<|lI!

DB2 Server for VM

System Administration

Version 7 Release 5

SC09-2980-03

<|lI!

DB2 Server for VM

System Administration

Version 7 Release 5

SC09-2980-03

Before using this information and the product it supports, be sure to read the general information under |['Notices” on page 517

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

Order publications through your IBM representative or the IBM branch office serving your locality or by calling
1-800-879-2755 in the United States or 1-800-IBM-4Y0OU in Canada.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1987, 2007. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About This Manual. X

Organization of This Manual.ix
Syntax Notation Conventionsxi
SQL Reserved WordsXxiv

Summary of Changes. xvii

Summary of Changes for DB2 Version 7 Release 5 xvii
Enhancements, New Functions, and New
Capabilities. xvii

-—h

Chapter 1. Planning for Installation .
Operating System Overview .
Virtual Machine Overview .
Components of the Relational Database Management
System .
Software Requrrements
Virtual Storage Requirements .
Database Machine Size .
Service Machine Size
User Machine Size
Hardware Requirements
Real Storage Requirements.
DASD Space Requirements
Tape Requirements .
Display Terminal Requlrements .
Considerations When Defining a Database Machlne
and Generating a Database . . .9
Considerations When Adding Drrectory Control

_

Q 00 U1 U1 U1 Ul = = = W N

Statements . . .9
Considerations When Loadrng IBM Supplred Frles 9
Considerations When Generating a Database . . 9
Considerations When Defining a Service Machine . . 9
Updating the Service Machine VM Directory . . 9
Considerations When Loadrng IBM- supplled Files 9
Defining User Machines 10
Defining Saved Segments. 10
Setting Up the CMS Commun1cat1ons D1rect0ry .. 10
Updating the SNA NETID File11

Chapter 2. Planning for Database
Generation.13

Database Generation Parameters13
Defining Database Directory Size14
Defining the Database Log16
Establishing Database Capacity Parameters . .18
Establishing Initial Dbspace Requirements . . . 19
Determining Initial Dbextent Requirements. . . 21

Choosing an Application Server Name and VM

Resource Identifier . . . oo .23

Choosing the Application Server Default

CHARNAME and CCSID.23

Choosing the Application Server Default Character

Subtype . . . 26

Choosing the Default CHARNAME and CCSID for

Application Requesters26

© Copyright IBM Corp. 1987, 2007

Preparing for Database Regeneration.27
Database Generation Worksheet27

Chapter 3. Planning for Database
Migration.31

Migration Considerations. . . N 72
Increasing the HELPTEXT Dbspace o032
Migrating from Version 3 Release 132
Considerations for Invalid Indexes.32
Conversion of Packages33
Migrating from Version 3 Release 233
Choosing an Application Server Default
CHARNAME.33
Choosing the Default CHARNAME for All
Application Requesters 36
Considerations for Mixed Primary Keys w1th
Field Procedures. . . B
Migrating from Version 3 Release 3 < 4
Considerations for EXPLAIN Tables37
Considerations for VSE Guest Sharing . . .37
Considerations for the VM Data Spaces Support
(VMDSS) 37
Migrating from Version 3 Release 4 N V4
Considerations for Assembler Even Precision
Packed Decimal37
Considerations for SQLSTATE Changes for
SQL92 Support N 4
Migrating from Version 3 Release 538
Considerations for Uncommitted Read 38
Considerations for VMSES/E38
Considerations for Support of ESA-mode
Processors Only 38

Considerations for the Renammg of the Product 38
Considerations for the Removal of the User

Facility Subset38
Migrating from Version 5 Release 138

Considerations for RDS Above 16M38

Considerations for TCP/IP39
Migrating from Version 6 Release 139
Migrating from Version 7 Release 139
Migrating from Version 7 Release 239
Migrating from Version 7 Release 339
Migrating from Version 7 Release 439
Release Coexistence Considerations . 39

Migrating from a VSE to a VM Operatrng Systern 39
Moving a Database from a VSE to a VM

Operating System 40
Choosing a VM Resource Identrﬁer 40
Converting Data in the Database40
Converting Packages40
Converting Programs . . . Lo L4
VSE Databases Coexisting under VM A Y |

Migrating from a VM/XA to a VM/ESA
Environment41
iii

Delaying the Directory and Database Name

Changes .41
Setting up the Database Machme D1rectory Entry 42
Example of a Database Machine Directory with
Multiple Databases . .43
Setting Up the User Machrne Drrectory Entry . 44
Database Naming Considerations . . . 45
Migrating from a VM/SP to a VM/ESA Operatlng
System . . . 46
Installing Another IBM VM System on Your
Processor . e . 46
Moving a Database . . 46
Using Archive and Restore to Move a Database 46
Using the SQLDBDEF Utility . . 47
Moving a VM Application Server from One User ID
to Another. . N V4
Converting a Service Machme to a Database
Machine . 49
Changing the Server Name and Resource Ident1f1er 50
Chapter 4. Planning for Operation of
the Database Manager . . 53
Starting the Application Server . . 53
The Database Operator . .53
Multiple User Mode In1t1ahzat10n Parameters . .4
Single User Mode Initialization Parameters . .73
Tape Support . . 74
General File Support .77
Starting the Application Server in Multlple User
Mode . .78
Starting the Apphcatlon Server in Smgle User
Mode . . 80
Overriding In1t1ahzat10n Parameters . . 88
Creating a Parameter File. . 89
Running the Database Manager . 89
Operating Modes . 90
Disconnecting the Database Machlne .91
Stopping the Application Server .91
Taking an Archive . . .92
Verifying the Directory . .93
Online Support Considerations for VSE Guest
Sharing . . . 94
A Note about MlnldlSk Passwords . 94
Inter-Machine Communications. . 94
Chapter 5. Operating the Online
Support for VSE Guest Sharing . . 97
Operating VSE Guest Sharing .97
Operator Responsibilities . . 98
Starting the Application Server . 99
Starting the Online Resource Adapter -- The
CIRB Transaction . . 100
Adding Connections -- The CIRA Transactlon 106
Automatic Restart Resynchronization .. 109
Changing the Default Server -- The CIRC
Transaction . . 115
Removing Connectrons -- The CIRR Transactlon 116
Displaying Information -- The CIRD Transaction 119
Stopping the Online Support -- The CIRT
Transaction 128

iv

System Administration

Password Implications on Online Resource
Adapter Termination .

Chapter 6. Maintaining Database
Security. e e
Communications and System Security .

Session-Level Security

Conversation-Level Security

VM Directory Control Statements.

User ID Translation

Minidisk Protection .

Connect Userid and Password Resolutlon
CMS Restrictions .

System and DB2 Server for VM Operator Console

Considerations .
Access Control to ISQL on a VSE Guest

Chapter 7. Managlng Database
Storage .
Storage Concepts .
How Information is Stored in Dbspaces
Adding Dbspaces to the Database
Considerations for Adding Dbspaces

Example of Adding a Dbspace to a Database

Expanding the Database Directory
Acquiring Dbspaces for Packages.
Managing Storage Pools. .

Design Considerations for Storage Pools

Monitoring Storage Pools

Maintaining Storage Pools .

Running the SQLADBEX EXEC

Moving Dbextents. .

Moving Log Disks.

Chapter 8. Saved Segments .
Using Saved Segments for Components
Example 1
Example 2
Example 3
Example 4
Defining Saved Segments

Running in User Free Storage after Using
Default Saved Segments .
ARISNLSC MACRO .

Chapter 9. Making Backups and
Recovering from Failures .
Understanding Recovery Concepts .
What is a Logical Unit of Work? .
What is a Log? . .
What is a Checkpomt?
What Happens after a System Fallure7 .
What is an Archive? .

Recovering from DASD Farlures that Damage

the Database

Recovering from DASD Fallures that Damage a

Log.

. 132

. 135
. 135
. 136
. 136
. 137
. 139
. 139
. 140
. 140

. 141
. 141

. 143
. 143
. 144
. 145
. 148

149

. 150
. 153
. 155
. 155
. 157
. 157
. 161
. 168
. 170

. 173
. 173
177
177
. 178
. 178
. 179
. 181
. 185

. 190
. 190

. 193
. 193
. 193
. 194
. 195
. 195
. 196

. 197

. 198

Recovering from DASD Failures that Damage Starting the Accounting Facility 250

the Database and Log 198 Generation of Accounting Records 251
Establishing DASD Recovery Procedures ... 198 Supplying Accounting Data from DRDA
Choosing a Log Mode198 Applications.22
Backing Up the History Area201 Formats of the Accountrng Records253
Archiving Procedures. . . . 201 Initialization Records.25
Performing Database Archlves W1th Database Operator and Checkpoint Records25
Manager Facilities. . . oL 201 Termination Records255
Example of an SQLEND ARCHIVE203 CMS User Records255
Performing Database Archives With User Remote User Records.256
Facilities 205 VSE Guest User Records.257
Performing Log Archlves .o 206 Maintaining Accounting Data 258
Example of an SQLEND LARCHIVE208 Considerations for an Accounting Dbspace . . 258
Labeling Your Archive Tapes214 Tables to Hold Accounting Data 259
Recovery Procedures.214 Loading the Accounting Data 262
Restarting Procedures214
Restoring the Database 215 Chapter 12. Planning and
Restarting from Failure of a Database Restore 219 Implementing Configurations 265
Restarting from a System Failure While
Configuration Concepts 2065
Archiving 220
Reasons for Adding a Database Machlne .. . 265
Restarting from Fallure of a Database
Databases in a TSAF Collection or an SNA
Generation or COLDLOG Operation 221
Network . . . 1 4
Relocating the Database Manager. . . oL 221
Adding Service Machlnes (]
Replacing a Minidisk Using DASD Dump T ¢
ypes of Database Machines272
Restore 221 Pri .
rimary Database Machines274
Replacing a Database M1n1d1sk ... 0223 .
Why Add a Database Machine? 274
Replacing a Log Minidisk225 . . .
R o to 8 S dary Svst 26 Adding a Primary Database Machine 275
cCoverng 1o a secondary oystem .. - - Adding a Secondary Database Machine . . . 280
. .. Adding a Service Machine282
Chapter 10. SI?eCIal Topics in Defining Additional User Machines 282
Recovery Design. 227 Adding a Database 284
Switching Log Modes227 VSE Guest Sharing Conﬁguratron . (01}
From LOGMODE=A227
From LOGMODE=L227 Chapter 13. Choosing a National
From LOGMODE=Y or N22) anguage and Defining Character
Using Alternate Logging229
U Sets 305
sing Dual Logging230
Using the VM DUPLEX C omman d 9230 Considerations when changrng default
Reconfiguring and Reformatting the Logs . . 230 CHARNAME and CCSID . . . - - 306
Log Reconfiguration231 Changing from pre-Euro CHARNAME to
Log Reformatting . . R ¢ ¥ Euro-compatible CHARNAME 307
Running the SQLLOG EXEC S o3 Using Alternative Character Sets 308
Switching Log Data between Logs 235 Hexadecimal Values of the Sample Character
History Area .o . 235 Sets .. . - 308
Nonrecoverable Storage Po ols o 240 Specifying an IBM Supphed Character Set at
Characteristics of Dbspaces in Nonrecoverable Run Time. 2315
Storage Pools o Using Double-Byte Character Set (DBCS)36
Data That Can be Placed in N onrec overable Identifiers Containing DBCS. Characters . . . 317
Storage Pools . . N YV Constants and Data Containing DBCS
Data That Should Not Be Placed in Characters318
Nonrecoverable Dbspaces 246 CCSID Conversion . . N N)
Setting Up Nonrecoverable Storage Pools and Determining CCSID Values C S 32
Dbspaces. . . 047 Setting the Application Server Default
Querying for Nonrecoverable Storage Pools and CHARNAME and CCSIDs . . . - 323
Dbspaces.247 Changing the CCSID Attribute of an Ex1st1ng
Column 325
. . h the Sub Att b t f E t
Chapter 11. Using the Accounting goiﬁfg e Subtype Attrbute of an Existing 25
Facility 249 Setting the Apphcatlon Requester Default
Where to Find More about VM Accountlng .. 0249 CHARNAME and CCSIDs32
Preparing to Use the Accounting Facility 249

Contents V

Setting the Default CHARNAME and CCSIDs

for All Application Requesters. . . . 326

Setting the Default CHARNAME and CCSIDs

for an Application Requester 326
Setting the Application Server Default Character
Subtype 327

Setting the DBCS Optlon for the Apphcatlon Server 328
Setting DBCS Option for Application Requestors 328
Setting the DBCS Option for all Application

Requesters 328
Setting the DBCS Optlon for an Apphcatlon
Requester. 2329
EUC Conversions329
Unicode Conversions. 329
Examples of Setting Values for an Installatlon .. 329
Examplel330
Example2 331
Identifying Clas51f1catron and Translatlon Tables
foraCCSID. 332
National Language Support for Messages and
HELP Text . . . I < 24
CMS HELP Text F11es .o . 335
National Language Messages in a VSE Guest
Sharing Environment. 335

Defining Message Repositories as Saved Segments 335

Chapter 14. Creating Installation Exits 339

Supplying Account Numbers for Users. 339
How the ARIUXIT Module Works 340
Coding Your Own Accounting Exit 344
Installing Your Version of ARIUXIT 350
Service Considerations for ARIUXIT. 352

Defining Your Own Datetime Format 352
Datetime Formats352
How Datetime Exits Work353
Coding Your Own Datetime Exit. 356
Installing Your Version of ARTUXDT or
ARIUXTM 360
Updating the SYSTEM SYSOPTIONS Catalog
Table L. . 362

Coding Your Own TRANSPROC Ex1t363

..363

Coding Your Own Cancel Exit365
Resource Adapter Cancel Support . . . 366
RMXC (Resource Adapter Cancel Exit Control) 366

Field Procedures 369
Specifying the Field Procedure 0370
When Field Procedures are Called 370
General Considerations for Writing Field
Procedures . . . G v !
A Warning about Blanks N e |
Maintaining Field Procedures 372
Recovering from Abends in Exits. 372
Security with Field Procedures 372
Field Procedures for Cultural Sorts 372
Field Procedure Interface to the Database
Manager374
Field-Definition (Functron Code 8) ... 377
Field-Encoding (Function Code 0) 379
Field-Decoding (Function Code 4) 381

vi System Administration

Chapter 15. Using a DRDA

Environment. 393
Benefits of Using the DRDA Protocol393
Added Responsibilities in Using the DRDA
Protocol 03
Types of Dlstrlbuted Access G
Remote Unit of Work.3%
Distributed Unit of Work 395
Summary of DRDA Support in DB2 Server for
VM.39
Preparing to Implement DRDA B)
On the Application Requester39
On the Application Server 3%
Installing and Removing the DRDA Code .. 397
Steps to Install or Remove the DRDA Code . . 397
Using DRDA 400
Using the DBS Utility on non—DB2 Server for VM
Application Servers . . . 400

Using VM Binding facility to create DBSU package 401
Using ISQL on non-DB2 Server for VM Application

Servers . . . 402
Using VM Blndlng fac111ty to create ISQL package 402
Two-Phase Commit Processing . . . 402
Using the Two-Phase Commit Protocol .. . 403
Operator Commands.406
CRR Operator Commands406
Resynchronization. 407
Resync When Partner is Not Actrve 407
Resynchronization Initialization 408
Resynchronization Recovery . . . 411
Displaying Resynchronization Status usmg the
SHOW CONNECT Command. 414
Terminating Resynchronization using the
FORCE Command.415

Chapter 16. Using TCP/IP with DB2
Server for VM 417

Preparing the Application Server to use TCP/IP 417
Preparing the Application Requester to use TCP/IP 420
Security Considerations for TCP/IP 421

Application Requester 423

Appendix A. Virtual and Real Storage
Requirements 425

Appendix B. Estimating Database

Storage 427
Storage Capacities of IBM DASD Dev1ces oL 427
Determining Equivalent Minidisk Sizes on
Different Device Types 430
Relationship of Megabytes to 4- Kllobyte Pages .. 431
Estimating Directory Space Requirements 432
Estimating Storage Pool Requirements 432
Estimating SYS0001 Dbspace Requirements . . . 433
SYS0001 Storage Estimating General Formula
Assumptions . . . 434
Derivation of the General Formula for SYSOOOl
Storage Estimating 437
Formula for SYS0001 Storage Estlmatlng ... 438

Examples of Using the SYS0001 Storage

Estimating Formula 438
Modifying the SYS0001 Storage Est1mat1r1g
General Formula 440
Estimating ISQL Dbspace Requlrements L. L 442
Estimating Dbspace Sizes for Routines 442
Estimating Dbspace Size for Stored SQL
Statements (Stored Queries) 443
Appendix C. Maximum Values . 445
Database Manager Maximum Values 445
Database Maximum Values. 446
Appendix D. Updating
SYSTEM.SYSSTRINGS . 447
Appendix E. Defining Your Own
Character Set . . 451
Step 1: Identify All Characters in Your Character
Set. . . Lo .. 452
Step 2: Classrfy the Characters .o 454
Step 3: Determine Translation Characters ... 462
Step 4: Update the SYSTEM.SYSCHARSETS
Catalog Table 464
Step 5: Update the SYSTEM SYSCCSIDS Catalog
Table 464
Step 6: Update the SYSTEM SYSSTRINGS Catalog
Table 465
Step 7: Update the CCSID Related CMS Flles .. 466
Appendix F. Macro List . 467
Appendix G. Service and Maintenance
Utilities . e e e e . . o. . . 469
ARISAVES EXEC469
ARISPDFC EXEC471
Authorization471
Syntax.4Nn
Description471
Notes:. . . T 4 |
SQLBOOTS EXEC A Y)
Authorization472
Syntax.472
Description 472
SQLDBLD EXEC472
Authorization472

Syntax.
Description .
SQLDBDEF EXEC .

Authorization .
Syntax.
Description .
SQLGENLD EXEC
Authorization .

Appendix H. DRDA Considerations
Omissions from the Standards.

Extensions to the Standards . .
DB2 Server for VSE & VM Facility Restrlctlons .

Appendix I. Incompatibilities Between
Releases .
Definition of an Incompatlblhty .
Impact on Existing Applications .
V2R1 and V1R3.5 Incompatibilities .
V2R2 and V2R1 Incompatibilities .
Detailed Notes on V2R2-V2R1 Incompatlblhtles
V3R1 and V2R2 Incompatibilities .
Detailed Notes on V3R1-V2R2 Incompatlblhtres
V3R2 and V3R1 Incompatibilities .
Detailed Notes on V3R2-V3R1 Incompatlblhtles
V3R3 and V3R2 Incompatibilities (VM Only) .
Detailed Notes on V3R3-V3R2 Incompatibilities
V3R4 and V3R3 Incompatibilities (VM Only) .
Detailed Notes on V3R4-V3R3 Incompatibilities
V3R5 and V3R4 Incompatibilities.
V5R1 and V3R5 Incompatibilities .
V6R1 and V5R1 Incompatibilities .
V7R1 and V6R1 Incompatibilities .
V7R2 and V7R1 Incompatibilities .
V7R3 and V7R2 Incompatibilities .

Notices . C e e e
Programming Interface Informatlon
Trademarks .

Bibliography.

Index .

Contacting IBM

Product information .

Contents

. 472
. 473
. 473
. 474
. 474
. 474
. 477
. 477

479

. 479
. 479
. 480

. 481
. 481
. 481
. 482
. 484

486

. 487

492

. 497

502

. 504

509

. 510

514

. 514
. 515
. 515
. 516
. 516
. 516

. 517
. 519
. 519
. 521
. 525

. 539
. 539

vii

viii System Administration

About This Manual

This manual describes how to carry out system planning and administration tasks
for DB2 Server for VM that is:

On a Z/VM" operating system (Virtual Machine/Enterprise Systems
Architecture)

Configured with VSE running as a guest under VM.

Specific VM operating systems are mentioned in the text when a task or DB2
Server for VM facility applies to a subset of the VM operating systems.

The following tasks are described here:

Installation

Migration

Operation

Management of resources (including security)

Modification of facilities (including national language support)

Installation and maintenance of Distributed Relational Database Architecture
(DRDA®) facilities.

The term database manager refers to the DB2 Server for VM database manager,
unless otherwise stated.

Organization of This Manual

[‘Summary of Changes” on page xviil lists the changes made to the product since
Version 7 Release 4.

[Chapter 1, “Planning for Installation,” on page 1| summarizes the software,
hardware, and storage requirements for installing the database manager.

[Chapter 2, “Planning for Database Generation,” on page 13| describes how to set
up your initial database, including specifying parameters to define the logical
and physical limits for its capacity and setting its initial DASD allocations.

[Chapter 3, “Planning for Database Migration,” on page 31| explains the planning

you must do before migrating a database from a previous release of the database
manager to the Version 7 Release 5 level. For the actual migration steps, see the

[DB2 Server for VM Program Directoryy .

[Chapter 4, “Planning for Operation of the Database Manager,” on page 53|
explains how to choose appropriate startup parameters which will determine the
operational characteristics of the application server when it is started by the DB2
Server for VM operator.

Note: Starting, operating, and stopping the application server are also discussed
in the |DB2 Server for VSE & VM Operation| manual.

[Chapter 5, “Operating the Online Support for VSE Guest Sharing,” on page 97|
explains how to enable VSE guest users to access the application server on a
VM/ESA operating system, and how to operate the online support for CICS®
transactions.

Note: These subjects are also discussed in the [DB2 Server for VSE & VM|

Operation| manual.

© Copyright IBM Corp. 1987, 2007 ix

X

System Administration

[Chapter 6, “Maintaining Database Security,” on page 135| discusses how to
control access to the application server.

[Chapter 7, “Managing Database Storage,” on page 143| explains how to manage
the disk storage allocated to the database, including adding (or defining)
dbspaces, defining storage pools, adding dbextents to storage pools, and
managing storage pools.

[Chapter 8, “Saved Segments,” on page 173| discusses using, defining and running
saved segments.

[Chapter 9, “Making Backups and Recovering from Failures,” on page 193
describes facilities provided for recovery from system failures and DASD
failures; how to back up your database; and how to recover from different types
of failures.

[Chapter 10, “Special Topics in Recovery Design,” on page 227] discusses dual
logging and switching log modes.

[Chapter 11, “Using the Accounting Facility,” on page 249| describes the DB2
Server for VM accounting facility, which tracks how database resources are
consumed by users.

[Chapter 12, “Planning and Implementing Configurations,” on page 265/ describes
configuration topics like adding database and user machines, and configuring
for different operating systems.

Chapter 13, “Choosing a National Language and Defining Character Sets,” on|
page 305| contains information on national language character set and coded
character set identifier (CCSID) support, as well as how to provide HELP text
and messages in languages supported by the database manager.

[Chapter 14, “Creating Installation Exits,” on page 339 describes the types of
installation exits that you can code to customize the database manager:

— Accounting exits, to customize account information

— Date and time exits, to create your own date or time format if the
IBM-supplied formats do not fit your requirements

— TRANSPROC exits, to carry out DBCS conversions

— Cancel exits, to replace the product-supplied cancel function when coding
your own interactive program

— Field Procedures, to change the sorting sequence by encoding and decoding
data if the standard sorting sequence does not meet your requirements.

[Chapter 15, “Using a DRDA Environment,” on page 393| discusses using the
database manager in a distributed environment; benefits; how to prepare DB2
Server for VM application requesters and application servers; administrative
responsibilities; and using the database services utility (DBS Utility) and ISQL to
access a non-DB2 Server for VM application server. Considerations for
distributed databases and for choosing the PROTOCOL parameter are also
discussed.

[Chapter 16, “Using TCP/IP with DB2 Server for VM,” on page 417] discusses
using TCP/IP to access application servers.

[Appendix A, “Virtual and Real Storage Requirements,” on page 425 presents
guidelines for estimating the processor requirements needed for running the
database manager.

[Appendix B, “Estimating Database Storage,” on page 427] contains procedures for
estimating the sizes of the database directory, public dbspaces, and the ISQL
dbspace.

[Appendix C, “Maximum Values,” on page 445| contains the system and database
maximums for the database manager.

+ |Appendix D, “Updating SYSTEM.SYSSTRINGS,” on page 447| details how to
update this catalog table to support your own CCSID conversion.

* |Appendix E, “Defining Your Own Character Set,” on page 451| describes how to
create your own character set.

* |Appendix F, “Macro List,” on page 467 lists the macros identified as
programming interfaces for customers by the database management system.

* |Appendix G, “Service and Maintenance Utilities,” on page 469|lists and describes
service and maintenance utilities.

+ |[Appendix H, “DRDA Considerations,” on page 479| discusses what you should
consider in a distributed environment.

* |Appendix I, “Incompatibilities Between Releases,” on page 481| describes the
incompatibilities between releases.

A bibliography is provided at the back of the book.

Syntax Notation Conventions

Throughout this manual, syntax is described using the structure defined below.

* Read the syntax diagrams from left to right and from top to bottom, following
the path of the line.

The »—— symbol indicates the beginning of a statement or command.

The — symbol indicates that the statement syntax is continued on the next
line.

The »—— symbol indicates that a statement is continued from the previous line.
The —>< symbol indicates the end of a statement.

Diagrams of syntactical units that are not complete statements start with the
»— symbol and end with the — symbol.

* Some SQL statements, Interactive SQL (ISQL) commands, or database services
utility (DBS Utility) commands can stand alone. For example:

»>—SAVE »<

Others must be followed by one or more keywords or variables. For example:

»>—SET AUTOCOMMIT OFF ><

* Keywords may have parameters associated with them which represent
user-supplied names or values. These names or values can be specified as either
constants or as user-defined variables called host_variables (host_variables can only
be used in programs).

v
A

»»>—DROP SYNONYM—synonym

About This Manual X1

xii

Keywords appear in either uppercase (for example, SAVE) or mixed case (for
example, CHARacter). All uppercase characters in keywords must be present;
you can omit those in lowercase.

Parameters appear in lowercase and in italics (for example, synonym).

If such symbols as punctuation marks, parentheses, or arithmetic operators are
shown, you must use them as indicated by the syntax diagram.

All items (parameters and keywords) must be separated by one or more blanks.

Required items appear on the same horizontal line (the main path). For example,
the parameter integer is a required item in the following command:

»>—SHOW DBSPACE—integer ><

This command might appear as:
SHOW DBSPACE 1
Optional items appear below the main path. For example:

v
A

»»>—CREATE INDEX
|—UNIQUE—|

This statement could appear as either:
CREATE INDEX

or
CREATE UNIQUE INDEX
If you can choose from two or more items, they appear vertically in a stack.

If you must choose one of the items, one item appears on the main path. For
example:

»»—SHOW LOCK DBSPACE—EALL ><
integer—l

System Administration

Here, the command could be either:
SHOW LOCK DBSPACE ALL

or
SHOW LOCK DBSPACE 1

If choosing one of the items is optional, the entire stack appears below the main
path. For example:

A\
A

integer—

»>—BACKWARD |:
MAX

Here, the command could be:
BACKWARD

or
BACKWARD 2

or
BACKWARD MAX

* The repeat symbol indicates that an item can be repeated. For example:

»>—ERASE—Y—name ><

This statement could appear as:
ERASE NAME1

or
ERASE NAME1 NAME2

A repeat symbol above a stack indicates that you can make more than one
choice from the stacked items, or repeat a choice. For example:

»»>—VALUES— (—YX——constant)
host_variable_list—
NULL
special_register—

A\
A

* If an item is above the main line, it represents a default, which means that it will
be used if no other item is specified. In the following example, the ASC keyword
appears above the line in a stack with DESC. If neither of these values is
specified, the command would be processed with option ASC.

ASC
> |_ _| ><
|—DESC—|

About This Manual ~ Xxiii

* When an optional keyword is followed on the same path by an optional default
parameter, the default parameter is assumed if the keyword is not entered.
However, if this keyword is entered, one of its associated optional parameters
must also be specified.

In the following example, if you enter the optional keyword PCTFREE =, you
also have to specify one of its associated optional parameters. If you do not
enter PCTFREE =, the database manager will set it to the default value of 10.

|—PCTFREE = 10

>

|—PCTFREE

integer—

* Words that are only used for readability and have no effect on the execution of
the statement are shown as a single uppercase default. For example:

PRIVILEGES
»—REVOKE ALL |_ —l ><

Here, specifying either REVOKE ALL or REVOKE ALL PRIVILEGES means the
same thing.

* Sometimes a single parameter represents a fragment of syntax that is expanded
below. In the following example, fieldproc_block is such a fragment and it is
expanded following the syntax diagram containing it.

>> | i fieldproc_block i >

|—NOT NULL ii

UNIQUE
PRIMARY KEY—

fieldproc_block:

v

constant—

|—FIELDPROC—program_name L J }
(—)

SQL Reserved Words

The following words are reserved in the SQL language. They cannot be used in
SQL statements except for their defined meaning in the SQL syntax or as host
variables, preceded by a colon.

In particular, they cannot be used as names for tables, indexes, columns, views, or
dbspaces unless they are enclosed in double quotation marks ().

xiv System Administration

ACQUIRE
ADD

ALL
ALTER
AND
ANY

AS

ASC

AVG

BETWEEN
BY

CALL
CHAR
CHARACTER
COLUMN
COMMENT
COMMIT
CONCAT
CONNECT
COUNT
CREATE
CURRENT

DBA
DBSPACE
DELETE
DESC
DISTINCT
DOUBLE
DROP

EXCLUSIVE
EXECUTE
EXISTS
EXPLAIN

FIELDPROC
FOR
FROM

GRANT
GRAPHIC
GROUP

HAVING

IDENTIFIED
IN

INDEX
INSERT
INTO

IS

LIKE
LOCK
LONG

MAX
MIN
MODE

NAMED
NHEADER
NOT
NULL

OF

ON
OPTION
OR
ORDER

PACKAGE
PAGE
PAGES
PCTFREE
PCTINDEX
PRIVATE
PRIVILEGES
PROGRAM
PUBLIC

RESOURCE
REVOKE
ROLLBACK
ROW

RUN

SCHEDULE
SELECT
SET

SHARE
SOME
STATISTICS
STORPOOL
SUM
SYNONYM

TABLE
TO

UNION
UNIQUE
UPDATE
USER

VALUES
VIEW

WHERE
WITH
WORK

About This Manual

XV

xvi System Administration

Summary of Changes

This is a summary of the technical changes to the DB2 Server for VSE & VM
database management system for this edition of the book. Several manuals are
affected by some or all of the changes discussed here. For your convenience, the
changes made in this edition are identified in the text by a vertical bar (1) in the
left margin. This edition may also include minor corrections and editorial changes
that are not identified.

This summary does not list incompatibilities between releases of the DB2 Server
for VSE & VM product; see either the [DB2 Server for VSE & VM SQAReferencei, [DB2|

Server for VM System Administration} or the [DB2 Server for VSE System]|

Administration| manuals for a discussion of incompatibilities.

Summary of Changes for DB2 Version 7 Release 5

Version 7 Release 5 of the DB2 Server for VSE & VM database management
system is intended to run on the Z/VM Version 5 Release 2 or later environment
and on the Z/VSE(®) Version 3 Release 1 or later environment.

Enhancements, New Functions, and New Capabilities

The following have been added to DB2 Version 7 Release 5:

Explain Option on DBSU REBIND PACKAGE Command

This new functionality allows the EXPLAIN(YES/NO) option on REBIND
PACKAGE command. If EXPLAIN(YES) is issued, then all four update tables
(structure, plan, cost, reference) will be updated. If EXPLAIN(NO) is issued, then
none of the four update tables will be updated.

For more information, see the following DB2 Server for VSE & VM documentation:
* |IDB2 Server for VSE & VM Database Services Utility]

* |DB2 Server for VSE & VM Performance Tuning Handbook]

» |DB2 Server for VSE & VM Quick Reference]

» |IDB2 Server for VSE & VM SQL Reference]

For Fetch only

This new functionality accepts the "FOR FETCH ONLY" clause after a cursor select
statement. It causes a cursor to become read-only (no UPDATEs or DELETEs are
permitted using this cursor). If a read-only cursor is referenced in an UPDATE or
DELETE statement, SQLCODE -510 will be issued and the statement is not
processed. In addition, under the SBLOCK preprocessor option, "FOR FETCH
ONLY" forces blocking to be used on the read-only cursor regardless of whether
there is a COMMIT. If there is no "FOR FETCH ONLY” clause, under SBLOCK,
blocking would only be done if a COMMIT was absent.

For more information, see the following DB2 Server for VSE & VM documentation:
* |IDB2 Server for VM Messages and Codes|

[DB2 Server for VSE & VM Application Programming]

[DB2 Server for VSE & VM Performance Tuning Handbook]

[DB2 Server for VSE & VM Quick Reference]

© Copyright IBM Corp. 1987, 2007 xvii

xviii

* |IDB2 Server for VSE & VM SQL Reference]

Application Message Formatter
This functionality provides an Application Programming Interface (API) that

retrieves the descriptive text for an SQLCODE, given an SQLCA input parameter.
The API will be available for Assembly, COBOL, C, PL/I and FORTRAN.

In DB2 for VM and DB2 for VSE Online, the user may specify the language of the
returned text. The languages supported by DB2 for VSE/VM are American English
(AMENG), uppercase English (UCENG), German (GER), French (FRANC) and
Japanese (KANJI). VSE Batch does not support switching to another language.
Therefore the default will be used regardless of the user’s specification. The values
of SQLCODE, SQLSTATE, SQLERRD1 and SQLERRD2 will be automatically
appended to the returned text. The user may also specify to have the entire
SQLCA included. If the SQLCODE could not be found in the repository, the entire
SQLCA will be returned in the buffer.

If the SQLCA was set by another product (such as DB2 UBD), the descriptive text
is retrieved if the SQLCODE exists in the DB2 for VM /VSE repositories. However,
the token substitutions may not be correct.

For more information, see [DB2 Server for VSE & VM Application Programming]

Convert buffer read/write to compiler macro

The DRDA code has over 100 small modules. Each call to an external module has a
certain amount of overhead associated with it. Certain modules are called very
frequently and this can add up to a significant amount of time. This functionality
improves the performance by converting few modules to macros or internal
procedures, to reduce this overhead.

Modify Build Tree Creation

This functionality modifies Build Tree creation used by DRDA parsing and
generation. It is built in such a way that every code point that is used to search
through the tree must be converted to a different format before the search can be
done. If modified build tree was created with the converted point, then the code
point would not have to be converted every time the tree must be searched. This
improves the performance of the DRDA code path length with the minimal search.

Split code point search routines

When parsing a data stream within each parser action routine, a binary search is
done to find the specific code point. Some action specific routines are quite large,
so the binary search can be long. Splitting and spreading the code point evenly
among other modules would reduce the overheads and improves the performance
of the DRDA code path length.

DRDA Multi-Row Insert

Multi Row insert is a means of caching homogenous insert statements and sending
them as a block to the server for processing. This reduces the overhead of sending
a large number of singular inserts and receiving as many responses.

Buffering of homogenous inserts eliminates the need to send an SQL statement to
the DB2 server every time an insert is made, thereby improving performance over
DRDA.

For more information, see the following DB2 Server for VSE & VM documentation:
» |DB2 Server for VSE & VM Application Programming]

System Administration

[DB2 Server for VSE & VM Database Administration|

[DB2 Server for VM System Administration|

[DB2 Server for VSE & VM Performance Tuning Handbook]
[DB2 Server for VSE & VM Quick Reference|

[DB2 Server for VSE & VM SQL Referencd

Connection Pooling for DRDA TCP/IP in Online Resource
Adapter

Connection pooling is a technique that allows multiple users to share a cached set
of pre-established connections that provide access to a database. Establishing a
connection between a user and a server takes a sizeable time. Users who have
validated their entry to a database once need not establish a connection every time
a request is submitted. Instead, they can use a pre-established connection from a
pool of such connections and get their results much faster.

From the user’s point of view, there is a considerable improvement in response
time after this line item is implemented.

For more information, see the following documentation on DB2 Server for VSE &
VM:

« |DB2 Server for VSE System Administration|

* |DB2 Server for VSE & VM Application Programming]

* |DB2 Server for VSE & VM Operation|

* |IDB2 Server for VSE & VM Performance Tuning Handbook]

IBM DB2 Server for VSE, Client Edition

This feature allows the customer the flexibility to install and use only the client
(run-time support) component of DB2 Server for VSE without the requirement to
buy and install the server component during the installation process of DB2 server
for VSE product. The client-only installation enables customers to reduce the total
cost of ownership when they have their databases residing on a non-local platform
(like VM, z/0OS, LUW) and have a large number of their DB2 applications on VSE
(like ISQL on CICS, DBSU on VSE, other online/batch applications on VSE).

For more information, see the following DB2 Server for VSE & VM documentation:
* IDB2 Server for VSE System Administration
» |DB2 Server for VSE Program Directory|

IBM DB2 Server for VM, Client Edition

This feature allows the customer the flexibility to install and use only the client
(run-time support) component of DB2 Server for VM without the requirement to
buy and install the server component during the installation process of DB2 server
for VM product. The client-only installation enables our customers to reduce the
total cost of ownership when they have their databases residing on a non-local
platform (like VM, z/OS, LUW) and have a large number of their DB2 applications
on VM (like ISQL, DBSU, other user applications on VM).

For more information, see the following DB2 Server for VSE & VM documentation:
* |DB2 Server for VM System Administration|
» |IDB2 Server for VM Program Director]

Summary of Changes ~ XiX

XX

Handling Commit Responses from DB2 UDB Stored Procedures
This feature will allow DB2 Resource Manager on VSE/VM to accept and process
results of a stored procedure running in a UDB server with a COMMIT statement
in the stored procedure.

Currently, DB2 for VM/VSE client does not handle responses from ‘COMMIT"
statements coded in DB2 UDB stored procedures. Implementation of this feature
will enable handling responses of COMMIT statements in DB2 UDB stored
procedures and thus allow users to have COMMIT statements in their stored
procedures, while using DB2 for VM/VSE client.

COMMIT statements, however, are not allowed in stored procedures on the DB2
Server for VM /VSE.

For more information, see [DB2 Server for VSE & VM Application Programmingl
Make on-line programs AMODE 31 RMODE ANY

This feature converts DB2 server for VSE online program which presently operate
under 24 bit addressing mode from AMODE 24, to AMODE 31 RMODE ANY.
Presently, all the online programs are loaded below 16M line. Implementation of
this line item ensures that all the online program will be loaded above the 16M
line, which results in more virtual storage below the line, which can be utilized by
other applications.

For more information, see the following DB2 Server for VSE & VM documentation:
* |DB2 Server for VSE System Administration|
* |DB2 Server for VSE Program Directory]

Provide BIND File Support in VM and in VSE Batch Environments

This feature provides the facility of binding packages across servers. The process of
binding is achieved by dividing the program preparation method into two steps.
The first step does the precompilation of the embedded SQL programs with the
prep parameter ‘BIND’. Invocation of VSE/VM preprocessor creates a ‘bindfile’.
The bindfile can be bound against any DB2 server using VSE/VM binder. During
this process, the access path is generated, SQL statements are verified,
authorization checks are performed, and package on the target server is created.
This line item eliminates the need of re-prepping the source code or porting of
packages across DB2 servers.

For more information, see the following DB2 Server for VSE & VM documentation:
+ IDB2 REXX SQL for VM/ESA Installation and Reference]

* |DB2 Server for VM Messages and Codes|

» |DB2 Server for VSE & VM Application Programming]

* |IDB2 Server for VSE & VM Database Administration|

» |DB2 Server for VM Program Director]

» |IDB2 Server for VSE Program Directory|

Convert TCP/IP LE/C interface to EZASMI API

The feature of converting TCP/IP LE/C interface to EZASMI API intends to
replace the current LE/C interface and implement the EZA Assembler Interface
(EZASMI)to enhance performance in DB2 Client/Server for VSE over DRDA.
Currently, either LE/C interface or CSI Assembler Interface is used for TCP/IP
functions. The EZASMI interface makes the code all Assembler.

System Administration

For more information, see [DB2 Server for VSE Program Directori]

Summary of Changes ~ XXi

xxii System Administration

Chapter 1. Planning for Installation

This chapter discusses the tasks that need to be done before you begin to install
the DB2 Server for VM database manager. Details on how to perform installation
can be found in the [DB2 Server for VM Program Directoryl

Operating System Overview

The database manager runs on a Z/VM release 3 or later operating system. If you
are running VSE as a guest operating system under VM, VSE users and
applications can access DB2 Server for VM servers. This feature is called VSE
Guest Sharing.

If DRDA code is installed, DB2 Server for VM requesters can use the DRDA
protocol to access servers on other platforms, and requesters on other platforms
can use the DRDA protocol to access a DB2 Server for VM database. For more
information, see [Chapter 15, “Using a DRDA Environment,” on page 393

Note that this product does not support mixed levels of CP and CMS.

Virtual Machine Overview

This section provides an overview of the virtual machines required by the database
manager.

You need one or more of the following virtual machines for installation and
subsequent use:

1. MAINT. This machine already exists in your VM system.

2. Installation User ID. You need it to use VMSES/E to install, service, and migrate
the database manager.

3. Database machine. A database machine is a virtual machine in which the
database manager code runs. There can be more than one database machine.

The database machine owns a database. It provides all database management
services for a database. The database machine processes SQL requests from
users, and returns the results to the users.

Note: The word “own”, in this context, describes the association of the
database machine’s user ID as the owner of the minidisks that contain
the database. Users who want to link to and access minidisks owned by
another user must be authorized by the owner or the system
administrator.

The VM database machines can be defined as either a LOCAL resource, which
restricts access to users on the same processor, or a GLOBAL resource, which
allows access to users on other processors. For more information on defining
databases, see [“VM Directory Control Statements” on page 137/

4. Service machine. A service machine is required by any processor that does not
have its own database machine, and has users who want to access data in a
relational database, either using private or DRDA protocol.

DRDA Remote Unit of Work (RUOW) support was introduced in SQL/DS
Version 3 Release 3. DRDA Distributed Unit of Work (DUOW) server support

© Copyright IBM Corp. 1987, 2007 1

is introduced in DB2 Server for VM Version 5 Release 1. For more information
on the DRDA environment, see [Chapter 15, “Using a DRDA Environment,” on|

The service machine provides essential support to users by allowing access to a
DB2 Server for VM production minidisk. The production minidisk contains files
required by the users. For example, the SQLINIT EXEC files that enable ISQL
(Interactive Structured Query Language), the DBS utility, and the preprocessors
are located on this minidisk.

For information on installing the service machine and the files that it uses, see
the |DB2 Server for VM Program Directori}

5. User machine. A user machine is a virtual machine that has read access to the
database machine production minidisk.

Components of the Relational Database Management System
depicts a typical configuration with one database and two users.

Communication Link (lUCV, APPC/VM or TCP/IP)

Database User
Machine Machine

Data System Control

Relational Data System|
Database Storage Mbisk
Subsystem

Database Manager

Service

>
o
T
o}
i}
=
o
3
by
®
el
c
[}
17}
@
[}
=

Interactive SQL

Preprocessors

1
g 1
g 1
g 1
g 1
g 1
([o um]

1

I

Applications

User
Machine

Interactive SQL

Directory

os)
o
2
o
g
= FH
(o)
>
2
)
h=3
@

7

log Dpisk
Preprocessors
Storage
Pool

1
1
1
1
1
1
DBS Utility !
1

Applications

Database |

Application Server

Figure 1. Basic Components of the RDBMS in VM/ESA

The database is composed of :

* A collection of data contained in one or more storage pools, each of which in turn
is composed of one or more database extents (dbextents). A dbextent is a VM
minidisk.

* A directory that identifies data locations in the storage pools. There is only one
directory per database.

2 System Administration

* A log that contains a record of operations performed on the database. A database
can have one, two, or four logs.

The database manager is the program that provides access to the data in the
database. It is loaded into the database virtual machine from the production disk.

The application server is the facility that responds to requests for information from
and updates to the database. It is composed of the database and the database
manager.

The application requester is the facility that transforms a request from an
application into a form suitable for communication with an application server.

Software Requirements

The database manager for VM requires an environment provided by IBM Z/VM
operating system, Version 5 Release 2 or later either by itself, or as the base of any
VM package. Depending on your intended use of the database manager, you may
need other licensed program products, as follows:

* For VSE guest sharing, VSE is required.

* For remote printing by ISQL you need the remote spooling communications
subsystem (RSCS) Version 3 Release 2 or later.

* To develop DB2 Server for VM application programs, you can use one or more
of the following compilers:
— A PL/I compiler

A COBOL compiler

A VS Fortran compiler

A C Compiler

An Assembler.

¢ The database manager supports some of the enhancements of VS COBOL Il
Release 3. You can take advantage of these enhancements if you have a VS

COBOL II Release 3 (or later) compiler. For information , see the |DB2 Server fo
[VSE & VM Application Programming| manual.

* To use double-byte character set (DBCS) characters in application programs, you
need the following compilers:
— VS COBOL II compiler
For VS COBOL 1II Release 2 and later programs, SQL identifiers, SQL host

variables, and SQL labels with DBCS characters can be used in SQL
statements. The COBOL Kanji preprocessor is not required.

— PL/I compiler

For PL/I Release 2.1 and later programs, SQL identifiers, SQL host variables,
and SQL labels with DBCS characters can be used in SQL statements.

— VS Fortran compiler

VS Fortran Version 2 Release 3 and later programs support DBCS symbolic
names and DBCS characters in character constants.

— C compiler

For C programs, SQL identifiers, SQL host variables, and SQL labels with
DBCS characters can be used in SQL statements.

— Assembler compiler

DBCS variables and constants are not supported in Assembler programs. You
can still use DBCS characters in dynamically defined SQL statements.

* If you want to use REXX, you need RXSQL.

Chapter 1. Planning for Installation 3

When using RXSQL, you cannot use DBCS characters in cursor names and
statement names.

* To provide remote unit of work access between application requesters and
application servers in an SNA network, you need VTAM* Version 3 Release 2 or
later. If you want to use either partner LU verification or SECURITY=SAME
conversations that are routed through AVS, you must have VTAM Version 3
Release 3 (or later) and RACF* Version 1 Release 9 (or later), or an equivalent
security manager product.

For more information about remote unit of work in a DRDA environment, see
the Distributed Relational Database Connectivity Guide manual.

* To archive the database using user facilities, consider using the DASD Dump
Restore (DDR) utility included with your VM operating system.

Note: All references to above programs apply to equivalent non-IBM products.

Virtual Storage Requirements

4

All DB2 Server for VM operations are serviced by database machines. A database
machine is a virtual machine in which the system code (the components of the
database manager) runs.

Database Machine Size

The amount of virtual storage required by the database machine depends on
several factors. The dominant ones are the sizes of the buffer pools (used for the
directory and the data), the number of concurrent users to be supported, the
complexity of the SQL requests, and the definition of the database. Refer to the
[DB2 Server for VM Program Directory| for recommended virtual storage for the
database machine.

If you have coded any date or time exit routines, the size of these routines must be

added to the minimum virtual storage. For more information, see [“Defining You

[Own Datetime Format” on page 352.|ISQL cannot be run in the database machine.

If you plan to run the database manager in single user mode, add the size of the
application being run, and the resource adapter. See the [DB2 Server for VM Program|
for more information on virtual storage requirements. For a description of
resource adapter, see |'How the ARTUXIT Module Works” on page 340,

The database manager (as a default) runs in the user free storage area. (The entire
user program area is used for user free storage when the database manager is
running.)

For detailed formulas for calculating virtual storage requirements, see
[*Virtual and Real Storage Requirements,” on page 425,

Service Machine Size

System Administration

If CMS is defined as a saved segment, a 1-megabyte machine size is recommended;
if not, ensure that you define enough virtual storage for the service machine to run
CMS. For information on saved segments and how they are defined see
[Saved Segments” on page 179

The service machine does not perform any processing. Its purpose is to own the
database manager minidisks so that SQL users can access the IBM-supplied
programs, such as ISQL, the DBS utility, and the preprocessors.

User Machine Size

Refer to the [DB2 Server for VM Program Directory| for the virtual storage
requirements for a user machine

Hardware Requirements

Hardware requirements include real storage, DASD space, tape, and display
terminals.

Real Storage Requirements

The database manager itself does not require any real storage. However, if more
real storage is available, there is less paging, thus improving performance.

The VSE guest sharing facility requires 40 kilobytes of real storage for each
database communication link.

DASD Space Requirements

The DASD space requirements for the virtual machines are discussed below.

Minidisks Required for the Installation User ID Machine

You no longer install and service DB2 Server for VM strictly using the MAINT user
ID. You should use the user ID, 5697F42X. You can change this user ID, however,
by creating a PPF override. See the [DB2 Server for VM Program Directory| for more
information.

See the |DB2 Server for VM Program Directory] for the recommended DASD sizes for
the installation user ID machine and initial installation, migration, and service
instructions.

Minidisks Required for a Database Machine
A database machine requires two kinds of minidisks: system minidisks and
database minidisks.

System Minidisks: A database machine must have read/write access to its own
work minidisk (A-disk). In addition, it must be able to access the DB2 Server for
VM production and service minidisks. Collectively, these three minidisks are
referred to as the system minidisks. The system minidisks can be optionally installed
in shared file system (SFS) directories with default names of VMSYS:SQLMACH,
VMSYS:SQLMACH.SQL.PRODUCTION and VMSYS:SQLMACH.SQL.SERVICE.
From now on, any reference to the service or production minidisk can be replaced
by these directories.

The work minidisk is required because the database manager does various
operations that require space temporarily.

The production minidisk contains IBM-supplied EXECs and programs that are
required for day-to-day use of the database manager. The production minidisk
defines an entire DB2 Server for VM environment, and contains all the CMS files
that enable database machines to access databases. It also contains CMS files that
allow users to access a database with a given database machine. The CMS files
determine the default application server and thus the database a user can access.
Users can access other database machines and thus other databases by database
switching.

Chapter 1. Planning for Installation 5

6

System Administration

The DB2 Server for VM LOADLIB resides on the production minidisk. Every
virtual machine must have read access to the production minidisk in order to
access the database manager.

The service minidisk also contains IBM-supplied EXECs and programs, but it
needs to be accessed only during installation, database generation, migration,
maintenance or system administration activities.

Usually, all database machines use the same production and service minidisks.
Thus, they can be defined once for the entire installation. You can define more than
one production minidisk as your installation grows. Multiple production minidisks
are convenient when you have many database machines that often perform
administrative tasks. If you define a second production minidisk, you create a
second DB2 Server for VM environment. This environment has its own users, its
own database machines, and its own databases. It is independent of any other DB2
Server for VM environment that is defined by any other production minidisk.
More specific information is in [Chapter 12, “Planning and Implementing]
[Configurations,” on page 265)In planning your initial installation, assume there
will be only one production minidisk and one service minidisk.

Initially, there is only one database machine, SQLMACH. Thus, for installation, you
need to be concerned only with the size of the work minidisk for that initial
database machine. The installation process makes SQLMACH the owner of the
production and service minidisks.

See the [DB2 Server for VM Program Directory| for the recommended database
machine DASD sizes for the service minidisks and production minidisks.

A service minidisk must contain only IBM-supplied files: it must not contain any
user-created files. The IBM-supplied service minidisk files are documented in the
[DB2 Server for VM Program Directory}

The production minidisk may contain user files, but it must contain all the
IBM-supplied files. The IBM-supplied production minidisk files are documented in
the [DB2 Server for VM Program Directory} The space allocations shown for the
production minidisk reflect the requirements for the IBM-supplied files plus
approximately 30% free space.

The service minidisk allocation for non-English versions of the HELP text is
described in the program directory supplied with the non-English HELP text
distribution tape. The allocations documented in the [DB2 Server for VM Program|
include space for the English version of the HELP text.

The service minidisk is referred to as the SQLMACH 193 minidisk, but can be
defined with any valid user ID and virtual address. Similarly, although the
production minidisk is referred to as the SQLMACH 195 minidisk, you can use
any valid user ID and virtual device address. The same virtual machine must own
both the service and production minidisks. When migrating from a previous
release of the database manager, another user ID and virtual device address can be
used for the production minidisk for testing. If you have not used a previous
release of the database manager, you should use the user ID SQLMACH and the
193 and 195 virtual device addresses as described in the [DB2 Server for VM|
[Program Directory]

Database Minidisks: Minidisk requirements for a database machine vary based
on the number and size of databases defined on it. Each database has a minimum

minidisk storage requirement. A database requires a minimum of three VM
minidisks, but a typical database has several more. The minidisk requirements are
summarized below:

* A directory minidisk to hold internal control information for the database.

* Either one, two, or four log minidisks, to hold recovery information. Only one is
required (known as the active log), but defining another log for alternate logging
may help prevent unscheduled log archives from occurring. Whether alternate
logging is used or not, the use of dual log minidisks on separate volumes is
recommended, to protect against I/O errors on access to the log information.

* Database extents (dbextents) to hold the user data of the database. It is possible
to have only one dbextent, but a typical database has several.

The directory, log and database extents minidisks cannot be in CMS shared file
system directories.

The directory and log minidisks are discussed further in [Chapter 2, “Planning for|
[Database Generation,” on page 13| Dbextent minidisks are discussed in greater
detail in |[Chapter 7, “Managing Database Storage,” on page 143

The Starter Database

The ARISDBG MACRO, which comes with this product, contains IBM-supplied
specifications for generating a starter database. This database consists of one
directory minidisk, one log minidisk, and one data minidisk. You can later add
more dbextents, up to a logical maximum size of about 4.6 gigabytes, using the
information in [“Adding Dbextents to a Storage Pool” on page 157

You should generate the starter database at the time of initial installation and
experiment with it in order to familiarize yourself with the database manager. You
may then keep it as your production database. However, as your needs grow, you
may find it necessary to transfer its contents to another database, which can be a
major undertaking. Thus, once you are familiar with how it works, it is best to
discard the starter database and generate your own database by following the
guidelines in [Chapter 2, “Planning for Database Generation,” on page 13.

The initial physical size of the starter database is predefined and will be about the
same on all IBM storage devices. See the [DB2 Server for VM Program Directory| for
the recommended DASD sizes for the starter database.

This starter database must be able to fit in a single dbextent. If you do not have
enough DASD, you will not be able to use the IBM-supplied specifications, and
will have to generate your own database at the time of installation. If you want to
define the equivalent of the starter database on the devices, you must define
multiple dbextents on multiple volumes.

If you are migrating from a previous release of the database manager, you already
have at least one database, so generating the starter database is optional. The
advantage of doing so is that you can use it as a test database to verify your
installation, but the disadvantages are the work involved and the necessary DASD
allocations. Thus to deal with migration needs, the database manager provides
allocations for generating a starter database that is large enough to hold the initial
database components (for example, HELP text, catalog tables, and Fortran
packages), but not much else. The [DB2 Server for VM Program Directory| also shows
the minidisk sizes for a minimum starter database.

Chapter 1. Planning for Installation 7

8

Minidisks Required for a Service Machine

The service machine must have read/write access to its own work minidisk
(A-disk). In addition, it must be able to access the production and service
minidisks. For more information see [“System Minidisks” on page 5|

If you only have a service machine on a processor and intend to access a database
manager (defined as a global resource) in another processor, the code that is
installed on your local processor is known as the service machine. If you install the
service machine, you do not need a database machine. See the [DB2 Server for VM|
[Program Directory| for the recommended DASD sizes for the service machine.

Minidisks Required for a User Machine

During installation, it is recommended that one virtual machine be defined as a
user machine. A user machine also requires a 191 minidisk (A-disk, formatted at
the 1024 byte block size with free space equivalent to at least 3 cylinders of an IBM
3380 storage device). The user machine 191 disk can optionally be installed in a
CMS shared file system directory. See the [DB2 Server for VM Program Directory| for
the recommended DASD sizes for the user machine. After initial installation, you
will probably want to define many user machines.

Tape Requirements

One tape drive is required for installation. Depending on the DB2 Server for VM
facilities you use, you may need tape drives after installation. Tape processing can
be used for the following activities:

* Database archive and log archive processing (both creating the archive and
restoring the database from the archive) to support recovery from DASD failures

¢ Unloading and reloading data into the database using the DBS utility
* Holding the output of the trace facility
* Holding the output of the accounting facility

For all of these facilities except archiving, you can use DASD instead of tape.

Also, with the exception of accounting output, the database manager does not
require the continuous use of any tape drive: tape mounts are requested when
needed. If you are using tape drives, you should have at least two to cover all
your needs.

The database manager supports all tape drives that are supported by the operating
system.

Display Terminal Requirements

System Administration

A variety of display terminals are supported, including the larger screen sizes
offered by some models of the 3278 and 3279 (or equivalent) devices. Since the
database manager relies on CP (control program) and CMS to provide terminal
support for DB2 Server for VSE online applications, the terminal must be one that
is supported by CMS.

You can direct ISQL-printed output to any printer supported by the Remote
Spooling Communications Subsystem (RSCS). Use CP SPOOL and TAG commands
to change the routing of the print output.

Note: To display and print DBCS characters (for example, Japanese HELP text), a
DBCS terminal and printer (for example, the IBM 5550 terminal) are
required.

Considerations When Defining a Database Machine and Generating a
Database

Read this section before carrying out any activities.

Considerations When Adding Directory Control Statements

VM directory control statements are describe on You add them to your
database machine to:

* Define its virtual storage
* Enable communications between it and the user machines or gateways.

* Provide links to the service, production, and database minidisks. (The database
machine’s PROFILE EXEC must be updated so that these minidisks or CMS
shared file directories can be accessed.)

Considerations When Loading IBM-Supplied Files

Install all the IBM-supplied files into the production and service minidisks. This
loads the full product version to support both a database and your users.

Considerations When Generating a Database

You generate a database by specifying parameters to define its maximumes. It is
recommended that the first time you do so, you use the IBM-supplied set of
predefined parameters called the starter database specifications. (See the
[for VM Program Directory] for instructions on how to generate a starter database.)
Once you are familiar with how the starter database works, you should delete it

and generate your own. Refer to [Chapter 2, “Planning for Database Generation,”|
—

Considerations When Defining a Service Machine

Read this section if you plan to define a service machine.

Updating the Service Machine VM Directory

Add VM directory control statements for the service virtual machine to:
* Define its virtual storage
* Provide links to the service and production minidisks.

More information is provided in [Chapter 12, “Planning and Implementing]
[Configurations,” on page 265

Considerations When Loading IBM-supplied Files

Since this is a service machine, you should not generate a database. However,
because all the DB2 Server for VM files are already loaded where you installed the
service machine, you can generate a database in the future. For information on
generating a database on a processor that has a service machine, see
[Service Machine to a Database Machine” on page 49|

Chapter 1. Planning for Installation 9

Defining User Machines

Carry out the following procedure for each user machine that you define:
1. Add VM directory control statements to:

a. Define the virtual storage for the user machine

b. Provide a link to a database machine production minidisk

2. Add (optionally) IUCV statements for communications between the user
machine and a specified database machine or gateway machine.

3. Update the user machine’s PROFILE EXEC so that it can access the production
minidisk.

For information on performing these steps, see [‘Defining Additional User|
[Machines” on page 282

Defining Saved Segments

You can load saved segments any time after installation or migration of the
database manager using VMSES/E, which uses the ARISAVES EXEC.

The instructions for defining saved segments are explained in [Chapter 8, “Saved|
[Segments,” on page 173

Setting Up the CMS Communications Directory

10

You must define a CMS communications directory when one of the following is
true:

* You access a remote application server through the VTAM product

¢ The resid and server name are not the same

* You use SECURITY=PGM

* The database name is longer than 8 bytes

* You access a database using TCP/IP.

If you are accessing a database server using DRDA and SECURITY=PGM, you can
optionally specify the PWDENC tag in the COMDIR entry for added security. If
PWDENC=Y, the CONNECT password will be encrypted before it is sent to the
server. The server must support decryption of the password. If PWDENC=N, or it
is not specified, the CONNECT password will not be encrypted and will be sent as
plain text.

The CMS communications directory provides SNA address resolution for the
application servers. If this file does not exist or does not contain an entry, or if you
issue the COMDIR OFF BOTH command, then the following assumptions are
made: that the application server name is the same as the resid, the application
server is within the same TSAF collection as the application requester, and
SECURITY=SAME.

Any type of abend in the user machine (whether it is an application or initiated by
the application requester code) can cause the CMS communications directory in
virtual storage to be unloaded automatically. If there is a user-level directory,
reload it by using the SET COMDIR RELOAD USER command. If there is a
system-level directory, reload it by using the SET COMDIR RELOAD SYSTEM
command.

System Administration

Issue the QUERY COMDIR command: if the directory is unusable, this command
returns an UNLOADED indicator. In this case, the communications directory is
reloaded for you.

