are many modified pages, it can take a long time to complete the
checkpoint, and until it is complete the database manager cannot serve any users.

166 Performance Tuning Handbook

For information on how to change the checkpoint interval, refer to DB2 Server for
VSE & VM Operation. For information on how to choose a value for it, refer to
“Choosing the Checkpoint Interval” on page 203.

The Save Interval
To make checkpoint processing faster, you can limit the number of modified pages
in main and expanded storage by setting the save interval. When the number of
modified pages in a data space exceeds this parameter, the database manager
directs the operating system to save all the modified pages in that data space to
DASD. Unlike the save that occurs during checkpoint, the database manager can
continue to service users while this is being done.

For information on how to change the save interval, refer to the DB2 Server for VSE
& VM Operation manual. For information on how to choose a value for it, refer to
“Choosing the Save Interval” on page 203.

Striping
VMDSS will attempt to evenly distribute, or “stripe”, your data across all the
dbextents in a storage pool.

With striping switched off
The database manager allocates pages in a storage pool in sequence, usually
allocating all the pages in one dbextent before using the next dbextent.

Storage Pools

17-32

01-16

33-48

17-32

33-48

01-16

48
4KB

Pages

48
4KB

Pages

Striping Off

Striping On

Figure 32. A storage pool with striping switched on and off. The figure shows 48 4KB pages
written to DASD with striping on and off.

Chapter 6. Data Spaces Support for VM/ESA 167

With striping switched on
The database manager allocates 16 pages in sequence on each dbextent in the
storage pool. The operating system can then read and write the pages to and from
DASD in parallel. This may significantly improve DASD performance, depending
on how you configure your controllers, channels, and DASD. The optimal
configuration would include several dbextents in the storage pool, each on a
separate channel, controller, and physical storage device.

For a description of how to use striping, refer to “Turning Striping On and Off” on
page 190. For information on how to decide when to use it, refer to “Using
Striping” on page 204.

Performance Counters
Several counters are available that can help you monitor the performance of the
DASD I/O systems. Each storage pool has its own set of four counters. There is
also a set of four counters for unmapped internal dbspaces, and a set for the
directory. These counters are different depending on whether a particular
component is using data spaces. (Unmapped internal dbspaces always use them.)

For more information refer to the DB2 Server for VSE & VM Operation manual. For
information on performance measurements in general, refer to Chapter 2,
“Measuring Performance” on page 13.

Planning Structure by Storage Pool
You will need to design the structure of your database so that you can control it
effectively.

168 Performance Tuning Handbook

We suggest in DB2 Server for VM System Administration that you have one table per
dbspace. Also, you may want to assign only one dbspace to each storage pool
because many of the VMDSS configuration options are grouped by storage pool:
for example, you can turn Data Spaces Support and striping on and off for a
particular storage pool, set residence priorities by storage pool, and display
counters by storage pool. By associating one table per storage pool, you can
determine how a specific table will use the VMDSS functions.

However, you should not do this for every table in your database. If you have
several tables that you always access together, place each one in a dbspace and
assign all the dbspaces to one storage pool. Only special tables where performance
and control are critical should have their own storage pool.

Logical and Physical Mapping
When you start the database manager, you can choose whether it will map data
space pages to physical pages, physical mapping, or virtual pages, logical mapping
(see below). The type of mapping you choose will apply to all the storage pools in
the database that are using Data Spaces Support.

For a description of how to set the type of mapping, refer to the DB2 Server for
VSE & VM Operation manual. For more information on how to choose one type,
refer to “Choosing Logical or Physical Mapping” on page 205.

Table 1

Table 4

Dbspace 1

DbspacesStorage Pools

More Control

Less Control

Dbspace 2

Table 2

Dbspace 3

Storage Pool 1

Storage Pool 2 Dbspace 4

Table 3

Figure 33. Planning for Critical Tables

Chapter 6. Data Spaces Support for VM/ESA 169

Logical Mapping
This associates (maps) each logical page in a dbspace to a data space page. Since
the logical pages are mapped onto a data space in the order they appear in the
dbspace, a contiguous set of pages in a data space will correspond to a contiguous
series of pages in a dbspace. This is the default and recommended mapping for
most applications.

Physical Mapping
This maps each physical page in a dbextent to a data space page. Since the
physical pages are mapped onto a data space in the order they appear on DASD, a
contiguous series of pages in a data space will correspond to a contiguous series in
physical storage.

VSE Guest Sharing
Although VMDSS does not support application servers running in VSE, VSE users
can access a VMDSS database in VM/ESA through guest sharing. The database
manager runs in one virtual machine, while the VSE users run under a VSE guest
system in another virtual machine. Since VMDSS only affects the database
manager, VSE guest sharing users will benefit from the same performance
improvements as VM users.

5

2

4

1

6

5

2

3

Database 1

Database 2

Logical Mapping

Physical Mapping

Dbspace 1

Data Space

Data Space

6 5

4 23 1

6 5

4 23 1

6 5

4 23 1

6 5

4 23 1

Dbspace 2

3

1

6

4

Dbspace 1

Figure 34. Logical and Physical Mapping

170 Performance Tuning Handbook

For more information on VSE guest sharing refer to the DB2 Server for VM Program
Directory.

Enabling Requirements
This section describes the operating system, virtual machines, software, virtual
storage, and hardware you need to enable and operate VMDSS.

Operating System Overview
To support all of VMDSS’s functions, you must:
v Enable it in VM/ESA Version 2 Release 3 (or later)
v Configure your database machine for Extended Configuration (XC) mode.

Operating in Non-XC Mode
If you are not operating in XC mode, you will not be able to use:
v Data Spaces Support for storage pools and the directory
v Unmapped internal dbspaces
v Working storage residency priorities
v Data space performance counters
v The target working storage size parameter

You will be able to use striping, and the storage pool performance counters for the
standard DASD I/O system.

Virtual Machine Overview
This section describes the virtual machines you need to enable and operate
VMDSS.

MAINT Machine
The MAINT machine, or its equivalent, already exists in all VM systems. It is
suggested that you use this machine to update the CP directory, although you can
use any machine with write access to the database minidisks and authority to
update the CP directory.

SQLMACH Database Machine
The database machine, usually called SQLMACH, owns the database minidisks. It
acts as an application server, either locally or remotely, within a TSAF collection or
SNA network. For more information, refer to DB2 Server for VM System
Administration.

To support all VMDSS’s functions, you must configure the database machine to
operate in XC mode. Refer to “Step 2: Update the CP Directory” on page 177.

You can configure the database machine to operate in ESA mode, but you will then
only be able to use a subset of VMDSS’s capabilities, as described in “Operating in
Non-XC Mode”.

Software Requirements
To enable and operate VMDSS, you must first install DB2 Server for VM Version 7
Release 3.

Virtual Storage Requirements
This section describes the virtual storage the MAINT and SQLMACH machines
needed to use VMDSS.

Chapter 6. Data Spaces Support for VM/ESA 171

MAINT Machine
You do not require any additional virtual storage for the MAINT machine.

SQLMACH Database Machine
You may need to add additional virtual storage to your database machine. To
calculate how much:
1. Add 41KB for additional VMDSS code.
2. Add 20KB if you are using data spaces
3. Add 2.5KB for each data space required. Refer to Appendix B, “Determining

Number of Data Spaces” on page 211.
4. Add CUREXTNT X 16 bytes. CUREXTNT is the number of dbextents defined

during database generation.
5. Add MAXPOOLS X 8 bytes. MAXPOOLS is the maximum number of storage

pools that will ever be defined for a database.
6. Add MAXEXTNT X 8 bytes. MAXEXTNT is the maximum number of dbextents

that will ever be defined for a database.
7. Add MAXDBSPC X 8 bytes. MAXDBSPC is the maximum number of dbspaces

that will ever be defined for a database.

For example, consider a database generated with:
v CUREXTNT = 20
v MAXPOOLS = 256
v MAXEXTNT = 256
v MAXDBSPC = 10240

It is also currently using 10 data spaces for public and private dbspaces. The
database machine will use an additional 171KB of virtual storage:

41×1024 = 41,984
20×1024 = 20,480

2.5×10×1024 = 25,600
20×16 = 320
256×8 = 2,048
256×8 = 2,048

+ 10240×8 = + 81,920
174,400 = 174,400 = 170.40KB ∼ 171KB

Real Storage Requirements
While you do not require additional real storage (main or expanded storage) to use
VMDSS, any storage you add will be used by VMDSS to help improve the
performance of your database. Several facilities are included with VMDSS to help
you manage how much real storage you use. For more information refer to
“Managing Your Working Storage Size” on page 200.

DASD Storage Requirements
This section describes how much DASD space the VM system, the MAINT
machine, and the SQLMACH machine need in order to use VMDSS.

Fixed Block Storage Devices
The device number for a minidisk residing on an FBA DASD must start and end
on a 4K block boundary. The starting FBA block number and the ending FBA block
number +1 of the minidisk must be evenly divisible by 8. Refer to the MAPMDISK
information in the VM/ESA: CP Programming Services manual.

You can turn Data Spaces Support off for the Storage Pool residing on the FBA
device not on a 4K block boundary by updating the storage pool specification file.

172 Performance Tuning Handbook

To continue using an FBA device, use DDR or use the SQLCDBEX EXEC to copy
the extent to a new minidisk that is formatted on a 4K block boundary. Alternately,
you can move to a non-FBA device using the SQLCDBEX EXEC. Refer to the DB2
Server for VM System Administration for details on how to use the SQLCDBEX
EXEC.

VM/ESA Paging DASD
Before you can use separate internal dbspaces (unmapped), you may need to
allocate more DASD for VM system paging.

Attention: If VM runs out of system paging DASD, CP will abend if it does not
have sufficient spool DASD to accommodate the overflow.

To calculate the maximum number of additional cylinders you need for unmapped
internal dbspaces, divide the number of pages currently in all your internal
dbspaces by the conversion ratio for your type of DASD, listed in Table 11 and
round up to the nearest integer.

Table 11. Additional Paging Cylinders

DASD Type 3350 3375 3380 3390 9345

Conversion Ratio

(Blocks per Cylinder)

120 96 150 180 150

For example, if you are currently using 80 internal dbspaces of 1024 pages each for
your internal dbspaces, the calculation for 3380 DASD is as follows:

80*1024/150=546.133 cylinders
∼547 cylinders

Thus, you may need as many as 547 additional 3380 cylinders if you want to use
unmapped internal dbspaces. Remember, that the number you calculate will be the
maximum you will ever need. While you may actually use far fewer cylinders on a
day to day basis, you still need enough cylinders in either system paging DASD or
spool DASD to accommodate your peak requirements. If you cannot supply this
maximum value, you can still use mapped data spaces.

To assess your peak requirements, assign your internal dbspaces to their own
storage pool and use mapped internal dbspaces, refer to “Mapped Internal
Dbspaces” on page 192. You can then use the SHOW POOL operator command
(refer to DB2 Server for VSE & VM Operation) to see how many pages your
production system is really using for internal dbspaces. This will probably be
much lower than your maximum calculation. You can then allocate the number of
pages the database manager is really using for the internal dbspace pool to system
paging DASD and start using unmapped internal dbspaces (refer to “Unmapped
Internal Dbspaces” on page 192).

Attention: The SHOW POOL command only displays the number of pages a pool
is currently using.

You must carefully monitor page usage over a relatively long period until you are
confident that the database manager will not use more pages than you will allocate
to system paging DASD. Also, remember to continue monitoring SHOW POOL
when you start using unmapped internal dbspaces in case your requirements
increase.

Chapter 6. Data Spaces Support for VM/ESA 173

SQLMACH Database Machine
VMDSS requires a minimum amount of free space on the system minidisks.

System Disks: The system disks are the service and production minidisks or SFS
directories of the SQLMACH database machine. No additional DASD is required.

Database Disks: There are three types of database disks:
v Directory
v Log
v Data Extent.

While there is no change to the amount of DASD you require for your log or data
extent disks, the DASD you require for the directory disk may change depending
on how you use VMDSS.

If you use Data Spaces Support with the directory, you must move the directory
from a disk formatted with 512-byte blocks to one with 4KB blocks. Since 4KB
blocks use real DASD storage more efficiently than do 512-byte blocks, you do not
need as much real DASD storage.

To calculate the number of cylinders you need, multiply the number currently in
your directory disk by the conversion ratio for your type of DASD, listed in
Table 12 and round up to the nearest integer.

Table 12. Conversion from 512 byte to 4K byte blocks

DASD Type 3350 3375 3380 3390 9345

Conversion Ratio 0.85 0.63 0.57 0.51 0.52

For example, if you are currently using 34 cylinders of 3380 DASD for your
directory disk, the calculation is as follows:

34·0.57=19.38 cylinders
∼20 cylinders

Thus, you will only need a 20 cylinder disk after you move to 4KB pages.

You can also move the directory from a 4KB-block disk to a 512-byte-block disk. To
calculate how many cylinders you will then need, divide the number you need
when the directory is in 4KB blocks by the conversion and round up to the nearest
integer.

Hardware Requirements
To support all of VMDSS’s functions you must enable it in a ESA/390 processor
within the ES/9000® family that supports VM/ESA in XC mode.

Before Enabling
This section describes what you need to read and what decisions you should make
before you enable VMDSS.

Program Directory for DB2 Server for VM
Study the DB2 Server for VM Program Directory which contains important service
information and special instructions.

174 Performance Tuning Handbook

Preventive Service Planning
Before you enable VMDSS, you should check whether there is any additional
Preventive Service Planning (PSP) information that you should know; check with
your IBM Support Center or use IBMLINK (ServiceLink).

This program release is maintained through the use of PTF tapes. An updated
Version or Release replaces the entire program code; a PTF tape only replaces the
changed portion of the program code.

For more information, refer to the DB2 Server for VM Program Directory.

Corrective Service
Follow the same corrective service procedures for VMDSS that you follow for DB2
Server for VM. For more information, refer to the DB2 Server for VM Program
Directory.

Enabling Options
You have several options when you enable VMDSS. Read the following to help
you evaluate which one you should use.

Using in a Production System
If you are using VMDSS on an existing production database, you may want to
carefully control which, if any, VMDSS functions you use. While the default
settings will turn all the functions on (with the exception of Data Spaces Support
for the directory), you can reset your operating parameters to turn everything off
before you restart your database.

With all the VMDSS functions off, you can ensure that your production system is
working as it was before you installed VMDSS. You can then selectively turn on
various components (you may need to stop and restart the database manager) and
monitor their effect.

Disabling Data Spaces Support
You can move your database manager to an operating system or hardware
platform that does not support VMDSS but does support DB2 Server for VM. You
may need to do this if you have a backup system that does not meet all of
VMDSS’s requirements.

Complete the steps listed in “Disabling VMDSS” on page 188; then, move your
database manager following your normal procedures.

Resaving DB2 Server for VM in Saved Segments
If you previously stored the DB2 Server for VM DBSS component in a saved
segment, you can resave it after you enable VMDSS. Because VMDSS only affects
the DBSS component, and does not significantly increase its size (41KB), you can
use the default saved segment definition included with the base product. Refer to
“Step 10: Resave the DBSS Saved Segment” on page 181 for a description of how to
use VMSES/E and the ARISAVES EXEC to resave the DBSS component in a saved
segment.

Enabling
Perform the steps in this chapter to enable the VMDSS code onto the service and
production disks and to configure a database machine (SQLMACH) for VMDSS.

Chapter 6. Data Spaces Support for VM/ESA 175

Pre-Enable Checklist
Before beginning, make sure that you have completed the following:
__ 1. Read Chapter 1, “Improving Performance”.
__ 2. Make sure that you have installed DB2 Server for VM Version 7 Release 3

with at least one 7.3.0 database available. You need this database to verify
the enabling of VMDSS.

__ 3. Decide whether you will configure the database machine for ESA or XC
mode.

__ 4. Make sure you have enough space on DASD to complete every step.
__ 5. Decide whether you will resave DB2 Server for VM components in saved

segments after you enable.
__ 6. Read the DB2 Server for VM Program Directory to check for any prerequisite

Program Temporary Fixes (PTFs) that need to be installed.
__ 7. See whether there is any additional Preventive Service Planning (PSP)

information that you should be aware of. Check with your IBM Support
Center or use IBMLink (ServiceLink).

Enable Checklist

1. u Log onto the MAINT Machine (177)
2. V Update the CP Directory (177)
3. u Log off the MAINT Machine (178)
4. u Log onto the SQLMACH Machine (178)
5. u Archive your Database (178)
6. u Activate VMDSS (179)
7. u Log off the SQLMACH Machine (179)
8. u Log onto the DB2 for VM Installation User ID (5697F42X) (179)
9. u Link-Edit the Load Library (179)

10. V Resave the DBSS Saved Segment (181)
a. V Prepare to Build the DB2 for VM Segments (181)
b. V Build the DB2 for VM Segments (182)
c. V Create a Bootstrap Package (182)
d. V Restart the Application Server (184)

11. u Log off the DB2 for VM Installation User ID (184)
12. u Log onto the SQLMACH Machine (184)
13. V Verify the Installation (184)

a. V Verify non-XC Mode Installation (184)
b. V Verify XC Mode Installation (186)

14. V Optional System Activities (187)

Notes:

v Perform the steps in order.

v Mandatory steps are preceded by squares (u)
v Conditional steps are preceded by circles (V)

v Page references appear in parentheses.

176 Performance Tuning Handbook

Backing Up, Configuring and Enabling Your Database Machine
Perform the following steps to:
v ensure that you have a current backup of your database
v update your database machine for VMDSS
v enable the VMDSS code.

Step 1: Log onto the MAINT Machine

Log onto the MAINT machine.

Step 2: Update the CP Directory
Skip this step if you plan to configure your database machine for ESA mode or if
you already updated the CP directory for XC mode when you planned the initial
install of DB2 Server for VM.

To use all the VMDSS functions, you must add the statements shown in Figure 36
on page 178 to the CP directory entry for the database machine.

Storage
Pool

Database

Application Server

Communication Link (IUCV or APPC/VM)

MDISK LINK

Database Manager

Database
Machine

User
Machine

Applications

Application Requester

Interactive SQL

Preprocessors

DBS Utility

User
Machine

Applications

Application Requester

Interactive SQL

Preprocessors

DBS Utility

Figure 35. Typical DB2 Server for VM System Setup

Chapter 6. Data Spaces Support for VM/ESA 177

Statement 1: MACHINE XC
Specifies that the database machine will simulate the VM/ESA XC
architecture.

Statement 2: XCONFIG ACCESSLIST ALSIZE 1022

Statement 3: XCONFIG ADDRSPACE MAXNUMBER 1022 TOTSIZE 2044G
The ALSIZE and MAXNUMBER parameters in these two statements
specify the maximum number of data spaces that the database machine
can create and have existing concurrently. For VMDSS, ALSIZE and
MAXNUMBER should be set to the same value.

The value in this example, 1022, is the upper limit for these parameters.
Since there is no cost in setting this value high, the value 1022 should be
acceptable for most applications. To precisely calculate the maximum
number of data spaces that your database machine will use, refer to
Appendix B, “Determining Number of Data Spaces” on page 211.

TOTSIZE specifies the maximum total size, in bytes, of all the data spaces
that the database machine can create and have existing concurrently.

Since each data space is 2GB, your maximum total size for 1022 data
spaces will be 2044GB. For a description of how to precisely calculate the
maximum total size of the data spaces for your database, refer to
Appendix B, “Determining Number of Data Spaces” on page 211.

For more information on the MACHINE and XCONFIG directory statements, refer
to the VM/ESA: Planning and Administration.

When you have finished adding the CP directory control statements for the
database machine, update the CP directory using your current operating
procedures.

Step 3: Log off the MAINT Machine

Log off the MAINT machine.

Step 4: Log onto the SQLMACH Machine
Log onto the database machine (SQLMACH). Refer to “SQLMACH Database
Machine” on page 174 for information on this virtual machine.

Step 5: Archive your Database

While installing VMDSS does not affect the data in your database, it is always
good practice to archive your database before installing new code or applying
service. If you do not archive your database on a regular basis, LOGMODE=Y or N
(Y is the default), skip this step.

