
IBM Software Group Page 1 of 14

®

IBM Software Group

© 2007 IBM Corporation

IBM WebSphere® Data Interchange V3.3

z/OS Batch Processing

This presentation will describe the WebSphere Data Interchange Batch Processing Options.



IBM Software Group Page 2 of 14

IBM Software Group

2

© 2007 IBM Corporationz/OS Batch Processing

Agenda

� Invoking WDI using JCL

�Using the WDI Translator API

�Reference

The presentation will describe the batch processing options available.   



IBM Software Group Page 3 of 14

IBM Software Group

3

© 2007 IBM Corporationz/OS Batch Processing

Invoking WDI using JCL

Section

The Send Translation process.



IBM Software Group Page 4 of 14

IBM Software Group

4

© 2007 IBM Corporationz/OS Batch Processing

Using JCL 

� WebSphere Data Interchange Utility Execution

� PERFORM Commands

� EDIUTILD in the distribution library

Sample Utility JCLs are distributed in the JCL distribution library 
(EDI.V3R3M0.SEDIINS1). The DB2 version is in member EDIUTILD. The 
JCL is divided into subsections based primarily on function. 



IBM Software Group Page 5 of 14

IBM Software Group

5

© 2007 IBM Corporationz/OS Batch Processing

Using JCL 

� Section 1

//EDIUTILD JOB (INSTALLATION DEPENDENCIES, REGION=4096K)        

//*                                                             

//*********************************************************************

//* This sample JCL will invoke the Data Interchange utility in the   *

//* DB2 environment. Copy this JCL and modify it for your local *

//* environment.                                                *

//*********************************************************************

The beginning of the JCL states that certain elements of the JCL must be 
modified to run in your environment. This is usual and customary. The 
minimum region size to execute the WebSphere Data Interchange Utility is 
4096 K. 



IBM Software Group Page 6 of 14

IBM Software Group

6

© 2007 IBM Corporationz/OS Batch Processing

Using JCL 

� Section 2

//*                                                             

//XDIUTIL EXEC PGM=IKJEFT01,DYNAMNBR=50                         

//*                                                             

//STEPLIB  DD DSN=DB2.SDSNEXIT,DISP=SHR          <--DB2 LOAD LIBRARY   

//         DD DSN=DB2.SDSNLOAD,DISP=SHR          <--DB2 LOAD LIBRARY   

//         DD DSN=EDI.V3R3M0.SEDILMD1,DISP=SHR   <--EDI LOAD LIBRARY   

//         DD DSN=SYS1.SNA.LOADLIB,DISP=SHR      <--COMM. LOAD LIBRARY

//         DD DSN=SYS.XML.SIXMMOD1,DISP=SHR      <--XML ToolKit

// Version 1 Release 9   

//* 

STEPLIB accesses the WebSphere Data Interchange load modules. If you 
make communication requests, STEPLIB must include the library where the 
communication routines reside. STEPLIB is not required if you have 
provided access to the necessary programs in other ways (such as adding 
the load libraries to the LNKLST, or loading all necessary programs into the 
link pack area).  

XML parameters should be added to the STEPLIB.  The EDI.XML 
parameters (in the last line of code) should be edited as appropriate for your 

installation of XML Toolkit Version 1 Release 9, replacing SYS1 with the high 
level qualifier for your system.  The XML Tool Kit is required for WebSphere 
Data Interchange data transformation processing. 



IBM Software Group Page 7 of 14

IBM Software Group

7

© 2007 IBM Corporationz/OS Batch Processing

Using JCL 

� Section 3

//*                                             
//PRTFILE  DD SYSOUT=*,DCB=(RECFM=FBA,LRECL=132)
//* 

There are three print files in WebSphere Data Interchange.  These are  
PRTFILE, XMLPRNT, and ADFPRNT.  PRTFILE is required for all 
WebSphere Data Interchange Utility functions. XMLPRNT and ADFPRNT 
are optional. Error messages generated during function processing and a 
summary report are written to PRTFILE. Error messages are written to the 
optional files if specified. This data set contains fixed block addressing (FBA) 
or variable block addressing (VBA) records with a logical record length of 
132. 