Note: DB2 Server for VM makes use of the CMS NAMEFIND command when
resolving CMS communications directory nicknames from database names.
The NAMEFIND command should be issued within PROFILE EXEC or
SYSPROF EXEC after the SET COMDIR command to prevent virtual storage
fragmentation.

For more information on the CMS communications directory, see the VM/ESA:
Connectivity Planning, Administration, and Operation manual. If you intend to access
non-DB2 Server for VM application servers, also refer to the Distributed Relational
Database Connectivity Guide manual.

Updating the SNA NETID File

If your host machine is part of an SNA network, you must update the SNA NETID
file to include your NETID (network identifier). The NETID is used in the
generation of the LU 6.2 LUWID (logical unit of work identifier), which is
necessary for distributed processing. With distributed processing, a DB2 Server for
VM application server can receive requests from both DB2 Server for VM and
non-DB2 Server for VM application requesters, and DB2 Server for VM application
requesters can access non-DB2 Server for VM application servers.

You can create or change the SNA NETID file using an editor. The NETID that you
specify should be that of the SNA network of which your host system is a part. It
must be from one to eight characters long, and must begin in column 1 of the SNA
NETID file. Your VTAM administrator can provide the NETID that you should use.
(The default NETID supplied in the SNA NETID file is SNANETID. If you do not
specify a valid NETID, SNANETID will be used.) The new NETID is used in the
next database startup.

If you want to ensure the uniqueness of your NETID, ask your IBM representative
about the IBM SNA Network Registry service.

Chapter 1. Planning for Installation 11

12 System Administration

Chapter 2. Planning for Database Generation

As described in [“The Starter Database” on page 7)when you first install the
database manager you should generate an initial database using the IBM-supplied
specifications. This eases installation, and enables you to gain experience with the
system.

However, once you know how to work with this database, you will probably want
to discard it and create several databases that are tailored to your own needs. This
chapter describes the parameters that are set at the time of database generation,
and presents some general design considerations.

If you are migrating from an earlier version of the database manager, then instead
of reading this chapter go to [Chapter 3, “Planning for Database Migration,” on|

The database-generation process does not require definition of any data specifics; it
merely establishes the potential capacity of the database. Some of the
capacity-planning decisions require knowledge of the data and application
requirements of your users. For example, to estimate how big the database will
become, you need to know the potential number of tables that will be stored, and
the storage requirements of those tables. To obtain this information, consult with
the person responsible for the data and application requirements for the database.

Also refer to the [DB2 Server for VSE & VM Database Administration| manual.

Database Generation Parameters

Planning for the generation of a database entails establishing logical and physical
limits for its capacity, and setting its initial DASD allocations.

The parameters that you must establish at this time are summarized in
This figure also shows the IBM-provided values used for the starter database.

Note: The parameters that have a Yes entry in the Fixed column must be
established during generation of the database, and cannot be changed for
the lifetime of the database. Also note that some parameters are established
by the VM directory MDISK control statements, whereas others are
established by input to an IBM-supplied EXEC called SQLDBGEN.

Following the figure is a discussion of how to set these parameters, and of the
issues to consider when setting them.

Table 1. Database Parameters Set at Database Generation Time

Starter
Parameter Default |Minimum |Maximum |Database Fixed Set by
Database directory size None 1 cylinder |1 volume 34 cylinders No MDISK
Log data set (or data sets) None 1 cylinder |524,287 8 cylinders No MDISK
-Size (each) None 1 4Kb pages |1
-Number 4 volumes
Maximum number of storage 32 1 999 256 Yes SQLDBGEN
pools (MAXPOOLS)

© Copyright IBM Corp. 1987, 2007

13

Table 1. Database Parameters Set at Database Generation Time (continued)

Starter
Parameter Default |Minimum |Maximum |Database Fixed Set by
Maximum number of dbextents | 64 1 999 256 Yes SQLDBGEN
(MAXEXTNT)
Maximum number of dbspaces |1000 7 32000 10240 Yes SQLDBGEN
(MAXDBSPC)
Catalog dbspace None 128 8388607 12800 Yes SQLDBGEN
(PUBLIC.SYS0001)
Size (4 kilobyte pages)
First package dbspace None 128 8388607 2048 Yes SQLDBGEN
(PUBLIC.SYS0002)
Size (4 kilobyte pages)
HELP text dbspace None 2304 8388607 8192 No SQLDBGEN
(PUBLIC.HELPTEXT)
Size (4 kilobyte pages)
ISQL dbspace None 128 8388607 1024 No SQLDBGEN
(PUBLIC.ISQL)
Size (4 kilobyte pages)
SAMPLE dbspace None 512 8388607 512 No SQLDBGEN
(PUBLIC.SAMPLE)
Size (4 kilobyte pages)
Internal dbspaces None 128 8388607 1024 No SQLDBGEN
-Size (each) None 2 31997 80
(4 kilobyte pages)
-Number
Initial dbextents None 1 cylinder |1 volume 77 cylinders No MDISK
-Size (each) None 1 999 1
-Number

Notes:

1. The cylinder specifications listed above for the starter database are for IBM
3380 storage devices. Make the appropriate adjustment for your storage
devices.

2. PUBLIC means that the dbspace is publicly owned.

3. Not all dbspaces generated by the starter database are shown in [Table 1] For all
dbspaces generated for the starter database, see [Figure 91 on page 292

Defining Database Directory Size

The DB2 Server for VM directory (called BDISK) contains control information and
page tables for mapping dbspace page references to physical DASD locations. Its
size determines the maximum number of dbextent pages and the number of page
table entries that can be supported by the database being generated.

If necessary, you can later expand the directory to hold more dbspace pages, or
more dbspace and dbextent pages. Refer to [“Expanding the Database Directory” onl|
for more details.

The directory for the database is defined by adding an MDISK control statement to
the VM directory entries for a database machine. If Data Spaces Support is used,
4096-byte blocks can be used for the directory, but otherwise the database manager
requires the use of 512-byte blocks for its directory. The SQLDBGEN EXEC does

14 System Administration

the actual formatting of the minidisk. The MDISK parameters you supply
determine the number of blocks in the directory minidisk.

shows the recommended cylinder (or block) allocations for various DASD
device types, based on assumed maximum database sizes.

Table 2. Recommended Directory Allocations for Various Database Sizes

Directory Space for Various IBM Storage Devices

Maximum

Database FB-512
Size 9345 BLOCKS
10 megabytes TRK(4) BLK(124)
50 megabytes TRK(7) BLK(310)
100 TRK(12) BLK(496)
megabytes

500 CYL(6) BLK(2232)
megabytes

1 gigabyte CYL(11) BLK(4480)
2 gigabytes CYL(21) BLK(8866)
4 gigabytes CYL(42) BLK(17696)
5 gigabytes CYL(52) BLK(22080)
10 gigabytes CYL(101) BLK(44144)
50 gigabytes CYL(504) BLK(220286)

Note: The values in this table apply when the defaults are used for MAXPOOLs,
MAXDBSPC, and MAXEXTNT. These parameters are described in
[“Establishing Database Capacity Parameters” on page 18

Use to choose the initial directory size. Detailed information for generating
its values is contained in [Appendix B, “Estimating Database Storage,” on page 427
When estimating the maximum database size, include the sizes of the public,
private, and internal dbspaces.

The directory minidisk for the starter database supports about 4.9 gigabytes of
data. This includes space for internal dbspace definitions so the actual space
supported for public and private dbspaces is about 4.6 gigabytes.

Directory Allocation Considerations

Maximum Database Size: The directory minimum size cannot extend beyond a
single volume; therefore, the maximum database size is limited by the single
volume capacity of the device type used. The absolute maximum size for a
database is either 64 gigabytes or the limit imposed by the device type, whichever
is smaller. For the limits imposed by various devices, see [Table 38 on page 428 and
[Table 39 on page 429

Placement of Directory: The directory minidisk will be used extensively by the
database manager for resolution of data addresses. Thus, you should not allocate it
to a volume that will contain either the log minidisks or heavily used data
dbextents. Instead, place it on a separate volume to avoid device contention.

Chapter 2. Planning for Database Generation 15

16

If DASD is limited on your system and the directory must share a volume with
data dbextents, put it on a volume with a dbextent that contains infrequently
referenced data. For example, sharing a volume with private dbspaces or historical
data is preferable to sharing one with public dbspaces or current, highly active
data.

Defining the Database Log

The database manager requires at least one log minidisk and can support four. It is
recommended that you use four logs: an active log and an exact copy of it, and an
inactive log (used for alternate logging) and an exact copy of it.

The log minidisks contain information, recorded during database processing, that
is used to support database recovery facilities. This includes control information
(for example, COMMIT statement and checkpoint records) and the specifics of
database changes (for example, inserts, updates, and deletes).

If you define more than one log minidisk they must be exactly the same size. Do
not define them on different device types because it is almost impossible (because
of rounding) to get identically sized data sets using space allocation algorithms.

The log history area, which is the final page of the log, is copied to the database
machine’s A-disk as the file ARIHSDS ARCHIVE immediately after a successful
database or log archive. This A-disk file is used during a subsequent restore, if the
log history area is unusable due to a log failure. The A-disk file is also copied to
the file ARIHSDS PRECLDLG when a COLDLOG RECONFIGURE is done to
ensure recoverability.

The size of the log data set is specified by the VM MDISK control statement, as
shown in [Figure 88 on page 285 The size you specify will depend on the use of
the database and on the type of recovery capabilities you want. If you
underestimate this size at database generation time, you can redefine it afterwards,
as described in [“Log Reconfiguration” on page 231}

Log Size Considerations

The log size depends on the number of changes that you expect will be made to
the database and on whether or not you plan to use archiving facilities. If either
database or log archiving is enabled, the log must be large enough to hold all the
logging done between archives; otherwise it need only be large enough to hold the
logging done in a few hours.

Note: If you are putting dbspaces in nonrecoverable storage pools, keep in mind
that only minimal logging is done for them, so the following log size
considerations would not apply to those dbspaces.

Log Size without Archiving: If you run the database manager without the
archiving facilities (LOGMODE=Y or N), log space is reclaimed as applications
finish and checkpoints of the database are taken. Usually, this occurs every few
seconds or every few minutes. Many uses of the database manager can be
supported by a log size of only one or two cylinders; however, a long-running
application may require more log space.

Typically, the largest demand for log space is online loading or data reorganization.
These processes run longer than most applications and cause a lot of logging to
occur.

System Administration

A starting estimate for the initial log size is twice the space requirements of your
largest dbspace. If you have one exceptionally large dbspace, you can disregard it
and use the size of the next largest dbspace. The data in the largest dbspace can be
loaded and reorganized offline with logging inhibited.

Log Size with Archiving: If you are using the archiving facilities (LOGMODE=A
or L), log space is not reclaimed until an archive is taken. That is, log space is not
reused between archives of the log or database. Typically, you would only archive
the database once or twice a week. You may choose to do log archiving more
frequently, depending on database usage.

To estimate the size of the log, consider the amount of logging that will occur
between archives. A useful approach is to estimate the percentage of data that will
be generated, deleted, and changed over one archive period as follows:

logsize estimate = (percentage generated
+ percentage deleted
+ percentage changed x 2)
x database size

For example, assume that in a one-week period the database size grows by 5% but
also shrinks by 4%, and that 6% of the database (rows) are changed. Your estimate
for the log size would be:

logsize estimate = .21 x database size

If your database size were 100 megabytes and you wanted an archive period of
one week, your log size estimate would be:

logsize estimate = 21 megabytes
This is approximately 30 cylinders of an IBM 3390 DASD device.

Logging Generated by Loading: The log requirements for processing the DBS
utility DATALOAD and RELOAD commands in multiple user mode are:

* If the NEW option is used: enough space to hold the log entries for all table
rows to be inserted

* If the PURGE option is used: enough space to hold the log entries for all table
rows to be deleted as well as for all rows to be inserted.

The log space consumption caused by these operations can be avoided by running
the DBS utility in single user mode with LOGMODE=N specified, or by using the
COMMITCOUNT option to force periodic checkpoints in multiple user mode.

Placement of Logs: Like the directory minidisk the log minidisks are frequently
referenced during processing. To avoid device contention, they should reside on
separate volumes from the directory or heavily used dbextents.

Placement of Dual Logs: If dual logging is defined, place the disks on separate
volumes. If they were allocated to the same one, loss of that volume would cause
the loss of both logs, thus defeating the purpose of dual logging.

Placement of Database A-disk: The database machine A-disk should be on a
volume separate from the log minidisks. If it is allocated to the same volume as
either log, loss of that volume would result in loss of both copies of the log history

Chapter 2. Planning for Database Generation 17

18

area (that is, the one on the log itself and the one on the A-disk) thus defeating the
purpose of having two copies of the history area.

Establishing Database Capacity Parameters

The MAXPOOLS, MAXEXTNT, MAXDBSPC, and CUREXTNT keyword control
statements can be specified as input to database generation. The SQLDBGEN EXEC
calls the program ARISQLDS with STARTUP=C to process these control
statements. The first three of these statements are optional. The last one must be
specified.

The MAXPOOLS, MAXEXTNT, and MAXDBSPC values are fixed when the
database is generated: once defined, they cannot be changed for its lifetime. To
avoid future limitation problems, it is recommended that you set them to the
allowed maximums. This will take about 1 cylinder of DASD on a 3380 device for
the directory, and 280K virtual storage when the database manager is running.

Estimating MAXPOOLS

The MAXPOOLS specification determines the maximum number of storage pools
that can be defined in the database. Storage pools control the location of data on
DASD volumes - that is, what dbspaces are located on what volumes. You can
make a generous estimate for MAXPOOLS, since the value specified results in only
a small directory space allocation for each potential storage pool. You should plan
on having one storage pool for each user group (or billing account), and one for
each major application you expect the database to support.

Estimating MAXEXTNT

The MAXEXTNT controls the maximum number of dbextents that are defined to
support the database being generated. Dbextents determine the physical allocation
of DASD space for a storage pool.

Because a dbextent is a VM minidisk, it cannot span DASD volumes. This means
that you need at least as many dbextents as volumes. You can, of course, define
multiple dbextents on one volume. It also means that if you have a dbspace that
spans multiple volumes, the corresponding storage pool requires multiple
dbextents.

Because you should plan to support multiple dbextents for each storage pool and
you should be prepared to extend most, if not all, of your planned storage pools,
MAXEXTNT should be much larger than MAXPOOLS. Your estimate for it can be
generous because this value results in only a small directory space allocation for
each potential dbextent.

Estimating MAXDBSPC

MAXDBSPC controls the maximum number of dbspaces, including internal
dbspaces, that can be defined for the database. See [“Determining the Internal|
[Dbspace Requirements” on page 20| A dbspace is a logical allocation of database
space for holding one or more tables and their indexes. A dbspace is assigned to a
storage pool when it is defined and draws on the actual DASD space available in
that storage pool on an as-needed basis. Typically, dbspaces are defined to support
private space allocations for individual users and space allocations for specific
applications; thus, the number of dbspaces required generally depends on the
number of users and the number of tables needed for applications. Each user
probably requires from one to five private dbspaces over the lifetime of the
database, and each application requires, at most, one dbspace for each table being
accessed. For performance reasons, one table per dbspace is recommended.

System Administration

As with the previous two parameters, your estimate for MAXDBSPC can be
generous, because the value you specify will result in only a small allocation of
directory space for each potential dbspace.

Estimating CUREXTNT

CUREXTNT determines the number of dbextents defined during database
generation. This number should be sufficient to support your initial storage
requirements. You can add more dbextents after database generation.

Establishing Initial Dbspace Requirements

Determining the System Dbspace Requirements

Any public dbspace that has SYS as the first three characters in its name is
reserved for system use only. The system dbspaces established at database
generation time are PUBLIC.S5YS0001, PUBLIC.SYS0002, PUBLIC.HELPTEXT,
PUBLIC.ISQL, and PUBLIC.SAMPLE.

This section presents only general concepts related to setting the initial dbspace

sizes. For more information, see |“Specifying Initial Dbspaces” on page 296 and

[Appendix B, “Estimating Database Storage,” on page 427

» PUBLIC.SYS0001 holds the database catalog tables. The size required for it varies
considerably, depending on factors such as the number of tables, columns,
indexes, views, and users in the database. For guidelines, see
[SYS0001 Dbspace Requirements” on page 433

Note: Physical space is not actually consumed until required, so you can afford
to define the SYS0001 dbspace to be very large. Be generous: this dbspace
cannot be dropped or recreated after the database is generated. If you
make it too small and SYS0001 runs out of usable space, you will have to
regenerate the database which can be a considerable task.

* PUBLIC.SYS0002 holds the definitions of views and packages. This dbspace,
which cannot be dropped or recreated after generation, can hold a combination
of 255 views and packages. If you anticipate more views and packages than this,
you can acquire additional dbspaces after database generation, as described in
[“Acquiring Dbspaces for Packages” on page 153

* PUBLIC.HELPTEXT holds the online HELP tables. You will need 2304 pages for
each IBM-supplied HELP text that you install. The starter database uses 8192
pages.

* PUBLIC.ISQL holds several tables; EXAMPLE.ROUTINE, SQLDBA.ROUTINE,
and SQLDBA.STORED QUERIES. An allocation of 1024 pages should be enough
for most uses. If you have many users or expect to make extensive use of the
ISQL stored queries facility, consider increasing this. See [“Estimating ISQIL]
[Dbspace Requirements” on page 442 .|

¢ PUBLIC.SAMPLE contains copies of the sample tables for ISQL users, to help
them gain experience with using the database manager. Usually, every ISQL user
has a copy of the sample tables. An allocation of 512 pages should be enough for
all your users, but you can increase the size if you have many ISQL users.
Alternatively, you can ask experienced ISQL users to drop their copies after they
no longer need them to free space for new users’ tables.

The ARISDBU MACRO contains SQL statements to acquire the public dbspaces
HELPTEXT, ISQL, and SAMPLE. If you want to increase their size, update the
appropriate ACQUIRE DBSPACE statement in ARISDBU.

Chapter 2. Planning for Database Generation 19

20

Except for PUBLIC.SAMPLE, the sizes that you establish for system dbspaces at
database generation time can limit the logical capacity of your database. Because
physical space is not actually used until required, you should establish large sizes
for them. The large recommended sizes shown in will support most uses
of the database manager.

Default
System dbspace Recommended Sizes (in Pages) in pages
SYS0001 (Catalog Tables) 30+ .33 x the number of tables 12,800
+ .40 x the number of views
+ .10 x the number of columns
+ .50 x the number of packages
+ .03 x the number of dbspaces
(including package
dbspaces)
+ 10.28 x the number of users
+ 8.10 x the number of package
dbspaces
+ .25 x the number of
character sets
+ .13 x the number of keys
SYS000n (packages) 2,048 for each dbspace 2,048
PUBLIC.HELPTEXT 2,304 x Number of languages installed 8,192
PUBLIC.ISQL The larger of : 1,024 or 1,024
(0.88 x the number of stored queries)
PUBLIC.SAMPLE 512 512

Figure 2. Guidelines for the Sizes of the System Dbspaces

Determining the Initial User Dbspace Requirements

When you generate the database, you need only consider the dbspace requirements
for its initial use. To determine the initial user dbspace requirements, either consult
with the database administrator or refer to the [DB2 Server for VSE & VM Databasd

manual. The SQLADBSP EXEC can be used to add more later, up to
the MAXDBSPC value.

For more information, refer to [Chapter 7, “Managing Database Storage,” on page|
-143.

Determining the Internal Dbspace Requirements
The database manager uses internal dbspaces to process commands that require
sort operations and to process views that require materialization. For information

on sorting and materialization, see the [DB2 Server for VSE & VM Database|
manual

The internal dbspaces are held until a COMMIT or ROLLBACK statement is
issued; therefore, a single application may hold a number of internal dbspaces at
one time. For example, if each SELECT needs an average of two internal dbspaces,
and a certain program issues five SELECTs before issuing a COMMIT statement,
then that program will hold 10 internal dbspaces. Internal dbspaces that are not in
use take up minimal space (approximately 4 bytes of directory space for each

page).

System Administration

Allocate at least 30 internal dbspaces; more if your installation has interactive
users. The exact number required depends on the number of logical units of work
(LUWSs) that are concurrently active and the amount of sorting and view
materialization required in those LUWSs. Because the number of NCUSERS is
comparable to the number of concurrently active LUWS, as a guideline, in addition
to the minimum of 30, you may want to provide 10 internal dbspaces for each
NCUSER (see the description of the NCUSERS parameter on ["NCUSERS” on page|
. After the database has been generated, you can always add more internal
dbspaces by using the SQLADBSP EXEC. All internal dbspaces (and their storage
pool assignments) are redefined on each run of this EXEC.

The physical placement of the internal dbspaces affects performance, especially
when you perform a sort operation on a large table. You should place internal
dbspaces in their own storage pool, and use multiple dbextents over multiple
devices. There are several ways of doing this. Suppose you had 300 3380-type
cylinders for internal dbspace dbextents, you could use one of these strategies:

1. Make the first dbextent small (less than 100 cylinders), and each succeeding
dbextent twice the size of the preceding one. For example, have dbextents that
are 20, 40, 80, and 160 cylinders in size.

2. Graduate the sizes of the dbextents. For example, have dbextents that are 10,
20, 30, 40, 50, 60, and 90 cylinders in size. The last dbextent is extra large so
that unusually large sorts can be accommodated.

3. Have several small dbextents and a few big ones. For example, have five
dbextents of 20 cylinders each, and two of 100 cylinders.

The purpose of all these strategies is to spread input/output activity over more
devices as the size of a sort increases. The strategy you adopt determines how
many dbextents a sort requires. With the first strategy, a sort requiring 60 cylinders
uses two dbextents. With the second and third strategies, the same sort requires
three dbextents. Use a strategy that is suitable for your organization.

Sorting is done for ORDER BY, GROUP BY, join, CREATE INDEX, or UNION
operations. The internal dbspaces must be large enough to hold the rows being
sorted. For example, if an ORDER BY operation is requested using all the columns
of an entire table, the internal dbspace must be large enough to hold the whole
table. Less space is required if all the columns are not selected. During index
creation, space is required only for the key columns. To calculate the required size
of an internal dbspace, use the formula (KEYSIZE + 8 bytes) * ROWCOUNT. Make
the internal dbspaces large enough to hold the largest table or query result you
want to be able to sort. The dbspace size estimates are discussed under

[Appendix B, “Estimating Database Storage,” on page 427

The number of internal dbspaces required also depends on the planned usage of
the system. Fewer are needed for preplanned application processing than for
dynamic query processing, as query users usually hold dbspaces longer than do
preplanned applications.

Internal dbspaces can also be stored on a virtual disk. Only use virtual disks for
internal dbspaces because information on a virtual disk is lost when the database

is restarted. For more information on virtual disk support, see the [DB2 Server fo

[VSE & VM Performance Tuning Handbook| manual.

Determining Initial Dbextent Requirements

Sufficient space must be allocated during database generation to support your
initial dbspace data storage requirements. You must define at least one dbextent for

Chapter 2. Planning for Database Generation 21

22

each storage pool that initially contains dbspaces. The specific amount to allocate
for each storage pool depends on the following considerations:

System Administration

System dbspace support

System dbspaces are heavily used, so they should not share their storage pool
(storage pool 1) with heavily used user dbspaces. Until you gain experience with
your data, do not put user dbspaces in the same storage pool as system
dbspaces.

You should undercommit storage pool support for the SYS0001 and SYS0002
dbspaces. If the catalog tables grow significantly, you can later allocate an
additional dbextent, probably on a separate device, to avoid excessive device
contention on catalog access.

Storage pool support for PUBLIC.HELPTEXT should be large enough to hold
the HELP tables; PUBLIC.ISQL must be large enough to hold your initial needs
for stored queries; and PUBLIC.SAMPLE should be large enough to hold the
number of sample data tables needed.

End user dbspace support

Dbspaces for use primarily by end users should be supported by one or more
storage pools. Public and private dbspaces can share a storage pool; however,
you may want to manage space allocation differently for these two cases.

A recommended approach to storage pool support for end user data is to define
more dbextent space than is needed to support your initial dbspace definitions.
This approach is called overcommitting, and ensures that end user space
requirements can be accommodated as existing users need more space or more
users are added to the system.

If your installation plans to bill users for DASD storage space, you may want to
consider separate storage pools for different user groups (or account numbers).

Note: You can also use statistics from the SYSTEM.SYSDBSPACES catalog table
to achieve this.

Dbspace support for applications

Storage pool support of dbspaces for use primarily by application programs
varies, depending on the nature of the data and the storage management
technique. In general, consider using different storage pools for different
applications, and undercommitting storage pool support for application
dbspaces.

The dbspaces for applications should be defined to be larger than is believed
necessary, to avoid later reorganization because of data growth. If you do this,
storage pool requirements are smaller than the dbspace sizes indicate. The initial
storage pool allocations should be large enough to cover initial loading of the
data plus growth over the next planning period (for example, six months or a
year).

Internal dbspace support

Storage pool support for internal dbspaces should be undercommitted, since you
probably do not need storage to support all internal dbspaces at the maximum
size. As a rough estimate, the storage pool for internal dbspaces should have
enough DASD space available to hold data for three internal dbspaces (at the
internal dbspace size specified at database generation).

Storage space for internal dbspaces is taken from the storage pool assigned at
database generation time. In general, this storage pool should not be used for
system dbspaces or other heavily used dbspaces. Consider using a separate
storage pool just for internal dbspaces.

For more information on storage organization techniques, see [Chapter 7,
[“Managing Database Storage,” on page 143

Choosing an Application Server Name and VM Resource Identifier

In planning for database generation, you can choose two names for your database.
The first name is the server name that the users will specify. The second name is
the resid (VM resource identifier) that identifies the application server to VM. The
server name and the resid can be the same if the requirements for both are met. If
the server name is longer than 8 characters, then you must choose a resid. You
must also decide whether the application server can be accessed from other
processors.

Note: When using remote access, it is recommended that the system administrator
ensure that server names are unique within a set of interconnected SNA
networks, and that resids are unique in a TSAF collection or a gateway. (A
gateway is also referred to as an LU.) The resid must also be identified with
a GLOBAL scope. For more information about these requirements, see
[“Distributed Processing Administration” on page 139

The server name must be from 1 to 18 characters. It should start with an alphabetic
character which can be followed by alphabetic characters, numeric characters, or
underscores. The server name should be unique within a set of networks that are
interconnected. The server name is stored in the resid SQLDBN file on the
production minidisk.

The resid must start with an alphanumeric character and be from 1 to 8 characters.
The terms resid and the TPN (transaction program name) are synonymous. The
resid is used to identify the database resource to the VM system, and in
combination with the NETID and LU name (AVS gateway name) provides the
network address of the resource. The resid can also be a 4 byte hex TPN such as
the DRDA default TPN x’07F6C4C2’. However, there is little need to define a
hexadecimal resid for an application server. The use of a character resid is
preferred because it is more readable.

To specify a value for resid that is different from that specified for the server name,
you must create an entry in the RESID NAMES file that is on the accessed
production minidisk of the application server. This file correlates the server name
and the resid. The resid defaults to the server name if:

e The RESID NAMES file does not exist, or

e The database manager does not find a matching entry in the RESID NAMES file.

For ease of administration, it is best to keep the resid identical to the server name.
If the two names are not identical, the VM users accessing the application server
must also access a CMS communication Directory that has an entry defined for this
server and resid (known as the :dbname and :tpn tags respectively) even if both
the user and the application server are in the same TSAF collection.

Choosing the Application Server Default CHARNAME and CCSID

The application server default CHARNAME is set using the CHARNAME
initialization parameter. The database manager uses the CHARNAME value to
determine the classification table and translation table which are used to identify
valid characters and to determine how to fold lowercase characters to uppercase.
For more information on the CHARNAME initialization parameter, see
["CHARNAME” on page 57

Chapter 2. Planning for Database Generation 23

24

The CHARNAME parameter also specifies the application server default coded
character set identifier (CCSID). For a newly installed database, the application
server default CHARNAME is INTERNATIONAL, and the application server
default CCSID is 500. For a migrated database, the application server default
CHARNAME is ENGLISH, and the application server default CCSID is 37. The
application server default CCSID is the value of CCSIDMIXED if it is not zero,
otherwise it is the value of CCSIDSBCS. Refer to [“CCSID Conversion” on page 319
and ["Determining CCSID Values” on page 322| for more information on CCSIDs.

If you use DBCS characters, you need to use a mixed CCSID as the application
server default. A mixed CCSID has both an SBCS component CCSID, and a DBCS
component CCSID. For more information, see [Table 21 on page 321}

The application server default CCSID value is used for the following:
e The CCSID that SQL statements are converted to for processing by the relational
data system (RDS) component

¢ The CCSID of constants (including hexadecimal constants) which are part of the
SQL statement processed by the RDS component

Depending on the application server default subtype value (that is, the CHARSUB
value), the application server default value for CCSIDMIXED or CCSIDSBCS is
used for the following:

* The CCSID of special registers which represent character data (for example,
CURRENT USER and CURRENT DATE)

e The CCSID of the results of the scalar functions CHAR, DIGITS, and HEX

* The CCSID of the character representation of datetime values (for DRDA
protocol, this is always the CCSIDSBCS value)

e The CCSID of character columns created using the CREATE TABLE or ALTER
TABLE statements (when the CCSID or subtype clause is not explicitly specified
and when package defaults are not specified). See the [DB2 Server for VSE & VM|
[Application Programming] manual for more details on package defaults.

It is important that you choose the correct default CHARNAME and CCSID for
your installation. The goals of choosing the correct values are to ensure the
integrity of character data representation, and to reduce the performance overhead
associated with CCSID conversion. The application server and application
requester should have the same CCSID value unless there is a specific reason for
them to be different.

When the application server and application requester have different CCSID
values, character conversion cannot be avoided. This conversion has an associated
performance overhead. Performance degradation also occurs if the CCSID
conversion causes a sargable predicate to become residual. For example, this can
occur on a simple equals predicate like, T1.C1 = T2.C2. For this case, C2 was
created prior to migrating to Version 3 Release 3 and has a CCSID of 37. C1 was
created using Version 3 Release 4 with the application server default CHARNAME
set to INTERNATIONAL (CCSID 500), As a result, since this predicate requires the
CCSID conversion of the data in the columns, it is residual. For more information
on performance, see the [DB2 Server for VSE & VM Performance Tuning Handbook}

For example, if your application server is only accessed by local users whose
terminal controllers are generated with code page 37 and character set 697 (CP/CS
37/697) for the US ENGLISH characters, then you should set the application server

System Administration

default CHARNAME to ENGLISH. This is because CP/CS 37/697 corresponds to
the CCSID of 37 which corresponds to the CHARNAME of ENGLISH.

To eliminate unnecessary CCSID conversion, choose an application server default
CCSID to be the same as the CCSID of the application requesters which access
your application server most often.

The following is an example of how these two goals can be in conflict.

The situation has these characteristics:

* An application server is accessed by 5 application requesters which are local
(that is, they have the protocol parameter set to SQLDS).

* This application server is also accessed by 100 application requesters which are
remote (that is, they are using the DRDA protocol).

* The local application requesters have controllers which are defined with CP/CS
37/697 (this corresponds to CCSID 37).

¢ The remote application requesters use CCSID 285.

If the application server default CHARNAME is set to ENGLISH (CCSID 37), this
keeps the data integrity for the local application requesters. However, CCSID
conversion overhead is incurred for all remote application requesters who have
CHARNAME UK-ENGLISH (CCSID 285).

If the application server default CHARNAME is set to UK-ENGLISH (CCSID 285),
this will avoid the CCSID conversion overhead incurred for the remote application
requesters, but will cause data integrity problems for the local application
requesters. Certain characters will not be displayed correctly for local application
requesters. For example, a British pound sign (£) will be displayed as a dollar sign

$).

These are the trade-offs to consider when choosing your application server default
CHARNAME.

For more information on CCSIDs, see the Character Data Representation Architecture
Reference and Registry manual.

Attention: Immediately following an installation, the application server
CHARNAME is set to INTERNATIONAL and the CCSID is 500. Immediately
following a migration, the application server CHARNAME is set to ENGLISH and
the CCSID is 37. If you do not choose your own application server defaults, these
settings may not be correct for your system.

For information on how to change the application server default CHARNAME and
CCSID, see [“Setting the Application Server Default CHARNAME and CCSIDs” on|
[page 323 For information on how to choose the default CCSID for an application
requester, see [“Setting the Application Requester Default CHARNAME and|
[CCSIDs” on page 325]For a summary of the considerations for changing these
values, see [“Considerations when changing default CHARNAME and CCSID” on|

IEage 306.|

Chapter 2. Planning for Database Generation 25

Choosing the Application Server Default Character Subtype

The database manager supports three types of character data:
* SBCS

* Mixed

* Bit.

Note: Character refers to data types CHAR, VARCHAR and LONG VARCHAR in
this discussion.

Each database has a default character subtype (that is, the CHARSUB value) which
can be either SBCS (single-byte character set) or mixed (mixed single and
double-byte character set). The default character subtype is the value used for the
subtype attribute of any new character column that is created by either the
CREATE TABLE statement or the ALTER TABLE statement. The default subtype is
used if a subtype is not specified as a package default option or a preprocessing
option, and is not specified explicitly using a subtype clause, or implicitly using a
CCSID clause.

The CHARSUB value is also used for determining CCSIDs. For more information
on CCSIDs, see [“Choosing the Application Server Default CHARNAME and|

ICCSID” on page 23 [[“CCSID Conversion” on page 319 |and [“Determining CCSID|

Values” on page 322) For information on how to change the default character

subtype, see|“Setting the Application Server Default Character Subtype” on page]

Choosing the Default CHARNAME and CCSID for Application

Requesters

It is important that the appropriate application requester default CHARNAME and
appropriate application requester default CCSID be chosen. The goals of choosing the
correct values are to ensure the integrity of character data representation, and to
reduce the performance overhead associated with CCSID conversion.

For example, if your terminal controller is generated with code page 37 and
character set 697 (CP/CS 37/697) for US ENGLISH characters, then the application
requester should set the default CHARNAME to ENGLISH. This is because CP/CS
37/697 corresponds to the CCSID of 37 which corresponds to the CHARNAME of
ENGLISH.

The application requester default CCSID is the value of CCSIDMIXED if it is not
zero; otherwise, it is the value of CCSIDSBCS. The application requester default
CCSID is used for the following:

e The CCSID of SQL statements coded at the application requester
¢ The CCSID of host variables which represent character data

* The CCSID of character values described by an input or output SQLDA (when
the SQLNAME field is not used to override the CCSID value)

* The CCSID of character data returned in a DESCRIBE SQLDA
¢ The CCSID of message tokens returned in an SQLCA

For more information on setting the default CHARNAME for an application
requester, see [“Setting the Default CHARNAME and CCSIDs for an Application|

Requester” on page 326 For more information on CCSIDs, see [“CCSID|

Conversion” on page 319 and |“Determining CCSID Values” on page 322

26 System Administration

You can avoid the need for all application requesters to specify the default
CHARNAME by setting it using the SQLGLOB EXEC. For information on setting
the default CHARNAME for all application requesters, see [‘Setting the Defauli]
[CHARNAME and CCSIDs for All Application Requesters” on page 326

Preparing for Database Regeneration

If the SYS0001 dbspace ever becomes too small to hold the catalog tables, or if the
contents of the directory minidisk or a dbextent minidisk are damaged or
destroyed and you do not have archives to restore them, the database can no
longer serve your needs and must be regenerated.

The size and complexity of the regeneration task depends on the size and

complexity of the database. This task includes:

* Regenerating the database, including any dbspaces, dbextents, and VM
minidisks that may have been added since the previous generation

* Using the DBS utility to unload and reload all the data in the database,
including the ISQL routines and the ISQL stored queries.

* Repreprocessing all application program packages
* Reestablishing the entire authority scheme
* Recreating all views and indexes.

One way to simplify this task is to keep a record of the various types of
information you would need to reestablish the operating environment that existed
in the previous database. In particular:

* Keep all the ACQUIRE DBSPACE, CREATE TABLE, ALTER TABLE, GRANT,
CREATE INDEX, CREATE VIEW, and CREATE SYNONYM statements for the
database in EXECs that call the DBS utility. These EXECs can be run easily on
the regenerated database.

Note: If these statements are not kept, you can reconstruct them from
information available in the system catalog tables. However, this could
take a long time for a large production database.

* Keep all of the input control statements for any add dbspace or add dbextent
operations. These statements can be used as input to the SQLDBGEN EXEC
when it regenerates the database.

* Keep EXECs used to preprocess each application program so that they can be
run on the regenerated database (as separate jobs).

Database Generation Worksheet

This section provides a worksheet. [Table 3| covers the database generation control
statements. Fill it out as you design your database; then refer to it when you define
your minidisks or provide control statements to the SQLDBGEN EXEC.

Table 3. Database Generation Worksheet

Database Name
Server Name

RESID

Database Scope

(LOCAL or GLOBAL)

Chapter 2. Planning for Database Generation 27

Table 3. Database Generation Worksheet (continued)

Minidisk Definitions:
cylr/ cyls/
cuu devtype blkr blks volser mode pr pw

Directory MDISK R
Log Disk 1 MDISK R
Log Disk 2 MDISK R
Log Disk 3 MDISK R
Log Disk 4 MDISK R
Dbextent 1 MDISK R
Dbextent 2 MDISK R
Dbextent 3 MDISK R
Dbextent 4 MDISK R
Database Capacity Parameters:

CUREXTNT (A value from 1 to 999 must be specified.)
MAXPOOLS (Default is 32. Value can be from 1 to 999.)
MAXEXTNT (Default is 64. Value can be from 1 to 999.)
MAXDBSPC (Default is 1 000. Value can be up to 32 000.)

Nonrecoverable Storage Pools:

POOL NOLOG (Storage pool 1 cannot be specified.)
POOL NOLOG
POOL NOLOG
POOL NOLOG

Database Extent (Dbextent) Placement:

Dbextent Storage Pool
Number (Default is 1)

Note: The number of dbextents must equal CUREXTNT, but one is required. The MAXEXTNT value determines the
maximum number of database extents.

28 System Administration

Table 3. Database Generation Worksheet (continued)

Public Dbspaces:

SIZE Storage Pool
Purpose (In 4K Pages) (Default is 1)
Catalog Tables L
Packages - _
HELP Text - _
1SqQL 1024 (minimum)
Sample Tables 512 (minimum) .

Note: The public dbspaces for the catalog tables, packages, HELP text, ISQL, and the sample tables are required.

The catalog tables must be in storage pool 1.

Private Dbspaces:

SIZE Storage Pool
Purpose (In 4K Pages) (Default is 1)
Internal Dbspaces:
Number: Size in 4K Pages: Storage Pool:

Note: The MAXDBSPC value determines the maximum total number of public, private, and internal dbspaces
possible.

Chapter 2. Planning for Database Generation

29

30 System Administration

Chapter 3. Planning for Database Migration

If your installation already has a previous release of the database manager
installed, you must consider the effect that migration to the new release will have
on your existing databases and applications.

You can migrate to a DB2 Server for VM Version 7 Release 5 database from:
e Version 7 Release 4

e Version 7 Release 3

* Version 7 Release 2

* Version 7 Release
* Version 6 Release
* Version 5 Release
* Version 3 Release
* Version 3 Release
* Version 3 Release
* Version 3 Release 2
e Version 3 Release 1

W U1k ==

Note: If you are on an earlier release, you will have to migrate to Version 3
Release 5 first and then to Version 7 Release 5.

Before migrating:
* Read the discussions on release-to-release incompatibilities in

[“Incompatibilities Between Releases,” on page 481 for changes that may be
required in application programs.

* Ensure that the requirements discussed in [Chapter 1, “Planning for Installation,”]
|on page 1| are met. For information on the actual installation and migration
steps, see the [DB2 Server for VM Program Directory] .

e It is strongly recommended that you archive your databases before migrating, so
that you can back out of the migration process should it become necessary.

 Consider installing the database manager and generating a starter database to
try out the new functions before migrating your existing databases.

This chapter also contains sections on the following:
* Release coexistence considerations

It can be impractical to migrate all the databases in a local or distributed
environment to the current level at the same time. For information on the level
of coexistence that is possible see [‘Release Coexistence Considerations” on page]

* Migration from a VSE to a VM operating system

It is possible to move a DB2 Server for VSE database to a VM operating system.
There is no need to convert the data in a database when you move from VSE to
VM,; the data is system-independent. You move data from VSE to VM by taking
a database archive of the DB2 Server for VSE database and then restoring the
database archive tape on the VM operating system.

If you have moved a database from VSE to VM, you may have some VSE
application programs that you do not want to convert. These programs can
access the databases on VM using VSE guest sharing. For more information, see
[“Migrating from a VSE to a VM Operating System” on page 39

© Copyright IBM Corp. 1987, 2007 31

* System migration from one IBM VM system to another
You can migrate your databases to a new VM operating system in two ways:

— Archive them in the original VM operating system, install the database
manager on your new VM operating system, and restore the databases in the
new operating system.

— Install a new VM operating system on the processor you use to access your
databases. You can then access your databases as you did in the original
operating system.

See the information about the operating systems involved, beginning on page
[“Migrating from a VM/XA to a VM/ESA Environment” on page 41|

* Converting a service machine to a database machine

For any particular processor, you may need to convert a service machine to a
database machine if a database machine is required on that processor.
[‘Converting a Service Machine to a Database Machine” on page 49| explains this
process.

Migration Considerations

For users of an earlier version of the database manager, installing Version 7
Release 5 means loading the new code by running one or more IBM supplied
programs, and migrating any existing databases. This section highlights the
considerations that you should be aware of when doing this.

The topics are grouped by the release level of the database that is being migrated.
Start at your release level and read to the end of this chapter. For example, if your
database is Version 3 Release 1, you must review all the topics; if it is Version 3
Release 2, you need only read from that topic to the end of the chapter.

Increasing the HELPTEXT Dbspace

A database that is migrated keeps its existing HELPTEXT dbspace, which may not
be large enough to support the Version 7 Release 5 HELP text. The size required
for this dbspace depends on the number of national languages for which you have
HELP text. It should be:

2,304 pages x number of Tanguages installed.

This dbspace can be increased at any time before you install the current HELP text.
For information, see the |[DB2 Server for VSE & VM Database Administration| manual.

If users are running their applications under the DRDA protocol, some database
manager facilities are not supported. For a list of these restrictions, see
[Appendix H, “DRDA Considerations,” on page 479

Migrating from Version 3 Release 1

32

Considerations for Invalid Indexes

Before you migrate, at least four dbspace blocks must be available in the database
directory to allow for expansion of the invalid entities table. During migration, any
entries in the invalid entities table are migrated to the new format. The new table
format requires additional space in the directory. If there are any entries in the
invalid entities table, it is possible that there may not be enough room in the
directory to allow the table to be modified during migration.

System Administration

For information about directory space verification, see the |DB2 Server for VM|
[Program Directoryy .

Conversion of Packages

After migration, all packages are dynamically repreprocessed on first use. This
conversion can cause a performance degradation over the first few days as the
packages are referenced and repreprocessed.

To help minimize this degradation, the REBIND PACKAGE command is provided
so that all packages can be recreated, if desired, after migration but before
production. For information about this command, see the |[DB2 Server for VSE &|
[VM Database Services Utility] manual.

You can also convert a package by explicitly repreprocessing the application
program. Before repreprocessing your applications, you should be aware of any
statements that may behave differently with the new release. See 'Release to
Release Incompatibilities' in [Appendix I, “Incompatibilities Between Releases,” on|
_ae 481,

Migrating from Version 3 Release 2

When migrating from a Version 3 Release 2 database, you may want to update the
SNA NETID file. For information on this task, see [“Updating the SNA NETID File”|
_on page 11.

With Version 3 Release 3, you can specify a server name of up to 18 characters,
and a resid that is correlated with it. For more information on the conventions to
follow when specifying the server name and resid, see [“Choosing an Application|
[Server Name and VM Resource Identifier” on page 23

Choosing an Application Server Default CHARNAME

After migration, the database manager sets the application server default
CHARNAME to ENGLISH, and sets the application server CCSID values as
follows:

+ CCSIDSBCS = 37

¢ CCSIDMIXED = 0

¢ CCSIDGRAPHIC = 0.

You can change the value of the default CHARNAME, which in turn determines
the values for the three application server default CCSIDs. These four values are
stored in the VALUE column of the SYSTEM.SYSOPTIONS catalog table. The
corresponding values in the SQLOPTION column for these defaults are
CHARNAME, CCSIDSBCS, CCSIDMIXED, and CCSIDGRAPHIC.

The value you choose for the default CHARNAME should accurately reflect the
type of data that will be stored in the database: that is, the type of code page and
character set that describes the data, and whether or not the database manager is
to support DBCS characters or MBCS characters, or both. For more information,
see |[“Character Set Considerations at Startup” on page 57||’Determining CCSID|
[Values” on page 322 |and [“CCSID Conversion” on page 319]For a summary of the
considerations for changing these values, see |[“Considerations when changing]
[default CHARNAME and CCSID” on page 306 |

Chapter 3. Planning for Database Migration 33

34

Setting Migration CCSID Values

After choosing your default CHARNAME, you must also set your CCSID values
for character and graphic data that existed before the migration to Version 3
Release 3. The CCSID value of character and graphic data stored in tables that
were created before Version 3 Release 3 are specified by the three other rows (with
SQLOPTION value MCCSIDSBCS, MCCSIDMIXED and MCCSIDGRAPHIC) in the
SYSTEM.SYSOPTIONS catalog table. The migration CCSID values (MCCSIDSBCS,
MCCSIDMIXED, and MCCSIDGRAPHIC) are used for single byte, mixed, and
graphic data that was created prior to Version 3 Release 4 and therefore does not
have a CCSID associated with it. The database manager sets the migration CCSID
values as follows:

¢ MCCSIDSBCS = 37

* MCCSIDMIXED = 0

* MCCSIDGRAPHIC = 0.

If the code page and character set used to create the migrated data (that is, the
data that was inserted into the database prior to Version 3 Release 3) is not CP/CS
37/697, these settings are not correct for your installation and must be changed.
You can determine the CCSIDs for migrated data from the code page and character
set that was used to generate the terminal controller where the data was entered.

For an example of how your choice of migration CCSID value affects the
characters displayed, refer to page

To determine if your database contains graphic or mixed data, issue the following
query:

SELECT COUNT(*) FROM SYSTEM.SYSCOLUMNS
WHERE COLTYPE = 'GRAPHIC' OR

COLTYPE = 'VARGRAPH' OR
COLTYPE = 'LONGVARG' OR
SUBTYPE = 'M'

If the query returns a result of zero rows, the database contains neither graphic nor
mixed data; a nonzero result indicates the number of columns in your database
that do contain such data.

Handling SBCS Data: If your database contains only SBCS data (that is, the
above query returns a result of zero) prior to Version 3 Release 3, the migrated
CCSID values for mixed and graphic data (MCCSIDMIXED and
MCCSIDGRAPHIC) must remain 0.

If the MCCSIDSBCS value of 37 is not correct for your installation, this must be
changed to correspond to the code page and character set used to create the
migrated data. For example, if the data was created with CP/CS 273/697
(GERMAN), the CCSID value you should use is 273. For a list of some of the SBCS
CCSIDs and their character set and code page values, see [Table 21 on page 321|

The row that you must update for data in tables created before Version 3
Release 3 is:

* SQLOPTION='MCCSIDSBCS'

Change the value in the VALUE column to the appropriate SBCS CCSID (for
example, 273 for GERMAN). The following statements show how to update or
insert the row using this value:

System Administration

UPDATE SYSTEM.SYSOPTIONS SET VALUE = '273'
WHERE SQLOPTION = 'MCCSIDSBCS'

INSERT INTO SYSTEM.SYSOPTIONS VALUES
('mMccsIDSBCS', '273',
'DEFAULT CCSID FOR MIGRATED SBCS CHARACTER COLUMNS')

Handling Mixed Data: If your database contains graphic or mixed data prior to
Version 3 Release 3, you must update the VALUE column of
SYSTEM.SYSOPTIONS for the row where SQLOPTION="MCCSIDMIXED' with the
appropriate nonzero CCSID value. You must also update the row where
SQLOPTION=MCCSIDSBCS' to the value of the SBCS component of the mixed
CCSID, and the row where SQLOPTION="MCCSIDGRAPHIC' to the value of the
DBCS component of the mixed CCSID. If these CCSIDs do not correspond to the
components of the mixed CCSID, the wrong conversion selection tables are being
used. For a list of some of the mixed CCSIDs and their component SBCS and
DBCS CCSIDs, see [Table 21 on page 321|

The rows that you must update for data in tables created before Version 3
Release 3 are:

* SQLOPTION='MCCSIDMIXED'

Change the value in the VALUE column to the appropriate mixed CCSID. If you
used DBCS characters before Version 3 Release 3, specify the appropriate CCSID
value. For example, if you used Kanji characters, specify the value 5035. The
following statements show how to update or insert the row using this value:

UPDATE SYSTEM.SYSOPTIONS SET VALUE = '5035'
WHERE SQLOPTION = 'MCCSIDMIXED'

INSERT INTO SYSTEM.SYSOPTIONS VALUES
('MCCSIDMIXED', '5035',
'DEFAULT CCSID FOR MIGRATED MIXED CHARACTER COLUMNS')

* SQLOPTION=MCCSIDSBCS'

Change the value in the VALUE column to the appropriate SBCS CCSID. If you
used DBCS characters before Version 3 Release 3, you must specify the SBCS
component CCSID of the MCCSIDMIXED value. For example, if
MCCSIDMIXED is set to 5035, specify 1027. The following statements show how
to update or insert the row using this value:

UPDATE SYSTEM.SYSOPTIONS SET VALUE = '1027'
WHERE SQLOPTION = 'MCCSIDSBCS'

Chapter 3. Planning for Database Migration 35

INSERT INTO SYSTEM.SYSOPTIONS VALUES
('mMccsIDSBCS', '1027',
'DEFAULT CCSID FOR MIGRATED SBCS CHARACTER COLUMNS')

* SQLOPTION=MCCSIDGRAPHIC'

Change the value in the VALUE column to the appropriate graphic CCSID. If
you used DBCS characters before Version 3 Release 3, this value must be the
DBCS component CCSID of the MCCSIDMIXED value that you used. For
example, if you used Kanji characters, specify 4396. The following statements
show how to update or insert the row using this value:

UPDATE SYSTEM.SYSOPTIONS SET VALUE = '4396'
WHERE SQLOPTION = 'MCCSIDGRAPHIC'

INSERT INTO SYSTEM.SYSOPTIONS VALUES
('MCCSIDGRAPHIC', '4396',
'"DEFAULT CCSID FOR MIGRATED GRAPHIC COLUMNS')

Choosing the Default CHARNAME for All Application
Requesters

After migration, the application requester default CHARNAME is determined from
the SQLGLOB file. By default it is set to INTERNATIONAL, and the application
requester CCSID values are as follows:

+ CCSIDSBCS = 37

* CCSIDMIXED = 0

* CCSIDGRAPHIC = 0.

To ensure the integrity of character data representation and to reduce the
performance overhead associated with CCSID conversion, it is important to choose
the appropriate CHARNAME for the code page used by each application requester.
If you need to, you can later change it for all application requesters by using the
lobal default SQLGLOB EXEC. See [‘Choosing the Default CHARNAME and|
CCSID for Application Requesters” on page 26| and [‘Setting the Application|
Requester Default CHARNAME and CCSIDs” on page 325 For more general
information on CCSIDs, see |[“CCSID Conversion” on page 319|and [“Determining]
[CCSID Values” on page 322.

Considerations for Mixed Primary Keys with Field Procedures

If you are migrating from Version 3 Release 1 or Version 3 Release 2, the value of
CCSID in SYSTEM.SYSKEYCOLS is NULL. For some primary keys, this value is
not correct. In this case, you should drop and recreate the primary keys, which you
can identify by running the ARISFPKY EXEC after migrating. (For information on
this procedure, see the [DB2 Server for VM Program Directory})

36 System Administration

Migrating from Version 3 Release 3

Considerations for EXPLAIN Tables

Several changes and enhancements were made to the EXPLAIN tables in Version 3
Release 4. If you have existing EXPLAIN tables they must either be renamed, or,
dropped and recreated before using the EXPLAIN statement.

An IBM-supplied macro, ARISEXP, recreates the EXPLAIN tables for you.

For additional information on using EXPLAIN tables, see the [DB2 Server for VSE &
[VM Performance Tuning Handboo manual.

Considerations for VSE Guest Sharing

VSE batch applications can access an application server on VM that is either
remote or local. If the application server is in a remote network, the SET XPCC
TARGET SYSARI command in the VSE IPL procedure must be replaced by the SET
APPCVM TARGET command. If the application server is local, the SET XPCC
TARGET SYSARI command in the VSE IPL procedure is not needed, and can be
deleted.

Regardless of whether the application server is remote or local, an entry in the
DBNAME directory may also be necessary to map the DBNAME to the resid when
the DBNAME is greater than 8 characters, or when the DBNAME and the resid are
different.

Considerations for the VM Data Spaces Support (VMDSS)

If VMDSS was installed prior to migration, the VMDSS code must be link-edited
with the DB2 Server for VM code before running the migration utilities. See the
[DB2 Server for VSE & VM Performance Tuning Handbook| manual for more
information.

Migrating from Version 3 Release 4

Considerations for Assembler Even Precision Packed Decimal

Prior to Version 3 Release 5, assembler host variables declared as even precision
packed decimal were converted to odd precision by the preprocessor. As of
Version 3 Release 5, the database manager supports assembler host variables
defined as even precision packed decimal, and they are not converted to odd
precision. In some cases, the lack of conversion may cause a datatype mismatch
between a host variable and a column. To prevent potential performance
degradation, applications affected by this change should be modified so the
datatypes of the host variables exactly match the datatypes of the columns to
which they will be compared.

Considerations for SQLSTATE Changes for SQL92 Support

The SQLSTATES returned by several conditions were changed to comply with
SQL92. Application programs that have a dependency on the SQLSTATE returned
may be affected by these changes. See |[DB2 Server for VM Messages and Codes| for
information on the changed SQLSTATEs.

Chapter 3. Planning for Database Migration 37

Migrating from Version 3 Release 5

Considerations for Uncommitted Read

Prior to Version 5 Release 1, the database manager accepted isolation level
uncommitted read as a preprocessor parameter, but internally the isolation level
was escalated. As of Version 5 Release 1, isolation level uncommitted read is fully
supported. However, this isolation level to take effect, packages that were prepped
with uncommitted read in a previous release must be explicitly repreprocessed
after migration.

Considerations for VMSES/E

As of Version 5 Release 1, installation and service of the database manager code is
done using VMSES/E, which is a component of the VM operating system. Several
administrative and maintenance processes have changed as a result, including;:

* Defining and loading saved segments

* Adding a primary database machine

* Moving an application server to another VM ID

* Installing your own date, time, and accounting exits

* Enabling the DRDA code

* Enabling the DSS code

¢ Installing NLS support.

Considerations for Support of ESA-mode Processors Only

Any user exits (date, time, or accounting), field procedures, or applications that
run in single user mode that are dependent on running in a 370 mode virtual
machine must be converted to execute in an ESA mode virtual machine. AMODE
24 is still supported, however it cannot be used if the database is started with
SYNCPNT=Y. If the database is started with SYNCPNT=Y (which is possible only
in multiple user mode), exits and field procedures must run with AMODE 31. If
the database is started with SYNCPNT=N, exits, field procedures, and single user
mode applications that require AMODE 24 can be used.

Considerations for the Renaming of the Product

The text of several messages was modified as the result of the renaming of the
product. Applications with dependencies on the text of messages may be affected.

Considerations for the Removal of the User Facility Subset

The User Facility Subset is no longer supported; machines on which the subset was
previously installed must now contain the full product.

Migrating from Version 5 Release 1

38

Considerations for RDS Above 16M

After migration, the RDS component will be loaded above 16M whenever possible.
As a result,

* If you use AMODE 24, you must use a maximum virtual storage size of 16 MB.

 If you use saved segments, it is highly recommended that the RDS and DBSS
segments not be put in the same segment space, as this would force the RDS

segment to be located below 16M. See [“Using Saved Segments for Components”]

System Administration

Considerations for TCP/IP

In DB2 Server for VM Version 6 Release 1 and later, the database manager will
attempt to use TCP/IP for communications by default. If you do not want to use
TCP/IP, specify the initialization parameter TCPPORT=0.

Migrating from

Version 6 Release 1

There are no issues to consider when migrating from Version 6 Release 1 to
Version 7 Release 5.

Migrating from

Version 7 Release 1

There are no issues to consider when migrating from Version 7 Release 1 to
Version 7 Release 5.

Migrating from

Version 7 Release 2

There are no issues to consider when migrating from Version 7 Release 2 to
Version 7 Release 5.

Migrating from

Version 7 Release 3

There are no issues to consider when migrating from Version 7 Release 3 to
Version 7 Release 5.

Migrating from

Version 7 Release 4

There are no issues to consider when migrating from Version 7 Release 4 to
Version 7 Release 5.

Release Coexistence Considerations

For installations with multiple databases, you should migrate all your databases to
the current level. All users have the same features available to them, and future
database migrations are easier.

Applications at any supported release level can access application servers at any
supported release level. However, if an application requester and application
server are at different release levels, any functions used must be available in both
release levels. That is, you cannot use any new release facilities from ISQL, DBS
Utility, or application programs when the application server is running a different
level of DB2 Server for VSE & VM than the application requester.

All existing applications that accessed a database before the database was migrated
to another release level continue to work after migration.

See [Appendix I, “Incompatibilities Between Releases,” on page 481| for
incompatibilities that exist between each release and the next release.

Migrating from

a VSE to a VM Operating System

This section describes two operating environments on VSE from which you can
migrate a database:

 Standalone VSE system. VSE is the only operating system on the processor. The
database manager runs under VSE.

Chapter 3. Planning for Database Migration 39

40

* VSE runs as a guest operating system under VM. The database manager runs
entirely under VSE.

When you move the database from VSE, you can move it to one of these operating
systems:

* VM operating system with VSE guest sharing. In this situation, VSE is a guest
operating system under a VM operating system, and the database machine is on
VM.

* VM/ESA ESA Feature operating system. The database machine runs under a
VM/ESA operating system with the ESA Feature.

If you do not have a database on VM, you can migrate your database from a VSE
to a VM operating system by archiving the database on VSE, generating a new
database on VM, and then restoring the archived database on VM. For more
information, see [“Moving a Database” on page 46,

If you already have a database on VM, you can move the data in your VSE
database to the VM database using the UNLOAD and RELOAD commands. For
more information on the UNLOAD and RELOAD commands, see the
[for VSE & VM Database Services Utilityl manual. If you move the data this way, you
have to unload and reload all dbspaces and packages. When the database is on
VM, you must recreate all views and indexes, and reestablish the authorities and
privileges each user has with GRANT and REVOKE commands for the tables
moved from VSE. This is similar to regenerating a database. For more information,
see [“Preparing for Database Regeneration” on page 27

When migrating from a prior release, you may want to update the SNA NETID
file. For information on this task, see [“Updating the SNA NETID File” on page 11

Moving a Database from a VSE to a VM Operating System

Before attempting to move a database from a VSE to a VM operating system, you
should understand the database manager on VM as well as on VSE. You must
know how to define and generate a database on VM before you can move a VSE
database to VM.

Choosing a VM Resource Identifier

In a DB2 Server for VM database, you can choose a VM resource identifier (resid)
in addition to the server name. The resid identifies the application server to VM.

For more information on this, see [“Choosing an Application Server Name and VM|
[Resource Identifier” on page 23]

Converting Data in the Database

There is no need to convert the data in a database when you move the database
from a VSE to a VM operating system; the data is system-independent. You must
have the same release level of the database manager installed on both operating
systems, otherwise the database manager at the lower release level must be
migrated first. Once both databases are using the same release level, archive the
database on VSE and restore it on VM.

Converting Packages

Although the database manager itself does not require you to convert user-created
packages when you move from VSE to VM, any program that is moved will have

System Administration

to be compiled and linked again in the VM environment. If you have revised any
programs, you should repreprocess these programs. Remember to use the
preprocessor KEEP option to retain existing authorizations on the program.

Views are stored as packages. These packages do not need to be recreated.

Converting Programs

The VSE programs moved to the VM operating system must be recompiled and
linked in the VM operating system. Some of the programs can be run in a
CMS/DOS environment without modification. The CMS/DOS environment does
not support all VSE macros and functions; some programs must be recoded.
Programs that do not need to be recoded still have to be preprocessed, compiled,
and link-edited in the VM environment.