If your application server is currently running with LOGMODE=L or A, you can
perform a user archive or a database archive. To create a database archive, type:

SQLEND ARCHIVE

1 MACHINE XC
2 XCONFIG ACCESSLIST ALSIZE 1022
3 XCONFIG ADDRSPACE MAXNUMBER 1022 TOTSIZE 2044G

Figure 36. Additional Directory Control Statements for the Database Machine

178 Performance Tuning Handbook

As with any archive, the database manager requests that you mount the required
tape volume to contain the database archive (or log archive, if LOGMODE=L, and
you are not archiving the log to disk). The database manager then creates the
archive. When the database manager prompts you to mount and ready the archive
volume, you should respond with the virtual device number. Unless you have
issued your own CMS FILEDEF command before starting the database manager,
the virtual device number for database archives is 181. The virtual device number
for log archives is 183.

For more information on the SQLEND command, or information on user archives,
refer to DB2 Server for VM System Administration.

Step 6: Activate VMDSS
To enable (or remove) the VMDSS code, perform the following steps on the
database machine user ID. These steps must be performed on every database
machine on which you wish to use VMDSS.
1. Be sure you are logged on to the database machine (SQLMACH).
2. Stop the application server using your normal operating procedures.
3. Ensure that the database machine production disk and service disk are linked

in write mode. If not, enter:
LINK machid 195 195 W
LINK machid 193 193 W

4. Access the production disk with file mode Q and the service disk with file
mode V.

ACCESS 195 Q
ACCESS 193 V

If you are using SFS directories instead of minidisks, access them with file
modes Q and V.

5. Run the ARISDBMA EXEC to identify whether you want DSS code enabled on
your production disk. Its syntax is:

Specify the following parameters:

Y Enable the DSS code. This is the default.

N Disable the DSS code.

For example, to identify that you want to enable or disable the DSS code, type:
ARISDBMA DSS(Y)
ARISDBMA DSS(N)

Step 7: Log off the SQLMACH Machine
Log off the database machine.

Step 8: Log onto the DB2 for VM Installation User ID (5697F42X)
Log onto the DB2 Server for VM Installation user ID, 5697F42X.

Step 9: Link-Edit the Load Library
Rebuild the database manager with VMDSS by link-editing the DBSS component
in the ARISQLLD loadlib.

�� ARISDBMA DSS(Y)
N

��

Chapter 6. Data Spaces Support for VM/ESA 179

1. Make sure you have read access to the VMSES/E code (MAINT 5E5 disk) and
read/write access to the Software Inventory disk (MAINT 51D) or SFS
directory.

2. Establish the access order.
vmfsetup 5697F42X {DB2VM|DB2VMSFS}

5697F42X is the PPF that was shipped with the product. If you have your own
PPF override, substitute that name for 5697F42X shown in this command. You
also need to substitute your PPF name in the VMSES/E commands in any
subsequent steps.

Use DB2VM for installing on minidisks or DB2VMSFS for installing in Shared File
System directories.

3. Rebuild DB2 Server for VM DBSS member or component in the ARISQLLD
LOADLIB. You must do both steps 3a and 3b.
a. Rebuild the ARISQLLD LOADLIB.

vmfbld ppf 5697F42X {DB2VM | DB2VMSFS} ARIBLLLD ARISQLDS (all
vmfview build

Use DB2VM for installing on minidisks or DB2VMSFS for installing in Shared
File System directories.

ARIBLLLD is the name of the VMSES/E build list used to build the
ARISQLLD LOADLIB.

Review the build message log ($VMFBLD $MSGLOG). If necessary, correct
any problems before you continue. Use the F2 key, ALL, to review all of the
messages.

Note: The following message is normal if you are NOT running DB2 Server
for VM with the DB2 Data Spaces Support:
VMFLLB2074I Part xxxxxxx TXT in object ARISQLDS

in build list ARIBLLLD
EXEC will be ignored

b. Build the related files.
vmfbld ppf 5697F42X {DB2VM | DB2VMSFS} (serviced
vmfview build

Use DB2VM for installing on minidisks or DB2VMSFS for installing in Shared
File System directories.

Review the build message log ($VMFBLD $MSGLOG). If necessary, correct
any problems before you continue.

4. Link and access the database machine user ID production and service disks or
SFS directories.
link SQLMACH 195 295 MR
acc 295 l
link SQLMACH 193 293 MR
acc 293 m

You will be prompted for the password to the disks.

Substitute your minidisk addresses, if different.

Substitute in the appropriate SFS directory names.

180 Performance Tuning Handbook

You also need to substitute your minidisk addresses or SFS directory names in
the VMSES/E commands in any subsequent steps.

5. Copy the new ARISQLLD LOADLIB to SQLMACH’s production and service
disk or directory.
a. If installing on minidisks, enter the following commands:

access 195 i
vmfcopy arisqlld L* i = = l (prodid 5697F42X%DB2VM olddate replace
access 193 j
vmfcopy arisqlld L* j = = m (prodid 5697F42X%DB2VM olddate replace

The VMFCOPY command updates the VMSES PARTCAT file on the
production disk (195) and the service disk (193).

b. If installing using Shared File System, enter the following commands:
access 5697F42X.sql.production i
access SQLMACH.sql.production l
vmfcopy arisqlld L* i = = l (prodid 5697F42X%DB2VM olddate replace
access 5697F42X.sql.service j
access SQLMACH.sql.service m
vmfcopy arisqlld L* j = = m (prodid 5697F42X%DB2VM olddate replace

The VMFCOPY command updates the VMSES PARTCAT file.

Step 10: Resave the DBSS Saved Segment

If you are using a saved segment for DBSS then you need to resave it. Use the
following steps to resave the saved segment, otherwise continue with Step 11.

Step 10a. Prepare to Build the DB2 Server for VM Segments: Before building the
new DB2 Server for VM segment, following these steps:
1. Clear your virtual machine by entering the following IPL command. This

command bypasses the execution of the system profile (SYSPROF EXEC) and
without loading the installation saved segment (CMSINST).
ipl cms parm clear nosprof instseg no

Note: ** DO NOT press ENTER at the VM READ!**

2. Bypass the execution of the PROFILE EXEC by entering the following
command:
access (noprof

3. Access the VMSES/E code by entering the following command:
access 5e5 b

4. Link and access the Software Inventory disk by entering the following
commands:
link MAINT 51d 51d mr
access 51d d

5. Access the database machine, SQLMACH, production minidisk or SFS directory
by entering the following command:
access vdev k

vdev is the address the database machine production minidisk is linked as by
the installation user ID, or vdev is the name of the database machine production
SFS directory. You need write access to this minidisk or directory.

6. Before running the VMFBLD command to save the segments, activate the user
language files by entering the following CMS command:
set language ameng (add ari user

Chapter 6. Data Spaces Support for VM/ESA 181

7. Release the database machine, SQLMACH, production minidisk or SFS
directory by entering the following command:
rel k

Step 10b. Build the DB2 Server for VM Segments: To build the DB2 Server for
VM segments, enter the following command:
vmfbld ppf segbld esasegs segblist SQLSQLDS (serviced

If you are using a different name for the DBSS saved segment substitute your
name in place of SQLSQLDS in the VMFBLD command. The ARISAVES is called
by the VMFBLD command.

Step 10c. Create a Bootstrap Package: If you responded YES when prompted by
the ARISAVES EXEC to use the saved segments you that loaded as defaults, you
do not have to do this step, as ARISAVES would have generated a default
bootstrap package (SQLDBA) for you. Continue with “Step 11: Log off the DB2 for
VM Installation User ID” on page 184.

If you answered NO to the prompt, you must run the SQLGENLD EXEC to create
a bootstrap package for the saved segments you loaded. To run SQLGENLD EXEC,
you must log off of the installation user ID and log on to the database machine.

Because SQLGENLD prompts you for certain information about the new bootstrap,
you should determine the contents of the bootstrap package before you run the
SQLGENLD EXEC. For more information, see “Contents of a Bootstrap Package”.

Contents of a Bootstrap Package: A bootstrap package contains modules created by
the SQLGENLD EXEC. SQLGENLD places the modules on the production
minidisk (Q-disk). Note that, even though the DBSS and RDS components are
loaded in different saved segments, there is only one bootstrap module for them.
All of those components are needed to run the DB2 Server for VM system code in
a database machine. Thus, one bootstrap identifies the location of the DBSS and
RDS components.

Not all modules are needed because the database manager uses defaults when a
module of a bootstrap is missing. For more information on the defaults, see “Using
SQLGENLD” on page 183.

Figure 37 summarizes the different bootstrap modules that you can have.

The dcssid (saved segment ID) is the name you give to the bootstrap package with
SQLGENLD. It is the dcssid that you use in the DCSSID parameter of various
IBM-supplied execs (such as, SQLSTART or SQLINIT). When dcssid is specified in a

Resource adapter
DBSS/RDS ...
ISQL

dcssid

dcssid

dcssid

SQLRMBT
SQLDBBT
SQLISBT

Q
Q
Q

fn ft fm

Figure 37. Bootstrap Package Contents

182 Performance Tuning Handbook

DCSSID parameter, the bootstrap package production disk entries are copied to the
execution machine’s A-disk as shown in Figure 38.

The resource adapter bootstrap is incomplete when it is copied to the A-disk of the
user machine. It is completed when the user runs the SQLINIT EXEC, which
supplies the missing server name to be accessed.

Use SQLGENLD to generate bootstrap packages for running the database manager
in saved segments. You cannot use this EXEC to generate a bootstrap package for
running the database manager in a default mode. The SQLDBA bootstrap package
identifies the default mode, which can be default saved segments (if you have
defined them) or user free storage.

Using SQLGENLD: When you identify the bootstraps to be contained in the
package you are creating and the location where you want them to load the code,
you can use the SQLGENLD EXEC. To use SQLGENLD, obtain read access to the
service minidisk by entering the following command:
access 193 v

You can run SQLGENLD only from the database machine:
sqlgenld

When it runs, the SQLGENLD EXEC obtains both read and write access to the
production minidisk. Both kinds of access are available to a defined database
machine. You should ensure that no other machine has write access to the
production minidisk when you run SQLGENLD.

If you are running SQLGENLD from a database machine that does not own the
production minidisk, SQLGENLD prompts you for the write password.

The SQLGENLD EXEC prompts you for dcssid. This is the name of the new
bootstrap package. If a bootstrap package with this name already exists,
SQLGENLD replaces the existing bootstraps. The EXEC does not let you replace
the initial SQLDBA bootstrap package. The SQLDBA bootstrap package is used as
a default by many IBM-supplied execs. Do not modify or erase the SQLDBA
bootstrap package.

When you supply dcssid, SQLGENLD prompts if you want to create a resource
adapter bootstrap, a DBSS/RDS bootstrap, and an ISQL bootstrap. For each
bootstrap that you choose to create, you are prompted for the saved segment name
(or, in the case of DBSS/RDS, names). The name is the name you used in the
DEFSEG command.

Production | | Execution Machine
Q-disk Entry | | A-disk Entry

--------------------- | |---------------------
FN FT FM | COPY/RENAME | FN FT FM

------ ------- -- |-------------| -------- ------ --
dcssid SQLRMBT Q | TO | ARISRMBT MODULE A
dcssid SQLDBBT Q | TO | ARISDBBT MODULE A
dcssid SQLISBT Q | TO | ARISISBT MODULE A

Figure 38. Bootstraps Copied to the Execution Machine A-disk

Chapter 6. Data Spaces Support for VM/ESA 183

The database manager prompts if you want this bootstrap package to be the
default DCSSID for user machines that have a link to this production (Q) disk.
Specify this as the default if you have users linking to this Q-disk who will be
accessing a database machine that does not own this production (Q) disk, and if
you do not have saved segments identified by the SQLDBA bootstrap package.
Because the database manager provides a default DCSSID, these users are not
required to specify the DCSSID parameter when they run the SQLINIT EXEC.

Note: The SQLDCSID DEFAULT file cannot be used by a user if the file resid
SQLDBN exists on the production (Q) disk they are linked to. This is
because the default bootstrap package for a database is identified in the resid
SQLDBN file. The SQLDCSID DEFAULT file is used by users that are
accessing an application server other than the one that owns the Q-disk to
which they are linked.

If you say that you want this bootstrap to be the default for users with a link to
this production (Q) disk, a new file SQLDCSID DEFAULT will be created on the
production (Q) disk to contain the default DCSSID. When the bootstraps are
created, SQLGENLD places them on the production minidisk. They are then erased
from the database machine A-disk.

Step 10d. Restart the Application Server: Restart the application server in
multiple user mode with the required PROTOCOL parameter.

Step 11: Log off the DB2 for VM Installation User ID
Log off the DB2 Server for VM installation machine (if not already done).

Step 12: Log onto the SQLMACH Machine
Log onto the SQLMACH machine (if not already done).

Step 13: Verify the Installation
You must now verify that you enabled the VMDSS code successfully.

Perform either Step 13A or 13B, depending on whether you chose to enable in
non-XC mode or XC mode.

Step 13A: Verify non-XC Mode Installation
Check that your database machine is not in XC mode by typing #cp query set. For
example:

#cp query set
cp query set
MSG ON , WNG ON , EMSG ON , ACNT OFF, RUN OFF
LINEDIT ON , TIMER ON , ISAM OFF, ECMODE ON
ASSIST OFF , PAGEX OFF, AUTOPOLL OFF
IMSG ON , SMSG ON , AFFINITY NONE , NOTRAN OFF
VMSAVE OFF, 370E OFF
STBYPASS OFF , STMULTI OFF 00/000
MIH OFF , VMCONIO OFF , CPCONIO OFF , SVCACCL OFF , CONCEAL OFF
MACHINE XA, SVC76 CP, NOPDATA OFF, IOASSIST OFF
CCWTRAN ON

If you are in XC mode (MACHINE XC), go to “Step 2: Update the CP Directory”
on page 177 and check that the CP directory entries listed in that step are not

included in your database machines directory entries.

Start the application server in multiple user mode by entering:

184 Performance Tuning Handbook

SQLSTART DB(server_name)

Replace server_name with the name of your database. This name is specified in the
IUCV *IDENT statement contained in the CP directory for the database machine. For
more information on the SQLSTART command, refer to the DB2 Server for VSE &
VM Operation manual.

For example:

sqlstart db(sqldba)
ARI0717I Start SQLSTART EXEC: 05/28/99 11:05:52 EDT.
ARI0320I The default database name is SQLDBA....
ARI2015I The storage pool specification input file was not

found. The database manager will use the default values.
ARI2020I The machine is not in XC-mode.

Data spaces will not be used.
ARI2027I No storage pools will use data spaces.
ARI0283I Log analysis is complete.
ARI0282I LUW UNDO is completed.
ARI0281I LUW REDO is completed.
ARI0143I The application server has been initialized

with the following values:
CHARNAME = INTERNATIONAL, DBCS = NO, CHARSUB = SBCS,
CCSIDSBCS = 500, CCSIDMIXED = 0, CCSIDGRAPHIC = 0.

ARI0134I Application server FTMACH6 has been
identified as a global resource.

ARI0060I database manager initialization complete.
ARI0045I Ready for operator communications.

Note, the underlined messages show that VMDSS is installed. Because the database
machine is not in XC mode, the database manager will use the standard DASD
I/O system instead of Data Spaces Support. To confirm this, type counter pool 1.
You should see something like the following:

counter pool 1
Counter values at DATE=’05-28-99’ TIME=’11:14:35’.

Pool No. 1: *BLOCKIO
Pages looked at in the buffer LBUFLOOK: 121
Page reads PGREAD : 26
Page writes PGWRITE : 0
IUCV *BLOCKIO I/O requests IUCVBIO : 26
ARI0065I Operator command processing is complete.

If *BLOCKIO appears, this tells you that the database manager is using the standard
DASD I/O system for storage pool 1.

While you cannot use data spaces in non-XC mode, you can use striping. Since it is
the default setting for the database manager to use striping, you should see
something like the following if you type show pool 1:

Chapter 6. Data Spaces Support for VM/ESA 185

show pool 1

POOL NO. 1: NUMBER OF EXTENTS = 2 BLK STR

EXTENT TOTAL NO. OF NO. OF NO. OF %
NO. PAGES PAGES USED FREE PAGES RESV PAGES USED
1 855 77 778 9
2 855 0 855 0

TOTAL 1710 77 1633 20 7
ARI0065I Operator command processing is complete.

If STR appears, this tells you that the database manager is using striping for storage
pool 1.

Continue with “Step 14: Optional System Activities” on page 187.

Step 13B: Verify XC Mode Installation
Check that your database machine is in XC mode by typing #cp query set. For
example:

#cp query set
CP QUERY SET
MSG ON , WNG ON , EMSG ON , ACNT OFF, RUN OFF
LINEDIT ON , TIMER OFF , ISAM OFF, ECMODE ON
ASSIST OFF , PAGEX OFF, AUTOPOLL OFF
IMSG ON , SMSG ON , AFFINITY NONE , NOTRAN OFF
VMSAVE OFF, 370E OFF
STBYPASS OFF , STMULTI OFF 00/000
MIH OFF , VMCONIO OFF , CPCONIO OFF , SVCACCL OFF , CONCEAL OFF
MACHINE XC , SVC76 CP, NOPDATA OFF, IOASSIST OFF
CCWTRAN ON

If you are not in XC mode, return to “Step 2: Update the CP Directory” on
page 177 and check the CP directory entries for your database machine.

Start the application server in multiple user mode by entering:
SQLSTART DB(server_name)

Note: A storage pool used only for internal dbspaces and which has a dbextent on
a virtual disk cannot be used with data spaces turned on for that pool. This
storage pool must be specified with the BLK and SEQ options in the storage
pool specification file. See Appendix A, “Storage Pool Specification File
Format” on page 207.

Replace server_name with the name of your database. This name is specified in the
IUCV *IDENT statement contained in the CP directory for the database machine. For
more information on the SQLSTART command, refer to the DB2 Server for VSE &
VM Operation manual.

For example:

186 Performance Tuning Handbook

sqlstart db(sqldba)
ARI0717I Start SQLSTART EXEC: 05/28/99 10:51:06 EDT.
ARI0320I The default database name is SQLDBA....
ARI0015I SEPINTDB parameter value is Y.
ARI0016I SAVEINTV parameter value is 10.
ARI0015I MAPPING parameter value is L.
ARI0016I TARGETWS parameter value is 32.
ARI2015I The storage pool specification input file was not

found. The database manager will use the default values.
ARI2026I Some or all storage pools will use data spaces.
ARI0283I Log analysis is complete.
ARI0282I LUW UNDO is completed.
ARI0281I LUW REDO is completed.
ARI0143I The application server has been initialized

with the following values:
CHARNAME = INTERNATIONAL, DBCS = NO, CHARSUB = SBCS,
CCSIDSBCS = 500, CCSIDMIXED = 0, CCSIDGRAPHIC = 0.

ARI0134I Application server FTMACH6 has been
identified as a global resource.

ARI0060I database manager initialization complete.
ARI0045I Ready for operator communications.

Note, the underlined messages show that VMDSS is installed and, because the
database machine is in XC-mode, the database manager is using Data Spaces
Support. To confirm this, type counter pool 1. You should see something like the
following:

counter pool 1
Counter values at DATE=’05-28-99’ TIME=’10:59:24’.

Pool No. 1: Data Spaces
Pages looked at in the buffer LBUFLOOK: 121
Pages moved from DS to buffer DSREAD : 26
Pages moved from buffer to DS DSWRITE : 0
DS page fault notifications DSFAULT : 6
ARI0065I Operator command processing is complete.

If Data Spaces appears, this tells you that the database manager is using Data
Spaces Support for storage pool 1.

Step 14: Optional System Activities
You may now choose any of the following options:
v Create a new database to use Data Spaces Support (refer to “Using Data Spaces

Support with a New Database” on page 195).
v Reblock the directory disk of an existing database to use Data Spaces Support

(refer to “Using Data Spaces with the Directory” on page 193).
v Change the VMDSS storage pool specifications (refer to “Storage Pool

Specifications” on page 188). These specifications turn Data Spaces Support on
and off, set storage residency priorities, and turn striping on and off.

v Change the VMDSS initialization parameters (refer to the DB2 Server for VSE &
VM Operation manual). These parameters set your application server’s save
interval, target working storage, and whether it will use mapped or unmapped
internal dbspaces.

