
IBM Confidential

IBM Software Group Page 1 of 14

®

IBM Software Group

© 2007 IBM Corporation

Using C++ API

IBM WebSphere® Data Interchange V3.3

This presentation discusses the use of a C++ Application Program Interface to access the
functions and features of WebSphere Data Interchange version 3.3.

IBM Confidential

IBM Software Group Page 2 of 14

IBM Software Group

2

Using C++ API © 2007 IBM Corporation

Agenda

�About the C++ API

�API Architecture

�API in action

�Building an Application

�Summary

This discussion starts with a high level overview of the API. It then illustrates the use of the API
in the sample program distributed with WebSphere Data Interchange on Windows and AIX. The
discussion concludes with basic information about building an application that uses this API.

IBM Confidential

IBM Software Group Page 3 of 14

IBM Software Group

3

Using C++ API © 2007 IBM Corporation

About the C++ API

�Provides simple and efficient access to all features

�Supports both the command interface (ediservr)

and the WebSphere MQ adapters

�Described in Programmer’s Reference Guide :

“Calling from a C++ program”

� Illustrated in ../samples/apiexamp.cpp

Using the C++ API, you can access the full range of translation and reporting features available
in WebSphere Data Interchange . This interface handles many of the cumbersome details of
manipulating the structures and control blocks that are used to communicate with the product’s
executable code. Even so, the C++ wrapper resolves quickly into product calls and does not
add significant overhead to a client application.

This interface is used by the product to implement the “ediservr” command scripting interface
that is the basis for execution on open platforms. It also supports both the triggered WebSphere
MQ adapter and the WebSphere MQ adapter server.

Additional details can be found in WebSphere® Data Interchange for MultiPlatforms version 3.3
Programmer’s Reference Guide, SC32-6217-01. A functional example of a client application
performing an XML to EDI translation is furnished in the product’s “samples” folder as
“apiexamp.cpp.” Program code later in this presentation come directly from this sample.

IBM Confidential

IBM Software Group Page 4 of 14

IBM Software Group

4

Using C++ API © 2007 IBM Corporation

Principal classes

CDIEnvironment

CDITranslator

CDIRequest

initializes

executes

defines
1

There are three classes that define the C++ interface: CDIEnvironment, CDITranslator and
CDIRequest. An object of all three classes must be instantiated to perform translation.

An environment object tells a translator object how to interact with its runtime configuration. It is
used only to initialize a translator object. A request object defines the action that a translator
should perform. Many request objects can be handled by a single translator instance. A request
object may be reused to perform the same or a different action.

IBM Confidential

IBM Software Group Page 5 of 14

IBM Software Group

5

Using C++ API © 2007 IBM Corporation

Environment class

CDIEnvironment

SetSys()
SetPlan()
SetUser()
SetPassword()
Parse()

An instance of the CDIEnvironment environment class must exist in order to initialize a
translator. The methods of this class allow you to set DB2 connection information such as the
subsystem identifier, plan name, user name and password. The Parse() method allows you to
specify these configuration options in an array of option / value pairs consistent with the way
parameters are passed from the operating system command interface.

For example, the following arguments might be passed to the Parse() method to facilitate
connecting to a local DB2 system.

myApplication -user myuser -password myPassword

IBM Confidential

IBM Software Group Page 6 of 14

IBM Software Group

6

Using C++ API © 2007 IBM Corporation

Request class

CDIRequest

PerformRequestRollbackRequestCommitRequest

setPerformCmd()

SetRequestType()
SetUnitOfWork()
GetRetCode()
GetExtRetCode()
SetAppfile()

The CDIRequest class defines the action requested from the translator. This chart show some
of the sub-types of this class: a commit, a rollback and a perform. The “perform” type contains a
complete lexical statement compatible with the command interface specified in the
Programmer’s Reference Guide. The “request” class offers “setter” function for many of the
logical files used during translation such as the SetAppfile() method. These provide a simple
way to supply logical file names without directly changing the PERFORM command, and they
guarantee a syntactically correct request for the translator.

The “getter” methods give access to translation status. They also provide information about
physical output files used during translation. The “request” may omit the specification for an
output file, or it may specify a directory or relative path name. After translation, these attributes
contain the full path names of files actually used. These same methods may return the number
of characters that were read from or written to the logical file.

IBM Confidential

IBM Software Group Page 7 of 14

IBM Software Group

7

Using C++ API © 2007 IBM Corporation

Translator class

CTranslator

CSyncTranslatorCAsyncTranslatorCRemoteTranslator

Initialize(CDIEnvironment)
ProcessRequest(CDIRequest&)
SetFileName()

All work is executed by a “translator” object. The application initializes the “translator” with a
valid “environment” object, and it invokes operations through the “ProcessRequest()” method.
The “SetFileName()” method builds any non-standard logical to physical file associations that
can not be set in the “request” object.

WebSphere® Data Interchange utilities always use the CSyncTranslator for robustness and
security.

IBM Confidential

IBM Software Group Page 8 of 14

IBM Software Group

8

Using C++ API © 2007 IBM Corporation

The API in action: startup

#include “diapi.h”

CDIEnvironment aCDIEnvironment;

CDIRequest aTransformRequest;

CSyncTranslator aCSyncTranslator;

//Define the Data Interchange Environment

aCDIEnvironment.SetPlan("EDIEC33E");

aCDIEnvironment.SetLang("ENU ");

rc = aCSyncTranslator.Initialize(aCDIEnvironment);

This begins a discussion of the sample program “apiexamp.cpp” code supplied with
WebSphere® Data Interchange.

An application program should include “diapi.h” that includes the several headers defining the
structures used by the low level API. The application next instantiates an “environment,”
“request,” and “translator” object. It then customizes its environment object and uses it to
initialize the translator. With this done, the environment object could be destroyed.