The CICS/VSE programs cannot be converted to the CMS environment; they must
be rewritten to be used in CMS.

VSE Databases Coexisting under VM

You might choose to move some VSE databases to VM. In such cases, you can run
the database on VM, with VSE running as a guest under VM. Users and
applications in VSE can also access databases on VM through VSE guest sharing.
For more information on guest sharing, see [“VSE Guest Sharing Configuration” on|

If you have databases on VSE, use the DB2 Server for VSE manuals. See the
[Server for VSE & VM Master Index and Glossary manual for a list of these manuals.

Migrating from a VM/XA to a VM/ESA Environment

You can migrate your VM /XA databases to a VM/ESA operating system in two

ways:

* Archive the databases in the VM /XA operating system, and restore them in the
VM/ESA operating system. See [“Moving a Database” on page 46

* Install a VM/ESA operating system on the processor that you use to access your
databases. See |“Installing Another IBM VM System on Your Processor” on page]

You mai have to update the SNA NETID file. See [“Updating the SNA NETID File”|

Delaying the Directory and Database Name Changes

If you have just installed a VM/ESA operating system, and you want to delay the
directory and database naming changes, you can operate your database machines
in non-APPC/VM mode. In this mode, IUCV is used and the remote unit of work
and database switching capabilities are not available.

To indicate that the database machine is to use IUCV communication paths instead
of APPC/VM, set the DBMODE initialization parameter to N when you start the
application server. This connects you to an application server using the database
machine’s VM ID. Otherwise, APPC/VM paths will be used, and you will be
connected to the application server using the resource identifier (resid).

If you have already made the directory changes and database name changes, do
not set DBMODE to N.

Chapter 3. Planning for Database Migration 41

Setting up the Database Machine Directory Entry

To use Version 6 Release 1, ensure that you have the necessary VM directory
control statements. An example of these statements is shown in

Note: Only those statements that differ from the ones used in the VM /XA
operating system are explained following the figure. For details of the other
statements, see [’Adding a Primary Database Machine” on page 275

1 ---> USER SQLMACH sqlmachpw xM xM G
ACCOUNT nnnnnnnn
2 ---> OPTION MAXCONN 26
IUCV ALLOW
3 ---> IUCV *=IDENT SQLDBA GLOBAL
IPL CMS PARM AUTOCR
CONSOLE 009 3215 T OPERATOR
SPOOL 00C 2540 =
SPOOL 00D 2540 A
SPOOL 0OE 1403
LINK MAINT 190 190 RR
LINK MAINT 19D 19D RR
MDISK 191 3380 cylr 010 volser W
MDISK 193 3380 cylr 060 volser R rsql wsql
MDISK 195 3380 cylr 020 volser RR rsql wsql msql
MDISK 200 3380 cylr 034 volser R rsql wsql
MDISK 201 3380 cylr 008 volser R rsql wsql
MDISK 202 3380 cylr 077 volser R rsql wsql

Figure 3. Example VM Directory Control Statements for the SQLMACH Machine

Statement 1: USER SQLMACH sglmachpw xM xM G

This statement defines the database machine SQLMACH with the VM privilege
class G. Refer to [“Virtual Storage Requirements” on page 4| for the recommended
virtual storage size for the database machine.

Statement 2: OPTION MAXCONN 26

The MAXCONN value must be increased by 1 (over that specified for the VM/XA
operating system), because the machine now makes one additional IUCV
connection to *IDENT.

The default value for MAXCONN is 4 in the VM /XA operating system, and 16 in
the VM/ESA operating system.

Statement 3: IUCV *IDENT SQLDBA GLOBAL

In a VM/ESA operating system, the database machine is the resource owner, so it
must be authorized to connect to the VM system service *IDENT. This
authorization is granted by the IUCV entry in the database machine directory. The
name of the database (specified in the DBNAME parameter of the SQLDBINS
EXEC) is used as the resource identifier.

[Figure 4 on page 43| shows the syntax of the IUCV *IDENT statement.

42 System Administration

»>—TUCV *IDENT

A\
A

I—r‘esi d—| |—LOCAL—|
|—RES/-\NY—| |—GLOBAL—|

Figure 4. IUCV *IDENT Syntax

resid
This variable is the resource identifier of an application server that can be
started in this virtual machine. The machine can have multiple resid entries in
its directory. (In [Figure 3 on page 42} the resid is SQLDBA.) Usually, the resid
is the server name of the application server. However, if the resid and the
server name are different, they must both be defined in the RESID NAMES file
during database generation.

RESANY

This parameter enables the database machine to identify any resource identifier
as either a LOCAL or GLOBAL resource. Specify it if you want to access more
than one application server (accessed one at a time).

LOCAL
This parameter ensures that only the application requesters that are on the
same processor as the database machine can use this application server
GLOBAL

This parameter identifies an application server as a resource that can be
accessed by all application requesters in a network.

Example of a Database Machine Directory with Multiple
Databases

shows the control statements in the directory of a database machine with
multiple databases. This database machine can manage three application servers on
this processor, but only one at any given time. The three database resids in this
example are SQLRES1, SQLRES2, and SQLRES3. The first two can only be accessed
by users on the local processor, while the third can be accessed by both local and
remote users.

Chapter 3. Planning for Database Migration 43

---> USER SQLMACH sqlmachpw xM xM G
ACCOUNT nnnnnnnn
OPTION MAXCONN 26
IUCV ALLOW

---> TUCV *IDENT SQLRES1 LOCAL

---> TUCV =IDENT SQLRES2 LOCAL

---> IUCV *IDENT SQLRES3 GLOBAL
IPL CMS PARM AUTOCR
CONSOLE 009 3215 T OPERATOR
SPOOL 00C 2540 =
SPOOL 00D 2540 A
SPOOL 0OE 1403
LINK MAINT 190 190 RR
LINK MAINT 19D 19D RR
MDISK 191 3380 cylr 010 volser W
MDISK 193 3380 cylr 060 volser R rsql wsql
MDISK 195 3380 cylr 020 volser RR rsql wsql msql
MDISK 200 3380 cylr 034 volser R rsql wsql
MDISK 201 3380 cylr 008 volser R rsql wsql
MDISK 202 3380 cylr 077 volser R rsql wsql
MDISK 203 3380 cylr 034 volser R rsql wsql
MDISK 204 3380 cylr 008 volser R rsql wsql
MDISK 205 3380 cylr 077 volser R rsql wsql
MDISK 206 3380 cylr 034 volser R rsql wsql
MDISK 207 3380 cylr 008 volser R rsql wsql
MDISK 208 3380 cylr 077 volser R rsql wsql

Figure 5. Database Machine Directory Entries

Setting Up the User Machine Directory Entry

In a VM/ESA operating system, the database manager uses advanced-program-to-
program-communications/virtual machine (APPC/VM) in place of IUCV. User
machines connect to a resource, not to the database machine. A change is required
if access to the resource had been controlled by specifying IUCV dbmachid in the
directory entries of the user machines. The IUCV dbmachid must be replaced with
the IUCV resid statement in each virtual machine directory, to allow the user
machine to connect to the application server identified as a resource.
shows an example of the VM directory entry for a user machine.

Note: Only those statements that differ from the ones used in the VM /XA
operating system are explained following the figure. For information on user
machine directory entries, see [‘Defining Additional User Machines” on page]
For a complete description of VM directory control statements, refer to
the VM/ESA: Planning and Administration manual.

1 --->

2 --->

USER SQLUSER sqluser xM xM G
ACCOUNT nnnnnnnn

IUCV resid

IPL CMS PARM AUTOCR

CONSOLE 009 3215

SPOOL 00C 2540 =

SPOOL 00D 2540 A

SPOOL OOE 1403

LINK MAINT 190 190 RR

LINK MAINT 19D 19D RR

MDISK 191 3380 cylr 003 volser W
LINK SQLMACH 195 195 RR

Figure 6. Example VM Directory Entries for a User Machine

44 System Administration

Statement 1: USER SQLMACH sglmachpw xM xM G

This statement defines the user machine with the VM privilege class G.
Refer to[“Virtual Storage Requirements” on page 4| for the recommended
virtual storage size for the user machine.

Statement 2: IUCV resid (used for the VM/ESA operating system)

This statement is only required if the IUCV ALLOW control statement is
not present in the VM directory for the database machine (SQLMACH).
Since the default arrangement is for IUCV ALLOW to be specified in the
VM directory entry for the database, most users omit this statement. If you
later decide to have more control over user machine-to-application server
communications, you can change the IUCV control statements.

shows the syntax of the IUCV statement used for the VM/ESA operating
system.

»»—TIUCV

A\
A

Ly

—resid

—gatewayid—

Figure 7. IUCV Statement Syntax

ANY
This parameter authorizes the user machine to connect to any application
server identified as a resource.

resid
This variable authorizes a user machine to connect only to the application
server identified by resid. If more than one IUCV resid statement is specified in
the machine’s directory, the user machine can communicate with more than
one application server.

gatewayid
This variable authorizes the user machine to connect to the resources in an
SNA network through gatewayid, rather than to a specified virtual machine.

For more information about the VM directory control statements that affect
inter-machine communications, see [“VM Directory Control Statements” on page]
-137.

Database Naming Considerations

You may have to change the names of your databases (server-name), to ensure that
they are unique within a set of interconnected SNA networks, and that their resids
are unique in a TSAF collection or gateway. For more information, see
[Processing Security” on page 138

When you migrate a database from a VM/XA to a VM/ESA operating system you
can specify a value for server-name of up to 18 characters, and a value for resid of
up to 8 characters. For more information, see [‘Choosing an Application Server|
[Name and VM Resource Identifier” on page 23

Chapter 3. Planning for Database Migration 45

Migrating from a VM/SP to a VM/ESA Operating System

You can migrate your VM/SP databases to a VM /ESA operating system in two
ways:

* Install the VM/ESA operating system on the processor you use to access your

databases. See [“Installing Another IBM VM System on Your Processor.”]

* Archive the databases in VM/SP, and restore them in the VM/ESA operating

system. See|“Moving a Database.”|

If you have user exits or single user mode applications that do not support 31-bit
addressing, these applications must be converted before the database manager can
run AMODE(31).

Installing Another IBM VM System on Your Processor

You can access your databases in another IBM VM system by installing that VM
operating system on the processor on which the databases are located. Before
doing so, you should archive your databases.

For information on installing VM/ESA, see the VM/ESA: Installation Guide manual.

Moving a Database

This section provides information about moving a database.

Using Archive and Restore to Move a Database

To move a database to another database manager:

1.

46 System Administration

Start the source application server.

If you normally use the database manager archiving facility, specify the
LOGMODE-=A initialization parameter to archive the database, or
LOGMODE-=L to archive the log. If you do not use the archiving facility,
specify LOGMODE=Y.

Set the password for authorization ID SQLDBA in the source application server
to SQLDBAPW.

Create a database archive tape file by issuing the SQLEND ARCHIVE
DVERIFY operator command. If LOGMODE is set to L, the database manager
also takes a log archive. You cannot use a database archive created by user
facilities when moving your database.

Do not destroy the source database until you are certain that it has been
correctly moved to the target.

Install the database manager that you are going to use as the target (if you
have not already done so).

Before proceeding to move the database, it is recommended that you first
install and verify the IBM-supplied starter database on the target database
manager, to ensure that the target database manager has been correctly
installed. For information on how to do this, see the [DB2 Server for VM Prograim|

Define and generate a database on the target system. The new database
directory and dbextents must be defined with sufficient space to contain the old
directory and dbextents.

If you are moving from a VSE to a VM operating system, you must increase the
space allocations used by approximately 16% for count-key-data DASDs that
are 10 cylinders or fewer, and for FBA devices that are 5000 blocks or fewer.
For data sets larger than 10 cylinders or larger than 5000 FBA blocks, increase
the allocation by about 3%. These increases account for VM DASD block 1/0. If
you use allocations on VM that are the same size as those you used on VSE,
the VM database will be too small.

You must define exactly the same number of dbextents and logs that existed on
the old database.

For database planning information, see [Chapter 2, “Planning for Database]
[Generation,” on page 13 For the database definition and generation procedure,
see the|DB2 Server for VM Program Directory| and |DB2 Server for VSE Program|

|Directorzl

6. Perform coldlog processing against the target database manager, by entering
the command:

SQLLOG DBNAME (server-name)

Respond CONTINUE to message ARI0688D (for single logging) or ARI6129D (for
dual or alternate logging). Respond 0 to message ARI0944D to reformat the log.

7. Restore the database archive tape file created in step El above to the target
database, by entering the command:

SQLSTART DBNAME (server-name) PARM(STARTUP=R)

Do not specify LOGMODE=A or L when you issue SQLSTART. Message
ARI0253D is displayed, indicating that the restored database archive is not
known to the database manager. (The database manager keeps track of archives
in the log history area.) Reply IGNORE to this message. When the application
server is started and ready for operator commands, shut it down by issuing the
SQLEND command.

8. Install the correct version of the HELP text into the target database.

This text is different on the VSE and VM operating systems, so if you have
moved from one system to the other and had the HELP text installed, replace it
with the target system version.

For information on how to install the HELP text, see the [DB2 Server for VM|
[Program Directory}

Using the SQLDBDEF Utility

The SQLDBDEEF utility can be helpful if you are moving your database. This utility
extracts the definition of database objects from a DB2 Server for VSE & VM
database, and generates a DBSU job that can be used to create the same objects on
another DB2 database. The target database can be any DB2 database, for example,
DB2 Server for VSE & VM, DB2 UDB for OS/390, DB2 UDB for Linux, and so on.
When the objects have been created on the target platform, the load utilities of the
target database can be used to load the data. Packages can be unloaded from the
source database and reloaded to the target database so that existing client
applications can continue to be used.

For more information about the SQLDBDEF utility, see [Appendix G, “Service and|
[Maintenance Utilities,” on page 469

Moving a VM Application Server from One User ID to Another

If you are moving a database from one VM user ID to another VM user 1D, you
need to do the following:

Chapter 3. Planning for Database Migration 47

1. Update the VM directory entries for the new user ID. Use the same statements
as they were used in the origin user ID. See [“VM Directory Control|
[Statements” on page 137] for some example entries of the VM directory control
statements.

| VMSES/E Consideration |

If the database you are moving is the original database machine (SQLMACH),
which VMSES/E recognizes, you must update the installation user ID’s VM
directory to link to the new production and service minidisks.

| End of VMSES/E Consideration |

2. Copy all the files from the original service and production minidisks to the
new service and production minidisks.

3. Copy the PROFILE EXEC from the original database user ID’s A-disk to the
new user ID’s A-disk.

4. In the new user ID, access the production minidisk as file mode Q in write
mode.

5. XEDIT the file ARISPIDC MACRO Q. Change the original database user ID to
the new user ID. For example:

Before:

Line 1: PRODUCTION: SQLMACH 195
Line 2: SERVICE: SQLMACH 193
After:

Line 1: PRODUCTION: NEWMACH 195

Line 2: SERVICE: NEWMACH 193

6. XEDIT the file resid SQLDBN Q. Change the original database user ID to the
new user ID. For example:

Before:
DBMACHID=SQLMACH,DCSSID=dcssid,DBNAME=dbname
After:
DBMACHID=NEWMACH,DCSSID=dcssid,DBNAME=dbname

7. XEDIT the file resid SQLFDEF Q. Change all the occurrences of the original
database user ID to the new user ID. For example:

Before:

/**% FOLLOWING LINES FOR BDISK xx/
If varl='DEF' Then CP LINK SQLMACH 200 200 W

/**% FOLLOWING LINES FOR LOGDSK1 #*x*/
If varl='DEF' Then CP LINK SQLMACH 201 201 W

/**% FOLLOWING LINES FOR LOGDSK2 **x*/
If varl='DEF' Then CP LINK SQLMACH 202 202 W

[*** FOLLOWING LINES FOR ALTLGD1 w#w*x*/
If varl='DEF' Then CP LINK SQLMACH 203 203 W

[*** FOLLOWING LINES FOR ALTLGD2 %/
If varl='DEF' Then CP LINK SQLMACH 204 204 W

/**% FOLLOWING LINES FOR DDSK1 #xx/
If varl='DEF' Then CP LINK SQLMACH 205 205 W

48 System Administration

/**% FOLLOWING LINES FOR DDSK2 *w*x*/
If varl='DEF' Then CP LINK SQLMACH 206 206 W

/**% FOLLOWING LINES FOR DDSK20 w*w*+*/
If varl='DEF' Then CP LINK SQLMACH 216 216 W

After:

/*** FOLLOWING LINES FOR BDISK x**/
If varl='DEF' Then CP LINK NEWMACH 200 200 W

/*** FOLLOWING LINES FOR LOGDSK1 **x*/
If varl='DEF' Then CP LINK NEWMACH 201 201 W

/*** FOLLOWING LINES FOR LOGDSK2 **x*/
If varl='DEF' Then CP LINK NEWMACH 202 202 W

[*** FOLLOWING LINES FOR ALTLGD1 %%/
If varl='DEF' Then CP LINK SQLMACH 203 203 W

[*** FOLLOWING LINES FOR ALTLGD2 %%/
If varl='DEF' Then CP LINK SQLMACH 204 204 W

/*** FOLLOWING LINES FOR DDSK1 %%/
If varl='DEF' Then CP LINK NEWMACH 205 205 W

[*** FOLLOWING LINES FOR DDSK2 %/
If varl='DEF' Then CP LINK NEWMACH 206 206 W

/**% FOLLOWING LINES FOR DDSK20 w*w*+*/
If varl='DEF' Then CP LINK NEWMACH 216 216 W

8. If the database server name is going to be different, follow the steps described
in [’Changing the Server Name and Resource Identifier” on page 50| to change
the server name and the resource ID.

9. Copy the database minidisks (Directory, log disks and dbextents) to the new
userid. For details on moving the database minidisks, refer to the following
sections in |[Chapter 9, “Making Backups and Recovering from Failures,” on|

[page 193}

* [Replacing a Minidisk Using DASD Dump Restore|

* [Replacing a Database Minidisk]

* [Replacing a Log Minidisk|

10. VMSES/E considerations: To apply service to the new user ID, you must
create a PPF (Product Parameter File) override to the 5697F42X $PPF file. The
PPF override must reflect the new database user ID and service and
production minidisk address or SFS directory names. The $PPF file resides on
the VMSES/E Software Inventory disk (MAINT 51D). Therefore, when
servicing DB2 Server for VM, the files are copied to the correct database user
ID. Refer to the VM/ESA: VMSES/E Introduction and Reference for more
information on creating a PPF override.

Converting a Service Machine to a Database Machine

You may need at times to convert a service machine to a database machine if a
database is required on that processor.

To convert this processor to a database machine, all you have to do is generate a
database and make the appropriate VM directory changes.

Chapter 3. Planning for Database Migration 49

For more information, see [“Adding a Primary Database Machine” on page 275

Changing the Server Name and Resource Identifier

Situations exist where you may want to change the application server name or the
resource identifier. For example, you may want to change an application server
name from 8 to 18 characters or have it conform to your naming conventions, or
you may want to change a resource identifier name to a registered DRDA TPN.

The first character of the application server name must be an uppercase letter
(A-Z), followed by alphanumeric characters. The name must be from 1 to 18
characters.

The following example shows how to rename an application server with a
character resource identifier. In this example, the DB2 Server for VM production
minidisk is assumed to be the Q-disk, and an application server with a DBNAME
of dbnamel and a RESID of resid1 will be renamed to dbname2 resid2.

Notes:

1. In a DRDA2 environment, the database manager uses the RESID to create its
own log name. Therefore, before changing the server name, ensure that any
DRDAZ2 in-doubt agents have been resolved. Once the server name has
changed, use the RESET CRR LOGNAMES command to clear old log names.
When the database manager is next started with the initialization parameters
PROTOCOL=AUTO and SYNCPNT=Y and Resynchronization Initialization
occurs, the DB2 Server for VM log status will be COLD.

2. If the RESID NAMES Q file is not on the production minidisk, use XEDIT to
create the file. Create it with one entry that has the following three tags:
tnick
:dbname
:resid
1. Access the Q-disk with write capability.
2. Enter the CMS command:
FILELIST residl = Q

A list of files from the Q-disk is displayed. Three files are on the Q-disk for
each application server:

a. residl SQLDBGEN

b. residl SQLDBN

c. residl SQLFDEF

3. Rename the file name of each file:

RENAME / resid2 SQLDBGEN Q
RENAME / resid2 SQLDBN Q
RENAME / resid2 SQLFDEF Q

4. Edit resid2 SQLDBN Q:
XEDIT resid2 SQLDBN Q

This file contains a statement similar to the following:
DBMACHID=Dbmachid,DCSSID=Dcssid,DBNAME=dbnamel

Replace the DBNAME value (DBNAME=dbnamel) with your new server
name:

DBMACHID=Dbmachid,DCSSID=Dcssid,DBNAME=dbname2
5. Edit RESID NAMES Q:
XEDIT RESID NAMES Q

50 System Administration

In this file, you see the :DBNAME and :RESID tags. Replace the resource
identifier resid1 with resid2, and dbnamel with dbname?2.

Before:

:nick. :dbname.dbnamel :resid.residl
After:

:nick. :dbname.dbname?2 :resid.resid2

6. If the old server name or resid (for example, TPN) is referenced by any CMS
communication directory entries, you must update those directory entries.

After changing your application server name and resource identifier, ensure that
users enter:

SQLINIT DB(dbname2)
to identify the application server to be accessed.

When you want to start the renamed application server, specify the new server
name when you enter SQLSTART:

SQLSTART DB(dbname2)

The following example shows how to rename an application server, and how to
change a resource identifier to a registered DRDA TPN. In this example, the DB2
Server for VM production minidisk is assumed to be the Q-disk, and an
application server with a DBNAME of dbnamel and a RESID of resid1 will be

renamed to dbname2 07F6C4C2. The RESID 07F6C4C2 represents the default DRDA

TPN X'07F6C4C2'".

Note: If the RESID NAMES Q file is not on the production minidisk, use XEDIT
create the file. Create it with one entry that has the following three tags:
:nick
:dbname
:resid
1. Access the Q disk with write capability.
2. Enter the CMS command:
FILELIST residl * Q

A list of files from the Q-disk is displayed. Three files are on the Q-disk for
each application server:

a. residl SQLDBGEN

b. residl SQLDBN

c. residl SQLFDEF

3. Rename the file name of each file:

RENAME / 07F6C4C2 SQLDBGEN Q
RENAME / 07F6C4C2 SQLDBN Q
RENAME / 07F6C4C2 SQLFDEF Q

4. Edit 07F6C4C2 SQLDBN Q:
XEDIT 07F6C4C2 SQLDBN Q

This file contains a statement similar to the following:
DBMACHID=Dbmachid,DCSSID=Dcssid,DBNAME=dbnamel

Replace the DBNAME value (DBNAME=dbnamel) with your new server
name:

DBMACHID=Dbmachid,DCSSID=Dcssid,DBNAME=dbname2
5. Edit RESID NAMES Q:
XEDIT RESID NAMES Q

Chapter 3. Planning for Database Migration

to

51

52

System Administration

In this file, you will see :DBNAME and :RESID tags. Replace the resource
identifier residl with the hexadecimal value X'07F6C4C2' and dbnamel with
dbname2.

Before:

:nick. :dbname.dbnamel :resid.residl
After:

:nick. :dbname.dbname?2 :resid.X'07F6C4C2'

Enter a hexadecimal TPN value in the CMS communication directory by using
the SET VERIFY ON HEX 1 72 command, and entering the hexadecimal
digits.

Chapter 4. Planning for Operation of the Database Manager

Once the DB2 Server for VM code is installed and your database generated, the
operator can start the application server so that users can access the databases and
submit SQL statements. This chapter explains the planning tasks associated with
starting, running, and stopping the application server. For information on the
actual operator commands, see the [DB2 Server for VSE & VM Operation| manual.

Starting the Application Server

This section discusses the following topics:

¢ The database operator

* Multiple user mode initialization parameters

* Single user mode initialization parameters

* Tape support

* General file support

* Starting the application server in multiple user mode
* Running multiple user mode applications
 Starting the application server in single user mode
* Opverriding initialization parameters

¢ Creating a parameter file

The Database Operator

Each database machine has its own operator console called the DB2 Server for VM
operator console. The user who operates this console is referred to as the database
operator.

When more than one database machine is active, there is more than one database
operator console. With VM facilities, a single person can operate many database
machines. For example, one person can operate many database machines by
running the virtual machines disconnected. This common operator can reconnect to
the various machines as needed.

Another way to have one operator is to use the VM Single Console Image Facility
or the Programmable Operator Facility. These facilities allow the VM system
operator to operate all the database machines. To learn more about the single
console image facility and the programmable operator facility, refer to the VM/ESA:
CP Programming Services or the VM/ESA: Planning and Administration manuals.

The database manager can operate in one of two modes: multiple user mode, or
single user mode.

In multiple user mode, one or more users or applications concurrently access the
same database. The database manager runs in a virtual machine while one or more
applications run in other virtual machines. Users specify the database they want to
access by running the SQLINIT EXEC. This EXEC establishes a default database for
each user. For example, a user who first wants to access a database called TEST,
then use ISQL, would enter:

SQLINIT DB(TEST)
ISqQL

The initialization parameter SYSMODE=M defines this mode.

© Copyright IBM Corp. 1987, 2007 53

54

In single user mode, the database manager and only one application program run in
the same virtual machine. The application server is started, the program name is
passed as a parameter to the database manager, the application is run, and the
application server terminates. The initialization parameter SYSMODE=S defines

this mode.

Multiple User Mode Initialization Parameters

identifies the initialization parameters that apply when the database
manager is operating in multiple user mode, and lists their defaults. A discussion
of the appropriate settings for these parameters follows.

Table 4. Multiple User Mode Initialization Parameters

Parameter | Default Minimum Maximum
Environment Parameters
DBNAME(name) None — —
DCSSID() SQLDBA — —
AMODE() 31 — —
SYSMODE=M M — —
STARTUP=W IRIU W — —
PARMID=name None — —
DBMODE=G I LIN *IDENgn?ri;eCtorY — _
PROTOCOL=
SQLDS — —
SQLDS | AUTO
CHARNAME=name INTERNATIONAL — —
ACCOUNT=DIN N — —
If
SYNCPNT=Y IN PROTOCOL=AUTO, — —
Y
DSPSTATS=nn 0 0 21
TCPMAXRT=n 158 1 9999
TCPPORT=n ETC SERVICES 0 65535
TCPRETRY=Y IN Y — —
SECALVER=Y IN N — —
SECTYPE=DB2 | ESM DB2 — —
Performance Parameters
NCUSERS=n 5 1 251
NPACKAGE=n 10 1 32766
NPACKPCT=n 30 0 100
NPAGBUF=n 10 + NCUSERS x 4 10 40000
NDIRBUF=n NPAGBUF 10 40000
NLRBU=n 1000 10 583333
NLRBS=n @ X(Efgsg? ’ largg&fj gglgsr) 2 x 583333
NCUSERS)/2 +10
DISPBIAS=n 7 1 10

System Administration

Table 4. Multiple User Mode Initialization Parameters (continued)

Parameter Default Minimum Maximum
NCSCANS=n 30 1 655
LTIMEOUT=n 0 0 99999
PTIMEOUT=n 180 0 99999
PROCMXAB=n 0 0 255

Recovery Parameters
LOGMODE=Y|AIL Y — —
CHKINTVL=n 10 1 99999999
SLOGCUSH=n 90 11 90
ARCHPCT=n 80 10 99
TAPEMGR=N1Y N — —
SOSLEVEL=n 10 1 100

Service Parameters

DUMPTYPE=PI|FIN F — —
EXTEND=Y IN N — —
TRACDBSS=nnn... 000... 000... 222...
TRACRDS=nnnnnnn 0000000 0000000 2222222
TRACWUM=n 0 0 2
TRACDRRM=nnnn 0000 0000 2222
TRACDSC=nn 00 00 22
TRACCONV=n 0 0 2
TRACSTG=n 0 0 1
TRACEBUF=n 0 0 99999

Environment Parameters
DBNAME

A database machine can own more than one database. When starting the
application server, specify the name of the database that is to be accessed by the
database machine. Note that DBNAME is not specified in the parameter list of the
SQLSTART command as an initialization parameter. [Figure 8 on page 56 shows the
DBNAME parameter specified correctly.

DCSSID

This parameter specifies the name of the bootstrap package to be used. It is not
needed if saved segments are not being used. For more information on saved
segments and specifying the DCSSID parameter, see [Chapter 8, “Saved Segments,”|
fon page 173 [Figure 8 on page 56|shows the DCSSID parameter specified
correctly. For more information on the use of this parameter, see
[Application Server in Multiple User Mode” on page 78

AMODE

This parameter specifies the type of addressing the database manager runs in:
31-bit addressing or 24-bit addressing. Note that AMODE is not specified in the

parameter list of the SQLSTART EXEC as an initialization parameter.
-

Chapter 4. Planning for Operation of the Database Manager 55

page 56/ shows the AMODE parameter specified correctly. For more information on
the use of this parameter, see [“Starting the Application Server in Multiple User|
[Mode” on page 78|

SYSMODE

This parameter is used to specify either single(S) or multiple(M) user mode. Set it
to M to initialize the database manager for multiple user mode operation. This is
the default mode. You will NOT normally specify this parameter as SQL EXECs set
this parameter for you automatically.

STARTUP

This parameter specifies how the database will be started:
* Most of the time let STARTUP default to W (warm start).

¢ Use STARTUP=R (restore) to restart the application server and restore the
database from an archive tape file.

* Specify STARTUP=U (user restore) if you have archived and restored the
database with user facilities.

For more information, see [“Restoring the Database” on page 215

PARMID

This parameter can be used to specify a CMS file containing the values for the
other initialization parameters. Application program parameters (user parameters)
cannot be included. Specify only the file name for PARMID. The database manager
assumes that the file type is SQLPARM and the file mode is *. The * tells CMS to
search all accessed minidisks (A to Z). shows an example startup that uses
the PARMID parameter.

SQLSTART DBNAME (SQLDBA) DCSSID(MYBOOT) AMODE(31) PARM(PARMID=WARMI,LOGMODE=A)

Figure 8. Starting in Multiple User Mode with a CMS File

DBMODE

This parameter identifies the database name as a LOCAL resource (DBMODE=L), a
GLOBAL resource (DBMODE=G), or non-APPC/VM (DBMODE=N) for a
particular session. If the DBMODE parameter is not specified, the resource
authorization specified in the VM directory of the database machine is used.
Consider the following when specifying the DBMODE parameter:

* If you specify DBMODE=L or G to run SQLSTART and the database machine
directory does not contain the control statement IUCV with parameters GLOBAL
or LOCAL, the SQLSTART EXEC fails.

* When DBMODE=G is specified, and the IUCV *IDENT directory entry does not
allow that resource name to be identified as a GLOBAL resource, the application
server ends the startup.

* If DBMODE=L is specified, the application server is identified as a LOCAL
resource even if the JUCV directory entry specifies that the resource is GLOBAL.
Specify this parameter to restrict access to the application server to users on the
local processor.

* If DBMODE=N is specified, no *IDENT directory entries are required, because
the database machine uses IUCV instead of APPC/VM. You should use
DBMODE-=N if you have just migrated to a VM/ESA operating system, and you
do not want to make directory changes yet. For more information about
DBMODE-=N, see |“Delaying the Directory and Database Name Changes” on|
-ae 41,

56 System Administration

For more information about directory entries, see [“VM Directory Control|
[Statements” on page 137/

PROTOCOL
This parameter specifies the types of protocols that the application server can
handle. It has two options on the SQLSTART EXEC: SQLDS and AUTO.

When PROTOCOL=SQLDS is specified, the DB2 Server for VM application server
allows access from DB2 Server for VM application requesters only. These
application requesters and application server can be in either a local or remote
environment. This option is the default.

When PROTOCOL=AUTO is specified, the DB2 Server for VM application server
allows access from DB2 Server for VM and non-DB2 Server for VM application
requesters. This parameter can only be specified if the DRDA code has been
installed. It is used with the SYNCPNT parameter to control the DRDA
environment. For more information, see the description of the SYNCPNT
parameter and see [Chapter 15, “Using a DRDA Environment,” on page 393

On the application server, the PROTOCOL parameter is specified using the
SQLSTART EXEC. On the application requester, the SQLINIT EXEC also has a
PROTOCOL parameter. When a connection is made between the application
requester and the application server, the combination specified by these parameters
determines whether the DRDA protocol or the SQLDS protocol is to be used for
that connection.

You should be aware of the performance impacts of the chosen protocol. For a
detailed explanation on protocols, see the [DB2 Server for VSE & VM Performancd
[Tuning Handbookl

For a list of restrictions when using the DRDA protocol, see|[Appendix H, “DRDA|
Considerations,” on page 479 For information on the SQLINIT EXEC, see the |DB2|
Server for VSE & VM Database Administration| manual.

CHARNAME

This section discusses the following:

¢ Character set considerations at startup
* National language considerations at startup.

Character Set Considerations at Startup: Use the CHARNAME parameter to
specify the CCSIDs to be used as the application server defaults. The default
CCSIDs determine the character sets and code pages to be used to interpret
statements and return results.

The valid CHARNAME values you can specify are ENGLISH (CCSID=37),
INTERNATIONAL (CCSID=500), and all the values that are in the CHARNAME
column of the SYSTEM.SYSCCSIDS catalog table.

The database manager obtains the CCSIDs associated with the CHARNAME by
looking up the row of the SYSTEM.SYSCCSIDS catalog table where the
CHARNAME column matches the CHARNAME parameter. It also obtains the
classification and translation tables associated with the CHARNAME by looking
up the row of the SYSTEM.SYSCHARSETS catalog table where the NAME column
matches the CHARNAME parameter. The classification table is used to identify
valid characters in identifiers. The translation table is used to indicate how to fold
ordinary lowercase identifiers to uppercase.

Chapter 4. Planning for Operation of the Database Manager 57

58

For CHARNAMEs ENGLISH and INTERNATIONAL, their CCSID values, the
classification table and the translation table are stored internally. The rows in
SYSTEM.SYSCCSIDS and SYSTEM.SYSCHARSETS for these CHARNAME:S are for
reference purposes only and are not used by the database manager.

During startup, if you do not specify the CHARNAME parameter, the application
server uses the same CHARNAME that was used the last time it was started. The
values stored in the rows where SQLOPTION equals CHARNAME, CCSIDSBCS,
CCSIDMIXED, and CCSIDGRAPHIC are for reference purposes only. They reflect
the current values associated with the system. The only way to change the default
values is by starting the application server with a different CHARNAME
parameter. Any updates to the values in the SYSTEM.SYSOPTIONS table are
ignored during startup.

Note: The database manager determines the current default CHARNAME from the
CCSID attribute of the CNAME character column in the
SYSTEM.SYSCOLUMNS catalog table. If this value is null, then 37 is used (a
CCSID of 37 corresponds to a CHARNAME of ENGLISH). The database
manager uses the CCSID value to locate the corresponding row in the
ARISCCS MACRO file to obtain the associated CHARNAME. The value in
the CHARNAME column of this row is the current application server
default CHARNAME.

When you specify a value for the CHARNAME parameter that is different from
the current application server default CHARNAME, you are prompted to choose
whether or not you want to change the application server default CHARNAME. If
you specify YES and have supplied a valid CHARNAME value, the database
manager updates the application server default values for CHARNAME,
CCSIDSBCS, CCSIDMIXED, and CCSIDGRAPHIC. It also modifies the CCSID
attribute of all character columns that are part of the catalog tables to the
application server default CCSID. The CCSID attribute of character columns that
are not part of the catalog tables are not modified. If the value for CCSIDMIXED is
not zero, this value is used as the application server default CCSID. If the value for
CCSIDMIXED is zero, then the application server default CCSID is the value of
CCSIDSBCS.

Note that the tables which have their CCSID modified when the CHARNAME is
changed include:

* All tables created by SYSTEM

* The following tables created by SQLDBA:
- SQLDBA.ROUTINE
- SQLDBA.STORED QUERIES
- SQLDBA.SYSLANGUAGE
- SQLDBA.SYSTEXT2
- SQLDBA.SYSUSERLIST

When a CHARNAME is changed, the following should be considered:

1. The FIPS Flagger package must be reloaded by using the ARISDBMA EXEC.
Failure to do this can cause SQLCODE=-931 (SQLSTATE=58004). This will
render the agent reporting the SQLCODE error unable to preprocess packages
until the application server is started. Once the FIPS Flagger package is
reloaded or repreprocessed, this error will not occur.

2. All views which are dependent on the tables that had their CCSID modified
must be dropped and recreated.

The following query lists all such view packages:

System Administration

SELECT CREATOR, TNAME, PLABEL
FROM SYSTEM.SYSACCESS
WHERE TABTYPE = 'V'
AND VALID = 'N'
This query is useful in that owners of affected views can be notified to drop
and recreate their view before they try and use the view and get an error
(SQLCODE=-835, SQLSTATE=56049, with SQLERRD1 set to -833).

3. All packages which are dependent on the tables that had their CCSID modified
must be dropped and recreated.

The following query lists all such packages:

SELECT CREATOR, TNAME, PLABEL

FROM SYSTEM.SYSACCESS

WHERE TABTYPE = 'X'

AND VALID = 'N'
This query is useful in that owners of affected packages can be notified to
rebind the packages instead of having them dynamically repreprocessed at run
time. The DBS utility REBIND PACKAGE command can be used to rebind the
packages listed.

4. The ISQL package (SQLDBA.ARIISQL) and DBS utility package
(SQLDBA.ARIDSQL) can be reloaded and recreated using the ARISDBMA
EXEC. If this is not done, the first time these packages are used, they will be
dynamically repreprocessed.

To check if all the above activities have been done, run the following query:

SELECT CREATOR, TNAME, PLABEL
FROM SYSTEM.SYSACCESS
WHERE VALID = 'N'

If there are no rows found, all packages have been either recreated, reloaded,
rebound or dynamically repreprocessed and the VALID column value for the
package in SYSTEM.SYSACCESS has been changed to “Y”.

Note that CCSID conversion of the data in catalog tables does not occur: only the
CCSID attribute of the columns is modified. If you change the application server
default CHARNAME, system objects of the character data type (for example, table
names and column names) stored in the catalog may be displayed differently. The
reason for this is that a code point may represent different characters in different
code pages.

If you want to change the application server default CHARNAME, the default will
not be changed if:

* You specify an invalid value for the CHARNAME parameter

* An error occurs in the verification of the
— New CHARNAME CCSID values
— Classification table
— Translation table.

When the application server is started, it records the application server default
values for CHARNAME, CCSIDSBCS, CCSIDMIXED, and CCSIDGRAPHIC in the
SYSTEM.SYSOPTIONS catalog table. To obtain these values, you can query the
table. For example, to determine the name of the character set that is currently in
use, issue:

SELECT VALUE

FROM SYSTEM.SYSOPTIONS
WHERE SQLOPTION = 'CHARNAME'

Chapter 4. Planning for Operation of the Database Manager 59

60

For more information about character sets, see [Chapter 13, “Choosing a National|
[Language and Defining Character Sets,” on page 305 |

National Language Considerations at Startup: You can use the SET LANGUAGE
command from the operator console to choose a national language so that DB2
Server for VM messages can be received in the selected language. For more
information see [“National Language Support for Messages and HELP Text” on|

|Eage 332.|

ACCOUNT

This parameter enables the accounting facility. When ACCOUNT=D is specified,
accounting records are generated and directed to the VM system accounting file. If
the default value of ACCOUNT=N is specified, accounting information is not
generated.

For a complete description of the accounting facility, see [Chapter 11, “Using the]
[Accounting Facility,” on page 249

SYNCPNT

This parameter specifies whether or not a sync point manager (SPM) will be used
to coordinate DRDA2 DUOW two-phase commit and resynchronization activity. It
is only meaningful when PROTOCOL=AUTO.

If Y is specified, the server will use a sync point manager, if possible, to coordinate
two-phase commits and resynchronization activity. If N is specified, the server will
not use an SPM to perform two-phase commits. If N is specified, the database
manager is limited to multi-read, single-write distributed units of work and it can
be the single write site. If Y is specified, but the database manager finds that a
sync point manager is not available, then the server will operate as if N was
specified.

The default is SYNCPNT=Y, if PROTOCOL=AUTO.
DSPSTATS

This two digit parameter specifies what information is displayed and what level of
detail is displayed. If 0 is specified, nothing is displayed. If 1 is specified, the
minimum information is displayed. If 2 is specified, more detail is displayed. The
positional digits correspond to the following informational displays: the first is
checkpoint performance information and the second is counter information to be
displayed at system shutdown.

If the first option is 1, then format 1 of message ARI2052I is displayed every time a
checkpoint occurs. This is useful in determining how often checkpoints occur. If
the first option is 2, then format 2 of message ARI2052I is displayed every time a
checkpoint occurs. This is useful in determining if checkpoint processing is causing
a performance problem.

If the second option is 1, then the “COUNTER *” operator command is issued just
before the application server is shutdown. This is useful for performance tuning. If
the dataspaces feature is being used, “COUNTER POOL *” command is also
issued.

The SET command changes the value of this parameter without having to stop and
restart the application server. For more information on the SET operator command,
see the [DB2 Server for VSE & VM Operation| manual.

System Administration

SECALVER

This parameter determines if the application server will accept users that have
already been verified by another system. If SECALVER=Y, verified users will be
accepted. The requester only needs to send a user ID to be validated. If
SECALVER=N, verified users will not be accepted. The requester must send a user
ID and password to be verified.

Note: This parameter is only used when validating users are connecting via
TCP/IP or when users send the ACCSEC and SECCHK DRDA datastreams
in their connect request.

SECTYPE

This parameter determines if the application server will validate a user ID and
password for connect authority using an external security manager or by checking
the DB2 SYSUSERAUTH catalog table. If SECTYPE=ESM an external security
manager will be used to validate the user ID and password. The external security
manager must support the RACROUTE application programming interface. If
SECTYPE=DB?2, the user ID and password are validated by checking the
SYSUSERAUTH catalog table.

Note: This parameter is only used when validating users are connecting via
TCP/IP or when users send the ACCSEC and SECCHK DRDA datastreams
in their connect request.

TCPMAXRT

This parameter specifies the maximum number of times the application server will
attempt to re-enable TCP/IP support if it was disabled.

For a complete description of TCP/IP support, see [Chapter 16, “Using TCP/IP|
[with DB2 Server for VM,” on page 417

TCPPORT

This parameter specifies the TCP/IP port number that the application server will
use to listen for incoming TCP/IP connect requests.

If this parameter is not specified, TCP/IP support will be initialized and the ETC
SERVICES file on the TCP/IP client disk will be searched to determine the port
number that the application server will use.

If this parameter is specified with a non-zero value, TCP/IP support will be
initialized and the value specified will be used as the port number that the
application server will use.

If this parameter is specified with a value of 0, TCP/IP support will not be
initialized.

For a complete description of TCP/IP support, see [Chapter 16, “Using TCP/IP|
[with DB2 Server for VM,” on page 417

TCPRETRY

This parameter determines if the application server will automatically attempt to
re-enable TCP/IP support if it becomes disabled.

For a complete description of TCP/IP support, see [Chapter 16, “Using TCP/IP|
[with DB2 Server for VM,” on page 417

Chapter 4. Planning for Operation of the Database Manager 61

62

TCPCAN

Y or N. Y indicates that the Cancel TCP/IP Agent in VM support is enabled. N
indicates that the cancel support is disabled. There is some performance overhead
if cancel support is enabled. This overhead may be unacceptable for some users.

Performance Parameters
NCUSERS

This parameter defines the maximum number of real agents that the database
manager can actively handle at any one time, limiting the number of users that can
be supported by the database manager. The value of NCUSERS is usually less than
the number of connected users anticipated, because not all users will be accessing
data at the same time. This value directly affects the size of the virtual machine
required.

The number of NCUSERS is limited because some static agent storage for each real
agent is obtained below 16 megabytes. See [DB2 Server for VM Program Directory}

provides guidelines for setting the NCUSERS parameter. Because these are
only guidelines, you should modify them to concur with the activity on your
system. For additional information, see the [DB2 Server for VSE & VM Performanced
[Tuning Handbookl

NCUSERS= 1 for each 1-2 users of ISQL (or other query products)
+ 1 for each 1-25 non-ISQL users
(variable on transaction workload)
+ 1 for each 2-5 application program developers

Figure 9. Guidelines for the NCUSERS Parameter

If you have application programs that maintain multiple logical units of work in
separate CMS work units, each additional work unit used by an application at one
time must be counted as an additional user.

Each ISQL user can generate a high level of system activity. If you set NCUSERS
so that all ISQL users can be active at the same time (NCUSERS=number of ISQL
users), you minimize the time that any one user must wait for services. However,
if this number is large, it may cause the database manager to be overloaded. To
prevent this, you should also set the MAXCONN parameter of the VM OPTION
directory control statement, which limits the number of users and the number of
DASD:s that a given virtual machine can access. For information on this parameter,
see [“Inter-Machine Communications” on page 94

Application developers typically do a considerable amount of other activity (such
as CMS file editing or output scanning). These users require less service from the
database manager, so NCUSERS can be lowered accordingly.

If you are using VSE guest sharing, the NCUSERS of the VM database machine
should be increased by the number required for the VSE guest. The demand for
services from CICS transaction processing can vary widely, depending on the
nature of the transactions.

The demand for services from batch application programs can also vary
considerably. If you have online or interactive activity on the database manager,
consider limiting the amount of concurrent SQL batch processing.

System Administration

Note: When the application server is started, there may be one or more in-doubt
logical units of work (LUWSs). The value of NCUSERS must be large enough
to handle these. When they have been resolved, the DB2 Server for VM
agent structures are used to handle new users. The creation and use of agent
structures for resolving in-doubt LUWs takes precedence over all new user
logical units of work. For more information about in-doubt LUWS, see
[“Resolving In-Doubt Transactions” on page 114

NPACKAGE

This parameter defines the maximum number of packages in an LUW, and
together with the value specified for NCUSERS, determines the size of the package
cache. The size of the package cache limits the number of packages that can be
present in storage simultaneously. (Package cache size =

NPACKAGE x NCUSERS.) The default value of NPACKAGE is 10, and that for
NCUSERS is 5, giving a default package cache of 50, allowing 50 packages to be
present in storage simultaneously.

In general, increasing the size of the package cache improves performance of the
database manager. However, do not increase it to the point where system paging
becomes too great. For more information, see the |[DB2 Server for VSE & VM|

[Performance Tuning Handbookl

NPACKPCT

This parameter defines the percentage of the package cache that is used in the
calculation of the package cache threshold. The size of the threshold determines the
number of loaded packages that are kept in storage at the end of an LUW.
(Threshold = NPACKPCT percent of package cache.) If the threshold is exceeded,
the loaded packages are freed and returned to the package cache.

The default values for NPACKPCT and the package cache are 30 and 50
respectively, giving a threshold of 15. In general, increasing the size of the
threshold improves performance. For more information, see the [DB2 Server for VSE|
(& VM Performance Tuning Handbookl

NPAGBUF

This parameter specifies the number of 4096-byte data pages kept in storage
buffers at one time. The number of data buffers you want depends on the number
of active users and the nature of their request. The default for NPAGBUF assumes
an average of four buffer pages for each potentially active user (NCUSERS x 4),
plus ten buffer pages for the buffering of catalog and log information.

In general, increasing NPAGBUF improves the performance of the database
manager. However, increasing it also requires an increase in the size of the
database machine. Also -- and more importantly -- it can cause an increase in the
paging rate of the system. It is more efficient to let the database manager do more
I/0 operations than it is to let the system do more paging; database 1/O
operations are overlapped whereas system paging operations are not. Therefore do
not increase NPAGBUF to the point where system paging becomes too great.

For more information about NPAGBUF, see the [DB2 Server for VSE & VM Diagnosis|
(Guide and Referencel manual.

Chapter 4. Planning for Operation of the Database Manager 63

64

NDIRBUF

This parameter determines the number of 512-byte directory pages to be kept in
storage. Increasing it reduces the number of I/O operations. Again, bigger is better,
until you either run out of virtual storage or cause too much system paging. Each
directory page addresses 128 data pages.

When you set NPAGBUF and NDIRBUF, you have to choose how to split buffer
space between data pages and directory pages. At least initially, you should set
them to the same value. Issue the COUNTER commands to see the actual I/O
activity; then adjust NPAGBUF and NDIRBUF.

For more information about NDIRBUF, see the |DB2 Server for VSE & VM Diagnosis|
(Guide and Reference manual.

NLRBU and NLRBS

NLRBU specifies the maximum number of lock request blocks allowed for one
active user, while NLRBS specifies the number allowed for all active users.
(Usually, two lock request blocks are used for every lock that a user holds.)

The database manager can perform lock escalations, increasing the granularity of
data being locked from either row or page level to dbspace level. In general, you
only need to change the default values of NLRBU and NLRBS if contention
problems occur. Increasing them reduces the number of lock escalations performed
by the database manager.

When either the NLRBU limit for a user is reached or the NLRBS limit is
approached, lock escalation occurs. This results in fewer locks being required, and
lock request blocks being freed. This in turn reduces the opportunities to share
data. For example, when locking is done at a row level, many users may be
updating the same dbspace at the same time. When it is escalated to the dbspace
level, only one user can update rows in that dbspace. Everyone else must wait
until that person’s update is committed or rolled back.

Escalation can also cause deadlocks. A deadlock occurs when two or more LUWs
are in wait states and dependent on the completion of LUWs that are also in wait
states. For example, suppose two users are updating tables in a dbspace. When the
lock size is escalated to a dbspace level, both users can be locked out, with each
waiting for the other to complete an LUW. The database manager resolves
situations like these by rolling back the newest LUW. For more about locking, see
the |DB2 Server for VSE & VM Application Programming] manual.

If the default values for NCUSERS (5) and NLRBU (1000) are used, the database
manager defines 2520 lock request blocks, each of which requires 24 bytes; 60480
bytes of virtual storage are required for lock request blocks. With these defaults,
one application could use 1000 lock request blocks and four other applications
could simultaneously use an average of 370 lock request blocks each, before
causing an escalation.

Even though two lock request blocks are needed for each lock, the default values
allow a large number of locks for each application. With the defaults, one
application could use 500 locks while four other applications use an average of 185
locks each.

You should use the NLRBU and NLRBS default values at first, and increase them if
users either are experiencing delays when they access the database manager, or if
they are receiving SQLCODEs of -911, -912, or -915 (rollbacks that occur because of

System Administration

deadlock, insufficient lock request blocks for the database manager, or insufficient
lock request blocks for a user application, respectively).

Note: These SQLCODEs may also be received during preprocessing, as the locks
are required then as well.

To test the frequency of lock escalations and of deadlocks, use the COUNTER
operator command. Specify both the ESCALATE and the LOCKLMT counters to
get the number of successful escalations and the number of unsuccessful escalation
attempts respectively. (An escalation can fail if the LUW that reached the lock limit
is rolled back because of a deadlock, or if a sufficient number of lock request
blocks cannot be freed.) For example, suppose the operator issues the command
COUNTER ESCALATE LOCKLMT a few times a day and normally receives results in the
range of 10 to 150 for ESCALATE, and 0 to 5 for LOCKLMT. If, one day, the results
are 428 for ESCALATE and 23 for LOCKLMT, a locking problem would be
indicated.

In addition, the SHOW LOCK MATRIX command can be used to display information
about lock request block usage to determine whether unexpected delays are caused
by locking; to monitor how the database manager is using lock request blocks; and
to determine the lock request blocks required for a single application or for a run
of a preprocessor.

One of the values displayed is called MAX USED BY LUW: the maximum number
of lock request blocks used by any one application during an LUW. (When any
LUW starts to exceed NLRBU and the escalation process occurs, MAX USED BY
LUW is set to zero.) All this information can help you determine the required
values for NLRBU and NLRBS.

To establish the lock request block requirements for running a preprocessor, or for
an application that is causing contention problems:

1. Start the application server in multiple user mode with NCUSERS=1, NLRBU
about five times its current setting, and NLRBS set to the same value as
NLRBU.

2. Start the application and allow it to complete processing.

3. Verify that no escalation occurred by displaying the ESCALATE and LOCKLMT
counters. If no escalation occurred, MAX USED BY LUW will show the number
of lock request blocks required.

4. If an escalation did occur, set NLRBU to a value greater than or equal to MAX
USED BY LUW, then start the application server again, and rerun the
application.

If necessary, reset NLRBS. For example, suppose NLRBU is set to 1100, and two
users will run their applications -- each requiring 1100 lock request blocks -- at the
same time. Also assume that any other application requires about 500 lock request
blocks. If NCUSERS is 5, then set NLRBS to at least 3700 (1100 for each of two
applications and 500 for each of three additional applications).

If an application requires more lock request blocks than you have virtual storage
for, you should consider the following alternatives:

¢ Use either the SQL ALTER DBSPACE or the SQL LOCK statement to change the
locking level of the dbspace used by the application. The ALTER statement
permanently changes the locking level for all applications, while the LOCK
statement can be inserted into an application, and used to change the locking

Chapter 4. Planning for Operation of the Database Manager 65

66

level only when that application runs. The LOCK statement is the preferred way
to temporarily modify the locking level, because it involves no update to the
catalog tables.

* Consider changing the application: perhaps it is holding locks longer than
necessary. Additional SQL COMMIT WORK statements in the application may
necessitate fewer locks.

* Consider running the application by itself: either in single user mode, where no
locking is required, or in multiple user mode with a reduced NCUSERS and
with NLRBU and NLRBS set as required.

For more information about locking problems and how to solve them, see the
[Server for VSE & VM Diagnosis Guide and Referencd manual.

DISPBIAS

This parameter determines how the dispatcher selects the order in which agents
get serviced by the database manager. To set it, you need to understand how the
dispatcher works. Only one agent at a time can be serviced; the other agents wait
in a queue. Within this queue, agents are prioritized according to their estimated
resource consumption: those estimated to consume the least are placed at the top,
while those estimated to consume the most are placed at the bottom.

When the active agent returns to the dispatcher, the next agent at the top of the
queue is dispatched. Every time an agent is dispatched, the database manager
reevaluates the priority of the remaining agents, and requeues them according to
their new priorities.

A pure priority dispatcher can present some problems, however. If many
short-running LUWs are present, the longer-running ones may never get serviced:
they are always at the bottom of the queue. To avoid this problem, fair-share
auditing is used, whereby all the agents in the queue are checked periodically to
see if they are receiving adequate service. When one is found that is not, its
priority is changed and it is moved to the top of the queue.

If fair-share auditing is done frequently, the dispatcher tends to operate more like a
round-robin dispatcher: agents get equal service because those at the bottom of the
queue get bumped to the top more frequently. If it is done infrequently, the
dispatcher tends to operate more like a priority dispatcher: agents get prioritized
service because long-running agents are forced to wait at the bottom of the queue
longer. (Eventually, fair-share auditing causes these agents to get service.)

The DISPBIAS parameter determines how often fair-share auditing is done. When
it is set low (near 1), fair-share auditing is done frequently, and the dispatcher
operates more in round-robin mode. When it is set high (near 10), fair-share
auditing is done infrequently, and the dispatcher operates more in priority mode.

Initially, you should use the DISPBIAS default of 7. If your long-running LUWs are
getting poor service, you may want to use a lower value; if your ISQL users are
often waiting for long-running applications to complete, you may want to use a
higher value. You can use the SET operator command to change the value of
DISPBIAS without having to stop and restart the application server. See the
[Server for VSE & VM Operation| manual for more information on the SET operator
command.

Note: Any changes you make using the SET command are only in effect while the
application server is running. If you stop and restart the application server,
it will use the settings you specified in the startup procedure.

System Administration

You may be tempted to set DISPBIAS to 10 to get good response time for ISQL
users. Keep in mind, however, that a long-running LUW can hold a large number
of locks. If other users are waiting for those locks, they must wait until the
application frees them. If the application is waiting at the bottom of the queue,
everyone is waiting. In this situation, you would want to have fair-share auditing
occur more frequently, so the long-running unit can free the resources it has
locked. The default of seven represents a balance between the interests of
long-running and short-running LUWs.

NCSCANS

This parameter determines the number of internal control scan blocks kept for
accessing tables and indexes. These blocks can vary in size and number depending
on the type of query being performed. This discussion is concerned with
long-running requests that might be queries or database change operations.

Scan control blocks contain positioning information related to a query. The
positioning information can result from a user-defined cursor or by an internal
cursor created by RDS. If an index is involved in the query, the size of the scan
control block depends on the key size for that index. An average scan control block
is assumed to be 50 bytes (32 bytes for control information, and an average key
length of 18 bytes).

The maximum table size to hold the scan control block entries for each agent is 32
kilobytes (32768 bytes). This can contain 655 entries of 50-byte scan control blocks,
which in general, is enough to support 255 user-declared cursors. If, however, the
key lengths for indexes are long, the scan table supports fewer user cursors. For
example, if the key length for a given index associated with a cursor is 255 bytes,
an entry would require 287 (255 + 32) bytes, and the maximum number of cursors
possible using that index would be 114 (32 kilobytes divided by 287). That number
would be reduced if the DB2 Server for VM requests caused internal cursors to be
created. Internal cursors are always smaller than 50 bytes, and cannot use index
keys.

If you have many complex requests, you may have to increase NCSCANS. If it is
not set to a high enough value, users will get SQLCODE -522. For information on
the virtual storage used by NCSCANS, see the [DB2 Server for VSE Program|

LTIMEOUT

This parameter specifies a general lock wait timeout period for any SQL
application, and especially as the way to avoid global deadlocks for DUOW
applications.

The range of the LTIMEOUT value is 0 to 99999 seconds. The value of zero
indicates that no lock timeout should be enforced for agents connected to this
database. This is the default value for a database.

A nonzero lock timeout value will cause any agents waiting for a lock to have their
current transaction rolled back when the lock timeout period has expired. The
agent will notify the application that a lock timeout has occurred with SQLCODE
-911 (SQLSTATE 40001). A reason code will be returned to indicate whether it is a
deadlock or lock timeout situation (reason code 2 for a deadlock situation and
reason code 68 for a lock timeout situation). The lock timeout period begins at the
moment an agent requests a lock on any database resource. The full lock timeout
period is allowed for each lock request.

Chapter 4. Planning for Operation of the Database Manager 67

68

The lock timeout control parameter should be adjusted in those environments
where lock contention between applications has started to affect the desired
performance and concurrency levels.

If a lock timeout is required for your environment, it is recommended that your
starting value be equivalent to the maximum period of time that you want an
application to wait for a lock.

Note: The LTIMEOUT parameter is changed through the SET operator command.
The timeout value will affect any users currently in LOCK WAIT. If a user
has been in a LOCK WAIT for 100 seconds and the value of LTIMEOUT is
set to a value less than 100, that user will receive a timeout. For more
information on the SET operator command, see the [DB2 Server for VSE &

VM Operation| manual.

If lock timeout control is activated, you should ensure that all applications
recognize and can handle the -911 SQLCODE that may be received as the result of
a lock timeout initiated rollback.

Note: New units of work that are waiting to begin because a log archive
checkpoint is running or is scheduled to run are in a lock wait. The SHOW
LOCK WANTLOCK operator command shows these units of work waiting
to acquire an IX lock on the database. Because log archive checkpoints can
potentially take a significant amount of time to complete, units of work in
this particular type of lock wait are ignored by the lock timeout function.

PROCMXAB

This parameter specifies the number of times a stored procedure is allowed to
terminate abnormally, after which a STOP PROC ACTION REJECT is performed
against the procedure and all subsequent SQL CALL statements for that procedure
are rejected. Note that a timeout that occurs while waiting for a stored procedure
server to be assigned for an SQL CALL statement is not included in this count.

PROCMXAB must be an integer between 0 and 255. The default, 0, means that the
first abend of a stored procedure causes SQL CALLs to that procedure to be
rejected. For production systems, you should accept the default.

PTIMEOUT

This parameter specifies:

e The number of seconds before DB2 Server for VSE & VM ceases to wait for an
SQL CALL to be assigned to a stored procedure server. If the PTIMEOUT
interval expires, the SQL CALL statement fails.

* The number of seconds before DB2 Server for VSE & VM ceases to wait for the
START PSERVER command to complete. If the PTIMEOUT interval expires, a
message is displayed and the START PSERVER command terminates.

The default for PTIMEOUT is 180.

Recovery Parameters
LOGMODE

This parameter determines whether archives will be taken for the database and the
log. Specify LOGMODE=A to maintain an archive of the database, LOGMODE=L
to maintain an archive of the log, and LOGMODE=Y if you want logging but do
not want the log archived.