Chapter 6. Data Spaces Support for VM/ESA 187

Disabling VMDSS
If you want to disable VMDSS from your service and production disks perform the
Steps 1-4 and 6 in the database machine (SQLMACH), and Step 5 from the
installation user machine.

Disable Step 1: Archive your Database
If you regularly archive your database, type the following at the operator console:

SQLEND ARCHIVE

For more information on the SQLEND command, refer to “Step 2: Update the CP
Directory” on page 177 or see the DB2 Server for VSE & VM Operation manual.

Disable Step 2: Access the Service Disk or Directory
Accesses the DB2 Server for VM service minidisk with file mode V.

ACCESS 193 V

If you are using a service SFS directory instead of a minidisk, access it with file
mode V.

Disable Step 3: Reblock the Directory Disk
Your directory disk must be formatted with a block size of 512-bytes in order for
the database manager to be able to use it without VMDSS. If it is formatted with
the 4KB size, you must reblock it. Follow the instructions in “Reblocking the
Database Directory” on page 193.

Disable Step 4: Remove the VMDSS Files
To remove the VMDSS files you need to run ARISDBMA with the DSS(N) option.
See “Step 6: Activate VMDSS” on page 179.

Disable Step 5: Link-Edit the Load Library
Rebuild the database manager without VMDSS by link-editing the DBSS
component. To do the link-edit on the load library follow “Step 8: Log onto the
DB2 for VM Installation User ID (5697F42X)” on page 179 through “Step 10: Resave
the DBSS Saved Segment” on page 181. These steps will include the rebuilding of
the DBSS saved segment.

Disable Step 6: Restart the Application Server
Start the application server in multiple user mode using your normal operating
procedures.

Operating
This section describes how to complete the tasks associated with operating and
customizing VMDSS.

Storage Pool Specifications
There are three VMDSS specifications that you can set for storage pools:
v Whether Data Spaces Support or the standard DASD I/O system is used
v The working storage residency priority, for those pools that use Data Spaces
v Whether or not striping is used.

The default settings are that every storage pool will use data spaces, a working
storage residency priority of 3, and striping.

Note: A storage pool used only for internal dbspaces and which as a dbextent on a
virtual disk cannot be used with data spaces turned on for that pool. This

188 Performance Tuning Handbook

storage pool must be specified with the BLK and SEQ options in the storage
pool specification file. See Appendix A, “Storage Pool Specification File
Format” on page 207.

You can change these settings either at database startup, or (except for the first
one) dynamically while the database is running.

Changing Storage Pool Specifications at Startup
To change the storage pool specifications of your database at startup, you need to
create a storage pool specification file. You can read the next few sections to learn
how to do this, or you can refer to Appendix A, “Storage Pool Specification File
Format” on page 207 for a summary of the file’s syntax.

At startup, the application server looks for the storage pool specification file. It
should have a file name that corresponds to your database’s server_name, a file type
of ARISPOOL and a file mode of *.

If you want to use a different file name or file type, enter a CMS FILEDEF
command to identify a file as the storage pool specification file. For example:

FILEDEF ARISPOOL DISK SPSPEC FILE A

where SPSPEC FILE A identifies the storage pool specification file. The FILEDEF
syntax is:

filename filetype filemode
Specifies the file name, file type, and file mode of the storage pool
specification file.

Add your specifications to the specification file as described below, and start the
application server. If you want to add or change any specifications, you must:
1. Stop the application server (SQLEND)
2. Update the storage pool specification file
3. Restart the application server (SQLSTART)

Specifying Either Data Spaces Support or Standard DASD I/O
To change this setting for a particular storage pool, add a line to the specification
file to specify either Data Spaces Support (DS) or standard DASD I/O (BLK). (DS
is the default.)

Note: If your internal dbspaces reside in a storage pool which contains a virtual
disk, you MUST specify BLK and SEQ for that storage pool. A virtual disk
cannot be mapped to a Data Space.

For example, consider a database with five storage pools. To use Data Spaces
Support for storage pool 1 and standard DASD I/O for pools 2 to 5, your
specification file would look like:

�� FILEDEF ARISPOOL DISK filename filetype filemode ��

Chapter 6. Data Spaces Support for VM/ESA 189

The text is optional comments. If you add any comments, precede them by two
dashes.

Note that DS is the default parameter, so you can also code the file like:

For information on when to use data spaces with storage pools, refer to “Storage
Pool” on page 199.

Specifying Storage Residence Priorities
To set the storage residence priority of a storage pool that uses Data Spaces
Support, add an integer (from 1 to 5) to the end of the DS parameter in your
specification file. (3 is the default.)

For example, to use priority 1 with pools 3 and 4, priority 3 with pool 2, and
priority 4 with pool 5, your specification file would look like:

Pool 1 is not using Data Spaces Support, so it is not assigned any priority. Pool 2 is
using the default value, so the integer 3 does not have to be included.

For a description of the five priorities and how to choose one, refer to “Choosing
Storage Residence Priorities” on page 201.

Turning Striping On and Off
To turn striping on for a particular storage pool, add the three-letter code STR to
the end of the line for that pool. To turn it off, add the code SEQ.

For example, to turn striping on for storage pools 1, 3, and 5, and to turn it off for
pools 2 and 4, your specification file would look like:

-- Storage Pool Specification File

1 DS -- This line turns on Data Spaces Support for pool 1
2-5 BLK -- This line turns off Data Spaces Support

-- for pools 2 to 5

-- Storage Pool Specification File

2-5 BLK -- This line turns off Data Spaces Support
-- for pools 2 to 5

-- Storage Pool Specification File

1 BLK -- This line turns off Data Spaces Support for pool 1
2 DS -- This line uses residency priority 3 for pool 2
3-4 DS1 -- This line uses residency priority 1 for pools 3 and 4
5 DS4 -- This line uses residency priority 4 for pool 5

190 Performance Tuning Handbook

For information on when to use striping, refer to “Using Striping” on page 204.

Checking Your Current Storage Pool Specifications
You can display your current storage pool specifications from the operator console,
or through ISQL, with the SHOW POOL operator command.

For example, the following screen shows you that pool 2 is using Data Spaces
Support with a storage residency priority of 3, and striping:

show pool 2

POOL NO. 2: NUMBER OF EXTENTS = 6 DS3 STR

EXTENT TOTAL NO. OF NO. OF NO. OF %
NO. PAGES PAGES USED FREE PAGES RESV PAGES USED
1 200070 55821 144249 27
2 200070 54645 145425 27
3 200070 56965 143105 28
4 200070 56336 143734 28
5 200070 55210 144860 27
6 200070 56267 143803 28

TOTAL 1200420 335244 865176 20 27
ARI0065I Operator command processing is complete.

For a detailed description of this command, refer to the DB2 Server for VSE & VM
Operation manual.

Changing Storage Pool Specifications Dynamically
Once the application server is running, if you want to change the setting for Data
Spaces Support (DS or BLK) you must shut down and restart the database
manager as described in “Changing Storage Pool Specifications at Startup” on
page 189. However, the two other specifications —working storage residency
priority and striping— can be changed dynamically by issuing the SET POOL
command from the operator console. For example:

set pool 1 ds2 seq
ARI0065I Operator command processing is complete.
show pool 1

POOL NO. 1: NUMBER OF EXTENTS = 2 DS2 SEQ

EXTENT TOTAL NO. OF NO. OF NO. OF %
NO. PAGES PAGES USED FREE PAGES RESV PAGES USED
1 855 74 781 8
2 855 47 808 5

TOTAL 1710 121 1589 20 7
ARI0065I Operator command processing is complete.

-- Storage Pool Specification File

1 BLK STR -- Striping turned on
2 DS SEQ -- Striping turned off
3 DS1 STR -- Striping turned on
4 DS1 SEQ -- Striping turned off
5 DS4 -- Striping left on by default

Chapter 6. Data Spaces Support for VM/ESA 191

Note: Any changes you make using the SET POOL command are only in effect
while the application server is running. If you stop and restart the
application server, it will use the settings in the storage pool specification
file, which are unchanged by the SET POOL command.

For a detailed description of the SET POOL command, refer to the DB2 Server for
VSE & VM Operation manual.

Using Data Spaces with Internal Dbspaces
This section describes how to use internal dbspaces with data spaces. For
information on whether these dbspaces should be mapped or unmapped, refer to
“Internal Dbspaces” on page 199.

Unmapped Internal Dbspaces
To use separate (unmapped) internal dbspaces, set the initialization parameter
SEPINTDB to “Y” (Y is the default). For example:

sqlstart db(SQLDBA) parm(sepintdb=Y)
ARI0717I Start SQLSTART EXEC: 05/23/99 09:44:24 EDT.
ARI0320I The default database name is SQLDBA....
ARI0015I SEPINTDB parameter value is Y....

Message ARI0015I should tell you that the SEPINTDB parameter is set to Y. If it
does not, check that you are operating your database machine in XC mode. You
cannot use unmapped internal dbspaces in ESA mode.

Before you use unmapped internal dbspaces, you must allocate more DASD to VM
system paging. Refer to “VM/ESA Paging DASD” on page 173.

Attention: If VM runs out of system paging DASD, CP will abend if it does not
have sufficient spool DASD to accommodate the overflow.

Mapped Internal Dbspaces
To use mapped internal dbspaces, turn Data Spaces Support on for the storage
pool containing internal dbspaces and set the initialization parameter SEPINTDB to
“N”. For example:

sqlstart db(SQLDBA) parm(sepintdb=N)
ARI0717I Start SQLSTART EXEC: 05/23/99 09:39:02 EDT.
ARI0320I The default database name is SQLDBA....
ARI0015I SEPINTDB parameter value is N....

Note, just setting SEPINTDB=N does not turn Data Spaces Support on or off for
your internal dbspaces. You can use either Data Spaces Support or the standard
DASD I/O system with internal dbspaces. Because internal dbspaces are assigned
to one storage pool, they will use whichever DASD I/O system is specified for that
pool (see “Specifying Either Data Spaces Support or Standard DASD I/O” on
page 189).

192 Performance Tuning Handbook

Note: A storage pool used only for internal dbspaces and which as a dbextent on a
virtual disk cannot be used with data spaces turned on for that pool. This
storage pool must be specified with the BLK and SEQ options in the storage
pool specification file. See Appendix A, “Storage Pool Specification File
Format” on page 207.

Using Data Spaces with the Directory
You can use the directory with either Data Spaces Support or the standard DASD
I/O system.

To use Data Spaces Support, format your directory disk with a block size of 4096
bytes (4KB). The database manager will automatically use data spaces when it
detects the 4KB blocks. If the directory disk is formatted with a 512-byte block size,
the standard I/O system will be used instead.

If your directory disk is currently formatted for 512-byte blocks and you want to
use Data Spaces Support, you can reblock your disk with the SQLCDBEX EXEC
(refer to “Reblocking the Database Directory”).

If the database manager is using Data Spaces Support with the directory, you will
see the following message at startup time:
...
ARI2022I the database manager is using data spaces for the directory....

You can also check this information by displaying the storage pool counters for the
directory. For example:

counter pool dir
Counter values at DATE=’05-23-99’ TIME=’15:41:07’

Directory: Data Spaces
Pages looked at in the buffer LBUFLOOK: 21
Pages moved from DS to buffer DSREAD : 44
Pages moved from buffer to DS DSWRITE : 27
DS page fault notifications DSFAULT : 4
ARI0065I Operator command processing is complete.

For information on when to use data spaces with the directory, refer to “Directory”
on page 199.

Reblocking the Database Directory
The SQLCDBEX EXEC is updated for VMDSS, and now asks you which block size
you want the output directory to be. For a block size of 512 bytes, type 512; for a
block size of 4KB bytes, type 4096. If you do not type in a size and just press Enter,
the EXEC will make the output directory disk the same block size as the input
directory disk.

For more information on the standard SQLCDBEX EXEC refer to DB2 Server for
VM System Administration.

Note that if you reblock the directory from 512-bytes blocks to 4KB blocks, you
will not need as much DASD storage on the new directory disk; if you reblock

Chapter 6. Data Spaces Support for VM/ESA 193

from 4K to 512, you will need more. To calculate the number of cylinders you will
need, refer to “Database Disks” on page 174.

If you plan to switch between blocking sizes often, you may want to keep one disk
reserved for the 512-byte blocked directory and one for the 4KB directory. You can
define each disk to the appropriate size for its blocking, and copy the directory
back and forth between disks.

If you plan to move from a 512-byte to a 4KB disk of the same size, you can take
advantage of the 4KB blocking by expanding the directory to fit the new disk.
However, if you need to return to a 512-byte disk, you will have to copy it back to
a larger disk.

(When the SQLCDBEX EXEC finds that there is more room on a new disk than it
needs for the current directory, it will ask you whether it should expand the
directory to fit the new disk. If you tell it not to expand the directory, you cannot
take advantage of the unused portion of the new disk.)

Example
Consider a database with a directory disk (B-disk) at address 300 and a block size
of 512 bytes. To reblock the B-disk to 4096 bytes, run the SQLCDBEX EXEC to
copy the directory onto a new disk (305) blocked to 4KB as shown in the following
example:

194 Performance Tuning Handbook

sqlcdbex db(SQLDBA)
ARI0717I Start SQLCDBEX EXEC: 05/23/99 08:58:36 EDT.
ARI6102A Enter DBEXTENT number (or LOGDSK1, LOGDSK2,

or BDISK) to copy.
(Enter a null response to end input or
enter QUIT to exit.)

bdisk
ARI6188A Enter the output block size of the directory.

(Enter 512 or 4096,
or a null response to use the original size,
or 111(Quit) to exit)

4096
ARI6103A Enter virtual address for new BDISK.

(Enter a null response to end input or
enter QUIT to exit.)

305
ARI6110D Disk 305 is already formatted. Continuing will erase

all data on this disk. Do you want to use the disk?
Enter 0(No), 1(Yes), or 111(Quit).

yes
ARI6146D Are you expanding the SQL/DS™ directory?

Enter 0(No), 1(Yes), or 111(Quit).
no
ARI0647D Do you want to do a CMS FORMAT/RESERVE command on disk 305?

Enter 0(No) or 1(Yes).
yes
ARI6118I Formatting in progress. Please wait...
ARI6131I Copying in progress. Please wait...
ARI6108I Minidisk copied successfully. The SQLDBA SQLFDEF file

will be updated.
ARI6109I SQLDBA SQLFDEF file has been updated on the A disk.

ARI6102A Enter DBEXTENT number (or LOGDSK1, LOGDSK2,
or BDISK) to copy.
(Enter a null response to end input or
enter QUIT to exit.)

ARI0620I SQLDBA SQLFDEF file
successfully copied to production disk.

ARI0673I All COPY DBEXTENT processing completed successfully.
ARI0796I End SQLCDBEX EXEC: 05/23/99 09:09:43 EDT
Ready; T=14.66/24.00 09:09:43

The database manager will now use the new directory disk at address 305. You can
confirm this when you start it. For example:

sqlstart db(SQLDBA)
ARI0717I Start SQLSTART EXEC: 05/23/99 16:06:02 EDT.
ARI0320I The default database name is SQLDBA.
ARI0663I FILEDEFS in effect are:
ARISPOOL DISK SPSPEC FILE A1
ARISQLLD DISK TEMSQLLD LOADLIB Q1
ARISQLLD DISK ARISQLLD LOADLIB T1
BDISK DISK 305...

Using Data Spaces Support with a New Database
If you are creating a new database, you can specify whether it will use Data Spaces
Support or the standard DASD I/O system with the directory.

Chapter 6. Data Spaces Support for VM/ESA 195

To use Data Spaces Support, you must format the directory disk in 4KB blocks
when you create the database. Run the SQLDBINS EXEC and include the
parameter:

DIRBLK (4096)

The SQLDBINS and the SQLDBGEN EXECs are updated in VMDSS to accept this
new parameter. For example:

sqldbins db(SQLDBA) dirblk(4096)
ARI0717I Start SQLDBINS EXEC: 07/19/99 15:02:24 EDT.
ARI6010D Do you want to install English SQL/DS HELP text?

Enter 0(No), 1(Yes), or 111(Quit).
no
ARI0720I Default DB2 Server for VM bootstrap file SQLDBA SQLRMBT created

on the production disk.
ARI0720I Default DB2 Server for VM bootstrap file SQLDBA SQLDBBT created

on the production disk.
ARI0720I Default DB2 Server for VM bootstrap file SQLDBA SQLISBT created

on the production disk.
ARI0721I Get DB2 Server for VM production minidisk READ access: SQLDBA 195.

ARI0717I Start SQLDBGEN EXEC: 07/19/99 15:02:33 EDT.

ARI0633A Please enter the CUU of the
BDISK disk.

300
ARI0647D Do you want to do a CMS FORMAT/RESERVE command on disk 300?

Enter 0(No) or 1(Yes).
yes...

Note: Make sure that you answer Yes when asked if you want to do a CMS
FORMAT/RESERVE (message ARI0647D).

To use the standard I/O system, either include the parameter:
DIRBLK (512)

or omit the DIRBLK parameter entirely. The default value for DIRBLK is 512.

For more information on the standard SQLDBINS and SQLDBGEN EXEC refer to
DB2 Server for VM System Administration.

196 Performance Tuning Handbook

Chapter 7. Tuning Performance for Data Spaces Support

This chapter describes the various configuration options and tuning parameters
that you can use to optimize the performance of your application server with
VMDSS.

Deciding When to Use Data Spaces
This section describes the advantages of using Data Spaces Support over the
standard DASD I/O system, and when to use Data Spaces Support with:
v Storage Pools
v Internal Dbspaces
v The Directory.

Advantages
The paging system in Data Spaces Support can be much faster and more efficient
than the standard DASD I/O system.

The data spaces act like a large DASD cache, keeping the most recently used data
in the fastest storage. While this is similar to using a large pool of buffers or DASD
caching, there are significant advantages to using Data Spaces Support over these
two methods. (Refer to DB2 Server for VM System Administration for more
information on buffer pools.)

Some of the advantages are:
v Shorter path length
v Asynchronous page fault processing
v Striping
v Blocking and prefetching
v Dynamic working storage size management
v More asynchronous writes.

These are described in turn below.

Shorter Path Length
There is a series of internal processes between when the database manager
requests a page from DASD, and when the operating system transfers it to main
storage. This series is shorter when you use Data Spaces Support than when you
use the standard DASD I/O system.

Asynchronous Page Fault Processing
Since the operating system treats the buffers like part of the database manager
code, it may page them out to system paging DASD if it needs main storage.
Whenever the database manager needs a piece of code (or a buffer) that has been
moved to paging DASD, it and all its users must wait for that page to return from
DASD.

With Data Spaces Support, you can use a smaller pool of local buffers, decreasing
the chance of a buffer being paged out. If a page fault occurs in a data space (the
operating system cannot find the page in main or expanded storage) the database
manager can proceed with other users and return to the original user when the
fault has been resolved.

© Copyright IBM Corp. 1993, 2003 197

Striping
When you use striping, the database system tries to keep related data pages
physically close together on DASD. (It allocates pages in groups of 16.) Thus, when
the operating system needs to retrieve related pages from DASD, there is a good
chance that the pages will be located together. The operating system can then read
in a whole series of pages with one I/O operation, which improves the
performance of your system.

Striping also spreads these groups of 16 pages across all the dbextents in a storage
pool. If the dbextents are on separate physical devices, the operating system can
read several groups of pages at the same time (asynchronously). This improves
blocking and prefetching (see below), and helps you balance the load between
DASD packs.

Blocking and Prefetching
When you use the Data Spaces Support, the operating system tracks the way you
access pages. It records which pages you have used together (in a block) and the
order in which you use them. Then, when the database manager requests a page
from a data space, if the page is on DASD, CP will start retrieving (prefetching)
other pages in the same block in the order you previously followed. Since DASD
I/O can proceed in parallel (because of striping), this effectively places pages in
main storage before the database manager needs them.