IBM Software Group Page 8 of 14

IBM Software Group

8

© 2007 IBM Corporationz/OS Batch Processing

Using JCL 

� Section 4

//*                                           
//APDATA01 DD DSN=PHYSICAL.FILE1.NAME,DISP=OLD
//APDATA02 DD DSN=PHYSICAL.FILE2.NAME,DISP=OLD
//* 

Translate to Standard files..  The APDATA01 and APDATA02 ddnames are 
examples of files containing application data that is to be translated into EDI 
standard format. The files can contain C and D records, or they can contain 
data in raw data format. The actual ddnames must match the names 
specified with the APPFILE keyword in the PERFORM command. A file is 
expected to contain C and D records unless the RAWFMTID keyword is 
provided. These data sets can contain fixed or variable length records. 



IBM Software Group Page 9 of 14

IBM Software Group

9

© 2007 IBM Corporationz/OS Batch Processing

Using JCL 

� Section 5

//*                                            
//FFSEXCP  DD DSN=BAD.TRANSACTION.FILE,DISP=MOD
//* 

Destination files. When translating to EDI standard format, the WebSphere 
Data Interchange Utility writes transactions that were not translated 
successfully to FFSEXCP. When translating to application format, the Utility 
writes translated transactions to FFSEXCP if it can not write them to the 
intended file. (This is usually because the intended file could not be opened 
or is full). Optional records are also written to FFSEXCP if the tracking file 
(FFSTRAK) does not exist and your application data is in C and D format. 
FFSEXCP must be large enough to contain the largest data record you are 
translating, and the largest information record the translator might return. 
Use the JCL DISP option to control whether FFSEXCP is cleared or
appended to during the first use. After the first use, WebSphere Data 
Interchange automatically appends to the file. FFSEXCP can contain fixed or 
variable length records. 



IBM Software Group Page 10 of 14

IBM Software Group

10

© 2007 IBM Corporationz/OS Batch Processing

Using JCL 

� Section 6

//*                                          
//FFSTRAK  DD DSN=HOLD.TRAKING.FILE,DISP=MOD 
//* 

FFSTRAK holds the optional information records if they are requested. If you 
are using C and D records and if FFSTRAK is not provided, the optional 
records are written to the exception file (FFSEXCP). If your application data 
is in raw data format and FFSTRAK is not provided, no optional records are 
written even if they are requested. FFSTRAK must be large enough to 
accommodate the largest information record. FFSTRAK can contain fixed or 
variable length records. 



IBM Software Group Page 11 of 14

IBM Software Group

11

© 2007 IBM Corporationz/OS Batch Processing

Using JCL 

� Section 7

//*                                                         
//FFSWORK  DD DSN=&&FFSWORK,DISP=(NEW,DELETE),UNIT=SYSALLDA,
//         DCB=(RECFM=V,BLKSIZE=32760),SPACE=(TRK,(1,1))    
//* 

FFSWORK is required only when translating from application format to EDI 
standard format. FFSWORK holds the current transaction in case of 
translation errors. If an error occurs, the current transaction is copied from 
the FFSWORK file to the exception file (FFSEXCP). This data set can 
contain variable record format with a logical record length of 32756. If your 
system guidelines allow, specifying UNIT=VIO on this DD statement will 
drastically reduce import/export exceptions on the data set. Allocating with a 
variable blocked (VB) record format will also reduce the number of I/O 
EXCPs on the data set. 



IBM Software Group Page 12 of 14

IBM Software Group

12

© 2007 IBM Corporationz/OS Batch Processing

Using JCL 

� Section 8

//*                                              
//QDATA    DD DSN=NETWORK.HOLDFILE.NAME,DISP=MOD 
//* 

Envelope data file. If your Utility request involves enveloping and/or sending 
of transaction data, this is the section of JCL that defines the EDI standard 
data file to envelope into and send from. The ddname should match one of 
the following: v The Trans data queue field value as specified in the Network 
Profile (NETPROF). If a name has not been supplied in the Network Profile 
member, the default is QDATA. The ddname specified holds transactions 
that have ISA, ICS, or GS enveloping. The same file name with an E 
appended (such as QDATAE) holds transactions that have either UNB or 
STX enveloping. The same file name with a U appended (such as QDATAU) 
holds transactions that have BG enveloping. There must be a ddname
specified for each network that can be accessed during the run. v The value 
specified in the FILEID keyword on the PERFORM command. If this 
keyword is specified, that file is used to hold all envelope types for all 
networks. This data set can contain fixed-length or variable-length records 

with a logical record length of 80 or greater. 