System Administration

LOGMODE-=A allows you to restore the database and apply the current log.
LOGMODE=L allows you to maintain a database archive as well as log archives.
The database archive followed by the log archives are applied during restore, then
the current log is applied.

Use LOGMODE=A or L if it is important to protect the database against media
(DASD) failures; otherwise use LOGMODE=Y.

Note: Each sequence of log archives must be preceded by a database archive, so if
you use LOGMODE=L, you must occasionally take a database archive. You
do not need to switch to LOGMODE=A to do so.

For more information on LOGMODE, see [“Choosing a Log Mode” on page 198
CHKINTVL

This parameter determines how often a checkpoint is taken. A checkpoint is an
internal operation in which data and status information is written to permanent
(DASD) storage, and a summary status record is written to the log. A checkpoint
causes two important events:

 Storage pool space is freed.

As updates to data occur, duplicate copies of changed data pages are
maintained. These copies (called shadow pages) are kept in the storage pools of
the pages that were changed. A checkpoint frees the shadow pages, and thereby
frees the storage pool space where they are kept.

* Log space may be freed.

If LOGMODE=Y, a checkpoint typically frees log space by moving the logical
beginning of the log forward to the beginning of the oldest LUW still active at
the time of the checkpoint. If LOGMODE=A or L, log space is only freed when
an archive is taken; not on every checkpoint.

Checkpoints are taken periodically: however, by the time one is taken, there may
be a large amount of data to be committed. If a failure should occur before it is
committed, much processing may need to be redone after the database is restored.

The CHKINTVL parameter lets you take checkpoints at predetermined intervals.
Its value is specified in terms of the number of log pages written between
checkpoints. You can use the SET operator command to change the value of
CHKINTVL without having to stop and restart the application server. See the
[Server for VSE & VM Operation| manual for more information on the SET operator
command.

Note: Any changes you make using the SET command are only in effect while the
application server is running. If you stop and restart the application server,
it will use the settings you specified in the startup procedure.

By setting it low, you minimize the risk of filling the log or storage pools.
However, because checkpoints are time-consuming operations that suspend SQL
processing until they are completed, they should be taken infrequently. For more
information on setting CHKINTVL, see the [DB2 Server for VSE & VM Performance|
[Tuning Handbookl

Chapter 4. Planning for Operation of the Database Manager 69

70

SLOGCUSH

This parameter defines the point at which the log cushion is entered and log-full
processing begins. Its value is expressed in terms of the percentage of the log size.
The default of 90 means that when the log is 90% full, log-full processing will be
initiated.

In log-full processing, the oldest active LUWSs are rolled back until enough log
space is freed to bring the percentage of the log in use below the SLOGCUSH
level. Ideally, checkpoints and archiving would continually free log space so that
the log would never reach the SLOGCUSH level.

If the log should become 100% full, the database manager would end abnormally,
so you should set SLOGCUSH to a value that allows log-full processing to take
effect (free some log space) before this happens. If the database manager is ending
with log-full conditions, you may want to lower the SLOGCUSH value or increase
the size of your log minidisks.

ARCHPCT

This parameter can be used to define a point at which an archive is automatically
initiated or when an attempt to switch to the inactive log is automatically initiated.
It is used only when LOGMODE=A or L is specified. Like SLOGCUSH, its value is
expressed in terms of a percentage of the log.

Archives free up log space; however, they take some time to complete. If the
SLOGCUSH value is reached during an online archive operation, all SQL
processing is suspended until the archive is done. For this reason, it is best to
ensure that archives are initiated in time to finish before the log fills to the
SLOGCUSH percentage. This is done by setting the value of ARCHPCT lower than
the value of SLOGCUSH.

When the log becomes full to the ARCHPCT value and alternate logging is not
enabled, a message is issued to the database machine operator to mount an archive
tape and identify the virtual address (cuu) of the tape drive. The database manager
then takes a database or log archive depending on whether you have LOGMODE
set to A (database) or L (log).

If LOGMODE-=L, the operator can also direct the log archive to disk. For more
information, see [“Log Archiving to Disk” on page 209

If alternate logging is enabled, an attempt is made to switch to the inactive log. If
the switch cannot be made because the inactive log has not been archived, the
archive of both the inactive log and the active log will be initiated.

Normally, the operator explicitly archives the database or the log before the
ARCHPCT value is reached, by issuing one of the archive commands. If the
ARCHPCT is reached, meaning that the log is almost full, the action that the
database manager takes depends on the LOGMODE that is in effect. See for
a summary of these actions.

Table 5. Summary of Activity When ARCHPCT Level Is Reached

LOGMODE

Parameter Activity When ARCHPCT is Reached

A An operator message is issued that requests a database archive.
L and An operator message is issued that requests a log archive.
ALTLOG=N

System Administration

Table 5. Summary of Activity When ARCHPCT Level Is Reached (continued)

LOGMODE

Parameter Activity When ARCHPCT is Reached

L and An attempt is made to switch to the inactive log.

ALTLOG=Y

Y Because the log cannot be archived, the value for ARCHPCT is ignored.
When the log is full it wraps. If an LUW spans the entire log, a
ROLLBACK WORK is forced for that LUW.

Note: To see how full the log is, you can issue the SHOW LOG command. For a
description of this command, see the [DB2 Server for VSE & VM Operation|
manual.

TAPEMGR

This parameter indicates whether there is a tape manager available to handle tape
assigns during database and log archives. Y indicates there is a tape manager; N
indicates there is no tape manager.

If TAPEMGR=N, the operator is prompted to enter the virtual device address for
the database archive (with message ARI0299A) and has the option to change the
log archive output medium (with message ARI0246D).

If TAPEMGR=Y, the tape assign is handled by the tape manager and the operator
is not prompted to enter the virtual device number (cuu) of the database archive
output. Log archives are automatically directed to tape and the operator is not
prompted to change the medium of the log archive output. If the operator would
like to direct the log archive to disk, then either the database server must be
started with TAPEMGR= N or the SET TAPEMGR N operator command must be
issued before performing the log archive.

SOSLEVEL

This parameter defines the storage cushion for storage pools. Its value is expressed
as a percentage of space remaining in a storage pool. In multiple user mode
processing (and single user mode processing where LOGMODE is not N), if any
storage pool gets full to the point where only the SOSLEVEL percentage of storage
pool pages is still free, a checkpoint is taken to free any shadow pages in use.

If, following this, only enough pages are freed to bring the number of free pages
just above the SOSLEVEL, frequent checkpointing could occur. For more
information, see the [DB2 Server for VSE & VM Diagnosis Guide and Reference]
manual. If, however, the number of free storage pool pages is still at or below
SOSLEVEL, message ARI0202I is issued once to inform the user that the number of
free pages left in the storage pool is fewer than the SOSLEVEL. This message is
also issued once in single user mode with LOGMODE=N, but no checkpoint is
taken.

Attention: If message ARI0202I is received, it indicates some action may be
needed to prevent imminent filling of the storage pool.

One possible action is to stop the application server and extend that storage pool
with the SQLADBEX EXEC. However, you can remedy the situation without
stopping the application server if you have set SOSLEVEL high enough to give
you adequate warning. When the message is received, proceed to remove
unneeded data from the storage pool, either by dropping dbspaces or tables, or by

Chapter 4. Planning for Operation of the Database Manager 71

72

reorganizing the data with a smaller percentage of free space for each page. In
order to do this, you must have adequate warning to schedule the necessary
processing.

Service Parameters
DUMPTYPE

This parameter defines whether or not dumps are to be taken, and the amount of
information to be dumped if they are.

DUMPTYPE=N indicates that a dump is not taken.

DUMPTYPE=F gives you a full dump of the virtual machine, as well as any saved
segments it uses. This occurs on some error conditions and trace points.

DUMPTYPE=P gives you a partial dump of the database machine on certain error
conditions. A dump is not taken when a limit error (message ARIO039E) or
hardware error (message ARI0O041E) occurs, or when a user specification error is
detected. (If you specify the DUMP keyword in the TRACE ON command,
DUMPTYPE=P also generates partial dump output to the trace file for a specified
trace point in the database manager.) The partial dump provides a dump of control
blocks and other dynamically obtained virtual storage in the database machine.

You can use the SET operator command to change the value of DUMPTYPE
without having to stop and restart the application server. See the [DB2 Server fo

[VSE & VM Operation| manual for more information on the SET operator command.

Note: Any changes you make using the SET command are only in effect while the
application server is running. If you stop and restart the application server,
it will use the settings you specified in the startup procedure.

For more information on dumps, see the [DB2 Server for VSE & VM Diagnosis Guide|

foud Reerencd manual.
EXTEND

This parameter specifies whether or not special recovery commands are processed
at startup. Only set it to Y when you have a DBSS processing error or a severe user
error. For more information on this parameter, see the discussion on starting the
application server to recover from DBSS errors in the [DB2 Server for VSE & VM|
[Diagnosis Guide and Reference manual.

TRACDBSS, TRACRDS, TRACWUM, TRACDRRM, TRACDSC,
TRACCONYV, and TRACSTG

These parameters call the trace facilities during startup (as opposed to the TRACE
operator command). Except for TRACWUM and TRACDRRM (which are not
supported in single user mode), they are used primarily for tracing in single user
mode, but can be set in multiple user mode if you want to start tracing as soon as

possible. For information about tracing, refer to the [DB2 Server for VSE & VM|

peration| manual.

TRACEBUF

This parameter specifies the amount of memory (in kilobytes) to allocate to the
trace buffer. Specifying a nonzero value causes trace output to be stored in a fixed
size buffer in memory. Trace records are stored in wrap-around mode in this buffer,
and when tracing is turned off, the contents of the buffer are written to disk or to
tape (as specified by the ARITRAC FILEDEEF statement). The trace buffer is only
created if you specify TRACEBUF with at least one of the startup initialization

System Administration

parameters TRACRDS, TRACDBSS, TRACDSC, TRACCONYV, TRACDRRM,
TRACWUM, or TRACSTG,; it is not created if the TRACEBUF default (n=0) is

specified. A suggested size for the trace buffer is 100 kilobytes or more. If you do

not specify TRACEBUF and tracing is requested, trace records are written directly
to disk or tape as the trace points are processed.

Single User Mode Initialization Parameters

identifies the initialization parameters that apply when the database
manager is operating in single user mode.

Table 6. Single User Mode Initialization Parameters

Parameter Default Minimum Maximum
DBNAME(name) None — —
DCSSID() SQLDBA — —
AMODE() 31 — —
SYSMODE=S — — —
STARTUP=W IR W — —
PARMID=name None — —
CHARNAME=name INTERNATIONAL — —
ACCOUNT=DIN N — —
PROGNAME=name None — —
DSPSTATS=nn 00 00 21

Performance Parameters
NPACKAGE=n 10 1 32766
NPACKPCT=n 30 0 100
NPAGBUF=n 14 10 40000
NDIRBUF=n NPAGBUF 10 40000
NCSCANS=n 30 1 655
Recovery Parameters
LOGMODE=Y|AIL Y — —
CHKINTVL=n 10 1 99999999
SLOGCUSH=n 90 11 90
ARCHPCT=n 80 10 99
TAPEMGR=N 1Y N — —
SOSLEVEL=n 10 1 100
Service Parameters
DUMPTYPE=PI|FIN F — —
EXTEND=Y IN N — —
TRACDBSS=nnn... 000... 000... 222...
TRACRDS=nnnnnnn 0000000 0000000 2222222
TRACWUM=n 0 0 2
TRACDRRM=nnnn 0000 0000 2222
TRACDSC=nn 00 00 22
TRACCONV=n 0 0 2

Chapter 4. Planning for Operation of the Database Manager

73

Table 6. Single User Mode Initialization Parameters (continued)
TRACSTG=n 0 0 1
TRACEBUF=n 0 0 99999

Most of the considerations for setting these parameters are the same as those
described under [“Multiple User Mode Initialization Parameters” on page 54| with
the following exceptions:

¢ The value of SYSMODE is S, which specifies that the database manager is
dedicated to a single application.

* The database manager does not generate accounting records when
STARTUP=CIEILISITIMIP, which are special situations. For more information,
see the [DB2 Server for VSE & VM Operation| manual.

* The DBMODE parameter does not apply.
* The PROTOCOL parameter does not apply.
¢ The SYNCPNT parameter does not apply.

¢ The PROGNAME parameter is required (except when
STARTUP=C |EILISITIMIP, which are special cases), to identify the application
program to be run.

* The NCUSERS parameter is not used; it defaults to 1.
e The DISPBIAS parameter does not apply.

* The NLRBS and NLRBU parameters are omitted (there is no locking in single
user mode).

* The LOGMODE parameter can take the value N, which specifies that changes
made by the application program are not to be logged.

If LOGMODE-=N, database changes are only committed when a checkpoint is
explicitly taken (with COMMIT WORK statements).

The ARCHPCT parameter cannot be specified if LOGMODE=N.
* The TRACDRRM and TRACWUM parameters do not apply.

Tape Support

The database manager can use tape files for recording archive and trace
information. You can also use tape files with the DATALOAD/DATAUNLOAD
and RELOAD/UNLOAD facilities of the DBS utility. (It is also possible to use tape
files for the DB2 Server for VM preprocessors, but this is unusual.)

For the archive and trace tape files, the IBM-supplied EXECs that starts these
facilities provide default CMS FILEDEF commands for the needed tapes. These
default FILEDEFs are shown under the descriptions of the EXECs that call them.

You can also take log archives to disk. For more information, see [“Log Archiving to|
[Disk” on page 209 |

For the DBS utility tape files, you must supply your own CMS FILEDEF
commands. You can also specify LABELDEF commands. You should use the
LABELDEF command for multivolume standard label tapes.

To specify your own FILEDEF and LABELDEF commands, issue them before
invoking the EXEC that calls the facility. When an IBM-supplied EXEC issues a
CMS FILEDEF command for tape files, it uses the NOCHANGE parameter. This
means that any FILEDEF (or LABELDEF) that you supply before running the
EXEC overrides the default.

74 System Administration

The database manager uses the CMS simulation of OS QSAM for its tape support.
The database manager also provides additional support, as follows:

* Unlabeled tapes and IBM (EBCDIC) standard labels

* Multivolume tape files (with standard labels only)

* Spanned records for both input and output

The following sections discuss considerations for using tape support.

Unlabeled Tapes

When using unlabeled tape output files, you should be aware of the following;:

* The mounted tape must not contain a volume label (VOL1). If it does, tape
OPEN processing fails.

* For output files, if end-of-volume is reached before the tape is closed, CMS ends
abnormally.

* A database or log archive cannot span multiple tapes if they are unlabeled tapes.
Standard labeled tapes must be used for multiple volume tape archives.

Labeled Tapes

When using standard label tapes, you should ensure that the mounted tape
volume (or volumes) contain volume labels (VOL1) and file labels (HDR1). These
labels must be recorded in the same tape density as specified (or allowed to take
the default) when creating the new file. If you do not ensure that the labels are
recorded in the same density as specified when creating the new file, tape OPEN
processing fails.

You can use the CMS TAPE command to check whether a volume contains a
volume label (and display the label’s contents) with the DVOL1 keyword. (You
must supply the TAPn parameter as appropriate.)

You can also use the CMS TAPE command to create a volume label (VOL1) and
dummy HDRI1 label with the WVOL1 keyword. (Once again, you must supply the
TAPn and DEN parameters as appropriate.) The tape volume label must be
recorded in the same density as the file to be created. (The density of the volume
label must match the CMS FILEDEF command DEN parameter value.)

You should specify LABELDEF commands for your tape files so that processes that
use tapes (such as RESTORE) can verify that the correct tape is mounted. This is
particularly advisable when working with multivolume tape files.

Note: If you are processing multivolume tape files, you should use a different
VOLID for each tape volume so that the system can verify that the correct
tape is mounted. To do this, enter VOLID ? with the LABELDEF command.
CMS prompts you for the individual VOLIDs. For more information on the
LABELDEF command, see the VM/ESA: CMS Command Reference manual for
your VM system.

Single-Volume Tape Files
For single-volume tape files, you can use the following CMS FILEDEF command
tape label options:

¢ SL if the tape has standard labels
* NL if the tape is unlabeled

e BLP if the tape has standard labels, standard user labels, or nonstandard labels
with a tape mark at the end of the labels

* LABOFF if the tape is unlabeled (and has no leading tape mark).

Chapter 4. Planning for Operation of the Database Manager 75

76

The database manager does not support nonstandard labels or standard user labels
(except with the FILEDEF BLP parameter as described in the preceding list).
Therefore, you must not specify tape label options SUL or NSL in the CMS
FILEDEF command.

Multiple Volume Tape Files

In addition to the FILEDEF command, you should specify a LABELDEF command
for multivolume standard label tapes. This enables CMS to verify that the correct
tape is mounted when a multivolume tape file is being processed.

If you have two tape drives available, you can specify an alternate tape drive in
the FILEDEF command (this is only supported with labeled tapes). This causes
tape drives to be switched automatically when end-of-tape is reached. If you are
using a single tape drive you must mount a new tape when end-of-tape is reached.

The following is an example of FILEDEF and LABELDEF commands for a
database archive:

TAPE WVOL1 ARCD1 (TAP1

TAPE WVOL2 ARCD2 (TAP2

LABELDEF ARIARCH VOLID ?
DMSLBD441R Enter VOLID information:
ARCD1

DMSLBD441R Enter VOLID information:
ARCD2

DMSLBD441R Enter VOLID information:

FILEDEF ARIARCH TAP1 SL 1 (ALT TAP2

This LABELDEF statement assumes that the archive requires two tape drives. If it
requires more, you are prompted to enter more VOLIDs during the archive
procedure.

Tape Manager Support

The initialization parameter TAPEMGR indicates whether or not a tape manager is
being used. During a database or log archive, if a tape manager exists and
TAPEMGR =Y, the tape manager handles the tape assign. Otherwise, the operator
is prompted to enter the virtual device address of the archive output

Spanned Records
For spanned-record files, omit the LRECL value from the CMS FILEDEF command.
If specified, it is ignored.

There are no other special considerations for spanned-record input files.

For spanned-record output files:

» If RECFM=VBS is specified and the maximum logical record size is less than the
block size minus 4, the database manager changes the RECFM value to VB (in
the CMS file system).

Note: Files written in RECFM=VB format can be read with the RECFM
specification of either VBS or VB.

* If RECFM is not VBS, the database manager uses (in the CMS file system)
RECFM U and simulates RECFEM=VS. (The file is written in RECFM=VS format.)

System Administration

Note: Files written in RECFM=VS format can be read with the RECFM
specification of either VS or VBS.

Blocking for Archives to Tape and Disk
The block size for database archive file output and log archive file output is always
28 kilobytes.

General File Support

Many of the database manager facilities use SYSIN, SYSPRINT, and SYSPUNCH
files. The IBM-supplied EXECs that call these facilities often contain parameters
that allow you to assign these files to various devices. These EXEC parameters
generate CMS FILEDEF commands for the files internally.

In many instances, however, the EXECs provide for only the most common files. If
you want something that is not an option in an EXEC parameter, you can issue a
FILEDEF command before running the EXEC. For example, to assign SYSIN to
tape for the DBS utility, you must issue a CMS FILEDEF command before running
the DBS utility EXEC (SQLDBSU).

Many of the usual VM assignments for SYSIN, SYSPRINT, and SYSPUNCH are
valid for DB2 Server for VM use. The following list summarizes the valid
assignments:

SYSIN
The SYSIN files can be CMS files, virtual reader files, the virtual machine
terminal, or tape and DASD SAM files supported by CMS OS QSAM. The
files must contain fixed-length 80-byte logical records. Except for the
virtual reader files and for terminal input, the files can be fixed block. A
CMS FILEDEF command for SYSIN can specify RECEM FB and BLKSIZE
nnnn. The nnnn must be some multiple of 80.

SYSPRINT
The SYSPRINT files can be CMS files, virtual printer files, the virtual
machine terminal, or tape SAM files supported by CMS OS QSAM. All
SYSPRINT records are fixed-length, 121-byte logical records. The 1st byte is
an ANSI (ASA) carriage control character.

Except for the virtual printer files and terminal output, the files can be
fixed blocked. A CMS FILEDEF command for a SYSPRINT file can specify
RECEM FBA (or FB) and BLKSIZE nnnn. The nnnn must be some multiple
of 121. If you specify RECFM in the SYSPRINT FILEDEF, you must specify
FA or FBA (unless you want the ANSI carriage control characters printed).
The value FA is the default.

The DBS utility and ISQL support other print file logical record sizes. In
addition, ISQL supports other devices. For more specific information, refer
to the |DB2 Server for VSE & VM Database Services Utility| and the
ffor VSE & VM Interactive SQL Guide and Referencel manuals.

SYSPUNCH
The SYSPUNCH files (used only by the DB2 Server for VM preprocessors)
can be CMS files, virtual punch files, or tape sequential files supported by
CMS OS QSAM. The database manager punches fixed-length, 80-byte
logical records. Except for virtual punch files, they can be fixed blocked.
The CMS FILEDEF command for a SYSPUNCH file can specify RECFM FB
and BLKSIZE nnnn. The nnnn must be some multiple of 80.

Chapter 4. Planning for Operation of the Database Manager 77

Remember that normal CMS defaults on FILEDEF commands apply. Specifically, if
the file is a CMS file, and you do not specify a file mode, CMS uses Al. If you
specify only a file mode letter, CMS uses a file mode number of 1. If you specify *
for the file mode, CMS searches all accessed minidisks (A to Z) for a file with the
specified file name and file type.

Starting the Application Server in Multiple User Mode

You start the application server in multiple user mode so that one or more
applications can concurrently access the same application server.

To start the application server in multiple user mode:
1. Log on to a database machine

2. IPL CMS

3. Issue the SQLSTART EXEC.

Note: You cannot run the database manager in a CMS batch machine.

shows the format of the SQLSTART EXEC.

»»>—SQLSTART—Dbname (server_name) >

|—dcssID(id)—| I—AMODE(nn)—| |—PARM (par‘ameters)—|

Figure 10. SQLSTART EXEC

78

The parameters for the SQLSTART EXEC are:

Dbname(server_name)
This parameter must be specified and must precede the PARM parameter. The
server_name variable identifies the application server.

After initial installation and database generation, the only application server
you have is named SQLDBA. If you add more databases, you can specify other
names for DBENAME.

dessID(id)
Specify this optional parameter only if you have created saved segments for
the DB2 Server for VM code and want to use those saved segments, and you
have generated a bootstrap package other than SQLDBA. If DCSSID is not
specified, the id value from the resid SQLDBN file on the production disk is
used. If DCSSID is specified, but is different from the value in the resid
SQLDBN file, the new value is saved. If no value is available, SQLDBA is used.

If specified, DCSSID must precede the PARM parameter. You can specify ID
instead of DCSSID for the keyword. No other abbreviation is valid. For more
information on starting the application server to use saved segments, refer to
[Chapter 8, “Saved Segments,” on page 173/

AMODE((nn)
This optional parameter specifies the type of addressing the database manager
runs in. It has two options:

AMODE(Q31)
When this option is specified, the database manager uses 31-bit
addressing and storage above 16M can be used. This is the
recommended addressing mode.

System Administration

AMODE((24)
When this option is specified, the database manager uses 24-bit
addressing. In this case, storage above 16M cannot be used and must
NOT be defined (i.e., the virtual machine size must not exceed 16
megabytes), unless the RDS component is executed from a saved
segment defined below 16 megabytes, OR the RDS component is
linkedited with “AMODE ANY RMODE 24”.

The value specified for the AMODE parameter is saved in the resid SQLDBN
file. If AMODE is not specified in the SQLSTART EXEC, the resid SQLDBN file
is checked, and the AMODE value found in the resid SQLDBN file is used. If
this file does not exist or does not contain an AMODE value, AMODE(31) is
used and this value is saved in the resid SQLDBN file. The database manager
continues to use this value until a different value is specified.

When AMODE is specified in the SQLSTART EXEC, this parameter must
precede the PARM parameter. No abbreviation of AMODE is valid.

Single user mode applications and user exits will be invoked in the same
addressing mode as the database manager. If you have such applications that
do not support 31-bit addressing, you must do one of the following:

¢ Convert your application programs so you can exploit 31-bit addressing

¢ Use the AMODE(24) option of the SQLSTART EXEC.

For more information on converting your program, see the VM/ESA: CMS
Application Migration Guide. For more information on single user mode, see
[‘Starting the Application Server in Single User Mode” on page 80| For more
information on user exits, see |Chapter 14, “Creating Installation Exits,” on page]

Note that the preprocessors and the DBS utility must run in 24-bit addressing
mode. In single user mode, if the database manager is running AMODE(31),
the AMODE is automatically switched to AMODE(24) before invoking the
preprocessor or DBS utility. The AMODE is then switched back to AMODE(31)
after control is returned to the database manager.

The resource adapter always runs AMODE(31) in XA mode or XC mode
regardless of the mode the database manager is running in.

PARM((parameters)
This optional parameter is used to specify initialization parameters and user
application program parameters. If specified, it must be placed last, after
DBNAME, DCSSID, or AMODE. When specifying initialization parameters,
separate them with a comma or a blank.

Note: For users moving from the database manager on VSE to the database
manager on VM. The same parameters that are supported on VSE are
supported on VM. The exceptions are the DSPLYDEV and DBPSWD
parameters.

The database manager on VM ignores the DSPLYDEV parameter.
Instead, SQLSTART always issues SP CON START HOLD (unless the
database manager is already spooled START), and all output (except
dumps) goes to the console. Dumps go to the virtual printer or reader.
This implementation is different because, on the VSE operating system,
there is only one operator console and one SYSLST for each partition. In
VM, all machines usually have their own console and virtual printer.

Chapter 4. Planning for Operation of the Database Manager 79

80

The DBPSWD parameter was used in VSE to specify a VSAM password.
This parameter does not apply to the database manager on VM, and is
ignored if specified.

During its processing, SQLSTART issues these CMS FILEDEF commands for the
trace and archive files:
FILEDEF ARIARCH TAP1 SL (NOCHANGE PERM

FILEDEF ARITRAC TAP2 SL (NOCHANGE PERM
FILEDEF ARILARC TAP3 SL (NOCHANGE PERM

To override these FILEDEF commands, issue your own before running SQLSTART.
You must use the ddnames ARITRAC, ARTARCH, and ARILARC for the trace,
database archive, and log archive files, respectively. Standard label, unlabeled,
single volume, and multivolume tapes are supported. For more information on
tape support, see [“Tape Support” on page 74,

If you are using standard label tape files for tracing, database archiving, or log
archiving, you can optionally submit CMS LABELDEF commands before running
the SQLSTART EXEC. This allows you to specify values to be used for file header
label checking and creation. You should supply CMS LABELDEF commands to
ensure that you have the proper tape files and volumes mounted. You must use
the LABELDEF command for multivolume standard label tapes. For more
information, see the VM/ESA: CMS Command Reference manual.

Do not specify any VOLID parameter on your LABELDEF (or FILEDEF)
commands for log archiving (ddname ARILARC). Because more than one log

archive file can be read or created during one database-manager session, you
should use different VOLIDs for the different files.

You can take log archives to disk rather than tape by changing the FILEDEF of
ARILARC. For more information on directing log archives to disk, see
[Archiving to Disk” on page 209

It is possible to direct the trace output to a memory buffer or to a CMS file rather
than to a tape. This may be convenient if you often use the security audit trace.
For more about directing trace output to a memory buffer or to a CMS file, see the
[DB2 Server for VSE & VM Operation| manual.

Running Multiple User Mode Application Programs

When the application server is started in multiple user mode, and the user
machine is initialized (with the SQLINIT EXEC), SQL application programs can be
started by normal means (such as the CMS LOAD or START commands).

For more information on running application programs, see the |[DB2 Server for VSE|
(& VM Application Programmingl manual.

Note: If you plan to run your application programs in both multiple user mode
and single user mode, you should follow the protocols discussed in the
section ["CALL/RETURN Protocols for Application Programs in Single User|
[Mode” on page 86,

Starting the Application Server in Single User Mode

An application program running in single user mode runs in the same machine as
the application server, and is under its control. (In this situation, the user machine
and the database machine are actually the same machine.) To run a single user
mode application program, start the application server in single user mode

System Administration

(SYSMODE=S) and provide the program name as an initialization parameter
(PROGNAME=name). For PROGNAME specify the name you would specify if
running the program in multiple user mode. The program is loaded and control is
passed to it after the application server is started. For single user mode, only the
TEXT files need to be available. If you choose this method, you should put the files
in a TXTLIB, because the database manager does not issue INCLUDE commands.
It is preferable to create a module using the CMS LOAD/GENMOD commands,
especially if the program is to be used frequently.

Your application is invoked in the same addressing mode as the database machine.

If your single user mode application program does not support 31-bit addressing,

you must do one of the following:

* Convert your application programs so you can exploit 31-bit addressing,

* Use the AMODE(24) option of the SQLSTART EXEC. See the RDS restriction
when using AMODE(24), [“Starting the Application Server in Multiple User
[Mode” on page 78

For more information on converting your program, see the VM/ESA: CMS
Application Migration Guide.

Attention: The value specified for the AMODE parameter is saved in the resid
SQLDBN file between invocations of the SQLSTART EXEC. If AMODE is not
specified, the resid SQLDBN file is checked, and the last value is used. If you only
want AMODE(24) for single user mode applications, be sure to specify
AMODE(31) when restarting in multiple user mode. When running AMODE(24)
option, you cannot use any storage above 16M.

Some administrative tasks (such as adding dbextents and adding dbspaces) are
performed by running IBM-supplied EXECs in single user mode. These EXECs call
the SQLSTART command with the appropriate parameters.

shows how to run an application program in single user mode. When the
application server is started, it passes control to the application program specified
by the PROGNAME parameter. All other initialization parameters are allowed to
default. You may want to specify some single user mode initialization parameters.
For information on single user mode initialization parameters, see [Table 6 on page

SQLSTART DB(SQLDBA) PARM(SYSMODE=S,PROGNAME=name)

Figure 11. Starting in Single User Mode

Note: The PROGNAME parameter is not needed when
STARTUP=CI|EILISITIMIP is specified. These startups specify the
operation to be performed, so a program name is not needed. Moreover, the
database manager provides separate EXECs for each of these situations, one
of which must be used instead of SQLSTART. (Each of these EXECs calls
SQLSTART at the proper time.)

During its processing, SOLSTART issues these CMS FILEDEF commands for the
trace, database archive, and log archive files:

FILEDEF ARIARCH TAP1 SL (NOCHANGE PERM
FILEDEF ARITRAC TAP2 SL (NOCHANGE PERM
FILEDEF ARILARC TAP3 SL (NOCHANGE PERM

Chapter 4. Planning for Operation of the Database Manager ~ 81

To override these FILEDEF commands, issue your own before running SQLSTART.
You must use the ddnames ARITRAC, ARIARCH, and ARILARC for the trace,
database archives, and log archives, respectively. Specify the PERM option on your
FILEDEF commands if the application program is written in a language other than
Assembler. Standard label, unlabeled, single volume, and multivolume tapes are
supported. For more information on tape support, see [“Tape Support” on page 74

If you are using standard label tape files for tracing, database archiving, or log
archiving, you can optionally submit CMS LABELDEF commands before running
the SQLSTART EXEC. This allows you to specify values to be used for file header
label checking and creation. You should supply CMS LABELDEF commands to
ensure that you have the proper tape files and volumes mounted. You must use
the LABELDEF command for multivolume standard label tapes. For more
information, see the VM/ESA: CMS Command Reference manual.

You should not specify VOLID parameters on any LABELDEF or FILEDEF
commands you issue for the log archive files. Because more than one tape file can
be created during a database manager run, you should use different VOLIDs for
the different tape files.

It is possible to direct the trace output to a CMS file rather than to a tape. This
may be convenient if you often use the security audit trace. For more information
about tracing, see the [DB2 Server for VSE & VM Operation| manual.

In addition to the FILEDEFs for archiving and tracing, SQLSTART issues the
following FILEDEF command for a user LOADLIB:

FILEDEF ARIUSRDD DISK USERLIB LOADLIB * (NOCHANGE

If you want to specify a different LOADLIB, issue your own FILEDEF command
before calling SQLSTART. You must use the ddname ARIUSRDD on the FILEDEF
command to identify a user LOADLIB to the database manager. Note that the file
mode used in the FILEDEF is *. Remember to access the minidisk containing your
LOADLIB ahead of other minidisks that contain USERLIB LOADLIBs.

If you use AMODE(24), the application program must be RMODE 24. If it is not,
and the program is loaded above 16M, the database manager issues message
ARIO0021E.

The application program can be a module, or it can reside in a LOADLIB (or,
conceivably, a saved segment). Because the database manager does not know
where the user program is (and there are many ways to load a program in VM),
the database manager tries a sequence of VM commands to load the program. The
following sequence is used:

1. CMS LOADMOD command: for CMS files with a file type MODULE. The
program is loaded into the CMS user program area.

2. CMS NUCXLOAD command: for members of CMS or OS LOADLIBs. The
program is loaded into free storage.

3. CP diagnose FINDSYS/LOADSYS instructions: for saved segments.

4. CMS LOAD command: for TEXT files or TXTLIB members. The program is
loaded into the CMS user program area. Note that CMS INCLUDE commands
are not issued in this situation. Also, a GLOBAL TXTLIB command must be
issued before SQLSTART if the text files are TXTLIB members. More than one
library can be specified on the GLOBAL command.

82 System Administration

Because not all of the above VM load functions return the entry point, you should
code your program so the entry point is the same as the load point. Only
LOADMOD and NUCXLOAD return the program’s entry point. When the
database manager finds a program with the name specified in the PROGNAME
initialization parameter and successfully loads the program, the search sequence
ends. Control is passed to the program with a BALR instruction.

For example, suppose you have two programs on your A-disk. One is named
MYPROG MODULE A; the other is named MYPROG TEXT A. If you run
SQLSTART with PROGNAME=MYPROG, the program loaded is MYPROG
MODULE A. The database manager tries the LOADMOD command before the
LOAD command. If you want to load MYPROG TEXT A, you must either rename
it and change the PROGNAME parameter value accordingly, or you must rename
(or erase) MYPROG MODULE A.

If the database manager does the entire search sequence, and a not found indication
is received from each of the load functions, four messages are issued:

ARI0026E Indicates an error occurred while attempting to load the program.
ARI0039E Indicates a limit error occurred.

ARI00421 Indicates the reason code is 4.

ARI00431 Indicates the return code is 512.

If the database manager receives an insufficient storage indication from any of the
load functions, the same four messages are issued, but the reason code in message
ARI0042I is 8 (not 4).

If the load of the user program fails for a reason other than those discussed above,
the database manager issues message ARIO026E. Following that message is one or
more occurrences of message ARI0047E. Message ARIO047E has the format:

xxxxxxxx- Reason Code=nnn

The type of load is indicated in xxxxxxxx. The xxxxxxxx can be LOADMOD,
NUCXLOAD, SEGMENT LOAD, FETCH, or LOAD. The system return code from
that load is in nnn. This message is followed by either message ARIO039E or
ARIO040E, depending on the type of error. Following that message is ARI0042I
with a reason code of 0 (the reason code is given earlier in message ARI0047E),
and finally by message ARI00431 with a return code of 516.

Note that, for a NUCXLOAD or SEGMENT LOAD, the database manager must do
more than issue those commands.

For NUCXLOAD, the sequence of NUCEXT QUERY, NUCXDROP, NUCXLOAD,
and NUCEXT QUERY may be processed to load the code. Thus, the reason code
displayed in message ARIO047E can be a return code from NUCEXT QUERY or
NUCXDROP. (The return code is not necessarily from a NUCXLOAD.) You should
check the [DB2 Server for VM Messages and Codes| manual for return codes from
NUCEXT QUERY and NUCXDROP as well as NUCXLOAD.

The database manager follows this process when attempting to load a program
with NUCXLOAD:

1. Issues NUCEXT QUERY to see if a copy of the code already exists in storage
(storage is not properly reset). If so, the CMS NUCXDROP command is issued.
If the NUCXDROP return code is not zero, the return code is displayed as the
ARIO047E reason code.

Chapter 4. Planning for Operation of the Database Manager 83

84

2. If the NUCEXT QUERY is successful (and NUCXDROP, if performed), the
NUCXLOAD is issued. If the load fails, the nonzero return code becomes the
reason code in message ARIO047E.

3. If the load is successful, another NUCEXT QUERY is issued to obtain the code
load address and the code length. If this fails, a reason code of 253 is displayed
in message ARIO047E.

A similar process is done for code that is to be loaded into a saved segment. The
database manager does a SEGMENT FIND instruction to get the code load address
and length. The SEGMENT LOAD instruction is then issued. Thus, the reason code
displayed in message ARIO047E can be a return code from the SEGMENT FIND
(not necessarily the SEGMENT LOAD) instruction. You should check the
[Server for VM Messages and Codes| manual for return codes from SEGMENT FIND as
well as SEGMENT LOAD.

The database manager follows this procedure when attempting to load a program
with the SEGMENT LOAD macro:

1. Issues a SEGMENT FIND instruction to get the load address and length of the
code to be loaded.

2. If the SEGMENT FIND condition code is 2, an error occurred. The return code
XXX is displayed as the reason code in message ARIO047E:

ARIOO47E SEGMENT LOAD - Reason Code=XXX

3. If the condition code is 1 (saved segment not yet loaded), the database manager
does some checking before attempting to load the code: If it is not, the reason
code 400 is displayed in message ARIO047E.

a. If the above check was successful, the database manager then checks to
ensure that loading the code at the indicated load address does not overlay
other database manager code. If an overlay would result, the database
manager displays a reason code of 500 in message ARIO047E.

b. If both checks are successful, the SEGMENT LOAD instruction is issued.
The code is loaded at the address returned by the SEGMENT FIND
instruction.

4. If the SEGMENT LOAD is issued and the condition code is 2, an error
occurred. The SEGMENT LOAD return code is displayed as the reason code in
message ARIO047E.

5. If the SEGMENT LOAD is issued and the condition code is 1, a code overlay
occurred. A reason code of 500 is displayed in message ARIO047E.

In addition to the loading sequence, you should be aware of the following when
preparing to run a single user mode program:

* If the program resides in an OS LOADLIB, you must ensure that the proper
GLOBAL and FILEDEF commands are issued before starting the application
server.

* The database manager uses CMS OS QSAM for sequential file support. The CMS
OS QSAM support uses the GETMAIN area of the virtual machine. The CMS OS
QSAM support is called before the user’s application program. You should not
issue the CMS STRINIT macro in the application program, as this may release
all GETMAIN storage currently allocated by the database manager. This can
only occur if the setting of the CMS STORECLR option is 'ENDCMD’. When the
STORECLR option is set to 'ENDSVC’ (the CMS default), the STRINIT macro is
ignored.

* If the application does not support 31-bit addressing, you must use AMODE(24).

System Administration

* When running AMODE(24), single user mode applications (and user exits)
should not switch to AMODE(31) and branch to other applications above 16M
unless: those applications have no interaction or interface with DB2 Server for
VM code, and, AMODE(24) is reset before returning control to the database
manager.

Specifying User Parameters

If you start the application server in single user mode, you can also specify user
parameters to be passed to the application program using the PARM keyword of
the SQLSTART EXEC. The SQLSTART EXEC purges the CMS program and console
stacks. Thus, any program run in single user mode cannot rely on console or
program stack input.

Place a slash (/) between the database manager initialization parameters and the
user parameters, as shown in

SQLSTART DB(SQLDBA) PARM(SYSMODE=S,PROGNAME=PROG1/parml,parm?)

Figure 12. Starting in Single User Mode and Providing User Parameters

Note: Only the first 130 characters of the command line are read by CMS. The
exception to this rule occurs when SQLSTART is called from a user-written
EXEC; then CMS reads the first 256 characters. If you specify many
initialization parameters and user parameters, they will not fit on the
command line. Thus, you must use a CMS file for some of the parameters.
Because user parameters cannot be specified in a CMS file, you should
specify the initialization parameters in the CMS file, and the user parameters
on the command line.

The user parameters are passed to the application program with register 0. Register
0 points to an area called NPLIST, which contains three addresses, which point to:

1. COMVERB, the command name, the name of the application program specified
in the PROGNAME initialization parameter.

2. BEGARGS, the start of the user parameter string.

3. ENDARGS, the byte following the last character of the user parameters.

The user parameter string is untokenized: it has not been separated into individual
user parameters. This pointer scheme is similar to the one that the EXEC 2
interpreter uses when running programs. [Figure 13 on page 86| shows how register
0 points to the user parameters.

Chapter 4. Planning for Operation of the Database Manager ~ 85

Register 0 points to NPLIST —|

v

Points to:

NPLIST DS OF
DS A(COMVERB) Command name (application name)
DS A(BEGARGS) Start of user parameter string
DS A(ENDARGS) End of user parameter string + 1
DS A(0)

COMVERB EQU *
DC C 'applname' Command name (PROGNAME)
bDC cC'' Delimiter

BEGARGS EQU *
DC C'user-parameters' User parameter string

ENDARGS EQU *

Figure 13. Passing User Parameters to a User Application Program

The length of the parameters can be obtained by subtracting the BEGARGS
address from the ENDARGS address. If there are no user parameters, the
ENDARGS address is equal to the BEGARGS address (ENDARGS - BEGARGS =
0.) Both addresses, in this situation, point to the next byte after the name of the
application.

User parameters are not displayed along with the initialization parameters. User
parameters cannot be specified in a DB2 Server for VM parameter data set.

CALL/RETURN Protocols for Application Programs in Single
User Mode

In single user mode, an application is called using normal CALL/RETURN
protocols, as follows:

Register 0 Pointer to pointer to user parameters
Register 1 Contains zeros

Register 13 Pointer to DB2 Server for VM save area
Register 14 Return point to the database manager

Register 15 Entry point of the user program.

Note: This same protocol can also be used by programs running in multiple user
mode.

Register 0 was discussed in the previous section. A program written in C, PL/I,
COBOL, or FORTRAN requires an interface routine to process the user parameters.

Upon entry, the application program must store the registers in the DB2 Server for
VM save area, and restore them before returning control to the database manager.
Failure to do so causes unpredictable results.

An abnormal termination exit is set to intercept abnormal termination conditions,

including program checks. If the user program establishes its own abnormal end
exit, the user exit overrides the DB2 Server for VM abnormal end exit.

86 System Administration

The abnormal end exit is set (with CMS ABNEXIT) to intercept abnormal end
conditions (including program checks). If the user program establishes an
abnormal end exit (for example, with ABNEXIT, STAE, SPIE), the user program
gets control before the DB2 Server for VM abnormal end exit does. (However,
STAE and SPIE are not supported in 31-bit addressing mode.) When the user
program completes its abnormal end processing, it should return control to the
CMS abnormal end routine. The CMS abnormal end routine then passes control to
the DB2 Server for VM abnormal end routine. The application programmer must
be careful when processing abnormal end conditions. These possibilities must be
considered:

1. The abnormal end condition occurs in your program, and you can determine
that this is the case. You can then circumvent the problem and continue
processing. In this case, reset the abnormal end exit. Otherwise, future
abnormal end conditions cause control to be given to the DB2 Server for VM
abnormal end routine.

If you determine that processing cannot continue, you should reset your
abnormal end exit, clear the abnormal end exit, and return control to the CMS
abnormal end routine. The CMS routine then passes control to the DB2 Server
for VM abnormal end routine.

2. If you cannot determine anything about the abnormal end condition, you
should reset the abnormal end exit, clear the abnormal end exit, and return
control to the CMS abnormal end routine. (You would do so when, for
example, you did not know if your program caused the abnormal end.) The
CMS abnormal end routine then passes control to the DB2 Server for VM
abnormal end routine.

3. Finally, consider the situation when no abnormal end condition occurs, and
your program ends normally (control is returned to the database manager). In
this situation, your abnormal end exit should be cleared prior to returning
control to CMS. When both DB2 Server for VM processing and user processing
finish, both abnormal end exits must be cleared. Otherwise, future abnormal
end conditions in the virtual machine could cause unpredictable results.

The DB2 Server for VM abnormal end routines sever the IUCV links to the
database minidisks, and close the trace file if tracing was activated. This same
processing is also done when, upon completion, the user program returns control
to the database manager. The database manager does not have to do this
processing (for example, if the program does not return control to the database
manager). If the IUCV links to the database minidisks are not severed, VM severs
the links when you log off the database machine. (This also is true if the database
machine abnormally ends.) If tracing or accounting were active, their output files
may not have had the last buffers written. If the output files were on tape, no tape
mark was written. You can then write tape marks with the CMS TAPE command.

The database manager uses eye-catcher technique for determining when a specific
module is in error. The eye-catcher is displayed in the DB2 Server for VM
mini-dump. A user program can use the same technique in single user mode,
assuming that the DB2 Server for VM abnormal termination exit has not been
overridden by a user abnormal end exit. A suggested coding example in assembler
language is shown in [Figure 14 on page 88}

Chapter 4. Planning for Operation of the Database Manager 87

EXIT

USING =,15
B SKIPEYE
DC AL1(16)

DC CL8'progname' PROGRAM NAME EYE-CATCHER
DC CL8'&SYSDATE' DATE PROGRAM COMPILED

DS OH

SKIPEYE EQU *
ST™M 14,12,12(13) SAVE DB2 Server for VM REGISTERS

BALR 12,0
DROP 15
USING =,12

LA 11,MYSAVEAR GET ADDRESSABILITY TO MY SAVE AREA

ST 11,8(13)

ST 13,MYSAVEAR+4 SAVE ADDRESS OF DB2 Server for VM SAVE AREA IN SAVE AREA

LR 13,11

Body of the Application Program

L 15,RETCOD SET RETURN CODE (OR SET TO ZERO)

L 13,4(13) GET DB2 Server for VM SAVE AREA

L 14,12(13) GET DB2 Server for VM REGISTER 14

LM 0,12,20(13) GET OTHER DB2 Server for VM REGISTERS
BR 14 RETURN TO DATABASE MANAGER

BRANCH AROUND EYE-CATCHER
LENGTH OF CHARACTER STRING

ESTABLISH BASE REGISTERS

SAVE ADDRESS OF SAVE AREA IN DB2 Server for VM SAVE AREA

SET REGISTER 13 TO MY SAVE AREA

Figure 14. Use of an Eye-catcher by an Application Program

88

Notes:

1.

The instruction BALR 15,0 can be used just ahead of the USING *,15 instruction
as long as other registers are not used until the DB2 Server for VM registers
have been saved.

The techniques shown here work whether the application program is called by
the database manager, or is called as a CMS command. Thus, the same
application program can be run in either single or multiple user mode.

The techniques shown here may not always be achievable by a FORTRAN, C,
COBOL, or PL/I program. A program written in one of these languages may
need to be called by a pre-entry routine, to ensure that register 15 contains a
zero (or valid return code) upon return to the database manager.

Overriding Initialization Parameters

When starting the application server, you can change the default parameter values
in either of two ways:

By specifying the parameters in the PARM field of the SQLSTART EXEC.

By creating a CMS file that contains DB2 Server for VM parameters and calling
it with the PARMID initialization parameter. See [Figure 8 on page 56| for an
example.

You can also combine the two methods. Parameters specified in the CMS file
override the default values. Parameters specified on the SQLSTART EXEC override
both the default values and those specified in the CMS file. A user who has a CMS
file with an incorrect parameter value can override the value in error with a correct
specification on the SQLSTART EXEC.

When all the values of the initialization parameters have been resolved, the final
values (or defaults, if no values have been overridden) are displayed on the DB2
Server for VM operator’s console.

System Administration

When you specify parameters on the SQLSTART EXEC, separate each parameter
with a comma or blank. For example:

SQLSTART DBNAME (SQLDBA) PARM(DUMPTYPE=F,LOGMODE=A)

SQLSTART DBNAME (SQLDBA) PARM(DUMPTYPE=F LOGMODE=A)

Because CMS reads only the first 130 positions of the CMS command line, you
may choose to set up your initialization parameters in one or more CMS files. Such
an arrangement allows you to specify more user parameters (if any) when running
application programs in single user mode. User parameters (those for the
application program itself), cannot be specified in a CMS file, and must be
specified in the PARM field of the SQLSTART EXEC. If you plan to use user
parameters, refer to [‘Specifying User Parameters” on page 85,

You can also call the SQLSTART EXEC from within a user-written EXEC.

Creating a Parameter File

You can store various parameters in a CMS file that has a file type of SQLPARM,
and a fixed record length of 80 bytes. To have the database manager use the file,
specify the file name in the PARMID initialization parameter. Each file can start the
application server for a slightly different environment. shows a
parameter file.

LOGMODE=A,NDIRBUF=20,

NPAGBUF=20,

DUMPTYPE=F COMMENT -- FULL VIRTUAL MACHINE DUMP
NCSCANS=20

Figure 15. Example of an Initialization Parameter File

The rules for specifying parameters in a CMS file are a little different from the
rules for specifying parameters on the SQLSTART EXEC:

* The parameters must be in uppercase in a parameter file.

* Because a blank after a parameter ends the processing of the line, do not put a
blank between parameters. Anything on the line after that blank is ignored. You

can, however, use this arrangement to put comments in the file, as shown in
for the DUMPTYPE parameter.

* A comma at the end of a line is not required, but can be used to make the
statement easier for you to read.

¢ User parameters (those destined for the application program itself) cannot be
specified in a parameter file. If the database manager detects parameters other
than its own initialization parameters, it issues error messages and stops.

Running the Database Manager

When you use the database manager, you should be aware of the following:
* Saved segments are defined using VMSES/E.

* The resource adapter and the RDS component can be saved above the 16
megabyte line.

For more information, see [“Defining Saved Segments” on page 179

* Operating modes

Your virtual machine can be set to XA/ESA mode or XC mode. If certain
components are defined as saved segments, they must be saved below the 16

Chapter 4. Planning for Operation of the Database Manager 89

90

megabyte virtual storage line. (The exceptions are the resource adapter and RDS,
which can be saved above the 16 megabyte line.) The AMODE parameter
specifies the type of addressing the database manager runs in. For more
information, see [‘Starting the Application Server in Multiple User Mode” on|
-ae 78.

A user machine can run in XA/ESA mode or XC mode. It can take advantage of
a resource adapter saved segment saved above the 16 megabyte virtual storage
line.

User application programs can take advantage of 31- or 24-bit addressing, and
reside above or below the 16 megabyte virtual storage line.

For more information on running application programs in either XA /ESA or XC
mode, see the |DB2 Server for VSE & VM Application Programming] manual.

The following facilities are available:
— VSE guest sharing

— CMS work unit support

— Database switching

— Remote unit of work

— Distributed unit of work.

Operating Modes

You set the virtual machine operating mode in the machine’s CMS directory, or
with the SET MACHINE command. Users can issue this command for their virtual
machines, and the operator issues it for the database machine. For more
information on this command, see the VM/ESA: CMS Command Reference manual.

shows how features can take advantage of the VM/ESA ESA Feature.
Table 7. Summary of Support

AMODE RMODE
24 31 24 ANY
RA/DRRM/CONV X X X X1
DSC X X2 X
RDS/DRRM/WUM/CONV X X X X
DBSS X X? X
ISQL X X
DBSU X3 X
Preprocessors X3 X
User Applications X X* X X*
Notes:
1. The resource adapter (RA) runs AMODE(31) RMODE(ANY). It does not
depend on the AMODE parameter.
2. This DB2 Server for VM code must reside below the 16 megabyte line.
However, most dynamic storage is allocated above it (if available).
3. In single user mode, if the database manager is running AMODE(31), it

System Administration

automatically switches to AMODE(24) when the preprocessor or DBSU is
invoked by the database manager. The AMODE is then switched back to
AMODE(31) after returning control to the database manager.

4. For more information, refer to [“Starting the Application Server in Multiple User|
Mode” on page 78)[“Starting the Application Server in Single User Mode” on|
page 80|and [Chapter 14, “Creating Installation Exits,” on page 339

Disconnecting the Database Machine

You can free up the database machine console in two ways:
 Stop the application server and log off the database machine

* Disconnect from the database machine (and leave the database manager
running).

To log off the database machine, stop the application server by using the SQLEND
command, and then log off. Stopping the application server is explained in
[“Stopping the Application Server.”| If you want to sign off the database machine,
and leave the database manager running, enter these commands:

#CP SET RUN ON
#CP DISCONN

You should not leave the operator console unattended. To protect the integrity of
your database, always have the operator sign off the operator console with the
DISCONN command before leaving the console.

Stopping the Application Server

This section discusses the following topics:

* Taking an archive

* Verifying the directory

* Online support considerations for VSE guest sharing
* Minidisk passwords

¢ Inter-machine communications

In single user mode, the application server stops itself when the task is completed.
In multiple user mode, the operator stops it by issuing the SQLEND operator
command. In both modes, the database files and the trace file (if active) are closed.
The SQLEND command is described in the [DB2 Server for VSE & VM Operation]
manual.

The SQLEND command can be entered from the operator console of a database
machine. Its format is shown in [Figure 16 on page 92| The ARCHIVE, LARCHIVE,
and UARCHIVE parameters are used to initiate archive activities after the database
has been shut down, and are discussed in the next section. The NORMAL
parameter is used to shut down the database when all work in progress is
completed. The QUICK parameter is used to stop all work in progress and shut
down immediately. The TRCPURGE parameter is used if you want to purge the
contents of the trace buffer at DB2 Server for VM shut down. You can also specify
the DVERIFY parameter to do a directory verification.

Chapter 4. Planning for Operation of the Database Manager 91

»>—SQLEND

NORMAL—
|_

ARCHIVE— |—DVERI FY—| |—TRCPURGE—|

LARCHIVE—
UARCHIVE—
QUICK——

Figure 16. SQLEND Operator Command

Do not issue SHUTDOWN from the VM console as it shuts down VM and causes
the database manager to end abnormally.

Taking an Archive

The SQLEND command can be set up to enable the operator to take a database or
log archive after all DB2 Server for VM activity has stopped. The following
parameters are available for archiving:

* ARCHIVE for a database archive using DB2 Server for VM facilities

* LARCHIVE for a log archive using DB2 Server for VM facilities

* UARCHIVE for a database archive using user facilities.

Attention: User archive facilities are available for the database, but not the log.
Never attempt to use user facilities to archive a log.

The most appropriate time to take an archive is at shutdown, so consider setting
up a procedure for periodic SQLENDs with the ARCHIVE, UARCHIVE, or
LARCHIVE parameters, as needed.

For both database and log archives, online archives are disruptive to users. Taking
archives during SQLEND avoids this disruption. In addition, database archives
taken at SQLEND contain data that is consistent, whereas those started by operator
ARCHIVE commands or triggered by ARCHPCT typically contain uncommitted or
incomplete data, and require information from the log to make the data consistent.
(Consistency is not a problem for log archives regardless of when they are taken,
because the database manager always waits until all LUWs end before taking the
checkpoint on which the log archive is based.)

To determine the best recovery procedures for your installation, see |”Recoverin§;|
[from DASD Failures that Damage the Database” on page 197

If the operator specifies ARCHIVE or UARCHIVE when LOGMODE=Y, the
database manager automatically switches the LOGMODE to A. To resume running

with LOGMODE=Y, the operator must do a COLDLOG. See

[Modes” on page 227

Should you decide not to take an archive at shutdown, specify NORMAL or
QUICK. During a normal shutdown, the database manager allows all active LUWs
to finish before ending. During a quick shutdown, the application server ends
immediately: in-progress LUWs receive a negative SQLCODE and are rolled back
the next time the application server is started.

Note: A User Archive will NOT be consistent if it is taken following an SQLEND
QUICK shutdown.

92 System Administration

If you are running with LOGMODE=L, and request a database archive, and if there
is data in the log, then the database manager takes a log archive before taking the
database archive. If alternate logging is enabled, a check will be done to see if the
inactive log was previously archived. If it was not, it will be archived before the
active log. The log archives are written to tape. However, you can direct it to disk
if you change the FILEDEF for the log archive files, or if you direct the log
archives to disk when you archive it. For more information on directing log
archives to disk, see [‘Log Archiving to Disk” on page 209

Database archives are written to tape. When running a database archive, the
database manager displays external label information for you to write on the tape
if you are archiving to tape. It then requests that you mount the required volumes.
If you are archiving to disk, you should respond by typing the virtual device
address. Unless you have issued your own CMS FILEDEF command before
starting the application server, the virtual device address for database archives is
181. The virtual device address for log archives (either explicitly requested or
automatically created) is 183. See [“Archiving Procedures” on page 201| for more
information.

When the SQLEND command is issued with the NORMAL, ARCHIVE,
LARCHIVE, or UARCHIVE parameters, a shutdown is not initiated until all users
are disconnected from the application server. The database manager displays a
message showing how many agents are still active. (An agent is an internal
representation for a user.) As each agent becomes inactive, another message is
displayed with an updated count.

The initial count displayed in the message includes all active user agents. When
users who are inactive (not allocated to a real agent) disconnect from the database
manager, no message is displayed to indicate a reduction in agents; the message is
issued only when a user disconnects from the database manager while still
allocated a real agent. This results in gaps in the updated count messages.

After issuing an SQLEND command, and before shutdown commences, the
operator can issue a SHOW ACTIVE command to find out who is still using the
database manager. Users who are connected with no active LUW can prevent the
database manager from performing shutdown operations. For example, an ISQL
user can end an LUW and then leave the terminal without exiting from ISQL. To
determine whether inactive users are preventing the shutdown operation, use the
SHOW USERS operator command to determine which users are still active. For more
information on the SHOW commands, see the |DB2 Server for VSE & VM Operation
manual.

If the SQLEND command is issued with the QUICK parameter, all in-progress
work ends and return code 508 is displayed on the console. This command can be
issued at any time, even following an SQLEND issued with another parameter.

Verifying the Directory

The DVERIFY parameter determines whether the database manager checks for
inconsistencies in the directory. It can be specified with the other parameters, but is
ignored if you specify QUICK. It should be specified each time the database is
archived (using either DB2 Server for VM or user facilities); if it is not, any
inconsistency in the directory will be recorded in the database archive, so a
subsequent restore operation using that archive would fail.

Chapter 4. Planning for Operation of the Database Manager 93

94

Even if you have not requested a database archive, you should periodically verify
the directory (perhaps every few days, depending on the volume of update
activity). Otherwise, inconsistencies may surface later. For example, an
inconsistency can cause an abnormal end during checkpoint processing. Early
detection reduces data loss.

If an error is found in the directory, a message is displayed. If this happens, and
you had specified ARCHIVE, the archive is not taken. If you had specified
UARCHIVE (a database archive using user facilities), then when you are prompted
to take the archive, do not do so. However, if you had specified LARCHIVE, the
log archive is taken; the inconsistency in the directory does not affect the log, so
the log archive is still valid. For information on recovering from directory
verification errors, see the [DB2 Server for VSE & VM Diagnosis Guide and Reference]
manual.

Online Support Considerations for VSE Guest Sharing

If you are supporting an online (CICS) environment, you should stop the online
support before ending the application server, in order to clean up CICS transaction
processing efficiently. To stop the online support, enter the CIRR or CIRT
transaction. For more information on the effect of a shutdown on online
applications, see [“Stopping the Online Support -- The CIRT Transaction” on page|
and [“Removing Connections -- The CIRR Transaction” on page 116

Note: For DB2 Server for VSE, each link from the Online Support requires a
dedicated agent, whether or not these agents are actually active. SQLEND
NORMAL will not terminate these connections.

A Note about Minidisk Passwords

Many of the IBM-supplied EXECs described in this chapter (and throughout the
manual) access the DB2 Server for VM production and service minidisks. These
EXECs often must write to and read from those minidisks.

Depending on the tasks you are trying to do and the virtual machine you are
using, you can be prompted for the read, write, or multiple access passwords for
the minidisks.

You should always be prepared to supply the passwords for the production and
service minidisks before you run the IBM-supplied EXECs.

Note: DB2 Server for VM users should not know the passwords for the production
and service minidisks, or any other database machine minidisks.

Inter-Machine Communications

Advanced Program-to-Program Communication/Virtual Machine (APPC/VM) is
used by software to communicate between user and database machines, regardless
of their physical locations. The Inter-User Communication Vehicle (IUCV) is
limited to communications between two virtual machines residing on the same
processor.

Internally, the database manager uses NCUSERS to determine the number of agent
structures to create. Each agent structure serves one user at a given time. (That is,
one user who is within an LUW.) Processing time is divided among the agent
structures. You can think of an agent structure as equivalent to a user for whom

System Administration

the database manager is currently doing work. Thus, NCUSERS controls the
number of concurrent users (agent structures) using the database manager.