In some cases, the database manager will pass information to the operating system
about how it expects to use pages. The operating system uses this information to
modify its own reference pattern and thereby further improve prefetching.

Dynamic Working Storage Size Management
You can dynamically manage how the database manager uses main and expanded
storage:
v You can set a target working storage size (refer to “Target Working Storage Size

Parameter” on page 166) to control how much main and expanded storage your
database machine uses.

v You can favor some storage pools over others by setting their working storage
residence priority (refer to “Working Storage Residency Priorities” on page 166).
This lets you improve the performance of critical storage pools, even if you have
a limited amount of main and expanded storage.

v You can set a save interval (refer to “The Save Interval” on page 167). When the
number of blocks of modified pages in a data space exceeds this parameter, the
database manager directs the operating system to write all the modified pages in
that data space to DASD. This reduces the number of modified pages in storage.
As a result, there are fewer pages to be saved during checkpoint processing,
which reduces checkpoint processing time.

More Asynchronous Writes
With Data Spaces Support, the database manager can write modified pages back to
DASD (refer to “Modifying Pages” on page 162) “more” asynchronously than
without it.

With Data Spaces Support off: If the database manager needs a buffer occupied
by a modified page, it first writes the page to DASD, then loads the buffer with a
new page.

When it does this, it puts the current agent into an I/O Wait State until the write is
complete. Since the database manager continues to service agents that are not in
wait states, this process is asynchronous between agents.

198 Performance Tuning Handbook

With Data Spaces Support on: When the database manager writes a modified
page to a data space, the current agent is not put into a wait state. The operating
system ensures that the page is eventually written to DASD (before the next
checkpoint) without stopping the current agent. This process is asynchronous
within an agent and therefore more asynchronous than without Data Spaces
Support.

Storage Pool
We suggest that you turn Data Spaces Support on for all your storage pools. Even
without adding main or expanded storage to facilitate caching, you should see
performance improve due to the advantages of shorter path length, striping,
blocking, and prefetching.

If you want the additional benefit of caching, you should first consider the cost in
main and expanded storage. Whenever you use Data Spaces Support, the
operating system will use main and expanded storage to cache any data the
database manager uses. If the database manager needs this data again, the
operating system can retrieve it quickly. However, if the cached data is not used
very often, it may be swapped out of main or expanded storage before it is
referenced again. If this happens, you are using main or expanded storage to cache
pages without receiving any of the benefit. Thus, if the main and expanded storage
in your system is limited, you should only use caching for your most active pools.

(You can effectively turn caching off for a particular storage pool without turning
Data Spaces Support off, by using working storage residence priority “1”. Refer to
“Choosing Storage Residence Priorities” on page 201.)

Internal Dbspaces
You can improve the performance of your database by using unmapped internal
dbspaces. We suggest that you do so unless you do not have enough VM paging
DASD (refer to “VM/ESA Paging DASD” on page 173).

Unmapped internal dbspaces have the following advantages over mapped ones:
v You can use all the space in your storage pools for public and private dbspaces.
v The database manager never writes unmapped internal dbspace pages to DASD.

This reduces your overall DASD I/O, without affecting the integrity of your
system. (You do not need a record of the internal dbspaces to recover your
database.) Note that the operating system may still swap unmapped internal
dbspace pages to VM paging DASD.

If you want to manage your internal dbspaces the same way you manage all your
other dbspaces, you may want to use mapped internal dbspaces. If you place your
internal dbspaces in a separate storage pool, you can turn Data Spaces Support on
or off, and set a working storage residence priority for them.

For information on how to customize your database for internal dbspaces, refer to
“Using Data Spaces with Internal Dbspaces” on page 192.

Directory
We suggest that you use Data Spaces Support with the directory. However, you
may choose not to if you need to switch your database machine between XC mode
and ESA mode.

Chapter 7. Tuning Performance for Data Spaces Support 199

Every time you switch to a processor or operating system that does not support
XC mode (for example a backup system) you must reblock the directory disk.
(Refer to “Reblocking the Database Directory” on page 193.)

For information on how to customize a database to use Data Spaces Support with
the directory, refer to “Using Data Spaces with the Directory” on page 193.

Managing Your Working Storage Size
Working storage is composed of:
v The database manager code and the storage it uses to hold control information

(control blocks)
v The directory buffers
v The local buffers
v Data space pages in main and expanded storage, including those in public,

private and internal dbspaces.

While you do not have direct control over how much storage the database
manager and its control blocks use (refer to DB2 Server for VM System
Administration under “virtual storage requirements”), you can control the amount
of storage used by the directory buffers, the local buffers, and by data space pages.

The amount of storage used by the directory buffers is NDIRBUF*560 bytes, where
NDIRBUF is the number of directory buffers. This applies whether you are using
Data Spaces Support or not. The storage used by the local buffers is NPAGBUF*4144
bytes. (Each buffer page requires 48 bytes of overhead. For example a 4KB page
requires 4096+48 bytes or 4144 bytes of storage.) By reducing or increasing the
number of directory and local buffers you are using you can reduce or increase
your working storage.

There are five parameters to help you manage the number of data space pages in
main and expanded storage that your database machine uses.
v Target working storage size
v Working storage residency priority
v SEPINTDB (mapped or unmapped internal dbspaces)
v Checkpoint interval
v Save interval.

These parameters are discussed in the following sections.

Choosing the Target Working Storage Size
The target working storage parameter (TARGETWS) helps you to balance the
amount of main and expanded storage used by your database machine, with the
amount used by other virtual machines in your VM system.

If you set TARGETWS too low, you may unnecessarily restrict the amount of
available storage your database machine can use. You may also find that the
operating system does not release pages fast enough and your current storage size
always exceeds your target. If this happens, some working storage residence
priorities are not effective. Remember, the database manager starts releasing most
pages when the target working storage size is reached: if your current storage size
is always greater than your target, the database manager only keeps those pages
with a residence priority of 4 or 5. In this case, pages with any other priority will
not be differentiated.

200 Performance Tuning Handbook

If you set it too high, your database machine may never reach the target you set.
VM may not give your database machine the amount of main and expanded
storage it asks for. You may find that the operating system restricts your working
storage size before the database manager does. If this happens, the database
manager only releases those pages with a residence priority of 1 or 2.

Once you find an acceptable target working storage size, it is important not to let
your current size exceed it by too much. If it does it can have the same effect as
setting TARGETWS too high (VM restricts storage). If your working storage is too
high, it means that you are either:
v Keeping too many modified pages in main or expanded storage (reduce

SAVEINTV)
v Using too many unmapped internal dbspace pages (use mapped internal

dbspaces instead)
v Setting your storage residence priorities too high (use a setting of 3 or less).

For information on managing modified pages, refer to “Managing Checkpoints” on
page 202, and for information on unmapped pages refer to “Unmapped Internal
Dbspaces” on page 202. For more information about how the TARGETWS
mechanism works, refer to Appendix C, “Why is the TARGETWS Value Frequently
Exceeded?” on page 217.

Choosing Storage Residence Priorities
If you set a realistic target working storage size (large enough to be effective but
not so large as to overload the operating system), you will be able to use storage
residence priorities to favor pages from certain storage pools. When the database
manager copies a page from a data space into its buffers, it checks the residence
priority of that page. At the default value of 3, it releases the data space page from
main and expanded storage if the current working storage size is greater than the
target. However, the buffer page stays in the buffer pool until the database
manager needs the space for a new page.

For most applications, the default priority should be correct. However, if you can
identify certain storage pools as “high priority” pools that contain
performance-critical dbspaces, you can favor them by assigning them a high
residence priority. Low priority pools can be assigned a low residence priority.

You can assign one of five storage residence priorities:

1 The database manager always releases pages when possible,
regardless of the current working storage size. This effectively
turns caching off. (For low re-used pages.)

2 The database manager always releases pages, except index pages,
when possible. It will only release index pages when the current
working storage size exceeds your target. (For low re-used pages,
randomly accessed using indexes.)

3 The database manager releases pages when the current working
storage size exceeds your target. This is the default priority.

4 The database manager releases data pages when the current
working storage size exceeds your target. It does not release index
pages. (For high re-used pages, randomly accessed using indexes.)

5 The database manager never releases pages. (For only the most
re-used or most important pages where dbscans are frequent.)

Chapter 7. Tuning Performance for Data Spaces Support 201

Table 13 summarizes the five storage residence priorities. An R indicates that the
database manager releases a page from main and expanded storage after it has
been moved to a local buffer.

Table 13. Storage Residence Priorities

Page Type Current Working
Storage Size

Working Storage Residence Priority

1 2 3 4 5

Data ≤ target R R

> target R R R R

Index ≤ target R

> target R R R

Unmapped Internal Dbspaces
Whether you are using mapped or unmapped internal dbspaces also affects your
current working storage size. (The operating system controls it by moving pages
from main storage to and from system paging DASD.) However, unmapped pages
are included in your total current working storage size, and can inflate it beyond
your target.

For example, if you are performing operations that use large amounts of internal
dbspace storage (creating large indexes, or sorting large tables), you may fill
unmapped internal dbspaces with pages that are not released until the index or
sort is complete. Even if this increases your current working storage above your
target, the database manager will not release internal dbspace pages internal
dbspace pages when it no longer needs the internal dbspace; frequently not until
the end of a logical unit of work.

Managing Checkpoints
A checkpoint is an internal operation where the database manager writes modified
data and status information to DASD, and writes a summary status record to the
log.

When the database manager takes a checkpoint:
v It writes all modified data and directory pages back to DASD.
v It frees all shadow pages. (Whenever it “modifies” a page in a storage pool, it

creates a new page in the same pool, and keeps the original as a shadow page.)
v It writes the log buffer out to the log disks.
v If LOGMODE=Y (no archive), the database manager clears space in the log up to

the beginning of the oldest LUW still active when the checkpoint is taken.
v It updates the directory pages to account for released shadow pages and

updated page allocation maps.

A checkpoint has two performance implications:
v It performs a high amount of I/O to DASD. It writes all the modified buffer

pages and data space pages back to DASD, and updates the directory disk.
v It holds up processing. User agents must wait until the checkpoint is finished

before they can proceed.

202 Performance Tuning Handbook

Choosing the Checkpoint Interval
To control the duration between database checkpoints, use the CHKINTVL
initialization parameter. This parameter specifies how many log pages the database
manager will fill before it takes its next checkpoint.

Setting the Time Between Checkpoints
The time between checkpoints depends on the number of modifications you make
to the database. If logging is turned on, the database manager writes to the log
every time you perform an insert, update, or delete. The more modifications you
make, the faster you will reach a checkpoint. If you only perform queries, the
database manager may never perform a checkpoint.

We recommend that you adjust the CHKINTVL parameter so that the database
manager takes a checkpoint every 10 to 15 minutes. Should you experience a
system error, it should take you no longer than 10 to 15 minutes to restart the
database manager after you have recovered your system. If you adjust CHKINTVL
so that checkpoints occur less frequently, for example every four hours, it may take
up to or more than four hours to restart your database.

If you set the CHKINTVL parameter too low, you minimize the risk of filling the
log or storage pools. However, while each checkpoint is faster, you increase the
overall number of checkpoints.

If you set it too high, you lower the overhead associated with checkpoint
processing. However, you risk filling the log and storage pools, and you increase
the time required to complete a checkpoint. It may also take longer to recover from
a system error.

Choosing the Save Interval
The SAVEINTV parameter limits the number of modified pages in main and
expanded storage. When the number of blocks of modified pages in a data space
exceeds this parameter, the database manager directs the operating system to write
all the modified pages in that data space to DASD.

This is done asynchronously, meaning that the database manager can continue
servicing other users while the save completes.

If you set the save interval appropriately, you can reduce the time it takes to
perform a checkpoint. While the checkpoints will take place at the same intervals
(the database manager still fills log pages at the same rate), they will be shorter
because there will be fewer modified pages to write to DASD.

While the default setting should work well for most databases, you may consider
changing it. If you find that your checkpoints take too long, reduce SAVEINTV. If
checkpoint processing is not a problem, consider increasing it.

You may also need to reduce SAVEINTV if your current working storage size is
always much larger than your target. The database manager does not release
modified pages from main storage until a save interval or a checkpoint. So if you
are using a high SAVEINTV, and performing many inserts, updates, or deletes, the
database machine may keep too many modified pages in main storage.

You can compare the number of times the database manager requests the operating
system to save pages to the number of times it performs a checkpoint, by using the
COUNTER and COUNTER INTERNAL operator commands. The COUNTER

Chapter 7. Tuning Performance for Data Spaces Support 203

command displays the CHKPOINT counter, which records the number of
checkpoints that occurred since the last time you reset the counter. The COUNTER
INTERNAL command displays the SAVEGNRL counter. SAVEGNRL counts the
number of times the database manager directs the operating system to write all the
modified pages in a data space to DASD. If you reset both the CHKPOINT and
SAVEGNRL counters at the same time, you can monitor the number of save
requests between each checkpoint.

For more information on the COUNTER and COUNTER INTERNAL operator
commands, refer to the DB2 Server for VSE & VM Operation manual.

Using Striping
Striping evenly distributes all new and modified pages across all the dbextents in a
storage pool. We suggest that you use striping, even if you are not using Data
Spaces Support.

For information on how to use striping, refer to “Turning Striping On and Off” on
page 190.

With One Dbextent Per Pool
You may choose not to use striping for a particular storage pool if it has only one
dbextent, because in that case the database manager cannot distribute your data
across several dbextents in the storage pool.

However, even with only one dbextent you may find a small performance
improvement. The database manager still allocates space on the disk in blocks of
16 4KB-pages. By doing this it improves the probability that the pages you need
are close together.

One Dbextent Per Device
For the storage pools that will use striping, it is recommended that you assign each
dbextent in the pool to a separate physical storage device. While the database
manager distributes pages across dbextents, it does not recognize whether those
dbextents are on the same physical device or several different ones. If you assign
two dbextents to one physical storage device, performance will be degraded,
because the database manager cannot retrieve pages from both dbextents in
parallel.

Dbextent Size
If you plan to use striping, you should define several dbextents of the same size in
each storage pool. If you have large and small dbextents mixed in the same pool,
you may find that the database manager does not distribute pages evenly across
them. Rather, it distributes pages across all the dbextents until the smallest one is
full. It then continues to fill the larger dbextents.

Number of Dbextents
For best performance, use at least four dbextents per storage pool. CP will only
prefetch pages from four dbextents in a storage pool simultaneously. Any less than
four means that CP does not have as many devices as possible to prefetch from in
parallel. (Refer to “Blocking and Prefetching” on page 198 for more information on
prefetching.)

204 Performance Tuning Handbook

Using Striping with Existing Data
Striping only evenly distributes new or modified pages. It does not reallocate
existing pages. To ensure that striping works with all your pages, unload all the
dbspaces in your database, and reload them with striping turned on. This makes
all the pages “new pages”.

Choosing Logical or Physical Mapping
Logical mapping is the default and recommended type of mapping for most
applications. However, applications that perform mostly updates may perform
better with physical mapping.

Because you can only change the mapping parameter at startup time, you should
always use logical mapping for your production applications, and consider
physical for single-user-mode dataloads.

Real Storage Requirements for Data Spaces
For each data space which is larger than 1024 megabytes, CP must keep two
contiguous real storage pages until the database is shut down. These two pages are
required for CP segment tables and must remain in real storage at all times. If you
are using VMDSS with many databases or with a very large database, and have a
constrained real storage environment, this will further reduce any real storage
availability and increase system paging.

The only way to increase real storage availability in these situations is to reduce
the number of databases using data spaces, or reduce the number of storage pools
which are mapped to data spaces, or both.

For each data space which is less than or equal to 1024 megabytes, CP must keep
one real storage page until the database is shut down.

Chapter 7. Tuning Performance for Data Spaces Support 205

206 Performance Tuning Handbook

Appendix A. Storage Pool Specification File Format

This appendix describes the format and syntax of the control file used to tailor
VMDSS.

For an overview of storage pool specifications, refer to “Storage Pool
Specifications” on page 188. For a step by step description of how to use the
storage pool specification file, refer to “Changing Storage Pool Specifications at
Startup” on page 189.

File Format
The storage pool specification file must have a fixed record length of 80 characters.
It can include three types of lines:

Data Specifies a storage pool or a series of pools, and each pool’s VMDSS
operating parameters. (See below.)

Blank Allowed anywhere in the file.

Comment
Any line that begins with two dashes (--) is a comment line. You can also
include a comment at the end of a data line by adding two dashes there.
(See below.) The comment ends at the end of the line.

Data Line Syntax
Each data line of the storage pool specification file follows the following syntax:

n1 Specifies that you want to change the specifications for storage pool n1.
Valid values are integers from 1 to 999.

n2 Specifies a range of storage pools from n1 to n2. Valid values are integers
from 1 to 999. n2 must be greater than or equal to n1.

BLK Turns Data Spaces Support off for the storage pools you specify.

DS Turns Data Spaces Support on for the storage pools you specify. This is the
default.

n Sets the working storage residency priority of the storage pools you specify
to n. Valid values are integers from 1 to 5. The default value for n is 3.

STR Turns on striping for the storage pools you specify. This is the default.

�� n1
-n2

(1)

BLK
3

DS
n

(1)

STR
SEQ

--comment
��

Notes:

1 You must include at least one of these blocks.

© Copyright IBM Corp. 1993, 2003 207

SEQ Turns off striping for the storage pools you specify. The database system
will allocate pages sequentially on DASD.

comment
You can include a comment at the end of the data line. Precede it with two
dashes (--).

Note: If you do not include a storage pool in the storage pool specification file, the
database system will use all the default settings for that storage pool.

Ordering Data Lines
The database manager reads the storage pools specification file from the top down,
reading each specification in sequence. It starts with every pool’s specifications set
to the default values, and updates the current settings with every line it
encounters. For example, consider the following specification file:

As the database manager reads the file, pools 1 through 5 will all start with Data
Spaces Support on, a working storage residency priority of 3, and striping on.

Line 1 Turns striping off for pools 4 and 5

Line 2 Sets the working storage residency priority for pool 1 to 2

Line 3 Sets the priority for pool 4 to 5.

Line 4 Turns Data Spaces Support off for pools 2 and 3.

You can also achieve the same results with the following specification file:

While both files are effectively the same, the second file defines each pool without
relying on default values and is much easier to read and decipher.

Specification File Example
Consider a database where you want to:
v Turn on striping for storage pools 1 to 10
v Turn off striping for storage pools 11 to 20
v Only use Data Spaces Support for storage pools 2, 5, 10, 11, and 15 to 20
v Set the working storage residency priority to 2 for storage pools 10, 11, and 15 to

19

-- Storage Pool Specification File

4-5 SEQ -- Line 1
1 DS2 -- Line 2
4 DS5 -- Line 3
2-3 BLK -- Line 4

-- Storage Pool Specification File

1 DS2 STR
2 BLK STR
3 BLK STR
4 DS5 SEQ
5 DS3 SEQ

208 Performance Tuning Handbook

v Use the default residency priority (3) for pools 2, 5, and 20.

Your storage pool specification file should look like this:

While you could have also coded your file like the following example, you may
find it difficult to interpret:

-- Storage Pool Specification File

1 BLK STR
2 DS STR
3-4 BLK STR
5 DS STR
6-9 BLK STR
10 DS2 STR
11 DS2 SEQ
12-14 BLK SEQ
15-19 DS2 SEQ
20 DS SEQ

-- Storage Pool Specification File

11-20 SEQ
1 BLK
3-4 BLK
6-9 BLK
12-14 BLK
10-11 DS2
15-19 DS2

Appendix A. Storage Pool Specification File Format 209

210 Performance Tuning Handbook

Appendix B. Determining Number of Data Spaces

This appendix describes how to calculate the maximum number of data spaces
your database machine will need, and their total size. It also describes how to
determine how many spaces your database machine is currently using.

Maximum Number of Data Spaces
To calculate the maximum number of data spaces that your database may use,
follow the instructions for the type of mapping you are using (logical or physical).
(Logical is the default and suggested type of mapping for most applications.)