IBM Confidential

IBM Software Group Page 9 of 14

IBM Software Group

9

Using C++ API © 2007 IBM Corporation

The API in action: building the request

// Name the input and output files:

aCSyncTranslator.SetFileName("PRTFILE", "sample.prt");

aCSyncTranslator.SetFileName("XMLFILE", "poxml5sr.dat");

// Set the perform commands to be executed:

// XML-TO-EDI TEST CASE: ********************************

aTransformRequest.SetPerformCmd

("PERFORM TRANSFORM WHERE INFILE(XMLFILE) OUTFILE(OUTFILE) "

"SYNTAX(X) CLEARFILE(Y) XMLEBCDIC(N) TRACELEVEL(A2)");

The sample next build the logical to physical association between a file system entry, sample.prt,
and the logical name “PRTFILE.” This might better be done using the “SetPrintFile()” method of
the object “aTransformRequest,” but it is possible to build any logical to physical association
directly in the “translator” class provided it is not overridden by the value in this or another
CDIRequest object. Setting the “XMLFILE” must be done using the CTranslator method since
this name is not significant in WebSphere® Data Interchange.

The next call establishes the PERFORM command.

IBM Confidential

IBM Software Group Page 10 of 14

IBM Software Group

10

Using C++ API © 2007 IBM Corporation

The API in action: execution

// Ask the translator to process the EDI to ADF Request:

rc = aCSyncTranslator.ProcessRequest(aTransformRequest);

// Let the user know what happened:

cout << "returns: rc=" << rc

<< ", zccbrc=" << aCSyncTranslator.GetRetCode()

<< ", zccberc=" <<

aCSyncTranslator.GetExtRetCode() << endl;

// Confirm the input and output names and print return codes:

rc=aCSyncTranslator.GetFileName(&pszPhysicalName, "XMLFILE",

&lFileLen);

cout <<"Input file was : " << pszPhysicalName << ", "

<< lFileLen << " bytes written" << endl;

Once the “request” object is complete, the CSyncTranslator instance uses it to actually execute
the processing. Notice how the program calls the “GetFileName()” method of the translator.

IBM Confidential

IBM Software Group Page 11 of 14

IBM Software Group

11

Using C++ API © 2007 IBM Corporation

The API in action: output

XML to EDI sample transformation using the C++ API

Initialize the translator SyncTranslator::Initialize()

Initialize() returns: rc=0, zccbrc=0, zccberc=0

CSyncTranslator::ProcessRequest() returns: rc=0, zccbrc=0,

zccberc=0

Input file: C:\...\samples\poxml5sr.dat, -1901 bytes written

Output file C:\...\samples\sample.out, 681 bytes written

This is a subset of the output from an executing sample program. The print of the XMLFILE
shows a negative character count in addition to the fully qualified file name. The negative
indicates that the characters were input rather than output.

IBM Confidential

IBM Software Group Page 12 of 14

IBM Software Group

12

Using C++ API © 2007 IBM Corporation

Building an application

�Samples show Microsoft Visual C++ 6.0 project

�links with ../bin/libdiapi.lib

�AIX samples with “apiexamp.mk” make file

�links with ../bin/libdiapi.a

The sample directories on Windows and AIX contain files to build the sample application. On
AIX, this is a basic ‘make’ file that sets the include path and brings in the library ‘libdiapi.a’ during
link. These same functions are contained in a Microsoft Visual C++ project and workspace file
for building the sample on Windows.

IBM Confidential

IBM Software Group Page 13 of 14

IBM Software Group

13

Using C++ API © 2007 IBM Corporation

Summary

�WebSphere® Data Interchange has three C++

classes that give access to all of its features

�CDIEnvironment

�CDIRequest

�CTranslator

� Features of the API are documented in the

Programmer’s Reference Guide

� The ../samples folder has a complete working

example

The WebSphere® Data Interchange C++ API is simple and easy to use. It provides convenient
access to the rich features of the product through three base classed: the environment, the
request and the translator. These classes and their methods are documented in the
Programmer’s Reference Guide, and they are illustrated in “apiexamp.cpp” distributed in the
samples folder on Windows and AIX.

IBM Confidential

IBM Software Group Page 14 of 14

14

IBM Software Group

IBM Confidential Presentation Title © 2007 IBM Corporation

Trademarks, copyrights, and disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM CICS IMS WMQ Tivoli
IBM(logo) Cloudscape Informix OS/390 WebSphere
e(logo)business DB2 iSeries OS/400 xSeries
AIX DB2 Universal Database Lotus pSeries zSeries

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are registered trademarks of Microsoft Corporation in the United States, other countries, or both.

Intel, ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product and service names may be trademarks or service marks of others.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include technical inaccuracies or
typographical errors. IBM may make improvements and/or changes in the product(s) and/or program(s) described herein at any time without notice. Any statements regarding IBM's
future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this document to IBM products, programs, or
services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM operates or does business. Any reference to an IBM Program
Product in this document is not intended to state or imply that only that program product may be used. Any functionally equivalent program, that does not infringe IBM's intellectual
property rights, may be used instead.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER
EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall
have no responsibility to update this information. IBM products are warranted, if at all, according to the terms and conditions of the agreements (e.g., IBM Customer Agreement,
Statement of Limited Warranty, International Program License Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained from the suppliers
of those products, their published announcements or other publicly available sources. IBM has not tested those products in connection with this publication and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. IBM makes no representations or warranties, express or implied, regarding non-IBM products and
services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding patent or copyright
licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented as illustrations of
how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance
can be given that an individual user will achieve throughput or performance improvements equivalent to the ratios stated here.

© Copyright International Business Machines Corporation 2006. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

Template Revision: 04/25/2006 11:09 AM