IBM Software Group Page 13 of 14

IBM Software Group

13

© 2007 IBM Corporationz/OS Batch Processing

Using JCL 

� Section 9

//*                                                             
//INFILE   DD DSN=&&INFILE,DISP=(NEW,DELETE),UNIT=SYSALLDA,     
//         DCB=(RECFM=FB,LRECL=80,BLKSIZE=6160),SPACE=(TRK,(1,1))
//OUTFILE  DD DSN=NETWORK.OUTFILE,DISP=OLD                      
//ISCMSGS  DD SYSOUT=*                                          
//ISCTRACE DD UNIT=SYSALLDA,SPACE=(CYL,(1,5)),DISP=(,PASS),     
//            DCB=(LRECL=6000,BLKSIZE=12288,BUFNO=2,RECFM=VB)   
//* 

Network communications files. This group of JCL statements is used when 
sending to or receiving from a network. The JCL shown here is required for 
the AT&T Global Network. Each network has its own JCL requirements. 



IBM Software Group Page 14 of 14

IBM Software Group

14

© 2007 IBM Corporationz/OS Batch Processing

Using JCL 

� Section 10

//*                                    
//REQ1DD    DD DSN=REQ1.TRANS,DISP=MOD 
//REQ2DD    DD DSN=REQ2.TRANS,DISP=MOD 
//* 

EDI Standards files. For receiving and deenveloping transaction data, this 
section of JCL defines the EDI standard data file to receive into and 
deenvelope from. The ddname should match one of the following: 

-The Receive file name field value as specified in the mailbox (requestor) 
profile (REQPROF) associated with the REQID keyword in the PERFORM 
command. There must be a ddname here for each requestor that can be 
processed during the run. 

-The value specified with the FILEID keyword in the PERFORM command. 
The value specified here overrides the Receive file name value from the 

mailbox (requestor) profile. 

This data set can contain fixed-length or variable-length records with a 

logical record length of 80 or greater. 



IBM Software Group Page 15 of 14

IBM Software Group

15

© 2007 IBM Corporationz/OS Batch Processing

Using JCL 

� Section 11

//*                                            
//INVOICE   DD DSN=INVOICE.DATA.FILE,DISP=MOD  
//PURCORD   DD DSN=PURCORD.DATA.FILE,DISP=MOD  
//* 

This section defines the ddname for receiving data. The ddname is specified 
in the Application file name field in the data format. You must specify a 
ddname for each data format that can be processed during the run. The 
name specified in the data format can be overridden with a value in the 
Application file name field in the receive usage/rule. If there is no applicable 
DD statement, the application data is written to the exception file 
(FFSEXCP). In the example below, INVOICE identifies a file that holds data 
in application format when translating from EDI standard format. This data 
set can contain fixed or variable length records. The logical record length 

must be large enough to hold the largest application record. 



IBM Software Group Page 16 of 14

IBM Software Group

16

© 2007 IBM Corporationz/OS Batch Processing

Using JCL 

� Section 12

//*                                    
//RPTFILE   DD DSN=REPORT.FILE,DISP=MOD
//* 

Report file. This section defines the file that contains reports generated by 
the PRINT command and by various other PERFORM commands. This data 
set can contain fixed block addressing (FBA) or variable block addressing 
(VBA) records with a logical record length of 132. 



IBM Software Group Page 17 of 14

IBM Software Group

17

© 2007 IBM Corporationz/OS Batch Processing

Using JCL 

� Section 13

//*                                    
//EDIQUERY  DD DSN=QUERY.FILE,DISP=MOD 
//* 

Output file. This section defines the file that contains output from command 
processing. EDIQUERY identifies a file that contains output from QUERY 
commands and from various other PERFORM commands. 



IBM Software Group Page 18 of 14

IBM Software Group

18

© 2007 IBM Corporationz/OS Batch Processing

Using JCL 

� Section 14

//* If using the MAPPING MIGRATION command:                     *

//*                                                             *

//* You may want to specify an INCNTL and/or an OUTCNTL file.   *

//* These DD names should be referenced by the INCNTL and OUTCNTL     *

//* keywords in the EDISYSIN input command language statements. *

//*                                                             *

//* Allocation parameters should indicate record length of at least   *

//* 80 bytes.                                                   *

//*                                                             *

//* You should run the migration once with an OUTCNTL file      *

//* and no INCNTL file.  If changes to the mapping are needed, edit   *

//* the OUTCNTL file and submit only the changed records as the *

//* INCNTL file the next run of mapping migration. You can use the    *

//* same file and data definition name for INCNTL and OUTCNTL.  *

//*                                                             *

//*********************************************************************

This section of JCL is required for mapping migration. 