Logical Mapping
If you are using logical mapping, you can calculate the maximum number of data
spaces by selecting the correct formula from Figure 39. Substitute the total number
of public, private, and internal dbspaces in your database into the formula. When
appropriate also substitute the number of cylinders in your directory disk and the
conversion factor for your directory disk’s DASD type. (Use Table 14 on page 212
to look up the directory conversion factor for your database.)

© Copyright IBM Corp. 1993, 2003 211

Table 14. Directory Conversion Factor (For use with 4KB directory pages)

DASD Type 3350 3375 3380 3390 9345

Conversion Ratio 4369 5461 3495 2912 3495

Example
Consider a database where you are planning to use the directory with data spaces,
and unmapped internal dbspaces. It has a total of 640,000 pages allocated to public
and private dbspaces, and 80 internal dbspaces of 1024 pages each. It also has a
40-cylinder 3380 directory disk.

Choosing the bottom formula, you would perform the following calculation:

Σ Σ Σ

Σ

Σ

Σ Σ Σ

Σ Σ Σ

Σ Σ Σ

Figure 39. Calculating the maximum number of data spaces your database will use with
logical mapping.

212 Performance Tuning Handbook

Note: If you have a storage constrained environment, please see “Real Storage
Requirements for Data Spaces” on page 205.

Physical Mapping
If you are using physical mapping, you can calculate the maximum number of
data spaces from the results of a SHOW POOL operator command. Add the total
number of pages in each pool to the total number of pages in free areas (deleted
dbextents) and substitute this number into the correct formula in Figure 40 on
page 214. When appropriate also substitute the number of internal dbspace pages,
the number of cylinders in your directory disk, and the conversion factor for your
directory disk’s DASD type. (Use Table 14 on page 212 to look up the directory
conversion factor for your database.)

Appendix B. Determining Number of Data Spaces 213

Example
Consider a database where you are not planning to use the directory with data
spaces or unmapped internal dbspaces. The following SHOW POOL was performed
for the database:

Σ

Σ

Σ

Σ

Σ Σ

Σ Σ

Figure 40. Calculating the maximum number of data spaces your database will use with
physical mapping.

214 Performance Tuning Handbook

show pool

POOL NO. 1: NUMBER OF EXTENTS = 3

EXTENT TOTAL NO. OF NO. OF NO. OF %
NO. PAGES PAGES USED FREE PAGES RESV PAGES USED
1 285 274 11 96
2 285 33 252 11
6 741 0 741 0

TOTAL 1311 307 1004 20 23

POOL NO. 2: NUMBER OF EXTENTS = 3

EXTENT TOTAL NO. OF NO. OF NO. OF %
NO. PAGES PAGES USED FREE PAGES RESV PAGES USED
3 114 2 112 1
4 114 0 114 0
9 114 0 114 0

TOTAL 342 2 340 20 0

POOL NO. 4: NUMBER OF EXTENTS = 1 SHORT ON STORAGE

EXTENT TOTAL NO. OF NO. OF NO. OF %
NO. PAGES PAGES USED FREE PAGES RESV PAGES USED
10 285 260 25 91
TOTAL 285 260 25 20 91

FREE AREAS: NUMBER OF DELETED EXTENTS = 3

EXTENT TOTAL
NO. PAGES
(2+) 57
5 171
7 228
8 342
END 9552
TOTAL 10350

Maximum number of DBEXTENTs = 64
ARI0065I Operator command processing is complete.

By adding the underlined values you get the total number of data spaces pages
required.

1311
342
285
57
171
228

+ 342
2336 data space pages

Since this number is less than 524288, you will only require one data space. (Select
the first formula. Divide 2336 by 524288 and round up to the nearest integer.)

Note: If you have a storage constrained environment, please see “Real Storage
Requirements for Data Spaces” on page 205.

Appendix B. Determining Number of Data Spaces 215

Maximum Total Size
To determine the maximum total size of the data spaces, multiply the total number
of data spaces by 2 gigabytes. For example, if you required 4 data spaces your total
size would be:

4 × 2 = 8GB

Remember that this value is the maximum amount of virtual storage that your
database machine will use. You do not need to purchase 8GB of main storage.

Displaying Current Data Spaces
You can display information on the current address spaces available for your
database machine with the CP QUERY SPACES command. For example, the
following command was issued at the operator console:

#cp query spaces
CP QUERY SPACES
ASIT STORAGE P/S SPACE IDENTIFICATION
03EF750000000002 17M PRV SQLDBA:BASE
03EF758000000004 29952K PRV SQLDBA:DIR0000000000
03EF75C000000003 87M PRV SQLDBA:MAP0000000000
03EF754000000005 200M PRV SQLDBA:UNM0000000000

The first address space, BASE, is the primary space for the database machine. DIR,
MAP, and UNM identify data spaces for the directory, storage pools, and
unmapped internal dbspaces respectively. (Remember that a data space is an
address space that contains only data. You cannot run programs from a data space;
they must first be loaded into a primary address space.)

If the database machine required an additional data space for its storage pools, it
would be identified as MAP0000000001. The size of each address space is listed
under STORAGE.

Do not be surprised if you do not see all the data spaces you expect. VMDSS
creates spaces as it needs them. For example, a data space will only be created for
unmapped internal dbspaces when you request a sort that cannot be contained in
the local buffer pool.

For more information on this command refer to VM/ESA: CP Command and Utility
Reference.

216 Performance Tuning Handbook

Appendix C. Why is the TARGETWS Value Frequently
Exceeded?

To understand why the TARGETWS value is exceeded by the amount of real
storage actually used by the database when it is using DB2 Data Space Support
(known as VMDSS), let’s look at how TARGETWS operates and how VM/ESA
manages real storage.

First, remember that CP controls real storage. However, VMDSS can influence how
CP manages the real storage that DSS uses (by the TARGETWS value, REFPAGE
macro, and RELPAGE macro).

Second, VMDSS does not remember all of the pages that are or have been in real
storage. This is partly a trade off—if VMDSS remembered everything, a lot of CPU
time would be spent keeping track. In addition, it is not possible for VMDSS to
actually know everything that is in real storage. For example, VMDSS does not
know what CP does for the database machine. CP may be stealing away pages
before VMDSS can release them. This is usually not a problem, and can reduce the
database’s storage usage.

There is another CP effect that is frequently overlooked. When VMDSS references a
data space page that is not in real storage, CP brings in that page from DASD, and
may also bring in other pages in a block. In some cases, these are extra pages that
the database expects will be needed and has told CP to block together using the
REFPAGE macro. However, CP may bring in extra pages based on its own
estimation of previous page usage. In both of these cases, VMDSS does not know if
CP brought in extra pages or not. Even if the database gives CP some REFPAGE
information, CP uses the current system load to decide if it will bring in extra
pages or not, and if so, how many.

What this really means is that VMDSS does not know exactly what real storage is
being used for which data space pages at any moment in time.

Third, VMDSS has only one method of reducing the usage of real
storage—releasing pages using the RELPAGE macro. The RELPAGE macro notifies
CP that a specific data space page (or range of pages) is no longer needed and that
CP can immediately reuse the real storage frame that currently holds that virtual
data space page (assuming CP has not already stolen that page frame). Also,
remember that VMDSS uses RELPAGE at specific points when using data space
pages.

Most important, is when a data space page is moved from the data space into a
database local buffer. Once the page’s contents are copied into the local buffer, it
can be released. This implies that a page is NOT released unless it is moved into a
local buffer. Also (ignoring the extra complications caused by the Working Storage
Residency Priorities), page releasing also only occurs when the TARGETWS setting
is exceeded.

VMDSS Usage Scenario
Let’s take a look at a VMDSS usage scenario to see how both VMDSS and CP react
to changing circumstances.

© Copyright IBM Corp. 1993, 2003 217

Assume that the system is initially lightly loaded. There is an abundance of real
storage available for use, and the database is brought up. Of course, the database
storage usage starts small - less than the TARGETWS value. At this point, assume
that there is light usage of the database. So, data space pages are referenced, paged
in, moved to the local buffers and NOT RELEASED (assuming the Working
Storage Residency Priorities are all 3).

As time passes, the storage size of the database increases. In this unconstrained
environment, CP may bring in extra pages (beyond those requested by the
database). CP will not be stealing pages; there is still free real storage available and
no contention for it. Eventually, the database storage size exceeds the TARGETWS
value. Now, VMDSS begins to release NEW data space pages as they are used, but
it cannot release any of the previously used pages. Note that, at this point, the
database storage size still exceeds the TARGETWS, and nothing will be done at
this time to reduce this. VMDSS cannot release old pages, CP is not stealing them,
and CP may still be bringing in extra pages (there is still free real storage
available).

So the storage size continues to increase and continues to exceed the TARGETWS.
Eventually the amount of free real storage becomes scarce, and this causes CP to
do two things. First, CP will reduce, and finally stop, bringing in extra pages when
a page is requested by VMDSS (and will also begin ignoring REFPAGE requests by
VMDSS). Second, CP will begin stealing pages away from the database, so that real
storage page frames can be reused by other data space pages needed by the
database (at this point, the database and the VM system are handling light loads).

However, these actions all have no overall effect on the database storage size. It
still greatly exceeds the TARGETWS value, even though VMDSS has been doing
RELPAGE’s for quite a while now. In general, VMDSS is releasing pages as fast as
it requests them, and CP is only stealing away pages as fast as the database needs
new ones. The net effect is to simply maintain the database storage size at a
constant value, which still exceeds the TARGETWS value.

Now, let’s assume that the VM load starts to increase. More real storage will be
needed for other users besides the database. CP will begin stealing away more and
more of the database’s storage for use by other users. Therefore, the database
storage size finally begins to decrease. CP is stealing pages and VMDSS is releasing
pages faster than VMDSS is requesting them. Eventually, the database storage size
will decrease until it is less than the TARGETWS value. Therefore, VMDSS stops
releasing pages. At this point, VMDSS is requesting pages and CP is stealing
others.

If the VM system load remains relatively constant, the database storage size will
remain close to (but usually exceeding slightly) the TARGETWS value because CP
will be stealing away pages about as fast as VMDSS can request them.

However, if the VM system load continues to increase, CP will be stealing away
pages faster than VMDSS can request them. The database storage size will
continue to decrease and will now remain below the TARGETWS value because
VMDSS cannot request pages faster than CP can steal them. Eventually, some
minimum database storage size will be reached where the rate of CP stealing pages
equals the rate of VMDSS page requests, which will be below the TARGETWS.

In certain storage-constrained environments, CP never seems to be able to prevent
VMDSS from taking ″too much″ storage. In this context, ″too much″ simply means
that other VM users must wait for storage and thus their response time suffers. In

218 Performance Tuning Handbook

these cases, the only solution (without adding extra real storage) is to issue the CP
SET SRM MAXWSS n% command to set a system-wide storage size restriction
AND to remove the QUICKDSP option from the database user ID. This is a fairly
drastic measure because removing QUICKDSP will degrade the database user’s
response times. If QUICKDSP is not removed, then the ″SET SRM MAXWSS″
setting will NOT affect the database machine’s real storage usage.

Appendix C. Why is the TARGETWS Value Frequently Exceeded? 219

220 Performance Tuning Handbook

Notices

IBM may not offer the products, services, or features discussed in this document in
all countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10594-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1993, 2003 221

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
Mail Station P300
522 South Road
Poughkeepsie, NY 12601-5400
U.S.A

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements, or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility, or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs in source language,
which illustrates programming techniques on various operating platforms. You
may copy, modify, and distribute these sample programs in any form without
payment to IBM, for the purposes of developing, using, marketing, or distributing
application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs.

222 Performance Tuning Handbook

Trademarks
The following terms are trademarks of International Business Machines
Corporation in the United States, or other countries, or both:

CICS
CICS/VSE
DataPropagator
DATABASE 2
DB2
DRDA
IBM
QMF
OS/390
SQL/DS
VM/ESA
VSE/ESA

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks
of others.

Notices 223

224 Performance Tuning Handbook

Bibliography

This bibliography lists publications that are
referenced in this manual or that may be helpful.

DB2 Server for VM Publications

v DB2 Server for VSE & VM Application
Programming, SC09-2889

v DB2 Server for VSE & VM Database
Administration, SC09-2888

v DB2 Server for VSE & VM Database Services
Utility, SC09-2983

v DB2 Server for VSE & VM Diagnosis Guide and
Reference, LC09-2907

v DB2 Server for VSE & VM Overivew, GC09-2995
v DB2 Server for VSE & VM Interactive SQL Guide

and Reference, SC09-2990
v DB2 Server for VSE & VM Master Index and

Glossary, SC09-2890
v DB2 Server for VM Messages and Codes,

GC09-2984
v DB2 Server for VSE & VM Operation, SC09-2986
v DB2 Server for VSE & VM Quick Reference,

SC09-2988
v DB2 Server for VM System Administration,

SC09-2980
v DB2 Server for VSE & VM Performance Tuning

Handbook, GC09-2987
v DB2 Server for VSE & VM SQL Reference,

SC09-2989

DB2 Server for VSE Publications

v DB2 Server for VSE & VM Application
Programming, SC09-2889

v DB2 Server for VSE & VM Database
Administration, SC09-2888

v DB2 Server for VSE & VM Database Services
Utility, SC09-2983

v DB2 Server for VSE & VM Diagnosis Guide and
Reference, LC09-2907

v DB2 Server for VSE & VM Overivew, GC09-2995
v DB2 Server for VSE & VM Interactive SQL Guide

and Reference, SC09-2990
v DB2 Server for VSE & VM Master Index and

Glossary, SC09-2890
v DB2 Server for VSE Messages and Codes,

GC09-2985
v DB2 Server for VSE & VM Operation, SC09-2986

v DB2 Server for VSE System Administration,
SC09-2981

v DB2 Server for VSE & VM Performance Tuning
Handbook, GC09-2987

v DB2 Server for VSE & VM SQL Reference,
SC09-2989

Related Publications

v DB2 Server for VSE & VM Data Restore,
SC09-2991

v DRDA: Every Manager's Guide, GC26-3195
v IBM SQL Reference, Version 2, Volume 1,

SC26-8416
v IBM SQL Reference, SC26-8415

VM/ESA Publications

v VM/ESA: General Information, GC24-5745
v VM/ESA: VMSES/E Introduction and Reference,

GC24-5837
v VM/ESA: Installation Guide, GC24-5836
v VM/ESA: Service Guide, GC24-5838
v VM/ESA: Planning and Administration,

SC24-5750
v VM/ESA: CMS File Pool Planning,

Administration, and Operation, SC24-5751
v VM/ESA: REXX/EXEC Migration Tool for

VM/ESA, GC24-5752
v VM/ESA: Conversion Guide and Notebook,

GC24-5839
v VM/ESA: Running Guest Operating Systems,

SC24-5755
v VM/ESA: Connectivity Planning, Administration,

and Operation, SC24-5756
v VM/ESA: Group Control System, SC24-5757
v VM/ESA: System Operation, SC24-5758
v VM/ESA: Virtual Machine Operation, SC24-5759
v VM/ESA: CP Programming Services, SC24-5760
v VM/ESA: CMS Application Development Guide,

SC24-5761
v VM/ESA: CMS Application Development

Reference, SC24-5762
v VM/ESA: CMS Application Development Guide for

Assembler, SC24-5763
v VM/ESA: CMS Application Development Reference

for Assembler, SC24-5764

© Copyright IBM Corp. 1993, 2003 225

v VM/ESA: CMS Application Multitasking,
SC24-5766

v VM/ESA: CP Command and Utility Reference,
SC24-5773

v VM/ESA: CMS Primer, SC24-5458
v VM/ESA: CMS User’s Guide, SC24-5775
v VM/ESA: CMS Command Reference, SC24-5776
v VM/ESA: CMS Pipelines User’s Guide, SC24-5777
v VM/ESA: CMS Pipelines Reference, SC24-5778
v VM/ESA: XEDIT User’s Guide, SC24-5779
v VM/ESA: XEDIT Command and Macro Reference,

SC24-5780
v VM/ESA: Quick Reference, SX24-5290
v VM/ESA: Performance, SC24-5782
v VM/ESA: Dump Viewing Facility, GC24-5853
v VM/ESA: System Messages and Codes, GC24-5841
v VM/ESA: Diagnosis Guide, GC24-5854
v VM/ESA: CP Diagnosis Reference, SC24-5855
v VM/ESA: CP Diagnosis Reference Summary,

SX24-5292
v VM/ESA: CMS Diagnosis Reference, SC24-5857
v CP and CMS control block information is not

provided in book form. This information is
available on the IBM VM/ESA operating
system home page
(http://www.ibm.com/s390/vm).

v IBM VM/ESA: CP Exit Customization, SC24-5672
v VM/ESA REXX/VM User’s Guide, SC24-5465
v VM/ESA REXX/VM Reference, SC24-5770

C for VM/ESA Publications

v IBM C for VM/ESA Diagnosis Guide, SC09-2149
v IBM C for VM/ESA Language Reference,

SC09-2153
v IBM C for VM/ESA Compiler and Run-Time

Migration Guide, SC09-2147
v IBM C for VM/ESA Programming Guide,

SC09-2151
v IBM C for VM/ESA User’s Guide, SC09-2152

Virtual Storage Extended/Enterprise Systems
Architecture (VSE/ESA) Publications

v IBM VSE/ESA Administration, SC33-6505
v IBM VSE/ESA Diagnosis Tools, SC33-6514
v IBM VSE/ESA General Information, GC33-6501
v IBM VSE/ESA Guide for Solving Problems,

SC33-6510

v IBM VSE/ESA Guide to System Functions,
SC33-6511

v IBM VSE/ESA Installation, SC33-6504
v IBM VSE/ESA Messages & Codes, SC33-6507
v IBM VSE/ESA Networking Support, SC33-6508
v IBM VSE/ESA Operation, SC33-6506
v IBM VSE/ESA Planning, SC33-6503
v IBM VSE/ESA System Control Statements,

SC33-6513
v IBM VSE/ESA System Macros User’s Guide,

SC33-6515
v IBM VSE/ESA System Macros Reference,

SC33-6516
v IBM VSE/ESA System Utilities, SC33-6517
v IBM VSE/ESA Unattended Node Support,

SC33-6512
v IBM VSE/ESA Using IBM Workstations,

SC33-6509

CICS/VSE Publications

v CICS/VSE Application Programming Reference,
SC33-0713

v CICS/VSE Application Programming Guide,
SC33-0712

v CICS Application Programming Primer (VS
COBOL II), SC33-0674

v CICS/VSE CICS-Supplied Transactions, SC33-0710
v CICS/VSE Customization Guide, SC33-0707
v CICS/VSE Facilities and Planning Guide,

SC33-0718
v CICS/VSE Intercommunication Guide, SC33-0701
v CICS/VSE Performance Guide, SC33-0703
v CICS/VSE Problem Determination Guide,

SC33-0716
v CICS/VSE Recovery and Restart Guide, SC33-0702
v CICS/VSE Release Guide, GC33-1645
v CICS/VSE Report Controller User’s Guide,

SC33-0705
v CICS/VSE Resource Definition (Macro), SC33-0709
v CICS/VSE Resource Definition (Online),

SC33-0708
v CICS/VSE System Definition and Operations

Guide, SC33-0706
v CICS/VSE System Programming Reference,

SC33-0711
v CICS/VSE User’s Handbook, SX33-6079
v CICS/VSE XRF Guide, SC33-0704

CICS/ESA Publications

226 Performance Tuning Handbook

v CICS/ESA General Information, GC33-0803

VSE/Virtual Storage Access Method (VSE/VSAM)
Publications

v VSE/VSAM Commands and Macros, SC33-6532
v VSE/VSAM Introduction, GC33-6531
v VSE/VSAM Messages and Codes, SC24-5146
v VSE/VSAM Programmer’s Reference, SC33-6535

VSE/Interactive Computing and Control Facility
(VSE/ICCF) Publications

v VSE/ICCF Administration and Operation,
SC33-6562

v VSE/ICCF Primer, SC33-6561
v VSE/ICCF User’s Guide, SC33-6563

VSE/POWER Publications

v VSE/POWER Administration and Operation,
SC33-6571

v VSE/POWER Application Programming,
SC33-6574

v VSE/POWER Networking, SC33-6573
v VSE/POWER Remote Job Entry, SC33-6572

Distributed Relational Database Architecture
(DRDA) Library

v Application Programming Guide, SC26-4773
v Architecture Reference, SC26-4651
v Connectivity Guide, SC26-4783
v DRDA: Every Manager's Guide, GC26-3195
v Planning for Distributed Relational Database,