As discussed earlier, each agent structure uses virtual storage and produces some
processor overhead. If NCUSERS is set too high for your particular system
configuration, the database manager may become overloaded and perform poorly.
To determine the optimal NCUSERS setting for your installation, use the guidelines
given in ["'NCUSERS” on page 62|

The optimum number for NCUSERS is usually less than the total number of users
planned for a database. Thus, the number of connected users trying to access a
database machine usually far exceeds the number specified for NCUSERS. For
example, if there are 80 users and only 8 agent structures, all 80 users would be
competing for those structures.

To solve this problem, the number of connected users can exceed the number
specified for NCUSERS. The number of users that can be connected is related to a
value called MAXCONN.

The MAXCONN parameter of the VM OPTION directory control statement
determines the maximum number of IUCV connections allowed for a virtual
machine. For inter-machine communications, the virtual machine is the database
machine. MAXCONN has a default value of 16.

The database manager uses APPC/VM (or IUCV) to access the database minidisks
(including the directory, the logs, and the dbextents) and to communicate with user
machines. Thus, the number of users that can be connected to a database machine
is equal to the value of MAXCONN minus the number of minidisks for the
database currently being accessed. On a VM/ESA operating system, the number of
users that can be connected is decreased by one more because the DB2 Server for
VM machine makes an additional connection to CP system service *IDENT. It is
further reduced by one if the special TCP/IP communications real agent is active.

Usually, MAXCONN is set when a database machine is defined. (For more
information, see [Adding a Primary Database Machine” on page 275) This initial
setting is based on an estimate of the number of minidisks that make up the
database and the number of users. As these conditions change, MAXCONN should
be readjusted.

Because the number of connected users can exceed the number of real agents, the
database manager uses another mechanism to keep track of users that are not
assigned to real agents. This mechanism is called the pseudo-agent structure.

The number of pseudo-agents is equal to the value of MAXCONN minus the
number of minidisks for the database currently being accessed. Initially, these
pseudo-agents are placed on an available queue. When an APPC/VM (or IUCV)
CONNECT to the database manager is issued, the user is assigned to a
pseudo-agent, and placed in an in-use queue. When a user issues a statement (for
example, SELECT), the user machine sends a message to the database machine. At
this time, the user’s pseudo-agent is assigned to a real agent, if one is available. If
none is available at the moment, that user’s pseudo-agent is placed in a first-in,
first-out wait queue. When a real agent becomes available, the first pseudo-agent
in the wait queue is assigned to that real agent.

When the user performs any action that results in the end of an LUW (for example
COMMIT or ROLLBACK)), that user’s pseudo-agent is deallocated from the real

Chapter 4. Planning for Operation of the Database Manager 95

96

agent. An exception occurs when there are no waiting pseudo-agents and the user
has sent another message to the database machine. When a pseudo-agent is
deallocated from a real agent, it is placed on an inactive queue until and unless the
user sends another message. At that time the pseudo-agent is placed at the end of
the wait queue, unless a real agent is available. When a pseudo-agent is
deallocated from a real agent, the first waiting pseudo-agent on the wait queue is
allocated to the available real agent.

A pseudo-agent is deallocated from a user when the connection to the database
manager is severed (for example, COMMIT WORK RELEASE or end-of-program).

The database manager does not verify that the users are allocated to real agents;
that is, it does not determine whether the real agent has received a message
recently (is active). A user can tie up a real agent by being inactive. For example, a
user can start an LUW and leave the terminal unattended. In this situation, the
DB2 Server for VM operator can use the FORCE command to end the LUW.

Pseudo-agents that are not attached to real agents have no effect on performance
other than the use of extra virtual storage.

Pseudo-agents can affect shutdown procedures. When the DB2 Server for VM
operator issues any SQLEND command (except SQLEND QUICK), the database
manager does not end (or begin the archive process) until all users (owners of
pseudo-agents) are disconnected. All users can complete their work and disconnect
from the database manager (unless forced off by the VM system operator or by the
DB2 Server for VM operator).

You can determine inactive but connected users by issuing the SHOW USERS
command. The SHOW ACTIVE command is inappropriate because it displays
information about agent structures. It does not tell you whether inactive users are
holding pseudo-agents.

Note: The DB2 Server for VM operator can force (with the FORCE command) only
those users attached to real agents. Only the VM system operator can force
(log off) those users who are waiting for real agents or who have inactive
pseudo-agents. The alternative is for the DB2 Server for VM operator to
issue the SQLEND QUICK command, which immediately stops the application
server and disconnects all users.

In some situations, you may want to limit the number of users who can connect to
the database manager. For example, if your installation has 100 DB2 Server for VM
users, you may want only 50 of them on at a time for performance reasons. Lower
the MAXCONN parameter to decrease the number of users. This places a limit on
the number of connected users. Users who try to access the database manager
when the limit is reached receive a message indicating that they cannot access the
database.

Application Program Use of APPC/VM or IUCV

The database manager’s use of APPC/VM does not preclude users from using
both APPC/VM and SQL statements in the same application program in either
single user mode or multiple user mode.

For more information about how the database manager uses APPC/VM and IUCYV,
see the [DB2 Server for VSE & VM Diagnosis Guide and Referencel manual.

System Administration

Chapter 5. Operating the Online Support for VSE Guest
Sharing

This chapter explains how to enable VSE guests to access an application server on
a VM operating system, and how to operate the VSE online support.

Operating VSE Guest Sharing

Your VSE online users can access an application server on a VM host operating
system when the VSE operating system is running as a guest in a virtual machine.
Database switching is supported for CICS online applications, which means that
one resource adapter in one CICS region can connect to multiple application
servers. Any CICS transaction in the CICS region can connect to any of the DB2
Server for VM application servers to which the online resource adapter has
established connections. This means that:

1. Different transactions in a CICS region will be able to connect to different DB2
Server for VM application servers

2. Single transactions will be able to connect to different DB2 Server for VM
application servers in different units of work.

The DB2 Server for VM application server can be accessed by specifying the
server_name parameter on the CIRB transaction or on the CIRA transaction. The
DB2 Server for VM application server must be defined in the DBNAME Directory.
The DBNAME Directory provides the mapping of mapped DBNAME to resid. See
for more DBNAME Directory information. The resid is the basic DBNAME, and
must be the same as the one specified in the SET APPCVM command during the
VSE initial program load. If there are multiple DB2 Server for VM servers on the
VM host, there can be more than one SET APPCVM command.

The VM application server being accessed can be either on the same processor or
on another processor in the network. For batch applications and for online users
who want to access an application server on another processor in a SNA network,
you must issue the SET APPCVM command when you start VSE. The command
provides routing information for both batch and online users. Note that SET
APPCVM is required only if VTAM is to be used in the connection. If the server
and requester are in a TSAF collection on the same node, it is not necessary to
issue the SET APPCVM command.

[Figure 17 on page 98| shows the syntax of the SET APPCVM command.

© Copyright IBM Corp. 1987, 2007 97

A\
A

»>—SET APPCVM TARGET | resid

LI avs_parameter_block ’J

avs_parameter_block:

|—(—r‘esz’d, gateway_name, target LU _name,mode_name—) }

Figure 17. SET APPCVM Command

The variables have the following meanings:

resid
The resource identifier of the DB2 Server for VM application server which is
the same as the resid parameter on the I[UCV *IDENT entry in the database
machine directory for VM operating systems.

avs_parameter_block
Only specify these parameters if the application server you want to access is in
an SNA network. The names are defined by VTAM statements when the
network is built, and have these meanings:

resid
The resource identifier of the DB2 Server for VM application server. This is
the same as the resid parameter on the IUCV *IDENT entry in the database
machine directory on VM.

gateway_name
This corresponds to an APPL statement at the local system. To the SNA
network, gateway_name is an LU with the same name.

target_LU_name
This corresponds to an APPL statement at the remote system.

mode_name
This corresponds to a mode table entry at the local and remote systems.

The parameters must be specified in the order shown above.

For more information about the AVS parameters, see the VM/ESA: Connectivity
Planning, Administration, and Operation manual. For more information on the IPL
SET APPCVM command in VSE, see VSE/ESA System Control Statements.

Note: The VSE Guest sharing facility requires 40KB of real storage for each
database communication link. For more information on providing real
storage, see VSE/ESA System Control Statements

Operator Responsibilities

VSE guest sharing is monitored from the VM console. All DB2 Server for VM
operator commands can be used. In addition, in-doubt LUWSs can be forced from
the VM console.

VSE online support is needed if the VSE guest is using ISQL or a CICS transaction

program. The DB2 Server for VSE online resource adapter must be started so that
the application server can be accessed from the CICS online environment. If this is

98 System Administration

not done, and a CICS transaction attempts to access the application server, CICS
will end the transaction with CICS/VSE abend code AEY9.

Operation of the online support involves the following;:

1. Starting the application server in multiple user mode, either before or after
CICS is started.

2. Starting the DB2 Server for VSE online support by running the CIRB
transaction under CICS. The CIRB transaction accepts a list of server names.
This allows online access to multiple application servers to be established from
one command. After CIRB has successfully completed its processing, the online
resource adapter is ready to handle SQL requests from CICS transaction
programs (such as ISQL).

3. After the online resource adapter is started, the CICS transaction CIRA can be
used to add connections or enable online access to other application servers.
CIRA can be entered multiple times with different server_names. This establishes
the connections or enables online access to the specified application server.
CIRA also accepts a list of server_names so that online access to multiple servers
can be established with one command.

4. The transaction CIRR can be used to remove connections or disable online
access to a particular application server or list of application servers. The online
resource adapter is terminated if the CIRR transaction removes the connection
or disables online access to the last application server.

5. Displaying information about active CICS transactions (including ISQL) that
access an application server by using the CIRD transaction. The CIRD
transaction accepts a server_name parameter to display the transactions
accessing a particular application server. The * keyword can be specified to
display all transactions on all of the application servers (for example, CIRD *).

6. Changing the default application server using the CICS transaction CIRC.

7. Stopping the online support without stopping either CICS or the application
server by issuing the CIRT transaction. The CIRT transaction terminates all
connections or access to all application servers and then terminates the online
resource adapter.

If a local application server becomes unavailable for some reason, only the
connections to that application server are lost. The online resource adapter remains
active and connections or online access to other application servers can still be
used. When the local application server becomes available again, the CIRA
transaction can be used to re-establish connections to it. If there are any in-doubt
LUWs associated with this application server, they will be resolved at this time.

If the default application server becomes unavailable, a new default server is not
established automatically. Users attempting to connect to the default server will
receive a message indicating that the server is not available.

These steps are described in detail below. For more information on starting and
stopping online support for VSE guest sharing, see the [DB2 Server for VSE & VM|

peration| manual.

Starting the Application Server

Start the application server in multiple user mode from the DB2 Server for VM
console. (Online environment is not supported in single user mode.) Next, load
VSE and use the SET APPCVM command to identify the application server to VSE.
For more information on the APPCVM command, see [“Operating VSE Guest]

Chapter 5. Operating the Online Support for VSE Guest Sharing 99

[Sharing” on page 97/1f this is the first time CICS is started, you must grant
SCHEDULE authority to DBDCCICS on the application server.

Starting the Online Resource Adapter -- The CIRB Transaction

To activate the online support, run the CIRB transaction. When it completes, the
resource adapter is enabled. Only when this happens can user transactions be
executed.

CIRB has six parameters:

>>_CIRB ’) B}) B >
l—password,—l I—nolinks,—| |—defuid,—| |—r‘mid,—| |—langid,—|

|—Defaul t_server

| 2

server_name
]
v

(—L—_I—server_name——)—

Figure 18. CIRB Transaction Syntax

The parameters are described in the following table:

Table 8. CIRB Transaction Parameters

Parameter Default Description

PASSWORD SQLDBAPW This parameter establishes the operator’s authority to activate
(positional parameter online access to a local application server. The password identifies
1) the CICS subsystem. The user ID of the subsystem is the CICS

APPLID, which defaults to DBDCCICS. The procedure ARIS080D
uses the following job control to give the password and user ID to
the local application server:

// EXEC ARISQLDS,SIZE=AUTO,PARM='SYSMODE=S,
LOGMODE=N, PROGNAME=ARIDBS"

CONNECT SQLDBA IDENTIFIED BY SQLDBAPW;

GRANT SCHEDULE TO DBDCCICS IDENTIFIED BY CICSPSWD;
COMMIT WORK;

The password chosen (CICSPSWD above) must satisfy DB2 Server
for VSE & VM specifications for a password. This password
establishes which password to use when dropping connections
through the CIRR or CIRT commands. See ["Password Implications|
lon Online Resource Adapter Termination” on page 132| for more

details.
NOLINKS (positional |3 This parameter establishes the number of links (paths) that should
parameter 2) be initialized to a local application server. Specify this parameter as

a decimal value between 1 and 64. The number must be less than
or equal to the value assigned to the NCUSERS initialization
parameter of the DB2 Server for VSE & VM system. (The NCUSERS
default is 5.)

DEFUID (positional CICSUSER This parameter identifies the default user ID used by the online
parameter 3) support when it makes an implicit CONNECT to a local application
server. This parameter must satisfy DB2 Server for VSE & VM
specifications for a user ID.

100 System Administration

Table 8. CIRB Transaction Parameters (continued)

Parameter Default Description
RMID (positional 0 This parameter identifies a unique resource adapter. You must
parameter 4) specify it only if your installation has multiple CICS partitions

active in the same VSE/ESA system, and if each CICS partition
allows online access to a server. For the case of a local application
server, recovery requires that the local server know the resource
adapter it is servicing. You must specify this parameter as a decimal
value between 0 and 63.

If the DB2 Server for VSE online support detects that this ID is not
unique in the system, it issues a message. The CIRB transaction
then ends without enabling the resource adapter.

There can be only one DB2 Server for VSE resource adapter enabled
in a single CICS partition. An attempt to enable a second DB2
Server for VSE resource adapter causes the DB2 Server for VSE
online support to issue a message, and the CIRB transaction ends
without enabling the second resource adapter. The first one,
however, remains in effect.

LANGID (positional | specified at This parameter defines the language the DB2 Server for VM online
parameter 5) installation support uses to display error and information messages. The
language you specify on this transaction becomes the default
language for ISQL, CBND, C2BD, DSQG, DSQU, DSQD, and
DSQQ. The ISQL welcome logo always appears in the language
specified on this transaction.

This parameter must take the form of a minimum 1-character,
maximum 5-character language ID. You must use one of the
language IDs in the LANGID column of the
SQLDBA.SYSLANGUAGE table. The language ID must identify a
language you have installed on the DB2 Server for VM server. To
choose another language, use the SET LANGUAGE command in
ISQL. The following IDs can be specified on the CIRB transaction:

AMENG American English
UCENG Uppercase English
FRANC French

GER German

KAN]JI Kanji (Japanese)
HANZI Simplified Chinese

If this parameter is omitted, the language defaults to the language
chosen as the default at installation.

SERVER-NAME Determined from This parameter enables you to specify the application servers that
(positional parameter | DBNAME directory or | you want to access. If the list format specifies multiple servers, the
6) “SQLDS”. first one in the list becomes the default server. Only the first

server_name in the list may be omitted.

If this parameter (or the first one in the list) is omitted, the default
server is determined from the DBNAME directory. If the DBNAME
directory does not specify a default server, then SQLDS becomes
the default server name.

The CIRB transaction establishes the default application server. If the server_name
parameter is not specified on the CIRB transaction, then the default server is

Chapter 5. Operating the Online Support for VSE Guest Sharing 101

102

determined from the DBNAME directory. If a single server_name is specified on
the CIRB transaction then it becomes the default server. If a server_name list is
specified on the CIRB transaction, the first server_name in the list becomes the
default server. If the first server_name in the server_name list is blank then the
default server is determined in the same way as when the server_name is omitted
from the CIRB transaction. For example:

CIRB ,,,,,(,SQLMACH2)

This starts connections to two servers. The first one is the default server and its
name is determined from the DBNAME directory or if it is not specified in the
DBNAME directory it defaults to SQLDS. The second server is SQLMACH?2.

Note that the following examples are not allowed. Only the first server_name in
the list can be blank.

CIRB ,,,,,(SQLMACH2,)
CIRB ,,,,,(SQLMACH2,,SQLVM)

The number of server_names that can be specified on the CIRB command is
limited by the size of the input line on the VSE console or a CICS terminal. The
VSE console only allows one line of input. A CICS terminal allows much more
input. If short server_names are used more can fit on the command. Server-names
can be up to 18 characters long. If all of the required server_names cannot fit on
the command, the CIRA transaction must be used to establish connections for the
remaining server_names.

shows an example of using the server_name list on the CIRB transaction.

msg f2
AR 015 1I40I READY
2 cirb ,,,,,(sqlmachl,sqlmachl)
F2-002 ARI0410I Resource Adapter ARIOOLRM is enabled.
F2-002 ARIO450I DB2 Server for VSE online support has an
entry point of 003AA808 RMGL at 00541200.
F2-002 ARIO4541 Connections to SQLMACH1 established.
RMCV at 0055B2E0.
F2-002 ARIO4581 The default server is SQLMACHI.
F2-002 ARIO457W Connections to SQLMACH1 already exist.
F2-002 ARIO402E Connections to SQLMACH1 could not be established.

Figure 19. Example of CIRB with Duplicate Server Names

The maximum number of application servers to which an online resource adapter
can establish connections or enable online access to is only limited by the amount
of storage available in the partition where the online resource adapter is running.

If you try to establish connections to an application server to which connections
already exist, or to which online access is already enabled, the message “ARIO457W
Connections to <server_name> already exist.” is displayed. No action is taken against
that server. If the connections to a local server need to be changed they must first
be removed using CIRR or CIRT and then re-established using CIRA or CIRB. An
example is shown in [Figure 20 on page 103}

System Administration

msg f2

AR 015 1I40I READY

2 cirb ,,,,,(sqlmachl,sqlmach2)

F2-002 ARIO410I Resource Adapter ARIOOLRM is enabled.

F2-002 ARIO450I DB2 Server for VSE online support has an
entry point of 003AA808 RMGL at 00541200.

F2-002 ARI0O4541 Connections to SQLMACHI established.
RMCV at 0055B2E0.

F2-002 ARIO4581 The default server is SQLMACHI.

F2-002 ARIO4541 Connections to SQLMACH2 established.
RMCV at 0055C2E0.

2 cirr ,,,sqlmach2

F2-002 ARIO455I Connections to SQLMACH2 are disabled.

2 cira ,5,,sqlmach2

F2-002 ARIO4541 Connections to SQLMACH2 established.
RMCV at 0055A2E0.

Figure 20. Example of Changing Connection Settings

Note that each local server in the list has its connections established with the same
values for password, number of links, RMID, default user ID and language ID that
were specified.

If the CIRB parameters for each server are identical, all of the connections or online
access can be established with one CIRB transaction, as illustrated in

msg f2

AR 015 1I40I READY

2 cirb ,,,,,(sqlmachl,sqlmach2,sqlvm)

F2-002 ARIO410I Resource Adapter ARIOOLRM is enabled.

F2-002 ARI0O450I DB2 Server for VSE online support has an
entry point of 003AA808 RMGL at 00541200.

F2-002 ARIO4541 Connections to SQLMACH1 established.
RMCV at 0055A2E0.

F2-002 ARI04581 The default server is SQLMACHI.

F2-002 ARIO4541 Connections to SQLMACH2 established.
RMCV at 0055C2E0Q.

F2-002 ARIO4541 Connections to SQLVM established.
RMCV at 0055D2E0.

Figure 21. Example of CIRB with Server-Name List

All three local application servers have the same number of connections, the same
default user ID, the same password, the same RMID and the same language ID.

If one or more of the parameters must be different, then all of the connections
cannot be established with one CIRB transaction. You will need the CIRA
transaction to add additional servers.

If you enter a remote server name in the server_name parameter of the CIRB or
CIRA transaction, CIRB or CIRA will not establish any links or sessions to the
remote system where the remote server runs. The following message will not be
displayed by CIRB or CIRA when it is processing a remote server, but will display
for local servers.

ARI04541 Connections to server_name established.
RMCV at XXXXXXXX.

CIRB or CIRA will display the following message instead for every remote server
processed at initialization time:

Chapter 5. Operating the Online Support for VSE Guest Sharing 103

104

ARI0467I RMCV for remote server_name established.
RMCV at XXXXXXXX.

Starting the CIRB Transaction

The CICS sequential device support can be used to automatically start the CIRB
transaction when CICS is started. Either a CRLP (a card reader or line printer)
device, or a sequential DASD device must be defined in the CICS DFHTCT, to
allow them to simulate terminals.

If a CRLP device is defined, the CIRB transaction can be run automatically by
including it in the CICS startup jobstream. The CIRB statement should be coded
just as it would if it were entered from a terminal. Include a slash (\) at the end of
the statement to indicate the end of data. shows an example:

// EXEC DFHSIP,SIZE=NNNNK
CIRB PASSWORD,3,PRODCICS,0\
/*

Figure 22. Automatically Starting CIRB

If a sequential DASD device has been defined in the CICS DFHTCT, you must
define two sequential DASD data sets: one input and one output. These can be
either sequential access method (SAM) data sets or SAM-managed VSAM data
sets. The input data set must contain the CIRB statement. (A utility such as DITTO
or VSAM IDCAMS can be used to load the CIRB statement to the data set.) The
output data set will contain the messages from the CIRB startup process.
Whichever type of device is used -- CRLP or DASD -- do not include a CSSF
GOODNIGHT statement following the CIRB statement, as this would allow the
statement to be processed in all CICS startup modes (cold, auto, and emer).

The application server must be started before CICS for automatic startup to work.
When the CIRB transaction successfully ends, the following message is displayed
at the VSE console:

ARIO410I Resource Adapter ARIOOLRM is enabled

For more information about CICS sequential device support, see the CICS
Transaction Server for VSE/ESA V1R1.0 Resource Definition Guide manual. For
information about the DFHTCT entries required to define a sequential CRLP or
DASD device, see the [DB2 Server for VM Program Directori}

If a failure occurs, you can issue the CIRT transaction with the QUICK mode. This
mode disconnects links to the application server. For more information, see
[‘Stopping the Online Support -- The CIRT Transaction” on page 128|If the above
action does not solve the problem, CICS must be recycled.

SCHEDULE Authority for VSE Guest Sharing
The VM database must grant SCHEDULE authority to the CICS application
identifier(initialization parameter APPLID=).

Implicit CONNECT Support

This support allows development of online applications that do not issue an SQL
CONNECT statement. With this support, operators need not enter a user ID and
password as input to the online application, which is useful if your installation
requires terminal users to sign on using the CSSN transaction. For some
transactions accessing the database, the CICS sign-on verification may be sufficient.

System Administration

It can also be useful if you have just installed the database manager and find it
convenient to have all users identified by one name (for example, CICSUSER).

If a CICS transaction has not yet established a user ID for the current or prior unit
of work, and the user has signed on to CICS using the CESN (or CSSN)
transaction, online support will attempt to use the eight-character sign on user ID.
The user ID used will be the value returned by the CICS command

EXEC CICS ASSIGN USERID(data-area)

If you start the online support with CIRB, then before the online resource adapter
is able to run the implicit connect support to a local application server, it verifies
that the CICS subsystem has SCHEDULE authority on the local application server.

Grant the necessary SCHEDULE authority as follows:
GRANT SCHEDULE TO CICSTEST IDENTIFIED BY cicspw

where cicspw is the new password. The required password input parameter for
CIRB (and CIRT) is now cicspw.

If the online support can verify that the CICS subsystem has SCHEDULE authority,
it sets the DEFUID into each of the agents allocated for online use. The DEFUID
you specify as an input parameter for CIRB is the user ID used for all online
applications connecting to a local application server that do not issue an SQL
CONNECT statement and do not have a valid CICS sign on user ID.

Supporting Multiple User Online Access

The NOLINKS input parameter to CIRB causes the allocation of a fixed number of
links to the local application server. The online support suballocates the links to
CICS transactions when they issue their first SQL request. When a transaction has
a link, it keeps it until the end of the logical unit of work. When the number of
such transactions exceeds NOLINKS, some transactions have to wait for links, and
link contention occurs. Some planning is required to optimize the NOLINKS
parameter. NOLINKS varies as your application mix varies.

Consider these things about the NOLINKS input parameter:

¢ Initially, allow one link for each one to two ISQL users, and one link for each
four to ten users of preplanned transactions.

e The NOLINKS value must not exceed that of the NCUSERS initialization
parameter, which defines the total number of links to the application server.

* The online support uses the CICS monitoring facility to collect performance
data. For a given NOLINKS and a given period of the day, you can gather
information on the number of link waits, total link wait time, and total time
holding the link. For more information, see the |DB2 Server for VSE & VM|
[Performance Tuning Handbookl

* When a logical unit of work ends, the online support makes the freed link
available to all waiting transactions. The first waiting database transaction that
CICS dispatches gets the link. To define allocation priority for the online links,
consider using the operator, transaction, and terminal priority mechanisms of
CICS. (These are specified with the OPPRTY keyword of DFHSNT, and the
TRMPRTY keyword of DFHTCT respectively.)

* Consider defining one or more transaction classes for the transactions that access
the database manager, and limit access by using the CICS CMXT keyword of
DFHSIT. By correlating CMXT with NOLINKS, you can ensure that storage
resources in the CICS partition are not used until links are available.

Chapter 5. Operating the Online Support for VSE Guest Sharing 105

106

* Consider a similar technique to control the number of active ISQL users. Rather
than limit the total number of active ISQL users, you can control the number of
active users from a given department or user group. See |“Access Control to|
[[SQL on a VSE Guest” on page 141

CIRB Impact to System Resources

If the NOLINKS input parameter is 1, system resources are used as follows:

* You have n links allocated to the application server, and n application server
agents are used. The agents remain allocated for online applications until CIRT
is entered.

* Additional virtual storage is required in the CICS partition for the online
support. See [Appendix A, “Virtual and Real Storage Requirements,” on page 425]

* For each concurrent transaction that is attempting to access the application
server, additional virtual storage is required in the CICS partition. See
[Appendix A, “Virtual and Real Storage Requirements,” on page 425

Supporting Multiple CICS Partitions

Your installation can have multiple CICS partitions, each with access to the
application server. For recovery purposes, each instance of an active online
resource adapter must have a unique identifier. You can do this with the CIRB
RMID input parameter. You should keep the RMID for a CICS partition consistent,
by relating the RMID to the priority of each CICS, specifying a 0 for the
production CICS, 1 for the test-level CICS, and so on. If your installation has only
one CICS system, the RMID input parameter need not be specified.

Adding Connections -- The CIRA Transaction

The CIRA transaction has four parameters:

s

»»—CIRA . . . server_name
I—password,—| |—nolinks,—| |—defuid,—| \\ _

(——server_name—-)

Figure 23. CIRA Transaction Syntax

The parameters are described in the following table:

System Administration

Table 9. CIRA Transaction Parameters

Parameter

Default Description

PASSWORD
(positional parameter
)

SQLDBAPW This parameter establishes the operator’s authority to activate
online access to a local application server. The password identifies
the CICS subsystem. The user ID of the subsystem is the CICS
APPLID, which defaults to DBDCCICS. The procedure ARIS080D
uses the following job control to give the password and user ID to

the DB2 Server for VM server:

// EXEC ARISQLDS,SIZE=AUTO,PARM='SYSMODE=S,
LOGMODE=N, PROGNAME=ARIDBS"

CONNECT SQLDBA IDENTIFIED BY SQLDBAPW;

GRANT SCHEDULE TO DBDCCICS IDENTIFIED BY CICSPSWD;
COMMIT WORK;

The password chosen (CICSPSWD above) must satisfy DB2 Server
for VSE & VM specifications for a password. This password
establishes which password to use when dropping connections
through the CIRR or CIRT commands. See [“Password Implications|
[on Online Resource Adapter Termination” on page 132| for more
details.

NOLINKS (positional
parameter 2)

3 This parameter establishes the number of links (paths) that should
be initialized to a local application server. Specify this parameter as
a decimal value between 1 and 64. The number must be less than
or equal to the value assigned to the NCUSERS initialization
parameter of the DB2 Server for VSE & VM system. (The NCUSERS
default is 5).

DEFUID (positional
parameter 3)

CICSUSER This parameter identifies the default user ID used by the online
support when it makes an implicit CONNECT to a local application
server. This parameter must satisfy DB2 Server for VSE & VM

specifications for a user ID.

SERVER-NAME
(positional parameter
4)

none This parameter is required and it specifies the additional

application servers (local or remote), that you want to access.

If this parameter is omitted, the message ARI0O400E is issued
indicating that an invalid input parameter was entered.

The password, nolinks, defuid and server_name parameters have exactly the same
meanings as on the CIRB command. One exception is that the server_name
parameter is required on CIRA but is optional on CIRB.

The number of server_names that can be specified on the CIRA command is
limited by the size of the input line. As with CIRB, CIRA can be entered on the
VSE console or on a CICS terminal. On the VSE console the input is limited to one
line. On the CICS terminal it can use the full screen. If short server_names are used
more can fit on the command. Server_names can be up to 18 characters long. If all
of the required server_names cannot fit on the command, the CIRA transaction
must be repeated for the remaining server_names. [Figure 24 on page 108| shows an
example using the CIRA transaction with a server_name list.

Chapter 5. Operating the Online Support for VSE Guest Sharing 107

108

msg 2

AR 015 1I40I READY

2 cirb ,,,,,sqlmachl

F2-002 ARI0410I Resource Adapter ARIOOLRM is enabled.

F2-002 ARIO450I DB2 Server for VSE online support has an
entry point of 003AA808 RMGL at 00541200.

F2-002 ARIO4541 Connections to SQLMACH1 established.
RMCV at 0055A2E0.

F2-002 ARIO4581 The default server is SQLMACHI.

2 cira ,,,(sqlmach2,sqlvm)

F2-002 ARIO4541 Connections to SQLMACH2 established.
RMCV at 0055C2E0.

F2-002 ARIO4541 Connections to SQLVM established.
RMCV at 0055D2E0Q.

Figure 24. Example of CIRA with Server_Name List

The maximum number of application servers to which an online resource adapter
can establish connections or enable online access to is only limited by the amount
of storage available in the partition where the online resource adapter is running.

The CIRA transaction establishes connections or enables online access to the
specified application servers based on the parameters given on the CIRA
transaction. If a server_name list is used then connections or online access will be
established to each application server in the list using the same set of parameters.
For example:

CIRA thispw,4,thisid, (sqimach2,sqlvm)

The above command will establish four links to the local application server
SQLMACH?2 with password “thispw” and default user ID “thisid.” The RMID and
the language ID are inherited from the CIRB transaction. If the online resource
adapter was started with RMID = 0 and language ID = ameng then any
connections started to that same online resource adapter will also have RMID = 0
and language id = ameng. Then CIRA will establish four links to SQLVM with
password “thispw” and default user ID “thisid.” Again the RMID is 0 and the
language ID is ameng. If CIRA is entered before CIRB was run, the message
“ARI04111 Resource Adapter is not enabled.” is displayed.

If one or more of the parameters must be different, then the server_name list
format of the CIRA transaction cannot be used. The CIRA transaction would have
to be executed separately for each application server that required different
parameters. For example, if three links are required to SQLMACH?2 and four links
are required to SQLVM but the other parameters are the same for both servers, the
CIRA transaction must be run for each of them.

CIRA thispw,3,thisid,sqlmach2
CIRA thispw,4,thisid,sqlvm

If you try to establish connections or enable online access to an application server
that is already connected a warning message will be displayed. No action is taken
against that server. If the connections to a local application server need to be
changed they must first be removed using CIRR or CIRT and then re-established
using CIRA or CIRB.

Consider the following scenario. An online transaction program needs to access
three different application servers, SQLMACH2, SQLMACH1 and SQLVM.
SQLMACH?2 and SQLMACH]1 are running in two VSE partitions and SQLVM is

System Administration

running under VM and is accessed via guest sharing. We want SQLMACH]1 to be
the default server, and we want the default settings for all three servers.

To achieve this we could enter the following sequence of commands. Assume that
our CICS region is running in partition 2, SQLMACH?2 is running in partition 4
and SQLMACHI is running in partition 5.

1. Use the CIRB transaction to start the online resource adapter and establish the
default application server, SQLMACH]1.

2. Use the CIRA transaction to establish connections to SQLMACH2.
3. Use the CIRA transaction again to establish connections to SQLVM.

This is illustrated in

F2-002 DFH1500 - DBDCCICS : CONTROL IS BEING GIVEN TO CICS
msg f2
AR 015 11401 READY
2 cirb ,,,,,sqlmachl
F2-002 ARIO410I Resource Adapter ARIOOLRM is enabled.
F2-002 ARI0450I DB2 Server for VSE online support has an
entry point of 003AA808 RMGL at 00541200.
F2-002 ARIO4541 Connections to SQLMACH1 established.
RMCV at 0055D2E0.
F2-002 ARI0O4581 The default server is SQLMACHI.
2 cira ,,,sqlmach2
F2-002 ARIO4541 Connections to SQLMACH2 established.
RMCV at 0055C2E0.
2 cira ,,,sqlvm
F2-002 ARIO4541 Connections to SQLVM established.
RMCV at 0055A2E0.

Figure 25. Example of CIRB and CIRA

Since the settings for the connections to SQLMACH?2 and SQLVM are identical,
both connections could be established on the same CIRA command, as illustrated
in [Figure 24 on page 108}

Automatic Restart Resynchronization

If a system or subsystem failure occurs while an online application is trying to
commit work and two-phase commit is being used, the unit being committed is
called an in-doubt logical unit of work, because the database manager has
prepared it for commit or rollback but the system or subsystem failure occurred
before the commit completed. In-doubt units of work must be resolved the next
time the application server is started.

Note: CICS and the local application server will use a one-phase commit if at most
one external resource has been updated. In this case it is not possible to
create an in-doubt unit of work. This means that any CICS transaction that
updates only the local application server resources will not generate
in-doubt units of work.

The CICS restart resynchronization facility, which is started implicitly when you
issue CIRB or CIRA, resolves the in-doubt units of work created by any CICS
transaction that updated a local application server. To enable it, you must update
the CICS tables to include the resynchronization transaction.

CIRB and CIRA assume that restart resynchronization is enabled when they are
executed. If, for some reason it has been disabled when CIRB or CIRA is issued, it

Chapter 5. Operating the Online Support for VSE Guest Sharing 109

110

will display the message "ARIO466E CICS restart re-synchronization is not available.
The <tran> transaction is ended.” and exit. At this point the system programmer
should ensure that it has been properly enabled and retry CIRB or CIRA.

For information about the updates, see the [DB2 Server for VSE Program Directory| or
the DB2 Server for VSE, Client Edition Program Directory.

The current implementation of the CICS restart resynchronization facility allows it
to re-synchronize itself with DB2 Server for VSE online resource adapter only once.
After it has been invoked, CICS discards any information about in-doubt units of
work that it did not resolve. This means that there can be scenarios where it is not
possible to automatically resolve in-doubt units of work.

When the CIRB or CIRA transaction is started, a connection is made to the
READY/RECOVERY agent of the local server to get a 'recovery list’. This recovery
list provides information on any in-doubt agents that need to be resolved for this
server. After this has been done for every local server specified in the CIRB or
CIRA command, the CICS restart resynchronization facility is invoked, which will
resolve the in-doubt units of work for all of those local servers. A subsequent CIRA
to connect to another local server that also has in-doubt units of work will fail
because CICS has discarded the log information. The in-doubt units of work on
that server must be resolved manually using the FORCE n COMMIT or FORCE n
ROLLBACK commands on the server before the CIRA command will work.

For example, suppose that SQLMACH1 and SQLMACH2 are DB2 Server for VM
application servers that run on the same VM system and are accessed via guest
sharing. The password used to access SQLMACH]1 is ABC and the password used
to access SQLMACH?2 is DEE. All the other parameters needed by the two
databases are the defaults. The connections to SQLMACH1 and SQLMACH2 are
established using the following sequence of commands:

CIRB abc,,,,,sqlmachl

CIRA def,,,sqlmach2

Suppose that CICS transactions accessing these application servers also make
updates to the DB2 Server for VM database as well as some other external
non-CICS resource, so that CICS will use the two-phase commit process. If a
system failure occurs on the VM system while CICS is performing a two-phase
commit to both these databases, then both SQLMACH1 and SQLMACH?2 will go
down. When the system is brought back up and SQLMACH1 and SQLMACH?2 are
restarted, they will both have in-doubt units of work. If the connections to
SQLMACH1 and SQLMACH? are restarted the same way as before, only the
in-doubt units of work on SQLMACH]1 will be resolved automatically. The
in-doubt units of work on SQLMACH?2 will need to be resolved explicitly before
the CIRA command for SQLMACH2 will work.

See [Figure 26 on page 111] for an example of this.

System Administration

2 cirb

F2
F2

F2

F2-

002
002

002

002

2 cira

F2-

002

abc,,,,,sqlmachl
ARIO410I Resource Adapter ARIOOLRM is enabled.
ARI04501 DB2 Server for VSE online support has an
entry point of 0039F008 RMGL at 001DF5B4.
ARIO4541 Connections to SQLMACH1 established.
RMCV at 0053BF00.
ARI0458I The default server is SQLMACHI.
def,,,sqlmach2
ARI04541 Connections to SQLMACH2 established.
RMCV at 0055A080.

<System Failure occurs>

F2
F2

F2

F2
F2

F2
F2

002
002

002
002
002
002
002
002
002
002
002
002
002
002
002
002

002

002
002

002
002

002
002
002
002
002
002
002
002
002
002
002
002

ARI2908I XPCCB, IJBXRUSR = 0483061009000000

ARIO406E Error in using system communications facility.
Request = 15
Return Code = 4 Reason Code = 7

The default server is SQLMACHI.

DBDCCICS connected to server SQLMACHL.

Status of DB2 Server for VSE online applications:

Transactions holding a Tink to the application server but not using are:

TASKNO TRANID TERMID USER ID USERDATA TIME SINCE TOTAL LUW
LAST ACCESS TIME

0000041 CISQ SQLDBA L0O80 00:00:06 00:01:34

TIME= 15:26:15 DATE= 08/14/95

ARI0465I Transactions are still active
for server SQLMACHI.

ARI0463I The DISABLE transaction CIRR must delay for a
30-second interval before attempting the disable.

ARI04551 Connections to SQLMACH1 are disabled.

ARIO460W Connections to the default server SQLMACH1
have been disabled.

ARI2908I XPCCB, IJBXRUSR = 0483061009000000

ARIO406E Error in using system communications facility.
Request = 15
Return Code = 4 Reason Code = 7

The default server is SQLMACHI.

DBDCCICS connected to server SQLMACHZ2.

Status of DB2 Server for VSE online applications:

Transactions holding a Tink to the application server but not using are:

TASKNO TRANID TERMID USER ID USERDATA TIME SINCE TOTAL LUW
LAST ACCESS TIME

0000141 CISQ SQLDBA L083 00:00:06 00:01:34

Figure 26. Automatic Restart Resynchronization Failure (Part 1 of 2)

Chapter 5. Operating the Online Support for VSE Guest Sharing

111

F2 002 TIME= 15:26:45 DATE= 08/14/95
F2 002 ARIO465I Transactions are still active
for server SQLMACH2.
F2 002 ARIO463I The DISABLE transaction CIRR must delay for a
30-second interval before attempting the disable.
F2 002 ARIO455I Connections to SQLMACHZ are disabled.
F2-002 ARI0413I Resource Adapter ARIOOLRM is disabled.

<SQLMACH1 and SQLMACH2 are restarted>

2 cirb abc,,,,,sqlmachl

F2 002 ARIO410I Resource Adapter ARIOOLRM is enabled.

F2 002 ARIO450I DB2 Server for VSE online support has an
entry point of 0039F008 RMGL at 001DF5B4.

F2 002 ARIO4541 Connections to SQLMACH1 established.
RMCV at 0053BF00.

F2-002 ARIO458I The default server is SQLMACHI.

2 cira def,,,sqlmach2

F2 002 ARIO4541 Connections to SQLMACH2 established.
RMCV at 0055A080.

F2-002

F2 002 ARIO438E Automatic restart resynchronization failed.
A Togical unit of work that DB2 for VSE indicated
needed to be resolved was not identified by
the CICS/VSE log as needing resolution.

F2 002 ARIO423A Use the SHOW and FORCE commands to
COMMIT or ROLLBACK the following units of work:

F2 002 ARI04241 User ID = SQLDBA Agent Identifier =1
Server = SQLMACH2

F2 002 The default server is SQLMACHI.

F2 002 ===-=mmmmm e e

F2 002 DBDCCICS connected to server SQLMACHZ.

F2 002 There are no active DB2 Server for VSE transactions.

F2 002

F2 002 TIME= 15:33:22 DATE= 08/14/95

F2 002 ARIO455I Connections to SQLMACH2 are disabled.

<From the SQLMACH2 console enter:>
<SHOW ACTIVE>
<FORCE 1 ROLLBACK>

<Now CIRA will work>

2 cira def,,,sqlmach2
F2 002 ARIO4541 Connections to SQLMACH2 established.
RMCV at 0055A080.

Figure 26. Automatic Restart Resynchronization Failure (Part 2 of 2)

However if the connections to SQLMACH1 and SQLMACH?2 are established with
a single CIRB or CIRA command, the in-doubt units of work on both servers will
be resolved automatically.

See [Figure 27 on page 113 for a detailed example of this.

112 System Administration

2 cirb

F2
F2

F2

F2-
F2-

002
002

002

002
002

abc,,,,,(sqlmachl,sqlmach2)
ARIO410I Resource Adapter ARIOOLRM is enabled.
ARI04501 DB2 Server for VSE online support has an
entry point of 0039F008 RMGL at 001DF5B4.
ARIO4541 Connections to SQLMACH1 established.
RMCV at 0053BF00.
ARI0458I The default server is SQLMACHI.
ARI04541 Connections to SQLMACH2 established.
RMCV at 0055A080.

<System Failure occurs>

F2
F2

F2
F2
F2
F2
F2
F2
F2
F2
F2
F2
F2
F2
F2
F2

F2

F2
F2

F2
F2

F2
F2
F2
F2
F2

002
002

002
002
002
002
002
002
002
002
002
002
002
002
002
002

002

002
002

002
002

002
002
002
002
002

ARI2908I XPCCB, IJBXRUSR = 0483061009000000

ARIO406E Error in using system communications facility.
Request = 15
Return Code = 4 Reason Code = 7

The default server is SQLMACHI.

DBDCCICS connected to server SQLMACHL.

Status of online DB2 Server for VSE applications:

Transactions holding a Tink to the application server but not using are:

TASKNO TRANID TERMID USER ID USERDATA TIME SINCE TOTAL LUW
LAST ACCESS TIME

0000041 CISQ SQLDBA L080 00:00:06 00:01:34

TIME= 15:26:15 DATE= 08/14/95

ARIO465I Transactions are still active
for server SQLMACHI.

ARI0463I The DISABLE transaction CIRR must delay for a
30-second interval before attempting the disable.

ARI04551 Connections to SQLMACH1 are disabled.

ARIO460W Connections to the default server SQLMACH1
have been disabled.

ARI2908I XPCCB, IJBXRUSR = 0483061009000000

ARIOQ406E Error in using system communications facility.
Request = 15
Return Code = 4 Reason Code = 7

The default server is SQLMACHL.

DBDCCICS connected to server SQLMACHZ2.

Status of online DB2 Server for VSE applications:

Figure 27. Successful Automatic Restart Resynchronization (Part 1 of 2)

Chapter 5. Operating the Online Support for VSE Guest Sharing

113

114

F2 002 Transactions holding a link to the application server but not using are:

F2 002

F2 002 TASKNO TRANID TERMID USER ID USERDATA TIME SINCE TOTAL LUW
F2 002 LAST ACCESS TIME

F2 002

F2 002 0000141 CISQ SQLDBA LO83 00:00:06 00:01:34
F2 002

F2 002 TIME= 15:26:45 DATE= 08/14/95
F2 002 ARIO465I Transactions are still active
for server SQLMACH2.
F2 002 ARIO463I The DISABLE transaction CIRR must delay for a
30-second interval before attempting the disable.
F2 002 ARIO455I Connections to SQLMACHZ are disabled.
F2-002 ARIO413I Resource Adapter ARIOOLRM is disabled.

<SQLMACH1 and SQLMACH2 are restarted>

2 cirb abc,,,,,(sqlmachl,sqlmach2)
F2 002 ARIO410I Resource Adapter ARIOOLRM is enabled.
F2 002 ARIO450I DB2 Server for VSE online support has an
entry point of 0039F008 RMGL at 001DF5B4.
F2 002 ARIO4541 Connections to SQLMACH1 established.
RMCV at 0053BF00.
F2-002 ARIO458I The default server is SQLMACHI.
F2 002 ARIO4541 Connections to SQLMACH2 established.
RMCV at 0055A080.

Figure 27. Successful Automatic Restart Resynchronization (Part 2 of 2)

Assuming CICS restart resynchronization has been properly enabled as described
in the [DB2 Server for VSE Program Directory] manual, the conditions where in-doubt
units of work must be resolved explicitly are:

1. CICS log missing. This can be from a CICS log media failure, CICS COLD start
which destroys the log contents, or CICS journal is not active so no log data is
created.

2. CICS RESYNCH has already been issued. The log data is discarded by CICS
after the RESYNCH command has been issued even if it was not used. See
[Figure 26 on page 111| for an example of this.

To take full advantage of the automatic restart resynchronization the following

should be true:

1. All local application servers with in-doubt units of work must be started on the
same CIRB or CIRA transaction. This means they must have the same
password, default user ID, language, RMID, and number of links to be started.

2. CICS startup should be START=AUTO which lets CICS determine if the startup
will be START=WARM or START=EMER. Any COLD start will erase the log
data and automatic restart resynchronization will not be possible.

Resolving In-Doubt Transactions

Only under exceptional conditions (such as a CICS log media failure) do you have
to resolve in-doubt LUWSs explicitly. To do so, issue the SHOW ACTIVE command to
determine those agents that are in-doubt; then issue the FORCE command to commit
or rollback each one:

FORCE n COMMIT
or

FORCE n ROLLBACK

System Administration

where n is the agent identifier of the in-doubt LUW.

The discussion in the [DB2 Server for VSE & VM Operation| manual states that, in
general, FORCE n COMMIT should be entered. The exception is for applications
that access multiple resources (for example, an application that updates both a DB2
Server for VM database and a VSAM/VSE file.) For such applications, the operator
requires direction from the developer or user of the application.

You could plan for this situation by keeping a list of all transactions that update
multiple resources. The list should contain the CICS transaction identifier for the
application, and the recommended direction (COMMIT or ROLLBACK) from the
developer. (For more information, see the discussion on online application recovery
in the [DB2 Server for VSE & VM Database Administration| manual.) Because ISQL
does not update multiple resources, the direction for the ISQL transaction should
always be to commit work.

Changing the Default Server -- The CIRC Transaction

The transaction CIRC can be used to dynamically change the default server. The
CIRC transaction has one parameter:

»>—CIRC—server_name ><

Figure 28. CIRC Transaction Syntax

The parameter is described in the following table.

Table 10. CIRC Transaction Parameter

Parameter Default Description

SERVER-NAME |none This parameter is required and it specifies the
(positional application server that you want to become the
parameter 1) default.

If this parameter is omitted, the message ARI0400E
is issued indicating that an invalid input parameter
was entered.

The server-name specified must already have connections or online access
established to it, either from the CIRB or CIRA transactions. If connections to the
specified server do not exist or online access to the specified server was not
enabled from the CIRB or CIRA transactions, the message “ARI0456] Connections to
<server-name> do not exist.” is displayed. In this case the CIRA transaction must
first be run to establish the connections, then the CIRC transaction is run to make
it the default server.

For the following example assume that connections exist to SQLMACHI1 and
SQLMACH2 and that SQLMACH?2 is the current default server.

Chapter 5. Operating the Online Support for VSE Guest Sharing 115

116

msg f2
AR 015 1I40I READY
2 circ sqlmachl
F2-002 ARIO4591 The new default server is SQLMACH1.
The previous default server was SQLMACH2.

Figure 29. Example of CIRC

For this next example assume that connections exist to SQLMACH]1 but not to
SQLMACH?2.

msg f2
AR 015 1I40I READY
2 circ sqlmach2
F2-002 ARIO4561 Connections to SQLMACH2 do not exist.
2 cira ,,,sqlmach2
F2-002 ARIO4541 Connections to SQLMACH2 established.
RMCV at 0055D2E0.
2 circ sqlmach2
F2-002 ARIO459I The new default server is SQLMACH2. The previous
default server was SQLMACHI.

Figure 30. Example of CIRC

It is important to note that if the connections to the default server are lost, or
online access to the default application server is disabled, that server is still
identified as the default server. The connections can be lost because the server
went down or because the CIRR transaction was used to terminate the online
access or connection. Users that are trying to connect to the default server in these
cases will receive SQLCODE = -940. If the CIRB or CIRA transaction is used to
establish connections to a local server that is not ready, the message “ARI0418A
Application server <server-name> is not ready. Retry the enable transaction after the
application server starts.” is displayed. If the CIRB or CIRA transaction is used to
establish online access to a remote server that is not ready, an error message will
not be displayed. This is because CIRB or CIRA can not check whether a remote
server is ready or not.

Removing Connections -- The CIRR Transaction

To remove connections or to disable online access to a local or remote application
server, issue the CICS CIRR transaction. The CIRR transaction has four parameters:

v

»»—CIRR s > s
_[password,—l |—mode,—| l—interval,—l

|—Defaul t_server

» >

server_name
N
(—L—_ILserver_name——)—

Figure 31. CIRR Transaction Syntax

System Administration

The password, mode and interval parameters are the same as on the CIRT
transaction and are described in the following table:

Table 11. CIRR Transaction Parameters

parameter 2)

Parameter Default Description

PASSWORD SQLDBAPW This password establishes the operator’s authority to

(positional terminate the online access to the application server.

parameter 1) It must be the same password that was supplied for
the server by the CIRB or CIRA transaction. Refer to
“Password Implications on Online Resource Adapter|
Termination” on page 132 for more details.

MODE NORMAL This parameter establishes the shutdown mode:

(positional NORMAL or QUICK. When you specify NORMAL,

the CIRR transaction prevents new online users from
accessing the specified application server. Users who
are already doing work, however, can finish. When
all users complete their work, no online users can
use the specified application server. When you
specify NORMAL for a remote application server,
the shutdown of the access to the remote application
server will complete only when all conversations to
the remote application server have been deallocated.
When you specify QUICK for a local application
server, online access is ended immediately. Online
users cannot finish their work. Their current logical
units of work are rolled back (unless they are
already processing a COMMIT WORK). You can
change from NORMAL to QUICK. However, once
the MODE is QUICK, you cannot change it back to
NORMAL. When you specify QUICK for a remote
server, the QUICK mode is changed to NORMAL.
QUICK mode is not supported for a remote
application server.

Chapter 5. Operating the Online Support for VSE Guest Sharing 117

118

Table 11. CIRR Transaction Parameters (continued)

parameter 3)

Parameter Default Description
INTERVAL 30 (seconds) The number of seconds that the CIRR transaction
(positional should delay before freeing the terminal. The value

must be an integer value between 0 and 3600. This
parameter controls the availability of the CICS
terminal (or operator console) once you issue the
CIRR transaction.

The CICS terminal (or VSE operator console) used to
activate the CIRR transaction is unavailable until the
transaction ends. This could be a long time if the
online application is long-running or if a user left
without correctly ending the terminal session. If you
issue CIRR PASSWORD,NORMAL,, server_name the
terminal is not available until all online DB2 Server
for VM users complete their work.

The value you specify for interval represents an
interval of time measured in seconds. If the CIRR
transaction does not finish immediately, it waits the
amount of time you specify. When this time ends,
the CIRR transaction tries once again to finish
processing. If the CIRR transaction does not finish
successfully, you receive a message telling you to
retry the CIRR transaction later. After issuing the
message, the CIRR transaction ends. The shutdown
mode is still in effect (the specified server is in the
process of shutting down), and the terminal is
available for your use.

SERVER-NAME
(positional
parameter 4)

Determined by
CIRB or CIRC
transaction.

This parameter enables you to specify the
application servers from which you want to remove
access. The default server is removed if this
parameter is omitted, or if the first parameter in the
server_name list is blank. The default server is the
one that was established by the CIRB transaction or
by the CIRC transaction.

If no server_name is specified the default server_name is used. The default
server_name was established by the CIRB or CIRC transaction. The CIRD
transaction may be used to display the default server_name in case the user does
not know what the default server_name is.

msg 2

2 cirr

AR 015 11401 READY

F2-002 ARIO455I Connections to SQLMACH1 are disabled.
F2-002 ARIO460W Connections to the default server SQLMACH1 have

been disabled.

Figure 32. Example of CIRR with Defaults

The above example assumes that there are connections to more than one server
when the CIRR transaction is entered.

If the password, mode and interval are the same then the server_name list can be
used to remove connections or disable online access from multiple application

System Administration

servers. Since SQLVM was the last active connection, the online resource adapter
was terminated. SQLMACH?2 and SQLVM are local application servers, while
SQLMACHS is a remote server.

msg f2

AR 015 1I40I READY

2 cirr ,,,(sqlmach2,sqlmach8, sqlvm)

F2-002 ARIO455I Connections to SQLMACH2 are disabled.
F2-002 ARI0O455I Online access to SQLMACH8 is disabled.
F2-002 ARI0O455I Connections to SQLVM are disabled.
F2-002 ARI0413I Resource Adapter ARIOOLRM is disabled.

Figure 33. Example of CIRR with Server-Name List

The CIRR transaction can be used to remove the connections or disable online
access to the application server that were established by the CIRB and CIRA
transactions. If CIRR removes the last active connections to the online resource
adapter and all active APPC conversations known to the online resource adapter
are deallocated, then the online resource adapter is terminated. The CIRB
transaction would have to be used to restart it.

The CIRA and CIRR transactions can be entered repeatedly and in any order to
add and remove links to application servers or to enable and disable online access
to application servers as required.

If CIRR is entered to remove connections or disable online access to a server to
which no connections or online access have been established, the message
“ARI104561 Connections to <server_name> do not exist.” is displayed.

If the password given on the CIRR transaction does not match the password that
was used to start the connections or online access to the named server, then the
connections or online access to that server are not shut down and processing
continues with the next server in the list.

Displaying Information -- The CIRD Transaction

To display status information about active CICS transactions that access a local or a
remote application server, issue the CICS CIRD transaction.

The CIRD transaction does not require a password, and can be issued from any
CICS terminal or the operator console. To use it, you must enable it as well as the
CICS restart resynchronization facility. See the [DB2 Server for VSE Program Directory]
for more information.

—Default-server—
»»—CIRD

A\
A

L.
L,

|—S€I"V€Y‘_HCII77€—|

Figure 34. CIRD Transaction Syntax

Chapter 5. Operating the Online Support for VSE Guest Sharing 119

120

The parameter is described in the following table:

Table 12. CIRD Transaction Parameters

Parameter Default Description

SERVER-NAME | Determined by | This parameter enables you to specify the

(positional CIRB or CIRC application server whose status is to be displayed, or
parameter 1) transaction. * to display the status of all servers and the details

of transactions accessing the servers, or ? to display
a list of the connected servers without the
transaction details.

If this parameter is omitted, the default server_name
is the one that was determined by the CIRB or the
CIRC transaction.

Four categories of CICS transactions access the local application server. The
information that CIRD displays for transactions connected to a local server varies
depending on these four categories:

Transactions waiting to access the local application server

These transactions have issued an SQL request and are waiting because all links
to the application server are busy. For these transactions, CIRD displays the
elapsed time of the wait.

In general, links to the local application server are busy because other users are
accessing it. The only exception occurs when the DB2 Server for VSE online
support is being started; at that time, all links to the application server could be
busy during the synchronization of the database log and the CICS log. Usually
this requires little time, but a long delay can occur if a very large LUW is being
rolled back.

Transactions currently accessing the local application server

These transactions have established a link to the local application server and an
LUW. The application server is currently doing processing for that LUW. For
these transactions, CIRD displays the elapsed time of the current SQL statement,
and the elapsed time the link is held. The latter effectively indicates the elapsed
time of the current LUW.

Transactions holding a link to the local application server but not using it

These transactions have established a link to the local application server and an
LUW, but the application server is not currently processing for that LUW.
Instead, these transactions are doing other work or are waiting for terminal
communications. For these transactions, CIRD displays the elapsed time since
the last application server access ended, and the elapsed time the link is held.
Again, the latter effectively indicates the elapsed time of the current LUW.

Transactions that previously held a link to the local application server, but no
longer do.

These transactions have previously ended one or more LUWs, but have not yet
started another. For these transactions, CIRD displays the elapsed time since the
last LUW completed.

If you enter CIRD when the DB2 Server for VSE online support is not enabled or
when the CIRD is not operational, an error message is displayed and CIRD ends.
Note that for CIRD to display information about a transaction, the transaction
must have issued an SQL request. CIRD displays the following information (where
applicable) for each of the four categories of local database transactions:

System Administration

The CICS task number (TASKNO)

* The CICS transaction identifier (TRANID)
* The CICS terminal identifier (TERMID)

Not all transactions have a terminal identifier. For example, ISQL has a
two-transaction structure: ISQL and CISQ. The former controls the terminal and
the latter is for access to the application server. Because a CISQ transaction has
no terminal associated with it, instead of displaying TERMID for it, CIRD
displays the terminal identifier in another field called USERDATA (described
below).

If a transaction accesses the application server, but does not have a terminal
associated with it, CIRD does not display TERMID.

* The user identifier (USERID) that the application server establishes for the
transaction

CIRD does not display this identifier unless a user ID has been established,
which is done when an application issues an SQL statement that starts an initial
LUW. The user ID may not be established immediately. (For example, a
transaction can be waiting for a link to the application server.) It remains
established after a transaction ends an LUW, unless the RELEASE option of
COMMIT WORK or ROLLBACK WORK was used.

* User data (USERDATA) for ISQL transactions

The USERDATA field contains the terminal identifier (TERMID) of the terminal
that was used to call ISQL. For most other transactions, USERDATA is blank. It
is possible, however, to code an online application to initialize the USERDATA
field. Such an application would use the DB2 Server for VSE online cancel

support. For more information, see [“Coding Your Own Cancel Exit” on page]
65.

Note: If you are controlling ISQL access with the DFHSIT CMXT parameter, you
have renamed the ISQL transaction. For these renamed ISQL transactions,
CIRD still displays the terminal identifier of the terminal that was used to
run the transaction. For more information on this parameter, see
[Control to ISQL on a VSE Guest” on page 141

* The elapsed time intervals (as described above)

CIRD uses the following format to display the time:
hh:mm:ss

CIRD then displays the time of day and the date, as follows:
TIME=hh:mm:ss DATE=mm/dd/yy (or dd/mm/yy)

and then ends its processing. (The format of the date depends on how you
specified it on the DATE parameter of the VSE STDOPT JCC/JCS.)

If CIRD determines that no CICS transactions apply to the application server, it
displays only the time and the date, and then ends.

Note: If the DB2 Server for VSE online support ends abnormally (for example, if
the application server partition ends unexpectedly), the CIRD transaction is
called implicitly to display information about transactions that were
accessing the application server at the time of the failure. This information is
displayed on the VSE system console.

For the following examples, assume that SQLMACHLI is the default local server

and that connections have been established for the local application servers
SQLMACH]1, SQLMACH2 and SQLVM.

Chapter 5. Operating the Online Support for VSE Guest Sharing 121

shows an example of the information displayed by the CIRD transaction
with no parameters.

2 cird
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002

The default server is SQLMACHI.

DBDCCICS connected to server SQLMACHL.
Status of online DB2 Server for VSE applications:

Transactions waiting to establish a link to the application server are:

TASKNO TRANID TERMID USER ID USERDATA WAIT TIME

000033 MKE2 L222 00:01:32
000025 INV L224 JIM 00:08:32
Transactions holding a Tink and now accessing the application server are:

TASKNO TRANID TERMID USER ID USERDATA TIME USED TOTAL LUW

FOR CURRENT TIME
ACCESS
000019 CISQ DEPT222 L199 00:01:32 00:03:48
000037 INV L209 TERRY 00:00:01 00:00:03
Transactions holding a Tink to the application server but not using are:

TASKNO TRANID TERMID USER ID USERDATA TIME SINCE TOTAL LUW

LAST ACCESS TIME
000003 CISQ WILLIAM L210 00:07:01 00:10:56
Transactions which previously accessed the application server (not holding link):

TASKNO TRANID TERMID USER ID USERDATA TIME SINCE
LAST ACCESS

000003 MKE2 ROBERT L210 00:20:04

TIME=14:28:23 DATE=09/01/95

Figure 35. Example of CIRD with Defaults

[Figure 36 on page 123|shows an example of the information displayed by the CIRD
transaction with a server_name specified.