IBM Software Group Page 19 of 14

IBM Software Group

19

© 2007 IBM Corporationz/OS Batch Processing

Using JCL 

� Section 15

//*********************************************************************

//* If using the EXPORT or IMPORT commands:                     *

//*                                                             *

//* 1) Allocate the export/import DI VSAM control file.         *

//*                                                             *

//* 2) Allocate the export/import user supplied control file.   *

//*    This control file decribes what data is to be exported or      *

//*    imported. An allocation of fixed format and record length 84   *

//*    should be used. This file can also be allocated inline.  *

//*    Make sure to use the same DD name allocated with the     *

//*    CTLFILE keyword in the EDISYSIN input command language   *

//*    statements. In this sample CTLFILE(EXIMCTL) would be used.     *

//*                                                             *

This section of JCL is required for exporting and importing. 



IBM Software Group Page 20 of 14

IBM Software Group

20

© 2007 IBM Corporationz/OS Batch Processing

Using JCL 

� Section 16

//*                                           
//FAENV     DD DSN=FA.OVERRIDES.FILE,DISP=SHR 
//* 

This section defines override data that the translator uses to generate 
functional acknowledgments. FAENV is an optional file processed during 
deenvelope functions. 



IBM Software Group Page 21 of 14

IBM Software Group

21

© 2007 IBM Corporationz/OS Batch Processing

Using JCL 

� Section 17

//*                                                             

//EDISYSIN  DD *                                                

* An asterisk in column one denotes a comment line..            

* -------------------------------------------------------------------

*  

* Here is a sample of command language input to translate and   

* envelope transactions from application file APDATA01 and generate      

* optional records.                                             

* -------------------------------------------------------------------

*  

PERFORM TRANSLATE AND ENVELOPE 

Perform command file. This section defines the file from which the Utility 
PERFORM commands are read. If EDISYSIN is not defined, the Utility 
checks SYSIN for the PERFORM commands. The command file contains
the input WebSphere Data Interchange Utility commands that you want 
executed. The command language syntax is fairly free-form and is not case 
sensitive exceptions are noted in the WebSphere Data Interchange
Commands and file formats reference guide. The WebSphere Data 
Interchange Utility first verifies that EDISYSIN is allocated. If so, the logical 
name EDISYSIN is used. If EDISYSIN does not exist, the logical name 

SYSIN is used. The command file is opened for read processing only, so it 
can be allocated as an inline data set in your WebSphere Data Interchange 
Utility JCL.  



IBM Software Group Page 22 of 14

IBM Software Group

22

© 2007 IBM Corporationz/OS Batch Processing

Using JCL 

� Section 18

//*                                                             

//*EDIVAX   DD DISP=(NEW,DELETE,DELETE),UNIT=SYSALLDA,SPACE=(CYL,25)    

//*                                                             

//********************************************************************* 

//* Specify the Pageable Translation work file for Data Transformation* 

//********************************************************************* 

//*EDIPAGE  DD DISP=(NEW,DELETE,DELETE),UNIT=SYSALLDA,SPACE=(CYL,25)    

//*EDIWORK  DD DISP=(NEW,DELETE,DELETE),UNIT=SYSALLDA,SPACE=(CYL,25)    

//*                                                             

//********************************************************************* 

//* Specify the message parsing work file.  Uncomment the following   * 

//* DD statement if you use this feature.                       * 

//*                                                             * 

//* Suggested: DCB=(RECFM=V,LRECL=32760)                        * 

//********************************************************************* 

//*                                                             

//*EDIPARSE DD DSN=EDI.EDIPARSE.FILE,DISP=SHR 

Work files.  These files are used for pageable translation and message 
parsing.