SC26-4650
v Problem Determination Guide, SC26-4782

C/370 for VSE Publications

v IBM C/370 General Information, GC09-1386
v IBM C/370 Programming Guide for VSE,

SC09-1399
v IBM C/370 Installation and Customization Guide

for VSE, GC09-1417
v IBM C/370 Reference Summary for VSE,

SX09-1246
v IBM C/370 Diagnosis Guide and Reference for

VSE, LY09-1805

VSE/REXX Publication

v VSE/REXX Reference, SC33-6642

Other Distributed Data Publications

v IBM Distributed Data Management (DDM)
Architecture, Architecture Reference, Level 4,
SC21-9526

v IBM Distributed Data Management (DDM)
Architecture, Implementation Programmer’s Guide,
SC21-9529

v VM/Directory Maintenance Licensed Program
Specification, GC20-1836

v IBM Distributed Relational Database Architecture
Reference, SC26-4651

v IBM Systems Network Architecture, Format and
Protocol Reference, SC30-3112

v SNA LU 6.2 Reference: Peer Protocols, SC31-6808
v Reference Manual: Architecture Logic for LU Type

6.2, SC30-3269
v IBM Systems Network Architecture, Logical Unit

6.2 Reference: Peer Protocols, SC31-6808
v Distributed Data Management (DDM) General

Information, GC21-9527

CCSID Publications

v Character Data Representation Architecture,
Executive Overview, GC09-2207

v Character Data Representation Architecture
Reference and Registry, SC09-2190

DB2 Server RXSQL Publications

v DB2 REXX SQL for VM/ESA Installation and
Reference, SC09-2891

C/370 Publications

v IBM C/370 Installation and Customization Guide,
GC09-1387

v IBM C/370 Programming Guide, SC09-1384

Communication Server for OS/2 Publications

v Up and Running!, GC31-8189
v Network Administration and Subsystem

Management Guide, SC31-8181
v Command Reference, SC31-8183
v Message Reference, SC31-8185
v Problem Determination Guide, SC31-8186

Distributed Database Connection Services
(DDCS) Publications

v DDCS User’s Guide for Common Servers,
S20H-4793

v DDCS for OS/2 Installation and Configuration
Guide, S20H-4795

VTAM Publications

Bibliography 227

v VTAM Messages and Codes, SC31-6493
v VTAM Network Implementation Guide, SC31-6494
v VTAM Operation, SC31-6495
v VTAM Programming, SC31-6496
v VTAM Programming for LU 6.2, SC31-6497
v VTAM Resource Definition Reference, SC31-6498
v VTAM Resource Definition Samples, SC31-6499

CSP/AD and CSP/AE Publications

v Developing Applications, SH20-6435
v CSP/AD and CSP/AE Installation Planning Guide,

GH20-6764
v Administering CSP/AD and CSP/AE on VM,

SH20-6766
v Administering CSP/AD and CSP/AE on VSE,

SH20-6767
v CSP/AD and CSP/AE Planning, SH20-6770
v Cross System Product General Information,

GH23-0500

Query Management Facility (QMF) Publications

v Introducing QMF, GC27-0714
v Installing and Managing QMF for VSE,

GC27-0721
v QMF Reference, SC27-0715
v Installing and Managing QMF for VM,

GC27-0720
v Developing QMF Applications, SC27-0718
v QMF Messages and Codes, GC27-0717
v Using QMF, SC27-0716

Query Management Facility (QMF) for Windows
Publications

v Getting Started with QMF for Windows,
SC27-0723

v Installing and Managing QMF for Windows,
GC27-0722

DL/I DOS/VS Publications

v DL/I DOS/VS Application Programming,
SH24-5009

COBOL Publications

v VS COBOL II Migration Guide for VSE,
GC26-3150

v VS COBOL II Migration Guide for MVS and
CMS, GC26-3151

v VS COBOL II General Information, GC26-4042
v VS COBOL II Language Reference, GC26-4047

v VS COBOL II Application Programming Guide,
SC26-4045

v VS COBOL II Application Programming
Debugging, SC26-4049

v VS COBOL II Installation and Customization for
CMS, SC26-4213

v VS COBOL II Installation and Customization for
VSE, SC26-4696

v VS COBOL II Application Programming Guide for
VSE, SC26-4697

Data Facility Storage Management
Subsystem/VM (DFSMS/VM) Publications

v DFSMS/VM RMS User’s Guide and Reference,
SC35-0141

Systems Network Architecture (SNA)
Publications

v SNA Transaction Programmer’s Reference Manual
for LU Type 6.2, GC30-3084

v SNA Format and Protocol Reference: Architecture
Logic for LU Type 6.2, SC30-3269

v SNA LU 6.2 Reference: Peer Protocols, SC31-6808
v SNA Synch Point Services Architecture Reference,

SC31-8134

Miscellaneous Publications

v IBM 3990 Storage Control Planning, Installation,
and Storage Administration Guide, GA32-0100

v Dictionary of Computing, ZC20-1699
v APL2 Programming: Using Structured Query

Language, SH21-1056
v ESA/390 Principles of Operation, SA22-7201

Related Feature Publications

v DB2 for VM Control Center Operations Guide,
GC09-2993

v DB2 for VSE Control Center Operations Guide,
GC09-2992

v DB2 Replication Guide and Reference, SC26-9920

228 Performance Tuning Handbook

Index

Special characters
*IDENT 29

Numerics
16MB line

storage above 47
storage queue 46
virtual addressability extension 80

31 bit addressing
advantages 47
storage queue 46
virtual addressability extension 80

31-bit addressing 27
5697F42 MEMO 174

loading 174

A
absolute share 79
access path

choosing 135
dbspace scan 118
disadvantages of indexes 121
index scan 118
index-only access 119
influencing 117
locking 96
types 117, 119
unique index with key matching

predicate 120
with unclustered index 118

ACCESSLIST directory statement 178
accounting

measurement tool 9
ACQUIRE DBSPACE

allocating dbspace storage 65
minimum lock level 96

ADD 49
address space

size 47
virtual addressability extension 79
virtual disk 48, 54

addressability extension
virtual 79

addressing 43
ADDRSPACE directory statement 178
adhoc query

isolation level 113
temporary table 113
view 113

agent
checkpoint 88
deprived 93
dispatching 92
operator 88
pseudo 90
real 88

agent (continued)
structure

virtual addressability
extension 80

user 88
allocating users to agents 89
ALTER DBSPACE

free space in a data page 61
lock escalation 99

alternate logging 105
AMXT/MXT

CICS 80
analyzing

SQL statements 141
application program

adhoc query 112
DBS utility considerations 113
deadlock 101
distributed database 83
ISQL considerations 112
response time 4

application requester
configuring 85
DRDA 81
PROTOCOL parameter 109

application server
configuring 85
DRDA 81
PROTOCOL parameter 108
response time 4

archive 178
checkpoint 103
database 49, 53, 55, 58
log 105
selective 105

archiving
as overhead 12

ARCHPCT
tuning parameter 107

ARIS72DB 20
ARISDBMA EXEC 179
ARISQLDS 20
arithmetic operator

in syntax diagrams ix
asynchronous

communication 112
page fault processing 197
writes 198

auditing
fair share 93

AUTO PROTOCOL option 109
AUTOCOMMIT

command 112
ISQL 112

automatic statistics collection 113
suppressing 113

auxiliary storage
CICS temporary 81
expanded storage 43
system paging DASD 43

availability 1, 5

average row length 38
AVGROWLEN 38

B
back-up

file 50
virtual disk 52
VSAM 76

balancing
DASD 75

batch user, VSE 89
BEGINLUW counter 23
BLOCK

initialization parameter 110
blocking 193, 198

disadvantages 111
DRDA protocol 110
fetch and insert 110
ISQL 111
maximum row length 110
single user mode (SUM) 111
suppressed 111

bootstrap module, contents 182
bootstrap package

contents 182
copied to A-disk 183
creating 182

buffer pool 197
checkpoint 103
data page 85
NCUSERS 87, 89
size 87

BUFND startup parameter 108
build the database manager 179

C
caching

minidisk 78
package 88

NCUSERS 89
CANCEL

ISQL 112
synchronous communication 112

catalog
procedure

virtual disk 51
table 38

catalog table
automatic statistics collection 113
column information 39
dbspace information 39
description 8
index information 40
locking 98, 113
placement 77
statement 137
statistics 137

influencing data access 138

© Copyright IBM Corp. 1993, 2003 229

catalog table (continued)
statistics (continued)

updating 139
SYSTEM.SYSCATALOG 38, 62
SYSTEM.SYSCOLUMNS 39
SYSTEM.SYSDBSPACES 39, 61, 62
SYSTEM.SYSINDEXES 40
table information 38
UPDATE STATISTICS 137

CCSID
CHARNAME 132
column 39
conversion

PROTOCOL 109
DRDA handshaking 109
impact on sargability 131

CCW
fast translation 79

channel 75
CHARNAME

CCSID 132
checklist

enable 176
pre-enable 176

checkpoint
agent 88
as overhead 11
forcing 64, 104
interval 103

choosing 203
default value 203

invalid index 74
load measurement 23
managing 202
occurrence 103
overview 102
performance implication 103
process 63
save interval 203
shadow page 63, 103
short on storage 59
storage queue 46

checkpoint interval
understanding 166

CHKINTVL
checkpoint 103
choosing a value 103

CHKPOINT counter 23
choose

in syntax diagrams ix
CICSPARS 8, 17
CIRB

initiated CICS connections
concurrency 92

transaction 90
CIRD transaction 8, 21
CIRT transaction 90
CISQ

transaction name 80
cluster ratio

catalog table 41
evaluating 68

clustered
catalog table 41
index 66

access path 118
unclustered index 67

clustering index 67
catalog table 41
changing

while reorganizing a dbspace 71
while reorganizing a table 71
without dropping indexes 72

data 66
PCTFREE 62
reorganize index 74
unclustered 68
view 68

CLUSTERTYPE
clustering 67

column
> 254 111
catalog information 39
length 39
null type 39
type 39

COMMIT WORK
checkpoint 103
ISQL 112
lock escalation 100
log cushion 107
statement 102

COMMITCOUNT
locking 114

communication
blocking 110
DRDA protocol 108
synchronous 112

compatibility
lock 95

compile partition size 80
concurrency

agent 88
allocating agent structure 89
as overhead 11
CICS 90
CICSPARS 90
CIRB transaction 90
concurrent ISQL users 80
cost of additional real agents 89
description 88
differences between real and pseudo

agents 91
dispatching agents 92
DISPBIAS 93
fair share auditing 93
guest sharing 91
long versus short LUW 93
MAXCONN 91
NCUSERS 89
operator SHOW commands 28
prioritization 92
privileged remote DRDA user 92
pseudo-agents 90
RMTUSERS 91
SHOW CONNECT 90
SHOW USERS 90, 92
startup mode 93
VM user 89
VSE batch user 89
VSE interactive user 89
VSE remote DRDA user 89

conditional JCL
startup for virtual disk 53

configuration
consideration, distributed 81

console log 21
constraint

removing 12
controller 75
conventions

example xiii
syntax diagram notation viii

Conversational Monitor System (CMS)
work unit 102

corrective service 175
cost

estimating
obtaining 150

explain table 144
of monitoring 6

cost-benefit ratio 1
counter

CP indicate user
I/O 16
READS 15
RES 15
WRITES 15

CP query time
CTIME 15
TOTCPU 15
VTIME 15

directory 168
storage pool performance

understanding 168
COUNTER

example 22
operator command 9, 22

COUNTER POOL
DB2 Server DSS 9

CP
monitor 7
time 15

CP directory
maximum 211
statement

ACCESSLIST 178
ADDRSPACE 178
MACHINE 178
XCONFIG 178

update 178
CP QUERY TIME 8
CPU

as a resource 9
load measurement 14, 17
time used 29

CREATE INDEX
reorganize a single table 71

CREATE PROGRAM
blocking 110

creating
bootstrap package 182

CSTT transaction 18
CTIME counter 15
cursor

fetch 110
insert 110
stability (CS)

isolation level 97
ISQL 113
minimum lock level 96

230 Performance Tuning Handbook

cursor (continued)
suppressed blocking 111

cushion
log 107

Customer Information Control System
(CICS)

AMXT/MXT 80
CICS partition

31 bit addressing 80
CCW translation 79
connection 89
dispatching priority 79
system paging DASD 45
virtual addressability

extension 79
CICS statistics 8
CICSPARS 8, 17, 90
CIRB transaction 90
CIRD transaction 8, 21
CMXT parameter 80
concurrent ISQL users 80
CSTT transaction 18
DFHMCT ID keywords and

clocks 19
DFHMCT macro 19
DFHSIT macro 18
link to database partition 90
measurement tools 8
online resource adapter 91
pseudo agent 91
temporary storage 81
transaction time usage 18

D
DASD

cache 197
DASD I/O

*BLOCKIO 45
as a resource 10
balancing 75
channel 75
checkpoint 103
controller 75
DASD I/O system 85
general consideration 77
load measurement 15, 17
NCUSERS 89
package cache 88
page format 58
VSAM 45

DASD storage
as a resource 10
CMS reserved minidisk 58
cost of monitoring 6
dbextent placement in a volume 78
distributing 58
dividing 58
failure 105
running out 58, 65
VSAM entry sequenced data sets

(ESDS) 58
wasting 58

DASDIO counter 23
DASDREAD counter 23
DASDWRIT counter 23
data clustering 66

data location
physical 19

data page
description 60
free space 61
proportion to other pages 61

data set placement (VSE) 20
data space

virtual disk 48, 54
data spaces

directory 164
internal dbspace 163
removing 175
storage pool 163
turning on and off 189
understanding 157

database
archive 105, 178
creating new 195
design

using EXPLAIN 153
generation

MAXPOOLS keyword 59
machine

31 bit addressing 47
address space size 47
auxiliary storage 43
buffer pool 85
CPU load 17
DASD I/O load 15
fair share scheduling 78
load on 23
overall performance 15
SHOW STORAGE 27
virtual storage load 14

manager
storage 85

database machine
DASD requirement 174
logoff 178
logon 177
modes of operation 171
overview 171
virtual storage 172

database manager
building 179
verifying 179

database partition
31 bit addressing 47, 80
address space size 47
auxiliary storage 44
balancing pool 79
batch 79
buffer pool 85
CICS

dispatching priority 79
fast CCW translation 79
virtual addressability

extension 79
compile size 80
DASD I/O load 15
deactivation 46
load on 23
overall performance 15
SHOW STORAGE 27

DATALOAD
automatic statistics collection 113

DATALOAD (continued)
clustering index 67
free page space 40
locking 114
PCTFREE 62

DATAUNLOAD
locking 114

date
ever increasing index 66

DB2 for VM Control Center Operations
Guide, IBM 9

DB2 for VM directory
data spaces support 164
performance counter 168
understanding 164

DB2 Server DSS
checkpoint 104
counters 25

DB2 Server for VM directory
reblocking 193
using 193

dbextent
adding 65
allocation to dbspace 76
caching 78
consecutive placement 78
mapping to dbspace 59
moving 75
number 204
number per device 204
restructuring 77
size 204
splitting 77
storage 26
virtual disk 51, 56

DBNAME directory 92
DBS utility (Database Services utility)

automatic statistics collection 113
lock escalation 114
performance considerations 113
reorganize 73
REORGANIZE INDEX 73
tape blocking 114
unload and reload package 115
UNLOAD block size 114

dbspace
active pages 40
adding 65
available pages 40
catalog information 39
DROP

checkpoint 103
dropping 59
dropping for force a checkpoint 64
extending 65
forcing checkpoint 104
full 65

over allocating 65
shadow page 65

LOCK DBSPACE statement 114
lockmode 40
mapping to dbextent 59
move 76
pages for indexes 40
PCTFREE 62
percentage of page free 40

Index 231

dbspace (continued)
private

lock 95
reassign 76
releasing empty pages 59
reorganize 65, 71
scan 118

minimum lock level 96
reorganize index 75
row level locking 97

storage pool 40
table placement 121

DBSSCALL counter 23
DDR 76
deactivation of partition 46
DEADLCK counter 23
deadlock

application design 101
COUNTER 102
example 101
hit ratio 23
lock contention 102
lock escalation 102
NCUSERS 89, 101
overview 101
performance indicator 23, 102
reschedule applications 101
rollback 102
time required to detect 101

DEDICATE parameter 50
default

in syntax diagrams x
deprived agent 93
design

data 140
database 153
evaluation 140
modifying tables 153

device utilization
load measurement 15

DFHMCT CICS macro 19
DFHSIT

macro instruction for CICS
AMXT/MXT 80
CICSPARS 18

diminishing returns, law of 1
directory

buffer
DASD I/O system 85
NDIRBUF 87
performance indicator 24

caching 78
checkpoint 103
page map table 59
placement 78
solutions 8

DIRREAD counter 23
DIRWRITE counter 23
disabling VMDSS 188
disk locations, VM 19
dispatching

agents 92
fair share auditing 93
prioritization 92
priority (VSE) 79
SET QUICKDSP 79

DISPBIAS
agent dispatching 93

distributed configuration
application planning 83
performance implication 83
VM 81
VSE 81

distributing
DASD 58

distribution tape 179
dividing

DASD 58
processor time 78, 79

DRDA protocol
blocking 110
distributed consideration 81
DRDA option 110
fetch and insert blocking 83
handshaking 109
performance considerations 108
PROTOCOL parameter 109

DRDA user
privileged remote 92
RMTUSERS 91
VSE pseudo agent 89

DROP DBSPACE
checkpoint 103
command 121

dual log 105
duration

lock 95
dynamic

page allocation 59
dynamic storage size management 198

E
effective use measurement

description 13
elapsed time 4, 15
elements of performance 1
empty log

invalid index 74
enable 175
enable checklist 176
enable code 179
engineering change (EC) 2
ESCALATE 23

counter 37, 100
estimating

size of response 152
evaluating

logical data design 140
example

conventions xiii
exclusive lock

description 94
EXEC

SQLGENLD 183
SQLSTART 185, 186

existing data
striping 205

expanded storage 165
auxiliary storage 43
buffer pool 85

EXPLAIN
cost table 144

EXPLAIN (continued)
database design 153
explicit and implicit 143
plan table 145
reference table 146
referential constraint 148
statement 141
structure table 148

explanation table
general description 140
using 140, 143

extension
virtual addressability 79

F
fair share

auditing 93
scheduling 78

fallback procedures 2
fast CCW translation 79
FASTTR

job control option 79
fault

page 45
FB-512 storage devices 172
fetch blocking 110

distributed database 83
filter factor 130
fold file

distributed database 83
forcing

a checkpoint 64
fragment of syntax

in syntax diagrams xi
fragmentation

index 73

G
guest sharing

concurrency 91
distributed database 81

guidelines
tuning 1

H
handshaking

DRDA 109
hardware

problems 2
upgrading 2

header page
description 60
number 60
proportion to other pages 61

hierarchy of locks 94
HIGHSTOR 27
hit ratio

deadlock 23
description 7, 13
directory buffer 24
local buffer 24
waitlock 24

232 Performance Tuning Handbook

hold file
distributed database 83

host variable
in syntax diagrams ix

I
I/O

cost 140
counter 16
DASD balancing 75
DASD I/O as a resource 10
DASD I/O system 85
fast CCW translation 79
general consideration 77

IBM DB2 for VM Control Center 9
IDCAMS

backup 50
dataset location 20

improvement process
performance 2

index
access path 117
catalog information 40
causes of invalid 75
cluster ratio 41
clustered 41, 66
clustering 41, 67

default versus clustering 67
unclustered 70

clustering strategy 67
creating 119
default strategy 67
disadvantages 121
ever increasing 66
foreign key 122
fragmentation 73
free space

catalog table 41
fragmentation 73

fully matched 124
index-only access 119
invalid 74
lock contention 96
lockmode 41
page

description 60
free space 62
proportion to other pages 61
reserved in a dbspace 40
running out 66