122 System Administration

2 cird

F2
F2
F2
F2
F2
F2
F2
F2
F2
F2
F2
F2
F2
F2
F2
F2
F2
F2
F2
F2
F2
F2
F2
F2
F2
F2
F2
F2
F2
F2

002
002
002
002
002
002
002
002
002
002
002
002
002
002
002
002
002
002
002
002
002
002
002
002
002
002
002
002
002
002
002
002
002
002
002
002

sqlmach2
The default server is SQLMACHI.

DBDCCICS connected to server SQLMACHZ2.
Status of online DB2 Server for VSE applications:

Transactions waiting to establish a link to the application server are:
TASKNO TRANID TERMID USER ID USERDATA WAIT TIME

000033 MKE2 L222 00:01:32
000025 INV L224 JIM 00:08:32

Transactions holding a Tink and now accessing the application server are:

TASKNO TRANID TERMID USER ID USERDATA TIME USED TOTAL LUW
FOR CURRENT TIME
ACCESS

000019 CISQ DEPT222 L1199 00:01:32 00:03:48

000037 INV L209 TERRY 00:00:01 00:00:03

Transactions holding a Tink to the application server but not using are:

TASKNO TRANID TERMID USER ID USERDATA TIME SINCE TOTAL LUW
LAST ACCESS TIME

000003 CISQ WILLIAM L210 00:07:01 00:10:56
Transactions which previously accessed the application server (not holding 1link):

TASKNO TRANID TERMID USER ID USERDATA TIME SINCE
LAST ACCESS

000003 MKE2 ROBERT L210 00:20:04

TIME=14:28:23 DATE=09/03/95

Figure 36. Example of CIRD with Server-Name

[Figure 37 on page 124] shows an example of the information displayed by the CIRD
transaction with the * specified.

Chapter 5. Operating the Online Support for VSE Guest Sharing 123

2 cird
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2 002
F2-002
F2 002
F2 002
F2 002
F2 002
F2 002

*

The default server is SQLMACHI.

There are connections to server SQLMACH1.
There are connections to server SQLMACHZ2.
There are connections to server SQLVM.

DBDCCICS connected to server SQLMACHI.
Status of online DB2 Server for VSE applications:

Transactions waiting to establish a Tink to the application server are:

TASKNO TRANID TERMID USER ID USERDATA WAIT TIME

000033 MKE2 L222 00:01:32
000025 INV L224 JIM 00:08:32
Transactions holding a Tink and now accessing the application server are:

TASKNO TRANID TERMID USER ID USERDATA TIME USED TOTAL LUW

FOR CURRENT TIME
ACCESS
000019 CISQ DEPT222 1199 00:01:32 00:03:48
000137 INV L209 BOB 00:17:34 01:24:03
Transactions holding a Tink to the application server but not using are:

TASKNO TRANID TERMID USER ID USERDATA TIME SINCE TOTAL LUW

LAST ACCESS TIME
000013 CISQ LARRY L210 00:03:01 00:11:36
Transactions which previously accessed the application server (not holding link):

TASKNO TRANID TERMID USER ID USERDATA TIME SINCE
LAST ACCESS

000003 MKE2 LOUISA L210 01:57:04

TIME=14:28:23 DATE=09/03/95

DBDCCICS connected to server SQLMACHZ2.
There are no active DB2 Server for VSE transactions.

TIME= 14:29:47 DATE= 09/03/95

DBDCCICS connected to server SQLVM.
There are no active DB2 Server for VSE transactions.

TIME=14:30:23 DATE=09/03/95

Figure 37. Example of CIRD with *

[Figure 38 on page 125|shows an example of the information displayed by the CIRD
transaction with the ? specified.

124 System Administration

2 cird ?

F2 002 The default server is SQLMACHI.

F2 002 There are connections to server SQLMACHI.

F2 002 There are connections to server SQLMACHZ2.

F2 002 There are connections to server SQLVM.

F2 002 === m e m o e e e -

Figure 38. Example of CIRD with ?

Some extra information can be derived from the displays. In notice that
SQLMACH]I is mentioned as the default server and on the next message that there
are connections to SQLMACHT also. It is possible, with the CIRR transaction, to
remove the connections to SQLMACH1. The CIRD command would still show that
the default server is SQLMACH]1 but the message indicating there are connections
to SQOLMACH1 would not be displayed. In this scenario, users connecting to the
default server would receive SQLCODE = -940 on the CONNECT statement. The
CIRA transaction could be used to establish connections to SQLMACH1 again or
the CIRC transaction could be used to change the default server to one of the other
active servers. Either method allows CONNECT statements to access the default
server.

If CIRR or CIRT has been issued to disconnect a server or to shut down the online
resource adapter but cannot complete because there are still active transactions
against the server, the CIRD transaction will show which transactions and which
servers are affected.

[Figure 39 on page 126 shows an example of the information displayed by the CIRD
transaction with the ? parameter specified. The attempt to remove the connections
to SQLMACH?2 fails because there are still active transactions. Then the CIRD
transaction is used to determine which transactions are still active. The user is
found and asked to complete his work. When the CIRR command is retried it
completes successfully and the connections to SQLMACH2 are shut down.

Chapter 5. Operating the Online Support for VSE Guest Sharing 125

2 cird ?

F2 002 The default server is SQLMACHI.

F2 002 There are connections to server SQLMACHI.

F2 002 There are connections to server SQLMACH2.

F2 002 There are connections to server SQLVM.

F2 002 ===-== - m e e e -

2 cirr ,,1,sqlmach2

F2 002 ARIO463I The DISABLE transaction CIRR must delay for a
1-second interval before attempting the disable.

F2-002

2 cird ?

F2 002 The default server is SQLMACH1.

F2 002 There are connections to server SQLMACHI.

F2 002 Connections to SQLMACH2 are being disabled.

F2 002 There are connections to server SQLVM.

F2 002 ===-=mmmm e -

F2-002

2 cird *

F2 002 The default server is SQLMACH1.

F2 002 There are connections to server SQLMACHI.

F2 002 Connections to SQLMACH2 are being disabled.

F2 002 There are connections to server SQLVM.

F2 002 ===-=mmmm e -

F2 002 DBDCCICS connected to server SQLMACHI.

F2 002 There are no active DB2 Server for VSE transactions.

F2 002

F2 002 TIME= 19:07:43 DATE= 09/20/95

F2-002

F2 002 ===-==mm e -

F2 002 DBDCCICS connected to server SQLMACHZ2.

F2 002 Status of online DB2 Server for VSE applications:

F2 002

F2 002 Transactions holding a link to the application server but not using are:

F2 002

F2 002 TASKNO TRANID TERMID USER ID USERDATA TIME SINCE TOTAL LUW

F2 002 LAST ACCESS TIME

F2 002

F2 002 0000129 CISQ CICSUSER L77D 00:00:31 00:00:31

F2 002

F2 002 TIME= 19:07:44 DATE= 09/20/95

F2 002 ===-==mm e -

F2 002 DBDCCICS connected to server SQLVM.

F2 002 There are no active DB2 Server for VSE transactions.

F2 002

F2 002 TIME= 19:07:45 DATE= 09/20/95

F2-002

2 cirr ,,2,sqlmach2

F2-002 ARIO455I Connections to SQLMACH2 are disabled.

Figure 39. Example of CIRD in a Disable Scenario

The CIRD transaction displays the following information (where applicable) for
transactions that relate to a remote application server:

RDBMS
displays the name, class, and release level (version, release, and modification
level) of the application server being accessed.

LU
displays the logical unit name.

TPN
displays the transaction program name. Its character and hexadecimal versions
are both displayed.

126 System Administration

TASKNO
displays the number of the task.

TRANID
displays the transaction id.

TERMID
displays the name of the terminal where the transaction was initiated.

USER ID
displays the connected user id.

STATUS
displays the communication state. COMM indicates that the transaction sent an
SQL statement to the database machine and has been waiting for a reply since
the time shown. APPL indicates that the transaction returned control to the
application at the time shown. VRA indicates that the Online Resource Adapter
is processing your request. WAIT indicates that the transaction is waiting for a
session.

TIME
displays the time when the STATUS displayed had begun. For example, task

number 891 has already returned control to the application at 09:12:42, as
indicated by TIME.

LUWID
displays the logical unit of work identifier, which uniquely identifies an LU6.2
conversation. Its value is netid.luname.instance_number.sequence_number where
netid and luname are up to 8 characters long, instance_number is 12 characters
long, and sequence_number is 4 characters long.

shows an example of the information displayed by the CIRD transaction

with a remote server-name specified.

User: 2 cird sqlmach8 h
System: F2 0002 The default server is SQLMACHS.
F2 0002 === === mmmmm o e e -
F2 0002 Status of online DB2 Server for VSE applications for
F2 0002 RDBMS = SQLMACH8 SQLDS/VM V6.1.0
F2 0002 LU = VMC3
F2 0002 TPN = SQLMACH8
F2 0002 (X'E2D8D3D4C1C3C8F8")
F2 0002
F2 0002 TASKNO TRANID TERMID USER ID STATUS TIME
F2 0002
F2 0002 LUWID
F2 0002
F2 0002 0000891 DRT1 DO8O SYSA APPL 1998-08-11.09:12:42
F2 0002 CAIBMOML.D08001.E31FE596ADDE.0001
F2 0002
F2 0002 TIME= 09:18:11 DATE= 08/11/98
F2-0002
N\ %

Figure 40. Example of CIRD with remote server name

[Figure 41 on page 128/ shows an example of the information displayed by the CIRD
transaction with a ? specified, where online access to the remote server RMTSERV1
is allowed. Assume that SQLMACH]I is the default local application server and
RMTSERV1 is a remote application server. Connections have been established for
SQLMACH]1 and online access to RMTSERV1 through the online support is
allowed.

Chapter 5. Operating the Online Support for VSE Guest Sharing 127

User:
System:

2 cird ?

F2 002 The default server is SQLMACH1.
F2 002 There are connections to server SQLMACHL.
F2 002 Online access to remote RMTSERV1 is allowed.

F2 002 -----

Figure 41. Example of CIRD with ?

Stopping the Online Support -- The CIRT Transaction

While the online support is enabled, it uses CICS resources (storage) and
application server resources (agents). At certain periods of the day, you may want
to free these resources and prevent online access to the application server. You
may, for example, want to allow only batch access to the application server for
purposes of loading a large amount of data. For either of these situations, the
operator can disable the online support by entering the CIRT transaction.

To end DB2 Server for VSE online support, issue the CICS CIRT transaction. The
syntax of the CIRT transaction is as follows:

\4
A

»»—CIRT . s s
_[passwor'd, —| |—mode, —| I—inter‘val—l

Figure 42. CIRT Transaction Syntax

Table 13. CIRT Transaction Parameters

Parameter Default Description

PASSWORD SQLDBAPW This password establishes the operator’s authority to

(positional terminate the online access to the application server.

parameter 1) It must be the same password that was supplied for
the CIRA or CIRB transaction. Refer to ["Password]
Implications on Online Resource Adapter|
Termination” on page 132 for more details.

128 System Administration

Table 13. CIRT Transaction Parameters (continued)

Parameter Default Description
MODE NORMAL This parameter establishes the shutdown mode:
(positional NORMAL or QUICK. When remote application

parameter 2)

servers are accessed by the online support, CIRT
NORMAL will complete only when all conversations
to the remote application servers are deallocated.
When you specify NORMAL, the CIRT transaction
prevents new online users from accessing the
application server. Users who are already doing
work, however, can finish. When all users complete
their work, no online users can use the application
server. When you specify QUICK, online access to
local application servers is ended immediately.
Online users accessing a local application server
cannot finish their work. Their current logical units
of work are rolled back (unless they are already
processing a COMMIT WORK). You can change
from NORMAL to QUICK. However, once the
MODE is QUICK, you cannot change it back to
NORMAL. When remote application servers are
accessed by the online support and you specify
QUICK, online access to the remote application
server is not ended immediately. Online users
accessing a remote server can finish their unit of
work, but cannot start a new logical unit of work.
QUICK mode is not supported for a remote
application server.

INTERVAL
(positional
parameter 3)

30 (seconds)

The number of seconds that the CIRT transaction
should delay before freeing the terminal. The value
must be an integer value between 0 and 3600. This
parameter controls the availability of the CICS
terminal (or operator console) once you issue the
CIRT transaction.

The CICS terminal (or VSE operator console) used to
activate the CIRT transaction is unavailable until the
transaction ends. This could be a long time if the
online application is long-running or if a user left
without correctly ending the terminal session. If you
issue CIRT PASSWORD,NORMAL the terminal is
not available until all online DB2 Server for VSE
users complete their work. Even with CIRT
PASSWORD, QUICK there may be some delay
before the CICS terminal allows the CIRT terminal to
complete its cleanup process.

The value you specify here represents an interval of
time measured in seconds. If the CIRT transaction
does not finish immediately, it waits the amount of
time you specify. When this time ends, the CIRT
transaction tries once again to finish processing. If
the CIRT transaction does not finish successfully,
you receive a message telling you to retry the CIRT
transaction later. After issuing the message, the CIRT
transaction ends. The shutdown mode is still in
effect (the specified DB2 Server for VM system is in
the process of shutting down), and the terminal is
available for your use.

Chapter 5.

Operating the Online Support for VSE Guest Sharing 129

If links or online access to multiple application servers exist, they will all be
removed. Once all of the links and/or online access have been removed, the online
resource adapter is terminated.

The following examples assume that SQLVM, SQLMACH1 and SQLMACH2 are
local application servers, and SQLMACHS is a remote application server.

msg f2

AR 015 1I40I READY

2 cirt

F2-002 ARIO455I Connections to SQLVM are disabled.
F2-002 ARIO455I Connections to SQLMACH2 are disabled.
F2-002 ARIO455I Connections to SQLMACH1 are disabled.
F2-002 ARIO455I Online access to SQLMACH8 is disabled.
F2-002 ARIO413I Resource Adapter ARIOOLRM is disabled.

Figure 43. Example of CIRT with Connections to Four Applications Servers

Note that the message ARI0413I Resource Adapter ARIOOLRM is disabled is not
displayed until the last application server connections and APPC conversations
have been severed.

When the online resource adapter is not active, the CIRA and CIRR transactions
are invalid. The online resource adapter needs to be enabled with the CIRB
transaction before the CIRA and CIRR transactions can be used.

F2-002 ARIO413I Resource Adapter ARIOOLRM is disabled.
2 cira ,,,sqlmachl

F2-002 ARIO411I Resource Adapter is not enabled.

2 cirr ,,,sqlmachl

F2-002 ARIO411I Resource Adapter is not enabled.

Figure 44. Example of CIRA and CIRR after CIRT

Effect of a Shutdown on Online Applications

In the NORMAL mode, CIRT prevents new LUWSs from being started. As LUWs
end, the links to the local application server are disconnected and APPC
conversations to the remote application server are deallocated. (The NORMAL
process allows for the normal end of all online LUWSs.) After all links are
disconnected and all APPC conversations are deallocated, the CICS storage
resources are freed, and application access to the DB2 Server for VSE online
support is no longer allowed.

In the QUICK mode, links to the local application server are immediately
disconnected. Some online LUWs may be interrupted. The CICS storage resources
are freed, and application access to online support is no longer allowed.

With QUICK, when the links are disconnected, the database manager does a
ROLLBACK WORK for all LUWs that were not committed or at a synchronization
point (that is, those LUWs that were prepared for COMMIT or ROLLBACK).

While the CIRT transaction is ending access in QUICK mode, the CICS transactions
that access the application server can be ended by CICS with an abend code of
AEY9, ASP7, or ASRA. To allow for normal transaction shutdown, then, you
should either use the CIRD transaction to determine which transactions accessing

130 System Administration

the application server are still active and wait until they are complete, or use the
CIRT transaction with the NORMAL option which allows all active users to finish
their work.

The QUICK mode is not supported when you are ending online access to a remote
server. In this case, the QUICK mode is changed to NORMAL mode.

Terminal Availability During Online Shutdown

The terminal used to activate the CIRT transaction for NORMAL or QUICK is
unavailable until the transaction ends. This could be a long time for a large online
application or for an online application controlled by a CICS terminal operator
who is not at the console. There are two conditions when CIRT may need to wait
(in CICS terms, delay for an interval of time):

* In the NORMAL mode, the process must wait until all LUWs complete
normally.

e In both NORMAL and QUICK modes, after all connections and APPC
conversations to the application server are severed, the process attempts to
disable itself. The attempt can fail if CICS finds some online transaction that is
still active and had access to the application server before CIRT was issued. In
this situation, the CIRT transaction cannot complete its clean-up process until
that transaction ends.

In the situations described above, CIRT will wait for an interval of time before
attempting to complete the cleanup process again. (The default interval of time is
30 seconds. The interval can be specified as an input parameter to CIRT.)

After the delay, the CIRT transaction determines if the condition that caused the
wait has passed. If it has, the process completes, and the online support is
disabled. If not, CIRT exits by returning to CICS (the shutdown mode is still active
and the terminal is free), and message ARI0414] is displayed, prompting the
operator to retry the CIRT transaction later.

The operator can proceed in a number of ways to disable the online support:

* The installation may have a policy that work can continue until 5:30 PM. The
operator routinely issues CIRT SQLDBAPW,NORMAL at 5 PM. Doing this prevents
new work from starting. The operator then waits until 5:30 PM and reissue the
CIRT transaction to proceed with normal transaction shutdown.

* The operator can use the CICS message transaction CMSG to route messages to
selected terminals or users, and CICS CEMT, CIRD or CSMT commands to
determine who or what applications are active, or to end the application. After
such operator intervention is completed, the CIRT transaction is re-entered and
the online support becomes disabled.

This intervention presupposes that the operator has information about those
CICS transactions that access the application server. You may find it useful to
keep a list or use a naming convention for all such transactions.

* If the NORMAL process was attempted and could not finish, the operator can
escalate the shutdown mode (escalate in the sense that the database manager
goes from NORMAL mode, which allows all LUWSs to end, to QUICK mode,
which immediately stops all access to the application server). To escalate, the
operator enters CIRT SQLDBAPW,QUICK.

Shutdown Impact to Online Applications

After the online support has been disabled, or before it has been enabled, CICS
abnormally ends any transaction that attempts online access to the application
server by abending the transaction with abend code AEY9. If an attempt is made

Chapter 5. Operating the Online Support for VSE Guest Sharing 131

132

to execute a transaction while the online support has not been enabled, the
transaction also abends with an abend code AEY9. If an application attempts to
use CICS HLPI to access either a CICS/VSE subsystem or non-CICS/VSE
subsystem that has not been enabled, the CICS terminal operator receives the
CICS/VSE abend code AEY9.

When the shutdown process is active, the following occurs:

* For NORMAL mode, the result depends on the state of the application program.
If it is in work, the process has no effect. If the application program is not in
work, the online support returns an SQLCODE of -937. A later request by such a
program will cause CICS to abnormally end the transaction with the AEY9
abend code.

* For QUICK mode, all initial requests result in the -937 SQLCODE, and a later
request will result in the AEY9 abend code.

Also, for the QUICK mode, the online support cannot participate in the CICS
two-phase syncpoint protocol. (For information on this protocol, review the
discussion on online application recovery in the [DB2 Server for VSE & VM|
[Database Administration| manual.) When the online support reports to CICS that it
is disabling, the result is an ASP7 abend. This is the general abend code that the
CICS syncpoint manager uses when a CICS or non-CICS/VSE subsystem cannot
participate in the two-phase syncpoint protocol. Online application programs do
not regain control for clean-up routines when an ASP7 abend occurs. The ISQL
transaction must be ended by the operator with the CICS CSMT or CEMT
command.

Password Implications on Online Resource Adapter
Termination

The password used on the CIRR and CIRT transactions must be the same one that
was used on the CIRA and/or the CIRB transactions. CIRR and CIRT will only
shut down the connections to servers where the password matches. If the
passwords do not match, that server is not shut down.

Consider the following example:

1. The online resource adapter is started with the command:
CIRB pwl,5,,,,(SQLMACH1,SQLMACH?2)

2. Connections to two new servers are added with the command:
CIRA ,,,(SQLMACHS3,SQLMACH4)

3. Another connection is added to a fifth server with the command:
CIRA pw2,1,SQLMACHS5

It is not possible to end the online resource adapter with one command in this
scenario. The CIRT or CIRR transactions must be run at least three times before the
online resource adapter is completely shutdown because three different passwords
were used to start it up.

The CIRT transaction issued with no parameters would only shut down the
connections to SQLMACHS3 and SQLMACH4 because they were the only servers
that were started with the default password.

To shut down SQLMACHS5, you would have to enter the following command:

CIRT pw2

System Administration

To bring down the remaining servers and stop the online resource adapter you
need to enter:

CIRT pw1 followed by CIRT

The CIRR transaction can also be used, but the server names must be specified.
The following shows the CIRR commands that would be equivalent to the CIRT
commands in this scenario.

CIRT pwl1 is equivalent to CIRR pw1,,(SQLMACH1,SQLMACH2)

CIRT is equivalent to CIRR ,,(SQLMACH3,SQLMACH4)

CIRT pw2 is equivalent to CIRR pw2,,SQLMACHS5

If the command:

CIRR ,,,(SOLMACH1,SQLMACH2,SQLMACH3,SQLMACH4,SQLMACHSY)

were entered only SQLMACH3 and SQLMACH4 would be disconnected.

Message ARI0464E will be issued for servers SQLMACH1, SQLMACH?2 and
SQLMACHS because the passwords do not match.

Similarly, if the command:
CIRR pw1,,,(SQLMACH1,SQLMACH2,SQLMACH3,SQLMACH4,SQLMACHS)
were entered only SQLMACH1 and SQLMACH?2 would be disconnected.

Message ARI0464E will be issued for servers SQLMACH3, SQLMACH4 and
SQLMACHS because the passwords don’t match.

Chapter 5. Operating the Online Support for VSE Guest Sharing 133

134 System Administration

Chapter 6. Maintaining Database Security

This chapter discusses the methods available for protecting the information in a
database:

Communications and system security
The security mechanisms to restrict unauthorized access to the database:
— Session-level security

The VTAM product supports a security exchange between two partner logical
units (LUs) that are attempting to establish a session with each other. This
security exchange is called partner LU verification.

— Conversation-level security
The APPC/VM communications allow an application requester to specify one
of the following levels of conversation security when it is trying to connect to
the application server:
- SAME
- PGM

— VM directory control statements

Use these statements to control the ability of an application requester to
communicate with the application server.

— User ID translation

Because the application server cannot differentiate between identical user IDs
from local and remote systems, the ability to translate inbound user IDs to
locally known ones can eliminate duplicate user IDs and avoid potential
security-related problems.

— Minidisk protection

Use the guidelines in this section to protect your database minidisks against
unauthorized access.

CMS restrictions

Certain CMS file manipulation commands must not be used on database files
because they can render the database useless.

System and DB2 Server for VM operator console considerations

The integrity and security of your database can be threatened if unauthorized
persons have access to the console. This section discusses how to use the CP
DISCONN command to restrict console access.

Access control to ISQL on a VSE guest

If VSE guest users use ISQL to access an application server on a VM/ESA
operating system, you may want to limit their access.

Communications and System Security

This section discusses the following topics:

Security at session and conversation levels

VM directory control statements that control communications between
application requesters and application servers

User ID translation
Protection of database minidisks

Connect userid and password resolution

© Copyright IBM Corp. 1987, 2007 135

136

Session-Level Security

Session-level security is controlled by the security acceptance (SECACPT) and
VERIFY parameters, which are used when an LU is defined in the VTAM product.
The type of session-level security that is specified determines the type of
conversation-level security that is supported. If SECACPT is set to CONV, only
PGM can be specified at the conversation level; if it is set to ALREADYYV, both
PGM and SAME can be specified. In addition, partner LU verification can be
specified when conversation-level security is SAME (that is,
SECACPT=ALREADYYV).

Note: You cannot specify SECACPT=ALREADYYV if you are using VTAM
Version 3 Release 2.

Partner LU verification is recommended for connections that the VTAM product
routes through an AVS gateway and that specify SECURITY=SAME. These
connections do not provide a user ID and password to be validated at the target
site. (When partner LU verification occurs, the identity of each SNA LU is
confirmed.) For more information on partner LU verification, see the Distributed
Relational Database Connectivity Guide , and the VTAM Resource Definition Reference
manuals.

Notes:

1. In VM, an LU is also known as an AVS gateway.

2. If a connection is routed to an application server through AVS with
SECURITY=SAME, then AVS user ID translation must be used. For more
information, see [“User ID Translation” on page 139.|

Conversation-Level Security

Conversation-level security can be specified by both DB2 Server for VM and
non-DB2 Server for VM users connecting to a DB2 Server for VM application
server. Non-DB2 Server for VM users are remote users by definition, and are
routed to the server by the VTAM product through an AVS gateway. The DB2
Server for VM users, on the other hand, can access a DB2 Server for VM
application server on the local system, and through an AVS gateway or TSAF
collection. In all situations, the user can specify the level of conversation security.
The type of conversation-level security that is supported depends on the
session-level security that is specified for the underlying system. The DB2 Server
for VM application server accepts a conversation-level security of either SAME or
PGM, and either rejects or accepts the connection on that basis. The default used
by the DB2 Server for VM application requester for the user is SAME.

Connections that specify SECURITY=SAME do not provide any security
identification. Only a user ID is provided, which is validated by the source host by
using CP, RACF, or an equivalent security manager product. Because the user ID is
validated by the source host, it is considered to be already verified by the target
host. The user ID that is sent is always the VM user ID. The value that is specified
for the :userid tag in the CMS communications directory is not used for
SECURITY=SAME connections. No password is sent.

The AGW ADD USERID command must be issued at the target AVS machine to
authorize inbound SECURITY=SAME connections. If this command is not issued,
these connections are rejected; if it has been used to map an inbound user ID at the
target AVS machine, the target host does not validate that user ID. The connection
is accepted, whether or not the mapped user ID exists on the target host. If the
command

System Administration

AGW ADD USERID remotelu * =

is issued, then the AVS machine will accept all already verified user IDs coming
from remotelu. However, the command

AGW DELETE USERID remotelu remuser

cannot be used to delete remuser from the AVS user ID table because the table does
not contain an entry for the remotelu/remuser pair. Instead, use

AGW DELETE USERID remotelu =
to delete all mappings corresponding to the remote LU remotelu.

Note: More than one user will be affected when AGW DELETE USERID remotelu = is
issued.

If the command AGW ADD USERID remotelu= is issued, then the command
AGW DELETE USERID remotelu userid is issued, userid is not deleted from the
AVS user ID table. The AVS machine will accept all user IDs coming from remotelu,
including userid. To undo the AGW ADD USERID command, issue the AGW
DELETE USERID command.

If the VTAM product is routing a connection through an AVS gateway, the AVS
translation feature must be used to map an inbound user ID to a user ID that is
locally defined. The mapped user ID is validated by the installed security manager
product such as RACF or CP. A mapping is enabled and disabled with the AGW
ADD USERID and AGW DELETE USERID commands.

Note: The AVS translation feature requires VTAM Version 3 Release 3 or later. You
can only use this feature when SECURITY=SAME.

Connections that are specified as SECURITY=PGM provide a user ID and a
password to be validated by the installed security manager product (for example,
CP, RACF, or an equivalent product). If the validation is successful, the connection
is accepted; otherwise, it is rejected.

For more information about conversation-level security, see the Distributed
Relational Database Connectivity Guide , and the VM/ESA: Connectivity Planning,
Administration, and Operation manuals.

Note: Conversation-level security is supported by APPC/VM but not by IUCV.

VM Directory Control Statements

The VM operating system provides control statements that can be added to the
directory entry of any virtual machine, both to enable functions and to restrict
access on a particular processor.

Access to the database can be controlled by controlling access to the application
server that manages it. Communications between an application requester and an
application server can be enabled selectively with VM control statements that are
added to the directory entries of one or both of the virtual machines. (The
application server virtual machine is also referred to as the database machine.)

You can use either the user machine or the database machine to control access

authority. If you want to allow all virtual machines on the same processor to
connect to the application server, add the IUCV ALLOW control statement to the

Chapter 6. Maintaining Database Security ~ 137

138

database machine directory entry. If you want to limit access to a particular
application server to a small group of users, add the IUCV resid control statement
to the directory entry of each user machine requiring access, and leave out the
ITUCV ALLOW control statement in the database machine directory entry.

Control Statements for VM/ESA Environments

In the VM/ESA operating systems, you can use the control statements IUCV
ALLOW, IUCV ANY, and IUCV *IDENT to control the access that application
requesters have to application servers.

IUCV ALLOW: When this statement is added to the directory entry of the
database machine, all application requesters and communications servers (such as
TSAF and AVS) on the same processor can connect to the application server.

IUCV ANY: When this statement is added to the directory entry of a virtual
machine, the application requester can connect to all application servers and
communications servers (such as TSAF and AVS) that are on the same processor.
To limit access to specific users, use this statement in each user machine requiring
access, instead of specifying IUCV ALLOW in the database machine.

You can further limit access to specific application servers by adding one or more
IUCV resid statements to the directory entry.

Attention: If the VSE guest user machine directory entry contains the IUCV ANY
statement, then anyone who knows the CIRB transaction password has database
administrator (DBA) authority on all application servers.

IUCV *IDENT: All databases are identified as VM resources with either a local or
global scope. A local resource can be accessed only by an application requester
residing on the same processor. A global resource can be accessed by an
application requester that is either local or remote.

The virtual machine where the application server resides (the database machine)
uses the IUCV *IDENT control statement to identify which resources it manages,
and whether the resources are local or global. For example, the statement IUCV
*IDENT SALESDB GLOBAL identifies a global resource (database) named
SALESDB, whereas the statement IUCV *IDENT SALESDB LOCAL identifies the
same database as a local resource.

Distributed Processing Security

The database manager takes full advantage of the TSAF and AVS communications
servers to make the application server accessible to both local and remote users.
The latter can be either DB2 Server for VM or non-DB2 Server for VM users.

Neither AVS nor TSAF depends on the selected protocol (either SQLDS or DRDA),
nor does the selected protocol depend on either AVS or TSAF. The contents of the
data streams that the communications servers facilitate are independent of both
TSAF and AVS.

If you want to use TSAF and AVS to route communications, you must do the
required setup tasks, including the addition of the VM directory control
statements, described above. In addition, you must define your database as a
global resource if you intend to support distributed processing.

For more information about VM directory control statements, see the VM/ESA:
Connectivity Planning, Administration, and Operation manual.

System Administration

Distributed Processing Administration

In a distributed environment, the role of the system administrator in authorizing
and activating new user IDs, resource identifiers, and AVS gateway names is very
important. You must enforce the following rules as strictly as possible:

* User IDs must be unique on the processor.

* Resource identifiers must be unique within the scope of an AVS gateway and a
TSAF collection.

+ All AVS gateway names must be unique within the host SNA network.

* Database names must be unique within the scope of all the SNA networks
interconnected with the host SNA network.

Note: Resource identifiers and AVS gateway names must not be the same as a user
ID (other than that of the resource manager), and they must not be specified
as ALLOW, ANY, or SYSTEM. Also, an AVS gateway name must not be the
same as any resource identifier.

For more information on VM directory control statements and on setting up TSAF
and AVS virtual machines, the see VM/ESA: Connectivity Planning, Administration,
and Operation manual.

User ID Translation

Each VM user ID is unique on a processor. However, in an environment of SNA
networks and TSAF collections, in which many processors can be interconnected
and user IDs are passed around for validation, the issues of duplication and
ambiguity must be considered.

The application server cannot identify whether a user ID forwarded by the
application requester belongs to a local or a remote user. For example, suppose
that user ID STEVE is on a remote system that can access the application server
through the AVS gateway; and that the same user ID exists locally and has a high
level of authority. The application server cannot differentiate between the local and
the remote users and treats them equally. This situation poses a risk to security,
and must be eliminated.

The security risk is maximized if the VTAM product routes the remote user request
through an AVS gateway, the remote user specifies SECURITY=SAME, and partner
LU verification is not performed. In this situation, you should use AVS to translate
the inbound user ID to one that is registered with the local security manager
product. The translated user ID is validated by the local security manager product,
which can be CP, RACF, or an equivalent product.

The situation described cannot happen if the remote user is using
SECURITY=PGM. This user must obtain a user ID and password from the local
system administrator before being able to specify SECURITY=PGM to access an
application server.

Note: Do not allow remote users to use a user ID that already exists on the local
system and that has been assigned to a local user.

Minidisk Protection

To help prevent unauthorized or malicious access to the database minidisks, do the
following:

1. Code both a read-sharing password and a write-sharing password on the
MDISK control statement for each minidisk.

Chapter 6. Maintaining Database Security 139

2. Specify a read (R) access mode on the MDISK control statement for each
minidisk to prevent more than one application server (or single user mode
user) from accessing the database minidisks at the same time.

3. Carefully control the set of users who know the minidisk passwords, and
ensure that they properly protect these passwords.

Connect Userid and Password Resolution

The execution of an SQL application program requires the Resource Adapter to
establish a connection to the database server. If the connection is implicit (i.e., the
application does not explicitly issue a CONNECT USER IDENTIFIED BY
statement) the userid and password used to establish it may be resolved from
several sources. The following summarizes the different scenarios:
1. If a COMDIR exists and it is active (connections over TCP/IP will always
require a COMDIR, but APPC connections may or may not use a COMDIR):
e If security is PGM, the userid and password are extracted from the COMDIR
to establish the connection.

— If the :userid tag is missing from the COMDIR entry:

DRDA Protocol
An SQL error is returned indicating a missing userid.

SQLDS protocol
The VM logon userid is used by the resource adaptor to establish
the connection.

— If the :password tag is missing from the COMDIR entry:

DRDA and SQLDS protocol
An SQL error is returned indicating the password is missing.

¢ If security is SAME, the userid used by the Resource Manager to establish
the connection will always be the VM logon ID, regardless of whether the
:userid tag is present in the COMDIR entry. The password is not required in
this case, but if it is present (in the COMDIR) it will be sent to the server for
authentication.

2. If a COMDIR is not active (only valid for APPC connections) the VM userid
and password are used to establish the connection.

CMS Restrictions

The CMS RESERVE command creates a CMS-like file for each database minidisk. If
you were to issue a CMS LISTFILE command for the database minidisks, you
would, in fact, see that a file resides on each minidisk. These files, however, are not
the same as regular CMS files.

140 System Administration

Attention: Never use the following CMS file manipulation commands or macros
on the database files, because they can render the database useless:
» ACCESS (with the ERASE option)

* ERASE

* EXECIO

* FORMAT (the minidisk after the database is created)

* MOVEFILE (to write to the file)

* RESERVE (the minidisk after the database is created)

¢ READCARD

« DISK LOAD

¢ RECEIVE (with the REPLACE option)

» FSERASE

» FSWRITE.

System and DB2 Server for VM Operator Console Considerations

The system console should never be left unattended. To protect the integrity of
your database, always have the operator sign off the console before leaving, by
entering:

#CP SET RUN ON
#CP DISCONN

This command enables the operator to sign off without stopping the application
server. To restrict access to the DB2 Server for VM operator console, only give the
password for the application server to people who need to use it, and who can be
trusted not to misuse it or to give it to other.

Access Control to ISQL on a VSE Guest

In VSE, ISQL is made up of two transactions: ISQL and CISQ. The former controls
the CICS terminal, and the latter controls access to the application server. By
creating the second transaction dynamically (instead of hard-coding it as CISQ)
you can put different departments or different groups of users into different CICS
classes. Each group would have different transaction identifiers for both
transactions of ISQL. Because the different groups have different CICS classes, you
can limit the number of active ISQL users in each group.

To implement this, create any transaction ID for the first transaction. Then, instead
of making CISQ the second transaction ID, make it identical to the first one except
for the last character, which should be a 2. For example, if there are five
departments, you could have chosen these transaction IDs:

First Second

Transaction ID Transaction ID Department
ISQL 1SQ2 202

ACCT ACC2 ACCOUNTING
SAL SA2 SALES

IN 12 INVENTORY
P P2 PLANNING

These examples show how the format works for different identifier lengths. Note
that when the first transaction ID is one character (P), the 2 is added (P2). Also
note that the first transaction ID cannot end with a 2.

Next, decide what the maximum number of ISQL users for each department
should be:

Chapter 6. Maintaining Database Security 141

142

First Second Maximum
Transaction ID Transaction ID Department ISQL Users

ISQL 1SQ2 202 2
ACCT ACC2 ACCOUNTING 3
SAL SA2 SALES 4
IN 12 INVENTORY 3
P P2 PLANNING 2

Next, specify the CICS parameters TRANSID, TCLASS, and CMXT as follows:

System Administration

TRANSACTION parameter in the CICS System Definition File

You must code an entry for each transaction ID defined. In the above example
these are: ISQL, ISQ2, ACCT, ACC2, SAL, SA2, IN, 12, P, and P2. The
TRANSACTION must specify the particular transaction ID (for example,
TRANSID=ISQ2 for the ISQ2 transaction), and the program name parameter
should reference the same program as CISQ or ISQL.

TCLASS parameter and CMXT parameter in the DFHSIT

To fully understand these two parameters, it is best to consider them together.
To implement the above example, you would code them as follows:

DEFINE TRANSACTION(ISQL) GROUP(DB2710) PROGRAM(ARIITRM) *
TWASIZE(300) INDOUBT(BACKOUT) SPURGE(NO) TPURGE(YES)

DEFINE TRANSACTION(ISQ2) GROUP(DB2710) PROGRAM(ARIISQL) *
TWASIZE(0) INDOUBT(BACKOUT) SPURGE(NO) TPURGE(YES) TCLASS(1)

DEFINE TRANSACTION(ACCT) GROUP(DB2710) PROGRAM(ARIITRM) *
TWASIZE(300) INDOUBT(BACKOUT) SPURGE(NO) TPURGE(YES)

DEFINE TRANSACTION(ACC2) GROUP(DB2710) PROGRAM(ARIISQL) *
TWASIZE(®) INDOUBT(BACKOUT) SPURGE(NO) TPURGE(YES) TCLASSS(2)

DEFINE TRANSACTION(SAL) GROUP(DB2710) PROGRAM(ARIITRM) *
TWASIZE (300) INDOUBT(BACKOUT) SPURGE(NO) TPURGE(YES)

DEFINE TRANSACTION(SA2) GROUP(DB2710) PROGRAM(ARIISQL) *
TWASIZE(0) INDOUBT(BACKOUT) SPURGE(NO) TPURGE(YES) TCLASS(3)

DEFINE TRANSACTION(IN) GROUP(DB2710) PROGRAM(ARIITRM) *
TWASIZE(300) INDOUBT(BACKOUT) SPURGE(NO) TPURGE(YES)

DEFINE TRANSACTION(I2) GROUP(DB2710) PROGRAM(ARIISQL) *
TWASIZE(®) INDOUBT(BACKOUT) SPURGE(NO) TPURGE(YES) TCLASS(4)

DEFINE TRANSACTION(P) GROUP(DB2710) PROGRAM(ARIITRM) *
TWASIZE(300) INDOUBT(BACKOUT) SPURGE(NO) TPURGE(YES)

DEFINE TRANSACTION(P2) GROUP(DB2710) PROGRAM(ARIISQL) *
TWASIZE(®) INDOUBT(BACKOUT) SPURGE(NO) TPURGE(YES) TCLASS(5)

These TCLASS values correspond to the positional values in the CMXT
parameter. These values are arbitrary, but you should set them up so that a
transaction’s TCLASS value corresponds to its CMXT positional parameter. In
the above example, ISQ2 has a TCLASS value of 1. This means that it is in class
1, which corresponds to the first positional value on the CMXT parameter. The
first positional parameter value for CMXT is 2. This means that the maximum
number of transactions that can be active in class 1 (TCLASS=1) is 2. Therefore,
the number of active Department 202 users of the ISQL-ISQ2 transactions is
limited to 2. The same is true for the other TCLASS and CMXT positional
values. (For unspecified CMXT values, the default is 1.)

Chapter 7. Managing Database Storage

This chapter discusses:

* Database storage concepts

* Adding dbspaces to a database

* Expanding the page tables in the directory
* Acquiring dbspaces for packages

* Managing storage pools.

Storage Concepts

A database contains user data objects (tables and indexes), and supporting
information maintained by the database manager. Specifically, it contains:

* A directory that is a minidisk containing database control information, including
mappings of the dbspaces to their addresses on DASD. The directory relates the
logical database image to the physical storage used.

* Either one, two, or four log minidisks which hold records that describe each
change made to the database. If any changes made to the data must be undone
or redone, logs can be used to restore the data to a consistent state.

* One or more storage pools, which are collections of minidisks. These minidisks
are called database extents. This is where the actual data is stored.

Directory

Log Log Log Log

Storage pool 1 Storage pool 2

Figure 45. The DB2 Server for VM Database

A dbextent is an allocation of actual DASD space. Storage pools are composed of one
or more dbextents. The size of a storage pool can be increased by adding more
dbextents, or reduced by deleting existing ones. Each dbextent is a CMS minidisk.
When dbspaces are assigned to a storage pool and their pages are filled, physical
DASD pages are taken from the dbextents of the storage pool.

Storage pools can be defined so that they are either recoverable or nonrecoverable.
By default, storage pools are recoverable, that is, the database manager does full
recovery for them. For nonrecoverable storage pools, only limited recovery is done.
For more information on nonrecoverable storage pools, refer to [“Nonrecoverable|
[Storage Pools” on page 240

A dbspace is a logical allocation of space in the database, divided into 4096-byte
blocks called pages. A dbspace is not a real allocation of DASD space, but only an
allocation of page tables in the directory. These page tables map logical dbspace
pages to DASD locations. The database manager dynamically allocates real DASD

© Copyright IBM Corp. 1987, 2007 143

storage space to support dbspace pages on a demand basis so unused pages do not
occupy DASD space.

Tab 1 Tab 4

Tab 2 Tab 5 Tab 6

Tables (Tab)
and indexes
(I) are stored
in dbspaces

Dbspace A Dbspace B Dbspace C

Each dbspace is
assigned to a
storage pool.

Storage pool 5 Storage pool 7

Storage pools
consist of
one or more
dbextents

Dbextent 5 Dbextent 9 Dbextent 7

Figure 46. Physical Database Concepts
How Information is Stored in Dbspaces

Tables and their indexes are stored in dbspaces. At the beginning of every dbspace
are one to eight header pages, which contain control information on the tables and
indexes that follow. Next come data pages, which hold the rows of the tables. At
the end are index pages, which hold the index entries. A page in a dbspace is
defined as a header page, a data page, or a index page, when the dbspace is
acquired. [Figure 47 on page 145 shows how information is stored in a dbspace.

144 System Administration

Header Data Index
Pages Pages (tables) Pages

Figure 47. Table and Index Storage in a Dbspace

When a table is created, its creator can either assign it to a dbspace explicitly by
specifying a dbspace in the CREATE TABLE statement, or can let the database
manager assign it to a default dbspace. Any indexes created on the table obtain
their storage from the same dbspace as that table.

shows two tables and their indexes in dbspace A, two tables and their
indexes in dbspace B, and one table with three indexes in dbspace C.

The potential capacity of a dbspace is fixed when it is defined with the ADD
DBSPACE command. A dbspace can hold up to 255 tables along with their indexes.

More than one table can be stored in the same dbspace, but a table cannot reside in
multiple dbspaces. If you store multiple tables in a dbspace, be aware that the
database manager may store rows from different tables on the same data pages.
For performance reasons, it is frequently desirable to have only one table per
dbspace. (Index entries from different indexes are never stored on the same page.)

There are three types of dbspaces: private, public, and internal. For private data,
there should be one private dbspace reserved for each user. These are locked at the
dbspace level, so the database manager does not incur unnecessary overhead while
users are accessing their own private data. Any tables that are to be accessed by
multiple users who will be doing UPDATE, INSERT, or DELETE operations should
be placed in public dbspaces, which have page- or row-level locking to support
concurrent access. Internal dbspaces are temporary spaces used only by the
database manager to perform tasks such as sorting.

Adding Dbspaces to the Database

Before tables and indexes can be stored in a dbspace, the dbspace must be added,
and then acquired. Adding a dbspace to a database consists of reserving page tables
in the directory, assigning the dbspace to a storage pool, and specifying it as public
or private. You can add dbspaces to the database using the SQLADBSP EXEC. This
EXEC resides on the service disk (V-disk) and can be run only by a database
machine in single user mode. For this reason, you should add enough dbspaces for
your future needs.

You cannot remove a dbspace after it has been added to the database. After it has

been acquired, you can drop its contents with the DROP DBSPACE operation so
that another user can acquire it.

shows the format of the SQLADBSP EXEC.

»»>—SQLADBSP—Dbname (server_name) ><
|—dcssID(id)—| |—PARM(parameters)—|

Figure 48. SQLADBSP EXEC

Chapter 7. Managing Database Storage 145

146

Dbname(server_name)
The DBNAME parameter is required. Any initial substring for DBNAME can
be used as the keyword (for example, DB or D). For server_name, specify the
name of the application server. (The name of the application server is defined
when the SQLDBINS EXEC is started to generate the database.)

dcssID(id)
The DCSSID parameter is optional. You can use DCSSID or ID for the
keyword. For id, you can specify the name of the bootstrap package that
identifies saved segments. If not specified, DCSSID defaults to SQLDBA, which
results in the SQLDBA bootstrap package being used, and the database
manager using the default saved segments. If you do not have default saved
segments, DB2 Server for VM code is loaded into the user free storage area.

PARM((parameters)
The PARM parameter is optional. Use it to specify additional initialization
parameters. Usually, the initialization parameters used by the SQLADBSP
EXEC are sufficient. You can specify other initialization parameters, as
required.

Note: If you have been accessing the database with archiving, you must specify
LOGMODE=A or L, as appropriate.

If you specify the PARM parameter, it must follow the other SQLADBSP
parameters. For a list of the valid initialization parameters, see [Table 6 on page 73|
That figure lists the parameters that apply in single user mode. Do not specify the
SYSMODE and STARTUP parameters. The SQLADBSP EXEC automatically
supplies SYSMODE=S and STARTUP=S. Also, do not specify the PROGNAME,
DUALLOG, and ALTLOG parameters. The PROGNAME parameter is not valid
with STARTUP=S, and the DUALLOG and ALTLOG parameters do not apply.

You can specify the DUMPTYPE, TRACDBSS, TRACRDS, TRACDSC and
TRACCONV parameters. For more information, see [“Multiple User Mode|
[nitialization Parameters” on page 54| The ADD DBSPACE operation requires that
the database manager be run in single user mode, therefore, the TRACDBSS,
TRACRDS, TRACCONYV and TRACDSC initialization parameters are the only
means of doing a trace of the ADD DBSPACE operation. (Operator TRACE
commands can only be entered when the database manager runs in multiple user
mode.)

If you use tracing, consider issuing your own CMS FILEDEF and LABELDEF
commands for the trace file. For more information on the FILEDEF and LABELDEF
commands, see the |[DB2 Server for VSE & VM Diagnosis Guide and Referencd manual.
For more general information about tape capabilities, see [*Tape Support” on pagel

You can use PARMID to specify a CMS file that contains parameter specifications
for the ADD DBSPACE operation.

When running, the SQLADBSP EXEC must have information about the dbspaces to
be added to the database. The SQLADBSP EXEC gets this information in either of
these ways:

1. You create a CMS file called resid SQLADBSP on the database machine A-disk
before running the EXEC. The resid is the VM resource ID associated with the
application server. In a VM/ESA operating system, resid and server name may
be different. The RESID NAMES file on the production disk is used to map the
resid to the server name defined during database generation.

System Administration

2. The SQLADBSP EXEC creates the resid SQLADBSP file for you while it is
running. For an example of this file, see If the file resid SQLADBSP
exists on the A-disk, the SQLADBSP EXEC prompts you whether to use the file
or erase it.

If you choose to have the file created dynamically, the SQLADBSP EXEC prompts
you to enter the number of public, private, and internal dbspaces to be added to
the database. You are then prompted for the number of pages and storage pool
assignments for each.

For more information on using the SQLADBSP EXEC to add dbspaces, see
[“Example of Adding a Dbspace to a Database” on page 149

In either situation, the SQLADBSP EXEC gives you the option of editing the resid
SQLADBSP file with the CMS XEDIT facility. For example, if you wish to decrease
the number of internal dbspaces, you will have to edit the file to change the
number.

PUBLIC 1024 7
PUBLIC 1024 8
PRIVATE 256 5
PRIVATE 256 5
PRIVATE 256 5
PRIVATE 256 5

1

INTERNAL 50 1024 9

Figure 49. Example of a resid SQLADBSP File

Notice that the format for the ADD DBSPACE control statements is the same as the
format for defining them during database generation.

When the resid SQLADBSP file is created and (optionally) edited, the SQLADBSP
EXEC starts the application server in single user mode with the ADD DBSPACE
option. The ADD DBSPACE operation uses the control statements in the resid
SQLADBSP file.

Specify each dbspace to be added as a record in the resid SQLADBSP file that
contains the type (public or private), the size (number of pages), and, optionally,
the storage pool assignment. (The default storage pool number is 1.) The number
you specify for the size should be a multiple of 128, since directory page tables are
allocated in multiples of 128-page table entries. If it is not, the database manager
rounds it up to the next higher multiple of 128. Separate all parameter values by at
least one blank.

On the last dbspace specification record you must specify the internal dbspaces to
be defined. This record contains the keyword INTERNAL, the number of internal
dbspaces to be supported, the size of each (in number of pages), and, optionally,
the storage pool assignments. Internal dbspaces can be assigned to either
recoverable or nonrecoverable storage pools. However, for performance reasons,
the internal dbspaces should not be assigned to storage pool 1 and preferably
should be stored in their own storage pool.

It is necessary that you re-specify the internal dbspace values each time you add a
new public or private dbspace, even if you are not changing these values from
what they were before. The internal dbspace specification overrides the previous
one, including changing the storage pool assignment.

Chapter 7. Managing Database Storage 147

148

Note: You may sometimes want to change the internal dbspace specifications for
reasons other than adding new user dbspaces. To do this, run the
SQLADBSP EXEC. When you are prompted to enter the number of public
and private dbspaces, respond “0” to these. When you are prompted to
enter the number of internal dbspaces to be added, enter a value. The
number you specify is added to the number of internal dbspaces with which
the database was generated. You are then prompted for the number of pages
and storage pool assignment; enter these. Finally, you are asked if you want
to modify the SQLADBSP file; respond “1” (for yes). You are now given the
opportunity to change the number of internal dbspaces. This allows you, for
example, to decrease the number of internal dbspaces in the database.

For example, suppose your database was generated with 50 internal
dbspaces, you want to add 4 dbspaces, and you want 4096 for the number
of pages. When you run SQLADBSP, you receive a message saying that the
database was generated with 50 internal dbspaces. Then you are asked to
enter the number of internal dbspaces you want to add and the number of
pages for each dbspace. Specify 4 and 4096, respectively. If you check the
SQLADBSP control file, the INTERNAL statement shows that there are 54
internal dbspaces having 4096 pages.

Now, suppose you rerun SQLADBSP. Again, you receive a message saying
that the database was generated with 50 internal dbspaces, and you are
asked to enter the number of internal dbspaces you want to add and the
number of pages for each dbspace. Specify 2 for the number of dbspaces
you are adding and 1024 for the number of pages. If you now check the
SQLADBSP control file, the INTERNAL statement shows that there are 52
internal dbspaces each having 1024 pages.

Considerations for Adding Dbspaces

The ADD DBSPACE operation updates the directory and the catalog tables in the
database. Only the updates to the catalog tables are recorded in the log; updates to
the directory are not. Because of this, you can have a problem if you normally
archive the database, and then try to restore it. Suppose the following events occur:

1. You do a database archive.

2. Later, you add dbspaces.

3. Later, users acquire and use those dbspaces.
4

. You do an archive restore using the archive file that you created in step 1 and,
if you use LOGMODE-=L, the subsequent log archives.

The directory and the database are not synchronized. The directory has been
restored from a database archive file that does not reflect the ADD DBSPACE
operation. The database is also restored from that file; but its restore includes the
updates recorded in the log or log archives, which do reflect the ADD DBSPACE
operation. Thus, the directory does not include the new dbspaces but the database
does.

To prevent this problem, archive the database immediately after the ADD
DBSPACE operation, as follows:

1. After you add the dbspaces, warm-start the application server in multiple user
mode (SYSMODE=M) with LOGMODE set to L or A.

System Administration

2. Immediately take a new database archive, with either the ARCHIVE, SQLEND
ARCHIVE, or SQLEND UARCHIVE command. (If you use SQLEND
UARCHIVE, remember to take the user archive after the application server
ends.)

Following this procedure will ensure that your current database archive reflects the
added dbspaces. (See [“Archiving Procedures” on page 201| and [“Restoring the]
[Database” on page 215/ for more information on archiving and restoring
procedures.)

If you do log archiving and restore the database using a database archive taken
before the ADD DBSPACE operation, the same problem that was described above
occurs. If you use a back-level database archive and subsequent log archives to
restore the database, the database archive that records the addition of the dbspaces
is skipped: the directory is restored from the back-level database archive and does
not show the addition of the dbspaces, but the subsequent log archives do.

If you used the ADD DBSPACE operation only to reconfigure your internal
dbspaces, restoring a back-level database does not unsynchronize the directory and
database, since information about internal dbspaces is stored in the directory but
their use is not recorded in the database. Thus, if you restore a back-level database,
the number and size of the internal dbspaces return to the back-level values.

The ADD DBSPACE operation is a two-phase process. The first phase updates the
database directory with the information about the new dbspace. The second
updates the SYSTEM.SYSDBSPACES catalog table.

Completion of the first phase is indicated by the message:
ARIO915I DBSPACE ADDED TO DATABASE

If an abnormal end occurs before message ARI0915I is issued, restart the ADD
DBSPACE operation from the beginning by rerunning the SQLADBSP EXEC. If an
abnormal end occurs after message ARI09151 is issued, restart the ADD DBSPACE
operation by doing a start up of the application server as follows:

SQLSTART DB(server-name) PARM(SYSMODE=S,STARTUP=W,PROGNAME=ARISEGB)

Example of Adding a Dbspace to a Database

When you create a new storage pool, you must also assign at least one dbspace to
the new pool to make it usable. Assigning dbspaces requires that you run the
SQLADBSP EXEC. [Figure 50 on page 150/ shows the procedure to add one public
dbspace to pool number 2 in the database named TEST. Note that the example
indicates the entries you make.

Chapter 7. Managing Database Storage 149

—> sqladbsp db(test)
ARIO717I Start SQLADBSP EXEC: 01/19/93 21:11:43 EST.
ARI0648A Enter the number of PUBLIC DBSPACES to add to the database.
_ 1
ARIO649A Enter the number of pages and storage pool assignment
for 1ST PUBLIC DBSPACE.
—> 512 2
ARI0648A Enter the number of PRIVATE DBSPACES to add to the database.
_ 0
ARIO603I The database was generated with
80 internal DBSPACES.
ARIO648A Enter the number of internal DBSPACES to add to the database.
_ 0
ARIO638D Do you want to modify the TEST SQLADBSP file?
Enter 0(No) or 1(Yes).

g —o
Figure 50. SQLADBSP Example of Adding a Dbspace

Notes for

The command to begin the ADD DBSPACE operation. Because no
parameters are specified, dcssID defaults to SQLDBA, POOL defaults to
LOG, and PARM defaults to the values shown in [Table 6 on page 73|

1 is entered to add one public dbspace.

This entry specifies the size and storage pool location of the public
dbspace.

0 is entered. No private dbspaces are added.

No additional internal dbspaces will be added, so 0 is entered.

Because nothing needs changing, enter 0 (No).

After ﬂ , the SQLSTART EXEC is automatically called. When this EXEC ends, the
SQLADBSP EXEC also ends, and the dbspace has been added.

To confirm that a dbspace has been added to the new storage pool, restart the
application server; use either the DBS utility or ISQL to issue this query:
SELECT DBSPACENO, DBSPACENAME, -

POOL FROM SYSTEM.SYSDBSPACES -
ORDER BY DBSPACENO

This query produces a table showing the dbspace numbers, dbspace names, and
the number of the pool each dbspace is assigned to.

Expanding the Database Directory

When a database is initially generated, a calculation is made to determine which
portion of the directory will be set aside for the page map table, and which portion
will be used for the allocation bitmaps. The size of the page map table determines
the maximum number of DBSPACE pages, that is, the maximum logical size of the
database. The size of the allocation bitmap determines the maximum number of
dbextent pages, that is, the maximum physical size of the database. As the
database grows in size with use, it may run short on either logical or physical
space. If it is short on logical space, the ADD DBSPACE operation may fail. If it is
short on physical space, the ADD DBEXTENT operation may fail. You can expand
the directory to correct these situations.

150 System Administration

Prior to SQL/DS Version 3 Release 5, the directory could be expanded to
accommodate more logical pages by expanding the page map table. With SQL/DS
Version 3 Release 5 and later, you can increase the size of the allocation bitmaps
and the page map table concurrently. If it is necessary to expand the directory to
hold more dbextent pages, the only available option would be to expand the
directory for both dbspace and dbextent pages.

Use SQLCDBEX to increase:
* The maximum number of dbspace pages, by expanding the page map table.

¢ The maximum number of dbspace pages and dbextent pages, by expanding the
page map table and allocation bitmaps concurrently.

The format is:

»>—SQLCDBEX—Dbname (server_name) ><

Figure 51. SQLCDBEX EXEC

Dbname(server_name)
The DBNAME parameter is required. Any initial substring for DBNAME can
be used as the keyword (for example, DB or D). For server_name, specify the
name of the application server. (The name of the application server is defined
when the SQLDBINS EXEC is started to generate the database.)

[Figure 52 on page 152|is an example of using SQLCDBEX to expand the directory
to hold more dbspace and dbextent pages.

Chapter 7. Managing Database Storage 151

152

sqlcdbex dbname(sqlvm350)

ARIO717I Start SQLCDBEX EXEC: 09/28/95 16:41:50 CET.

ARIO7211 Get DB2 Server for VM production minidisk WRITE access: SQLDB350 195.
DASD 0195 LINKED R/W; R/0 BY 2 USERS

ARI6102A Enter DBEXTENT number (or LOGDSK1, LOGDSK2,
ALTLGD1, ALTLGD2, or BDISK) to copy.

(Enter a null response to end input or
enter QUIT to exit.)

bdisk

ARI6188A Enter the output block size of the directory.
Enter 512 or 4096,
or a null response to use the original size,
or 111(Quit) to exit.

512

ARI6103A Enter virtual address for new BDISK.

(Enter a null response to end input or
enter QUIT to exit.)

300

DMSACP112S C(300) device error

ARI61481 New disk 300 has not been formatted. Program will continue
to format the disk before copying.

ARI6146D Are you expanding the DB2 Server for VM directory?
Enter 0(No), 1(Yes), or 111(Quit).

1

ARI6118I Formatting in progress. Please wait...

ARI6130I Disk 300 is formatted successfully.

ARI6200D You have requested to expand the directory.
Enter 1 to expand the directory to hold more DBSPACE
pages. Enter 2 to expand the directory to hold more
DBSPACE and DBEXTENT pages. Enter 111 to quit.
Enter 1,2 or 111(Quit).

2

ARI6198D Current maximum DBEXTENT pages: 1662976
New maximum DBEXTENT pages: 2502656
DBEXTENT pages added: 839680
Current maximum DBSPACE pages: 3294592
New maximum DBSPACE pages: 4964352
DBSPACE pages added: 1669760
Current directory size: 27362
Current directory block size: 512
New directory size: 41046
New directory block size: 512
Do you wish to continue with expanding the
directory to allow the directory to hold
additional DBEXTENT and DBSPACE pages ?

Enter 0(No), 1(Yes) or 111(Quit)

Figure 52. SQLCDBEX EXEC (Part 1 of 2)

System Administration

ARI6131I Copying in progress. Please wait...
ARI0640I 4000 of

41046 records copied to output disk.
ARIO640I 8000 of

41046 records copied to output disk.
ARIO640I 12000 of

41046 records copied to output disk.
ARI0640I 16000 of

41046 records copied to output disk.
ARIO640I 20000 of

41046 records copied to output disk.
ARIO640I 24000 of

41046 records copied to output disk.
ARIO640I 28000 of

41046 records copied to output disk.
ARI0640I 32000 of

41046 records copied to output disk.
ARI0640I 36000 of

41046 records copied to output disk.
ARIO640I 40000 of

41046 records copied to output disk.
ARI6201I Directory expansion completed successfully.