IBM Software Group Page 23 of 14

IBM Software Group

23

© 2007 IBM Corporationz/OS Batch Processing

Using JCL 

� Section 19

//*                                                             

//SYSTSIN  DD *                                                 

DSN SYSTEM (DSN)                                              

RUN PROG (EDIFFUT) -

PLAN (EDIENU33) -

PARM('LANGID=ENU SYSID=DIENU APPLID=EDIFFS PLAN=EDIENU33 SYSTEM=DSN')

END                                                           

/* 

When invoking the WebSphere Data Interchange Utility, certain parameters 
are passed in. These parameters are keyword-oriented. The keywords 
should be separated by at least one blank character. This section is for DB2 
only. It is typical in a DB2 environment that batch application programs (such 
as the WebSphere Data Interchange Utility) run under the TSO Terminal 
Monitor Program (TMP) in background mode. This is specified by naming 
IKJEFT01 in the EXEC JCL statement as in the following example:

-//XDIUTIL EXEC PGM=IKJEFT01,DYNAMNBR=50 

The parameters passed to IKJEFT01 are specified in the SYSTSIN data set. 
These parameters include the DB2 subsystem ID, the DB2 plan, the name of 

the application program, and the application program parameter string. 
IKJEFT01 connects DB2 and opens the plan, runs the application program 
(EDIFFUT), and then closes the plan and disconnects DB2. When EDIFFUT 
executes via IKJEFT01 the DB2 processing mode is called DSN. This 
processing mode assumes that data set EDITSIN does not exist, and that 
the WebSphere Data Interchange Utility parameters are specified in 

SYSTSIN. 



IBM Software Group Page 24 of 14

IBM Software Group

24

© 2007 IBM Corporationz/OS Batch Processing

Using the Application Program Interface (API)

Section



IBM Software Group Page 25 of 14

IBM Software Group

25

© 2007 IBM Corporationz/OS Batch Processing

Using the API 

� Environmental services

� Translation services

� Enveloping services

� Data extraction services

� Communication services

� Update status services

� SYNCPOINT services

� Get/Put Envelope services 

You can request WebSphere Data Interchange services directly from an 
application program. You can access WebSphere Data Interchange services 
with a simple call statement to a WebSphere Data Interchange provided stub 

program. 



IBM Software Group Page 26 of 14

IBM Software Group

26

© 2007 IBM Corporationz/OS Batch Processing

Using the API

� WDI Service Director

�Provides access to WDI services via API.

�Call/return semantics for invoking services

�Execution time binding

�Cross language communication between WDI and your application.

�Environment dependent services

The Service Director is a set of routines which provide access to WebSphere 
Data Interchange services and a facility for defining those services. The 
functions provided by the Service Director include:

Call/return semantics for invoking services.                    

Execution time binding.  The services are not linked with the calling 
application.                               

Cross language communication between WDI supported languages.  (For 
example, a COBOL application may request a service written in "C").

Environment dependent services.



IBM Software Group Page 27 of 14

IBM Software Group

27

© 2007 IBM Corporationz/OS Batch Processing

Using the API

Application load module

Application logic

SNB, CCB, FCB, ...

WDI Language Stub

FXXZCBL (SNB, CCB, FCB, ...)

WDI

FXXZCSD

CONTROL

FXXZIN

SERVICE

CONTROL

TRANPROC TRANSSRV COMM Services Logical name

The Service Director is the "control point" and provides an access to all  
common services from the application. The application programmer, when 
requesting a service, utilizes a logical name. The logical name references 
the physical  name of the service requested.  From the application program 
viewpoint the services appear as "logical services".  This means that the 
application calls the service by an assigned name with no regard to where 
the actual "physical" service resides or what its real physical name is.   The 
Service Director handles all calls to the services and routes the requests on 
behalf of the application. 



IBM Software Group Page 28 of 14

IBM Software Group

28

© 2007 IBM Corporationz/OS Batch Processing

Using the API

Application load module

Application logic

SNB, CCB, FCB, ...

W DI Language Stub

FXXZCBL (SNB, CCB, FCB, ...)

WDI

FXXZCSD

CONTROL

FXXZIN

SERVICE

CONTROL

TRANPROC TRANSSRV COMM Services Logical name

By using logical names, the application program is  given the ability to  
perform "dynamic calls". Functions can be changed/modified/enhanced with 
no impact to the application.  Once the service director is given control its 
actions are controlled by a service table.  This table contains service  names, 
locations, flags, indicators, etc.                              

The service director is given control by the application issuing a call to a 
language stub and passing it the required information (requested service, 
common block address, etc.). The service director will then map the logical 

to physical name, then load and pass control to the service. When the 
service has  completed processing, control returns to the service director 
and then to the application program.  The  application can then examine the 

return code, data buffers, etc., and  continue processing.      