PCTFREE 73
recommendation 120
release level 42
reorganize 73

invalid 75
scan 118

minimum lock level 96
sorting 120
transient 74
unclustered

identifying 68
unique

access path type 120
row level locking 96
with key matching predicate 120

INDICATE USER
command 15
description 8
example 16

indicators
performance 2

indicators, performance 3
individual device utilization

load measurement 15
influencing data access

with catalog statistics 138
initialization parameter

BLOCK 110
CHKINTVL 103
LOGMODE 103
NCUSERS 88, 89
NDIRBUF 85
NLRBS 99
NLRBU 99
NPACKAGE 88
NPACKPCT 88
NPAGBUF 85
PCTFREE 63, 72
PROTOCOL 108
retrieval 8, 20

inner table 133
insert

blocking 83, 110
distributed database 83
multiple row 110

INSERT logic 67
installation option

overview 175
production system 175
removing VMDSS 175
saved segment 175

installation requirement
CP directory 211
DASD 172
database disk 174
database machine 171, 172
database machine DASD 174
dbextent 174
directory 174
FBA 172
hardware 174
log 174
MAINT machine 171, 172
operating system 171
real storage 172
software 171
virtual storage 171
VM paging DASD 173

intent
exclusive lock

description 94
none lock

description 94
share lock

description 94
interactive

interface
VSE 8

user
VSE 89

Interactive Structured Query Language
(ISQL)

asynchronous communication 112
AUTOCOMMIT 112
blocking 111
CANCEL 112
CICS 80
concurrent users 80
isolation level 113
performance considerations 112
temporary table 113
transaction name 80
view 113

internal dbspace
adding to a virtual disk pool 52
data spaces 77
mapped

choosing 199
understanding 163
using 192

placement 77
unmapped

choosing 199
understanding 163
using 192

virtual disk 48, 54, 77
interval

sampling 14
interval, monitoring 6
invalid index 74

package 74
SHOW INVALID 74

IPL procedure 49
isolation level

considerations for adhoc users 113
description 97
ISQL 113
lock duration 98
lock escalation 100
selecting 98
user defined 98

ISQ2
transaction name 80

IUCV *BLOCKIO
DASD I/O system 85
page format 58

IUCV conversations 93

J
join

merge scan 134
multiple 136
performance considerations 132
predicate 126
stored 113, 154

K
key-matching 123
keyword

in syntax diagrams viii

Index 233

L
law of diminishing returns 1
LDIRBUFF counter 23
length, column 39
limits

system tuning 3
link-edit 179
LISTCAT 8, 20
load

leveling 46
workload 3

load measurement
checkpoint 23
CPU 14, 17
DASD I/O 17
database machine or partition DASD

I/O load 15
description 7, 13
I/O 140
individual device utilization 15
logical unit of work 23
main storage 17
operating system 14
processor 14, 17
real and virtual storage 14
system paging DASD 14, 17
tools 14

loading
saved segments 182

local
buffer

DASD I/O system 85
new page 63
NPAGBUF 87
performance indicator 24
virtual addressability

extension 80
copy

distributed database 83
LOCALAXE entry

privileged remote DRDA user 92
locations

physical data 19
LOCK

lock escalation 99
lock contention

access path 96
catalog table 98
deadlock 102
index 96
isolation level 97
lock compatibility 95
logical unit of work 96
measurement 35
minimum lock level 96
NCUSERS 95
operator SHOW command 35
row level locking 96

lock escalation
ALTER DBSPACE 99
COUNTER operator command 100
DBS utility 114
deadlock 102
isolation level 100
LOCK 99
measurement 37
NCUSERS 89

lock escalation (continued)
operator SHOW command 37
overview 99
SHOW LOCK MATRIX 100
trading lock level 99

lock request block
determining number required 100
insufficient 100
NLRBS 99
NLRBU 99
number in use 37
performance indicator 24, 100

locking
as overhead 11
compatibility 95
considerations

reducing lock escalation 114
contention

overview 93
performance indicator 99

cost of 11
DBS utility

DATALOAD and RELOAD 114
deadlock 114
UNLOAD PACKAGE and

RELOAD PACKAGE 114
duration 95

isolation level 98
hierarchy 94
lock level 96
lockmode

dbspace 40
index 41

minimum lock level 121
mode 94
NCUSERS 89
operator SHOW commands 35
overview 93
private dbspace 95
SHARE lock

DBS utility 114
virtual addressability extension 80

LOCKLMT
counter 37
example 23

log 202
alternate 105
archive 105
caching 78
checkpoint 103
cushion 107
dual 105
file 105
full

checkpoint 103
inactive

checkpoint 103
invalid index 74
placement 78
SHOW LOG 108

log buffer 202
log disk 202
logging

as overhead 12
logical data design

evaluation of 140

logical unit of work
load measurement 23
lock duration 95
locking 96
long versus short 93
recovery 102
storage queue 46

logmode
changing 107
selecting 105
short on storage 59

LOGMODE
initialization parameter 103

LOGMODE startup parameter 202
LOGREAD counter 23
LOGWRITE counter 23
LPAGBUFF counter 23
LU 6.2 LUWID

DRDA handshaking 109

M
MACHINE directory statement 178
main storage 165

buffer pool 87
dedicating 43
load measurement 17
page count 15
temporary CICS 81
virtual addressability extension 80
virtual disk 48, 54

MAINT machine
installation 171
overview 171
virtual storage 172

maintenance
statistics 137

manual
organization vii
prerequisite viii
who should use vii

mapping
choosing 202, 205
understanding 163

matched index 124
MAXCONN 29

increasing virtual storage 47
pseudo agent 91

MAXPOOLS
keyword 59

measurement
production system 6
relative nature 6
test system 6
to indicators 15
tools 7, 8

catalog table 8
CICS 8
CICS monitoring facility 8
CICS statistics 8
CICSPARS 8
CIRD transaction 8
COUNTER operator command 9
CP INDICATE USER 8
CP monitor 7
CP QUERY TIME 8
database manager 19

234 Performance Tuning Handbook

measurement (continued)
tools (continued)

DB2 Server DSS COUNTER
POOL 9

DB2 Server DSS SHOW
TARGETWS 9

DB2 Server for VSE & VM 8
DB2 Server for VSE & VM

accounting 9
DB2 Server for VSE & VM trace 9
IBM DB2 for VM Control

Center 9
initialization parameter 8
operating system 14
RTM VM/ESA 8
SHOW operator command 9
VM 7
VM/PRF 7
VMMAP 8
VSAM LISTCAT 8
VSE 8
VSE interactive interface 8

measuring performance 13
memo-to-users 174
merge scan join 134
message traffic

fetch and insert blocking 83
microcode assists 2
minidisk

caching 78
minimum lock level 96
modifying table designs 153
Monitor Analysis Program (VMMAP) 8
monitor, CP 7
monitoring

cost 6
interval 6
master schedule 6
plan 6

performance 2, 6
real time 5
statistical 5

most recently used pages 45
multiple join 136
multiple user mode

starting DB2 Server for VM 184, 186
multiple user mode (MUM)

allocating user to agents 89
blocking 110
running 93

N
NCUSERS

buffer pool 87
deadlock 101
determining number of real

agents 89
example 29
increasing virtual storage 47
lock contention 95
number of real agents 88
package cache 88
RMTUSERS 92

NDIRBUF
directory buffer 87
directory buffer pool 85

NDIRBUF (continued)
increasing virtual storage 47

nested loop join 133
network

distributed 83
response time 4
SNA 81

NLRBS
increasing virtual storage 47
initialization parameter 99

NLRBU
increasing virtual storage 47
initialization parameter 99

NOFASTTR
job control option 79

non-XC mode
database machine 171
hardware 174
SQL/DS directory 199
verify 184

nonrecoverable storage pool
checkpoint 103

nonselective index scan 118
NOVERFLOW 38
NPACKAGE

increasing virtual storage 47
package cache 88

NPACKPCT
package cache 88

NPAGBUF
increasing virtual storage 47
local buffer 87
local buffer pool 85

null 39

O
objectives

performance 2, 4
obtaining costs for statements 150
operating

mode
XA 47
XC 47

system measurements 14
operating system

non-XC mode 171
requirement 171

operator
command 25, 33

operator agent 88
storage queue 46

optimizer 117
optional

default parameter
in syntax diagrams xi

installation steps 187
item

in syntax diagrams ix
keyword

in syntax diagrams xi
options file, start up 21
outer table 133
overflow

catalog table 62
reorganization 70
row expansion 62

overhead 11
overview

checkpoint interval 166
data space 157
database machine 171
directory 164
internal dbspace 163
logical mapping 169
MAINT machine 171
operating system 171
performance counter 168
physical mapping 169
save interval 167
storage management 165
storage pool 163
storage pool structure 168
striping 167
target working storage size

parameter 166
working storage residence

priority 166

P
package

cache 88
NCUSERS 89
threshold 88
virtual addressability

extension 80
invalid 74
unload and reload 115

page
active in a dbspace 40
allocating from storage pool 59
available in a dbspace 40
DASD I/O system 85
data

description 60
free space 61

dbspace
running out 65

dynamic allocation 59
fault

system paging DASD 45
free percentage 40
header 60
index 60

reserved in a dbspace 40
running out 66

jumps 68
logical and physical 59
map table 59

shadow page 63
modified 86
most recently used 45
number used by a table 39
releasing 86
shadow

checkpoint 63
description 60
number in use 64

size 58
stealing 86
storage 43
type 60
update 63

Index 235

page fault processing, asynchronous 197
PAGEREAD counter 23
PAGWRITE counter 23
parentheses

in syntax diagrams ix
path length 197
PCTFREE

initialization parameter 62
reorganize a dbspace 72
reorganize a single table 71

PCTINDEX
proportion of page types 61

PCTINDX
proportion of page types 61

performance
elements of 1
improvement process 2
improving 157
indicator 3
measurement

description 7
translating to indicators 15

monitoring plan 2, 6
objectives 2, 4
trade-off 2

performance indicator
AVGROWLEN 62
CICSPARS 90
CIRD transaction 90
COUNTER 87
deadlock 23, 102
directory buffer 24
FREEPCT 62
IPCTFREE 63
local buffer 24
lock contention 99
lock request block 24, 100
lockmode 96
NOVERFLOW 62
operating system 14
PCTINDX 61
performance improvement process 2
SHOW POOL 60
SHOW USERS 92
tools 14
waitlock 23

Performance Reporting Facility, VM 7
performance tuning

asynchronous processing 197
blocking 198
buffer pool 197
checkpoint 202, 203
checkpoint interval 203
DASD cache 197
data space 197
dynamic storage management 198
internal dbspace 199
mapping 205
more asynchronous writes 198
path length 197
prefetching 198
save interval 203
SQL/DS directory 199
storage pool 199
storage size 200
striping 198, 204
target working storage size 200

permanent dbspace
shadow page 63

physical data locations 19
placement in dbspace 121
plan explain table 145
plan, performance monitoring 2, 6
planning

storage pool structure 168
post installation 187
pre-enable checklist 176
predicate

CCSID 39
column attribute 123
filter factors 130
join 126
key-matching 123
processing 122

examples 131
residual 125
sargable 125
suitable indexes for 124

prefetch
improving performance 198

preprocessing
compile partition size 80

prerequisite manual viii
preventive service 175
priority

agent prioritization 92
dispatching (VSE) 79

private dbspace
cursor stability 97

privileged remote DRDA user, VSE 92
procedures

stored 83
process

performance improvement 2
processing cost 140
processor

as a resource 9
load measurement 14, 17
time used 29

processor requirement 174
production workload 3, 6
PROFILE EXEC, modifying 56
program directory

loading 174
program temporary fix (PTF) 2
proportion

of available pages 25
of index to data and header pages 61

proportion of index to data and header
pages

PCTINDEX 61
PCTINDX 61

PROTOCOL
AUTO option 109
CCSID conversion 109
DRDA

communications 108
option 109, 110

SQLDS option 109
pseudo agent

description 90
number waiting 90

PTF tape 175

punctuation mark
in syntax diagrams ix

Q
QRYBLKSIZE

blocking 110
query

adhoc
isolation level 113
performance considerations 112
temporary table 113
view 113

separating into subquery
structures 149

several tables 132
query set 184, 186
QUERY TIME

command 15
description 8
example 16

queue, storage 27
quick dispatch

SET QUICKDSP 79

R
ratio

cost-benefit 1
hit 7

RDSCALL counter 23
READS counter 15
real agent

description 88
number available 90
storage queue 46

real storage
as a resource 10
description 43
increasing virtual storage 47
load measurement 14

Real Time Monitor VM/ESA program,
(RTM VM/ESA) 8

real time monitoring 5
reblocking directory 193
recovery

archive 105
as overhead 11
checkpoint 102
log 105
logical unit of work 102
shadow page 63
storage queue 46

reducing
lock escalation 114

redundant data 154
reentrant code 47
reference explain table 146
referential structure

EXPLAIN 148
organization 121

relative performance measurement 13
relative share 79
release level 42
releasing, page 86

236 Performance Tuning Handbook

RELOAD
automatic statistics collection 113
clustering index 67
free page space 40
locking 114
NEW 72
PCTFREE 62
PURGE 71
single table 71

RELOAD PACKAGE
DBS utility 115
usage considerations 115

remote, privileged DRDA user 92
reorganize

all the tables in a dbspace 71
clustering index 74
dbspace 65
index 73
invalid index 75
PCTFREE 71, 72
reasons to reorganize data 70
selecting a method 70
single table 71

REORGANIZE INDEX
advantages 73
DBS utility command 73
invalid index 75

repeat symbol
in syntax diagrams x

repeatable read (RR)
isolation level 97
ISQL 113

required item
in syntax diagrams ix

requirements
real storage 205

RES counter 15
resave the saved segment 181
reserved words

SQL xii
RESET

example 22
operator command 22

residual predicate 122, 125
resources 9
response size

estimating 152
response time

application program 4
application server 4
components 4
network 4
performance 1, 4

restarting
the application server 184

restore virtual disk backup 53
RINO

EXPLAIN 148
RMTUSERS

concurrency 91
ROLLBACK 23
ROLLBACK WORK

checkpoint 103
invalid index 74
ISQL 112
locking 96
statement 102

row
expansion 62
length

blocking 110
level locking

unique index 96
overflow 38
total number 38

ROWCOUNT
catalog table 38
estimating response size 153

running out of
DASD 58

S
sampling interval 14
sargable

affect of CCSID 131
predicate 122, 125

save interval
choosing 203
understanding 167

saved segment
resaving 175

saved segments 47
loading 182

SAVEINTV
DB2 Server DSS 104

saving
segments 182

scan
dbspace 118
index 118

scheduling
fair share 78

second level guest 81
segment saving 182
segments, saved 47
selective

archive 105
index

scan 118
separating queries into subquery

structures 149
SEPINTDB

unmapped internal dbspaces 192
service

corrective 175
preventive 175

SET POOL 191
SET QUICKDSP

fair share scheduling 79
SET SHARE

fair share scheduling 79
shadow page 202

accumulating 60
checkpoint 104
checkpoint process 103
dbspace full 65
description 60, 63, 103
number in use 64
page map table 63
short on storage 59

share
description 95

share (continued)
lock

description 94
with intent exclusive lock 95

SHARE lock 114
short on storage

checkpoint 103
example 27
initialization parameter 59
managing pool space 59
SHOW POOL 60
SOSLEVEL 59

shorter path length 197
SHOW

operator command 9, 25
SHOW ACTIVE

operator command 28
SHOW CONNECT

concurrency 90
operator command 29, 33, 35

SHOW DBEXTENT
available storage pool space 65
operator command 25

SHOW DBSPACE
operator command 25

SHOW INVALID
invalid index 74
transient index 75

SHOW LOCK
operator command 35

SHOW LOCK ACTIVE
operator command 36

SHOW LOCK GRAPH
operator command 36

SHOW LOCK MATRIX
lock escalation 100
operator command 36, 37

SHOW LOCK USER
operator command 37

SHOW LOG
log cushion 108

SHOW POOL
available dbextent space 65
operator command 26
shadow page 64
short on storage 60

SHOW STORAGE
operator command 27

SHOW TARGETWS
DB2 Server DSS 9

SHOW USERS
concurrency 90
operator command 29
pseudo-agents 92

shutdown
checkpoint 103

single user mode (SUM)
allocating users to agents 89
blocking 111
fetch and insert blocking 83
logmode 106
running 93

size of responses, estimating 152
SLOGCUSH

tuning parameter 107
SNA network

distributed database 81

Index 237

software problems 2
software requirement 171
Solutions Directory 8
sorting

index 120
specification file

storage pool
changing 188
format 207, 208
identifying 189
writing 208

SQL statements, analyzing 141
SQLCODE

-649 143
-911 102
-912 100
-915 100

SQLDS protocol 109
SQLGENLD EXEC 183
SQLHX

synchronous communication 112
SQLINIT

PROTOCOL parameter 108
QRYBLKSIZE 110
SYNCHRONOUS 112

SQLMACH machine
DASD requirement 174
modes of operation 171
overview 171
virtual storage 172

SQLQRY
synchronous communication 112

SQLSTART 19
SQLSTATE

40001 102
42704 143
57028 100
57029 100

start up
mode 93
options file 21

statements
obtaining costs 150

statistics
automatic collection 113
catalog table 38
CICS 8
influencing data access 138
maintenance 137
monitoring 5
update all 138

stealing, page 86
storage

16MB line 27
31-bit addressing 27
address space size 47
allocation above 16MB 27
as a resource 10
auxiliary 43
available dbextent storage 26
available storage pool space 25
DASD 58
DASD I/O system 85
database manager 85
main and expanded 165
operator SHOW commands 25
package cache 88

storage (continued)
page 43
paging system 45
proportion of available pages 25
queue 27, 46
real and virtual 43
saved segments 47
short on storage 59
temporary CICS 81
virtual 27
virtual disk 48, 54
virtual machine 43
virtual partition 43

storage pool
allocating page from 59
assign DASD 76
assigning dbextent 59
available space 25
catalog placement 77
Data Spaces Support 189
dbspace 40
description 59
directory and log placement 78
existing pool and virtual disk 51
free allocated pages 65
full 65
internal dbspace placement 77
managing space 59
nonrecoverable

checkpoint 103
performance 199
reassign dbspace 76
specification

checking 191
dynamically changing 191

specification file
changing 188
example 208
format 207
identifying 189
writing 208

virtual disk 51, 56
storage pool

planning structure 168
understanding 163

stored procedure
executing 31

stored procedures program 4
storing

joins of tables 154
logical table as two tables 154

striping
choosing 204
dbextent size 204
existing data 205
number of dbextents 204
one dbextent 204
performance 198
physical device 204
turning on an off 190
understanding 167

structure explain table 148
subquery structures, determining 149
super exclusive lock

description 94
supervisor mode

ESA 47

supervisor mode (continued)
VMESA 47

suppressed blocking 111
suppressing

automatic statistics collection 113
SYNCHRONOUS

communication 112
syntax diagram

notation conventions viii
SYSDEF 49
system paging DASD

auxiliary storage 43
buffer pool 85
hidden cost 45
increasing virtual storage 47
load measurement 14, 17
monitoring load 47
NCUSERS 89
saved segments 47
virtual disk 48, 54

SYSTEM.SYSCATALOG
average row length 38, 62
catalog table 38
clustering 67
number of page used by a table 39
overflow rows 38, 62
total number of rows 38

SYSTEM.SYSCOLUMNS
catalog table 39
CCSID 39
column length 39
column type 39
null 39

SYSTEM.SYSDBSPACES
active pages 40
available pages 40
catalog table 39
ever increasing index 66
free space in a data page 40, 62
lockmode 40, 96
percentage of reserved index

pages 40, 61
storage pool number 40

SYSTEM.SYSINDEXES
catalog table 40
changing clustering index 67
cluster ratio 41, 68
cluster value 68
clustered 41
clustering 41
free index space 41, 63
lockmode 41
page jumps 68
release level 42
row count 68