It is strongly recommended that a database

archive be taken immediately.
ARI6108I Minidisk copied successfully. The SQLVM350 SQLFDEF file

will be updated.
ARI6109I SQLVM350 SQLFDEF file has been updated on the A disk.

ARI6102A Enter DBEXTENT number (or LOGDSK1, LOGDSK2,
ALTLGD1, ALTLGD2, or BDISK) to copy.
(Enter a null response to end input or
enter QUIT to exit.)

ARI0620I SQLVM350 SQLFDEF file
successfully copied to production disk.
ARI0673I AT1 COPY DBEXTENT processing completed successfully.
ARIO7961 End SQLCDBEX EXEC: 09/28/95 17:11:35 CET
ARIO7211 Get DB2 Server for VM production minidisk READ access: SQLDB350 195.
Ready; T7=90.80/106.77 17:11:40

Figure 52. SQLCDBEX EXEC (Part 2 of 2)

Acquiring Dbspaces for Packages

The process of adding a dbspace merely reserves pages for it in the directory.
Before it can actually be used, it must be acquired. For details of how to acquire
dbspaces, see the |DB2 Server for VSE & VM Database Administration| manual.

Packages and view definitions are stored in system dbspaces named SYS0002,
SYS0003, SYSnnnn. Allocation of the initial system dbspace (SYS0002) is
performed during database generation. You should probably acquire an additional
package dbspace after installation, and then more as needs arise. Because unused
dbspaces only require minimal directory space and no data pages, acquiring them
is not costly. Thus, if your installation has many packages and views, it is a good
idea to acquire several dbspaces for packages in advance for later use.

The database manager stores packages and view definitions as tables. A dbspace
can contain up to 255 tables, and can therefore have up to 255 packages and view
definitions.

Although packages and view definitions are stored as tables, information about
them is found not in the SYSTEM.SYSCATALOG catalog table, but in the

Chapter 7. Managing Database Storage 153

154

SYSTEM.SYSACCESS catalog table. When a dbspace is acquired for packages, 255
empty tables are preallocated in it. For each table that is created, a row is added to
the SYSTEM.SYSACCESS catalog table that identifies the package table as unused.
Unused package tables can be either available or unavailable. The TNAME value
in SYSACCESS for unused package tables is represented either as

10x AVAILABLE or ¢0Ox UNAVAILABLE. (The x is a number from 1 to 5, which
is used internally.) Initially, all package tables in a newly acquired dbspace are
unused and available. As packages are created and views are defined, the TNAME
value is changed to indicate the package or view name.

As mentioned above, you can usually fit 255 packages in a dbspace. However, if
large packages are created, the dbspace pages may fill before all 255 package tables
are used. In this situation, all remaining package tables are unused and unavailable
and their TNAME value is marked in the dbspace as ¢0x UNAVAILABLE. When
the dbspace is full, the FREEPCT column of the SYSTEM.SYSDBSPACES catalog
table is updated. A FREEPCT of 1 means that space is still available, while a
FREEPCT of 0 means that this dbspace is full.

If a package or view is dropped from a dbspace that is not full, the database
manager does not drop the package table from the dbspace. Instead, it deletes all
the rows from the table, and marks the table as available in the
SYSTEM.SYSACCESS catalog table. The table can then be reused.

If a package or view is dropped from a dbspace that has been marked as full
(FREEPCT = 0), FREEPCT is reset to 1. Before these package tables can be reused,
however, their TNAMESs in the SYSTEM.SYSACCESS catalog table must be
changed to indicate that they are available. This is not done immediately, because
if it were, the next time someone tried to create a package, the database manager
would reuse the table from the package or view that was just dropped. It would
try to place the newly created package in a dbspace that is almost full, and it
probably would not fit. Thus, if you have used all the space in your package
dbspaces, you should acquire another dbspace rather than try to free space by
dropping one or two unused packages. The package tables will be marked
available the next time the database manager does preallocation.

Preallocation is done when you acquire a new package dbspace. It is also done
when you try to create a view or a new package, and there are no available
packages. If the database manager cannot find an available package, it looks in all
dbspaces that are not full (FREEPCT=1) for package tables that are marked
unavailable, and marks them as available.

A user with DBA authority can acquire a package dbspace by issuing the following
SQL statement when the database is running in multiple user mode:

ACQUIRE PUBLIC DBSPACE NAMED SYSnnnn (PAGES=xxxx)
where

nnnn is the number of the package dbspace. (SYS0002 is the initial dbspace,
so the next one will be called SYS0003, the next one, SYS0004, and so on.)

xxxx is the number of pages of address space for the dbspace. The usual
value is 2048, but you can set it larger or smaller if your programs have a
large or small number of SQL statements in them, or if you are adding many
views to the database.

System Administration

You should specify the PAGES parameter because the default value of 128 is
usually too small. You can specify NHEADER or allow it to default to 8. The
database manager sets PCTFREE to 1, PCTINDEX to 0, and LOCK to PAGE
(page locking). If you try to specify any of these parameters, your settings
will be ignored.

If no package tables are available in any package dbspace during preprocessing,
SQLCODE -945 is returned, and the DBA must acquire another dbspace for
packages.

If sufficient space is not available in the dbspace where the database manager
attempts to create the package, it returns SQLCODE -946. The user’s response
depends on the availability of package tables in other dbspaces. If some are
available, the user can try to preprocess the program again. (The database manager
does not choose the same dbspace again because it sets FREEPCT=0 when the
preprocess fails.) If no package tables are available, another dbspace for packages
must be acquired.

To get information about unused packages (available and unavailable), issue the
following query:

SELECT * FROM SYSTEM.SYSACCESS WHERE TNAME LIKE '%AVAILABLE'

To determine which package dbspaces are full because all the space is taken, issue:
SELECT = FROM SYSTEM.SYSDBSPACES WHERE DBSPACENAME LIKE 'SYS0%'

If the FREEPCT value is 0, there is no free space in the dbspace.

To determine which package dbspaces are full because all 255 tables are occupied,
issue:
SELECT DBSPACENO, COUNT(*) -
FROM SYSTEM.SYSACCESS -

WHERE TNAME NOT LIKE '%AVAILABLE' -
GROUP BY DBSPACENO

Dbspaces with a count of 255 have no available package tables. (For information
on the syntax of the ACQUIRE DBSPACE and SELECT statements, see the
[Server for VSE & VM SQL Reference manual.)

Managing Storage Pools

Typically, you set up your database to be supported by multiple storage pools, so
that you can control what data resides on what devices, and can manage physical
DASD allocations differently for different data. The following sections discuss uses
of storage pools and how to define them.

Design Considerations for Storage Pools

A storage pool consists of a large collection of 4-kilobyte DASD pages, called slots,
for storing allocated public and private dbspace pages and shadow pages (old
copies of dbspace pages that have changed since the last checkpoint). Dbspace
pages that are not allocated are not stored. For internal dbspaces, slots are
occupied only by nonempty pages of data for active logical units of work.

The placement of dbspace pages in storage pool slots is determined by the
database manager; however, you control which pool of slots the dbspace pages are

Chapter 7. Managing Database Storage 155

156

assigned to. This allows you to control device utilization and the use of different
DASD allocation schemes for different data.

Estimating Storage Requirements

You may often choose to undercommit the actual DASD space available for the
dbspaces. Because a dbspace cannot be extended after it is defined, and because it
is really only a logical allocation of space, many dbspaces are defined to be much
larger than needed. As a result, the actual storage pool slots required are fewer
than the dbspace sizes imply. The number of dbextent pages should be defined to
support the expected number of dbspace pages that will actually be used.

The undercommitting approach to managing storage pools is particularly useful if
the tables involved are expected to grow over time. The sizes of the dbspaces are
set based on how large the tables can grow, while the size of the storage pool is
defined based on current storage requirements. As the tables grow, you can extend
the storage pool by adding dbextents to it.

Undercommitting is also useful for supporting internal dbspaces. It is unlikely that
you will ever need all the pages of all of the internal dbspaces at the same time.
The number of internal dbspaces defined is based on the most the database
manager would need at one time, and the size for each is defined based on the
worst possible situation that could occur. (Note that internal dbspaces are all the
same size.)

If you want to guarantee space availability, or have more dynamic dbspace storage
requirements, you should overcommit the DASD space available for dbspaces. For
example, you might want to do so to handle the storage requirements for private
dbspaces. User requests for more or bigger dbspaces can be relatively frequent.
Rather than repeatedly going through an ADD DBEXTENT operation, you could
overcommit the storage pool for private dbspaces and handle the user requests
through the ADD DBSPACE and ACQUIRE DBSPACE operations. (You may still
have to run the ADD DBEXTENT operation, but not as often.) For overcommitting,
allocate sufficient slots to handle all dbspace pages plus the potential shadow

pages.

Controlling Device and Channel Utilization
Storage pools enable you to control device and channel utilization through one of
two basic approaches:

 Separating highly referenced dbspaces

Two highly active dbspaces can be placed on different devices by assigning them
to different storage pools and defining the dbextents of these storage pools on
different devices.

* Spreading a highly referenced dbspace across devices

A single highly active dbspace can be spread across multiple devices by defining
its storage pool as small, multiple dbextents, each of which is a CMS minidisk
defined on a different device.

Controlling Data Location

You can allocate a table and all its indexes to a specific device or CMS minidisk. To
do this, create the table in a dbspace with no other tables, assign the dbspace to its
own storage pool, and define the dbextent (or dbextents) as the CMS minidisk (or
minidisks) on the volume that you want.

System Administration

Monitoring Storage Pools

Use the SHOW POOL command to display physical storage information about each
storage pool defined, including:

* The total number of pages in the storage pool
* The number of pages being used
* The percentage of the pages in use

¢ The number of dbextents defined for that storage pool, in the order in which
they were defined (which is also the order in which they will be searched for a
free page)

* For each dbextent
— The total number of pages
— The number of free pages

* A short-on-storage indicator.

You can issue the SHOW POOL command from either the operator console or from
ISQL. For more information about it, refer to the [DB2 Server for VSE & VM|
manual. To see information about reusable deleted dbextent numbers,
use the SHOW POOL DELETED command.

Maintaining Storage Pools
To maintain storage pools, you:
¢ Add storage pools to the database

You add a storage pool to a database by adding a dbextent to a nonexistent
storage pool, using the ADD DBEXTENT process described in
[Dbextents to a Storage Pool.”|

* Add storage to existing storage pool

If any of your storage pools are short on storage, you can use the ADD
DBEXTENT process to increase their size.

* Remove storage from storage pools
You can use the DELETE DBEXTENT process to release DASD for other uses.
* Move dbextents to another device

* Move log disks to another device

Adding Dbextents to a Storage Pool

Dbextents can be added to a nonexistent storage pool (which defines a new storage
pool), or to an existing storage pool (which increases the size of the storage pool)
using the following two-step process:

1. Define a minidisk for each dbextent being added.

2. Run the SQLADBEX EXEC from the database machine.

These steps are described in more detail below.

Step 1: Define the Dbextent Minidisks: Before adding a dbextent to the
database, you must define a minidisk for that dbextent. The minidisk definition
allocates the DASD space and establishes the size of the dbextent. You define a
minidisk by adding an MDISK control statement to the VM directory of the
database machine.

[Figure 53 on page 158 shows example MDISK control statements for three
minidisks that are to be database dbextents.

Chapter 7. Managing Database Storage = 157

158

MDISK 31A 3380 cylr 50 DBDSK7 R DBXO1 AFRT
MDISK 323 3380 cylr 20 DBDSK8 R DBXO1 AFRT
MDISK 43A 3380 cylr 30 DBDSK8 R DBXO1 AFRT

Figure 53. Example MDISK Statements for Adding Dbextents

Note: Refer to [Table 41 on page 429| for minimum space allocation values.

In the example shown in one dbextent minidisk with a virtual device
address of 31A is defined on volume DBDSK?7. Two more, on virtual device
addresses 323 and 43A, are defined on volume DBDSKS.

Read access mode (R) is specified with a read (DBX01) and write (AFRT) password
for each minidisk. A user who knows the passwords can access the minidisks
when the database manager is running in single user mode.

Database minidisks must always have a read password, a write password, and
an access mode of R. If the passwords or access mode are overlooked, the
minidisks are susceptible to careless or malicious access. For more information on
the MDISK control statement, see the VM/ESA: Planning and Administration manual.

In the example, the sizes of the dbextent minidisks are specified in cylinders. The

number of storage pool slots represented depends on the device types of DBDSK7

and DBDSKS. Because both are IBM 3380 volumes, the slots represented are:
virtual device 31A -- 7467 slots

virtual device 323 -- 2964 slots
virtual device 43A -- 4446 slots

1 sTot = 1 4-kilobyte block

The tables in[Appendix B, “Estimating Database Storage,” on page 427 show how
many slots are held on each of the different count-key-data (CKD) devices. For
FB-512 devices, the sizes are specified in blocks. One dbextent page equals 8 blocks
of an FB-512 device.

You can move dbextents between device types so long as the dbextent is not larger
than the size of the device. When you define dbextents, you should keep this in
mind. For example, if you defined a dbextent of 600000 blocks on a 9335, you
could not move that dbextent to a 9332 (which is limited to 360032 blocks). If you
defined 3 dbextents, each of 200000 blocks, on a 9335 (for a total of 600000 blocks),
you could move them to three 9332 devices.

Updating the MAXCONN Setting: When adding MDISK control statements for a
database machine, you must increase the MAXCONN value by the number of
dbextents added. The MAXCONN value is a parameter of the VM OPTION control
statement. This value determines the number of VM IUCV or APPC/VM
connections allowed for a virtual machine. The MAXCONN parameter is unique to
each database machine. For more information, see |“Setting the MAXCONN Value”)

Step 2: Run the SQLADBEX EXEC: The SQLADBEX EXEC updates the database
directory to include the control information for the dbextent. It also adds the
appropriate CP LINK and CMS FILEDEF commands to the database SQLFDEEF file.
Multiple dbextents can be defined in one run of the SQLADBEX EXEC. For more
information, see [‘Running the SQLADBEX EXEC” on page 161 |

System Administration

Example of Adding a Dbextent to a Database: illustrates the sequence
of commands required to add a dbextent to a database named TEST. It is added to
storage pool 1 at disk address 307. The SQLADBEX EXEC then automatically calls
the SQLSTART EXEC.

Before you run the SQLADBEX EXEC, you should know the disk addresses of the
dbextents and the numbers of the pools to which the dbextents are being assigned.
The SHOW DBEXTENT command indicates pool numbers and the number of
dbextents currently defined.

The example assumes that the new minidisk has already been defined and added
to the VM directory. The minidisk has been formatted and reserved. This step is
optional, but it allows the minidisk to be formatted and reserved without stopping
the application server. Entries you would make are indicated in the example.

—> sqladbex db(test)
ARIO7171 Start SQLADBEX EXEC: 01/20/93 10:49:52 EST.
ARI6111A Enter action (ADD or DELETE) to be taken.

(Enter a null response to end input or
enter QUIT to exit.)

—> add
ARI6112A Enter DBEXTENT number to use for the new extent.

The default is 3.
(Enter a null response to use the default value or
enter QUIT to exit.)

_ 3
ARIO614A Enter virtual address and storage pool number

(default = 1) of DBEXTENT 3.

—> 307
ARI6110D Disk 307 is already formatted. Continuing will erase

all data on this disk. Do you want to use the disk?
Enter 0(No), 1(Yes), or 111(Quit).

—> 1

ARIO647D Do you want to do a CMS FORMAT/RESERVE command on disk 3077

Enter 0(No) or 1(Yes).

—> 0
ARI6111A Enter action (ADD or DELETE) to be taken.

(Enter a null response to end input or
enter QUIT to exit.)

—_—>

ARI6114A Do you want to do a database archive (ARCHIVE),

user archive (UARCHIVE), or no archive (NOARCHIVE)
at the end of the run?

(Attention: Database may not be restorable

if you choose NOARCHIVE.)

Enter one of the values or enter a null response
to use the default (ARCHIVE).

—> archive
ARI6145D Do you want to review the SQLADBEX file?

You will not be able to modify this file.
Enter 0(No) or 1(Yes).

_>0

Figure 54. SQLADBEX Example of Adding a Dbextent

Notes for

Command to begin the ADD DBEXTENT operation. Because no
parameters are specified, dessID defaults to SQLDBA, POOL defaults to
LOG, and PARM defaults to the values in [Table 6 on page 73

add is entered to add dbextent

Chapter 7. Managing Database Storage

159

160

3 is entered to add dbextent number 3.

The first dbextent added is located in storage pool 1 at disk address 307.
Disk 307 is correct so 1 (Yes) is entered.

Disk 307 is already formatted so 0 (No) is entered.

A null response is entered to end input.

archive is entered so an archive will be taken.

DoOERE 0B

The file will not be reviewed, so 0 (No) is entered.

After [B], the SQLSTART EXEC is automatically called. When this EXEC ends, the
SQLADBEX EXEC also ends, and the dbextent has been added.

Deleting Dbextents from a Storage Pool

Deleting a dbextent does not delete any data in the database. Data in the deleted
dbextent is moved to another dbextent in the same pool before the dbextent is
removed from the database.

To delete dbextents:
1. Run the SQLADBEX EXEC from the database machine.

The SQLADBEX EXEC updates the database directory to remove the control
information for the dbextent. It also deletes the appropriate CP LINK and CMS
FILEDEF commands to the database SQLFDEEF file. Multiple dbextents can be
deleted in one run of the SQLADBEX EXEC.

For more information, see [“Running the SQLADBEX EXEC” on page 161| and
[“Example of Deleting a Dbextent from a Database.”|

2. Detach the minidisk for each dbextent being deleted.

3. After an archive has been taken, remove the minidisks of the dbextents being
deleted from the VM directory of the database machine.

You can move a dbextent from one storage pool to another by deleting it and
adding it back to the new pool; however, you cannot delete, add, and then delete
the same dbextent in a single run.

Attention
You must not delete the only dbextent from the storage pool that contains the
internal dbspaces.

Example of Deleting a Dbextent from a Database: [Figure 55 on page 161
illustrates the sequence of commands required to delete a dbextent from a database
named TEST. You can use the SHOW POOL command to determine pool numbers
and the number of dbextents currently defined. The SQLADBEX EXEC then
automatically calls the SQLSTART EXEC.

Entries you would make are indicated in the example.

System Administration

—> sqladbex db(test)
ARIO717I Start SQLADBEX EXEC: 01/20/93 10:46:36 EST.
ARI6111A Enter action (ADD or DELETE) to be taken.
(Enter a null response to end input or
enter QUIT to exit.)
—> delete
ARI6113A Enter DBEXTENT number to delete.
(Enter QUIT to exit.)
—_ 1
ARI6111A Enter action (ADD or DELETE) to be taken.
(Enter a null response to end input or
enter QUIT to exit.)
_—>
ARI6114A Do you want to do a database archive (ARCHIVE),
user archive (UARCHIVE), or no archive (NOARCHIVE)
at the end of the run?
(Attention: Database may not be restorable
if you choose NOARCHIVE.)
Enter one of the values or enter a null response
to use the default (ARCHIVE).
—> archive
ARI6145D Do you want to review the SQLADBEX file?
You will not be able to modify this file.
Enter 0(No) or 1(Yes).

g —o
Figure 55. SQLADBEX Example of Deleting a Dbextent

Notes for

Command to begin the DELETE DBEXTENT operation. Because no
parameters are specified, dcssID defaults to SQLDBA, POOL defaults to
LOG, and PARM defaults to the values in [Table 6 on page 73|

delete is entered to delete dbextents.
Dbextent number 1 is to be deleted.
A null response ends the input.

Entering archive selects a database archive.

0 (No) is entered to bypass the review.

After ﬂ , the SQLSTART EXEC is automatically called. When this EXEC ends,
SQLADBEX also ends, and the dbextent has been deleted.

Considerations for the MAXCONN Setting

Deleted dbextents are sometimes counted in determining the MAXCONN setting.
The MAXCONN value is a parameter of the VM OPTION control statement. This
value determines the number of VM IUCV or APPC/VM connections allowed for a
virtual machine. The MAXCONN parameter is unique to each database machine.
For more information, see [“Setting the MAXCONN Value” on page 285

Running the SQLADBEX EXEC

The SQLADBEX EXEC starts the application server in single user mode with
STARTUP=E. It also calls the ADD and DELETE DBEXTENT operations. The
DELETE DBEXTENT operation removes control information in the database
directory for the dbextents being deleted. The ADD DBEXTENT operation
initializes control information in the database directory for the dbextents being
added, and defines new storage pools as being recoverable or nonrecoverable.

Chapter 7. Managing Database Storage 161

The SQLADBEX EXEC resides on the service disk (V-disk) and can only be run
from an application server. shows the format of the SQLADBEX EXEC.

»>—SQLADBEX—Dbname (server_name)

POOL(LOG)

|—dcssID(id)—| |—POOL(NOLOG.)J |—PARM(parameters)—|

Figure 56. SQLADBEX EXEC

162

The parameters of SQLADBEX are as follows:

Dbname(server_name)

This parameter is required. You may use any initial substring as an
abbreviation for the keyword. For server_name, specify the name of the
database. (The name of the database is defined when the SQLDBINS EXEC is
started to generate the database.)

dcssID(id)

This parameter is optional. You can use DCSSID or ID for the keyword. For id,
specify the name of the bootstrap package that identifies the saved segment. If
not specified, the SQLDBA bootstrap package is used, and the database
manager uses default saved segments. If you do not have default saved
segments, DB2 Server for VM code is loaded into the user free storage area.

POOL(LOG) or POOL(NOLOG)

This parameter is optional. It is required only if you are defining a
nonrecoverable storage pool with POOL(NOLOG). It is unnecessary if you are
adding dbextents to existing pools because the status of the storage pools has
already been defined.

If you specify POOL(NOLOG) to indicate that you want to define storage
pools that are nonrecoverable, SQLADBEX prompts you for the numbers of
any nonrecoverable storage pools you want to create. When prompted, you can
respond with any value from 2 to the MAXPOOLS value for your database.
The storage pools you select to be nonrecoverable must not already have
dbextents assigned to them, and must not already have been defined in the
SQLADBEX file.

If you omit the POOL parameter or specify POOL(LOG), which is the default,
you are not prompted for the numbers of nonrecoverable storage pools.
Nonrecoverable storage pools are described in [“Nonrecoverable Storage Pools’]

PARM (parameters)

This parameter is optional. You use it to specify additional initialization
parameters. Usually, the initialization parameters used by the SQLADBEX
EXEC are sufficient. You can specify other initialization parameters as required.

If you specify the PARM parameter, it must follow the other SQLADBEX
parameters. For a list of the valid initialization parameters, see [Table 6 on page 73
That figure lists the parameters that apply in single user mode. Do not specify the
SYSMODE and STARTUP parameters. The SQLADBEX EXEC automatically
supplies SYSMODE=S and STARTUP=E. Also, do not specify the PROGNAME,
DUALLOG, ALTLOG, and LOGMODE parameters. The SQLADBEX EXEC ignores
any LOGMODE parameter. The LOGMODE setting is determined by other

System Administration

parameters specified on the SQLADBEX EXEC. See ["LOGMODE details” on page|
for more information on the LOGMODE setting.

You can specify the DUMPTYPE, TRACDBSS, TRACCONYV, TRACDSC and
TRACRDS parameters. For the definition of these parameters see [“Choosing a Log]
[Mode” on page 198|Because the ADD and DELETE DBEXTENT operations can be
run only when the database manager is running in single user mode, the
initialization parameters are the only means of tracing them. (Operator TRACE
commands are only valid when the database manager operates in multiple user
mode).

If you choose to use tracing, you may want to issue your own CMS FILEDEF and
LABELDEF commands for the trace file. These optional FILEDEF and LABELDEF
commands are discussed in the [DB2 Server for VSE & VM Diagnosis Guide and|
Referencd manual. More general information about tape capabilities is in ['Tape|
Support” on page 74/

You can use PARMID to specify a CMS file that contains parameter specifications
for the ADD or DELETE DBEXTENT operation.

For examples of using the SQLADBEX EXEC, see [“Example of Adding a Dbextent]
to a Database” on page 159 and [“Example of Deleting a Dbextent from al
Database” on page 160

The SQLADBEX processing has three parts:

1. Updating the resid SQLFDEF file to include CMS FILEDEF and CP LINK
commands for the added dbextents. (Remember that SQLSTART uses resid
SQLFDEF Q to access the database.) Server name and resid may be different.
The RESID NAMES file on the production disk is used to map the resid to the
server name defined during database generation.

2. Updating the database directory.

3. Updating the resid SQLFDEEF file to remove the CMS FILEDEF and CP LINK
commands for the deleted dbextents.

Updating the SQLFDEF File for Added Dbextents

When you start the SQLADBEX EXEC, it copies the file resid SQLFDEF from the
production disk to the database machine A-disk. (Any file on the A-disk that has
the name resid SQLFDEF is replaced.)

If you are doing an ADD DBEXTENT operation, the SQLADBEX EXEC prompts
you for the dbextent number, the storage pool number and virtual device address
(cuu). If the minidisk has not been formatted and reserved, SQLADBEX will issue a
CMS FORMAT and RESERVE command for it. If the minidisk is already formatted
and reserved, SQLADBEX prompts you to proceed. Respond YES to the already
formatted message displayed by SQLADBEX. The SQLADBEX EXEC prompts you
to run the commands. You can choose to skip the FORMAT/RESERVE process if
the minidisk has been previously formatted and reserved properly. Respond 1 (Yes)
to run the commands or 0 (No) to skip them.

Attention
Be sure that you are accessing the correct minidisk before you respond 1 to
the FORMAT and RESERVE notification.

Chapter 7. Managing Database Storage 163

164

The SQLADBEX EXEC then adds the appropriate CMS FILEDEF and CP LINK
commands to the resid SQLFDEEF file for the new dbextent.

When all the minidisks have been added SQLADBEX copies the updated resid
SQLFDEF file to the production disk. The SQLFDEEF file on the production disk is
replaced.

If the action is delete, SQLADBEX prompts you for the dbextent number and
optionally the storage pool number. The update to the resid SQLFDEEF file is
delayed until the update to the directory is done.

Updating the Database Directory

The SQLADBEX EXEC updates the database directory by using the ADD and
DELETE DBEXTENT operations. The ADD and DELETE DBEXTENT operations
require (as input) the specifications for the dbextents to be added and deleted. The
EXEC generates the specifications for you, based on the storage pool numbers you
provided in the previous step.

The SQLADBEX EXEC creates the file resid SQLADBEX on the database machine’s
A-disk. shows the format of a resid SQLADBEX file. Any existing file
with the name resid SQLADBEX is erased from the database machine’s A-disk.

If you specifty POOL(NOLOG) when running SQLADBEX, you are prompted for
the numbers of storage pools that you want to define as nonrecoverable. Based on
your responses to the prompts, SQLADBEX creates POOL control statements and
inserts them in the resid SQLADBEX file. These POOL control statements are used
by the ADD DBEXTENT operation to define nonrecoverable storage pools. Do not
supply the numbers of storage pools that have already been defined. After
definition, a storage pool cannot have its recovery status changed. Even if the
storage pool contains no dbextents, once you have defined it as nonrecoverable,
you cannot redefine it as recoverable. To see the storage pools that have been
defined, use the SHOW POOL ALL command. shows a POOL control
statement that defines storage pool 8 as nonrecoverable. A subsequent control
statement, which was also generated because of responses to other prompts,
assigns dbextent number 6 to the storage pool.

As soon as the file is created, you are given the opportunity to review it.

POOL 8 NOLOG
DELETE 3 1
DELETE 2 2
ADD 68
DELETE 4
ARCHIVE

Figure 57. Format of the resid SQLADBEX File

The ARCHIVE control statement must be the last statement if present. The valid
options are ARCHIVE (database archive), UARCHIVE (user archive) or
NOARCHIVE (no archive). If the ARCHIVE control statement is not specified, the
default (ARCHIVE) is used.

System Administration

Attention
After a dbextent is deleted, the database cannot be restored from an archive
taken prior to the deletion.

Therefore, the user should choose ARCHIVE or UARCHIVE to backup the
database. If NOARCHIVE is chosen, the LOGMODE will be switched to Y. The
LOGMODE parameter is set to A if ARCHIVE or UARCHIVE is chosen.

When the resid SQLADBEX file is complete, the SQLADBEX EXEC starts the ADD
and DELETE DBEXTENT operation.

The optional POOL control statements must precede the statements that define the
dbextents. They are required only for defining new nonrecoverable storage pools
with POOL(NOLOGY). They are unnecessary if you are adding dbextents to an
existing pool because a storage pool’s status has already been defined as either
nonrecoverable or recoverable. POOL statements are also not necessary for new
recoverable storage pools, because by default, storage pools are recoverable.

You cannot specify pool number 1 on any POOL control statement.

Attention
Once a storage pool is defined as either nonrecoverable or recoverable, you
must not change it from recoverable to nonrecoverable (or from
nonrecoverable to recoverable).

The records following the POOL control statements contain the dbextent
definitions. Each control statement must contain a control word (ADD or DELETE)
and the specification of one dbextent. The first number in the input record is the
number designator of the dbextent. The second number, if specified, is the number
designator of its storage pool. (For the ADD action, if this number is not specified,
the default is storage pool 1; for the DELETE action, the default is the storage pool
where the dbextent resides.) The numbers must be separated by at least one blank.

When you add a dbextent, its number must either be one more than the number of
dbextents currently defined, or the number of any dbextent that was deleted by the
DELETE DBEXTENT operation. The total amount of space allocated in the
directory as the dbextent control area is fixed for a database, and cannot be
changed without regenerating the database. When a dbextent is deleted, the
control area is not compressed. Therefore, you should reuse deleted dbextent
numbers whenever possible so as to reuse the directory control area.
shows the dbextent control area in the directory.

Chapter 7. Managing Database Storage 165

Extent number:

Belongs to
pool number:

112 |2+|3 |4 |5 |6 |7|8/]9]10
..unused...

1 11 22 1 2| 4

Where indicates deleted area in directory

Figure 58. Dbextent Control Area in the Database Directory

In this example, a new dbextent can take on the numbers 5, 7 or 8, which are
available for reuse, or 11, which is the next sequential number. The value 2+
indicates that there is empty directory space between dbextents 2 and 3. Because
no dbextent number is associated with this space, you must first delete dbextent 2
or dbextent 3 to reclaim it.

You can determine the number of dbextents currently defined in a database by
using the SHOW POOL operator command. To determine the maximum number of
dbextents or storage pools that can be defined for the database, issue the SHOW

DBCONFIG operator command. For more information, see the |[DB2 Server for VSE &
VM Operation| manual.

You can determine the deleted dbextent numbers that are available to be reused by
using the SHOW POOL DELETED command. There is a maximum size associated with
each deleted dbextent number. The maximum size is determined by the previous
use of the dbextent number. The highest number is an exception; if it is deleted,
the control area it used to occupy will be combined with the rest of the free area
and this number will be treated as if it has never been used.

For example, if dbextent 10 in |Figure 58| above is deleted, the control area in the
directory will look like [Figure 59

Extent number:

Belongs to
pool number:

2+ 3| 4|56 7 8/ 9
..unused...

Figure 59. Dbextent Control Area in the Directory after Dbextent 10 Is Deleted

When the SHOW POOL DELETED command is issued, dbextent number 10 will not be
listed.

The storage pool numbers you enter can range from 1 to MAXPOOLS, where
MAXPOOLS is the maximum number of storage pools for the database as specified
during the database generation. You can use the storage pool numbers in any
sequence.

For a dbextent to be deleted, the dbextent number must be one of the dbextents
currently defined to the database. If the storage pool number is specified, it must
be where the dbextent resides.

166 System Administration

After the file resid SQLADBEX is created and reviewed, the SQLADBEX EXEC
starts the application server in single user mode with the ADD or DELETE
DBEXTENT operation. When the application server ends, the dbextents are
deleted, or added and ready to be used.

Updating the SQLFDEF File for Deleted Dbextents
The SQLADBEX EXEC removes CMS FILEDEF and CP LINK commands for all
deleted dbextents from the resid SQLFDEF file.

When all the minidisks have been deleted, SQLADBEX copies the updated resid
SQLEFDEEF file to the production disk. The SQLFDEEF file on the production disk is
replaced, and SQLADBEX then erases the resid SQLFDEF file from your A-disk.

Possible Outcomes

Message ARI0620I resid SQLFDEF successfully copied to production disk
indicates the successful completion of the ADD and DELETE DBEXTENT
operation. If the operation does not complete successfully, the action you take
depends on what part of the processing failed:

 If SOLACDBEX fails because of incorrect control statement input, rerun it after
correcting the cause of the error

* If a failure occurs after message ARI07171 Start SQLSTART EXEC:, refer to
for the required action depending on which messages you have
received.

Table 14. Recovering from Errors during SQLADBEX

Messages Issued

ARI09221 ARIO0650E ARI06201 Action Notes

No Yes No None required; you can rerun Failed. SQLFDEF file not updated.
SQLADBEX if you want. Directory not updated.

Yes Yes No You must rerun SQLADBEX with Failed. SQLFDEEF file not updated.
the same input. Directory updated.

Yes No No You must rerun SQLADBEX and Failed. SQLFDEF file updated for
reply YES to ARI0646D or delete added dbextents only. Directory
the dbextents that you tried to updated.
delete.

No No No You must rerun SQLADBEX and Failed. SQLFDEF file updated for
reply YES to ARI0646D or delete added dbextents only. Directory
the dbextents that you tried to not updated.
add.

Considerations for Adding and Deleting Dbextents

Neither the ADD nor the DELETE DBEXTENT operation is recorded in the log.
Because these operations update the directory, and not the database itself, you can
encounter a problem if you normally archive the database, and then try to restore
it. For an ADD DBEXTENT operation, suppose the following events occur in the
following order:

1. You do a database archive

2. You add dbextents

3. Users use data from those dbextents

4.

You do an archive restore using the archive file from number 1 above and, if
you use LOGMODE-=L, subsequent log archives.

Chapter 7. Managing Database Storage 167

The directory and the database are not synchronized. The directory was restored
from an archive file that did not reflect the ADD DBEXTENT operation; the
database is also restored from that file however, the use of the changed dbextents
is also restored from updates recorded in the log or log archives. Thus, the
directory does not reflect the changed dbextents, but the database does.

For a DELETE DBEXTENT operation, suppose the following occurs:
1. You do a database archive

2. Later you delete dbextents

3. You attempt to do an archive restore from number 1 above.

The restore operation fails because it attempts to put data on the dbextents that
have been removed.

You can prevent this problem by using the ARCHIVE or UARCHIVE option in the
ADD or DELETE DBEXTENT operation. This will ensure that your current
database archive reflects the changed dbextents.

The same problems occur if you use log archiving and restore the database using a
database archive taken before the ADD or DELETE DBEXTENT operation. That is,
if you use a back-level database archive and subsequent log archives to restore the
database, the database archive that records the changes to the dbextents are
skipped. For ADD DBEXTENT operations, the directory, restored from the
back-level database archive, does not show the changes to the dbextents; the
subsequent log archives, however, do record the use of those dbextents. Restoring
the database from an old database archive and subsequent log archives can thus
put the database out of synchronization with the directory. For DELETE
DBEXTENT operations, the restore fails when it tries to use the removed dbextents.

Moving Dbextents

Sometimes you must relocate the dbextents to another device because of disk
migration or to control device utilization. A dbextent can be moved using the
SQLCDBEX EXEC. The “move” is actually a “copy”. The dbextent is copied from
one device to another. The dbextent remains on the old device until the copy is
successfully committed, then the old device is released by the database manager.
At this point, the dbextent has been moved.

The new device should be the same size as the old device. Moving a dbextent to a
larger device does not expand the size of the dbextent. The extra space available
on the larger device is not available to the dbextent. If you need to increase the
size of your database, you must use the SQLADBEX EXEC. For more information
on this EXEC, see [“Adding Dbextents to a Storage Pool” on page 157

The SQLCDBEX EXEC invokes the application server in single user mode, so
before a dbextent can be moved, the application server must be shut down. The
EXEC is located on the service disk.

shows the format of the SQLCDBEX EXEC.

»»>—SQLCDBEX—Dbname (server_name) >

Figure 60. SQLCDBEX EXEC

168

System Administration

Dbname(server_name)
The DBNAME parameter is required. Any initial substring for DBNAME can
be used as the keyword (for example, DB or D). For server_name, specify the
name of the application server. (The name of the application server is defined
when the SQLDBINS EXEC is started to generate the database.)

When the EXEC is run, it prompts for all the information it requires to carry out
the operation. The dbextents are copied to the new devices defined and the resid
SQLFDEEF file is updated on the A-disk.

The changes to the database are committed when all the copies have been
performed successfully and the user indicates to end the EXEC. If the system
crashes or the user quits from the EXEC, the dbextents remain on the old devices.

The old devices are released by the database manager when the changes are
committed.

The SQLCDBEX EXEC can be used to move the directory.

Example of Moving a Dbextent

illustrates the sequence of commands required to move a dbextent. The
example assumes that the new minidisk has already been defined and added to
the VM directory. The step to format and reserve the minidisk does not need to be

performed if the minidisk has been formatted and reserved before running the
EXEC.

Chapter 7. Managing Database Storage 169

—> sqlcdbex db(sqldba)
ARIO717I Start SQLCDBEX EXEC: 01/19/93 18:01:47 EST.
ARIO7211 Get DB2 Server for VM production minidisk WRITE access: SQLDBA 195.
ARI6102A Enter DBEXTENT number (or LOGDSK1, LOGDSK2,
ALTLGD1, ALTLGD2, or BDISK) to copy.
(Enter a null response to end input or
enter QUIT to exit.)
_ 2
ARI6103A Enter virtual address for new DBEXTENT 2.
(Enter a null response to end input or
enter QUIT to exit.)
—> 204
ARI6110D Disk 204 is already formatted. Continuing will erase
all data on this disk. Do you want to use the disk?
Enter 0(No), 1(Yes), or 111(Quit).
_ 1
ARI0647D Do you want to do a CMS FORMAT/RESERVE command on disk 204?
Enter O0(No) or 1(Yes).
_ 0
ARI6131I Copying in progress. Please wait...
ARI6108I Minidisk copied successfully. The SQLDBA SQLFDEF file
will be updated.
ARI6109I SQLDBA SQLFDEF file has been updated on the A disk.
ARI6102A Enter DBEXTENT number (or LOGDSK1, LOGDSK2,
ALTLGD1, ALTLGD2, or BDISK) to copy.
(Enter a null response to end input or
enter QUIT to exit.)
—_—>
ARIO6201 SQLDBA SQLFDEF file
successfully copied to production disk.
ARIO6731 A11 COPY DBEXTENT processing completed successfully.
ARI07961 End SQLCDBEX EXEC: 01/19/93 18:03:12 EST
ARIO721I Get DB2 Server for VM production minidisk READ access: SQLDBA 195.

Figure 61. SQLCDBEX Example of Moving a Dbextent

Notes for

Command to start the MOVE DBEXTENT operation.
Dbextent 2 is to be moved.

Disk 204 is the new device address.

Disk 204 is correct so 1 (Yes) is entered.

Disk 204 has been formatted and reserved using CMS FORMAT and
RESERVE prior to the invocation of the EXEC, so 0 (No) is entered. Note
that if you have access to the DFSMS/VM?* product, message ARI0647D
will not be displayed.

DEoBENE

6| A null entry ends input.

Moving Log Disks
Sometimes you must relocate the log disks to another device because of disk

migration or to control device utilization. The SQLCDBEX EXEC can be used to
copy the log disk only if:

1. The target log disk is the identical device type and size as the source log disk
2. The source log disk is not damaged.

If these conditions are met, SQLCDBEX can be used to make an exact copy of the
original log disk, and it is not necessary to reformat or reconfigure the log. If these

170 System Administration

conditions are not met, you must do a COLDLOG to reconfigure the new log disk.
For more information about COLDLOG, see [“Reconfiguring and Reformatting the|
[Logs” on page 230

Chapter 7. Managing Database Storage 171

172 System Administration

Chapter 8. Saved Segments

Saved segments allow users to share code. This sharing can reduce the amount of
user free storage required by the user and the database machines, and reduces the
amount of paging done by the system.

This chapter discusses installing these common areas.

Using Saved Segments for Components

You can define database manager components in saved segments. This can be done
after you have installed the product. Saved segments allow code to be shared
among users. Code that is not in saved segments runs in the user free storage area
of the user machine and database machine.

Code can be loaded into the following saved segments:
* Resource adapter

The resource adapter saved segment may contain the code for the following
components:

— Resource Adapter (RA)

- DRRM

- CONV

The DRRM and CONV components are only applicable if the DRDA code is
installed.

The resource adapter segment can be saved above 16M.
* DBSS

The DBSS saved segment contains the code for the following components:
- DBSS
- DsC

The DBSS segment must be saved below 16M.
* RDS

The RDS saved segment may contain the code for the following components:
- RDS

- WUM

- DRRM

- CONV

The DRRM and WUM components are only applicable if the DRDA code is
installed.

The RDS Segment can be saved above 16M. This includes the WUM, DRRM and
CONV components. If RDS is saved above 16M, the "TAMODE(24)" initialization
parameter CANNOT be used. If "TAMODE(24)" is specified with the RDS
Segment defined above 16M (or if RDS is loaded into free storage above 16M),
message ARI0021I is issued and start up fails. If you must use the "AMODE(24)"
parameter, you must create an alternative bootstrap package which specifies an
RDS segment that is saved below 16M. If RDS is not used in a saved segment,
and "AMODE(24)" is required, you must define the virtual machine storage to
16M or less, to prevent RDS from being loaded above 16M.

* ISQL
The ISQL saved segment contains the ISQL code. It must be saved below 16M.

© Copyright IBM Corp. 1987, 2007 173

174

* National language message repositories

This saved segment contains the code for the message repository. It must be
saved below 16M.

Notes:

1. The DBSS and RDS components must both reside in saved segments or both
reside in the user free storage area.

2. Any segments that are within the database machine’s virtual storage should be
reserved using the SEGMENT RESERVE command. For more information on
the SEGMENT RESERVE command, see the VM/ESA: CMS Command Reference.

Use the VMFSGMAP EXEC, which uses the VM /ESA CP DEFSEG command, to
define each component in a saved segment. After defining the saved segments you
must load them (using the VMFBLD EXEC, which uses the ARISAVES EXEC), and
create a bootstrap package to use them (using the SQLGENLD EXEC). If you
choose to have ARISAVES create the default (SQLDBA) bootstrap package, it is not
necessary to run SQLGENLD.

In any bootstrap package there can be three bootstrap modules that correspond to
the following components:

* Resource adapter

+ ISQL

* DBSS and RDS.

The bootstraps identify where the components reside. Only one bootstrap module
is needed for the DBSS and RDS components. Because the DBSS and RDS
components must both reside in saved segments or both reside in user free storage,
only one module is needed to indicate the location of the code. (The DBSS and
RDS code is often referred to as the DB2 Server for VM system code.) For a service
machine, only the bootstrap modules for the resource adapter and ISQL need to be
generated.

Each set of saved segments defined for the database manager usually has three
bootstrap modules. (Typically, only one set of saved segments is defined for the
code at an installation.) The bootstrap modules identify the corresponding saved
segments. The database manager requires bootstrap modules for every saved
segment except national language message repositories. National language message
repository saved segments are identified in the ARISNLSC MACRO.

The bootstrap modules allow the database manager to use the code residing in the
saved segments. The SQLBOOTS EXEC generates the appropriate bootstrap
modules (the SQLDBA bootstrap package) for default saved segments. If you
respond YES when the ARISAVES EXEC prompts you to use the saved segments
you are loading as defaults, ARISAVES calls SQLBOOTS to create the SQLDBA
bootstrap package. This bootstrap package specifies whether the database manager
code runs as a default in saved segments or not. If not, the code runs in the user
free storage area. ISQL and the resource adapter run in the user free storage area of
the user machines, and the system code runs in the user free storage area of the
database machines.Also, the resource adapter runs in the user free area of the
database machine when in single user mode. To create other bootstrap packages,
you use the SQLGENLD EXEC. You name the bootstrap package when you use
SQLGENLD to create it. For more information on the SQLGENLD EXEC and the
SQLBOOTS EXEC, see [“Defining Saved Segments” on page 179

Even though you have defined one or more saved segments for the database
manager, they are used only in the following situations:

System Administration

* They are default saved segments, and the database manager has generated the
SQLDBA bootstrap modules for them.

* You have created bootstrap modules for them, and specify that bootstrap
package when you run DB2 Server for VM EXECs.

You indicate you want to use a particular saved segment by specifying the DCSSID
parameter on various IBM-supplied EXECs (for example, the SQLSTART EXEC and
the SQLINIT EXEC). Indicate that you want to use the saved segments by
specifying the name of the corresponding bootstrap package. (Remember, you
name a bootstrap package when you create it using SOLGENLD.) After you use
the DCSSID parameter, the EXEC continues to use that bootstrap package until you
specify another bootstrap package. If you do not specify anything on the DCSSID
parameter, and have never used it, you use the SQLDBA bootstrap package. The
SQLDBA bootstrap package identifies default saved segments, if you have them. If
not, the SQLDBA bootstrap package specifies that the database manager code runs
in the user free storage area.

If you omit the DCSSID parameter after defining additional bootstrap packages,
the default rules are more complex. They are even more complex when you do not
define all bootstrap modules in a bootstrap package. (Consider doing this if, for
example, you want the system code to run in special saved segments, but want
ISQL and the resource adapter to run in default saved segments.) The following
sections describe the default rules.

If you want to keep things simple, define only one set of saved segments and
generate three bootstrap modules. This is what is done for default saved segments.
If you choose to have default saved segments, you define them, and the database
manager creates a bootstrap package for them. If you have default saved segments,
they are used when your users run EXECs without specifying the DCSSID
parameter. This way, you always easily know where the database manager code is
running. For an example of defining saved segments and generating bootstraps,
see [“Defining Saved Segments” on page 179

Even if you have default saved segments, you should still define saved segments
for national language messages that you expect to use. A default saved segment is
not generated for national language messages. For more information, see

[Message Repositories as Saved Segments” on page 335

You may want to define multiple saved segments for the database manager code.
(For example, you want to run the code at different locations.) The above guideline
still applies: if possible, generate all three bootstraps, and provide the users with
specific instructions for DCSSID parameters.

For a service machine, you only need to generate the bootstrap modules for RA
and ISQL. The DBSS and RDS code cannot run from a service machine.

If you need more details on the way bootstraps work, continue reading. If not, skip
the rest of this section.

The bootstrap module identifies the name of the saved segment to be loaded into
storage at run time. In addition, the bootstrap module for the resource adapter also
contains the name of the database machine. This name is required to establish the
communication link in multiple user mode. In a VM/ESA operating system, you
do not need to specify the name of the database machine because APPC/VM is
used for communication: only the RESID (resource) is needed. After installation,
there is one bootstrap package made up of the following CMS files:

Chapter 8. Saved Segments 175

176

SQLDBA SQLDBBT Q -- corresponds to the DB2 Server for VM system code
(not generated for a service machine)

SQLDBA SQLISBT Q -- corresponds to the ISQL code

SQLDBA SQLRMBT Q -- corresponds to the resource adapter code

The files are created at installation time and reside on the production minidisk.
Collectively, they form the SQLDBA bootstrap package.

When you run the SQLGENLD EXEC to create a bootstrap package, you are

prompted for the name to be specified in the DCSSID parameter and the name (or

names) of the saved segment (or saved segments). The name to be specified in the

DCSSID parameter is used to identify the bootstrap package. For example, if you

generate a bootstrap package with the name MYBOOT for the system code, ISQL,

and the resource adapter, these files are created on the production minidisk:
MYBOOT SQLDBBT -- DB2 Server for VM system code bootstrap module

MYBOOT SQLISBT -- ISQL bootstrap module
MYBOOT SQLRMBT -- resource adapter bootstrap module

When you run the SQLSTART EXEC, the bootstrap for the system code and
resource adapter are copied to the A-disk of the database machine. (Because you
can run the database manager in single user mode, and it cannot determine the
mode you will use, the resource adapter bootstrap is always copied.) Assume that
you issue the following command, and DBNAME and RESID are the same:

SQLSTART DBNAME (TEST1) DCSSID(MYBOOT) ...

The file TEST1 SQLDBN is either created or updated at this time, with the
following information:

DBMACHID = name of the database machine
DCSSID = MYBOOT
DBNAME = TEST1

When you run the SQLINIT EXEC for the user machine, the bootstraps for ISQL
and the resource adapter are copied to the A-disk of the user machine. Assume
that you issue the following command:

SQLINIT DBNAME(TEST1) DCSSID(MYBOOT)

During processing, the resource adapter bootstrap is recreated with the name of
the database machine. The TEST1 SQLDBN file is read to obtain the name of the
database machine. This means you must have used the SQLSTART EXEC (or the
SQLDBINS EXEC) to create the SQLDBN file for the database machine.

The resid SQLDBN file, containing the default DCSSID, cannot always be accessed;
therefore, the default DCSSID in this file cannot be used. A user machine cannot
access the resid SQLDBN file on a database machine in either of the following
situations:

* The database machine resides on a different processor

e The database machine does not own the production minidisk (Q-disk) to which
the user machine has a link.

You must create a new file (SQLDCSID DEFAULT) on the production (Q) disk that
is linked by these user machines to provide a default DCSSID for them. This file is
created when the SQLGENLD EXEC is run. The SQLGENLD EXEC generates the
bootstrap package for a particular saved segment. The EXEC prompts you to
specify whether the DCSSID is to be the default for user machines that have a link
to this Q-disk.

System Administration

The following examples outline the above discussion. The examples assume that
you have default saved segments identified in the SQLDBA bootstrap package.

Example 1

Assume that you have created four saved segments (one for each of the following):
the DBSS code, the RDS code, the ISQL code, and for the resource adapter code.
(Also assume that you used the names SQLSQLDS for the DBSS/DSC, SQLXRDS
for the RDS, SQLISQL for ISQL, and SQLRMGR for the resource adapter as the
names of the saved segments.) You then used SQLGENLD to create the three
bootstrap modules and identified this bootstrap package with the name MYBOOT.
Assume that the name of the database machine is SQLMACH1 and that both
DBNAME and RESID are TEST1. Until you specify the DCSSID parameter on the
SQLSTART EXEC (or unless you provided it when you generated the database
using the SQLDBINS EXEC), the code is loaded as specified by the SQLDBA
bootstrap modules. The SQLDBN file has the following information:

DBMACHID = SQLMACH1
DCSSID = SQLDBA
DBNAME = TEST1

If a user machine that is linked to the database machine Q-disk containing the
TEST1 SQLDBN file runs the SQLINIT EXEC, that EXEC is called to use the
SQLDBA bootstrap modules. Assume that you run the SQLINIT EXEC as follows:

SQLINIT DBNAME(TEST1) DCSSID(MYBOOT)

During processing, the bootstraps for ISQL and the resource adapter use the saved
segments SQLISQL and SQLRMGR. These saved segments are used even though
the database manager is using the default bootstrap modules.

When the SQLSTART EXEC (or SQLDBINS EXEC) has been run with the DCSSID
parameter DCSSID(MYBOOT), the database manager uses the saved segments
SQLSQLDS and SQLXRDS. The user only has to specify the DBNAME parameter
on the SQLINIT EXEC, for example, SQLINIT DBNAME(TEST1), to use the
SQLISQL and SQLRMGR code.

Example 2

Assume you have created a second resource adapter saved segment named
SQLRMGR? using the bootstrap name RMBOOT?2, and the environment has
already been established to use MYBOOT as shown in Also assume
that DBNAME and RESID are the same, and that you start the application server
as follows:

SQLSTART DBNAME (TEST1)

Notice that the DCSSID is not specified. The SQLSTART EXEC reads the TEST1
SQLDBN file and uses the MYBOOT bootstrap module to load the SQLSQLDS and
SQLXRDS code into saved segments. In this situation, MYBOOT (rather than
SQLDBA) has become the established default bootstrap package for server-name
TEST1. When you run the SQLINIT EXEC specifying DCSSID (RMBOOT?2) in a
user machine that has a link to the Q-disk containing the TEST1 SQLDBN file, the
bootstrap package exists for the resource adapter, but not for ISQL. For this
example, run the SQLINIT EXEC as follows:

SQLINIT DBNAME(TEST1) DCSSID(RMB0OOT2)

During processing, the SQLINIT EXEC regenerates a resource adapter bootstrap to
load the saved segment named SQLRMGR?2. Because it does not find a bootstrap

Chapter 8. Saved Segments 177

178

identified by RMBOOT?2 for ISQL, it reads the TEST1 SQLDBN file, finds the
DCSSID=MYBOOT entry, and uses the bootstrap identified by MYBOOT for ISQL.

Example 3

Assume that you have a second database (TEST2) that is owned by the
SQLMACH? database machine, and that the database has a bootstrap package
(SQLBOOT?2) for the DB2 Server for VM system code only. Also assume that
DBNAME and RESID are the same.

The TEST2 SQLDBN file has the following entries:

DBMACHID = SQLMACH2
DCSSID = SQLBOOT2
DBNAME = TEST2

Suppose that you run the SQLINIT EXEC using the DCSSID of RMBOOT2, as
shown in [“Example 2” on page 177

SQLINIT DBNAME(TEST2) DCSSID(RMBOOT2)

During processing the bootstrap package for the resource adapter exists and is
created on the user’s A-disk to communicate with the SQLMACH2 machine and
server-name TEST2. If the SQLINIT EXEC does not find a bootstrap identified by
RMBOOT?2 for ISQL, or one identified by SQLBOOT2 (from TEST2 SQLDBN), or if
the ARISISBT module is not found, it defaults to the SQLDBA ISQL bootstrap
module.

Example 4

Note: This example only applies to systems with multiple databases in which
default saved segments are not used.

Suppose you have users on a processor that does not have a database machine,
and a service machine is defined as the owner of the Q-disk. You want the
resource adapter and ISQL code to run in saved segments. When creating the
bootstrap package (BOOTS), using the SQLGENLD EXEC, answer YES to the
following prompt:

Do you want BOOTS to be the default DCSSID for user machines?

When you answer YES, a new file, SQLDCSID DEFAULT, is created on the
production (Q) disk with the following entry:

DCSSID=BOOTS

If DBNAME and RESID are the same, and the users run the SQLINIT EXEC
without specifying the DCSSID parameter, the DCSSID in the SQLDCSID
DEFAULT file is used as the default. Assume that a user enters the following
command:

SQLINIT DBNAME (TEST2)

During processing, the bootstrap package BOOTS (for the resource adapter and
ISQL) is copied to the user’s A-disk.

When a user runs the SQLINIT EXEC without specifying DCSSID (BOOTS), and
you have not specified that BOOTS is to be the default DCSSID for user machines,
the SQLDBA bootstrap package is used.

System Administration

You should specify that the bootstrap package for the resource adapter and ISQL
(BOOTS in this example) is the default DCSSID when you create the bootstrap
package (BOOTS) with the SQLGENLD EXEC. Doing this ensures that user
machines not having a link to the Q-disk that contains the SQLDBN file for the
database machine that they are accessing will have a default DCSSID. These user
machines then do not have to specify the DCSSID parameter.

Defining Saved Segments

able 15 shows the saved segment usage by virtual machine.
Table 15. Saved Segment Usage by Virtual Machine

Database Database
Manager in | Manager in
Multiple User | Single User
Saved Segment User Machine | Mode Mode

ISQL X

DBSS X X

RDS X X

RA X X

DB2 Server for VM message repository X

CMS DB2 Server for VM message X X X

repository

It is possible to overlap saved segments that will not be used in the same machine.
For example, in multiple user mode, the DBSS and RDS components are used only
by the database machine, and ISQL and the resource adapter are used only by the
user machine. Therefore, in multiple user mode, it is possible to overlay DBSS (or
RDS) with ISQL (or the resource adapter).

Note: In single user mode, the resource adapter is used by the database machine,
and must run in the same machine as DBSS and RDS, and therefore cannot
overlap either RDS or DBSS.

shows the components that can overlap when they are being run in
multiple user mode only.

Table 16. Shared Segment Relationships in Multiple User Mode

Segments This
Component Name |Used By Default SYSNAME | Component Can Overlap
Resource adapter End users SQLRMGR SQLXRDS
SQLSQLDS
ISQL End users SQLISQL SQLXRDS
SQLSQLDS
DBSS Database manager |SQLSQLDS SQLRMGR
SQLISQL
LANGS001
RDS Database manager | SQLXRDS SQLRMGR
SQLISQL
LANGS001
DB2 Server for VM | End users LANGS001 SQLXRDS
Message Repository | Database manager SQLSQLDS

Chapter 8. Saved Segments 179

180

This section outlines the steps you must follow to put database manager code into
saved segments. It is only a supplement to the information about defining saved
segments in the manuals below. It assumes that you are familiar with saved
segments and the procedures that must be followed to define them. For more
information about saved segments, refer to the VM/ESA: Planning and
Administration manual.

To use saved segments for database manager component load modules, you must
do the following:

1. Log on to the installation user ID, 5697F42X.

2. Run the VMFSGMAP command to add or change DB2 Server for VM segment
definitions.

3. Ensure that the machine’s virtual storage is defined large enough to contain the
segments to be loaded. It must have sufficient storage to contain the saved
segment, loader tables, and CMS control block storage at the end of virtual
storage.

4. Ensure that you have write access to the database machine production disk or
SES directory.

5. Issue the SET LANGUAGE command to ensure that the language repository is
available.

6. Verify and update the ARISSEGC macro file.

7. Run VMFBLD EXEC, which calls ARISAVES EXEC, to load and save each
segment.

8. Run the IBM-supplied SQLGENLD EXEC to generate a bootstrap package for
the saved segment.

This step does not need to be performed if you are creating or modifying
default saved segments (that is the saved segments used by the SQLDBA
bootstrap package). When you run ARISAVES for default saved segments, the
database manager automatically creates a bootstrap package (SQLDBA) for you.
If you are defining other saved segments, after you run ARISAVES, you must
run SQLGENLD.

9. Reset the virtual storage to its original value or issue the SEGMENT RESERVE

command for any segments that are within the database machine’s virtual
storage.

The following is an example of the process used to define saved segments for the
components. With the VM/ESA operating system,you must define the segments
with VMSES/E VMFSGMAP EXEC, which calls the DEFSEG command.

Step 1. Plan to Define and Build Segments

Before building and loading a DB2 Server for VM segment, you must obtain the

following information:

* Determine the beginning and ending storage page ranges for each segment you
will be defining. Refer to the |[DB2 Server for VM Program Directory] for the size of
the saved segments for the DB2 component.

The address where a segment can be defined on your system is dependent on
the locations of the other saved segments on your system. See your system
programmer for assistance in determining origin values for the saved segments.

If you are going to save a segment in an address space where an old saved
segment is located, you must first purge the old saved segment. See the
VM/ESA: Planning and Administration manual for more information on defining
and deleting segments with VMSES/E.

System Administration

* If you need to specify a storage key value other than the default value, 13, for

the saved segment, refer to the VMSES/E Considerations under [“ARISAVE

[EXEC” on page 469 and continue to the following step. Otherwise, continue
with the following step.

Step 2. Log On to the Installation User ID
Log on to the installation user ID, 5697F42X.