IBM Software Group Page 29 of 14

IBM Software Group

29

© 2007 IBM Corporationz/OS Batch Processing

Using the API

�API Languages

�FXXZASM  Service Director Asm language stub 

�FXXZC    Service Director "C" /370 language stub  

�FXXZCBL  Service Director COBOL language stub 

�FXXZPLI  Service Director PL/I language stub

The load library distributed with WDI contains a load module for each of the 
stub programs.  These programs are linked with the application program 
requesting the service.  These stub programs are pieces of code that load 
and transfer control to WDI when a request is made.  WDI is not physically 
part of the application load module.  The distributed load library should be 
part of the //SYSLIB for the linkage editor.

Although WebSphere Data Interchange directly supports only these
languages, any language that can create an operating-system-style 

parameter list, and that uses operating system linkage and register 
conventions, can request WebSphere Data Interchange services by using 
the FXXZASM stub program. 



IBM Software Group Page 30 of 14

IBM Software Group

30

© 2007 IBM Corporationz/OS Batch Processing

Using the API

� SNB - Service Name Block.  

�The SNB contains the name of the  service being requested and the number 
of parameters being passed  to that service.  The service director updates this 

control block with an  index to allow fast access to the service if that service is  

requested multiple times.  The first access to a service requires  a search to 
resolve the logical service name to the physical service  module name.  

Subsequent calls for the same service using the same  SNB will bypass the 

search and use the index in the SNB to locate the requested service.  

� CCB - Common Block

�There is a single DataInterchange Common Block (CCB) per application and it  

contains data and pointers needed by the service director as well as return  information 

set by the called service.  A single CCB must be used   by all services and facilities 

called by the application. 

� FCB - Function Block

�Function block contains a 2 byte block length and a the 2 byte function code within the 

service being requested. 

WebSphere Data Interchange assumes that all parameters are pointers to 
control blocks. Any remaining parameters have no meaning to the service 
director but are parameters that will simply be forwarded to the requested 
service. 



IBM Software Group Page 31 of 14

IBM Software Group

31

© 2007 IBM Corporationz/OS Batch Processing

Using the API 

� Environmental services

�Initialization

� FXXZccc (SNB, CCB, FCB, 'applid', 'sysid') 

�Termination

� FXXZccc (SNB, CCB, FCB ) 

� Utility Service

� FXXZccc (SNB, CCB, FCB, UTILCB) 

Environmental services both establishes and removes the WebSphere Data Interchange environment. 
First, your application program must request initialization. When initialization is complete, you can 
request other services. If you request another service before requesting an initialization, either a return 
code of -1 is posted in the CCB, or the program ABENDs. Finally, your application program must 
request termination. The services requested between initialization and termination (such as translation 
or communication services) internally acquire storage, open files, and obtain control over resources. 
Requesting termination is necessary so WebSphere Data Interchange can release all resources that it 
has obtained. 

The Utility Service API is a special service and is used as a performance technique available with WDI 
in CICS.  This technique is identified as “Hot DI”.  “Hot DI” is a term used with WebSphere Data 
Interchange to describe a CICS environment whereby WDI processing “threads” are always initialized. 
Initialization occurs when WDI is getting starting. The product obtains control storage, determines 
some “instance options”, and prepares to process data. In a CICS environment there normally are 
many small transactions. By reducing the number of times WDI has to initialize itself, the time to 
process transactions after the first one can be significantly reduced. In this case WDI is always ready 
to process and already “warmed-up” \; hence the designation “Hot DI”.



IBM Software Group Page 32 of 14

IBM Software Group

32

© 2007 IBM Corporationz/OS Batch Processing

Using the API 

� Translation services

�Batch oriented process (z/OS)

�Time-critical process (CICS)

�Document Store

�Enveloping

�Data Extraction

Translation services, enveloping services, and data extraction services are closely related. They share 
an API implemented by the same logical service (TRANPROC). These services also share the 
Document Store. Exchanging information with a trading partner is a sequence of interruptible events 
whose status must be maintained and tracked. In the batch-oriented process, application data is 
stored in files owned by the applications until the next batch job runs, which translates the application 
data into an EDI standard format. This job, or a different job run later, can request that all the EDI 
standard data be gathered (enveloped) and sent to the trading partner. The trading partners receive 
the data, process the data, and then return a response. 

In the time-critical process, application data is usually translated, enveloped, and sent as soon as the 
data is available. Although some batching of data might occur, the batches are typically much smaller 
than in the batch-oriented process. The trading partner is expected to process the data and generate 
a response immediately. 