T
table

allocation to dbspace 76
average row length 38
catalog

automatic statistics collection 113
information 38
locking 98

design modification 153
explanation 143

238 Performance Tuning Handbook

table (continued)
LOCK TABLE statement 114
methods of joining 133
moving 76
nested loop join 133
number of pages 39
overflow rows 38
placement in dbspace 121
reorganize 71
total number of rows 38

tape blocking
DBS utility 114

target working storage size 217
choosing 200
understanding 166

temporary storage
local copy 83
virtual disk 48, 54

test workload 3, 6
thrashing 46
throughput 1, 5
time

components 4
elapsed 4
response 4

tools
measurement 7, 8

catalog table 8
CICS 8
CICS monitoring facility 8
CICS statistics 8
CICSPARS 8
CIRD transaction 8
COUNTER operator command 9
CP INDICATE USER 8
CP monitor 7
CP QUERY TIME 8
database manager 19
DB2 Server DSS COUNTER

POOL 9
DB2 Server DSS SHOW

TARGETWS 9
DB2 Server for VSE & VM 8
DB2 Server for VSE & VM

accounting 9
DB2 Server for VSE & VM trace 9
IBM DB2 for VM Control

Center 9
initialization parameter 8
operating system 14
RTM VM/ESA 8
SHOW operator command 9
VM 7
VM/PRF 7
VMMAP 8
VSAM LISTCAT 8
VSE 8
VSE interactive interface 8

TOTCPU counter 15
trace

measurement tool 9
trade-off, performance 2
trading

lock level 99
transaction

CIRB 90
CIRD 8, 21

transaction (continued)
CIRT 90
CSTT 18
name

ISQL 80
per second 5
time, CICS 18

transient index 74
SHOW INVALID 75

translation
fast CCW 79
of performance measurements to

indicators 15
TSAF collection

distributed database 81
tuning

by levels 2
guidelines 1
queries 132
trade-off 12

tuning parameter
access path, lock contention 96
ARCHPCT 107
CIRB transaction 90
deadlock 101
DISPBIAS 93
index lock contention 96
isolation level 97
lock level 96
logical unit of work, lock

contention 96
MAXCONN 91
minimum lock level 96
NCUSERS 87, 88, 95
NDIRBUF 87
NLRBS 99
NLRBU 99
NPACKAGE 88
NPACKPCT 88
NPAGBUF 87
PCTFREE 62, 63
PCTINDEX 61
PROTOCOL 108
RMTUSERS 91
SLOGCUSH 107
SOSLEVEL 59

U
unclustered index 67
uncommitted read (UR)

isolation level 97
ISQL 113

UNDO
invalid index 74

unique constraint
invalid index 75

unique index
invalid index 74
row level locking 96
with key matching predicate 120

UNLOAD
block size 114
locking 114

UNLOAD PACKAGE
DBS utility 115

update lock
description 95

UPDATE STATISTICS
ALL 138
automatic statistics collection 113
clustered index 68
DBS utility 113
reorganize a dbspace 72
reorganize a single table 71

upgrading hardware 2
user agent 88
USER isolation level 98

V
VDISK 49
verify the database manager 179
view 113
virtual

addressability extension 79
dbextent

virtual disk 55
virtual disk

ADD 49
adding internal dbspace 52
backing up 52
backup file 50
cataloged procedure 51
conditional startup JCL 53
define 49, 55
existing pools 51
increasing virtual storage 48, 54
internal dbspace 48, 54
MDISK 55
number of dbextents 52
procedure to create 48, 54
PROFILE EXEC 56
restore backup 53
storage pool 51, 55, 56
storage pools 163
SYSDEF 49
temporary storage 48, 54
VDISK 49
virtual and real dbextents 52
virtual dbextent 51, 55, 56
virtual VSAM cluster 51
VSAM user catalog 50
VSIZE 49

virtual machine
fair share scheduling 78
time 15

virtual storage 27, 43
as a resource 10
blocking 111
load measurement 14
requirement 171
virtual addressing 43

VM Monitor Analysis Program
(VMMAP) 8

VM system paging DASD
internal dbspace 164
requirement 173

VM/ESA
31 bit addressing 47
distributed database 81
requirement 171
SET QUICKDSP 79

Index 239

VM/ESA (continued)
SET SHARE 79
virtual disk 54

VM/Performance Reporting Facility
(VM/PRF) 7

VMMAP 8
VSAM

backup 78
backup and restore 76
cluster

virtual disk 51
DASD I/O system 85
I/O buffer address 79
LISTCAT 8, 20
user catalog

virtual disk 50
VSE interactive interface 8
VSE/ESA

31 bit addressing 47
virtual addressability

extension 80
virtual disk 48

VSIZE 49
VTIME counter 15

W
waitlock

performance indicator 23
WAITLOCK

example 23
waitlock hit ratio 24
wasting

DASD 58
working storage residence priority

changing 190
choosing 201
understanding 166

working storage size 217
improving performance 198
management 200

workload 13
considerations 3
distributing 75
production 3
test 3
throughput 5

WRITES counter 15
writing asynchronously 198

X
XC mode

CP directory statement 178
database machine 171
hardware 174
SQL/DS directory 199
verify 186

XCONFIG directory statement 178
XPCC conversations 93

240 Performance Tuning Handbook

Contacting IBM

Before you contact DB2 customer support, check the product manuals for help
with your specific technical problem.

For information or to order any of the DB2 Server for VSE & VM products, contact
an IBM representative at a local branch office or contact any authorized IBM
software remarketer.

If you live in the U.S.A., then you can call one of the following numbers:
v 1-800-237-5511 for customer support
v 1-888-426-4343 to learn about available service options

Product information
DB2 Server for VSE & VM product information is available by telephone or by the
World Wide Web at http://www.ibm.com/software/data/db2/vse-vm

This site contains the latest information on the technical library, product manuals,
newsgroups, APARs, news, and links to web resources.

If you live in the U.S.A., then you can call one of the following numbers:
v 1-800-IBM-CALL (1-800-426-2255) to order products or to obtain general

information.
v 1-800-879-2755 to order publications.

For information on how to contact IBM outside of the United States, go to the IBM
Worldwide page at http://www.ibm.com/planetwide

In some countries, IBM-authorized dealers should contact their dealer support
structure for information.

© Copyright IBM Corp. 1993, 2003 241

����

File Number: S370/4300-50
Program Number: 5697-F42

Printed in U.S.A.

GC09-2987-01

Sp
in

e
in

fo
rm

at
io

n:

�
�

�
D

B
2

Se
rv

er
fo

r
VS

E
&

V
M

Pe
rf

or
m

an
ce

Tu
ni

ng
H

an
db

oo
k

Ve
rs

io
n

7
R

el
ea

se
3

	Contents
	About This Manual
	Who Should Use This Manual
	Organization
	Prerequisite Reading
	Syntax Notation Conventions
	SQL Reserved Words
	Conventions Used for Highlighting Examples

	Summary of Changes
	Summary of Changes for DB2 Version 7 Release 3
	Enhancements, New Functions, and New Capabilities
	Cancel TCP/IP Agent in VM
	Force Inactive Users
	CLI/JDBC V8 Redesign
	Control Center for VSE Enhancements
	Control Center for VM Enhancements

	Reliability, Availability, and Serviceability Improvements
	Alternate Logging
	Data Restore Changes
	Release Empty Pages
	More Information on TCP/IP Messages
	Migration Considerations

	Chapter 1. Improving Performance
	Elements of Performance
	Tuning Guidelines
	Performance Improvement Process
	How Much Can a System be Tuned?

	Workload
	Performance Indicators
	Establishing Performance Objectives
	Response Time
	Components of Response Time

	Throughput
	Availability
	A Less Formal Approach

	Monitoring Performance
	Creating a Monitoring Plan
	Monitoring Interval
	Cost of Monitoring
	Measurements
	Tools
	VM Tools
	VSE Tools
	CICS Tools
	DB2 Server for VSE & VM Tools

	Factors Affecting Performance
	Resources
	Processor
	Storage

	Overhead
	Concurrency
	Locking
	Recovery

	Choosing Between Tuning Trade-offs

	Chapter 2. Measuring Performance
	Understanding Performance Measurements
	Relative Measurements
	Load
	Effective Use

	Sampling Interval

	Operating System Measurements
	Processor (CPU) Load
	Real and Virtual Storage Load
	System Paging DASD Load
	Machine or Partition DASD I/O Load
	Individual Device Utilization
	Translating Performance Measurements to Indicators
	CP INDICATE USER and QUERY TIME Commands

	CICS Monitoring (CICSPARS for VSE)

	DB2 Server for VSE & VM Tools
	Physical Data Locations
	Disk Locations (VM)
	Data Set Placement (VSE)

	Initialization Parameters
	CIRD Transaction (CICS)
	COUNTER Operator Command
	DB2 VM Data Spaces Support

	SHOW Commands
	Storage
	Concurrency
	VSE SHOW CONNECT
	Locking

	Database catalog
	SYSTEM.SYSCATALOG
	SYSTEM.SYSCOLUMNS
	SYSTEM.SYSDBSPACES
	SYSTEM.SYSINDEXES

	Chapter 3. Managing Storage and Configuring the Operating System
	Real and Virtual Storage
	Virtual Addressing
	Pages
	Auxiliary Storage
	Storage Queues

	Address Space Size
	Storage Above 16MB (31 Bit Addressing)
	Saved Segments (VM Only)
	Virtual Disk Support for VSE/ESA for Internal Dbspaces
	Virtual Disk Support for VM/ESA for Internal Dbspaces

	DASD Storage
	In VSE
	In VM
	Mapping of Dbspaces to DASD
	Logical To Physical Page Relationships
	Storage Pools
	Managing Storage Pool Space
	Short on Storage Cushion
	Types of Pages
	Number of Header Pages
	Proportion of Index to Data and Header Pages
	Free Space in Data Pages
	Free Space in Index Pages
	Shadow Pages
	Running out of Dbspace Pages

	Data Clustering
	Clustered Indexes
	The Clustering Index
	How Indexes Become Unclustered
	Identifying Unclustered Indexes

	Reorganizing Data
	Reorganizing a Single Table
	Reorganizing all the Tables in a Dbspace
	Changing the Clustering Index without Dropping Indexes

	Index Fragmentation
	Reorganizing Fragmented Indexes

	Invalid Indexes
	Transient Indexes
	Reorganizing an Invalid Index

	DASD Balancing
	Evenly Distributing Workload across Physical Volumes
	Moving Dbextents
	Reassigning Dbspaces
	General Considerations

	VM Specifics
	Fair Share Scheduling

	VSE Specifics
	Dispatching Priority
	Fast CCW Translation
	Virtual Addressability Extension (VAE)
	31 Bit Addressing

	Compile Partition Size

	CICS Specifics
	AMXT/MXT
	ISQL
	Transaction Name
	Number of Concurrent Users

	Temporary storage
	Auxiliary versus Main

	Guest Sharing with VSE under VM
	Distributed Configuration Considerations
	DB2 Server for non-DRDA Requestors can access:
	DB2 Server for VM non-DRDA Servers can be accessed by:
	DB2 Server for VM DRDA Requestors can access:
	DB2 Server for VM DRDA Servers can be accessed by:
	DB2 Server for VSE non-DRDA Requestors can access:
	DB2 Server for VSE non-DRDA Servers can be accessed by:
	DB2 Server for VSE DRDA Online (CICS) Requestors can access:
	DB2 Server for VSE DRDA Batch Requestors can access:
	DB2 Server for VSE DRDA Servers can be accessed by:
	Performance Implications
	Applications Planning
	Fetch and Insert Blocking
	Hold File
	Local Copy
	Stored Procedures

	Chapter 4. Configuring the Application Server and Requester
	Database Manager Storage
	Database I/O
	Tuning Parameters
	Performance Indicator
	Using Virtual Disks

	Package Cache
	Tuning Parameters

	Concurrency
	Agents
	Allocating Users to Agent Structures
	Tuning Parameters (NCUSERS)
	Performance Indicator

	CICS
	Tuning Parameter (CIRB)
	Performance Indicator

	Pseudo-Agents
	Tuning Parameter
	Privileged Remote DRDA User (VSE Server)
	Performance Indicator (SHOW USERS)

	Dispatching Agents
	Prioritization
	Fair Share Auditing
	Tuning Parameter (DISPBIAS)
	Performance Indicator

	Startup Mode

	Locking
	Locking Contention
	Locking Hierarchy
	Lock Modes
	Lock Duration
	Lock Compatibility
	Number of Concurrent Users
	Minimum Lock Level
	Indexes
	Access Path
	Logical Unit of Work
	Isolation Level
	Catalog Tables
	Performance Indicator

	Lock Escalation
	Deadlock
	Tuning Parameters
	Performance Indicator

	Recovery
	Logical Units of Work
	CMS Work Units (VM)

	Checkpoints
	What occurs during the Checkpoint Process?
	When do Checkpoints Occur?
	Performance Implications
	Choosing the Checkpoint Interval

	Logging and Archiving
	Log
	Archive
	Alternate Logging
	Dual Logs
	Choosing a Logmode
	Tuning Parameters
	Performance Indicator (SHOW LOG)

	Communications
	DRDA Performance Considerations (VM)
	PROTOCOL Performance Considerations

	Fetch and Insert Blocking
	Implementing Blocking
	Suppressed Blocking

	Synchronous Communications (VM)

	Considerations for ISQL and Adhoc Queries
	AUTOCOMMIT
	Isolation Levels
	Temporary Tables
	Views

	DBS Utility Considerations
	Automatic Statistics Collection
	Suppressing Automatic Statistics Collection
	TAPE Blocking
	Lock Escalation
	DATALOAD and RELOAD Locking Considerations
	SELECT, DATAUNLOAD, and UNLOAD Locking Considerations

	UNLOAD and RELOAD PACKAGE Considerations

	Chapter 5. Improving Data Access Performance
	Access Paths and Indexes
	Dbspace Scans
	Index Scans
	Nonselective Index Scans
	Selective Index Scans

	Index-Only Access Scans
	Clustering Index
	Examples of Index only Access
	Creating Indexes

	Unique Index with Key Matching Predicate(s)
	Indexes for Sorting
	Recommendations for Indexes
	Disadvantages of Indexes

	Placing Tables into Dbspaces
	Organizing Referential Structures
	Predicate Processing
	Column Attributes
	Key-matching Predicates
	Form of Key-matching Predicates
	Suitable Index for Key-matching Predicate

	Sargable and Residual Predicates
	Example

	Join Predicates
	Search Conditions and Their Processing Characteristics
	Filter Factors
	Examples of Predicate Processing
	Impact of CCSIDs on Sargability

	Tuning Queries with Several Tables
	Methods of Joining Two or More Tables
	Nested Loop Join (Type 1)
	Merge Scan Join (Type 2)
	Choosing an Access Method
	Nested Loop, with EMPLOYEE as Outer Table
	Nested Loop, with PROJECT as Outer Table
	Merge Scan, with EMPLOYEE as Outer Table
	Merge Scan, with PROJECT as Outer Table

	Multiple Joins

	Keeping Database Statistics Current
	Using Catalog Statistics
	Modelling your Production System
	A Warning about Updating Statistics

	Determining the Cost of Access Methods
	Processing Cost
	I/O Cost

	Using Explanation Tables to Evaluate Performance
	Explain Processing
	Using the EXPLAIN Statement
	Using the EXPLAIN Option
	Comparing Implicit and Explicit Explain Processing
	Using Explanation Tables

	Estimating Sizes of Responses
	Using EXPLAIN for Database Design

	Modifying Table Designs to Enhance Performance

	Chapter 6. Data Spaces Support for VM/ESA
	Improving DB2 Server for VM Performance
	Understanding VM Data Spaces
	Standard Virtual Machine Storage
	Data Spaces Storage

	Understanding how VMDSS uses Data Spaces
	Reading Pages
	Releasing Pages
	Modifying Pages
	Checkpoints

	Storage Pools
	Internal Dbspaces
	Mapped Internal Dbspaces
	Unmapped Internal Dbspaces

	Directory
	With Data Spaces Support off
	With Data Spaces Support on

	Managing Main and Expanded Storage
	Target Working Storage Size Parameter
	Working Storage Residency Priorities
	The Checkpoint Interval
	The Save Interval

	Striping
	With striping switched off
	With striping switched on

	Performance Counters
	Planning Structure by Storage Pool
	Logical and Physical Mapping
	Logical Mapping
	Physical Mapping

	VSE Guest Sharing

	Enabling Requirements
	Operating System Overview
	Operating in Non-XC Mode

	Virtual Machine Overview
	MAINT Machine
	SQLMACH Database Machine

	Software Requirements
	Virtual Storage Requirements
	MAINT Machine
	SQLMACH Database Machine

	Real Storage Requirements
	DASD Storage Requirements
	Fixed Block Storage Devices
	VM/ESA Paging DASD
	SQLMACH Database Machine

	Hardware Requirements

	Before Enabling
	Program Directory for DB2 Server for VM
	Preventive Service Planning
	Corrective Service
	Enabling Options
	Using in a Production System
	Disabling Data Spaces Support
	Resaving DB2 Server for VM in Saved Segments

	Enabling
	Pre-Enable Checklist
	Enable Checklist
	Backing Up, Configuring and Enabling Your Database Machine
	Step 1: Log onto the MAINT Machine
	Step 2: Update the CP Directory
	Step 3: Log off the MAINT Machine
	Step 4: Log onto the SQLMACH Machine
	Step 5: Archive your Database
	Step 6: Activate VMDSS
	Step 7: Log off the SQLMACH Machine
	Step 8: Log onto the DB2 for VM Installation User ID (5697F42X)
	Step 9: Link-Edit the Load Library
	Step 10: Resave the DBSS Saved Segment
	Step 11: Log off the DB2 for VM Installation User ID
	Step 12: Log onto the SQLMACH Machine
	Step 13: Verify the Installation
	Step 13A: Verify non-XC Mode Installation
	Step 13B: Verify XC Mode Installation
	Step 14: Optional System Activities

	Disabling VMDSS
	Disable Step 1: Archive your Database
	Disable Step 2: Access the Service Disk or Directory
	Disable Step 3: Reblock the Directory Disk
	Disable Step 4: Remove the VMDSS Files
	Disable Step 5: Link-Edit the Load Library
	Disable Step 6: Restart the Application Server

	Operating
	Storage Pool Specifications
	Changing Storage Pool Specifications at Startup
	Specifying Either Data Spaces Support or Standard DASD I/O
	Specifying Storage Residence Priorities
	Turning Striping On and Off

	Checking Your Current Storage Pool Specifications
	Changing Storage Pool Specifications Dynamically

	Using Data Spaces with Internal Dbspaces
	Unmapped Internal Dbspaces
	Mapped Internal Dbspaces

	Using Data Spaces with the Directory
	Reblocking the Database Directory
	Example

	Using Data Spaces Support with a New Database

	Chapter 7. Tuning Performance for Data Spaces Support
	Deciding When to Use Data Spaces
	Advantages
	Shorter Path Length
	Asynchronous Page Fault Processing
	Striping
	Blocking and Prefetching
	Dynamic Working Storage Size Management
	More Asynchronous Writes

	Storage Pool
	Internal Dbspaces
	Directory

	Managing Your Working Storage Size
	Choosing the Target Working Storage Size
	Choosing Storage Residence Priorities
	Unmapped Internal Dbspaces

	Managing Checkpoints
	Choosing the Checkpoint Interval
	Setting the Time Between Checkpoints

	Choosing the Save Interval

	Using Striping
	With One Dbextent Per Pool
	One Dbextent Per Device
	Dbextent Size
	Number of Dbextents
	Using Striping with Existing Data

	Choosing Logical or Physical Mapping
	Real Storage Requirements for Data Spaces

	Appendix A. Storage Pool Specification File Format
	File Format
	Data Line Syntax
	Ordering Data Lines
	Specification File Example

	Appendix B. Determining Number of Data Spaces
	Maximum Number of Data Spaces
	Logical Mapping
	Example

	Physical Mapping
	Example

	Maximum Total Size
	Displaying Current Data Spaces

	Appendix C. Why is the TARGETWS Value Frequently Exceeded?
	VMDSS Usage Scenario

	Notices
	Trademarks

	Bibliography
	Index
	Contacting IBM
	Product information