Step 3. Access VMSES/E Code and Software Inventory Minidisks

To link and access the VMSES/E code and Software Inventory minidisks, enter the
following commands. (You need R/W access to the Software Inventory minidisks.)

access 5e5 b
link maint 51d 51d mr
access 51d d

| Do these steps for each segment

Step 4. Prepare to Add DB2 Server for VM Segment Definitions
Enter the following command to display the Segment Map panel, which displays

information about the segments defined on your system:
vmfsgmap seghld esasegs segbhlist

7 N\
VMFSGMAP - Segment Map More: +
Lines 1 to nn of nn
000-MB 001-MB 002-MB 003-MB
Name Typ 0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF
M CMS SYS W-W---mmmmmmmmem Toveviiiiinnnne, N N
M GCS SYS Wemmmmmmmmmm e llooooooco0000000 Pocoo00600000000 Boo000000000000¢
004-MB 005-MB 006-MB 007-MB
Name Typ 0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF
CMSPIPES DCS 4..vvvnnvnnn... 600000000000000 Beeiiiiiiie RRRR--====nmuumm
M GCS SYS RRRRRRNNNNNNNNNNNNNNNNNNNNNNNNNNG. o oo veeeeannne Joooooo0o00000000
M HLASM DS &coooco000000000 Booo000000000000 RRRRRRRRRRRRRRRR7 ..o v v v vvvvnvnts
008-MB 009-MB 00A-MB 00B-MB
Name Typ 0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF
DOSBAM SPA 8......ccovvn.t. Yoco000000000000 L e EE
CMSBAM MEM 8........ccun... Moaooa0000a00000 [oc00a0000000000 BRRR.....covutn
CMSDOS MEM 8............... o 00000000000008 Noooooc00000000¢ Roo000000000000¢
CMSVMLIB DCS RRRRRRRRRRRRRRRRY............... N N
DASINST BES Boooc00000000000 R-mmmmmmmmm e Moooo0000000000¢ Boocoocooooooooac
00C-MB 00D-MB 00E-MB 00F-MB
Name Typ 0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF
HELPINST DCS RRRRRRRRRRRRRRRRD............... [Ecooo00000000000 Fovevvvnanis
M CMS SYS Covvvnnniinennns Mocooo0000000000 RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR>
=================================]§-MB Ljne ==================================
010-MB 011-MB 012-MB 013-MB
Fl=Help F2=Chk Obj F3=Exit F4=Chg Obj F5=File F6=Save
F7=Bkwd F8=Fwd F9=Retrieve F10=Add Obj F11=Del 0Obj F12=Cancel
====>
o - J
Figure 62. Segment Map Panel Example
Chapter 8. Saved Segments 181

Step 5. Add or Change the DB2 Server for VM Segment
Definitions

To add segment definitions, press PF10 to display the Add Segment Definition
panel. To change segment definitions, press PF4 to display the Change Segment
Definition panel.

The following shows an example of the Add Segment Definition panel.

4 Add Segment Definition
Lines 1 to nn of nn
OBJNAME....: segname
DEFPARMS
SPACE......:
MPEo 0000008 SEG
OBJDESC....:
OBJINFO....:
GT_16MB....: NO
i 6000008
SEGREQ.....:
PRODID.....: 5697F42X compname
BLDPARMS...: UNKNOWN
Fl=Help F2=Get Obj F3=Exit F4=Add Line F5=Map F6=Chk MEM
F7=Bkwd F8=Fwd F9=Retrieve F10=Seginfo F11=Adj MEM F12=Cancel
S=SS=5
-

Figure 63. Add Segment Definition Panel Example

Step 6. Obtain the DB2 Server for VM Segment Definitions

To obtain the DB2 Server for VM segment definitions, you must fill in the
appropriate fields on the Add Segment Definition panel.

OBJNAME....: segname
segname

Description

SQLRMGR
Resource adapter
SQLISQL
ISQL
SQLSQLDS
DBSS
SQLXRDS
RDS
LANGxxxx
DB2 Server for VM message repository, where xxxx is:
S001 English (mixed case)
S002 English (uppercase)
S003 French
S004 German
D001 Japanese
D003 Chinese_Simplified

182 System Administration

PRODID.....: prodid compname
prodid is 5697F42X. (This is the prodid for the base, mixed case English, as
well as all other NLS Languages.)

If you are building the NLS message repository segments, use the base
prodid 5697F42X.

compname is DB2VM or DB2VMSES. Use DB2VM for building segments
from a minidisk. Use DB2VMSEFS for building segments from SFS
directories.

Press PF10 to obtain DB2 Server for VM segment information.
Notes:

1. If you are setting initial segment definitions, you will receive message
VMFSMD2038E. This is OK. You will fill in the DEFPARMS field on the next
panel.

2. If the segment is already defined, you will receive the following message:

VMFSMD2044W Segment name segname already defined. Current segment
definition will be replaced.

You can change the name of the segment in the next step if you do not want to
replace the current definition.

Step 7. Update the DB2 Server for VM Segment Definition
Fill in or update the Add Segment Definition panel.

Add Segment Definition More: +
Lines 1 to nn of nn

OBJNAME....: segname
DEFPARMS...: ?22?-777? SR
SPACE......:

TYPE.......: SEG

OBJDESC....: object _description
OBJINFO....: object_information
GT_16MB....: NO|YES
DISKS......:

SEGREQ.....:

PRODID.....: 5697F42X compname
BLDPARMS...: PPF(5697F42X compnameSEG b1d1ist_name)

VMFSMD27601 SEGINFO processing completed SUCCESSFULLY

Fl=Help F2=Get Obj F3=Exit F4=Add Line F5=Map F6=Chk MEM
F7=Bkwd F8=Fwd F9=Retrieve F10=Seginfo F11=Adj MEM F12=Cancel

====>

. %
Figure 64. Add Segment Definition Panel Showing the New Segment Information

OBJNAME....: segname
If you want to change the name of the segment, replace segname with the
new name.

Chapter 8. Saved Segments 183

DEFPARMS...:
Fill in the beginning and ending page ranges you calculated in
[Plan to Define and Build Segments” on page 180

Specifying spacename allows you to take advantage of segment packing by
putting more than one component in a single segment space. Only
segments that are used together (for example, ISQL and the Resource
Adapter) should be put in a segment space together. This is because the
entire segment space is loaded when one of the segments it contains is
loaded. The DBSS segment must be below 16M, but the RDS segment is
usually defined above 16M. Therefore, they cannot be in the same segment
space. To place them in the same segment space, the RDS segment must be
saved below 16M. It is highly recommended that this NOT be done and
RDS be saved above 16M.

GT_16MB....:
Specify NO unless you are defining segments for the Resource Adapter or
RDS components, which can (and usually should) be defined above 16M.

You can define and use the Resource Adapter and RDS saved segments
above 16MB. To define the component above 16MB, specify the starting
and ending pages above 16MB on the DEFPARMS field. If you define the
component both above and below 16MB, give them different names.

Note: If you define the RDS segment above 16M, you CANNOT start the
server with the “AMODE(24)” initialization parameter.

BLDPARMS...:
If you have your own PPF override, you must change the BLDPARMS
field to reflect this.

Notice that the component name used in this field is DB2VMSEG or
DB2VMSFSSEG. If you have a PPF override to the DB2VM or DB2VMSEFS
component name, you will also need to add an override to your PPF for
DB2VMSEG or DB2VMSESSEG before you build the segment in
[Build the DB2 Server for VM Segments” on page 187

Note: The bldlist_name refers to the build list for each component of DB2 Server
for VM that can be placed in a shared segment. A list of each component
and its associated bldlist_ name follows:

Table 17. Component and associated bldlist_name

Component bldlist_name
Upper Case American English NLS ARIBLASG
French NLS ARIBLBSG
Japanese NLS ARIBLFSG
German NLS ARIBLHSG
Chinese (Hanzi) NLS ARIBLJSG
Mixed Case American English ARIBLLNG
DBSS component ARIBLDBS
ISQL component ARIBLISQ
Resource Adapter component ARIBLMGR
RDS component ARIBLRDS

184 System Administration

Step 8. Display Refreshed Segment Map Panel
Press F5 to display the refreshed Segment Map panel.

4 N
VMFSGMAP - Segment Map More: -
Lines nn to nn of nn
000-MB 001-MB 002-MB 003-MB
Name Typ 0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF
M CMS SYS W-W-mmmmmmmmeeee leveiiiiiienane, 2 e K N
M GCS SYS Wemmmmmmmmm oo leveiiiiiinnnne, N K
004-MB 005-MB 006-MB 007-MB
Name Typ 0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF
CMSPIPES DCS 4..cvvvvnvnnnn.. LT Beeen i i RRRRRR=========--
M GCS SYS RRRRRRNNNNNNNNNNNNNNNNNNNNNNNNNN6. . ooeeeennnnnn. Y/
008-MB 009-MB 00A-MB 00B-MB
Name Typ 0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF
DOSBAM SPA 8.....ccvvvunnn. 9 iiiiiittttnnsummmmmmm—-—-_====================
CMSBAM MEM 8........cvvnn.. N Ao, RRRR. . .ovvvvnnn.
CMSDOS MEM 8......ccvvenn.. L Ao Reveiiiiinnnn
SQLISQL MEM RRRRRR.......... L N N Bivevriiiiinnnnn
CMSVMLIB DCS RRRRRRRRRRRRRRRRY............... Aeeeeiiiaaan., WB........ RRRRRRR
Fl=Help F2=Chk Obj F3=Exit F4=Chg Obj F5=File F6=Save
F7=Bkwd F8=Fwd F9=Retrieve F10=Add Obj F11=Del Obj F12=Cancel
====>
o %

Figure 65. Segment Map Panel with Added Segments Example

Step 9. Save the New Segment Information
Press F5 to save the changed information and exit from the panel.

| End of Do these steps for each segment

Step 10. Verify Virtual Storage

To load the saved segment, the machine must have enough virtual storage to

contain the saved segment, loader tables, and CMS control block tables at the end

of virtual storage.

Step 11. Prepare to Build the DB2 Server for VM Segments
Before building the new DB2 Server for VM segment, following these steps:

1. Clear your virtual machine by entering the following IPL command. This
command bypasses loading the installation saved segment (CMSINST) and

bypasses executing the System Profile EXEC.
ipl cms parm clear nosprof instseg no

Note: ** DO NOT press ENTER at the VM READ!**

2. Bypass the execution of the PROFILE EXEC by entering the following

command:
access (noprof

3. Access the VMSES/E code by entering the following command:
access 5e5 b

4. Link and access the Software Inventory disk by entering the following

commands:

1ink MAINT 51d 51d mr
access 51d d

Chapter 8. Saved Segments

185

186

5. Access the database machine, SQLMACH, production minidisk or SFS directory
by entering the following command:

access vdev k

vdev is the address the database machine production minidisk is linked as by
the installation user ID, or vdev is the name of the database machine production
SFS directory. You need write access to this minidisk or directory.

6. Before running the ARISAVES EXEC to save the segments, activate the user
language files by entering the following CMS command:

set language ameng (add ari user

ARISAVES is called by the VMFBLD command, in [“Step 14. Build the DB2]
[Server for VM Segments” on page 187

Step 12. Update the ARISSEGC Macro

Before you run the ARISAVES EXEC for each component to be defined in a saved
segment, verify that the ARISSEGC macro contains the proper SYSNAME entry,
origin, and saved segment choice for the component. Use XEDIT to change the
ARISSEGC macro on the database machine, SQLMACH, production minidisk or
SFS directory. (You should not use the VMSES/E local modification procedure.)

If the saved segment you defined is to become the new default, the SYSNAME
value in the ARISSEGC macro should match the name you used to define the
saved segment for the component. If not, edit the ARISSEGC macro and change
the SYSNAME accordingly. The message ARI0365W will be issued if the
SYSNAMESs do not match.

The ARISSEGC MACRO has a record length of 80, and its record format is fixed.
The values in each record must be separated by one or more blanks and are
interpreted in the order shown in the following list:

compid is the component ID as specified in the ARISAVES EXEC. Values of
compid are:
* DBSS
* RDS
* ISQL
* RA

Yes | No indicates whether a saved segment should be used for this
component. Both Y and YES indicate that a saved segment is used
for this component. Both N and NO indicate that a saved segment
is not used for this component.

origin is the hexadecimal load address of the saved segment, as specified
in the DEFPARMS field of the Add Segment Definition panel.

segname is the name of the saved segment as defined in the OBJNAME field
of the Add Segment Definition panel.

ARISAVES EXEC only processes the first occurrence of the value of each compid.
Other records are ignored. You could use them to store other information on saved
segments.

Unless you have changed some values in it, the ARISSEGC MACRO contains the
following information:

System Administration

EE R R R R R R N . N R N N I

ARI

1.

nN

w

SSEGC MACRO - Saved Segment Control File

Change the values in the columns at the bottom of this file
by overtyping them. Descriptions of the columns and possible
values are:

Column Values
COMPONENT 1D - RA, 1SQL, DBSS, RDS.
SAVED SEG - Y, YES, N, NO. Answer YES to use saved

segments for this component. Answer
NO to Toad this component into user
free storage.
ORIGIN - hexadecimal starting location of
components in save segments.
- no meaning if component is loaded into
user free storage.
- must start from column 35.
- can be 6 to 8 digits long.
SYSNAME - As defined in the DEFSEG command.

. Enter "FILE" on the command Tine to continue processing and save

your changes.

. You can include comments in this file. Place them at

the end of the file and make sure that the first column
contains an asterisk(x).

*COMPONENT SAVED SEG ORIGIN SYSNAME
*

RA NO 222277 SQLRMGR

I1SQL NO 222277 SQLISQL

DBSS NO 222277 SQLSQLDS

RDS NO 222277 SQLXRDS

END ARISSEGC MACRO <--- THE REQUIRED LAST ENTRY IN ARISSEGC MACRO

Figure 66. ARISSEGC MACRO

Step 13. Release the Production Minidisk or SFS Directory
Release the database machine, SQLMACH, production minidisk or SFS directory

by entering the following command:
release k

Step 14. Build the DB2 Server for VM Segments

For each segment that is to be built, enter the following command:

vmfb1ld ppf segbld esasegs segblist segname (serviced

segname DescriEtion

SQLRMGR Resource adapter
SQLISQL ISQL
SQLSQLDS DBSS

SQLXRDS RDS

LANGxxxx DB2 Server for VM message repository, where xxxx is:

S001 English (mixed case)
S002 English (uppercase)

S003 French
S004 German
D001 Japanese

D003 Chinese_Simplified

Chapter 8. Saved Segments

187

188

yourname name specified on the Add Segment Definition panel in |”Step 7.|
[Update the DB2 Server for VM Segment Definition” on page 183

You will be prompted asking you if you want the saved segments to be the new
default saved segments. If you reply YES, ARISAVES updates the origin values in
the ARISSEGC MACRO and generates bootstrap modules by calling the
SQLBOOTS EXEC.

If you reply NO, you must create a bootstrap package yourself by using the
SQLGENLD EXEC shown in [“Step 15. Create a Bootstrap Package.”|

Step 15. Create a Bootstrap Package

If you responded YES when prompted by the ARISAVES EXEC to use the saved
segments you that loaded as defaults, you do not have to do this step, as
ARISAVES would have generated a default bootstrap package (SQLDBA) for you.

If you answered NO to the prompt, you must run the SQLGENLD EXEC to create
a bootstrap package for the saved segments you loaded. To run SQLGENLD EXEC,
you must log off of the installation user ID and log on to the database machine

(SQLMACH).

Because SQLGENLD prompts you for certain information about the new bootstrap,
you should determine the contents of the bootstrap package before you run the
SQLGENLD EXEC. For more information, see [“Contents of a Bootstrap Package.”|

Contents of a Bootstrap Package: A bootstrap package contains modules created
by the SQLGENLD EXEC. SQLGENLD places the modules on the production
minidisk (Q-disk). Note that, even though the DBSS and RDS components are
loaded in different saved segments, there is only one bootstrap module for them.
All of those components are needed to run the DB2 Server for VM system code in
a database machine. Thus, one bootstrap identifies the location of the DBSS and
RDS components.

Not all modules are needed because the database manager uses defaults when a
module of a bootstrap is missing. For more information on the defaults, see
[SQLGENLD” on page 189 |

summarizes the different bootstrap modules that you can have.

fn ft fm
Resource adapter --> dcssid SQLRMBT Q
DBSS/RDS------ > dcssid SQLDBBT Q
ISQL -=-=--=-mom - > dcssid SQLISBT Q

Figure 67. Bootstrap Package Contents

The dcssid (saved segment ID) is the name you give to the bootstrap package with
SQLGENLD. It is the dcssid that you use in the DCSSID parameter of various
IBM-supplied execs (such as, SQLSTART or SQLINIT). When dcssid is specified in a

DCSSID parameter, the bootstrap package production disk entries are copied to the
execution machine’s A-disk as shown in

System Administration

Production Execution Machine

Q-disk Entry A-disk Entry
FN FT FM | COPY/RENAME FN FT FM
dcssid SQLRMBT Q TO ARISRMBT MODULE A
dcssid SQLDBBT Q TO ARISDBBT MODULE A
dcssid SQLISBT Q T0 ARISISBT MODULE A

Figure 68. Bootstraps Copied to the Execution Machine A-disk

The resource adapter bootstrap is incomplete when it is copied to the A-disk of the
user machine. It is completed when the user runs the SQLINIT EXEC, which
supplies the missing server name to be accessed.

Use SQLGENLD to generate bootstrap packages for running the database manager
in saved segments. You cannot use this EXEC to generate a bootstrap package for
running the database manager in a default mode. The SQLDBA bootstrap package
identifies the default mode, which can be default saved segments (if you have
defined them) or user free storage.

Using SQLGENLD: When you identify the bootstraps to be contained in the
package you are creating and the location where you want them to load the code,
you can use the SQLGENLD EXEC. To use SQLGENLD, obtain read access to the
service minidisk by entering the following command:

access 193 v

You can run SQLGENLD only from the database machine:
sqlgenld

When it runs, the SQLGENLD EXEC obtains both read and write access to the
production minidisk. Both kinds of access are available to a defined database
machine. You should ensure that no other machine has write access to the
production minidisk when you run SQLGENLD.

If you are running SQLGENLD from a database machine that does not own the
production minidisk, SQLGENLD prompts you for the write password.

The SQLGENLD EXEC prompts you for dcssid. This is the name of the new
bootstrap package. If a bootstrap package with this name already exists,
SQLGENLD replaces the existing bootstraps. The EXEC does not let you replace
the initial SQLDBA bootstrap package. The SQLDBA bootstrap package is used as
a default by many IBM-supplied execs. Do not modify or erase the SQLDBA
bootstrap package.

When you supply dcssid, SQLGENLD prompts if you want to create a resource
adapter bootstrap, a DBSS/RDS bootstrap, and an ISQL bootstrap. For each
bootstrap that you choose to create, you are prompted for the saved segment name
(o1, in the case of DBSS/RDS, names). The name is the name you used in the
OBJNAME field of the Add Segment Definition panel.

The database manager prompts if you want this bootstrap package to be the
default DCSSID for user machines that have a link to this production (Q) disk.
Specify this as the default if you have users linking to this Q-disk who will be
accessing a database machine that does not own this production (Q) disk, and if

Chapter 8. Saved Segments 189

190

you do not have saved segments identified by the SQLDBA bootstrap package.
Because the database manager provides a default DCSSID, these users are not
required to specify the DCSSID parameter when they run the SQLINIT EXEC.

Note: The SQLDCSID DEFAULT file cannot be used by a user if the file resid
SQLDBN exists on the production (Q) disk they are linked to. This is
because the default bootstrap package for a database is identified in the resid
SQLDBN file. The SQLDCSID DEFAULT file is used by users that are
accessing an application server other than the one that owns the Q-disk to
which they are linked.

If you say that you want this bootstrap to be the default for users with a link to
this production (Q) disk, a new file SQLDCSID DEFAULT will be created on the
production (Q) disk to contain the default DCSSID. When the bootstraps are
created, SQLGENLD places them on the production minidisk. They are then erased
from the database machine A-disk.

Step 16. Verify the Virtual Storage Size

To run the database machine, you must ensure that its virtual storage is smaller
than the load address of any of the saved segments that you loaded, or that the
SEGMENT RESERVE command has been issued on the database machine for all
segments that reside within the database machine virtual storage. The SEGMENT
RESERVE commands should normally be placed in the Server’s PROFILE EXEC.

Running in User Free Storage after Using Default Saved
Segments

If you are using default saved segments and you want to run a component in user
free storage, follow these steps:

1. Edit the production (Q-disk) copy of the ARISSEGC MACRO. Change the Y or
YES to an N or NO for the components that you want to run in user free
storage.

2. Run the SQLBOOTS EXEC for the components.

3. Ensure that you are using the SQLDBA bootstrap package. On the database
machine, specify DCSSID(SQLDBA) on the SQLSTART command. On the
requester, specify DCSSID(SQLDBA) when you invoke the SQLINIT EXEC.

If you have secondary production disks, you must manually copy the ARISSEGC
MACRO to them. Then, you must run the SQLBOOTS EXEC for each production
disk.For information on the SQLBOOTS EXEC, see [“SQLBOOTS EXEC” on page]

ARISNLSC MACRO

The ARISNLSC MACRO indicates the repository used for DB2 Server for VM
messages. It has a record length of 80, and a fixed record format. The MACRO is
shown in [Figure 69 on page 191}

System Administration

Columns:

1 42 47 53
LANGUAGE LANGKEY LANGID DCSSNAME
Where:

LANGUAGE is the language name.
LANGKEY s the language key.
LANGID is the language identifier

DCSSNAME is the saved segment name.

Figure 69. The ARISNLSC MACRO

For more information, see [“National Language Support for Messages and HELP)
[Text” on page 332)

Chapter 8. Saved Segments 191

192 System Administration

Chapter 9. Making Backups and Recovering from Failures

Database recovery refers to the processing done to correct data when something
goes wrong. This chapter presents a detailed description of basic recovery
concepts, and how to implement them. More advanced recovery topics are
discussed in [Chapter 10, “Special Topics in Recovery Design,” on page 227

The problems that can occur fall into four categories:

Application Error
Occurs when an application (for example, an ISQL command or routine, or
the DBS utility) does not end successfully.

User Logic Error
Occurs when the system or application does the requested function, but
the request itself is in error — that is, the user (or application program) did
not specify the correct function. For example, the user may have
accidentally dropped the wrong table or dbspace.

This is the only type of error where detection is not immediate. Therefore,
it presents more of a problem. Errors in the data can go undetected for
quite some time, making recovery processing very complex.

System Failure
Occurs when the application server ends abnormally. Such failures can
occur because of a severe error involving the operating system, or because
of certain error conditions detected by the database manager, such as a
power failure.

DASD Failure and Database Corruption
Occurs when the database manager cannot read data from or write it to
the DASD where it is stored, because the storage medium is unreadable or

damaged. Such an error (also called a media failure) can occur on the log,
the directory, or a data extent (DBEXTENT).

This manual discusses how to recover from system and DASD failures. Recovery
from application and user logic errors is described in the [DB2 Server for VSE & VM|
[Database Administration| manual.

There are two aspects to dealing with system and DASD failures:

* Establishing and maintaining regular recovery procedures, to ensure that you
have the information available to correct the data if something goes wrong.

* Correcting the data.

Understanding Recovery Concepts

To effectively protect your data and recover it in the event of failure, you need to
understand the measures built into this product. Protecting against system failures
involves the LUW, the log, and the checkpoint. Protecting against DASD failures
entails two types of archive: the database archive and the log archive.

What is a Logical Unit of Work?

The data in your database is in a consistent state if no changes are left only
partially completed.

© Copyright IBM Corp. 1987, 2007 193

194

Some data changes cannot be expressed in only one SQL statement. For example,
suppose you have a banking program to transfer money between accounts, and
want to transfer $100 from a SAVINGS to a CHECKING account. The program
makes this transfer in two steps:

1. Add $100 to the balance of the CHECKING account.
2. Subtract $100 from the balance of the SAVINGS account.

If the second step fails (for example, because of a system failure), the data is in an
inconsistent state. That is, a deposit has been made to the CHECKING account, but
no withdrawal has been made from the SAVINGS account.

The logical unit of work (LUW) prevents such inconsistencies. An LUW is a sequence
of SQL statements that the system treats as a single entity. Either all the data
changes made during an LUW are performed, or none is performed. In the
example above, the two updates should be placed within a single LUW.

To group several SQL statements into one LUW, one uses the COMMIT WORK
and ROLLBACK WORK commands.

If no problems or errors occur, the user issues the COMMIT WORK command to
save all the changes made. If a problem occurs in the middle of an LUW, the user
can issue the ROLLBACK WORK command to undo all the changes made since
the last COMMIT WORK command.

An LUW can be as small as one SQL statement, or as large as an entire ISQL
session or application execution. ISQL, by default, treats each command as an
LUW, and issues a COMMIT WORK command after each SQL statement that
modifies the database. Users can change this default by issuing the SET
AUTOCOMMIT OFF command. For more information on the use of the
AUTOCOMMIT, COMMIT, and ROLLBACK commands, refer to the
[VSE & VM SQL Referencel manual.

What is a Log?

The log is a file maintained on DASD that records all the changes completed by
each LUW. For each change, the log records the old and new values of the updated
object. If any changes to the database must be undone or redone, you can use the
log to restore the data to its proper state.

In addition to the changes made by each logical unit of work, the log also records
when each logical unit of work started and stopped. (It does not record logical
units of work that only read information from the database).

A database must have at least one log. Optionally, you can use alternate logging to
have one active log and one inactive log. If only one log is defined and the
ARCHPCT value is reached, a checkpoint will occur followed by a log archive. If
an inactive log is present, the database manager will attempt to switch to the
inactive log once the checkpoint is complete. For more information, see
[Alternate Logging” on page 229 |

You can create an exact duplicate of your active log and inactive log by using dual
logging. If dual logging is enabled and a DASD failure occurs on the active or
inactive log, the database manager can continue using the backup copy. For more
information, see [“Using Dual Logging” on page 230/

System Administration

Larger logs may be needed for tables that are being captured for DataPropagator
because of the increased amount of log data written for UPDATEs to those tables
which specify DATA CAPTURE CHANGES. Tables being captured will log the
entire original row (not just the data that was changed), and the new data that
replaces the old changed data. You should consider increasing the size of the log
dbextent(s) when planning to make extensive use of this function.

What is a Checkpoint?

Checkpoints are taken periodically. During a checkpoint the database manager
stops servicing users, and takes a “snapshot” of the database that includes updates
from completed LUWSs as well as from those that are still in progress, and writes
them to DASD. In addition, a special checkpoint record is written to the log to
synchronize the log with the state of the database.

What Happens after a System Failure?

Restart Recovery with a Log

If your system fails, as long as the current log is available, the database will be
automatically recovered to a consistent state when you restart the application
server. This process, called restart recovery, uses the log to ensure that changes
made by LUWs are either committed (if they had successfully finished) or backed
out (if they had not finished successfully).

The recovery process determines the state of each LUW; both at the time of failure

and at the time of the last checkpoint before the failure. The following scenarios

are shown in [Figure 70 on page 196}

¢ LUW A: if the LUW starts and ends before the checkpoint, all the updates are
safely reflected in the database at the checkpoint.

¢ LUW B: if the LUW starts before the checkpoint and commits work after the
checkpoint but before the failure, those updates made after the checkpoint must
be redone, using the log. Those updates made prior to the checkpoint are
reflected in the database.

¢ LUW C: if the LUW starts before the checkpoint but is not completed before the
failure, those updates made prior to the checkpoint must be undone using the
log. The updates made after the checkpoint are not reflected in the database:
thus all the updates must be re-entered.

e LUW D: if the LUW starts after the checkpoint and commits work before the
failure, all its updates must be redone using the log.

e LUW E: if the LUW starts after the checkpoint and is not completed before the
failure, all its updates must be re-entered since none of them are reflected in the
database.

The following diagram illustrates the LUW Recovery process for the five cases
described above:

Chapter 9. Making Backups and Recovering from Failures 195

196

Checkpoint Sys Failure
Time —» occurs —— P occurs — % ||

—LUW-A Q |

no action required /l

\— Q I
LUW-B - I

no action required 1
L < redo —> "

LUW-C Il
no action required Jl

<— undo —p
‘ ‘ Il

LUW-D I
<«—redo—» I

I
\—LUW—Ei n

no action required n

Figure 70. LUW Recovery Actions

Restart Recovery Without a Log

If the application server must be restarted without a log (due to the log either
being lost, reformatted, or reconfigured immediately after the failure), the database
cannot be adjusted to complete committed logical units of work or to back out
uncommitted ones. In this situation, to recover the database you will have to
restore a previous database archive, together with any applicable log archives.

If the database manager had been running in single user mode with
LOGMODE=N, the changes made by the application are not logged. However, a
checkpoint would have been taken each time the application issued a COMMIT
WORK (or one was issued for the application), so most changes will have been
effectively committed. Any that were uncommitted at the time of failure will be
discarded when you restart the application server and will need to be re-entered.

What is an Archive?

Archiving facilities enable you to recover your database directory and storage
pools from DASD failures. There are two kinds of archives: database archives and
log archives.

Database Archives
A database archive is a tape copy of the database directory and dbextents. It can be
taken using two types of facilities:

* database manager archiving facilities supplied with this product

* user archiving facilities such as the VMBACKUP management system or the
BACKUP command of the Data Restore Feature.

If database manager facilities are used, the database manager takes a checkpoint
(the begin-archive checkpoint) and writes a copy of the database directory and the
database to tape, as they were at the checkpoint. (A database archive does not
include a copy of the log.) Users continue to receive service while the archive is
being done.

System Administration

A user archive can only be done while the application server is shut down. A user
archive generally takes less time than a database manager archive.

You are not restricted to using one kind of archive for a given database; you can
switch between database manager archives and user archives as often as you like.
There are two situations in which the former facility is required:

* When you migrate a database between two different operating systems (for
example, from VSE to VM)

* When a database archive is needed while users are accessing the database. You
can avoid this situation by using log archiving (LOGMODE=L).

Experience helps you determine which method is best for you. When using any
backup method, the performance improvement will be related to how full your
database is. The fewer pages in your database that are allocated, the less time a
database manager archive takes.

In fact, if the percent of allocated pages is low enough, a database manager archive
will outperform a user archive, because the database manager only archives pages
that actually contain data. User facilities archive all pages, so the time taken does
not vary with the number of pages allocated.

Aside from the performance advantage that user archiving facilities may offer
because they exploit particular device characteristics, consider whether your facility
provides other advantages such as archiving multiple dbextents simultaneously.

For a description of how to carry out these archives, see [“Performing Database]
Archives With Database Manager Facilities” on page 201 and [“Performing]
Database Archives With User Facilities” on page 205

Log Archives
A log archive is a copy of the log on tape or disk. Only database manager archive
facilities can be used to archive the log. Log archives can be taken either when the
database manager is running or at shutdown. Because the log is usually much
smaller than the database, this archive takes less time than a full database archive.
For a description of how to carry it out, refer to [“Performing Log Archives” on|
|o; e 206.

Recovering from DASD Failures that Damage the Database

If a DASD failure occurs on one of your database devices, you can restore the
database by replacing the damaged minidisk with a working minidisk (see
[‘Replacing a Database Minidisk” on page 223), and then restoring the data from
the archived database and logs (if applicable).

There are two ways to do this. One way is to use the database archive and the
active log. By loading the archive and re-applying the changes in the log, you can
bring the database up-to-date because all changes made to the database since the
archive are recorded in the active log. If the restore set for the database archive
includes the active log, you can recover the damaged storage pools instead of the
entire database using the Data Restore Feature. See the [DB2 Server for VSE & VM|

Data Restoreymanual for more information on storage pool level recovery.

Alternatively, if you archived the log, you can use the database archive, the log
archives you created since the last database archive, and your active log, to
recreate the database. You would load the database archive, and reapply the
changes in the log archives and the active log. If the restore set for the database

Chapter 9. Making Backups and Recovering from Failures 197

archive includes the active log, you can recover the damaged storage pools instead
of the entire database using the Data Restore Feature. See the [DB2 Server for VSE &
[VM Data Restord manual for more information on storage pool level recovery.

The relationships among the different archives, the active log, and the current

database are shown in [Figure 71 on page 200} For more details, see

[Database” on page 215

Recovering from DASD Failures that Damage a Log

If a DASD failure occurs, such as an unresolvable I/O error, on one of the log
devices, there are two possibilities for recovery:

1. If you are single logging or alternate logging, replace the damaged log minidisk
(see |“Replacing a Log Minidisk” on page 225), and then follow the procedures
in [“Log Reconfiguration” on page 231|Log data from the damaged log is lost.

2. If you are dual logging, replace the damaged log minidisk with a working
minidisk (see [“Replacing a Log Minidisk” on page 225), and then start the
application server with the same log mode used before the log minidisk was
damaged. The contents of the good log minidisk is copied to the new log
minidisk.

Recovering from DASD Failures that Damage the Database
and Log
If a DASD failure occurs on both a database device and a log device, you can
restore the database by replacing the damaged database minidisk with a working
minidisk (see [“Replacing a Database Minidisk” on page 223), replacing the
damaged log minidisk with a working minidisk (see [Replacing a Log Minidisk”]
on page 225), and then restoring the data from the archived database and logs (if

applicable) as described in [‘Restoring the Database” on page 215

Establishing DASD Recovery Procedures

198

As the system administrator, you must establish recovery procedures for your
installation. The procedures you put in place will determine the degree of
protection for your database. Naturally, trade-offs exist; when you allocate system
resources to protect against failures, these resources are unavailable to other users.
However, if a failure occurs, the recovery takes less time.

This section discusses some of the options available. Based on this information,
devise a plan that best suits your requirements.

Choosing a Log Mode

One of the first decisions you must make when designing a recovery strategy is
the type of log mode you want. The log mode is an initialization parameter that you
specify when you start the application server. It has four possible values:

LOGMODE=Y
All changes to the database will be recorded in a log, but no archives of
the log or database will be maintained. This value is the default. Use it if
you do not need to protect your data from DASD failures. The application
server will run faster, since it will not require the extra time to create
archives.

LOGMODE=A
All changes to the database will be recorded in a log, and regular archives

System Administration

of the database will be maintained. You can either create these archives
yourself, or have them created automatically when the log reaches a
certain threshold level.

LOGMODE=L
All changes to the database will be recorded in a log, and regular archives
of the log will be maintained. You can either create these log archives
yourself, or have them created automatically when the log reaches a
certain threshold level (to prevent it from becoming too full to be effective).
If alternate logging is enabled, an attempt will be made to switch to the
inactive log once the active log hits the threshold. The LARCHIVE
INACTIVE operator command can be used at a later time to archive the
inactive log.

Log archives do not contain data, but only operations that change the
database. If you use this log mode, you must take an occasional database
archive as well. If a failure occurs, you can use the database archive,
subsequent log archives, and the current log to recover the database.

The log archives must be continuous, recording all processing that
occurred since the last database or log archive. If a gap exists, it will be
impossible to restore the database to its current level. (The processing that
occurred during the gap can never be reapplied to the database because it
was never archived.) Gaps can occur in the sequence of log archives when,
for example, you switch from LOGMODE=L to some other log mode. If
the continuity of the log is broken in this manner, the database manager
will force a database archive before you return to LOGMODE=L
processing.

LOGMODE=N
No changes to the database are recorded. This option, which is only
available in single user mode, is not recommended for normal operation
but can be useful in some situations. For example, it may be more efficient
not to log changes if you are loading a large amount of data into a table by
using the DBS utility in single user mode. If a problem occurs while you
are loading, you do not need the log to recover; you can simply start over.

Once you have decided on a log mode, use it whenever you start the application
server. Do not change it without thought and planning. If you must do so, you
may have to carry out additional procedures. For information, refer to
[Log Modes” on page 227

Deciding between LOGMODE=A or L

[Figure 71 on page 200| illustrates the relationships among the archives, the log, and
the database when the log mode is A or L. You should consider several things
before choosing one mode over the other.

Chapter 9. Making Backups and Recovering from Failures 199

200

When LOGMODE = A

w
@

]

u
+
|

Last database Current log Current database
archive

When LOGMODE = L

++<>%7<7 ---+Ej=

Last database Series of log archives Current log Current database
archive

]
QOQ

Figure 71. Relationships among the Archives, the Log, and the Database

There are three advantages to log archiving (LOGMODE=L):

A

It usually takes less time, because only the log is being archived, not the
directory and dbextents. This is especially helpful when the archive is being
done to free log space when the database manager is running.

Once the ARCHPCT is reached and alternate logging is enabled, an attempt will
be made to switch to the inactive log. This will prevent situations where no
work can continue because no one was able to load a tape for the log archive.
Also, an archive of the inactive log can be done at any time via the operator
command LARCHIVE INACTIVE.

If the last database archive is unreadable or unavailable, you can bring the
database back to its current status by using a back-level database manager
archive or user archive, and applying to it the changes that were recorded in all
subsequent logs. More recent database archives are ignored when you restore a
back-level database. Two requirements must be met in order for you to use this
method:

— The log archives must be continuous. That is, you cannot have switched log

modes and done a COLDLOG (with SQLLOG) or a restore since the
back-level archive was created.

Note: You can switch from LOGMODE=L to A and then back again without
breaking the continuity of the log archives, provided that no database
archive was taken while LOGMODE was set to A.

— You have not added dbspaces, added or deleted dbextents, or reconfigured
the logs since the back-level database archive was made. These operations are
recorded in the database directory, so if you have carried any of them out, the
directory will not be synchronized with the database changes.

disadvantage of archiving the logs is that no logical units of work can be active

during the checkpoint that immediately precedes the log archive or the switch to
the inactive log (if alternate logging is enabled). Concurrent access is allowed once
the checkpoint is complete, but users may experience delays both before and
during the checkpoint.

System Administration

Another disadvantage is that it takes longer to restore the database. For example,
suppose you have been taking a database archive every Friday evening and a log
archive on Tuesdays and Thursdays, and on a Friday afternoon there is a media
failure on the DASD that contains the database directory. You must restore the
most recent database archive (from the previous Friday), and then restore the log
archives from Tuesday and Thursday as well as the changes recorded in the log
that was current at the time of the failure. Because only the changes to the
database are stored in the log, restoring the database is similar, in processing time,
to redoing all the work from the week. If there was heavy activity that week,
restoration can take a long time.

Had you used database archives (LOGMODE=A) as intermediate online archives,
you would only need to restore Thursday’s database archive and reapply the
changes on the current log. The restore time is much shorter. On the other hand,
more time would have been spent doing the intermediate archives. Because media
failures are infrequent, it is usually better to take intermediate log archives instead
of intermediate database archives. Depending on your own experience with media
failures, it may even be worthwhile to lengthen the time between database archives
taken at shutdown.

Backing Up the History Area

The database manager uses the history area of the active log to keep track of
recovery events (for example, database archives and log archives). The database
manager can then determine which log archives belong with which database
archives. The ARIHSDS ARCHIVE file contains the updated history area. If both
the work disk, containing the ARIHSDS ARCHIVE file, and the disk containing the
active log are damaged or are unavailable (offsite disaster recovery scenarios), you
cannot use log archives to restore the database. To be able to apply log archives,
you should create a backup file of the ARIHSDS ARCHIVE file after each log
archive. You can then use this backup file to rebuild the log history area.

Archiving Procedures

This section describes how to create archives to protect your database against
system failure. If a system failure occurs while you are taking an archive, see
[‘Restarting from a System Failure While Archiving” on page 220.|

Performing Database Archives With Database Manager
Facilities
Database archives are tape copies of the directory and dbextents that are carried
out using the database manager archiving facilities:

* By issuing an SQLEND ARCHIVE operator command, which copies the
database to tape only after all LUWs complete. The copy contains all changes
made by completed LUWs because no LUWs are active when the database
archive is made. Log space is freed after the archive completes successfully. No
changes made by incomplete LUWSs are in the database archive copy. This
method is preferred.

* By issuing an ARCHIVE operator command, which lets the operator initiate a
database archive at any time without either shutting down the application server
or stopping access to it. The drawback, however, is that if the archive is started
while applications are accessing the database, the archive copy may contain
changes made by incomplete LUWSs, and cannot be used for recovery from user
logic errors, unless the log that was current when the database archive was

Chapter 9. Making Backups and Recovering from Failures 201

202

taken is available. For more information about user logic errors, see the
[Server for VSE & VM Database Administration| manual.

The ARCHIVE command should be used only when you need to take a database
archive to free log space but cannot afford to shut down the application server.
Thus, you might want to schedule an SQLEND ARCHIVE for every Friday
night, and periodic online archives during the week.

Log space used by completed logical units of work is freed. Log space reflecting
changes that are not completely included in the database archive (as of its
begin-archive checkpoint) cannot be reused until the next database archive that
completely includes the changes.

* By reaching the ARCHPCT value, in which case a database archive is taken
automatically. The ARCHPCT initialization parameter protects the log from
overflowing. (See ["ARCHPCT” on page 70.) When you are running the database
manager with only database archiving active (LOGMODE=A), log space that can
be freed by the archive is determined by the begin-archive checkpoint and freed
by the end-archive checkpoint. Log space that has been used since the longest
running active logical unit of work began cannot be reused until the next
database archive is taken. If the log becomes filled to the ARCHPCT value, the
database manager forces an online database archive.

Set the ARCHPCT value lower than the SLOGCUSH value, which determines
when the log overflow procedure is started. When the log is filled to the
percentage indicated in SLOGCUSH, the LUW that was running the longest is
backed out. (Although this procedure allows the log space to be reclaimed by
another forced online database archive, it can frustrate the user whose
application was almost finished.)

Ideally, your log should be large enough so that the ARCHPCT value is never
reached. If this value were reached at an inconvenient time (say when the
operator is not at the console), database activity could stop. To prevent this from
happening, you should use the ARCHIVE command to do online database
archives when activity on the system is low.

Also, if you do have a database archive taken because ARCHPCT is reached,
remember you cannot use this archive to recover from user logic errors. Like an
online database archive initiated with the ARCHIVE command, it contains
changes from incomplete LUWSs, so you still need the log if this archive is the
source for a restore.

Contention During an Archive

When a database archive is taken online, using database manager facilities only,
other work usually continues. If, however, a condition arises during the archive
that requires a checkpoint to be taken, other work must wait until the archive
process completes. Such conditions include:

* A short-on-storage condition for a storage pool
* A full database log

* A COMMIT or ROLLBACK WORK statement issued during an LUW that
updated data in a nonrecoverable storage pool

¢ An invocation of the DROP DBSPACE statement.

Note: You can use the SHOW LOG operator command to monitor available log space

to assist you in scheduling database archives. See the [DB2 Server for VSE &
VM Operation|manual for description of operator commands.

System Administration

Example of an SQLEND ARCHIVE

If you intend to create database archives, specify a value for the LOGMODE
parameter of A or L when you start the application server.

SQLEND ARCHIVE with LOGMODE=A
To use the SQLEND ARCHIVE command when LOGMODE=A:

1.
2.

Log on using the user ID and password for the database machine.

Attach and mount a labeled tape at virtual device address 181. Indicate that
you are writing to the tape. See the VM system administrator for the
procedures used at your installation to label, attach, and mount tapes.

To identify who is connected to the application server, type the following
command and press ENTER:

SHOW USERS

You see a list of the users connected to the application server. Some of these
users could be accessing data in the database.

Notify the current users that you want to stop the application server. Ask them
to complete their work and sign off. If any user does not stop voluntarily,
consider using the FORCE command to disconnect that user. Use this command
with caution, however, as the uncommitted work of the users you disconnect is
rolled back.

To start the archive process and stop the application server, type the following
command and press ENTER:

SQLEND ARCHIVE DVERIFY

You should verify the directory whenever you create a database archive by
specifying the DVERIFY parameter for the SQLEND ARCHIVE command. If
you do not verify the directory, inconsistencies in the control information are
recorded in the database archive. A subsequent restoration using that archive
would fail. When you verify the directory, the system displays a message if it
finds an error, and does not create the database archive.

While the database manager is creating the database archive, a number of
messages are displayed at your display terminal. Among them is ARI0239L

Write the information that this message provides on the external label of each
tape reel or cartridge. Include the date, time, and type of archive (database).
See [“Labeling Your Archive Tapes” on page 214 for further instructions on how
to use this information. During a restoration, the same information is provided,
so you can easily verify that you are using the proper tape volumes.

If the database initialization parameter TAPEMGR has a value of N, the
database manager prompts you for the virtual device address of your tape:
ARIO299A Ready archive output volume. Enter the CUU.

Type the following and press ENTER:
181

Note: If TAPEMGR has a value of Y, indicating a tape manager is in use, the
tape manager handles the tape assign and no prompt is issued.

When the tape is full, the system prompts you to mount a second tape. After
you mount the second tape, type the following and press ENTER:

READY

Chapter 9. Making Backups and Recovering from Failures 203

204

A delay can occur as the database is copied to tape. The system continues to
request that you mount new tapes until the database archive is completed. The
number of tapes you are required to mount depends on the size of your
database.

When the archive is completed and the database is copied, you see the
following message:
ARIO292I ARCHIVE is completed.

Note: While the archive is being created you can still enter operator
commands.

When the application server stops, you see the messages:

ARI0032I The database manager has terminated.

ARI0043I Database manager return code is 0.

You have finished creating the database archive.

SQLEND ARCHIVE with LOGMODE-=L

If you run the application server with LOGMODE=L, the SQLEND ARCHIVE
command ensures that you have an unbroken sequence of log archives by creating
the log archive (if there is information in the log) before the database archive. You
use the SQLEND ARCHIVE command when LOGMODE=L in the same way you
do when LOGMODE=A, except that two tapes are needed for the procedure
shown here with single logging — one for the database archive and one for the log
archive, if a log archive is to be taken. It is possible to use a single tape by creating
the log archive on disk. For more detail, see [‘Log Archiving to Disk” on page 209,

If alternate logging is enabled and the inactive log was not archived, SQLEND
ARCHIVE will require three tapes — one for the inactive log, one for the active
log, and one for the database itself.

Using the SQLEND ARCHIVE DVERIFY with LOGMODE=L allows you to create
a valid log archive, if there is information in the log, even if the system finds an
error in the directory. However, in this situation, a database archive is not created.

To use the SQLEND ARCHIVE command when LOGMODE=L, do the following:

1. Follow the first six steps for using the SQLEND ARCHIVE command when
LOGMODE=A, beginning on page The database manager first creates a log
archive if there is information in the log. You see the message:

ARIO2541 The database manager is initiating a Tog archive of the active log.
When the Tog archive is complete, the database
manager will process the database archive request.

2. If the database initialization parameter TAPEMGR has a value of N, instruct the
system to create the log archive on tape if a log archive is to be taken. Tape is
the default medium for a log archive.

The following messages prompt you for the output medium:

ARI02521 Medium: tape 183
ARI0246D The above information describes the log archive about to be done.
Enter either:
CONTINUE to proceed using the output medium indicated, or
CHANGE to change this medium.
If TAPEMGR has a value of Y, this prompt does not appear, as the log archive
is directed to tape and the tape manager handles the tape assign.

3. To use the default medium, type the following and press ENTER:
CONTINUE

System Administration

If you reply CHANGE, you can direct the log archive to disk. For more details on
the CHANGE option, see [“Log Archiving to Disk” on page 209

4. When the tape is full, the system prompts you to mount another tape. After
you mount a new tape, type the following and press ENTER:
READY
A delay may occur while the database manager archives the log to tape. When
the log is archived, you see the following message:
ARI0292I ARCHIVE is completed.

Note: While the log archive is being created, you can still enter operator
commands.

5. The system now continues with the database archive. Attach and mount a
second labeled tape at virtual device address 181. Indicate that you are writing
to the tape. Use the procedures set up at your installation to label, attach, and
mount tapes. This tape is used for the database archive.

6. Repeat steps 6, 7, and 8 from the LOGMODE=A example that begins on page
to complete the database archive.

Performing Database Archives With User Facilities

User archives are database archives (LOGMODE=A or L) done with user facilities
such as the VMBACKUP Management System (VMBACKUP-MS) or the BACKUP
command of the Data Restore Feature. User archives include the database directory
and all minidisks, but not the logs.

Because database manager archiving facilities are DASD-independent, they do not
take advantage of particular DASD characteristics to improve performance. Some
user facilities exploit these characteristics, and can archive and restore your
database more quickly in some situations.

Note: If you use VMBACKUP-MS to create user archives, you must specify that
the database directory and dbextent minidisks are non-CMS minidisks.

To begin archiving your database with user facilities, stop the application server
and issue:

SQLEND UARCHIVE

After all logical units of work have been finished, the database manager indicates
in the log history that a user archive will be taken, then prompts the operator to
take the archive, and ends. (If LOGMODE=L and the log contains information, it
takes a log archive before ending.) When the application server ends, the operator
should take the user archive. The next time the application server is started, it
displays a message to confirm that the user archive was done.

Note: Confirmation of a successful user archive is required at the next startup. If
the operator specifies a restore (STARTUP=R or U) the next time the
application server is started, the system assumes that the user archive was
not taken. If the system does not prompt the operator to confirm that a user
archive was created, this means that the archive was not recognized
(whether or not it was successful), and it must be repeated.

Note: Do not stop the server with SQLEND QUICK and then take a user archive
because the user archive will not contain consistent data.

Chapter 9. Making Backups and Recovering from Failures 205

206

Freeing Log Space during a User Archive

Log space is freed after a successful user archive has been confirmed at the next
startup. If you take user archives and it becomes necessary to free log space when
the database manager is running, you must use either the log or database
archiving facilities supplied with this product to free the log space.

For log archives, set LOGMODE=L when starting the application server, and for
database archives, set LOGMODE=A. In both cases, this will ensure that database
archives are automatically taken if the log fills to the ARCHPCT value. Or, if you
prefer to schedule your online archives yourself, periodically issue the LARCHIVE
command for log archives, or the ARCHIVE command for database archives.

Note: You can use the SHOW LOG operator command to monitor available log space
to assist you in scheduling user archives.

Performing Log Archives

A log archive is a copy on tape or disk of all the active pages of the database log
except for the last one, the log history area. To use log archiving, set LOGMODE to
L. A log archive can only be performed with database manager facilities supplied
with this product.

Log archives can be used with database archives taken with either database
manager facilities or user facilities. Each sequence of log archives must be preceded
by at least one database archive.

The log archive process can be started in the following ways:

* By issuing an SQLEND LARCHIVE operator command, which causes the
database manager to copy the active log to tape or disk when all LUWs are
complete. If alternate logging is enabled, the inactive log will be archived as
well, if it was not archived previously. Log space is freed after the archive
completes successfully.

* By issuing an LARCHIVE command when the database manager is running. If
alternate logging is enabled, LARCHIVE will archive the inactive log as well, if
it was not archived previously. This should be done when you need to take an
archive to free log space but cannot afford to shut down the application server.
For example, you may schedule an SQLEND ARCHIVE or SQLEND LARCHIVE
for every Friday night, and schedule periodic online log archives during the
week. Log space is freed after the archive completes successfully.

¢ By issuing an LARCHIVE INACTIVE command. This is only valid if alternate
logging is enabled. This will archive the inactive log if it was not archived
previously.

For a descrii tion of this process refer to [“Example of an SQLEND LARCHIVE")

* By reaching the ARCHPCT value, in which case a log archive is taken
automatically if single logging is used. With alternate logging, an attempt will be
made to switch to the inactive log. The ARCHPCT initialization parameter
protects the log from overflowing. See [ARCHPCT” on page 70| When you run
the database manager with log archiving active (LOGMODE=L), log space after
the begin-archive checkpoint cannot be reused until the next log archive is taken.
If the log becomes filled to the ARCHPCT value, the database manager forces an
online log archive. This archive cannot begin until all active logical units of work
have been either committed or backed out.

Set the ARCHPCT value lower than the SLOGCUSH value, which determines
when the log overflow procedure is run and thereby protects the log from

System Administration

overflowing. (see ["'SLOGCUSH” on page 70.) When the log is filled to the
percentage indicated in SLOGCUSH, the LUW that was running the longest is
backed out. (Although this procedure allows the log space to be reclaimed by
the online log archive, it can also frustrate the user whose application almost
completed.)

Because a log archive finishes faster than a database archive, it has less
performance impact if it is done when the database manager is running. If log
archives are occurring at inopportune times, however, you may want to
periodically issue LARCHIVE when activity on the database manager is low. Be
sure the log is large enough so the ARCHPCT limit is not reached before your
scheduled log archive.

* By doing an explicit database archive while LOGMODE=L by issuing SQLEND
ARCHIVE, SQLEND UARCHIVE, or ARCHIVE. Before archiving the database,
the database manager does an implicit log archive (if information is in the log).
If alternate logging is enabled and the inactive log was not archived yet, it will
be archived at this point. Note that the database manager never does an implicit
database archive.

* By restoring the database. This causes the database manager to do a log archive
(if there is information in the current log) before beginning the database restore.
If alternate logging is enabled and the inactive log was not archived previously,
it will be archived during the restore.

* By running a COLDLOG (STARTUP=L) when alternate logging is enabled and
the inactive log has not been archived. The archive is required to ensure that the
inactive log information is not lost.

Contention During an Archive

When an online log archive is requested, the database manager allows any LUWs
that are active to finish, but prevents any new ones from starting. A message is
displayed that tells how many LUWs are active. When they are complete, the
database manager takes a checkpoint and creates the log archive if single logging
is used. If alternate logging is enabled, a checkpoint will occur followed by a
switch to the inactive log. During the checkpoint, access to the database is disabled
and any users or applications that try to start a new LUW will be in a lock wait.

You can monitor the locking contention caused by the online log archive
checkpoint by using the SHOW operator commands from the database machine
console. However, you cannot issue SHOW commands from ISQL to monitor the
lock contention.

In most situations, only a slight delay occurs before the checkpoint is taken, but if
there are long-running LUWs, it can be longer. In a worst-case scenario, a
long-running LUW can delay the log archive checkpoint long enough so that the
SLOGCUSH value is reached, and the database manager must roll back the
longest-running LUW to free log space.

If you find that users are experiencing long delays because the database manager
is trying to take a checkpoint, you can issue the SHOW operator commands to
determine which user is delaying the start of the checkpoint, and then issue the
FORCE command to end that user’s LUW.

During the creation of the log archive of the active log, normal access to the
database is usually resumed. If, however, a condition arises during the archive that
requires a checkpoint to be taken, other work must wait until the archive process
completes. Such conditions include:

* A short-on-storage condition for a storage pool

Chapter 9. Making Backups and Recovering from Failures 207

208

* A full database log
* A COMMIT or ROLLBACK WORK statement issued during an LUW that

updated data in a nonrecoverable storage pool.

Note: You can use the SHOW LOG operator command to monitor available log space

to assist you in scheduling log archives.

Example of an SQLEND LARCHIVE

If you intend to create log archives, specify LOGMODE=L when you start your
application server. You can create your archive on tape, disk, or on a combination
of these media. There are different ways to start the process. The preferred method
is to issue an SQLEND LARCHIVE operator command, which instructs the
application server to copy the log to tape or disk as it shuts down.

Log Archiving to Tape
To use the SQLEND LARCHIVE command to create a log archive on tape:

1.
2.

System Administration

Log on to the database machine.

Attach and mount a labeled tape at virtual device address 183. Indicate that
you are writing to the tape. Use the procedures set up at your installation to
label, attach, and mount tapes.

Note that if alternate logging is enabled and the inactive log disk was not
archived, SQLEND LARCHIVE will first archive the inactive log disk.

Start the application server with LOGMODE=L.

Notify the current users that you want to stop the application server. Ask them
to complete their work and sign off. If a user does not stop voluntarily,
consider using the FORCE command to disconnect that user. Use this command
with caution, however, as the uncommitted work of the users you disconnect is
rolled back.

To display a list of the users currently connected to the application server, type
the operator command:

SHOW USERS

Archive the log and stop the application server by typing the following
operator command:

SQLEND LARCHIVE

a. You will see the following if alternate logging is enabled and the inactive
log has not been archived:

ARI2062I The database manager is initiating a log archive of the
inactive log

ARIO239I External labeling of this archive is:

Type: Tog archive

Timestamp: 12-09-92 14:41:00

ARI0252I Medium: tape 184

b. You will see the following message if alternate logging is not used or when
alternate logging is enabled and the inactive log was already archived:
ARI2063I The database manager is initiating a log archive of the active Tog
ARIO239I External labeling of this archive is:

Type: Tog archive
Timestamp: 12-09-92 14:41:00
ARIO252I Medium: tape 183

Write the information that this message provides on the external label of each

tape reel or cartridge. Include the date, time, and type of archive (log). See

[‘Labeling Your Archive Tapes” on page 214 for further instructions on how to

use this information. During a restoration, the same information is provided, so
you can easily verify that you are using the proper tape volumes.

7. 1f TAPEMGR has a value of N, the following message prompts you to accept or
change the default storage medium (tape is the default medium for a log
archive):

ARI0239I External Tlabeling of this archive is:
Type: log archive
Timestamp: 12-09-92 14:41:00
ARI02521 Medium: tape 183
ARI0246D The above information describes the log archive about to be done.
Enter either:
CONTINUE to proceed using the output medium indicated, or
CHANGE to change this medium.

Type CONTINUE and press ENTER. (If you reply CHANGE, you can direct the log
archive to disk. For more details, see [Log Archiving to Diskl)

If the tape becomes full, you will be told to mount another. After you mount
the new tape, type READY and press ENTER. You will be asked for more tapes
until the log archive is completed. The number of tapes required depends on
the size of your log.

If TAPEMGR has a value of Y, the log archive is directed to tape and the tape
assign is handled by the tape manager. The operator is not prompted to change
the medium of the log archive.

When the log is completely archived, the following message is displayed:
ARIO292I Archive is completed.

Note: You can still enter operator commands while the archive is being created.

8. If alternate logging is enabled and the inactive log has just been archived,
repeat steps 7 and 8.

Log Archiving to Disk

— Caution
Before you create log archives on disk, be aware that disks are exposed to
user errors (erasing a file containing an archive), and the remote possibility of
hardware problems such as head crashes.

To minimize the impact of hardware problems, ensure that all log archive
disk files are physically located on disk volumes that are not used for the
various database extents. You can back up the log archives yourself to achieve
a higher level of recoverability.

The output disk can be either a standard CMS minidisk or a shared file system
(SFS) directory. If it is a CMS minidisk, the database machine must access it in read
or write mode before you start the application server. If it is an SFS directory, the
database machine must access it before you start the application server.

You might experience delays if you use a remote shared file system (SFS) directory.
If these delays are causing problems with archiving the log, use a lower ARCHPCT

value when starting the application server.

The disk must contain enough space to hold the archived log. You must monitor
the space and erase old log archives to free space if need be, as the database

Chapter 9. Making Backups and Recovering from Failures 209

210

manager does not check that enough space exists. To calculate the size of the CMS
minidisk or shared file system directory needed to contain the log archives, use
this formula:

(Tog disk size) x (SLOGCUSH %) x (maximum number of lTog archives on this disk)

Where:

log disk size
is the size of the log disk used in the units you are using (for example,
4-kilobyte blocks)

SLOGCUSH %
is the value used for the SLOGCUSH parameter of the SQLSTART EXEC.
The default for SLOGCUSH is 90%, so you would use the value .9 if you
did not specify SLOGCUSH when you started the application server.

maximum number of log archives on this disk
is the maximum number of log archives you will store on this CMS
minidisk or shared file system (SFS) directory.

To use the SQLEND LARCHIVE command to create a log archive on disk:
1. Log on to the database machine.

2. Start the application server with LOGMODE=L and TAPEMGR = N. If the
application server is already started and TAPEMGR =Y, issue the operator
command SET TAPEMGR N.

3. Notify the current users that you want to stop the application server (refer to
[“Log Archiving to Tape” on page 208).

4. Archive the log and stop the application server by typing the operator
command:

SQLEND LARCHIVE

a. You will see the following if alternate logging is enabled and the inactive
log has not been archived:

ARI2062I The database manager is initiating a log archive of the
inactive log
ARIO239I External labeling of this archive is:
Type: log archive
Timestamp: 12-09-92 14:41:00
ARI02521 Medium: tape 184
ARI0246D The above information describes the log archive about to be done.
Enter either:
CONTINUE to proceed using the output medium indicated, or
CHANGE to change this medium.

b. You will see the following message if alternate logging is not used or when
alternate logging is enabled and the inactive log was already archived:

ARI2063I The database manager is initiating a log archive of the
active Tog
ARI0239I External labeling of this archive is:
Type: log archive
Timestamp: 12-09-92 14:41:00
ARIO252I Medium: tape 183
ARI0246D The above information describes the Tog archive about to be done.
Enter either:
CONTINUE to proceed using the output medium indicated, or
CHANGE to change this medium.

Type CHANGE and press ENTER, or type CONTINUE if you want to direct the log
archive to tape. You will see the following message:

System Administration

ARIO263D To direct the Tog archive to tape, enter TAPE followed
by the tape address (CUU) to be used.
To direct the log archive to disk, enter DISK followed
by the disk file's file name, file type, and file mode.
If you chose DISK, the default file is:
SQLMACH3 12099201 ?7?

6. Type the following and press ENTER:
DISK = = fm

where fm is the file mode of the disk to which you want to write the log
archive and the two equal signs give you the default file name and file type
chosen by the system. In this example, the default file name is SQLMACH3, and
the default file type is 12099201. You can change these by supplying your own
values.

7. Type CONTINUE and press ENTER. When the log is completely archived, the
following message is displayed:

ARIO292I Archive is completed.

Note: You can still enter operator commands while the archive is being created.

8. If altern