The Document Store database saves all EDI standard data sent or received and tracks the status of 
the data as it progresses from translated, to send, to received, to acknowledged. The Document Store 
is updated by all translation and enveloping operations, and is maintained and reported on by the 
Document Store functional area or the WebSphere Data Interchange Utility. Updating the Document 
Store database is optional and can be controlled using the Application Defaults (APPDEFS) profile. 
For more information about the Application Defaults profile, refer to the WebSphere Data Interchange 

User’s Guide. 



IBM Software Group Page 33 of 14

IBM Software Group

33

© 2007 IBM Corporationz/OS Batch Processing

Using the API 

� Translation services

�TRANPROC

�FXXZccc (SNB, CCB, FCB, TRCB, TRIDB, TRODB) 

� FCB code identifies which function to perform

The logical name for the translation service is TRANPROC. Some examples 
of codes and functions (FCB function code) provided by the translation 
service are: 

-111 Test translate-to-EDI-standard 

-131 Production translate-to-EDI-standard 

-211 Test deenvelope and translate-to-application 

-212 Production deenvelope and translate-to-application

-215 Envelope data  

-216 Detailed transaction data 

-1000 End translation 



IBM Software Group Page 34 of 14

IBM Software Group

34

© 2007 IBM Corporationz/OS Batch Processing

Using the API 

� Communication services

� sequential flat file

� CICS TS queue 

�Queue standard data

� FXXZccc (SNB, CCB, FCB, CMCB, TPPDB, DATABLK) 

� Send Files

� FXXZccc (SNB, CCB, FCB, CMCB, TPPDB) 

The functions provided in the Communication API enable an application 
program to send or receive transaction data, files, and messages to and 
from trading partners. The transaction or file data that is to transmitted is not 
passed directly through an API parameter. Rather, it is provided indirectly as 
the name of a sequential flat file that contains the data to be sent or must be 
used to collect the data that is being received. In CICS, the data to be sent 
or received is restricted to a TS queue. 



IBM Software Group Page 35 of 14

IBM Software Group

35

© 2007 IBM Corporationz/OS Batch Processing

Using the API 

� Update status services

�TRANSSRV

�Document Store status

�Communications routine

�Message handler

�Network acknowledgments

� FXXZC (SNB, CCB, FCB, USKB, status [,USDB [,REQID] ] ) 

Update status services allow the status of an interchange to be updated as it 
progresses from enveloping, to sending, to receipt by the trading partner. 
The update status service is used by the communications routine and 
message handler when an interchange is sent, and also during the
processing of network acknowledgments. Certain characteristics of an 
interchange become known only when the interchange is sent. Therefore, 
the update status service also allows other fields in the interchange to be set 
when status is updated. These are established using the update status data 
block. The logical name for the update status service is TRANSSRV.

The FCB function code identifies the type of key provided.  The USKB is the 
key block with a format based on the value in the FCB. Using the update 

status data block (USDB) is always optional. This data block contains 
information about an interchange that is generally determined at the time an 
interchange is sent.   With REQID, the management reporting component of 

WebSphere Data Interchange is called to update the statistics on the 
number of bytes sent from the specified requestor ID.   



IBM Software Group Page 36 of 14

IBM Software Group

36

© 2007 IBM Corporationz/OS Batch Processing

Using the API 

� SYNCPOINT services 

�Recovery scope

�COMMIT or ROLLBACK work

�RECOVERY keyword on PERFORM

�Intialize

� FXXZccc (SNB, CCB, FCB, SYNCVAL)

� Commit/Rollback

� FXXZccc (SNB, CCB, FCB)  

SYNCPOINT services provide the interface for controlling the recovery 
scope, and provide an environment-independent interface for requesting 
either that changes to resources are permanent (COMMIT work) or that 
changes must be removed (ROLLBACK work). If a system or application 
fails, or if a specific ROLLBACK work request is made, all changes made to 
resources since the last COMMIT point are backed out of the system. It will 
be as if the changes were never made. In an z/OS/DB2 environment, a 
request to commit work is made directly to DB2 using a COMMIT request. A 
request to roll back work is made directly to DB2 with a ROLLBACK request. 
In a CICS/DB2 environment, a request to commit work is made to CICS with 
an EXEC CICS SYNCPOINT request. CICS passes this request on to DB2 
and controls the committing of CICS resources with DB2 resources. A 
request to roll back work is made to CICS with an EXEC CICS SYNCPOINT 
ROLLBACK request. Again, CICS passes this request to DB2 and controls 

the removal of CICS resources with DB2 resources. SYNCPOINT services 
issues the proper request based on the execution environment. When you 
use this API, recovery scope is established using the SCOPE field in the 
TRCB. When you use the WebSphere Data Interchange Utility, recovery 

scope is established by using the RECOVERY keyword on the PERFORM 
command. 



IBM Software Group Page 37 of 14

IBM Software Group

37

© 2007 IBM Corporationz/OS Batch Processing

Using the API 

� Get/Put Envelope services

�Get data directly from translator

�Put data directly into the translator

�PERFORM keywords

� IEXIT

� IACCESS

� ITYPE 

� FXXZASM (GPCB, CCB, FCB, BUFFER, LEN) 

During outbound processing, you can use the Get envelope service to get 
data directly from the translator, rather than from the file the translator writes 
to. Normally, after WebSphere Data Interchange creates an interchange, the 
interchange is routed automatically to a file. (In CICS, this file is always a TS 
queue.) By writing an exit to circumvent this action, the envelope can be 
retrieved directly from the translator and then processed. In CICS, for 
example, the interchange could be routed to a TD queue. 

During inbound processing, you can use the Put envelope service to put 
data directly into the translator, rather than having the translator read a file. 
Normally, in order to deenvelope an interchange, WebSphere Data 
Interchange reads a file containing the interchange. In CICS, this file is 
always a TS queue. By writing an exit to circumvent this action, you can 
pass an envelope directly into the translator. In CICS, for example, an 

interchange could be read from a TD queue and passed directly into the 
translator. 

WebSphere Data Interchange recognizes this type of user exit when the 

following keywords are used on enveloping commands: IEXIT(exitname), 
IACCESS(M), and ITYPE(UE). 



IBM Software Group Page 38 of 14

IBM Software Group

38

© 2007 IBM Corporationz/OS Batch Processing

References

� WebSphere Data Interchange V3.3 Programmer’s 
Reference Guide

More information can be found in the WebSphere Data Interchange Version 
3.3 Programmer’s Reference Guide.



IBM Software Group Page 39 of 14

39

IBM Software Group

© 2007 IBM Corporation

Trademarks, copyrights, and disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM CICS IMS WebSphere MQ Tivoli
IBM(logo) Cloudscape Informix OS/390 WebSphere
e(logo)business DB2 iSeries OS/400 xSeries
AIX DB2 Universal Database Lotus pSeries zSeries

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both. 

Microsoft, Windows, Windows NT, and the Windows logo are registered trademarks of Microsoft Corporation in the United States, other countries, or both. 

Intel, ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United States, other countries, or both.  

UNIX is a registered trademark of The Open Group in the United States and other countries. 

Linux is a registered trademark of Linus Torvalds.  

Other company, product and service names may be trademarks or service marks of others.

Product data has been reviewed for accuracy as of the date of initial publication.  Product data is subject to change without notice.  This document could include technical inaccuracies or 
typographical errors.  IBM may make improvements and/or changes in the product(s) and/or program(s) described herein at any time without notice.   Any statements regarding IBM's 
future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.  References in this document to IBM products, programs, or 
services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM operates or does business.  Any reference to an IBM Program 
Product in this document is not intended to state or imply that only that program product may be used.  Any functionally equivalent program, that does not infringe IBM's intellectual 
property rights, may be used instead.

Information is provided "AS IS" without warranty of any kind.  THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER 
EXPRESS OR IMPLIED.  IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall 
have no responsibility to update this information.   IBM products are warranted, if at all, according to the terms and conditions of the agreements (e.g., IBM Customer Agreement, 
Statement of Limited Warranty, International Program License Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained from the suppliers 
of those products, their published announcements or other publicly available sources.  IBM has not tested those products in connection with this publication and cannot confirm the 
accuracy of performance, compatibility or any other claims related to non-IBM products.  IBM makes no representations or warranties, express or implied, regarding non-IBM products and 
services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights.  Inquiries regarding patent or copyright 
licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY  10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment.  All customer examples described are presented as illustrations of 
how those customers have used IBM products and the results they may have achieved.  The actual throughput or performance that any user will experience will vary depending upon 
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed.  Therefore, no assurance 
can be given that an individual user will achieve throughput or performance improvements equivalent to the ratios stated here.

© Copyright International Business Machines Corporation 2006.  All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

Template Revision: 04/25/2006 11:09 AM

z/OS Batch Processing


